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Abstract. Curvature properties for statistical structures are studied.
The study deals with the curvature tensor of statistical connections and
their duals as well as the Ricci tensor of the connections, Laplacians and
the curvature operator. Two concepts of sectional curvature are intro-
duced. The meaning of the notions is illustrated by presenting few exem-
plary theorems.
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1 Introduction

The curvature tensor is one of the most important tensors in differential geom-
etry. On the base of this tensor many other objects can be defined. In par-
ticular, the Ricci tensor, the scalar curvature, the Weyl curvature tensor, the
Weitzenböck curvature tensor or the sectional curvature. Some of these notions,
however, are attributed only to Riemannian structures with their Levi-Civita
connections. For instance, the sectional curvature is such a notion. We claim that
some of these, especially strongly attributed to Riemannian geometry, notions
can be extended to statistical structures and like in the Riemannian case, provide
a lot of information on the structures.

By a statistical structure on a manifold M we mean a pair (g,∇), where
g is a metric tensor field and ∇ is a torsion-free connection for which ∇g as
a cubic form is symmetric in all arguments, see [1]. Such a structure is also
called a Codazzi structure. One can define (equivalently) a statistical structure
by equipping a Riemannian manifold (M, g) with a symmetric (1, 2)-tensor field
K, for which the cubic form C(X,Y,Z) = g(K(X,Y ), Z) is symmetric in all
arguments. Having K one defines a torsion-free connection ∇ by the formula
∇XY = ∇̂XY + K(X,Y ), where ∇̂ is the Levi-Civita connection of g. The
pair (g,∇) turns out to be a statistical structure. Of course, instead of K one
can prescribe a symmetric cubic form C. A manifold endowed with a statistical
structure is called a statistical manifold.

In information theory classical examples of statistical manifolds are manifolds
of probability distributions equipped with the Fisher information metric and an
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appropriate cubic form. Namely, let (X ,B) be a measurable space with σ-algebra
B over X . Let Λ be a domain in Rn and

p : X × Λ � (x, λ) −→ p(x, λ) ∈ R

be a function smoothly depending on λ. Moreover, we assume that pλ(x) :=
p(x, λ) is a probability measure on X for each λ ∈ Λ. Set �(x, λ) = log p(x, λ).
The Fisher information metric g on Λ is given by

gij(λ) = Eλ[(∂i�)(∂j�)], (1)

where Eλ denotes the expectation relative to pλ, ∂i� stands for ∂�
∂λi

and
λ = (λ1, ..., λn). One defines a symmetric cubic form C on Λ by the formula

Cijk(λ) = E[(∂i�)(∂j�)(∂k�)].

The pair (g, αC) constitutes a statistical structure on Λ for every α ∈ R.
However, the oldest source of statistical structures is the theory of affine

hypersurfaces in Rn or the geometry of the second fundamental form of hyper-
surfaces in real space forms. Lagrangian submanifolds of complex space forms
are also naturally endowed with statistical structures. Nevertheless, most statis-
tical structures are outside these categories. In general, a statistical structure is
not realizable on a hypersurface nor on a Lagrangian submanifold, even locally,
see [4].

In this paper we present some ideas of extending Riemannian geometry to
the case of statistical structures. We concentrate on the ideas depending on na-
turally defined curvature tensors for a statistical structure. Exemplary theorems
concerning these ideas are provided.

2 Statistical Structures

A statistical structure on a manifold M can be defined in few equivalent ways.
First of all M must have a Riemannian structure defined by a metric tensor
field g. We assume that g is positive definite, although g can be also indefnite.
A statistical structure can be defined as a pair (g,K), where g is a Riemannian
metric tensor field and K is a symmetric (1, 2)-tensor field on M which is also
symmetric relative to g, that is, the cubic form

C(X,Y,Z) = g(X,K(Y,Z)) (2)

is symmetric relative to X,Y . It is clear that any symmetric cubic form C on
a Riemannian manifold (M, g) defines by (2) a (1, 2)-tensor field K having the
symmetry properties as above. Another definition says that a statistical structure
is a pair (g,∇), where ∇ is a torsion-free affine connection on M and ∇g as a
(0, 3)-tensor field on M is symmetric in all arguments. ∇ is called a statistical
connection. The equivalence of the above definitions is established by taking K
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as the difference tensor between the connection ∇ and the Levi-Civita connection
∇̂ for g, that is,

∇XY = ∇̂XY + K(X,Y ) (3)

for every vector fields X,Y on M . The cubic forms C and ∇g are related by the
equality ∇g = −2C.

