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Preface

On behalf of both the Organizing and the Scientific Committees, it is our great pleasure
to welcome you to the proceedings of the Second International SEE Conference on
“Geometric Science of Information” (GSI 2015), hosted by École Polytechnique
(Palaiseau, France), during October 28–30, 2015 (http://www.gsi2015.org/).

GSI 2015 benefited from the scientific sponsorship of Société de Mathématique
Appliquées et Industrielles (SMAI, smai.emath.fr/) and the financial sponsorship of:

– CNRS
– École Polytechnique
– Institut des Systèmes Complexes
– Inria (http://www.inria.fr/en/)
– Telecom ParisTech
– THALES (www.thalesgroup.com)

GSI 2015 was also supported by CNRS Federative Networks MIA and ISIS.
The 3-day conference was organized in the framework of the relations set up

between SEE (http://www.see.asso.fr/) and the following scientific institutions or
academic laboratories: École Polytechnique, École des Mines de Paris, INRIA,
Supélec, Université Paris-Sud, Institut Mathématique de Bordeaux, Sony Computer
Science Laboratories, Telecom SudParis, and Telecom ParisTech.

We would like to express our thanks to the Computer Science Department LIX of
École Polytechnique for hosting this second scientific event at the interface between
geometry, probability, and information geometry. In particular, we warmly thank
Evelyne Rayssac of LIX, École Polytechnique, for her kind administrative support that
helped us book the auditorium and various resources at École Polytechnique, and
Olivier Bournez (LIX Director) for providing financial support.

The GSI conference cycle was initiated by the Brillouin Seminar Team (http://
repmus.ircam.fr/brillouin/home). The 2015 event was motivated in continuing the first
initiatives launched in 2013 (see LNCS proceedings 8085, http://www.springer.com/
us/book/9783642400193). We mention that in 2011, we organized an Indo-French
workshop on “Matrix Information Geometry” that yielded an edited book in 2013
(http://www.springer.com/us/book/9783642302312).

The technical program of GSI 2015 covered all the main topics and highlights in the
domain of “geometric science of information” including information geometry mani-
folds of structured data/information and their advanced applications. These proceedings
consist solely of original research papers that were carefully peer-reviewed by two or
three experts and revised before acceptance.

The program included the renown invited speaker Professor Charles-Michel Marle
(UPMC, Université Pierre et Marie Curie, Paris, France), who gave a talk on “Actions
of Lie Groups and Lie Algebras on Symplectic and Poisson Manifolds,” and three
distinguished keynote speakers:

http://www.gsi2015.org/
http://smai.emath.fr/
http://www.inria.fr/en/
http://www.thalesgroup.com
http://www.see.asso.fr/
http://repmus.ircam.fr/brillouin/home
http://repmus.ircam.fr/brillouin/home
http://www.springer.com/us/book/9783642400193
http://www.springer.com/us/book/9783642400193
http://www.springer.com/us/book/9783642302312


– Professor Marc Arnaudon (Bordeaux University, France): “Stocastic Euler-Poincaré
Reduction”

– Professor Tudor Ratiu (EPFL, Switzerland): “Symmetry Methods in Geometric
Mechanics”

– Professor Matilde Marcolli (Caltech, USA): “From Geometry and Physics to
Computational Linguistics”

A short course was given by Professor Dominique Spehner (Grenoble University,
France) on the “Geometry on the Set of Quantum States and Quantum Correlations”
chaired by Roger Balian (CEA, France).

The collection of papers have been arranged into the following 17 thematic sessions,
illustrating the richness and versatility of the field:

– Dimension Reduction on Riemannian Manifolds
– Optimal Transport
– Optimal Transport and Applications in Imagery/Statistics
– Shape Space and Diffeomorphic Mappings
– Random Geometry and Homology
– Hessian Information Geometry
– Topological Forms and Information
– Information Geometry Optimization
– Information Geometry in Image Analysis
– Divergence Geometry
– Optimization on Manifold
– Lie Groups and Geometric Mechanics/Thermodynamics
– Computational Information Geometry
– Lie Groups: Novel Statistical and Computational Frontiers
– Geometry of Time Series and Linear Dynamical Systems
– Bayesian and Information Geometry for Inverse Problems
– Probability Density Estimation

Historical Background

As for the first edition of GSI (2013) and in past publications (https://www.see.asso.fr/
node/11950), GSI 2015 addressed inter-relations between different mathematical
domains such as shape spaces (geometric statistics on manifolds and Lie groups,
deformations in shape space), probability/optimization and algorithms on manifolds
(structured matrix manifold, structured data/information), relational and discrete metric
spaces (graph metrics, distance geometry, relational analysis), computational and
Hessian information geometry, algebraic/infinite dimensional/Banach information
manifolds, divergence geometry, tensor-valued morphology, optimal transport theory,
and manifold and topology learning, as well as applications such as geometries of
audio-processing, inverse problems, and signal processing.

At the turn of the century, new and fruitful interactions were discovered between
several branches of science: information science (information theory, digital commu-
nications, statistical signal processing), mathematics (group theory, geometry and
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topology, probability, statistics), and physics (geometric mechanics, thermodynamics,
statistical physics, quantum mechanics).

From Statistics to Geometry

In the middle of the last century, a new branch in the geometric approach of statistical
problems was initiated independently by Harold Hotelling and Calyampudi Radhakr-
ishna Rao, who introduced a metric space in the parameter space of probability den-
sities. The metric tensor was proved to be equal to the Fisher information matrix. This
result was axiomatized by Nikolai Nikolaevich Chentsov in the framework of category
theory. This idea was also latent in the work of Maurice Fréchet, who had noticed that
the “distinguished densities” that reach lower bounds of statistical estimators are
defined by a function that is given by a solution of the Legendre–Clairaut equation
(cornerstone equation of “information geometry”), and in the works of Jean-Louis
Koszul with a generalized notion of characteristic function.

From Probability to Geometry

Probability is again the subject of a new foundation to apprehend new structures and
generalize the theory to more abstract spaces (metric spaces, shape space, homoge-
neous manifolds, graphs). An initial attempt to probability generalization in metric
spaces was made by Maurice Fréchet in the middle of the last century, in the frame-
work of abstract spaces topologically affine and “distance space” (“espace distancié”).
More recently, Misha Gromov, at IHES (Institute of Advanced Scientific Studies),
indicated the possibilities for (non-)homological linearization of basic notions of
probability theory and also the replacement of real numbers as values of probabilities
by objects of suitable combinatorial categories. In parallel, Daniel Bennequin, from
Institut mathématique de Jussieu, observed that entropy is a universal co-homological
class in a theory associated with a family of observable quantities and a family of
probability distributions.

From Groups Theory to Geometry

As observed by Gaston Bachelard, “The group provides evidence of a mathematic
closed on itself. Its discovery closes the era of conventions, more or less independent,
more or less coherent.” About Elie Cartan’s work on group theory, Henri Poincaré said
that “The problems addressed by Elie Cartan are among the most important, most
abstract, and most general dealing with mathematics; group theory is, so to speak, the
whole mathematics, stripped of its material and reduced to pure form. This extreme
level of abstraction has probably made my presentation a little dry. To assess each
of the results, I would have had to virtually render it the material of which it had been
stripped; but this refund can be made in a thousand different ways; and this is the only
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form that can be found as well as a host of various garments, which is the common link
between mathematical theories whose proximity is often surprising.”

From Mechanics to Geometry

The last elaboration of geometric structure on information is emerging at the
inter-relations between “geometric mechanics” and “information theory” that was
largely debated at the GSI 2015 conference with invited speakers including
C.M. Marle, T. Ratiu, and M. Arnaudon. Elie Cartan, the master of geometry during the
last century, said: “distinguished service that has rendered and will make even the
absolute differential calculus of Ricci and Levi–Civita should not prevent us from
avoiding too exclusively formal calculations, where debauchery indices often mask a
very simple geometric fact. It is this reality that I have sought to put in evidence
everywhere.” Elie Cartan was the son of Joseph Cartan, who was the village black-
smith, and Elie recalled that his childhood had passed under “blows of the anvil, which
started every morning from dawn.” One can imagine that the hammer blows made by
Joseph on the anvil, giving shape and curvature to the metal, influenced Elie’s mind
with germinal intuition of fundamental geometric concepts. The alliance between
geometry and mechanics is beautifully illustrated by the image of Forge, in the painting
of Velasquez about the Vulcan God (see Figure 1). This concordance of meaning is
also confirmed by the etymology of the word “forge,” which comes from late four-
teenth century, “a smithy,” from the Old French forge “forge, smithy” (twelfth cen-
tury), earlier faverge, from the Latin fabrica “workshop, smith’s shop,” from faber
(genitive fabri) “workman in hard materials, smith.”

Fig. 1. Into the Flaming Forge of Vulcan, into the Ninth Sphere, Mars descends in order to retemper
his flaming sword and conquer the heart of Venus (Diego Velázquez, Museo Nacional del Prado).
Public domain image, courtesy of https://en.wikipedia.org/wiki/Apollo_in_the_Forge_of_Vulcan

VIII Preface

https://en.wikipedia.org/wiki/Apollo_in_the_Forge_of_Vulcan


As Henri Bergson said in his book The Creative Evolution in 1907: “As regards
human intelligence, there is not enough [acknowledgment] that mechanical invention
was first its essential approach … we should say perhaps not Homo sapiens, but Homo
faber. In short, intelligence, considered in what seems to be its original feature, is the
faculty of manufacturing artificial objects, especially tools to make tools, and of
indefinitely varying the manufacture.”

Geometric Science of Information: A new Grammar of Sciences

Henri Poincaré said that “mathematics is the art of giving the same name to different
things” (“La mathématique est l’art de donner le même nom à des choses différentes” in
Science et méthode, 1908). By paraphrasing Henri Poincaré, we could claim that the
“geometric science of information” is the art of giving the same name to different
sciences. The rules and the structures developed at the GSI 2015 conference comprise a
kind of new grammar for these sciences.

We give our thanks to all the authors and co-authors for their tremendous effort and
scientific contribution. We would also like to acknowledge all the Organizing and
Scientific Committee members for their hard work in evaluating the submissions. We
warmly thank Jean Vieille, Valerie Alidor, and Flore Manier from the SEE for their
kind support.
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As with GSI 2013, a selected number of contributions focusing on a core topic were
invited to contribute a chapter without page restriction to the edited book Geometric
Theory of Information (http://www.springer.com/us/book/9783319053165) in 2014.
Similarly, for GSI 2015, we invite prospective authors to submit their original work to
a special issue on “advances in differential geometrical theory of statistics” of the
MDPI Entropy journal (http://www.mdpi.com/journal/entropy/special_issues/entropy-
statistics).

It is our hope that the fine collection of peer-reviewed papers presented in these
LNCS proceedings will be a valuable resource for researchers working in the field of
information geometry and for graduate students.

July 2015 Frank Nielsen
Frédéric Barbaresco
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Abstract. This paper presents derivations of evolution equations for
the family of paths that in the Diffusion PCA framework are used for
approximating data likelihood. The paths that are formally interpreted
as most probable paths generalize geodesics in extremizing an energy
functional on the space of differentiable curves on a manifold with con-
nection. We discuss how the paths arise as projections of geodesics for
a (non bracket-generating) sub-Riemannian metric on the frame bundle.
Evolution equations in coordinates for both metric and cometric formula-
tions of the sub-Riemannian geometry are derived. We furthermore show
how rank-deficient metrics can be mixed with an underlying Riemannian
metric, and we use the construction to show how the evolution equations
can be implemented on finite dimensional LDDMM landmark manifolds.

1 Introduction

The diffusion PCA framework [1,2] models data on non-linear manifolds as
samples from distributions generated by anisotropic diffusion processes. These
processes are mapped from Euclidean space to the manifold by stochastic devel-
opment in the frame bundle [3]. The construction is connected to a (non bracket-
generating) sub-Riemannian metric on the bundle of linear frames of the
manifold, the frame bundle.

Velocity vectors and length of geodesics are conventionally used for estimation
and statistics in Riemannian manifolds, i.e. for Principal Geodesic Analysis [4] or
tangent space statistics [5]. In contrast to this, the anisotropic nature of the dis-
tributions considered for Diffusion PCA makes geodesics for the sub-Riemannian
metric the natural vehicle for estimation and statistics. These paths were pre-
sented in [2] and formally interpreted as most probable paths for the driving dif-
fusion processes that are mapped from R

n to M by stochastic development.
In this paper, we present derivations of the evolution equations for the paths.

We discuss the role of frames as representing either metrics or cometrics and
how the sub-Riemannian metric is related to the Sasaki-Mok metric on FM .
We then develop a construction that allows the sub-Riemannian metric to be
defined as a sum of a rank-deficient generator and an underlying Riemannian
metric. Finally, we show how the evolution equations manifest themselves in a
specific case, the finite dimensional manifolds arising in the LDDMM landmark
matching problem.
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 3–11, 2015.
DOI: 10.1007/978-3-319-25040-3 1



4 S. Sommer

1.1 Diffusion PCA

Diffusion PCA (DPCA, [1,2]) provides a generalization of the Euclidean Prin-
cipal Component Analysis (PCA) procedure to Riemannian manifolds or, more
generally, differentiable manifolds with connection. In contrast to procedures
such as Principal Geodesic Analysis (PGA, [4]), Geodesic PCA (GPCA, [6]), and
Horizontal Component Analysis (HCA, [7]), DPCA does not employ explicit rep-
resentations of low-dimensional subspaces. Instead of generalizing the maximum
variance/minimum residual formulation of PCA, it is based on a formulation
of PCA as a maximum likelihood fit of a Gaussian distribution to data [8,9].
Through the process of stochastic development [3], a class of anisotropic distrib-
utions are defined that generalizes normal distributions to the manifold situation.
DPCA is thereby a maximum likelihood fit in this family of distributions.

2 Anisotropic Diffusions, Frame Bundles and
Development

Development and stochastic development provides an invertible map ϕ(x,Xα)

from paths in R
n starting at the origin to paths on the manifold M starting at

a given point x ∈ M . The development map ϕ(x,Xα) is dependent on both the
starting point x and a frame Xα for TxM . Through ϕ(x,Xα), diffusion processes
in R

n map to processes on M . This construction is called the Eells-Elworthy-
Malliavin construction of Brownian motion [10]. We here outline the process of
development and stochastic development and describe its use in Diffusion PCA.

Let (M,∇) be a differentiable manifold of dimension n with connection ∇.
For each point x ∈ M , let FxM be the set of frames Xα, i.e. ordered bases of
TxM . The set {FxM}x∈M can be given a natural differential structure as a fiber
bundle on M called the frame bundle FM . It can equivalently be defined as the
principal bundle GL(Rn, TM). We let the map πFM : FM → M denote the
canonical projection. For a differentiable curve xt in M with x = x0, a frame
Xα = Xα,0 for Tx0M can be parallel transported along xt thus giving a path
(xt,Xα,t) in FM . Such paths are called horizontal, and their derivatives form
n-dimensional subspaces of the n + n2-dimensional tangent spaces T(x,Xα)FM .
This horizontal subspace HFM and the vertical subspace V FM of vectors tan-
gent to the fibers π−1(x) together split the tangent spaces, i.e. T(x,Xα)FM =
H(x,Xα)FM ⊕ V(x,Xα)FM . The split induces a map π∗ : HFM → TM and
isomorphisms π∗,(x,Xα) : H(x,Xα)FM → TxM with inverses π∗

(x,Xα), see Fig. 1.
Using π∗

(x,Xα), horizontal vector fields He on FM are defined for vectors e ∈ R
n

by He(u) = (ue)∗. In particular, the standard basis (e1, . . . , en) on R
n gives n

globally defined horizontal vector fields Hi ∈ HFM , i = 1, . . . , n by Hi = Hei
.

A horizontal lift of xt is a curve in FM tangent to HFM that projects to xt.
Horizontal lifts are unique up to the choice of initial frame Xα,0.

Let Wt be an R
n valued semimartingale. A solution to the stochastic differen-

tial equation dUt =
∑d

i=1 Hi(Ut)◦dW i
t in FM is called a stochastic development

of Wt. The solution projects to a stochastic development Xt = πFM (Ut) in M .
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TFM

T ∗FM

HFM FM

TMT ∗M M

h+ v �→ h

π∗ πFM

πTM

gFM

gR

Fig. 1. Commutative diagram for the manifold, frame bundle, the horizontal subspace
HFM of TFM , a Riemannian metric gR and the sub-Riemannian metric gFM defined
below. The connection provides the splitting TFM = HFM ⊕ V FM . The restrictions
π∗|H(x,Xα)M are invertible maps H(x,Xα)M → TxM .

We call the process Wt in R
n that through ϕ maps to Xt for the driving process

of Xt. Since a normal distribution W ∼ N (0, Σ) can be obtained as the transi-
tion probability of a diffusion process Wt stopped at e.g. t = 1, a general class
of distributions on the manifold M can be defined by stochastic development of
processes Wt resulting in random variables X = X1.

Diffusion PCA uses the map
∫
Diff

: FM → Dens(M) that for each point
(x,Xα) ∈ FM sends a Brownian motion in R

n to a distribution X1 by starting
a diffusion Ut at (x,Xα) and letting X1 = πFM (U1) after normalization. The
pair (x,Xα) is analogous to the parameters (μ,Σ) for a Euclidean normal dis-
tribution: the point x ∈ M represents the starting point of the diffusion, and
Xα represents the square root covariance Σ1/2. Diffusion PCA fits distributions
obtained through

∫
Diff

by maximum likelihood to observed data, i.e. it optimizes
for the most probable parameters (x,Xα) for the anisotropic diffusion process.

3 Evolution Equations

For a Euclidean stationary driftless diffusion process with stochastic generator
Σ, the log-probability of a sample path can formally be written

ln p̃Σ(xt) ∝ −
∫ 1

0

‖ẋt‖2
Σdt + cΣ (1)

with the norm ‖ · ‖Σ given by the inner product 〈v, w〉Σ =
〈
Σ−1/2v,Σ−1/2w

〉
.

Though only formal as the sample paths are almost surely nowhere differentiable,
the interpretation can be given a precise meaning by taking limits of piecewise
linear curves [11]. Turning to the manifold situation with the processes mapped
to M by stochastic development, the probability of observing a path can either
be defined in the manifold by taking limits of small tubes around the curve,
or in R

n trough its anti-development. With the former formulation, a scalar
curvature correction term must be added to (1) giving the Onsager-Machlup
functional ([12]). The latter formulation corresponds to finding probabilities of
paths for the driving process Wt. Taking the maximum of (1) gives geodesics as
most probable paths for the driving process when Σ is unitary.
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Let now (xt,Xα,t) be a path in FM . Recall that in DPCA, Xα,t represents the
square root covariance Σ1/2 at xt. Since Xα,t being a basis defines an invertible
map R

n → Txt
M , the norm ‖ · ‖Σ has a direct analogue in the norm ‖ · ‖Xα,t

defined by the inner product

〈v, w〉Xα,t
=

〈
X−1

α,tv,X−1
α,tw

〉

Rn
(2)

for vectors v, w ∈ Txt
M . The transport of the frame along paths in effect defines

a transport of inner product along sample paths: the paths carry with them the
inner product defined by the square root covariance Xα,0 at x0.

The inner product can equivalently be defined as a metric gXα
: T ∗

x M →
TxM . Again using that Xα,t can be considered a map R

n → Txt
, gXα

is defined
by ξ �→ Xα((ξ ◦ Xα)�) where � is the standard identification (Rn)∗ → R

n. The
sequence of mappings defining gXα

is illustrated below:

T ∗
xt

M → (Rn)∗ → R
n → Txt

M
ξ �→ ξ ◦ Xα �→ (ξ ◦ Xα)� �→ Xα(ξ ◦ Xα)�.

(3)

This definition uses the R
n inner product in the definition of �. Its inverse gives

the cometric g−1
Xα

: Txt
M → T ∗

xt
M , i.e. v �→ (X−1

α v)� ◦ X−1
α .

Formally, extremal paths for (2) can be interpreted as most probable paths
for the driving process Wt when Xα,0 defines an anisotropic diffusion. Below, we
will identify the extremal paths as geodesics for a sub-Riemannian metric, and
we use this to find coordinate expressions for evolutions of the paths.

3.1 Sub-Riemannian Metric on the Horizontal Distribution

We now lift the path-dependent metric defined above to a sub-Riemannian metric
on HFM . For any w, w̃ ∈ H(x,Xα)FM , the lift of (2) by π∗ is the inner product

〈w, w̃〉 =
〈
X−1

α π∗w,X−1
α π∗w̃

〉

Rn
.

The inner product induces a sub-Riemannian metric gFM : TFM∗ → HFM ⊂
TFM by

〈w, gFM (ξ)〉 = (ξ|w), ∀w ∈ HxFM (4)

with (ξ|w) denoting the evaluation ξ(w). The metric gFM gives FM a (non
bracket-generating) sub-Riemannian structure [13], see also Fig. 1. It is equiva-
lent to the lift

ξ �→ π∗
(x,Xα)(gXα

(ξ ◦ π∗
(x,Xα)), ξ ∈ T(x,Xα)FM (5)

of the metric gXα
above. The metric is related to the Sasaki-Mok metric on FM

[14] that extends the Sasaki metric on TM . The Sasaki-Mok metric allows paths
in FM to have derivatives in the vertical space V FM while gFM restricts paths
to only have derivatives in HFM . This constraint is nonholonomic thus giving
the sub-Riemannian structure.
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Following [14], we let (xi,Xi
α) be coordinates on FM with Xi

α satisfying
Xα = Xi

α
∂

∂xi . The horizontal distribution is then spanned by the n linearly
independent vector fields Dj = ∂

∂xj − Γ
hγ

j
∂

∂Xh
γ

where Γ
hγ

j = Γh
jiX

i
γ and Γh

ij

are the Christoffel symbols for the connection ∇. We denote this adapted frame
D. The vertical distribution is correspondingly spanned by Djβ

= ∂Xj
β
, and

Dh = dxh, Dhγ = Γ
hγ

j dxj + dXh
γ constitutes a dual coframe D∗. The map

π∗ : HFM → TM is in coordinates π∗(wjDj) = wj ∂
∂xj .

For (x,Xα) ∈ FM , the map Xα : Rn → TxM is in coordinates given by the
matrix [Xi

α] so that X(v) = Xi
αvα ∂

∂xi = Xαvα. With w = wjDj and w̃ = w̃jDj ,
we have

〈w, w̃〉 = 〈wiDi, w̃
jDj〉 =

〈
X−1wi ∂

∂xi
,X−1w̃j ∂

∂xj

〉

= 〈wiXα
i , w̃jXα

j 〉Rn = δαβwiXα
i w̃jXβ

j = Wijw
iw̃j

where [Xα
i ] is the inverse of [Xi

α] and Wij = δαβXα
i Xβ

j . Define now W kl =
δαβXk

αX l
β so that W irWrj = δi

j and WirW
rj = δj

i . We can then write the
sub-Riemannian metric gFM in terms of the adapted frame D,

gFM (ξhDh + ξhγ
Dhγ ) = W ihξhDi, (6)

because 〈w, gFM (ξ)〉 =
〈
w,W jhξhDj

〉
= Wijw

iW jhξh = wiξi = ξhDh(wjDj) =
ξ(w). The component matrix of the adapted frame D in the coordinates (xi,Xi

α)
is

(x,Xα)LD =
[

I 0
−Γ I

]

and therefore DL(x,Xα) =
[
I 0
Γ I

]

with Γ = [Γhγ

j ]. Similarly, for the component matrices of the dual frame D∗,

(x,Xα)∗LD∗ =
[
I ΓT

0 I

]

and D∗L(x,Xα)∗ =
[
I −ΓT

0 I

]

.

From (6), gFM has D,D∗ components

DgFM,D∗ =
[
W−1 0

0 0

]

.

Therefore, gFM has the following components in the coordinates (xi,Xi
α):

(x,Xα)gFM,(x,Xα)∗ = (x,Xα)LD DgFM,D∗ D∗L(x,Xα)∗ =
[

W−1 −W−1ΓT

−ΓW−1 ΓW−1ΓT

]

or gij
FM = W ij , g

ijβ

FM = −W ihΓ
jβ

h , giαj
FM = −Γ iα

h Whj , and g
iαjβ

FM = Γ iα

k W khΓ
jβ

h .
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3.2 Geodesics for gFM

Geodesics in sub-Riemannian manifolds satisfy the Hamilton-Jacobi equations
[13]. Since gFM is a lift of gXα

and geodesics are energy minimizing, the extremal
paths for (2) will exactly be geodesics for gFM . In the present case, the Hamil-
tonian H(x, ξ) = 1

2 (ξ|gFM (ξ)) gives the equations

ẏi = gij
FM,yξj , ξ̇i = −1

2
∂

∂yi
gpq

FM,yξpξq.

We write (xi,Xi
α) for coordinates on FM as above, and (ξi, ξiα

) for cotangent
vectors in T ∗FM . This gives

ẋi = gijξj + gijβ ξjβ
= W ijξj − W ihΓ

jβ

h ξjβ

Ẋi
α = giαjξj + giαjβ ξjβ

= −Γ iα

h Whjξj + Γ iα

k W khΓ
jβ

h ξjβ

ξ̇i = −1
2

(
∂

∂yi
ghk

y ξhξk +
∂

∂yi
ghkδ

y ξhξkδ
+

∂

∂yi
ghγk

y ξhγ
ξk +

∂

∂yi
ghγkδ

y ξhγ
ξkδ

)

ξ̇iα
= −1

2

(
∂

∂yiα
ghk

y ξhξk +
∂

∂yiα
ghkδ

y ξhξkδ
+

∂

∂yiα
ghγk

y ξhγ
ξk +

∂

∂yiα
ghγkδ

y ξhγ
ξkδ

)

writing Γ
hγ

k,i for ∂
∂yi Γ

hγ

k and where ∂
∂yl g

ij = 0, ∂
∂yl g

ijβ = −W ihΓ
jβ

h,l,
∂

∂yl g
iαj =

−Γ iα

h,lW
hj , ∂

∂yl g
iαjβ = Γ iα

k,lW
khΓ

jβ

h +Γ iα

k W khΓ
jβ

h,l and ∂

∂ylζ
gij = W ij

,lζ
, ∂

∂ylζ
gijβ =

−W ih
,lζ

Γ
jβ

h − W ihΓ
jβ

h,lζ
, ∂

∂ylζ
giαj = −Γ iα

h,lζ
Whj − Γ iα

h Whj
,lζ

, ∂

∂ylζ
giαjβ = Γ iα

k,lζ

W khΓ
jβ

h +Γ iα

k W kh
,lζ

Γ
jβ

h +Γ iα

k W khΓ
jβ

h,lζ
with Γ iα

h,lζ
= ∂

∂ylζ

(
Γ i

hkXk
α

)
= δζαΓ i

hl and

W ij
,lζ

= δilXj
ζ + δjlXi

ζ . Combining these expressions, we obtain the flow equations

ẋi = W ijξj − W ihΓ
jβ

h ξjβ
, Ẋi

α = −Γ iα

h Whjξj + Γ iα

k W khΓ
jβ

h ξjβ

ξ̇i = WhlΓ kδ

l,i ξhξkδ
− 1

2

(
Γ

hγ

k,i W
khΓ kδ

h + Γ
hγ

k W khΓ kδ

h,i

)
ξhγ

ξkδ

ξ̇iα
= Γhδ

k,iα
W khΓ kδ

h ξhγ
ξkδ

−
(
Whl

,iα
Γ kδ

l + WhlΓ kδ

l,iα

)
ξhξkδ

− 1
2

(
Whk

,iα
ξhξk + Γhδ

k W kh
,iα

Γ kδ

h ξhγ
ξkδ

)
.

4 Cometric Formulation and Low-Rank Generator

We now investigate a cometric gF dM + λgR where gR is Riemannian, gF dM is a
rank d positive semi-definite inner product arising from d linearly independent
tangent vectors, and λ > 0. We assume that gF dM is chosen so that gF dM +λgR

is invertible even though gF dM is rank-deficient. The practical implication of this
construction is that a numerical implementation need not transport a full n × n
matrix for the frame but a potentially much lower dimensional n×d matrix. This



Evolution Equations with Anisotropic Distributions and Diffusion PCA 9

situation corresponds to extracting the first d eigenvectors in Euclidean space
PCA. When using the frame bundle to model covariances, the sum formulation
is more natural for a cometric than a metric because, with the cometric formu-
lation, gF dM + λgR represents a sum of covariance matrices instead of a sum of
inverse covariance matrices. Thus gF dM + λgR can be intuitively thought of as
adding isotropic noise of variance λ to the covariance represented by gF dM .

To pursue this, let F dM denote the bundle of rank d linear maps Rd → TxM .
We define a cometric by

〈ξ, ξ̃〉 = δαβ(ξ|π−1
∗ Xα)(ξ̃|π−1

∗ Xβ) + λ〈ξ, ξ̃〉gR

for ξ, ξ̃ ∈ T ∗F dM . The sum over α, β is for α, β = 1, . . . , d. The first term is
equivalent to the lift (5) of the cometric 〈ξ, ξ̃〉 =

(
ξ|gXα

(ξ̂)
)

given Xα : Rd →
TxM . Note that in the definition (3) of gXα

, the map Xα is not inverted, thus
the definition of the metric immediately carries over to the rank-deficient case.

Let (xi,Xi
α), α = 1, . . . , d be a coordinate system on F dM . The vertical

distribution is in this case spanned by the nd vector fields Djβ
= ∂Xj

β
. Except

for index sums being over d instead of n terms, the situation is thus similar
to the full-rank case. Note that (ξ|π−1

∗ w) = (ξ|wjDj) = wiξi. The cometric in
coordinates is

〈ξ, ξ̃〉 = δαβXi
αξiX

j
β ξ̃j + λgij

R ξiξ̃j = ξi

(
δαβXi

αXj
β + λgij

R

)
ξ̃j = ξiW

ij ξ̃j

with W ij = δαβXi
αXj

β + λgij
R . We can then write the corresponding sub-

Riemannian metric gF dM in terms of the adapted frame D

gF dM (ξhDh + ξhγ
Dhγ ) = W ihξhDi (7)

because (ξ|gF dM (ξ̃)) =
〈
ξ, ξ̃

〉
= ξiW

ij ξ̃j . That is, the situation is analogous to

(6) except the term λgij
R is added to W ij .

The geodesic system is again given by the Hamilton-Jacobi equations. As in
the full-rank case, the system is specified by the derivatives of gF dM : ∂

∂yl g
ij
F dM

=

W ij
,l ,

∂
∂yl g

ijβ

F dM
= −W ih

,l Γ
jβ

h − W ihΓ
jβ

h,l,
∂

∂yl g
iαj
F dM

= −Γ iα

h,lW
hj − Γ iα

h Whj
,l ,

∂
∂yl g

iαjβ

F dM
= Γ iα

k,lW
khΓ

jβ

h + Γ iα

k W kh
,l Γ

jβ

h + Γ iα

k W khΓ
jβ

h,l and ∂

∂ylζ
gij

F dM
= W ij

,lζ
,

∂

∂ylζ
g

ijβ

F dM
= −W ih

,lζ
Γ

jβ

h − W ihΓ
jβ

h,lζ
, ∂

∂ylζ
giαj

F dM
= −Γ iα

h Whj
,lζ

− Γ iα

h,lζ
Whj ,

∂

∂ylζ
g

iαjβ

F dM
= Γ iα

k,lζ
W khΓ

jβ

h + Γ iα

k W kh
,lζ

Γ
jβ

h + Γ iα

k W khΓ
jβ

h,lζ
with Γ iα

h,lζ
= ∂

∂ylζ
(
Γ i

hkXk
α

)
= δζαΓ i

hl, W ij
,l = λgRij

,l
, and W ij

,lζ
= δilXj

ζ + δjlXi
ζ . Note that the

introduction of the Riemannian metric gR implies that W ij are now dependent
on the manifold coordinates xi.

5 LDDMM Landmark Equations

The cometric formulation applies immediately to the finite dimensional man-
ifolds that arise when matching N landmarks with the LDDMM framework
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[15]. We here use this to provide a concrete example of the flow equations. The
LDDMM metric is naturally expressed as a cometric, and, using a rank-deficient
inner product gF dM , we can obtain a reduction of the system of equations to
2(2N + 2Nd) compared to 2(2N + (2N)2) when the landmarks are points in
R

2. For ease of notation, we consider only the R
2 case here. Please see [2] for

illustrations of the generated diffeomorphism flows.
The manifold M = {(x1

1, x
2
1, . . . , x

1
m, x2

m)|(x1
i , x

2
i ) ∈ R

2} can be represented
in coordinates by letting i1, i2 denote the first and second indices of the ith
landmark. The landmark manifold is in LDDMM given the cometric gx(v, w) =
∑m

i,j=1 viK(xi, xj)wj and thus gikjl

x = K(xi, xj)l
k. The Christoffel symbols can

be written in terms of derivatives of the cometric gij (recall that δi
j = gikgkj =

gjkgki) [16]

Γ k
ij =

1
2
gir

(
gklgrs

,l − gslgrk
,l − grlgks

,l

)
gsj . (8)

This relation comes from the fact that gjm,k = −gjrg
rs
,k gsm gives the deriv-

ative of the metric. The derivatives of the cometric is simply gikjl

,rq = (δi
r +

δj
r)∂xq

r
K(xi, xj)l

k. Using (8), derivatives of the Christoffel symbols can be com-
puted

Γ k
ij ,ξ =

1

2
gir,ξ

(
gklgrs

,l − gslgrk
,l − grlgks

,l

)
gsj +

1

2
gir

(
gklgrs

,l − gslgrk
,l − grlgks

,l

)
gsj,ξ

+
1

2
gir

(
gkl

,ξ grs
,l + gklgrs

,lξ − gsl
,ξg

rk
,l − gslgrk

,lξ − grl
,ξgks

,l − grlgks
,lξ

)
gsj .

This provides the full data for numerical integration of the evolution equations
on F dM . An implementation using the above system can be found at http://
github.com/stefansommer/dpca.
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Abstract. This paper addresses the generalization of Principal
Component Analysis (PCA) to Riemannian manifolds. Current meth-
ods like Principal Geodesic Analysis (PGA) and Geodesic PCA (GPCA)
minimize the distance to a “Geodesic subspace”. This allows to build
sequences of nested subspaces which are consistent with a forward com-
ponent analysis approach. However, these methods cannot be adapted to
a backward analysis and they are not symmetric in the parametrization
of the subspaces. We propose in this paper a new and more general type
of family of subspaces in manifolds: barycentric subspaces are implic-
itly defined as the locus of points which are weighted means of k + 1
reference points. Depending on the generalization of the mean that we
use, we obtain the Fréchet/Karcher barycentric subspaces (FBS/KBS)
or the affine span (with exponential barycenter). This definition restores
the full symmetry between all parameters of the subspaces, contrarily to
the geodesic subspaces which intrinsically privilege one point. We show
that this definition defines locally a submanifold of dimension k and that
it generalizes in some sense geodesic subspaces. Like PGA, barycentric
subspaces allow the construction of a forward nested sequence of sub-
spaces which contains the Fréchet mean. However, the definition also
allows the construction of backward nested sequence which may not con-
tain the mean. As this definition relies on points and do not explicitly
refer to tangent vectors, it can be extended to non Riemannian geodesic
spaces. For instance, principal subspaces may naturally span over sev-
eral strata in stratified spaces, which is not the case with more classical
generalizations of PCA.

1 Introduction

For Principal Component Analysis (PCA) in a Euclidean space, one can equiva-
lently define the principal k-dimensional affine subspace using the minimization
of the variance of the residuals (the projection of the data point to the subspace)
or the maximization of the explained variance within that affine subspace. This is
due to the Pythagorean theorem, which does not hold in more general manifolds.
A second important observation is that principal components of different orders
are nested, which allows to build forward and backward estimation methods by
iteratively adding or removing principle components.

Generalizing affine subspaces to manifolds is not so obvious. For the zero-
dimensional subspace, intrinsic generalization of the mean on manifolds naturally
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 12–21, 2015.
DOI: 10.1007/978-3-319-25040-3 2
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comes into mind: the Fréchet mean is the set of global minima of the variance,
as defined by Fréchet in general metric spaces [5]. The set of local minima of
the variance was named Karcher mean by W.S Kendall [10] after the work of
Karcher et al. on Riemannian centers of mass ([8] see [9] for a discussion of the
naming and earlier works).

The one-dimensional component is then quite naturally a geodesic which
should passe through the mean point. Higher-order components are more difficult
to define. The simplest intrinsic generalization of PCA is tangent PCA (tPCA),
which amounts to unfold the whole distribution in the tangent space at the
mean using the pullback of the Riemannian exponential map, and to compute
the principle components of the covariance matrix in the tangent space. The
method is thus based on the maximization of the explained variance. tPCA
is often used on manifolds because it is simple and efficient. However, if it is
good for analyzing data which are sufficiently centered around a central value
(unimodal or Gaussian-like data), it is often not sufficient for multimodal or
large support distributions (e.g. uniform on close compact subspaces).

Fletcher et al. proposed in [4] to rely on the least square distance to subspaces
which are totally geodesic at one point. These Geodesic Subspaces (GS) are
spanned by the geodesics going through one point with tangent vector restricted
to a linear subspace of the tangent space. These subspaces are only locally a man-
ifold as they are generally not smooth at the cut locus of the mean point. The pro-
cedure was coined Principle Geodesic Analysis (PGA). However, the least-square
procedure was computationally expensive, so that the authors implemented in
practice a classical tangent PCA. A real implementation of the original PGA
procedure was only provided recently by Sommer et al. [16]. PGA is intrinsic
and allows to build a sequences of embedded principal geodesic subspaces in
a forward component analysis approach by building iteratively the components
from dimension 0 (the mean point), dimension 1 (a geodesic), etc. Higher dimen-
sions are obtained iteratively by selecting the direction in the tangent space at
the mean that optimally reduce the square distance of data point to the geodesic
subspace. However, the mean always belong to geodesic subspaces even when it
is not part of the support of the distribution.

Huckemann et al. [14] proposed to start at the first order component by
fitting a geodesic to the data, not necessarily through the mean. The second
principle geodesic is chosen orthogonally to the first one, and higher order com-
ponents are added orthogonally at the crossing point to build a geodesic sub-
space. The method was named Geodesic PCA (GPCA). Sommer [15] proposed
a method called horizontal component analysis (HCA) which uses the parallel
transport of the 2nd direction along the first principle geodesic to define the
second coordinates, and iteratively define higher order coordinates through hor-
izontal development along the previous modes. Other principle decompositions
have been proposed, like Principle Graphs [6], extending the idea of k-means.

All the cited methods are intrinsically forward methods that build succes-
sively larger approximation spaces for the data. A notable exception is Principle
Nested Spheres (PNS), proposed by Jung, et al. [7] as a general framework
for non-geodesic decomposition of high-dimensional spheres or high-dimensional
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planar landmarks shape spaces. Subsphere or radius 0 to 1 are obtained by slic-
ing a higher dimensional sphere by an affine hyperplane. The backward analysis
approach, determining a decreasing family of subspace, has been generalized to
more general manifold with the help of a nested sequence of relations [3]. How-
ever, up to know, such sequences of relationships are only known for spheres,
Euclidean spaces or quotient spaces of Lie groups by isometric actions [14].

In this paper, we keep the principle of minimizing the unexplained infor-
mation. However, we propose to replace Geodesic Subspaces by new and more
general types of family of subspaces in manifolds: Barycentric Subspaces (BS).
BS are defined as the locus of points which are weighted means of k + 1 ref-
erence points. Depending on the generalization of the mean that we use on
manifolds, Fréchet mean, Karcher mean or exponential barycenter, we obtain
the Fréchet/Karcher barycentric subspaces (FBS/KBS) or the affine span. We
show that these definition are related and locally define a submanifold of dimen-
sion k, and that they generalize in some sense the geodesic subspaces. Like PGA,
Barycentric Subspace Analysis (BSA) allows the construction of forward nested
subspaces which contains the Fréchet mean. However, it also allows a backward
analysis which may not contain the mean. As this definition relies on points
and do not explicitly refer to tangent vectors to parametrize geodesics, a very
interesting side effect is that it can also be extended to more general geodesic
spaces that are not Riemannian. For instance, in stratified spaces, it naturally
allows to have principle subspaces that span over several strata. The paper is
divided in three parts. We recall in Sect. 2 the background knowledge. Then, we
define in Sect. 3 the notions of barycentric subspaces in metric spaces and the
affine spans in manifolds. Section 4 finally establishes important properties and
relationships between these subspaces.

2 Background Knowledge on Riemannian Manifolds

2.1 Computing in Riemannian Manifolds

We consider an embedding Riemannian manifold M of dimension n. The
Riemannian metric is denoted 〈 . | .〉x on each tangent space TxM of the mani-
fold. The expression of the the underlying norm in a chart is ‖v‖2x = vTG(x)v =
vivjgij(x) using Einstein notations for tensor contractions. We assume the mani-
fold to be geodesically complete (no boundary nor any singular point that we can
reach in a finite time). As an important consequence, the Hopf-Rinow-De Rham
theorem states that there always exists at least one minimizing geodesic between
any two points of the manifold.

We denote by expx(v) the exponential map at point x which associate to each
tangent vector v ∈ TxM the point of M reached by the geodesic starting at x
with this tangent vector after a unit time. This map is a local diffeomorphism
from 0 ∈ TxM to M, and we denote −→xy = logx(y) its inverse: it may be defined
as the smallest vector of TxM that allows to shoot a geodesic from x to y. A
geodesic expx(tv) is minimizing up to a certain cut time t0 and not anymore
after. When t0 is finite, t0v is called a tangential cut-point and expx(t0v) a cut
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point. The domain of injectivity D(x) ∈ TxM of the exponential map can be
maximally extended up to the tangential cut-locus ∂D(x) = C(x). It covers all
the manifold M except the cut locus C(x) = expx(C(x)) which has null measure
for the Riemannian measure.

When the tangent space is provided with an orthonormal basis, the
Riemannian exponential and logarithmic maps provide a normal coordinate sys-
tems at x. A set of normal coordinate systems at each point of the manifold
realize an atlas which allows to work very easily on the manifold. The imple-
mentation of exp and log maps is the basis of programming on Riemannian
manifolds, and most the geometric operations needed for statistics or image
processing can be rephrased based on them [12,13].

2.2 Taylor Expansions in Normal Coordinate Systems

We consider a normal coordinate system centered at x and xv = expx(v) a
variation of the point x. We denote by Ri

jkl(x) the coefficients of the Riemannian
curvature tensor at x and by ε a conformal gauge scale that encodes the size of
the path (in terms of ‖v‖x and ‖−→xy‖x) normalized by the curvature. Following [2],
the Taylor expansion of the metric is ga

b (v) = δa
b − 1

3Ra
cbdv

cvd − 1
6∇eR

a
cbdv

evcvd +
O(ε4), and a geodesic joining xv to y has initial tangent vector:

[
logxv

(y)
]a = −→xya − va +

1
3
Ra

cbdv
b−→xyc−→xyd +

1
12

∇cR
a
dbev

b−→xyc−→xyd−→xye + O(ε4).

Combining these two expansions, we get the expansion of the Riemannian dis-
tance: d2xy(v) = dist2(expx(v), y) = ‖−→xy‖2x + (∇d2xy)Tv + 1

2vT∇2d2xyv + O(ε3),
where the gradient ∇d2xy = −2−→xy is −2 times the log and the Hessian is the
opposite of the differential of the log:

(∇2d2xy)a
b = − [Dx logx(y)]ab = δa

b − 1
3
−→xyc−→xydRa

cbd − 1
12

−→xyc−→xyd−→xye∇cR
a
dbe +O(ε3).

2.3 Moments of Point Distributions

Let μ(x) =
∑

i λiδxi
(x) be a singular distribution of k + 1 points on M with

weights (λ0, . . . λk) that do not sum up to zero. To define the moments of that
distribution, we have to take care that the Riemannian log and distance functions
are not smooth at the cut-locus of the points {xi}.

Definition 1 ((k + 1)-Pointed Riemannian Manifold).
Let {x0, . . . xk} ∈ Mk+1 be a set of k + 1 distinct points in the Riemannian
manifold M and C(x0, . . . xk) = ∪k

i=0C(xi) be the union of the cut loci of these
points. We call (k + 1)-pointed manifold M∗(x0, . . . xk) = M/C(x0, . . . xk) the
submanifold of the non-cut points of the points.

Since the cut locus of each point is closed and has null measure, M∗(x0, . . . xk)
is open and dense in M. Thus, it is a submanifold of M (not necessarily con-
nected). On this submanifold M∗(x0, . . . xk), the distance to the points xi and
the Riemannian log function −→xxi = logx(xi) are smooth.
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Definition 2 (Weighted Moments of a (k + 1)-Pointed Manifold).
Let (λ0, . . . λk) ∈ R

k+1 such that
∑

i λi 	= 0. The weighted n-order moment of a
(k +1)-pointed Riemannian manifold M∗(x0, . . . xk) is the smooth (n, 0) tensor:

Mn(x, λ) =
∑

i

λi
−→xxi ⊗ −→xxi . . . ⊗ −→xxi︸ ︷︷ ︸

n times

(1)

The 0-th order moment (the mass) M0(λ) =
∑

i λi = 1Tλ is constant. All other
moment are homogeneous of degree 1 in λ and can be normalized by dividing by
the mass M0(λ). The first order moment M1(x, λ) =

∑
i λi

−→xxi is a smooth vector
field on the manifold M∗(x0, . . . xk). The second and higher order moments are
smooth (n, 0) tensor fields that will be used through their contraction with the
Riemannian curvature tensor.

3 Barycentric Subspaces

In a Euclidean space, an affine subspace of dimension k is generated by a point
and k non-collinear vectors: Aff(x0, v1 . . . vk) =

{
x = x0 +

∑k
i=1 λivi, λ ∈ R

k
}

.

Alternatively, one could also generate the affine span of k + 1 points in general
linear position using the implicit equation

∑
i λi(xi −x) = 0 where

∑k
i=0 λi = 1.

The two definitions are equivalent when xi = x0 + vi. The last parametrization
of k-dimensional affine submanifolds is relying on barycentric coordinates which
live in the projective space Pk minus the orthogonal of the line element 1 = (1 :
1 : . . . 1):

P∗
k =

{

(λ0 : . . . : λk) ∈ R
k+1 s.t.

∑

i

λi 	= 0

}

.

Standard charts of this space are given either by the intersection of the line
elements with the “upper” unit sphere Sk of Rk+1 with north pole 1/

√
k (unit

weights) or by the k-plane of Rk+1 passing through the point 1/k and orthogonal
to this vector. We call normalized weights λi = λi/(

∑k
j=0 λj) this last projection.

3.1 Fréchet and Karcher Barycentric Subspaces in a Metric Space

The two above definitions of the affine span turn out to have different general-
izations in manifolds: the first definition leads to geodesic subspaces, as defined
in PGA and GPCA [4,14,16], while the second definition using the affine span
suggests a generalization to manifolds either using the Fréchet/Karcher weighted
mean or using an exponential barycenter.

Definition 3 (Fréchet/Karcher Barycentric Subspaces of k+1 Points).
Let (M, dist) be a metric space and (x0, . . . xk) ∈ Mk be k + 1 distinct
reference points. The (normalized) weighted variance at point x with weight
λ ∈ P∗

k is: σ2(x, λ) = 1
2

∑k
i=0 λi dist2(x, xi) = 1

2

∑k
i=0 λi dist2(x, xi)/(

∑k
j=0 λj).

The Fréchet barycentric subspace is the locus of weighted Fréchet means of
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these points, i.e. the set of absolute minima of the weighted variance:
FBS(x0, . . . xk) = {arg minx∈M σ2(x, λ), λ ∈ P∗

k}. The Karcher barycentric
subspace KBS(x0, . . . xk) is defined similarly with local minima instead of global
ones.

This definition restores the full symmetry of all the parameters defining the sub-
spaces, contrarily to the geodesic subspaces which privilege one point. Here, we
defined the notion on general metric spaces to show that it works in spaces more
general than smooth Riemannian manifolds. In a stratified space for instance,
the barycentric subspace spanned by points belonging to different strata natu-
rally maps over all these strata. This is a significant improvement over geodesic
subspaces used in PGA which can only be defined within a regular strata.

3.2 Affine Spans as Exponential Barycentric Subspaces

A second way to generalize the affine span to manifolds is to see directly the
implicit barycentric coordinates equation as a weighted exponential barycenter:

Definition 4 (Affine Span of a (k + 1)-Pointed Riemannian Manifold).
A point x ∈ M∗(x0, . . . xk) has barycentric coordinates λ ∈ P∗

k if

M1(x, λ) =
k∑

i=0

λi
−→xxi = 0. (2)

The affine span of the points (x0, . . . xk) ∈ Mk is the set of weighted exponential
barycenters of the reference points in M∗(x0, . . . xk):

Aff(x0, . . . xk) = {x ∈ M∗(x0, . . . xk)|∃λ ∈ P∗
k : M1(x, λ) = 0}.

This definition is only valid on M∗(x0, . . . xk) and may hide some discontinuities
of the affine span on the union of the cut locus of the reference points. Outside
this null measure set, one recognizes that Eq. (2) defines nothing else than the
critical points of the variance σ2(x, λ) = 1

2

∑
i λi dist2(x, xi). The affine span

is thus a superset of the barycentric subspaces in M∗(x0, . . . xk). However, we
notice that the variance may also have local minima on the cut-locus of the
reference points.

Let us consider field of n × (k + 1) matrices Z(x) = [−−→xx0, . . .
−−→xxk]. We can

rewrite Eq. (2) in matrix form: M1(x, λ) = Z(x)λ = 0. Thus, we see that the
affine span is controlled by the kernel of the matrix field Z(x):

Theorem 1 (SVD Characterization of the Affine Span).
Let Z(x) = U(x).S(x).V (x)T be a singular decomposition of the matrix fields
Z(x) = [−−→xx0, . . .

−−→xxk] on M∗(x0, . . . xk) (with singular values sorted in decreasing
order). The barycentric subspace Aff(x0, . . . xk) is the zero level-set of the k + 1
singular value sk+1(x) and the subspace of valid barycentric weights is spanned
by the right singular vectors corresponding to the l vanishing singular values:
Span(vk−l, . . . vk) (it is void if l = 0).
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4 Properties of Barycentric Subspaces in Manifolds

In this section, we restrict the analysis to M∗(x0, . . . xk) so that all quantities
are smooth.

4.1 Karcher Barycentric Subspaces and Affine Span

In M∗(x0, . . . xk), the critical points of the weighted variance are the points of
the affine span. Among these points, the local minima may be characterized by
the Hessian H(x, λ) = −∑

i λiDx logx(xi) of the weighted variance. Using the
Taylor expansion of the differential of the log of Sect. 2.2), we obtain:

[H(x, λ)]ab = δa
b − 1

3Ra
cbd[M2(x, λ)]cd − 1

12∇cR
a
dbe[M3(x, λ)]cde + O(ε4), (3)

The key factor is the contraction of the curvature with the dispersion of the
reference points: when the typically distance from x to all the reference points
xi is smaller than the inverse of the curvature, then H(x, λ) is essentially close to
the identity. In the limit of null curvature, (e.g. for a Euclidean space), H(x, λ)
is simply the unit matrix. In general Riemannian manifolds, Eq. (3) only gives a
qualitative behavior. In order to obtain hard bounds on the spectrum of H(x, λ),
one has to investigate bounds on Jacobi fields, as is done for the proof of unique-
ness of the Karcher and Fréchet means [1,8,10,11,17]. Thanks to these proofs,
we can in fact establish that the Karcher barycentric submanifold is locally well
defined around the Karcher mean.

When the Hessian is degenerated, we cannot conclude on the local minimality
without going to higher order differentials. This leads us to stratify the affine
span by the index of the Hessian of the weighted variance.

Definition 5 (Regular and Positive Points of M∗(x0, . . . xk)).
A point x ∈ M∗(x0, . . . xk) is said regular (resp. positive) if the Hessian matrix
H(x, λ) is invertible (resp. positive definite) for all λ in the right singular space
of the smallest singular value of Z(x). The set of regular (resp. positive) points is
denoted Reg(M∗(x0, . . . xk)) (resp. Reg+(M∗(x0, . . . xk))). The set of positive
points of the affine span is called the positive span Aff+(x0, . . . xk).

Positive points are obviously regular, and in Euclidean spaces all the points
are positive and regular. However, in Riemannian manifolds, we may have non-
regular points and regular points which are non-positive.

Theorem 2 (Karcher Barycentric Subspace and Positive Span).
The positive span Aff+(x0, . . . xk) is the set of regular points of the Karcher
barycentric subspace KBS(x0, . . . xk) on M∗(x0, . . . xk).

One generalization of the Fréchet (resp. Karcher) mean is the use of the
power α of the metric instead of the square. For instance, one defines the
median (α = 1) and the modes (α → 0) as the minima of the α-variance
σα(x) = 1

α

∑k
i=0 distα(x, xi). Following this idea, one could think of generalizing

barycentric subspaces to the α-Fréchet (resp. α-Karcher) barycentric subspaces.
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In fact, it turns out that the critical points of the α-variance are just elements
of the affine span with weights λ′

i = λi distα−2(x, xi). Thus, changing the power
of the metric just amounts to reparametrizing the barycentric weights, which
shows the notion of affine span is really central.

4.2 Dimension of the Barycentric Subspace

We can locally parametrize the affine span thanks to a Taylor expansion of the
constraint Z(x)λ = 0: a change of coordinates δλ induces a change of position
δx verifying H(x, λ)δx + Z(x)δλ = 0. At the positive points, the Hessian is
invertible and the SVD characterization leads us to conclude that:

Theorem 3 (Dimension of the Barycentric Subspaces at Regular
Points).
The positive span Aff+(x0, . . . , xk) (i.e. the regular KBS), is a stratified space
of dimension k on Reg(M∗(x0, . . . xk)). On the m-dimensional strata, Z(x) has
exactly k − m + 1 vanishing singular values.

4.3 Geodesic Subspaces as Limit of Barycentric Subspaces

By analogy with Euclidean spaces, one would expects the affine span to be close
to the geodesic subspace

GS(x,w1, . . . wk) =
{

expx

(∑k

i=1
αiwi

)

∈ M for α ∈ R
k

}

generated by the k independent vectors w1, . . . wk at x when all the points {xi =
expx0

(εwi)}1≤i≤k are converging to x0 at first order.
In order to investigate that, we first need to restrict the definition of the geo-

desic subspaces. Indeed, although the above classical definition is implicitly used
in most of the works using PGA, it may not define a k-dimensional submanifold
when there is a cut-locus. For instance, it is well known that geodesics of a flat
square torus are either periodic or everywhere dense in a flat torus submanifold
depending on whether the components of the initial velocity field have rational
or irrational ratios. Thus, it makes sense to restrict to the part of the GS which
is limited by the cut-locus.

Definition 6 (Restricted Geodesic Submanifolds).
Let x ∈ M be a point of a Riemannian manifold and Wx = {∑k

i=1 αiwi, α ∈ R
k}

the k-dimensional linear subspace of TxM generated a k-uplet {wi}1≤i≤k ∈
(TxM)k of tangent vectors at x. Recall that D(x) ⊂ TxM is the maximal defin-
ition domain on which the exponential map is diffeomorphic.

We call restricted geodesic submanifold GS∗(Wx) at x generated by the vector
subspace Wx the submanifold of M generated by the geodesics starting at x with
tangent vectors w ∈ Wx, but up to the first cut-point of x only:

GS∗(Wx) = GS∗(x,w1, . . . wk) = {expx (w) , w ∈ Wx ∩ D(x)}
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This restricted definition correctly defines a k-dimensional submanifold of M,
whose completion may be a manifold with boundary.

Let x = expx0
(w) ∈ GS∗(Wx). Thanks to the symmetry of geodesics, we can

show that this point is solution of the barycentric equation
∑k

i=0 λi logx(xi) =
O(η2) with non-normalized homogeneous coordinates λi = αi for 1 ≤ i ≤ k
and λ0 = η − (

∑
i αi). These coordinates obviously sum up to zero when η

goes to zero, which is a point at infinity in P∗
k . In that sense, points of the

restricted geodesic submanifold GS∗(W ) are points at infinity of the affine span
Aff(x, x1, . . . xk) when the points xi = expx(ηwi) are converging to x at first
order along the tangent vectors wi.

Theorem 4 (Restricted GS as Limit Case of the Affine Span).
Points of the restricted geodesic submanifold GS∗(Wx) = {expx (w) , w ∈ Wx ∩
D(x)} are points at infinity in P∗

k of the affine span Aff(x, x1, . . . xk) when the
points xi = expx(ηwi) are converging to x at first order along the tangent vectors
wi defining the k-dimensional subspace Wx ⊂ TxM.

5 Perspectives

We proposed in this paper three generalization of the affine span of k + 1 points
in a manifold. These barycentric subspaces are implicitly defined as the locus
of points which are weighted (Fréchet/Karcher/exponential barycenter) means
of k + 1 reference points. In generic conditions, barycentric subspaces are strat-
ified spaces that are locally submanifolds of dimension k. Their singular set of
dimension k − l corresponds to the case where l of the reference point belongs
to the barycentric subspace defined by the k − l other reference points.

In non-generic conditions, points may coalesce along certain directions, defin-
ing non local jets instead of a regular k-tuple. Geodesic subspaces, which are
defined by k − 1 tangent vectors at a point, do correspond (in some restricted
sense) to the limit of the affine span when the k-tuple converges towards that
jet. We conjecture that this can be generalized to higher order derivatives using
techniques from sub-Riemannian geometry. This way, some non-geodesic decom-
position schemes such as loxodromes, splines and principle nested spheres could
also be seen as limit cases of barycentric subspaces.

Investigating simple manifolds like spheres and symmetric spaces will provide
useful guidelines in that direction. For instance, the closure of the barycentric
subspace of k + 1 different reference points on the n-dimensional sphere is the
k-dimensional great subsphere that contains the reference points. It is noticeable
that the closure of the affine span generated by any k + 1-tuple of points of a
great k-dimensional subsphere generate the same space, which is also a geodesic
subspace. This coincidence of spaces is due to the very high symmetry of the
sphere. For second order jets, we conjecture that we obtain subspheres of different
radii as used in principle nested spheres (PNS) analysis.

Barycentric subspaces can be naturally nested, by defining an ordering of
the reference points, which makes is suitable for a generalization of Principal
Component Analysis (PCA) to Riemannian manifolds. Several problems how-
ever remain to be investigated to use Barycentric Subspace Analysis (BSA) in
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practice. First, the optimization on k-tuple might have multiple solutions, as in
the case of spheres. Here, we need to find a suitable quotient space similar to
the quotient definition of Grassmanians. Second, the optimization might con-
verge towards a non-local jet instead on a k-tuple, and good renormalization
techniques need to be designed to guaranty the numerical stability. Third, one
theoretically needs to define a proper criterion to be optimized by all k-tuple
for k = 0 . . . n together and not just a greedy approach as done by the classical
forward and backward approaches.
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6. Gorban, A.N., Zinovyev, A.Y.: Principal graphs and manifolds. In: Handbook of
Research on Machine Learning Applications and Trends: Algorithms, Methods and
Techniques, Chap. 2, pp. 28–59 (2009)

7. Jung, S., Dryden, I.L., Marron, J.S.: Analysis of principal nested spheres.
Biometrika 99(3), 551–568 (2012)

8. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure
Appl. Math. 30, 509–541 (1977)

9. Karcher, H.: Riemannian Center of Mass and so called Karcher mean, July 2014.
arXiv:1407.2087 [math]

10. Kendall, W.: Probability, convexity, and harmonic maps with small image I:
uniqueness and fine existence. Proc. Lond. Math. Soc. 61(2), 371–406 (1990)

11. Le, H.: Estimation of Riemannian barycenters. LMS J. Comput. Math 7, 193–200
(2004)

12. Pennec, X.: Intrinsic statistics on Riemannian manifolds: basic tools for geomet-
ric measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006). A preliminary
appeared as INRIA RR-5093, January 2004

13. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing.
Int. J. Comput. Vis. 66(1), 41–66 (2006). A preliminary version appeared as INRIA
Research. Report 5255, (July 2004)

14. Huckemann, A.M.S., Hotz, T.: Intrinsic shape analysis: geodesic principal compo-
nent analysis for Riemannian manifolds modulo Lie group actions. Statistica Sin.
20, 1–100 (2010)

15. Sommer, S.: Horizontal dimensionality reduction and iterated frame bundle devel-
opment. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp.
76–83. Springer, Heidelberg (2013)

16. Sommer, S., Lauze, F., Nielsen, M.: Optimization over geodesics for exact principal
geodesic analysis. Adv. Comput. Math. 40(2), 283–313 (2013)

17. Yang, L.: Medians of probability measures in Riemannian manifolds and applica-
tions to radar target detection. Ph.D. thesis, Poitier University, December 2011

http://arxiv.org/abs/1407.2087


Dimension Reduction on Polyspheres
with Application to Skeletal Representations

Benjamin Eltzner1(B), Sungkyu Jung2, and Stephan Huckemann1

1 Institute for Mathematical Stochastics, University of Göttingen,
Göttingen, Germany

beltzne@uni-goettingen.de
2 Department of Statistics, University of Pittsburgh, Pittsburgh, USA

Abstract. We present a novel method that adaptively deforms a poly-
sphere (a product of spheres) into a single high dimensional sphere which
then allows for principal nested spheres (PNS) analysis. Applying our
method to skeletal representations of simulated bodies as well as of data
from real human hippocampi yields promising results in view of dimen-
sion reduction. Specifically in comparison to composite PNS (CPNS), our
method of principal nested deformed spheres (PNDS) captures essential
modes of variation by lower dimensional representations.

1 Introduction

In data analysis, it is one of the big challenges to discover major modes of vari-
ation. For data in a Euclidean space this can be done by principal component
analysis (PCA) where the modes are determined by an eigendecomposition of
the covariance matrix. Notably, this is equivalent to determining a sequence of
nested affine subspaces minimizing residual variance. Inspired by the eigende-
composition, [6,7] proposed PCA in the tangent space of a suitably defined mean,
the notion of covariance has been generalized by [3] cf. also [2], and inspired by
minimizing residual variances, [9] proposed to find a sequence of orthogonal best
approximating geodesics. Taking into account parallel transport, [14] proposed to
build a nested sequence of subspaces spanned by geodesics. These methods apply
to general manifolds and to some extent also to stratified spaces, e.g. to shape
spaces due to isometric (not necessarily free) actions of Lie-groups on manifolds
(cf. [8]). For spherical data, it is possible to almost entirely mimic the second
characterization of PCA by backward principal nested sphere (PNS) analysis,
proposed by [10]. Here in every step, a codimension one small hypersphere is
determined, best approximating the data orthogonally projected to the previous
small hypersphere. This method hinges on the very geometry of the sphere and
cannot be easily generalized to other spaces. For data on polyspheres (products
of spheres), which naturally occur in skeletal representations for modeling and
analysis of body organs, in composite PNS (CPNS) by [11], PNS is performed
in every factor.

In order to make PNS more directly available for polyspheres, in this com-
munication we propose principal nested deformed spheres (PNDS) where we first
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 22–29, 2015.
DOI: 10.1007/978-3-319-25040-3 3
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deform a polysphere into a single high dimensional sphere, in a data adaptive
way, and then perform PNS on this sphere. In Sect. 2 we describe the proposed
deformation of the data space and in Sect. 3 we apply the method to simu-
lated and real data from skeletal representations and compare results to those
of CPNS. A thorough introduction and analysis of the method is deferred to a
future publication in preparation.

2 Polysphere Deformation

We assume in the following that the data space is a polysphere Q = Sdi
ri ×. . .×SdI

rI
and that on each individual sphere of dimension di ∈ N and radius ri > 0 the
data are confined to a half sphere, 1 ≤ i ≤ I. Notably, then [1] guarantees
the existence of a unique spherical mean μi ∈ Sdi

ri of the data on each individual
sphere. In the following we will deform Q stepwise to a single higher-dimensional
sphere SD, D = d1 + . . .+dI where the mapping P : Q −→ SD is data-adaptive,
i.e. P is as faithful as possible in terms of data variation.

2.1 The Construction for Unit Spheres

For equal radii, the explicit mapping is given below in (3), for varying radii the
modification is found further down in (4) and (5).

For the following motivation, we use polar coordinates

∀1 ≤ k ≤ d : xk =

⎛

⎝
k−1∏

j=1

sin φj

⎞

⎠ cos φk, xd+1 =

⎛

⎝
d∏

j=1

sin φj

⎞

⎠ (1)

for the embedding Sd ⊂ R
d+1 of the d-dimensional unit sphere. We will formulate

the construction of P = PI recursively, first for two unit spheres,

P1 : Sd2 × Sd1 −→ Sd2+d1 , P2 : Sd3 × Sd2+d1 −→ Sd3+d2+d1 , . . .

where we embed Sd2×Sd1 intoRd2+d1+2 denoting coordinates as x1,1, . . . , x1,d1+1,
x2,1, . . . , x2,d2+1. Then the squared line elements of the two spheres are given by

ds21 =
d1∑

k=1

⎛

⎝
k−1∏

j=1

sin2 φ1,j

⎞

⎠ dφ2
1,k, ds22 =

d2∑

k=1

⎛

⎝
k−1∏

j=1

sin2 φ2,j

⎞

⎠ dφ2
2,k

and the polysphere’s squared line element is given by ds2 = ds22 + ds21. The line
element of the sphere, i. e. the image of P1 is then formally defined as

ds2 = ds22 +

⎛

⎝
d2∏

j=1

sin2 φ2,j

⎞

⎠ ds21 (2)

which can easily be checked to be a squared line element of a sphere of dimension
D = d1 + d2.
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In the next step we give a data-driven choice of coordinates and ordering of
the two unit spheres. The transformation of the line element in Eq. (2) amounts
to multiplying ds21 by x2

2,d2+1 = 1 − x2
2,1 − . . . − x2

2,d2
. This yields

{

x ∈ R
d2+d1+2

∣
∣
∣
∣
∣

d2+1∑

k=1

x2
2,k = 1 =

d2∑

k=1

x2
2,k +

d1+1∑

k=1

(x2,d2+1x1,k)2
}

Since we assumed that the data projections to each individual sphere are con-
tained in half-spheres, we may choose coordinates for each individual sphere
such that xi,d1+1 > 0 for the projections of all data points to the i-th sphere
(2 ≤ i ≤ I). Often the projections are confined to a half sphere centered at the
spherical mean μi on the i-the sphere. Then the positive xi,di+1-unit direction
can be chosen as μi. As the other coordinates are equally deformed, their choice
is arbitrary. Thus, the coordinates of the Sd2+d1 are given by

∀1 ≤ k ≤ d2 : yj = x2,k, ∀1 ≤ k ≤ d1 + 1 : yd2+k = x2,d2+1x1,k (3)

from which angular coordinates can be calculated by inverting the relation (1).
Using x2,d2+1 > 0 for all data, the data space is thus

Sd2+d1 =

{

y ∈ R
d2+d1+1

∣
∣
∣
∣
∣

d2∑

k=1

y2
k +

d1+1∑

k=1

y2
d2+k = 1

}

.

As the line element of the sphere Sd1 in Eq. (2) is multiplied by a factor ≤ 1
for each data point, we call this sphere the “inner” sphere and note that data
variation on this sphere is reduced. High data variation on the “outer” sphere
Sd2 would lead to a greater and more uneven reduction of variation for the inner
sphere. In order to prevent this, we first sort the spheres (i = 1, . . . , I) such that
data variation is lowest on the last (outermost, i = I) sphere and highest on the
first (innermost, i = 1) sphere. Indeed, if the data vary little on the i-th sphere
then xi,di+1 is nearly one, causing little deformation.

2.2 Spheres of Different Radii

In general, the spheres in a polysphere of interest will have different radii. In
fact, the radius for each sphere and each datum will often be unique. Recall
that a logarithmic scale is well suited for lengths, linearizing ratios, such that
the geometric mean corresponds to the arithmetic mean on a logarithmic scale.
Hence, it is natural to define the mean radius of each individual sphere by the
geometric mean of the radii of the data points, cf. [11].

There is yet another subtlety to be dealt with. In Eq. (3), simply multiply-
ing the coordinates of Sd2 and Sd1 by the corresponding radii, implies that all
coordinates of the sphere Sd2+d1 are in particular scaled with the radius of the
outer sphere Sd2 . This implies that the relative scaling of the spheres will only
depend on the radius of the inner Sd1 , clearly an unwanted feature. Hence, we
normalize the radii with their geometric mean
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Ri := ri

⎛

⎝
K∏

j=1

rj

⎞

⎠

− 1
I

(i = 1, . . . , I), rescale all coordinates of the first unit sphere

∀1 ≤ k ≤ d1 + 1 : x1,k �→ x̃1,k = R1x1,k, (4)

only the first di coordinates of the i-th unit sphere (i = 2, . . . I)

∀1 ≤ k ≤ di : xi,k �→ x̃i,k = Rixi,k (5)

and then apply the recursive operations defined in Eq. (3), using now x̃ instead
of x. In particular for two spheres only, we thus start with the ellipsoid

{

x̃ ∈ R
d2+d1+1

∣
∣
∣
∣
∣

d2∑

k=1

R−2
2 x̃2

2,k +
d1+1∑

k=1

R−2
1 (x̃2,d2+1x̃1,k)2 = 1

}

.

and only in the final step project ỹ to a unit sphere. Now the ordering of the
spheres is determined by decreasing rescaled data variance where the data vari-
ance on the i-th unit sphere is rescaled by multiplication with Ri (i = 1, . . . , I).

One of the referees pointed out that radii normalizations could also be left
variable to allow for more general optimizations. We will gratefully explore this
in further research.

3 Application to Skeletal Representations

Our method is well-suited for application to skeletal representations (s-reps), as
these contain data on a product of several spheres. An in-depth exposition of
s-reps can be found in [13], cf. also [4,5]. For the s-reps used here, we now give
a very brief review from [11].

3.1 The S-Rep Parameter Space

The basic building block of an s-rep is a two-dimensional mesh of m×n skeletal
points which are embedded as medial as possible in the body to be described
by the s-rep so that the surface of the body splits into three parts, the northern
sheet above the mesh, the southern sheet below the mesh and the crest where
the two sheets meet. From each of the skeletal points emerges a spoke to a
point on the northern sheet and one to a point on the southern sheet. From
each skeletal point on the boundary of the mesh an additional spoke emerges
pointing to a point on the crest. This yields a total of K = 2mn + 2m + 2n − 4
spokes. Figure 1(b) shows an s-rep of a bent ellipsoid with 9 × 3 skeletal points
(yellow), northern spokes (magenta), southern spokes (blue) and crest spokes
(red). S-Reps are frequently used to model body organs in which case the spoke
directions are restricted to half spheres due to the limited flexibility of organs.
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An s-rep is represented in the following product space giving the size of its
centered mesh, the lengths of the spokes, the normalized mesh-points and the
spoke directions

Q = R+ × R
K
+ × S3mn−1 × (

S2
)K

. (6)

Applying the polysphere deformation for spheres with different radii we
obtain the data space

Q′ = S5mn+2m+2n−5. (7)

3.2 PNS, CPNS and PNDS

In PNS (cf. [10]), for data on a unit sphere SL a nested sequence of l-dimensional
small-spheres Ml (l = 1, . . . , L − 1) is determined that approximates the data
best with respect to the least sum of squares of spherical residuals:

SL ⊃ ML−1 ⊃ · · · ⊃ M2 ⊃ M1 ⊃ {μ}
At each reduction step, the residuals are recorded as signed distances from the
subsphere. In CPNS (cf. [11]), PNS is applied to every sphere occurring in the
product (7) yielding a Euclidean vector of residuals. This vector, appended by
the vector of logarithms of the sizes, is then subjected to classical PCA.

In PNDS, as proposed here, PNS is applied to the single polysphere (7) which
has been obtained by polysphere deformation for spheres with the different radii
given by the R+ × R

K
+ factors. In particular, no further PCA step as in CPNS

is necessary.

3.3 Results

We compare the performance of PNDS to that of CPNS in terms of dimension
reduction for the following data sets.

– Hipfull contains s-reps fitted to MRI images of 51 human hippocampi, cf. [11];
Hipsp contains only the 66 spokes of variable length.

– Two data sets of simulated ellipsoids that have been twisted (Sim66,1) as well
as bent and twisted (Sim66,2) from [12] consisting of 66 unit-length spokes, cf.
Fig. 1.

Overall PNDS requires fewer dimensions than CPNS to explain data varia-
tion. For the full hippocampi data, PNDS explains 90 % of the variation by 8
dimensions, CPNS by 18 dimensions (9 vs. 20 for the spokes data only). The
same effect, although far less prominent is visible for the simulated data, which
is far less noisy than the real data, cf. Fig. 2 and Table 1.

Figure 3 elucidates a key difference between PNDS and CPNS. The data pro-
ducing the V shape visible in components 1 and 2 of CPNS (b) obviously is spread
along several spoke spheres in (6).Because in (7) theyaremapped toa single sphere,
that V shape can be explained by a single component via PNDS (c). The residual



Dimension Reduction on Polyspheres with Application 27

Fig. 1. S-rep with 9×3 skeletal points and 66 spokes fitted to a simulated bent ellipsoid,
from [12] (Color figure online).
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Fig. 2. PNDS vs. CPNS: displaying scree plots of cumulative variances for s-reps of 51
hippocampi from [11]. Right: the full data set Hipfull, left: only the spoke information
Hipsp.

Table 1. PNDS vs. CPNS: percentage of variances explained by lower dimensional
subsets that are required to explain at least 90 % of the respective total data variance.

Sim66,1 PNDS 92.0 92.0

CPNS 62.7 32.1 94.8

Sim66,2 PNDS 88.7 7.4 96.1

CPNS 76.2 15.5 91.7

Hipsp PNDS 68.5 7.2 4.3 2.9 2.2 1.9 1.5 1.2 1.1 90.7

CPNS 22.8 10.0 9.1 6.9 6.1 5.2 4.8 3.8 3.0 2.9 2.5 2.2 2.1 1.8 1.6 1.5 1.4 1.3 1.1 1.0 90.9

Hipfull PNDS 70.4 6.6 4.2 3.1 2.2 1.5 1.3 1.2 90.5

CPNS 31.2 9.6 8.4 5.1 4.6 4.2 4.1 3.5 3.0 2.3 2.1 2.0 1.8 1.3 1.2 1.2 1.0 0.9 90.5

Dimension 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

data distances to that small circle on the two-dimensional PNDS in (c) have the
shape of a 3, as visible in the first two components of PNDS (a) and the second and
third component of CPNS (b). Higher dimensional components (already compo-
nent 3 in PNDS) only explain low variance noise as seen in (c).
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Fig. 3. PNDS vs. CPNS for simulated twisted ellipsoids (Sim66,1): scatter plots of resid-
ual signed distances for the first three components in (a) and (b). The data projected
to the second component (a small two-sphere) in PNDS with first component (a small
circle) inside, is visualized in (c). As in Fig. 2, subfigure (d) shows cumulative variances
over dimension.

4 Conclusion and Outlook

We have shown that the deformation of a polysphere data space into a single high
dimensional sphere may yield considerable enhancement in terms of dimension
reduction. For the application to skeletal representations presented here, this is
a crucial step towards a simple parametric model of body organ shapes, which
allows for better fits and thus more successful automated localization of organs
in MRI images. Applications range from minimizing tissue damage in radiation
therapy or surgery to various diagnostic opportunities.
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Abstract. This paper studies the affine-invariant Riemannian distance
on the Riemann-Hilbert manifold of positive definite operators on a sep-
arable Hilbert space. This is the generalization of the Riemannian man-
ifold of symmetric, positive definite matrices to the infinite-dimensional
setting. In particular, in the case of covariance operators in a Reproduc-
ing Kernel Hilbert Space (RKHS), we provide a closed form solution,
expressed via the corresponding Gram matrices.

1 Introduction

Symmetric Positive Definite (SPD) matrices play an important role in numer-
ous areas of mathematics, statistics, machine learning, and their applications.
Some examples of applications of SPD matrices in practice include brain imaging
[3,9,22], object detection [24,25] and image retrieval [8] in computer vision, and
radar signal processing [5,11].

It is well-known that for a fixed n ∈ N, the set of all SPD matrices of size
n × n, denote by Sym++(n), forms a Riemannian manifold with nonpositive
curvature. Consequently, many computational methods have been proposed to
exploit the Riemannian structure of Sym++(n). Two of the most commonly
applied Riemmannian metrics on Sym++(n) are the classical affine-invariant
metric [6,7,15,17,18,25] and the recently introduced Log-Euclidean metric [3,4].
The current work focuses on the infinite-dimensional generalization of the affine-
invariant Riemannian metric.

Generalizations to the Infinite-Dimensional Setting. The affine-invariant
Riemannian metric on Sym++(n) has recently been generalized to the infinite-
dimensional setting by [2,12,13] from a purely mathematical viewpoint. In the
infinite-dimensional case, this metric measures the distances between positive
definite unitized Hilbert-Schmidt operators, which are scalar perturbations of
Hilbert-Schmidt operators on a Hilbert space and which are infinite-dimensional
generalizations of positive definite matrices. As shown in [2,12,13], these operators
form an infinite-dimensional Riemann-Hilbert manifold. A key point that needs
to be emphasized is that while the general Hilbert-Schmidt formulation includes
Sym++(n) as a special case, the infinite-dimensional formulation is significantly
different from its correspondingfinite-dimensional version. In particular, in general
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 30–38, 2015.
DOI: 10.1007/978-3-319-25040-3 4
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one cannot obtain the infinite-dimensional formulas from the finite-dimensional
ones by letting the dimension approach infinity.

Contributions of this Work. In the present paper, we derive the closed form
solution for the infinite-dimensional affine-invariant distances between covariance
operators on a reproducing kernel Hilbert space (RKHS) induced by a positive
definite kernel. From the perspective of kernel methods in machine learning, this
is motivated by the fact that covariance operators defined on nonlinear features,
which are obtained by mapping the original input data into a high-dimensional
feature space, can better capture input correlations than covariance matrices
defined on the original input data, see e.g. KernelPCA [23].

Related Work. The present paper is a parallel contribution to [16]. In [16],
we introduced the Log-Hilbert-Schmidt metric between positive definite uni-
tized Hilbert-Schmidt operators, which is the infinite-dimensional version of the
Log-Euclidean metric on Sym++(n). In particular, for covariance operators on
an RKHS induced by a positive definite kernel, we derived a closed-form solu-
tion for the Log-Hilbert-Schmidt distance via the corresponding Gram matrices.
Empirical experiments performed on the task of multi-category image classifica-
tion in [16] with the Log-Hilbert-Schmidt metric show significant improvements
in classification accuracies with respect to the Log-Euclidean metric. In the con-
text of functional data analysis, the generalization of the metrics on Sym++(n)
between covariance matrices to metrics between infinite-dimensional covariance
operators has also been a problem of particular recent interest [20,21]. In [20],
the authors discussed the difficulty of generalizing the affine-invariant and Log-
Euclidean metrics to the infinite-dimensional setting and proposed several other
metrics instead. As we show in [16] and below, this difficulty is due to the sharp
differences between the finite and infinite-dimensional cases and is resolved by
the formulation of the Riemann-Hilbert manifold of positive definite operators.
Together with [2,12,13], the present work and [16] thus successfully resolve the
problems of extending the affine-invariant and Log-Euclidean metrics to the
infinite-dimensional setting.1

2 Background

The Riemannian manifold of positive definite matrices Sym++(n) has been
studied extensively in the literature, both mathematically and computationally
[6,7,15,17,18]. The most commonly used Riemannian metric on Sym++(n) is
the affine-invariant metric, in which the geodesic distance between two positive
definite matrices A and B is given by

daiE(A,B) = || log(A−1/2BA−1/2)||F , (1)

where log denotes the principal matrix logarithm operation and F is an Euclid-
ean norm on the space of symmetric matrices Sym(n), the tangent space of
1 The generalization of the Bregman divergences on Sym++(n) to the infinite-

dimensional setting will be presented in a separate paper.
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Sym++(n). In this work we take F to be the Frobenius norm, which is induced
by the standard inner product on Sym(n), given by 〈A,B〉F = tr(A∗B). The
metric (1) has recently been generalized to the infinite-dimensional setting by
[2,12,13]. The main goal of this paper is to provide an explicit formulation in
the infinite-dimensional case to compute the affine-invariant distances between
covariance operators on an RKHS.

Covariance Operators in Reproducing Kernel Hilbert Spaces. Let X be
an arbitrary non-empty set. Let x = [x1, . . . , xm] be a data matrix sampled from
X , where m ∈ N is the number of observations. Let K be a positive definite kernel
on X ×X and HK its induced reproducing kernel Hilbert space (RKHS). Let Φ :
X → HK be the corresponding feature map, so that K(x, y) = 〈Φ(x), Φ(y)〉HK

for all pairs (x, y) ∈ X × X . The feature map Φ gives the (potentially infinite)
mapped data matrix Φ(x) = [Φ(x1), . . . , Φ(xm)] of size dim(HK) × m in the
feature space HK . The corresponding empirical covariance operator for Φ(x) is
defined to be

CΦ(x) =
1

m
Φ(x)JmΦ(x)T : HK → HK , (2)

where Jm is the centering matrix, defined by Jm = Im − 1
m
1m1T

m with 1m =

(1, . . . , 1)T ∈ R
m. The covariance operator CΦ(x) can be viewed as a covariance

matrix in the feature space HK , with rank at most m − 1. If X = R
n and

K(x, y) = 〈x, y〉Rn , then we recover the standard n × n empirical covariance
matrix CΦ(x) = Cx = 1

m

∑m
i=1(xi − x̄)(xi − x̄)T , where x̄ = 1

m

∑m
i=1 xi.

Regularization. In the finite-dimensional case, since covariance matrices may
not be full-rank and thus may only be positive semi-definite, in order to apply
the Riemannian structure of Sym++(n), empirically one often needs to employ
regularization. One of the most widely used regularizations is (Cx + γIRn), for
some regularization parameter γ > 0, a technique also known as diagonal load-
ing (see e.g. [1,10] for more general forms of regularization). This simple, yet
powerful, regularization ensures that both the matrix inversion and matrix log-
arithm operations are well-defined and stable, and is readily generalizable to
the infinite-dimensional setting. When dim(HK) = ∞, regularization is always
necessary, both theoretically and empirically, as discussed in [16] and below.

3 The Riemann-Hilbert Manifold of Positive Definite
Unitized Hilbert-Schmidt Operators

Throughout the paper, let H be a separable Hilbert space of arbitrary dimension.
Let L(H) be the Banach space of bounded linear operators on H, Sym(H) be
the subspace of self-adjoint bounded operators, and Sym+(H) and Sym++(H)
be the subsets of positive and strictly positive operators in Sym(H), respectively.
As we now discuss, the infinite-dimensional generalization of Sym++(n) is not
Sym++(H), however, but the set of positive definite unitized Hilbert-Schmidt
operators on H under the extended Hilbert-Schmidt inner product (see also [16]).

Positive Definite Operators. Let A ∈ Sym++(n), then log(A) = UDUT =
Udiag(log λ1, . . . , log λn)UT , where A = UDUT denotes the spectral decom-
position for A, with {λk}nk=1 being the eigenvalues of A. Assume now that
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dim(H) = ∞. Let A ∈ Sym++(H) be compact, then A has a countable spectrum
of positive eigenvalues {λk}∞

k=1, counting multiplicities, with limk→∞ λk = 0.
Thus limk→∞ log λk = −∞ and consequently log(A) is unbounded. For log(A)
to be well-defined and bounded in the case dim(H) = ∞, it is thus not sufficient
to assume that A ∈ Sym++(H). Instead, it is necessary to assume that A is
positive definite (see e.g. [19]) , that is there exists a constant MA > 0 such that

〈Ax, x〉 ≥ MA||x||2 for all x ∈ H, (3)

which is equivalent to requiring that A be both strictly positive and invertible,
with A−1 ∈ L(H). The eigenvalues of A, if they exist, are bounded below by
MA. We denote the set of positive definite, bounded operators on H by

P(H) = {A ∈ L(H), A∗ = A, ∃MA > 0 s.t. 〈Ax, x〉 ≥ MA||x||2 ∀x ∈ H}, (4)

and we write A > 0 ⇐⇒ A ∈ P(H). The simplest positive definite operators in
our setting have the form (A+γI), for any A ∈ Sym+(H) and any γ > 0, γ ∈ R.

Extended Hilbert-Schmidt Algebra. Let HS(H) denote the two-sided ideal
of Hilbert-Schmidt operators on H in L(H), which is a Banach algebra without
unit, under the Hilbert-Schmidt norm, defined by

||A||2HS = tr(A∗A) =

dim(H)∑
k=1

λk(A∗A). (5)

This is the natural generalization of the Frobenius norm in (1) to the case
dim(H) = ∞. For A ∈ HS(H)∩Sym+(H) and γ > 0, γ ∈ R, we have (A+γI) ∈
P(H) and log(A + γI) is well-defined and bounded. However,

|| log(A + γI)||2HS =
∞∑

k=1

[log(λk + γ)]2 = ∞ for all γ 
= 1. (6)

This is because the identity operator I is not Hilbert-Schmidt when dim(H) = ∞
and, consequently, a direct generalization of Eq. (1) would give

d(γI, μI) = || log(γ/μ)I||HS = | log(γ/μ)| ||I||HS = ∞ if γ 
= μ. (7)

To resolve this problem, consider the extended (or unitized) Hilbert-Schmidt alge-
bra [2,12,13] consisting of all scalar perturbations of Hilbert-Schmidt operators,
defined by

HR = {A + γI : A∗ = A, A ∈ HS(H), γ ∈ R}, (8)
Endowed with the extended Hilbert-Schmidt inner product

〈A + γI, B + μI〉eHS = tr(A∗B) + γμ = 〈A, B〉HS + γμ, (9)

under which the scalar operators γI are orthogonal to the Hilbert-Schmidt oper-
ators, the set HR is then a Banach algebra with identity I. The corresponding
extended Hilbert-Schmidt norm is given by

||(A + γI)||2eHS = ||A||2HS + γ2, with ||I||eHS = 1. (10)

If dim(H) < ∞, then we set || ||eHS = || ||HS, with ||(A+γI)||eHS = ||A+γI||HS.
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The Riemann-Hilbert Manifold of Positive Definite Unitized Hilbert-
Schmidt Operators. As shown recently in [13], the generalization of the finite-
dimensional Riemannian manifold Sym++(n) to the case dim(H) = ∞ is the
infinite-dimensional Riemann-Hilbert manifold Σ(H) defined by

Σ(H) = P(H) ∩ HR = {A + γI > 0 : A∗ = A, A ∈ HS(H), γ ∈ R}. (11)

This is the manifold consisting of all positive definite operators which are scalar
perturbations of Hilbert-Schmidt operators on H. At every point P ∈ Σ(H), the
tangent space to the manifold at P is TP (Σ(H)) ∼= HR.

Let (A + γI) ∈ Σ(H), then it possesses a countable set of eigenvalues {λk +
γ}∞

k=1. Let {φk}∞
k=1 denote the corresponding normalized eigenvectors, then (A+

γI) admits the spectral decomposition

(A + γI) =
∞∑

k=1

(λk + γ)φk ⊗ φk, (12)

where φk ⊗ φk : H → H is a rank-one operator defined by (φk ⊗ φk)w =
〈w, φk〉φk, w ∈ H. The logarithm map log : Σ(H) → HR is a diffeomorphism,
with log(A + γI) defined by

log(A + γI) =

dim(H)∑
k=1

log(λk + γ)φk ⊗ φk ∈ HR. (13)

On Σ(H), the geodesic distance between two operators (A + γI), (B + μI) ∈
Σ(H) is given by

daiHS[(A + γI), (B + μI)] = || log[(A + γI)−1/2(B + μI)(A + γI)−1/2]||eHS, (14)

This is the infinite-dimensional version of the affine-invariant distance (1). In
particular, for A = B = 0, we have

daiHS[γI, μI] = || log(γ/μ)I||eHS = | log(γ/μ)| < ∞ ∀γ, μ > 0, (15)

which resolves the problem encountered in Eq. (7).

4 Affine-Invariant Distance Between Positive Definite
Operators

In this section, we give concrete formulas for the affine-invariant distance as
defined in Eq. (14). In particular, for the case dim(H) = ∞, we show that the
square of the affine-invariant distance decomposes into two components, namely
a square Hilbert-Schmidt norm plus a scalar term. The formulas obtained in this
section are used to derive closed-form solution for the affine-invariant distance
between RKHS covariance operators in Sect. 5.

Consider the operator exponential operation, which is well-defined for all
bounded operators A ∈ L(H), given by

exp(A) =
∞∑

k=0

Ak

k!
, with operator norm|| exp(A)|| ≤ exp(||A||). (16)
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As shown in [13], the map exp : HR → Σ(H) and its inverse log : Σ(H) → HR are
diffeomorphisms. If B ∈ L(H) is an invertible operator, then it follows directly
from the definition of exp that

exp(BAB−1) = B exp(A)B−1. (17)

From the above property of the exponential, it follows that for A ∈ Σ(H) and
an invertible operator B ∈ L(H), log(BAB−1) is well-defined and is given by

log(BAB−1) = B log(A)B−1. (18)

The operator BAB−1 is not necessarily self-adjoint, but its eigenvalues are the
same as those of A and hence are all positive. Let A,B ∈ Σ(H), then

A−1B = A−1/2(A−1/2BA−1/2)A1/2. (19)

Thus log(A−1B) is well-defined and is given by

log(A−1B) = A−1/2 log(A−1/2BA−1/2)A1/2. (20)

We can now state the following results.

Theorem 1. Let H be a separable Hilbert space with dim(H) = ∞. Assume that
(A + γI), (B + μI) ∈ Σ(H). Then

d2
aiHS[(A + γI), (B + μI)]

=

∥∥∥∥∥log

[(
A

γ
+ I

)−1/2(
B

μ
+ I

)(
A

γ
+ I

)−1/2
]∥∥∥∥∥

2

HS

+

(
log

γ

μ

)2

(21)

= tr

{
log

[(
A

γ
+ I

)−1(
B

μ
+ I

)]}2

+

(
log

γ

μ

)2

. (22)

We note that a different but equivalent statement to Eq. (21) has also been given
in [14] (Corollary 2.6). Our approach here is more constructive and the formulas
we give are more explicit, leading to the closed-form distances between RKHS
covariance operators below.

Finite-Dimensional Case. There is a sharp break between the cases dim(H) =
∞ and dim(H) < ∞, as shown in the formula for the affine-invariant distance in
the case dim(H) < ∞ below, which depends explicitly on the dimension dim(H).

Theorem 2. Assume that dim(H) < ∞. Let A, B ∈ Sym+(H) and γ, μ > 0. Then

d2
aiHS[(A + γI), (B + μI)] = tr

{
log

[(
A

γ
+ I

)−1(
B

μ
+ I

)]}2

− 2

(
log

γ

μ

)
tr

{
log

[(
A

γ
+ I

)−1(
B

μ
+ I

)]}
+

(
log

γ

μ

)2

dim(H). (23)
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In particular, in (23), for A = B = 0, we have d2
aiHS(γI, μI) =

(
log γ

μ

)2
dim(H) →

∞ as dim(H) → ∞ if γ �= μ, illustrating that, in general, the infinite-dimensional
case cannot be obtained from the finite-dimensional case by letting dim(H) → ∞.

Let H1,H2 be two separable Hilbert spaces. We are particularly interested
in Hilbert-Schmidt operators of the form AA∗ : H2 → H2, where A : H1 → H2

is a compact operator such that A∗A : H1 → H1 is Hilbert-Schmidt. For these
operators, we have the following result.

Proposition 1. Let H1,H2 be separable Hilbert spaces and A,B : H1 → H2 be
compact operators such that A∗A,B∗B : H1 → H1 are Hilbert-Schmidt opera-
tors. Then AA∗, BB∗ : H2 → H2 are Hilbert-Schmidt operators and

tr
{

log
[
(AA∗ + IH2)

−1
(BB∗ + IH2)

]}
= (24)

tr

⎧⎨
⎩log

⎡
⎣
⎛
⎝

B∗B −B∗A(IH1 + A∗A)−1 −B∗A(IH1 + A∗A)−1A∗B
A∗B −A∗A(IH1 + A∗A)−1 −A∗A(IH1 + A∗A)−1A∗B
B∗B −B∗A(IH1 + A∗A)−1 −B∗A(IH1 + A∗A)−1A∗B

⎞
⎠+ IH1 ⊗ I3

⎤
⎦
⎫⎬
⎭ .

tr
{

log
[
(AA∗ + IH2)

−1
(BB∗ + IH2)

]}2

= (25)

tr

⎧⎨
⎩log

⎡
⎣
⎛
⎝

B∗B −B∗A(IH1 + A∗A)−1 −B∗A(IH1 + A∗A)−1A∗B
A∗B −A∗A(IH1 + A∗A)−1 −A∗A(IH1 + A∗A)−1A∗B
B∗B −B∗A(IH1 + A∗A)−1 −B∗A(IH1 + A∗A)−1A∗B

⎞
⎠+ IH1 ⊗ I3

⎤
⎦
⎫⎬
⎭

2

.

