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Abstract. In anomalous statistical physics, deformed algebraic struc-
tures are important objects. Heavily tailed probability distributions, such
as Student’s t-distributions, are characterized by deformed algebras. In
addition, deformed algebras cause deformations of expectations and inde-
pendences of random variables. Hence, a generalization of independence
for multivariate Student’s t-distribution is studied in this paper. Even if
two random variables which follow to univariate Student’s t-distributions
are independent, the joint probability distribution of these two distribu-
tions is not a bivariate Student’s t-distribution. It is shown that a bivari-
ate Student’s t-distribution is obtained from two univariate Student’s
t-distributions under q-deformed independence.

Keywords: Deformed exponential family · Deformed independence ·
Statistical manifold · Tsallis statistics · Information geometry

1 Introduction

In the theory of complex systems, heavily tailed probability distributions are
important objects. Power law tailed probability distributions and their related
probability distributions have been studied in anomalous statistical physics
([6,12,15]). One of an important probability distribution in anomalous statistical
physics is a q-Gaussian distribution. It is a noteworthy fact that a q-Gaussian
distribution coincides with a Student’s t-distribution in statistics. Hence we can
discuss Student’s t-distributions from the viewpoint of anomalous statistical
physics. Though Student’s t-distributions have been studied by many authors
(cf. [3,7]), our motivation is quite different from the others.

Heavily tailed probability distributions including Student’s t-distributions
are represented using deformed exponential functions (cf. [11,12]). However,
these functions do not satisfy the law of exponents. Hence deformed algebraic
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structures are naturally introduced (cf. [4,6]). Once such a deformed algebra
is introduced, the sample space can be regarded as a some deformed algebraic
space, not the standard Euclidean space (cf. [11]). Hence it is natural to intro-
duce suitable deformed expectations and independences of random variables. In
fact, we find that the duality of exponential and logarithm can express the notion
of independence of random variables. Hence we can generalize the independence
using deformed exponential and deformed logarithm functions [9].

In this paper, we summarize such deformed algebraic structures, then we
apply these deformed algebras to multivariate Student’s t-distributions. Even if
two independent random variables follow to univariate Student’s t-distributions,
the joint probability distribution is not a bivariate Student’s t-distribution.
Hence we show that a bivariate Student’s t-distribution can be obtained from
two univariate Student’s t-distributions under q-deformed independence with a
suitable normalization.

We remark that deformed algebraic structures for statistical models and gen-
eralization of independence are discussed in information geometry. (cf. [5,9,11].
See also [1].) Though normalizations of positive densities are necessary in
the arguments of generalized independence, statistical manifold structures are
changed by normalizations of positive densities. In particular, generalized confor-
mal equivalence relations for statistical manifolds are needed (cf. [9,10]). Hence
a statistical manifold of the set of bivariate Student’s t-distributions with q-
independent random variables is not equivalent to a product statistical manifold
of two sets of univariate Student’s t-distributions.

2 Deformed Exponential Families

In this paper, we assume that all objects are smooth for simplicity. Let us begin
by reviewing the foundations of deformed exponential functions and deformed
exponential families (cf. [9,12]).

Let χ be a strictly increasing function from (0,∞) to (0,∞). We define a
χ-logarithm function or a deformed logarithm function by

lnχ s :=
∫ s

1

1
χ(t)

dt.

The inverse of lnχ s is called a χ-exponential function or a deformed exponential
function, which is defined by

expχ t := 1 +
∫ t

0

u(s)ds,

where the function u(s) is given by u(lnχ s) = χ(s).
From now on, we suppose that χ is a power function, that is, χ(t) = tq. Then

the deformed logarithm and the deformed exponential are defined by

lnq s :=
s1−q − 1

1 − q
, (s > 0),

expq t := (1 + (1 − q)t)
1

1−q , (1 + (1 − q)t > 0).
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We say that lnq s is a q-logarithm function and expq t is a q-exponential function.
By taking a limit q → 1, these functions coincide with the standard logarithm
ln s and the standard exponential exp t, respectively. In this paper, we focus on
q-exponential case. However, many of arguments for q-exponential family can be
generalized for χ-exponential family ([9,11]).

