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Abstract. This paper aims to define a unified setting for shape regis-
tration and LDDMM methods for shape analysis. This setting turns out
to be sub-Riemannian, and not Riemannian. An abstract definition of a
space of shapes in R

d is given, and the geodesic flow associated to any
reproducing kernel Hilbert space of sufficiently regular vector fields is
showed to exist for all time.

1 Introduction

The purpose of this paper is to define and study abstract shape spaces in R
d in

order to unify and generalize the LDDMM algorithms that have been developed
in the past few years. They consist in fixing a Hilbert space V of smooth vector
fields in R

d with reproducing kernel K, and studying the deformations of an
initial shape (a template) induced by flows of elements of V [8,10,17–21]. This
allows to measure the “energy” of this flow by integrating the squared norm of
the vector field. One then tries to get as close as possible to a target shape while
keeping the energy small. This induces a length structure on the shape space
and the problem can be reformulated as a geodesic search for this structure.

However, these methods have some flaws from a theoretical point of view.
First of all, the notion of “shape space” has always been ambiguous. While
it usually refers to a space of embeddings of a compact surface in R

3 (or, in
numerical simulations, to spaces of landmarks), more general spaces are some-
times needed and therefore require a case by case analysis. For example, when
studying the movement of a muscle, one needs to take into account the direction
of that muscle’s fibers, which are not part of the embedding itself.

The second problem only appears for a shape space S of infinite dimension.
Contrarily to what is described in most papers, the length structure induced by
the flow of vector fields in V yields a sub-Riemannian structure on S, not a Rie-
mannian one. While this raises several difficulties from a theoretical viewpoint,
it does not change the optimization algorithms, since those are mainly con-
cerned with finite dimensional shape spaces, for which the structure is indeed
Riemannian.

The purpose of this paper is to address both of these issues. In the first
section, we briefly summarize the results of [4] on the Hamiltonian geodesic
flow of the space of Sobolev diffeomorphisms of Rd for the right-invariant sub-
Riemannian structure induced by a fixed arbitrary Hilbert space V of smooth
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enough vector fields. In the second part of this paper, we define abstract shape
spaces in R

d as Banach manifolds on which the group of diffeomorphisms of Rd

acts in a way that is compatible with its particular topological group structure.
We then define the sub-Riemannian structure induced on S by this action and
by V , and see that it admits a global Hamiltonian geodesic flow.

2 Sub-Riemannian Structures on Groups
of Diffeomorphisms

The purpose of this section is to give a brief summary of the results of [4].
Fix d ∈ N. For an integer s > d/2+1, let Ds(Rd) = e+Hs(Rd,Rd)∩Diff(Rd)

be the connected component of e = IdM in the space of diffeomorphisms of class
Hs. It is an open subset of the affine Hilbert space e+Hs(Rd,Rd), and therefore
a Hilbert manifold. It is also a group for the composition (ϕ,ψ) �→ ϕ ◦ ψ. This
group law satisfies the following properties:

1. Continuity: (ϕ,ψ) �→ ϕ ◦ ψ is continuous.
2. Smoothness on the left: For every ψ ∈ Ds(Rd), the mapping Rψ : ϕ �→ ϕ◦ψ

is smooth.
3. Smoothness on the right: For every k ∈ N \ {0}, the mappings

Ds+k(Rd) × Ds(Rd) −→ Ds(Rd) Hs+k(Rd,Rd) × Ds(Rd) −→ Hs(Rd,Rd)
(ϕ,ψ) �−→ ϕ ◦ ψ (X,ψ) �−→ X ◦ ψ

(1)
are of class Ck.

4. Regularity: For any ϕ0 ∈ Ds(Rd) and X(·) ∈ L2(0, 1;Hs(Rd,Rd)), there
is a unique curve ϕ(·) ∈ H1(0, 1;Ds(Rd)) such that ϕ(0) = ϕ0 and ϕ̇(t) =
X(t) ◦ ϕ(t) almost everywhere on [0, 1].

See [9,12,15,16] for more on this structure.

Sub-Riemannian structures on Ds(Rd).

Definition 1. We define a strong right-invariant structure on Ds(Rd) as fol-
lows: fix V an arbitrary Hilbert space of vector fields with Hilbert product 〈·, ·〉V

and norm ‖ · ‖V and continuous inclusion in Hs+k(Rd,Rd), k ∈ N \ {0}. The
sub-Riemannian structure induced by V on Ds(Rd) is the one for which hor-
izontal curves satisfy ϕ̇(t) = X(t) ◦ ϕ(t), with X ∈ L2(0, 1;V ), and have total
action A(ϕ) = A(X) = 1

2

∫ 1

0
‖X(t)‖2V dt.