5 Affine-Invariant Distance Between Regularized RKHS
Covariance Operators

Let X be an arbitrary non-empty set. We now apply the formulas of Sect. 4
to compute the affine-invariant distance between covariance operators on an
RKHS induced by a positive definite kernel K on X × X . In this case, we have
explicit formulas for daiHS via the corresponding Gram matrices. Let x = [xi]mi=1,
y = [yi]mi=1, m ∈ N, be two data matrices sampled from X and CΦ(x), CΦ(y) be
the corresponding covariance operators induced by the kernel K, as defined in
Sect. 2. Let K[x], K[y], and K[x,y] be the m × m Gram matrices defined by
(K[x])ij = K(xi, xj), (K[y])ij = K(yi, yj), (K[x,y])ij = K(xi, yj), 1 ≤ i, j ≤ m. Let
A = 1√

γm
Φ(x)Jm : Rm → HK , B = 1√

μm
Φ(y)Jm : Rm → HK , so that

AA∗ =
1

γ
CΦ(x), BB∗ =

1

μ
CΦ(y), (26)

A∗A =
1

γm
JmK[x]Jm, B∗B =

1

μm
JmK[y]Jm, A∗B =

1√
γμm

JmK[x,y]Jm. (27)

Theorem 3. Assume that dim(HK) = ∞. Let γ > 0, μ > 0. Then

d2
aiHS[(CΦ(x) + γIHK ), (CΦ(y) + μIHK )] = tr

⎧
⎨
⎩log

⎡
⎣
⎛
⎝

C11 C12 C13

C21 C22 C23

C11 C12 C13

⎞
⎠+ I3m

⎤
⎦
⎫
⎬
⎭

2

+

(
log

γ

μ

)2

, (28)
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where the m × m matrices Cij, i, j = 1, 2, 3, are given by

C11 =
1

μm
JmK[y]Jm,

C12 = − 1√
γμm

JmK[y,x]Jm

(
Im +

1

γm
JmK[x]Jm

)−1

,

C13 = − 1

γμm2
JmK[y,x]Jm

(
Im +

1

γm
JmK[x]Jm

)−1

JmK[x,y]Jm,

C21 =
1√

γμm
JmK[x,y]Jm,

C22 = − 1

γm
JmK[x]Jm

(
Im +

1

γm
JmK[x]Jm

)−1

,

C23 = − 1

γm
JmK[x]Jm

(
Im +

1

γm
JmK[x]Jm

)−1
1√

γμm
JmK[x,y]Jm.

Theorem 4. Assume that dim(HK) < ∞. Let γ > 0, μ > 0. Then

d2
aiHS[(CΦ(x) + γIHK ), (CΦ(y) + μIHK )] = tr

⎧
⎨
⎩log

⎡
⎣
⎛
⎝

C11 C12 C13

C21 C22 C23

C11 C12 C13

⎞
⎠+ I3m

⎤
⎦
⎫
⎬
⎭

2

− 2

(
log

γ

μ

)
tr

⎧⎨
⎩log

⎡
⎣
⎛
⎝

C11 C12 C13

C21 C22 C23

C11 C12 C13

⎞
⎠+ I3m

⎤
⎦
⎫⎬
⎭+

(
log

γ

μ

)2

dim(HK), (29)

where the m × m matrices Cij’s, i, j = 1, 2, 3, are as in Theorem 3.

Remark 1. Let m ∈ N be fixed. Since the m×m matrices Cij in Theorem 4 are
all finite, it follows that in Eq. (29), d2

aiHS[(CΦ(x) + γIHK ), (CΦ(y) + μIHK )] → ∞
as dim(HK) → ∞ if γ �= μ.

Special Case. With X = R
n and the linear kernel K(x, t) = 〈x, t〉 (29) gives

daiHS[(CΦ(x) + γIHK ), (CΦ(y) + μIHK )] = daiE[(Cx + γIn), (Cy + μIn)], the affine-
invariant distance between the covariance matrices Cx and Cy.

Remark 2. The proofs for all mathematical results and numerical experiments
will be provided in the longer version of the paper.
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Abstract. We develop a generic framework to build large deforma-
tions from a combination of base modules. These modules constitute a
dynamical dictionary to describe transformations. The method, built
on a coherent sub-Riemannian framework, defines a metric on modu-
lar deformations and characterises optimal deformations as geodesics for
this metric. We will present a generic way to build local affine transfor-
mations as deformation modules, and display examples.

1 Introduction

A central aspect of Computational Anatomy is the comparison of different
shapes, which are encoded as meshes or images. A common approach is the
study of deformations matching one shape onto another, so that the differences
between the two shapes are encoded by the deformation parameters [9,11,17]. In
order to study differences between subjects on a particular structure, it should be
useful to constrain locally the deformation, to favour realistic anatomic deforma-
tions, or to introduce some anatomical priors. For instance, for cortical surfaces
with different sulci topography, one can prefer to favour lateral displacement over
the creation of new sulci. Large deformations are commonly obtained through
the integration of a vector field [4,10,13,18] and a natural route is to intro-
duce the constraints in the vector fields instead of the final diffeomorphism [19].
The vector field could be restricted, via a finite dimensional control variable, to
a state dependent finite dimensional subspace generated by a finite basis and
conceptualized in structures called hereafter deformation modules. Deformation
modules should create interpretable deformations, and several modules should
be allowed to combine to form more complex compound deformation modules
in the spirit of Grenander’s Pattern Theory [7].

Preliminary instantiations of the concept of deformation modules can be
found in several early works. In the poly-affine framework [3,14,20], deforma-
tions are created by the integration of a poly-affine stationary vector field. This
vector field is a sum of few local affine transformations, which are then easily
interpretable and share some features of deformation modules even if regions of
each affine component are not updated during the deformation. In the LDDMM

c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 39–47, 2015.
DOI: 10.1007/978-3-319-25040-3 5
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framework, a Riemannian structure is defined on the group of diffeomorphisms
and optimal matchings are geodesics for this metric [2,10]. Several discretization
schemes based on landmarks induce examples of finite dimensional state depen-
dent representations of the velocity fields updated along the deformation and
could be rephrased inside our definition of deformation modules. Note that the
discretization scheme are thought of as approximations of the unconstrained non-
parametrized infinite dimensional case. In a recently developed sparse-LDDMM
framework [6,12,15], the vector field is constrained to be a sum of a fixed num-
ber of local translations, carried by control points, with a more clearer focus on
finite-dimensionality and local interpretability. Extension to locally more com-
plex transformation are considered in [8,16].

However, a consistent and general mathematical framework able to handle
a large body of modular based large deformations is still missing in computa-
tional anatomy. A useful theory should not only provide a clear definition of
deformation modules, but also explains how a hierarchy of deformation modules
can be induced from basic one and how a Riemannian (or sub-Riemannian) set-
ting can be defined underlying the computation of optimal large deformations
and organizing the action of the different modules in the deformation process.
This paper is a first attempt in that direction and presents a mathematical and
computational sub-Riemannian framework to build large deformations from well
defined deformation modules.

We will present several instances of deformation modules generating multi-
scale and locally affine vector fields as simple illustrative examples. We will show
trajectories that can be built from the combination of such modules, and how
the component of a particular module can be recovered and followed through
the integration.

2 Definition of a Deformation Module

Intuitively, a deformation module creates a vector field parametrized in low
dimension, describing a distinctive aspect of a larger deformation pattern. This
notion should embrace at least the notion of a sum of local translations, scalings
or other local affine transformations as simple examples. In the following, C1

0 (Rd)
will be the set on C1 continuous mapping v vanishing at infinity equipped with
the usual supremum norm on v and its first derivative, and Diff1

0(R
d) the open

subset of Id + C1
0 (Rd) of C1 diffeomorphisms. We recall that for any curve v ∈

L1 .= L1([0, 1], C1
0 (Rd)) there exists a unique curve t �→ φv

t ∈ Diff1
0(R

d) solution
of the flow equation φ̇v

t = vt ◦ φv
t , with φv

0 = id.
Let O be a finite dimensional manifold and (φ, o) �→ φ.o a C1 action of

Diff1
0(R

d) on O in the sense that (φ, o) �→ φ.o is continuous and there exists a
continuous mapping ξ : O × C1

0 (Rd) → TO called the infinitesimal action, so
that v �→ ξo(v) .= ξ(o, v) is linear continous, o �→ ξo is locally Lipschitz and for
any v ∈ L1, the curve t �→ ot

.= φv
t .o0 is absolutly continuous (a.c.) and satisfies

ȯt = ξot
(vt) for almost every t ∈ [0, 1].

Remark 1. In fact O is a shape space as defined by S. Arguillère in [2].
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Definition 1 (Deformation module). We say that M = (O,H, V, ζ, ξ, c) is a
deformation module with geometrical descriptors in O, controls in H, infinitesi-
mal action ξ, field generator ζ and cost c if H is a finite dimensional Euclidean

space, V is an Hilbert space with V
C0

↪→ C1
0 (Rd), ζ : O × H → O × V is a contin-

uous mapping such that h �→ ζo(h) is linear where ζ(o, h) = (o, ζo(h)), o �→ ζo

is locally Lipschitz and c : O × H → R
+ is a continuous mapping such that

h �→ co(h) .= c(o, h) is a positive quadratic form on H and there exists C > 0
such that for each o, h:

|ζo(h)|2V ≤ Cco(h). (1)

Let us explain how a deformation modules induces large deformations.

Definition 2 (Finite energy controled paths on O). Let a, b ∈ O. We denote
Ωa,b the set of mesurable curves t �→ (ot, ht) ∈ O × H where ot is a.c., starting
from a and ending at b, such that ȯt = ξot

(vt) for vt
.= ζot

(ht) and E(o, h) .=
∫ 1

0
cot

(ht)dt < ∞ where E(o, h) is called the energy of (o, h).

Thanks to (1) and the smoothness condition for deformation modules one
get the following construction of flows:

Proposition 1 (Flows generated by a deformation module). Let (o, h) ∈ Ωa,b

and v = ζo(h). Then
∫ 1

0
|vt|2V dt ≤ C

∫ 1

0
cot

(ht)dt < ∞ so that v ∈ L2([0, 1], V ) ⊂
L1 and ot = φv

t .o0. Moreover,
∫ 1

0
|ht|2Hdt ≤ (supt ‖c−1

ot
‖)

∫ 1

0
cot

(ht)dt < ∞ (with
‖c−1

o ‖ .= sup|h|H=1 co(h)−1) so that h ∈ L2([0, 1],H).

A more geometrical point of view on deformation modules would be to identify ζ
(resp. ξ) as a continuous morphisms between the two vector bundles O × H and
O×V (resp. O×V → TO) and c as a metric on O×H. Now, ρ

.= ξ◦ζ : O×H →
TO and c induce a sub-Riemannian structure on O (as defined in [1]). Moreover,
indexed by the choice of a ∈ O, we can induce a sub-Riemannian structure on
Diff1

0(R
d) by considering ρa : Diff1

0(R
d) × H → TDiff1

0(R
d) = C1

0 (Rd) such that
ρa

φ(h) .= ζφ.a(h) and the metric on Diff1
0(R

d) × H given by ca
φ(h) .= cφ.a(h).

During the trajectory, the geometrical descriptor ot creates the vector field
ζo(h) which acts back on ot through the infinitesimal action ξ. Then, as explained
in Fig. 1, ξ can be seen as a feedback action, allowing geometrical descriptors to
evolve with the vector field.

2.1 First Example: Sum of Local Translations

This first example explains how the construction of [6] can be seen as a defor-
mation module. Let σ ∈ R

+, and D ∈ N, we want to build a module M
that would generate a sum of D local translations acting at scale σ. We set
O = (Rd)D (families of D points), H = (Rd)D (families of D vectors) and
V = Vσ the scalar Gaussian RKHS of scale σ. For o = (zi) ∈ O, we define
ζo : h = (αi) ∈ H �→ ∑D

i=1 Kσ(zi, ·)αi, ξo : v ∈ V �→ (v(zi))i (application of the
vector field at each point) and co : h = (αi) ∈ H �→ |∑i Kσ(zi, ·)αi|2Vσ

.
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Fig. 1. Schematic view of a deforma-
tion module.

Fig. 2. Schematic view of a combina-
tion of deformation modules.

Fig. 3. Local scaling. Left: Geometri-
cal descriptor o (in blue) and interme-
diate tools (in black and red). Right:
Plot of the resulting vector field in
green (Color figure online).

Fig. 4. Local rotation. Left: Geometri-
cal descriptor o (in blue) and interme-
diate tools (in black and red). Right:
Plot of the resulting vector field in
green (Color figure online).

2.2 Second Example: Constrained Local Affine Transformations

We present here a generic way to build a particular kind of local affine trans-
formation as a deformation module. Let us first start by an illustrative example
of a local scaling in dimension 2 parametrized by a scale σ, a center o and a
scaling ratio h. From σ and o, we build 3 points zj and 3 unit vectors dj as
described in Fig. 3. We can then define the vector field generated by the geo-
metrical descriptor o and the control h by ζo(h) .=

∑3
j=1 Kσ(zj(o, σ), ·)dj(o, σ)h.

We emphasize here that points zj and vectors dj are intermediate tools used to
build the vector field but that the latter is only parametrized by σ, o and h.
We can then define the module M by the following spaces :V = Vσ, O = R

d,
H = R and applications, for o ∈ O: ζo, ξo : v ∈ C1

0 (Rd) �→ v(o) and co : h ∈
H �→ |ζo(h)|2Vσ

=
∑

j,j′ Kσ(zj , zj′)dT
j dj′h2.

If we change the rule to build vectors dj , we can build a local rotation,
see Fig. 4. More generally, we can set any kind of rules to build points zj and
unit vectors dj from a geometrical descriptor o to create another type of local
transformation. We have here defined a generic way to build a module that
generates a vector field based on user’s assumptions. It is the way to incorporate
anatomical prior in the deformation.
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2.3 Third Example: Unconstrained Local Affine Transformations

Some more complex local affine transformations can be needed. Any local affine
deformation in dimension d can be approximated by a sum of d+1 local transla-
tions carried by points close to each other with respect to the scale. In this spirit
we can build another type of module, defining local affine transformations in P
different areas of size defined by the same scale σ, by summing D

.= P × (d + 1)
local translations, whose centres would be assembled in groups of d + 1 points.
We can build a module corresponding to the sum of D local translations, as in
Sect. 2.1. This example differs from [6] as we suppose that (d + 1) centres of
translations are pooled together. This construction allows to build modules that
generate a vector field which is locally an affine transformation, without prior
constraints. This module class differs from the poly-affine framework in that the
neighbourhood which is affected by the local module is transported by the global
transformation (via ξ).

3 Combination of Modules

We want to define the combination of L modules so that it remains a module
in the sense of Definition 1. Modules are defined by spaces Ol, H l, V l, and
applications ζl, ξl and cl for each l = 1 · · · L. We can define π : w = (w1, ..., wL) ∈
W

.=
∏

l V l �→ ∑
i wi ∈ C1

0 (Rd). One can show that V
.= π(W ) is a Hilbert space

and is continuously embedded in C1
0 (Rd), with for v ∈ V , |v|2V = inf{∑i |vi|2V i |

π((vi)i) = v}. We are then able to define the compound module M by spaces:
O

.=
∏

l Ol, H
.=

∏
l H l, V = Im(π) and applications, for o = (ol)l ∈ O: ζo : h =

(hl) ∈ H �→ π((ζl
ol(hl))l) =

∑
l ζl

ol(hl) ∈ V , ξo : v ∈ C1
0 (Rd) �→ (ξl(ol, v))l ∈ ToO

and co : h = (hl) ∈ H �→ ∑
l cl

ol(hl). Then for any h = (hl) ∈ H we have

|ζo(h)|2V ≤
L∑

l=1

|ζl
ol(hl)|Vl

≤
L∑

l=1

Clc
l
ol(hl) ≤ (max

l∈L
Cl)co(h).

All necessary hypotheses to build a module are satisfied. A schematic view of this
combination can be seen on Fig. 2. Note that even if the cost of the elementary
module for each l is given by cl

ol(hl) = |ζl
ol(hl)|2V l , as in our following examples,

the cost of the compound module is then co(h) =
∑

l |ζl
ol(hl)|2V l 
= |ζ(h)|2V so

that that generically (when π is not one to one) C > 1 and c is not the pull-back
metric on O × H of the metric on O × V . In alternative extensions of sparse-
LDDMM to locally more complex transformation ([8,16]) the norm of V has
been a natural choice for the cost. Then the cost depends on the built vector
field but not on the way it is built, unlike in our construction. Here minimizing
the cost corresponds to selecting one way of building the vector field, and then
choosing a particular cost enables to favour certain decomposition over others.

3.1 An Example of Combination: Sum of Multi-scale Translations

Let us build a module M which would be a sum of local translations, acting at
different scales σl. For each σl can be built a module of type defined in Sect. 2.1,
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let Dl ∈ N be the number of local translations acting at this scale. The multi-scale
module is then the combination of these modules. In particular the cost is, for
o = (zl

j) and h = (αl
j), co(h) =

∑
l

∑
j Kσl

(zl
j , z

l
j′)αlT

j αl
j′ . It is clear here that it

is not derived from the norm of the vector field ζo(h) =
∑N

l=1

∑Dl

j=1 Kσl
(zl

j , ·)αl
j

in V , which is here the RKHS of kernel
∑

l Kσl
, as in [12] but from the way it

is built as sum of elements of V l
ol = ζl

ol(H l).

4 Shooting

Let us consider a generic deformation module M and fix two values a, b ∈ O. For
each trajectory (o, h) ∈ Ωa,b (see Definition 2) we get a flow φv with v = ζo(h)
and

∫ 1

0
|vt|V dt ≤ CE(o, h) < ∞ (see Proposition 1).

We assume that for a distance dO compatible with the topology on O, there
exists γ > 0 and K ⊂ R

d such that dO(φ.a, φ′.a) ≤ γ‖φ − φ′‖∞,K where ‖ ‖∞,K

is the uniform C1 norm on K. Note that this property is verified in our examples.

Theorem 1. If Ωa,b is not empty, then E reaches its minimum on Ωa,b.

Proof. (Sketch) One consider a minimizing sequence (on, hn) ∈ Ωa,b and the
associated flows φvn for vn

.= ζon(hn). Since
∫ 1

0
|vn

t |2V ≤ CE(on, hn) we can
assume (up to the extraction of a subsequence) that vn weakly converges to v∞

so that t �→ φvn

t converges uniformly for the ‖ ‖∞,K norm and on converges
uniformly to o∞. Thus there exists a compact K ′ ⊂ O such that o∞ and the on

stay in K ′. Now, we have that
∫ 1

0
|hn

t |2Hdt ≤ supK′ ‖c−1
o ‖E(on, hn) so that (up to

the the extraction of a subsequence) we can assume that hn weakly converges
to h∞. Hence, for any w ∈ L2([0, 1], V ) we have | ∫ 1

0
〈v∞

t − ζo∞
t

(h∞
t ), wt〉V dt| ≤

lim| ∫ 1

0
〈(ζo∞

t
− ζon

t
)(hn

t ), wt〉V dt| ≤ lim(
∫ 1

0
|wt|2V dt

∫ 1

0
‖ζo∞

t
− ζon

t
‖2|hn

t |2Hdt)1/2 =
0. Since w is arbitrary, v∞ = ζo∞

t
(h∞

t ) and ȯ∞
t = ξot

(vt) so that (o∞, h∞) ∈ Ωa,b.
Now,

∫ 1

0
co∞

t
(h∞

t )dt ≤ lim(
∫ 1

0
co∞

t
(hn

t )dt
∫ 1

0
co∞

t
(h∞

t )dt)1/2 where we have used
that co(h) can be written as 〈Coh, h〉H where o �→ Co is continous and that hn is
weakly converging in L2([0, 1],H). Since | ∫ co∞

t
(hn

t )−con
t
(hn

t )dt| ≤ (supt ‖Co∞
t

−
Con

t
‖)

∫ 1

0
|hn

t |Hdt → 0 we get
∫ 1

0
co∞

t
(h∞

t )dt ≤ lim
∫ 1

0
con

t
(hn

t )dt. �

A trajectory of Ωa,b minimizing E can be obtained from the Hamiltonian and
optimal control point of view [2] that we briefly describe below. Let us define
the dual variable η ∈ (ToO)∗ and introduce the Hamiltonian H(η, o, h) = 〈η, ξ ◦
ζ(o, h))〉− 1

2co(h). It can be shown that trajectories of Ωa,b minimizing E can be
separated in two categories: normal and abnormal geodesics, we will concentrate
on normal geodesics as justified at the end of this section. Normal geodesics are
such that there exists a trajectory (o, η) in T ∗O such that (in a local chart)

⎧
⎨

⎩

ȯ = ξ(o, ζo(h))
η̇ = −∂H

∂o (η, o, h)
h = A(o)η

(2)
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Fig. 5. Initial positions for modules:
in red rotations, in green translation
and in cyan scaling. In blue is the ini-
tial shape, in black the shape at t =
1. Left: parametrization of the vec-
tor field: initial geometrical descriptors
(in black) and momenta. Right: Initial
geometrical descriptors, controls and
intermediate tools (color figure online).

Fig. 6. In blue the initial shape, in cyan
are intermediate tools useful to build the
vector field at t = 0, in black is the trans-
ported shape while following the largest
scaling (color figure online).

where A(o) is a matrix depending on o. The whole geodesic trajectory is then
parametrized by initial values of (o, η) (of dimension twice the dimension of o).
We have obtained a geodesic shooting from an element (a, η0), with η0 ∈ (TaO)∗,
to a geodesic path (o, h) and then to a trajectory φv with v = ζo(h).

Remark 2. In practice we do not minimize E with fixed a end-point but mini-
mize J(ot=0, h) = E(o, h)+g(ot=1) (with o such that ȯ = ξo(ζo(h))). Trajectories
minimizing J are normal geodesics following Eq. 2 (see [2]).

5 Examples

5.1 Shooting with Constrained Types of Local Affine
Transformations

We present here an example of geodesic trajectory created by the combination
of different modules (in dimension 2): one translation (scale 100), two rotations
(scales 20 and 60), two scaling (scales 50 and 20). Initial values of the geomet-
rical descriptor (5 points: dimension 10) and the momentum (same dimension
as o) define the total trajectory: it is parametrized in dimension 20. These para-
meters are displayed in Fig. 5 as well as initial controls (lengths of directions dj

for scaling and rotation), intermediate tools (zj , dj) and the transported shape
(Fig. 6). We can follow the action of a particular module Ml by fixing the tra-
jectory of its controls hl, and integrating the new trajectory (ṽ, õl) such that:
õl(t = 0) = ol(t = 0) and for each t : ṽ(t) = ζl

õl(t)(h(t)), ˙̃ol(t) = ξl
õl(t)(ṽ(t)).
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5.2 Matching with Unconstrained Local Affine Transformations

We present here the matching from a shape f0 to another f1, using a compound
module of unconstrained local affine transformations. We set σ1 = 60, σ2 = 20,
σ3 = 8 three scales and P1 = 1, P2 = 9, P3 = 20 the number of groups of local
translations at each scale. We define O, H, V , ζ, ξ and c as in Sect. 3.1. To each
(a, η) ∈ TO∗, can be associated a geodesic trajectory of controls ha,η and then
a diffeomorphism φa,η as defined in Sect. 4. The matching problem corresponds
then to finding values of a and η minimizing E(a, η, f0, f1) = ca(ha,η

0 )+λD(φa,η
1 ·

f0, f1) where D is the varifold distance [5]. Our first implementation is adapted
from the software Deformetrica where we introduce constraints to remain control
points pooled during optimization. An example of result is shown on Fig. 7.

Fig. 7. Matching from f0 (blue) to f1 (red), with parameters per scale (σ1: black, σ2:
green, σ3: magenta). Left: initialization geometrical descriptors. Middle: Optimized
initial geometrical descriptors and controls. Right: Match at t = 1 (black) (Color
figure online).

6 Conclusion

We constructed a mathematical framework for generic deformation modules,
which is stable under combination. Large deformations can be built then by inte-
grating vector fields generated by these modules. By defining a cost on module we
allow optimal deformations to come from geodesic paths in a sub-Riemannian
manifold. We presented several examples of modules and geodesics. The con-
struction allows an easy interpretation of the computed deformation and the
incorporation of anatomical prior, so that this work may have important appli-
cations for the analysis of biological shapes.

References

1. Agrachev, A., Boscain, U., Charlot, G., Ghezzi, R., Sigalotti, M.: Two-dimensional
almost-riemannian structures with tangency points. In: Proceedings of the 48th
IEEE Conference on Decision and Control, 2009 held Jointly with the 2009 28th
Chinese Control Conference, CDC/CCC 2009, pp. 4340–4345. IEEE (2009)



A Sub-Riemannian Modular Approach for Diffeomorphic Deformations 47
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Abstract. In this paper we relate the Equilibrium Assignment Problem
(EAP), which is underlying in several economics models, to a system of
nonlinear equations that we call the “nonlinear Bernstein-Schrödinger
system”, which is well-known in the linear case, but whose nonlinear
extension does not seem to have been studied. We apply this connection
to derive an existence result for the EAP, and an efficient computational
method.

In this note, we will review and extend some results from our previous work
[8] where we introduced a novel approach to imperfectly transferable utility
and unobserved heterogeneity in tastes, based on a nonlinear generalization of
the Bernstein-Schrödinger equation. We consider an assignment problem where
agents from two distinct populations may form pairs, which generates utility to
each agent. Utility may be transfered across partners, possibly with frictions.
This general framework hence encompasses both the classic Non-Tranferable
Utility (NTU) model of Gale and Shapley [6], sometimes called the “stable mar-
riage problem”, where there exists no technology to allow transfers between
matched partners; and the Transferable Utility (TU) model of Becker [1] and
Shapley-Shubik [14], a.k.a. the “optimal assignment problem,” where utility
(money) is additively transferable across partners.

If the NTU assumption seems natural for many markets (including school
choices), TU models are more appropriate in most settings where there can be
bargaining (labour and marriage markets for example). However, even in those
markets, there can be transfer frictions. For example, in marriage markets, the
transfers between partners might take the form of favor exchange (rather than

A.Galichon—gratefully acknowledges funding from the European Research Coun-
cil under the European Union’s Seventh Framework Programme (FP7/2007–
2013)/ERC grant agreements no 313699 and 295298, and FiME.
S.D.Kominers—gratefully acknowledges the support of NSF grants CCF-1216095
and, as well as the Harvard Milton Fund.

c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 51–59, 2015.
DOI: 10.1007/978-3-319-25040-3 6



52 A. Galichon et al.

cash), and the cost of a favor to one partner may not exactly equal the benefit
to the other.

In [8], we developed a general Imperfectly Transferable Utility model with
unobserved heterogeneity, which includes as special cases the classic fully- and
non-transferable utility models, but also extends to collective models, and set-
tings with taxes on transfers, deadweight losses, and risk aversion. As we argue
in the present note, the models we consider in [8] obey a particularly simple
system of equations we dub “Nonlinear Bernstein-Schrödinger equations”. The
present contribution gives a general result for the latter equation, and also derives
several consequences. The main result is derived in Sect. 1. Sections 2 and 3 con-
sider equilibrium assignment problems with and without heterogeneity. Finally,
we provide a discussion of our results in Sect. 4.

1 The Main Result

For x ∈ X and y ∈ Y, we consider a function Mxy : R2 → R, and Mx0 : R → R

and M0y : R → R. Let (nx)x∈X and (my)y∈Y be vectors of positive numbers.
Consider the nonlinear Bernstein-Schrödinger system, which consists in looking
for two vectors u ∈ R

X and v ∈ R
Y such that

{
Mx0 (ux) +

∑
y∈Y Mxy (ux, vy) = nx

M0y (vy) +
∑

x∈X Mxy (ux, vy) = my
.

Theorem 1. Assume Mxy satisfies the following three conditions:
(i) Continuity. The maps Mxy : (ux, vy) �−→ Mxy(ux, vy), Mx0 : (ux) �−→

Mx0(ux) and M0y : (vy) �−→ M0y(vy) are continuous.
(ii) Monotonicity. The map Mxy : (ux, vy) �−→ Mxy(ux, vy) is monotonically

decreasing, i.e. if ux ≤ u′
x and uy ≤ u′

y, then Mxy(ux, vy) ≥ M(u′
x, v′

y). The
maps Mx0 : (ux) �−→ Mx0(ux) and M0y : (vy) �−→ M0y(vy) are monotonically
decreasing.

(iii) Limits. For each vy, limux→∞ Mxy(ux, vy) = 0 and limux→−∞ Mxy

(ux, vy) = +∞, and for each ux, limuy→∞ Mxy(ux, vy) = 0 and limuy→−∞ Mxy

(ux, vy) = +∞. Additionally, ux → ∞Mx0(ux) = 0 and limuy→∞ M0y(uy) = 0,
and limux→−∞ Mx0(ux) = +∞ and limuy→−∞ M0y(uy) = +∞.

Then there exists a solution to the nonlinear Bernstein-Schrödinger system.
Further, if the maps M are C1, the solution is unique.

This theorem appears in [8] under a slightly different form. The proof is
interesting as it provides an algorithm of determination of u and v. It is an
important generalization of the Iterated Projection Fitting Procedure (see [5,12,
13]), which has been rediscovered and utilized many times under different names
for various applied purposes: “RAS algorithm” [10], “biproportional fitting”,
“Sinkhorn Scaling” [4], etc. However, all these techniques and their variants can
be recast as particular cases of the method described in the proof of Theorem 1.
For convenience, we recall the algorithm used to provide a constructive proof of
existence.
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Algorithm 2.
Step 0 Fix the initial value of vy at v0

y = +∞.

Step 2t + 1 Keep the values v2t
y fixed. For each x ∈ X , solve for the value, u2t+1

x such that

equality
∑

y∈Y Mxy(ux, v2t
y ) + Mx0(ux) = nx holds.

Step 2t + 2 Keep the values u2t+1
x fixed. For each y ∈ Y, solve for which is the value, v2t+2

y

such that equality
∑

x∈X Mxy(u
2t+1
x , vy) + M0y(vy) = my holds.

Then ut and vt converge monotonically to a solution of the nonlinear Bernstein-
Schrödinger system.

In practice a precision level ε > 0 will be chosen, and the algorithm will
terminate when supy |v2t+2

y − v2t
y | < ε.

Proof. (i) Existence. The proof of existence is an application of Tarski’s fixed
point theorem and relies on the previous Algorithm. We need to prove that the
construction of u2t+1

x and v2t+2
y at each step is well defined. Consider step 2t+1.

For each x ∈ X , the equation to solve is
∑

y∈Y
Mxy(ux, vy) + Mx0(ux) = nx

but the right-hand side is a continuous and decreasing function of ux, tends to
0 when ux → +∞, and tends to +∞ when ux → −∞. Note that by letting
vy → +∞, the terms in the sum tends to 0, providing a lower bound for ux.
Hence u2t+1

x is well defined and belongs in
(
M−1

x0 (nx),+∞)
, and let us denote

u2t+1
x = Fx(v2t

. )

and clearly, F is anti-isotone, meaning that v2t
y ≤ ṽ2t

y for all y ∈ Y implies
Fx(ṽ2t

. ) ≤ Fx(v2t
. ) for all x ∈ X . By the same token, at step 2t + 2, v2t+2

y is well
defined in

(
M−1

0y (my),+∞)
, and let us denote

v2t+2
y = Gy(u2t+1

. )

where, similarly, G is anti-isotone. Thus

v2t+2
. = G ◦ F

(
v2t

.

)

where G◦F is isotone. But v2
y < ∞ = v0

y implies that v2t+2
. ≤ G◦F

(
v2t

.

)
. Hence

(
v2t+2

.

)
t∈N

is a decreasing sequence, bounded from below by 0. As a result v2t+2
.

converges. Letting v̄. its limit, and letting ū = F (v̄), one can see that (ū, v̄) is a
solution to the nonlinear Bernstein-Schrödinger system. (ii) Unicity. Introduce
map ζ defined by

ζ : (ux, vy) →
(

ζx =
∑

y∈Y Mxy (ux, vy) + Mx0(ux)
ζy =

∑
x∈X Mxy (ux, vy) + M0y(vy)

)

.

One has

Dζ (ux, vy) =
(

A B
C D

)
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where:

– A = (∂ζx/∂ux′)xx′ =
∑

y′∈Y ∂ux
Mxy′ (ux, vy′) + 1 if x = x′, 0 otherwise,

– B = (∂ζx/∂vy)xy = ∂vy
Mxy (ux, vy)

– C = (∂ζy/∂ux)yx = ∂ux
Mxy (ux, vy)

– D = (∂ζy/∂vy′)yy′ =
∑

x′∈X ∂vy
Mx′y (ux′vy) + 1 if y = y′, 0 otherwise.

It is straightforward to show that the matrix Dζ is dominant diagonal. A result
from [11] states that a dominant diagonal matrix with positive diagonal entries
is a P-matrix. Hence Dζ (ux, vy) is a P-matrix. Applying Theorem 4 in [9] it
follows that ζ is injective.

2 Equilibrium Assignment Problem

In this section, we consider the equilibrium assignment problem, which is a
far-reaching generalization of the optimal assignment problem. To describe this
framework, consider two finite populations I and J , and a two-sided matching
framework (for simplicity, we will call the two sides of this market “men” and
“women”) with imperfect transfers and without heterogeneity. Agents i ∈ I and
j ∈ J get respectively utility ui and vj at equilibrium. If either i or j remains
unmatched, that agent gets utility 0; however, if they match together, they may
get any respective utilities ui and vj such that the feasibility constraint

Ψij (ui, vj) ≤ 0, (1)

is satisfied, where the transfer function Ψij is assumed to be continuous and
isotone with respect to its arguments. Note that at equilibrium, ui ≥ 0 and
vj ≥ 0 as the agents always have the option to remain unassigned; by the same
token, for any pair i, j (matched or not), one cannot have a strict inequality
in (1), otherwise i and j would have an incentive to form a blocking pair, and
achieve a higher payoff than their equilibrium payoff. Thus the stability condition
Ψij (ui, vj) ≥ 0 holds in general. Let μij = 1 if i and j are matched, and 0
otherwise; we have therefore that μij > 0 implies that Ψij (ui, vj) = 0. This
allows us to define an equilibrium outcome.

Definition 1. The equilibrium assignment problem defined by Ψ has an equilib-
rium outcome (μij , ui, vj) whenever the following conditions are met: (i) μij ≥ 0,
ui ≥ 0 and vj ≥ 0 (ii)

∑
j μij ≤ 1 and

∑
i μij ≤ 1 (iii) Ψij (ui, vj) ≥ 0 (iv)

μij > 0 implies Ψij (ui, vj) = 0.

Note that, by the Birkhoff-von Neumann theorem, the existence of an equilibrium
in this problem leads to the existence of an equilibrium satisfying the stronger
integrality requirement μij ∈ {0, 1}. This general framework allow us to express
the optimal assignment problem (matching with Transferable Utility), as the
case where

Ψij (ui, vj) = ui + vj − Φij ,
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while in the NTU case

Ψij (ui, vj) = max(ui − αij , vj − γij).

Other interesting cases are considered in [8]. For instance, the Linearly Trans-
ferable Utility (LTU ) model, where

Ψij (ui, vj) = λij(ui − αij) + ζij(vj − γij)

with λij , ζij > 0, and the Exponentially Transferable Utility (ETU ) model, in
which Ψij takes the form

Ψij (ui, vj) = τ log
(

exp(ui/τ) + exp(vj/τ)
2

)

.

In the ETU model, the parameter τij is defined as the degree of transferability,
since τ → +∞ recovers the TU case and τ → 0 recovers the NTU framework.

Theorem 3. Assume Ψ is such that: (a) For any x ∈ X and y ∈ Y, we
have Ψxy (·, ·) continuous. (b) For any x ∈ X , y ∈ Y, t ≤ t′ and r ≤ r′, we
have Ψxy (t, r) ≤ Ψxy (t′, r′); furthermore, when t < t′ and r < r′, we have
Ψxy (t, r) < Ψxy (t′, r′). (c) For any sequence (tn, rn), if (rn) is bounded and
tn → +∞, then lim inf Ψxy (tn, rn) > 0. Analogously, if (tn) is bounded and
rn → +∞, then lim inf Ψxy (tn, rn) > 0. (d) For any sequence (tn, rn) such that
if (tn − rn) is bounded and tn → −∞ (or equivalently, rn → +∞), we have that
lim sup Ψxy (tn, rn) < 0. Then the equilibrium assignment problem defined by Ψij

has an equilibrium outcome.

Proof. Consider T > 0 and let

Mij (ui, vj) = exp
(

−Ψij (ui, vj)
T

)

Mi0 (ui) = exp
(
−ui

T

)

M0j (vj) = exp
(
−vj

T

)

and consider the Bernstein-Schrödinger system
{

Mi0 (ui) +
∑

j∈J Mij (ui, vj) = 1
M0j (vj) +

∑
i∈I Mij (ui, vj) = 1

.

We need to show that Mxy(., .), Mx0(.) and M0y(.) satisfy the properties stated in
Theorem 1. It is straightforward to show that conditions (i) and (ii) in Theorem
1 follow directly from assumptions (a) and (b) on Ψ. Moreover, letting T → 0+,
assumptions (c) and (d) together imply that condition (iii) is satisfied. Hence
we can apply Theorem 1, and it follows that a solution uT

i , vT
j to the system

exists. Note that Mi0

(
uT

i

) ≤ 1 and M0j

(
vT

j

) ≤ 1 imply that uT
i ≥ 0 and

vT
j ≥ 0. Now, consider the sequence obtained by taking T = k, k ∈ N. Then,
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up to a subsequence extraction, we may assume uk
i → ūi ∈ R

+ ∪ {+∞} and
vk

j → v̄j ∈ R
+ ∪ {+∞}. It follows that Ψij

(
uk

i , vk
j

)
converges in R

+ ∪ {+∞},
hence μk

ij = Mij

(
uk

i , vk
j

)
converges toward μ̄ij ∈ [0, 1]. Similarly, the limits μ̄i0

and μ̄0j exist in [0, 1]. Hence (i) in Definition 1 is met. By continuity, μ̄ satisfies
{

μ̄i0 +
∑

j∈J μ̄ij = 1
μ̄0j +

∑
i∈I μ̄ij = 1

,

which established (ii). Let us show that (iii) holds, that is, that Ψij (ui, vj) ≥ 0
for any i and j. Assume otherwise. Then there exists ε > 0 such that for k
large enough, Ψij

(
uk

i , vk
j

)
< −ε, so that μk

ij > exp (ε/T ) → +∞, contradicting
μ̄ij ≤ 1. Thus, we have established (iii). Finally, we show that (iv) holds. Assume
otherwise. Then there is i and j such that μ̄ij > 0 and Ψij (ūi, v̄j) > 0. This
implies that there exists ε > 0 such that for k large enough, μk

ij > ε, thus
Ψij

(
uk

i , vk
j

)
< −T log ε → 0, hence Ψij (ūi, v̄j) ≤ 0, a contradiction. Hence (iv)

holds; this completes the proof and establishes that (μ̄, ū, v̄) is an equilibrium
assignment.

3 ITU Matching with Heterogeneity

Following [8], we now assume that individuals may be gathered into groups of
agents of similar observable characteristics, or types, but heterogeneous tastes.
We let X and Y be the sets of types of men and women. An individual man
i ∈ I has type xi ∈ X ; similarly, an individual woman j ∈ J has type yj ∈ Y.
We assume that there is a mass nx of men of type x and my of women of type
y, respectively. Assume further that

Ψij (ui, vj) = Ψxiyj
(ui − Tεiy, vj − Tηxj),

where ε and η are i.i.d. random vectors drawn from a Gumbel distribution, and
where T > 0 is a temperature parameter. Unassigned agents get Tεi0 and Tη0j .
For all i such that xi = x and yj = y, the stability condition implies

Ψxiyj
(ui − Tεiy, vj − Tηxj) ≥ 0.

Hence,
min

i:xi=x
j:yj=y

Ψxiyj
(ui − Tεiy, vj − Tηxj) ≥ 0.

Thus, letting

Uxy = min
i:xi=x

{ui − Tεiy} and Vxy = min
j:yj=y

{vj − Tηxj},

we have Ψxy (Uxy, Vxy) ≥ 0, and with

μxy =
∑

i:xi=x
j:yj=y

μij
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we have that μxy > 0 implies Ψxy (Uxy, Vxy) = 0, and by a standard argument
(the random vectors ε and η are drawn from distributions with full support,
hence there will be at least a man i of type x and a woman j of type y such that
i prefers type y and j prefers type x, that is, μxy > 0 for all x and y)

Ψxy (Uxy, Vxy) = 0 ∀x ∈ X , y ∈ Y.

Note that this is an extension to the ITU case of the analysis in Galichon and
Salanié [7], building on Choo and Siow [3]. We have that

ui = max
y

{Uxy + Tεiy, T εi0} and vj = max
x

{Vxy + Tηxj , T η0j},

thus a standard result from Extreme Value Theory (see Choo and Siow [3] for a
derivation) yields

Uxy = T log
μxy

μx0
and Vxy = T log

μxy

μ0y
,

so we see that μxy satisfies
⎧
⎪⎨

⎪⎩

μx0 +
∑

y∈Y μxy = nx

μ0y +
∑

x∈X μxy = my

Ψxy

(
T log μxy

μx0
, T log μxy

μ0y

)
= 0

. (2)

The various cases of interest discussed above, namely TU, NTU, LTU, and ETU
cases yield, respectively,

μxy = μ
1/2
x0 μ

1/2
0y exp

Φxy

2
(TU)

μxy = min (μx0e
αxy , μ0yeγxy ) (NTU)

μxy = e(λxyαxy+ζxyγxy)/(λxy+ζxy)μ
λxy/(λxy+ζxy)
x0 μ

ζxy/(λxy+ζxy)
0y (LTU)

μxy =

(
e−αxy/τxyμ

−1/τxy

x0 + e−γxy/τxyμ
−1/τxy

0y

2

)−τxy

(ETU),

(see [3]). To apply Theorem 1, we let Mxy (ux, vy) be the value m solution to
(for a proof of existence and uniqueness of such a solution, see Lemma 1 of [8])

Ψxy (T log m + ux, T log m + vy) = 0,

and let

Mx0 (ux) = exp
(−ux

T

)

and M0y (vy) = exp
(−vy

T

)

.

In [8], we rewrote system (2) as a nonlinear Bernstein-Schrödinger system,
namely {

Mx0 (ux) +
∑

y∈Y Mxy (ux, vy) = nx

M0y (vy) +
∑

x∈X Mxy (ux, vy) = my
.
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Theorem 4. The nonlinear Bernstein-Schrödinger system in (2) has a unique
solution.

Proof. The proof follows directly from the application of Theorem 1. It is easy to
check that the conditions on Mx0(.) and M0y(.) required by Theorem 1 are met
in this case. Lemma 1 in [8] provides a proof that Mxy satisfies these conditions.

4 Discussion

In this note, we have argued how matching problems may be formulated as a
system of nonlinear equations, also known as the Bernstein-Schrödinger equa-
tion or Schrödinger’s problem [15]. We have shown existence and uniqueness
of a solution under certain conditions, and have explicated the link with vari-
ous matching problems, with or without heterogeneity. Solving such a system of
equations requires an algorithm that we call the Iterative Projection Fitting Pro-
cedure (IPFP); in practice, this algorithm converges very quickly. Our setting can
be extended in several ways. One of them is to consider the case with unassigned
agents. In that case, we have the additional constraint that

∑
x nx =

∑
y my,

thus the nonlinear Bernstein-Schrödinger system, which in this case writes as
{ ∑

y∈Y Mxy (ux, vy) = nx∑
x∈X Mxy (ux, vy) = my

has a degree of freedom, as the sum over x ∈ X of the first set of equations
coincides with the sum over y ∈ Y of the second one. The one-dimensional
manifold of solutions of this problem is studied in [2].
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Abstract. This note presents a short review of the Schrödinger problem
and of the first steps that might lead to interesting consequences in terms
of geometry. We stress the analogies between this entropy minimization
problem and the renowned optimal transport problem, in search for a
theory of lower bounded curvature for metric spaces, including discrete
graphs.

Keywords: Schrödinger problem · Entropic interpolations · Optimal
transport · Displacement interpolations · Lower bounded curvature of
metric spaces · Lott-Sturm-Villani theory

Introduction

This note presents a short review of the Schrödinger problem and of the first
steps that might lead to interesting consequences in terms of geometry. It doesn’t
contain any new result, but is aimed at introducing this entropy minimization
problem to the community of geometric sciences of information.

We briefly describe Schrödinger’s problem, see [12] for a recent review. It
is very similar to an optimal transport problem. Several analogies with the
Lott-Sturm-Villani theory about lower bounded curvature on geodesic spaces,
which has been thoroughly investigated recently with great success, will be
emphasized. The results are presented in the setting of a Riemannian manifold.

As a conclusion, some arguments are put forward that advocate for replacing
the optimal transport problem by the Schrödinger problem when seeking for a
theory of lower bounded curvature on discrete graphs.

For any measurable space Y, M(Y ) is the set of all positive measures and
P(Y ) is the subset of all probability measures on Y .

1 Optimal Transport

Let X be some state space equipped with a σ-field so that we can consider
measures on X and X 2. The Monge problem amounts to find a mapping T :
X → X that solves the minimizing problem

∫

X
c(x, Tx)μ0(dx) → min; T : X → X such that T#μ0 = μ1, (1)

c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 60–68, 2015.
DOI: 10.1007/978-3-319-25040-3 7
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where c : X 2 → [0,∞) is a given measurable function, μ0, μ1 ∈ P(X ) are pre-
scribed probability measures on X and T#μ0(dy) := μ0(T−1(dy)) is the image
of μ0 by the measurable mapping T. One interprets c(x, y) as the cost for trans-
porting a unit mass from x ∈ X to y ∈ X . Hence the integral

∫
X c(x, Tx)μ0(dx)

represents the global cost for transporting the mass profile μ0 ∈ P(X ) onto
T#μ0 ∈ P(X ) by means of the transport mapping T . A solution of the Monge
problem is a mapping T from X to X which transports the mass distribution μ0

onto the target mass distribution μ1 at a minimal cost.
The most efficient way to solve Monge’s problem is to consider the follow-

ing relaxed version which was introduced by Kantorovich during the 40’s. The
Monge-Kantorovich problem is

∫

X 2
c(x, y)π(dxdy) → min; π ∈ P(X 2) : π0 = μ0, π1 = μ1, (2)

where π0(dx) := π(dx × X ) and π1(dy) := π(X × dy) are the marginals of
the joint distribution π on the product space X 2. It consists of finding a cou-
pling π ∈ P(X 2) of the mass distributions μ0 and μ1 which minimizes the
average cost

∫
X 2 c(x, y)π(dxdy). Considering the so-called deterministic cou-

pling πT (dxdy) := μ0(dx)δTx(dy) of μ0 and T#μ0 where δy stands for the
Dirac measure at y, we see that (2) extends (1): if (2) admits πT as a solu-
tion, then T solves (1). In contrast with the highly nonlinear problem (1), (2)
enters the well-understood class of convex minimization problems. The interest
of the Monge-Kantorovich problem goes over its tight relation with the Monge
transport problem. It is a source of fertile connections. For instance, it leads to
the definition of many useful distances on the set P(X ) of probability measures.
Other connections are sometimes more surprising at first sight. We shall invoke
below a few links with the geometric notion of curvature.

A key reference for the optimal transport theory is Villani’s textbook [19].

2 Schrödinger Problem

In 1931, that is ten years before Kantorovich discovered (2), Schrödinger [16,17]
addressed a new statistical physics problem motivated by its amazing similarity
with several aspects of the time reversal symmetry in quantum mechanics. In
modern terms, the Schrödinger problem is expressed as follows

H(π|ρ) → min;π ∈ P(X 2) : π0 = μ0, π1 = μ1, (3)

where ρ ∈ M(X 2) is some reference positive measure on the product space X 2 and

H(p|r) :=
∫

Y

log(dp/dr) dp ∈ (−∞,∞], p, r ∈ P(Y )

denotes the relative entropy of the probability measure p on Y with respect to
the reference positive measure r on the same space Y and it is understood that
H(p|r) = ∞ when p is not absolutely continuous with respect to r. For a survey
of basic results about the Schrödinger problem, see [12].
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Schrödinger considers a large collection of N independent particles living in
a Riemannian manifold X (he takes X = R

n, but we need a manifold for further
developments) and moving according to a Brownian motion. It is supposed that
at time t = 0 they are spatially distributed according to a profile μ0 ∈ P(X ) and
that at time t = 1, we observe that they are distributed according to a profile
μ1 ∈ P(X ) which is far away from the expected configuration. One asks what
is the most likely behavior of the whole system of particles which performs this
very unlikely event. It is a large deviation problem which is solved by means of
Sanov’s theorem (see Föllmer’s lecture notes [7] for the first rigorous derivation
of Schrödinger’s problem) and leads to (3) with the reference measure

ρε(dxdy) = vol(dx) (2πε)−n/2 exp
(

−d(x, y)2

2ε

)

vol(dy)

where d is the Riemannian distance. It is the joint law of the endpoint position
(X0,X1) of a Brownian motion (Xt)0≤t≤1 on the unit time interval [0, 1] with
variance ε which starts at time t = 0 uniformly at random according to the
volume measure on X (this process is reversible). For any probability π on X 2

with a finite entropy we easily see that

lim
ε→0+

εH(π|ρε) =
∫

X 2

d(x, y)2

2
π(dxdy)

which is an average cost as in (2) with respect to the so-called quadratic cost

c(x, y) = d(x, y)2/2. (4)

Therefore the Monge-Kantorovich problem with the quadratic cost
∫

X 2

d(x, y)2

2
π(dxdy) → min; π ∈ P(X 2) : π0 = μ0, π1 = μ1, (5)

appears as the limit as the fluctuation parameter ε tends to zero of a family
of Schrödinger problems associated with a Gaussian reference measure. This
is a specific instance of a general phenomenon that has been discovered by
Mikami [14] and explored in detail in [11].

3 Dynamical Analogues

Many aspects of the static problems (2) and (3) are easier to clarify by means of
their dynamical analogues. To keep things easy, we stick to the quadratic cost
(4) on a Riemannian manifold.

Notation. We introduce some useful notation. The path space on X is denoted
by Ω ⊂ X [0,1]. The canonical process (Xt)t∈[0,1] is defined for each t ∈ [0, 1]
and ω ∈ Ω by Xt(ω) = ωt ∈ X . For any Q ∈ M(Ω) and 0 ≤ t ≤ 1, we
denote Qt := (Xt)#Q := Q(Xt ∈ ·) ∈ M(X ) the law of Xt under Q. We denote
the endpoint distribution Q01(dxdy) := Q(X0 ∈ dx,X1 ∈ dy) ∈ M(X 2) and use
the probabilistic notation EP for

∫
Ω

dP.
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Displacement Interpolations. We introduce the dynamical analogue of (5).
It consists of minimizing the average kinetic action

EP

∫

[0,1]

|Ẋt|2Xt
/2 dt → min; P ∈ P(Ω) : P0 = μ0, P1 = μ1 (6)

under the constraint that the initial and final marginals P0 and P1 of P are equal
to the prescribed probability measures μ0 and μ1 ∈ P(X ) on X .

Suppose for simplicity that there is a unique solution P to this problem.
Then P has the form P (·) =

∫
X 2 δγxy (·)π(dxdy) where δγxy is the Dirac mass

at γxy: the unique geodesic between x and y, and its endpoint projection P01 =
π ∈ P(X 2) is the unique solution of the optimal transport problem (5).

Definition 1. The displacement interpolation between μ0 and μ1 is the flow of
marginals [μ0, μ1] := (Pt)0≤t≤1 of the solution P of (6).

This notion has been introduced by McCann in his PhD Thesis [13]. It is the
basis of the development of the theory of lower bounds for the Ricci curvature
of geodesic spaces, see the textbooks [1,19].

Entropic Interpolations. Now, we introduce the dynamical analogue of (3).
It consists of minimizing the relative entropy

H(P |R) := EP log(dP/dR) → min; P ∈ P(Ω) : P0 = μ0, P1 = μ1 (7)

with respect to the reference path measure R ∈ M(Ω) under the same marginal
constraints as in (6). Following Schrödinger, if we choose R to be the law of the
reversible Brownian motion on X , we obtain with Girsanov’s theory that

H(P |R) = H(P0|vol) + EP

∫

[0,1]

|vP
t (Xt)|2Xt

/2 dt

where vol denotes the volume measure and vP
t is the Nelson forward velocity

field of the diffusion law P , [15]. When X = R
n, denoting EP [·|·] the conditional

expectation,

vP
t (x) = lim

h→0,h>0

1
h

EP [Xt+h − Xt | Xt = x]. (8)

Definition 2. The entropic interpolation between μ0 and μ1 is the flow of mar-
ginals [μ0, μ1]R := (Pt)0≤t≤1 of the unique solution P of (7).

If P ∈ P(Ω) solves the dynamical problem (7), then P01 ∈ P(X 2) solves the
static problem

H(π|R01) → min;π ∈ P(X 2) : π0 = μ0, π1 = μ1, (9)

where the reference measure R01 ∈ M(X 2) is the endpoint projection of the
reference path measure R ∈ M(Ω).
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Slowing Down. As already seen in the static case, the analogy between (6)
and (7) is not only formal. Considering the slowed down process Rε = (Xε)#R
which is the law of Xε

t = Xεt, 0 ≤ t ≤ 1, it is known that

εH(P |Rε) → min; P ∈ P(Ω) : P0 = μ0, P1 = μ1

Γ -converges to (6), see [11]. In particular, the entropic interpolation [μ0, μ1]R
ε

is a smooth approximation of the displacement interpolation [μ0, μ1].
This kind of convergence also holds for optimal L1-transport on graphs [9] and

Finsler manifolds (instead of optimal L2-transport on a Riemannian manifold)
where diffusion processes must be replaced by random processes with jumps
(work in progress).

4 Dynamics of the Interpolations

Unlikeentropic interpolations,displacement interpolations lackregularity.Already
known results about the dynamics of the displacement interpolations in the so-
calledRCDgeodesic spaceswithaRicci curvaturebounded frombelowcanbe found
in [8]. Understanding the dynamics of entropic interpolations could be a first step
(before letting ε tend to zero) to recover such results.

Dynamics of the Displacement Interpolations. A formal representation
of the displacement interpolation is given by

Ẋt = ∇ψ(t,Xt), P -a.s.

where P is a solution of (6), ψ is the viscosity solution of the Hamilton-Jacobi
equation {

∂tψ + |∇ψ|2/2 = 0
ψt=1 = ψ1

(10)

and ψ1 is in accordance with the endpoint data μ0 and μ1. Note that

Ẍt = ∇[∂tψ + |∇ψ|2/2](t,Xt) = 0, P -a.s. (11)

fitting the standard geodesic picture.

Dynamics of the Entropic Interpolations. Similarly, a rigorous represen-
tation of the entropic interpolation is given by

vP
t = ∇ψ(t,Xt), P -a.s.

where vP is defined at (8), P is the solution of (7) and ψ is the classical solution
of the Hamilton-Jacobi-Bellman equation

{
∂tψ + Δψ/2 + |∇ψ|2/2 = 0,
ψt=1 = ψ1.

(12)
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Iterating time derivations in the spirit of (8) in both directions of time allows
to define a relevant notion of stochastic acceleration aP , see for instance [5,15].
We obtain the following analogue of (11)

aP
t =

1

2
∇[∂tψ + Δψ/2 + |∇ψ|2/2] +

1

2
∇[−∂tϕ + Δϕ/2 + |∇ϕ|2/2](t, Xt) = 0, P -a.s.

where ϕ solves some HJB equation
{−∂tϕ + Δϕ/2 + |∇ϕ|2/2 = 0

ϕt=0 = ϕ0
in the other

direction of time.

5 Interpolations are Sensitive to Ricci Curvature

On a Riemannian manifold X , one says that the Ricci curvature is bounded
below by some constant κ ∈ R, when

Ricx(v, v) ≥ κgx(v, v), ∀(x, v) ∈ TX

where Ric is the Ricci tensor and g is the Riemannian metric defined on the
tangent bundle TX .

Displacement Interpolations. Ten years ago, Sturm and von Renesse [18]
have discovered that this lower bound holds if and only if along any displacement
interpolation (μt)0≤t≤1, the entropy

t ∈ [0, 1] 
→ H(μt|vol) ∈ (−∞,∞]

is κ-convex with respect to W2, i.e.

H(μt|vol) ≤ (1 − t)H(μ0|vol) + tH(μ1|vol) − κ
t(1 − t)

2
W 2

2 (μ0, μ1), ∀t ∈ [0, 1].

(13)
The Wasserstein distance W2 of order 2 is defined by means of the quadratic
optimal transport problem by W 2

2 (μ0, μ1) := inf(5). It plays the role of a Rie-
mannian distance on the set P2(X ) :=

{
μ ∈ P(X );

∫
X d(xo, x)2 μ(dx) < ∞}

of
all probability measures on X with a finite second moment. Accordingly, the dis-
placement interpolations are similar to geodesics. Unfortunately (P2(X ),W2) is
not a Riemannian manifold and the displacement interpolations are not regular
enough to be differentiable in time. In particular, the expected equivalent local
statement

d2

dt2
H(μt|vol) ≥ κW 2

2 (μ0, μ1), ∀0 ≤ t ≤ 1 (14)

of the convex inequality (13) is meaningless.
However, this remarkable result of Sturm and von Renesse was the basic

step for developing the Lott-Sturm-Villani theory of lower bounded Ricci cur-
vature of geodesic spaces, see [19]. The program of this theory is to extend the
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notion of lower bounded Ricci curvature from Riemannian manifolds to geo-
desic spaces (a special class of metric spaces) by taking advantage of the almost
Riemannian structure of (P2(X ),W2) and in particular of the dynamical prop-
erties the corresponding almost geodesics: the displacement interpolations. The
heuristic formula obtained with Otto’s heuristic calculus, see [19, Chap. 15], for
the second derivative of the entropy along a displacement interpolations (μt) is

d2

dt2
H(μt|vol) = Γ2(ψt), 0 ≤ t ≤ 1, (15)

where ψ solves the Hamilton-Jacobi equation (10). We see that it formally implies
(14) under the Γ2-criterion

Γ2(ψ) ≥ κg(∇ψ,∇ψ), ∀ψ

where the Bakry-Émery operator Γ2 is given by

Γ2(ψ) = Ric(∇ψ) +
∑

i,j

(∂i∂jψ)2.

Entropic Interpolations. As an interesting consequence of the dynamical
properties of the entropic interpolations, we obtain in [10] that along any entropic
interpolation (μt)0≤t≤1 on a Riemannian manifold, we have

d2

dt2
H(μt|vol) =

1
2

{Γ2(ϕt) + Γ2(ψt)}

where ϕ and ψ are the solutions of the above HJB equations (12) in both direc-
tions of time. This formula is a rigorous (in the sense that the second derivative
is well defined) analogue of the heuristic identity (15).

Conclusion

As a conclusion we sketch a research program and cite a few recent publications
related to the Schrödinger problem in the domains of numerical analysis and
engineering sciences.

A Research Program

In view of the analogies between the optimal transport problem and the
Schrödinger problem on a Riemannian manifold, one can hope that the program
of the Lott-Sturm-Villani theory can be transferred successfully from geodesic
spaces to a larger class of metric spaces. As a guideline, one should consider
the Schrödinger problem as the basic “geodesic” problem instead of the Monge-
Kantorovich problem. We see several advantages to this strategy:
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1. Unlike the displacement interpolations, the entropic interpolations are regu-
lar enough for their second derivative in time to be considered without any
trouble.

2. Slowing down the reference process, which might be a diffusion process on a
RCD space (see [8]) or a random walk on a graph (see [9,10]), one retrieves
displacement interpolations as limits of entropic interpolations.

3. As shown in [9], the entropic interpolations are well defined on discrete
graphs. They also lead to natural displacement interpolations. Remark that
discrete graphs are not geodesic and as a consequence, are ruled out by the
Lott-Sturm-Villani approach.

This program remains to be investigated . . .

Recent Literature

A recent resurgence of the use of the Schrödinger problem arises in applied and
numerical sciences. In [6], the Schrödinger problem is solved using the Sinkhorn
algorithm. This appears to be very competitive with respect to other optimal
transport solvers because of its simplicity, parallelism and convergence speed (at
the expense of an extra smoothing).

A notion of interpolation quite similar to the entropic interpolation might
be defined by means of entropic barycenters as introduced in [2]. It would be
interesting to investigate their curvature properties.

Motivated both by engineering problems and theoretical physics, in the spirit
of [14] the recent papers [3,4] look at the entropic interpolations with a stochastic
control viewpoint.
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Abstract. This article leans on some previous results already presented
in [10], based on the Fréchet’s works, Wilson’s entropy and Minimal Trade
models in connection with the MKP transportation problem (MKP, stands
for Monge-Kantorovich Problem). Using the duality between “indepen-
dance” and “indetermination” structures, shown in this former paper, we
are in a position to derive a novel approach to design a copula, suitable and
efficient for anomaly detection in IT systems analysis.

Keywords: Optimal transport · MKP problem · Indetermination and
independance structures · Condorcet and relational analysis · Copula
theory

1 Introduction

The main purpose of this article is to link the Optimal Transport Theory to a
special use of Copula Theory devoted to Anomaly Detection. Relying on MKP
approaches through Wilson’s entropy and Minimal Trade models variants, we
derive a new copula function which gave very good and efficient results for prac-
tical and real life applications, dedicated to the prevention of Cyber-attacks.

2 Optimizing the Transportation Problem

In this section we consider two particular cost functions of the discrete transport
problem: the Alan Wilson’s Entropy Model and the Minimal Trade Model. In
both cases, the cost is a function of the unkown joint distribution h(πuv). The
optimal solutions will be given in the next paragraphs. It is quite important to see
that those two optimization problems induce a new duality: the duality between
statistical “Independance” and logical “Indetermination” (see [1,9] and [10]).

c© Springer International Publishing Switzerland 2015
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2.1 Alan Wilson’s Entropy Model

The “Flows Entropy Model” of Alan Wilson was introduced in [19] and [15] for
Spatial Interaction Modeling. His purpose is to determine the distribution of the
normalized frequency flows πuv (supposing πuv > 0 ∀u, v) which maximizes the
entropy of the system. The objective function to be maximized is based upon
the Boltzman’s or Shannon’s Entropies:

maxπ −
p∑

u=1

q∑

v=1

πuvln(πuv) (1)

The optimal solution is obtained by using the Lagrange’s multipliers to maxi-
mize the MKP problem. The explicit expression of the optimal solution is shown
in Table 1. The flow maximizing entropy reveals a “statistical independance”
between the p suppliers and the q clients.

2.2 The Minimal Trade Model

In the Minimal Trade Model, the criterion is a quadratic function measuring
the squared deviation of the cells values from the no information situation (the
uniform joint distribution) in order to get a smooth ventilation1 of the origins-
destinations πuv values subject to the balanced marginals and mass preserving
(see [9,10]).

minπ

p∑

u=1

q∑

v=1

(

πuv − 1
pq

)2

(2)

We solve this problem by using the Lagrange multipliers, since the function
to optimize is convex, we are looking for a minimum. The optimal solution is
shown in Table 12. The optimal solution reveals an “indetermination structure”
between the p suppliers and the q clients. This concept of “indetermination
structure”, studied in ([9] and [10]), is related to the relational aspect of the
Condorcet’s Voting Theory (see [1] and [12]), when “votes for” = “votes against”.

Table 1. Variants of the MKP problem

Model Objective function Optimal solution

Alan wilson’s
Entropy Model

maxπ −∑p
u=1

∑q
v=1 πuvlnπuv π∗

uv = μuνv∀(u, v)
n∗

uv = nu.n.v
N

The Minimal
Trade Model

minπ

∑p
u=1

∑q
v=1

(
πuv − 1

pq

)2
π∗

uv = μu
q

+ νv
p

− 1
pq

n∗
uv = nu.

q
+ n.v

p
− N

pq

1 This explains the term: “Minimal Trade Model”.
2 There exist some constraints to satisfy for garanteeing the positivity of the optimal

values πuv (see [9]).
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3 Continuous Variants of the Discrete Optimal Solution

3.1 The Density Solution for Alan Wilson’s Problem

It can be simply shown that the continuous solutions of the Alan Wilson’s prob-
lem is given by: π∗(x, y) = f(x)g(y), where π : [a, b]× [c, d] → [0, 1] is defined on
the product of the two closed intervals of the cartesian plan with lengths: A and
B. μ and ν have densities f and g respectively. The cumulative distribution func-
tion associated to the density solution is given by:

Π∗(x, y) = F (x)G(y)

3.2 The Density Solution for the Minimal Trade Problem

The optimal solution of the continuous version of the “Minimal Trade Problem”
obtain by considering the Kantorovich’s duality is given (see [11]) by:

π∗(x, y) =
f(x)
B

+
g(y)
A

− 1
AB

(3)

where π∗ : [a, b] × [c, d] → [0, 1] is defined on the product of two closed inter-
vals of the cartesian plan with lengths: A and B. f and g are density function
assumed both be absolutely continuous and square-integrable. We have also the
cumulative distribution function as follows:

Π∗(x, y) = y
F (x)
B

+ x
G(y)

A
− xy

AB
(4)

4 Relationship with the Copula Theory

4.1 Some Basic Definitions About Copula

Copula have been introduced by M. Fréchet in 1951 (see [4]) as a function of
cross-dependancy between random variables. Those initial definitions has been
improved by the addition of a very important theorem, originated by A. Sklar in
1959 (see [16]) providing the existence, and in some case, the unicity of a copula.

A copula3 is a function defined as a map C : [0, 1] × [0, 1] → [0, 1] where :

– C(u, 0) = C(0, v) = 0, C is grounded
– C(u, 1) = C(1, u) = u, ∀u ∈ [0, 1], marginal uniformity

Let us define Π(x, y) = P (X ≤ x, Y ≤ y) as a joint cumulative distribution
function of two random variables. Then we can present the Sklar’s Theorem:

3 C(u, v)−C(u, v′)−C(u′, v)+C(u′, v′) ≥ 0 ∀0 ≤ u ≤ u′ ≤ 1 ∀0 ≤ v ≤ v′ ≤ 1 is known
as the 2-increasing property. It is nothing but the so called Monge’s condition which
was coined by Alan Hoffmann in 1963 (see [6]), this is an additional link between
optimal transport and copula theory.
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Theorem 1 (Sklar’s Theorem). If X and Y are two continuous random vari-
ables then the joint cumulative distribution function could be written as a func-
tion of each cumulative distribution function, and this function is a copula:

P (X ≤ x, Y ≤ y) = C(P (X ≤ x), P (Y ≤ y)) ⇒ Π(x, y) = C(F (x), G(y))

where Π is the joint cumulative distribution function, F (resp. G) is the cumu-
lative distribution function of X (resp. Y).

Theorem 2 (Fréchet-Hoeffding bounds). ∀(u, v) ∈ [0, 1] × [0, 1] if C is a
copula function then: Max(u + v − 1, 0) ≤ C(u, v) ≤ Min(u, v)

4.2 Illustration of the Sklar’s Theorem on the Previous
Alan Wilson’s and Minimal Trade Solution

In the case of Alan Wilson’s problem the corresponding copula is given by:

C∗(u, v) = uv (5)

For the minimal trade problem the copula associated to the bivariate solution
Π∗ is given by:

C∗(u, v) = v
F−1(u)

A
+ u

G−1(v)
B

− F−1(u)G−1(v)
AB

(6)

C∗ verifies the characteristic properties of a copula since F−1(0) = 0, G−1(0) =
0, F−1(1) = A and G−1(1) = B. With these bound assumptions we got:

– C∗(u, 0) = C∗(0, v) = 0
– C∗(1, v) = v and C∗(u, 1) = u

4.3 Some Introductive Notations

Y ∈ {0, 1} is a binary random variable representing the abnormality status as:

– Y = 0 if event is abnormal, Y = 1 if it is not.
– Ŷ = 0 if event is detected as abnormal, Ŷ = 1 else.

By definition we put P0 = P (Y = 0). With this inverse notation we could
write G(y) = P0 ∀ 0 ≤ y < 1. If X is a random vector we will use the following
definitions.4

P (X ≤ x) = P (X1 ≤ x1, ...,Xp ≤ xp) = F (x)

4 In the last paragraph we suppose X to be at least bivariate.



Optimal Transport, Independance Versus Indetermination Duality 73

4.4 Using Fréchet’s Upper Bound as Copula Anomaly Detector

According to the definition of a conditional probability we have: P (Y = 0|X) =
P (Y = 0,X)/P (X). Using the upper bound of Theorem 2 and assuming:

P (X) ≥ P0, we obtain the following inequality: P (Y = 0|X) ≤ P0/P (X).
According to the maximum of an a posteriori Bayes’ rule, alarms can be raised
only if the probability of this event is lower than twice the a priori probability
of a targeted class.

P (Y = 0|X) ≥ 1
2

⇒ P (X) ≤ 2P0 (7)

Consequently we obtain an upper bound for alarm activation condition on
P (X). If 0 ≤ P (X) ≤ 2P0, it is possible to activate an alarm. In the following we
will see that under some conditions the more unfrequent an event is, the more
likely abnormal it is.

4.5 Copula as a Tool for Detecting Unfrequent Events

So, an upper bound exists allowing to define a decision region as a trigger to
detect an attack (abnormal event). Here we want to determine the limits of the
conditional probability of very unfrequent event. Using a copula approach we
can turn (using Theorem 1) the scoring function into:

P (Y = 0|X < x) =
C(P0, F (x))

F (x)
=

C(P0, v)
v

Using simultaneously the 1-lipschitzian property of C, the 2-increasing prop-
erty applied to a copula function the de L’Hôpital’s rule to prove the differen-
tiability at point 0 and relying on the definition of the “Lower Tail” dependance
limit which is given by λL = limv→0 C(v, v)/v, we get:

lim
v→0

C(P0, v)
v

≥ λL ∀P0 ≥ v. (8)

This result gives a lower bound for: C(P0, v)/v, which from now on will be
considered as our scoring decision function. We are interested in measuring its
variation on the decision region [0, 2P0].

5 Measure of the Classification Capability Through
a Copula Approach

In this paragraph, we focus on the classification capability of the copula based
model. The choice of the notion of Receiver Operating Curve (ROC) to represent
the different compromises between detection and false alarms is determined by
the fact that this ROC Curve allows to simultaneously compare two different
classifiers. And consequently “best” model is the one for which the area under
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the ROC curve is the greatest possible. This decision region is called AUC (Area
Under ROC Curve), finding its optimal value (the best classifier) amounts to
solve a variational problem. In this section we show the link between AUC and
the density function c, where c(u, v) = ∂2

∂u∂v C(u, v), from the Sklar’s theorem
and a variable change process we can derive:

π(x, y) = c(F (x), G(y))f(x)g(y) (9)

A “good” model optimizes the compromise
between both the following criteria written according
to a threshold5 “s”.

– Sensitivity: this measure counts how many events
are properly classified as anomalies. This criterion is
defined as the true positive rate. It represents the fol-
lowing quantity P (s) = P (Ŷ = 0|Y = 0) = C(P0,s)

P0
– 1-Specificity (anti-Specificity): it measures the

misclassifications. 1-Specificity is the simple false positive rate. Mathemati-
cally we have: Q(s) = 1 − P (Ŷ = 1|Y = 1) = s

1−P0
(1 − C(P0, s))

Choosing the best model for all potential thresholds “s” remains to maximize
AUC. This area corresponds to the area under the function which associates for
each given anti-specificity the related sensitivity given by the model. Classically
the AUC is defined by:

AUC =
∫ 1

0

P (Q)dQ =
∫ 1

0

P (t).
∂

∂t
Q(t)dt (10)

where P refers to Sensitivity and Q to the 1-Specificity. As [0, s] ∈ [0, 1] and
X = (X1,X2), to measure the model performance according to the variation of
each component of X, and its consequences on the scalar s, we introduce the
link between X1 and X2 through the copula trick s = C(F−1(x1), G−1(x2)) =
C(s1, s2). We have shown in [7] that after developments and grouping (10) could
be turned into:

AUC = − 1
2P0(1 − P0)

∫ 1

0

(C(P0, s) − 1)2 ds +
1 − P 2

0

2P0(1 − P0)

Using simultaneously a bounded limit on P0 and the Fréchef’s bounds, max-
imizing AUC is equivalent to minimizing the quantity under the integral.

ArgmaxCAUC ∼ ArgminC

∫ 1

0

∫ 1

0

(C(s1, s2) − 1)2ds1ds2 (11)

The problem remains to test different copulas according to their capabilities
to deliver the best AUC criterion value. We have practically tested some usual

5 Where {Ŷ = 0} = {P (X ≤ x) ≤ s}.
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copulas (Clayton, Gumbel, Carlie-Gumbel Morgernstein and the upper Frechet’s
copula plus the copula we have defined in formula (6)) and surprisingly the
minimal trade ones, gives very impressive results in real-life applications. This
seems to indicate that this minimal trade or relational copula could be “the
optimal solution” of problem (11) at least a very good candidate to. Although
we are not handling the same types of entities, intuitively the criterion is very
similar to the minimal trade problem presented in (2). And we are currently
working to solve this research problem: providing the optimality of the minimal
trade copula.

6 Anomaly Detection Based on This New Copula

Cyber-attacks which occurred during the last years, have shown the limitations
of existing intrusion detection systems. Those systems are often based on expert
rules (i.e. known signatures) which make them very tractable for detecting known
attacks but unable at discovering new patterns. The algorithmic genericity of this
present approach allows to use it in many real-life contexts. The algorithm has
been designed to be mainly applied in cybersecurity but it is also quite suitable
for other general purpose applications. Event structure is captured through the
cross dependancy function, and summarized in the lower tail dependancy ratio.
Moreover, in this context, the online learning capability has a major impact
on the performances improvements. In cybersecurity, our algorithm has been
tested to support until 3.5 GB of data per second (about 300 TB per day). Our
benchmarking tests were performed on the DARPA intrusion detection datasets.
On those datasets we obtained 73.86 % of detected attacks with 2.32 % of false
alarms, which is quite satisfactory result which can be compared favorably with
the other existing attempts and in the context of the copulas family, our pro-
posed copula gives, by far, the best results compared to the usual ones: Clayton,
Gumbel etc. (see [5] for other Archimedian copulas) (Table 2).

Table 2. Benchmark of different copulas on the DARPA dataset

Quantile level used for copula benchmark

Quantile level 10−4 5.10−4 10−3 5.10−3 10−2

“Minimal Trade” or Relational Copula

Detection rate 18.64 % 73.86 % 74.32 % 74.82 % 75.09 %

False alarms rate 23.15 % 2.32 % 4.38 % 3.72 % 4.71 %

Gumbel copula

Detection rate 27.05 % 33.19 % 38.50 % 57.69 % 62.53 %

False alarms rate 16.51 % 18.97 % 15.28 % 24.39 % 42.95 %

Clayton copula

Detection rate 0.0 % 0.0 % 19.28 % 71.73 % 79.86 %

False alarms rate 0.0 % 0.0 % 0.63 % 36.76 % 34.20 %
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4. Fréchet, M.: Sur les tableaux de corrélations dont les marges sont données. Section
A no 14, pp. 53–77, Annales de l’Université de Lyon (1951)
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l’Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et
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Abstract. We present an overview of our recent work on implementable
solutions to the Schrödinger bridge problem and their potential applica-
tion to optimal transport and various generalizations.

1 Introduction

In a series of papers, Mikami, Thieullen and Léonard [21,22,24–26] have inves-
tigated the connections between the optimal mass transport problem (OMT)
and the Schrödinger bridge problem (SBP). The former may be shown to be
the Γ -limit of a sequence of the latter, and thereby, SBP can be seen as a reg-
ularization of the OMT. Since OMT is well-known to be challenging from a
computational viewpoint, this observation leads to the question of whether we
can get approximate solutions to OMT via solving a sequence of SBPs. Both
types of problem admit a control, fluid-dynamic formulation and it is in this set-
ting that the connection between the two becomes apparent. There are, however,
several difficulties in carrying out this program:

(i) The solution of the SBP is usually not given in implementable form;
(ii) SBP has been studied only for non degenerate, constant diffusion coefficient

processes with control and noise entering through identical channels;
(iii) No SBP steady-state theory;
(iv) No OMT problem with nontrivial prior.

Notice that (ii) and (iii) exclude most engineering applications. In the past year,
we have set out to partially remedy this situation [5,12]. We present here an
overview of this work.

2 Background

2.1 Optimal Transport

Consider the Monge-Kantorovich (OMT) problem [1,29,30]

inf
π∈Π(μ,ν)

∫

IRn×IRn

c(x, y)dπ(x, y),

c© Springer International Publishing Switzerland 2015
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where Π(μ, ν) are “couplings” of μ and ν, and c(x, y) = 1
2‖x − y‖2.

If μ does not give mass to sets of dimension ≤ n − 1, by Brenier’s theorem,
there exists a unique optimal transport plan π (Kantorovich) induced by a map T
(Monge), where T = ∇ϕ, ϕ is a convex function, π = (I ×∇ϕ)#μ, and ∇ϕ#μ =
ν where # indicates “push-forward”. Assume from now on μ(dx) = ρ0(x)dx,
ν(dy) = ρ1(y)dy. The static OMT above was given a dynamical formulation by
Benamou-Brenier in [2]:

inf
(ρ,v)

∫

IRn

∫ 1

0

1
2
‖v(x, t)‖2ρ(x, t)dtdx, (1)

∂ρ

∂t
+ ∇ · (vρ) = 0, (2)

ρ(x, 0) = ρ0(x), ρ(y, 1) = ρ1(y). (3)

Proposition 1. Let ρ∗(x, t) with t ∈ [0, 1] and x ∈ IRn, satisfy

∂ρ∗

∂t
+ ∇ · (∇ψρ∗) = 0, ρ∗(x, 0) = ρ0(x), (4)

where ψ is a (viscosity) solution of the Hamilton-Jacobi equation

∂ψ

∂t
+

1
2
‖∇ψ‖2 = 0 (5)

for some boundary condition ψ(x, 1) = ψ1(x). If ρ∗(x, 1) = ρ1(x), then the pair
(ρ∗, v∗) with v∗(x, t) = ∇ψ(x, t) is a solution of (1)–(3).

2.2 Schrödinger Bridges

The ingredients of the classical Schrödinger bridge problem are the following:

– a cloud of N independent Brownian particles,
– an initial and a final marginal density ρ0(x)dx and ρ1(y)dy, resp.,
– ρ0 and ρ1 are not compatible with the transition mechanism

ρ1(y) �=
∫ 1

0

p(0, x, 1, y)ρ0(x)dx,

where

p(s, y, t, x) = [2π(t − s)]−
n
2 exp

[

−‖x − y‖2

2(t − s)

]

, s < t.

In view of the law of large numbers, particles have been transported in an unlikely
way (N being large). Then, Schrödinger in (1931) posed the following question:
Of the many unlikely ways in which this could have happened, which one is the
most likely? Föllmer in 1988 observed that this is a problem of large deviations of
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the empirical distribution [15] on path space connected through Sanov’s theorem
to a maximum entropy problem.

Schrödinger’s solution (bridge from ρ0 to ρ1 over Brownian motion) has at
each time a density ρ that factors as ρ(x, t) = ϕ(x, t)ϕ̂(x, t), where ϕ and ϕ̂ solve
the Schrödinger’s system

ϕ(x, t) =
∫

p(t, x, 1, y)ϕ(y, 1)dy, ϕ(x, 0)ϕ̂(x, 0) = ρ0(x), (6)

ϕ̂(x, t) =
∫

p(0, y, t, x)ϕ̂(y, 0)dy, ϕ(x, 1)ϕ̂(x, 1) = ρ1(x). (7)

The new evolution has drift field b(x, t) = ∇ϕ(x, t). His result extends to the
case when the “prior” evolution is a general Markov diffusion process possibly
with creation and killing [32]. Existence and uniqueness for the Schrödinger’s
system has been studied in particular by Beurling, Fortet, Jamison and Föllmer
[3,18–20], see [22,32] for a survey.

The maximum entropy formulation of the Schrödinger bridge problem (SBP)
with “prior” P is

Minimize H(Q,P ) = EQ

[

log
dQ

dP

]

over D(ρ0, ρ1),

where D is the family of distributions on Ω := C([0, 1], IRn) that are equivalent to
stationary Wiener measure W =

∫
Wx dx. It can be turned, thanks to Girsanov’s

theorem, into a stochastic control problem see [4,13,14,17,27] with fluid dynamic
counterpart. Here P = W ε, namely stationary Wiener measure with variance ε,
in which case the problem assumes a form similar to (1)–(3)

inf
(ρ,v)

∫

IRn

1∫

0

1
2ε

‖v(x, t)‖2ρ(x, t)dtdx,

∂ρ

∂t
+ ∇ · (vρ) − ε

2
Δρ = 0,

ρ(x, 0) = ρ0(x), ρ(y, 1) = ρ1(y).

3 Gauss-Markov Bridges

Consider the problem in the case where the prior evolution and the marginals
are Gaussian. In [6,8], the following two problems have been addressed:

Problem 1: Find a control u, adapted to Xt and minimizing

J(u) := E

{∫ 1

0

1
2
‖u(t)‖2 dt

}

,

among those which achieve the transfer

dXt = A(t)Xtdt + B(t)u(t)dt + B1(t)dWt,

X0 ∼ N (0, Σ0), X1 ∼ N (0, Σ1).
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If the pair (A,B) is controllable (for constant A and B, this amounts to the
matrix

(
B,AB, ..., An−1B

)
having full row rank), Problem 1 turns out to be

always feasible (this result is highly nontrivial as the control may be “handi-
capped” with respect to the effects of the noise).

Problem 2: Find u = −Kx minimizing Jpower(u) := E{ 1
2‖u‖2} and such that

dXt = (A − BK)Xtdt + B1dWt

has

ρ(x) = (2π)−n/2 det(Σ)−1/2 exp
(

−1
2
x′Σ−1x

)

as invariant probability density.
Problem 2 may not have a solution (not all values for Σ can be maintained

by state feedback).

Sufficient conditions for optimality have been provided in [6,8] in terms of:

– a system of two matrix Riccati equations (Lyapunov equations if B = B1) in
the finite horizon case. The Riccati equations are nonlinearly coupled through
the boundary conditions. In the case where B �= B1, which falls outside the
classical maximum entropy problem, the two equations are also dynamically
coupled.

– in terms of algebraic conditions for the stationary case.

Optimal controls may be computed via semidefinite programming in both cases.

4 Cooling for Stochastic Oscillators

Cooling for micro and macro-mechanical systems consists in implementing via
feedback a frictional force to steer the state of a thermodynamical system to a
non equilibrium steady state with effective temperature that is lower than that of
the heat bath. Important applications of such Brownian motors [28] are found in
molecular dynamics, Atomic Force Microscopy and gravitational wave detectors
[16,23,31], to name a few.

The basic model is provided by a controlled stochastic oscillator deriving
from the Nyquist-Johnson model of RLC electrical network with noisy resistor
(1928) and the Ornstein-Uhlenbeck model of physical Brownian motion (1930):

dx(t) = v(t) dt, (8)

dv(t) = −βv(t) dt − 1
m

∇V (x(t))dt + u(x(t), v(t), t) + σdWt, (9)

σ2 =
2kβT

m
, Einstein′s fluctuation-dissipation relation. (10)

Here u(x, v, t) is a feedback control law and V is such that the initial value
problem is well-posed on bounded time intervals. For u ≡ 0,

ρ(x, v, t) → ρMB(x, v) = Z−1 exp
[

−H(x, v)
kT

]

, H(x, v) =
1
2
m‖v‖2 + V (x).
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Let ρ̄(x, v) = Z̄−1 exp
[
−H(x,v)

kTeff

]
and let Teff < T be a desired steady state

effective temperature. In [9], we have studied the following two problems:

– Efficient asymptotic steering of the system to ρ̄;
– Efficient steering of the system from ρ0 to ρ̄ at a finite time t = 1.

In both cases, we get a solution for a general system of nonlinear stochastic
oscillators, where we allow for both potential and dissipative interactions between
the particles, by extending the theory of the Schrödinger bridges accordingly.

Consider the case of a scalar oscillator in a quadratic potential with Gaussian
marginals. For a suitable choice of constants, the model is

dx(t) = v(t)dt,

dv(t) = −v(t)dt − x(t)dt + u(t)dt + dWt.

Using the results in [6,8], through velocity feedback control the system is first
efficiently steered to the desired state ρ̄ at time t = 1 and then maintained
efficiently in ρ̄. This is illustrated by Fig. 1 that depicts some sample paths and
a transparent tube outlining the “3σ region” of the one-time densities.

Fig. 1. Inertial particles: trajectories in phase space.

5 OMT with Prior

In [10,11], we have formulated and studied a generalization of optimal transport
problem that includes prior dynamics. It is the natural candidate for the zero-
noise limit of SBP where the prior is a general Markovian evolution and not just
stationary Wiener measure. In particular, in [11] we have studied the case where
there are fewer control than state variables and Gaussian marginals and derived
the corresponding limiting transport problem. The latter can be put in the form
of a classical OMT with cost deriving from a Lagrangian action, where, however,
the Lagrangian is not strictly convex with respect to the ẋ variable. Convergence
of solutions is proven directly. Simulations confirm that in the zero-noise limit
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the “entropic interpolation” provided by the (generalized) Schrödinger bridge
converges to the “displacement interpolation” of the limiting OMT problem.

In conclusion, in [6,7,9–11], we have worked out a number of cases where an
implementable form of the solution of a (possibly generalized) Schrödinger bridge
problem can be obtained. We have also explored to some extent the connection
between zero-noise limits of SBP and suitable reformulations of OMT prob-
lems. These cases include degenerate, hypoelliptic diffusions like the Ornstein-
Uhlenbeck model (8)–(10). The case of differing noise and control channels which
does not have a classical SBP counterpart has also been studied. Finally, in [8], we
have extended the fluid-dynamic SBP theory to the case of anisotropic diffusions
with killing, a situation where again no probabilistic counterpart is available in
general. The new evolution is obtained by solving a suitable generalization of
the Schrödinger bridge system. How can we solve this generalized Schrödinger
system as well as those corresponding to problems not covered in [6,7,9–11]? An
alternative powerful tool is given by iterative schemes which contract Birkhoff’s
version of Hilbert’s metric. This is discussed in the next section.

6 Positive Contraction Mappings for Schrödinger systems

Let S be a real Banach space and K a closed solid cone in S. That is, K is closed
with nonempty interior and is such that K + K ⊆ K, K ∩ −K = {0} as well
as λK ⊆ K for all λ ≥ 0. Define x  y ⇔ y − x ∈ K, and for x, y ∈ K\{0},
M(x, y) := inf {λ | x  λy} and m(x, y) := sup{λ | λy  x}. The Hilbert metric
is the projective metric defined on K\{0} by

dH(x, y) := log
(

M(x, y)
m(x, y)

)

.

A map E from S to S is said to be positive provided it takes the interior of K
into itself. For such a map define its projective diameter

Δ(E) := sup{dH(E(x), E(y)) | x, y ∈ K\{0}}

and the contraction ratio

‖E‖H := inf{λ | dH(E(x), E(y)) ≤ λdH(x, y), for all x, y ∈ K\{0}}.

Theorem 1. (Garrett Birkhoff 1957, P. Bushell 1973) Let E be a positive map.
If E is monotone and homogeneous of degree m (E(λx) = λmE(x)), then

‖E‖H ≤ m.

If E is also linear, the (possibly stronger) bound also holds

‖E‖H = tanh(
1
4
Δ(E)).
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Consider now a Markov chain with T -step transition probabilities πx0,xT

(prior) and consider two marginal distributions p0 and pT , where x0, xT are
indices corresponding to initial and final states. An adaptation of Schrödinger’s
question to this setting leads to the following Schrödinger system:

ϕ(x0, 0) =
∑

xT

πx0,xT
ϕ(xT , T ) = E (ϕ(xT , T )) , ϕ(x0, 0)ϕ̂(x0, 0) = p0(x0),

ϕ̂(xT , T ) =
∑

x0

πx0,xT
ϕ̂(x0, 0) = E† (ϕ̂(x0, 0)) , ϕ(xT , T )ϕ̂(xT , T ) = pT (xT ).

It turns out that the composition of the four maps

ϕ̂(x0, 0) −→ ϕ̂(xT , T ) := E†(ϕ̂(x0, 0)) −→ ϕ(xT , T ) :=
pT (xT )
ϕ̂(xT , T )

−→ ϕ(x0, 0) := E (ϕ(xT , T )) −→ (ϕ̂(x0, 0))next :=
p0(x0)
ϕ(x0, 0)

where division of vectors is performed componentwise, is contractive in the
Hilbert metric. Indeed, the linear maps are non-expansive with E strictly con-
tractive, whereas componentwise divisions are isometries (and contractive when
the marginals have zero entries). In [5], we have obtained similar results for
Kraus maps of statistical quantum mechanics with pure states or uniform mar-
ginals. The case of diffusion processes is studied in [12]. Applications include
interpolation of 2D images to construct a 3D model (MRI).
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18. Föllmer, H.: Random fields and diffusion processes. In: Hennequin, P.L. (ed.) Ècole
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Abstract. Optimal transport (OT) is a major statistical tool to mea-
sure similarity between features or to match and average features. How-
ever, OT requires some relaxation and regularization to be robust to
outliers. With relaxed methods, as one feature can be matched to sev-
eral ones, important interpolations between different features arise. This
is not an issue for comparison purposes, but it involves strong and
unwanted smoothing for transfer applications. We thus introduce a new
regularized method based on a non-convex formulation that minimizes
transport dispersion by enforcing the one-to-one matching of features.
The interest of the approach is demonstrated for color transfer purposes.

Keywords: Optimal transport · Relaxation · Color transfer

1 Introduction

Many image processing applications require the modification or the prescription
of some characteristics (colors, frequencies or wavelet coefficients) of a given
image, while preserving other features. Statistics to be prescribed may come
from prior knowledge, or more generally, are learned from an example. In such
a case, another image is selected from a database to define a template. Such a
framework arises for image enhancement, inpainting, colorization of grayscale or
infrared images, tone mapping, color grading or color transfer. In this paper, we
will focus on this last application through histogram transfer between images.

Color transfer consists in modifying an image to match the color palette
of another one, while preserving its geometry. In the literature, the different
interpretations and definitions of color palettes have led to various algorithms.
In the following, we only consider unsupervised approaches.

Parametric and Histogram Modeling. Since the seminal work of [17], methods
have been designed to transfer some simple color statistics (i.e. the mean and

A preliminary version of this work has been presented at the NIPS 2014 Workshop
on Optimal Transport and Machine Learning (pdf).
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standard deviation [9]) in any color space [20]. More general approaches match
the complete histogram of features from two images. When considering grayscale
images, the problem is known as 1-D histogram specification. This framework
has been extended for color histograms, using for instance 3-D cumulative his-
tograms [10] or 1-D ΔE-color index [6].

Histogram Matching via Optimal Transportation. As pointed out by [11], there
exist strong links between histogram specification and the Monge-Kantorovich
Optimal Transport (OT) problem. The OT problem consists in estimating the
map that transfers a source probability distribution onto a target one, while
minimizing a given cost function. The transport cost is also referred to as the
Wasserstein distance or the Earth Mover’s distance. The associated OT map is
the key element to perform the transfer of colors. Some approaches to find fast
approximate solution of OT were investigated in [11,15].

Spatial Information. The exact transfer of color palette is generally not satisfy-
ing for practical applications in image processing [12]. The color distributions to
be matched may have very different shapes, so that outliers generally appear in
the processed image. Moreover, as the process is performed in the color space, it
may not transfer coherent colors to neighboring pixels, resulting in undesirable
artifacts, such as JPEG compression blocks, enhanced noise, saturation or con-
trast inversion [11,13,18]. As a consequence, various models have been designed
to incorporate some regularity priors on the image domain, such as Total Varia-
tion [7]. Color transfer may be formalized [10,14] as a variational problem in the
image domain, in order to directly incorporate a spatial regularization of colors.

Approximate and Regularized Matching. While spatial regularization suppresses
small artifacts due to exact histogram specification, it cannot handle strong
artifacts due to an irregular OT map [14]. Ferradans et al. [4] thus proposed
to regularize the optimal assignment between point clouds. The exact matching
constraint is relaxed to enforce robustness to outliers. Instead of providing one-
to-one assignment, the use of capacity variables makes it possible one-to-many
correspondences. The additional introduction of regularity priors on the OT map
produces smoother and more robust transport maps for image processing appli-
cations. This work has been extended in [16] for histogram purposes: spatial
information is used to drive the regularization of color transfer, while the capac-
ity variables are automatically estimated. Notice that a fast method based on
entropy prior for estimating smooth OT between histograms has been proposed
in [3]. It also yields one-to-many correspondences between histogram bins.

Color Dispersion. Due to the one-to-many relaxation and the fact that only the
gradient of the average transport flow is penalized, the regularization does not
prevent the transport map to associate very different colors to a single pixel or
cluster. This leads to undesirable results such as color mixing or color inconsis-
tencies in the modified image.
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Contributions and Outline. In this paper, we propose a new model that takes into
account the aforementioned issues. We also relax and regularize the transport
map and introduce a non-convex constraint that minimizes the variance of colors
assigned to each cluster. We rely on a fast proximal splitting algorithm in order
to compute the transport map that is finally used for color transfer purposes.
The organization of the paper is as follows. Background on OT is given in Sect. 2.
The proposed model is introduced in Sect. 3 and experimented in Sect. 4.

2 Color Transfer via Optimal Transport

We refer to u as the input image to be modified, and to v as an exemplar image
v provided by the user. We consider clustered feature distributions, which may
be seen as multi-dimensional histograms or discrete probability distribution (i.e.
color palettes, wavelet coefficient histograms). We refer to hu =

∑n
i=1 hu[i]δXi

as the histogram of features X := {Xi ∈ R
d}i≤n ∈ R

n×d from the input image,
so that

∑n
i=1 hu[i] = 1. The histogram is thus composed of n features, each of

them being of dimension d. In the same way, hv =
∑m

j=1 hv[j]δYi
is the target

distribution of features Y := {Yj ∈ R
d}j≤m ∈ R

m×d. We have no assumption on
the way those histograms are built (uniform quantization, k-means, etc). Hence,
we have a quantized version of our image, for instance using Nearest-Neighbor
interpolation w.r.t a metric d (that is the quadratic L2 distance in the following):
ũi = XI(i) where I(i) = argminI d(u(i),XI).