A statistical model Sq is called a q-exponential family if

Sq =

{
p(x, θ)

∣∣∣∣∣p(x; θ) = expq

[
n∑

i=1

θiFi(x) − ψ(θ)

]
, θ ∈ Θ ⊂ Rn

}
,

where F1(x), . . . , Fn(x) are functions on the sample space Ω, θ = t(θ1, . . . , θn)
is a parameter, and ψ(θ) is the normalization with respect to the parameter θ.

Example 1 (Student’s t-distribution). Fix a number q (1 < q < 1+2/d, d ∈ N),
and set ν = −d − 2/(1 − q). We define an n-dimensional Student’s t-distribution
with degree of freedom ν or a q-Gaussian distribution by

pq(x;μ,Σ) :=
Γ

(
1

q−1

)

(πν)
d
2 Γ

(
ν
2

) √
det(Σ)

[
1 +

1
ν

t(x − μ)Σ−1(x − μ)
] 1

1−q

,

where X = t(X1, . . . , Xd) is a random vector on Rd, μ = t(μ1, . . . , μd) is a
location vector on Rd and Σ is a scale matrix on Sym+(d). For simplicity, we
assume that Σ is invertible. Otherwise, we should choose a suitable basis {vα} on
Sym+(d) such that Σ =

∑
α wαvα. Then, the set of all Student’s t-distributions

is a q-exponential family. In fact, set

zq =
(πν)

d
2 Γ

(
ν
2

) √
det(Σ)

Γ
(

1
q−1

) , R̃ =
zq−1
q

(1 − q)d + 2
Σ−1, and θ = 2R̃μ. (1)

Then we have

pq(x;μ,Σ) =
1
zq

[
1 +

1
ν

t(x − μ)Σ−1(x − μ)
] 1

1−q

=

[(
1
zq

)1−q

− 1 − q

(1 − q)d + 2

(
1
zq

)1−q
t(x − μ)Σ−1(x − μ)

] 1
1−q

= expq

[
−t(x − μ)R̃(x − μ) + lnq

1
zq

]

= expq

⎡
⎣ d∑

i=1

θixi −
d∑

i=1

R̃iix
2
i − 2

∑
i<j

R̃ijxixj − 1
4

tθR̃−1θ + lnq
1
zq

⎤
⎦.

Since θ ∈ Rd and R̃ ∈ Sym+(d), the set of all Student’s t-distributions is a
d(d+3)/2-dimensional q-exponential family. The normalization ψ(θ) is given by

ψ(θ) =
1
4

tθR̃−1θ − lnq
1
zq

.
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3 Statistical Manifold Structures Based on q-Fisher
Metric

In this section we give a brief review of statistical manifold structures on a q-
exponential family. We consider a q-Fisher metric in this paper. However, it
is known that a q-exponential family naturally has three kinds of statistical
manifold structures. See [2,9,11] for more details.

Let Sq be a q-exponential family. The normalization ψ(θ) on Sq is convex, but
may not be strictly convex. Hence we assume that ψ is strictly convex throughout
this paper. In fact, we obtain the following proposition.

Proposition 1. Let Sq = {p(x; θ)} be a q-exponential family. Then the normal-
ization function ψ(θ) is convex.

Proof. Set u(x) = expq x and ∂i = ∂/∂θi. Then we have

∂ip(x; θ) = u′
(∑

θkFk(x) − ψ(θ)
)

(Fi(x) − ∂iψ(θ)),

∂i∂jp(x; θ) = u′′
(∑

θkFk(x) − ψ(θ)
)

(Fi(x) − ∂iψ(θ))(Fj(x) − ∂jψ(θ))

−u′
(∑

θkFk(x) − ψ(θ)
)

∂i∂jψ(θ).

Since ∂i

∫
Ω

p(x; θ)dx =
∫

Ω
∂ip(x; θ)dx = 0 and

∫
Ω

∂i∂jp(x; θ)dx = 0, we have

Zq(p) =
∫

Ω

{(p(x; θ)}qdx =
∫

Ω

u′
(∑

θkFk(x) − ψ(θ)
)

dx,

∂i∂jψ(θ) =
1

Zq(p)

∫
Ω

u′′
(∑

θkFk(x) − ψ(θ)
)

×(Fi(x) − ∂iψ(θ))(Fj(x) − ∂jψ(θ))dx.