For any connection ∇ on a Riemannian manifold (M, g) one defines its con-
jugate connection ∇ (relative to g) by the formula

g(∇XY,Z) + g(Y,∇XZ) = Xg(Y,Z) (4)

for any vector fields X,Y,Z on M . The connections ∇ and ∇ are simultaneously
torsion-free. If (g,∇) is a statistical structure then so is (g,∇). Moreover, if
(g,∇) is trace-free then so is (g,∇). Recall that a statistical structure (g,∇)
is trace-free if tr g(∇g)(X, ·, ·) = 0 for every X or equivalently tr gK = 0, or
equivalently trKX = 0 for every X, where KXY stands for K(X,Y ). If R is the
curvature tensor for ∇ and R is the curvature tensor for ∇ then we have, see [3],

g(R(X,Y )Z,W ) = −g(R(X,Y )W,Z) (5)

for every X,Y,Z,W . In particular, R = 0 if and only if R = 0. If K is the
difference tensor between ∇ and ∇̂ then

∇XY = ∇̂XY − KXY. (6)

We also have, [3],

R(X,Y ) = R̂(X,Y ) + (∇̂XK)Y − (∇̂Y K)X + [KX ,KY ], (7)

where R̂ is the curvature tensor for ∇̂. Writing the same equality for ∇ and
adding both equalities we get

R(X,Y ) + R(X,Y ) = 2R̂(X,Y ) + 2[KX ,KY ]. (8)

The above formulas yield, see [4],

Lemma 1. Let (g,K) be a statistical structure. The following conditions are
equivalent:

(1) R = R,
(2) ∇̂K(X,Z, Y ) is symmetric in all arguments,
(3) g(R(X,Y )Z,W ) is skew-symmetric relative to Z,W .

A statistical structure is called a Hessian structure if the connection ∇ is
flat, that is, R = 0. In this case, by (8), we have

R̂ = −[K,K]. (9)

For a statistical structure one defines the vector field E by

E = tr gK. (10)
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The dual (relative to g) form will be denoted by τ . We have tr g∇g(·, ·, Z) =
−2τ(Z). If νg is the volume form determined by g then ∇Zνg = −τ(Z)νg.
Therefore, a statistical structure (g,∇) is trace-free if and only if ∇νg = 0. Trace-
free statistical structures are of the greatest importance in the classical theory of
affine hypersurfaces of Rn+1. In this theory they are called Blaschke structures.
In the theory of Lagrangian submanifolds trace-free statistical structures appear
on minimal submanifolds.

Denote by Ric, Ric and ̂Ric the Ricci tensors for ∇, ∇ and ∇̂ respectively.
Recall that for any linear connection ∇ with curvature tensor R its Ricci tensor
is defined by Ric(Y,Z) = tr {X → R(X,Y )Z}. Note that the Ricci tensor does
not have to be symmetric. We have

Ric(Y,Z) = ̂Ric(Y,Z) + (div∇̂K)(Y,Z) − ∇̂τ(Y,Z) + τ(K(Y,Z)) − g(KY ,KZ).

It follows that

Ric(Y,Z) + Ric(Y,Z) = 2̂Ric(Y,Z) − 2g(KY ,KZ) + 2τ(K(Y,Z)). (11)

In particular, if (g,∇) is trace-free then

2̂Ric(X,X) ≥ Ric(X,X) + Ric(X,X). (12)

The above formulas also yield

Ric(Y,Z) − Ric(Z, Y ) = −dτ(Y,Z). (13)

Hence ∇ is Ricci-symmetric if and only if dτ = 0. Recall that the Ricci tensor of
∇ is symmetric if and only if there is a (locally defined) volume form ν parallel
relative to ∇.

Denote by ρ the scalar curvature for ∇, that is, ρ = tr gRic(·, ·). By (5) it is
clear that the scalar curvature for ∇ is equal to ρ. Taking now the trace relative
to g on both sides of (11) we get

ρ̂ = ρ + |K|2 − |E|2. (14)

The last formula implies, in particular, that the Riemannian scalar curvature for
∇̂ is maximal among scalar curvatures of connections which are statistical for g.
More precisely, we have, see [4],

Proposition 1. The functional

scal : {statistical connections for g} � ∇ → tr gRic ∈ C∞(M)

attains its maximum for the Levi-Civita connection at each point of M . Con-
versely, if ∇ is a statistical connection for g and scal attains its maximum for
∇ at each point on M , then ∇ is the Levi-Civita connection for g.