2.1 Optimal Transport of Histogram (Histogram Specification)

The OT of hu onto hv is obtained by estimating the transport matrix:

P � ∈ argmin
P∈Phu,hv

C(P ) := 〈P, CX,Y 〉 =
∑

i,j

Pi,j(CX,Y )i,j (1)

within the set Phu,hv
= {P ∈ R

n×m
+ , P1m = hu, PT1n = hv} where 1N ∈ R

N

is the unit vector, and the cost matrix CX,Y is generally defined from quadratic
distances (CX,Y )i,j = ‖Xi − Yj‖2 in applications where the transport map is
expected to be regular. In order to change the statistical distribution of u accord-
ingly to the transport matrix P , the transfer map is defined as: T : Xi �→
{Yj s.t. Pi,j > 0}. In order to avoid quantization artifacts, it has been proposed
in [19] to incorporate spatial information in a multivariate Gaussian mixture
model S : ui �→ 1

W

∑
i wi(ui)T (XI(i)), which average a mapping T using adap-

tive weights functions wi(·) = exp
(− 1

2 || · −Xi||2Vi

)
, and a normalization factor

W =
∑

i wi. This method uses estimated covariance matrices Vi of clusters in
spatial and color product space. While this post-processing removes small quan-
tization artifacts, it can barely attenuate large irregularities of the transport
map T .
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2.2 Optimal Transport Relaxation

One main limitation of OT comes from the exact matching constraint which is
not robust to outliers. To address this issue, it has been proposed to make use
of relaxed constraints for the optimal assignment problem, defining min/max
capacities on the optimal flow [4]. In the context of histogram matching, such
relaxed OT problem corresponds to solve problem (1) onto the relaxed constraint
set Khu,hv

= {P ∈ R
n×m
+ , P1m = hu, κminhv ≤ PT1n ≤ κmaxhv}. This model

includes two vectorial parameters, κmin ≤ 1 and κmax ≥ 1 defined in R
m, that

control the proportion of the target histogram’s bins that can be used by the
color transfer. Outliers can be taken into account by taking κmin < 1. By setting
κmax > 1, some colors of the source palette will be used more frequently than
in the example image.

However, there is no statistical control of how “close” the transported his-
togram is over the source one and it is very difficult to tune so many parameters
by hand. In [16], the following extended model has been shown to tackle these
two limitations, by including the calibration of the capacity parameters {κj}j≤m

within the model through the penalization of their distance to 1:

(P, κ)� ∈ argmin
P ∈R

n×m
+ s.t. P1m=hu

κ ∈R
m
+ s.t. 〈κ, hv〉≥1

C(P ) + ρ‖κ − 1m‖1. (2)

2.3 Optimal Transport Regularization

Another limitation of the OT framework is the lack of control over the regularity
of the solution. In [4], the authors propose to measure the regularity of the aver-
age transfer mapping. First, one considers the following definition of Posterior
mean to define a one-to-one mapping T from a transfer matrix P :

T (Xi) = Yi = 1∑m
j=1 Pij

∑m
j=1 PijYj = 1

hu(i)

∑
j Pi,jYj = (Dhu

PY )i, (3)

where the normalization matrix Dhu
is diagonal: (Dhu

)ii = hu(i)−1.
The regularity of this average transfer map is then evaluated on a graph GX =

(IX , EX), built from the set of input features {Xi}i. Denoting as IX = {I1, · · · , In}
the set of nodes representing the features {X1, . . . Xn}, and EX ⊂ I2X the set of
edges, the gradient GX V ∈ R

n×n×d of a multi-valued function V = {V l
i } ∈ R

n×d

on GX is computed at point Xi as (GXV )i = (wij(Vi −Vj))j∈EX(i) ∈ R
n×d, where

the weight wij between Xi and Xj relies on their similarit: wij ∝ exp−d(Xi,Xj).
The OT matrix now solves the following problem

P � ∈ argmin
P∈Khu,hv

C(P ) + λ||GX(Dhu
PY − X)||, (4)

where ||GXV || can be interpreted as the TV norm of field V on the graph GX . The
flow is taken as and V = T (X) − X so that color translation are not penalized.
With such regularization, artifacts or contrast inversion are also avoided.
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Together with functional (4), the relaxed formulation (2) yields smooth
transport maps. that enforces transport between one cluster to many. For color
transfer purposes, the obtained prescribed colors are then defined from linear
combination of the target color palette, resulting in false colors artifacts and a
lost of color contrast. In this paper, we propose to solve this issue by incorpo-
rating information on the color transfer dispersion.

3 Non Convex Relaxation of Color Palette Transport

The relaxation considered here is different from the one proposed in [5] where a
capacity relaxation of the target histogram is considered. The closeness to the
target histogram is imposed through a data fidelity term which makes easier the
control of the color transfer result, while simplifying the projection onto the set
of acceptable transport matrices. By using linear programming to optimize the
regularized problem (2) as in [4,16], the dimension of the variables to estimate is
greatly increased. Simplifications of the regularization term (through the mean
transport and the use of divergence) are thus needed to reduce the complexity.
Such regularizers limit the inter-cluster color dispersion but they induce the
creation of new drab colors since an important interpolation of the target color
palette may occur (i.e. the intra-cluster color variance may be large with the
one-to-many assignment). To cope with these issues, we propose to penalize the
dispersion of assigned colors with a non-convex energy term. We also rely on a
different optimization tool which decreases the dimension of the problem w.r.t
linear programming, as we only deal with the estimation of the OT matrix.

3.1 Optimization Problem

In order to deal with the aforementioned limitations, we propose the following
relaxed and regularized OT problem:

P � ∈ argmin
P∈Phu

{
E(P ) := C(P ) + ρF (P ) + λR(P ) + αD(P )

}
, (5)

where C(P ) = 〈CX,Y , P 〉 is the linear cost matching function. The set Phu
=

{Rn×m, P ≥ 0, P1m = hu} is the convex set of right stochastic matrices (where
each row sums to the corresponding bin value in hu). The constraint P ∈ Phu

is incorporated using an indicator function ιPhu
(P ) = 0 if P ∈ Phu

and +∞
otherwise. The orthogonal projector ProjPhu

(P ) is done by projecting onto the
corresponding simplex for each row of P . In order to solve the problem (5) with
a fast projected gradient descent, we used differentiable functions for the other
terms. Observe that other choice would lead to different optimization algorithms.

Fidelity Term. As the set of acceptable transport matrices Phu
does not any-

more take into account the target distribution, we have to make sure that the
transported histogram PT1n is close enough to the target histogram hv. To do
so, we define the fidelity term F (P ) w.r.t the target histogram hv by relying on
the Pearson’s χ2 statistics. For any bistochastic matrix P ∈ Phu,hv

, this term
reads
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F (P ) = 1
2χ2

hv
(PT1n) = 1

2 ||D1/2
hv

(PT1n − hv)||2 = 1
2

∥
∥
∥1T

nPD
1/2
hv

∥
∥
∥
2

− 1
2 . (6)

We assume therefore from here, without loss of generality, that hv has non
empty bins. Observe that the corresponding fidelity term can be interpreted as a
weighted L2 metric, which further penalizes bins of the target histogram that has
small values. This will prevent the model from using very rare features from the
exemplar image. The gradient then reads ∇F (P ) = 1n ·(1T

nPDhv
) = 1n×nPDhv

.

Regularity Term. We consider a Tikhonov regularization of the gradient of a
flow V , incorporating spatial information from the input feature distribution in
the gradient operator GX defined on the graph of clusters GX . We measure the
gradient of the average transport flow V = Dhu

PY − X and therefore define

R(P ) =
1
2

∥
∥D−1

hu
GX(Dhu

PY − X)
∥
∥2

2
, (7)

where the gradient norm is weighted by the corresponding histogram bin value:
(Dhu

−1)ii = hu[i]. Its derivative is related to the graph-Laplacian GT
XGX and

writes ∇R(P ) = Dhu
GT

XD−2
hu

GX(Dhu
PY − X)Y T .

Dispersion Term. The regularized transfer induces a high variability of color
assigned to each input color. We then propose to minimize the variance of the flow.
Denoting Y = Dhu

PY from Eq. 3, the intra-cluster variance of the color assigned

to Xi is: Var(Y )i =
(
Y 2

)

i
− Y

2

i = 1
hu[i]

∑
j Pi,j‖Yj‖2 −

∥
∥
∥ 1

hu[i]

∑
j Pi,jYj

∥
∥
∥
2

. We
therefore penalize this variance with respect to each cluster weight and thus obtain
the functional term:

D(P ) :=
∑

i hu[i] Var(Y )i = 〈P, 1n Diag(Y Y T )T − D−1
hu

PY Y T 〉 (8)

where Diag : Rn×n �→ R
n is the diagonal extraction of a square matrix, that

is used here to compute the norm vector Diag(Y Y T ) = (Y T � Y T )1d. This
dispersion term measures the “sparsity” of average transport map. The derivative
writes ∇D(P ) = 1n Diag(Y Y T )T − 2D−1

hu
PY Y T .

3.2 Algorithm

From the penalization of the variance of the flow, the objective function (5) is
non-convex. We rely on a Forward-Backward (FB) algorithm to find a critical
point of this non-convex problem [2], as it contains a convex non-smooth term
(the linear constraint ιPhu

(P )) and the sum of differentiable terms G(P ) =
〈CXY , P 〉 + λR(P ) + ρF (P ) + αD(P ), where the gradient of G is L-lipschitz
and L is proportional to ρ, λ, α and m. A raw estimation gives us L ≤ L̃ =
λ‖GT

XGX‖2‖Y Y T ‖2 + ρm + 2α‖D−1
hu

‖
2
‖Y Y T ‖2. but the constant can also be

estimated empirically using a few random normalized matrices P . In practice,
we use the inertial FB algorithm proposed in [8]:

P k+1 = Proj
Phu

(
P k −τ

(
C+ρ∇F (P k)+λ∇R(P k)+α∇D(P k)

)
+ β(P k −P k−1)

)
.

which converges to a local minima of (5) by taking β ∈ [0, 1[ and τ < 2(1−β)/L.
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4 Experiments

4.1 Regularized 1-D Histogram Matching

The first step of our color transfer process consists in defining the source and
target sets X,Y , which involves spatio-color clustering on the input image u
and the exemplar one v, respectively. Here, the clustering is performed using
the fast super-pixels method [1], with the default regularization parameter 0.02
and a raw 20 × 20 seed initialization. These clusters are then used to build a
weighted graph (ωi,j) and define the transport cost matrix CXY that are involved
in the minimization of the non-convex functional (5). The color transfer is finally
applied using the estimated relaxed and regularized transport map.

As we work at a super-pixel scale to speed-up the OT computation, the
last step of the proposed approach is to synthesize a new image w from the
source image u using the new color palette. Like [19], we use maximum likelihood
estimation to incorporate geometrical information from the source image u into
the synthesis process. In order to restore the sharp details from the original
image that may have been lost in the process, we run a post-processing filter, as
detailed in [16].

As illustrated in Fig. 1, when the histograms of the two images have very
different shapes, the classic OT color transfer create a lot of artifacts (Fig. 1c).
The original colors are better recovered with increasing penalization of the color
variance (Fig. 1e, f, g and h). Such property is illustrated in other examples
in Fig. 2. When no penalization is applied to the color variance (i.e. α = 0),

(a) Input image (b) Exemplar image (c) Raw OT transfer (d) Postprocess of (c)

(e) α = 0 [16] (f) α = 10 (g) α = 30 (h) α = 50

Fig. 1. Illustration of the penalization of transport variance for color transfer
preservation. Colors of image (a) are modified using image (b) as a template. (c):
Result with optimal transfer, without any regularization. (d): Post-processing of (c)
to remove small artifacts, large color inconsistencies still occur. (e): adaptive approach
[16], which mixes capacity relaxation and spatial regularization yields better results but
final colors may be washed-out due to the mixing of colors. (f), (g) and (h): Proposed
model. The parameter α directly controls the amount of transport dispersion.



94 J. Rabin and N. Papadakis

(a) Input (b) α = 0 [16] (c) α = 10 (d) α = 100 (e) Exemplar

Fig. 2. Color transfer. The colors of the exemplar images (column (e)) are transfered
to the input images (column (a)) with different dispersion parameters.

it corresponds to the model of [16]. By monitoring the capacity of the target
histogram and regularizing the average flow [16], the synthesized images look
more plausible (Fig. 2b) but they contain new drab colors (that do not exist in
the target image) and they are over-smoothed. On the other hand, the transfer
is visually far better when the color variance is penalized (with high values of
α). In this case, the final images only contain the colors of the target images.

5 Conclusion and Future Work

We have proposed a method for transferring color between images using relaxed
and regularized optimal transport. Our model involves a non-convex constraint
that minimizes the dispersion of the relaxed transport and prevents from creating
new drab colors. Further improvements will concern the use of faster optimiza-
tion tools and the incorporation of high-order moments (i.e. covariances of the
transfered clusters) into the final synthesis.
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using a simplified sharpness index. In: Kuijper, A., Bredies, K., Pock, T., Bischof,
H. (eds.) SSVM 2013. LNCS, vol. 7893, pp. 86–97. Springer, Heidelberg (2013)

6. Morovic, J., Sun, P.L.: Accurate 3d image colour histogram transformation. Pat-
tern Recogn. Lett. 24(11), 1725–1735 (2003)



Non-convex Relaxation of Optimal Transport 95

7. Nikolova, M., Wen, Y.W., Chan, R.H.: Exact histogram specification for digital
images using a variational approach. JMIV 46(3), 309–325 (2013)

8. Ochs, P., Chen, Y., Brox, T., Pock, T.: ipiano: inertial proximal algorithm for
nonconvex optimization. SIAM J. Imaging Sci. 7(2), 1388–1419 (2014)

9. Papadakis, N., Bugeau, A., Caselles, V.: Image editing with spatiograms transfer.
IEEE TIP 21(5), 2513–2522 (2012)

10. Papadakis, N., Provenzi, E., Caselles, V.: A variational model for histogram trans-
fer of color images. IEEE TIP 20(6), 1682–1695 (2011)
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Abstract. We introduce the generalized Pareto distributions as a statis-
tical model to describe thresholded edge-magnitude image filter results.
Compared to the more common Weibull or generalized extreme value dis-
tributions these distributions have at least two important advantages, the
usage of the high threshold value assures that only the most important
edge points enter the statistical analysis and the estimation is computa-
tionally more efficient since a much smaller number of data points have
to be processed. The generalized Pareto distributions with a common
threshold zero form a two-dimensional Riemann manifold with the metric
given by the Fisher information matrix. We compute the Fisher matrix
for shape parameters greater than -0.5 and show that the determinant of
its inverse is a product of a polynomial in the shape parameter and the
squared scale parameter. We apply this result by using the determinant
as a sharpness function in an autofocus algorithm. We test the method
on a large database of microscopy images with given ground truth focus
results. We found that for a vast majority of the focus sequences the
results are in the correct focal range. Cases where the algorithm fails are
specimen with too few objects and sequences where contributions from
different layers result in a multi-modal sharpness curve. Using the geom-
etry of the manifold of generalized Pareto distributions more efficient
autofocus algorithms can be constructed but these optimizations are not
included here.

1 Introduction

Analyzing the statistical properties of images is a fundamental problem in vision
science and low-level image and signal processing. In vision science one is analyz-
ing the properties of biological vision systems and their relation to the statistical
properties of their environment. A typical technical example is transform cod-
ing in which correlations between different pixels or color channels are used to
reduce the size of image files. Very often non-parametric models and numeri-
cal values like the empirical means and variances are used. In the cases where
parametric models are available it is possible to use the additional information
to design more effective processing methods, for example to control the system.

c© Springer International Publishing Switzerland 2015
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In the case of image data a popular class of distributions are the Weibull dis-
tributions which are used to describe the distribution of the magnitude values
of the results of difference based filtering. They have been used to analyze nat-
ural image statistics and in [14] it was shown how models based on the Weibull
distributions can be used to construct autofocus algorithms. In [9] it was shown
how the more general class of generalized extreme value distributions (GEV)
can be used for auto-focusing in automated microscopy. In this paper we will
use the same database of microscope images as in [9] but we will show how to
use the class of generalized Pareto distributions (GPD) instead of the GEVs.
The first advantage of this approach is related to a threshold step involved in
the distribution fitting. In practice the measured data always follows a mixture
distribution, where the majority of the data has very low-values and usually the
GEVs are fitted to thresholded data. In the case of the GEVs one wants to use a
low threshold so that only the low-level part of the mixture is eliminated but the
GEV part is well represented. The GPDs define the distribution of the data over
a relatively high threshold and the data entering the fitting consists therefore
only of the tail of the data following the GEV. Another advantage of GPD-based
methods is computational efficiency. Practically the GEVs distribution is fitted
to the data by a maximum likelihood estimation which in turn is numerically an
optimization procedure. In the case of image data the number of measurement
points is very large and the distribution fitting very slow. Using the GPD model
is much more efficient since the optimization uses only a relatively small number
(we often use five percent) of the datapoints.

In the following we will first give a brief overview over the low-level filter
systems used. These filters are based on the representation theory of the dihe-
dral group D(4), the symmetry group of the square grid. It can be shown that
the resulting filters filter vectors transform like the underlying data under the
dihedral transforms, that (under fairly general conditions) they are good approx-
imations to the eigenvectors obtained by principal component analysis and that
there are fast implementations similar to the discrete Fourier transform (more
details can be found in [8,10]).

Next we summarize some results describing the relation between the GEVs
and the GPDs and compute the Fisher matrix and its determinant for the GPD.
The (inverse) of the determinant of the Fisher matrix as later used as a sharpness
function in the auto-focus application. A heuristical motivation for using the
determinant as a sharpness measure is based on the observation that the Fisher
information matrix describes the local geometry on the manifold of the GPD
distributions. Now consider the visual change of the a defocused image under
a change of the focal plane of the camera. Intuitively the appearance will not
change too much since the image was blurred from the beginning. Now if the
image was in focus and we change the focal plane either before or after the
correct focal plane then the appearance will change more than in the previous
case. The position with the best focal position should therefore correspond to
a critical point in the focus sequence. The hypothesis is that this behavior is
somehow reflected in the properties of the statistical distributions.
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Computing the determinant of the GPDs shows that it is the product of two
factors, one depending only on the shape parameter and one only depending
on the scale parameter. The scale part motivates a popular choice to use the
variance as a sharpness function. Using the GPD-model provides an extra term
given by the shape. It shows that estimates based on distributions with small
(negative) shape parameters are not very reliable since most of the information
is located in datapoints with very small filter responses. In the experimental part
of the paper we describe first the database of microscopy images used and then
we summarize the results of our experiments which show that the tails of the
distributions contain sufficient information for the auto-focus application.

2 Dihedral Filters

Almost all digital images are functions defined on a square grid. The symme-
try group of this grid is the dihedral group D(4) consisting of eight elements,
four rotations and for rotations combined with one reflection on a symmetry
axis of the square. The first step in low level image processing is often a linear
filtering and results from the representation theory show that filter functions
given by the irreducible representations of the group D(4) are eigenfunctions of
group-invariant correlation functions and thus principal components, they share
the transformation properties of D(4) and they are computationally very effi-
cient since they can be implemented using a reduced number of additions and
subtractions only. The two-dimensional irreducible representation corresponds
to a pair of gradient filters. In the following we will only use filter kernels of
size 5 × 5 pixels. We divide the 5 × 5 window in so-called orbits which are the
smallest D(4) subsets. There is one orbit consisting of the center pixel, four
orbits consisting of four points each (located on the axes and the corners of a
square) and one orbit with the remaining eight points. This results in six pairs
of filter results given by pairs of filter kernels of the form (in Matlab notation)
[−1 − 1; 11] and [1 − 1;−11]. The lengths of the corresponding two-dimensional
filter vectors is invariant under all transformations of the underlying symmetry
group. In the following we will only consider the lengths of these filter vectors
and ignore the orientation information contained in the relative size of the two
components of the vectors. More details can be found in [7,8].

3 Extreme Value and Pareto Distributions

For most pixels in an image the filter response to such a filter pair will be very
small since neighboring pixels usually have similar intensity values and posi-
tions with large filter responses are most interesting. The statistical distribution
of such edge-type filter systems has previously been investigated in the frame-
work of the Weibull- or more generally in the framework of the generalized
extreme value distributions (GEV) (see, for example [3,4,6,12–14]). From the
construction of the filter functions follows that the filter results follow a mixture
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distribution consisting of near-zero filter results and the distribution of the sig-
nificant edge magnitude values. This means that a threshold process is required
before the extreme value distributions can be fitted. This can be avoided if we
use the generalized Pareto distributions instead of the generalized extreme value
distributions. The following selection of results from the theory of extreme value
distributions may give a heuristic explanation why these distributions may be
relevant in the current application.

The Three Types Theorem (originally formulated by Fisher and Tippett [2]
and later proved by Gnedenko [5]) states the following: if we have an i.i.d.
sequence of random variables X1,X2 . . . and if Mn = max(X1,X2 . . . Xn) is
the sample maximum then we find that if there exists (after a suitable renormal-
ization) a non-degenerate limit distribution then this limit distribution must be
of one of three different types. These types are known as the Gumbel-, Weibull-
and Frechet distributions. One can combine these three distributions in a single
generalized extreme value distribution (GEV). In the following we basically use
the maximum likelihood estimators from the Matlab Statistical toolbox and we
will therefore also use the definition and notations used there. The probability
density function of the GEV is defined as

f(x; k, μ, σ) =
1
σ

e−(1+k x−μ
σ )−1/k

(

1 + k
x − μ

σ

)−1−1/k

where μ is the location, σ is the scale- and k is the shape parameter. In our
implementation we don’t consider the distributions with k = 0 since we assume
that in the case of real measured data we will encounter this case relatively sel-
dom. Related to the GEV-distributions are the generalized Pareto distributions
with probability density functions defined as

f(x; k, μ, σ, θ) =
1
σ

(

1 + k
x − θ

σ

)−1−1/k

where k and σ are again the shape and scale and θ is the threshold parameter.
For positive k the support of the distribution is given by the half-axis θ < x < ∞
and for negative k by θ < x < −k/σ. It was shown in [11] that the GPDs are
obtained as limit distributions of thresholding over some high threshold (instead
of the maximum value as in the GEV case).

Both the GEV and the GPD depend on three parameters. In our application
we are only interested in the shape and the scale of the GPD since the location
parameter is given by the threshold parameter. Therefore we consider the GPD
as a class of distributions depending on the two parameters k, σ. For these dis-
tributions we can compute the 2×2 Fisher information matrix G(η) = (gkl) with
elements gkl and parameters η1 = k, η2 = σ defined as

gkl =
∫

x

∂ log f(x; η)
∂ηk

∂ log f(x; η)
∂ηl

f(x; η) dx (1)

For the GPD we used Mathematica to compute the following entries:

g11 =
2

2k2 + 3k + 1
; g12 =

1
2k2σ + 3kσ + σ

; g22 =
1

(2k + 1)σ2
(2)
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Fig. 1. Generalized Pareto distributions

For the inverse of the determinant of the Fisher information matrix we find the
simple expression (see Fig. 1b for a plot of S):

S(k, σ) = 1/det G(k, σ) = (k + 1)2(2k + 1)σ2 = s(k) · σ2

We see that this sharpness function consists of two factors, the shape factor s(k)
and the squared scale factor σ2. The scale factor corresponds to the often used
variance-based sharpness functions but the new shape term s(k) gives extra
information about the reliability of the scale-estimate. For low values of k the
distribution is concentrated on finite intervals near zero, indicating a very weak
edge content. For high values of s(k) the tails become more significant and the
sharpness estimate more reliable. The density functions of the three GPDs with
parameters θ = 0, σ = 1, k = −0.4, 0.1, 4 are shown in Fig. 1a

4 Database and Implementation

In our experiments we use the microscopy images from set BBBC006v1 in the
Broad Bioimage Benchmark Collection which is described in [1]. The images are
available at http://www.broadinstitute.org/bbbc/BBBC006. The database contains
52224 images from 384 cells, measured at two positions and prepared with two
different types of staining. For each position and each cell a focus sequence
consisting of 34 images was recorded. Each image consists of 696 × 520 pixels
in 16-bit TIF format. The images show stained human cells and the imaging
process is described as follows: For each site, the optimal focus was found using
laser auto-focusing to find the well bottom. The automated microscope was then
programmed to collect a z-stack of 32 image sets. Planes between z = 11 - 23 are
considered ground truth as in-focus images.

As mentioned above we first filtered an image with dihedral filters of size
5 × 5. Since these filters basically express the 25-dimensional vectors in a new
basis we get as a result a sequence of 25 filtered images. These filter results
come in different types characterized by their transformation properties under

http://www.broadinstitute.org/bbbc/BBBC006
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the operations in D(4) (as given by the irreducible representations of D(4)).
Here we only consider those filter results that are invariant under all transfor-
mations (corresponding to the trivial representation, consisting of the sum of the
pixel values on an orbit) and edge-type filter pair results (corresponding to the
two-dimensional irreducible representation). A 5 × 5 grid consists of six orbits
(with one, four and eight elements) and after the filtering we first select only
those points for further processing where the value at the center pixel (one pixel
orbit) is greater than the mean value of the pixels on the other orbits (recall
that the images are fluorescent microscope images where object points act as
tiny light sources). In this way only positions with a local maximum intensity
value are entering the statistical estimation. For these points we now select the
twelve components of the filter results that transform like the two-dimensional
representation of D(4) and we compute the length of this vector as a measure
of the ‘edge’ strength in this point. In the group representation framework the
length of this subvector should be computed as the usual Euclidean norm but we
usually use the sum of the absolute values instead. This is faster and the results
are comparable. For these length values we compute the Q-quantile and select
all samples with a value greater than this quantile. A typical value for Q is 0.95,
so that about 5 % of the selected local maxima points enter the GPD-fitting
process. From the selected data we compute the minimum value θ and shift the
data by subtracting θ. Next we use the Matlab function gpfit which implements
a maximum-likelihood estimator. For the first image in a focus sequence we
use the standard startvalues in the optimization process and for the following
images we use the result of the previous fitting as start values, thus reducing
the execution time of the computationally intensiv fitting process. For every
focus sequence we selected the image with the maximum value of the inverse
determinant as the detected optimal focal plane.

5 Results

In the procedure described above there is only one parameter the user can choose:
the Q-value of the quantile based threshold parameter. A typical value we used
is Q=0.95. We first analysed for how many sequences the detected focal plane
lies in the range z = 11 - 23 defined as the ground truth. There are 4·384 = 1536
sequences and the number of wrong estimates (per combination of site/well) are
collected in Table 1.

Analyzing the cases where this global estimation process gives results out-
side the ground truth interval of slices 11 to 23 we can roughly distinguish the
following types of errors. The first case consists of cases where the distribution

Table 1. Detected focal planes outside the ground truth interval

Type 1 staining Type 2 staining

31 20
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Fig. 2. Detected focal planes

fitting did not converge. This is typically the case for images with very little
useful information, i.e. slices containing very few object points. In the second
case the fitting was successful but the value of the estimated shape parameter
was very low and the estimate is therefore not very reliable. Also in this case the
number of useful object points was very small. In the third case we find multiple
maxima of the sharpness function. Usually the first one lies in the ground truth
interval but the second maximum comes later in the sequence. Visual inspection
shows that this is often the case when high intensity cells lie in layers above or
below the ‘correct’ focal plane. Such cases could be excluded when the search
process found the first significant maximum in the sharpness function (Fig. 2).

6 Conclusions

We used two fundamental results from the theory of extreme value distributions
to select the GPDs as statistical models for the edge-like filter magnitudes over
a high threshold. Removing the influence of the threshold parameter (defined by
the quantile of the measured filter magnitudes of an image) we obtain distribu-
tions in the two-parameter manifold of GPDs with fixed location parameter. For
this manifold we computed the Fisher information matrix describing the local
geometry of this manifold. We then introduced the determinant of the inverse
of the Fisher matrix as a sharpness function and showed that for a vast major-
ity of sequences the autofocus process detected one of the slices in the ground
truth focal region. The cases where it missed the correct region where either
characterized by poor data quality or multiple maxima detection caused by con-
tributions from neighboring slices. The results obtained show that GPD-based
models provide enough information for the control of autofocus procedures. The
form of the determinant clarifies the role of the shape of the distribution and
the variance in the determination of the focal plane. As a by-product we also
gain additional computational efficiency since most of the pixels do not enter the
sharpness computation. Another advantage of parametric models is the fact that
they provide information about the analytical form of the sharpness function.
This can be use in the construction of faster optimization methods where the
sequence of an already measured set of parameters controls the step-length of
the microscopes focus mechanism before the next image is collected.
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Abstract. We study barycenters in the Wasserstein space Pp(E) of a
locally compact geodesic space (E, d). In this framework, we define the
barycenter of a measure P on Pp(E) as its Fréchet mean. The paper
establishes its existence and states consistency with respect to P. We
thus extends previous results on R

d, with conditions on P or on the
sequence converging to P for consistency.

Keywords: Barycenter · Wasserstein space · Geodesic spaces

1 Introduction

The Fréchet mean of a Borel probability measure μ, defined on a metric space
(E, d), as the minimizer of

x �→ Ed2(x,X),X ∼ μ

provides a natural extension of the barycenter as it coincides on R
d with the

barycenter
∑n

i=1 λixi of the points (xi)1≤i≤n, with weights (λi)1≤i≤n if

μ =
n∑

i=1

λixi.

Its existence is a straightforward consequence of the local compactness of a
geodesic space (E, d) when assumed. But it is not obvious in more general cases.

Mimicking the Fréchet mean, for any p ≥ 1, we define a p-barycenter (or
simply a barycenter) of a measure μ, as any minimizer of x �→ Edp(x,X), where
X ∼ μ.

The Wasserstein space Pp(E) of a locally compact geodesic space (E, d) is
the set of all Borel probability measure on (E, d) such that Edp(x,X) < ∞,
for some x ∈ E, endowed with the p-Wasserstein metric defined between two
measures μ, ν as

W p
p (μ, ν) = inf

π∈Γ (μ,ν)

∫

dp(x, y)dπ(x, y), (1)

c© Springer International Publishing Switzerland 2015
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where Γ (μ, ν) is the set of measures on E ×E with marginals μ and ν. Since the
Wasserstein space of a locally compact space geodesic space is geodesic but not
locally compact (unless (E, d) is compact), the existence of a barycenter is not
as straightforward.

This paper presents its existence and study consistency properties. Several
works has already been achieved in this field. An important one is the demon-
stration of existence and uniqueness of the barycenter of measures P on P2(Rd),
with d ∈ N

∗, and P finitely supported on Dirac masses:

P =
n∑

i=1

λiδμi
,

such that μi ∈ Pp(Rd), for 1 ≤ i ≤ n, with one μi vanishing on small sets. In this
case (when the measure P is finitely supported on Dirac masses), the barycenter
of P is also the minimizer of

ν �→
∑

i = 1nλiW
p
p (ν, μi),

which is how the problem is more classically posed.
This vanishing property is said to be satisfied for a probability measure

if it gives probability 0 to sets of Hausdorff dimension less than d − 1. Any
measure absolutely with respect to the Lebesgue measure vanishes on small
sets. This work of [AC] has been extended to compact Riemannian manifolds,
with the condition to vanish on small sets being replaced by absolute continuity
with respect to the volume measure by [KP]. Since the Wasserstein space of
a compact space is also compact, the existence in this setting can be easily
obtained, but their work provides, among other results, an interesting extension,
to our concern, to the work of [AC], by showing a dual problem called the
multidimensional problem, for any P of the form

n∑

i=1

λiδμi
.

The same dual problem has been used in a previous work to show existence of
barycenter whenever there exists a measurable (not necessarily unique) barycen-
ter application on (En, dn) that associate the barycenter of

∑n
i=1 λiδxi

to every
n-uplets (x1, ..., xn). It is a first step toward the proof of existence of barycenter
for any P.

Two statistical problems arise from the notion of barycenter. The first one
can be stated as follows. Given (μi)i≥1, and (λJ

j )1≤j≤J , it would be useful that
the (or any) barycenter of PJ =

∑J
j=1 λJ

j δμj
converges to a barycenter of a limit

measure of the sequence (PJ )J≥1. [BK] studied this problem in the case where
(μj)j≥1 have compact support, are absolutely continuity with respect to the
Lebesgue measure and are indexed on a compact set Θ of Rd. They state more
precisely that given a probability measure on Θ, one can induce a probability
measure P on Pp(Rd), and if the (μj)j≥1 are chosen randomly under P

⊗∞, the
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(unique) barycenter of 1
J

∑
j=1 δμj

converges to the barycenter of P, P-almost
surely.

In a previous work [BLGL], the authors produced a similar result under the
assumptions that the (μj)j≥1 are admissible deformations, which is a similar
condition.

The second statistical problem rising from this framework is the following.
Given (λi)i≥1 and (μn

j )1≤j≤J converging to some (μj)1≤j≤J , a question of our
interest is whether the barycenter of

∑J
j=1 λjδμn

j
converges to a barycenter of

the limit (μj)1≤j≤J . The problem has been answered positively in [BLGL], up to
a subsequence, since the barycenter is not unique. Although these two problems
are presented differently, they can be formulated into one problem. Does the (or
any) barycenter of Pn converges to the barycenter of P when Pn converges to P?

This paper presents a positive result of [LGL], that implies, in particular,
existence of the barycenter for any Borel probability measure P ∈ Pp(Pp(E)).

2 Existence of Barycenter

Let (E, d) be a geodesic locally compact space. For any p ≥ 1, define by Pp(E)
the Wasserstein space of E, by the space of all Borel probability measures such
that for all x ∈ E, Edp(x,X) < ∞, endowed with the Wasserstein metric defined
in (1). Denote thus by Pp(Pp(E)) the p-Wasserstein space of Borel measures on
Pp(E) endowed with the Wasserstein metric.

For a measure P ∈ Pp(Pp(E)), we define a barycenter as a minimizer of the
function

μ �→ E(W p
p (μ̃, μ)),

where μ̃ ∼ P. Remark that E(W p
p (μ̃, μ)) = W p

p (P, δμ) where the two notations
Wp refer to the Wasserstein distance but on different spaces respectively Pp(E)
and Pp(Pp(E)).

Then [LGL] proves the following result.

Theorem 1. Let P ∈ Pp(Pp(E)) be a measure on Pp(E). Then there exists a
barycenter of P.

This result is a consequence of the existence of barycenter for P finitely sup-
ported, showed in [BLGL] or [LG], and the consistency result of [LGL] presented
above.

3 Consistency of the Barycenter

Since the barycenter is not necessarily unique for a given P, the continuity of the
barycenter with respect to P does not make sense. However, it is interesting to
know for a sequence of measure (Pn)n≥1 ⊂ Pp(E) converging in Pp(Pp(E)) to
P, a sequence of their barycenter converges to a barycenter of P. [LGL] provides
a positive answer.
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Theorem 2. Let (Pn)n≥1 ⊂ Pp(Pp(E)) be a sequence of measures on Pp(E),
and set μn a barycenter of Pn, for all n ∈ N. Suppose that Wp(P,Pn) → 0. Then,
the sequence (μn)n≥1 is compact in Pp(E) and any limit is a barycenter of P.

Proof (Main ideas). The proof is in three steps.
The first step is to show that the sequence (μn)n≥1 is tight. It is indeed a

consequence of the fact that balls on (E, d) are compact together with applying
a Markov inequality to these balls.

The second step uses Skorokhod representation theorem and lower semicon-
tinuity of ν �→ Wp(μ, ν) for any μ, to show that any weak limit of the sequence
(μn)n≥1 is a barycenter of P.

The final step shows that the convergence of the (μn)n≥1 holds actually in
Pp(E).

Applying this result to a constant sequence provides the following corollary.

Corollary 1. The set of all barycenters of a given measure P ∈ Pp(Pp(E)) is
compact.

An interesting and immediate corollary follows from the assumption that P

has a unique barycenter.

Corollary 2. Suppose P ∈ Pp(Pp(E)) has a unique barycenter. Then for any
sequence (Pn)n≥1 ⊂ Pp(Pp(E)) converging to P, any sequence (μn)n≥1 of their
barycenters converges to the barycenter of P.

On E = R
d and for p = 2, there exists a simple condition that ensures that

the barycenter is unique.

Proposition 1. Let P ∈ P2(P2(Rd)) such that there exists a set A ∈ P2(Rd) of
measures such that for all μ ∈ A,

B ∈ B(Rd),dim(B) ≤ d − 1 =⇒ μ(B) = 0, (2)

and P(A) > 0, then, P admits a unique barycenter.

Proof. It is a consequence of the fact that if ν satisfies (2), then μ �→ W2(μ, ν)
is strictly convex and this so is μ �→ EW 2

2 (μ, μ̃).

4 Statistical Applications

Previous results imply that the two statistical problems mentioned in the intro-
duction have positive answers. Define

PJ =
J∑

i=1

λJ
i δμj
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with measure μj ∈ Pp(E) and weights λj so that PJ converges to some measure
P, then Theorem 2 states that the barycenter (or any barycenter if not unique)
of PJ converges to the barycenter of P (provided P has a unique barycenter).

Also, given

Pn =
J∑

j=1

λjδμn
j

with positive weights λj and measures (μn
j )1≤j≤J,n≥1 ⊂ Pp(E)J converging to

some limit measures (μj)1≤j≤J ∈ Pp(E)J, then, Theorem 2 states that the
barycenter (or any if not unique) converges to the barycenter of

∑J
j=1 λjδμn

j

(if unique). These applications are further developed in [LGL].
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Abstract. Univariate L-moments are expressed as projections of the
quantile function onto an orthogonal basis of univariate polynomials.
We present multivariate versions of L-moments expressed as collections
of orthogonal projections of a multivariate quantile function on a basis
of multivariate polynomials. We propose to consider quantile functions
defined as transports from the uniform distribution on [0; 1]d onto the
distribution of interest and present some properties of the subsequent
L-moments. The properties of estimated L-moments are illustrated for
heavy-tailed distributions.

1 Motivations and Notations

Univariate L-moments are either expressed as sums of order statistics or as
projections of the quantile function onto an orthogonal basis of polynomials
in L2([0; 1],R). Both concepts of order statistics and of quantile are specific to
dimension one which makes non immediate a generalization to multivariate data.

Let r ∈ N∗ := N\{0}. For an identically distributed sample X1, ...,Xr on R,
we note X1:r ≤ ... ≤ Xr:r its order statistics. It should be noted that X1:r, ...,Xr:r

are still random variables.
Then, if E[|X|] < ∞, the r-th L-moment is defined by:

λr =
1
r

r−1∑

k=0

(−1)k

(
r − 1

k

)

E[Xr−k:r]. (1.1)

If we use F to denote the cumulative distribution function (cdf) and define the
quantile function for t ∈ [0; 1] as the generalized inverse of F i.e. Q(t) = inf{x ∈
R s.t. F (x) > t}, this definition can be written:

λr =
∫ 1

0

Q(t)Lr(t)dt (1.2)

where the Lr’s are the shifted Legendre polynomials which are a Hilbert orthog-
onal basis for L2([0; 1],R).

L-moments were introduced by Hosking [6] in 1990 as alternative descrip-
tors to central moments for a univariate distribution especially for the study of
heavy-tailed distributions. They have some properties that we wish to keep for
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-25040-3 13
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the analysis of multivariate data. Serfling and Xiao [8] listed the following key
features of univariate L-moments which are desirable for a multivariate general-
ization:

– The existence of the r-th L-moment for all r if the expectation of the under-
lying random variable is finite

– A distribution is characterized by its infinite series of L-moments (if the expec-
tation is finite)

– A scalar product representation with mutually orthogonal weight functions
(Eq. (1.2))

– Sample L-moments are more stable than classical moments, increasingly with
higher order: the impact of each outlier is linear in the L-moment case whereas
it is in the order of (x − x̄)k for classical moments of k order

Serfling and Xiao proposed a multivariate extension of L-moments for a vector
(X1, ...,Xd)T , based on matrices built from the conditional distribution of Xj

given Xi for all (i, j) ∈ {1, ..., d}2. The coefficients of their L-moment matrices
are defined through Eq. (1.2) for diagonal elements and for i �= j through

λ(ij)
r =

∫ 1

0

Qj|i(tj |Qi(ti))Lr(ti)dtidtj (1.3)

where Qj|i(.|x) is the conditional quantile of Xj knowing Xi = x.
Their definition satisfies most of the properties of the univariate L-moments,

but for the characterization of the multivariate distributions by the family of its
L-moments. We generalize their approach by a slightly shift in perspective.
Indeed, we define L-moments as projections of a multivariate quantile onto an
orthogonal polynomial basis. As multivariate quantile, we will consider a trans-
port of the uniform measure on [0; 1]d onto the measure of interest (see for
example Galichon and Henry [4]). Let us recall that T is said to be a transport
map between μ and ν if T#μ = ν i.e. if

ν(B) = μ(T−1(B)) for every Borel subset B of Rd (1.4)

Let us now introduce some notation. In the following, we will consider a random
variable or vector X with measure ν and d= means the equality in distribution.
The scalar product between x and y in R

d will be noted x.y or 〈x, y〉.
All proofs of presented results can be found in a longer version [2,3].

2 General Definition of Multivariate L-Moments

Let X be a random vector in R
d. We wish to exploit the representation given

by the Eq. (1.2) in order to define multivariate L-moments. Recall that we chose
quantiles as mappings between [0; 1]d and R

d.
Let α = (i1, ..., id) ∈ N

d be a multi-index and Lα(t1, ..., td) =
∏d

k=1 Lik(tk)
(where the Lik ’s are univariate shifted Legendre polynomials) the natural mul-
tivariate extension of the Legendre polynomials. Indeed, it holds
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Lemma 1. The Lα family is orthogonal and complete in the Hilbert space
L2([0; 1]d,R) equipped with the usual scalar product:

∀f, g ∈ L2([0; 1]d), 〈f, g〉 =
∫

[0;1]d
f(u).g(u)du (2.1)

We can finally define the multivariate L-moments.

Definition 2. Let Q : [0; 1]d → R
d be a transport between the uniform distribu-

tion on [0; 1]d and ν. Then, if E[‖X‖] < ∞, the L-moment λα of multi-index α
associated to the transport Q are defined by:

λα :=
∫

[0;1]d
Q(t1, ..., td)Lα(t1, ..., td)dt1...dtd ∈ R

d. (2.2)

With this definition, there are as many L-moments as ways to transport unif
onto ν. For example, if we consider Rosenblatt transport, Definition (2.2) coincide
with Serfling and Xiao L-moment matrices (see [3]).

Remark 3. Given the degree δ of α = (i1, ..., id) that we define by δ =
∑d

k=1(ik−
1) + 1, we may define all L-moments with degree δ, each one associated with a
given corresponding α leading to the same δ.

For example, the L-moment of degree 1 is

λ1(= λ1,1,...,1) =
∫

[0;1]d
Q(t1, ..., td)dt1...dtd = E[X]. (2.3)

The L-moments of degree 2 can be grouped in a matrix:

Λ2 =

[∫

[0;1]d
Qi(t1, ..., td)(2tj − 1)dt1...dtd

]

1≤i,j≤d

. (2.4)

In Eq. (2.3) we noted Q(t1, ..., td) =

⎛

⎜
⎝

Q1(t1, ..., td)
...

Qd(t1, ..., td)

⎞

⎟
⎠.

Proposition 4. Let ν and ν′ be two Borel probability measures. We suppose
that Q and Q′ respectively transport unif onto ν and ν′.

Assume that Q and Q′ have same multivariate L-moments (λα)α∈Nd∗ given
by the Eq. (2.2).

Then ν = ν′. Moreover:

Q(t1, ..., td) =
∑

(i1,...,id)∈Nd∗

(
d∏

k=1

(2ik + 1)

)

L(i1,...,id)(t1, ..., td)λ(i1,...,id) ∈ R
d

(2.5)
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3 Monotone Transport from the Standard Gaussian
Distribution and Associated L-Moments

3.1 Monotone Transport

Let us define the particular monotone transport. We consider source measures
μ that give no mass to “small sets”. For a precise definition of the term “small
set”, we use the Hausdorff dimension (see [7]). It then holds

Proposition 5 (McCann/Brenier’s Theorem). Let μ, ν be two probability mea-
sures on R

d, such that μ does not give mass to sets of Hausdorff dimension at
most d − 1. Then, there is exactly one measurable map T such that T#μ = ν
and T = ∇ϕ for some convex function ϕ, in the sense that any two such maps
coincide dμ-almost everywhere.

The gradient of convex potentials are called monotone by analogy with the uni-
variate case. We can see this gradient as the solution of a potential differential
equation. By abuse of language, we will refer at this transport as monotone
transport in the sequel.

3.2 Gaussian L-Moments

The major drawback of the uniform law on [0; 1]d is its non-invariance by rotation
which is a desirable property in order to more easily compute the monotone
transports. We then propose a transport leading to the following L-moments:

λα =
∫

[0;1]d
T0 ◦ QN (t1, ..., td)Lα(t1, ..., td)dt1...dtd (3.1)

where QN is the transport of unif , the uniform distribution on [0; 1]d, onto the
multivariate standard distribution N (0, Id) defined by

QN (t1, .., td) =

⎛

⎜
⎝

N −1(t1)
...

N −1(td)

⎞

⎟
⎠

and T0 the transport of N (0, Id) onto the considered distribution:

([0; 1]d, du)
QN→ (Rd, dN ) T0→ (Rd, dν) (3.2)

Indeed, T0 ◦ QN is then a transport of unif onto the considered distribution.

Example 6 (L-moments of multivariate Gaussian).
Let us consider m ∈ R

d, a positive matrix A and the convex quadratic potential:

ϕ(x) = m.x +
1
2
xT Ax for x ∈ R

d. (3.3)
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The monotone transport associated to this potential is:

T0(x) = ∇ϕ(x) = m + Ax for x ∈ R
d. (3.4)

Furthermore, T0(Nd(0, Id))
d= Nd(m,AT A). The L-moments of a multivariate

Gaussian of mean m and covariance AT A are:

λα =
∫

[0;1]d
[m + ANd(t1, ..., td)] Lα(t1, ..., td)dt1...dtd

= 1α=(1,...,1)m + 1α�=(1,...,1)Aλα(Nd(0, Id))

with the notation λα(Nd(0, Id)) denoting the α-th L-moments of the standard
multivariate Gaussian, which is easy to compute since it is a random vector with
independent components.

In particular, the L-moment matrix of degree 2:

Λ2 = (λ2,1...,1 . . . λ1,...,1,2) =
1√
π

A. (3.5)

Example 7 (Linear combinations of independent variables).
Let (e1, ..., ed) be an orthonormal basis of Rd and (b1, ..., bd) the canonical basis.
We consider the potential defined by:

ϕ(x) =
d∑

i=1

σiϕi(xT ei) (3.6)

with each function ϕi derivable and convex and σi > 0. Then

∇ϕ(x) =
d∑

i=1

σiϕ
′
i(x

T ei)ei (3.7)

Then, if we denote by P =
∑d

i=1 eib
T
i and D =

∑d
i=1 σibib

T
i , this potential

generates the random vector

Y
d= PT D

⎛

⎜
⎝

ϕ′
1(X

T e1)
...

ϕ′
d(X

T ed)

⎞

⎟
⎠. (3.8)

Let us note that P is orthogonal i.e. PPT = PT P = Id and D is diagonal.
As e1,...,ed is an orthonormal family, XT e1, ...,X

T ed are independent
Gaussian random variables. Then if we write the increasing functions ϕ′

i(x) =
Qi(N1(x)) with Qi the quantile of a random variable Zi, then

Y
d= PT

⎛

⎜
⎝

σ1Z1

...
σdZd

⎞

⎟
⎠ (3.9)
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with Z1,...,Zd independent. The parameters σi are meant to represent a scale
parameter for each Zi but can be absorbed in the function ϕ′

i.
The L-moments of Y are then for α ∈ N

d
∗:

λα = PT D

⎛

⎜
⎝

∫
Rd ϕ′

1(〈x, e1〉)Lα(Nd(x))dNd(x)
...∫

Rd ϕ′
d(〈x, ed〉)Lα(Nd(x))dNd(x))

⎞

⎟
⎠

4 Estimation of a Monotone Transport

Let x1, ..., xn be an iid sample drawn from a common measure ν. We present the
construction of the monotone transport of an absolutely continuous measure μ
defined on R

d with finite expectation onto νn =
∑n

i=1 δxi
. If μ is the standard

Gaussian measure on R
d, the resulting transport is an estimate of the transport

of N (0, Id) onto ν.

4.1 Discrete Monotone Transport

For this purpose, we will present a variational approach initially proposed by
Aurenhammer [1]. Let φh : Rd → R be the piecewise linear function defined by

for any u ∈ R
d, φh(u) = max

1≤i≤n
{u.xi + hi}. (4.1)

Theorem 8. (see [5]) Let us suppose that x1, ..., xn are distinct points of Rd.
Then ∇φh is piecewise constant and is a monotone transport of μ onto νn

for a particular h = h∗, unique up to a constant (b, ..., b), which is the minimizer
of an energy function E

h∗ = arg min
h∈Rn

E(h) = arg min
h∈Rn

∫

Rd

φh(u)dμ − 1
n

n∑

i=1

hi. (4.2)

The gradient of the energy function is simply given by:

∇E(h) =

⎛

⎜
⎝

∫
W1(h)

dμ(x) − 1
n

...∫
Wn(h)

dμ(x) − 1
n

⎞

⎟
⎠. (4.3)

with (Wi(h))1≤i≤n a collection of sets (called power diagram) defined by

Wi(h) = {y ∈ R
d s.t. ∇φh(y) = xi}.

The computation of optimal h∗ can then be performed by a gradient descent:

ht+1 = ht − γ∇E(ht).

Moreover, in order to compute the gradient of E for the standard Gaussian, we
use a Monte-Carlo method.



Multivariate L-Moments Based on Transports 115

(a) Voronoi cells of the sample (b) Power diagram corresponding to
the optimal transport (the transport
maps each cell into one sample i.e. is
piecewise linear)

Fig. 1. Discrete optimal transport for a sample of size 100 drawn from a Gaussian

distribution with covariance

(
1 0.8

0.8 1

)
into the standard Gaussian

4.2 Consistency of the Optimal Transport Estimator

We define two transports, say T and Tn expressed as the gradient of two convex
functions, say ϕ and ϕn, so that T = ∇ϕ and Tn = ∇ϕn.

T and Tn respectively transport μ onto ν and νn. Let us recall that, if μ =
N (0, Id), we defined the quantiles of ν and νn by Q = T ◦QN and Qn = Tn ◦QN
(Fig. 1).

Theorem 9. If ν satisfies
∫ ‖x‖dν(x) < +∞, then

‖T − Tn‖1 =
∫

Ω

‖T (x) − Tn(x)‖dμ(x) a.s.→ 0. (4.4)

Moreover, we have for α ∈ N
d
∗

λ̂α =
∫

Ω

Qn(u)Lα(u)du
a.s.→ λα =

∫

Ω

Q(u)Lα(u)du (4.5)

5 Numerical Applications

We will present some numerical results for the estimation of L-moments issued
from the monotone transport. For that purpose, we simulate a linear combination
of independent vectors in R

2

Y = P

(
Z1

Z2

)

with P =
1√
2

(−1 1
1 1

)
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Table 1. Second L-moments and covariance numerical results for ν = 0.5

n = 30 n = 100

Parameter True value Mean Median CV Mean Median CV

Λ2,11 0.38 0.28 0.27 0.30 0.38 0.37 0.18

Λ2,12 0.19 0.14 0.13 0.65 0.20 0.20 0.33

Σ11 0.69 0.70 0.48 1.23 0.69 0.59 0.55

Σ12 0.55 0.55 0.29 1.62 0.54 0.47 0.67

Z1, Z2 are drawn from a symmetrized Weibull distribution of shape parameter
ν and scale parameter 1.

We perform N = 100 estimations of the second L-moment matrix Λ2 and the
covariance matrix Σ for a sample of size n = 30 or 100. We present the results
in Table 1 through the following features

– The mean of the different estimates
– The median of the different estimates
– The coefficient of variation of the estimates θ̂1, ..., θ̂N (for an arbitrary para-

meter θ)

CV =

(
∑N

i=1

(
θi − 1

N

∑N
i=1 θi

)2
)1/2

1
N

∑N
i=1 θi

Table 1 illustrates the fact that the L-moment estimator are more stable than
classical covariance estimates for heavy-tailed distributions. The effects should be
even more visible for moments of higher order. However, our sampled L-moments
introduces a bias for small n contrary to classical empirical covariance.

Acknowledgements. This work was performed during the PhD of A. Decurninge
supported by the DGA/MRIS and Thales.
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Abstract. In this work, we propose a fast and simple approach to obtain
a spherical parameterization of a certain class of closed surfaces without
holes. Our approach relies on empirical findings that can be mathemati-
cally investigated, to a certain extent, by using Laplace-Beltrami Oper-
ator and associated geometrical tools. The mapping proposed here is
defined by considering only the three first non-trivial eigenfunctions of
the Laplace-Beltrami Operator. Our approach requires a topological con-
dition on those eigenfunctions, whose nodal domains must be 2. We show
the efficiency of the approach through numerical experiments performed
on cortical surface meshes.

Keywords: Riemannian manifold · Laplace-Beltrami Operator · Sur-
face parameterization · Nodal domains

1 Introduction

Spherical parametrization of 3D closed (genus-0) meshes is a classical approach
in computer graphics for texture mapping, remeshing and morphing [11]. Neu-
roimaging data analysis is an important field of applications since representing
the brain as a closed surface is increasingly popular in the community, in line
with the specific advantages for e.g. visualization and inter-subjects mapping [5].
Several works [1,7] translated most recent methodological advances from com-
puter graphics to brain mapping, and put emphasis on two properties that are
particularly desirable in this field [8]: the spherical parameterization must be
fold-free to ensure the validity of neuroimaging data analysis that rely on the
spherical representation, and computationally efficient in order to be applicable
to large number of individual meshes whose sub-milimetric resolution involves
typically more than 100 K vertices.

In this work, we propose a fast and simple approach to obtain a spherical
parameterization of a certain class of genus 0 surfaces. Our approach is a par-
ticular case of the one defined by Bérard in [3], by considering only the three
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first non-trivial eigenfunctions of the Laplace-Beltrami Operator. A comparable
approach has also been proposed in [8] but implies to solve a highly non linear
partial differential equation. We note also an empirical approach based on the
spatial regularity of the first eigenfunctions in [10]. We complement these papers
with preliminary theoretical contributions, which echo with empirical findings
that make it very appealing for neuroimaging studies. In particular, our con-
tributions support the C∞ diffeomorphic nature of our mapping, under specific
condition on the considered surface. We show through numerical experiments
performed on 138 cortical surface meshes that this condition is systematically
met in practice. Moreover, the resulting mapping is computed in few seconds
and almost diffeomorphic with less than 1% of folded triangles on average.

2 Background and Main Results

We recall first classical results on Spectral theory and Laplace-Beltrami eigen-
functions. The interested reader can refer to [12].

2.1 Laplace-Beltrami Eigenfunctions

Definition 1. Given (M, g) a compact 2-Riemannian manifold without bound-
ary, denoting x(p) = (x1, x2) a local coordinate system, i.e. a local diffeomor-
phism M → R

2 around a point p, the Laplace-Beltrami operator acting on C∞

functions is

Δf =
1

√
det(g)

∑

i,j

∂xj

(√
det(g)gi,j∂xi

f
)

(1)

Remark 1. In the applications M will be a closed surface in R
3 and the metric

g will correspond to the euclidean inner product.

If we consider the eigenvalue problem:

Δf = −λf (2)

we know that it has eigenvalues 0 = λ0 < λ1 ≤ λ2... and corresponding eigen-
functions Φ1, Φ2, ... (See Fig. 1 for a visual intuition of some Φi). The eigenfunc-
tions are orthogonal in the sense of the scalar product < u, v >M =

∫
M uvdμ,

where the volume form dμ is given by
√

det(g)dx1dx2.

Definition 2. Given an eigenfunction Φ of the Laplace-Beltrami Operator, we
call nodal set the set of points where Φ vanishes. We denote it N(Φ) in the
following. The nodal domains correspond to the connected components of the
complementary of the nodal set.

We have some qualitative results on the nodal domains of eigenfunctions:
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Theorem 1 (Courant’s Nodal Domain Theorem). The number of nodal
domains for the n-th eigenfunction is inferior or equal to n + 1.

There is a global result on the dimension of nodal sets when M is a 2-manifold:

Theorem 2 (S.H. Cheng [4]). Except on a closed set of points, the nodal set
of an eigenfunction Φ is a C∞ 1-manifold, i.e. a line in our applications.

Last we recall the Green formula for an open set D ∈ M that will be of great
use in the following:

∫

D

ΦΔΨdμ = −
∫

D

g(∇Φ,∇Ψ)dμ +
∫

∂D

Φ(∇Ψ · n)dμ̃ (3)

dμ̃ is the induced metric on the boundary. For simplicity, we use the notation ·
instead of the riemannian metric g(., .) and remove the volume forms in the
following.

Fig. 1. From left to right: eigenfunctions Φ1, Φ2 and Φ3. Colormap goes from blue
(negative) to red/yellow (positive). Each nodal sets are in green (Color figure online).

2.2 Main Conjecture

Based on empirical findings we suggest the following result, which allows to
define a natural spherical parameterization:

Conjecture 3. Let M be a genus zero surface in R
3. Let Φ1, Φ2 and Φ3 be

three orthogonal eigenfunctions of the Laplace-Beltrami operator. We assume
they have only two nodal domains. Then the mapping

Φ : M −→ S
2

p �−→ (√
Φ1(p)2 + Φ2(p)2 + Φ3(p)2

)−1(
Φ1(p), Φ2(p), Φ3(p)

)

is well defined and it is a C∞ diffeomorphism.

Remark 2. The orthogonality condition is more general than assuming different
eigenvalues and allows applying the conjecture on the sphere itself. In that case
Φ is exactly the identity (up to a multiplicative constant). Namely, given a point
p and its spherical coordinates p = (sin θ cos φ, sin θ sin φ, cos θ), a choice of three

first normalized eigenfunctions is
√

3
4π cos θ,

√
3
4π sin θ cos φ and

√
3
4π sin θ sin φ.
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Remark 3. The mapping Φ is a particular case of the mapping Φλ : M → S
N(λ)

proposed by Pierre Bérard in [3] where N(λ) is the number of eigenvalues inferior
to λ. But it is important to note that the proper definition of Φ is easier in
[3] when λ is large enough because the denominator is guaranteed to never
vanish. It was also shown that Φλ is an embedding for λ large enough. In our
case the restrictions on the topology of the eigenfunctions could guarantee the
diffeomorphic aspect for only 3 eigenfunctions.

Remark 4. We first proposed a sketch of proof for the injectivity of Φ by using
properties of the mapping F : p → (

Φ1(p), Φ2(p), Φ3(p)
)
. In particular, we used

the formula ΔF(p) = 2H(p)N(p) linking laplacian of coordinates and mean cur-
vature for hypersurfaces, combined with ΔF = (−λ1Φ1,−λ2Φ2,−λ3Φ3). But it
is important to see that the first formula holds if Δ is the Laplace-Beltrami oper-
ator of F(M) (provided it is a submanifold !) which makes the second equation
not true anymore.

Nevertheless our initial flaw was at the origin of experimental observations
that yield the conjecture:

Conjecture 4. With the previous notations and hypotheses, F(M) is a genus-
zero surface whose mean curvature has a constant sign.

3 Preliminary Results

Our initial strategy to tackle the first conjecture was:

– to prove first that intersection points of two nodal sets exist, thanks to global
arguments.

– to characterize those intersections in terms of the angle between the two iso-
lines (equivalently the gradient of the eigenfunctions), by using local results on
eigenfunctions. That sort of results are known for auto-intersection of nodal
sets.

Those two first steps would allow a correct definition of the mapping Φ but the
diffeomorphic aspect remains the most difficult part.

Proposition 1. Let M be a genus zero surface in R
3. We consider two eigen-

functions Φ and Ψ with only two nodal domains and different associated eigen-
values. Then their nodal sets have at least one intersection point.

Proof. Let λ and λ′ be the two eigenvalues associated to Φ and Ψ . Since Φ and Ψ
have two nodal domains, their nodal sets divide M in two parts respectively. If
we assume that N(Φ) ∩ N(Ψ) = ∅, we have a partition of M in three connected
domains D1, D2, D3 and the two nodal sets (of measure 0).
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where

D1 = {p|Φ(p) > 0, Ψ(p) > 0}
D2 = {p|Φ(p) > 0, Ψ(p) < 0}
D3 = {p|Φ(p) < 0, Ψ(p) < 0}

The figure on the right provides a schematic
illustration of the configuration. Inspired by
this figure, we define B = D2 and use the
Green formula in two different ways:

λ

∫

B

ΦΨ =
∫

B

−ΨΔΦ =
∫

B

∇Ψ · ∇Φ −
∫

∂B

Φ
(∇Ψ · n)

λ′
∫

B

ΦΨ =
∫

B

−ΦΔΨ =
∫

B

∇Ψ · ∇Φ −
∫

∂B

Ψ
(∇Φ · n)

to obtain
(λ′ − λ)

∫

B

ΦΨ =
∫

∂B

Φ
(∇Ψ · n) −

∫

∂B

Ψ
(∇Φ · n)

(4)

The boundary ∂B equals N(Φ) ∪ N(Ψ). On N(Φ) (resp. N(Ψ)) we have Φ = 0
(resp. Ψ = 0) and on N(Ψ) (resp. N(Φ)) we have also ∇Ψ ·n = 0 (resp. ∇Φ·n = 0)
since N(Ψ) is a level set of Ψ (resp. Φ). Then the two integrals in the right term
of (4) vanish which leads to

∫
B

ΦΨ = 0. It is a contradiction since both Φ and Ψ
have a constant sign on B. �

Remark 5. We can find simple examples where this proposition fails when the
nodal domains are more than 2. For very elongated ellipsoids the second and
third eigenfunctions have respectively 3 and 4 nodal domains. Numerical simu-
lations (not shown here) revealed that the three first eigenfunctions have isolines
that are all parallel and nodal sets have no intersection points.

Remark 6. It is probably harder to find examples of surfaces for which there is
only one intersection point. This singular configuration implies a colinearity of
∇Φ and ∇Ψ at the crossing point. Conversely if there is no colinearity at an
intersection point, one can intuitively conclude that there is at least a second
intersection point by an argument à la Jordan.

Next our initial attempt to characterize the local behavior at the intersection
point followed ideas exposed in [4]. In particular Theorem 2.5 says that when the
nodal lines of a given eigenfunction meet, they form an equiangular system. The
proof relies on local approximations of solutions of elliptic partial differential
equations close to the origin in the C∞ case thanks to a theorem by Lipman
Bers. Nevertheless this strategy appeared to be too general in our case and we
were not able to obtain a relationship linking angle between nodal sets of two
eigenfunctions and other quantities such as the local mean curvature, even if
numerical computations may reveal interesting behaviors (see Fig. 3 right).
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4 Experimental Results

Data. We implemented our approach on 138 triangular meshes of cortical sur-
faces from the OASIS database that were segmented through FreeSurfer software.
The number of vertices ranges from 106914 to 167230 vertices. Laplace-Beltrami
eigenfunctions were computed through a variational formulation of Equation (2)
and a discretization with Finite Element Methods [6]. On Fig. 1 we displayed
the three first eigenfunctions and the nodal set in green for a given surface. We
observed that the three first eigenfunctions had only 2 nodal domains (yellow
and blue in each case). The codes were implemented in MATLAB on a Mac with
a 2.6 GHZ processor. CPU time ranges from 3.76 s to 6.71 s.

Diffeomorphic Aspects. On Fig. 2 we illustrated our approach for a brain mesh
at left on which the mean curvature was computed following [6] and was repre-
sented as an image. The surface F(M) was represented on the middle with the
initial curvature. The orientation followed the one of the brain at left. On the
right we showed the sphere Φ(M) and the inital mean curvature with the same
orientation as previously.

Next we verified that for all the meshes, the number of nodal domains of
the three first non-trivial eigenfunctions were exactly 2. We evaluated the num-
ber of flipped faces in percentage, ranging from 0.008% to 7.01% (average:
0.29 ± 0.7%). Figure 4 left showed an example of such faces and we observed
that they correspond to local defects in the mesh, probably affecting a proper
approximation of eigenfunctions.

Fig. 2. Left: Cortical surface M and its mean curvature. Colormap goes from blue
(negative) to red/yellow (positive). Middle: F(M). Right: spherical surface with the
initial curvature (Color figure online).

Reproducibility. On Fig. 3 left and middle we represented the intersection points
of the 3 first nodal sets for all the meshes superimposed in the Talairach space,
a classical reference system in neuroimaging. We observed first that those inter-
section points are only 6 for each brain and secondly that they are consistently
distributed in 3D. This result is of course related to the stability of the first
eigenfunctions across the different brains and is more directly interpretable by
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looking at points than functions. On Fig. 3 right we displayed the distribution of
angles between nodal sets. The distribution is unimodal in one case (intersection
of Φ1 and Φ3) and bimodal for the other cases.

Distorsions. Finally we obtained evaluations of geometric distorsions through
angular errors and relative error on lengths across all the meshes (Fig. 4 middle
and right). Those errors are discrepencies between the values measured on the
initial mesh and on the spherical representation. Even if the errors are larger
than for methods that explicitly minimize distorsions [1,5], the average values
are of the same order of magnitude.

Fig. 3. Left and middle: The 6 intersection points of the 3 first nodal sets for all the
meshes superimposed in the Talairach space. A slightly transparent cortical mesh is
shown to illustrate the reproducibility. Right: Distribution of angles between nodal sets
of 1st and 2nd, 1st and 3rd, 2nd and 3rd eigenfunctions. On the three figures the colors
are matched (Color figure online).

Fig. 4. From left to right: Examples of flipped triangles in green, distributions of angu-
lar error (in degree) and relative error on distances (%) (Color figure online).

5 Discussion and Perspectives

In this work we have proposed a spherical mapping with preliminary mathe-
matical and empirical results in favor of a C∞ diffeomorphic property. Cortical
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surfaces were very suitable in our case because they satisfy the property pro-
posed in our mathematical part, with a number of nodal domains equal to 2. In
practice we obtained (a limited number of) flipped faces due to mesh irregular-
ities. Moreover the computation time was 5 s in average, which outperforms the
recent approach in [8]. Our approach offers a correct stability across a group of
brain shapes, in the sense that interesting features such as intersection of nodal
sets are quite consistent. Our mapping is probably suboptimal when it comes
to match brain meshes with respect to strategies using more eigenfunctions [10].
Nevertheless our method would be very appropriate for a faster initialization of
a spherical mapping instead of a Gauss map and Tutte map [7]. It can also be
used “on the fly” for extensive simulations [9].

We could try to generalize our results for any kind of spherical mesh by
looking for eigenfunctions associated to larger eigenvalues in the spectrum, with
only 2 nodal domains. But there is no guarantee that there exist 3 eigenfunctions
of this kind. We could think also to possible extensions for manifolds of higher
dimension. In [2] results have been obtained to bound the embedding dimen-
sion of Laplacian eigenfunctions map thanks to Ricci curvature and injectivity
radius. A topological condition on the number of nodal domains could produce
complementary views on this question.
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9. Lefèvre, J., Intwali, V., Hertz-Pannier, L., Hüppi, P.S., Mangin, J.-F., Dubois, J.,
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Abstract. Usual statistics are defined, studied and implemented on
Euclidean spaces. But what about statistics on other mathematical
spaces, like manifolds with additional properties: Lie groups, Quotient
spaces, Stratified spaces etc? How can we describe the interaction between
statistics and geometry? The structure of Quotient space in particular is
widely used to model data, for example every time one deals with shape
data. These can be shapes of constellations in Astronomy, shapes of
human organs in Computational Anatomy, shapes of skulls in Palaeon-
tology, etc. Given this broad field of applications, statistics on shapes
-and more generally on observations belonging to quotient spaces- have
been studied since the 1980’s. However, most theories model the vari-
ability in the shapes but do not take into account the noise on the obser-
vations themselves. In this paper, we show that statistics on quotient
spaces are biased and even inconsistent when one takes into account the
noise. In particular, some algorithms of template estimation in Computa-
tional Anatomy are biased and inconsistent. Our development thus gives
a first theoretical geometric explanation of an experimentally observed
phenomenon. A biased estimator is not necessarily a problem. In statis-
tics, it is a general rule of thumb that a bias can be neglected for example
when it represents less than 0.25 of the variance of the estimator. We
can also think about neglecting the bias when it is low compared to the
signal we estimate. In view of the applications, we thus characterize geo-
metrically the situations when the bias can be neglected with respect to
the situations when it must be corrected.

Introduction

In Quantum Field theory, one can roughly consider a relativistic quantum field
of quarks as a function from space-time to the space of colors: φ : R4 �→ C

3.
The function φ associates to each point of space-time an elementary particle:
the quark living in the space of colors. The space of quarks fields carries a right
action of the group of symmetry of space-time and a left action of the group of
quark symmetry. These group actions represent what does not change the laws
of Physics.

In Computational Anatomy when we study anatomical shapes, we encounter
the same mathematical structures [4]. In others words, we have often two groups
acting on the same anatomical object φ respectively on the right and on the left.
These group actions represent what does not change the shape of the object.
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 130–139, 2015.
DOI: 10.1007/978-3-319-25040-3 15
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A first example is a set of K anatomical landmarks [7,10], which is a function
from the space of labels to the real 3D space: φ : [1, . . . , K] �→ R

3. In this case, the
manifold M of landmarks sets carries a right action of the group of permutations
of the labels and a left action of the group of rotations and translations of the 3D
space SE(3). Relabeling the landmarks, or rotating and translating the whole
set of landmarks, does not change the anatomical shape described. A second
example is a 1D-signal [9] which is a function: φ : [0, 1] �→ R. The manifold M
of 1D-signals carries a right action of the group of diffeomorphisms of [0, 1]: this
action represents the reparameterizations of the signal, which do not change its
shape. A third example is a parameterized surface, or more generally immersed
submanifold, in R

d [3] which is a function: φ : N �→ R
d. The manifold M of

parameterized surfaces (resp. of immersed submanifolds) carries a right action of
the group of diffeomorphisms of N and a left action of the group of rotations and
translations of the R

d space SE(d) (poses). Again, reparameterizing, rotating or
translating the surface or the submanifold does not change its shape.

The anatomical data that we observe belong to the manifold M. We are
interested in the statistical analysis of their shapes. The corresponding shape
data now belong to a quotient space Q, which is the manifold M quotiented
by the group actions that leave the shape invariant. Thus we perform statistics
on Q rather than on M, even if the data originally belong to M. But Q not a
differentiable manifold in the general case. To be more precise, Q is a manifold
with singularities or a stratified space.

Statistics on quotient spaces or shape spaces Q have been studied since the
1980’s. Regarding shapes of landmarks, the theory has been first introduced by
Kendall [8]. Regarding shapes of curves one can refer to [6,9] and, in the more
general setting of manifold quotiented by isometric group actions, to [5]. In all
cases when one performs statistics on shape spaces, the estimation of the mean
shape is central. A way of doing it is via parametric statistical estimation. By
doing so, studies model the variability in the shapes of the objects (meaning that
they assume some variability in Q) and the variability in reparameterization or
in objects pose (meaning that they assume some variability in the “orbit” of the
group actions).

However, the effect of noise on the objects themselves (which is a noise in the
ambient manifold M) has not been thoroughly investigated yet. The noise on the
objects in M exists as it comes from imperfect measure instruments or human
lack of precision, for example while positioning the landmarks on a medical
image. Usual estimators were proven to be consistent in the theory without
noise. But experiments have shown that they have bias and even inconsistency
in the presence of noise [2]. For example, the standard estimator of the mean
shape of the data, the Fréchet mean computed in the quotient space with the
max-max algorithm, is biased and even inconsistent. This bias is experimentally
observed and shows to be dependent on the noise level. But it is not theoretically
understood so far. There is a need of an extended statistical theory on quotient
spaces that takes the noise into account and quantifies the induced bias.
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This paper is a first step in this direction. We suggest a geometric interpre-
tation of the usual estimator of the mean shape. It enables to show that noise on
the observations in M induces bias on the estimator in Q. We work in the case
where the observations belong to a finite dimensional flat manifold M, which is
quotiented by a proper isometric action of a finite dimensional Lie group G. We
describe how the bias on the statistical estimator is controlled by the geometry
of the quotient space Q, in particular by its singularities at the scale of the noise.
Even if we work in finite dimension, we provide the intuition of the behavior for
infinite dimension.

In the first section, we present notions of differential geometry on quotient
spaces. In the second section, we present the statistical framework and the geo-
metric interpretation of the estimator usually computed. In the third section,
we demonstrate the geometric origin of the bias on this estimator. In the fourth
section, we show explicit computations of the bias for the case of Rm quotiented
by SO(m), which is the common example of finite dimensional flat manifold
quotiented by the isometric action of a finite dimensional Lie group.

1 Differential Geometry of Quotient Spaces Q
We consider M a finite dimensional flat Riemannian manifold and G a finite
dimensional Lie group. For more details on this section, we refer to [1,13,14].

Basis on Quotient Spaces. A Lie group action of G on M is a differentiable
map ρ : G×M � (g,X) �→ g·X ∈ M, such that e·X = X and g′·(g·X) = (g′g)·X.
If G ×M � (g,X) �→ (g ·X,X) ∈ M×M, is a proper mapping, i.e. if the inverse
image of every compact is compact, the action is proper. If dρg : TXM → Tg·XM
with ρg = ρ(g, .) leaves the metric of M invariant, the action is isometric. We
only consider proper isometric actions.

The orbit of X ∈ M is defined as OX = {g · X | g ∈ G}. The orbit of X
represents all the points that can be reached by moving X through the action
of G. The isotropy group of X, also called the stabilizer of X, is defined as
GX = {g ∈ G | g ·X = X}. The stabilizer of X represents the elements of G that
fail at moving X. The orbit OX is a submanifold of M and the stabilizer GX is
a Lie subgroup of G. They are related by the orbit-stabilizer theorem as follows:
OX ∼ G/GX . The orbits form a partition of M and the set of orbits is called
the quotient space Q = M/G. Because the action is proper, Q is Hausdorff and
inherits a Riemannian structure from M. This is precisely why we consider a
proper action.

The isotropy groups GX and GX′ of elements X and X ′ in the same orbit
are conjugate groups in G. This property enables to define the orbit type of an
orbit as the conjugacy class (H) of the isotropy groups of its elements. From
the orbit-stabilizer theorem, we observe that a “large” orbit leads to a “small”
isotropy group, so a “small” orbit type. The smallest orbit type is called the
principal orbit type. The corresponding largest orbits are called principal orbits.
In contrast, non principal orbits are called singular orbits. The corresponding
points in Q are called singularities. The action of G on M is said to be free if there
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Principal strata

Singular Strata

Manifold M = R
2 Quotient space Q = R+

principal orbits
singular orbit singularity

Group action
of SO(2)

Fig. 1. Stratification and foliation of M and stratification of Q for M = R
2 quotiented

by the action of SO(2) so that Q = R
2/SO(2) = R+ (Color figure online).

is no singular orbits. In this case, Q has no singularities and is a differentiable
manifold. Otherwise Q is a manifold with singularities.

We investigate how the singular orbits are distributed in M, or equiva-
lently how the singularities are distributed in Q. The partition of M into
orbits is a singular Riemannian foliation called the canonical foliation of M.
We can gather the orbits of same orbit type (H) and define M(H) = {X ∈
M| GX conjugate to H}. The decomposition of M into the connected compo-
nents of the M(H) is a stratification called the orbit type stratification of M. In
this stratification, the principal type component is open and dense.

The decomposition of Q into the corresponding components Q(H) = M(H)/G
also forms a stratification, whose principal type component is also dense. Thus,
singularities are “sparsely distributed” in Q in the sense that they are of null
Lebesgue measure.

These foliation and stratifications are illustrated in Fig. 1 in the case of M =
R

2 quotiented by the action of SO(2) so that Q = R
2/SO(2) = R+. We use this

2D example throughout the paper as it is convenient for the illustrations. But
of course, the theory applies to the general case.

Orbits as immersed submanifolds. An orbit O is an immersed submanifold
in M, i.e. a differentiable manifold together with an immersion I : O �→ M.
We identify O with I(O) and we denote TXO, resp. NXO, the tangent space,
resp. the normal space with respect to the metric of M, of O at X. The first
fundamental form of O is defined to be the induced metric on O, i.e. the pull-
back of the ambient (flat) metric of M by I. The second fundamental form of O
is the quadratic form h defined by TXO × TXO � (u, v) �→ h(v, w) = (∇uw)⊥ ∈
NXO, where ∇ is the Levi-Civita connection on M and (∇vw)⊥ the orthogonal
projection on NXO.

We can write O locally around X as the graph G of a smooth function from
TXO to NXO. Let Z be a point on O near X. On TXO we parameterize Z,
and thus O, by its Riemannian Logarithm z = LogX(Z). The coordinates in
TXO are labeled with i, j, the coordinates in NXO are labeled with a, b. Locally
around X, and equivalently around z = 0, we have the graph equation of O:

Ga(z) = −1
2
ha

ij(0)zizj + O(|z|3) (1)
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where we use Einstein summation convention: there is an implicit sum on indices
that are repeated up and down. The second fundamental form h at 0 is thus the
best approximation of O around X as the graph of a quadratic function. It
quantifies the external curvature of O in M.

Here we have considered a fixed orbit O. But later in the paper we will
consider different orbits. As the space of orbits is by definition the quotient
space Q, we will label the orbits by the corresponding point in Q. So we will
write Oy for y ∈ Q. We will thus have expressions such as ha

ij(y, 0), for the
second fundamental form of the orbit represented by y.

2 Geometric Interpretation of the Template Estimation

Here we interpret the statistical template estimation in Computational Anatomy
with the quotient space framework. Such an estimation is usually parametric. It
means that we assume a parametric model that has produced the observations,
in our case: the anatomies. The (parametric) statistical estimation amounts to
infer the parameters of the model from the observations, in our case: infer the
template, or the mean anatomical shape, from the observed anatomies.

More precisely, one usually assumes that there is an underlying probability
density of anatomical shapes, i.e. a probability density on Q, whose mean is
called the template. We consider here the simplest generative model with a dirac
distribution in Q, i.e. no variability in shapes y ∼ δ(y0). Here y0 is the template.
As we do not observe the anatomical shapes in Q, but rather the anatomies in
M, one has to model the poses of the shape. One usually assumes that there is
a probability density in the orbits. We assume here a uniform distribution on
the orbits, i.e. maximal variability in poses: z ∼ U(O). Finally, we model the
noise on the observations by a Riemannian Gaussian in M with isotropic noise
σ: x ∼ NM ((y,z), σ) [12]. As we have an isometric action and a isotropic noise,
this whole generative model is equivalent to the even simpler one: y ∼ δ(y0) and
z ∼ δ(z0) and x ∼ NM ((y0, z0), σ).

Figure 2 illustrates the geometric picture for the generative model. The green
dot in Q = R+ is the template, or the mean shape. The green circle in M = R

2 is
the orbit of y0. We choose the pose z0 on this orbit to get the anatomical object

y ∼ δ(y0) z ∼ δ(z0) x ∼ N ((y0, z0), σ)

2σ

y0

On Q On M Noisy observations on M

(y0, z0)

Fig. 2. Geometric interpretation of the three steps of the generative model (Color figure
online).
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Registration of the observations Fréchet mean of the registered observations

From M to Q Biased statistics on Q

y0 ŷ0

Fig. 3. Geometric interpretation of the two steps of the statistical estimation (Color
figure online).

represented by the black dot x0 = (y0, z0) on the green circle. The observed
anatomical objects are noisy observations of (y0, z0). They are represented by
the black triangles generated by the bivariate Gaussian of isotropic noise σ.

The goal of the statistical estimation is to compute an estimator ŷ0 of the tem-
plate y0. A standard method is the max-max algorithm with unimodal approx-
imation, whose two steps can be geometrically interpreted as follows. First, the
registration step amounts to the projection of the observations in Q. Then, one
computes the Fréchet mean ŷ0 (a generalization of the notion of mean in Rie-
mannian manifolds) of the observations in Q in order to estimate y0.

Figure 3 illustrates the geometric picture for the estimation. First, the obser-
vations are registered: the triangle follows the black curve on their orbits (blue
circles) in order to be “projected” on Q = R+. Ultimately, the Fréchet mean is
computed from the projected triangles on Q = R+.

The algorithm produces an estimator ŷ0 of y0. How good is this estimator?
To answer this question, we can study its unbiasedness and its consistency. We
generalize the usual definitions on linear spaces to Riemannian manifolds. Thus,
the bias of an estimator ŷ0, relative to the parameter y0 it is designed to esti-
mate, is defined as: Biasy0 [ŷ0] = Logy0

(Ey0 [ŷ0]), where Log is the Riemannian
logarithm. An unbiased estimator has null bias. A consistent estimator converges
in probability to the estimator is designed to estimate, as the number of obser-
vations increases. We show that ŷ0 is biased and inconsistent as an estimator
of y0.

3 Geometric Foundations of Bias and Inconsistency

We consider observations in M generated with the probability density F of our
model. We show that they are equivalent to observations in Q generated with a
probability density f which we compute.

The probability density on M writes as follows: F (x) = 1
C exp(−d2

M(x,x0)
2σ2 )

where C is the normalizing constant. We write Oy for the orbit corresponding
to y ∈ Q. For an isometric action we have: dM(x) = dOy(x)dQ(y). Thus the
probability of having an observation x projecting within the interval of quotient
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coordinates [y, y + dy] is: P(y ∈ [y, y + dy]) =
∫ y+dy

y

(∫
Oy

F (x)dOy(x)
)

dQ(y).
By taking dy → 0, we have the induced probability density of the quotient space:

f(y) =
∫

Oy

F (x)dOy(x) =
1
c

∫

Oy

exp(−dM(x, x0)2

2σ2
)dOy(x) (2)

To compute an approximation of the density f , we make the assumption that
the noise is low, i.e. σ << 1. The low noise assumption enables to use Taylor
expansions in the orbit coordinates and then integrate in Oy locally on the ball
By = B(x0, σ) ∩ Oy ⊂ Oy. To this aim, we introduce momenta defined for the
uniform measure μy(z) of the ball By as:

M
i1...ip
Oy,p =

∫

Oy

zi1 . . . zipμ(dz) =
∫

By

zi1 . . . zipdz (3)

We get in coordinates centered at y0 ∈ Q:

f(y) =
1

2σ2
exp(−yaya

2σ2
)
(
MOy,0 + S(y)ijM

ij
Oy,2 + O(|MOy,3|)

)
(4)

where: Sij(y) = −δij + yaha
ij(y, 0) + 1

2ha
ki(y, 0)ha

kj(y, 0).

The probability density f on Q differs from a normal distribution because
of the y-dependent term: MOy,0 + S(y)ijM

ij
Oy,2 + O(|MOy,3|). This term can be

interpreted as a Taylor expansion of the bias with respect to the local geometry
of the orbits. The first order of the bias is MOy,0 and corresponds to the area of
By, i.e. the area of Oy seen at the scale of the noise. The second order of the bias
is S(y)ijM

ij
Oy,2 and we recognize a contraction of the second momentum with

the matrix S(y) that depends on the external curvature of Oy. We expect the
higher order terms to be also such contractions between higher order momenta
and higher order derivatives of the external curvature of the orbits.

The expectation of f on the ball B(y0, σ) ⊂ Q computed at the tangent space
of the mean shape Ty0Q gives: Logy0

(ŷ0)a =
∫

B(y0,σ)
yaf(y)dQ(y). We recognize

the bias of the estimator ŷ0 in the case of an infinite number of observations. It
differs from 0 because the f distribution on Q is not symmetric. Because we are
in the case of an infinite number of observations, this also shows the inconsistency
of the estimator ŷ0. Given the expression of f , we see that bias and inconsistency
depend on the external curvature of the orbits and its first derivatives at the scale
of the noise. As the external curvature of orbits generally increases when we
approach singularities [11], the nearer we are from a singularity of Q, the larger
is the bias. All in all, when one performs usual statistics on Q from observations
on M, the singularities in Q induce bias and inconsistency.

4 An Illustration on the Quotient Q = R
m/SO(m)

We consider the case R
m quotiented by SO(m), which is a common example of

a finite dimensional flat manifold quotiented by an isometric Lie group action.
We perform the computations globally without the low noise assumption.
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Generating observations in M = R
m with a multivariate normal law and

then projecting to Q = R+ is equivalent to generating observations directly in
Q with the following probability density:

fm(y) =
21−m/2

σmym−1
exp(−y2 + y0

2

2σ2
) 0F̃1(

m

2
,
y2y0

2

4σ2
) (5)

where 0F̃1 is a regularized hypergeometric function. Figure 4 shows that an
increase in the noise σ induces that the expectation of f is shifted away from y0.
The expectation is precisely the estimator ŷ0 for the case of an infinite number of
observations. Thus we see the bias increasing with the noise level. We also note
that the probability density and therefore the bias depend on the dimension m.
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Fig. 4. Induced distributions on Q = R+ for m = 3 and noise level σ = 0.3 (left) and
σ = 3 (right). In green, the original mean. In red, the estimator of the mean (Color
figure online).

The expectation of the probability density fm on the quotient R+ is Em(α) =
y0.em(α) where α2 = y0

2

2σ2 and em(α) = 1
αΓ (m+1

2 ) 1F̃1(− 1
2 , m

2 ,−α2). Because R+

is linear, the bias writes:

Biasy0(ŷ0) = E[ŷ0] − y0 = y0.(em(α) − 1) = y0.biasm(α) (6)

The function biasm(α) is more precisely the bias of any estimator ŷ0 in units of
the parameter y0 it is designed to estimate. It entirely depends on the variable
α. First, α can be seen as a signal over noise ratio (SNR): we interpret y0 as
the signal we seek to recover. But we can also interpret α geometrically: it is
the ratio of the distance y0 to the singularity 0 of Q = R+ over the noise σ.
The most favorable conditions are when there is no noise with respect to the
signal, or equivalently when we are far away from the singularity at the scale
of the noise: α → ∞. In this case, we have: biasm(α) →

α→∞ 0. In contrast, the
less favorable conditions are when the noise is preponderant with respect to
the signal, or equivalently when we are close to the singularity at the scale of
the noise: α → 0. In this case, we have: biasm(α) →

α→0
∞ and more precisely
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Fig. 5. Bias function of the SNR α (left). Influence of the dimension on the bias (right).

biasm(α) = Γ (m+1
2 )

Γ (n
2 )

1
α + O(α). The plot of bias3 is shown on the left side of

Fig. 5. Moreover, bias increases when we increase the dimension m. The right
side of Fig. 5 shows the minimal ratio α one needs if biasm(α) ≤ 1 is required.
This leads to think that there is bias in infinite dimension!

Conclusion

There is bias in statistics on quotient spaces Q = M/G for noisy observations
in M. For a finite dimensional flat Riemannian manifold M, local computations
at the scale of the noise show that the bias depends on geometric properties of
Q, more precisely on its singularities. Global computations on R

m quotiented by
SO(m) further emphasize that bias cannot be neglected as soon as signal and
noise are of the same order, or equivalently as soon as we are close to a singularity
at the scale of the noise. Additionally, the increase of the bias with the dimension
leads to think that the same phenomenon exists in infinite dimension. Further
developments will involve computations for non flat manifolds together with an
algorithm to correct the bias. Ultimately, one should generalize the study to the
infinite dimensional case.
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7. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective
spaces. Bull. Lond. Math. Soc. 16(2), 81–121 (1984)

8. Kendall, D.G.: A survey of the statistical theory of shape. Stat. Sci. 4(2), 87–99
(1989)

9. Kurtek, S.A., Srivastava, A., Wu, W.: Signal estimation under random time-
warpings and nonlinear signal alignment. In: Advances in Neural Information
Processing Systems 24, 675–683 (2011)

10. Le, H., Kendall, D.G.: The Riemannian structure of Euclidean shape spaces: a
novel environment for statistics. Ann. Stat. 21(3), 1225–1271 (1993)

11. Lytchak, A., Thorbergsson, G.: Curvature explosion in quotients and applications.
J. Differ. Geom. 85(1), 117–140 (2010)

12. Pennec, X.: Intrinsic statistics on Riemannian manifolds: basic tools for geometric
measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006)

13. Postnikov, M.: Geometry VI: riemannian geometry. Encyclopaedia of Mathemati-
cal Sciences. Springer (2001)

14. Small, C.: A survey of the statistical theory of shape. Stat. Sci. (4), 105–108 (1989).
The Institute of Mathematical Statistics



Reparameterization Invariant Metric
on the Space of Curves

Alice Le Brigant1,2(B), Marc Arnaudon1, and Frédéric Barbaresco2

1 Institut Mathématique de Bordeaux, UMR 5251,
Université de Bordeaux and CNRS, Talence, France

alice.lebrigant@gmail.com
2 Thales Air System, Surface Radar Domain, Technical Directorate,

Voie Pierre-Gilles de Gennes, 91470 Limours, France

Abstract. This paper focuses on the study of open curves in a manifold M ,
and its aim is to define a reparameterization invariant distance on the space
of such paths. We use the square root velocity function (SRVF) introduced by
Srivastava et al. in [11] to define a reparameterization invariant metric on the
space of immersionsM = Imm([0,1],M) by pullback of ametric on the tangent
bundle TM derived from the Sasaki metric. We observe that such a natural
choice of Riemannian metric on TM induces a first-order Sobolev metric on
M with an extra term involving the origins, and leads to a distancewhich takes
into account the distance between the origins and the distance between the
image curves by the SRVF parallel transported to a same vector space, with an
added curvature term. This provides a generalized theoretical SRV framework
for curves lying in a general manifoldM .

1 Introduction

Computing distances between shapes of open or closed curves is of interest in many
fields that require shape analysis, from medical imaging to video surveillance, to
radar detection. While the shape of an organ or a human contour can bemodeled by
a closed plane curve, some applications require the manipulation of curves lying in
a non flat manifold, such as S2-valued curves representing trajectories on the earth
or curves in the space of hermitian positive definite matrices, where the values rep-
resent covariance matrices of Gaussian processes. The shape space of planar curves
has been widely studied [1,7,8,13], and the more general setting of shapes lying in
any manifold M has recently met great interest [3,5,12,14]. Here we consider open
oriented curves in a Riemannian manifold M , more precisely the space of immer-
sions c : [0,1]→M ,

M = Imm([0,1],M).

Reparameterizations will be represented by increasing diffeomorphisms φ : [0,1]→
[0,1] (so that they preserve the end points of the curves), and their set is denoted
by Diff+([0,1]). Then, one way to describe a shape is as the equivalence class of all
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the curves that are identical modulo reparameterization, and the shape space as the
associated quotient space,

S = Imm([0,1],M)/Diff+([0,1]).

The formal principal bundle structure π : M → S induces a decomposition of the
tangent bundle TM = VM ⊕HM into a vertical subspace VM = ker(Tπ) con-
sisting of all vectors tangent to the fibers of M over S , and a horizontal subspace
HM = (VM )⊥G defined as the orthogonal complement ofVM according to themet-
ricG that we put on M . We say formal because the manifold structure of the space
Imm([0,1],M) has not yet been thoroughly studied to our knowledge.We require that
G be reparameterization invariant, that is to say that the action of Diff+([0,1]) be iso-
metric forG

Gc◦φ(h ◦φ,k ◦φ)=Gc (h,k), (1)

for any curve c ∈M , reparameterization φ ∈Diff+([0,1]), and infinitesimal deforma-
tions h,k ∈ TcM – h and k can also be seen as vector fields along the curve c inM . If
this property is satisfied, thenG induces a Riemannianmetric Ĝ on the shape space,

Ĝπ(c) (Tcπ(h),Tcπ(k))=Gc (h
H ,kH ),

in the sense that the above expression does not depend on the choice of the repre-
sentatives c, h and k. Here hH ,kH denote the horizontal parts of h and k according
to the previously mentioned decomposition, as well as the horizontal lifts of Tcπ(h)
and Tcπ(k), respectively. The geodesic distances d onM and d̂ onS are then simply
linked by

d̂ ( [c0] , [c1])= inf
{
d

(
c0,c1 ◦φ

) | φ ∈Diff+([0,1])
}
,

where [c0] and [c1] denote the shapes of two given curves c0 and c1. The most nat-
ural candidate for a reparameterization invariant metric G on M is the L2-metric
with integration over arc length, but Michor and Mumford have shown in [6] that
the induced metric Ĝ on the shape space always vanishes. This has motivated the
study of Sobolev metrics [1,2,8], and particularly of a first-order Sobolev metric on
the space of plane curves,

Gc (h,k)=
∫
〈Dsh

⊥,Dsk
⊥〉+ 1

4
〈Dsh

	,Dsk
	〉ds, (2)

where we integrate according to arc length ds = ∥
∥c ′

∥
∥dt and 〈·, ·〉 denotes the euclid-

eanmetric on IR2, Dsh = 1
‖c ′‖h

′ is the derivation of h according to arc length,Dsh	 =
〈Dsh,v〉v is the projection of Dsh on the unit length tangent vector field v = 1

‖c ′‖ c
′

along c, and Dsh⊥ = 〈Dsh,n〉n is the projection of Dsh on the unit length normal
vector field n along c. This particular first-order Sobolevmetric is of interest because
it can be studied via the square root velocity (SRV) framework, introduced by
Srivastava et al. in [11] and used in several applications [4,12]. This framework can be
extended to curves in a general manifold by using parallel transport, in a way which
allows us to move the computations to the tangent plane to the origin of one of the
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two curves under comparison, see [5,14]. In [5] the transformation used is a general-
ization of the SRV function introduced by Bauer et al. in [1] as a tool to study a more
general form of the Sobolev metric (2). In [14] a Riemannian framework is given,
including the associated Riemannian metric and the geodesic equations. While our
approach in this paper is similar, we feel that the distance we introduce here will be
more directly dependent on the “relief” of the manifold, since it is computed in the
manifold itself rather than in one tangent plane as in [5,14]. This enables us to take
into account a greater amount of information on the space separating two curves.