Define KV : V ∗ → V the canonical isometry: for P ∈ V ∗, P = 〈KV P, ·〉V .
Such a space V admits a reproducing kernel: a matrix-valued mapping

(x, y) �→ K(x, y) defined on R
d × R

d such that, for any P ∈ Hs(Rd,Rd)∗ =
H−s(Rd,Rd∗), the vector field KV P is given by convolution (in the distribu-
tional sense) of P with K:

KV P (x) =
∫

Rd

K(x, y)P (y)dy.
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Geodesics on Ds(Rd). We keep the framework and notations used in the previ-
ous section, with V ↪→ Hs+k(Rd,Rd) and k � 1. Define the endpoint map from
e by end : L2(0, 1;V ) → Ds(Rd) such that end(X) = ϕX(1). It is of class Ck. A
geodesic ϕX(·) from e is a critical point of the action A(X(·)) among all horizon-
tal curves ϕY (·) from e with the same endpoint ϕY (1) = ϕ1. In other words, for
every C1 variation a ∈ (−ε, ε) �→ Xa(·) ∈ L2(0, 1;V ) such that end(Xa) = ϕ1,
we have ∂a(A(Xa(·))|a=0 = 0.

Normal geodesics. It is easy to see that for any such curve, the couple of linear
maps

(dA(X(·)),d end(X(·))) : L2(0, 1;V ) → R × Tϕ1Ds(Rd)

is not onto. A sufficient condition for this to be true is that there exists Pϕ1 ∈
T ∗

ϕ1
Ds(Rd) = H−s(Rd,Rd∗) such that (d end(X(·)))∗.Pϕ1 = dA(X(·)). If such a

P1 exists, the curve induced by X is called a normal geodesic. This is not the
only possibility [1,3,14], but it is the one we will focus on, as it is enough for
inexact matching problems.

Define the normal Hamiltonian H : T ∗Ds(Rd) → R by

H(ϕ,P ) =
1
2
P (dRϕKV dR∗

ϕP ) =
1
2

∫∫

Rd×Rd

P (x)K(ϕ(x), ϕ(y))P (y)dydx,

with KV the isometry V ∗ → V and dRϕ(·) = · ◦ ϕ on Hs(Rd,Rd). H is of class
at least Ck. Its symplectic gradient ∇ωH(ϕ,P ) = (∂P H(ϕ,P ),−∂ϕH(ϕ,P )) is
of class Ck−1.

We have the following theorem.

Theorem 1. If k � 1, ϕ(·) is a geodesic if and only if it is the projection to
Ds(Rd) of an integral curve of ∇ωH(ϕ,P ). In this case, the corresponding P (·)
is the associated normal covector.

If k � 2, then the symplectic gradient of the Hamiltonian admits a well-
defined global flow of class Ck−1, called the Hamiltonian geodesic flow. In other
words, for every (ϕ0, P0) ∈ T ∗Ds(Rd), there is a unique solution (ϕ(·), P (·)) :
R → T ∗Ds(Rd) to the Cauchy problem (ϕ(0), P (0)) = (ϕ0, P0), (ϕ̇(t), Ṗ (t)) =
(∂P H(ϕ(t), P (t)),−∂ϕH(ϕ(t), P (t))) a.e. t ∈ [0, 1]. Moreover, any subarc of this
solution projects to a normal geodesic on Ds(Rd) and, conversely, any normal
geodesic is the projection of such a solution.

Momentum formulation. We define the momentum map μ : T ∗Ds(Rd) →
Hs(Rd)∗ = H−s(Rd∗

) by μ(ϕ,P ) = dR∗
ϕP .

Proposition 1. We assume that k � 1. Then a horizontal curve ϕ(·) ∈
H1(0, 1;Ds(Rd)), flow of X(·) ∈ L2(0, 1;V ), is a normal geodesic with
normal covector P (·) if and only if the corresponding momentum μ(t) =
μ(ϕ(t), P (t)) along the curve satisfies, for almost every time t, μ̇(t) =
ad∗

X(t)μ(t) = −LX(t)μ(t). Here, adX : Hs+1(Rd,Rd) → Hs(Rd,Rd), with
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adXY = [X,Y ], and LX the Lie derivative with respect to X. In particular,
this equation integrates as

μ(t) = ϕ(t)∗μ(0),

for every t ∈ [0, 1] in the sense of distributions.

We recognize the usual EPDiff equations [6,7,13]. See [2,4] for further results
on such sub-Riemannian structures on Ds(Rd), and [3,11] for more general infi-
nite dimensional sub-Riemannian structures.