For an arbitrary vector c = t(c1, c2, . . . .cn) ∈ Rn, since Zq(p) > 0 and u′′(x) > 0,
we have

n∑
i,j=1

cicj(∂i∂jψ(θ)) =
1

Zq(p)

∫
Ω

u′′
(

n∑
k=1

θkFk(x) − ψ(θ)

)

×
{

n∑
i=1

ci(Fi(x) − ∂iψ(θ))

}2

dx ≥ 0.

This implies that the Hessian matrix (∂i∂jψ(θ)) is semi-positive definite. ��
From the assumption for ψ(θ), we can define the q-Fisher metric and the

q-cubic form by

gij(θ) = ∂i∂jψ(θ), Cijk(θ) = ∂i∂j∂kψ(θ),

respectively. For a fixed real number α, set

g
(
∇q(α)

X Y,Z
)

= g
(
∇q(0)

X Y,Z
)

− α

2
C (X,Y,Z) ,
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where ∇q(0) is the Levi-Civita connection with respect to g. Since g is a Hessian
metric, from standard arguments in Hessian geometry [13], ∇q(e) := ∇q(1) and
∇q(m) := ∇q(−1) are flat affine connections and mutually dual with respect to g.
Hence the quadruplet (Sq, g,∇q(e),∇q(m)) is a dually flat space.

Next, we consider deformed expectations for q-exponential families. We define
the escort distribution Pq(x; θ) of p(x; θ) ∈ Sq and the normalized escort distri-
bution P esc

q (x; θ) by

Pq(x; θ) = {p(x; θ)}q,

P esc
q (x; θ) =

1
Zq(p)

{p(x; θ)}q, where Zq(p) =
∫

Ω

{p(x; θ)}qdx,

respectively. Let f(x) be a function on Ω. The q-expectation Eq,p[f(x)] and the
normalized q-expectation Eesc

q,p [f(x)] are defined by

Eq,p[f(x)] =
∫

Ω

f(x)Pq(x; θ)dx, Eesc
q,p [f(x)] =

∫
Ω

f(x)P esc
q (x; θ)dx,

respectively. Under q-expectations, we have the following proposition. (cf. [8])

Proposition 2. For Sq a q-exponential family, (1) set φ(η) = Eesc
q,p [logq p(x; θ)],

then φ(η) is the potential of g with respect to {ηi}. (2) Set ηi = Eesc
q,p [Fi(x)]. Then

{ηi} is a ∇q(m)-affine coordinate system such that

g

(
∂

∂θi
,

∂

∂ηj

)
= δj

i .

��
We define an α-divergence D(α) with α = 1 − 2q and a q-relative entropy (or a
normalized Tsallis relative entropy) DT

q by

D(1−2q)(p(x), r(x)) =
1
q
Eq,p[logq p(x) − logq r(x)] =

1 − ∫
Ω

p(x)qr(x)1−qdx

q(1 − q)
,

DT
q (p(x), r(x)) = Eesc

q,p [logq p(x) − logq r(x)] =
1 − ∫

Ω
p(x)qr(x)1−qdx

(1 − q)Zq(p)
,

respectively. It is known that the α-divergence D(1−2q)(r, p) induces a statistical
manifold structure (Sq, g

F ,∇(2q−1)), where gF is the Fisher metric on Sq and
∇(2q−1) is the α-connection with α = 2q −1, and the q-relative entropy DT

q (r, p)
induces (Sq, g,∇q(e)).

Proposition 3 (cf. [10]). For a q-exponential family Sq, the two statistical
manifolds (Sq, g

F ,∇(2q−1)) and (Sq, g,∇q(e)) are 1-conformally equivalent. ��
We remark that the difference of a α-divergence and a q-relative entropy is
only the normalization q/Zq(p). Hence a normalization for probability density
imposes a generalized conformal change for a statistical model.
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4 Generalization of Independence

In this section, we review the notions of q-deformed product and generalization
of independence. For more details, see [9,11].