2 NewMetric on the Space of Parameterized Curves

We consider the square root velocity function (SRVF) introduced in [11] on the space
of curves inM ,

R :M → TM , c �→ c ′
√
‖c ′‖

,

where ‖·‖ is the norm associated to the Riemannian metric onM . This function will
allow us to define ametricG onM by pullback of ametric G̃ on TM . First, we define
the following projections from TTM to TM . Let ξ ∈ T(p,u)TM and (x,U) be a curve in
TM that passes through (p,u) at time 0 at speed ξ. Then we define the vertical and
horizontal projections

vp(p,u) : T(p,u)TM → TpM , ξ �→ ξV :=∇x′(0)U ,

hp(p,u) : T(p,u)TM → TpM , ξ �→ ξH := x ′(0).

The horizontal and vertical projections live in the tangent bundle TM and are not to
be confused with the horizontal and vertical parts which live in the double tangent
bundle TTM and will be denoted by ξH , ξV . Furthermore, let us point out that the
horizontal projection is simply the differential of the natural projection TM → M ,
and that according to these definitions, the Sasaki metric [9,10] can be written

gS
(p,u)(ξ,η)= 〈ξH , ηH 〉+〈ξV , ηV 〉 ,

where 〈·, ·〉 is the Riemannianmetric onM . Nowwe can define themetric that we put
on TM . Let us consider h ∈ TM and ξ,η ∈ ThTM . We define

G̃h
(
ξ,η

) = 〈ξ(0)H , η(0)H 〉 +
∫1

0
〈ξ(t )V , η(t )V 〉 dt , (3)

where ξ(t )H = hp(ξ(t )) and ξ(t )V = vp(ξ(t )) are the horizontal and vertical projec-
tions of ξ(t ) ∈ TTM for all t . Then we have the following result.

Proposition 1. The pullback of the metric G̃ by the square root velocity function R is
given by

Gc (h,k)= 〈h(0),k(0)〉+
∫

〈∇sh
⊥,∇sk

⊥〉+ 1

4
〈∇sh

	,∇sk
	〉 ds, (4)
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for any curve c ∈ M and vectors h,k ∈ TcM , where we integrate according to arc
length, ∇sh = 1

‖c ′‖∇c ′h is the covariant derivative of h according to arc length, and

∇sh	 = 〈∇sh,v,v〉v and ∇sh⊥ = ∇sh −∇sh	 are its tangential and normal compo-
nents respectively, if v = 1

‖c ′‖ c
′ is the unit tangent vector field along c in M.

Remark 1. In the case of curves in a flat space,G is the first-order Sobolevmetric (2),
studied in [11], with an added term involving the origins. This extra term guaranties
that the induced distance is always greater than the distance between the starting
points of the curves inM .

Proof. For any c ∈M , and h,k ∈ TcM , the metricG is defined by

Gc (h,k)= G̃R(c) (TcR(h),TcR(k)) .

For any t ∈ [0,1], we have TcR(h)(t )H = h(t ) and TcR(h)V =∇hR(c)(t ). To prove this
proposition, we just need to compute the latter. Let a �→C (a, ·) be a curve inM such
that C (0, ·)= c et ∂aC (0, ·)= h . Then

∇hR(c)(t ) =
1

‖c ′‖1/2∇hc
′ +h

(∥
∥c ′

∥
∥−1/2

)
c ′

= 1

‖∂tC‖1/2∇∂aC∂tC +∂a 〈∂tC , ∂tC 〉−1/4∂tC

= 1

‖∂tC‖1/2∇∂tC∂aC − 1

2
〈∂tC , ∂tC 〉−5/4 〈∇a∂tC , ∂tC 〉 ∂tC

= ∥
∥c ′

∥
∥1/2

(
(∇sh)

⊥+ 1

2
〈∇sh , v〉v

)
,

where in the last step we use again the inversion ∇∂a∂tC =∇∂tC∂aC .

3 Fiber Bundle Structures

Principal Bundle Over the Shape Space. We already know that we have a formal
principal bundle structure over the shape space

π :M = Imm([0,1],M)→S =M /Diff+([0,1]).

which induces a decomposition TM = VM
⊥⊕HM . Just as in the planar case, the

fact that the square root velocity function R verifies the equivariance property

R(c ◦φ)=
√
φ′ (R(c)◦φ)

for all c ∈ M , h,k ∈ TcM and φ ∈ Diff+([0,1]), guaranties that the integral part of
G is reparameterization invariant. Remembering that the reparameterizations φ ∈
Diff+([0,1]) preserve the origins of the curves, we notice thatG is constant along the
fibers, as expressed in Eq. (1), and so there exists a Riemannianmetric Ĝ on the shape
spaceS such that π is (formally) a Riemannian submersion from (M ,G) to (S ,Ĝ)

Gc (h
H ,kH )= Ĝπ(c) (Tcπ(h),Tcπ(k)) ,

where hH and kH are the horizontal parts of h and k respectively.
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Fiber Bundle Over the Starting Points. The special role that plays the starting point
in the metricG induces another formal fiber bundle structure, where the base space
is the manifold M , seen as the set of starting points of the curves, and the fibers are
the set of curves with the same origin. The projection is then

π(∗) :M →M , c �→ c(0).

It induces another decomposition of the tangent bundle in vertical and horizontal
bundles

V (∗)
c M = kerTπ(∗) = {h ∈ TcM |h(0)= 0} ,

H (∗)
c M = (

V (∗)
c M

)⊥G .

Proposition 2. We have the usual decomposition TM = V (∗)M
⊥⊕ H (∗)M , the hori-

zontal bundle H (∗)
c M consists of parallel vector fields along c, and π(∗) is (formally) a

Riemannian submersion for (M ,G) and (M ,〈·, ·〉).

Proof. Let h be a tangent vector. Consider h0 the parallel vector field along c with
initial value h0(0)= h(0). It is a horizontal vector, since its vanishing covariant deriv-
ative along c assures that for any vertical vector l wehaveGc (h0, l)= 0. The difference
h̃ = h−h0 between those two horizontal vectors has initial value 0 and so it is a ver-
tical vector, which gives a decomposition of h into a horizontal vector and a vertical
vector. The definition ofH (∗)M as the orthogonal complement of V (∗)M guaranties
that their sum is direct. Now if k is another tangent vector, then the scalar product
between their horizontal parts is

Gc (h
H ,kH )= 〈hH (0),kH (0)〉c(0) = 〈h(0),k(0)〉c(0) = 〈Tcπ

(∗)(hH ),Tcπ
(∗)(kH )〉π(∗) ,

and this completes the proof.

4 Induced Distance on the Space of Curves

Here we will give an expression for the geodesic distance induced by the metric G .
Let us consider two curves c0,c1 ∈M , and a path of curves a �→ c(a, ·) linking them
inM

c(0, t )= c0(t ), c(1, t )= c1(t ),

for all t ∈ [0,1]. We denote by f (a, ·) = R (c(a, ·)) the image of this path of curves by
the SRVF R. Note that f is a vector field along the surface c in M . Let now f̃ be the
raising of f in the tangent plane Tc(0,0)M in the following way

f̃ (a, t )= Pa,0
c(·,0) ◦Pt ,0

c(a,·)
(
f (a, t )

)
,

where we denote by Ps,t
γ : Tγ(s)M → Tγ(t )M the parallel transport along a curve γ from

γ(s) to γ(t ). Notice that f̃ is a surface in a vector space, as illustrated in Fig. 1. Lastly,
we introduce a vector field (b, s) �→ ωa,t (b, s) in M , which parallel translates f (a, t )
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along c(a, ·) to its origin, then along c(·,0) and back down again, as shown in Fig. 1.
More precisely

ωa,t (b, s)= P0,s
c(b,·) ◦P

a,b
c(·,0) ◦Pt ,0

c(a,·)
(
f (a, t )

)

for all b, s. That way the quantity ∇∂a cω
a,t measures the holonomy along the rectan-

gle of infinitesimal width shown in Fig. 1. For convenience, we will adopt the follow-
ing notations for a vector field ω along a surface a �→ c(a, t )

∇aω :=∇∂a cω, ∇tω :=∇∂t cω.

We can now formulate our result.

Proposition 3. With the above notations, the geodesic distance induced by the Rie-
mannian metric G between two curves c0 and c1 on the space M = Imm([0,1],M) of
parameterized curves is given by

dist(c0,c1)= inf
c

∫1

0

√
∥
∥γ′(a)

∥
∥2+

∫1

0

∥
∥∇a f (a, t )

∥
∥2 dt da,

where γ = c(·,0) is the curve linking the origins, f = R(c) and the norm is the one
associated to the Riemannian metric on M. It can also be written

dist(c0,c1)= inf
c

∫1

0

√
∥
∥γ′(a)

∥
∥2+

∫1

0

∥
∥∂a f̃ (a, t )+Ω(a, t )

∥
∥2

dt da, (5)

where the curvature termΩ is given by

Ω(a, t ) = Pa,0
c(·,0) ◦Pt ,0

c(a,·)
(∇aω

a,t (a, t )
)

= Pa,0
c(·,0) ◦Pt ,0

c(a,·)

(∫t

0
Ps,t
c(a,·)

(
R(∂s c,∂ac)P

t ,s
c(a,·) f (a, t )

)
ds

)
,

ifR denotes the curvature tensor of the manifold M.

Remark 2. Our originalmotivation for this work was to find a geodesic distance (that
is, a distance induced by a Riemannian metric) that resembled the product distance
introduced in [5]. In the first term under the square root of expression (5) we can
see the velocity vector of the curve γ linking the two origins, and in the second the
velocity vector of the curve f̃ linking the TSRVF-images of the curves – Transported
Square Root Velocity Function, as introduced by Su et al. in [12]. However there is also
a curvature term Ω which, as previously mentioned, measures the holonomy along
the rectangle of infinitesimal width shown in Fig. 1. If instead we equip the tangent
bundle TM with the metric

G̃h(ξ,ξ)= ‖ξh(0)‖2+
∫1

0

∥
∥
∥
∥ξv (t )−

∫t

0
Ps,t
c

(
R(c ′,ξh)Pt ,s

c h(t )
)
ds

∥
∥
∥
∥

2

dt ,

for h ∈ TM and ξ,η ∈ ThTM , then the curvature term Ω vanishes and the geodesic
distance onM becomes

dist(c0,c1)= inf
c

∫1

0

√∥
∥γ′(a)

∥
∥2+∥

∥∂a f̃ (a, ·)
∥
∥2 da, (6)
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where the norm of the second term under the square root is the L2-norm, and which
corresponds exactly to the geodesic distance associated to the metric on the space
C=∪p∈ML2([0,1],TpM) introduced by Zhang et al. in [14]. Indeed, if

q(a, t )= Pt ,0
c(a,·)

(
f (a, t )

)= P0,a
c(·,0)

(
f̃ (a, t )

)
,

then a �→ (γ(a),q(a, ·)) is a curve in C, and the squared norm of its tangent vector
according to the metric of [14] is given by

∥
∥γ′(a)

∥
∥2+

∫1

0

∥
∥∇aq(a, t )

∥
∥2 dt

= ∥
∥γ′(a)

∥
∥2+

∫1

0

∥
∥
∥∇a

(
P0,a
c(·,0) f̃ (a, t )

)∥∥
∥
2
dt

= ∥
∥γ′(a)

∥
∥2+

∫1

0

∥
∥∂a f̃ (a, t )

∥
∥2 dt .

The difference between the two distances (5) and (6) resides in the curvature termΩ,
which translates the fact that in the first one, we compute the distance in the mani-
fold, whereas in the second, it is computed in the tangent space to one of the origins
of the curves. Therefore, the first one takes more directly into account the “relief”
of the manifold between the two curves under comparison. For example, if there is a
“bump” between two curves in an otherwise relatively flat space, the second distance
(6) might not see it, whereas the first one (5) will thanks to the curvature term.

Remark 3. Let us briefly consider the flat case : if the manifold M is flat, the two
distances (5) and (6) coincide. If two curves c0 and c1 in a flat space have the same
starting point p, the first summand under the square root vanishes and the distance
becomes the L2-distance between the two image curvesR(c0) andR(c1). If two curves
in a flat space differ only by a translation, then the distance is simply the distance
between their origins.

Proof. Since G is defined by pullback of G̃ by the SRVF R, we know that the lengths
of c inM and of f =R(c) in TM are equal and so that

dist(c0,c1)= inf
c

∫1

0

√
G̃

(
∂a f (a, ·),∂a f (a, ·)

)
da,

with

G̃
(
∂a f (a, ·),∂a f (a, ·)

)= ‖∂ac(a,0)‖2+
∫1

0

∥
∥∇a f (a, t )

∥
∥2 dt .

Now let us fix t ∈ [0,1]. Then a �→ Pt ,0
c(a,·)

(
f (a, t )

)
is a vector field along c(·,0), and so

∇a

(
Pt ,0
c(a,·) f (a, t )

)
= P0,a

c(·,0)

(
∂

∂a
Pa,0
c(·,0) ◦Pt ,0

c(a,·)
(
f (a, t )

)
)
= P0,a

c(·,0)
(
∂a f̃ (a, t )

)
.

We consider the vector field ν along the surface (a, s) �→ c(a, s) that is parallel along
all curves c(a, ·) and takes value ν(a, t )= f (a, t ) in s = t for any a ∈ [0,1], that is

ν(a, s)= Pt ,s
c(a,·)

(
f (a, t )

)
,
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Fig. 1. Illustration of the distance between two curves c0 and c1 in the space of curvesM

for all a ∈ [0,1] and s ∈ [0,1]. That way we know that

∇aν(a, t ) = ∇a f (a, t ),

∇aν(a,0) = P0,a
c(·,0)

(
∂a f̃ (a, t )

)
,

∇sν(a, s) = 0,

for all a, s ∈ [0,1]. Then we can express its covariant derivative in the following way

∇aν(a, t ) = P0,t
c(a,·) (∇aν(a,0))+

∫t

0
Ps,t
c(a,·) (∇s∇aν(a, s))ds

= P0,t
c(a,·) ◦P0,a

c(·,0)
(
∂a f̃ (a, t )

)+
∫t

0
Ps,t
c(a,·)

(
R(∂s c,∂ac)P

t ,s
c(a,·) f (a, t )

)
ds. (7)

Now let us fix a ∈ [0,1] as well. Notice that the vector fieldωa,t defined above verifies

ωa,t (a, t ) = f (a, t ),

∇sω
a,t (b, s) = 0,

∇bω
a,t (b,0) = 0,

for all b, s ∈ [0,1]. Note that unlike ν, we do not have∇aω
a,t (a, t )=∇a f (a, t ) because

ωa,t (b, t )= f (b, t ) is only true for b = a. It is easy to verify that the last term of Eq. (7)
is precisely the covariant derivative of the vector field ωa,t

∇aω
a,t (a, t )=

∫t

0
Ps,t
c(a,·)

(
R(∂s c,∂ac)P

t ,s
c(a,·) f (a, t )

)
ds,

since for any s ∈ [0,1], ωa,t (a, s) = Pt ,s
c(a,·) f (a, t ), and finally by composing by Pa,0

c(·,0) ◦
Pt ,0
c(a,·), we obtain the second expression (5), which completes the proof.
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5 Geodesic Equation on TM

In the same way as in [14], we can obtain the geodesic equation associated to our
metric G̃ on TM by considering the energy of a variation b �→ (

ĉ(b, ·, ·), ĥ(b, ·, ·)) of a
curve a �→ (c(a, ·),h(a, ·)) of TM

E(b)=
∫1

0
〈 ĉa(b,a,0) , ĉa(b,a,0)〉 da+

∫1

0

∫1

0
〈∇a ĥ(b,a, t ) ,∇a ĥ(b,a, t )〉 dt da,

where we use the notations ca = ∂ac and∇ah =∇xa h. The considered variation (ĉ, ĥ)
takes value (c,h) in b = 0 and leaves the end points c(0, ·), c(1, ·) unchanged. We
obtain the geodesic equation in TM by writing that the derivative in b = 0 of the
energy of this variation vanishes whatever the choice of (ĉ, ĥ), which gives

∫1

0
〈∇aca(a,0) , ĉb(0,a,0)〉da

+
∫1

0

∫1

0
〈R(h,∇ah)ca(a, t ) , ĉb(0,a, t )〉+〈∇a∇ah(a, t ) ,∇b ĥ(0,a, t )〉dt da = 0.

The geodesic equation in R(M ) is obtained by putting h = R(c) = ct�‖ct ‖ . Unfortu-

nately we must distinguish the two spaces since R is not bijective fromM to TM .

Remark 4. Let us just point out that if we consider instead a third metric

G̃h
(
ξ,η

) =
∫1

0
〈ξ(t )H , η(t )H 〉 ‖h(t )‖2 + 〈ξ(t )V , η(t )V 〉 dt ,

then the derivative in b = 0 of the energy of the variation (ĉ, ĥ) is given by

E ′(0)=−2
∫1

0

∫1

0
〈‖h‖2∇aca + 2〈∇ah,h〉ca +R(h,∇ah)ca , ĉb(0)〉

+ 〈∇a∇ah − ‖ca‖2 h ,∇b ĥ(0)〉 dt da,

and since the two tangent vectors ĉb(0),∇b ĥ(0) can be chosen independently, we get
the following geodesic equations in TM

{
‖h‖2∇aca + 2〈∇ah,h〉ca +R (h,∇ah)ca = 0,

∇a∇ah = ‖xa‖2 h,

where all terms are considered at any point (a, t ) ∈ [0,1]2. In R(M ) however, we only
have an integral form, for we cannot choose ĉb(0) and ∇bR(ĉ(0)) independently.

6 Conclusion

In the same way that the first-order Sobolev metric (2) on the space of plane curves
can be obtained as the pullback of the L2-metric by the square root velocity func-
tion [11], our metricG can be obtained as the pullback of a metric G̃ on the tangent



Reparameterization Invariant Metric on the Space of Curves 149

bundle TM derived from the Sasaki metric, by the same SRVF. As such it is repara-
meterization invariant, and induces a Riemannian metric Ĝ on the shape space S

for which the fiber bundle projection is formally a Riemannian submersion. On the
other hand, the special role thatG gives to the starting points of the curves induces
another formal fiber bundle structure, this time over the manifold M seen as the
set of starting points of the curves, for which the projection is formally also a Rie-
mannian submersion. In the flat case, the geodesic distance induced byG is a prod-
uct metric, and when the manifold M is not flat, there is an added curvature term.
We can modify the metric G̃ so that this curvature term in the distance induced by
its pullback G disappears, but the first option seems preferable since the induced
distance takes into account a greater amount of information on the geometry of the
manifold.

Acknowledgments. This research was supported by Thales Air Systems and the french MoD
DGA.

References

1. Bauer, M., Bruveris, M., Marsland, S., Michor, P.W.: Constructing reparameterization
invariant metrics on spaces of plane curves. Differ. Geom. Appl. 34, 139–165 (2014)

2. Bauer, M., Bruveris, M., Michor, P.: Why use Sobolev metrics on the space of curves. In:
Riemannian Computing in Computer Vision. Springer (to appear). arXiv:1502.03229

3. Bauer, M., Harms, P., Michor, P.: Sobolev metrics on shape space of surfaces. J. Geom.
Mech. 3(4), 389–438 (2011)

4. Laga, H., Kurtek, S., Srivastava, A., Miklavcic, S.J.: Landmark-free statistical analysis of the
shape of plant leaves. J. Theoret. Biol. 363, 41–52 (2014)

5. Le Brigant, A., Arnaudon,M., Barbaresco, F.: Reparameterization invariant distance on the
space of curves in the hyperbolic plane. AIP Conf. Proc. 1641, 504 (2015)

6. Michor, P., Mumford, D.: Vanishing geodesic distance on spaces of submanifolds and dif-
feomorphisms. Documenta Math. 10, 217–245 (2005)

7. Michor, P., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math.
Soc. (JEMS) 8, 1–48 (2006)

8. Michor, P.,Mumford, D.: An overview of the Riemannianmetrics on spaces of curves using
the Hamiltonian approach. Appl. Comput. Harmonic Anal. 23, 74–113 (2007)

9. Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds.
TohokuMath. J. 10, 338–354 (1958)

10. Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds II.
TohokuMath. J. 14, 146–155 (1962)

11. Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic curves in
Euclidean spaces. IEEE T. Pattern Anal. 33(7), 1415–1428 (2011)

12. Su, J., Kurtek, S., Klassen, E., Srivastava, A.: Statistical analysis of trajectories on Rie-
mannianmanifolds: birdmigration, hurricane tracking and video surveillance. Ann. Appl.
Stat. 8(1), 530–552 (2014)

13. Younes, L., Michor, P., Shah, J., Mumford, D.: A metric on shape space with explicit geo-
desics. Rend. Lincei Mat. Appl. 9, 25–57 (2008)

14. Zhang, Z., Su, J., Klassen, E., Le, H., Srivastava, A.: Video-based action recognition using
rate-invariant analysis of covariance trajectories (2015). arXiv:1503.06699 [cs.CV]

http://arxiv.org/abs/1502.03229
http://arxiv.org/abs/1503.06699


Invariant Geometric Structures
on Statistical Models

Lorenz Schwachhöfer1(B), Nihat Ay2, Jürgen Jost2, and Hông Vân Lê3
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Abstract. We review the notion of parametrized measure models and
tensor fields on them, which encompasses all statistical models considered
by Chentsov [6], Amari [3] and Pistone-Sempi [10]. We give a complete
description of n-tensor fields that are invariant under sufficient statistics.
In the cases n = 2 and n = 3, the only such tensors are the Fisher metric
and the Amari-Chentsov tensor. While this has been shown by Chentsov
[7] and Campbell [5] in the case of finite measure spaces, our approach
allows to generalize these results to the cases of infinite sample spaces and
arbitrary n. Furthermore, we give a generalisation of the monotonicity
theorem and discuss its consequences.

1 General Definition of Parametrised Measure Models

Let (Ω,Σ) be a measurable space. We consider the Banach space S(Ω) of all
signed finite measures on Ω with the total variation ‖ · ‖TV as Banach norm.
More precisely, the total variation of such a measure μ is defined as

‖μ‖TV := sup
n∑

i=1

|μ(Ai)|

where the supremum is taken over all finite partitions Ω = A1∪̇ . . . ∪̇An with
disjoint sets Ai ∈ Σ. We consider the subsets M(Ω) ⊂ S(Ω) of all finite non-
negative measures, and P(Ω) ⊂ M(Ω) of all probability measures on Ω.

For a fixed σ-finite non-negative measure μ0, we also consider the subspace

S(Ω,μ0) := {μ = φ μ0 : φ ∈ L1(Ω,μ0)}
of signed measures dominated by μ0. This space can be identified in terms of
the canonical map ican : S(Ω,μ0) → L1(Ω,μ0), μ �→ dμ

dμ0
. Note that

‖μ‖TV =
∥
∥
∥
∥

dμ

dμ0

∥
∥
∥
∥

L1(Ω,μ0)

,
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which implies that ican is a Banach space isomorphism. Therefore, we refer to the
topology of S(Ω,μ0) also as L1-topology. This is independent of the particular
choice of the reference measure μ0, because if φ ∈ L1(Ω,μ0) and ψ ∈ L1(Ω,φμ0),
then ψφ ∈ L1(Ω,μ0).

Definition 1. (Parametrized measure model)
Let Ω be a measure space.

1. A signed parametrized measure modelis a triple (M,Ω, p) where M is a (finite
or infinite dimensional) Banach manifold and p : M → S(Ω) is a C1-map
between Banach manifolds in the formal sense given in [9].

2. Such a triple (M,Ω, p) is called a parametrized measure model if it consists
only of non-negative measures, i.e., such that the image of p is contained in
M(Ω).

3. The triple (M,Ω, p) is called a statistical model if it consists only of proba-
bility measures, i.e., such that the image of p is contained in P(Ω).

4. We call such a model is dominated by μ0 if the image of p is contained in
S(Ω,μ0). In this case, we use the notation (M,Ω, μ0, p) for this model.

Remark 1. Evidently, for the applications we have in mind, we are interested
mainly in statistical models. However, we can take the point of view that P(Ω)
is the projectivisation of P(Ω) = P(M(Ω)\0) via rescaling. Thus, given a
parametrized measure model (M,p,Ω), normalisation yields a statistical model
(M,p0, Ω) defined by

p0(ξ) :=
p(ξ)

‖p(ξ)‖TV
.

which is again a C1-map.
Furthermore, regarding general signed parametrized measure models enables

us to take the point of view that p : M → S(Ω) is a C1-map, since S(Ω) is a
Banach space, whereas the subsets M(Ω) and P(Ω) do not carry a canonical
manifold structure, as for infinite measure space Ω these are not open subsets
of S(Ω) in the L1-topology.

If a (signed) parametrized measure model (M,Ω, μ0, p) is dominated by μ0,
then there is a density function p : Ω × M → R such that

p(ξ) = p(.; ξ)μ0. (1)

From the context, i.e., from the number of arguments, it will be clear which
map p is meant, whence we will denote both maps by the same symbol. Evidently,
we must have p(.; ξ) ∈ L1(Ω,μ0) for all ξ. In particular, for fixed ξ, p(.; ξ) is
defined only up to changes on a μ0-null set.

Definition 2. (Regular density function)
Let (M,Ω, μ0, p) be a (signed) parametrized measure model dominated by μ0.

We say that this model has a regular density function if the density function
p : Ω × M → R satisfying (1) can be chosen such that for all V ∈ TξM the
partial derivative ∂V p(.; ξ) exists and lies in L1(Ω,μ0).
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Remark 2. The standard notion of statistical models always assumes that it is
dominated by some measure and has a regular density function (e.g. [3, §2, p.
25], [4, §2.1], [11]). In fact, we shall assume regularity of the density function
whenever it is convenient.

However, let us point out why for a statistical model (or, more generally, for
a signed parametrized measure model), the regularity of the density function is
indeed an additional requirement.

The formal definition of differentiability of p implies that for each C1-path
ξ(t) ∈ M with ξ(0) = ξ, ξ̇(0) =: V ∈ TξM , the curve t �→ p(.; ξ(t)) ∈ L1(Ω,μ0)
is differentiable. This implies that there is a dξp(V ) ∈ L1(Ω,μ0) such that

∥
∥
∥
∥

p(.; ξ(t)) − p(.; ξ)
t

− dξp(V )(.)
∥
∥
∥
∥
1

t→0−−−−−→ 0.

If this is a pointwise convergence, then dξp(V ) = ∂V p(.; ξ) is the partial derivative
and whence, ∂V p(.; ξ) lies in L1(Ω,μ0), so that the density function is regular.

However, in general convergence in L1(Ω,μ0) does notimply pointwise conver-
gence, whence there are parametrized measure models without a regular density
function, cf. the example below. Nevertheless, for simplicity we shall frequently
use the notation ∂V p(·; ξ) instead of dξp(V )(.), even if the density function is
not regular.

By this convention, for a signed parametrized measure model (M,Ω, μ0, p)
we can describe its derivative in the direction of V ∈ TξM as

dξp(V ) = ∂V p(.; ξ) μ0. (2)

Example 1. 1. The family of normal distributions on R

p(μ, σ) :=
1√
2πσ

exp(− (x − μ)2

2σ2
) dx

is a statistical model with regular density function on the upper half plane
H = {(μ, σ) : μ, σ ∈ R, σ > 0}.

2. To see that our notion is indeed more general, consider the family of measures
on Ω = (0, π)

p(ξ) :=

{(
1 + ξ (sin2(t − 1/ξ))1/ξ2

)
dt for ξ 	= 0

dt for ξ = 0.

This model is dominated by the Lebesgue measure dt, with density function
p(t; ξ) = 1 + ξ (sin2(t − 1/ξ))1/ξ2

for ξ 	= 0, p(t; 0) = 1. Thus, the partial
derivative ∂ξp does not exist at ξ = 0, whence the density function is not
regular.
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On the other hand, p : R → M(Ω, dt) is differentiable in the above sense at
ξ = 0 with d0p(∂ξ) = 0. To see this, we calculate

∥
∥
∥
∥

p(ξ) − p(0)
ξ

∥
∥
∥
∥
1

=
∥
∥
∥(sin2(t − 1/ξ))1/ξ2

dt
∥
∥
∥
1

=
∫ π

0

(sin2(t − 1/ξ))1/ξ2
dt

=
∫ π

0

(sin2 t)1/ξ2
dt

ξ→0−−−→ 0.

which shows the claim. Here, we used the π-periodicity of the integrand for
fixed ξ and dominated convergence in the last step.

In general, for a signed parametrized measure model (M,Ω, p), there is no
relation between the measures p(ξ) ∈ S(Ω) and that of the directional derivative
∂V p = dξp(V ). However, we make the following definition.

Definition 3. A signed parametrized measure model (M,Ω, p) is said to have a
logarithmic derivative if dξp(V ) is dominated by p(ξ) for all ξ ∈ M , V ∈ TξM .

If such a model is dominated by μ0 and has a regular density function p for
which (1) holds, then we can calculate the Radon-Nikodym derivative as

d{dξp(V )}
dp(ξ)

=
d{dξp(V )}

dμ0
·
(

dp(ξ)
dμ0

)−1

= ∂V p(.; ξ)(p(.; ξ))−1 = ∂V log |p(.; ξ)|,
where we use the convention log 0 = 0. This calculation motivates to define

∂V log |p(ξ)| :=
d{dξp(V )}

dp(ξ)
∈ L1(Ω, |p(ξ)|) (3)

for any signed parametrized measure model with logarithmic derivative. That is,
for such a model, ∂V log |p(ξ)| may be rigorously defined, even though log |p(.; ξ)|
itself is not defined unless p(·; ξ) 	= 0.

As the following proposition shows, the assumption that a model has a loga-
rithmic derivative is quite natural, since we are mainly interested in (non-signed)
parametrized measure models. This proposition holds without any further reg-
ularity assumptions on the model.

Proposition 1. [1,2] Any (non-signed) parametrized measure model and, in
particular, any statistical model (M,Ω, p) has a logarithmic derivative.

2 Roots of Measures and k-integrability

For any k ≥ 1, we define the space of k-th roots of measures dominated by μ as

S1/k(Ω,μ) := {φμ1/k : φ ∈ Lk(Ω,μ)}.
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This is a Banach space isomorphic to Lk(Ω,μ), and there is a canonical bijective
map, called the k-th signed power, defined as

πk : S1/k(Ω,μ) −→ S(Ω,μ), πk(φμ1/k) := sign(φ)|φ|kμ.

By taking the directed limit over all positive measures, we can also define
the Banach space S1/k(Ω) and the k-th power πk : S1/k(Ω) → S(Ω), without
making use of a fixed reference measure.

As it turns out, πk is differentiable and a homeomorphism (but not a diffeo-
morphism), and we denote its continuous inverse by π1/k : S(Ω) → S1/k(Ω).

Definition 4. (k-integrable parametrized measure model)
Let (M,Ω, p) be a statistical model or, more general, a parametrized measure

model. Then it is called k-integrable for k ≥ 1 if for all ξ ∈ M and V ∈ TξM
we have

∂V log p(ξ) =
d{dξp(V )}

dp(ξ)
∈ Lk(Ω, p(ξ)),

and moreover, the map

TM −→ S1/k(Ω), ξ �−→ d{dξp(V )}
dp(ξ)

p(ξ)1/k

is continuous.

Example 2. [1, Example 2.5.1] Let Ωn be a finite set of n elements and μn a mea-
sure of maximal support on Ωn. It is evident that M+(Ωn, μn) is diffeomorphic
to R

n. Let S be a C1-submanifold in P+(Ωn, μn) and iS : S → P+(Ωn, μn) the
canonical embedding. Then (S,Ωn, μn, iS) is an immersed k-integrable statistical
model for all k ≥ 1.

Example 3. [1, Proposition 5.11] Non-parametric statistical models in sense of
Pistone-Sempi [10] are k-integrable parametrized measure models for any k ≥ 1.

Example 4. Let Ω = (0, 1) and μ0 = dt be the Lebesgue measure. For ξ ∈ (0,∞)
we define

p(ξ) := (2 + sin(ξt−α)) dt,

where α ∈ (0, 1) is fixed. Then this model is k-integrable if and only if k < α−1.
In particular, it does not define a model in the sense of Pistone and Sempi.

Definition 5. (Canonical n-tensor) For n ∈ N, the canonical n-tensor is the
covariant n-tensor on S1/n(Ω), given by

Ln
Ω(ν1, . . . , νn) = nn

∫

Ω

d(ν1 · · · νn), where νi ∈ S1/n(Ω). (4)

The purpose of defining the notion of k-integrability of a model is the follow-
ing result. If the parametrized measure model p : M → M(Ω) is a n-integrable,
then the map

p1/n : M −→ S1/n(Ω), ξ �−→ π1/n(p(ξ))
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is differentiable, so that we can define the canonical n-tensor τn
(M,p,Ω) as the

pull-back of Ln
Ω . That is, we define for V1, . . . , Vn ∈ TξM

τn
(M,p,Ω)(V1, . . . , Vn) := Ln

Ω(dξp
1/n(V1, . . . , dξp

1/n(V1))
=

∫
Ω

∂V1 log p(ξ) · · · ∂Vn
log p(ξ) dp(ξ).

(5)

Example 5. 1. For n = 1, the canonical 1-form is given as

τ1
(M,p,Ω)(V ) :=

∫

Ω

∂V ln p(ξ) dp(ξ) = ∂V ‖p(ξ)‖. (6)

Thus, it vanishes if and only if ‖p(ξ)‖ is constant, e.g., if (M,p,Ω) is a
statistical model.

2. For n = 2, τ2
(M,p,Ω) coincides with the Fisher metric

gF (V,W )ξ :=
∫

Ω

∂V ln p(ξ) ∂W ln p(ξ) dp(ξ) (7)

3. For n = 3, τ3
(M,p,Ω) coincides with the Amari-Chentsov 3-symmetric tensor

TAC(V,W,X)ξ :=
∫

Ω

∂V ln p(ξ) ∂W ln p(ξ) ∂X ln p(ξ) dp(ξ). (8)

3 Sufficient Statistics and Main Results

Given two measure spaces Ω,Ω′, a measurable map κ : Ω → Ω′ is called a
statistic. Such a statistic induces a map κ∗ : M(Ω) → M(Ω′) by

κ∗(μ)(A′) := μ(κ−1(A′)).

Evidently, κ∗ maps probability measures to probability measures, and it extends
to a bounded lineear map κ∗ : S(Ω) → S(Ω′). Thus, given a parametrized
measure model (M,Ω, p), a statistic induces the parametrized measure model
(M,Ω′, p′) given as

p′(ξ) := κ∗(p(ξ)).

Proposition 2. Let (M,Ω, p) and (M,Ω′, p′) with p′ = κ(p) for some statistic
κ : Ω → Ω′. If (M,Ω, p) is k-integrable, then so is (M,Ω′, p′).

Again, the advantage of our approach is that this proposition is valid without
any regularity assumptions on the model or on κ. In general, the parametrized
measure model (M,Ω′, p′) carries less information than the model (M,Ω, p).
However, there are situations where this is not the case.

Definition 6. (Sufficient statistic)
Let (M,Ω, p) be a (signed) parametrized measure model. Then κ : Ω → Ω′ is

called a sufficient statistic for p if there is a μ ∈ M(Ω) such that

p(ξ) = φ′(κ(·); ξ)μ (9)
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for some φ′(·; ξ) ∈ L1(Ω′, μ). In this case,

p′(ξ) = κ∗p(ξ) = φ′(·; ξ)μ′,

where μ′ = κ∗(μ).

We now can show the following

Theorem 1. (Monotonicity theorem) (cf. [1,4])
Let (M,Ω, p) be a 2-integrable parametrized measure model, let κ : Ω → Ω′

be a statistic, so that the induced parametrized measure model (M,Ω′, p′) with
p′(ξ) = κ∗(p(ξ)) is also 2-integrable by Proposition 2. Moreover, let g and g′

denote the Fisher metric of (M,Ω, p) and (M,Ω′, p′), respectively. Then

g(V, V ) ≥ g′(V, V ) for all V ∈ TξM and ξ ∈ M. (10)

Moreover, if p(ξ) = p(·; ξ)μ0 with regular and positive density function p :
M × Ω → (0,∞), and M is connected, then equality in (10) holds for all V if
and only if κ is a sufficient statistic for the model (M,Ω, p).

Remark 3. The difference g(V, V ) − g′(V, V ) ≥ 0 is called the information loss
of the model (M,Ω, p) under κ. Thus, the interpretation of the monotonicity
theorem is that every statistic produces some (non-negative) information loss
which vanishes if and only if this statistic is sufficient.

Let (M,Ω, p) be a n-integrable parametrized measure model, let κ : Ω → Ω′

be a statistic and (M,Ω′, p′) the induced model, which is also n-integrable by
Proposition 2. If κ is a sufficient statistic for the model, then it is not hard to
show that

τn
(M,p′,Ω′) = τn

(M,p,Ω)

for the canonical n-tensors defined in (5). Remarkably, the converse is also true.
Namely, we have the following result.

Theorem 2. (c.f. [2]) Let Θn
(M,p,Ω) be a family of n-tensors on M for all

parametrized measure models (M,p,Ω). Then the following are equivalent.

1. The family is invariant under sufficient statistics; that is, for a sufficient
statistic κ : Ω → Ω′ we have Θn

(M,p,Ω) = Θn
(M,p′,Ω′).

2. The family is invariant under sufficient statistics to finite sets; that is, for a
sufficient statistics κ : Ω → I with I finite we have Θn

(M,p,Ω) = Θn
(M,p′,I).

3. Θn
(M,p,Ω) is algebraically generated by the canonical tensors τn

(M,p,Ω) defined
in (5).

For instance, for n = 4, Theorem 2 implies that any invariant family of
4-tensors for statistical models (M,p,Ω) is of the form

Θ4
(M,p,Ω)(V1, . . . , V4) = c0 τ4

M,p,Ω(V1, . . . , V4) + c1 gF (V1, V2)gF (V3, V4)

+ c2 gF (V1, V3)gF (V2, V3) + c3 gF (V1, V4)gF (V2, V4)
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for constants c0, . . . , c3, so that the space of invariant families on statistical
models is 4-dimensional for n = 4. Evidently, this dimension rapidly increases
with n.

For n = 2, 3, however, we obtain the following.

Corollary 1. (Generalisation of Chentsov’s and Campbells theorem)

1. Let (Θ2
(M,p,Ω)) be a family of 2-tensors which is invariant under sufficient

statistics. Then there are continuous functions a, b : [0,∞) → R such that

(Θ2
(M,p,Ω))ξ(V,W ) = a(‖p(ξ)‖)gF (V,W ) + b(‖p(ξ)‖)∂V ‖p(ξ)‖ · ∂W ‖p(ξ)‖.

In particular, for a statistical model (i.e., where ‖p(ξ)‖ ≡ 1), Θ2
(M,p,Ω) = c gF

with the constant c = a(1).
2. Let (Θ3

(M,p,Ω)) be a family of 3-tensors which is invariant under sufficient
statistics. Then it is a constant multiple of there the Amari-Chentsov tensor
from (8), i.e., for some c ∈ R and any model we have

Θ3
(M,p,Ω) = c TAC

4 Concluding Remarks

The results of Chentsov [7] and Campbell [5] on the characterisation of the Fisher
metric and the Amari-Chentsov tensor by their invariance was given for finite
sample spaces Ω only. In this case, the issues of convergence are negligable, and
the notion of differentiability of the map p : M → P(Ω) is obvious. But for
arbitrary sample spaces Ω, most generalisations need further assumptions.

For instance, Theorem 1 was previously known only in case that the statistic
κ : Ω → Ω′ admits transversal measures, e.g., if Ω,Ω′ are topological spaces
with their Borel σ-algebra and κ is continuous.

Similarly, in a recent paper [8] it was shown that the Fisher metric is uniquely
characterized by its diffeomorphism invariance, provided the measure space Ω
is a differentiable manifold and the model consists of smooth densities. On the
one hand, this is more general as only the invariance under diffeomorphisms,
i.e., a very special class of sufficient statistics, is needed, but on the other hand,
assuming Ω to be a manifold and all densities to be smooth is a strong restriction.

In contrast, our approach does not make any assumption on the sample space
Ω. Indeed, our only assumption is that the map p : M → P(Ω) is a differentiable
map between Banach manifolds – whence we do not even require the measure
to be given by a smooth density function (cf. Remark 2). Remarkably, this very
weak condition already suffices to show Theorems 1 and 2.
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Abstract. This paper aims to define a unified setting for shape regis-
tration and LDDMM methods for shape analysis. This setting turns out
to be sub-Riemannian, and not Riemannian. An abstract definition of a
space of shapes in R

d is given, and the geodesic flow associated to any
reproducing kernel Hilbert space of sufficiently regular vector fields is
showed to exist for all time.

1 Introduction

The purpose of this paper is to define and study abstract shape spaces in R
d in

order to unify and generalize the LDDMM algorithms that have been developed
in the past few years. They consist in fixing a Hilbert space V of smooth vector
fields in R

d with reproducing kernel K, and studying the deformations of an
initial shape (a template) induced by flows of elements of V [8,10,17–21]. This
allows to measure the “energy” of this flow by integrating the squared norm of
the vector field. One then tries to get as close as possible to a target shape while
keeping the energy small. This induces a length structure on the shape space
and the problem can be reformulated as a geodesic search for this structure.

However, these methods have some flaws from a theoretical point of view.
First of all, the notion of “shape space” has always been ambiguous. While
it usually refers to a space of embeddings of a compact surface in R

3 (or, in
numerical simulations, to spaces of landmarks), more general spaces are some-
times needed and therefore require a case by case analysis. For example, when
studying the movement of a muscle, one needs to take into account the direction
of that muscle’s fibers, which are not part of the embedding itself.

The second problem only appears for a shape space S of infinite dimension.
Contrarily to what is described in most papers, the length structure induced by
the flow of vector fields in V yields a sub-Riemannian structure on S, not a Rie-
mannian one. While this raises several difficulties from a theoretical viewpoint,
it does not change the optimization algorithms, since those are mainly con-
cerned with finite dimensional shape spaces, for which the structure is indeed
Riemannian.

The purpose of this paper is to address both of these issues. In the first
section, we briefly summarize the results of [4] on the Hamiltonian geodesic
flow of the space of Sobolev diffeomorphisms of Rd for the right-invariant sub-
Riemannian structure induced by a fixed arbitrary Hilbert space V of smooth
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160 S. Arguillère

enough vector fields. In the second part of this paper, we define abstract shape
spaces in R

d as Banach manifolds on which the group of diffeomorphisms of Rd

acts in a way that is compatible with its particular topological group structure.
We then define the sub-Riemannian structure induced on S by this action and
by V , and see that it admits a global Hamiltonian geodesic flow.

2 Sub-Riemannian Structures on Groups
of Diffeomorphisms

The purpose of this section is to give a brief summary of the results of [4].
Fix d ∈ N. For an integer s > d/2+1, let Ds(Rd) = e+Hs(Rd,Rd)∩Diff(Rd)

be the connected component of e = IdM in the space of diffeomorphisms of class
Hs. It is an open subset of the affine Hilbert space e+Hs(Rd,Rd), and therefore
a Hilbert manifold. It is also a group for the composition (ϕ,ψ) �→ ϕ ◦ ψ. This
group law satisfies the following properties:

1. Continuity: (ϕ,ψ) �→ ϕ ◦ ψ is continuous.
2. Smoothness on the left: For every ψ ∈ Ds(Rd), the mapping Rψ : ϕ �→ ϕ◦ψ

is smooth.
3. Smoothness on the right: For every k ∈ N \ {0}, the mappings

Ds+k(Rd) × Ds(Rd) −→ Ds(Rd) Hs+k(Rd,Rd) × Ds(Rd) −→ Hs(Rd,Rd)
(ϕ,ψ) �−→ ϕ ◦ ψ (X,ψ) �−→ X ◦ ψ

(1)
are of class Ck.

4. Regularity: For any ϕ0 ∈ Ds(Rd) and X(·) ∈ L2(0, 1;Hs(Rd,Rd)), there
is a unique curve ϕ(·) ∈ H1(0, 1;Ds(Rd)) such that ϕ(0) = ϕ0 and ϕ̇(t) =
X(t) ◦ ϕ(t) almost everywhere on [0, 1].

See [9,12,15,16] for more on this structure.

Sub-Riemannian structures on Ds(Rd).

Definition 1. We define a strong right-invariant structure on Ds(Rd) as fol-
lows: fix V an arbitrary Hilbert space of vector fields with Hilbert product 〈·, ·〉V

and norm ‖ · ‖V and continuous inclusion in Hs+k(Rd,Rd), k ∈ N \ {0}. The
sub-Riemannian structure induced by V on Ds(Rd) is the one for which hor-
izontal curves satisfy ϕ̇(t) = X(t) ◦ ϕ(t), with X ∈ L2(0, 1;V ), and have total
action A(ϕ) = A(X) = 1

2

∫ 1

0
‖X(t)‖2V dt.

Define KV : V ∗ → V the canonical isometry: for P ∈ V ∗, P = 〈KV P, ·〉V .
Such a space V admits a reproducing kernel: a matrix-valued mapping

(x, y) �→ K(x, y) defined on R
d × R

d such that, for any P ∈ Hs(Rd,Rd)∗ =
H−s(Rd,Rd∗), the vector field KV P is given by convolution (in the distribu-
tional sense) of P with K:

KV P (x) =
∫

Rd

K(x, y)P (y)dy.
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Geodesics on Ds(Rd). We keep the framework and notations used in the previ-
ous section, with V ↪→ Hs+k(Rd,Rd) and k � 1. Define the endpoint map from
e by end : L2(0, 1;V ) → Ds(Rd) such that end(X) = ϕX(1). It is of class Ck. A
geodesic ϕX(·) from e is a critical point of the action A(X(·)) among all horizon-
tal curves ϕY (·) from e with the same endpoint ϕY (1) = ϕ1. In other words, for
every C1 variation a ∈ (−ε, ε) �→ Xa(·) ∈ L2(0, 1;V ) such that end(Xa) = ϕ1,
we have ∂a(A(Xa(·))|a=0 = 0.

Normal geodesics. It is easy to see that for any such curve, the couple of linear
maps

(dA(X(·)),d end(X(·))) : L2(0, 1;V ) → R × Tϕ1Ds(Rd)

is not onto. A sufficient condition for this to be true is that there exists Pϕ1 ∈
T ∗

ϕ1
Ds(Rd) = H−s(Rd,Rd∗) such that (d end(X(·)))∗.Pϕ1 = dA(X(·)). If such a

P1 exists, the curve induced by X is called a normal geodesic. This is not the
only possibility [1,3,14], but it is the one we will focus on, as it is enough for
inexact matching problems.

Define the normal Hamiltonian H : T ∗Ds(Rd) → R by

H(ϕ,P ) =
1
2
P (dRϕKV dR∗

ϕP ) =
1
2

∫∫

Rd×Rd

P (x)K(ϕ(x), ϕ(y))P (y)dydx,

with KV the isometry V ∗ → V and dRϕ(·) = · ◦ ϕ on Hs(Rd,Rd). H is of class
at least Ck. Its symplectic gradient ∇ωH(ϕ,P ) = (∂P H(ϕ,P ),−∂ϕH(ϕ,P )) is
of class Ck−1.

We have the following theorem.

Theorem 1. If k � 1, ϕ(·) is a geodesic if and only if it is the projection to
Ds(Rd) of an integral curve of ∇ωH(ϕ,P ). In this case, the corresponding P (·)
is the associated normal covector.

If k � 2, then the symplectic gradient of the Hamiltonian admits a well-
defined global flow of class Ck−1, called the Hamiltonian geodesic flow. In other
words, for every (ϕ0, P0) ∈ T ∗Ds(Rd), there is a unique solution (ϕ(·), P (·)) :
R → T ∗Ds(Rd) to the Cauchy problem (ϕ(0), P (0)) = (ϕ0, P0), (ϕ̇(t), Ṗ (t)) =
(∂P H(ϕ(t), P (t)),−∂ϕH(ϕ(t), P (t))) a.e. t ∈ [0, 1]. Moreover, any subarc of this
solution projects to a normal geodesic on Ds(Rd) and, conversely, any normal
geodesic is the projection of such a solution.

Momentum formulation. We define the momentum map μ : T ∗Ds(Rd) →
Hs(Rd)∗ = H−s(Rd∗

) by μ(ϕ,P ) = dR∗
ϕP .

Proposition 1. We assume that k � 1. Then a horizontal curve ϕ(·) ∈
H1(0, 1;Ds(Rd)), flow of X(·) ∈ L2(0, 1;V ), is a normal geodesic with
normal covector P (·) if and only if the corresponding momentum μ(t) =
μ(ϕ(t), P (t)) along the curve satisfies, for almost every time t, μ̇(t) =
ad∗

X(t)μ(t) = −LX(t)μ(t). Here, adX : Hs+1(Rd,Rd) → Hs(Rd,Rd), with
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adXY = [X,Y ], and LX the Lie derivative with respect to X. In particular,
this equation integrates as

μ(t) = ϕ(t)∗μ(0),

for every t ∈ [0, 1] in the sense of distributions.

We recognize the usual EPDiff equations [6,7,13]. See [2,4] for further results
on such sub-Riemannian structures on Ds(Rd), and [3,11] for more general infi-
nite dimensional sub-Riemannian structures.

3 Shape Spaces

3.1 Definition

Throughout the section, fix a positive integer d and let s0 be the smallest integer
such that s0 > d/2. A shape space in R

d is a Banach manifold acted upon by
Ds(Rd) for some s in a way that is compatible with its particular topological
group structure. The following definition is adapted from that of [5].

Definition 2. Let S be a Banach manifold and � ∈ N \ {0}, and s = s0 +
�. Assume that Ds(Rd) acts on S, according to the action (ϕ, q) �→ ϕ · q =
Rq(ϕ). We say that S is a shape space of order � in M if the following conditions
are satisfied:

1. Continuity: (ϕ, q) �→ ϕ · q is continuous.
2. Smoothness on the left: For every q ∈ S, the mapping Rq : ϕ �→ ϕ · q

is smooth. Its differential at e is denoted ξq, and is called the infinitesimal
action of Hs(Rd,Rd).

3. Smoothness on the right: For every k ∈ N, the mappings

Rq : Ds+k(Rd) × S −→ S and ξ : Hs+k(Rd,Rd) × S −→ TS
(ϕ, q) �−→ ϕ · q (X, q) �−→ ξqX

(2)

are of class Ck.
4. Regularity: For every X(·) ∈ L2(0, 1;Hs(Rd,Rd)) and q0 ∈ S, there exists

a unique curve q(·) = qX(·) ∈ H1(0, 1;S) such that qX(0) = q0 and q̇X(t) =
ξqX(t)X(t) for almost every t in [0, 1].

A an element q of S is called a state of the shape. We say that q ∈ S has
compact support if there exists a compact subset U of M such that Rq : ϕ �→
ϕ · q is continuous with respect to the semi-norm ‖ · ‖Hs0+�(U,M) on Ds(Rd). In
other words, q has a compact support if ϕ · q depends only on the restriction of
ϕ to a compact subset U of M .

Here are some examples of some of the most widely used shape spaces:

1. Ds0+�(Rd) is a shape space of order � for its action on itself given by compo-
sition on the left.
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2. Let S be a smooth compact Riemannian manifold, and α0 be the smallest
integer greater than dim(S)/2. Then S = Embα0+�(S,Rd), the manifold of all
embeddings q : S → M of Sobolev class Hα0+� are shape spaces of order �. In
this case, Ds0+�(Rd) acts on S by left composition ϕ·q = ϕ◦q, and this action
satisfies all the required properties of Definition 2 (see [5] for the proof), with
infinitesimal action ξqX = X ◦ q. Every q ∈ S has compact support.

3. A particularly interesting case is obtained when dim(S) = 0. Then S =
{s1, . . . , sn} is simply a finite set. In that case, for any �, the shape space
S = C�(S,Rd) is identified with the space of n landmarks in R

d:

Lmkn(Rd) = {(x1, . . . , xn) ∈ (Rd)n | xi �= xj if i �= j}.

For every q = (x1, . . . , xn), the action of Ds0+1(Rd) is given by ϕ · q =
(ϕ(x1), . . . , ϕ(xn)). For a vector field X of class Hs0+1 on M , the infinitesimal
action of X at q is given by ξq(X) = (X(x1), . . . , X(xn)). Spaces of landmarks
are actually spaces of order 0 (see [5] for a definition).

4. Let S be a shape space of order � ∈ N. Then TS is a shape space of order �+1,
with the action of Ds0+�+1(Rd) on TS1 defined by ϕ·(q, v) = (ϕ·q, ∂q(ϕ·q)(v)).

3.2 Sub-Riemannian Structure on Shape Spaces

Let S be a shape space of order � � 1 in R
d, and fix s = s0 + � and k ∈ N \ {0}.

Consider (V, 〈·, ·〉) an arbitrary Hilbert space of vector fields with continuous
inclusion in Hs+k(Rd,Rd). According to the previous section, we obtain a strong
right-invariant sub-Riemannian structure induced by V on Ds(Rd).

The framework of shape and image matching. The classical LDDMM algorithms
for exact shape matching seek to minimize

1
2

∫ 1

0

〈X(t),X(t)〉dt

over every X ∈ L2(0, 1;V ) such that ϕX(1) · q0 = q1, where the template q0
and the target q1 are fixed. Usually, one only wants to get “close” to the target
shape, which is accomplished by minimizing

1
2

∫ 1

0

〈X(t),X(t)〉dt + g(ϕX(1) · q0)

over every X ∈ L2(0, 1;V ), where the endpoint constraint has been replaced
with the addition of a data attachment term g(ϕX(1) · q0) in the functional (See
[5] and references therein). The function g is usually such that it reaches its
minimum at q1.

The sub-Riemannian structure. This leads us to define a sub-Riemannian struc-
ture on S as follows.
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Definition 3. The strong sub-Riemannian structure induced by V is the one
for which horizontal curves are those that satisfy q̇(t) = ξq(t)X(t) for almost
every t ∈ [0, 1], for some control X(·) ∈ L2(0, 1;Rd). The curve q(·) is called a
horizontal deformation of q(0). Note that q(t) = ϕX(t) · q(0) for every t.

Remark 1. If ξq(V ) = TqS for every q ∈ S, this is actually a Riemannian struc-
ture. This is often the case in numerical simulations, where S is finite dimensional
(usually a space of landmarks). However, in the general case, we do not obtain
a Riemannian structure.

For example, for d = 2, take S = Emb2(S1,R2), with S1 the unit circle,
and fix the state q = IdS1 ∈ S. If the kernel K(x, y) = e−‖x−y‖2

is Gaussian,
all elements of V are analytic. Therefore, any ξq(X) : S1 → R

2 with X ∈ V is
analytic, while TqS = H2(S1,R2).

The length and action of a horizontal curve is not uniquely defined and depends
on the control X(·). They coincide with the length and action of the flow ϕX

which were defined in the previous section. The LDDMM algorithm can therefore
be formulated as a search for sub-Riemannian geodesics on S for this structure.

Sub-Riemannian distance. Define the sub-Riemannian distance dS
SR(q0, q1) as

the infimum over the lengths of every horizontal system (q(·),X(·)) with q(0) =
q0 and q(1) = q1. It is clear that dS

SR is at least a semi-distance.

Sub-Riemannian geodesics on shape spaces. We assume that S is a shape space in
R

d of order � � 1, and that Ds(Rd), s = s0 + �, is equipped with a strong right-
invariant sub-Riemannian structure induced by the Hilbert space (V, 〈·, ·〉) of
vector fields on R

d, with continuous inclusion V ↪→ Hs+k(Rd,Rd) for some
k � 1.

Geodesics. Fix an initial point q0 and a final point q1 in S. The endpoint mapping
from q0 is endS

q0(X(·)) = ϕX(1) · q0 = Rq0 ◦ end, where end(X(·)) = ϕX(1) ∈
Ds(Rd). It is of class Ck. A geodesic on S between the states q0 and q1 is a
horizontal system (q(·),X(·)) joining q0 and q1 such that for any C1-family a �→
Xa(·) ∈ L2(0, 1;V ) with ϕXa(1) · q0 = q1 for every a and X0 = X, we have
∂aA(Xa(·)) = 0. We will, once again, focus on normal geodesics. A curve q(·)
is a normal geodesic if for some control X whose flow ϕX yields q(·) = ϕX(·) ◦
q(0), and for some p1 ∈ T ∗

q(1)S, we have dA(X) = d endS
q0(X)∗p1.

Canonical symplectic form, symplectic gradient. We denote by ω the canonical
weak symplectic form on T ∗S, given by the formula ω(q, p).(δq1, δp1; δq2, δp2) =
δp2(δq1) − δp1(δq2), with (δqi, δpi) ∈ T(q,p)T

∗S � TqS × T ∗
q S in a canonical

coordinate system (q, p) on T ∗S. A function f : T ∗S → R, differentiable at
some point (q, p) ∈ T ∗S, admits a symplectic gradient at (q, p) if there exist a
vector ∇ωf(q, p) ∈ T(q,p)T

∗S such that, for every z ∈ T(q,p)T
∗S, df(q,p)(z) =

ω(∇ωf(q, p), z). In this case, this symplectic gradient ∇ωf(q, p) is unique. Such
a gradient exists if and only if ∂pf(q, p) ∈ T ∗∗

q S can be identified with a vector
in TqS through the canonical inclusion TqS ↪→ T ∗∗

q S. In that case, we have, in
canonical coordinates, ∇ωf(q, p) = (∂pf(q, p),−∂qf(q, p)).
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The normal Hamiltonian function and geodesic equation. We define the normal
Hamiltonian of the system HS : T ∗S → R by

HS(q, p) =
1
2
p(Kqp) =

1
2
p(ξqKV ξ∗

qp),

where Kq = ξqKV ξ∗
q : T ∗

q S → TqS. It can usually be computed thanks to the
reproducing kernel of V . This is a function of class Ck, that admits as symplectic
gradient ∇ωHS(q, p) = (Kqp,− 1

2∂q(Kqp)∗p). of class Ck−1 on T ∗S.

Momentum of the action and Hamiltonian flow. Recall that the momentum map
associated to the group action of Ds(Rd) over S is the mapping μS : T ∗S →
Hs(Rd,Rd)∗ = H−s(Rd,Rd∗) given by μS(q, p) = ξ∗

qp.

Proposition 2. A curve (q(·), p(·)) in T ∗S satisfies the normal Hamil-
tonian equations (q̇(t), ṗ(t)) = ∇ωHS(q(t), p(t)) if and only if, for μS(t) =
μS(q(t), p(t)) and X(t) = KV ξ∗

q(t)p(t), we have

μ̇S(t) = ad∗
X(t)μ(t).

In particular, this is also equivalent to having ϕX(·) be a normal geodesic on
Ds(Rd) with initial covector P (0) = ξ∗

q(0)p(0) and momentum μ(t) = μS(t) along
the trajectory.

This result allows for the proof of our main result.

Theorem 2. Assume k � 1. Then a horizontal curve q(·) with control X(·) is
a geodesic if and only if it is the projection of an integral curve (q(·), p(·)) of
∇ωHS (that is, (q̇(t), ṗ(t)) = ∇ωHS(q(t), p(t)) for almost every t in [0, 1]), with
X(t) = KV ξ∗

q(t)p(t). This is also equivalent to having the flow ϕX of X(·) be a
normal geodesic on Ds(Rd) with momentum μ(t) = μS(t) = ξ∗

q(t)p(t).

Assume k � 2. Then ∇ωH admits a global flow on T ∗S of class Ck−1,
called the Hamiltonian geodesic flow. In other words, for any initial point
(q0, p0) ∈ T ∗S, there exists a unique curve t �→ (q(t), p(t)) defined on all
of R, such that (q(0), p(0)) = (q0, p0) and, for almost every t, (q̇(t), ṗ(t)) =
∇ωHS(q(t), p(t)). We say that p(·) is the normal covector along the trajectoy.

Combining those results, we see that solutions of the normal Hamiltonian
equations on S are exactly those curves that come from normal geodesics on
Ds(Rd) with initial momentum of the form ξ∗

q0p0. In particular, for k � 2, the
completeness of the normal geodesic flow on T ∗Ds(Rd) implies that ∇ωHS is a
complete vector field on T ∗S.

On inexact matching. It should be emphasized, again, that other geodesics may
also exist [4]. However, when performing LDDMM methods and algorithms for
inexact matching, one aims to minimize over L2(0, 1;V ) functionals of the form

J(X(·)) = A(X(·)) + g(qX(1)) = A(X(·)) + g ◦ endS
q0(X(·)).
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In this case, X(·) is a critical point if and only if dA(X) =
−d endS

q0(X)∗dg(qX(1)). The trajectory induced by such a critical point
X is therefore automatically a normal geodesic, whose covector satisfies
p(1) = −dg(qX(1)) (or, equivalently, whose momentum satisfies μ(1) =
−ξ∗

q(1)dg(qX(1))). This means that one needs only consider normal geodesics
when looking for minimizers of J . Consequently, the search for minimizing tra-
jectories can be reduced to the minimization of

1
2

∫ 1

0

p(t)(Kq(t)p(t))dt + g(q(1))

among all solutions of the control system q̇(t) = Kq(t)p(t), where p(·) is any
covector along q(·) and is L2 in time. This leads to the usual LDDMM methods.

This reduction is very useful in practical applications and numerical simula-
tions, since, when S is finite dimensional, we obtain a finite dimensional control
system, for which many optimization methods are available. See [5] for algo-
rithms to minimize such a functional in the abstract framework of shape spaces
in R

d.

The case of images. Images are elements I of the functional space L2(Rd,R).
They are acted upon by Ds(Rd) through (ϕ, I) �→ I ◦ ϕ−1. For a fixed template
I0 and target I1, one aims to minimize a functional of the form

J(X(·)) = A(X(·)) + g
(
I(1)−1

)
,

with g(I) = c‖I − I1‖2L2 , c > 0 fixed, and I(t) = I0 ◦ ϕ(t)−1.
However, the action (ϕ, I) �→ I ◦ ϕ−1 does not make L2(Rd,R) into a shape

space, because it is not continuous. To circumvent this difficulty and still apply
the framework developed in this paper, one can simply work on the shape space
Ds(Rd) itself. In this case, as long as the template I0 belongs to C1(Rd,R), we
can easily check that ϕ �→ g

(
I0 ◦ ϕ−1

)
is of class C1, which implies, according

to the results of this section and a quick computation, that minimizers of J
are those vector fields whose flow are normal geodesics with final momentum
given by

μ(1) = (I1 − I(1)) dI(1) ∈ L2(Rd,Rd∗).
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ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst, Fourier (Greno-
ble), 16(1), 319–361 (1966)

7. Bauer, M., Bruveris, M., Harms, P., Michor, P.W.: Geodesic distance for right
invariant sobolev metrics of fractional order on the diffeomorphism group. Ann.
Glob. Anal. Geom. 44(1), 5–21 (2013)

8. Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeo-
morphisms for image matching. Quart. Appl. Math. 56(3), 587–600 (1998)

9. Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incom-
pressible fluid. Ann. Math. 2(92), 102–163 (1970)

10. Grenander, U., Miller, M.I.: Computational anatomy: an emerging discipline.
Quart. Appl. Math. 56(4), 617–694 (1998). Current and future challenges in the
applications of mathematics, Providence, RI (1997)

11. Grong, E., Markina, I., Vasil’ev, A.: Sub-Riemannian geometry on infinite-
dimensional manifolds. Preprint arxiv.org/abs/1201.2251 (2012)

12. Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Mathematical
Surveys and Monographs, vol. 53. American Mathematical Society, Providence
(1997)

13. Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on spaces
of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23(1),
74–113 (2007)

14. Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Appli-
cations. Mathematical Surveys and Monographs, vol. 91. American Mathematical
Society, Providence (2002)

15. Omori, H.: Infinite Dimensional Lie Transformation Groups. Lecture Notes in
Mathematics, vol. 427. Springer, Berlin (1974)

16. Schmid, R.: Infinite dimensional Lie groups with applications to mathematical
physics. J. Geom. Symmetry Phys. 1, 54–120 (2004)
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The Extremal Index for a Random Tessellation
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Abstract. Let m be a random tessellation in Rd, d ≥ 1, observed in the
windowWρ = ρ1/d[0, 1]d, ρ > 0, and let f be a geometrical characteristic.
We investigate the asymptotic behaviour of the maximum of f(C) over all
cells C ∈ m with nucleus inWρ as ρ goes to infinity. When the normalized
maximum converges, we show that its asymptotic distribution depends
on the so-called extremal index. Two examples of extremal indices are
provided for Poisson-Voronoi and Poisson-Delaunay tessellations.

Keywords: Random tessellations · Extreme values · Poisson point
process

1 Introduction

Random tessellations A (convex) tessellation of Rd, d ≥ 1, endowed with its
Euclidean norm | · |, is a countable collection of nonempty convex compact sub-
sets, called cells, with disjoint interiors which subdivides the space and such that
the number of cells intersecting any bounded subset of Rd is finite. The set T
of (convex) tessellations is endowed with the σ-algebra generated by the sets{
m ∈ T,

⋃
C∈m ∂C ∩ K = ∅} where ∂K is the boundary of K for any compact

set K in Rd. By a random tessellation m, we mean a random variable with values
in T. It is said to be stationary if its distribution is invariant under translations
of the cells. For a complete account on random tessellations, we refer to the
book [10].

Given a fixed realization of m, we associate with each cell C ∈ m a point
z(C) = zm(C) in a deterministic way, which is called the nucleus of the cell, such
that zm+x(C + x) = zm(C) + x for all x ∈ Rd. To describe the mean behaviour
of the tessellation, the notions of intensity and typical cell are introduced as
follows. Let B ⊂ Rd be a Borel subset. The intensity γ of the tessellation is
defined as γ = 1

λd(B) · E [ #{C ∈ m, z(C) ∈ B} ], where λd is the d-dimensional
Lebesgue measure. We assume that γ ∈ (0,∞) and, without loss of generality,
we take γ = 1. The typical cell C is a random polytope whose the distribution
is given by

E[f(C)] =
1

λd(B)
· E

⎡

⎢
⎢
⎣

∑

C∈m,
z(C)∈B

f(C − z(C))

⎤

⎥
⎥
⎦ (1)
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for all f : Kd → R bounded measurable function on the set of convex bodies Kd,
i.e. convex compact sets, endowed with the Hausdorff topology.

Extremes in stochastic geometry We are interested in the following problem:
only a part of the tessellation is observed in the window Wρ = ρ1/d[0, 1]d. Let
f : Kd → R be a translation invariant measurable function, i.e. f(C +x) = f(C)
for all C ∈ Kd and x ∈ Rd. We denote by Mf,Wρ

the maximum of f(C) over all
cells C ∈ m with nucleus z(C) in Wρ, i.e.

Mf,Wρ
= max

C∈m,
z(C)∈Wρ

f(C).

In this paper, we investigate the limit behaviour of Mf,Wρ
when ρ goes to infinity.

To the best of our knowledge, one of the first application of extreme value
theory in stochastic geometry was given by Penrose (see Chaps. 6, 7 and 8 in
Penrose [7]). More recently, Schulte and Thäle [11] established a theorem to
derive the order statistics of a general functional, fk(x1, ..., xk) of k points of a
homogeneous Poisson point process. Calka and Chenavier [2] went on to provide
a series of results for the extremal properties of cells in the Poisson-Voronoi
tessellation, which were then extended in [3]. Besides, extremes for the inradius
of a Poisson line tessellation are also considered in [4].

A general theorem Before stating our results, we first recall the main theorem in
[3]. To do it, we consider a threshold vρ such that the mean number of exceedance
cells converges to a limit denoted by τ ≥ 0, i.e.

ρ · P (f(C) > vρ) −→
ρ→∞ τ.

Such an assumption is classical in extreme value theory. We also introduce two
conditions on m and f .

The first one deals with R-dependence. To introduce this condition we parti-
tion Wρ = ρ1/d[0, 1]d into a set Vρ of Nρ =

⌊
ρ

log ρ

⌋
sub-cubes of equal size. These

sub-cubes are indexed by the set of i = (i1, . . . , id) ∈
[
1, N

1/d
ρ

]d

. With a slight
abuse of notation, we identify a cube with its index. Let us define a distance
between sub-cubes i and j as d(i, j) = max1≤r≤d{|ir − jr|}. Moreover, if A, B
are two sets of sub-cubes, we let δ(A,B) = mini∈A,j∈B d(i, j). For each i ∈ Vρ,
we denote by

Mf,i = max
C∈m,

z(C)∈i∩Wρ

f(C).

When {C ∈ m, z(C) ∈ i ∩ Wρ} is empty, we take Mf,i = −∞. We are now
prepared to introduce our first condition which is referred as the finite range
condition (FRC):

Condition (FRC): there exists an integer R and an event Aρ with P (Aρ) −→
ρ→∞

1 such that, conditional on Aρ, the σ-algebras σ{Mf,i, i ∈ A} and σ{Mf,i, i ∈ B}
are independent when δ(A,B) > R.
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Our second condition deals with a local property of m and f and is referred
as the local correlation condition (LCC).

Condition (LCC): with the same notation as before, we have

NρE

⎡

⎢
⎢
⎢
⎣

∑

(C1,C2) �=∈m2,
z(C1),z(C2)∈Wlog ρ

1f(C1)>vρ,f(C2)>vρ

⎤

⎥
⎥
⎥
⎦

−→
ρ→∞ 0,

where (C1, C2)�= ∈ m2means that (C1, C2) is a pair of distinct cells of m.
This (local) condition means that, with high probability, two neighboring

cells (in the sense that their nuclei belong to Wlog ρ which is small compared to
Wρ) are not simultaneously exceedances. Under these assumptions, we have the
following result (Theorem 1 in [3]):

Theorem 1. Let m be a stationary random tessellation of intensity 1 such that
Conditions (FRC) and (LCC) hold. Then

P(Mf,Wρ
≤ vρ) −→

ρ→∞ e−τ .

Theorem 1 can be extended in various directions: order statistics with a rate of
convergence, random tessellations satisfying some β-mixing property and marked
point processes. Numerous examples of this theorem can be derived such as the
minimum of the Voronoi flowers, the maximum and minimum of areas of a planar
Poisson-Delaunay tessellation and the maximum of inradius of a Gauss-Poisson
Voronoi tessellation (see Sects. 3, 4 and 5 in [3]).

The main difficulty is to apply Theorem 1 and to check Condition (LCC)
since it requires delicate geometric estimates. Our main question is: does
Theorem 1 remains true when this condition does not hold?

Extremal index and new results When Condition (LCC) does not hold, the
exceedance locations can be divided into clusters. More precisely, we show that
the behaviour of Mf,Wρ

can be deduced up to a constant according to the
following new result:

Proposition 2. Let m be a stationary random tessellation of intensity 1 such
that Condition (FRC) holds. Let us assume that for all τ ≥ 0, there exists
a deterministic function vρ(τ) depending on ρ such that ρ · P (f(C) > vρ(τ))
converges to τ as ρ goes to infinity. Then there exist constants θ, θ′, 0 ≤ θ ≤
θ′ ≤ 1 such that, for all τ ≥ 0,

lim sup
ρ→∞

P
(
Mf,Wρ

≤ vρ(τ)
)

= e−θτ and lim inf
ρ→∞ P

(
Mf,Wρ

≤ vρ(τ)
)

= e−θ′τ .

In particular, if P
(
Mf,Wρ

≤ vρ(τ)
)
converges, then θ = θ′ and

P
(
Mf,Wρ

≤ vρ(τ)
) −→

ρ→∞ e−θτ .
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Proposition 2 is similar to a result due to Leadbetter for stationary sequences
of real random variables (see Theorem 2.2 in [5]). Its proof relies notably on
the adaptation to our setting of several arguments included in [5]. According
to Leadbetter, we say that the random tessellation m has extremal index θ
if, for each τ ≥ 0, we have simultaneously ρ · P (f(C) > vρ(τ)) −→

ρ→∞ τ and

P
(
Mf,Wρ

≤ vρ(τ)
) −→

ρ→∞ e−θτ .

For a sequence of real random variables, the extremal index can be interpreted
as the reciprocal of the mean cluster size. Except in specific cases, the extremal
index cannot be made explicit. A lot of inferences was considered to estimate this
parameter (e.g. [8,12]). For a random tessellation, we think that the extremal
index has a similar geometric interpretation. In a future work, we hope to develop
a general method to estimate the extremal index.

The paper is organized as follows. In Sect. 2, we prove Proposition 2. As an
illustration, we also provide two examples of extremal indices in Sect. 3.

2 Proof of Proposition 2

We only prove Proposition 2 for the limit superior since the limit inferior can be
dealt with a similar method. To do it, for each τ ≥ 0, we define:

ψ(τ) = lim sup
ρ→∞

P
(
Mf,Wρ

≤ vρ(τ)
)
. (2)

The key idea is to establish a functional equation for ψ. More precisely, for each
k ∈ N+, we will show that:

lim sup
ρ→∞

P
(
Mf,W

ρ/kd
≤ vρ(τ)

)
= ψ(τ/kd), (3)

lim sup
ρ→∞

P
(
Mf,W

ρ/kd
≤ vρ(τ)

)
= ψ1/kd

(τ). (4)

The first convergence only depends on the sequence vρ(τ) while the second one
is a consequence of Condition (FRC).

Proof of (3). Let us assume that vρ(τ) ≥ vρ/kd(τ/kd). Then

∣
∣
∣P

(
Mf,W

ρ/kd
≤ vρ(τ)

)
− P

(
Mf,W

ρ/kd
≤ vρ/kd(τ/kd)

)∣
∣
∣

≤ P

⎛

⎜
⎜
⎜
⎝

⋃

C∈m,
z(C)∈W

ρ/kd

{vρ/kd(τ/kd) ≤ f(C) ≤ vρ(τ)}

⎞

⎟
⎟
⎟
⎠

≤ E

⎡

⎢
⎢
⎢
⎣

∑

C∈m,
z(C)∈W

ρ/kd

1v
ρ/kd (τ/kd)≤f(C)≤vρ(τ)

⎤

⎥
⎥
⎥
⎦
.
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This together with the corresponding inequality when vρ(τ) ≤ vρ/kd(τ/kd) shows
that

∣
∣
∣P

(
Mf,W

ρ/kd
≤ vρ(τ)

)
− P

(
Mf,W

ρ/kd
≤ vρ/kd(τ/kd)

)∣
∣
∣ (5)

≤ ρ

kd

∣
∣P

(
f(C) > vρ/kd(τ/kd)

) − P (f(C) > vρ(τ))
∣
∣

=
ρ

kd

∣
∣
∣
∣
τ/kd

ρ/kd
− τ

ρ
+ o

(
1
ρ

)∣
∣
∣
∣ −→

ρ→∞ 0

according to (1) and the fact that P (f(C) > vρ(τ)) converges to τ for each τ ≥ 0.
Moreover, from (2) we have

lim sup
ρ→∞

P
(
Mf,W

ρ/kd
≤ vρ/kd(τ/kd)

)
= ψ(τ/kd).

We obtain (3) from the previous equality and (5). �

Proof of (4). The main idea is to apply the following adaptation of Lemma 4
in [3]:

Lemma 3. Let L ≥ 1 and let B(1), . . . , B(L) be a L-tuple of Borel subsets
included in W . Under the same assumptions as in Proposition 2, we have:

P
(
Mf,Wρ

≤ vρ

) −
L∏

l=1

P
(
M

f,B
(l)
ρ

≤ vρ

)
−→
ρ→∞ 0,

where B(l)
ρ = ρ1/dB(l), 1 ≤ l ≤ L.

Partitioning W = [0, 1]d into a set of kd sub-cubes of equal volume 1/kd, say
B(1), . . . , B(kd), and applying Lemma 3, we get

P
(
Mf,Wρ

≤ vρ(τ)
) −

kd
∏

l=1

P
(
M

f,B
(l)
ρ

≤ vρ(τ)
)

−→
ρ→∞ 0.

Since B(l)
ρ = ρ1/dB(l) is a cube of volume ρ/kd for any 1 ≤ l ≤ kd and since m

is stationary, we have

P
(
Mf,Wρ

≤ vρ(τ)
) − P

(
Mf,W

ρ/kd
≤ vρ(τ)

)kd

−→
ρ→∞ 0.

We obtain (4) from the previous convergence and (2). �

Proof of Proposition 2. For each τ ≥ 0 and k ∈ N+, it follows from (3) and
(4) that ψ(τ/kd) = ψ1/kd

(τ). Moreover, in the same spirit as in (5), we have

P
(
Mf,W

ρ/kd
≤ vρ(τ)

)
≥ 1 − ρ

kd
P (f(C) > vρ(τ)) −→

ρ→∞ 1 − τ

kd
.
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Hence, taking the kth powers and applying Lemma 3, we deduce that

lim inf
ρ→∞ P

(
Mf,Wρ

≤ vρ(τ)
)

= lim inf
ρ→∞ P

(
Mf,W

ρ/kd
≤ vρ(τ)

)kd

≥
(
1 − τ

kd

)kd

.

Letting k → ∞, we obtain lim infρ→∞ P
(
Mf,Wρ

≤ vρ(τ)
) ≥ e−τ . In particular,

this shows that ψ(τ) > 0. Since ψ is also non-increasing and since the only
solution of the functional equation ψ(τ/kd) = ψ1/kd

(τ) which is strictly positive
and non-increasing is an exponential function, we have ψ(τ) = e−θτ for some
θ ≥ 0. This concludes the proof of Proposition 2. �

3 Examples

We provide below two examples where the extremal index differs from 1.

The minimum of inradii of a Poisson-Voronoi tessellation Let X be a Poisson
point process in Rd of intensity 1. For all x ∈ X, we denote by CX(x) the Voronoi
cell of nucleus x:

CX(x) = {y ∈ Rd : |x − y| ≤ |x′ − y|, x′ ∈ X}.

The family mPV T = {CX(x), x ∈ X} is the so-called Poisson-Voronoi tessella-
tion. Such a model is extensively used in various domains such as astrophysics
[14] and telecommunications [1], see also the reference books [6,10].

In this example, for each cell C = CX(x), x ∈ X, we take z(CX(x)) = x and
f(CX(x)) = r(CX(x)) = max{r ≥ 0 : B(x, r) ⊂ CX(x)} to denote the inradius of
the cell. First we notice that the distribution of r(C)d, with r(C) = r(CX∪{0}(0)),
is exponential with parameter 2dκd, where κd denotes the volume of the unit
ball. Indeed, for any v ≥ 0, we have r(C) ≤ v if and only if X ∩ B(0, 2v) 
= ∅. In
particular, for any t ≥ 0, we get

ρ · P
(
r(C)d ≤ (2dκdρ)

−1
t
)

−→
ρ→∞ t.

Moreover, according to the convergence (2b) in [2], we know that

P
(

min
x∈X∩Wρ

r(CX(x))d ≥ (2dκdρ)
−1

t

)

−→
ρ→∞ e− 1

2 ·t.

Let us notice that the convergence was established in [2] for a fixed window and
for a Poisson point process such that the intensity goes to infinity. By scaling
property of the Poisson point process, the result of [2] can be re-written as
above for a fixed intensity and for a window Wρ where ρ → ∞. This allows us
to provide a first example of extremal index:

Example 1. The extremal index of the minimum of inradius of a Poisson-
Voronoi tessellation exists and is θ = 1/2.

It can be also explained by a trivial heuristic argument. Indeed, if a cell
minimizes the inradius, one of its neighbors has to do the same. Hence the mean
cluster size of exceedances is 2 which implies that θ = 1/2.
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The maximum of circumradii of a Poisson-Delaunay tessellation Let X be a
Poisson point process in Rd of intensity βd, where

βd =
(d3 + d2)Γ

(
d2

2

)
Γ d

(
d+1
2

)

Γ
(

d2+1
2

)
Γ d

(
d+2
2

)
2d+1π

d−1
2

.

We connect two points x, x′ ∈ X by an edge if and only if CX(x) ∩ CX′(x) 
= ∅.
The set of these edges defines a random tessellation mPDT of Rd into simplices
with intensity 1 (e.g. Theorem 10.2.8 in [10]) which is the so-called Poisson-
Delaunay tessellation. Such a model is extensively used in medical image seg-
mentation [13] and is a powerful tool for reconstructing a 3D set from a discrete
point set [9].

Here we take z(C) and f(C) = R(C) as the circumcenter and the circum-
radius of any cell C ∈ mPDT respectively. A Taylor expansion of P (R(C) > v)
(e.g. Equation (3.14) in [3]), as v goes to infinity, shows that for each t ∈ R

ρ · P (
R(C)d ≥ δ−1

d · (
log

(
[(d − 1)!]−1ρ log(βdρ)d−1

)
+ t

)) −→
ρ→∞ e−t,

where δd = βdκd. Moreover, with standard arguments, we easily show that the
maximum of circumradii of Delaunay cells max C∈m,

z(C)∈Wρ

R(C) has the same asymp-

totic behaviour as the maximum of circumradii of the associated Voronoi cells
maxx∈X∩Wρ

R(CX(x)). Besides, thanks to (2c) in [2], we know that

P
(

max
x∈X∩Wρ

R(CX(x))d ≤ δ−1
d

(
log

(
αdβdρ log(βdρ)d−1

)
+ t

)
)

−→
ρ→∞ e−e−t

,

where αd := 1
d!

(
π1/2Γ( d

2+1)
Γ( d+1

2 )

)d−1

. It follows that

P

⎛

⎝ max
C∈mP DT ,

z(C)∈Wρ

R(C)d ≤ δ−1
d · (

log
(
[(d − 1)!]−1ρ log(βdρ)d−1

)
+ t

)
⎞

⎠ −→
ρ→∞ e−θd·e−t

,

where

θd = αdβd(d − 1)! =
(d3 + d2)Γ

(
d2

2

)
Γ

(
d+1
2

)

2d+1dΓ
(

d2+1
2

)
Γ

(
d+2
2

) .

This allows us to provide a second example of extremal index:

Example 2. The extremal index of the maximum of circumradius of a Poisson-
Delaunay tessellation exists and θ = θd. In particular, when d = 1, 2, 3, the
extremal indices are θ = 1, θ = 1/2 and θ = 35/128 respectively.
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Abstract. A model of two-type (or two-color) interacting random balls
is introduced. Each colored random set is a union of random balls and
the interaction relies on the volume of the intersection between the two
random sets. This model is motivated by the detection and quantification
of co-localization between two proteins. Simulation and inference are
discussed. Since all individual balls cannot been identified, e.g. a ball
may contain another one, standard methods of inference as likelihood
or pseudolikelihood are not available and we apply the Takacs-Fiksel
method with a specific choice of test functions.

1 Introduction

This study is motivated by an application to the detection and quantification
of co-localization between proteins [2]. As an example, Fig. 1 depicts a M10 cell
showing respectively from left to right: Langerin proteins (colored in green),
Rab11 GTPase proteins (colored in red) and the superposition of the two pre-
vious images resulting in some possible yellow spots. These two proteins have
been tagged with Yellow Fluorescence Protein and mCherry respectively and
the segmentation algorithm of [1] has been applied to get the images of Fig. 1,
though other algorithms could have been used, e.g. [13]. The proteins of interest
are known to be involved in the traffic of intermediates transport such as vesi-
cles from endosomes to plasma membrane. The problem of co-localization and
co-expression concern the detection and the understanding of their interaction
in this process. This amounts to characterizing their joint spatial repartition.
In Fig. 1, the occurrence of yellow spots in the right hand side image illustrates
the correlation between the locations of the green and red spots in the cell, thus
showing some co-localization between the two proteins.

In order to quantify the above phenomenon, object-based methods have been
applied in the literature, see [7–9] and the references therein, where the spots
are reduced to points and their interaction is analyzed by spatial statistics meth-
ods. We instead decide to preserve the intrinsic geometrical nature of the spots
and we introduce a model of two-type (or two-color) interacting random balls.
Each colored random set is a union of random balls and the interaction relies
on the volume of the intersection between the two random sets. The remainder

c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 179–186, 2015.
DOI: 10.1007/978-3-319-25040-3 20



180 F. Lavancier and C. Kervrann

Fig. 1. M10 cell showing Langerin proteins (left, in green) and Rab11 GTPase proteins
(middle, in red). Right: superposition of the two previous images resulting in some
possible yellow spots (Color figure online).

of this paper is organized as follows: the model is defined in Sect. 2, a simu-
lation algorithm is described in Sect. 3 and the inference procedure, especially
to estimate the interaction parameter, is explained in Sect. 4. Some simulations
on synthesized data show the ability of our procedure to detect and quantify
co-localization. The application on a bunch of real data is part of an ongoing
work.

2 The Model

We briefly recall some background material on point processes and stochas-
tic geometry before introducing our model. The reader is referred to [11] and
[3, Sects. 3–4] for more details.

A finite marked point pattern x on a compact set W ⊂ R
d is composed of

a finite number of marked points (ξ,R), where ξ ∈ W represents the location
of the point and R > 0 is the mark associated to ξ. All along this paper, R
represents the radius of the euclidean ball centered at ξ, so that x can be viewed
as a collection of balls whose centers lie in W .

We consider a random model in that the centres are distributed according
to a point process over W and, independently of the locations, the radii follow
some probability distribution μ on the interval [Rmin, Rmax] for some 0 < Rmin <
Rmax. The standard example is the Boolean model for which the locations come
from a Poisson point process over W , see [3]. Moreover, we randomly mark the
balls with a color i ∈ {1, 2}, yielding a two-type marked random balls process.
We denote by x1, respectively x2, the collection of balls over W having color
i = 1, respectively i = 2. A ball B(ξ,R) with color i is denoted for short (ξ,R)i.

The reference model is to assume x1 and x2 independent, with locations
following a unit-rate Poisson distribution over W , while the radii are indepen-
dently distributed according to μ. This reference model can be viewed either
as an independent bivariate Boolean model or as a (univariate) Boolean model
with marks in {1, 2} associated to probabilities (12 , 1

2 ), the two point of views
being equivalent, see Sect. 6.6 in [11].
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In order to introduce some interaction between the two colors, we consider
a density with respect to the previous reference models. With respect to the
bivariate Boolean model, which is the first point of view for the reference process,
our density writes

f̃(x1, x2) =
1
c̃

zn1
1 zn2

2 eθ |U1∩ U2|

where for i = 1, 2, ni = card(xi), Ui = ∪(ξ,R)∈xi
B(ξ,R), zi > 0, θ ∈ R and c̃ > 0

is a normalizing constant. The parameters z1 and z2 rule the mean number of
balls of each color while θ is an interaction parameter. If θ = 0, there is no
interaction between the two colors and the model is equivalent to the reference
model, up to the intensities z1 and z2. If θ > 0, then there is an attraction
between the two colors in that realizations of (x1, x2) having large values of
|U1 ∩U2| will be more likely than independent realizations of x1 and x2. If θ < 0,
the converse holds and there is some repulsion between the two colors.

Equivalently, we can consider the density with respect to the Boolean model
with equiprobable marks in {1, 2}, corresponding to the second point of view for
the reference process. This density writes

f(x) =
1
c

2n1+n2zn1
1 zn2

2 eθ |U1∩ U2|, (1)

where x = x1 ∪ x2, c > 0 is a normalizing constant, and the interpretations of
the parameters z1, z2 and θ are the same.

Although the bivariate point of view might be more natural to motivate
the model, the latter point of view is more convenient for its theoretical study
including the inference methodology explained in Sect. 4. Henceforth we view
our model as having the density (1).

An important characteristic of the model is the Papangelou conditional inten-
sity of a colored ball (ξ,R)i in x. It is defined by

λ((ξ,R)i, x) =
f(x ∪ (ξ,R)i)

f(x)

which gives

λ((ξ,R)i, x) = 2zi eθ (|Ui∪ B(ξ,R)|−|Ui|+|U1∪ U2|−|U1∪ U2∪ B(ξ,R)|). (2)

Heuristically, this can be interpreted as the conditional probability to observe
the ball (ξ,R)i given the configuration elsewhere is x.

The Papangelou conditional intensity is at the heart of our inference pro-
cedure presented in Sect. 4. This is also a convenient tool to verify the exis-
tence of our model on W for any value of the parameters z1 > 0, z2 > 0 and
θ ∈ R, which amounts to verify that c �= 0 in (1). The latter is indeed ensured
by the local stability property: there exists κ > 0 such that for any i = 1, 2,
(ξ,R) ∈ R

d × [Rmin, Rmax], λ((ξ,R)i, x) < κ. The definition actually extends
to the whole space R

d thanks to the Georgii-Nguyen-Zessin (GNZ) equation
[6,12], in which case (1) becomes the conditional density on W given the outside
configuration on R

d \ W , see [5] for more details.
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3 Simulation

To generate a realization following (1), we use a standard birth-death Metropolis-
Hastings algorithm as described in [11]. At the initial state we start with a
realization of the Boolean model with equiprobable colors and intensity z1 + z2.
At each iteration, we generate a proposal for the birth of a new colored ball
or for the death of an existing ball, each proposal occurring with probability
1/2. If the proposal is a birth, then a color is chosen with probability 1/2, a
new location ξ is drawn uniformly over W and a radius R is sampled from μ.
This birth is then accepted with probability min{1, λ((ξ,R)i, x)|W |/(n(x) + 1)}
where x denotes the configuration before the proposal and |W | is the volume
of W . If the proposal is a death, then a ball is chosen uniformly in x and its
deletion is accepted with probability min{1, n(x)/(λ((ξ,R)i, x \ (ξ,R)i)|W |)}.
The generated Markov Chain converges to the distribution given by (1) and has
further interesting properties due to the local stability property of our model,
see Sect. 7.3 in [11] for more details.

From a practical point of view, the implementation of the above algorithm
requires to be able to compute λ((ξ,R)i, x) and λ((ξ,R)i, x \ (ξ,R)i), which
from (2) amounts to be able to compute the area of a union of balls. This can be
done by standard image analysis tools or by exploiting the power tessellations
associated to U1 and U2 as in [10].

Some simulations in dimension d = 2 are represented in Fig. 2 where the
first row corresponds to the case of no-interaction between the two colors, i.e.
θ = 0 (in which case the MCMC algorithm above is not necessary), while in the
second row θ = 0.2 corresponding to an attraction between the two colors. For
comparison, for these examples, the area of the intersection of the two colors
represents less than one percent of the total volume of their union when θ = 0,
while it represents 17%, 26% and 15% respectively of the total volume in the
case θ = 0.2.

4 Inference

Given a realization as those in Fig. 2, we are interested in the estimation of the
parameters, especially of the interaction parameter θ. We assume in the following
that μ, including Rmin and Rmax, is known.

In general, it is impossible to identify all individual balls (ξ,R) in W since
some spots as in Fig. 2 can be formed by the union of several balls, or a ball
may contain another one. For this reason standard inference procedures such as
likelihood or pseudo-likelihood, which require the observation of the number of
balls in W , are not available. This problem is discussed in detail in [5] for the
estimation of a (one-color) interacting random balls model, namely the Quermass
model. To overcome this difficulty, following [5], we use the Takacs-Fiksel method
for some specific choice of test functions as described below.

Consider, for any non-negative function h,

C(z1, z2, θ;h) = S(h) − z1I1(θ;h) − z2I2(θ;h) (3)
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Fig. 2. Samples when W = [0, 250] × [0, 280], z1 = z2 = 5 × 10−4, Rmin = 0.8,
Rmax = 3, μ is the uniform distribution, θ = 0 (first row) and θ = 0.2 (second row).

where
S(h) =

∑

(ξ,R)∈x

h((ξ,R), x\(ξ,R))

and for i = 1, 2,

Ii(θ;h) =
∫ Rmax

Rmin

∫

W

h((ξ,R)i, x)
λ((ξ,R)i, x)

2zi
dξ μ(dR).

Denoting by z∗
1 , z∗

2 and θ∗ the true unknown values of the parameters, we know
from the GNZ equation that E(C(z∗

1 , z∗
2 , θ∗;h)) = 0. Therefore the random vari-

able C(z1, z2, θ;h) should be close to 0 when (z1, z2, θ) is close to (z∗
1 , z∗

2 , θ∗).
This remark is at the basis of the Takacs-Fiksel approach. Given K test func-
tions (hk)1≤k≤K , the Takacs-Fiksel estimator is defined by

(ẑ1, ẑ2, θ̂) := arg min
z1,z2,θ

K∑

k=1

C(z1, z2, θ;hk)2. (4)

The strong consistency and asymptotic normality of (ẑ1, ẑ2, θ̂) when the
observation window W grows to R

d are established in [4], provided K ≥ 3
and some technical conditions on the test functions hk.

In our setting, it is in general not possible to compute S(h) since it a priori
requires the identification of each individual ball (ξ,R) of x. Nonetheless, for
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the following specific choices of h, S(h) becomes computable. Let S(ξ,R) be the
sphere centered at ξ with radius R and

h1((ξ,R)i, x) = Length
(
S(ξ,R) ∩ (U1)c

)
1{i=1},

h2((ξ,R)i, x) = Length
(
S(ξ,R) ∩ (U2)c

)
1{i=2},

h3((ξ,R)i, x) = Length
(
S(ξ,R) ∩ (U1 ∪ U2)c

)
.

In words, h1, respectively h2 and h3, can be viewed as the contribution of (ξ,R)i

to the perimeter of U1 ∪ B(ξ,R) if i = 1, respectively U2 ∪ B(ξ,R) if i = 2 and
U1 ∪ U2 ∪ B(ξ,R) whatever i.

It is easily checked that S(h1) = P(U1), S(h2) = P(U2) and S(h3) = P(U1 ∪
U2), where P denotes the perimeter, proving that this choice of test functions
solves the identification issue raised before.

On the other hand the integrand in Ii(θ, hk) for i = 1, 2 and k = 1, 2, 3
can be computed for any ξ ∈ W and R ∈ [Rmin, Rmax] and Ii(θ, hk) can be
easily approximated by a Riemann sum. Note that a convenient way to compute
hk((ξ,R)i, x) is to make use of the power tessellation associated to U1 and U2,
see [10].