3 Shape Spaces

3.1 Definition

Throughout the section, fix a positive integer d and let s0 be the smallest integer
such that s0 > d/2. A shape space in R

d is a Banach manifold acted upon by
Ds(Rd) for some s in a way that is compatible with its particular topological
group structure. The following definition is adapted from that of [5].

Definition 2. Let S be a Banach manifold and � ∈ N \ {0}, and s = s0 +
�. Assume that Ds(Rd) acts on S, according to the action (ϕ, q) �→ ϕ · q =
Rq(ϕ). We say that S is a shape space of order � in M if the following conditions
are satisfied:

1. Continuity: (ϕ, q) �→ ϕ · q is continuous.
2. Smoothness on the left: For every q ∈ S, the mapping Rq : ϕ �→ ϕ · q

is smooth. Its differential at e is denoted ξq, and is called the infinitesimal
action of Hs(Rd,Rd).

3. Smoothness on the right: For every k ∈ N, the mappings

Rq : Ds+k(Rd) × S −→ S and ξ : Hs+k(Rd,Rd) × S −→ TS
(ϕ, q) �−→ ϕ · q (X, q) �−→ ξqX

(2)

are of class Ck.
4. Regularity: For every X(·) ∈ L2(0, 1;Hs(Rd,Rd)) and q0 ∈ S, there exists

a unique curve q(·) = qX(·) ∈ H1(0, 1;S) such that qX(0) = q0 and q̇X(t) =
ξqX(t)X(t) for almost every t in [0, 1].

A an element q of S is called a state of the shape. We say that q ∈ S has
compact support if there exists a compact subset U of M such that Rq : ϕ �→
ϕ · q is continuous with respect to the semi-norm ‖ · ‖Hs0+�(U,M) on Ds(Rd). In
other words, q has a compact support if ϕ · q depends only on the restriction of
ϕ to a compact subset U of M .

Here are some examples of some of the most widely used shape spaces:

1. Ds0+�(Rd) is a shape space of order � for its action on itself given by compo-
sition on the left.
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2. Let S be a smooth compact Riemannian manifold, and α0 be the smallest
integer greater than dim(S)/2. Then S = Embα0+�(S,Rd), the manifold of all
embeddings q : S → M of Sobolev class Hα0+� are shape spaces of order �. In
this case, Ds0+�(Rd) acts on S by left composition ϕ·q = ϕ◦q, and this action
satisfies all the required properties of Definition 2 (see [5] for the proof), with
infinitesimal action ξqX = X ◦ q. Every q ∈ S has compact support.

3. A particularly interesting case is obtained when dim(S) = 0. Then S =
{s1, . . . , sn} is simply a finite set. In that case, for any �, the shape space
S = C�(S,Rd) is identified with the space of n landmarks in R

d:

Lmkn(Rd) = {(x1, . . . , xn) ∈ (Rd)n | xi �= xj if i �= j}.

For every q = (x1, . . . , xn), the action of Ds0+1(Rd) is given by ϕ · q =
(ϕ(x1), . . . , ϕ(xn)). For a vector field X of class Hs0+1 on M , the infinitesimal
action of X at q is given by ξq(X) = (X(x1), . . . , X(xn)). Spaces of landmarks
are actually spaces of order 0 (see [5] for a definition).

4. Let S be a shape space of order � ∈ N. Then TS is a shape space of order �+1,
with the action of Ds0+�+1(Rd) on TS1 defined by ϕ·(q, v) = (ϕ·q, ∂q(ϕ·q)(v)).

3.2 Sub-Riemannian Structure on Shape Spaces

Let S be a shape space of order � � 1 in R
d, and fix s = s0 + � and k ∈ N \ {0}.

Consider (V, 〈·, ·〉) an arbitrary Hilbert space of vector fields with continuous
inclusion in Hs+k(Rd,Rd). According to the previous section, we obtain a strong
right-invariant sub-Riemannian structure induced by V on Ds(Rd).

The framework of shape and image matching. The classical LDDMM algorithms
for exact shape matching seek to minimize

1
2

∫ 1

0

〈X(t),X(t)〉dt

over every X ∈ L2(0, 1;V ) such that ϕX(1) · q0 = q1, where the template q0
and the target q1 are fixed. Usually, one only wants to get “close” to the target
shape, which is accomplished by minimizing

1
2

∫ 1

0

〈X(t),X(t)〉dt + g(ϕX(1) · q0)

over every X ∈ L2(0, 1;V ), where the endpoint constraint has been replaced
with the addition of a data attachment term g(ϕX(1) · q0) in the functional (See
[5] and references therein). The function g is usually such that it reaches its
minimum at q1.

