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1348 Louvain-la-Neuve, Belgium

pierre-yves.gousenbourger@uclouvain.be
2 ISIT UMR 6284 CNRS, Clermont University, Clermont-Ferrand, France

chafik.samir@udamail.fr

Abstract. We present a new method to fit smooth paths to a given
set of points on Riemannian manifolds using C1 piecewise-Bézier func-
tions. A property of the method is that, when the manifold reduces to a
Euclidean space, the control points minimize the mean square accelera-
tion of the path. As an application, we focus on data observations that
evolve on certain nonlinear manifolds of importance in medical imag-
ing: the shape manifold for endometrial surface reconstruction; the spe-
cial orthogonal group SO(3) and the special Euclidean group SE(3) for
preoperative MRI-based navigation. Results on real data show that our
method succeeds in meeting the clinical goal: combining different modal-
ities to improve the localization of the endometrial lesions.

Keywords: Path fitting on Riemannian manifolds · Bézier functions ·
Optimization on manifolds · MRI-based navigation · Endometrial surface
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1 Introduction

Surface reconstruction problem has been widely studied because of its impor-
tance in different applications such as medical imaging, computer graphics,
mechanical simulations, virtual reality, etc. Particularly, the reconstruction of
surfaces from given 3D point clouds is important since they are frequently used
in medical imaging and computer graphics [4]. For example, one can use a con-
tinuous formulation using PDEs and compute the solution as an implicit surface,
which is usually the zero level set of a sufficiently smooth function. Therefore, one
can control the resulting surface by adding physics-inspired constraints depend-
ing on geometry or external forces [17]. However, when the given data is a set of
curves one needs to find an optimal fitting between them by taking into account
their parametrization and the non-linearity of their spatial evolution. In this
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work, we formulate the problem of reconstructing a surface from a given set of
curves as a smooth path fitting on the space of curves.

Path fitting on manifolds has been addressed in the literature with different
approaches and for various purposes. Generic path fitting methods on manifolds
include splines on manifolds [8], rolling procedures [6], subdivision schemes [10],
gradient descent [13], and geodesic finite elements [15]. Interpolation of rota-
tions (where the manifold M is the special orthogonal group SO(3)) is useful
in robotics for motion planning of rigid bodies and in computer graphics for
the animation of 3D objects [11]. More related to our work, morphing between
shapes can be tackled as an interpolation problem on shape space [5].

With an estimated prevalence of 10 %, endometriosis is one of the most
common clinical problems affecting women of reproductive age [16]. Various
structures can be affected by endometriosis, including the uterosacral ligaments,
rectosigmoid colon, vagina, uterus, and bladder [9]. Generally, the absence of an
accurate preoperative diagnosis leads to unnecessary surgeries even with possible
complications. To reduce the risk of such failure, surgeons need to know exactly
the number, the size, the locations and the depth of infiltration of endometrial
cysts before the intervention. A preoperative mapping of the lesions is crucial for
managing the disease. This mapping can be well defined through medical imag-
ing techniques such as Magnetic Resonance Imaging (MRI) and 2D Transvaginal
Ultrasound (TVUS) [3].

When using these two modalities separately, there is an increased risk of false
negative and false positive, due to their different advantages and inconvenients
[1]. Moreover, they complement each other excellently, as lacking information
from one modality can be provided by the other in terms of spatial, contrast or
temporal resolution. For instance, lesions hard to detect in MRI are revealed at
TVUS acquisition (due to an approximate distance between the probe and the
tissue with relatively free movement). That is why registration is helpful here in
order to show TVUS with lesions into MRI volume.

After TVUS-MRI registration [14], the position p of the ultrasound probe
and its orientation n can be precisely determined within the 3D MRI volume
and around the TVUS curve. They form a certain plane Πn,p. The MRI views
corresponding to the intersections of the MRI volume with the registered planes
Πn,p are used to reproduce the probe movement. As a result, the clinician is able
to explore the MRI volume to search for very close and clear views including
the pelvic organs. We illustrate this idea by fitting a smooth path γ to different
key positions of Πn,p viewed as points on Riemannian manifolds like SO(3)
(rotations) or SE(3) (rotations and translations). For simplicity, we will refer to
the resulting path γ (in both cases) as a preoperative MRI-based navigation to
locate and characterize lesions.

Clinical Context. In practice, TVUS is done on women presenting symptoms
corresponding to the presence of endometrial tissues. When 2D TVUS does not
provide enough information to confirm the diagnosis, MRI is performed. Given
TVUS and MRI, practicians select a set of corresponding landmarks to define
surrounding organ boundaries in both images, manually. These anatomical cor-
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respondences between structures on MRI and TVUS are then used to measure
and locate lesions, separately, which is still a challenging task.

The rest of this paper is organized as follows. Section 2 describes the for-
mulation of our path fitting method. Section 3 presents two applications of this
method: (i) MRI surface reconstruction as a path on shape manifold and (ii)
navigation in the MRI volume as a path on SE(3). We close this paper with a
brief summary in Sect. 4.