From (3) and (2), we notice that the optimisation (4) in z1 and z2 can be
done explicitly. Using the above simplification for S(hk), k = 1, 2, 3, we deduce
that the solution (ẑ1, ẑ2, θ̂) of (4) necessarily belongs to the implicit manifold
(z1, z2) = (z̃1(θ), z̃2(θ)) with

z̃1(θ) =
[ {

I1(θ, h1)2 + I1(θ, h3)2
}{

I2(θ, h2)2 + I2(θ, h3)2
} − I1(θ, h3)2I2(θ, h3)2

]−1

×
[
{I1(θ, h1)P(U1) + I1(θ, h3)P(U1 ∪ U2)}

{
I2(θ, h2)2 + I2(θ, h3)2

}

− I1(θ, h3)I2(θ, h3) {I2(θ, h2)P(U2) + I2(θ, h3)P(U1 ∪ U2)}
]
,

z̃2(θ) =
[ {

I1(θ, h1)2 + I1(θ, h3)2
}{

I2(θ, h2)2 + I2(θ, h3)2
} − I1(θ, h3)2I2(θ, h3)2

]−1

×
[
{I2(θ, h2)P(U2) + I2(θ, h3)P(U1 ∪ U2)}

{
I1(θ, h1)2 + I1(θ, h3)2

}

− I1(θ, h3)I2(θ, h3) {I1(θ, h1)P(U1) + I1(θ, h3)P(U1 ∪ U2)}
]
.

Consequently the estimation of θ reduces to the following one-dimensional opti-
mization problem

θ̂ = arg min
θ

[
{P(U1) − z̃1(θ)I1(θ, h1)}2 + {P(U2) − z̃2(θ)I2(θ, h2)}2

+ {P(U1 ∪ U2) − z̃1(θ)I1(θ, h3) − z̃2(θ)I2(θ, h3)}2
]
.
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Fig. 3. Repartition of θ̂ computed from 100 samples as in the second row of Fig. 2.

An estimation of the intensities is then ẑ1 = z̃1(θ̂) and ẑ2 = z̃2(θ̂).
An an illustration, Fig. 3 shows the repartition of θ̂ from 100 replications of

our model with the same parameters as in the second row of Fig. 2. For this
example, our procedure clearly identifies the attractive behavior between x1 and
x2, which opens exciting perspectives for the quantification of co-localization in
proteins as in Fig. 1. The latter application is part of an ongoing project.
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Asymptotics of Superposition of Point Processes
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Abstract. The characteristic independence property of Poisson point
processes gives an intuitive way to explain why a sequence of point
processes becoming less and less repulsive can converge to a Poisson
point process. The aim of this paper is to show this convergence for
sequences built by superposing, thinning or rescaling determinantal
processes. We use Papangelou intensities and Stein’s method to prove
this result with a topology based on total variation distance.

Keywords: Stochastic geometry · Ginibre point process · β-Ginibre
point process · Poisson point process · Stein’s method

1 Motivations

The primary motivation of this work was the following. Consider the locations
of base stations (BS), i.e. antennas, of the mobile network in Paris. If we have a
look at the global process of all base stations of all operators and for all operating
frequencies, we obtain the left picture of Fig. 1. It turns to be compatible with the
null hypothesis of being a Poisson process. However, if we look at the positions of
base stations deployed by one operator, in one frequency band, we get a picture
similar to the right picture of Fig. 1. It was shown in [6] that this deployment
is statistically compatible with a point process with repulsion, called β-Ginibre
process.

When superposing a large number of independent processes with internal
repulsion but few points, it is intuitively clear that the resulting process does not
exhibit strong interdependencies between its atoms and should thus resemble a
Poisson process. This is this intuition we wanted to quantify by determining how
fast does the convergence hold. It is often clear by looking at the Laplace trans-
forms that a superposition of processes converge to a Poisson process, however,
this does not yield a convergence rate. We here use the Stein-Dirichlet-Malliavin
method, developped in [1,3], to precise this rate. It turns out that the perti-
nent characteristics of the point processes to be considered is their Papangelou
intensity, see [5] and references therein. We show here that the Kantorovitch-
Rubinstein between a Poisson point process and any other point process is con-
trolled by the L1 distance of their Papangelou intensity, thus generalizing the
property that the distance between two Poisson processes is controlled by the L1

distance between their control measure [2]. This result is then applied to several
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 187–194, 2015.
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Fig. 1. On the left, positions of all BS in Paris. On the right, locations of BS for one
frequency band.

situations involving superpositions and dilations of point processes. This paper
is organized as follows: In Sect. 2, we recall the basics of point processes theory
and introduce our model of choice, the determinantal point processes. Section 3
is devoted to the explanation of the Stein-Dirichlet-Malliavin method and how
we get the main theorem. In Sect. 4, we apply this result to superposition and
dilations of determinantal point processes. Due to space limitations, we just give
here the main theorems, the proofs are accessible in [4].

2 Preliminaries

2.1 Point Processes

Let Y be a Polish space and FY its Borel algebra, NY the space of all locally
finite subsets (configurations) in Y , N̂Y the space of finite subsets in Y . One
may identify an element {xn, n ∈ IN} of NY with the atomic measure

∑
n∈IN δxn

,
where IN henceforth denotes the set of positive integers. The space NY is a Polish
space when equipped with the vague convergence (see [7]). A point process Φ is a
random variable in NY . We denote by φ a generic realization, i.e. a configuration,
of Φ. The intensity measure of Φ is defined as the measure A ∈ FY �→ E[φ(A)].
For μ a diffuse measure on Y , the μ-sample measure L is defined by: For any
measurable f : N̂Y → IR+,

∫

N̂Y

f(φ)L(dφ) =
+∞∑

k=0

1
k!

∫

Y k

f({x1, . . . , xk})μ( dx1) . . . μ( dxk). (1)

Among other characterizations, the distribution IPΦ of a point process Φ can be
given by its correlation function ρ : N̂Y → IR+ defined by:

∫

NY

∑

α∈N̂Y
α⊂φ

f(α)IPΦ(dφ) =
∫

N̂Y

f(α)ρ(α)L(dα), (2)

for any measurable bounded function f : N̂Y → IR+. For instance, the
correlation function of a Poisson point process (PPP) with control measure
M(dx) = m(x)μ(dx) on Y is given by ρ(φ) =

∏
x∈φ m(x). Another descriptor of
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interest of a point process is the so-called Papangelou intensity. It is a function
c : Y × NY → IR+ such that for any measurable function f : Y × NY → IR+,

∫

NY

∑

x∈φ

f(x, φ \ {x})IPΦ(dφ) =
∫

Y

∫

NY

c(x, ξ)f(x, ξ)IPΦ(dξ)μ(dx). (3)

For a Poisson process of control measure m(x)μ(dx), c(x, φ) = m(x) for any
(x, φ).

2.2 Determinantal Point Processes

For the applications we have in mind, we introduce now the notion of deter-
minantal point processes, for details we refer to [8]. A process of this kind is
characterized by a reference measure μ on Y and an Hilbert-Schmidt linear map
K from L2(Y, μ; C) into itself satisfying the following properties:

– K is positive Hermitian.
– The discrete spectrum of K is included in [0, 1).
– K is a locally trace-class: For any compact Λ ⊂ Y , KΛ = PΛKPΛ (where PΛ

is the orthogonal projection of L2(Y, μ; C) to L2(Λ, μ; C)), the restriction of
K to L2(Λ, μ; C), is trace class.

Since K is Hilbert-Schmidt, there exists a kernel, which we still denote by K,
from Y × Y into C, such that for any x ∈ Y ,

Kf(x) =
∫

Y

K(x, y)f(y)μ(dy).

Together with K, there is another operator of importance, usually denoted by
J and defined as J = (I − K)−1K. Since K is hermitian, there exists a com-
plete orthonormal basis (hj , j ∈ IN) of L2(Y, μ; C) and a sequence (λj , j ∈ IN) ⊂
[0, 1)IN such that for all f ∈ L2(Y, μ; C),

Kf =
+∞∑

j=1

λj〈f, hj〉L2(μ)hj , Jf =
+∞∑

j=1

λj

1 − λj
〈f, hj〉L2(μ)hj ,

and then, for all x, y ∈ Y ,

K(x, y) =
+∞∑

j=1

λjhj(x)hj(y), J(x, y) =
+∞∑

j=1

λj

1 − λj
hj(x)hj(y).

The determinantal point process DPP (K,μ) is then defined by its correlation
functions (see [8]):

ρ({x1, · · · , xk}) = det(K(xi, xj), 1 ≤ i, j ≤ k).

From [5], we know that

c(x0, {x1, · · · , xk}) =
det(J(xi, xj), 0 ≤ i, j ≤ k)
det(J(xi, xj), 1 ≤ i, j ≤ k)

·
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2.3 Superposition, Rescalings and Thinnings

Let Φ be a point process on Y . For ε ∈ [0; 1], we associate to Φ the ε-thinned
point process tε(Φ) obtained by retaining, independently and with probability ε,
each point of φ.

If Y = IRd and γ is a positive real number, we associate to Φ the γ-rescaled
point process rγ(Φ) obtained by applying a dilation of magnitude γ1/d to each
point of Φ. Note that this modifies the intensity measure of Φ by a factor γ.

For β ∈ (0; 1], we associate to Φ the β-point process rβ−1(tβ(Φ)) obtained by
combining a β-thinning and a β−1-rescaling, in order to conserve the intensity
measure of Φ. Their respective correlation functions are provided by the following
proposition.

Theorem 1. Let Φ be a point process on Y with correlation function ρΦ, and
ε ∈ [0; 1]. Then, the function correlation of tε(Φ) is given for any α ∈ N̂Y by

ρtε(Φ)(α) = ε|α|ρΦ(α).

Moreover, if Y = IRd and γ > 0, the correlation function of rγ(Φ) is given for
any α ∈ N̂Y by

ρrγ(Φ)(α) = γ|α|ρΦ(γ
1
d α).

3 Kantorovitch-Rubinstein Distance and Stein’s Method

The total variation distance between two measures ν1 and ν2 on Y is defined by

dTV(ν1, ν2) := sup
A∈FY

ν1(A),ν2(A)<∞

|ν1(A) − ν2(A)|.

We say that a measurable map F : NY → IR is 1-Lipschitz if

|F (φ1) − F (φ2)| ≤ dTV (φ1, φ2) for all φ1, φ2 ∈ NY .

We denote by Lip1 the set of bounded 1-Lipschitz maps. The Kantorovich-
Rubinstein distance between two probability measures IP1 and IP2 on NY is
defined by

dKR(IP1, IP2) = sup
F∈Lip1

∣
∣
∣

∫

NY

F (φ) IP1(dφ) −
∫

NY

F (φ) IP2(dφ)
∣
∣
∣. (4)

According to [3, Proposition 2.1], the topology induced by this distance coincides
with the topology of narrow convergence of probability measures on NY . Our
goal is to evaluate the distance between some probability measure on NY and
IPM , the distribution of a Poisson point process of control measure M on Y .
We assume henceforth that M has a finite mass, i.e. M(Y ) < ∞. We use the
Stein-Dirichlet-Malliavin method which we describe roughly now, for details we
refer to [3].
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The Glauber process (Gt, t ≥ 0) associated to IPM is the N̂Y -valued Markov
process whose generator is given by

LF (φ) :=
∫

Y

(F (φ + δy) − F (φ))M(dy) +
∑

y∈φ

(F (φ − δy) − F (φ)), φ ∈ N̂Y ,

where F : NY → IR is a measurable and bounded function. Since M is a finite
measure, the dynamics of G are described as follows: Let G(0) = φ and consider
a Poisson process on the half-axis of intensity M(Y ). We denote by (Tn, n ≥ 1)
the arrival times of this process. At each Tn, G(Tn) = G(T−

n ) + δYn
where Yn

is chosen according to M , independently of everything else. All the particles,
be they present at the origin or born after, have a lifetime which follows an
exponential distribution of parameter 1, independent of everything else. Then,
G(t) is the point process of living particles at time t. We denote by (Pt, t ≥ 0)
its semi-group:

PtF (φ) = E [F (G(t)) |G(0) = φ] .
This Markov process, or at least its semi-group, has two attractive features:

– It is ergodic: limt→∞ PtF (φ) =
∫

NY
F (φ)IPM (dφ) for all φ ∈ NY .

– If we define the operator D by

DyF (φ) = F (φ + δy) − F (φ),

for any y ∈ Y and φ ∈ NY , we have

DyPtF (φ) = e−tPtDyF (φ),

for all t ≥ 0, y ∈ Y and φ ∈ NY .

As a consequence of the ergodicity and of the markovianity of P , we have the
Stein-Dirichlet representation formula, see [3]: For any probability measure IP
on NY ,

∫

NY

F (φ) IP(dφ) −
∫

NY

F (φ) IPM (dφ) =
∫

NY

∫ ∞

0

LPsF (φ) ds IP(dφ).

Theorem 2. Let IP be a finite point process on Y with Papangelou intensity c,
and IPM the distribution of a Poisson point process with finite control measure
M(dy) = m(y)μ(dy) on Y . Then, we have the following upper bound:

dKR(IP, IPM ) ≤
∫

Y

∫

NY

|m(y) − c(y, φ)|ν(dφ)μ(dy).

Proof. Starting from the expression of L, we have
∫

NY

F (φ) IP(dφ) −
∫

NY

F (φ) IPM (dφ)

=
∫

NY

∫ ∞

0

∫

Y

DyPsF (φ)m(y)μ(dy) ds IP(dφ)

+
∫

NY

∫ ∞

0

∑

y∈φ

PsF (φ − δy) − PsF (φ) ds IP(dφ).



192 L. Decreusefond and A. Vasseur

By the very definition of the Papangelou intensity,
∫

NY

∫ ∞

0

∑

y∈φ

PsF (φ − δy) − PsF (φ) ds IP(dφ)

= −
∫

NY

∫ ∞

0

∫

Y

DyPsF (φ)c(y, φ)μ(dy) ds IP(dφ).

Thus,
∫

NY

F (φ) IP(dφ) −
∫

NY

F (φ) IPM (dφ)

=
∫

NY

∫ ∞

0

∫

Y

DyPsF (φ)(m(y) − c(y, φ))μ(dy) ds IP(dφ).

In view of the commutation relationship between Dy and Ps, since F Lipschitz
entails that |DyF (φ)| ≤ 1 for any (y, φ), we get

|DyPsF (φ)| = e−s|PsDyF (φ)| ≤ e−sPs1l = e−s.

The result then follows.

4 Applications to Superpositions, Rescalings and
Thinnings

Let K be the continuous kernel of a DPP on Y , and Λ a compact subset of
Y . For all n ∈ IN, we consider Φn,1, . . . , Φn,n, n independent point processes
and Φn their superposition, such that, for all i ∈ {1, . . . , n}, Φn,i is a DPP with
kernel Kn,i, supported by Λ and such that there exists a measurable function
m : Λ → C verifying:

lim
n→+∞

∫

Λ

∣
∣
∣

n∑

i=1

Kn,i(y, y) − m(y)
∣
∣
∣μ(dy) = 0.

Furthermore, let cn,i be the Papangelou intensity of the point process Φn,i: by
Theorem 3.6 of [5], its existence is guaranteed for all determinantal point process.
The Papangelou intensity of the superposition can be deduced from Papangelou
intensities cn,i of the Φn,i:

Lemma 1. For all n ∈ IN, Φn admits a Papangelou intensity cn given for all
y ∈ Y , φ = ∪n

i=1φi ∈ INY by:

cn(y, φ) =
n∑

i=1

cn,i(y, φi).

Note that this is not strictly speaking the Papangelou intensity of Φn since the
right-hand-side depends on the particular construction of Φn as the superposition
of the Φn,i.
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4.1 Superposition of Rescaled Determinantal Processes

The following theorem states the convergence of a sequence built by superpo-
sition of thinned determinantal processes and is a corollary of Theorem 2. The
DPP Φn,i is obtained by γi/n-rescaling the βn,i-DPP (K,μ) restricted to a com-
pact set Λ ⊂ Y . Its kernel Kn,i is then defined for x, y ∈ Y by

Kn,i : (x, y) ∈ Y × Y �→ γi

n
K

(√
γi

nβn,i
x,

√
γi

nβn,i
y
)
1Λ×Λ(x, y).

Let (Rn, n ∈ IN) be the sequence defined for all n ∈ IN by

Rn =
∫

Λ

∣
∣
∣

n∑

i=1

Kn,i(y, y) − m(y)
∣
∣
∣μ(dy),

where m : Y → IR+ is a measurable function.

Corollary 1. Suppose K is such that supx,y∈Λ |K(x, y)| < +∞. Assume that
limn→+∞ Rn = 0. Then the sequence (Φn, n ∈ IN) converges strongly to a Pois-
son point process with control measure M(dy) = m(y)μ(dy) and

dKR(IPΦn
, IPM ) = O

( 1
n

+ Rn

)
.

4.2 Superposition of Thinned Determinantal Processes

Consider now a superposition where each DPP Φn,i is obtained by γi/n-thinning
the βn,i-DPP (K,μ). Its kernel Kn,i is then defined by

Kn,i : (x, y) ∈ Y × Y �→ γi

n
K

( x
√

βn,i

,
y

√
βn,i

)
1Λ×Λ(x, y). (5)

The next theorem states the convergence of the previously built sequence of
superpositions.

Corollary 2. Suppose limn→+∞ Rn = 0. Then the sequence (Φn, n ∈ IN)
converges strongly to a Poisson point process with control measure M(dy) =
m(y)μ(dy) and

dKR(Φn, πM ) = O
( 1

n
sup

i=1,...,n
βn,i + Rn

)
.

4.3 Application to β-determinantal Processes

Let K be the kernel of a DPP on Y , assumed to be continuous as a function of
x and y. Suppose that the sequence (βn, n ∈ IN) converges to 0 and that Φn is
the DPP with kernel Kn defined by

Kn : (x, y) ∈ Y × Y �→ K
( x√

βn

,
x√
βn

)
1Λ×Λ(x, y). (6)
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Let (Rn, n ∈ IN) be the sequence defined for all n ∈ IN by

Rn =
∫

Λ

|Kn(y, y) − K(0, 0)|μ( dy).

Corollary 3. Suppose limn→+∞ Rn = 0. Then the sequence (Φn) converges
strongly to an homogeneous Poisson point process with control measure M(dy) =
K(0, 0)μ(dy) and

dKR(Φn, πM ) = O(βn + Rn).
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Abstract. Random polytopes have constituted some of the central
objects of stochastic geometry for more than 150 years. They are in gen-
eral generated as convex hulls of a random set of points in the Euclidean
space. The study of such models requires the use of ingredients coming
from both convex geometry and probability theory. In the last decades,
the study has been focused on their asymptotic properties and in par-
ticular expectation and variance estimates. In several joint works with
Tomasz Schreiber and J. E. Yukich, we have investigated the scaling limit
of several models (uniform model in the unit-ball, uniform model in a
smooth convex body, Gaussian model) and have deduced from it limiting
variances for several geometric characteristics including the number of
k-dimensional faces and the volume. In this paper, we survey the most
recent advances on these questions and we emphasize the particular cases
of random polytopes in the unit-ball and Gaussian polytopes.

1 Introduction

Stochastic geometry is a branch of probability theory which consists in studying
random spatial models embedded in the Euclidean space Rd, d ≥ 2, or any metric
space. Random polytopes are considered as some of the key models of stochastic
geometry [20]. The first appearance of a random polytope in the literature goes
back to recreational mathematics in the 19th century and in particular to the
so-called Sylvester’s four-point problem. In 1864, J. J. Sylvester has indeed con-
sidered 4 random independent points which are uniformly distributed in some
fixed convex body K of R2 and he asked for the probability p4(K) that these
four points are the vertices of a convex quadrilateral. This question and its gen-
eralization to n points, i.e. finding the probability pn(K) that n independent and
uniformly distributed points in K are all extreme points of their convex hulls,
have drawn attention from both geometers specialized in integral geometry and
probabilists specialized in geometric probability. In particular, W. Blaschke [9]
showed in 1917 that p4(K) is maximal when K is a disk and minimal when K
is a triangle. This implies that for any planar convex body K, we have

1
3

≤ p4(K) ≤
(

1 − 35
12π2

)

.

More recently, I. Bárány [3] has obtained the asymptotic behavior of pn(K) and
P. Valtr [26] has deduced from combinatorial arguments an explicit formula for
fixed n when K is a triangle or a parallelogram.
c© Springer International Publishing Switzerland 2015
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In parallel, the study of the convex hull of n independent points which are
uniformly distributed in a convex body K of Rn has started more than 50 years
ago. In 1962, J. G. Wendel has derived an explicit formula for the probability that
the origin is inside the convex hull when the points have a symmetric distribution
[29]. B. Efron has obtained a very simple formula which relates the mean number
of extreme points of a sample of size n to the mean volume of the convex hull
of (n − 1) points. Indeed, let K be a convex body in R

d, d ≥ 2. Denoting by
Kn the convex hull of n i.i.d. uniform points in K, by f0(Kn) the number of
extreme points of Kn and by Vd the d-dimensional Lebesgue measure, we have
the following equality for every n ≥ (d + 1):

E f0(Kn) = n

(

1 − EVd(Kn−1)
Vd(K)

)

.

Apart from these two works, very few non-asymptotic results have been obtained
and focus has quickly turned to the description of the asymptotic behavior of a
random convex hull when the size of the input goes to infinity.

In two seminal works published in 1963 and 1964 [21,22], A. Rényi and
R. Sulanke obtained explicit formulae for the asymptotics of the mean number of
vertices, mean area and mean perimeter of a planar random polytope constructed
as the convex hull of n independent and identically distributed points. The three
different distributions that they considered were the uniform distribution in a
smooth convex body, the uniform distribution in a convex polytope and the
standard Gaussian distribution. In the rest of the paper, we will name these
three models as the smooth uniform model, polytope uniform model and Gaussian
model respectively (see Fig. 1).

The works of A. Rényi and R. Sulanke have revealed completely different
behaviors between the three models: in the smooth uniform model, the growth
of the number of extreme points is polynomial while it is logarithmic in both the
polytope uniform model and the Gaussian model. The study has been extended
to higher dimensions in several subsequent works, due notably to R. Schneider
and J. A. Wieacker [24], I. Bárány [2] and M. Reitzner [17,19] for the smooth
uniform model, I. Bárány and C. Buchta [4] and M. Reitzner [19] for the polytope
uniform model, F. Affentranger and R. Schneider [1] and Y. Baryshnikov and
R. Vitale [8] for the Gaussian model. The results that are derived from these
many references are summarized in the table below (see Fig. 2). Here and below,
Kn denotes the convex hull of an input of size n in R

d, K being the mother
body in both smooth and polytope uniform models, and fk(Kn), 0 ≤ k ≤ d,
is the number of k-dimensional faces of Kn. For two functions f and g, we
use the abbreviations f(n) ∼ g(n) and f(n) ≈ g(n) when limn→∞

f(n)
g(n) = 1 and

when limn→∞
f(n)
g(n) exists in (0,∞) respectively. In particular, the multiplicative

constants are proportional to the so-called affine area of K and to the number of
flags in K in the smooth uniform model and polytope uniform model respectively.

In the more recent years, the works have been focused on second-order results
for random polytopes and in particular central limit theorems and variance esti-
mates. After seminal works in the planar case due to P. Groeneboom [15] in
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Fig. 1. Simulations of random polytopes in the plane for an input of size 100 (top) and
size 500 (bottom). From left to right: smooth uniform model (in the disk), polytope
uniform model (in the square), Gaussian model

1988 and T. Hsing [16] in 1994, a new method based on so-called dependency
graphs proved successful for deriving central limit theorems for both fk(Kn) and
Vd(Kn) when applied by M. Reitzner [18] and V. H. Vu [28] for the smooth uni-
form model, by I. Bárány and M. Reitzner [5] for the polytope uniform model
and by I. Bárány and V. H. Vu [7] for the Gaussian model.

Showing the existence of limiting variances proved to be more intricate. When
proving the central limit theorem, M. Reitzner [18] and I. Bárány and V. H. Vu
[7] obtained sharp lower and upper bounds for the smooth uniform model and
Gaussian model respectively. Bounds for the polytope uniform model have been
obtained by M. Reitzner and I. Bárány [6], independently from the central limit
theorem and with a particular use of the so-called floating body of order 1/n
associated with K.

The goal of this paper is essentially to present several results of existence
and calculation of limiting variances. In 2008, T. Schreiber and J. E. Yukich [25]
derived for the first time a limiting variance for the number of extreme points
in the case of a smooth uniform model in the unit-ball. In [13], we show that
the boundary of a random polytope inside the unit-ball converges to a limiting
process when properly rescaled and we deduce from this scaling transformation
variance asymptotics for several geometric characteristics as well as an invariance
principle. In [11], the case of the unit-ball is used to derive variance asymptotics
in the general smooth uniform model. Finally, in [12], a new scaling transforma-
tion is defined in order to provide results similar to those contained in [13] but
for the Gaussian model.

In the rest of the paper, we will concentrate on both the smooth uniform
model in the unit-ball and the Gaussian model. Section 2 will be devoted to
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Fig. 2. Asymptotic behavior of expectations

the introduction of the scaling transformations on which the variance estimates
depend. Section 3 will provide the main results regarding variance asymptotics
and describe a few key ingredients of the proofs. In Sect. 4, we provide concluding
remarks and suggest several extensions.

The results presented here are based on joint works [11–13] with T. Schreiber
and J. E. Yukich.

2 Scaling Transformation

In this section, we focus on two examples: for n ≥ (d + 1),

– the convex hull Kn of n independents points which are uniformly distributed
in the unit-ball of Rd, denoted by B

d;
– the convex hull Kn of n independent points which are distributed according

to the standard Gaussian distribution in R
d, i.e. the distribution with density

function

φ(x) := (2π)−d/2 exp(−|x|2
2

), x ∈ R
d,

where | · | is the Euclidean norm in R
d.

For sake of simplicity of the exposition, we will keep in the two different examples
the same notation for the input, the convex hull, the scaling transform and the
limiting process.

Both models are rotation-invariant. The limiting shape of Kn in the uniform
model is B

d itself. In the Gaussian model, thanks to a work due to J. Geffroy
in 1961 [14], it is known that the Hausdorff distance between Kn and the ball
centered at the origin and of radius

√
2 log(n) converges to zero. The sphericality

of the limiting shape of the random polytope in both cases suggests that we have
to describe the boundary with spherical coordinates and rescale it in both radial
and angle coordinates. Moreover, the rescaling should be done in such a way
that the mean number of points per unit volume stays bounded when n → ∞.
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Let κd be the volume of B
d, u0 = (0, · · · , 0, 1) be the north pole of the

unit-sphere S
d−1 and expd−1 : Rd−1 −→ S

d−1 be the exponential map at u0.
We recall that expd−1 is injective on the (d − 1)-dimensional open ball centered
at the origin and of radius π and we will denote by exp−1

d−1 the inverse of the
restriction of expd−1 to that domain. Moreover, in the Gaussian model, we will
use the following critical radius:

Rn =
√

2 log n − log(2 · (2π)d · log n).

The definition of the scaling transform is then

T (n) :

⎧
⎨

⎩

B
d \ {αu0 : α ≤ 0} −→ R

d−1 × R+

x 	→
((

n
κd

) 1
d+1

exp−1
d−1(

x
|x| ),

(
n
κd

) 2
d+1

(1 − |x|)
)

in the uniform model and

T (n) :

{
R

d \ {αu0 : α ≤ 0} −→ R
d−1 × R+

x 	→
(
Rn exp−1

d−1(
x

|x| ), R2
n(1 − |x|

Rλ
)
)

in the Gaussian model.
In the next theorem, we describe the asymptotic behavior of the boundary

of Kn. In order to do so, we need to introduce a few notation in the rescaled
space R

d−1 × R:

– P is a Poisson point process in R
d = {(v, h) ∈ R

d−1 ×R} of intensity measure
1R+(h)dvdh in the case of the uniform model (resp. ehdvdh in the case of the
Gaussian model);

– Π↑ and Π↓ are respectively the up-paraboloid and down-paraboloid in R
d−1 ×

R of equations (2h = |v|2) and (2h = −|v|2);
– for any locally finite set χ ⊂ R

d,

Ψ(χ) =
⋃

x∈χ

(x + Π↑)

and
Φ(χ) =

⋃

x∈Rd;(x+Π↓)∩χ=∅
(x + Π↓);

– for any locally finite set χ ⊂ R
d, Ext(χ) is the set of x ∈ χ such that (x+Π↑) �⊂

Ψ(χ \ {x}).

We then have the two following results.

Theorem 2.1. As n → ∞,

(i) the image by T (n) of the set of extreme points of Kn converges in distribution
to Ext(P);

(ii) the re-scaled boundary T (n)(∂Kn) converges in probability to ∂(Φ(P)) in the
space of continuous functions on R

d−1 endowed with the uniform convergence
on compact sets (Fig. 3).
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Fig. 3. In blue: point process Ext(P), in green: the boundary ∂(Φ(P)) of the parabolic
hull process, in red: the boundary ∂(Ψ(P)) of the parabolic growth process (Color
figure online).

3 Variance Asymptotics

We are interested in the asymptotic behavior of some of the classical geometric
characteristics of the convex hull Kn, i.e. its number fk(Kn) of k-dimensional
faces, 0 ≤ k ≤ d, and its volume Vd(Kn). For every n ≥ 1, let

αn =

{
n

d−1
d+1 for the uniformmodel

(2 logn)
d−1
2 for theGaussianmodel

, andβn =

{
n
− d+3

d+1 for the uniformmodel

(2 logn)
d−3
2 for theGaussianmodel

.

We deduce from Theorem 2.1 the following variance asymptotics.

Theorem 3.2. (i) limn→∞ αn
−1V ar(fk(Kn)) exists in (0,∞) and can be writ-

ten explicitly as a function of Φ(P);
(ii) limn→∞ βn

−1V ar(Vd(Kn)) exists in (0,∞) and can be written explicitly as
a function of Φ(P);

In the few lines below, we provide a few hints to prove Theorem 3.2.
An important step of the reasoning is the Poissonization of the input as it is

often the case in stochastic geometry: indeed, we observe that it is easier to study
the convex hull of a Poisson point process Pλ of intensity measure λ1Bd(x)dx
(λφ(x)dx respectively) when λ → ∞.

Now the functionals fk(Kn) and Vd(Kn) can be rewritten as sums over all
points x from the Poisson point process of a certain score depending on x and
on the point process (for instance, f0(Kn) is the sum of 1x is extreme over x).

Using both the scaling transform defined in the previous section and the
Mecke-Slivnyak’s formula (Corollary 3.2.3 in [23]), the variance can then be
rewritten as an integral over the product space R

d−1 × R. The convergence
provided by Theorem 2.1 will imply in turn the convergence of the integrand.
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The existence of the limiting variance will finally be deduced from a careful use
of Lebesgue’s dominated convergence.

4 Concluding Remarks

– Results from Theorem 3.2 can be extended to so-called intrinsic volumes of
order k, 0 ≤ k ≤ (d−1), of the convex set Kn. Moreover, the method provides
a functional central limit theorem for the volume with an explicit limiting
variance.

– Such variance asymptotics in the uniform model also occur when the mother
body K is a smooth convex body with a C3 boundary. The limiting variance
is then equal to the affine area of K up to a multiplicative constant [11].

– First large deviation-type results for these functionals have been derived in
[27] and [10].

– A different way of defining a random polytope consists in constructing a
process of random hyperplanes and considering the intersection of the half-
spaces bounded by these hyperplanes and containing for instance the origin.
This results in studying cells from a random hyperplane tessellation (see e.g.
Chapter 10 from [23]). Some of the preceding results can be translated in this
new set-up for cells with a large inradius.
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9. Blaschke, W.: Über affine Geometrie XI: Losung des Vierpunk- tproblemsvon

Sylvester aus der Theorie der geometrischen Wahrschein- lichkeiten. Ber. Verh.
S achs. Ges. Wiss. Leipzig, Math.-Phys. Kl. 69, 436–453 (1917)

10. Calka, P., Schreiber, T.: Large deviation probabilities for the number of vertices
of random polytopes in the ball. Adv. Appl. Probab. 38, 47–58 (2006)

11. Calka, P., Yukich, J.E.: Variance asymptotics for random polytopes in smooth
convex bodies. Probab. Theor. Relat. Fields 158, 435–463 (2014)

12. Calka, P., Yukich, J.E.: Variance asymptotics and scaling limits for
Gaussian Polytopes. Probability Theory and Related Fields (2015, to appear).
http://arxiv.org/abs/1403.1010/

http://arxiv.org/abs/1403.1010/


202 P. Calka

13. Calka, P., Schreiber, T., Yukich, J.E.: Brownian limits, local limits, and variance
asymptotics for convex hulls in the ball. Ann. Probab. 41, 50–108 (2013)

14. Geffroy, J.: Localisation asymptotique du polyèdre d’appui d’un échantillon
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Abstract. Asymmetric information distances are used to define asym-
metric norms and quasimetrics on the statistical manifold and its dual
space of random variables. Quasimetric topology, generated by the
Kullback-Leibler (KL) divergence, is considered as the main example,
and some of its topological properties are investigated.

1 Introduction

It is difficult to overestimate the importance of the Kullback-Leibler (KL) diver-
gence DKL[p, q] = Ep{ln(p/q)} in probability and information theories, statistics
and physics [1]. Not only it plays the role of a non-symmetric squared Euclid-
ean distance on the set P(Ω) of all probability measures on measurable set
(Ω,A), satisfying the non-symmetric Pythagorean theorem [2] and the gener-
alized law of cosines (see Theorem 2), but it also possesses a number of other
useful and often unique to it properties. Indeed, it is Gâteaux differentiable
and strictly convex everywhere where it is finite (the convex cone of finite pos-
itive measures). It is unique in the sense of additivity: DKL[p1 ⊗ p2, q1 ⊗ q2] =
DKL[p1, q1] + DKL[p2, q2], and its Hessian defines Riemannian metric on the
statistical manifold P ⊂ Y+ invariant in the category of Markov morphisms.
The existence and uniqueness of this Riemannian metric is one of the most cel-
ebrated results in information geometry due to Chentsov (Lemma 11.3 in [3] or
its infinite-dimensional version Theorem 5.1 in [4]).

Perhaps, the only ‘inconvenient’ property of the KL-divergence is its asym-
metry: DKL[p, q] �= DKL[q, p] for some p and q. It means that a topology defined
on P(Ω) in terms of the KL-divergence is not symmetric, and the analysis of
asymmetric topological spaces (e.g. quasi-normed, quasi-metric or quasi-uniform
spaces) is significantly more difficult than that of normed or metric spaces. Many
classical results about completeness, total boundedness or compactness do not
hold in asymmetric topologies (e.g. see [5,6]). Perhaps, for this reason previous
works have considered statistical manifolds as subsets of Banach spaces, such as
the Orlicz spaces [7]. This, of course, requires certain symmetrization. Specifi-
cally, the Orlicz norm (or the equivalent Luxemburg norm) is defined using the
integral of an even function φ(x) = φ(−x) (called the N -function), which usu-
ally uses the absolute value |x| = max{−x, x} under the argument of φ. Because
probability measures are positive functions, the transformation x �→ |x| appears
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to be quite innocent and well-justified, because one can apply the highly devel-
oped theory of Banach spaces. However, this may loose asymmetry that is quite
natural in some random phenomena. Moreover, symmetrization on the statistical
manifold P(Ω) also automatically symmetrizes the topology of the dual space
containing random variables. When these random variables are used in the con-
text of optimization (e.g. as utility or cost functions), their symmetrization is
rather unnatural, and some random variables cannot be used. Let us illustrate
this in the following examples.

Example 1 (The St. Petersburg lottery). The lottery is played by tossing a coin
repeatedly until the first head appears. The probability of head occurring on
the nth toss assuming independent and identically distributed (i.i.d.) tosses of
a fair coin is q(n) = 2−n. If the payoff is x(n) = 2n, then the lottery has infinite
expected payoff (this is historically the first example of unbounded expectation
[8]). If the coin is biased towards head, however, such as p(n) = 2−(1+α)n, (α >
0), then the expected payoff becomes finite. The effective domain of the moment
generating function Eq{eβx} does not contain the ray {βx : β > 0}, but it does
contain the ray {−βx : β ≥ 0}. Thus, random variable x(n) = 2n belongs to
the space, where zero is not in the interior of the effective domain of Eq{eβx} or
of the cumulant generating function Ψq(βx) = ln Eq{eβx} (the Legendre-Fenchel
transform of DKL[p, q]). This implies that sublevel sets {p : DKL[p, q] ≤ λ} in
the dual space are unbounded (see Theorem 4 of [9,10]). Note that exponential
family distributions p(x;β) = eβx−Ψq(βx)q solve the problem of maximization of
random variable x on {p : DKL[p, q] ≤ λ}, while p(−x;β) = e−βx−Ψq(βx)q solve
minimization (i.e. maximization of −x). This example illustrates asymmetry
typical of optimization problems, because random variable x(n) = 2n has bottom
(x(1) = 2), but it is topless.

Example 2 (Error minimization). Consider the problem of minimization of the
error function z(a, b) (or equivalently maximization of utility x = −z), which can
be defined using some metric d : Ω × Ω → [0,∞) on Ω. For example, using the
Hamming metric dH(a, b) =

∑l
n=1 δbn(an) on finite space {1, . . . , α}l or using

squared Euclidean metric d2E(a, b) =
∑l

n=1 |an − bn|2 on a real space R
l (i.e.

by defining utility x = −dH or x = − 1
2d2E). Let w be the joint distribution

of a and b ∈ Ω, and let q, p be its marginal distributions. The KL-divergence
DKL[w, q ⊗ p] =: IS(a, b) defines the amount of mutual information between
a, b. Joint distributions minimizing the expected error subject to constraint
IS(a, b) ≤ λ belong to the exponential family w(x;β) = eβx−Ψq⊗p(βx)q ⊗ p. With
the maximum entropy q ⊗ p and Hamming metric x = −dH , this w(x;β) corre-
sponds to the binomial distribution, and in the case of squared Euclidean metric
x = − 1

2d2E to the Gaussian distribution. In the finite case of Ω = {1, . . . , α}l, the
random variable x = −dH can be reflected x �→ −x = dH , as both Ψq⊗p(−βdH)
and Ψq⊗p(βdH) are finite (albeit possibly with different values). However, in
the infinite case of Ω = R

l, the unbounded random variable x = − 1
2d2E can-

not be reflected, as maximization of Euclidean distance has no solution, and
Ψq⊗p(β 1

2d2E) = ∞ for any β ≥ 0. As in the previous example, 0 /∈ Int(domΨq⊗p).
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The examples above illustrate that symmetrization of neighbourhoods on the
statistical manifold requires random variables to be considered together with
their reflections x �→ −x. However, this is not always desirable or even possible
in the infinite-dimensional case. First, random variables used in optimization
problems, such as utilities or cost functions, do not form a linear space, but a
wedge. Operations x �→ −x and x �→ |x| are not monotonic. Second, the wedge of
utilities or cost functions may include unbounded functions (e.g. concave utilities
x : Ω → R ∪ {−∞} and convex cost functions z : Ω → R ∪ {∞}). In some cases,
one of the functions x or −x cannot be absorbed into the effective domain of the
cumulant generating function Ψ (i.e. βx /∈ dom Ψ for any β > 0), in which case
the symmetrization x �→ |x| would leave such random variables out.

In the next section, we shall outline the main ideas for defining dual asym-
metric topologies using polar sets and sublinear functions related to them. In
Sect. 3, we shall introduce a generalization of Bregman divergence, a generalized
law of cosines and define associated asymmetric seminorms and quasi-metrics. In
Sect. 4, we shall prove that asymmetric topology defined by the KL-divergence
is complete, Hausdorff and contains a separable Orlicz subspace.

2 Topologies Induced by Gauge and Support Functions

Let X and Y be a pair of linear spaces over R put in duality via a non-degenerate
bilinear form 〈·, ·〉 : X × Y → R:

〈x, y〉 = 0 , ∀x ∈ X ⇒ y = 0 , 〈x, y〉 = 0 , ∀ y ∈ Y ⇒ x = 0

When x is understood as a random variable and y as a probability measure, then
the pairing is just the expected value 〈x, y〉 = Ey{x}. We shall define topologies
on X and Y that are compatible with respect to the pairing 〈·, ·〉, but the bases
of these topologies will be formed by systems of neighbourhoods of zero that
are generally non-balanced sets (i.e. y ∈ M does not imply −y ∈ M). It is
important to note that such spaces may fail to be topological vector spaces,
because multiplication by scalar can be discontinuous (e.g. see [11]). Let us first
recall some properties that depend only on the pairing 〈·, ·〉.

Each non-zero x ∈ X is in one-to-one correspondence with a hyperplane
∂Πx := {y : 〈y, x〉 = 1} or a closed halfspace Πx := {y : 〈y, x〉 ≤ 1}. The
intersection of all Πx containing M is the convex closure of M denoted by
co [M ]. Set M is closed and convex if M = co [M ]. The polar of M ⊆ Y is

M◦ := {x ∈ X : 〈x, y〉 ≤ 1 , ∀ y ∈ M}

The polar set is always closed and convex and 0 ∈ M◦. Also, M◦◦ = co [M ∪{0}],
and M = M◦◦ if and only if M is closed, convex and 0 ∈ M . Without loss of
generality we shall assume 0 ∈ M . The mapping M �→ M◦ has the properties:

(M ∪ N)◦ = M◦ ∩ N◦ (1)
(M ∩ N)◦ = co [M◦ ∪ N◦] (2)
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We remind that set M ⊆ Y is called:
Absorbing if y/α ∈ M for all y ∈ Y and α ≥ ε(y) for some ε(y) > 0.
Bounded ] if M ⊆ αΠx for any closed halfspace Πx and some α > 0.
Balanced if M = −M .
Set M is absorbing if and only if its polar M◦ is bounded; If M is balanced,
then so is M◦. If M is closed and convex, then the following are balanced closed
and convex sets: −M ∩ M , co [−M ∪ M ].

Given set M ⊆ Y , 0 ∈ M , the set YM := {y : y/α ∈ M, ∀α ≥ ε(y) > 0}
of elements absorbed into M can be equipped with a topology, uniquely defined
by the base of closed neighbourhoods of zero M := {αM : α > 0}. The set
XM := {x : 〈x, y〉 ≤ α, ∀ y ∈ M} of hyperplanes bounding M are absorbed into
the polar set M◦, and the collection M◦ := {α−1M◦ : α−1 > 0} is the base
of the polar topology on XM . Note that YM (resp. XM ) is a strict subset of Y
(resp. X), unless M is absorbing (resp. bounded). Moreover, it may fail to be a
topological vector space, unless M (or M◦) is balanced. Such polar topologies
can be defined using gauge or support functions.

The gauge (or Minkowski functional) of set N ⊆ X is the mapping μN :
X → R ∪ {∞} defined as

μN(x) := inf{α > 0 : x/α ∈ N}

with μN(0) := 0 and μN(x) := ∞ if x/α /∈ N for all α > 0. Note that μN(x) = 0
if x/α ∈ N for all α > 0. The following statements are implied by the definition.

Lemma 1. μN(x) < ∞ for all x ∈ X if and only if N is absorbing; μN(x) > 0
for all x �= 0 if and only if N is bounded.

The gauge is positively homogeneous function of the first degree, μN(βx) =
βμN(x), β > 0, and if N is convex, then it is also subadditive, μN(x1 + x2) ≤
μN(x1) + μN(x2). Thus, the gauge of an absorbing closed convex set satisfies
all axioms of a seminorm apart from symmetry, and therefore it is a quasi-
seminorm. Function ρN (x1, x2) = μN(x2 − x1) is a quasi-pseudometric on X.
If N is bounded, then μN is a quasi-norm and dN is a quasi-metric. Symmetry
μN(x) = μN(−x) and ρN (x1, x2) = ρN (x2, x1) requires N to be balanced.

The support function of set M ⊆ Y is the mapping sM : X → R ∪ {∞}:

sM(x) := sup{〈x, y〉 : y ∈ M}

Like the gauge, the support function is also positively homogeneous of the first
degree, and it is always subadditive. Generally, μN(x) ≥ sN◦(x), with equality
if and only if N is convex. In fact, the following equality holds:

Lemma 2. sM(x) = μM◦(x), ∀M ⊆ Y, 0 ∈ M .

Proof. 〈x, y〉 ≤ sM(x) for all y ∈ M , sM(x/α) = α−1sM(x), sM(x) := inf{α >
0 : 〈x/α, y〉 ≤ 1, ∀ y ∈ M} = inf{α > 0 : x/α ∈ M◦}. ��

The following is the asymmetric version of the Hölder inequality:
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Lemma 3 ( Asymmetric Hölder). 〈x, y〉 ≤ sM(x)sM◦(y), ∀M ⊆ Y, 0 ∈ M .

Proof. 〈x, y〉 ≤ sM(x), 〈x/sM(x), y〉 ≤ 1 for all y ∈ M , so that x/sM(x) ∈ M◦.
Hence 〈x/sM(x), y〉 ≤ sM◦(y). ��

The support function sM(x) can be symmetrized in two ways:

ssM(x) := s[−M ∪ M ](x) , s◦M(x) := s[−M ∩ M ](x)

Lemma 4. 1. ssM(x) ≥ sM(x) ≥ s◦M(x).
2. ssM(x) = sup{sM(−x), sM(x)}.
3. s◦M(x) = co [inf{sM(−x), sM(x)}] = inf{sM(z) + sM(z − x) : z ∈ X}.
4. s◦M(x) = sup{〈x, y〉 : ssM◦(y) ≤ 1}.

Proof. 1. Follows from set inclusions: −M ∪ M ⊇ M ⊇ −M ∩ M .
2. ssM(x) = μ[−M◦ ∩ M◦](x) = sup{μM◦(−x), μM◦(x)} by Lemma 2 and

equation (1).
3. s◦M(x) = μco [−M◦ ∪ M◦](x) = co [inf{μM◦(−x), μM◦(x)}] by Lemma 2

and equation (2). The second equation follows from the equivalence of convex
closure infimum and infimal convolution for sublinear functions [12].

4. Follows from sM(x) = sM◦◦(x), 0 ∈ M , and N◦ = {y : sN(y) ≤ 1} by
substituting N = (−M ∩ M)◦ = co [−M◦ ∪ M◦]. ��

3 Distance Functions and Sublevel Neighbourhoods

A closed neighbourhood of z ∈ Y can be defined by sublevel set {y : D[y, z] ≤ λ}
of a distance function D : Y × Y → R ∪ {∞} satisfying the following axioms:

1. D[y, z] ≥ 0.
2. D[y, z] = 0 if y = z.

Thus, a distance is generally not a metric (i.e. non-degeneracy, symmetry or the
triangle inequality are not required). A distance function associated with closed
functional F : Y → R ∪ {∞} can be defined as follows:

DF [y, z] := inf{F (y) − F (z) − 〈x, y − z〉 : x ∈ ∂F (z)} (3)

The set ∂F (z) := {x : 〈x, y − z〉 ≤ F (y) − F (z), ∀y ∈ Y } is called subd-
ifferential of F at z. It follows immediately from the definition of subdiffer-
ential that DF [y, z] ≥ 0. We shall define DF [y, z] := ∞, if ∂F (z) = ∅ or
F (y) = ∞. We note that the notion of subdifferential can be applied to a
non-convex function F . However, non-empty ∂F (z) implies F (z) < ∞ and
F (z) = F ∗∗(z), ∂F (z) = ∂F ∗∗(z) ([13], Theorem 12). Generally, F ∗∗ ≤ F ,
so that F (y) − F (z) ≥ F ∗∗(y) − F ∗∗(z) if ∂F (z) �= ∅. If F is Gâteaux differ-
entiable at z, then ∂F (z) has a single element x = ∇F (z), called the gradient
of F at z. Thus, definition (3) is a generalization of the Bregman divergence
for the case of a non-convex and non-differentiable F . Note that the dual func-
tional F ∗ defines dual distance D∗

F on X, which is related to DF as follows:
DF [y, z] = D∗

F [∇F (z),∇F (y)].
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Theorem 1. DF [y, z] = 0 ⇐⇒ {y, z} ⊆ ∂F ∗(x) , ∃x ∈ X.

Proof. If y = z, then DF [y, z] = 0 by definition. If y �= z, then {y, z} ⊆
∂F ∗(x) ⇐⇒ ∂F (y) = ∂F (z) = {x}, which follows from the property of subdif-
ferentials: y ∈ ∂F ∗(x) ⇐⇒ ∂F (y) � x ([13], Corollary to Theorem 12). Thus,
DF [y, z] = DF ∗ [∇F (z),∇F (y)] = D∗

F [x, x] = 0. ��
Corollary 1. DF separates points of dom F ⊆ Y if and only if F is Gâteaux
differentiable or F ∗ is strictly convex.

Let us denote by ∇1D[y, z] and ∇2
1D[y, z] the first and the second Gâteaux

differentials of D[y, z] with respect to the first argument. For a twice Gâteaux dif-
ferentiable F they are ∇1DF [y, z] = ∇F (y)−∇F (z) and ∇2

1DF [y, z] = ∇2F (y).

Theorem 2 (Generalized Law of Cosines). The following statements are
equivalent:

D[y, z] =
∫ 1

0

(1 − t)
〈
∇2

1D[z + t(y − z), y](y − z), y − z
〉

dt

D[y, w] = D[y, z] + D[z, w] − 〈∇1D[z, w], z − y〉

Proof. Consider the first order Taylor expansion of D[·, w] at z:

D[y, w] = D[z, w] + 〈∇1D[z, w], y − z〉 + R1[z, y]

where the remainder is R1[z, y] =
∫ 1

0
(1− t)〈∇2

1D[z + t(y − z), y](y − z), y − z〉 dt.
The result follows from the equality D[y, z] = R1[z, y]. ��

An asymmetric seminorm on space X can be defined either by the gauge or
support function of sublevel sets of distances D∗

F [x, 0] and DF [y, z] respectively:

‖x|F ∗ := inf{α > 0 : D∗
F [x/α, 0] ≤ 1} , ‖x|F := sup

y
{〈x, y − z〉 : DF [y, z] ≤ 1}

The supremum is achieved at y(β) ∈ ∂F ∗(βx), DF [y(β), z] = 1. A quasi-
pseudometric is defined as ρF ∗(w, x) = ‖x − w|F ∗ or ρF (w, x) = ‖x − w|F . The
dual space Y is equipped with asymmetric seminorms and quasi-pseudometrics
in the same manner. The following characterization of the topology is known.

Theorem 3 ([14] or see Proposition 1.1.40 in [6]). An asymmetric semi-
normed space X is:

T0 if and only if ‖x|F ∗ > 0 or ‖ − x|F ∗ > 0 for all x �= 0;
T1 if and only if ‖x|F ∗ > 0 for all x �= 0;
T2 (Hausdorff) if and only if ‖x|F ∗ > 0 and ‖ − x|F ∗ > 0 for all x �= 0.

These separation properties depend on sublevel set {x : D∗
F [x, 0] ≤ 1}. For

T0 it must not contain any hyperplane; for T1 it must not contain any ray (i.e.
it must be bounded); for T2 it also must contain zero in the interior (i.e. it must
be bounded and absorbing). The following theorem is useful in our analysis.

Theorem 4 ([9,10]). If 0 ∈ Int(dom F ∗) ⊂ X, then sublevel sets {y : F (y) ≤
λ} are bounded. Conversely, if one of the sublevel sets for λ > inf F is bounded,
then 0 ∈ Int(dom F ∗).
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4 Asymmetric Topology Generated by the KL-Divergence

The KL-divergence can be defined as Bregman divergence associated with closed
convex functional KL(y) = 〈ln y − 1, y〉:

DKL[y, z] = 〈ln y − ln z, y〉 − 〈1, y − z〉

Note that KL is a proper closed convex functional that is finite for all y ≥ 0, if
we define (ln 0) ·0 = 0 and KL(y) = ∞ for y � 0. The dual of KL is the moment
generating functional KL∗(x) = 〈ex, z〉. The dual divergence of x from 0 is:

D∗
KL[x, 0] = 〈ex − 1 − x, z〉

The above divergence can be written as D∗
KL[x, 0] = 〈φ∗(x), z〉, where φ∗(x) =

ex−1−x. The dual of φ∗ is the closed convex function φ(u) = (1+u) ln(1+u)−u.
Making the change of variables y �→ u = y

z −1, the KL-divergence can be written
in terms of φ(u): DKL[y, z] = DKL[(1+u)z, z] = 〈(1+u) ln(1+u)−u, z〉. Sublevel
set M = {y − z : DKL[y, z] ≤ 1} is a closed neighbourhood of 0 ∈ Y − z;
sublevel set N = {x : D∗

KL[x, 0] ≤ 1} is a closed neighbourhoods of 0 ∈ X.
Both functions φ(u) and φ∗(x) are not even, and these neighbourhoods are not
balanced. In the theory of Orlicz spaces the symmetrized functions φ(|u|) and
φ∗(|x|) are used to define even functionals and norms [15]. This approach has
been used in infinite-dimensional information geometry [7]. In particular, because
φ(|u|) belongs to the Δ2 class [15], the corresponding Orlicz space Yφ(|·|) (and the
statistical manifold it contains) is separable. The dual Orlicz space Xφ∗(|·|) is not
separable, because φ∗(|x|) is not Δ2. Note, however, that another symmetrization
is possible: φ(−|u|), which is not Δ2, and φ∗(−|x|), which is Δ2. Thus, one can
introduce the non-separable Orlicz space Yφ(−|·|), and the dual separable Orlicz
space Xφ∗(−|·|). One can check that the following inequalities hold: φ(|u|) ≤
φ(u) ≤ φ(−|u|) (resp. φ∗(|x|) ≥ φ∗(x) ≥ φ∗(−|x|)), which corresponds to the
following symmetrizations and inclusions of sublevel sets: co [−M ∪ M ] ⊇ M ⊇
−M ∩M (resp. −N ∩N ⊆ N ⊆ co [−N ∪N ]). Thus, the asymmetric topology of
space Yφ, induced by DKL (resp. of Xφ∗ , induced by D∗

KL) is finer than topology
of the separable Orlicz space Yφ(|·|) (resp. Xφ∗(−|·|)), and so it is Hausdorff. On the
other hand, the diameter diam(M) = sup{ρKL(y, z) : y, z ∈ M} of set M ⊂ Y
(resp. for ρ∗

KL(x,w) and N ⊂ X) is the diameter with respect to the metric of the
Orlicz space Yφ(−|·|) (resp. Xφ∗(|·|)), which is complete. Therefore, every nested
sequence of sets with diameters decreasing to zero has non-empty intersection,
so that space Yφ (resp. Xφ∗) is ρ-sequentially complete ([16], Theorem 10). Thus,
we have proven the following theorem, concluding this short paper.

Theorem 5. Asymmetric seminorm ‖x|∗KL := sup{〈x, y − z〉 : DKL[y, z] ≤ 1}
(resp. ‖y − z|KL := inf{α−1 > 0 : DKL[z + α(y − z), z] ≤ 1}) induces Hausdorff
topology on space X (resp. on Y = Y+ − Y+), and therefore it is an asymmetric
norm. It is ρ-sequentially complete and contains a separable subspace, which is
an Orlicz space with the norm ‖x‖φ∗(−|·|) (resp. ‖y − z‖φ(|·|)).
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Abstract. A deformed exponential family has two kinds of dual Hessian
structures, the U -geometry and the χ-geometry. In this paper, we dis-
cuss the relation between the non-invariant (F, G)-geometry and the two
Hessian structures on a deformed exponential family. A generalized likeli-
hood function called F -likelihood function is defined and proved that the
Maximum F -likelihood estimator is a Maximum a posteriori estimator.

1 Introduction

On a statistical manifold S, one can categorize geometries into invariant and
non-invariant classes according to their invariance under smooth one to one
transformations of the random variable. The invariant α-geometry is relevant in
the asymptotic theory of an exponential family [1]. One category of non-invariant
geometries on a statistical manifold is the (F,G)-geometry defined using an
embedding function F and a positive smooth function G [2]. The (F,G)-geometry
is relevant in the study of deformed exponential family. A deformed exponential
family has two kinds of Hessian structures; the U -geometry introduced by Naudts
[3] (see also [4]) and the χ-geometry defined by Amari et al. [5].

In this paper we present the relation between the (F,G)-geometry and these
two Hessian structures. In Sect. 2 the two Hessian structures on a deformed
exponential family are given. In Sect. 3 we discuss the role of (F,G)-geometry in
the study of Hessian structures of the deformed exponential family. In Sect. 4 a
generalized product called F -product, F -independence and F -likelihood function
are defined using an increasing concave function F and its inverse Z. Then
a generalized maximum likelihood estimator called the maximum F -likelihood
estimator (F -MLE) is defined and showed that the F -MLE is a Maximum a
posteriori estimator (MAP estimator).

Definition 1. (F,G)-geometry
Let S = {p(x; θ) / θ ∈ E} be a statistical manifold defined on X ⊂ R

n.
Let F : (0,∞) −→ R be a function which is atleast twice differentiable. Assume
that F ′(u) �= 0, ∀ u ∈ (0,∞). Then F is an embedding of S into the space of
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 213–221, 2015.
DOI: 10.1007/978-3-319-25040-3 24
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random variable RX which takes each p(x; θ) �−→ F (p(x; θ)). Let G : (0,∞) −→
R be a positive smooth function.
The G-metric gG and the (F,G)-connection ∇F,G are defined as

gG
ij(θ) =

∫

∂i� ∂j� G(p) p dx. (1)

ΓF,G
ijk =

∫ (

∂i∂j� + (1 +
pF ′′(p)
F ′(p)

)∂i� ∂j�

)

∂k� G(p) p dx. (2)

where �(p) = log p.
When G(p) = 1 and F (p) = Lα(p), (F,G)-connection reduces to the
α-connection and the G-metric reduces to the Fisher information metric.

Theorem 2. Let F,H be two embeddings of statistical manifold S into the space
RX of random variables. Let G be a positive smooth function on (0,∞). Then
(F,G)−connection ∇F,G and the (H,G)−connection ∇H,G are dual connections
with respect to the G-metric iff the functions F and H satisfy

H ′(p) =
G(p)

pF ′(p)
(3)

We call such an embedding H as a G-dual embedding of F .
The components of the dual connection ∇H,G can be written as

ΓH,G
ijk =

∫ (

∂i∂j� + (1 +
pH ′′(p)
H ′(p)

)∂i� ∂j�

)

∂k� G(p) p dx (4)

=
∫ (

∂i∂j� + (
pG′(p)
G(p)

− pF ′′(p)
F ′(p)

)∂i� ∂j�

)

∂k� G(p) p dx. (5)

(Refer [2] for more details).

Definition 3. Let (M, g) be a Riemannian manifold and let ∇ be a flat connec-
tion on M . Then we say that the pair (M, g) is a Hessian structure on M or
(M, g,∇) is a Hessian manifold if there exist a function ψ such that S = ∇dψ.
Let ∇∗ be the dual connection of ∇ with respect to the metric g. Then the con-
dition (M, g,∇) is a Hessian manifold is equivalent to that (M, g,∇,∇∗) is a
dually flat space [6].

2 Hessian Structures on a F -Exponential Family

A deformed exponential family which is a generalization of exponential family
was introduced by Naudts [3]. A deformed family has two kinds of Hessian struc-
tures or equivalently two dually flat structures; U -geometry given by Naudts [3]
(see also [4]) and χ-geometry given by Amari et al. [5] (see also [6,7,11]).
In this section, we describe these two Hessian structures. For the sake of nota-
tional convenience deformed exponential family is formulated using the function
F and we call it as a F -exponential family.
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Definition 4. F-Exponential Family Let F : (0,∞) −→ R be any smooth
increasing concave function. Let Z be the inverse function of F . Define the stan-
dard form of a n-dimensional F -exponential family of distributions as

p(x; θ) = Z(
n∑

i=1

θixi − ψ(θ)) or F (p(x; θ)) =
n∑

i=1

θixi − ψ(θ) (6)

where x = (x1, · · · , xn) is a set of random variables, θ = (θ1, · · · , θn) are the
canonical parameters and ψ(θ) is determined from the normalization condition.

2.1 U-geometry on the F -exponential Family

Consider an n-dimensional F -exponential family S = {p(x; θ) / θ ∈ E ⊆ R
n}.

Now define a divergence of Bregman type given by Naudts [3] as

DF (p, q) =
∫ (∫ p

q

(F (u) − F (q))du

)

dx (7)

The geometry induced from the divergence DF called U-geometry (refer also
[4]) is given by

gDF

ij (θ) =
∫

∂ip ∂jF dx ; ΓDF

ijk (θ) = 0 ; ΓD∗F

ijk (θ) =
∫

∂kF ∂i∂jp dx (8)

Hence affine connection ∇DF

is flat. Now define a function ([6])

v(t) =
∫ t

1

F (s) ds, t > 0. (9)

Assume that v(o) := limt→+0 v(t) is finite.
The generalized entropy functional I and generalized Massieu potential Ψ are
defined as

I(pθ) := −
∫

[v(p(x; θ)) + (p(x; θ) − 1)v(o)] dx. (10)

Ψ(θ) :=
∫

p(x; θ)F (p(x; θ)) dx + I(pθ) + ψ(θ). (11)

Theorem 5. For a F -exponential family S, we have

1. (gDF

,∇DF

) and (gDF

,∇D∗F

) are mutually dual Hessian structures on S
equivalently, (S, gDF

,∇DF

,∇D∗F

) is a dually flat space.
2. The canonical co-ordinate θ is ∇DF

-affine and Ψ is the potential function
corresponding to θ.

3. The metric gDF

ij (θ) = ∂i∂jΨ(θ).
4. The dual co-ordinate η is given by ηi = ∂iΨ(θ) = Ep[xi] and it is ∇D∗F

-affine.
5. The dual potential function Φ corresponding to the dual co-ordinate η is

Φ(η) = −I(pθ).

(Refer [3,6] for more details).
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2.2 χ-geometry on the F -Exponential Family

Let S = {p(x; θ) / θ ∈ E ⊆ R
n} be a F -exponential family.

Definition 6. For a distribution function p parametrized by θ, let us define a
probability distribution

p̂F (x) =
1

hF (θ)F ′(p)
, where hF (θ) =

∫
1

F ′(p)
dx (12)

called F -escort probability distribution related to p.

Definition 7. Using this escort probability distribution p̂F , the F̂ -expectation of
a random variable is defined as

Ep̂F
(f(x)) =

1
hF (θ)

∫
1

F ′(p)
f(x)dx (13)

Note 8. Note that the F -potential function ψF (θ) is a convex function of θ and
we have

∂i∂jψF (θ) =
1

hF (θ)

∫ −F ′′(p)
(F ′(p))3

(xi − ∂iψF (θ)) (xj − ∂jψF (θ)) (14)

is positive semidefinite. Further we assume that it is positive definite. Then
ψF (θ) is a strictly convex function of θ.

Definition 9. A divergence of Bregman-type DF is defined using ψF (θ), as

DF (p(x; θ1) : p(x; θ2)) = ψF (θ2) − ψF (θ1) − ∇ψF (θ1).(θ2 − θ1) (15)

Lemma 10. The geometry induced from the divergence DF called the
χ-geometry is given by

gDF
ij (θ) = ∂i∂jψF (θ) ; ΓDF

ijk = ∂i∂j∂kψF (θ) ; Γ
D∗

F

ijk = 0 (16)

Hence the affine connection ∇D∗
F is flat.

Theorem 11. For a F -exponential family S, we have

1. (gDF ,∇DF ) and (gDF ,∇D∗
F ) are mutually dual Hessian structures on S equiv-

alently, (S, gDF ,∇DF ,∇D∗
F ) is a dually flat space.

2. The canonical co-ordinate θ is ∇D∗
F -affine and ψF is the potential function

corresponding to θ.
3. The metric gDF

ij (θ) = ∂i∂jψF (θ).
4. The dual co-ordinate η is given by ηi = ∂iψF (θ) = Ep̂F

[xi] and it is ∇DF -
affine.

5. The dual potential function φF corresponding to the dual co-ordinate η is
φF (η) = Ep̂F

(F (p)).

(Refer [5,6] for more details.)
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3 Non-invariant (F, G)-geometry on a Deformed
Exponential Family

In this section we describe how the two Hessian structures are related to the
non-invariant (F,G)-geometry. First we show that the U -geometry is (F,G)-
geometry for suitable choices of F and G. Also we show that the χ−geometry is
the conformal flattening of (F,G)-geometry for suitable choices of F and G.

3.1 U-geometry as (F, G)-geometry

Proposition 12. On a F -exponential family, the U -geometry (gDF

,∇DF

,

∇D∗F

) is the (F,G)-geometry (gG,∇F,G,∇H,G), with G(p) = pF ′(p) and H
is the G-dual embedding of F given by H(p) = p.

Proof. Using (1), (2) and (3), Eq. (8) can be written as

gDF

ij (θ) =
∫

pF ′(p) ∂i� ∂j� p dx = gG(θ) (17)

ΓDF

ijk (θ) =
∫ (

∂i∂j� + (1 +
pF ′′(p)
F ′(p)

)∂i� ∂j�

)

∂k� pF ′(p) p dx (18)

= ΓF,G
ijk (θ) (19)

ΓD∗F

ijk (θ) =
∫

(∂i∂j� + ∂i� ∂j�) ∂k� pF ′(p) p dx (20)

= ΓH,G
ijk (θ) (21)

where G(p) = pF ′(p) and H is the G-dual embedding of F given by

1 +
pH ′′(p)
H ′(p)

= 1 ⇒ H(p) = p. (22)

3.2 χ-geometry as the Conformal Flattening of (F, G)-geometry

Now we show that the χ-geometry induced from the divergence DF is the con-
formal flattening of the (F,G)-geometry for suitable choices of F and G.

Theorem 13. On a F -exponential family S, the χ-geometry (gDF ,∇DF ,∇D∗
F )

induced from the divergence DF is obtained by the ±1-conformal transformation
of the (F,G)-geometry for suitable choices of F and G. That is

gDF
ij (θ) = K(θ)gG

ij (23)

ΓDF

ijk = K(θ)ΓH,G
ijk + ∂jK(θ)gG

ik(θ) + ∂iK(θ)gG
jk(θ) (24)

Γ
D∗

F

ijk (θ) = K(θ)ΓF,G
ijk − ∂kK(θ)gG

ij(θ) (25)

where G(p) = −pF ′′(p)
F ′(p) , H is the G-dual embedding of F and K(θ) = 1

hF (θ) .
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Proof. For the F -exponential family S, we have

∂iF (p(x; θ)) = F ′(p) ∂i� p = xi − ∂iψF (θ) (26)

From Eqs. (14), (16) and (26), we get

gDF
ij (θ) = ∂i∂jψF (θ) =

1
hF (θ)

∫ −F ′′(p)
(F ′(p))3

∂iF ∂jFdx (27)

= K(θ)gG
ij (28)

where K(θ) = 1
hF (θ) and G(p) = −pF ′′(p)

F ′(p) . Thus the metric gDF is obtained as a
conformal transformation of the G-metric by a gauge function K(θ).
Also from the Eq. (16), we have

ΓDF

ijk = ∂i∂j∂kψF (θ)

=
1

hF (θ)

∫ (−pF ′′(p)
F ′(p)

− p2F ′′′(p)
F ′(p)

+
2p2(F ′′(p))2

(F ′(p))2

)

∂i� ∂j� ∂k� pdx

+
1

hF (θ)

∫

(
−pF ′′(p)

F ′(p)
)∂i∂j� ∂k� pdx

+
1

hF (θ)

∫

∂j∂kψF (θ)
pF ′′(p)
(F ′(p))2

∂i� dx

+
1

hF (θ)

∫

∂i∂kψF (θ)
pF ′′(p)
(F ′(p))2

∂j� dx

This can be rewritten as

ΓDF

ijk (θ) = K(θ)
∫ [

∂i∂j� ∂k� + (1 +
pH ′′(p)
H ′(p)

)∂i� ∂j� ∂k�

]

G(p) p dx

+ ∂jK(θ)gG
ik(θ) + ∂iK(θ)gG

jk(θ)

= K(θ)ΓH,G
ijk + ∂jK(θ)gG

ik(θ) + ∂iK(θ)gG
jk(θ)

with G(p) = −pF ′′(p)
F ′(p) , K(θ) = 1

hF (θ) and H is the G-dual embedding of F .
Hence the connection induced by the divergence function DF is the (−1)-
conformal transformation of (H,G)-connection ∇H,G by a gauge function K(θ).
Similarly, we can show for ∇D∗

F . �

(Refer [10] for a detailed proof)

4 F -product, F -independence and F−likelihood
Estimators

Matsuzoe and Ohara [8] defined a generalized product of numbers called
q-product. Here using an increasing concave function F and its inverse func-
tion Z we also define a generalized product called F -product of two numbers
x, y as

x ⊗F y = Z[F (x) + F (y)] (29)
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The F−product satisfies the following properties

Z(x) ⊗F Z(y) = Z(x + y) ; F (x ⊗F y) = F (x) + F (y) (30)

Definition 14. F-independence The two random variables X and Y are said
to be F -independent with normalization if the joint probability density function
p(x, y) is given by the F -product of the marginal probability density functions
p1(x) and p2(y).

p(x, y) =
p1(x) ⊗F p2(y)

Kp1,p2

(31)

where Kp1,p2 is the normalization defined by

Kp1,p2 =
∫ ∫

XY
p1(x) ⊗F p2(y)dxdy (32)

(Refer [9] for U -independence)

Definition 15. Let S = {p(x; θ) / θ ∈ E ⊆ R
n} be an n−dimensional statistical

manifold defined on a sample space X ⊆ R. Let {x1, · · · , xN} be N observations
from a probability density function p(x; θ) ∈ S. Let us define a F-likelihood
function LF (θ) ([10]) as

LF (θ) = p(x1; θ) ⊗F · · · ⊗F p(xN ; θ) = Z(
N∑

i=1

F (p(xi; θ))) (33)

We say that θ̂F is the Maximum F-likelihood estimator (F-MLE) if

θ̂F = arg max
θ∈E

LF (θ) (34)

Definition 16. Maximum a posteriori estimator (MAP estimator) Let
p(x | θ) be a distribution of the random variable x which depends on an unob-
served population parameter θ. Let p(θ) be a prior distribution of θ. Then the
posterior distribution of θ is given by

p(θ | x) =
p(x | θ)p(θ)

p(x)
(35)

where p(x) =
∫

θ
p(x | θ) p(θ) dθ is the marginal density function of x.

Let {x1, · · · , xN} be N observations. Then the MAP estimator θ̂MAP for θ is
given by

θ̂MAP = arg max
θ∈E

p(θ | x1, · · · , xN ) = arg max
θ∈E

p(x1, · · · , xN | θ)p(θ) (36)

Theorem 17. Let {x1, · · · , xN} be F -independent observations from p(x | θ),
where F is an increasing concave function other than logarithmic function. Then
the F -MLE is a MAP estimator with the prior distribution p(θ) given by

p(θ) =
K(θ)
K1

; K1 =
∫

K(θ) dθ < ∞ (37)
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where

K(θ) =
∫

· · ·
∫

p(x1; θ) ⊗F · · · ⊗F p(xN ; θ)dx1 · · · dxN (38)

=
∫

· · ·
∫

Z(
N∑

i=1

F (p(xi; θ)))dx1 · · · dxN (39)

Proof. Since {x1, · · · , xN} are F -independent, from Eqs. (31), (32) and (33) we
have the joint density function p(x1, · · · , xN | θ)

p(x1, · · · , xN | θ) =
p(x1 | θ) ⊗F · · · ⊗F p(xN | θ)

K(θ)
(40)

where

K(θ) =
∫

· · ·
∫

p(x1 | θ) ⊗F · · · ⊗F p(xN | θ)dx1 · · · dxN (41)

=
∫

· · ·
∫

Z(
N∑

i=1

F (p(xi | θ)))dx1 · · · dxN (42)

Now let K1 =
∫

K(θ)dθ. The F -MLE θ̂F is given by

θ̂F = arg max
θ∈E

LF (θ) = arg max
θ∈E

p(x1 | θ) ⊗F · · · ⊗F p(xN | θ) (43)

From Eq. (40), we have

LF (θ)
K1

=
p(x1 | θ) ⊗F · · · ⊗F p(xN | θ)

K1
(44)

=
K(θ)
K1

p(x1, · · · , xN | θ) (45)

Hence we have

θ̂F = arg max
θ∈E

LF (θ) = arg max
θ∈E

LF (θ)
K1

(46)

= arg max
θ∈E

K(θ)
K1

p(x1, · · · , xN | θ) (47)

= arg max
θ∈E

p(θ) p(x1, · · · , xN | θ) (48)

= θ̂MAP (49)

with the prior distribution p(θ) of θ given by

p(θ) =
K(θ)
K1

; K1 =
∫

K(θ) dθ (50)

That is the F -MLE is a MAP estimator with p(θ) as prior distribution of θ. �
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5 Conclusion

In this paper we described the two Hessian structures on a deformed exponen-
tial family; the U -geometry and the χ-geometry. Then we explored the relation
between these two Hessian structures and the non-invariant (F,G)-geometry.
We showed that U -geometry is the (F,G)-geometry and χ-geometry is the con-
formal flattening of (F,G)-geometry for suitable choices of F and G. Using an
increasing concave function F and its inverse Z we defined a generalized product
called F -product, F -independence and F -likelihood function. Then we defined
a generalized estimator called F -MLE and showed that the F -MLE is a MAP
estimator.
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Abstract. We define a metric and a family of α-connections in statis-
tical manifolds, based on ϕ-divergence, which emerges in the framework
of ϕ-families of probability distributions. This metric and α-connections
generalize the Fisher information metric and Amari’s α-connections. We
also investigate the parallel transport associated with the α-connection
for α = 1.

1 Introduction

In the framework of ϕ-families of probability distributions [11], the authors
introduced a divergence Dϕ(· ‖ ·) between probabilities distributions, called
ϕ-divergence, that generalizes the Kullback–Leibler divergence. Based on Dϕ(·‖·)
we can define a new metric and connections in statistical manifolds. The defini-
tion of metrics or connections in statistical manifolds is a common subject in the
literature [2,3,7]. In our approach, the metric and α-connections are intrinsically
related to ϕ-families. Moreover, they can be recognized as a generalization of the
Fisher information metric and Amari’s α-connections [1,4].

Statistical manifolds are equipped with the Fisher information metric, which
is given in terms of the derivative of l(t; θ) = log p(t; θ). Another metric can be
defined if the logarithm log(·) is replaced by the inverse of a ϕ-function ϕ(·)
[11]. Instead of l(t; θ) = log p(t; θ), we can consider f(t; θ) = ϕ−1(p(t; θ)). The
manifold equipped with this metric, which coincides with the metric derived
from Dϕ(· ‖ ·), is called a generalized statistical manifold.

Using the ϕ-divergence Dϕ(· ‖ ·), we can define a pair of mutually dual con-
nections D(1) and D(−1), and then a family of α-connections D(α). The connec-
tions D(1) and D(−1) corresponds to the exponential and mixture connections
in classical information geometry. For example, in parametric ϕ-families, whose
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definition is found in Sect. 2.1, the connection D(1) is flat (i.e., its torsion tensor
T and curvature tensor R vanish identically). As a consequence, a paramet-
ric ϕ-family admits a parametrization in which the Christoffel symbols Γ(−1)

ijk

associated with D(−1) vanish identically. In addition, parametric ϕ-families are
examples of Hessian manifolds [8].

The rest of the paper is organized as follows. In Sect. 2, we define the gen-
eralized statistical manifolds. Section 2.1 deals with parametric ϕ-families of
probability distribution. In Sect. 3, α-connections are introduced. The parallel
transport associated with D(1) is investigated in Sect. 3.1.

2 Generalized Statistical Manifolds

In this section, we provide a definition of generalized statistical manifolds. We
begin with the definition of ϕ-functions. Let (T, Σ, μ) be a measure space. In
the case T = R (or T is a discrete set), the measure μ is considered to be the
Lebesgue measure (or the counting measure). A function ϕ : R → (0,∞) is said
to be a ϕ-function if the following conditions are satisfied:

(a1) ϕ(·) is convex,
(a2) limu→−∞ ϕ(u) = 0 and limu→∞ ϕ(u) = ∞.

Moreover, we assume that a measurable function u0 : T → (0,∞) can be found
such that, for each measurable function c : T → R such that ϕ(c(t)) > 0 and∫

T
ϕ(c(t))dμ = 1, we have

(a3)
∫

T

ϕ(c(t) + λu0(t))dμ < ∞, for all λ > 0.

The exponential function and the Kaniadakis’ κ-exponential function [6] sat-
isfy conditions (a1)–(a3) [11]. For q �= 1, the q-exponential function expq(·) [9] is
not a ϕ-function, since its image is [0,∞). Notice that if the set T is finite, con-
dition (a3) is always satisfied. Condition (a3) is indispensable in the definition
of non-parametric families of probability distributions [11].

A generalized statistical manifold is a family of probability distributions P =
{p(t; θ) : θ ∈ Θ}, which is defined to be contained in

Pμ =
{

p ∈ L0 : p > 0 and
∫

T

pdμ = 1
}

,

where L0 denotes the set of all real-valued, measurable functions on T , with
equality μ-a.e. Each pθ(t) := p(t; θ) is given in terms of parameters θ =
(θ1, . . . , θn) ∈ Θ ⊆ R

n by a one-to-one mapping. The family P is called a
generalized statistical manifold if the following conditions are satisfied:

(P1) Θ is a domain (an open and connected set) in R
n.

(P2) p(t; θ) is a differentiable function with respect to θ.
(P3) The operations of integration with respect to μ and differentiation with

respect to θi commute.
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(P4) The matrix g = (gij), which is defined by

gij = −E′
θ

[ ∂2fθ

∂θi∂θj

]
, (1)

is positive definite at each θ ∈ Θ, where fθ(t) = f(t; θ) = ϕ−1(p(t; θ)) and

E′
θ[·] =

∫
T
(·)ϕ′(fθ)dμ

∫
T

u0ϕ′(fθ)dμ
.

Notice that expression (1) reduces to the Fisher information matrix in the
case that ϕ coincides with the exponential function and u0 = 1. Moreover, the
right-hand side of (1) is invariant under reparametrization. The matrix (gij) can
also be expressed as

gij = E′′
θ

[∂fθ

∂θi

∂fθ

∂θj

]
, (2)

where

E′′
θ [·] =

∫
T
(·)ϕ′′(fθ)dμ

∫
T

u0ϕ′(fθ)dμ
.

Because the operations of integration with respect to μ and differentiation with
respect to θi are commutative, we have

0 =
∂

∂θi

∫

T

pθdμ =
∫

T

∂

∂θi
ϕ(fθ)dμ =

∫

T

∂fθ

∂θi
ϕ′(fθ)dμ, (3)

and

0 =
∫

T

∂2fθ

∂θi∂θj
ϕ′(fθ)dμ +

∫

T

∂fθ

∂θi

∂fθ

∂θj
ϕ′′(fθ)dμ. (4)

Thus expression (2) follows from (4). In addition, expression (3) implies

E′
θ

[∂fθ

∂θi

]
= 0. (5)

A consequence of (2) is the correspondence between the functions ∂fθ/∂θi

and the basis vectors ∂/∂θi. The inner product of vectors

X =
∑

i

ai ∂

∂θi
and Y =

∑

i

bj ∂

∂θj

can be written as

g(X,Y ) =
∑

i,j

gija
ibj =

∑

i,j

E′′
θ

[∂fθ

∂θi

∂fθ

∂θj

]
aibj = E′′

θ [X̃Ỹ ], (6)

where
X̃ =

∑

i

ai ∂fθ

∂θi
and Ỹ =

∑

i

bj ∂fθ

∂θj
.

As a result, the tangent space Tpθ
P can be identified with T̃pθ

P, which is
defined as the vector space spanned by ∂fθ/∂θi, equipped with the inner prod-
uct 〈X̃, Ỹ 〉θ = E′′

θ [X̃Ỹ ]. By (5), if a vector X̃ belongs to T̃pθ
P, then E′

θ[X̃] = 0.
Independent of the definition of (gij), the expression in the right-hand side of
(6) always defines a semi-inner product in T̃pθ

P.
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2.1 Parametric ϕ-Families of Probability Distribution

Let c : T → R be a measurable function such that p := ϕ(c) is probability
density in Pμ. We take any measurable functions u1, . . . un : T → R satisfying
the following conditions:

(i)
∫

T
uiϕ

′(c)dμ = 0, and
(ii) there exists ε > 0 such that

∫

T

ϕ(c + λui)dμ < ∞, for all λ ∈ (−ε, ε).

Define Θ ⊆ R
n as the set of all vectors θ = (θi) ∈ R

n such that

∫

T

ϕ

(

c + λ

n∑

k=1

θiui

)

dμ < ∞, for some λ > 1.

The elements of the parametric ϕ-family Fp = {p(t; θ) : θ ∈ Θ} centered at
p = ϕ(c) are given by the one-to-one mapping

p(t; θ) := ϕ

(

c(t) +
n∑

i=1

θiui(t) − ψ(θ)u0(t)
)

, for each θ = (θi) ∈ Θ. (7)

where the normalizing function ψ : Θ → [0,∞) is introduced so that expression
(7) defines a probability distribution in Pμ.

Condition (ii) is always satisfied if the set T is finite. It can be shown that
the normalizing function ψ is also convex (and the set Θ is open and convex).
Under conditions (i)–(ii), the family Fp is a submanifold of a non-parametric
ϕ-family. For the non-parametric case, we refer to [10,11].

By the equalities

∂fθ

∂θi
= ui(t) − ∂ψ

∂θi
, − ∂2fθ

∂θi∂θj
= − ∂2ψ

∂θi∂θj
,

we get

gij =
∂2ψ

∂θi∂θj
.

In other words, the matrix (gij) is the Hessian of the normalizing function ψ.
For ϕ(·) = exp(·) and u0 = 1, expression (7) defines a parametric expo-

nential family of probability distributions Ep. In exponential families, the nor-
malizing function is recognized as the Kullback–Leibler divergence between p(t)
and p(t; θ). Using this result, we can define the ϕ-divergence Dϕ(· ‖ ·), which
generalizes the Kullback–Leibler divergence DKL(· ‖ ·).

By (7) we can write

ψ(θ)u0(t) =
n∑

i=1

θiui(t) + ϕ−1(p(t)) − ϕ−1(p(t; θ)).
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From condition (i), this equation yields

ψ(θ)
∫

T

u0ϕ
′(c)dμ =

∫

T

[ϕ−1(p) − ϕ−1(pθ)]ϕ′(c)dμ.

In view of ϕ′(c) = 1/(ϕ−1)′(p), we get

ψ(θ) =

∫

T

ϕ−1(p) − ϕ−1(pθ)
(ϕ−1)′(p)

dμ
∫

T

u0

(ϕ−1)′(p)
dμ

=: Dϕ(p ‖ pθ), (8)

which defines the ϕ-divergence Dϕ(p‖pθ). Clearly, expression (8) can be used to
extend the definition of Dϕ(· ‖ ·) to any probability distributions p and q in Pμ.

3 α-Connections

We use the ϕ-divergence Dϕ(· ‖ ·) to define a pair of mutually dual connection
in generalized statistical manifolds. Let D : M × M → [0,∞) be a non-negative,
differentiable function defined on a smooth manifold M , such that

D(p ‖ q) = 0 if and only if p = q. (9)

The function D(· ‖ ·) is called a divergence if the matrix (gij), whose entries are
given by

gij(p) = −
[( ∂

∂θi

)

p

( ∂

∂θj

)

q
D(p ‖ q)

]

q=p
, (10)

is positive definite for each p ∈ M . Hence a divergence D(· ‖ ·) defines a metric
in M . A divergence D(· ‖ ·) also induces a pair of mutually dual connections D
and D∗, whose Christoffel symbols are given by

Γijk = −
[( ∂2

∂θi∂θj

)

p

( ∂

∂θk

)

q
D(p ‖ q)

]

q=p
(11)

and

Γ∗
ijk = −

[( ∂

∂θk

)

p

( ∂2

∂θi∂θj

)

q
D(p ‖ q)

]

q=p
, (12)

respectively. By a simple computation, we get

∂gjk

∂θi
= Γijk + Γ∗

ikj ,

showing that D and D∗ are mutually dual.
In Sect. 2.1, the ϕ-divergence between two probability distributions p and q

in Pμ was defined as

Dϕ(p ‖ q) :=

∫

T

ϕ−1(p) − ϕ−1(q)
(ϕ−1)′(p)

dμ
∫

T

u0

(ϕ−1)′(p)
dμ

. (13)
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Because ϕ is convex, it follows that Dϕ(p ‖ q) ≥ 0 for all p, q ∈ Pμ. In addition,
if we assume that ϕ(·) is strictly convex, then Dϕ(p ‖ q) = 0 if and only if p = q.
In a generalized statistical manifold P = {p(t; θ) : θ ∈ Θ}, the metric derived
from the divergence D(q ‖ p) := Dϕ(p ‖ q) coincides with (1). Expressing the
ϕ-divergence Dϕ(· ‖ ·) between pθ and pϑ as

D(pθ ‖ pϑ) = E′
ϑ[(fϑ − fθ)],

after some manipulation, we get

gij = −
[( ∂

∂θi

)

p

( ∂

∂θj

)

q
D(p ‖ q)

]

q=p

= −E′
θ

[ ∂2fθ

∂θi∂θj

]
.

As a consequence, expression (13) defines a divergence on statistical manifolds.
Let D(1) and D(−1) denote the pair of dual connections derived from Dϕ(·‖·).

By (11) and (12), the Christoffel symbols Γ(1)
ijk and Γ(−1)

ijk are given by

Γ(1)
ijk = E′′

θ

[ ∂2fθ

∂θi∂θj

∂fθ

∂θk

]
− E′

θ

[ ∂2fθ

∂θi∂θj

]
E′′

θ

[
u0

∂fθ

∂θk

]
(14)

and

Γ(−1)
ijk = E′′

θ

[ ∂2fθ

∂θi∂θj

∂fθ

∂θk

]
+ E′′′

θ

[∂fθ

∂θi

∂fθ

∂θj

∂fθ

∂θk

]

− E′′
θ

[∂fθ

∂θj

∂fθ

∂θk

]
E′′

θ

[
u0

∂fθ

∂θi

]
− E′′

θ

[∂fθ

∂θi

∂fθ

∂θk

]
E′′

θ

[
u0

∂fθ

∂θj

]
, (15)

where

E′′′
θ [·] =

∫
T
(·)ϕ′′′(fθ)dμ

∫
T

u0ϕ′(fθ)dμ
.

Notice that in parametric ϕ-families, the Christoffel symbols Γ(1)
ijk vanish identi-

cally. Thus, in these families, the connection D(1) is flat.
Using the pair of mutually dual connections D(1) and D(−1), we can specify a

family of α-connections D(α) in generalized statistical manifolds. The Christoffel
symbol of D(α) is defined by

Γ(α)
ijk =

1 + α

2
Γ(1)

ijk +
1 − α

2
Γ(−1)

ijk . (16)

The connections D(α) and D(−α) are mutually dual, since

∂gjk

∂θi
= Γ(α)

ijk + Γ(−α)
ikj .

For α = 0, the connection D(0), which is clearly self-dual, corresponds to the
Levi–Civita connection ∇. One can show that Γ(0)

ijk can be derived from the
expression defining the Christoffel symbols of ∇ in terms of the metric:

Γijk =
∑

m

Γm
ij gmk =

1
2

(∂gki

∂θj
+

∂gkj

∂θi
− ∂gij

∂θk

)
.
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The connection D(α) can be equivalently defined by

Γ(α)
ijk = Γ(0)

ijk − αTijk,

where

Tijk =
1
2
E′′′

θ

[∂fθ

∂θi

∂fθ

∂θj

∂fθ

∂θk

]
− 1

2
E′′

θ

[∂fθ

∂θk

∂fθ

∂θi

]
E′′

θ

[
u0

∂fθ

∂θj

]

− 1
2
E′′

θ

[∂fθ

∂θk

∂fθ

∂θj

]
E′′

θ

[
u0

∂fθ

∂θi

]
− 1

2
E′′

θ

[∂fθ

∂θi

∂fθ

∂θj

]
E′′

θ

[
u0

∂fθ

∂θk

]
. (17)

In the case that ϕ is the exponential function and u0 = 1, Eqs. (14), (15), (16)
and (17) reduce to the classical expressions for statistical manifolds.

3.1 Parallel Transport

Let γ : I → M be a smooth curve in a smooth manifold M , with a connection D.
A vector field V along γ is said to be parallel if Dd/dtV (t) = 0 for all t ∈ I. Take
any tangent vector V0 at γ(t0), for some t0 ∈ I. Then there exists a unique vector
field V along γ, called the parallel transport of V0 along γ, such that V (t0) = V0.

A connection D can be recovered from the parallel transport. Fix any smooth
vectors fields X and Y . Given p ∈ M , define γ : I → M to be an integral curve
of X passing through p. In other words, γ(t0) = p and dγ

dt = X(γ(t)). Let
Pγ,t0,t : Tγ(t0)M → Tγ(t)M denote the parallel transport of a vector along γ
from t0 to t. Then we have

(DXY )(p) =
d

dt
P−1

γ,t0,t(Y (c(t))
∣
∣
∣
∣
t=t0

.

For details, we refer to [5].
To avoid some technicalities, we assume that the set T is finite. In this case,

we can consider a generalized statistical manifold P = {p(t; θ) : θ ∈ Θ} for which
P = Pμ. The connection D(1) can be derived from the parallel transport

Pq,p : T̃qP → T̃pP

given by
X̃ �→ X̃ − E′

θ[X̃]u0,

where p = pθ. Recall that the tangent space TpP can be identified with T̃pP, the
vector space spanned by the functions ∂fθ/∂θi, equipped with the inner product
〈X̃, Ỹ 〉 = E′′

θ [X̃Ỹ ], where p = pθ. We remark that Pq,p does not depend on the
curve joining q and p. As a result, the connection D(1) is flat. Denote by γ(t)
the coordinate curve given locally by θ(t) = (θ1, . . . , θi + t, . . . , θn). Observing
that P−1

γ(0),γ(t) maps the vector ∂fθ

∂θj (t) to

∂fθ

∂θj
(t) − E′

θ(0)

[∂fθ

∂θj
(t)

]
u0,
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we define the connection

D̃∂fθ/∂θi

∂fθ

∂θj
=

d

dt
P−1

γ(0),γ(t)

(∂fθ

∂θj
(γ(t)

)∣
∣
∣
∣
t=0

=
d

dt

(∂fθ(t)

∂θj
− E′

θ(0)

[∂fθ(t)

∂θj

]
u0

)∣
∣
∣
∣
t=0

=
∂2fθ

∂θi∂θj
− E′

θ

[ ∂2fθ

∂θi∂θj

]
u0.

Let us denote by D the connection corresponding to D̃, which acts on smooth
vector fields in TpP. By this identification, we have

g
(
D∂/∂θi

∂

∂θj
,

∂

∂θk

)
=

〈
D̃∂fθ/∂θi

∂fθ

∂θj
,
∂fθ

∂θk

〉

= E′′
θ

[ ∂2fθ

∂θi∂θj

∂fθ

∂θk

]
− E′

θ

[ ∂2fθ

∂θi∂θj

]
E′′

θ

[
u0

∂fθ

∂θk

]

= Γ(1)
ijk,

showing that D = D(1).
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Curvatures of Statistical Structures
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Abstract. Curvature properties for statistical structures are studied.
The study deals with the curvature tensor of statistical connections and
their duals as well as the Ricci tensor of the connections, Laplacians and
the curvature operator. Two concepts of sectional curvature are intro-
duced. The meaning of the notions is illustrated by presenting few exem-
plary theorems.

Keywords: Affine connection · Curvature tensor · Ricci tensor ·
Sectional curvature · Laplacian · Bochner’s technique

1 Introduction

The curvature tensor is one of the most important tensors in differential geom-
etry. On the base of this tensor many other objects can be defined. In par-
ticular, the Ricci tensor, the scalar curvature, the Weyl curvature tensor, the
Weitzenböck curvature tensor or the sectional curvature. Some of these notions,
however, are attributed only to Riemannian structures with their Levi-Civita
connections. For instance, the sectional curvature is such a notion. We claim that
some of these, especially strongly attributed to Riemannian geometry, notions
can be extended to statistical structures and like in the Riemannian case, provide
a lot of information on the structures.

By a statistical structure on a manifold M we mean a pair (g,∇), where
g is a metric tensor field and ∇ is a torsion-free connection for which ∇g as
a cubic form is symmetric in all arguments, see [1]. Such a structure is also
called a Codazzi structure. One can define (equivalently) a statistical structure
by equipping a Riemannian manifold (M, g) with a symmetric (1, 2)-tensor field
K, for which the cubic form C(X,Y,Z) = g(K(X,Y ), Z) is symmetric in all
arguments. Having K one defines a torsion-free connection ∇ by the formula
∇XY = ∇̂XY + K(X,Y ), where ∇̂ is the Levi-Civita connection of g. The
pair (g,∇) turns out to be a statistical structure. Of course, instead of K one
can prescribe a symmetric cubic form C. A manifold endowed with a statistical
structure is called a statistical manifold.

In information theory classical examples of statistical manifolds are manifolds
of probability distributions equipped with the Fisher information metric and an
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appropriate cubic form. Namely, let (X ,B) be a measurable space with σ-algebra
B over X . Let Λ be a domain in Rn and

p : X × Λ � (x, λ) −→ p(x, λ) ∈ R

be a function smoothly depending on λ. Moreover, we assume that pλ(x) :=
p(x, λ) is a probability measure on X for each λ ∈ Λ. Set �(x, λ) = log p(x, λ).
The Fisher information metric g on Λ is given by

gij(λ) = Eλ[(∂i�)(∂j�)], (1)

where Eλ denotes the expectation relative to pλ, ∂i� stands for ∂�
∂λi

and
λ = (λ1, ..., λn). One defines a symmetric cubic form C on Λ by the formula

Cijk(λ) = E[(∂i�)(∂j�)(∂k�)].