The sub-Riemannian structure. This leads us to define a sub-Riemannian struc-
ture on S as follows.
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Definition 3. The strong sub-Riemannian structure induced by V is the one
for which horizontal curves are those that satisfy q̇(t) = ξq(t)X(t) for almost
every t ∈ [0, 1], for some control X(·) ∈ L2(0, 1;Rd). The curve q(·) is called a
horizontal deformation of q(0). Note that q(t) = ϕX(t) · q(0) for every t.

Remark 1. If ξq(V ) = TqS for every q ∈ S, this is actually a Riemannian struc-
ture. This is often the case in numerical simulations, where S is finite dimensional
(usually a space of landmarks). However, in the general case, we do not obtain
a Riemannian structure.

For example, for d = 2, take S = Emb2(S1,R2), with S1 the unit circle,
and fix the state q = IdS1 ∈ S. If the kernel K(x, y) = e−‖x−y‖2

is Gaussian,
all elements of V are analytic. Therefore, any ξq(X) : S1 → R

2 with X ∈ V is
analytic, while TqS = H2(S1,R2).

The length and action of a horizontal curve is not uniquely defined and depends
on the control X(·). They coincide with the length and action of the flow ϕX

which were defined in the previous section. The LDDMM algorithm can therefore
be formulated as a search for sub-Riemannian geodesics on S for this structure.

Sub-Riemannian distance. Define the sub-Riemannian distance dS
SR(q0, q1) as

the infimum over the lengths of every horizontal system (q(·),X(·)) with q(0) =
q0 and q(1) = q1. It is clear that dS

SR is at least a semi-distance.

Sub-Riemannian geodesics on shape spaces. We assume that S is a shape space in
R

d of order � � 1, and that Ds(Rd), s = s0 + �, is equipped with a strong right-
invariant sub-Riemannian structure induced by the Hilbert space (V, 〈·, ·〉) of
vector fields on R

d, with continuous inclusion V ↪→ Hs+k(Rd,Rd) for some
k � 1.

Geodesics. Fix an initial point q0 and a final point q1 in S. The endpoint mapping
from q0 is endS

q0(X(·)) = ϕX(1) · q0 = Rq0 ◦ end, where end(X(·)) = ϕX(1) ∈
Ds(Rd). It is of class Ck. A geodesic on S between the states q0 and q1 is a
horizontal system (q(·),X(·)) joining q0 and q1 such that for any C1-family a �→
Xa(·) ∈ L2(0, 1;V ) with ϕXa(1) · q0 = q1 for every a and X0 = X, we have
∂aA(Xa(·)) = 0. We will, once again, focus on normal geodesics. A curve q(·)
is a normal geodesic if for some control X whose flow ϕX yields q(·) = ϕX(·) ◦
q(0), and for some p1 ∈ T ∗

q(1)S, we have dA(X) = d endS
q0(X)∗p1.

Canonical symplectic form, symplectic gradient. We denote by ω the canonical
weak symplectic form on T ∗S, given by the formula ω(q, p).(δq1, δp1; δq2, δp2) =
δp2(δq1) − δp1(δq2), with (δqi, δpi) ∈ T(q,p)T

∗S � TqS × T ∗
q S in a canonical

coordinate system (q, p) on T ∗S. A function f : T ∗S → R, differentiable at
some point (q, p) ∈ T ∗S, admits a symplectic gradient at (q, p) if there exist a
vector ∇ωf(q, p) ∈ T(q,p)T

∗S such that, for every z ∈ T(q,p)T
∗S, df(q,p)(z) =

ω(∇ωf(q, p), z). In this case, this symplectic gradient ∇ωf(q, p) is unique. Such
a gradient exists if and only if ∂pf(q, p) ∈ T ∗∗

q S can be identified with a vector
in TqS through the canonical inclusion TqS ↪→ T ∗∗

q S. In that case, we have, in
canonical coordinates, ∇ωf(q, p) = (∂pf(q, p),−∂qf(q, p)).
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The normal Hamiltonian function and geodesic equation. We define the normal
Hamiltonian of the system HS : T ∗S → R by

HS(q, p) =
1
2
p(Kqp) =

1
2
p(ξqKV ξ∗

qp),

where Kq = ξqKV ξ∗
q : T ∗

q S → TqS. It can usually be computed thanks to the
reproducing kernel of V . This is a function of class Ck, that admits as symplectic
gradient ∇ωHS(q, p) = (Kqp,− 1

2∂q(Kqp)∗p). of class Ck−1 on T ∗S.