2 Problem Formulation

Given a finite set of points p0, . . . , pn at time instants t0, . . . , tn on a Riemannian
manifold M, our goal is to construct a smooth path γ that interpolates pi at ti
for i = 0, . . . , n. When the manifold M reduces to the Euclidean space R

m, we
propose a method that generates a piecewise-Bézier C1 path with minimal mean
squared acceleration. This method improves on the technique recently proposed
in [5], where the choice of the path velocity direction at the interpolation points
was suboptimal even in the Euclidean case. Let the function t �→ βk(t; b0, . . . , bk)
denote the Bézier curve of order k and b0, . . . , bk the control points. For sim-
plicity, we set time instants ti = i with straightforward extension to general
timestamps. In this work, we only use Bézier curves of degree 2 and 3, expressed
in R

m as:

β2(t; b0, b1, b2) = b0(1 − t)2 + 2b1t(1 − t) + b2t
2 (1)

β3(t; b0, b1, b2, b3) = b0(1 − t)3 + 3b1t(1 − t)2 + 3b2t
2(1 − t) + b3t

3. (2)

Using these polynomials, we construct a C1 curve γ : [0, n] → R
m (we call it a

piecewise-Bézier curve) consisting of Bézier curves of degree 2 for the extremal
segments and of degree 3 for the others:

γ(t) =

⎧
⎪⎨

⎪⎩

β2(t; p0, b−
1 , p1) if t ∈ [0, 1]

β3(t − (i − 1); pi−1, b
+
i−1, b

−
i , pi) if t ∈ [i − 1, i], i=2,. . . ,n-1

β2(t − (n − 1); pn−1, b
+
n−1, pn) if t ∈ [n − 1, n],

(3)

where b+i and b−
i are the control points respectively on the right and left hand

side of the interpolation point pi. One can observe that this formulation satisfies
the interpolation conditions γ(ti) = pi. The differentiability condition of the
curve is ensured by imposing velocities to be equal on the left and right of the
interpolation points pis, which allows us to express b+i in terms of b−

i :

b+1 = 5
3p1 − 2

3b−
1 ,

b+i = 2pi − b−
i i = 2, . . . , n − 2,

b+n−1 = 5
2pn−1 − 3

2b−
n−1.

(4)

The resulting optimization problem is an unconstrained minimization with
b−
i as variables and the mean square acceleration of the piecewise-Bézier curve

as the objective function, defined as follows:
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∫ 1

0

‖β̈2(t; p0, b−
1 , p1)‖2dt +

n−2∑

i=1

∫ 1

0

‖β̈3(t; pi−1, b
+
i−1, b

−
i , pi)‖2dt

+
∫ 1

0

‖β̈2(t; pn−1, b
+
n−1, pn)‖2dt. (5)

As the Bézier segments are linear functions of the control points, the objective
function is quadratic. The optimal solution is then computed as a critical point
of the gradient, which gives rise to a linear system of the form: AX = CP where
X =

[
b−
1 . . . b−

n−1

]T ∈ R
n−1×m, P =

[
p0 . . . pn

]T ∈ R
n+1×m, A ∈ R

n−1×n−1

and C ∈ R
n−1×n+1 are tridiagonal matrices with coefficients:

A(1,1:2) =
[
64 24

]
, (6)

A(2,1:3) =
[
24 144 36

]
, (7)

A(i,i−1:i+1) =
[
36 144 36

]
, i = 3 : n − 2 (8)

A(n−1,n−2:n−1) =
[
36 144

]
(9)

and

C(1,1:2) =
[
16 72

]
, (10)

C(2,2:3) =
[
60 144

]
, (11)

C(i,i:i+1) =
[
72 144

]
, i = 3 : n − 2 (12)

C(n−1,n−1:n+1) =
[
72 132 −24

]
. (13)

Since A is invertible, the unique solution is given by:

X = A−1CP = DP with
n∑

j=0

Dij = 1,∀i. (14)

We generalize this result on a Riemannian submanifold M embedded in a
Euclidean space E . In order to make this possible for a Riemannian manifold M,
one needs the tangent space Tp(M) of M at a given point p, the Riemannian
exponential map Expp, and its inverse Logp (see [2,12, Sect. 4] for a formal defin-
ition on specific manifolds). Bézier curves (1) and (2) are generalized by means of
the Riemannian De Casteljau’s algorithm (see, e.g., [5] for the literature). Condi-
tions (4), of the form b+i = pi + α(b−

i − pi) generalize to bi = Exppi
(αLogpi

(b−
i ))

and ensure that γ on M is C1. It then remains to generalize (14) for which we
propose two approaches:

1. method 1: In order to solve the fitting problem on a linear space as for
the Euclidean case, we proceed as follows. We initially choose an arbitrary
point among the pis that we will call a root point, e.g., p0. Next we map the
rest of the given data points to Tp0(M) as p̃i = Logp0

(pi). Then we solve
the linear system X̃ = DP̃ . Finally, we project the solution X̃ back to M
as b−

i = Expp0
(x̃i). Numerically, the choice of the root point may affect the

quality of the solution.
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2. method 2: In order to avoid the dependance on the choice of a single root
point, an alternative is to choose pi as the root point for row i of (14). Thus,
for each i = 1 . . . n − 1 we map the rest of data points into the tangent
space Tpi

(M) using the logarithmic map Logpi
. The mapped data are then

given by P̃ =
[
Logpi

(p0) . . . Logpi
(pn)

]
and the solution is given by x̃i =

Logpi
(b−

i ) =
∑n

j=0 DijLogpi
(pj). Therefore, each x̃i is mapped back to M as

b−
i = Exppi

(x̃i).