The pair (g, αC) constitutes a statistical structure on Λ for every α ∈ R.
However, the oldest source of statistical structures is the theory of affine

hypersurfaces in Rn or the geometry of the second fundamental form of hyper-
surfaces in real space forms. Lagrangian submanifolds of complex space forms
are also naturally endowed with statistical structures. Nevertheless, most statis-
tical structures are outside these categories. In general, a statistical structure is
not realizable on a hypersurface nor on a Lagrangian submanifold, even locally,
see [4].

In this paper we present some ideas of extending Riemannian geometry to
the case of statistical structures. We concentrate on the ideas depending on na-
turally defined curvature tensors for a statistical structure. Exemplary theorems
concerning these ideas are provided.

2 Statistical Structures

A statistical structure on a manifold M can be defined in few equivalent ways.
First of all M must have a Riemannian structure defined by a metric tensor
field g. We assume that g is positive definite, although g can be also indefnite.
A statistical structure can be defined as a pair (g,K), where g is a Riemannian
metric tensor field and K is a symmetric (1, 2)-tensor field on M which is also
symmetric relative to g, that is, the cubic form

C(X,Y,Z) = g(X,K(Y,Z)) (2)

is symmetric relative to X,Y . It is clear that any symmetric cubic form C on
a Riemannian manifold (M, g) defines by (2) a (1, 2)-tensor field K having the
symmetry properties as above. Another definition says that a statistical structure
is a pair (g,∇), where ∇ is a torsion-free affine connection on M and ∇g as a
(0, 3)-tensor field on M is symmetric in all arguments. ∇ is called a statistical
connection. The equivalence of the above definitions is established by taking K
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as the difference tensor between the connection ∇ and the Levi-Civita connection
∇̂ for g, that is,

∇XY = ∇̂XY + K(X,Y ) (3)

for every vector fields X,Y on M . The cubic forms C and ∇g are related by the
equality ∇g = −2C.

For any connection ∇ on a Riemannian manifold (M, g) one defines its con-
jugate connection ∇ (relative to g) by the formula

g(∇XY,Z) + g(Y,∇XZ) = Xg(Y,Z) (4)

for any vector fields X,Y,Z on M . The connections ∇ and ∇ are simultaneously
torsion-free. If (g,∇) is a statistical structure then so is (g,∇). Moreover, if
(g,∇) is trace-free then so is (g,∇). Recall that a statistical structure (g,∇)
is trace-free if tr g(∇g)(X, ·, ·) = 0 for every X or equivalently tr gK = 0, or
equivalently trKX = 0 for every X, where KXY stands for K(X,Y ). If R is the
curvature tensor for ∇ and R is the curvature tensor for ∇ then we have, see [3],

g(R(X,Y )Z,W ) = −g(R(X,Y )W,Z) (5)

for every X,Y,Z,W . In particular, R = 0 if and only if R = 0. If K is the
difference tensor between ∇ and ∇̂ then

∇XY = ∇̂XY − KXY. (6)

We also have, [3],

R(X,Y ) = R̂(X,Y ) + (∇̂XK)Y − (∇̂Y K)X + [KX ,KY ], (7)

where R̂ is the curvature tensor for ∇̂. Writing the same equality for ∇ and
adding both equalities we get

R(X,Y ) + R(X,Y ) = 2R̂(X,Y ) + 2[KX ,KY ]. (8)

The above formulas yield, see [4],

Lemma 1. Let (g,K) be a statistical structure. The following conditions are
equivalent:

(1) R = R,
(2) ∇̂K(X,Z, Y ) is symmetric in all arguments,
(3) g(R(X,Y )Z,W ) is skew-symmetric relative to Z,W .

A statistical structure is called a Hessian structure if the connection ∇ is
flat, that is, R = 0. In this case, by (8), we have

R̂ = −[K,K]. (9)

For a statistical structure one defines the vector field E by

E = tr gK. (10)
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The dual (relative to g) form will be denoted by τ . We have tr g∇g(·, ·, Z) =
−2τ(Z). If νg is the volume form determined by g then ∇Zνg = −τ(Z)νg.
Therefore, a statistical structure (g,∇) is trace-free if and only if ∇νg = 0. Trace-
free statistical structures are of the greatest importance in the classical theory of
affine hypersurfaces of Rn+1. In this theory they are called Blaschke structures.
In the theory of Lagrangian submanifolds trace-free statistical structures appear
on minimal submanifolds.

Denote by Ric, Ric and R̂ic the Ricci tensors for ∇, ∇ and ∇̂ respectively.
Recall that for any linear connection ∇ with curvature tensor R its Ricci tensor
is defined by Ric(Y,Z) = tr {X → R(X,Y )Z}. Note that the Ricci tensor does
not have to be symmetric. We have

Ric(Y,Z) = R̂ic(Y,Z) + (div∇̂K)(Y,Z) − ∇̂τ(Y,Z) + τ(K(Y,Z)) − g(KY ,KZ).

It follows that

Ric(Y,Z) + Ric(Y,Z) = 2R̂ic(Y,Z) − 2g(KY ,KZ) + 2τ(K(Y,Z)). (11)

In particular, if (g,∇) is trace-free then

2R̂ic(X,X) ≥ Ric(X,X) + Ric(X,X). (12)

The above formulas also yield

Ric(Y,Z) − Ric(Z, Y ) = −dτ(Y,Z). (13)

Hence ∇ is Ricci-symmetric if and only if dτ = 0. Recall that the Ricci tensor of
∇ is symmetric if and only if there is a (locally defined) volume form ν parallel
relative to ∇.

Denote by ρ the scalar curvature for ∇, that is, ρ = tr gRic(·, ·). By (5) it is
clear that the scalar curvature for ∇ is equal to ρ. Taking now the trace relative
to g on both sides of (11) we get

ρ̂ = ρ + |K|2 − |E|2. (14)

The last formula implies, in particular, that the Riemannian scalar curvature for
∇̂ is maximal among scalar curvatures of connections which are statistical for g.
More precisely, we have, see [4],

Proposition 1. The functional

scal : {statistical connections for g} � ∇ → tr gRic ∈ C∞(M)

attains its maximum for the Levi-Civita connection at each point of M . Con-
versely, if ∇ is a statistical connection for g and scal attains its maximum for
∇ at each point on M , then ∇ is the Levi-Civita connection for g.

As we have already observed the curvature tensor R for ∇ does not have
the same symmetries as the curvature tensor of the Levi-Civita connection. By
Lemma 1 we see that the symmetry conditions are fulfilled if R = R. It turns
out that this condition is important in many considerations. For instance, in
theorems saying that under some curvature conditions a statistical structure is
trivial, that is, ∇ = ∇̂. Proofs of the following theorems can be found in [4].
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Theorem 1. Let M be a connected compact surface and (g,∇) be a trace-free
statistical structure on M . If M is of genus 0 and R = R then ∇ = ∇̂ on M . If
M is of genus 1 and K = 0 at one point of M then ∇ = ∇̂ on M .

Theorem 2. Let M be a compact manifold equipped with a trace-free statistical
structure (g,∇) such that R = R. If the sectional curvature k̂ for g is positive
then ∇ = ∇̂.

Although the Ricci tensors for ∇ and ∇ differs very much from each other,
their integrals over a unit sphere bundle UM are the same. Namely we have

Theorem 3. Let M be a compact oriented manifold and (g,∇) be a statistical
structure on it. Then

∫

UM

Ric(U,U)dU =
∫

UM

Ric(U,U)dU. (15)

If (g,∇) is trace-free then
∫

UM

Ric(U,U)dU ≤
∫

UM

R̂ic(U,U)dU (16)

and the equality holds if and only if ∇ = ∇̂ on M .

3 On Examples

As it was mentioned in the Introduction a natural source of statistical struc-
tures is the theory of affine hypersurfaces. Let f : M → Rn+1 be a locally
strongly convex hypersurface. For simplicity assume that M is oriented. Let ξ
be a transversal vector field on M . We define the induced volume form νξ on M
(compatible with the given orientation) as follows

νξ(X1, ...,Xn) = det(f∗X1, ..., f∗Xn, ξ).

We also have the induced connection ∇ and the second fundamental form g
defined on M by the Gauss formula:

DXf∗Y = f∗∇XY + g(X,Y )ξ,

where D is the standard flat connection on Rn+1. Since the hypersurface is
locally strongly convex, g is definite. By multiplying ξ by −1, if necessary, we
can assume that g is positive definite. A transversal vector field is called equiaffine
if ∇νξ = 0. This condition is equivalent to the fact that ∇g is symmetric, i.e.
(g,∇) is a statistical structure. It means, in particular, that for a statistical
structure obtained on a hypersurface by a choice of a transversal vector field,
the Ricci tensor of ∇ is automatically symmetric. In general, the Ricci tensor of
a statistical structure on an abstract manifold does not have to be symmetric.
Therefore, all structures with non-symmetric Ricci tensor are non-realizable as
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the induced structures on hypersurfaces. For statistical structures induced on
hypersurfaces the condition R = R describes the so called affine spheres. The
class of affine spheres is very large, very attractive for geometers and still very
misterious. Again, it is easy to find examples of statistical structures on abstract
manifolds for which R = R and which cannot be realized on affine spheres
(although in this case the Ricci tensor of ∇ is symmetric). For a statistical
structure a necessary condition for being (locally) realizable on a hypersurface is
that the connection ∇ is projectively flat. It is a strong condition which is rarely
satisfied.

Another source of statistical structures is the theory of Lagrangian subman-
ifolds in almost Hermitian manifolds. In this case K can be regarded as the
second fundamental tensor of a sumbanifold. The theory is best developed for
Lagrangian submanifolds of complex space forms. In this case ∇̂K as a (1, 3)-
tensor field is symmetric. Hence, by Lemma 1, we also have R = R. In this
case an obstructive condition (which makes that a statistical structure satisfy-
ing R = R might be non-realizable on a Lagrangian submanifold) is the Gauss
equation.

In analogy with the case of hypersurfaces by an equiaffine statistical structure
we mean a triple (g,∇, ν), where (g,∇) is a statistical structure and ν is a volume
form on M (in most cases different than νg) parallel relative to ∇.

For more information on dual connections, affine differential geometry and
the geometry of statistical structures we refer to [1–4,6].

4 Sectional Curvatures

Of course we have the ordinary sectional curvature for g. In general, the ten-
sor field R for a statistical connection ∇ is not good enough to produce the
sectional curvature. The reason is that, in general, g(R(X,Y )Z,W ) is not skew
symmetric relative to Z,W . But the tensor field R = 1

2 (R+R) has the property
g((R(X,Y )Z,W ) = −g((R(X,Y )W,Z). Moreover, it satisfies the first Bianchi
identity. This allows to define the sectional curvature, which we call the sectional
∇-curvature. Namely, if X,Y is an orthonormal basis of a vector plane π ⊂ TxM
then the sectional ∇-curvature by this plane is defined as g(R(X,Y )Y,X). But
for this sectional curvature Schur’s lemma does not hold, in general. It is because
there is no appropriate universal second Bianchi identity. We have, however, the
following analogue of the second Bianchi identity, see [4],

ΞU,X,Y (∇̂U (R + R))(X,Y ) = ΞU,X,Y (KU (R − R))(X,Y ), (17)

where ΞU,X,Y denotes the cyclic permutation sum. It follows that for statisti-
cal structures satisfying the condition R = R Schur’s lemma holds. Another
result in which the assumption R = R is important is the following analogue of
Tachibana’s theorem, [4],

Theorem 4. Let M be a connected compact oriented manifold and (g,∇) be a
statistical structure on M such that R = R. If the curvature operator R̂ for R̂ is
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non-negative and div ∇̂R = 0 then ∇̂R = 0. If additionally R̂ > 0 at some point
of M then the sectional ∇-curvature is constant.

Since the tensor R has good symmetry properties, one can also define the
curvature operator, say R, for R sending 2-vectors into 2-vectors. Namely, we
set

g(R(X ∧ Y ), Z ∧ U) = g(R(Z,U)Y,X), (18)

where g denotes here the natural extension of g to tensors. The formula defines
a linear, symmetric relative to g operator R : Λ2TM → Λ2TM. In particular, it
is diagonalizable and hence it can be positive, negative (definite) etc.

We have the following analogue of a theorem of Meyer-Gallot for trace-free
statistical structures, see [4],

Theorem 5. Let M be a connected compact oriented manifold and (g,∇) be a
trace-free statistical structure on M . If the curvature operator R for R is non-
negative on M then each harmonic form is parallel relative to ∇, ∇ and ∇̂. If
moreover the curvature operator is positive at some point of M then the Betti
numbers b1(M) = ... = bn−1(M) = 0.

Another sectional curvature for a statistical structure (g,K) can be defined
by using the tensor field K. We define a (1, 3)-tensor field [K,K] by

[K,K](X,Y )Z = [KX ,KY ]Z = KXKY Z − KY KXZ (19)

for X,Y,Z ∈ TxM, x ∈ M . Recall that for a Hessian structure we have [K,K] =
−R̂. The tensor field [K,K] is skew symmetric in X,Y , skew-symmetric relative
to g and satisfies the first Bianchi identity. Therefore one can define the sectional
K-curvature by a vector plane π tangent to M as k(π) = g([K,K](X,Y )Y,X),
where X,Y is an orthonormal basis of π. As in the previous case, for this sectional
curvature Schur’s lemma holds if ∇̂K is symmetric as a (1, 3)-tensor field. Note
that the notion of the sectional K-curvature is purely algebraic. The fact that
this curvature is constant implies that K has a special expression. Namely, we
have, see [5],

Theorem 6. Let (g,K) be a statistical structure on an n-dimensional manifold
M . If the sectional K-curvature is constant and equal to A for all vector planes
in TM then for each x ∈ M there is an orthonormal basis e1, ..., en of TxM such
that

K(e1, e1) = λ1e1, K(e1, ei) = μ1ei (20)

K(ei, ei) = μ1e1 + ... + μi−1ei−1 + λiei, (21)

for i = 2, ...n and
K(ei, ej) = μiej (22)

for some numbers λi, μi for i = 1, ..., n − 1 and j > i. Moreover



Curvatures of Statistical Structures 237

μi =
λi − √

λ2
i − 4Ai−1

2
, (23)

Ai = Ai−1 − μ2
i , (24)

for i = 1, ..., n − 1 where A0 = A. If additionally the statistical structure (g,K)
is trace-free then A ≤ 0, λi and μi are expressed as follows

λi = (n − i)

√
−Ai−1

n − i + 1
, μi = −

√
−Ai−1

n − i + 1
. (25)

Note that, in general, it is not possible to find a local frame e1, ..., en around a
point of M in which K has expression as in the above theorem.

Below there are few theorems serving as examples of results dealing with the
sectional K-curvature. In these theorems the notation [K,K] · K, R̂ · K means
that [K,K] and R̂ act on K as differentiations. Details concerning the theorems
are providedT in [5].

Theorem 7. Let (g,K) be a statistical structure on a manifold M . If the sec-
tional K-curvature is non-positive on M and [K,K] · K = 0 then the sectional
K-curvature vanishes on M .

Corollary 1. If (g,K) is a Hessian structure on M with non-positive sectional
curvature of g and such that R̂ · K = 0 then R̂ = 0.

Theorem 8. If (g,K) is a statistical structure on a manifold M , the sectional
K-curvature is negative on M and R̂ · K = 0 then R̂ = 0.

Theorem 9. Assume that [K,K] = 0 on a statistical manifold (M, g,K), ∇̂K
is symmetric and ∇̂E = 0. If K is non-degenerate, that is, the mapping TxM �
X → KX ∈ HOM(TxM) is a monomorphism at each point of M then R̂ = 0
and ∇̂K = 0 on M .

Theorem 10. Let (g,K) be a trace-free statistical structure on a manifold M
with symmetric ∇̂K. If the sectional K-curvature is constant then either K = 0
or R̂ = 0 and ∇̂K = 0 on M .

5 Bochner-Type Theorems

Bochner’s theorems for Riemannian manifolds say, roughly speaking, that under
some curvature assumptions harmonic forms must be parallel. This is a converse
to the trivial statement that a parallel form is harmonic.

For statistical structures one can prove some analogues of this theorems.
First we define a new Laplacian Δ∇ depending on the statistical connection. If
(g,∇) is a statistical structure on M then we define the codifferential δ∇ acting
on differential forms copying the classical Weitzenböck formula

δ∇ω = −tr g∇ω(·, ·, ...)



238 B. Opozda

for any differential form ω. We now set

Δ∇ = dδ∇ + δ∇d.

If the statistical structure is trace-free then Δ∇ is the ordinary Laplacian for g.
A form ω is called ∇-harmonic if Δ∇ω = 0. Hodge’s theory can be adapted to
this definition of a Laplacian and harmonicity. In particular, for an equiaffine
statistical structure on a compact manifold M we have dim Hk,∇(M) = bk(M),
where Hk,∇(M) is the space of all ∇-harmonic forms and bk(M) is the k-th Betti
number of M .

Below are exemplary analogues of Bochner-type theorems for statistical
structures.

Theorem 11. Let M be a connected compact oriented manifold with an
equiaffine statistical structure (g,∇, ν). If the Ricci tensor Ric for ∇ is non-
negative on M then every ∇-harmonic 1-form on M is ∇-parallel. In particular,
the first Betti number b1(M) is not greater than dim M . If additionally Ric > 0
at some point of M then b1(M) = 0.

Theorem 12. Let M be a connected compact oriented manifold. Let (g,∇) be a
trace-free statistical structure on M . If Ric+Ric ≥ 0 on M then each harmonic
1-form on M is parallel relative to the connections ∇, ∇ and ∇̂. In particular,
b1(M) ≤ dim M . If moreover Ric + Ric > 0 at some point then b1(M) = 0.

For any statistical structure (g,∇) one can define the Weitzenböck curvature
operator denoted here by WR. It depends only on g and the curvature tensor
R. More precisely, it can be introduced as follows. Let s be a tensor field of type
(l, k), where k > 0, on M . One defines a tensor field WRs of type (l, k) by the
formula

(WRs)(X1, ...,Xk) =
k∑

i=1

n∑

j=1

(R(ej ,Xi) · s)(X1, ..., ej , ...,Xk), (26)

where e1, ..., en is an arbitrary orthonormal frame, R(ej ,Xi) · s means that
R(ej ,Xi) acts as a differentiation on s, and ej in the last parenthesis is at
the i-th place. It is possible to prove appropriate generalizations of Bochner-
Weitzenböck’s and Lichnerowicz’s formulas for the Laplacian acting on differ-
ential forms on statistical manifolds. In particular, for a trace-free structure we
have the following simple formula

Δ = ∇∗∇ + WR,

where ∇∗ is suitably defined formal adjoint for ∇.
Details concerning Hodge’s theory and Bochner’s technique for statistical

structures can be found in [4].



Curvatures of Statistical Structures 239

References

1. Lauritzen, S.T.: Statistical Manifolds. IMS Lecture Notes-Monograph Series, vol.
10, pp. 163–216 (1987)

2. Li, A.-M., Simon, U., Zhao, G.: Global Affine Differential Geometry of Hypersur-
faces. Walter de Gruyter, Berlin (1993). Geom. Appl. 24, 567–578 (2006)

3. Nomizu, K., Sasaki, T.: Affine Differential Geometry. Cambridge University Press,
Cambridge (1994)

4. Opozda, B.: Bochner’s technique for statistical manifolds. Ann. Glob. Anal. Geom.
doi:10.1007/s10455-015-9475-z

5. Opozda, B.: A sectional curvature for statistical structures. arXiv:1504.01279
[math.DG]

6. Shima, H.: The Geometry of Hessian Structures. World Scientific, Singapore (2007)

http://dx.doi.org/10.1007/s10455-015-9475-z
http://arxiv.org/abs/1504.01279


The Pontryagin Forms of Hessian Manifolds

J. Armstrong1(B) and S. Amari2

1 King’s College London, London WC2R 2LS, UK
john.1.armstrong@kcl.ac.uk

2 RIKEN Brain Science Institute, Saitama 351-0198, Japan
amari@brain.riken.jp

Abstract. We show that Hessian manifolds of dimensions 4 and above
must have vanishing Pontryagin forms. This gives a topological obstruc-
tion to the existence of Hessian metrics. We find an additional explicit
curvature identity for Hessian 4-manifolds. By contrast, we show that all
analytic Riemannian 2-manifolds are Hessian.

1 Introduction

At GSI2013, S. Amari asked the question of when a given Riemannian metric
is a Hessian metric. In other words, for what metrics g do there exist local
coordinates at every point such that g can be written as the Hessian of some
convex potential function φ?

As a first result we will show that:

– All analytic metrics in 2 dimensions are Hessian metrics.
– Not all analytic metrics in 3 dimensions and higher are Hessian metrics.
– In dimensions 4 and above there are restrictions on the possible curvature

tensors of Hessian metrics.

We will see that these results are quite simple to prove using Cartan–Kähler
theory and were found independently by Robert Bryant [3].

A further question posed by Amari was to find conditions and invariants
which characterize the Riemannian metrics which are Hessian. The ultimate goal
would be to define a set of tensors such that the metric is Hessian if and only
if these tensors vanish. We cannot achieve this goal in full. However, a partial
answer that we can demonstrate is that the Pontryagin forms of the metric must
vanish. By the Pontryagin forms we mean the differential forms defined in terms
of the curvature that provide representatives of the Pontryagin classes.

We note that this provides a topological obstruction to the existence of a
Hessian metric: a compact manifold that admits a Hessian metric must have
vanishing Pontryagin classes.

To put this into context we recall that Hessian metrics are be locally equiva-
lent to g-dually flat structures. That is g is Hessian if and only if one can locally
find flat affine connections ∇ and ∇∗ satisfying:

g(∇ZX,Y ) = g(X,∇∗
ZY ).

c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 240–247, 2015.
DOI: 10.1007/978-3-319-25040-3 27
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In [2] the question of when a manifold admits a global g-dually flat structure is
considered and some topological obstructions are found. Our result is related,
but distinct. We have found an obstruction to the existence of a metric which
is required to be locally g-dually flat but which need not have globally defined
connections ∇ and ∇∗.

It is trivial that a manifold that is globally g-dually flat must have vanishing
Pontryagin classes: simply consider the Pontryagin forms defined by the flat
connection. By the same token, the Euler characteristic must vanish on any
manifold which is globally g-dually flat.

On the other hand as mentioned above, all 2-manifolds admit Hessian metrics
including those with non-vanishing Euler characteristic. Thus in 2 dimensions
there is a large difference between the set of manifolds which admit Hessian
metrics and those which admit global g-dually flat structures. One can generalize
this example to higher dimensions by considering quotients of hyperbolic space.
It is well known that the hyperbolic metric is a Hessian metric, yet quotients
of hyperbolic space may have non-vanishing Euler characteristic implying that
they cannot admit a flat connection never mind a g-dually flat structure.

Thus this paper provides a first step towards answering the interesting ques-
tion: which manifolds admit a Hessian metric?

This paper is a summary and update of a joint paper with S. Amari. Full
details can be found in [1].

2 A Counting Argument

To define a Hessian metric locally near a point p an a manifold Mn we need to
choose a set of coordinates x : Mn → R defined in a neighbourhood of p and a
strictly convex potential function φ. We can then write down a Hessian metric

gij =
∂2φ

∂xi∂xj
.

Speaking somewhat loosely we can say that a Hessian metric depends upon n+1
real valued functions of n variables: the n coordinate functions and the potential
φ.

On the other hand to write down a general metric we need to choose the
n(n+1)

2 tensor components gij in some neighbourhood of the point p. Thus a
general Riemannian metric depends upon n(n+1)

2 real valued functions of n vari-
ables.

Since n(n+1)
2 > n + 1 when n > 2 this strongly suggests that there are many

more Riemannian metrics than Hessian metrics in dimensions greater than 3.
This argument is suggestive but not rigorous. In particular it gives the wrong

answer in dimension 1! Our formulae would suggest that there are more Hessian
metrics than Riemannian metrics in dimension 1. The reason for this is that we
haven’t taken into account the diffeomorphism group when counting.

To make the argument rigorous we need to consider jet bundles. If the metric
is Hessian we see that the k-jet of the metric depends upon the k + 2-jet of the



242 J. Armstrong and S. Amari

functions x and φ. The dimension of the space of (k +2)-jets of (n+1) functions
of n real variables is:

dim Jk+2(x, φ) :=
k+2∑

i=0

(n + 1) dim(SiTp) =
k+2∑

i=0

(n + 1)
(

n + i − 1
i

)

.

Similarly the dimension of the space of k-jets of gij is:

dim Jk(g) :=
k∑

i=0

n(n + 1)
2

dim(SiTp) =
k∑

i=0

n(n + 1)
2

(
n + i − 1

i

)

.

If we now compare the growth rate of dim Jk(g) and dimJk+2(x, φ) as k increases
we see that so long as n > 2, dim Jk(g) > dim Jk+2(x, φ) for sufficiently large n.
To see this note that we can write:

dim Jk(g) − dim Jk+2(x, φ) = (n + 1)(ak,n − bk,n)

where

ak,n :=
(n

2
− 1

) k∑

i=1

(
n + 1 − i

i

)

,

bk,n :=
(

n + k

k + 1

)

+
(

n + k + 1
k + 2

)

.

We can now rigorously conclude that in dimensions greater than 2 there
really are more Riemannian metrics than Hessian metrics. The growth rate of
jet bundles provides a rigorous language for heuristic counting arguments.

3 Dimension 2

In dimension 2 our counting argument fails. It seems conceivable that every
Riemannian metric is a Hessian metric. One can go further and explicitly identify
the mapping from (k + 2) jets of (x, φ) to k-jets of metrics. It is not difficult to
do so for low values of k. One discovers that the mapping is onto. It is easy to
write a computer program that computes the mapping for a given value of k, in
which case one will again discover that the mapping is onto.

One would like to be able to find a proof that this mapping is onto for all k
and one would like to be able to deduce from this that all Riemannian metrics
are Hessian metrics.

Fortunately a toolkit already exists for solving precisely this kind of problem.
It is called Cartan–Kähler theory.

A general setting is to consider two vector bundles V and W over some
n-manifold Mn. Let D : Γ (V ) −→ Γ (W ) be an order k differential operator
mapping sections of V to sections of W . In other words let D map k-jets of V
at p to elements of Wp.
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The top order term of this mapping is called the symbol σD of D.

σD : SkT ∗
p ⊗ Vp −→ Wp

The reason that the top order term acts on a symmetric power of the tangent
bundle simply comes from the fact that derivatives in different directions com-
mute. The top order term only depends on the k-th derivatives of a section
v ∈ Γ (V ). If we assume that D is quasilinear then σ will be a linear map.

If σ is onto then the differential equation Dv = w can always be solved
up to order k at p. Now consider differentiating the equation Dv = w. We will
get a k + 1-th order differential equation. We can associate a symbol σ1 to this
differential equation. If σ1 is onto too then we can always solve the equation to
k + 1-st order. Continuing in this way we can define a sequence of symbols σi.
If they are all onto then we can solve the differential equation to any desired
order. Note that the σi can be easily computed directly from σ. Thus requiring
that σi is onto for all i is just an algebraic condition on σ.

How can one prove that σi is onto for all i? The solution is to use Cartan’s
test which we will now describe. Given a basis {v1, v2, . . . vn} for T ∗M , define
the map:

σi,m : Sk+i〈v1, v2, . . . vm〉 ⊗ Vp −→ SiT ∗
p ⊗ Wp

to be the restriction of σi. Define gi,m := dim kerσi,m. If one can find a basis
{v1, v2, . . . vn} and a number α such that σi is onto for all i � α and such that
gα,n =

∑k
β=0 gα−1β then the differential equation is said to be involutive. It can

be shown that this implies that σα+i is onto for all i. Moreover, if one is working
in the analytic category, one can then prove that solutions to the differential
equation exist [4–6].

This gives a strategy for proving that all analytic 2-metrics are locally
g-dually flat and hence Hessian. Given a metric g we can interpret the requirement
that it is Hessian as requiring that we can locally find a g-dually flat connection.
This gives rise to a 1-st order differential equation for a connection A.

To be precise, we define

ι : T ∗ ⊗ T ∗ ⊗ T −→ T ∗ ⊗ T ∗ ⊗ T ∗

to be raising the final index using the metric then to find a g-dually flat con-
nection we seek a tensor A ∈ ι−1(S3T ∗) such that the connection ∇ + A has
curvature zero. It is well known that such a tensor is equivalent to a g-dually
flat connection.

The details are not illuminating. The point is that we have expressed the
problem as a differential equation and it is a simple algebraic exercise to check
that this equation is involutive. It follows that all analytic 2-metrics are Hessian.

4 Dimensions > 4

Our aim in this section is to find more concrete obstructions to the existence of
Hessian metrics. The key result is the following [8]:
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Proposition 1. Let (M, g) be a Riemannian manifold. Let ∇ denote the Levi–
Civita connection and let ∇ = ∇ + A be a g-dually flat connection. Then

(i) The tensor Aijk lies in S3T ∗. We shall call it the S3-tensor of ∇.
(ii) The S3-tensor determines the Riemann curvature tensor as follows:

Rijkl = −gabAikaAjlb + gabAilaAjkb. (1)

Proof. A ∈ T ∗ ⊗ T ∗ ⊗ T . The condition that ∇ is torsion free is equivalent
to requiring that A ∈ S2T ∗ ⊗ T . Using the metric to identify T and T ∗, the
condition that ∇ is dually torsion free can be written as A ∈ S3T ∗.

Expanding the formula RXY Z = ∇X∇Y Z − ∇Y ∇X − ∇[X,Y ]Z in terms of
∇ and A, one obtains the following curvature identity:

RXY Z = RXY Z + 2(∇[XA)Y ]Z + 2A[XAY ]Z. (2)

Here R = 0 is the curvature of ∇ and the square brackets denote anti-
symmetrization. Since ∇ is dually flat R = 0.

Continuing to use the metric to identify T and T ∗, the symmetries of the
curvature tensor tell us that R ∈ Λ2T ⊗ Λ2T . On the other hand, (∇[·A)·] ∈
Λ2T ⊗ S2T . Thus if one projects equation (2) onto Λ2T ⊗ Λ2T one obtains the
curvature identity (1).

We define a quadratic equivariant map ρ from S3T ∗ −→ Λ2T ∗ ⊗ Λ2T ∗ by:

ρ(Aijk) = −gabAikaAjlb + gabAilaAjkb

Corollary 1. In dimensions > 4 the condition that R lies in the image of ρ
gives a non-trivial necessary condition for a metric g to be a Hessian metric.

Proof. dim S3T =
(
n+2
n−1

)
= 1

6n(1 + n)(2 + n). The dimension of the space of
algebraic curvature tensors, R, is dimR = 1

12n2(n2 − 1). So dimR−dim S3T =
1
12n(n − 4)(1 + n)2. This is strictly positive if n > 4.

5 Dimension 4

Surprisingly the condition that R lies in the image of ρ gives a non-trivial condi-
tion in dimension 4. In dimension 4, dimS3T = dimR = 20, yet the dimension
of the image of ρ is only 18. The authors discovered this by computer experi-
ment: we picked a random tensor A ∈ S3T ∗ and then computed the rank of the
derivative ρ∗ at A. By Sard’s theorem we could be rather confident that ρ is not
onto.

To prove this rigorously we wanted to identify the explicit conditions on
an algebraic curvature tensor that were required for it to lie in the image of
ρ. We found these conditions using a computer search. We assumed that the
explicit conditions could be written as SO(4)-equivariant polynomials in the
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curvature R and catalogued the possibilities using the representation theory of
SO(4). This was feasible to program due to the simple representation theory
of Spin(4) ∼= SU(2) × SU(2). We only had to examine up to cubic polynomials
to find the 2-dimensions of curvature obstruction suggested by our numerical
experiments.

Theorem 1. The space of possible curvature tensors for a Hessian 4-manifold
is 18 dimensional. In particular the curvature tensor must satisfy the identities:

α(Rb
ijaRa

klb) = 0 (3)

α(RiajbR
b
kcdR

dac
l − 2RiajbR

a
kcdR

dbc
l ) = 0 (4)

where α denotes antisymmetrization of the i, j, k and l indices.

Proof. Using a symbolic algebra package, write the general tensor in S3T ∗ with
respect to an orthonormal basis in terms of its 20 components. Compute the
curvature tensor using equation (1). One can then directly check the above iden-
tities.

The first of these equations is particularly interesting. The tensor defined
in Eq. 3 is a closed 4-form. Its de Rham cohomology class is independent of
the metric and hence defines a topological invariant of the manifold - the first
Pontrjagin class. The integral of this form over the 4-manifold is the signature
of the 4-manifold. We have proved that the signature must vanish on a Hessian
4-manifold.

6 Pontryagin Classes of Hessian Manifolds

Let us generalize this last result to higher dimensions. To make the proof as
vivid as possible, we introduce a graphical notation that simplifies manipulating
symmetric powers of the S3-tensor A (this is based on the notation given in
the appendix of [7]). When using this notation we will always assume that our
coordinates are orthonormal at the point where we perform the calculations so
we can ignore the difference between upper and lower indices of ordinary tensor
notation.

Given a tensor defined by taking the n-th tensor power of the S3-tensor tensor
A followed by a number of contractions we can define an associated graph by:

– Adding one vertex to the graph for each occurrence of A;
– Adding an edge connecting the vertices for each contraction between the ver-

tices;
– Adding a vertex for each tensor index that is not contracted and labelling

it with the same symbol used for the index. Join this vertex to the vertex
representing the associated occurrence of A.
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When two tensors written in the Einstein summation convention are juxta-
posed in a formula, we will refer to this as “multiplying” the tensors. This mul-
tiplication corresponds graphically to connecting labelled vertices of the graphs
according to the contractions that need to be performed when the tensors are
juxtaposed. Since this multiplication is commutative, and since the S3-tensor is
symmetric, one sees that there is a one to one correspondence between isomor-
phism classes of such graphs and equivalently defined tensors.

We can use these graphs in formulae as an alternative notation for the tensor
represented by the graph. For example, we can write the curvature identity (1)
graphically as

Rijkl = −
i j

k l

+

i j

k l

.

(5)

Theorem 2. The tensor

Qp
i1i2...i2p

=
∑

σ∈S2p

sgn(σ)Ra2
iσ(1)iσ(2)a1

Ra3
iσ(3)iσ(4)a2

Ra4
iσ(5)iσ(6)a3

. . . Ra1
iσ(2p−1)iσ(2p)ap

vanishes on a Hessian manifold. Hence all Pontryagin forms vanish on a Hessian
manifold.

Proof. We can rewrite the curvature identity (1) as:

Ri1i2ab =
∑

σ∈S2

− sgn(σ)
iσ(1) iσ(2)

a b

.

Thus we can replace each R in the formula for Qp with an ‘H’. The legs of
adjacent H’s are then connected. The result is:

Qp
i1i2...i2p

=

(−1)p
∑

σ∈S2p

sgn(σ)
iσ(1) iσ(2) iσ(3) iσ(4) iσ(5) iσ(6)

. . .

iσ(2p−1) iσ(2p)

.

Since the cycle 1 → 2 → 3 . . . → 2p → 1 is an odd permutation, one sees
that Qp = 0.

The import of this result is that the Pontryagin forms of the manifold can be
expressed in terms of the Qp tensors. Thus it is a corollary that the Pontryagin
forms, and hence the Pontryagin classes, vanish on a Hessian manifold. This
result is an easy consequence of the standard definition of the Pontryagin forms
combined with standard results on symmetric polynomials.

We have seen that equation (3) generalizes easily to higher dimensions. Equa-
tion (4) on the other hand does not hold in dimensions � 5. We list some inter-
esting questions that this raises. Can one efficiently find all the explicit curvature



The Pontryagin Forms of Hessian Manifolds 247

conditions that must be satisfied by a Hessian metric in a fixed dimension n � 5?
Can one find all the curvature conditions that hold for all n? For large enough
n, is the condition that the curvature lies in the image of ρ a sufficient condition
for a metric to be Hessian?
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Abstract. Based on the theory of compact normal left-symmetric alge-
bra (clan), we realize every homogeneous cone as a set of positive definite
real symmetric matrices, where homogeneous Hessian metrics as well as
a transitive group action on the cone are described efficiently.

Keywords: Homogeneous cone · Left-symmetric algebra · Hessian
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1 Introduction

An open convex cone containing no straight line is called a homogeneous cone if
a linear Lie group acts on the cone transitively. Since the study of homogeneous
cones was originally motivated by the theory of homogeneous bounded complex
domains (see Introduction of [15]), the research on the cones has been devel-
oped in connection with various areas of mathematics. Actually, geometry and
analysis on homogeneous cones are nowadays applied to statistics [1,4,7] and
optimization theory [5,14]. These connections with applied mathematics can be
understood well in the context of Hessian geometry. A Hessian manifold is a Rie-
mannian manifold with a flat structure such that the metric is locally expressed
as a Hessian of a smooth function, and it is an important object in informa-
tion geometry [13]. A homogeneous cone is a typical example of a homogeneous
Hessian manifold, that is, a Hessian manifold on which the automorphism group
acts transitively. Moreover, the homogeneous cone plays a central role in the
general theory of homogeneous Hessian manifolds [12].

In this article, we realize every homogeneous cone as a set of real posi-
tive definite symmetric matrices, where a transitive group action on the cone
is obtained very easily (Theorem3). Furthermore, all the Hessian metrics invari-
ant under the group action, which exhaust the homogeneous Hessian metrics
on the cone, are described in a simple way (Theorem 4). Similar realizations of
homogeneous cones have been obtained by several authors [3,11,16–18], whereas
our approach is near to that of [17], based on the theory of compact normal left-
symmetric algebra. Roughly speaking, the algebra is defined as a linearization
of the transitive group action (see Sect. 2). The left-symmetric algebra is also
called a Koszul-Vinberg algebra [2] or a pre-Lie algebra [10], and it is studied
actively from various viewpoints. In particular, the left-symmetric algebra serves
c© Springer International Publishing Switzerland 2015
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as a main algebraic tool in the study of homogeneous Hessian manifolds [12]. In
this respect, the present work on homogeneous cones matches with the Hessian
geometry perspective very well.

2 Homogeneous Cones and Compact Normal
Left-Symmetric Algebras

We shall review briefly the relation between a homogeneous cone and a compact
normal left-symmetric algebra (clan) following Vinberg [15, Chap. 2]. Let V be
a finite dimensional real vector space, and Ω ⊂ V an open convex cone contain-
ing no straight line. We denote by GL(Ω) the group { f ∈ GL(V ) ; f(Ω) = Ω }
of linear automorphisms on the cone Ω. Then GL(Ω) is a closed subgroup of
GL(V ). In other words, GL(Ω) forms a linear Lie group. In what follows, we
assume that Ω is homogeneous, that is, the group GL(Ω) acts on Ω transitively.
The homogeneity of Ω is clearly equivalent to the existence of a linear Lie group
acting transitively on the cone Ω.

Let H be a maximal connected triangular subgroup of GL(Ω), where a linear
Lie group on V is said to be triangular if it is expressed as a set of triangular
matrices with respect to an appropriate basis of V . Because of the maximality,
H contains the group {etIdV }t∈R of dilations on V . It is shown in [15, Chap. 1,
Theorem 1] that the group H acts on Ω simply transitively. Take and fix a point
e ∈ Ω. Then we have a diffeomorphism H � h �→ he ∈ Ω, and differentiating
this map, we obtain a linear isomorphism h � L �→ Le ∈ V ≡ TeΩ, where h is
the Lie algebra of H. Thus, for each x ∈ V , there exists a unique Lx ∈ h for
which Lxe = x. Let us define a bilinear map � : V × V → V by

x�y := Lxy (x, y ∈ V ).

Then e ∈ V is a unit element of V , that is,

x�e = x = e�x (x ∈ V ).

In fact, the first equality is clear by definition, while the second follows from
the fact that Le equals the identity operator IdV , which is the generator of the
dilation group {etIdV }t∈R. Moreover, the following hold:
(C1) For any x, y, z ∈ V , one has [x�y�z] = [y�x�z], where [x�y�z] :=
x�(y�z) − (x�y)�z (left-symmetry),
(C2) There exists a linear form ξ ∈ V ∗ such that (x|y)ξ := ξ(x�y) (x, y ∈ V )
gives a positive inner product on V (compactness),
(C3) For every x ∈ V , the linear operator Lx has only real eigenvalues (normal-
ity).
In general, a (not necessarily associative) R-algebra (V,�) satisfying (C1) is
called a left-symmetric algebra, and a left-symmetric algebra with the proper-
ties (C2) and (C3) is called a clan (compact normal left-symmetric algebra).
Vinberg showed that the construction of the clan (V,�) from the homogeneous
cone Ω explained above induces a one-to-one correspondence between homoge-
neous cones and clans with unit element up to natural equivalence [15, Chap. 2,
Theorem 2].
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3 Clans Consisting of Real Symmetric Matrices

Let Vn be the vector space of real symmetric matrices of size n, and Pn ⊂ Vn the
set of positive definite symmetric matrices. Then Pn is a homogeneous cone on
which the group GL(n,R) acts transitively by the action ρ defined by ρ(A)X :=
AX tA (A ∈ GL(n,R),X ∈ Vn). Let Hn be the set of lower triangular matrices
of size n with positive diagonals. Then Hn is a maximal connected triangular
subgroup of GL(n,R), and acts on the cone Pn simply transitively by the action
ρ. The Lie algebra hn of Hn equals the space of all lower triangular matrices of
size n. We choose the unit matrix En as a reference point e in Pn. The associated
clan structure on the vector space Vn is given by

X�Y := X
ˇ

Y + Y t(X
ˇ

) (X,Y ∈ Vn),

where X
ˇ

∈ hn is defined by

(X
ˇ

)ij :=

⎧
⎪⎨

⎪⎩

0 (i < j),
Xii/2 (i = j),
Xij (i > j).

If a linear subspace Z ⊂ Vn satisfies Z�Z ⊂ Z, then (Z,�) forms a clan. We
call such Z a subalgebra of (Vn,�). The following crucial fact is proved in [6].

Theorem 1. Every clan with a unit element is isomorphic to a subalgebra of
(Vn,�) containing En.

Now we state one of our main results.

Theorem 2. Let Z ⊂ Vn be a subalgebra containing En. Then there exists a
permutation matrix w =

∑n
α=1 Eσ(α), α with σ ∈ Sn such that ρ(w) : Z � X �→

wXtw ∈ ρ(w)Z is an algebra isomorphism, and ρ(w)Z is the space of matrices
of the form

X =

⎛

⎜
⎜
⎜
⎝

X11
tX21 · · · tXr1

X21 X22
tXr2

...
. . .

Xr1 Xr2 Xrr

⎞

⎟
⎟
⎟
⎠

(
Xll = xllEnl

, xll ∈ R (l = 1, . . . , r)
Xlk ∈ Vlk (1 ≤ k < l ≤ r)

)

, (1)

where n = n1 + · · · + nr is a partition and Vlk ⊂ Mat(nl, nk;R) (1 ≤ k < l ≤ r)
are some vector spaces.

We shall say that a linear space Z ⊂ Vn admits a normal block decomposition
if Z consists of matrices of the form (1) with appropriate vector spaces Vlk ⊂
Mat(nl, nk;R). For example, let Z be the space of matrices of the form

⎛

⎜
⎜
⎝

x1 x4 0 0
x4 x2 0 0
0 0 x1 x5

0 0 x5 x3

⎞

⎟
⎟
⎠.
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Then it is easy to see that Z is a subalgebra of (V4,�). Let w ∈ GL(4,R) be
the permutation matrix corresponding to the transposition

(
2 3
)
. Then

ρ(w)

⎛

⎜
⎜
⎝

x1 x4 0 0
x4 x2 0 0
0 0 x1 x5

0 0 x5 x3

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

x1 0 x4 0
0 x1 0 x5

x4 0 x2 0
0 x5 0 x3

⎞

⎟
⎟
⎠,

so that ρ(w)Z admits a normal block decomposition with n1 = 2, n2 = n3 = 1.
In checking whether ρ(w) is an algebra isomorphism, the following lemma is
useful.

Lemma 1. Let Z be a subalgebra of (Vn,�), and take A ∈ O(n). Assume that
AX

ˇ

tA ∈ hn for all X ∈ Z. Then ρ(A) : Z → ρ(A)Z ⊂ Vn gives an algebra
isomorphism.

Proof. Note that X
ˇ

is characterized as a unique lower triangular matrix such that

X = X
ˇ

+ t(X
ˇ

). Thus the assumption of the statement implies that (ρ(A)X )̌ =

AX
ˇ

tA for X ∈ Z. Therefore we have

(ρ(A)X)�(ρ(A)Y ) = AX
ˇ

tA(AY tA) + (AY tA)t(AX
ˇ

tA)

= A(X
ˇ

Y + Y t(X
ˇ

))tA = ρ(A)(X�Y )

for X,Y ∈ Z.

Before proceeding to the proof of Theorem 2, we recall the structure theorem
of clans due to [15, Chap. 2, Sect. 4].

Proposition 1 (Vinberg). Let (V,�) be a clan with a unit element e ∈ V . If
the primitive idempotents e1, . . . , er of V are suitably labeled, one has

V =
∑⊕

1≤k≤l≤r

Vlk, (2)

where

Vlk := { x ∈ V ; ej�x = (δlj + δkj)x/2, x�ej = δkjx for all j = 1, . . . , r }.

Moreover, Vkk equals Rek for k = 1, . . . , r, and one has e = e1 + · · · + er.

For the clan (Vn,�), the primitive idempotents are exactly the matrix ele-
ments Eαα (α = 1, . . . , n), and we have

Vβα =

{
R(Eαβ + Eβα) (α ≤ β)
{0} (α > β).

(3)

We see from [15, Chap. 2, Proposition 9] that any idempotent of Vn is of the
form EI :=

∑
α∈I Eαα with I ⊂ {1, . . . , n}.
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We shall apply Proposition 1 to the subalgebra Z ⊂ Vn. Then we have a
partition

{1, . . . , n} =
r⊔

k=1

Ik

for which EI1 , . . . , EIr
are primitive idempotents of Z labeled as in Proposition 1.

The subspace

Zlk :=
{

x ∈ V ; EIj
�X = (δlj + δkj)X/2, X�EIj

= δkjX for all j = 1, . . . , r
}

is contained in ∑⊕

(α,β)∈Ik×Il, α<β

R(Eαβ + Eβα)

for 1 ≤ k < l ≤ r owing to (3). Thus we have

Z ⊂
∑⊕

1≤k≤r

REIk
⊕
∑⊕

1≤k<l≤r

∑⊕

(α,β)∈Ik×Il, α<β

R(Eαβ + Eβα). (4)

Put Λ := { (α, β) ; α < β and α ∈ Il, β ∈ Ik with l > k }. By (4), the (α, β)-
components of X ∈ Z must be zero for (α, β) ∈ Λ. Since Λ is determined from
Z, we sometimes write Λ(Z) for Λ.

Now we prove Theorem 2 by induction on the cardinality of the set Λ(Z).
If Λ(Z) = ∅, then the subalgebra Z admits a normal block decomposition. If
Λ(Z) �= ∅, put

β0 := min { β ; (α, β) ∈ Λ for some α } .

The minimality of β0 tells us that (β0 − 1, β0) ∈ Λ, so that the (β0 − 1, β0)-
component of X ∈ Z equals 0. Let w0 be the permutation matrix corresponding
to the transposition

(
β0 − 1 β0

)
. Then Lemma 1 tells us that ρ(w0) : Z →

ρ(w0)Z =: Z ′ ⊂ Vn is an algebra isomorphism. Clearly, Z ′ is a subalgebra with

Λ(Z ′) = 
Λ(Z) − 1, whence Theorem 2 follows.

Let Z be a subalgebra of (Vn,�) admitting a normal block decomposi-
tion. Then Zlk is the set of matrices X in (1) whose block components except
Xlk are zero, so that we have a natural linear isomorphism between Zlk and
Vlk ⊂ Mat(nl, nk;R). Keeping this observation in mind, we can easily verify the
following statement.

Proposition 2. The linear space Z of the matrices X of the form (1) is a
subalgebra of (Vn,�) if and only if the following three conditions are satisfied:
(V1) A ∈ Vlk, B ∈ Vki ⇒ AB ∈ Vli for 1 ≤ i < k < l ≤ r,
(V2) A ∈ Vli, B ∈ Vki ⇒ A tB ∈ Vlk for 1 ≤ i < k < l ≤ r,
(V3) A ∈ Vlk ⇒ A tA ∈ REnk

.

The homogeneous cone corresponding to a given subalgebra of (Vn,�) and
a simply transitive group action on the cone are described in a quite simple way
as follows.
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Theorem 3. Let Z be a subalgebra of (Vn,�) containing En.
(i) Define hZ :=

{
X
ˇ

; X ∈ Z
}

⊂ hn. Then, for any T, S ∈ hZ one has TS ∈ hZ .

(ii) The set HZ := hZ ∩ Hn forms a linear Lie group whose Lie algebra is hZ .
(iii) Let PZ be the open convex cone Z ∩ Pn in Z. Then PZ is a homogeneous
cone on which HZ acts simply transitively by ρ.

Proof. First we assume that Z admits a normal block decomposition. Then the
assertion (i) follows from (V1) in Proposition 2. We see that hZ is a subalgebra
of the matrix algebra Mat(n,R), whence (ii) follows. In view of (V2) and (V3),
we see that HZ acts on Z by ρ. Since HZ ⊂ Hn and PZ ⊂ Pn, the action of HZ
on the cone PZ has no isotropy. This fact together with dimHZ = dimZ tells
us that all HZ -orbits in PZ are open. Therefore, we see from the connectedness
of the convex cone PZ that PZ is an HZ -orbit.

For a general subalgebra Z, the assertions are verified using Theorem 2.

Let us present examples. We set

Z :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x11E8
tC(a)

b0
...
b7

C(a) x22E8

c0
...

c7
b0 ··· b7 c0 ··· c7 x33

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

;
x11, x22, x33 ∈ R

a = (ai)7i=0, (bi)7i=0, (ci)7i=0 ∈ R
8

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⊂ Sym(17,R),

where C(a) is the matrix
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 a1 a2 a3 a4 a5 a6 a7

−a1 a0 −a3 a2 −a5 a4 a7 −a6

−a2 a3 a0 −a1 −a6 −a7 a4 a5

−a3 −a2 a1 a0 −a7 a6 −a5 a4

−a4 a5 a6 a7 a0 −a1 −a2 −a3

−a5 −a4 a7 −a6 a1 a0 a3 −a2

−a6 −a7 −a4 a5 a2 −a3 a0 a1

−a7 a6 −a5 −a4 a3 a2 −a1 a0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Mat(8,R)

arising from the multiplication table of the Cayley numbers. In this case we
have r = 3, n1 = n2 = 8, n3 = 1, V31 = V32 = Mat(1, 8;R) and V21 ={

C(a) ; a ∈ R
8
} ⊂ Mat(8,R). The cone PZ is linearly isomorphic to the excep-

tional symmetric cone Herm+(3,O).
Let us investigate another example. For θ ∈ [0, π/4], define Zθ ⊂ Sym(7,R)

by

Zθ :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝

x11E4
tMθ(a)

b0
...
b3

Mθ(a) x22E2
c0
c1

b0 ··· b3 c0 c1 x33

⎞

⎟
⎟
⎟
⎠

;
x11, x22, x33 ∈ R

a = (a0, a1), (c0, c1) ∈ R
2, (bi)3i=0 ∈ R

4

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,
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where

Mθ(a) :=
(

a0 cos θ a1 cos θ a0 sin θ a1 sin θ
−a1 cos θ a0 cos θ a1 sin θ −a0 sin θ

)

∈ Mat(2, 4).

The corresponding homogeneous cones PZθ
:= P7 ∩ Zθ are mutually non-

isomorphic for different θ [9].

4 Homogeneous Hessian Metrics on a Homogeneous
Cone

Let us go back to the setting in Sect. 2. Let Ω ⊂ V be a homogeneous cone on
which a triangular group H ⊂ GL(Ω) acts simply transitively. Let (V,�) be the
corresponding clan with a unit element e. It is shown in [8, Proposition 2.1] that
the linear form ξ ∈ V ∗ in (C2) is of the form

ξ(x) =
r∑

k=1

skxkk (x =
r∑

k=1

xxxek +
∑

1≤k<l≤r

Xlk, xkk ∈ R, Xlk ∈ Vlk).

with some positive constants s1, . . . , sr. We denote by ξs this linear form, where
s = (s1, . . . , sr) ∈ R

r
>0, and by (·|·)s the corresponding inner product on V , that

is, (x|y)s := ξs(x�y) for x, y ∈ V . By (C1), we have for x, y, z ∈ V ,

(x�y|z)s − (x|y�z)s = (y�x|z)s − (y|x�z)s.

Then [12] tells us that there exists an H-invariant Hessian metric gs on the
homogeneous cone Ω such that the restriction of gs to the tangent space TeΩ ≡ V
equals (·|·)s. In general, a Hessian metric g on Ω is said to be homogeneous if the
Hessian automorphism group Aut(Ω, g) := { f ∈ GL(Ω) ; f∗g = g } acts on Ω
transitively. Clearly, every gs is homogeneous. Moreover, for any homogeneous
Hessian metric g, there exists f ∈ GL(Ω) and s ∈ R

r
>0 such that g = f∗gs

because a maximal connected triangular subgroup of Aut(Ω, g) is conjugate to
the group H as a subgroup of GL(Ω) owing to [15, Chap. 1]. In this sense, the
family {gs}s∈R

r
>0

essentially exhausts all homogeneous Hessian metrics on the
homogeneous cone Ω.

Now we turn to the matrix realization of a homogeneous cone. Let Z be a
subalgebra of (Vn,�) admitting a normal block decomposition. We set

N1 := 1, Nk := n1 + · · · + nk−1 + 1 (k = 2, . . . , r).

For s ∈ R
r
>0, define σ1, . . . , σr ∈ R by

σr := sr, σk := sk − nk

r∑

l=k+1

σl (k = 1, . . . , r − 1).

Then, for X ∈ Z of the form (1), we have

ξs(X) =
r∑

k=1

skxkk =
r∑

k=1

σktrX [Nk], (5)

where X [N ] denotes the left-top corner submatrix of X of size N .
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Theorem 4. The function φs on PZ given by

φs(X) := − log
( r∏

k=1

(det X [Nk])σk

)
(X ∈ PZ)

is a global potential of the Hessian metric gs. Moreover, for X ∈ PZ and A,B ∈
TXPZ ≡ Z, one has

gs(A,B)X =
r∑

k=1

σktr
(
A[Nk](X [Nk])−1B[Nk](X [Nk])−1

)
. (6)

Proof. Let us denote by hs(A,B)X the right-hand side of (6). Since φs(X) =
−∑r

k=1 σk log(det X [Nk]), we see immediately from the well-known formula for
the Hessian of the log-determinant function that hs(A,B)X equals the Hessian of
φs. On the other hand, for any T ∈ HZ , we have φs(ρ(T )X) = φs(X)+CT with

CT = − log
(∏r

k=1(det T [Nk])2σk

)
, so that the Hessian hs of φs is invariant under

ρ(T ). The invariance also follows from the equality hs(ρ(T )A, ρ(T )B)ρ(T )X =
hs(A,B)X which can be checked by a direct calculation. Let us observe that

hs(A,B)In
=

r∑

k=1

σktr A[Nk]B[Nk] =
r∑

k=1

σktr (A[Nk]�B[Nk])

=
r∑

k=1

σktr (A�B)[Nk],

which together with (5) tells us that

hs(A,B)In
= ξs(A�B) = (A|B)s = gs(A|B)In

.

Therefore, the ρ(HZ)-invariance of both gs and hs completes the proof.

The author is grateful to the anonymous referees for their comments which
are helpful for the improvement of the paper.
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Abstract. In this article, we derive an inequality satisfied by the
squared norm of the imbedding curvature tensor of Multiply CR-warped
product statistical submanifolds N of holomorphic statistical space forms
M . Furthermore, we prove that under certain geometric conditions, N
and M become Einstein.

1 Introduction

The concern of this short note is to introduce warped products of statistical man-
ifolds and to sketch the study of their geometry. This is actually a wide project
because in a warped product, two statistical models (M1, P1) and (M2, P2), for
the same measurable set (Σ,Ω), araise many relevant questions which deserve
the attention.

For instance, let us assume that the Fisher informations of both (M1, P1)
and (M2, P2) are Riemannian metrics.

Definition 1. [7] A warped product M1 ×σ M2 is the product M1 × M2 of two
Riemannian manifolds (M1, g1) and (M2, g2) endowed with the Riemannian met-
ric

gσ(x, y) = g1(x) + σ(x)g2(y)

where σ ∈ C∞(M1) is a positive function.

By the same way, the σ-warped product of two statistical models (M1, P1)
and (M2, P2) is the manifold M1 × M2 with the function

Pσ : M1 × M2 × Σ −→ R

defined by

Pσ(x, y, ξ) = e−σ(x)P1(x, ξ) + (1 − e−σ(x))P2(y, ξ).

c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 257–268, 2015.
DOI: 10.1007/978-3-319-25040-3 29
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This Pσ has the following properties:

(i) Pσ(x, y, ξ) is smooth with respect to (x, y);
(ii) Pσ(x, y, ξ) ≤ 1;
(iii)

∫
Σ

Pσ(x, y, ξ)dξ = 1.

Thus (M1 × M2, Pσ) is a statistical model for the measurable set (Σ,Ω).
Therefore araise many questions regarding the relationships between the

Information Geometry of (M1, P1), (M2, P2) and (M1 × M2, Pσ). For instance,
does the Fisher information of Pσ is always a Riemannian metric?

We may replace the smoothness by another analysis requirement such as
analyticity, holomorphy.

The present note focusses on the last setting i.e. holomorphy. We wish to
discuss some interesting items such as the geometry of submanifolds in holo-
morphic statsitical manifolds. This project is a relevant one in the Information
Geometry and its applications [2].

It is known that the notion of CR-warped product manifold was first intro-
duced by B. Y. Chen([5,6]). In these papers, he obtained the certain sharp
inequalities involving warping functions and the squared norm of second fun-
damental form. On the other hand, in [1,8], Amari and Furuhata studied the
statisitcal submanifolds and hypersurfaces of statisitcal manifolds in the con-
text of Information Geometry. Further, L. Todgihounde [9] established dualistic
structures on warped products which has been the motivation behind the study
of this article. In the present article, we first establish the dualistic structure
on multiply warped product statistical manifolds. Later, we study multiply CR-
warped product statistical submanifolds of holomorphic statistical space forms.
We refer [8], for more details of holomorphic space forms.

2 Preliminary

Definition 2. [1] A statistical manifold is a Riemannian manifold (M, g)
endowed with a pair of torsion-free affine connections ∇̃and ∇̃∗ satisfying

Zg(X,Y ) = g(∇̃ZX,Y ) + g(X, ∇̃∗
ZY ) (1)

for X,Y ∈ Γ(TM). It is denoted by (M, g, ∇̃, ∇̃∗). The connections ∇̃ and ∇̃∗

are called dual connections and it is easily shown that
(
∇̃∗

)∗
= ∇̃. If (∇̃, g) is

a statistical structure on M̃ , then (∇̃∗, g) is also a statistical structure.

Here it should be noted that we have used the symbol ∇̃ and ∇̃∗ to denote
the dual connections as we have reserved the notations ∇ and ∇∗ for later use
in Gauss formula.

Remark 1. For any triplet (M, g, ∇̃) ∃ a unique ∇̃∗ called the dual of ∇̃ in
(M, g). Therefore, in other words, we can say that the triplet (M, g, ∇̃) is statis-
tical if the dual ∇̃∗ of ∇̃ in (M, g) is torsion-free.
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Let N1, N2, ....., Nk be Riemannian manifolds of dimensions n1, n2, n3, ....., nk

respectively and let N = N1 × N2 × ... × Nk be the cartesian product of
N1, N2, ..., Nk. For each a, denote by πa : N −→ Na the canonical projection
of N onto Na. We denote the horizontal lift of Na in N via πa by Na itself. If
σ2, ..., σk : N1 −→ R+ are positive valued functions, then

g(X,Y ) = 〈π1∗X,π1∗Y 〉 +
k∑

a=1

(σa ◦ π1)2 〈πa∗X,πa∗Y 〉 (2)

defines a metric g on N . The product manifold N endowed with this metric
is denoted by N1 ×σ2 N2 × ... ×σk

Nk. This product manifold N is known as
multiply warped product manifold.

Let Da denote the distributions obtained from the vectors tangent to Na.
We have

T (N) = D1 ⊕ D2 ⊕ ..... ⊕ Dk.

Definition 3. Let {e1, e2, ...., en} be any local orthonormal frame of vector fields
and f be any smooth function on a manifold N . The gradient of the function f
is defined as

gradf =
n∑

i=1

ei(f)ei.

Definition 4. [7] For a differentiable function f on N , the Laplacian Δf of f
is defined as

Δf =
n∑

i=1

{ei(eif) − ∇ei
eif} .

Finally, we state the Green’s theorem as follows :

Theorem 1. In a compact and orientable Riemannian manifold N without
boundary, we have ∫

N

Δf = 0

for any function f on N.

3 Multiply CR-Warped Product Statistical Submanifolds
of Holomorphic Statistical Space Form

Let Ni and Nj be two statistical manifolds. From [9], the warped product
Ni ×σi

Nj is again a statistical manifold, where σi is a smooth positive real val-
ued function on Ni. Generalizing this concept we may obtain multiply warped
product statistical manifolds as follows :

Definition 5. If N1, N2, ....., Nk be k statistical manifolds, then N = N1 ×σ2

N2 × ...×σk
Nk is again a statistical manifold with the metric given by (2) . This

manifold N is called multiply warped product statistical manifold.
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Now let us denote the part σ2N2 × ... ×σk
Nk by N⊥ and N1 by NT . Then

N can be represented as N = NT × N⊥. We donote by X̄, Ȳ .... ∈ Γ(M) as the
vector fields on M and X,Y, .... the induced vector fields on N .

Definition 6. [8] A 2m dimensional statistical manifold M is said to be a holo-
morphic statistical manifold if it admits an endomorphism over the tangent
bundle Γ(M) and a metric g and a fundamental form ω given by ω(X̄, Ȳ ) =
g(X̄, JȲ ) such that the following equations are satisfied :

J2 = −Id; ∇̃ω = 0

for any vector fields X̄, Ȳ ∈ Γ(M).

Since ω is skew-symmetric, we have g(X̄, JȲ ) = −g(JX̄, Ȳ ).

Definition 7. A statistical submanifold N of a holomorphic statistical manifold
M is called invariant if the almost complex structure J of M carries each tangent
space of N into itself whereas it is said to be anti-invariant if the almost complex
structure J of M carries each tangent space of N into its corresponding normal
space.

Definition 8. A multiply warped product statistical submanifold N = NT ×
N⊥ in an almost complex manifold M is called a multiply CR-warped product
statistical submanifold if NT is an invariant submanifold and N⊥ is an anti-
invarinat submanifold of M .

Definition 9. [8] A holomorphic statistical manifold M is said to be of constant
holomorphic curvature c ∈ R if the following curvature equation holds :

R̃(X̄, Ȳ )Z̄ =
c

4

{
g(Ȳ , Z̄)X̄ − g(X̄, Z̄)Ȳ + g(JȲ , Z̄)JX̄ − g(JX̄, Z̄)JȲ + 2g(X̄, JȲ )JZ̄

}

for any X̄, Ȳ , Z̄ ∈ Γ(M).

Let N and M be two statistical manifolds and N be a submanifold of M .
Then for any X,Y ∈ Γ(N), the corresponding Gauss formulas are

∇̃XY = ∇XY + h(X,Y ),

∇̃∗
XY = ∇∗

XY + h∗(X,Y )

where ∇̃ and ∇̃∗(respectively ∇ and ∇∗) are the dual connections on M (respec-
tively on N ), h and h∗ are symmetric and bilinear, called the imbedding cur-
vature tensor of N in M for ∇̃ and the imbedding curvature tensor of N in M
for ∇̃∗ respectively.

Let x : NT × N⊥ −→ M be an isometric statistical immersion of a multi-
ply warped product statistical submanifold into statistical manifold M . Let us
denote the normal bundle on N by Γ(TN⊥). Since h and h∗ are bilinear, we
have the linear transformations Aξ and Aξ∗ defined by

g(AξX,Y ) = g(h(X,Y ), ξ) and g(A∗
ξX,Y ) = g(h∗(X,Y ), ξ)
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for any ξ ∈ Γ(TN⊥) and X,Y ∈ Γ(TN). The corresponding Weingarten
equations are as follows [10]

∇̃Xξ = −A∗
ξX + ∇⊥

XY,

∇̃∗
Xξ = −AξX + ∇⊥∗

X ξ

for any ξ ∈ Γ(TN⊥) and X ∈ Γ(TN). The connections ∇⊥
X and ∇∗⊥

X are
Riemannian dual connections with respect to the induced metric on Γ(TN⊥).
The corresponding Gauss, Codazzi and Ricci equations are given by the following
[3] :

(i) In terms of ∇̃ and ∇ :

g(R̃(X,Y )Z,W ) = g(R(X,Y )Z,W ) + g(h(X,Z), h∗(Y,W )) − g(h∗(X,W ), h(Y, Z)),

(R̃(X,Y )Z)⊥ = {∇⊥
Xh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ)}

−{∇⊥
Y h(X,Z) − h(∇Y X,Z) − h(X,∇Y Z)},

g(R⊥(X,Y )ξ, η) = g(R̃(X,Y )ξ, η) + g([A∗
ξ , Aη]X,Y )

where R⊥ is the Riemannian curvature tensor for ∇⊥ on TN⊥, ξ, η ∈
Γ(TN⊥) and [A∗

ξ , Aη] = A∗
ξAη − AηA∗

ξ .
Similar curvature equations can be obtained for ∇̃∗ and ∇∗.
Let N = N1 ×σ2 N2 × ...×σk

Nk be a multiply CR-warped product statistical
submanifold of a holomorphic statistical space form M . Let D be the invariant
distribution (i.e. TNT = D) such that its orthogonal complementary distribution
D⊥ is anti-invariant (i.e. TN⊥ = T (N = N2 × ... × Nk) = D⊥).

Then we have the following decompositions :

TN = D ⊕ D⊥ and T⊥N = JD⊥ ⊕ λ (3)

where λ denotes the orthogonal complementary distribution of JD⊥ in T⊥N
and is an invariant normal subbundle of T⊥N . For any vector field X,Y ∈ TN ,
we put

(∇̃XJ)Y = PXY + QXY

where PXY (resp. QXY ) denotes the tangential (resp. normal) component of
(∇̃XJ)Y respectively.

Also, let p ∈ N and {e1, .., en, en+1, ..., e2m} be an orthonormal basis of the
tangent space TpM , such that e1, ...en constitute a basis of the tangent space
TpN .

We denote by H and H∗, the mean curvature vectors given by

H =
1
n

n∑

i=1

h(ei, ei),

H∗ =
1
n

n∑

i=1

h∗(ei, ei).
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We call multiply CR-warped product statistical submanifold N of holomor-
phic statistical space form M minimal, if H and H∗ vanishes identically. We
also set

‖h‖2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)).

4 Some Inequalities for Multiply CR-Warped Product
Statistical Submanifolds

In this section, we establish an inequality satisfied by the squared norm of imbed-
ding curvature tensor. We further prove the Einsteinian property of N and M
under slight geometric conditions.

From the decomposition (3), we may write

h(X,Y ) = hJD⊥(X,Y ) + hλ(X,Y ).

Also we have for multiply CR-warped product statistical submanifold N of
a statistical manifold [9]

∇XZ =
k∑

a=2

(X(log σa))Za and ∇∗
XZ =

k∑

a=2

(X(log σa))Za (4)

for any vector fields X ∈ D and Z ∈ D⊥, where Za denotes the Na-
component of Z. We shall do calculations for ∇ (similar is the case for ∇∗).

For proving the main inequalites we need the following lemma.

Lemma 1. Let N = NT ×σ2 N2 × ... ×σk
Nk be a multiply CR-warped product

statistical submanifold of a holomorphic statistical space form M . Then we have

(i) hJD⊥(JX,Z) =
k∑

a=2

(X(log σa))JZa + JPZJX

(ii) g(PZJX,W ) = g(QZX,JW )

(iii) g(h(JX,Z), Jh(X,Z)) = ‖hλ(Z,X)‖2 + g(QZX,Jhλ(X,Z))

for any vector fields X in D and Z,W in D⊥, where Za denotes the Na-
component of Z.

Proof. From Gauss formula we can write

∇ZJX + h(JX,Z) = PZX + QZX + J∇ZX + Jh(Z,X)

or

h(JX,Z) = PZX+QZX+J(
k∑

a=2

(X(log σa))Za)+Jh(Z,X)−
k∑

a=2

(JX(log σa))Za.

(5)
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Comparing tangential parts in the above equation and then taking inner
product with W ∈ D⊥, we get

hJD⊥(JX,Z) =
k∑

a=2

(X(log σa))JZa + JPZJX, ∀ X ∈ D,Z ∈ D⊥.

This proves (i) of the lemma.
Now comparing normal parts of (5), we get

h(JX,Z) − Jhλ(Z,X) = QZX +
k∑

a=2

(X(log σa)JZa). (6)

By taking inner product of the above equation with JW , we obtain

g(hJD⊥(JX,Z), JW ) = g(QZX,JW ) +
k∑

a=2

(X(log σa)g(JZa, JW )).

Simplifying the above equation by using part (i) of the lemma we arrive at

g(PZJX,W ) = g(QZX,JW )

which proves part (ii).
Taking inner product of (6) by Jh(X,Z) , we find

g(h(JX,Z), Jh(X,Z)) = ‖hλ(Z,X)‖2 + g(QZX,Jhλ(X,Z))

which is (iii) part of the lemma �

Theorem 2. Let N = NT ×σ2 N2 × ... ×σk
Nk be multiply CR-warped product

statistical submanifold of holomorphic statistical space form M with PD⊥D ∈ D,
then the squared norm of imbedding curvature tensor of N in M satisfies the
following inequality :

‖h‖2 ≥
k∑

a=2

n2
a ‖∇ log σa‖2 + ‖PD⊥D‖2

.

Proof. Let {X1,X2, ..,Xp,Xp+1 = JX1, ...,X2p = JXp} be a local orthonormal
frame of vector fields on NT and {Z1, Z2, ..., Zq} be such that ZΔa

is a basis for
some Na , a = 2, ..., k where Δ2 = {1, 2, .., n2}, ...., Δk = {n2 +n3 + ...+nk−1 +
1, ..., n1 + n2 + ... + nk} and n2 + n3 + .... + nk = q. Then we have

‖h‖2 =
2p∑

i,j=1

g(h(Xi,Xj), h(Xi,Xj)) +
2p∑

i=1

k∑

a=2

g(h(Xi, ZΔa
), h(Xi, ZΔa

))

+
k∑

a,b=2

g(h(ZΔa
, ZΔb

), h(ZΔa
, ZΔb

)).
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The above equation implies

‖h‖2 ≥
2p∑

i=1

k∑

a=2

g(h(Xi, ZΔa
), h(Xi, ZΔa

)).

Now using part (i) of last lemma we get

‖h‖2 ≥
2p∑

i=1

k∑
a=2

g(na(JXi(log σa))JZΔa + JPZΔa
Xi, na(JXi(log σa))JZΔa + JPZΔa

Xi).

In view of the assumption PD⊥D ∈ D, the above inequality takes the form

‖h‖2 ≥
k∑

a=2

n2
a ‖∇ log σa‖2 ‖ZΔa

‖2 + ‖PD⊥D‖2
.

By Cauchy-Schwartz inequality, the above equation becomes

k∑

a=2

n2
a ‖∇ log σa‖2 ‖ZΔa

‖2 + ‖PD⊥D‖2 ≥
k∑

a=2

n2
a ‖(∇ log σa)ZΔa

‖2 + ‖PD⊥D‖2
.

Therefore

‖h‖2 ≥
k∑

a=2

n2
a ‖(∇ log σa)‖2 + ‖PD⊥D‖2

.

Hence the lemma. �

Theorem 3. Let N = NT ×σ2 N2 × ... ×σk
Nk be a compact orientable mul-

tiply CR-warped product statistical submanifold without boundary of holomor-
phic statistical space form M of constant curvature k. If PD⊥D ∈ D and
A∇⊥∗

X JZJX = A∇⊥∗
JXJZX, then

k ≤ 0

and the equality holds if and only if gradD(log σa) = 0.

Proof. Let X ∈ D, Z ∈ D⊥, then for holomorphic statistical space form of
constant curvature k, we have

R̃(X, JX,Z, JZ) =
k

4

{
g(JX,Z)g(X, JZ) − g(X,Z)g(JX, JZ) − g(X,Z)g(JX, JZ)

+g(JX,Z)g(X, JZ) − 2g(X,X)g(JZ, JZ)

}

which implies that

R̃(X,JX,Z, JZ) = −k

2
g(X,X)g(Z,Z). (7)
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On the other hand from Codazzi equation, we may write

R̃(X, JX, Z, JZ) = g
(

∇⊥
Xh(JX, Z), JZ

)
− g (h(∇XJX, Z) , JZ) − g (h(JX, ∇XZ), JZ)

− g
(

∇⊥
JXh(X, Z), JZ

)
+ g (h(∇JXX, Z) , JZ) + g (h(X, ∇JXZ), JZ) . (8)

We shall calculate each term of (8) above in order to obtain the required
inequality.

Now since M is statistical, we get

Xg(h(JX,Z), JZ) = g(∇̃Xh(JX,Z), JZ) + g(h(JX,Z), ∇̃∗
XJZ).

Using Weingarten formula, the above equation gives

g(∇⊥
Xh(JX,Z), JZ) = Xg(h(JX,Z), JZ) − g(h(JX,Z), ∇̃∗

XJZ). (9)

We now calculate the first term of the above (9). From (6), we have

g(h(JX,Z), JZ) − g(hλ(Z,X), JZ) = g(QZX,JZ) +
k∑

a=2

(X log σa)g(JZa, JZ)

i.e.

g(h(JX,Z), JZ) = g(PZJX,Z) +
k∑

a=2

(X log σa)g(Za, Za).

or

Xg(h(JX,Z), JZ) =
k∑

a=2

[{
X(X log σa) + 2(X log σa)2

}
g(Za, Za)

]
.

Therefore (9) is obtained as follows:

g(∇⊥
Xh(JX, Z), JZ) =

k∑

a=2

[{
X(X log σa) + 2(X log σa)

2
}

g(Z
a
, Z

a
)
]

− g(h(JX, Z), ∇̃∗
XJZ).

(10)

Similarly by replacing X by JX in the last equation, we get

−g(∇⊥
JXh(X, Z), JZ) =

k∑

a=2

[{
JX(JX log σa) + 2(JX log σa)

2
}

g(Z
a

, Z
a
)
]
+g(h(X, Z), ∇̃∗

JXJZ). (11)

Again using result (i) of the lemma and PD⊥D ∈ D, we conclude

g(h(JX,∇XZ), JZ) =
k∑

a=2

(X log σa)2g(Za, Za). (12)
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Similarly by replacing X by JX in the above equation, we find

g(h(X,∇JXZ), JZ) = −
k∑

a=2

(JX log σa)2g(Za, Za). (13)

Also from result (i) of the lemma, we have

hJD⊥(∇JXX,Z) = JPZ∇JXX −
k∑

a=2

(J∇JXX log σa)JZa.

Therefore we derive finally from the above equation

g(h(∇JXX,Z), JZ) = g(JPZ∇JXX,JZ) −
k∑

a=2

(J∇JXX log σa)g(JZa, JZ).

But NT is totally geodesic in N [4] which implies that ∇JXX ∈ D. Hence
we have PZ∇JXX ∈ D. This makes the first term of the above equation zero
and hence we get

g(h(∇JXX,Z), JZ) = −
k∑

a=2

(J∇JXX log σa)g(Za, Za). (14)

Similarly we obtain

g(h(∇XJX,Z), JZ) = −
k∑

a=2

(J∇XJX log σa)g(Za, Za).

The last equation may further be simplified to

g(h(∇XJX, Z), JZ) =
k∑

a=2

{(∇XX log σa)g(Z
a, Za)} +

k∑
a=2

{(∇JXJX log σa)g(Z
a, Za)}

−
k∑

a=2

{(J∇JXX log σa)g(Z
a, Za)} . (15)

Put (10)-(15) into (8), we derive

R̃(X, JX, Z, JZ) =

k∑

a=2

[{
X(X log σa) + (X log σa)

2
}

g(Z
a

, Z
a
)
]

− g(h(JX, Z), ∇̃∗
XJZ) (16)

+
k∑

a=2

[{
JX(JX log σa) + (JX log σa)

2
}

g(Z
a

, Z
a
)
]

+ g(h(X, Z), ∇̃∗
JXJZ)

−
k∑

a=2

{
(∇XX log σa)g(Z

a
, Z

a
)
}−

k∑

a=2

{
(∇JXJX log σa)g(Z

a
, Z

a
)
}

.

Now from Gauss equation, we have

R̃(X,JX,Z, JZ) = −k

2
‖X‖2

k∑

a=2

‖Za‖2
. (17)
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Combining (16) and (17) and taking summation over the range from 1 to p,
we have
(

pk

4

) k∑

a=2

∥
∥Z

a∥∥2 =
k∑

a=2
Δ(log σa)

∥
∥Z

a∥∥2 −
k∑

a=2
‖gradD(log σa)‖2 ∥∥Za∥∥2

+

p∑

i=1

[
g(h(Jei, Z), ∇⊥∗

ei
JZ) − g(h(ei, Z), ∇⊥∗

Jei
JZ)

]
. (18)

Integrating both sides,Green’s theorem and the hypothesis lead to

k =
−4

∑k
a=2 ‖Za‖2

N{‖gradD(log σa)‖2}dv

p
∑k

a=2 ‖Za‖2
Ndv

≤ 0

since
∑k

a=2 ‖Za‖2
Ndv > 0 and

∑k
a=2 ‖Za‖2

N{‖gradD(log σa)‖2}dv ≥ 0.

Further the equality holds if and only if N{‖gradD(log σa)‖2}dv = 0 which
implies that the equality holds if and only if gradD(log σa) = 0.This proves the
theorem. �

Theorem 4. Let N = NT ×σ2 N2 × ... ×σk
Nk be a compact orientable anti-

invariant multiply warped product statistical submanifold without boundary of
holomorphic statistical space form M of constant curvature k. If PD⊥D ∈ D
and A∇⊥∗

X JZJX = A∇⊥∗
JXJZX, then

R(X,Y,X, Y ) ≥ g(H,H∗)

and equality holds if and only if gradD(log σa) = 0.

Proof. From the previous theorem we have k ≤ 0. Since N is anti-invariant, we
have NT = 0 and N = N⊥. This implies that N becomes completely totally
umbilical submanifold of M . Furthermore, from the expression of ambient cur-
vature we have, for two orthonormal vectors X,Y ∈ TN

R̃(X,Y,X, Y ) = −k

4
.

Furthermore from Gauss equation and totally umbilicity of N, we obtain

R(X,Y,X, Y ) = −
(

k

4
+ g(H,H∗)

)

or
R(X,Y,X, Y ) ≥ g(H,H∗)

and equality holds if and only if gradD(log σa) = 0. �

Theorem 5. Let N = NT ×σ2 N2 × ... ×σk
Nk be a compact orientable anti-

invariant multiply warped product statistical submanifold without boundary of
holomorphic statistical space form M of constant curvature k. If PD⊥D ∈ D
and A∇⊥∗

X JZJX = A∇⊥∗
JXJZX, then M is Einstien and N is Einstien if and only

if k
4 + g(H,H∗) is constant.
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Proof. The proof is straight from the last theorem and the Gauss equation which
combinely give

Ric(Y,Z) = (n − 1)
{

k

4
+ g(H,H∗)

}

g(Y,Z).

�
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Abstract. In this lecture we will present joint work with Ryan Thorn-
gren on thermodynamic semirings and entropy operads, with Nicolas
Tedeschi on Birkhoff factorization in thermodynamic semirings, ongo-
ing work with Marcus Bintz on tropicalization of Feynman graph
hypersurfaces and Potts model hypersurfaces, and their thermodynamic
deformations, and ongoing work by the author on applications of ther-
modynamic semirings to models of morphology and syntax in Computa-
tional Linguistics.

Lecture Outline

This is an abstract for an invited talk in the Session on Information and Topology
of the 2nd conference on Geometric Science of Information. The talk is based
on joint work with Ryan Thorngren [20] and Nicolas Tedeschi [19], ongoing work
with Marcus Bintz [4], and other ongoing work [18].

Tropical Semiring

The min-plus (or tropical) semiring T is T = R ∪ {∞}, with the operations ⊕
and � given by

x ⊕ y = min{x, y},

with ∞ the identity element for ⊕ and with

x � y = x + y,

with 0 the identity element for �. The operations ⊕ and � satisfy associativity
and commutativity and distributivity of the product � over the sum ⊕.

Thermodynamic Semirings (Information Algebras)

A notion of thermodynamic semiring was introduced in [20] and further devel-
oped in [19]. Thermodynamic semirings (or Information Algebras) are deforma-
tions of the min-plus algebra, where the product � is unchanged, but the sum
⊕ is deformed to a new operation ⊕β,S ,

x ⊕β,S y = min
p

{px + (1 − p)y − 1
β

S(p)}. (1)

c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 271–276, 2015.
DOI: 10.1007/978-3-319-25040-3 30
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according to a binary entropy functional S and a deformation parameter β, which
we interpret thermodynamically as an inverse temperature β = 1/T (up to
the Boltzmann constant which we set equal to 1). At zero temperature (that
is, β → ∞) one recovers the unperturbed idempotent addition. The algebraic
properties (commutativity, left and right identity, associativity) of this operation
correspond to properties of the entropy functional (symmetry S(p) = S(1 − p),
minima S(0) = S(1) = 0, and extensivity S(pq)+ (1− pq)S(p(1− q)/(1− pq)) =
S(p) + pS(q)), namely the Khinchin axioms of the Shannon entropy.

More generally, the entropy functional considered in the deformation need
not be the Shannon entropy: thermodynamic semirings associated to Rényi and
Tsallis entropies have different algebraic properties: the lack of commutativ-
ity and associativity is measured in a way that relates to the corresponding
axiomatic properties of these more general entropy functionals. In particular, as
shown in [20], the general thermodynamic semirings have a natural interpreta-
tion in terms of non-extensive thermodynamics, [1,10].

The case where the deformation is achieved by the Shannon entropy was
considered in [5] in relation to absolute arithmetic and F1-geometry. Thermody-
namic semirings are also closely related to Maslov dequantization, see [24], and
to statistical mechanics [22]. Applications to multifractals are also described
in [20].

Entropy Operad

The theory of thermodynamic semirings was also presented in [20] in terms of a
general operadic formulation of entropy functionals. A collection S = {Sn}n∈N

of n-ary entropy functionals Sn satisfies a coherence condition if

Sn(p1, . . . , pn) = Sm(pi1 , . . . , pim),

whenever, for some m < n, we have pj = 0 for all j /∈ {i1, . . . , im}. Shannon,
Rényi, Tsallis entropies satisfy this condition.

A collection S = {Sn}n∈N of coherent entropy functionals determines n-ary
operations Cn,β,S on R ∪ {∞},

Cn,β,S(x1, . . . , xn) = min
p

{
n∑

i=1

pixi − 1
β

Sn(p1, . . . , pn)}, (2)

with the minimum taken over p = (pi), with
∑

i pi = 1. More generally, one
obtains n-ary operations Cn,β,S,T (x1, . . . , xn) with S as above and T planar
rooted trees with n leaves. As shown in [20], these operations can be written as

Cn,β,S,T (x1, . . . , xn) = min
p

{
n∑

i=1

pixi − 1
β

ST (p1, . . . , pn)}, (3)

with the ST (p1, . . . , pn) obtained from the Sj , for j = 2, . . . , n. One obtains in
this way an algebra over the A∞-operad of rooted trees.
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Birkhoff Factorization in Thermodynamic Semirings

As part of the “renormalization and computation” program developed in [14–16],
Manin asked in [14] for an extension of the algebraic renormalization method
based on Rota–Baxter algebras ([6–9]) to tropical semirings.

This is achieved in [19], by introducing Rota–Baxter structures of weight λ

on min-plus semirings and on their thermodynamic deformation. A Rota–Baxter
operator of weight λ is defined as a ⊕-additive (monotone) map T satisfying

T (x) � T (y) = T (T (x) � y) ⊕ T (x � T (y)) ⊕ T (x � y) � log λ

when λ > 0, while for λ < 0 one has the identity

T (x) � T (y) ⊕ T (x � y) � log(−λ) = T (T (x) � y) ⊕ T (x � T (y)).

In the thermodynamic case, the notion of Rota–Baxter operator is the same, but
with ⊕ replaced by the deformed ⊕β,S .

Suppose given a map ψ : H → Tβ,S from a commutative graded Hopf algebra
H to a thermodynamic semiring Tβ,S with a Rota–Baxter operator of weight
+1, such that ψ(xy) = ψ(x) � ψ(y). It is shown in [19] that ψ has a unique
Birkhoff factorization ψ+ = ψ− �ψ, with ψ− = T (ψ̃), where ψ̃ is the Bogolyubov
preparation of ψ,

ψ̃(X) = ψ(X) ⊕β,S

⊕

β,S

ψ−(X ′) � ψ(X ′′)

where the Hopf algebra coproduct is Δ(X) = X ⊗ 1 + 1 ⊗ X +
∑

X ′ ⊗ X ′′. The
product � in the Birkhoff factorization is defined as

(ψ1 � ψ2)(X) =
⊕

β,S

(ψ1(X(1)) � ψ2(X(2))),

where ⊕β,S ,� are the semiring operations and Δ(X) =
∑

X(1) ⊗ X(2) = X ⊗
1 + 1 ⊗ X +

∑
X ′ ⊗ X ′′ is the Hopf algebra coproduct.

The Hopf algebra can be taken to be, for instance, a Hopf algebra of
Feynman graphs as in [6] or of flow charts as in [14]. Rota–Baxter operators
can be constructed using running time or memory size, in the case of flow
charts, or Markov random fields, or the order of polynomial countability of the
graph hypersurface (or infinity when not polynomially countable) in the case of
Feynman graphs, [19].

Tropical Hypersurfaces

Tropical geometry is a version of algebraic geometry over min-plus (or max-
plus) semirings, see [11,12] for a general introduction. In recent years, tropical
geometry has also been studied in relation to algebraic statistics, [21].
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A tropical polynomial is a function p : Rn → R of the form

p(x1, . . . , xn) = ⊕m
j=1aj � x

kj1
1 � · · · � xkjn

n =

min{a1 + k11x1 + · · · + k1nxn, a2 + k21x1 + · · · +
k2nxn, · · · , am + km1x1 + · · · + kmnxn}.

A tropical hypersurface is the set of points where the piecewise linear tropical
polynomial is non-differentiable.

Thermodynamic Tropicalization

When deforming the tropical semiring to a thermodynamic semiring, one can
similarly consider polynomials of the form

pβ,S(x1, . . . , xn) = ⊕β,S,jaj � x
kj1
1 � · · · � xkjn

n =

min
p=(pj)

{
∑

j

pj(aj + kj1x1 + · · · + kjnxn) − 1
β

Sn(p1, . . . , pn)},

where S = {Sn} is a coherent family of entropy functionals, or more generally

pβ,S,T (x1, . . . , xn) = min
p

{
∑

j

pj(aj + kj1x1 + · · · + kjnxn) − 1
β

ST (p1, . . . , pn)},

(4)
for T a rooted tree with n leaves and ST (p1, . . . , pn) the corresponding entropy
functional determined by the Sk in S with 2 ≤ k ≤ n.

In the case where the entropy function is the Shannon entropy, this deforma-
tion of the tropical polynomial can be related to Maslov dequantization, see [24].

Applications to Feynman Graph and Potts Model Hypersurfaces

In perturbative quantum field theory, Feynman integrals can be written as period
integrals (up to renormalization of divergences) on the complement of certain
hypersurfaces, defined by the vanishing of the graph polynomial

ΨΓ (t) =
∑

T

∏

e/∈E(T )

te,

with the sum over spanning trees of the graph and variables te assigned to the
edges of the graph.

The algebro-geometric and motivic properties of these hypersurfaces have
been widely studied in recent years, see [17] for an overview. These algebro-
geometric methods were recently extended to other hypersurfaces that arise as
zeros of partition functions of Potts models in [2].

We will discuss properties of the tropicalization of graph hypersurfaces and
of Potts model hypersurfaces and their thermodynamic deformations, based on
ongoing work [4].
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Lexicographic Semirings and Geometric Models in Linguistics

Min-plus type semirings are widely used, in the form of “lexicographic semi-
rings”, in computational models of morphology and syntax in Linguistics, [13,23].
Another application of thermodynamics semirings that we will discuss is based
on ongoing work [18], where entropy deformations of these linguistics models
are considered, as a way of introducing an inverse temperature parameter β in
deterministic finite-state representations of n-gram models based on the trop-
ical semiring. These are a tropical geometry version of the Viterbi sequence
algorithm, as described in [21]. Introducing the deformation parameter β plays
a role, in these models, analogous to the thermodynamic formalism of [3]. We
will discuss some consequences of this approach.
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Abstract. We show that the entropy function—and hence the finite
1-logarithm—behaves a lot like certain derivations. We recall its coho-
mological interpretation as a 2-cocycle and also deduce 2n-cocycles for
any n. Finally, we give some identities for finite multiple polylogarithms
together with number theoretic applications.

1 Information Theory, Entropy and Polylogarithms

It is well known that the notion of entropy occurs in many sciences. In thermo-
dynamics, it means a measure of the quantity of disorder, or more accurately,
the tendancy of a system to go toward a disordered state. In information theory,
the entropy measures (in terms of real positive numbers) the quantity of infor-
mation of a certain property [17,20]. From a practical viewpoint, entropies play
also a key role in the study of random bit generators (deterministic or not) [8], in
particular due to the Maurer test [16]. A general definition of entropy has been
given by Rényi [18]: let S = {s1, . . . , sn} be a set of discrete events for which the
probabilities are given by pi = P (s = si) for i = 1, . . . , n. The Rényi entropy S
is then defined for α > 0 and α �= 1 as

Hα(S) =
1

1 − α
log

(
n∑

i=1

pα
i

)

.

The Shannon entropy [20] can be recovered from the one of Rényi when
α → 1

H1(S) = lim
α→1

Hα(S) = −
n∑

i=1

pi log(pi).
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We also often use the minimal entropy which is related to the probability
of the most predictable event (while the Shannon entropy gives an averaged
measure):

Hmin(S) = lim
α→∞ Hα(S) = − log( max

i=1,...,n
(pi)) .

Those different entropies are related by the following inequalities

Hmin(S) � . . . � H2(S) � H1(S) � log(card(S)) = lim
α→0

Hα(S) .

The Shannon entropy can be characterised in the framework of information
theory, assuming that the propagation of information follows a Markovian model
[17,20]. If H is the Shannon entropy, it fulfills the equation, often called the
Fundamental Equation of Information Theory (FEITH),

H(x) + (1 − x)H
(

y

1 − x

)

− H(y) − (1 − y)H
(

x

1 − y

)

= 0 . (FEITH)

In [2](section 5.4, pp.66–69), it is shown that if g is a real function locally
integrable on ]0, 1[ and if, moreover, g fulfills FEITH, then there exists c ∈ R

such that g = cH (we can also restrict the hypothesis to Lebesgue measurable).
There are several papers (e.g., [1,7]) on the equation FEITH and the under-
standing of its structural properties, with the motivation to weaken either the
probabilistic hypothesis or the analytical ones. The following generalisation of
the equation FEITH has also been considered [14], for β positive and x and y in
some admissible range,

H(x) + (1 − x)βH

(
y

1 − x

)

− H(y) − (1 − y)βH

(
x

1 − y

)

= 0 . (1)

It turns out that FEITH can be derived, in a precise formal sense [9], from the
5-term equation of the classical (or p-adic) dilogarithm. Cathelineau [5] found
that an appropriate derivative of the Bloch–Wigner dilogarithm coincides with
the classical entropy function, and that the five term relation satisfied by the
former implies the four term relation of the latter. Kontsevich [13] discovered
that the truncated finite logarithm over a finite field Fp, with p prime, defined
by

£1(x) =
p−1∑

k=1

xk

k
,

satisfies FEITH (or its generalisation for β = 1 or p). In [9] we showed how
one can expand this relationship for “higher analogues” in order to produce
and prove similar functional identities for finite polylogarithms from those for
classical polylogarithms. It was also shown that functional equations for finite
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polylogarithms often hold even as polynomial identities over finite fields. In par-
ticular, we have shown that the polynomial version of £1 fulfills (1) with β = p.
Another approach, due to Bloch and Esnault [3], gives a more geometric ver-
sion in terms of algebraic cycles, and further structural properties have been
investigated by Cathelineau [6].

In this paper we propose some new formal characterisations of the entropy
from an algebraic viewpoint, using formal derivations and a relation to cohomol-
ogy (Sect. 2), and we give complementary relations involving multiple analogues
of the finite polylogarithms with a few applications to number theory (Sect. 3).
The details for this last work will be given in a subsequent paper. In the remain-
der of the paper, rings are assumed to be commutative. We will denote by Fq

the finite field with q elements. If q is prime, we set Fq = Z/qZ.

2 Algebraic Interpretation of the Entropy Function

2.1 Formal Entropy as Formal Derivations

Definition 1. Let R be a (commutative) ring and let D be a map from R to R.
We will say that D is a unitary derivation over R if the following axioms hold:

1. “Leibniz’s rule”: for all x, y ∈ R, we have D(xy) = xD(y) + yD(x).
2. “Additivity on partitions of unity”: for all x ∈ R, we have D(x)+D(1−x) =

0.

We will denote by Deru(R) the set of unitary derivations over R.