Let us introduce the q-deformed algebras since q-exponential functions and
q-logarithm functions do not satisfy the law of exponent. Let expq x be a q-
exponential function and lnq y be a q-logarithm function. For a fixed number q,
we suppose that

1 + (1 − q)x1 > 0, 1 + (1 − q)x2 > 0, y1−q
1 + y1−q

2 − 1 > 0, (2)
y1 > 0, y2 > 0. (3)

We define the q-sum ⊕̃q and the q-product ⊗q by the following formulas [4]:

x1⊕̃q
x2 := lnq

[
expq x1 · expq x2

]
= x1 + x2 + (1 − q)x1x2,

y1 ⊗q y2 := expq [lnq y1 + lnq y2]

=
[
y1−q
1 + y1−q

2 − 1
] 1

1−q

.

Since the base of an exponential function and the argument of a logarithm func-
tions must be positive, conditions (2) and (3) are necessary. We then obtain
q-deformed law of exponents as follows.

expq(x1 ⊕̃q
x2) = expq x1 · expq x2, lnq(y1 · y2) = lnq y1 ⊕̃q lnq y2,

expq(x1 + x2) = expq x1 ⊗q expq x2, lnq(y1 ⊗q y2) = lnq y1 + lnq y2.

We remark that the q-sum works on the domain of a q-exponential function
and a q-product works on the target space. This implies that the domain of
q-exponential function (i.e. the total sample space Ω) may not be a standard
Euclidean space.

Let us recall the notion of independence of random variables. Suppose that X
and Y are random variables which follow to probabilities p1(x) and p2(y), respec-
tively. We say that two random variables are independent if the joint probability
p(x, y) is given by the product of p1(x) and p2(y):

p(x, y) = p1(x)p2(y).

Hence p1(x) and p2(y) are marginal distributions of p(x, y). When p1(x) > 0 and
p2(y) > 0, the independence is equivalent to the additivity of information:

ln p(x, y) = ln p1(x) + ln p2(y).

Let us generalize the notion of independence based on q-products. Suppose
that X and Y are random variables which follow to probabilities p1(x) and p2(y),
respectively. We say that X and Y are q-independent with e-normalization (or
exponential normalization) if a probability density p(x, y) is decomposed by

p(x, y) = p1(x) ⊗q p2(y) ⊗q (−c),
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where c is the normalization defined by∫∫
Supp(p(x,y))⊂ΩX×ΩY

p1(x) ⊗q p2(y) ⊗q (−c) dxdy = 1.

We say that X and Y are q-independent with m-normalization (or mixture nor-
malization) if a probability density p(x, y) is decomposed by

p(x, y) =
1

Z(p1, p2)
p1(x) ⊗q p2(y),

where Z(p1, p2) is the normalization defined by

Z(p1, p2) :=
∫∫

Supp(p(x,y))⊂ΩX×ΩY

p1(x) ⊗q p2(y) dxdy.

In the case of q-exponential families, including the standard exponential families,
we can change normalizations from exponential type to mixture type and vice
versa. (See the calculation in Example 1.) Hence we can carry out e- and m-
normalization simultaneously. However, e- and m-normalizations are different in
general [14].

In some problems, the normalization of probability density is not necessary.
In this case, we say that X and Y are q-independent if a positive function f(x, y)
is decomposed by a q-product of two probability densities p1(x) and p2(y):

f(x, y) = p1(x) ⊗q p2(y).

The function f(x, y) is not necessary to be a probability density. In addition,
the total integral of f(x, y) may diverge.

5 q-independence and Student’s t-distributions

In this section, we consider relations between univariate and bivariate Student’s
t-distributions

Suppose that X1 and X2 are random variables which follow to univariate
Student’s t-distributions p1(x1) and p2(x2), respectively. Even if X1 and X2 are
independent, the joint probability p1(x1)p2(x2) is not a bivariate Student’s t-
distribution [7]. We show that q-deformed algebras work for bivariate Student’s
t-distributions.