As stated earlier, our method minimizes the mean square acceleration objec-
tive when M is a Euclidean space. This follows from the fact that, when M
is a Euclidean space, we have Logp(b) = b − p; this, along with the property∑n

j=0 Dij = 1, makes the root point cancel out and recover (14). Even if they
seem to provide good solutions, the proposed generalizations of (14) do not guar-
antee a minimal mean square acceleration when M is nonlinear. Nevertheless,
we will use the second method for the experiments as it was observed to be more
efficient than the first one, at least when M is the unit sphere S2, the special
orthogonal group SO(3), or the special Euclidean group SE(3).

3 Experimental Results

In this section, we present two different applications of our framework. On
both cases, results are given using real data images obtained from patients with
endometriosis characterized by different localizations and depths of infiltration.
Figure 1(a,b) shows examples of corresponding landmark curves (uterus, rectum,
lesions) in TVUS and MR images. The curves in TVUS have been deformed along
during the exam due to the transducer’s pressure as shown in Fig. 2(a).

3.1 Endometrial Surface Reconstruction

As a first application, we performed our path fitting method to reconstruct the
endometrial surface SMRI from curves in three steps. First, a radiologist was
asked to select different slices (from 4 to 7) and segment curves as boundaries of
an interest zone on each slice. Second, we represented each curve as a point on
the shape manifold. Note that we aligned and fixed the starting point of each
curve (Fig. 1(f)). As given time indexes that have spatial meaning in this case,
we used the z−values for each curve from its corresponding slice. Third, we used
a modified version of [7] to compute a geodesic path between any two points on
shape space. Finally, we applied our method as detailed in Sect. 2 to construct
SMRI (Fig. 1(c) and (h)) as a C1-fitting path between curves (see ‖γ̇(t)‖ in
Fig. 1(d)). To give an idea about the quality of the reconstructed surface, we
show an example of SMRI constructed from a set of 3D curves (f) using a linear
interpolation between them (g) and our method (h).
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Fig. 1. Application 1: from TVUS and MR images (a,b), we reconstruct the MRI
surface (c) as a path γ interpolating 4 key curves extracted on MRI slices. The velocity
of γ is continuous (d). From the 6 key curves (e) with fixed starting points (f) we
reconstruct (g) as a linear interpolation and (h) with our method.

Fig. 2. (a) An illustration of TVUS movement during the exam and (b) is an example
of the intersection between MRI volume and a plane Πn,p by means of interpolation.
(c) and (d) Are two examples of fitting paths on SO(3) and SE(3), respectively.

3.2 MRI-based Navigation

The problem of 2D-3D TVUS-MRI registration was recently addressed by Samir
et al. in [14]. The basic idea of their method is a follows. First, they manually
segment the cylindrical endometrial tissue surface SMRI from the MRI image
and the planar contour from the corresponding TVUS image. This registration
provides a one-to-one correspondence of curves between TVUS and MRI. We
will refer to the resulting intersecting plane by Πn,p (Fig. 2(b)).

To look for a very close and more clear views including the pelvic organs
in the MRI volume, one has to consider the movement of the probe (rotations
only or rotations and translations) to search around Πn,p. We illustrate this idea
by fitting smooth paths of different key positions of Πn,p on SO(3) (rotations:
Fig. 2(c)) and on SE(3) (rotations and translations: Fig. 2(d)). In both cases,
we consider the resulting path γ as a preoperative MRI-based navigation. It is
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Fig. 3. Application 2: examples of uniformly sampled frames from MRI navigation
obtained as a fitting on SE(3).

clear from Fig. 3 that such navigation has more chances to locate the extent of
lesions than TVUS and MRI when used separately. This idea is illustrated in
Fig. 3(frames (2, 4, 6, 9)) where new views as points from γ provide more accurate
characterization of the lesion. In this case, the red coloured areas denotes the
region of interest (delineated by the expert) which were not clear enough or non
visible on sagittal, coronal, and axial views.

4 Summary

In this work, we have proposed a new Riemannian framework for a MR-based
navigation system to locate and characterize endometrial tissues in order to
improve the preoperative diagnosis. The information is available in the form of
landmark curves (extended to surfaces) in the 3D MRI and curves in the 2D
TVUS images. Our approach embeds the TVUS intersecting plane into MRI
and use a new path fitting method to construct an MRI-based navigation. This
way, we have reached very close and more clear views including the pelvic organs
in the MRI volume.
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