Applying analogous arguments as for derivations (see for instance [15],
chap. 9), we have

Proposition 1. The set of unitary derivations over R, Deru(R), is an R-
module, which has DerZ(R) as a submodule. If D and D′ are two unitary deriva-
tions, then the composition D ◦D′ and the Lie bracket [D,D′] = D ◦D′ −D′ ◦D
are unitary derivations.

Let D be a unitary derivation over R.

1. For all x ∈ R and all n ∈ N we have D(xn) = nxn−1D(x). Furthermore, if
x ∈ R× the rule is also true for n ∈ Z.

2. For all n ∈ N, D((n + 1)1R) = n(n+1)
2 D(−1), and 2D(−1) = 0.

3. If R has no 2-torsion or if 2(−1) = 0 in R, then for all x ∈ R and all n ∈ Z,
we have D(nx) = nD(x).

4. Suppose that R has no 2-torsion, or that 2(−1) = 0 in R, and let m ∈ Z with
m ∈ R×, then D( 1

m ) = 0. If moreover Q ⊂ R, then D(Q) = 0.

Proof. 1. Works as the classical proof for derivations.
2. First, using the standard fact that 0 = 0 · 0, we deduce that D(0) = 0, and

then D(1) = 0. Then we can see that 2D(−1) = 0 and that D(n+1)−D(n) =
nD(−1). Thus an induction argument proves the formula.
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3. If R has no 2-torsion, or if 2(−1) = 0 in R, then D(−1) = 0, and using the
previous result together with the fact that D(−n) = −D(1 + n), we deduce
D(n) = 0 for all n ∈ Z. Then the desired formula follows.

4. Direct consequence of the previous rules. ��
Remark 1. We can get nicer statements by working in Deru(R)/〈D(−1)〉, where
〈D(−1)〉 denotes the submodule of Deru(R) spanned by D(−1).

Corollary 1. Suppose that nR = 0, for a given n ∈ N − {0}. Then if D is a
unitary derivation over R and if λn : R −→ R is defined by λn(x) = xn, we then
have D ◦ λn = 0. In particular if p is a prime number, ν ∈ N − {0} and q = pν ,
then D(Fq) = 0.

Recall the following definition from [12].

Definition 2. Let R be a commutative ring and k be a natural number. We say
that R is k-fold stable if for any family of k unimodular vectors (ai, bi)1�i�k ∈ R2

(i.e. aiR + biR = R), there exists t ∈ R, such that ai + tbi ∈ R× for all i.

Proposition 2. “Unitary Derivations are almost Derivations”
Let R be a 2-fold stable ring, and suppose that R is of characteristic 2 (i.e.
2R = 0) or that R has no 2-torsion. Then DerZ(R) = Deru(R).

Proof. According to Proposition 1, we have to show that any unitary derivation
is additive. Let D ∈ Deru(R) and let x, y ∈ R. Suppose first that x is invertible.
Then x+y = x(1+ y

x ), and by Leibniz’s rule, we have D(x+y) = xD(1+ y
x )+(1+

y
x )D(x). Using the additivity on partitions of unity, D(1+ y

x ) = −D(− y
x ) and also

D(− y
x ) = −D( y

x ). Hence we deduce D(x+y) = D(x)+D(y). Now suppose that
x is not invertible. Then applying the 2-fold stability to the unimodular vectors
(0, 1), (x, 1), we deduce the existence of t ∈ R× such that x + t is invertible.
Setting x′ = x+t and y′ = y−t, we have D(x+y) = D(x′+y′). Then we can apply
the previous arguments to x′, y′, and deduce that D(x+y) = D(x+t)+D(y−t).
Now we again apply the same arguments to x, t, and y, −t. Using the rules
of Proposition 1, we conclude that D(x + y) = D(x) + D(y), and the claim
follows. ��
Example 1. As any semilocal ring R such that any of its residue fields has at
least 3 elements is 2-fold stable [12], we then deduce that DerZ(R) = Deru(R).

2.2 Unitary Derivations and Symmetric Information Function
of Degree 1

For more details on this section related to information theory see [14].

Definition 3. Let R be a commutative ring. We will say that a map f : R → R
is an abstract symmetric information function of degree 1 if the two following
conditions hold: for all x, y ∈ R such that x, y, 1 − x, 1 − y ∈ R×, the functional
equation FEITH holds and for all x ∈ R, we have f(x) = f(1 − x).
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Denote by IF1(R) the set of abstract symmetric information functions of
degree 1 over R. Then IF1(R) is an R-module. Let Leib(R) be the set of Leibniz
functions over R (i.e. which fulfill the “Leibniz rule”), then it is also an R-module
(in fact the composition and the Lie bracket still hold in Leib(R)). The proof of
the following proposition is a straightforward computation.

Proposition 3. We have a morphism of R-modules H : Leib(R) → IF1(R),
defined by H(ϕ) = ϕ+ϕ◦τ , with τ(x) = 1−x. Furthermore, Ker(H) = Deru(R).

Remark 2. The morphism H is not necessarily onto. If R = Fq, a finite field,
then Leib(Fq) = 0, but IF1(Fq) �= 0.

2.3 Cohomological Interpretation of Formal Entropy Functions

The following results are classical in origin (see [4], pp.58–59, and also the ref-
erences cited there, and also [13]). We try in this section to render the proofs
(for the finite case) more transparent, and also emphasize the derivation aspect
of the previous sections.

Theorem 1. Let F be a finite prime field and H : F → F a function which ful-
fills the following conditions: H(x) = H(1−x), the functional equation (FEITH)
holds for H and H(0) = 0. Then the function ϕ : F × F → F defined by
ϕ(x, y) = (x+ y)H( x

x+y ) if x+ y �= 0 and 0 otherwise, is a non-trivial 2-cocycle.

Proof. The fact that ϕ is a 2-cocycle is a straightforward consequence of the
properties on H. In order to see this, we use the inversion relation, which in turn
one can deduce from (FEITH), and the relation H(x) = H(1 − x). By setting
Y = x

x+y+z and X = y
x+y+z (assuming some suitable admissibility conditions

on x, y and z), and modulo some modifications using the other relations, the
2-cocycle condition is deduced from (FEITH). For the non-triviality, notice that
ϕ is homogeneous and recall that as F is a field we can endow the cochains with
a structure of F -vector space. Suppose that ϕ is a 2-coboundary. Then, there
exists a map Q : F → F , such that ϕ(x, y) = Q(x+y)−Q(x)−Q(y). Notice that
Q(0) = 0. As ϕ is homogeneous, we have ϕ(λx, λy) = λQ(x+y)−λQ(x)−λQ(y).
Thus the function ψλ(x) = Q(λx)−λQ(x) is an additive morphism F → F , hence
entirely determined by ψλ(1). The map ψλ(1) fulfills the Leibniz chain rule on
F×. Indeed, assuming F = Z/pZ, if λ, μ are arbitrary elements of F , as μψλ(1) =
ψλ(μ), by a straightforward computation we deduce ψλμ(1) = ψλ(μ) + λψμ(1).
Thus we formally have ψλm(1) = mλm−1ψλ(1). But F× is generated by a prim-
itive root, say ω. Let p = card(F ). Then ωp−1 = 1. Moreover 0 = ψ1(1) =
(p − 1)ωp−2ψω(1) . Hence ψω(1) = 0 and then Q(λx) = λQ(x) for all λ, x ∈ F .
This implies that Q is an additive map and thus ϕ = 0, which contradicts the
fact that it is a non-zero 2-cochain. ��
Remark 3. We should notice that H(λ) = ϕ(λ, 1−λ) = ψλ(1)+ψ(1−λ)(1), which
is very similar to the results of Maksa [14].
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Corollary 2. The map F → H2(F, F ), given by λ �→ λϕ, is an isomorphism
and, up to a constant, £1 is unique.

Using the (cup) product structure on the cohomology ring H∗(F, F ) (cf. [10],
chap. 3), we can check the following property:

Corollary 3. Let n be a positive integer. The map

ϕ(x1, . . . , x2n) =
2n−1∏

i=1, i even

ϕ(xi, xi+1)

induces a non-trivial cocycle in H2n(F, F ), which corresponds to the cup product
induced by ϕ. This cocycle corresponds to the product of n functions H, and is
unique up to a constant.

3 Finite Multiple Polylogarithms

While classical polylogarithms play an important role in the theory of mixed
Tate motives over a field, it turns out that it is often preferable to also consider
the larger class of multiple polylogarithms (e.g., [11]). In a similar way it is useful
to investigate their finite analogues. We are mainly concerned with finite double
polylogarithms which are given as functions Z/p × Z/p → Z/p by

£a,b(x, y) =
∑

0<m<n<p

xm

ma

yn

nb
.

3.1 Expressing £1,1 via £2

Our arguably most interesting result, from which we will deduce a couple of
consequences, is the following.

Theorem 2. The finite (1, 1)-logarithm £1,1(x, y) can be expressed in terms of
£2. More precisely, we have

y£1,1(x,
1
y
) = £2

(
− yp

[x

y

]
− (1 − y)p

[1 − x

1 − y

]
+ [1 − x] + [1 − y]

)
. (2)

The proof of this result takes (1 − y)p£2

(
1−x
1−y

)
and decomposes the (trian-

gular) domain over which the summation variables run into an “open” part (a
triangle) and three “boundary” parts (one diagonal, a vertical and a horizontal
line) and identifies the former with the £1,1-expression and the latter with the
three remaining terms in the equation. At a crucial step one uses the binomial
identity

N∑

r=0

(
N − r

s

)(
r

t

)

=
(

N + 1
s + t + 1

)

.
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3.2 Cathelineau’s £2-identity

Combining the well-known shuffle identity £a,b(x, y) + £b,a(y, x) + £a+b(xy) =
£a(x)£b(y) for a = b = 1 with the above we find that the product £1(x)£1(y)
can indeed be expressed as a sum of £2-terms. In fact, the resulting expression
is precisely Cathelineau’s “double bracket” [[x, y]] ([5], p.1344, Déf. 4). Now the
sum obtained from the four terms of (FEITH) for one of the two arguments and
while leaving the second argument fixed kills the products of £1-terms so we are
left with only £2-terms, hence we have proved a functional equation—in fact,
Cathelineau’s 22-term equation in ([5], p.1346, (2)).

3.3 Further Identities

We can prove an inversion formula for finite multiple polylogarithms

T p
1 · · · T p

� £m�,...,m1

( 1
T�

, . . . ,
1
T1

)
= (−1)m1+···+m� £m1,...,m�

(T1, . . . , T�),

and we can also build a four variable identity for £1,1.

Proposition 4. Define [x, y]s = £1,1(x, y) + £1,1(y, x) and consider the fol-
lowing linear combination

K(x, y) =[x, y]s + xp
[ 1
x
, y
]
s
− (1− y)p

[
1− x,

y

y − 1

]
s
+ (1− y)p

[
1− x,

1

1− y

]
s

− xp(1− y)p
[
1− 1

x
,

y

y − 1

]
s
+ xp(1− y)p

[
1− 1

x
,

1

1− y

]
s
.

Then the following functional equation (purely in £1,1 ) holds:

I(x, y; z, w) − I(x, z; y, w) = 0 ,

where

I(x, y; z, w) = (1 + z) (1 + w)K(x, y) + (1 + x) (1 + y)K(z, w) .

3.4 Finite Polylogarithms and Fermat’s Last Theorem

Several classical criteria used by Kummer, Mirimanoff and Wieferich to prove
certain cases of Fermat’s Last Theorem can be rephrased in terms of functional
equations and evaluations of finite (multiple) polylogarithms. For example, Mir-
imanoff was led to the study of (nowadays called) Mirimanoff polynomials (cf.
[19], VIII, (1.11))

ϕj(T ) =
p−1∑

j=1

kj−1T k,

which are nothing else but finite polylogarithms:

ϕj(T ) ≡ £p−j(T ) (mod p) .
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(Note that Mirimanoff’s original polynomials correspond to −ϕj(−T )).
Part of the groundwork for Mirimanoff’s congruences was formed by the

crucial identity

−1
2
[
ϕp−1(T )

]2 ≡ ϕp−2(T ) + (T − 1)2pϕp−2

( T

T − 1

)
(mod p)

([19], VIII, (1.29)) which is nothing but the special case product formula x =
y (= T ) in our identity for £1(x)£1(y) alluded to in 3.2.

The Mirimanoff congruences ([19], VIII, (1B)) can be reformulated as follows:
for any solution (x, y, z) of xp+yp+zp = 0 in pairwise prime integers not divisible
by p (i.e. a Fermat triple) and for t = −x

y we have

£1(t) = 0 , £j(t)£p−j(t) = 0 (j = 2, . . . ,
p − 1

2
) .

One can prove these congruences using an identity expressing £p−j−1,j+1(1, T )
in terms of £n(T ): denoting the Bernoulli numbers by Bn, we have

£p−j−1,1+j(1, T ) ≡ 1
j + 1

j∑

n=0

(
j + 1

n

)

Bn£n(T ) j = 1, . . . , p − 2 . (3)

Also, Wieferich’s criterion states that if the first case of FLT for the prime p
is false then p2 divides 2p − 1 (only two such primes are known for which that
latter holds: p = 1093 and p = 3511). This criterion can be rephrased in terms
of finite polylogarithms as saying £1(−1) = 0 for such primes.

Acknowledgement. We would like to express our sincere gratitude to the reviewers
for their valuable comments who have helped improve this paper
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Abstract. We present a dictionary between arithmetic geometry of toric
varieties and convex analysis. This correspondence allows for effective
computations of arithmetic invariants of these varieties. In particular,
combined with a closed formula for the integration of a class of functions
over polytopes, it gives a number of new values for the height (arithmetic
analog of the degree) of toric varieties, with respect to interesting metrics
arising from polytopes. In some cases these heights are interpreted as the
average entropy of a family of random processes.

1 Introduction

Toric varieties form a remarkable class of algebraic varieties, endowed with an
action of a torus having one Zariski dense open orbit. It is well known that their
geometric properties can be described in terms of combinatorial objects such as
fans and polytopes having the same dimension, say n, as the toric variety. For
instance, the degree of a toric variety with respect to a nef toric divisor is n!
times the volume of the corresponding polytope.

In the book [4], we have extended this dictionary by linking the arithmetic
geometry of toric varieties defined over a number field to convex analysis. Here,
the arithmetic ingredients are given by (semipositive) metrics on the toric line
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bundle associated to a toric divisor. Each of these metrics correspond to a con-
tinuous concave function on the associated polytope, that we call the local roof
function. These functions combine in a global roof function over the polytope.
In this context, the arithmetic invariant analogous to the degree is the height
which, similarly to the degree, can be expressed as (n + 1)! times the integral
over the polytope of the global roof function.

For particular choices of metrics, these heights coincide with the average
entropy of certain random processes associated to the polytope. Our toric “dic-
tionary”, combined with a closed formula for the integration of a class of func-
tions over polytopes, allows to compute the values of these heights. All the results
presented here can be found in more details in [4].

2 Heights and Toric Varieties

In this section we recall some of the basic constructions and results in [4]. Details
and more information can be found in this reference. The reader can also consult
[5,6] for a background on the algebraic geometry of toric varieties.

Let N � Z
n be a lattice of rank n and M := Hom(N,Z) its dual lattice.

Set NR := N ⊗Z R � R
n and MR := M ⊗Z R. We denote by 〈x, u〉 the pairing

between x ∈ MR and u ∈ NR.
To a lattice fan Σ on NR we associate a toric scheme over the integers, denoted

by XΣ. This scheme is flat over Spec(Z) of relative dimension n. It is equipped
with an action of the algebraic torus TN := Spec(Z[M ]) � G

n
m,S extending the

natural action of TN on itself. This action has a dense orbit, denoted X◦
Σ and

which is canonically isomorphic to TN . The scheme XΣ,S is projective whenever
the fan Σ is complete and regular, and it is smooth whenever each cone of Σ is
generated by a subset of a basis of N , see [5]. We will assume both properties
from now on.

A virtual support function is a continuous function Ψ: NR → R whose restric-
tion to each of the cones of Σ is an element of M . Such a function defines an
invariant Cartier divisor DΨ of XΣ,S or, equivalently, an equivariant line bundle
LΨ,S together with an invariant rational section sΨ such that div(sΨ) = DΨ,
see [6, Sects. 3.3 and 3.4]. The divisor DΨ is relatively ample if and only if Ψ is
concave and restricts to different elements of M on each of the maximal cones of
Σ. We will also suppose this from now on. Under this assumption, the polyhedron

ΔΨ := {x ∈ MR : 〈x, y〉 ≥ Ψ(y) for all y ∈ NR} ⊂ MR

is an n-dimensional polytope.
Let XΣ(C) and TN (C) respectively denote the analytification of the scheme

XΣ and of the algebraic torus T. Also let S := {t ∈ TN (C) | |t| = 1} be the
compact subtorus of TN (C). There is a map val : X◦

Σ(C) → NR, defined, in a
given splitting X◦

Σ(C) = TN (C) � (C×)n, by

val(x1, . . . , xn) = (− log |x1|v, . . . ,− log |xn|v).
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This map does not depend on the choice of the splitting and the compact torus
S coincides with its fiber over the point 0 ∈ NR.

We furthermore consider a semipositive toric metric ‖·‖ on the analytification
of the line bundle LΨ, that is, a semipositive metric which is invariant under the
action of S. We denote by LΨ the line bundle metrized in this way. Such a
toric metrized line bundle defines a continuous function ψL : NR → R given,
for p ∈ T(C), by

ψL(val(p)) = log ‖sΨ(p)‖v.

This function is concave. We can then consider its Legendre-Fenchel dual
ψ∨

L
: MR → R ∪ {−∞} defined by

ψ∨
L
(x) = inf

u∈NR

(〈u, x〉 − ψL(u)).

The stability set of a concave function is the set of points where its Legendre-
Fenchel dual is > −∞. It turns out that the stability set of ψL coincides with
the polytope ΔΨ and that the function ψ∨

L
is continuous and concave on ΔΨ.

The roof function of L, denote ϑL, is defined as the restriction of ψ∨
L

to the
polytope ΔΨ.

Given a flat projective and smooth scheme X over Spec(Z) equipped with a
semipositive metrized line bundle L, we can define using arithmetic intersection
theory a height function, denoted hL, for subschemes of XΣ, see [2,8,10]. It is
the arithmetic analogue of the notion of degree of subvarieties.

One of the main results in [4] is that the height of a toric scheme with respect
to a toric semipositive metrized line bundle can be expressed as the integral of
the associated roof function [4, Theorem 5.2.5]. In precise terms,

hLΨ
(XΣ) = (n + 1)!

∫

ΔΨ

ϑL d volM , (1)

where volM is the Haar measure on MR normalized so that the lattice M has
covolume 1.

3 Metrics from Polytopes and Entropy

In some cases, the height of a toric variety with respect to a toric semipositive
metrized line bundle has an interpretation in terms of the average entropy of a
family of random processes.

Let Δ ⊂ R
n be a lattice polytope of dimension n and Γ an arbitrary polytope

containing it. For a point x in the interior of Δ, we denote by Πx the partition
of Γ consisting of the cones ηx,F of vertex x and base the relative interior of
each proper face F of Γ. We consider Γ as a probability space endowed with
the uniform probability distribution. Let βx be the random variable that maps
a point y ∈ Γ to the base F of the unique cone ηx,F that contains y. Clearly, the
probability that a given face F is returned is the ratio of the volume of the cone
based on F to the volume of Γ. We have

voln(ηx,F ) = n−1dist(x, F )voln−1(F ),
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where voln and voln−1 respectively denote the Euclidean n-th and (n − 1)-th
Euclidean volume of convex subsets of Rn, and dist(x, F ) denotes the distance
of the point x to the face F . Hence,

P (βx = F ) =

⎧
⎨

⎩

dist(x, F )voln−1(F )
nvoln(Γ)

if dim(F ) = n − 1,

0 if dim(F ) ≤ n − 2.
(2)

The entropy of the random variable βx is

E(x) = −
∑

F

P (βx = F ) log(P (βx = F )),

where the sum is over the facets F of Γ.
From the polytope Γ, we can construct a concave function on itself as follows.

For each facet F of Γ, we denote by u′
F ∈ R

n the inner normal vector to F of
Euclidean norm (n − 1)!voln−1(F ). Set λ(F ) = infx∈Γ〈x, u′

F 〉 and consider the
affine polynomial defined as

�F (x) = 〈x, u′
F 〉 − λ(F ). (3)

Hence,
Γ = {x ∈ MR | �F (x) ≥ 0 for every facet F}.

In particular, �F is nonnegative on Γ, and we can consider the function ϑΓ : Γ →
R defined by

ϑΓ(x) = −1
2

∑

F

�F (x) log(�F (x)).

By [4, Lemma 6.2.1], this function is concave.

Notation 1. Let ΣΔ and ΨΔ be the fan and the support function on NR = R
n

induced by the polytope Δ, see [4, Example 2.5.13]. Let XΣΔ and LΨΔ be the
corresponding toric scheme and line bundle. The restriction of the function ϑΓ

above to Δ is a continuous concave function and so, by [4, Theorem 4.8.1], it
corresponds to a semipositive toric metric on LΨΔ . We denote this metric by
‖ · ‖Δ,Γ and we write LΨΔ for the line bundle LΨΔ equipped with this toric
metric.

Example 1. Let Δn = {(x1, . . . , xn) | xi ≥ 0,
∑

i xi ≤ 1} be the standard
simplex of R

n and consider the case when Γ = Δ = Δn. The corresponding
concave function on Δn is given by

ϑΔn(x1, . . . , xn) = −1
2

(
1 −

∑

i

xi

)
log

(
1 −

∑

i

xi

)
− 1

2

n∑

i=1

xi log(xi).

From [4, Example 2.4.3 and 4.3.9(1)], we deduce that the corresponding toric
metric is the Fubini-Study metric on O(1), the universal line bundle on the
projective space P

n.
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Remark 1. This kind of metrics are interesting for the Kähler geometry of
toric varieties. Given a Delzant polytope Δ ⊂ R

n, Guillemin has constructed a
“canonical” Kähler structure on the associated symplectic toric variety, see [7]
for details. Following Guillemin, this canonical Kähler structure is codified by a
convex function on the polytope, dubbed the “symplectic potential”.

With the notation above, when Γ = Δ and u′
F is a primitive vector in N for

every facet F , the function −ϑΓ coincides with this symplectic potential, see [7,
Appendix 2, (3.9)]. In this case, the metric ‖ · ‖Δ,Γ on the line bundle LΨΔ is
smooth and positive, and its Chern form gives this canonical Kähler form.

The following result shows that the average entropy of the random variables
βx, x ∈ Δ, with respect to the uniform distribution on Δ can be expressed in
terms of the height of the toric variety XΣΔ with respect to L.

Theorem 1. With the above notation,

1
voln(Δ)

∫

Δ

E dvoln =
1

n!voln(Γ)

(
2 hL(XΣΔ)

(n + 1) degL(XΣΔ)
− λ(Γ)log(n!voln(Γ))

)

with λ(Γ) =
∑

F λ(F ), the sum being over the facets F of Γ. In particular, if
Γ = Δ,

1
voln(Δ)

∫

Δ

E dvoln =
2hL(XΣΔ)

(n + 1) degL(XΣΔ)2
− λ(Γ)

log(degL(XΣΔ))
degL(XΣΔ)

.

Proof. By [9, Lemma 5.1.1], the vectors u′
F satisfy the Minkowski condition∑

F u′
F = 0. Hence

∑

F

�F = −
∑

F

λ(F ) = −λ(Γ).

Let x be a point in the interior of Δ and F a facet of Γ. We deduce from (2)
that P (βx = F ) = �F (x)/(n!voln(Γ)). Hence,

E(x) = −
∑

F

�F (x)
n!voln(Γ)

log
( �F (x)

n!voln(Γ)

)

=
1

n!voln(Γ)

(

−
∑

F

�F (x) log(�F (x)) − λ(Γ) log(n!voln(Γ))
)

=
1

n!voln(Γ)

(

2ϑΓ(x) − λ(Γ) log(n!voln(Γ))
)

.

The result then follows from the expression for the height of XΣΔ in (1) and the
analogous expression for its degree in [6, page 111, Corollary].

Example 2. The Fubini-Study metric of O(1) corresponds to the case when Γ
and Δ are the standard simplex Δn. In that case, the average entropy of the
random variables βx, x ∈ Δ, is

1
n!

∫

Δn

E dvoln =
2hO(1)

(Pn)

(n + 1)
.
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4 Integration on Polytopes

In this section, we present a closed formula for the integral over a polytope of a
function of one variable composed with a linear form, extending in this direction
Brion’s formula for the case of a simplex [3], see Proposition 1 and Corollary 2
below. This formula allow us to compute the height of toric varieties with respect
to the metrics arising from polytopes as in Sect. 3.

We consider the vector space Rn with its usual scalar product, that we denote
〈·, ·〉, and its Lebesgue measure, that we denote voln. We also consider a polytope
Δ ⊂ R

n of dimension n.

Definition 1. Let u ∈ R
n and λ ∈ R, the aggregate of Δ in the affine subset

Lu,λ := {x ∈ R
n | 〈x, u〉 = λ}

is the union of all the faces of Δ contained in Lu,λ. An aggregate V of Δ in the
direction u is an aggregate in Lu,λ for some λ ∈ R.

We denote by dim(V ) the maximal dimension of a face of Δ contained in V .
In particular, dim(∅) = −1.

We write Δ(u) for the set of non-empty aggregates of Δ in the direction u.
In particular, Δ(0) = {Δ}. Note that, if V ∈ Δ(u) and x is a point in the affine
space spanned by V , then the value 〈x, u〉 is independent of x. We denote this
common value by 〈V, u〉.

For any two aggregates V1, V2 ∈ Δ(u), we have V1 = V2 if and only if 〈V1, u〉 =
〈V2, u〉.
Example 3

(1) Every facet of a polytope is an aggregate in the direction orthogonal to the
facet.

(2) If u is general enough, the set Δ(u) agrees with the set of vertices of Δ.
(3) Let Δ = {(x, y) ∈ R

2 | 0 ≤ x, y ≤ 1} be the unit square and u = (1, 1). Then
the set of aggregates Δ(u) contains three elements: {(0, 0)}, {(1, 0), (0, 1)}
and {(1, 1)}.

In each facet F of Δ we choose a point mF . Let LF be the linear hyperplane
defined by F and πF the orthogonal projection of Rn onto LF . Then, F −mF is a
polytope in LF of full dimension n−1. To ease the notation, we identify F −mF

with F . Observe that, with this identification, for V ∈ Δ(u), the intersection
V ∩ F is an aggregate of F in the direction πF (u). We also denote by uF the
inner normal vector to F of norm 1.

Definition 2 Let u ∈ R
n be a vector. For each aggregate V in the direction of

u, we define the coefficients Ck(Δ, u, V ), k ∈ N, recursively. If u = 0, then V is
either ∅ or Δ. For both cases, we set

Ck(Δ, 0, V ) =

{
voln(V ) if k = n,

0 otherwise.
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If u �= 0, we set

Ck(Δ, u, V ) = −
∑

F

〈uF , u〉
‖u‖2

Ck(F, πF (u), V ∩ F ),

where the sum is over the facets F of Δ. This recursive formula implies that
Ck(Δ, u, V ) = 0 for all k > dim(V ).

Let Cn(R) be the space of functions of one real variable which are n-times
continuously differentiable. For f ∈ Cn(R) and 0 ≤ k ≤ n, we write f (k) for the
k-th derivative of f . We want to give a formula that, for f ∈ Cn(R), computes

∫

Δ

f (n)(〈x, u〉) dvoln(x)

in terms of the values of the function x �→ f(〈x, u〉) at the vertices of Δ. However,
when u is orthogonal to some faces of Δ of positive dimension, such a formula
necessarily depends on the values of the derivatives of f .

Proposition 1 ([4, Proposition 6.1.4]) Let Δ ⊂ R
n be a polytope of dimension

n and u ∈ R
n. Then, for any f ∈ Cn(R),

∫

Δ

f (n)(〈x, u〉) dvoln(x) =
∑

V ∈Δ(u)

∑

k≥0

Ck(Δ, u, V )f (k)(〈V, u〉).

The coefficients Ck(Δ, u, V ) are uniquely determined by this identity.

Corollary 1 Let Δ ⊂ R
n be a polytope of dimension n and u ∈ R

n. Then,

∑

V ∈Δ(u)

min{i,dim(V )}∑

k=0

Ck(Δ, u, V )
〈V, u〉i−k

(i − k)!
=

{
0 for i = 0, . . . , n − 1,

voln(Δ) for i = n.

Proof This follows from proposition 1 applied to the functions f(z) = zi/i!. ��
The following result gives the basic properties of the coefficients associated to
the aggregates of a polytope.

Proposition 2 ([4, Proposition 6.1.6]) Let Δ ⊂ R
n be a polytope of dimension

n and u ∈ R
n. Let V ∈ Δ(u) and k ≥ 0.

(1) The coefficient Ck(Δ, u, V ) is homogeneous of weight k−n in the sense that,
for λ ∈ R

×,
Ck(Δ,λ u, V ) = λ

k−nCk(Δ, u, V ).

(2) The coefficients Ck(Δ, u, V ) satisfy the vector relation

Ck(Δ, u, V ) · u = −
∑

F

Ck(F, πF (u), V ∩ F ) · uF ,

where the sum is over the facets F of Δ.
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(3) Let Δ1,Δ2 ⊂ R
n be two polytopes of dimension n intersecting along a

common facet and such that Δ = Δ1∪Δ2. Then V ∩Δi = ∅ or V ∩Δi ∈ Δi(u)
and

Ck(Δ, u, V ) = Ck(Δ1, u, V ∩ Δ1) + Ck(Δ2, u, V ∩ Δ2).

In case Δ is a simplex, the linear system given by Corollary 1 has as many
unknowns as equations. In this case, the coefficients corresponding to an aggre-
gate in a given direction are determined by this linear system. The following
result gives a closed formula for those coefficients.

Proposition 3 ([4, Proposition 6.1.7]) Let Δ ⊂ R
n be a simplex and u ∈ R

n.
Write dW = dim(W ) for W ∈ Δ(u). Then, for V ∈ Δ(u) and 0 ≤ k ≤ dim(V ),

Ck(Δ, u, V ) = (−1)dV −k n!
k!

voln(Δ)
∑

η∈N
Δ(u)\{V }

|η|=dV −k

∏

W∈Δ(u)\{V }

(
dW +ηW

dW

)

〈V − W,u〉dW +ηW +1
.

Remark 2 We can rewrite the formula in Proposition 3 in terms of vertices
instead of aggregates as follows:

Ck(Δ, u, V ) = (−1)dV −k n!
k!

voln(Δ)
∑

|β|=dV −k

∏

ν /∈V

〈V − ν, u〉−βν−1, (4)

where the product is over the vertices ν of Δ not lying in V and the sum is over
the tuples β of non negative integers of length dV − k, indexed by those same
vertices of Δ that are not in V , that is, β ∈ N

n−dV and |β| = dV − k.

Example 4 Let Δ ⊂ R
n be a simplex and u ∈ R

n. If a vertex ν0 of Δ is an
aggregate in the direction of u, then formula (4) reduces to

C0(Δ, u, ν0) = n!voln(Δ)
∏

ν �=ν0

〈ν0 − ν, u〉−1, (5)

where the product runs over all vertices of Δ different from ν0. Suppose that the
simplex is presented as the intersection of n + 1 halfspaces as

Δ =
n⋂

i=0

{x ∈ R
n| 〈x, ui〉 − λi ≥ 0}

with ui ∈ R
n \ {0} and λi ∈ R. Up to a reordering, we can assume that u0 is an

inner normal vector to the unique face of Δ not containing ν0. We denote by ε
the sign of (−1)n det(u1, . . . , un). Then the above coefficient can be alternatively
written as

C0(Δ, u, ν0) =
ε det(u1, . . . , un)n−1

∏n
i=1 det(u1, . . . , ui−1, u, ui+1, . . . , un)

.
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From the equation (5), we obtain the following extension of Brion’s “short
formula” for the case of a simplex [3, Théorème 3.2], see also [1].

Corollary 2 Let Δ ⊂ R
n be a simplex of dimension n that is the convex hull

of points νi, i = 0, . . . , n, and let u ∈ R
n such that 〈νi, u〉 �= 〈νj , u〉 for i �= j.

Then, for any f ∈ Cn(R),

∫

Δ

f (n)(〈x, u〉) dvoln(x) = n!voln(Δ)
n∑

i=0

f(〈νi, u〉)
∏

j �=i〈νi − νj , u〉 .

Proof This follows from Proposition 1 and formula (5). ��
The following result gives the value of the integral over a simplex of a function
of the form �(x) log(�(x)), where � is an affine function.

Proposition 4 Let Δ ⊂ R
n be a simplex of dimension n and � : Rn → R an

affine function which is non-negative on Δ. Write �(x) = 〈x, u〉 − λ for some
vector u and constant λ. Then

1

voln(Δ)

∫

Δ
�(x) log(�(x)) dvoln(x) =

∑

V ∈Δ(u)

∑

β′

( n

n − |β′|
) �(V )

(
log(�(V )) −∑|β′|+1

j=2
1
j

)

(|β′| + 1)
∏

ν /∈V

(
−( �(ν)

�(V ) − 1
)β′

ν
) ,

where the second sum runs over β′ ∈ (N×)n−dim(V ) with |β′| ≤ n and the product
is over the n − dim(V ) vertices ν of Δ not in V .

If �(x) is the defining equation of a hyperplane containing a facet F of Δ,
then

1
voln(Δ)

∫

Δ

�(x) log(�(x)) dx =
�(νF )
n + 1

(

log(�(νF )) −
n+1∑

j=2

1
j

)

,

where νF denotes the unique vertex of Δ not contained in F .

Proof This follows from the formula in proposition 1 and (4) with the function
f (n)(z) = (z − λ) log(z − λ), a (n − k)-th primitive of which is

f (k)(z) =
(z − λ)n−k+1

(n − k + 1)!

⎛

⎝log(z − λ) −
n−k+1∑

j=2

1
j

⎞

⎠.

We obtain the following formula for the height of a toric variety with respect
to the toric metrics considered in §3, in terms of the coefficients Ck(Δ, ui, V ).

Theorem 2 Let Δ ⊂ R
n be a lattice polytope of dimension n and Γ an arbitrary

polytope containing it. Let XΣΔ and L = LΨΔ be as in Notation 1, and �F and
u′

F the affine polynomial and the inner normal vector associated to a facet F of
Γ as in (3) . Then

hL(XΣΔ ) =
(n + 1)!

2

∑

F

∑

V ∈Δ(u′
F

)

dim(V )∑

k=0

Ck(Δ, u
′
F , V )

�F (V )n−k+1

(n − k + 1)!

⎛

⎝
n−k+1∑

j=2

1

j
− log(�F (V ))

⎞

⎠,
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the first sum being over the facets F of Γ. Suppose furthermore that Δ ⊂ R
n is

a simplex. Then

hL(XΣΔ) =
n!
2

volM (Δ)
∑

F

�F (νF )
( n+1∑

j=2

1
j

− log(�F (νF ))
)

, (6)

where νF is the unique vertex of Δ not contained in the facet F .

Proof The first statement follows readily from the formula (1) and Proposition 1
applied to the functions

fi(z) =

⎛

⎝log(z − λi) −
n+1∑

j=2

1
j

⎞

⎠ (z − λi)n+1/(n + 1)!.

The second statement follows similarly from Proposition 4. ��
Example 5 Let O(1) be the universal line bundle of P

n. As we have seen in
Example 1, the Fubini-Study metric of O(1) corresponds to the case of the
standard simplex Δn. Hence we recover from (6) the well known expression for
the height of Pn with respect to the Fubini-Study metric in [2, Lemma 3.3.1]:

hO(1)
(Pn) =

n + 1
2

n+1∑

j=2

1
j

=
n∑

h=1

h∑

j=1

1
2j

.

Hence, in this case the average entropy of the random variables βx, x ∈ Δn, is

1
n!

∫

Δn

E dvoln =
2hO(1)

(Pn)

(n + 1)
=

n+1∑

j=2

1
j
.
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École Nationale Supérieure des Mines de Saint Etienne,
SPIN/LGF UMR CNRS 5307, Saint-Etienne, France

{said.rahmani,pinoli,debayle}@emse.fr

Abstract. In this paper we propose a method to characterize and esti-
mate the variations of a random convex set Ξ0 in terms of shape, size
and direction. The mean n-variogram γ

(n)
Ξ0

:(u1 · · · un) �→ E[νd(Ξ0 ∩ (Ξ0 −
u1) · · ·∩(Ξ0−un))] of a random convex set Ξ0 on R

d reveals information
on the nth order structure of Ξ0. Especially we will show that considering
the mean n-variograms of the dilated random sets Ξ0 ⊕ rK by an homo-
thetic convex family rKr>0, it’s possible to estimate some characteristic
of the nth order structure of Ξ0. If we make a judicious choice of K,
it provides relevant measures of Ξ0. Fortunately the germ-grain model
is stable by convex dilatations, furthermore the mean n-variogram of
the primary grain is estimable in several type of stationary germ-grain
models by the so called n-points probability function. Here we will only
focus on the Boolean model, in the planar case we will show how to
estimate the nth order structure of the random vector composed by the
mixed volumes t(A(Ξ0), W (Ξ0, K)) of the primary grain, and we will
describe a procedure to do it from a realization of the Boolean model
in a bounded window. We will prove that this knowledge for all convex
body K is sufficient to fully characterize the so called difference body
of the grain Ξ0 ⊕ Ξ̆0. we will be discussing the choice of the element
K, by choosing a ball, the mixed volumes coincide with the Minkowski’s
functional of Ξ0 therefore we obtain the moments of the random vector
composed of the area and perimeter t(A(Ξ0), U(Ξ)). By choosing a seg-
ment oriented by θ we obtain estimates for the moments of the random
vector composed by the area and the Ferret’s diameter in the direction
θ, t((A(Ξ0), HΞ0(θ)). Finally, we will evaluate the performance of the
method on a Boolean model with rectangular grain for the estimation of
the second order moments of the random vectors t(A(Ξ0), U(Ξ0)) and
t((A(Ξ0), HΞ0(θ)).
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1 Introduction

A random closed set (RACS) denotes a random variable defined on a probability
space (Ω,A, P ) taking values in (F,F) the family of all closed subset of R

d

provided with the σ-algebra F = σ{{F ∈ F |F ∩X �= ∅}X ∈ K} where K denotes
the class of compact subsets on R

d. As when we work with random vectors it is
necessary to give meaning to the concept of distribution. Choquet and Matheron
have shown that a random set is fully characterized by its probability of presence
in each place of the space, thus the concept of distribution is replaced by the so
called functional capacity also called Choquet capacity TΞ : K → [0, 1].

TΞ(X) = P ({Ξ ∩ X �= ∅}) (1)

Several materials can be modeled by random sets. In fact, the heterogeneity of
the materials can be apprehended by a probabilistic approach [1,2]. Especially
granular or fibrous media [3,4] can be represented by unions of overlapping
particles (the grains) centred on random positions (the germs), thus giving rise
to the germ-grain model.

Ξ =
⋃

xi∈Φ

Ξi + xi (2)

Where Φ is point process (REF) which generates the germs xi, and the grains Ξi

are convex random sets independent and identically distributed. Notice that this
definition assumes the independence between the particles Ξi and their positions
xi, there is a more general definition authorizing the correlation between germs
and grains [5], for more convenience we choose to introduce the model under this
hypothesis. There are two types of use of this model. The first one is the simula-
tion of a material, the global characteristics of the model match to the material’s
ones but the germs and grains have no physical sense: the local characteristics
of the model (Φ and Ξ0) a priori have no connection with the intrinsic structure
of the material. Our approach consist in representing the people of crystals by
such a model; that is to say that the point process Φ is the repartition of the
particles and the convex random sets Ξi the particles themselves. The goal is
to adjust the model to actual data from measurements acquired by an image
acquisition system. Generally, the acquisition is obtained by optical imaging, in
other words, we have realizations of Ξ ∩ W where W is a bounded window and
we want to estimate the characteristics of Φ and Ξ0. To meet this objective, we
focuses on two points: first, estimate the characteristics of Ξ from a realization
of Ξ ∩ W [6], secondly establish relationships between characteristics of Ξ and
the local characteristics of the model (Φ, Ξ0). This second point raises the prob-
lem of non-uniqueness of the representation (2). To remedy this, we introduce
an additional assumption: we assume the process Φ comes from a known type
(Poisson process, Cox process, ...). We will use the homogeneous Boolean model,
a germ-grain model in which Φ is a homogeneous Poisson point process. This
model is widely used because we have an analytical formula for the Choquet
capacity.

TΞ(X) = 1 − exp(−λE[νd(Ξ0 ⊕ X̆)]),∀X ∈ K (3)
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Several methods are used to connect the global characteristics of the model
to the characteristics of the primary grain. In the plane and the space, Miles’s
formulae [7] or minimum contrast method [8] can estimate the average value
of Minkowski’s functional of the primary grain. Generally, the primary grain is
assumed to have a known and deterministic shape, that is to say, the realizations
of the primary grain are homothetic. So as to estimate the variations of the
scaling factor from the expectation of the Minkowski functionals. For example,
for a disc in the plane, the moments of the first and second orders of the radius of
the primary grain are respectively proportional to its average perimeter and its
average area. However, if we consider that the shape of the grain can vary, several
issues remain unresolved: firstly Minkowski functionals of a random convex set
are not enough to characterize its shape and also their average will not provide
a sufficient information to characterize its variations. For instance, for a Boolean
model whose grain has a shape that depends on several parameters (rectangle,
ellipse ...), the estimation of geometric variations of the grain is not direct. The
aim of our work is to characterize and estimate the variations of the primary
grain of the Boolean model without any assumption concerning its shape, from a
realization of the model in a bounded window. The ideal would be to estimate the
functional capacity of the primary grain TΞ0 or an equivalent which completely
characterizes the random convex Ξ0. Applying the Steiner’s formula and the
linearity of the expectation, for all convex compact set X we have:

E[νd(Ξ0 ⊕ X̆)] =
d∑

k=0

(
d

k

)

E[Wd−k(Ξ0, X̆)] (4)

Where Wd−k(Ξ0, X̆) denotes the (d − k)th mixed volume of Ξ0 and X̆. Con-
sidering the relationship (3), we understand that the functional capacity of the
model evaluated on a convex K depends on the grain only by the expectations
of mixed volumes between Ξ0 and X̆. In order to reveal the variations of Ξ0

we need to consider the functional capacity of the model on compacts that are
not convex, that is why we are interested in the n-point-probability function
[5]: P({x1, · · · xn} ⊂ Ξ). For n = 2, this quantity is known under the name of
covariance and it can be connected to the mean covariogram of the primary grain
[9]. For any n ≥ 3, the n-point-probability function can be used to estimate the
mean n-variogram γ

(n)
Ξ0

: (u1 · · · un) �→ E[νd(Ξ0 ∩ (Ξ0 − u1) · · · ∩ (Ξ0 − un))] of
Ξ0, this quantity evaluated on the dilated grain Ξ0 ⊕ K for a convex compact
set K reveals the nth order structure of Ξ0, especially some linear combina-
tions of the expectations E[

∏d
k=0 Wd,k(Ξ0,K)pk ] of order p =

∑d
k=0 pk ≤ n

where Wd,k(Ξ,K) , k = 0, · · · d, denotes the mixed volumes of Ξ0 by K. First
we will discuss the properties of the mean n-variogram of a random convex and
how it describes its nth order structure. Secondly we will focus on the planar
case, we will discuss the interpretation of the nth order moments of the vector
t(A(Ξ0),W (Ξ,K)), and we will show how they can be estimated for the pri-
mary grain of a boolean model. Finally we will test the estimation method by
the simulations of a boolean model with rectangular grains.
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2 From the Mean n-Variogram of a Random Convex Set
to its Variations

In this section we will discuss the properties of the the mean n-variogram of a
random convex and how it describes his nth order structure.

2.1 Mean n-Variogram of Random Convex Set

In this paragraph we will define the mean n-variogram of a random convex and
discuss its properties. The mean n-variogram is a simple generalization of the
concept of mean covariogram introduced by Bruno Galerne in [9] for n = 2. The
proof of the following results can be easy found by recursion on n from Bruno
Galerne’s proof [9], that is why we will omit them.

Definition 1. Let Ξ0 be a random convex set satisfying E[νd(Ξ0)] < ∞ and
n ≥ 1 we will call mean n-variogram of Ξ0 the expectation of its n-variogram:

γ
(n)
Ξ0

:
∣
∣
∣
∣

R
d×(n−1) −→ R+

(u1, · · · un−1) �−→ E[νd(
⋂n−1

i=1 (Ξ0 − ui) ∩ Ξ0)]

Proposition 1. Let Ξ0 be a random convex set satisfying E[A(Ξ0)n] < ∞ and
n ≥ 3 (the cases n < 3 were treated in [9]).Then the mean n-variogram have the
following properties:

(i) permutation invariant:
∀σ ∈ Sn, γ

(n)
Ξ0

(u1, · · · un−1) = γ
(n)
Ξ0

(uσ(1), · · · uσ(n−1))
(ii) Reducibility:

∃i �= j, ui = uj ⇒ γ
(n)
Ξ0

(u1, · · · un−1) = γ
(n−1)
Ξ0

(u1, · · · ui−1, ui+1, · · · un−1)

and ∃i, ui = 0 ⇒ γ
(n)
Ξ0

(u1, · · · un−1) = γ
(n−1)
Ξ0

(u1, · · · ui−1, ui+1, · · · un−1)
(iii) ∀(u1, · · · un−1) ∈ R

d×(n−1), 0 ≤ γ
(n−1)
Ξ0

(u1, · · · un−1) ≤ γ
(n−1)
Ξ0

(u2, · · · un−1)
(iv) ∀k ≤ n − 1,

∫
Rd · · · ∫

Rd γ
(n)
Ξ0

(u1, · · · un−1)du1 · · · duk =

...E[νd(Ξ0)k]γ(n−k)
Ξ0

(uk+1, · · · un−1) especially for k = n we have:
∫

Rd

· · ·
∫

Rd

γ
(n)
Ξ0

(u1, · · · un−1)du1 · · · dun−1 = E[νd(Ξ0)n] (5)

(v) ∀(u1, · · · un−1) ∈ R
d×(n−1), γ

(n)
Ξ0

(−u1, · · · − un) = γ
(n)
−Ξ0

(u1, · · · un)

and γ
(n)
Ξ0

(−u1, u2 · · · un−1) = γ
(n)
Ξ0

(u1, u2 − u1, · · · un−1 − u1).
(vi) The partial map u → γ

(n)
Ξ0

(u1, · · · un−2, u) is uniformly continuous and zero
limit when ‖u‖ → +∞. Furthermore for all u ∈ R

d the map
r → γ

(n)
Ξ0

(u1, · · · un−2, ru) is decreasing on R.
(vii) γ

(n)
Ξ0

also has an integral formulation:

γ
(n)
Ξ0

(u1, · · · un−1) =
∫

Rd

P({x, x + u1, · · · x + un−1} ⊂ Ξ0)dx (6)
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The relationship (5) has a the great advantage of giving access to the nth

order moment of the volume of the random set Ξ0. This relationship is even
more important because dilating Ξ0 by a convex K, it gives access to some
linear combinations of the expectations E[

∏d
k=0 Wd,k(Ξ0,K)pk ] of order p =

∑d
k=0 pk ≤ n.

2.2 Dilatation of a Random Convex Set

Let Ξ0 be a convex random set and K a convex compact set, let’s recall the
Steiner’s formula:

∀r ≥ 0, νd(Ξ0 ⊕ rK) =
d∑

k=0

(
d

k

)

Wd,k(Ξ0,K)rk (7)

Where Wd,k(Ξ0,K) denote the mixed volume of k-homogeneity in its first vari-
able (d − k)-homogeneity in its second, that is:

∀k = 0, · · · d,∀(α, β) ∈ R
2
+, Wd,k(αΞ0, βK) = αd−kβkWd,k(Ξ0,K) (8)

Furthermore Wd,d(Ξ,K) = νd(K) and Wd,0(Ξ,K) = νd(Ξ). For r ∈ R+, n ≥ 0
and Ξ0 satisfiying E[νd(Ξ0)n] < ∞ we introduce the function:

ζ
(n)
Ξ0,K :

∣
∣
∣
∣
R+ −→ R+

r �−→ E[νd(Ξ0 ⊕ rK)n] (9)

The existance of ζ
(n)
Ξ0,K is ensured by the existance of E[νd(Ξ0)n] and the con-

vexity of Ξ0. Notice that for n ≥ 2 the functional ζ
(n)
Ξ0,K can be connected to the

mean n-variogram of Ξ0 ⊕ rK by (5) we have:

ζ
(n)
Ξ0,K(r) =

∫

Rd

· · ·
∫

Rd

γ
(n)
Ξ⊕rK(u1, · · · un−1)du1 · · · dun−1 (10)

by injecting (7) in (9) we have:

ζ
(n)
Ξ0,K(r) = E[(

d∑

k=0

(
d

k

)

Wd,k(Ξ0,K)rk)n] (11)

ζ
(n)
Ξ0,K is therefore a polynomial function in r of degree n × d it can be expressed

as:

ζ
(n)
Ξ0,K =

nd∑

j=0

C
(K)
n,j rj (12)

using the multinomial theorem, each of these coefficients C
(K)
n,j of degree

j ≤ nd, can be expressed as a linear combination of the interactions
E[

∏d
k=0 Wd,k(Ξ0,K)pk ] satisfying j =

∑d
k=0 k × pk and

∑d
k=0 pk = n.
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Of course we can extract all coefficients C
(K)
n,j by searching a polynomial approx-

imation of ζ
(n)
Ξ0,K in a similar way to the minimum contrast method [10].

Unfortunately in the general case it is not sufficient to obtain the interactions
E[

∏d
k=0 Wd,k(Ξ0,K)pk ] from the coefficients of ζ

(n)
Ξ0,K . However in the planar

case, we can do this as follows.

Theorem 1. Let Ξ0 be a convex random set on the plane R
2, we introduce the

polynomial function η
(n)
Ξ0,K as follows:

η
(n)
Ξ0,K(r) =

n∑

j=0

(
n

j

)

(−1)jA(K)jr2jζ
(n−j)
Ξ0,K (r) (13)

Where A(K) = ν2(K) denotes the area of K. Then η
(n)
Ξ0,K is a polynomial func-

tion of degree n and if we note M
(K)
n,k its kth order coefficient for all n ∈ N and

k = 1, · · · n, we have:

M
(K)
n,k =

� k
2 �∑

j=0

(−1)jA(K)j

(
n

j

)

C
(K)
2n−2j,k−2j (14)

and

E[A(Ξ)n−kW (Ξ0,K)k] =
M

(K)
n,k

2k
(
n
k

) (15)

Where W (Ξ0,K) = W2,1(K) denotes the mixed area and �k
2 � denotes the floor

of k
2 .

Proof. First according to Steiner’s formula, A(Ξ0) + 2rW (Ξ0,K) = A(Ξ0 ⊕
rK) − r2A(K)

⇒ E[(A(Ξ0)+2rW (Ξ0,K))n] = E[(A(Ξ0 ⊕K)− r2A(K))n] by applying the
binomial theoerm on each side of the equality and according to linearity of the
expectation we have:

η
(n)
Ξ0,K(r) =

n∑

k=0

2k

(
n

k

)

rk
E[A(Ξ)n−kW (Ξ0,K)k] (16)

it follows the relationship (15). Injecting (12) in (13) we have:

η
(n)
Ξ0,K(r) =

n∑

j=0

2(n−j)∑

p=0

(
n

j

)

(−1)jA(K)jr2j+pC
(K)
2n−2j,p

applying the change of variable z = 2j + p we have:

η
(n)
Ξ0,K(r) =

n∑

j=0

2n∑

z=2j

(
n

j

)

(−1)jA(K)jrzC
(K)
2n−2j,z−2j

=
2n∑

z=0

{
� z
2 �∑

j=0

(
n

j

)

(−1)jA(K)jC
(K)
2n−2j,z−2j}rz
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by identification with (16) it follows the relationship (14). ��
Remark 1. The Theorem 1 shows how the nth order interactions
E[A(Ξ)n−kW (Ξ0,K)k], k = 0, · · · n, can be estimated by the knowledge of
the functions ζ

(j)
Ξ0,K , j = 1, · · · n. We emphasize that for all convex com-

pact K the distribution of the random vector t(A(Ξ),W (Ξ0,K)) is fully
characterized and can be reconstructed from its moments: the interactions
E[A(Ξ)n−kW (Ξ0,K)k], n ∈ N, k = 1, · · · n. There is two way to estimate the nth

order interactions: make polynomials approximations of the ζ
(j)
Ξ0,K , j = 1, · · · n to

get their coefficients C
(K)
j,p and using (14) or make directly a polynomial approx-

imation of η
(n)
Ξ0,K to get the coefficients M

(K)
n,k and using (15).

2.3 Variation of a Random Convex Set in R
2

Here we will discuss the choice of K, let Ξ0 be a convex random set of R
2

satisfying E[A(Ξ0)] < ∞. Let’s note B the unit ball of R2 and Sθ the rotation of
the segment [0, 1] × {0} with angle θ ∈ [0, 2π]; in other words Sθ is the centred
segment directed by θ of length two. We have the well know result [6,11]:

W (Ξ0, B) =
1
2
U(Ξ0) (17)

W (Ξ0, Sθ) = HΞ0(θ) (18)

Where U(Ξ0) denotes the perimeter of Ξ0 and HΞ0(θ) denotes the Ferret’s
diameter of Ξ0 in the direction θ. As a direct result, the choice K = 2B pro-
vides estimators for all moments of the random vector t(A(Ξ0), U(Ξ0)), and by
choosing K = Sθ we obtain all moments of the random vector t(A(Ξ0),HΞ0(θ)).
Notice that the Ferret’s diameter is π-periodic in the variable θ, if Ξ0 is supposed
to be isotropic, then the random variables HΞ0(θ) for θ ∈ [0, π] are identically
distributed. Let’s remark that the random process HΞ0 = (HΞ0(θ))θ∈[0,π] fully
characterize the random set Ξ0⊕Ξ̆0; in fact, for each ω ∈ Ω the Ferret’s diameter
HΞ0(ω) : [0, π] → R+ coincide with the support function of the convex compact
set Ξ0 ⊕ Ξ̆0(ω). It is well known that the support function of the convex com-
pact set fully characterizes the convex compact set concerned [12]. Therefore
HΞ0 fully characterizes the difference body Ξ0 ⊕ Ξ̆0 that leads to the following
theorem.

Theorem 2 (Characterization of a Random Convex Set by Its Mixed
Area). Let’s Ξ

(1)
0 and Ξ

(2)
0 be two convex random sets of R

2 satisfying
E[A(Ξ(j))] < ∞, j = 1, 2 and assume at least one of the distributions of the
random variables A(Ξ(j)) is M-determinate [13]. Then, the condition

∀n ≥ 1, ∀K ∈ Kc, ζ
(n)

Ξ
(1)
0 ,K

= ζ
(n)

Ξ
(2)
0 ,K

(19)

Implies,
Ξ

(1)
0 ⊕ Ξ̆

(1)
0

L= Ξ
(2)
0 ⊕ Ξ̆

(2)
0 (20)
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Where “L=” denotes the so called equality in law, and Kc denotes the class of
convex compact sets on R

2.

Proof. Let’s Ξ
(1)
0 and Ξ

(2)
0 be two convex random sets of R

2 satisfying
E[A(Ξ(j)

0 )] < ∞, j = 1, 2 and assume at least one of the distributions of the
random variables A(Ξ(j)) is M-determinate Let’s assume the condition (19),
according to the Theorem 1 and the M-determinate condition:

(19) ⇒ ∀n ≥ 1, ∀K ∈ K, E[W (Ξ(1)
0 ,K)n] = [W (Ξ(2)

0 ,K)n]

⇒ W (Ξ(1)
0 ,K) L= W (Ξ(2)

0 ,K)

For each k ≥ 1 and for each (θ1, · · · θk) ∈ [0, π]k, let V1 =t

(H
Ξ

(1)
0

(θ1), · · · HΞ
(1)
0

(θk)) be a random vector extract of the random process HΞ1

and V2 =t (H
Ξ

(2)
0

(θ1), · · · HΞ
(2)
0

(θk)) a random vector extract of H
Ξ

(2)
0

. We will

prove V1
L= V2, for this, let’s consider a positive linear combination of elements

of V1,
∑k

i=1 αiHΞ
(1)
0

(θi) and the convex compact sets Z =
⊕k

i=1 αiSθi
. Notice

the following property:

Lemma 1. Let’s X,Y be convex sets, x ∈ R
+ and β ∈ [0, π]. Using the Steiner’s

formula on A(X ⊕Y ⊕xSβ) and the properties of the support function, it is easy
to show that:

W (X,Y ⊕ xSβ) = W (X,Y ) + xHX(β) (21)

Applaying successively this lemma on W (Ξ(1)
0 , Z) and on W (Ξ(2)

0 , Z) we have:
W (Ξ(1)

0 , Z) =
∑k

i=1 αiHΞ
(1)
0

(θi) and W (Ξ(2)
0 , Z) =

∑k
i=1 αiHΞ

(2)
0

(θi)
Thus,

∀(α1, · · · αk) ∈ R
k
+,

k∑

i=1

αiHΞ
(1)
0

(θi) =
k∑

i=1

αiHΞ
(2)
0

(θi)

which implies V1
L= V2, we have this result for all k ≥ 1 and for all (θ1, · · · θk) ∈

[0, π]k, thus H
Ξ

(1)
0

L= H
Ξ

(2)
0

therefore Ξ
(1)
0 ⊕ Ξ̆

(1)
0

L= Ξ
(2)
0 ⊕ Ξ̆

(2)
0 . ��

Remark 2. First note that the M-determinate condition is not realy restrictive,
it can always be assumed in pratical cases [14]. Let’s notice that the choice of
the convex compact Z =

⊕k
i=1 αiSθi

provide an explicit expression of the mixed
area, it can be use for estimate all characteristics of the random process HΞ0

in the following way; For each k ≥ 1 and n ≥ 0 we define P
(k,n)
Ξ0,(θ1,···θk)

, the
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polynomial function on k variables of degree n as:

P
(k,n)
Ξ0,(θ1,···θk)

(α1, · · · αk) = E[W (Ξ0,
k⊕

i=1

αiSθi
)n]

= (
k∑

i=1

αiHΞ0(θi))n

=
∑

j1+···jk=n

(
n

j1, · · · jk

)

E[
k∏

i=1

HΞ0(θi)ji ]
k∏

i=1

αji
i

Thus all of the expectations E[
∏k

i=1 HΞ0(θi)ji ] can be estimate by a fit of
P

(k,n)
Ξ0,(θ1,···θk)

. However, in practice it is difficult to compute and fit P
(k,n)
Ξ0,(θ1,···θk)

for large k, thus we will be more interested in the autocorrelation of the random
process HΞ0 and its marginals moments E[HΞ0(θ)

n].

3 Application to the Boolean Model

Let Ξ be a Boolean of primary grain Ξ0 and intensity λ:

Ξ =
⋃

xi∈Φ

Ξi + xi (22)

Where Φ is a homogeneous Poisson point process of intensity λ and the Ξi are
random convex sets identically distributed as Ξ0.

3.1 The Polynomial ζ
(K)
Ξ0

for the Primary Grain of the Boolean
Model

Let’s recall the fundamental relationship of functional capacity:

∀X ∈ K, TΞ(X) = P ({Ξ ∩ X �= ∅})

= 1 − exp(−λE[νd(Ξ0 ⊕ X̆)])
= 1 − exp(−ΨΞ(X))

Where ΨΞ(X) = − ln(1 − TΞ(X)) = λE[νd(Ξ0 ⊕ X̆)]. Let’s enunciate a useful
lemma the proof is omitted since it can be established by induction.

Lemma 2 (Inclusion-Exclusion Principle). Let f be a C-additive sets func-
tion, and (Ai)1≤i≤n be a non degenerate family of subset of Rn, then:

f(
n⋂

i=1

Ai) =
n∑

k=1

(−1)k+1

k!

∑

(i1,···ik)∈Ik

f(
k⋃

j=1

Aij )

f(
n⋃

i=1

Ai) =
n∑

k=1

(−1)k+1

k!

∑

(i1,···ik)∈Ik

f(
k⋂

j=1

Aij )
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Where Ik = {(i1, · · · ik) ∈ {i1, · · · ik} ⊂ {1, · · · n}k | ∀l ≤ k,∀m ≤ k, l �= m ⇒
il �= im}.

For n ≥ 2 let’s note un = 0, according the Lemma 2 and the expression of Ψ ,
the mean n-variogram can be expressed as:

γ
(n)
Ξ0

(u1, · · · un−1) = E[νd(
n⋂

i=1

Ξ0 − ui)]

=
n∑

k=1

(−1)k+1

k!

∑

(i(1),···i(k))∈Ik

E[νd(
k⋃

j=1

Ξ0 − ui(j))]

=
n∑

k=1

(−1)k+1

λk!

∑

(i(1),···i(k))∈Ik

ΨΞ({ui(1), · · · ui(k)})

⇒ γ
(n)
Ξ0

(u1, · · · un−1) =
n∑

k=1

(−1)k

λk!

∑

(i(1),···i(k))∈Ik

ln(1 − TΞ({ui(1), · · · ui(k)}))

(23)
Obviously the quantities ΨΞ({ui1 , · · · uik}) can be expressed by the n-point prob-
ability function C

(n)
Ξ (x1, · · · xn) = P({x1, · · · xn} ⊂ Ξ) evaluated on the subsets

of {u1, · · · un}, we have:

ln(1 − TΞ({ui1 , · · · uik})) = ln(P(
k⋂

j=1

{uij /∈ Ξ}))

= ln(
k∑

j=1

(−1)j+1

j!

∑

(z1,···zj)∈Ij

P(
j⋃

l=1

{ui(zl) /∈ Ξ}))

= ln(
k∑

j=1

(−1)j+1

j!

∑

(z1,···zj)∈Ij

(1 − C
(j)
Ξ (ui(z1), · · · ui(zj)))

⇒ γ
(n)
Ξ0

(u1, · · · un−1) =
n∑

k=1

∑

(i(1),···i(k))∈Ik

(−1)k

λk!
ln(

k∑

j=1

(−1)j+1

j!
∑

(z1,···zj)∈Ij

(1 − C
(j)
Ξ (ui(z1), · · · ui(zj))) (24)

The n-point-probability function C
(n)
Ξ (x1, · · · xn) can be viewed as a vol-

ume fraction of
n⋂

i=1

(Ξ + xi), it is easy to see that the stationary of Ξ implies

P({x1, · · · xn} ⊂ Ξ) = P({0, x1 − xn, · · · xn−1 − xn} ⊂ Ξ),its yield an unbiased
estimator for the n-point probability function in bounded windows W :

Ĉ
(n)
Ξ,W (x1, · · · xn) =

νd((Ξ ∩ W ) � {0, x1 − xn, · · · xn−1 − xn})
νd(W � {0, x1 − xn, · · · xn−1 − xn})

(25)
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Thus, an estimator γ̂
(n)
Ξ0,W for the mean n-variogram of Ξ0 can be obtained by

(25),(24) associated to an estimator of λ (see [5,7]). We emphasize that the
Boolean model is stable by convex dilatation, in other words, for K ∈ Kc, the
dilated model Ξ ⊕K is also a Boolean model of same intensity λ and of primary
grain Ξ0 ⊕ K. As a consequence, for each r ≥ 0 an estimator γ̂

(n)
Ξ0⊕rK can be

found. However a precaution must be taken to break the edge effects; if we have
a realization of Ξ∩W , the dilated model Ξ⊕rK is only known within the eroded
window WrK = W � rK, in fact ((Ξ ∩ W ) ⊕ rK) ∩ WrK = (Ξ ⊕ rK) ∩ WrK .
Therefore it follow from (10) the estimators:

ζ̂
(n)
Ξ0,K,W (r) =

∫

Rd

· · ·
∫

Rd

γ̂
(n)
Ξ⊕rK,WrK

(u1, · · · un−1)du1 · · · dun−1 (26)

3.2 The Case of the Planar Boolean Model

As a consequence of (26) and the Theorem1, in the planar case we obtain an
estimator for the polynomial η

(n)
Ξ,K :

η̂
(n)
Ξ0,K,W (r) =

n∑

j=0

(
n

j

)

(−1)jA(K)jr2j ζ̂
(n−j)
Ξ0,K,W (r) (27)

Therefore by fitting these quantities, we obtain estimators for the moments of
t(A(Ξ0),W (Ξ0,K)). Furthermore the polynomial approximation of η̂

(n)
Ξ0,K,W can

be refined by inequality constraints, some of them are probabilistic( inequality
between moments, Cauchy-Schwarz inequality). But there are also some morpho-
logical constraints like the generalized isoperimetric inequality [15]. Furthermore,
if we make additive assumptions concerning the shape of Ξ0, other constraints
can be found [16].

Fig. 1. A realization of the test model (a) and the relatives error of the estimation of
the 2nd order moments of t(A(Ξ0), U(Ξ0)) on (b) and of t(A(Ξ0), HΞ0(θ)) on (c).
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We have tested this method with n = 2 for a Boolean model of rectan-
gular grains: the uncorrelated sides of the primary grain follow N (40, 10) and
N (30, 10), the intensity parameter λ = 100

500×500 (see Fig. 1). We have simulated
several realization of this model in a bounded window W = 500 × 500, and
we studies the relative error between the theoretical and estimated moments of
t(A(Ξ0),W (Ξ0,K)) when K is a ball or a segment (see Fig. 1).

4 Conclusions and Prospects

We have established analytical formulae which allow us to connect the n-
variograms of the dilatations of a random convex set with the variations of some
of its morphological characteristics. For the Boolean model, we also have shown
how the n-variogram of its primary grain can be connected to its n-point proba-
bility function. Therefore, it provides estimators of the variations of the primary
grain’s morphological characteristics. Especially, using dilatation by a disk or
a segment, the proposed method can be used to characterize a primary grain
whose shape depends on two parameters (rectangle, ellipse,...). We emphasize
that our method can be used for any germ-grain model in which we can estimate
the mean n-variogram.

In the future we are looking at more complex germ-grain models than the
Boolean model. We are also interested in the influence of the model parameters
and the observation’s window on the accuracy of the estimates. The prospect
of describing a convex random set by the characteristics of the random process
associated to its Ferret’s diameter (see Subsect. 2.3), is even more relevant.
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CNRS & LRI, Université Paris-Saclay & INRIA-TAO, Paris, France
yann.ollivier@lri.fr

When observing data x1, . . . , xt modelled by a probabilistic distribution pθ(x),
the maximum likelihood (ML) estimator θML = arg maxθ

∑t
i=1 ln pθ(xi) cannot,

in general, safely be used to predict xt+1. For instance, for a Bernoulli process,
if only “tails” have been observed so far, the probability of “heads” is estimated
to 0. (Thus for the standard log-loss scoring rule, this results in infinite loss the
first time “heads” appears.)

Bayesian estimators suffer less from this problem, as every value of θ con-
tributes, to some extent, to the Bayesian prediction of xt+1 knowing x1:t. How-
ever, their use can be limited by the need to integrate over parameter space or
to use Monte Carlo samples from the posterior distribution.

For Bernoulli distributions, Laplace’s famous “add-one” rule of succession
(e.g., [CBL06,Grü07]) regularizes θ by adding 1 to the count of “heads” and of
“tails” in the observed sequence, thus estimating the Bernoulli parameter pH by
p̂H := nH+1

nH+nT +2 given nH “heads” and nT “tails” observations. On the other
hand the maximum likelihood estimator is nH

nH+nT
so that the two differ at order

O(1/n) after n = nH + nT observations.
For Bernoulli distributions, Laplace’s rule is equivalent to using a uni-

form Bayesian prior on the Bernoulli parameter [CBL06, Ch. 9.6]. The non-
informative Jeffreys prior on the Bernoulli parameter corresponds to Krichevsky
and Trofimov’s “add-one-half” rule [KT81], namely p̂H := nH+1/2

nH+nT +1 . Thus, in
this case, some Bayesian predictors have a simple implementation.

We claim (Theorem 1) that for exponential families1, Bayesian predictors can
be approximated by mixing the ML estimator with the sequential normalized
maximum likelihood (SNML) estimator from universal coding theory [RSKM08,
RR08], which is a fully canonical version of Laplace’s rule. The weights of this
mixture depend on the density of the desired Bayesian prior with respect to
the non-informative Jeffreys prior, and are equal to 1/2 for the Jeffreys prior,
thus extending Krichevsky and Trofimov’s result. The resulting mixture also
approximates the “flattened” ML estimator from [KGDR10].

Thus, it is possible to approximate Bayesian predictors without the cost
of integrating over θ or sampling from the posterior. The statements below
emphasize the special role of the Jeffreys prior and the Fisher information met-
ric. Moreover, the analysis reveals that the direction of the shift from the ML
predictor to Bayesian predictors is systematic and given by an intrinsic,
1 For simplicity we only state the results with i.i.d. models. However the ideas extend to

non-i.i.d. sequences with pθ(xt+1|x1:t) in an exponential family, e.g., Markov models.

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-25040-3 34
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information-geometric vector field on statistical manifolds. This could contribute
to regularization procedures in statistical learning.

1. Notation and Statement. Let pθ(x) dx be a family of distributions on a variable
x, smoothly parametrized by θ, with density pθ(x) with respect to some reference
measure dx (typically dx is the counting measure for discrete x, or the Lebesgue
measure in R

d).
Let x1, . . . , xt be a sequence of observations to be predicted online using pθ.

The maximum likelihood predictor pML is given by the probability density

pML(xt+1 = y|x1:t) := pθML
t

(y), θML
t := arg max

θ

t∑

i=1

ln pθ(xi) (1)

assuming this arg max is well-defined. Bayesian predictors (e.g., Laplace’s rule)
usually differ from pML at order 1/t.

The sequential normalized maximum likelihood predictor ([RSKM08,RR08],
see also [TW00]) uses, for each possible value y of xt+1, the parameter θML+y

that would yield the best probability if y had already been observed. Since this
increases the probability of every y, it is necessary to renormalize. Define

θML+y
t := arg max

θ

{

ln pθ(y) +
t∑

i=1

ln pθ(xi)

}

(2)

as the ML estimator when adding y at position t + 1. For each y, define the
SNML predictor2 for time t + 1 by the probability density

pSNML(xt+1 = y|x1:t) :=
1
Z

pθML+y
t

(y) (3)

where Z is a normalizing constant (assuming Z < ∞).
For Bernoulli distributions, pSNML coincides with Laplace’s “add-one” rule3.

For other distributions the two may differ4: for instance, defining Laplace’s rule
for continuous-valued x requires choosing a prior distribution on x, whereas the
SNML distribution is completely canonical.

We claim that for exponential families, 1
2 (pML + pSNML) is close to the

Bayesian predictor using the Jeffreys prior. This generalizes the “add-one-half”
rule.
2 This variant of SNML is SNML-1 in [RSKM08] and CNML-3 in [Grü07].
3 Note that we describe it in a different way. The usual presentation of Laplace’s rule

is to define θLap := arg maxθ{ln pθ(“heads”) + ln pθ(“tails”) +
∑

ln pθ(xi)} and then
use θLap to predict xt+1. Here we follow the SNML viewpoint and use a different
θML+y for each possible value y of xt+1.

4 [HB12,BGH+13] contain a characterization of those one-dimensional exponential
families for which the variants of NML predictors coincide exactly between them-
selves and with a Bayesian prior, which is then necessarily the Jeffreys prior. Here
Theorem 1 shows that this happens in some approximate sense for any exponential
family; further relationship between these results is not obvious.
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This extends to any Bayesian prior π by using a weighted SNML predictor

pw-SNML(y) :=
1
Z

w(θML+y) pθML+y (y) (4)

The weight w(θ) to be used for a given prior π will depend on the ratio between
π and the Jeffreys prior. Recall that the latter is πJeffreys(dθ) :=

√
det I(θ) dθ

where I is the Fisher information matrix of the family (pθ),

I(θ) := −Ex∼pθ
∂2

θ ln pθ(x) (5)

where ∂2
θ stands for the Hessian matrix of a function of θ.

Theorem 1. Let pθ(x) dx be an exponential family of probability distributions,
and let π be a Bayesian prior on θ. Then, under suitable regularity assumptions,
the Bayesian predictor with prior π knowing x1:t has probability density

1
2
pML(·|x1:t) +

1
2
pβ2-SNML(·|x1:t) (6)

up to O(1/t2), where β(θ) is the density of π with respect to the Jeffreys prior,
i.e., π(dθ) = β(θ)

√
det I(θ) dθ with I the Fisher matrix.

More precisely, both under the prior π and under 1
2 (pML + pβ2-SNML), the

probability density that xt+1 = y given x1:t is asymptotically

pθML
t

(y)
(

1 +
1
2t

‖∂θ ln pθ(y)‖2
F +

1
t

〈∂θ ln β , ∂θ ln pθ(y)〉F − dim Θ

2t
+ O(1/t2)

)

(7)
provided pθML

t
(y) > 0, where 〈∂θf , ∂θg〉F := (∂θf)�I−1(θ)∂θg is the Fisher scalar

product and ‖∂θf‖2
F = 〈∂θf , ∂θf〉F is the Fisher metric norm of ∂θf .

For the Jeffreys prior (constant β), this also coincides up to O(1/t2) with the
“flattened” or “squashed” ML predictor from [KGDR10,GK10] with n0 = 0. In
particular, the latter is O(1/t2) close to the Jeffreys prior, and the optimal regret
guarantees in [KGDR10] apply to (7). Note that a multiplicative 1 + O(1/t2)
difference between predictors results in an O(1) difference on cumulated log-loss
regrets.

Regularity Assumptions. In most of the article we assume that pθ(xt+1|x1:t) is a
non-degenerate exponential family of probability distributions, with θ belonging
to an open set of parameters Θ. The key property we need from exponential
families is the existence of a parametrization θ in which ∂2

θ ln pθ(x) = −I(θ)
for all x and θ: this holds in the natural parametrization for any exponential
family (indeed, pθ(x) = eθ·T (x)/Z(θ) yields ∂θ ln pθ(x) = T (x) − ∂θ ln Z(θ) so
that ∂2

θ ln pθ(x) = −∂2
θ ln Z(θ) for any x).

For simplicity we assume that the space for x is compact, so that to prove
O(1/t2) convergence of distributions over x it is enough to prove O(1/t2) conver-
gence for each value of x. We assume that the sequence of observations (xt)t∈N
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is an ineccsi sequence [Grü07], namely, that for t large enough, the maximum
likelihood estimate is well-defined and stays in a compact subset of the parame-
ter space. We also need to assume the same in a Bayesian sense, namely, that for
t large enough, the Bayesian maximum a posteriori using prior π is well-defined
and stays in a compact subset of Θ. The Bayesian priors are assumed to be
smooth with positive densities. On the other hand we do not assume that the
Jeffreys prior or the prior π are proper; it is enough that the posterior given the
observations is proper, so that the Bayesian predictor at time t is well-defined.

In some parts of the article we do not need pθ to be an exponential family,
but we still assume that the model pθ is smooth, that there is a well-defined
maximum θML

t for any x1:t and no other log-likelihood local maxima.

2. Computing the SNML Predictor. We prove Theorem 1 by proving that both
predictors are given by (7). Further proofs are gathered at the end of the text.

We first work on pSNML. Here we do not assume that pθ is an exponential fam-
ily. Let Jt be the observed information matrix, assumed to be positive-definite,

Jt(θ) := −1
t

t∑

i=1

∂2
θ ln pθ(xi) (8)

Proposition 2. Under suitable regularity assumptions, the maximum likelihood
update from t to t + 1 satisfies

θML
t+1 = θML

t +
1
t
Jt(θML

t )−1 ∂θ ln pθ(xt+1) + O(1/t2) (9)

For exponential families, this update is the natural gradient of ln p(xt+1)
with learning rate 1/t [Ama98], because Jt(θML

t ) = I(θML
t ), the exact Fisher

information matrix. (For exponential families in the natural parametrization,
Jt(θ) = I(θ) for all θ. But since the Hessian of a function f on a manifold
is a well-defined tensor at a critical point of f , it follows that at θML

t one has
Jt(θML

t ) = I(θML
t ) for any parametrization of an exponential family.)

Proposition 3. Under suitable regularity assumptions,

pSNML(y|x1:t) =
1
Z

pθML
t

(y)
(

1 +
1
t
(∂θ ln pθ(y))�J−1

t ∂θ ln pθ(y) + O(1/t2)
)

(10)
provided pθML

t
(y) > 0, where Jt is as above and the derivatives are taken at θML

t .

Importantly, the normalization constant Z can be computed without having
to sum over y explicitly. Indeed (cf. [KGDR10]), by definition of I(θ),

Ey∼pθ
(∂θ ln pθ(y))�J−1

t ∂θ ln pθ(y) = Tr(J−1
t I(θ)) (11)

so that Z = 1 + 1
t Tr(J−1

t I(θML
t )) + O(1/t2). For exponential families, Jt = I at

θML
t so that Z = 1 + dim Θ

t + O(1/t2) and

pθML
t

(y)
(

1 +
1
t
(∂θ ln pθ(y))�I−1 ∂θ ln pθ(y) − dim Θ

t

)

(12)
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is an O(1/t2) approximation of pSNML(y|x1:t).
For the weighted SNML distribution pw-SNML, a similar argument yields

p
w-SNML

(y|x1:t) =
1

Z
p

θML
t

(y)

(

1 +
1

t
(∂θ ln pθ(y))

�
J

−1
t (∂θ ln pθ(y) + ∂θ ln w(θ)) + O(1/t

2
)

)

(13)

with Z = 1 + 1
t Tr(J−1

t I(θML
t )) + O(1/t2) as above. (The ∂θ ln w term does not

contribute to Z because
∑

y pθ(y)∂θ ln pθ(y) = 0).
Computing 1

2pML + 1
2pw-SNML with w(θ) = β(θ)2 in (13), and using that

Jt(θML) = I for exponential families, proves one half of Theorem 1.

3. Computing the Bayesian Posterior. Next, let us establish the asymptotic
behavior of the Bayesian posterior. This relies on results from [TK86]. The fol-
lowing proposition may have independent interest.

Proposition 4. Consider a Bayesian prior π(dθ) = α(θ) dθ. Then the posterior
mean of a smooth function f(θ) given data x1:t and prior π is asymptotically

f(θML
t ) +

1
t
(∂θf)�J−1

t ∂θ

(

ln
α

√
det(−∂2

θL)

)

+
1
2t

Tr(J−1
t ∂2

θf) + O(1/t2) (14)

where L(θ) := 1
t ln pθ(x1:t) is the average log-likelihood function, ∂2

θ is the
Hessian matrix w.r.t. θ, and Jt := −∂2

θL(θML
t ) is the observed information

matrix.

When pθ is an exponential family in the natural parametrization, for any
x1:t, −∂2

θL is equal to the Fisher matrix I, so that the denominator in the log
is the Jeffreys prior

√
det I. In particular, for exponential families in natural

coordinates, the first term vanishes if the prior π is the Jeffreys prior.

Corollary 5. Let pθ be an exponential family. Consider a Bayesian prior
β(θ)

√
det I(θ) dθ having density β with respect to the Jeffreys prior. Then the

posterior probability that xt+1 = y knowing x1:t is asymptotically given by (7) as
in Theorem 1.

This proves the second half of Theorem 1.

4. Intrinsic Viewpoint. When rewritten in intrinsic Riemannian terms, Proposi-
tion 4 emphasizes a systematic discrepancy at order 1/t between ML prediction
and Bayesian prediction, which is often more “centered” as in Laplace’s rule.

This is characterized by a canonical vector field on a statistical manifold
indicating the direction of the difference between ML and Bayesian predictors,
as follows. In intrinsic terms, the posterior mean (14) in Proposition 4 is5

f(θML)− 1
t
(∇2L)−1

(

d f,d ln
π

√
det(−∇2L)

)

− 1
2t

Tr
(
(∇2L)−1∇2f

)
+O(1/t2)

(15)
5 The equality between (14) and (15) holds only at θML

t ; the value of (14) is not
intrinsic away from θML. The equality relies on ∂θL = 0 at θML to cancel curvature
contributions.
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where L(θ) =
∑t

i=t ln pθ(xi) as above and where ∇2 is the Riemannian Hessian
with respect to any Riemannian metric on θ, for instance the Fisher metric.
This follows from a direct Riemannian-geometric computation (e.g., in normal
coordinates). In this expression both, the prior π(dθ) and

√
det(−∇2L) are

volume forms on the tangent space so that their ratio is coordinate-independent6.
At first order in 1/t, this is the average of f under a Riemannian

Gaussian distribution7 with covariance matrix 1
t (−∇2L)−1, but centered at

θML − 1
t (∇2L)−1 d ln(π/

√
det(−∇2L)) instead of θML.

Thus, if we want to approximate the posterior Bayesian distribution by a
Gaussian, there is a systematic shift 1

t V (θML) between the ML estimate and the
center of the Bayesian posterior, where V is the data-dependent vector field

V := −(∇2L)−1 d ln
(
π/

√
det(−∇2L)

)
(16)

A particular case is when π is the Jeffreys prior: then

V =
1
2
(∇2L)−1 d ln det(−I−1∇2L) (17)

is an intrinsic vector field defined on any statistical manifold, depending on x1:t.

Proposition 6. When the prior is the Jeffreys prior, the vector V is

V i =
1
2
(∇i∇jL)−1(∇k∇lL)−1 ∇j∇k∇lL (18)

in Einstein notation, where L(θ) = 1
t

∑t
s=1 ln pθ(xs) is the log-likelihood func-

tion, and ∇ is the Levi-Civita connection of the Fisher metric8.
If pθ is an exponential family with the Jeffreys prior, the value of V at θML

does not depend on the observations x1:t and is equal to

V i(θML) =
1
4
IijIklTjkl (19)

where T is the skewness tensor [AN00, Eq. (2.28)]

Tjkl(θ) := Ex∼pθ

∂ ln pθ(x)
∂θj

∂ ln pθ(x)
∂θk

∂ ln pθ(x)
∂θl

(20)

V (θML) is thus an intrinsic, data-independent vector field for exponential
families, which characterizes the discrepancy between maximum likelihood and
the “center” of the Jeffreys posterior distribution. Note that V can be computed
from log-likelihood derivatives only. This could be useful for regularization of
the ML estimator in statistical learning.
6 This is clear when dividing both by the Riemannian volume form

√
det g: both the

prior density π/
√

det g and
√

det(−g−1∇2L) are intrinsic.
7 i.e., the image by the exponential map of a Gaussian distribution in a tangent plane.
8 Note that ∇j∇k∇lL is not fully symmetric. Still it is symmetric at θML, because the

various orderings differ by a curvature term applied to ∇L with vanishes at θML.
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5. Proofs (Sketch)
Proof of Proposition 2. Minimization of a Taylor expansion of log-likelihood
around θML

t . This is justified formally by applying the implicit function theorem
to F : (ε, θ) �→ ∂θ

(
ε ln pθ(xt+1) + 1

t

∑t
i=1 ln pθ(xt)

)
at point (0, θML).

Proof of Proposition 3. Abbreviate θy := θML+y
t . From Proposition 2 we have

θy = θML
t +

1
t
J−1

t ∂θ ln pθ(y) + O(1/t2) (21)

and expanding ln pθ(y) around θML
t yields pθy

(y) = pθML
t

(y)(1 + (θy −
θML

t )�∂θ ln pθ(y)) + O((θy − θML)2) and plugging in the value of θy − θML
t yields

the result.

Proof of Proposition 4. The posterior mean is (
∫

f(θ)α(θ)pθ(x1:t) dθ)/
(
∫

α(θ)pθ(x1:t) dθ). From [TK86], if L1(θ) = 1
t ln pθ(x1:t) + 1

t g1(θ) and L2 =
1
t ln pθ(x1:t) + 1

t g2(θ) we have
∫

etL2(θ) d θ
∫

etL1(θ) d θ
=

√
det H1

det H2
et(L2(θ2)−L1(θ1))(1 + O(1/t2)) (22)

where θ1 = arg max L1, θ2 = arg max L2, and H1 and H2 are the Hessian matri-
ces of −L1 and −L2 at θ1 and θ2, respectively. Here we have g1 = ln α(θ) and
g2 = g1 + ln f(θ) (assuming f is positive; otherwise, add a constant to f).

From a Taylor expansion of L1 as in Proposition 2 we find θ1 = θML
t +

1
t J

−1
t ∂θg1(θML

t ) + O(1/t2) and likewise for θ2. So θ1 − θ2 = 1
t J

−1
t ∂θ(g1 −

g2)(θML
t ) + O(1/t2). Since θ2 maximizes L2, a Taylor expansion of L2 around θ2

gives

L2(θ1) = L2(θ2) − 1
2
(θ1 − θ2)�H2(θ1 − θ2) + O(1/t3) (23)

so that, using L2 = L1 + 1
t ln f we find

L2(θ2) − L1(θ1) = L2(θ1) − L1(θ1) +
1
2
(θ1 − θ2)�H2(θ1 − θ2) + O(1/t3) (24)

=
1
t

ln f(θ1) +
1

2t2
(∂θ ln f)�J−1

t H2J
−1
t ∂θ ln f + O(1/t3) (25)

where the second term is evaluated at θML
t . We have H2 = Jt + O(1/t), so

exp(t(L2(θ2)−L1(θ1))) = f(θ1)(1+ 1
2t (∂θ ln f)�J−1

t ∂θ ln f+O(1/t2)). Meanwhile,
by a Taylor expansion of ln det(−∂2

θL2(θ2)) around θ2,

detH2 = det(−∂2
θL2(θ2)) = det(−∂2

θL2(θ1))
(
1 + (θ2 − θ1)

�∂θ ln det(−∂2
θL2) + O(θ2 − θ1)

2
)

(26)

and from L2 = L1 + 1
t ln f and det(A+ εB) = det(A)(1+ ε Tr(A−1B)+O(ε2)),

det(−∂2
θL2(θ1)) = det(−∂2

θL1(θ1))
(

1 +
1
t

Tr
(
(∂2

θL1)−1∂2
θ (ln f)

)
+ O(1/t2)

)

(27)

= (det H1)
(

1 − 1
t

Tr
(
H−1

1 ∂2
θ (ln f)

)
+ O(1/t2)

)

(28)
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so, collecting,
√

detH1

det H2
= 1 − 1

2
(θ2 − θ1)�∂θ ln det(−∂2

θL2) +
1
2t

Tr
(
H−1

1 ∂2
θ (ln f)

)
+ O(1/t2)

(29)

but θ2 − θ1 = J−1
t ∂θ ln f +O(1/t2), and L2 = L+O(1/t) and H1 = Jt +O(1/t),

so that√
detH1

detH2
= 1− 1

2t
(∂θ ln f)�J−1

t ∂θ ln det(−∂2
θL) +

1

2t
Tr
(
J−1

t ∂2
θ (ln f)

)
+ O(1/t2) (30)

Collecting from (22), expanding f(θ1) = f(θML
t )(1 + 1

t (∂θ ln f)�J−1
t ∂θ ln α +

O(1/t2)), and expanding ∂θ ln f in terms of ∂θf proves Proposition 4.

Proof of Corollary 5. Let us work in natural coordinates for an exponential
family (indeed, since the statement is intrinsic, it is enough to prove it in some
coordinate system). In these coordinates, for any x, ∂2

θ ln pθ(x) = −I(θ) with I
the Fisher matrix, so that −∂2

θL = I(θ). Apply Proposition 4 to f(θ) = pθ(y),
expanding ∂θf = f∂θ ln f and using ∂2

θ ln f = −I(θ).

Proof of Proposition 6. The Levi-Civita connection on a Riemannian mani-
fold with metric g satisfies ∇l ln detAj

i = (A−1)i
j∇lA

j
i thanks to ∂ ln det M =

Tr(M−1∂M) and by expanding ∇A. Applying this to Aj
i = Ijk∇2

kiL and using
∇I = 0 proves the first statement. Moreover, for any function f , at a critical
point of f , ∇l∇j∇kf = ∇l∂j∂kf −Γ i

jk∇l∇if and consequently at a critical point
of f , with Hij = ∇i∇jf ,

∇l ln det(gijHjk) = (H−1)ij∇l∂i∂jf − (H−1)jkΓ i
jkHil (31)

In the natural parametrization of an exponential family, −∂2L is identically
equal to the Fisher metric I. Consequently, ∇l ln det(−Iij∇2

jkL) = Iij∇lIij −
IjkΓ i

jkIil = −IjkΓ i
jkIil since ∇I = 0. So from (17), using d = ∇ = ∂ for scalars,

and ∇2L = −I at θML, we get in this parametrization

V m = −1
2
Iml∂l ln det(−I−1∇2L) =

1
2
ImlIjkΓ i

jkIil =
1
2
IjkΓm

jk (32)

The Christoffel symbols Γ in this parametrization can be computed from

∂iIjk(θ) = ∂iEx∼pθ
∂j ln pθ(x)∂k ln pθ(x) (33)

= Tijk − IijEx∼pθ
∂k ln pθ(x) − IikEx∼pθ

∂j ln pθ(x) = Tijk (34)

because ∂i∂j ln pθ(x) = −Iij(θ) for any x in this parametrization, and because
E∂ ln pθ(x) = 0. So Γ i

jk = 1
2IilTjkl in this parametrization. This ends the proof.

Acknowledgments. I would like to thank Peter Grünwald and the referees for valu-
able comments and suggestions on this text.
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Horizon-independent optimal prediction with log-loss in exponential fami-
lies. In: Conference on Learning Theory (COLT), pp. 639–661 (2013)

CBL06. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge
University Press, Cambridge (2006)

GK10. Grünwald, P., Kot�lowski, W.: Prequential plug-in codes that achieve opti-
mal redundancy rates even if the model is wrong. In: 2010 IEEE Interna-
tional Symposium on Information Theory Proceedings (ISIT), pp. 1383–
1387, IEEE (2010)
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Abstract. A divergence function defines a Riemannian metric G and
dually coupled affine connections (∇, ∇∗) with respect to it in a mani-
fold M . When M is dually flat, a canonical divergence is known, which
is uniquely determined from {G, ∇, ∇∗}. We search for a standard diver-
gence for a general non-flat M . It is introduced by the magnitude of
the inverse exponential map, where α = −(1/3) connection plays a fun-
damental role. The standard divergence is different from the canonical
divergence.

1 Introduction: Divergence and Dual Geometry

A divergence function D[p : q] is a differentiable function of two points p and q
in a manifold M . It satisfies the non-negativity condition

D[p : q] ≥ 0 (1)

with equality when and only when p = q. But it is not a distance in the mathe-
matical sense and it can be an asymmetric function of p and q. When a coordinate
system ξ is given in M , we pose one condition that, for two nearby points p = (ξ)
and q = (ξ + dξ), D is expanded as

D[p : q] =
1
2
gij(ξ)dξidξj + O

(|dξ|3) (2)

and gij(ξ) is a positive definite matrix.
A Riemannian metric G = (gij) is defined from the divergence by (2). A pair

of dual affine connections are also introduced from it (Eguchi 1983). We use a
simplified notation of differentiation such as

∂i =
∂

∂ξi
. (3)

We also use the following notations of differentiation with respect to coordinates
of p = (ξ) and q = (ξ′) in D [ξ : ξ′] as

∂i =
∂

∂ξi
, ∂′

i =
∂

∂ξ′i . (4)

c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 320–325, 2015.
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Then, the Riemannian metric is written as

gij = −∂i∂
′
jD [ξ : ξ′]ξ′=ξ = ∂i∂jD [ξ : ξ′]ξ′=ξ = ∂′

i∂
′
jD [ξ : ξ′]ξ′=ξ . (5)

The two quantities

Γijk = −∂i∂j∂
′
kD [ξ : ξ′]ξ′=ξ , (6)

Γ ∗
ijk = −∂′

i∂
′
j∂kD [ξ : ξ′]ξ′=ξ (7)

give coefficients of a pair of dual affine connections without torsion. They define
two covariant derivatives ∇ and ∇∗. They are dual with respect to the Rie-
mannian metric, since they satisfy the duality condition

X〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇∗
XZ〉 (8)

for three vector fields X,Y and Z, where 〈 , 〉 is the inner product (Amari and
Nagaoka 2000).

The inverse problem is to find a divergence D[p : q] which generates a given
geometrical structure {M,∇,∇∗}. Matumoto (1993) showed that a divergence
exists for any such manifold. However, it is not unique and there are infinitely
many divergences which give the same geometrical structure. It is an interesting
problem to define a standard divergence which is uniquely determined from the
geometrical structure. The present paper gives an answer to it, by using the
magnitude (Riemannian length) of the inverse exponential map, where we use
the α-connection with α = −(1/3).

When a manifold is dually flat, a canonical divergence was introduced by
Amari and Nagaoka (2000), which is a Bregman divergence. It has nice prop-
erties such as the generalized Pythagorean theorem and projection theorem.
A standard divergence is different from it even in the dually flat case. It will be
an interesting problem to search for their relations in a more general framework.

2 Exponential Map

A geodesic ξ(t) passing through p = (ξp) satisfies the geodesic equation,

ξ̈i(t) = −Γjk
i {ξ(t)} ξ̇j ξ̇k, (9)

ξ(0) = ξp, (10)

ξ̇(0) = X, (11)

where X is a tangent vector belonging to the tangent space at p, ˙ denotes
differentiation d/dt and Γ i

jk is the contravariant representation of Γjki. We fix p
and consider the exponential map, denoted by expp(X), which maps X to q as

q = ξ(1). (12)

We denote it as
q = expp(X). (13)
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We consider a neighborhood of M in which there exists a unique geodesic
connecting two points.