As we have already observed the curvature tensor R for ∇ does not have
the same symmetries as the curvature tensor of the Levi-Civita connection. By
Lemma 1 we see that the symmetry conditions are fulfilled if R = R. It turns
out that this condition is important in many considerations. For instance, in
theorems saying that under some curvature conditions a statistical structure is
trivial, that is, ∇ = ∇̂. Proofs of the following theorems can be found in [4].
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Theorem 1. Let M be a connected compact surface and (g,∇) be a trace-free
statistical structure on M . If M is of genus 0 and R = R then ∇ = ∇̂ on M . If
M is of genus 1 and K = 0 at one point of M then ∇ = ∇̂ on M .

Theorem 2. Let M be a compact manifold equipped with a trace-free statistical
structure (g,∇) such that R = R. If the sectional curvature k̂ for g is positive
then ∇ = ∇̂.

Although the Ricci tensors for ∇ and ∇ differs very much from each other,
their integrals over a unit sphere bundle UM are the same. Namely we have

Theorem 3. Let M be a compact oriented manifold and (g,∇) be a statistical
structure on it. Then

∫

UM

Ric(U,U)dU =
∫

UM

Ric(U,U)dU. (15)

If (g,∇) is trace-free then
∫

UM

Ric(U,U)dU ≤
∫

UM

̂Ric(U,U)dU (16)

and the equality holds if and only if ∇ = ∇̂ on M .

3 On Examples

As it was mentioned in the Introduction a natural source of statistical struc-
tures is the theory of affine hypersurfaces. Let f : M → Rn+1 be a locally
strongly convex hypersurface. For simplicity assume that M is oriented. Let ξ
be a transversal vector field on M . We define the induced volume form νξ on M
(compatible with the given orientation) as follows

νξ(X1, ...,Xn) = det(f∗X1, ..., f∗Xn, ξ).

We also have the induced connection ∇ and the second fundamental form g
defined on M by the Gauss formula:

DXf∗Y = f∗∇XY + g(X,Y )ξ,

where D is the standard flat connection on Rn+1. Since the hypersurface is
locally strongly convex, g is definite. By multiplying ξ by −1, if necessary, we
can assume that g is positive definite. A transversal vector field is called equiaffine
if ∇νξ = 0. This condition is equivalent to the fact that ∇g is symmetric, i.e.
(g,∇) is a statistical structure. It means, in particular, that for a statistical
structure obtained on a hypersurface by a choice of a transversal vector field,
the Ricci tensor of ∇ is automatically symmetric. In general, the Ricci tensor of
a statistical structure on an abstract manifold does not have to be symmetric.
Therefore, all structures with non-symmetric Ricci tensor are non-realizable as
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the induced structures on hypersurfaces. For statistical structures induced on
hypersurfaces the condition R = R describes the so called affine spheres. The
class of affine spheres is very large, very attractive for geometers and still very
misterious. Again, it is easy to find examples of statistical structures on abstract
manifolds for which R = R and which cannot be realized on affine spheres
(although in this case the Ricci tensor of ∇ is symmetric). For a statistical
structure a necessary condition for being (locally) realizable on a hypersurface is
that the connection ∇ is projectively flat. It is a strong condition which is rarely
satisfied.

Another source of statistical structures is the theory of Lagrangian subman-
ifolds in almost Hermitian manifolds. In this case K can be regarded as the
second fundamental tensor of a sumbanifold. The theory is best developed for
Lagrangian submanifolds of complex space forms. In this case ∇̂K as a (1, 3)-
tensor field is symmetric. Hence, by Lemma 1, we also have R = R. In this
case an obstructive condition (which makes that a statistical structure satisfy-
ing R = R might be non-realizable on a Lagrangian submanifold) is the Gauss
equation.

In analogy with the case of hypersurfaces by an equiaffine statistical structure
we mean a triple (g,∇, ν), where (g,∇) is a statistical structure and ν is a volume
form on M (in most cases different than νg) parallel relative to ∇.

For more information on dual connections, affine differential geometry and
the geometry of statistical structures we refer to [1–4,6].