Momentum of the action and Hamiltonian flow. Recall that the momentum map
associated to the group action of Ds(Rd) over S is the mapping μS : T ∗S →
Hs(Rd,Rd)∗ = H−s(Rd,Rd∗) given by μS(q, p) = ξ∗

qp.

Proposition 2. A curve (q(·), p(·)) in T ∗S satisfies the normal Hamil-
tonian equations (q̇(t), ṗ(t)) = ∇ωHS(q(t), p(t)) if and only if, for μS(t) =
μS(q(t), p(t)) and X(t) = KV ξ∗

q(t)p(t), we have

μ̇S(t) = ad∗
X(t)μ(t).

In particular, this is also equivalent to having ϕX(·) be a normal geodesic on
Ds(Rd) with initial covector P (0) = ξ∗

q(0)p(0) and momentum μ(t) = μS(t) along
the trajectory.

This result allows for the proof of our main result.

Theorem 2. Assume k � 1. Then a horizontal curve q(·) with control X(·) is
a geodesic if and only if it is the projection of an integral curve (q(·), p(·)) of
∇ωHS (that is, (q̇(t), ṗ(t)) = ∇ωHS(q(t), p(t)) for almost every t in [0, 1]), with
X(t) = KV ξ∗

q(t)p(t). This is also equivalent to having the flow ϕX of X(·) be a
normal geodesic on Ds(Rd) with momentum μ(t) = μS(t) = ξ∗

q(t)p(t).

Assume k � 2. Then ∇ωH admits a global flow on T ∗S of class Ck−1,
called the Hamiltonian geodesic flow. In other words, for any initial point
(q0, p0) ∈ T ∗S, there exists a unique curve t �→ (q(t), p(t)) defined on all
of R, such that (q(0), p(0)) = (q0, p0) and, for almost every t, (q̇(t), ṗ(t)) =
∇ωHS(q(t), p(t)). We say that p(·) is the normal covector along the trajectoy.

Combining those results, we see that solutions of the normal Hamiltonian
equations on S are exactly those curves that come from normal geodesics on
Ds(Rd) with initial momentum of the form ξ∗

q0p0. In particular, for k � 2, the
completeness of the normal geodesic flow on T ∗Ds(Rd) implies that ∇ωHS is a
complete vector field on T ∗S.

On inexact matching. It should be emphasized, again, that other geodesics may
also exist [4]. However, when performing LDDMM methods and algorithms for
inexact matching, one aims to minimize over L2(0, 1;V ) functionals of the form

J(X(·)) = A(X(·)) + g(qX(1)) = A(X(·)) + g ◦ endS
q0(X(·)).
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In this case, X(·) is a critical point if and only if dA(X) =
−d endS

q0(X)∗dg(qX(1)). The trajectory induced by such a critical point
X is therefore automatically a normal geodesic, whose covector satisfies
p(1) = −dg(qX(1)) (or, equivalently, whose momentum satisfies μ(1) =
−ξ∗

q(1)dg(qX(1))). This means that one needs only consider normal geodesics
when looking for minimizers of J . Consequently, the search for minimizing tra-
jectories can be reduced to the minimization of

1
2

∫ 1

0

p(t)(Kq(t)p(t))dt + g(q(1))

among all solutions of the control system q̇(t) = Kq(t)p(t), where p(·) is any
covector along q(·) and is L2 in time. This leads to the usual LDDMM methods.

This reduction is very useful in practical applications and numerical simula-
tions, since, when S is finite dimensional, we obtain a finite dimensional control
system, for which many optimization methods are available. See [5] for algo-
rithms to minimize such a functional in the abstract framework of shape spaces
in R

d.

The case of images. Images are elements I of the functional space L2(Rd,R).
They are acted upon by Ds(Rd) through (ϕ, I) �→ I ◦ ϕ−1. For a fixed template
I0 and target I1, one aims to minimize a functional of the form

J(X(·)) = A(X(·)) + g
(
I(1)−1

)
,

with g(I) = c‖I − I1‖2L2 , c > 0 fixed, and I(t) = I0 ◦ ϕ(t)−1.
However, the action (ϕ, I) �→ I ◦ ϕ−1 does not make L2(Rd,R) into a shape

space, because it is not continuous. To circumvent this difficulty and still apply
the framework developed in this paper, one can simply work on the shape space
Ds(Rd) itself. In this case, as long as the template I0 belongs to C1(Rd,R), we
can easily check that ϕ �→ g

(
I0 ◦ ϕ−1

)
is of class C1, which implies, according

to the results of this section and a quick computation, that minimizers of J
are those vector fields whose flow are normal geodesics with final momentum
given by

μ(1) = (I1 − I(1)) dI(1) ∈ L2(Rd,Rd∗).
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