Theorem 1. Suppose that X1 and X2 are random variables which follow to
univariate Student’s t-distributions p1(x1) and p2(x2), respectively, with same
parameter q (1 < q < 2). Then there exist a bivariate Student’s t-distribution
p(x1, x2) such that X1 and X2 are q-independent with e-normalization.

Proof. Suppose that X1 follows to a univariate Student’s t-distribution (or a
q-Gaussian distribution) given by

p(x1;μ1, σ1) =
Γ

(
1

q−1

)
√

π
√

3−q
q−1Γ

(
3−q

2(q−1)

)
σ1

[
1 − (1 − q)

(x1 − μ1)2

(3 − q)σ2
1

] 1
1−q

,
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where μ1 (−∞ < μ < ∞) is a location parameter, and σ1 (0 < σ < ∞) is a scale
parameter. Similarly, suppose that X2 follows to p(x2;μ2, σ2). By setting

zq(σ1) =

√
π
√

3−q
q−1Γ

(
3−q

2(q−1)

)
σ1

Γ
(

1
q−1

) =
√

3 − q

q − 1
Beta

(
3 − q

2(q − 1)
,
1
2

)
σ1,

we obtain a q-exponential representation as follows:

p(x1;μ1, σ1) = expq

[
θ1x1 − θ11x 2

1 − (θ1)2

4θ11
+ lnq

1
zq(σ1)

]
,

where θ1 and θ11 are natural parameters defined by

θ1 =
2μ1{zq(σ1)}q−1

(3 − q)σ2
1

, θ11 =
{zq(σ1)}q−1

(3 − q)σ2
1

.

We remark that the normalization zq(σ1) can be determined by the parameter
θ11. Therefore, p(x1;μ1, σ1) is uniquely determined from natural parameters θ1

and θ11. Set θ2 and θ22 by changing parameters to μ2 and σ2. Then we obtain
a positive density by

p(x1;μ1, σ1) ⊗q p(x2;μ2, σ2)

= expq

[
θ1x1 + θ2x2 − θ11x 2

1 − θ22x 2
2 − (θ1)2

4θ11
− (θ2)2

4θ22
+ A(θ)

]
, (4)

where A(θ) is given by

A(θ) = lnq
1

zq(σ1)
+ lnq

1
zq(σ2)

.

Recall that p(x1;μ1, σ1)⊗q p(x2;μ2, σ2) is not a probability distribution. Set
the e-normalization function c by

c = A(θ) − lnq
1
zq

=
(

lnq
1

zq(σ1)
+ lnq

1
zq(σ2)

)
− lnq

1
zq

, (5)

where zq is the m-normalization function of bivariate Student’s t-distribution.
As a consequence, we have

p(x1, x2) = p(x1;μ1, σ1) ⊗q p(x2;μ2, σ2) ⊗q (−c)

= expq

[
θ1x1 + θ2x2 − θ11x 2

1 − θ22x 2
2 − (θ1)2

4θ11
− (θ2)2

4θ22
+ lnq

1
zq

]
.

This implies that X1 and X2 are q-independent with e-normalization, and the
joint positive measure p(x1, x2) is a bivariate Student’s t-distribution. ��
Let us give the normalization function zq in θ-coordinate, explicitly. Using a
property of gamma function, we have
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Γ
(

1
1−q

)

νΓ
(

ν
2

) =
Γ

(
ν+2
2

)
νΓ

(
ν
2

) =
1
2
.

Hence the m-normalization function of bivariate Student’s t-distribution is sim-
ply given by

zq = 2π
√

det Σ.

From Equation (1) and (4), the constant zq should be given by

zq = 2π

(
4(2 − q)2

(2π)2q−2
det R̃

) 1
2(q−2)

=
(

2 − q

π

) 1
q−2

(θ11θ22)
1

2q−4 .

6 Concluding Remarks

In this paper, we showed that a bivariate Student’s t-distribution can be obtained
from two univariate Student’s t-distributions using e- and m-normalizations.
Recall that statistical manifold structures of statistical models are changed by
their normalizations. Hence a statistical manifold structure of a bivariate Stu-
dent’s t-distribution does not coincide with the product manifold structure of
two univariate Student’s t-distributions.
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