4 Sectional Curvatures

Of course we have the ordinary sectional curvature for g. In general, the ten-
sor field R for a statistical connection ∇ is not good enough to produce the
sectional curvature. The reason is that, in general, g(R(X,Y )Z,W ) is not skew
symmetric relative to Z,W . But the tensor field R = 1

2 (R+R) has the property
g((R(X,Y )Z,W ) = −g((R(X,Y )W,Z). Moreover, it satisfies the first Bianchi
identity. This allows to define the sectional curvature, which we call the sectional
∇-curvature. Namely, if X,Y is an orthonormal basis of a vector plane π ⊂ TxM
then the sectional ∇-curvature by this plane is defined as g(R(X,Y )Y,X). But
for this sectional curvature Schur’s lemma does not hold, in general. It is because
there is no appropriate universal second Bianchi identity. We have, however, the
following analogue of the second Bianchi identity, see [4],

ΞU,X,Y (∇̂U (R + R))(X,Y ) = ΞU,X,Y (KU (R − R))(X,Y ), (17)

where ΞU,X,Y denotes the cyclic permutation sum. It follows that for statisti-
cal structures satisfying the condition R = R Schur’s lemma holds. Another
result in which the assumption R = R is important is the following analogue of
Tachibana’s theorem, [4],

Theorem 4. Let M be a connected compact oriented manifold and (g,∇) be a
statistical structure on M such that R = R. If the curvature operator R̂ for R̂ is
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non-negative and div ∇̂R = 0 then ∇̂R = 0. If additionally R̂ > 0 at some point
of M then the sectional ∇-curvature is constant.

Since the tensor R has good symmetry properties, one can also define the
curvature operator, say R, for R sending 2-vectors into 2-vectors. Namely, we
set

g(R(X ∧ Y ), Z ∧ U) = g(R(Z,U)Y,X), (18)

where g denotes here the natural extension of g to tensors. The formula defines
a linear, symmetric relative to g operator R : Λ2TM → Λ2TM. In particular, it
is diagonalizable and hence it can be positive, negative (definite) etc.

We have the following analogue of a theorem of Meyer-Gallot for trace-free
statistical structures, see [4],

Theorem 5. Let M be a connected compact oriented manifold and (g,∇) be a
trace-free statistical structure on M . If the curvature operator R for R is non-
negative on M then each harmonic form is parallel relative to ∇, ∇ and ∇̂. If
moreover the curvature operator is positive at some point of M then the Betti
numbers b1(M) = ... = bn−1(M) = 0.

Another sectional curvature for a statistical structure (g,K) can be defined
by using the tensor field K. We define a (1, 3)-tensor field [K,K] by

[K,K](X,Y )Z = [KX ,KY ]Z = KXKY Z − KY KXZ (19)

for X,Y,Z ∈ TxM, x ∈ M . Recall that for a Hessian structure we have [K,K] =
−R̂. The tensor field [K,K] is skew symmetric in X,Y , skew-symmetric relative
to g and satisfies the first Bianchi identity. Therefore one can define the sectional
K-curvature by a vector plane π tangent to M as k(π) = g([K,K](X,Y )Y,X),
where X,Y is an orthonormal basis of π. As in the previous case, for this sectional
curvature Schur’s lemma holds if ∇̂K is symmetric as a (1, 3)-tensor field. Note
that the notion of the sectional K-curvature is purely algebraic. The fact that
this curvature is constant implies that K has a special expression. Namely, we
have, see [5],

Theorem 6. Let (g,K) be a statistical structure on an n-dimensional manifold
M . If the sectional K-curvature is constant and equal to A for all vector planes
in TM then for each x ∈ M there is an orthonormal basis e1, ..., en of TxM such
that

K(e1, e1) = λ1e1, K(e1, ei) = μ1ei (20)

K(ei, ei) = μ1e1 + ... + μi−1ei−1 + λiei, (21)

for i = 2, ...n and
K(ei, ej) = μiej (22)

for some numbers λi, μi for i = 1, ..., n − 1 and j > i. Moreover
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μi =
λi − √

λ2
i − 4Ai−1

2
, (23)

Ai = Ai−1 − μ2
i , (24)

for i = 1, ..., n − 1 where A0 = A. If additionally the statistical structure (g,K)
is trace-free then A ≤ 0, λi and μi are expressed as follows

λi = (n − i)

√

−Ai−1

n − i + 1
, μi = −

√

−Ai−1

n − i + 1
. (25)

Note that, in general, it is not possible to find a local frame e1, ..., en around a
point of M in which K has expression as in the above theorem.

Below there are few theorems serving as examples of results dealing with the
sectional K-curvature. In these theorems the notation [K,K] · K, R̂ · K means
that [K,K] and R̂ act on K as differentiations. Details concerning the theorems
are providedT in [5].

Theorem 7. Let (g,K) be a statistical structure on a manifold M . If the sec-
tional K-curvature is non-positive on M and [K,K] · K = 0 then the sectional
K-curvature vanishes on M .

Corollary 1. If (g,K) is a Hessian structure on M with non-positive sectional
curvature of g and such that R̂ · K = 0 then R̂ = 0.

Theorem 8. If (g,K) is a statistical structure on a manifold M , the sectional
K-curvature is negative on M and R̂ · K = 0 then R̂ = 0.

Theorem 9. Assume that [K,K] = 0 on a statistical manifold (M, g,K), ∇̂K
is symmetric and ∇̂E = 0. If K is non-degenerate, that is, the mapping TxM �
X → KX ∈ HOM(TxM) is a monomorphism at each point of M then R̂ = 0
and ∇̂K = 0 on M .

Theorem 10. Let (g,K) be a trace-free statistical structure on a manifold M
with symmetric ∇̂K. If the sectional K-curvature is constant then either K = 0
or R̂ = 0 and ∇̂K = 0 on M .

5 Bochner-Type Theorems

Bochner’s theorems for Riemannian manifolds say, roughly speaking, that under
some curvature assumptions harmonic forms must be parallel. This is a converse
to the trivial statement that a parallel form is harmonic.

For statistical structures one can prove some analogues of this theorems.
First we define a new Laplacian Δ∇ depending on the statistical connection. If
(g,∇) is a statistical structure on M then we define the codifferential δ∇ acting
on differential forms copying the classical Weitzenböck formula

δ∇ω = −tr g∇ω(·, ·, ...)
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for any differential form ω. We now set

Δ∇ = dδ∇ + δ∇d.

If the statistical structure is trace-free then Δ∇ is the ordinary Laplacian for g.
A form ω is called ∇-harmonic if Δ∇ω = 0. Hodge’s theory can be adapted to
this definition of a Laplacian and harmonicity. In particular, for an equiaffine
statistical structure on a compact manifold M we have dim Hk,∇(M) = bk(M),
where Hk,∇(M) is the space of all ∇-harmonic forms and bk(M) is the k-th Betti
number of M .

Below are exemplary analogues of Bochner-type theorems for statistical
structures.

Theorem 11. Let M be a connected compact oriented manifold with an
equiaffine statistical structure (g,∇, ν). If the Ricci tensor Ric for ∇ is non-
negative on M then every ∇-harmonic 1-form on M is ∇-parallel. In particular,
the first Betti number b1(M) is not greater than dim M . If additionally Ric > 0
at some point of M then b1(M) = 0.

Theorem 12. Let M be a connected compact oriented manifold. Let (g,∇) be a
trace-free statistical structure on M . If Ric+Ric ≥ 0 on M then each harmonic
1-form on M is parallel relative to the connections ∇, ∇ and ∇̂. In particular,
b1(M) ≤ dim M . If moreover Ric + Ric > 0 at some point then b1(M) = 0.

For any statistical structure (g,∇) one can define the Weitzenböck curvature
operator denoted here by WR. It depends only on g and the curvature tensor
R. More precisely, it can be introduced as follows. Let s be a tensor field of type
(l, k), where k > 0, on M . One defines a tensor field WRs of type (l, k) by the
formula

(WRs)(X1, ...,Xk) =
k

∑

i=1

n
∑

j=1

(R(ej ,Xi) · s)(X1, ..., ej , ...,Xk), (26)

where e1, ..., en is an arbitrary orthonormal frame, R(ej ,Xi) · s means that
R(ej ,Xi) acts as a differentiation on s, and ej in the last parenthesis is at
the i-th place. It is possible to prove appropriate generalizations of Bochner-
Weitzenböck’s and Lichnerowicz’s formulas for the Laplacian acting on differ-
ential forms on statistical manifolds. In particular, for a trace-free structure we
have the following simple formula

Δ = ∇∗∇ + WR,

where ∇∗ is suitably defined formal adjoint for ∇.
Details concerning Hodge’s theory and Bochner’s technique for statistical

structures can be found in [4].
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