A dual geometry is characterized by a triple {M,G, T}, where T is a third-
order symmetric tensor defined by

Tijk = Γ ∗
ijk − Γijk, (14)

Γijk = Γ
(0)
ijk − 1

2
Tijk, (15)

Γ ∗
ijk = Γ

(0)
ijk +

1
2
Tijk, (16)

where Γ
(0)
ijk denotes the Levi-Civita connection (Amari and Nagaoka, 2000). The

α-geometry is defined by {M,G,αT}, where α is a scalar parameter. We have
dual connections called the ±α-connection,

Γ
(±α)
ijk = Γ

(0)
ijk ∓ α

2
Tijk. (17)

The α-connection and −α-connection are dually coupled with respect to G.
The α-exponential map is defined in M by using the α-geodesic defined by

the α-connection and is denoted by exp(α)
p (X).

The inverse of the exponential map or the log map is defined in a neighbor-
hood of p, which maps q to a tangent vector X at p:

X(p; q) = logp(q). (18)

When the α-connection is used, we call it the α-inverse exponential map or α-log
map, denoting it by

Xα(p; q) = log(α)
p (q). (19)

The square of the magnitude of X(p; q) is defined by

‖Xα(p; q)‖2 =
1
2
gij(p)Xi

α(p; q)Xj
α(p; q). (20)

It satisfies the conditions of divergence, so by denoting it as

Dα[p : q] = ‖Xα(p; q)‖2, (21)

we call it the α-inverse-exponential divergence (α-log divergence in short).

3 α-Divergence Derived from Inverse Exponential Map

We study the dual geometry given rise to by the inverse-exponential divergence.
An important question is if it recovers the original geometry of M or not. Since
the geometrical quantities are derived from a divergence by its derivatives at
diagonal elements p = q, it suffices to study the exponential map when p and q
are close. We use the Taylor expansion. By expanding geodesic ξ(t)

ξi(t) = ξi
p + tai +

t2

2
bi + O

(
t3

)
, (22)
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we have

ai = ξ̇i(0) = Xi, (23)
bi = ξ̈i(0) = −Γjk

iXjXk. (24)

Hence, the inverse exponential map satisfies

Xi(p; q) = Δzi +
1
2
Γjk

iΔzjΔzk + O
(|Δ|3) , (25)

where
Δzi = ξi

q − ξi
p (26)

and
ξq = expp(tX). (27)

For the log map, we have

D[p : q] = ‖X‖2 =
1
2
gij(p)ΔziΔzj +

1
2
Γijk(Δz)i

(
Δzj

)
Δzk. (28)

Theorem 1. The α-log divergence recovers the original Riemannian metric.

Proof. From (28), by differentiation, we easily have

∂′
i∂

′
jDα [ξ : ξ′]|ξ=ξ′=ξp

= gij (ξp) (29)

for any α connection in which Γ
(α)
ijk is used in (28).

Theorem 2. The log divergence of M induces α = −3 geometry.

Proof. We calculate the dual affine connection Γ
∗(X)
ijk induced from D [ξ : ξ′] =

‖X‖2. It is given by
Γ

∗(X)
ijk = −∂′

i∂
′
j∂kD [ξ : ξ′]ξ′=ξ (30)

which is proved to be
Γ

∗(X)
ijk = −∂kgij + 3Γ(ijk), (31)

where (i, j, k) implies symmetrization with respect to three indices. From the
identity

∂kgij = Γkij + Γkji + Tijk (32)
= Γ ∗

kji + Γ ∗
kji − Tijk (33)

derived from
∇kgij = Tkij , (34)

we have
Γ

∗(X)
ijk = Γijk − Tijk = Γ

(0)
ijk − 3

2
Tijk (35)

and hence
Γ

(X)
ijk = Γ

(0)
ijk +

3
2
Tijk. (36)

This is confirmed by calculating ∂i∂j∂
′
kD [ξ : ξ′] directly. They show that the

derived geometry is α = −3 geometry.
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4 Standard Divergence

From theorem 2, we see that when we use −(1/3)-connection to define the log
map, it gives the original connections. Hence, we have the following theorem.

Theorem 3. The −(1/3) log map divergence recovers the original geometry.

We call it a standard divergence. We can derive it uniquely for any manifold of
dual connections. In the case of Riemannian geometry where Tijk = 0, the log
divergence is a symmetric divergence. The α-divergences are equal for any α. It
gives a half of the square of the Riemannian distance. In the general case, it does
not coincide with the canonical divergence unfortunately when M is dually flat.

Note that there are other ways of defining a standard divergence D[p : q]
that recovers the original dual geometry of M . We have obtained some of such
standard divergence.

5 Divergence and Projection Theorem

Given a smooth submanifold R ⊂ M and a point p outside R, we often search
for the point p̂ ∈ R that minimizes the divergence from p to R,

p̂ = arg min
q∈R

D[p : q]. (37)

When the geodesic connecting p and p̂ is orthogonal to R, the minimizer p̂ is
given by the orthogonal geodesic projection of p to R.

This is a desired property of a divergence. We see that the canonical diver-
gence in a dually flat M has this property.

When we consider a sphere centered at p and radius t measured by a diver-
gence,

St = {s |D[p : s] = t}, (38)

q is the point that first touches R as t increases. Therefore, for X satisfying
|X|2 = 1, let t0 be

t0 = arg min
t

{
expp(tX) ∈ R

}
(39)

and let the minimum be attained by X0. Then, we have

q = expp (t0X0) . (40)

Therefore, for our standard divergence, the minimizing q is given by the α =
−(1/3) geodesic in direction X0.

However, it is not the orthogonal projection of p to R, because the α = −(1/3)
geodesic is not orthogonal to St in general. This is shown as follows. We consider
two geodesics

ξ̈(t,X) = −Γjk
i(x)ξ̇j ξ̇k (41)

ξ̈(t,X + δX) = −Γjk
i(ξ + δξ)ξ̇j ξ̇k, (42)
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where
δξi = ξi(t,X + dX) − ξi(t,X). (43)

Since δξ represents tangent directions of St, the angle between δξ and ξ̇ is given
by their inner product. However, we have

d

dt
〈δξ, ξ̇〉 = 〈∇∗

ξ̇
δξ, ξ̇〉 + 〈δξ,∇ξ̇ξ̇〉 (44)

= 〈∇∗
ξ̇
δξ, ξ̇〉. (45)

Since 〈∇∗
ξ̇
δξ, ξ〉 does not vanish in general, δξ and ξ̇ is not orthogonal, although

they are orthogonal at t = 0.

6 Conclusions

We have proposed the problem of obtaining a standard divergence in a dual
manifold M that recovers the original geometry. We derived a unique standard
divergence in a manifold of dual affine connections. However, it is not fully
satisfactory.

Added Notes: We have succeeded to derive a better divergence that coincides
with the canonical divergence in the dually flat case and with the α-divergence
when the α-connection is used. A necessary condition for the projection theorem
is also derived. These results will be published in future.
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Abstract. The statistical structure on a manifold M is predicated upon
a special kind of coupling between the Riemannian metric g and a
torsion-free affine connection ∇ on the TM, such that ∇g is totally sym-
metric, forming, by definition, a “Codazzi pair” {∇, g}. In this paper,
we first investigate various transformations of affine connections, includ-
ing additive translation (by an arbitrary (1,2)-tensor K), multiplica-
tive perturbation (through an arbitrary invertible operator L on TM),
and conjugation (through a non-degenerate two-form h). We then study
the Codazzi coupling of ∇ with h and its coupling with L, and the
link between these two couplings. We introduce, as special cases of K-
translations, various transformations that generalize traditional projec-
tive and dual-projective transformations, and study their commutativity
with L-perturbation and h-conjugation transformations. Our derivations
allow affine connections to carry torsion, and we investigate conditions
under which torsions are preserved by the various transformations men-
tioned above. Our systematic approach establishes a general setting for
the study of Information Geometry based on transformations and cou-
pling relations of affine connections – in particular, we provide a gener-
alization of conformal-projective transformation.

1 Introduction

On the tangent bundle TM of a differentiable manifold M, one can introduce
two separate structures: affine connection ∇ and Riemannian metric g. The cou-
pling of these two structures has been of great interest to, say, affine geometers
and information geometers. When coupled, {∇, g} is called a Codazzi pair e.g.,
[14,17], which is an important concept in PDEs and affine hypersurface the-
ory [7,8,10–12,15,16]. Codazzi coupling of a metric and an affine connection
is a defining characteristics of “statistical structure” [6] of the manifold of the
probability functions [1], where the metric-connection pair arises from a general
construction of divergence (“contrast”) functions [20,21] or pre-contrast func-
tions [2]. To investigate the robustness of the Codazzi structure, one would per-
turb the metric and perturb the affine connection, and examine whether, after
perturbation, the resulting metric and connection will still maintain Codazzi
coupling [13].
c© Springer International Publishing Switzerland 2015
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Codazzi transform is a useful concept in coupling projective transform of
a connection and conformal transformation of the Riemannian metric: the pair
{∇, g} is jointly transformed in such a way that Codazzi coupling is preserved, see
[17]. This is done through an arbitrary function that transforms both the metric
and connection. A natural question to ask is whether there is a more general
transformation of the metric and of the connection that preserves the Codazzi
coupling, such that Codazzi transform (with the freedom of one function) is a
special case. In this paper, we provide a positive answer to this question. The
second goal of this paper is to investigate the role of torsion in affine connections
and their transformations. Research on this topic is isolated, and the general
importance has not been appreciated.

In this paper, we will collect various results on transformations on affine
connection and classify them through one of the three classes, L-perturbation,
h-conjugation, and the more general K-translation. They correspond to trans-
forming ∇ via a (1,1)-tensor, (0,2)-tensor, or (1,2)-tensor. We will investigate the
interactions between these transformations, based on known results but general-
izing them to more arbitrary and less restrictive conditions. We will show how a
general transformation of a non-degenerate two-form and a certain transforma-
tion of the connection are coupled; here transformation of a connection can be
through L-perturbation, h-conjugation, and K-translation which specialzes to
various projective-like transformations. We will show how they are linked in the
case when they are Codazzi coupled to a same connection ∇. The outcome are
depicted in commutative diagrams as well as stated as Theorems. Finally, our
paper will provide a generalization of the conformal-projective transformation
mentioned above, with an additional degree of freedom, and specify the condi-
tions under which such transformation preserves Codazzi pairing of g and ∇.
Due to page limit, all proofs are omitted.

2 Transformations of Affine Connections

2.1 Affine Connections

An affine (linear) connection ∇ is an endomorphism of TM: ∇ : (X,Y ) ∈ TM×
TM �→ ∇XY ∈ TM that is bilinear in the vector fields X,Y and that satisfies
the Leibniz rule

∇X(φY ) = X(φ)Y + φ ∇XY,

for any smooth function φ on M. An affine connection specifies the manner
parallel transport of tangent vectors is performed on a manifold. Associated with
any affine connection is a system of auto-parallel curves (also called geodesics):
the family of auto-parallel curves passing through any point on the manifold is
called the geodesic spray. The torsion of a connection ∇ is characterized by the
(1,2)-tensor torsion tensor

T∇(X,Y ) = ∇XY − ∇Y X − [X,Y ],

which characterizes how tangent spaces twist about a curve when they are par-
allel transported.
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2.2 Three Kinds of Transformations

The space of affine connections is convex in the following sense: if ∇, ∇̃ are affine
connections, then so is α∇ + β∇̃ for any α, β ∈ R so long as α + β = 1. This
normalization condition is needed to ensure that the Leibniz rule holds. For
example, 1

2∇XY + 1
2∇̃XY is a connection, whereas 1

2∇XY + 1
2∇Y X is not; both

are bilinear forms of X,Y .

Definition 1. A transformation of affine connections is an arbitrary map from
the set D of affine connections ∇ of some differentiable manifold M to D itself.

In this following, we investigate three kinds of transformations of affine con-
nections:

(i) translation by a (1,2)-tensor;
(ii) perturbation by an invertible operator or (1,1)-tensor;
(iii) conjugation by a non-degenerate two-form or (0,2)-tensor.

Additive Transformation: K-translation

Proposition 1. Given two affine connections ∇ and ∇̃, then their difference
K(X,Y ) := ∇̃XY −∇XY is a (1, 2)-tensor. Conversely, any affine connection ∇̃
arises this way as an additive transformation by a (1,2)-tensor K(X,Y ) from ∇:

∇̃XY = ∇XY + K(X,Y ).

It follows that a transformation T of affine connections is equivalent to a
choice of (1, 2)-tensor T∇ for every affine connection ∇. Stated otherwise, given
a connection, any other connection can be obtained in this way, i.e. by adding
an appropriate (1,2)-tensor, which may or may not depend on ∇. When the
(1,2)-tensor K(X,Y ) is independent of ∇, we say that ∇̃XY is a K-translation
of ∇.

Additive transformations obviously commute with each other, since tensor
addition is commutative. So additive transformations from a given affine con-
nection form a group.

For any two connections ∇ and ∇̃, their difference tensor K(X,Y ) decom-
poses in general as 1

2A(X,Y ) + 1
2B(X,Y ) where A is symmetric and B is

anti-symmetric. Since the difference between the torsion tensors of ∇̃ and ∇
is given by

T ∇̃(X,Y ) − T∇(X,Y ) = K(X,Y ) − K(Y,X) = B(X,Y ),

we have the following:

Proposition 2. K-translaton of an affine connection preserves torsion if and
only if K is symmetric: K(X,Y ) = K(Y,X).
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The symmetric part, A(X,Y ), of the difference tensor K(X,Y ) reflects a
difference in the geodesic spray associated with each affine connection: ∇̃ and ∇
have the same families of geodesic spray if and only if A(X,Y ) = 0.

The following examples are K-translations that will be discussed in great
length later on:

(i) P∨(τ) : ∇XY �→ ∇XY + τ(X)Y , called P∨-transformation;
(ii) P(τ) : ∇XY �→ ∇XY + τ(Y )X, called P-transformation;
(iii) Proj(τ) : ∇XY �→ ∇XY +τ(Y )X+τ(X)Y , called projective transformation;
(iv) D(h, ξ) : ∇XY �→ ∇XY − h(Y,X)ξ, called D-transformation, or dual-

projective transformation.

Here, τ is an arbitrary one-form or (0,1)-tensor, h is a non-degenerate two-form
or (0,2)-tensor, X,Y, ξ are all vector fields. From Proposition 2, Proj(τ) is always
torsion-preserving, while D(h, ξ) is torsion-preserving when h is symmetric.

It is obvious that Proj(τ) is the composition of P(τ) and P∨(τ) for any τ .
This may be viewed as follows: the P-transformation introduces torsion in one
direction, i.e. it adds B(X,Y ) := τ(Y )X − τ(X)Y to the torsion tensor, but the
P∨ transformation cancels out this torsion, by adding −B(X,Y ) = τ(X)Y −
τ(Y )X, resulting in a torsion-preserving transformation of Proj(τ).

Any affine connection ∇ on TM induces an action on T ∗M. The action of ∇
on a one-form ω is defined as:

(∇Xω)(Y ) = X(ω(Y )) − ω(∇XY ).

When ∇ undergoes a K-translation, ∇XY �→ ∇XY +K(X,Y ) for a (1,2)-tensor
K, then

(∇Xω)(Y ) �→ (∇Xω)(Y ) − ω(K(X,Y )).

In particular, the transformation P∨(τ) of a connection acting on TM induces
a change of P∨(−τ) when the connection acts on T ∗M.

Multiplicative Transformation: L-pertubation. Complementing the addi-
tive transformation, we define a “multiplicative” transformation of affine con-
nections through an invertible operator L : TM → TM.

Proposition 3. ([13]) Given an affine connection ∇ and an invertible operator
L on TM, then L−1(∇X(L(Y ))) is also an affine connection.

Definition 2. Given a connection ∇, the L-perturbation of ∇, denoted variously
∇L, L(∇), or ΓL(∇), is an endomorphism of TM defined as:

ΓL(∇) ≡ L(∇) ≡ ∇L
XY ≡ L−1(∇XLY ).

Proposition 4. ([13]) The L-perturbations form a group such that group com-
position is simply operator concatenation: ΓK ◦ΓL = ΓLK for invertible operators
K and L.
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Conjugation Transformation by h. If h is any non-degenerate (0, 2)-tensor,
it induces isomorphisms h(X,−) and h(−,X) from vector fields X to one-forms.
When h is not symmetric, these two isomorphisms are different. Given an affine
connection ∇, we can take the covariant derivative of the one-form h(Y,−) with
respect to X, and obtain a corresponding one-form ω such that, when fixing Y ,

ωX(Z) = X(h(Y,Z)) − h(Y,∇XZ).

Since h is non-degenerate, there exists a U such that ωX = h(U,−) as one-forms,
so that

X(h(Y,Z)) = h(U(X,Y ), Z) + h(Y,∇XZ).

Defining D(X,Y ) := U(X,Y ) gives a map from TM × TM → TM.

Proposition 5. Taking ∇̃XY := D(X,Y ) gives an affine connection ∇̃ as
induced from ∇.

Definition 3. This ∇̃ is called the left-conjugate of ∇ with respect to h. The
map taking ∇ to ∇̃ will be denoted Left(h). Similarly, we have a right-conjugate
of ∇ and an associated map Right(h).

If h̃(X,Y ) := h(Y,X), then exchanging the first and second arguments of
each h in the above derivation shows that Left(h) = Right(h̃) and Right(h) =
Left(h̃). When h is symmetric or anti-symmetric, the left- and right-conjugates
are equal; both reduce to the special case of the usual conjugate connection ∇∗

with respect to h. In this case, conjugation is involutive: (∇∗)∗ = ∇.
For a non-degenerate (but not necessarily symmetric or anti-symmetric) h,

if there exists a ∇ such that

Z(h(X,Y )) = h(∇ZX,Y ) + h(X,∇ZY ),

then ∇ = Left(h)(∇) = Right(h)(∇); in this case, ∇ is said to be parallel to
the two-form h. Because in this case, ∇ = Left(h̃)(∇) = Right(h̃)(∇), ∇ is also
parallel to the two-form h̃.

2.3 Codazzi Coupling and Torsion Preservation

Codazzi Coupling of ∇ with Operator L. Let L be an isomorphism of the
tangent bundle TM of a smooth manifold M, i.e. L is a smooth section of the
bundle End(TM) such that it is invertible everywhere, i.e. an invertible (1, 1)-
tensor.

Definition 4. Let L be an operator, and ∇ an affine connection. We call {∇, L}
a Codazzi pair if (∇XL)Y is symmetric in X and Y . In other words, the following
identity holds

(∇XL)Y = (∇Y L)X. (1)
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Here (∇XL)Y is, by definition,

(∇XL)Y = ∇X(L(Y )) − L(∇XY ).

We have the following characterization of Codazzi relations between an invertible
operator and a connection:

Proposition 6. ([13]) Let ∇ and ∇̃ be arbitrary affine connections, and L an
invertible operator. Then the following statements are equivalent:

1. {∇, L} is a Codazzi pair.
2. ∇ and ΓL(∇) have equal torsions.
3. {ΓL(∇), L−1} is a Codazzi pair.

Proposition 7. Let {∇, L} be a Codazzi pair. Let A be a symmetric (1,2)-
tensor, and ∇̃ = ∇ + A. Then {∇̃, L} forms a Codazzi pair if and only if L is
self-adjoint with respect to A:

A(L(X), Y ) = A(X,L(Y ))

for all vector fields X and Y .

In other words, A-translation preserves the Codazzi pair relationship of ∇ with
L iff L is a self-adjoint operator with respect to A.

Therefore, for a fixed operator L, the Codazzi coupling relation can be inter-
preted as a quality of equivalence classes of connections modulo translations by
symmetric (1,2)-tensors A with respect to which L is self-adjoint.

Codazzi Coupling of ∇ with (0,2)-tensor h. Now we investigate Codazzi
coupling of ∇ with a non-degenerate (0,2)-tensor h. We introduce the (0,3)-tensor
C defined by:

C(X,Y,Z) ≡ (∇Zh)(X,Y ) = Z(h(X,Y )) − h(∇ZX,Y ) − h(X,∇ZY ). (2)

The tensor C is called the cubic form associated with {∇, h} pair. When C = 0,
then we say that h is parallel with respect to ∇.

Recall the definition of left-conjugate ∇̃ with respect to a non-degenerate
two-form h:

Z(h(X,Y )) = h(∇̃ZX,Y ) + h(X,∇ZY ). (3)

Using this relation in (2) gives

C(X,Y,Z) ≡ (h(∇̃ZX,Y ) + h(X,∇ZY )) − h(∇ZX,Y ) − h(X,∇ZY )

= h((∇̃ − ∇)ZX,Y ),

so that

C(X,Y,Z) − C(Z, Y,X) = h(T ∇̃(Z,X) − T∇(Z,X), Y ),
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or

(∇Zh)(X,Y ) − (∇Xh)(Z, Y ) = h(T ∇̃(Z,X) − T∇(Z,X), Y ).

The non-degeneracy of h implies that C(X,Y,Z) = C(Z, Y,X) if and only if ∇
and ∇̃ have equal torsions. This motivates the following definition, in analogy
with the previous subsection.

Definition 5. Let h be a two-form, and ∇ an affine connection. We call {∇, h}
a Codazzi pair if (∇Zh)(X,Y ) is symmetric in X and Z.

The cubic form associated with the pair {∇̃, h}, denoted as C̃, is:

C̃(X,Y,Z) ≡ (∇̃Zh)(X,Y ) = Z(h(X,Y )) − h(∇̃ZX,Y ) − h(X, ∇̃ZY ).

We derive, analogously,

C̃(X,Y,Z) = h(X, (∇ − ∇̃)ZY ),

from which we obtain

C̃(X,Y,Z) − C̃(Z, Y,X) = h(X,T∇(Y,Z) − T ∇̃(Y,Z)).

Summarizing the above results, we have, in analogy with Proposition 6:

Proposition 8. Let ∇ be an arbitrary affine connection, h be an arbitrary non-
degenerate two-form, and ∇̃ denotes the left-conjugate of ∇ with respect to h.
Then the following statements are equivalent:

1. {∇, h} is a Codazzi pair.
2. ∇ and ∇̃ have equal torsions.
3. {∇̃, h} is a Codazzi pair.

This proposition says that an arbitrary affine connection ∇ and an arbitrary
non-degenerate two-form h form a Codazzi pair precisely when ∇ and its left-
conjugate ∇̃ with respect to h have equal torsions.

Note that the definition of Codazzi pairing of ∇ with h is with respect to
the first slot of h, left-conjugate is a more useful concept. The left- and right-
conjugate of a connection ∇ with respect to h can become one and the same,
when (i) h is symmetric; or (ii) ∇ is parallel to h: ∇h = 0. These scenarios will
be discussed next.

From the definition of the cubic form (2), it holds that

(∇Z h̃)(X,Y ) = C(Y,X,Z) = (∇Zh)(Y,X)

where h̃(X,Y ) = h(Y,X). So C(X,Y,Z) = C(Y,X,Z) holds for any vector fields
X,Y,Z if and only if h = h̃, that is, h is symmetric.

Proposition 9. For a non-degenerate two-form h, ∇h = 0 if and only if ∇
equals its left (equivalently, right) conjugate with respect to h.
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Note that in this proposition, we do not require h to be symmetric.
The following standard definition is a special case:

Definition 6. If g is a Riemannian metric, and ∇ an affine connection, the
conjugate connection ∇∗ is the left-conjugate (or equivalently, right-conjugate)
of ∇ with respect to g. Denote C(g) as the involutive map that sends ∇ to ∇∗.

This leads to the well-known result:

Corollary 7. {∇, g} is a Codazzi pair if and only if C(g) preserves the torsion
of ∇.

2.4 Linking Two Codazzi Couplings

In order to relate these two notions of Codazzi pairs, one involving perturbations
via a operator L, and one involving conjugation with respect to a two-form h,
we need the following definition:

Definition 8. The left L-perturbation of a (0, 2)-tensor h is the (0, 2)-tensor
hL(X,Y ) := h(L(X), Y ). Similarly, the right L-perturbation is given by
hL(X,Y ) := h(X,L(Y )).

Proposition 10. Let h be a non-degenerate (0, 2)-tensor. If ∇̃ is the left-
conjugate of ∇ with respect to h, then the left-conjugate of ∇ with respect to
hL is ΓL(∇̃). Analogously, if ∇̂ is the right-conjugate of ∇ with respect to h,
then the right-conjugate of ∇ with respect to hL is ΓL(∇̂).

Corollary 9. Let ∇̃ be the left-conjugate of ∇ with respect to h. If {∇, h} and
{∇̃, L} are Codazzi pairs, then {∇, hL} is a Codazzi pair.

The following result describes how L-perturbation of a two-form (i.e., a (0,2)-
tensor) induces a corresponding “L-perturbation” on the cubic form C(X,Y,Z)
as defined in the previous subsubsection.

Proposition 11. Let h(X,Y ) be a non-degenerate two-form and L be an invert-
ible operator. Write f := hL for notational convenience. Then, for any connec-
tion ∇,

Cf (X,Y,Z) = Ch(L(X), Y, Z) + h((∇ZL)X,Y ),

where Cf and Ch are the cubic tensors of ∇ with respect to f and h.

With the notion of L-perturbation of a two-form, we can now state our main
theorem describing the relation between L-perturbation of an affine connection
and h-conjugation of that connection.

Theorem 10. Fix a non-degenerate (0, 2)-tensor h, denote its L-perturbations
hL(X,Y ) = h(L(X), Y ) and hL(X,Y ) = h(X,L(Y )) as before. For an arbitrary
connection ∇, denote its left-conjugate (respectively, right-conjugate) of ∇ with
respect to h as ∇̃ (respectively, ∇̂). Then:
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(i) ∇hL = 0 if and only if ΓL(∇̃) = ∇.

(ii) ∇hL = 0 if and only if ΓL(∇̂) = ∇.

This Theorem means that ∇ is parallel to hL (respectively, hL) if and only
if the left (respectively, right) h-conjugate of the L-perturbation of ∇ is ∇ itself.
In this case, L-perturbation of ∇ and h-conjugation of ∇ can be coupled to
render the perturbed two-form parallel with respect to ∇. Note that in the above
Theorem, there is no torsion-free assumption about ∇, no symmetry assumption
about h, and no Codazzi pairing assumption of {∇, h}.

2.5 Commutation Relations Between Transformations

Definition 11. Given a one-form τ , we define the following transformation of
an affine connection ∇:

(i) P∨-transformation, denoted P∨(τ) : ∇XY �→ ∇XY + τ(X)Y ;
(ii) P-transformation, denoted P(τ) : ∇XY �→ ∇XY + τ(Y )X.
(iii) projective transformation, denoted Proj(τ) : ∇XY �→ ∇XY + τ(Y )X +

τ(X)Y .

All these are “translations” of an affine connection (see Sect. 2). The first two
transformations, (i) and (ii), are “half” of the projective transformation in (iii).
While the projective transformation Proj of ∇ preserves its torsion, both P∨-
transformation and P-transformation introduce torsion (in opposite amounts).

Definition 12. Given a vector field ξ and a non-degenerate 2-form h, we define
the D-transformation of an affine connection ∇ as

D(h, ξ) : ∇XY �→ ∇XY − h(Y,X)ξ.

Furthermore, the transformation D̃(h, ξ) is defined to be D(h̃, ξ).

These transformations behave very nicely with respect to left and right h-
conjugation, as well as L-perturbation. More precisely, we make the following
definition:

Definition 13. We call left (respectively right) h-image of a transformation
of a connection the induced transformation on the left (respectively right) h-
conjugate of that connection. Similarly, we call L-image of a transformation of a
connection the induced transformation on the L-perturbation of that connection.

Proposition 12. The left and right h-images of P∨(τ) are both P∨(−τ).

Proposition 13. The L-image of P∨(τ) is P∨(τ) itself.

Proposition 14. If V is a vector field, so that h(V,−) is a one-form, then the
left h-image of P(h(V,−)) is D(h, V ), while the right h-image of P(h(−, V )) is
D̃(h, V ).
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Proposition 15. The L-image of D(h, V ) is D(hL, L−1(V )), whereas the L-
image of D̃(h, V ) is D̃(hL, L−1(V )).

We summarize the above results in the following commutative prisms.

Theorem 14. Let h be a non-degenerate two-form, L be an invertible operator,
Z be a vector field, and τ be a one-form. Then we have four commutative prisms:

Corollary 15. With respect to a Riemannian metric g, an invertible operator
L, and an arbitrary one-form τ , we have the following commutative prisms:

Each • represents the space of affine connections of some differentiable man-
ifold M.
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These commutative prisms are extremely useful in characterizing transfor-
mations that preserve Codazzi coupling. Indeed, Propositions 6 and 8 say that
it is enough to characterize the torsion introduced by the various translations in
Definitions 11 and 12. We have the following:

Proposition 16. With respect to the transformation of connections: ∇XY �→
∇̃XY , let I(X,Y ) denote the induced change in torsion, i.e. B(X,Y ) :=
T ∇̃(X,Y ) − T∇(X,Y ). Then

(i) For P∨(τ): B(X,Y ) = τ(X)Y − τ(Y )X.
(ii) For P(τ): B(X,Y ) = τ(Y )X − τ(X)Y .
(iii) For Proj(τ): B(X,Y ) = 0. Projective transformations are torsion-

preserving.
(iv) For D(h, ξ): B(X,Y ) =

(
h(X,Y ) − h(Y,X)

)
ξ.

(v) For D̃(h, ξ): B(X,Y ) =
(
h(Y,X) − h(X,Y )

)
ξ.

Note that the torsion change B(X,Y ) is same in amount but opposite in sign
for cases (i) and (ii), and for cases (iv) and (v). B(X,Y ) is always zero for case
(iii), and becomes zero for cases (iv) and (v) when h is symmetric.

Corollary 16. P∨-transformations P∨(τ) preserve Codazzi pairing of ∇ with
L: For arbitrary one-form τ , if {∇, L} is a Codazzi pair, then {P∨(τ)∇, L} is a
Codazzi pair.

Corollary 17. D-transformations D(g, ξ) preserve Codazzi pairing of ∇ with L:
For any symmetric two-form g, vector field ξ, and operator L that is self-adjoint
with respect to g, if {∇, L} is a Codazzi pair, then {D(g, ξ)∇, L} is a Codazzi
pair.

2.6 The Conformal-Projective Transformation

The Codazzi transformation for a metric g and affine connection ∇ has been
defined as

g(X,Y ) �→ eφg(X,Y )
∇XY �→ ∇XY + X(φ)Y + Y (φ)X
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for any smooth function φ. It is a known result that this preserves Codazzi pairs
{∇, g}. In our language, this transformation can be described as follows: it is a
(torsion-preserving) projective transformation P(dφ)P∨(dφ) applied to ∇, and
an L-perturbation g �→ geφ applied to the metric, where eφ is viewed as an
invertible operator.

As generalizations to Codazzi transformation, researchers have introduced,
progressively, the notions of 1-conformal transformation and α-conformal trans-
formation in general [4], dual-projective transformation which is essentially (-1)-
conformal transformation [3], and conformal-projective transformation [5], which
encompass all previous cases.

Two statistical manifolds (M,∇, g) and (M,∇′, g′) are said to be
conformally-projectively equivalent [5] if there exist two functions φ and ψ such
that

ḡ(u, v) = eφ+ψg(u, v),
∇′

uv = ∇uv − g(u, v)gradgψ + {dφ(u)v + dφ(v)u}.

Note: φ = ψ yields conformal equivalency; φ = const yields 1-conformal (i.e.,
dual projective) equivalency; ψ = const yields (-1)-conformal (i.e., projec-
tive) equivalency. It is shown [9] that when two statistical manifolds (M,∇, g)
and (M,∇′, g′) are conformally-projectively equivalent, then (M,∇(α), g) and
(M,∇′(α), g′) are also conformally-projectively equivalent, with inducing func-
tions φ(α) = 1+α

2 φ + 1−α
2 ψ,ψ(α) = 1−α

2 ψ + 1+α
2 φ.

In our framework, we see that this transformation can be expressed as follows:
it is an eψ+φ-perturbation of the metric g, along with the affine connection
transformation

D(g, gradg ψ)Proj(dφ) = D(g, gradg ψ)P(dφ)P∨(dφ).

The induced transformation on the conjugate connection will be

Γeψ+φP(dψ)D(g, gradg φ)P∨(−dφ) = P∨(dφ + dψ)P(dψ)D(g, gradg φ)P∨(−dφ)

= P∨(dψ)P(dψ)D(g, gradg φ)

= D(g, gradg φ)Proj(dψ),

which is a translation of the same form as before, but with ψ and φ exchanged.
(The additional Γeψ+φ in front is induced by the eψ+φ-perturbation of the met-
ric.) In particular, this is a torsion-preserving transformation, because D and Proj
are, which shows that conformal-projective transformations preserve Codazzi
pairs {∇, g}. We can generalize the notion of conformal-projective transforma-
tion in the following way:

Definition 18. Let V and W be vector fields, and L an invertible operator.
A generalized conformal-projective transformation CP(V,W,L) consists of an
L-perturbation of the metric g along with a torsion-preserving transformation
D(g,W )Proj(Ṽ ) of the connection, where Ṽ is the one-form given by Ṽ (X) :=
g(V,X) for any vector field X.
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Proposition 17. A generalized conformal-projective transformation CP(V,
W,L) induces the transformation ΓLP(W̃ )D(g, V )P∨(−Ṽ ) on the conjugate con-
nection.

Proposition 18. A generalized conformal-projective transformation CP(V,
W,L) preserves Codazzi pairs {∇, g} precisely when the torsion introduced by
ΓL cancels with that introduced by P(W̃ )P∨(−Ṽ ), i.e.

L−1(∇X(L(Y ))) − L−1(∇Y (L(X))) − ∇XY + ∇Y X = (W̃ + Ṽ )(X)Y + (W̃ + Ṽ )(Y )X.

Theorem 19. A generalized conformal-projective transformation CP(V,W,L)
preserves Codazzi pairs {∇, g} if and only if L = ef for some smooth function
f , and Ṽ + W̃ = df . (The “only if” direction requires dimM ≥ 4.)

This class of transformations is strictly larger than the class of conformal-
projective transformations, since we may take Ṽ to be an arbitrary one-form,
not necessarily closed, and W̃ := df − Ṽ for some fixed smooth function f .
The conformal-projective transformations result when f is itself the sum of two
functions φ and ψ, in which case df = dφ + dψ is a natural decomposition. The-
orem 19 shows that the conformal-projective transformation admits interesting
generalizations that preserve Codazzi pairs, by virtue of having an additional
degree of freedom. This generalization demonstrates the utility of our “building
block” transformations P, P∨, D, and ΓL in investigating Codazzi pairing rela-
tionships under general transformations of affine connections. Furthermore, this
analysis shows that even torsion-free transformations may be effectively studied
by decomposing them into elementary transformations that induce nontrivial
torsions.
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Abstract. This paper address the problem of online learning finite
statistical mixtures of exponential families. A short review of the
Expectation-Maximization (EM) algorithm and its online extensions is
done. From these extensions and the description of the k-Maximum Like-
lihood Estimator (k-MLE), three online extensions are proposed for this
latter. To illustrate them, we consider the case of mixtures of Wishart
distributions by giving details and providing some experiments.

Keywords: Mixture modeling · Online learning · k-MLE · Wishart
distribution

1 Introduction

Mixture models are a powerful and flexible tool to model an unknown smooth
probability density function as a weighted sum of parametric density functions
fj(x; θj):

f(x; θ) =
K∑

j=1

wjfj(x; θj), with wj > 0 and
K∑

j=1

wj = 1, (1)

where K is the number of components of the mixture. The maximum likelihood
principle is a popular approach to find the unknown parameters θ = {(wj , θj)}j

of f . Given χ = {xi}N
i=1 a set of N independent and identically distributed

observations, the maximum likelihood estimator θ̂(N) is defined as the maximizer
of the likelihood, or equivalently of the average log-likelihood:

l̄(θ;χ) = N−1
N∑

i=1

log
K∑

j=1

wjfj(xi; θj). (2)

For K > 1, the sum of terms appearing inside a logarithm makes this optimiza-
tion quite difficult.

The goal of this paper is to propose such a kind of estimator but for the online
setting, that is when observations xi are available one after another. This case
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 340–348, 2015.
DOI: 10.1007/978-3-319-25040-3 37



Online K-MLE for Mixture Modeling with Exponential Families 341

appears when dealing with data streams or when data sets are large enough not
to fit in memory. Ideally, online methods aim to get same convergence properties
as batch ones while having a single pass over the dataset. This topic receives
increasing attention due to the recent challenges associated to massive datasets.

The paper is organized as follows: Sect. 2 recalls the basics of Expectation-
Maximization (EM) algorithm and some of its online extensions. Section 3
describes the k-MLE technique which is derived from the formalism of EM.
In the same section, two online versions of k-MLE are proposed and detailed.
Section 4 gives an example of the mixture of Wishart distributions and provides
some experiments before concluding in Sect. 5.

2 A Short Review of Online Mixture Learning

Before reviewing some online methods, one has to recall the basics of mixture
modeling with the Expectation-Maximization (EM) algorithm [1] in the batch
setting.

2.1 EM for Mixture Learning

Let Zi be a categorical random variable over 1, ...,K whose parameters are {wj}j ,
that is, Zi ∼ CatK({wj}j). Also, assuming that Xi|Zi = j ∼ fj(·; θj), the
unconditional mixture distribution f in Eq. 1 is recovered by marginalizing their
joint distribution over Zi. Obviously, Zi is a latent (unobservable) variable so
that the realizations xi of Xi (resp. (xi, zi) of (Xi, Zi)) is often viewed as an
incomplete (resp. complete) data observation. For convenience, we consider in
the following that Zi is a random vector [Zi,1, Zi,2, . . . , Zi,k] where Zi,j = 1 iff.
Xi arises from the j-th component of the mixture and 0 otherwise1. Similarly to
Eq. 2, the average complete log-likelihood function can be written as:

l̄c(θ;χc) = N−1
N∑

i=1

log
K∏

j=1

(wjfj(xi; θj))
zi,j ,

= N−1
N∑

i=1

K∑

j=1

zi,j log(wjfj(xi; θj)), (3)

where χc = {(xi, zi)}N
i=1, is the set of complete data observations. Here comes

the EM algorithm which optimizes l̄(θ;χ) (proof in [1]) by repeating two steps
until convergence. For iteration t:

E-Step Compute Q(θ; θ̂(t), χ) = Eθ̂(t) [l̄c(θ;χc)|χ]. Since l̄c is linear in zi,j , this
step amounts to compute:

ẑ
(t)
i,j = Eθ̂(t) [Zi,j = 1|Xi = xi] =

ŵ
(t)
j fj(xi; θ̂

(t)
j )

∑
j′ ŵ

(t)
j′ fj′(xi; θ̂

(t)
j′ )

. (4)

1 Thus, Zi is distributed according to the multinomial law MK(1, {wj}j).



342 C. Saint-Jean and F. Nielsen

M-Step Update mixture parameters by maximizing Q over θ (i.e., Eq. 3 where
hidden values zi,j are replaced by ẑ

(t)
i,j ).

ŵ
(t+1)
j =

∑N
i=1 ẑ

(t)
i,j

N
, θ̂

(t+1)
j = arg max

θj∈Θj

N∑

i=1

ẑ
(t)
i,j log (fj(xi; θj)) (5)

Remark that while ŵ
(t+1)
j is always known in closed-form whatever fj

are, θ̂
(t+1)
j are obtained by component-wise specific optimization involv-

ing all observations.

More generally, the improvement of l̄(θ;χ) is guaranteed whatever the increase
of Q is in the M-Step. This leads to the Generalized EM algorithm (GEM) when
partial maximization is performed.

2.2 Online Extensions

For the online setting, it is now more appropriate to denote θ̂(N) the current
parameter estimate instead of θ̂(t). In the literature, we mainly distinguish two
approaches according to whether the initial structure of EM (alternate optimiza-
tion) is kept or not.

The first online algorithm, due to Titterington [2], corresponds to the direct
optimization of Q(θ; θ̂(N), χ) using a second-order stochastic gradient ascent:

θ̂(N+1) = θ̂(N) + γ(N+1)I−1
c (θ̂(N))∇θ log f(xN+1; θ̂(N)), (6)

where {γN} is a decreasing sequence of positive step sizes (γN = N−1 in the
original paper) and the hessian ∇2Q of Q is approximated by the Fisher Infor-
mation matrix Ic for the complete data (Ic(θ̂(N)) = −E

θ̂
(N)
j

[ log p(x,z;θ)
∂θt∂θ ]). A major

issue with that method is that θ̂(N) does not necessarily follow the parameters
constraints.

This problem is coped by the approach of Cappé and Moulines [3] who pro-
posed to replace the E-Step by a stochastic approximation step:

Q̂(N+1)(θ; θ̂(N), χ(N+1)) = Q̂(N)(θ; θ̂(N), χ(N))

+ γN+1(Eθ̂(N) [l̄c(θ; {xN+1, zN+1})|xN+1] − Q̂(N)(θ; θ̂(N), χ(N))).
(7)

Since the M-Step remains unchanged (maximizing the function θ �→ Q̂(N+1)(θ)),
the constrains on parameters are automatically satisfied. This method is the
starting point of our proposals. One may also mention the “Incremental EM”
[4] which is not detailed here. Note that previous formalisms are not limited to
mixture models.
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3 Online k-Maximum Likelihood Estimator

3.1 k-MLE for Mixture Learning

In this section, we describe the k-MLE algorithm, a faster alternative to EM, as
introduced in [5]. The goal is now to maximize directly l̄c(θ;χc). In the above
description of EM, value ẑ

(t)
i,j may be interpreted as a soft membership of xi

to the j-th component of the mixture. More generally, all values ẑ
(t)
i,j represent

a soft partition of χ which may be denoted by Ẑ(t). For fixed values of θ, the
partition which maximizes l̄c is a strict one:

max
Z

l̄c(θ;χc) = N−1
N∑

i=1

K
max
j=1

log (wjfj(xi; θj)) . (8)

Doing such a maximization (also called C-Step in Classification EM algorithm
[6]) after the E-Step in EM induces a split of χ into K subsets (χ =

⊔K
j=1 χ̂

(t)
j ).

Later on, note z̃
(t)
i,j the hard membership of xi at iteration t. Then, for a fixed

optimal partition, the M -step is simpler:

ŵ
(t+1)
j =

|χ̂(t)
j |
N

, θ̂
(t+1)
j = arg max

θj∈Θj

∑

x∈χ̂
(t)
j

log fj(x; θj) (9)

The gain in computation time is obvious since a weighted MLE involving all
observations is replaced by an unweighted MLE for each subset χ̂

(t)
j . The algo-

rithm is described in Algorithm 1.

Algorithm 1. k-MLE (Lloyd’s batch method)
Input: A sample χ = {x1, x2, ..., xN}
Output: Estimate θ̂ of mixture parameters

1 A good initialization for θ̂(0) (see [5]); t = 0;
2 repeat

3 Partition χ =
⊔K

j=1 χ̂
(t)
j according to log ŵ

(t)
j fj(xi; θ̂

(t)
j ); // max. w.r.t. Z

foreach χ
(t)
j do

4 ŵ
(t+1)
j = N−1|χ̂(t)

j |; // max. w.r.t. wj’s

θ̂
(t+1)
j = argmaxθj∈Θj

∑
x∈χ̂

(t)
j

log fj(x; θj); // max. w.r.t θj’s

5 t = t + 1;

6 until Convergence of the complete likelihood ;

3.2 Proposed Online Extensions

In order keep ideas from online EM (stochastic E-Step) and from k-MLE (hard
partition), the only possible modifications concern the assignment z

(N)
N+1 of the

new observation xN+1.



344 C. Saint-Jean and F. Nielsen

1. Online k-MLE: The most obvious heuristic is to maximize the complete
log-likelihood for xN+1. Indeed, unless all data is kept in memory, previous
assignments for past observations are fixed. Note that these assignments are
computed in order with mixture parameters θ(0), θ(1), . . . , θ(N−1). This leads to
the following rule:

z̃
(i)
i,j = 1 if j = arg max

j′=1..K
log(ŵ(i−1)

j′ fj′(xi; θ̂
(i−1)
j′ )) and 0 otherwise. (10)

Clearly, this choice leads to a method which is similar to the Online CEM
algorithm [7]. Under the assumption that components are modeled by isotropic
gaussian, the MacQueens single-point iterative k-means [8] is also recovered.

2. Online Stochastic k-MLE: It is well-known that the strict partitioning can
give poor results in the batch setting when mixture components are not well
separated. This suggests to relax the strict maximisation and replace it by a
sampling from the multinomial distribution

z̃
(i)
i sampled from MK(1, {pj = log(ŵ(i−1)

j fj(xi; θ̂
(i−1)
j ))}j). (11)

Same kind of strategy was used in the Stochastic EM algorithm [6].

3. Online Hartigan k-MLE: Analogously to the Hartigan’s version of k-MLE [9],
one can select among all possible assignments of xN+1 the one which maximizes
its complete likelihood after the M-step:

z̃
(i)
i,j = 1 if j = arg max

j′=1..K
log(ŵ(i)

j′ fj′(xi; θ
(i)
j′ )) and 0 otherwise. (12)

Obviously, this heuristic induces a computational overhead since K M-Steps
have to be done.

To be useful, these methods require to be able to efficiently compute the
MLE for components parameters. In the following, we give details for the case
where these components belong to a (regular) exponential family (EF):

fj(x; θj) = exp {〈t(x), θj〉 + k(x) − F (θj)} ,

with t(x) the sufficient statistic, θj the natural parameter, k(·) the carrier mea-
sure and F the log-normalizer [10]. Under this assumption, the probability den-
sity function p(x, z; θ) is an EF2 which can be written for the i-th observation as:

2 The multinomial distribution is also an exponential family.



Online K-MLE for Mixture Modeling with Exponential Families 345

log p(xi, zi; θ) =
K∑

j=1

〈zi,j , log wj〉 +
K∑

j=1

〈zi,jt(xi), θj〉

+
K∑

j=1

zi,jk(xi) −
K∑

j=1

zi,jF (θj) (13)

Taking into account the summation constraint for wj ’s, the M-Step reduces to
simple update formulas:

ŵ
(N+1)
j = (N + 1)−1

∑N+1
i=1 z̃

(i−1)
i,j , (14)

η̂
(N+1)
j = (

∑N+1
i=1 z̃

(i−1)
i,j )−1

∑N+1
i=1 z̃

(i−1)
i,j t(xi), (15)

where ηj = ∇F (θj) is the expectation parameter for the j-th component (see
details in [10]). Remark that these formulas can be easily turned into recursive
ones:

ŵ
(N+1)
j = ŵ

(N)
j + (N + 1)−1

(
z̃
(N)
N+1,j − ŵ

(N)
j

)
, (16)

η̂
(N+1)
j = η̂

(N)
j + (N + 1)−1

(
z̃
(N)
N+1,jt(xN+1) − η̂

(N)
j

)
. (17)

Clearly, one can recognize a step of the stochastic gradient ascent method in the
expectation parameter space. Note that the functional reciprocal ∇F−1 must be
computable to get back into natural parameter space. Algorithm 2 summarizes
the Online Stochastic k-MLE.

4 Example: Mixture of Wishart Distributions

4.1 Wishart Distribution is a Canonical (Curved) Exponential
Family

The (central) Wishart distribution [11] is the multidimensional version of the
chi-square distribution and it characterizes empirical scatter matrix estimator
for the multivariate gaussian distribution Nd(0, S). Its density function can be
decomposed as

Wd(X; θn, θS) = exp
{

〈θn, log |X|〉R + 〈θS ,−1
2
X〉F + k(X) − F (θn, θS)

}

(18)

where (θn, θS) = (n−d−1
2 , S−1), t(X) = (log |X|,− 1

2X), k(X) = 0 and

F (θn, θS) =
(

θn +
(d + 1)

2

)

(d log(2) − log |θS |) + log Γd

(

θn +
(d + 1)

2

)

,

where Γd(y) = π
d(d−1)

4
∏d

j=1 Γ
(
y − j−1

2

)
is the multivariate gamma function

defined on R>0. 〈a, b〉R = a�b denotes the scalar product and 〈A,B〉F =
tr(A�B) the Fröbenius inner product (with tr the matrix trace operator). Note
that this decomposition is not unique.
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Algorithm 2. Online Stochastic k-MLE for (curved) exponential families
Input: A sample generator G = x1, x2, ... yielding a data stream of observations,

a batch algorithm B for the same problem, Nw a positive integer
Output: For each observation xN+1 with N ≥ Nw an estimate θ̂(N+1) of

mixture parameters is yielded
// Warm-Up-Step

1 Get θ̂(N) = {ŵ
(N)
j , θ̂

(N)
j }j from B with the Nw first observations of G;

2 N = Nw;

3 foreach component j in mixture do η̂
(N)
j = ∇F (θ̂

(N)
j ) foreach new value xN+1

from G do

4 z̃
(N)
N+1 sampled from MK(1, {pj = log(ŵ

(N)
j fj(xN+1; θ̂

(N)
j ))}j);

5 foreach component j in mixture do

6 ŵ
(N+1)
j = ŵ

(N)
j + (N + 1)−1

(
z̃
(N)
N+1,j − ŵ

(N)
j

)
;

7 η̂
(N+1)
j = η̂

(N)
j + (N + 1)−1

(
z̃
(N)
N+1,jt(xN+1) − η̂

(N)
j

)
;

8 yield mixture parameters θ̂(N+1) = {ŵ
(N+1)
j , θ̂

(N+1)
j = (∇F )−1(η̂

(N+1)
j )}j ;

9 N = N +1;

4.2 Details for the M-Step

Recall that find the MLE amounts to compute (∇F )−1 on the average of suffi-
cient statistics. In this specific case, the following system has to be inverted to
get values of (θn, θS) given (ηn, ηS):

d log(2) − log |θS | + Ψd

(

θn +
(d + 1)

2

)

= ηn, (19a)

−
(

θn +
(d + 1)

2

)

θ−1
S = ηS , (19b)

where Ψd the derivative of the log Γd should be inverted. As far as we know, no
closed-form solution exists but it can be easily solve numerically:

– Isolate θS in Eq. 19b: θS =
(
θn + (d+1)

2

)
(−ηS)−1

– Plug it in Eq. 19a and solve numerically the following one dimensional prob-
lem:

d log(2) − d log
(

θn +
(d + 1)

2

)

+ log | − ηS | + Ψd

(

θn +
(d + 1)

2

)

− ηn = 0

(20)
with any root-finding method on ]d − 1,+∞[.

– Substitute the solution into Eq. 19b and solve the value for θS .

Whole process gives the (∇F )−1 function mentioned in line 8 of Algorithm 2.
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Fig. 1. KL(f(·; θtrue)||f(·; θ̂(N)) for K = 3 (left) and K = 10 (right)

Line 8 of Algorithm 2 amounts to compute the following update formulas:

η̂n
(N+1)
j = η̂n

(N)
j + (N + 1)−1

(
z̃
(N)
N+1,j log |XN+1| − η̂n

(N)
j

)
, (21)

η̂S
(N+1)
j = η̂S

(N)
j − (N + 1)−1

(
z̃
(N)
N+1,j

1
2XN+1 + η̂S

(N)
j

)
. (22)

4.3 Experiment on Synthetic Data-Sets

In this section, we provide a preliminary empirical analysis of our proposed meth-
ods. The protocol is the following: pick a random Wishart mixture for K = 3
components (left) or K = 10 components (right), compute the Kullback-Leibler
divergence between the “true” mixture and the one yielded every iteration using
a Monte Carlo approximation (104 samples). The initialization mixture θ̂(0)

is computed with k-MLE for the first 100 observations. The simulations are
repeated 30 times for the Online Stochastic k-MLE so that it is possible to com-
pute mean, min, max and the first and third quartiles. Also, results of online
EM are reported.

From Fig. 1, one can observe a clear hierarchy between the algorithms espe-
cially when K = 10. One may guess that this dataset corresponds to the case
when clusters components are overlapping more. Thus, the soft assignment in
online EM outperforms other methods with an additional computational cost
(i.e. all sufficient statistics and cluster parameters have to be updated). The
proof of convergence of Online Stochastic k-MLE still remain to be done while
the reader may refer to the Sect. 3.5 of the article [7] for Online k-MLE.

5 Conclusion

This paper addresses the problem of online learning of finite statistical mixtures
with a special focus on curved exponential families. The proposed methods are
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fast since they require only one pass over the data stream. Further speed increase
may be achieved by using distributed computing for partial sums of sufficient
statistics (see [12]).
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Abstract. We discuss the optimization of the stochastic relaxation of
a real-valued function, i.e., we introduce a new search space given by
a statistical model and we optimize the expected value of the original
function with respect to a distribution in the model. From the point of
view of Information Geometry, statistical models are Riemannian mani-
folds of distributions endowed with the Fisher information metric, thus
the stochastic relaxation can be seen as a continuous optimization prob-
lem defined over a differentiable manifold. In this paper we explore the
second-order geometry of the exponential family, with applications to
the multivariate Gaussian distributions, to generalize second-order opti-
mization methods. Besides the Riemannian Hessian, we introduce the
exponential and the mixture Hessians, which come from the dually flat
structure of an exponential family. This allows us to obtain different
Taylor formulæ according to the choice of the Hessian and of the geo-
desic used, and thus different approaches to the design of second-order
methods, such as the Newton method.

In this paper we study the optimization of a real-valued function by means of
its Stochastic Relaxation (SR), i.e., we search for the optimum of the function by
optimizing the expected value of the function itself over a statistical model. This
approach in optimization is very general and it has been developed in many
different fields, from statistical physics and random-search methods, e.g., the
Gibbs sampler in optimization [1], simulated annealing and the cross-entropy
method [2]; to black-box optimization in evolutionary computation, e.g., Esti-
mation of Distribution Algorithms [3] and evolutionary strategies [4–7]; going
through well known techniques in polynomial optimization, such as the method
of the moments [8].

By optimizing the SR of a function, we move from the original search space to
a new search space given by a statistical model, i.e., a set of probability densities.
Once we introduce a parameterization for the statistical model, the parameters
of the model become the new variables of the relaxed problem. Notice that the
notion of stochastic relaxation differs from the common notion of relaxation in
optimization, indeed the minimum of the relaxed problem does not provide a
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lower bound for the minimum of the original problem, since the expected value
of a function is always greater of equal to the minimum of the function. The
term stochastic relaxation has been borrowed from [1], and used in the con-
text of optimization for the first time in [9]. In the original work Geman and
Geman introduced the Gibbs sampler, which is described as a stochastic relax-
ation technique to sample a joint probability distribution, and that, combined
with an annealing schedule, can be used as a maximization tool as well.

The choice of the statistical model in the SR plays a fundamental role, indeed
there is a tradeoff between the complexity of the statistical model, expressed for
instance by its dimension, and the difficulty of the relaxed problem, expressed
for example in terms of the non-linearities which appear in the formula of the
expected value of the function. For instance, consider the case of a finite search
space. One could be tempted to define a relaxation over the whole probability
simplex, so that the SR would become linear in the probabilities, and thus easy
to optimize. However, the dimension of relaxed problem would equal that of
the search space, and there would be no advantage in moving the search over a
statistical model. Instead, it is more reasonable to choose a lower-dimensional
statistical model in the search for the optimum. For finite search spaces this
would correspond to constraining the search to a subset of the probability sim-
plex. In this work we focus on the SR of a continous function with respect to
a statistical model in the multivariate Gaussian distributions, however the the-
ory we use applies in the general case of exponential families, with either finite,
discrete or continuous sample space.

In solving the SR, we are looking for an optimal density in a statistical
model. This corresponds to the distribution that in the discrete case concentrate
the probability mass over an optimal solutions of the original function, while
in the continous case it is more appropriate to talk about concentration of the
probability density in a neighborhood of the optimal solution in the original
search space. The optimization of the SR can be performed according to dif-
ferent paradigms. In particular, a common approach in the family of first-order
methods is given by gradient descent. However, it is well known in statistics that
the geometry of a statistical model is not Euclidean, indeed it was first shown
by Rao [10] that the set of positive distributions on a finite state space is a
Riemannian manifold endowed with the Fisher information metric. Follows that
the gradient of the stochastic relaxation should be evaluated with respect to the
Fisher information metric, which leads us to the definition of natural gradient
introduced by Amari [11]. Natural gradient has been proved to be efficient in
different contexts besides the optimization of the SR [5–7], such as the training
of neural networks [12] and, more recently, in deep learning [13]; policy gradi-
ents in reinforcement learning [14]; and last but not least variational inference
techniques, e.g., [15].

In this paper we follow a geometric approach based on Information Geom-
etry [16–19] to study the first and second-order geometry of the exponential
family. The purpose of this analysis is to introduce the proper tools to define
second-order optimization methods over a statistical model, and in particular
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the notion of Riemannian Hessian which is required when the geometry of the
space is not Euclidean. Notice that despite second-order methods over manifolds
are widely used, as in the case of matrix manifolds [20], they appear to be new in
the context of statistical manifolds. As we already mentioned, exponential fam-
ilies of distributions have an intrinsic Riemannian geometry, where the Fisher
Information matrix plays the role of metric tensor. However, it was pointed out
by Amari [16,18] that besides the Riemannian geometry there are two other rel-
evant dually-flat affine geometries of Hessian type for an exponential family: the
exponential and the mixture one. The existence of (at least) three geometries
provides three definitions of connections for an exponential family, three types of
geodesics and, as we will see in the following, three types of Hessian, which are
at the basis of the study of second-order optimization methods over a statistical
manifold.

In the first part of the paper we review the first-order geometry of the expo-
nential family. Next we move to second-order calculus, by introducing the notion
of covariant derivative, and we provide formulæ for the Riemannian, exponen-
tial, and mixture Hessians over a statistical manifold. This analysis allows us
to generalize the Newton algorithm to the optimization over a statistical mani-
fold. We conclude the paper with some remarks about the case of multivariate
Gaussian distributions. A preliminary version of this paper has been presented as
a poster [21] at the NIPS 2014 Workshop on Optimization for Machine Learning
(OPT2014).

1 Geometry of the Exponential Family

Given a real-valued function f : Ω → R to be minimized, and a statistical
model M, the Stochastic Relaxation (SR) F of f is defined as the expected
value of the function itself with respect to p in M, i.e., F (p) = Ep[f ]. Under
some regularity conditions over the choice of M, F is a continuous function
independently from the nature of the sample space Ω, which can be either finite,
discrete or continuous.

We are interested in developing second-order optimization methods for the
SR of f based on the Gaussian distribution. However, the approach we present is
more general and can be applied to any exponential family, thus in the following
we will use the formalism of the exponential family and we will come back to
the Gaussian distribution in the last part of the paper. In the first part of this
section we review some general properties of the exponential family and we refer
to the monograph [22]. Consider the exponential family E :

p(x;θ) = exp

(
d∑

i=1

θiTi(x) − ψ(θ)

)

, (1)

with θ ∈ B, where B is an open convex set in R
d. The real-valued functions

T1, . . . , Tk, are the sufficient statistics of the exponential family, and ψ(θ) is
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the log-partition function, i.e., ψ(θ) = log
∫

Ω
exp

(∑d
i=1 θiTi(x)

)
dx. The expo-

nential family also admits a dual parameterization based on the expectation
parameters η with η = Eθ[T ] = ∇ψ(θ).

First and second-order methods to optimize a function F defined over an
exponential family require the evaluation of the gradient and of the Hessian of F .
The evaluation of such quantities depend on the geometry of the space, which is
known to be non-Euclidean in the case of statistical models. To better understand
the nature of E , we refer to notions from Information Geometry [16,18], which
studies the geometry of statistical models and of the exponential family from
the point of view of differential geometry [25]. Statistical models are considered
as manifolds of distributions endowed with a Riemannian metric, given by the
Fisher information metric.

In the following we denote with TpE the tangent space of E at p, i.e., the
space of the tangent vectors to any curve p(t) in E that goes through p. Rao
showed that the tangent vector to p(t) can be evaluated as d

dt log p(t), so that the
tangent space TpE can be equivalently characterized as the space of all random
variable centered in p, with the canonical basis given by the centered sufficient
statistics Ti −Ep[Ti]. Given two tangent vector U, V in TpE , the tangent space is
endowed with the inner product given by g(U, V )(p) = Ep[UV ]. In the basis of
the sufficient statistics we have Ep[UV ] =

∑
ij UiEp[(Ti−Ep[Ti])(Tj −Ep[Tj ])]Vj ,

where eI(p) = Ep[(Ti − Ep[Ti])(Tj − Ep[Tj ])]ij = [Cov (Ti, Tj)]ij is the Fisher
information matrix.

Given an exponential family E , a function F : E → R and the metric g for
E , which in our case is the Fisher information metric, the Riemannian gradient
grad F is the unique vector such that for any direction identified by the vector
X ∈ TpE , we have:

g(grad F,X)(p) = DXF (p), (2)

i.e., grad F is defined as the unique vector such that the inner product with
respect to the metric between grad F and an arbitrarily direction X, evaluated
at p ∈ E , is the directional derivative DXF (p) of F along X in p. The previous
definition of Riemannian gradient is coordinate independent. If we consider a
parameterization for the exponential family, and we choose a basis for the tangent
space, we can write a formula for the components of the Riemannian gradient.
In the exponential family, the natural gradient gives the components of the
Riemannian gradient evaluated with respect to the Fisher information matrix
eI(θ), expressed in the basis of the centered sufficient statistics:

∇̃F (θ) = e I(θ)−1∇F (θ). (3)

Due to the properties of the exponential family eI(θ) can be obtained as the
Hessian of ψ(θ), i.e., the matrix of second-order partial derivatives [∂i∂jψ(θ)]ij ,
and ∇F (θ) = (∂iF (θ))i is the vector of first-order partial derivatives. Here ∂i

denotes the partial derivative with respect to θi, i.e., ∂i = ∂
∂θi

. We denote the
natural gradient with ∇̃F to distinguish it from ∇F , which corresponds to the
components of the gradient evaluated with respect to the Euclidean metric.
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In order to move to second-order calculus, we need a definition of Hessian
of the function F over a manifold, which generalizes the Euclidean case. In the
following we refer to [20], where second-order methods have been applied to the
optimization over manifolds, cf. [23] for a similar approach. We study the second-
order geometry of the exponential family in a general way, similar to what has
been done in [24], where the focus was on applications to binary optimization.
For basic notions of differential geometry, we refer to the standard book [25].

The first step in the geometric construction of the Riemannian Hessian, which
is required to write a second-order Taylor approximation of the function in a
neighborhood of a point, is the generalization to a manifold of the concept of
directional derivative of a vector field. Indeed, differently from the Euclidean
case, a definition based on the derivation of a vector field along a curve is not
possible, since in each point of the curve tangent vectors belong to different
tangent spaces, and without a correspondence between tangent spaces, no com-
parison is possible. The notion of affine connection provides a way to define such
correspondence.

A connection ∇ over a manifold M is an operator ∇ : TM × TM → TM
which given two vector fields X and Y defined over M returns a new vector field
∇XY given by the directional derivative DXY of the Y in the direction X. The
vector field ∇XY is called the covariant derivative of Y with respect to X for
the given affine connection ∇. Notice that in general a manifold admits infinitely
many connections. Each connection can be specified by d2 vector fields which
represent the covariant derivate ∇Ei

Ei where Ei and Ej are the coordinate
vector fields. Then, a connection can be fully determined by d3 symbols, called
the Christoffel symbols Γ k

ij , which represent the components of ∇Ei
Ej in the

basis E1, . . . , Ed, i.e., ∇Ei
Ej =

∑
k Γ k

ijEk.
Among all possible connections, there is a unique connection, called

Riemannian or Levi-Civita connection, denoted by 0∇, which satisfies the prop-
erties of being symmetric and invariant with respect to the Riemannian metric.
The Christoffel symbols 0Γ k

ij , with i, j, k = 1, . . . , d, for the Levi-Civita connec-
tion can be derived from the metric, using the formula 0Γ k

ij =
∑

l gkl0Γijl, with
0Γijk = 1

2 (∂igjk + ∂jgik − ∂kgij). The symbols Γijk =
∑

l gilΓ
l
jk are called the

Christoffel symbols of the first type, to distinguish them from Γ k
jk =

∑
l gklΓ l

ij

which are sometimes referred as Christoffel symbols of the second type. Here
the gij ’s denote the entries of the inverse Fisher information matrix, i.e.,
[gij ] = [gij ]−1. Notice that when g can be expressed as the Hessian of a function
for a given parameterization, then by symmetry we have 0Γijk = 1

2∂igjk.
As pointed out previously, besides the Riemannian connection, two other

affine geometries, namely the exponential and the mixture geometry, play an
important role for the exponential family. Amari [18] introduced the following
family of α-connections, given by the Christoffel symbols:

αΓijk(ξ) = Eξ

[(
∂i∂j log p(x; ξ) +

1 − α

2
∂i log p(x; ξ)∂j log p(x; ξ)

)
∂k log p(x; ξ)

]

For α = 0 we recover the Christoffel symbols of the Levi-Civita connection
0Γijk(ξ), while for α = ±1 we obtain a characterization for the exponential and
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mixture connection. In particular, for an exponential family parametrized by θ,
it is easy to show that the Christoffel symbols of the exponential connection
eΓijk(θ), for α = 1, are identically equal to zero, i.e., the exponential family is
e-flat. Similarly, once the exponential family is parametrized by η, it turns out
that the Christoffel symbols of the mixture connection mΓijk(η), for α = −1,
are identically zero, i.e., the exponential family is m-flat as well. This is a con-
sequence of the duality between the exponential and mixture geometry of the
exponential family. It follows that we can introduce at least two alternative defi-
nitions of covariant derivative, based on the exponential and mixture geometries,
which we call exponential and mixture covariant derivatives. Given the connec-
tion through its Christoffel symbols, the covariant derivative can be evaluated
by the following formula:

∇XY =
∑

ij

Xj

(
∑

k

Y kΓ i
jk + ∂jY

i

)

Ei. (4)

The introduction of a connection over the manifold allows to define the notion
of acceleration along a curve, which is based on the differentiation of tangent vec-
tors along the curve itself. Thus, we can introduce a geodesic between two points
as the curve with zero acceleration. Different definitions of covariant derivatives
produce different geodesics between two points.

We can now introduce the Riemannian Hessian of a function defined over
a manifold. In the following we interpret the Hessian as an operator which is
applied to a vector field X and returns a vector field DX grad F given by
the directional derivative of the Riemannian gradient along the direction identi-
fied by X. On a Riemannian manifold M endowed with the metric g, the Rie-
mannian Hessian of F is the linear mapping 0Hess F (p) : TpM → TpM such
that 0Hess F (p)[X(p)] = ∇X(p) grad F (p), where 0∇ is the Levi-Civita connec-
tion associated to g on M. The coordinate representation of the Riemannian
Hessian in the basis of the centered sufficient statistics [24] is given by:

0Hess F (p)[X(p)] = eI(p)−1

(

Hess F (p) − 1
2

∑

k

∂k
eI(p)(∇̃F (p))k

)

X(p), (5)

where Hess F (p), with no arguments, denotes the Euclidean Hessian of F in
p, i.e., the matrix of second-order partial derivatives. Notice that in the nat-
ural parameters, and more in general for any Hessian manifolds, since eI(θ) =
Hess ψ(θ), then 0Γijk(θ) = 1

2∂i∂j∂kψ(θ) becomes symmetric with respect to the
three indices. Equation (5) can be derived from Eq. (4), where the Christoffel
symbols of the second type are given by the tensor contraction 1

2
eI(p)−1∂eI(p).

By choosing different Christoffel symbols associated to the exponential and
mixture connections, we can obtain similar formulæ for eHess F (p)[X(p)] and
mHess F (p)[X(p)].
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2 Second-Order Optimization: The Newton Method

The Newton method is an optimization method which generates a sequence of
distributions {pt}, t ≥ 0, in M which converges towards a stationary point
of F , i.e., a critical point of the vector field p �→ grad F (p). At the basis of
this optimization technique there is a Taylor expansion F (p) which provides a
second-order approximation of the function over the manifold.

Let t �→ p(t) be a Riemannian geodesic connecting p = p(0) to q = p(1) in
E , and Dp(t) denote the tangent velocity vector d

dt log p(t), then the following
Taylor formula holds:

F (q) ≈ F (p) + 〈grad F (p), Dp(0)〉p +
1
2

〈
0Hess F (p)[ Dp(0)], Dp(0)

〉
p
. (6)

However, this is not the only possible second-order approximation of F . Two
similar formula can be obtained by consider the exponential geodesic connect-
ing p and q together with the mixture Hessian mHess F (p)[ Dp(0)], and dually,
using the mixture geodesic and the exponential Hessian. Proofs are omitted due
to space limitation, however they are based on the duality between covariant
derivatives in terms of preserving inner products with respect to the metric, and
the fact that the acceleration along the corresponding geodesic is zero.

In order to determine the next point at each iteration, the Newton method is
based on the idea of choosing the step in such a way that the Taylor expansion
attains its minimum in the new point. This step can be found by ensuring that
the derivative of the approximation is equal to zero in the new point. This
requires to solve in X(p) ∈ TpM the following Newton equation:

Hess F (p)[X(p)] = −grad F (p). (7)

Once the previous equation has been solved, the last step consists in finding a
point over the manifold along the geodesic starting from the current point with
initial velocity given by the Newton step. This last step is required for any first
or second-order optimization method over a manifold to find a correspondence
between tangent vectors in a point and the neighborhood of the point itself in
the manifold. The computation of a geodesic determined by the Newton step
can be an expensive task in general, for instance when the geometry is not flat,
however this step could be relaxed and approximated by the notion of retraction.
The retraction over a manifold [20] is a mapping between the tangent space in a
point and the manifold, with local rigidity conditions which preserves gradients
at the point where it is evaluated.

3 Applications to the Gaussian Distribution

In this section we give some details about the application of the general theory
of second-order calculus over an exponential family to the case of the Gaussian
distribution. In the first part we recall some results about exponential families.
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Due to the properties of the exponential family, the Fisher information
matrix, the Euclidean gradient, and thus the natural gradient can be evaluated
in terms of covariances, indeed we have ∇̃F (θ) = Covθ(T ,T )−1Covθ(T , f) . As
remarked above, since the exponential family parameterized by θ is a Hessian
manifold, it follows that ∂I(θ) = [∂i∂j∂kψ(θ)] = Covθ(T ,T ,T ) = Eθ[(T −
Eθ[T ])(T − Eθ[T ])(T − Eθ[T ])], and Hess F (p) = [∂i∂jF (θ)] = (Covθ(T ,T , f).
The Riemannian Hessian 0Hess F (θ)[X(θ)] can then be written in coordinates:

Covθ(T ,T )−1

(

Covθ(T ,T , f) − 1
2

∑

k

Covθ(T ,T , Tk)(∇̃F (θ))k

)

X(θ). (8)

The implementation of an optimization algorithm for the SR based on the expo-
nential family requires the evaluation of the covariances among the sufficient
statistics and between the sufficient statistics and the function to be optimized.
In the general case, to determine these quantities exactly can be computationally
unfeasible, for this reason it is a common approach to replace the exact value
with Monte Carlo estimations of the covariances based on the current sample.

We have now all the elements to write explicitly an updating formula in the
natural parameters for the Newton method, where the sequence of distributions
generated is identified by a corresponding sequence of parameter vectors {θt},
t ≥ 0. The iterative formula for the Newton method can be written as:

θt+1 = θt − Rθt
(λ Hess F (θt)−1∇̃F (θt)), (9)

where the function Rθ returns the coordinates of the image of the retraction,
which is a mapping from the tangent space to the manifold that identifies a point
along the direction specified by the vector given as an argument, which in our
case is the Newton step. The parameter λ > 0 is used to control the step size
and thus the convergence to a critical point of F .

We conclude this section with some comments about the application to the
Gaussian case. We refer to [27] as a standard reference for the geometry of
the Gaussian distribution, and to our paper [26] for a presentation of the dif-
ferent parameterizations of the Gaussian distribution in view of the SR. The
Gaussian distribution is one of the special cases in the exponential family, where
the computation of the transformation between natural parameters and expec-
tation parameters can be done in an efficient way, through the inversion of the
covariance matrix. Indeed, the natural parameters of the Gaussian distribution
are a function of the inverse covariance matrix and of the mean vector, while the
expectation parameters correspond to a function of covariance matrix and mean
vector. This suggests an implementation of the Newton method based on the
exponential Hessian in the natural parameters, for which the Christoffel sym-
bols vanish, combined with a retraction based on the mixture geodesic, which
can be evaluated efficiently in the expectation parameters.

4 Discussion and Future Work

In this paper we studied the second-order geometry of a Riemannian manifold,
in the special case of exponential statistical models. We extended the analysis
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carried out in [24], by defining not only the Riemannian Hessian, but also the
exponential and the mixture Hessians. The three Hessians we introduced, which
are associated to the three privileged geometries of an exponential family, allow
to derive three different Taylor formulæ and thus three alternative generaliza-
tions of the updating rule of the Newton method over an exponential family.

The alternative approaches we proposed appear to be equally well moti-
vated from a theoretical perspective, however they are not equivalent in practice,
indeed they are based on the computation of different covariant derivates and
different geodesics. Moreover we expect different computational costs in the eval-
uation of the Newton step according to the choice of the parameterization and
of the connection, as well as the type of geodesic which needs to be computed.
An experimental comparison is required in order to investigate the advantages
and disadvantages of the different approaches we proposed, for instance in terms
of computational complexity and speed of convergence.

We conclude the paper with a remark about second-order optimization tech-
niques. Indeed, even if the Newton method and more in general second-order
methods are very popular and well-known for their quadratic local convergence
properties, in practice a number of issues has to be taken into account. The
Newton step does not always points in the direction of the natural gradient,
and close enough to a saddle point of the function the Newton step will tend to
converge to it. In order to obtain a direction of descent for the function to be
optimized, the Hessian must be negative-definite, i.e., its eigenvalues must be
strictly negative. In order to overcome these issues, different methods have been
proposed in the literature, such as quasi-Newton methods, where the update
vector is obtained using a modified Hessian which is guaranteed to be negative
definite. Finally, a number of other issues has to be taken into account in the
design of an algorithm, such as the uncertainty in the estimation of the Hessian
and of the gradient, when they are estimated from a sample, and the choice of
other parameters of the algorithm, such as the step size.
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Abstract. We prove the equivalence of two online learning algorithms,
mirror descent and natural gradient descent. Both mirror descent and
natural gradient descent are generalizations of online gradient descent
when the parameter of interest lies on a non-Euclidean manifold. Nat-
ural gradient descent selects the steepest descent direction along a
Riemannian manifold by multiplying the standard gradient by the inverse
of the metric tensor. Mirror descent induces non-Euclidean structure
by solving iterative optimization problems using different proximity
functions. In this paper, we prove that mirror descent induced by a
Bregman divergence proximity functions is equivalent to the natural
gradient descent algorithm on the Riemannian manifold in the dual co-
ordinate system. We use techniques from convex analysis and connections
between Riemannian manifolds, Bregman divergences and convexity to
prove this result. This equivalence between natural gradient descent and
mirror descent, implies that (1) mirror descent is the steepest descent
direction along the Riemannian manifold corresponding to the choice of
Bregman divergence and (2) mirror descent with log-likelihood loss
applied to parameter estimation in exponential families asymptotically
achieves the classical Cramér-Rao lower bound.

1 Introduction

Recently there has been great interest in online learning both in terms of algo-
rithms as well as in terms of convergence properties. Given a convex differentiable
cost function, f : Θ → R, with parameter in a convex set, θ ∈ Θ ⊆ R

p, an online
learning algorithm predicts a sequence of parameters {θt}∞

t=1 which incur a loss
f(θt) at each iterate t. The goal in online learning is to construct a sequence
that minimizes the regret at a time T ,

∑T
t=1 f(θt).

The most common approach to construct a sequence {θt}∞
t=1 is based on

online or stochastic gradient descent. The online gradient descent update is:

θt+1 = θt − αt∇f(θt), (1)

c© Springer International Publishing Switzerland 2015
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where (αt)∞
t=0 denotes a sequence of step-sizes. Gradient descent is the direction

of steepest descent if the parameters θt belong to a Euclidean space. However
in many applications, parameters lie on non-Euclidean manifolds (e.g. mean
parameters for Poisson families, mean parameters for Bernoulli families and other
exponential families). In such scenarios gradient descent in the ambient space
is not the direction of steepest descent, since the parameter is restricted to a
manifold. Consequently generalizations of gradient decent that incorporate non-
Euclidean structure have been developed.

1.1 Riemannian Manifolds and Natural Gradient Descent

One generalization of gradient descent is natural gradient descent developed by
Amari [1]. Natural gradient descent assumes the parameter of interest lies on a
Riemannian manifold and selects the steepest descent direction along that man-
ifold. Let (M,H) be a p-dimensional Riemannian manifold with metric tensor
H = (hjk) and M ⊆ R

p. A well-known statistical example of Riemannian mani-
folds are manifolds induced by the Fisher information of parametric families. In
particular given a parametric family {p(x;μ)} where μ ∈ M ⊆ R

p, let {I(μ)}
for each μ ∈ M denote the p × p Fisher information matrices. Then (M, I(μ))
denotes a p-dimensional Riemannian manifold. Table 1 provides examples of sta-
tistical manifolds induced by parametric families (see e.g. [3,11,18] for details).

When I(μ) = Ip×p, the Riemannian manifold corresponds to standard
Euclidean space. For a short introduction to Riemannian manifolds, see [10].

Given a function f̃ on the Riemannian manifold f̃ : M → R, the natural
gradient descent step is:

μt+1 = μt − αtH−1(μt)∇f̃(μt), (2)

where H−1 is the inverse of the Riemannian metric H = (hjk) and μ is the
parameter of interest. If (M,H) = (Rp, Ip×p), the natural gradient step corre-
sponds to the standard gradient descent step (1). Theorem 1 in [1] proves that
the natural gradient algorithm steps in the direction of steepest descent along
the Riemannian manifold (M,H). Hence the name natural gradient descent.

1.2 Mirror Descent with Bregman Divergences

Another generalization of online gradient descent is mirror descent developed by
Nemirovski and Yudin [16]. Mirror descent induces non-Euclidean geometry by

Table 1. Statistical manifold examples

Family M I(μ)

N (θ, Ip×p) R
p Ip×p

Bernoulli(p) [0, 1] 1
p(1−p)

Poisson(λ) [0, ∞) 1
λ
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re-writing the gradient descent update as an iterative �2-penalized optimization
problem and selecting a proximity function different from squared �2 error. Note
that the online gradient descent step (1) can alternatively be expressed as:

θt+1 = arg min
θ∈Θ

{

〈θ,∇f(θt)〉 +
1

2αt
‖θ − θt‖22

}

,

where Θ ⊆ R
p. By re-expressing the stochastic gradient step in this way, [16]

introduced a generalization of gradient descent as follows: Denote the proximity
function Ψ : Rp × R

p → R
+, strictly convex in the first argument, then define

the mirror descent step as:

θt+1 = arg min
θ∈Θ

{

〈θ,∇f(θt)〉 +
1
αt

Ψ(θ, θt)
}

. (3)

Setting Ψ(θ, θ′) = 1
2‖θ − θ′‖22 yields the standard gradient descent update,

hence (3) is a generalization of online gradient descent.
A standard choice for the proximity function Ψ is the so-called Bregman

divergence since it corresponds to the Kullback-Leibler divergence for different
exponential families. See (e.g. [4,5]) for a detailed introduction to the connection
and equivalence between Bregman divergences and exponential families.

In particular, let G : Θ → R denote a strictly convex twice-differentiable
function, the divergence introduced by [8] BG : Θ × Θ → R

+ is:

BG(θ, θ′) = G(θ) − G(θ′) − 〈∇G(θ′), θ − θ′〉.
Bregman divergences are widely used in statistical inference, optimization,
machine learning, and information geometry (see e.g. [2,5,15,20]). Letting
Ψ(·, ·) = BG(·, ·), the mirror descent step defined is:

θt+1 = arg min
θ

{

〈θ,∇f(θt)〉 +
1
αt

BG(θ, θt)
}

. (4)

There is a one-to-one correspondence between Bregman divergences and expo-
nential families [4,5] since both are defined by strictly convex functions and we
exploit this connection later when we discuss estimation in exponential families.
Examples of G, exponential families and the induced Bregman divergences are
listed in Table 2. For a more extensive list, see [5].

1.3 Our Contribution

In this paper, we prove that the mirror descent update with Bregman divergence
step (4) is equivalent to the natural gradient step (2) along the dual Riemannian
manifold which we introduce later. The proof of equivalence uses concepts in
convex analysis combined with connections between Bregman divergences and
Riemannian manifolds developed in [2]. Using the equivalence of the two algo-
rithms, we provide a new perspective and statistical optimality results for mirror
descent. In particular natural gradient descent is known to be the direction of
steepest descent along a Riemannian manifold and is Fisher efficient for parame-
ter estimation in exponential families [1], neither of which are known for mirror
descent.
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Table 2. Bregman divergence examples

Family G(θ) BG(θ, θ′)

N (θ, Ip×p) 1
2
‖θ‖2

2
1
2
‖θ − θ′‖2

2

Poisson(eθ) exp(θ) exp(θ) − exp(θ′) − 〈exp(θ′), θ − θ′〉
Bernoulli( 1

1+e−θ ) log(1 + exp(θ)) log

(
1+eθ

1+eθ′

)
− 〈 eθ′

1+eθ′ , θ − θ′〉

2 Equivalence Through Dual Co-ordinates

In this section we prove the equivalence of natural gradient descent (2) and
mirror descent (4). The key to the proof involves concepts in convex analysis,
in particular the convex conjugate function and connections between Bregman
divergences, convex functions and Riemannian manifolds.

2.1 Bregman Divergences and Convex Duality

The concept of convex conjugate functions is central to the main result in the
paper. The convex conjugate function for a function G is defined to be:

H(μ) := sup
θ∈Θ

{〈θ, μ〉 − G(θ)} .

If G is lower semi-continuous, G is the convex conjugate of H, implying a dual
relationship between G and H. Further, if we assume G is strictly convex and
twice differentiable, then so is H. Note also that if g = ∇G and h = ∇H,
g = h−1. For additional properties and motivation for the convex conjugate
function, see [21].

Let μ = g(θ) ∈ Φ be the point at which the supremum for the dual function
is attained represent the dual co-ordinate system to θ. The dual Bregman diver-
gence BH : Φ × Φ → R

+ induced by the strictly convex differentiable function
H is:

BH(μ, μ′) = H(μ) − H(μ′) − 〈∇H(μ′), μ − μ′〉.
Using the dual co-ordinate relationship, it is straightforward to show that
BH(μ, μ′) = BG(h(μ′), h(μ)) and BG(θ, θ′) = BH(g(θ′), g(θ)). Dual functions
and Bregman divergences for examples in Table 2 are presented in Table 3. For
more examples see [5].

2.2 Bregman Divergences and Riemannian Manifolds

Now we explain how every Bregman divergence induces a Riemannian mani-
fold as explained in [2]. Let M be a Riemannian manifold. For the Bregman
divergence BG : Θ × Θ → R

+ induced by the convex function G, define the
Riemannian metric on Θ ⊆ M, G = ∇2G (i.e. the Hessian matrix). Since G is a
strictly convex twice differentiable function, ∇2G(θ) is a positive definite matrix
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for all θ ∈ Θ. Hence BG(·, ·) induces the Riemannian manifold (M, θ,∇2G) in
the θ co-ordinates. Now let Φ ⊆ M be the image of Θ under the continuous map
g = ∇G. BH : Φ×Φ → R

+ is the dual Bregman divergence and (M, φ,H), where
H = ∇2H is the Riemannian manifold in terms of the dual co-ordinate system φ.
As shown in Theorem 1 in [2] and Eq. (30) in Sect. 1.4 [17], ∇2G(θ) = ∇2H−1(μ).

For example, for the Gaussian statistical family defined on Table 1, Θ =
Φ = R

p and ∇2G = ∇2H = Ip×p (i.e. the primal and dual manifolds are the
same). On the other hand, for the Bernoulli(p) family in Table 1, the mean
parameter is 0 ≤ p ≤ 1 whereas the natural parameter is θ = log p − log(1 − p)
and G(θ) = log(1+eθ). Consequently (Θ,∇2G) = (R, e−θ

(1+e−θ)2
) and (Φ,∇2H) =

([0, 1], 1
p(1−p) ) which is consistent with Table 1. For a more thorough introduction

to the connection between Bregman divergences and Riemanninan manifolds
see [2].

2.3 Main Result

In this section we present our main result, the equivalence of mirror descent and
natural gradient descent. We also discuss consequences and implications.

Theorem 1. The mirror descent step (4) with Bregman divergence defined by
G applied to function f in the θ ∈ Θ co-ordinate system is equivalent to the
natural gradient step (2) in the dual co-ordiante system φ ∈ Φ.

The proof follows by stating mirror descent in the dual Riemannian manifold
and simple applications of the chain rule.

Proof. Recall that the mirror descent update (3) is:

θt+1 = arg min
θ

{

〈θ,∇f(θt)〉 +
1
αt

BG(θ, θt)
}

.

Finding the minimum by differentiation yields the step:

g(θt+1) = g(θt) − αt∇θf(θt),

where g = ∇G. In terms of the dual variable μ = g(θ) and noting that θ =
h(μ) = ∇H(μ),

μt+1 = μt − αt∇θf(h(μt)).

Applying the chain rule to ∇μf(h(μ)) = ∇μh(μ)∇θf(h(μ)) implies that

∇θf(h(μt)) = [∇μh(μt)]−1∇μf(h(μt)).

Therefore
μt+1 = μt − αt[∇2H(μt)]−1∇μf(h(μt)),

which corresponds to the natural gradient descent step (2). This completes the
proof.
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3 Consequences

In this section, we discuss how this connection directly yields optimal efficiency
results for mirror descent and discuss connections to other online algorithm on
Riemannian manifolds.

By Theorem 1 in Amari [1], natural gradient descent along the Riemannian
manifold (M, Φ,∇2H) follows the direction of steepest descent along that man-
ifold. As an immediate consequence, mirror descent with Bregman divergence
induced by G follows the direction of steepest descent along the Riemannain
manifold (M, Φ,∇2H) where H is the convex conjugate for G. As far as we
are aware, an interpretation in terms of Riemannian manifolds had not been
provided for mirror descent.

Next we explain how using existing theoretical results in Amari [1], we can
prove that mirror descent achieves Fisher efficiency.

3.1 Efficient Parameter Estimation in Exponential Families

In this section we exploit the connection between mirror descent and natural gra-
dient descent to study the efficiency of mirror descent from a statistical perspec-
tive. Prior work on the statistical theory of mirror descent has largely focussed on
regret analysis and we are not aware of analysis of second-order properties such
as statistical efficiency. We will see that asymptotic Fisher efficiency [12,14,19]
for mirror descent which is an optimality criterion on the covariance of a para-
meter estimate is an immediate consequence of the equivalence between mirror
descent and natural gradient descent.

The statistical problem we consider is parameter estimation in exponential
families. Consider a natural parameter exponential family with density:

p(y | θ) = h(y) exp(〈θ, y〉 − G(θ)),

where θ ∈ R
p and G : R

p → R is a strictly convex differentiable function.
The probability density function can be re-expressed in terms of the Bregman
divergence BG(·, ·) as follows:

p(y | θ) = h̃(y) exp(−BG(θ, h(y))),

where recall that h = ∇H and H is the conjugate dual function of G. The
distribution can be expressed in terms of the mean parameter μ = g(θ) and the
dual Bregman divergence BH(·, ·):

p(y | η) = h̃(y) exp(−BH(y, μ)).

The natural and mean parameterizations and their relationship through convex
conjugates is widely known (see e.g. [6,9,13]) and this dual parameterization has
been applied in many applications (see e.g. [4,5,22]).

Consider the mirror descent update for the natural parameter θ with prox-
imity function BG(·, ·) when the function to be minimized is the standard log
loss:

f(θ; yt) = − log p(yt | θ) = BG(θ, h(yt)).
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Note that the dependence on t for ft is through the noisy data point yt which
varies for different t.

Then the mirror descent step is:

θt+1 = arg min
θ

{

〈θ,∇θBG(θ, h(yt))|θ=θt
〉 +

1
αt

BG(θ, θt)〉
}

. (5)

Now if we consider the natural gradient descent step for the mean parameter μ,
the function to be minimized is again the standard log-loss in the μ co-ordinates:

f̃t(μ; yt) = − log p(yt | μ) = BH(yt, μ).

Using Theorem 1 (or by showing it directly), the natural gradient step is:

μt+1 = μt − αt[∇2H(μt)]−1∇BH(yt, μt). (6)

A parallel argument holds if the mirror descent step was expressed in terms
of the mean parameter and the natural gradient step in terms of the natural
parameter.

By explicitly calculating ∇BH(yt, μt), Eq. (6) reduces to the very simple
linear update:

μt+1 = μt − αt(μt − yt),

and hence is very straightforward to implement as natural gradient descent.
The fact that the curvature of the loss function BH(yt, μt) perfectly matches
the curvature due to the metric tensor ∇2H(μ) is why the mirror descent and
natural gradient descent updates reduce to this simple linear update equation.
Hence in this setting mirror descent applied to the natural parameter results
in the simple linear update of the mean parameter through natural gradient
descent.

Now we use Theorem 2 in [1] to prove that mirror descent yields an asymptot-
ically Fisher efficient for μ. The Cramér-Rao theorem states that any unbiased
estimator based on T independent samples y1, y2, ..., yT of μ, which we denote
by μ̂T satisfies the following lower bound:

E[(μ̂T − μ)(μ̂T − μ)T ] 
 1
T

∇2H,

where 
 refers to the standard matrix inequality. A sequence of estimators
(μ̂t)∞

t=1 is asymptotically Fisher efficient if:

lim
T→∞

TE[(μ̂T − μ)(μ̂T − μ)T ] → ∇2H.

Now by using Theorem 2 in [1] for natural gradient descent and the equivalence of
natural gradient descent and mirror descent (Theorem 1), it follows that mirror
descent is Fisher efficient.

Corollary 1. The mirror descent step applied to the log loss (5) with step-sizes
αt = 1

t asymptotically achieves the Cramér-Rao lower bound.
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Theorem 2 in Amari [1] applies more generally to neural network and regression
models where the update along the Riemannian manifold is not exactly linear but
almost linear with a vanishing remainder term. For a more detailed discussion on
the statistical properties of natural gradient see [1]. Here we have illustrated how
the equivalence between mirror descent with Bregman divergences and natural
gradient descent gives second-order optimality properties of mirror descent.

3.2 Connection to Other Online Methods on Riemannian Manifolds

The point in using the natural gradient is to the parameter of interest in the
direction of the gradient on the manifold rather than the gradient in the ambi-
ent space. Note however that any non-infinitesimal step in the direction of the
gradient of the manifold will move one off the manifold, for any curved mani-
fold. This observation has motivated algorithms [7] in which the update step is
constrained to remain on the manifold.

In this section, we discuss the relation between natural gradient descent, mir-
ror descent, and gradient based methods that along a Riemannian manifold [7].
To define the online steepest descent step used in [7], we need to define the
exponential map and differentiation in curved spaces.

The exponential map at a point μ ∈ M is a map expμ : TμM → M where
TμM is the tangent space at each point μ ∈ M. The idea of an exponential
map is starting at a point μ with tangent vector v ∈ Tμ if one starts at point μ
and “flows” along the manifold in direction v for a fixed (unit) time interval at
constant velocity one reaches a new point on the manifold expμ(v). This idea is
usually stated in terms of geodesic curves on the manifold, consider the geodesic
curve γ : [0, 1] → M, with γ(0) = μ and γ̇(0) = v, where v ∈ TμM then
expμ(v) = γ(1). Again, in words, expμ(·) is the end-point of a curve that lies
along the manifold M that begins at μ with initial velocity v = γ̇(0) that travels
one time unit. A more thorough introduction to the exponential map is provided
in [10].

Now we define differentiation along a manifold. Let f : M → R be a
differentiable function on M. The gradient vector field �Mf takes the form
�Mf(μ) = �v(f(expμ(v)))|v=0 noting that f(expμ(v)) is a smooth function on
TμM.

For the function f where f : M → R the online steepest descent step ana-
lyzed in [7] is:

μt+1 = expμt
(−αt∇Mf(μt)). (7)

The key reason why the update (7) is the standard gradient descent step instead
of the natural gradient descent step introduced by Amari is that μt+1 is always
guaranteed to lie on the manifold M for (7), but not for the natural gradient
descent step. Unfortunately, the exponential map is extremely difficult to eval-
uate in general since it is the solution of a system of second-order differential
equations [10].
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Consequently a standard strategy is to use a computable retraction Rμ :
TμM → R

p of the exponential map which yields the approximate gradient
descent step:

μt+1 = Rμt
(−αt∇Mf(μt)). (8)

The retraction Rμ(v) = μ + v corresponds to the first-order Taylor approx-
imation of the exponential map and yields the natural gradient descent step
in [1]. Therefore as pointed out in [7], natural gradient descent can be cast as
an approximation to gradient descent for Riemannian manifolds. Consequently
mirror descent can be viewed as an easily computable first-order approxima-
tion to steepest descent for any Riemannian manifold induced by a Bregman
divergence.

4 Conclusion

In this paper we prove that mirror descent with proximity function Ψ equal to
a Bregman divergence is equivalent to the natural gradient descent algorithm
in the dual co-ordinate system. Based on this equivalence, we use results devel-
oped in [1] to conclude that mirror descent is the direction of steepest in the
corresponding Riemannian space and for parameter estimation in exponential
families with the associated Bregman divergence, mirror descent achieves the
Cramér-Rao lower bound.

Following on from this connection, there are a number of interesting and
open directions. Firstly, one of the important issues for any online learning algo-
rithm is choice of step-size. Using the connection between mirror descent and
natural gradient, it would be interesting to determine whether adaptive choices
of step-sizes proposed in [1] that exploit the Riemannian structure can improve
performance of mirror descent. It would also be useful to determine a precise
characterization of the geometry of mirror descent for other proximity functions
such as �p-norms and explore links online algorithms such as projected gradient
descent.
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Abstract. The current paper introduces new prior distributions on the
zero-mean multivariate Gaussian model, with the aim of applying them
to the classification of covariance matrices populations. These new prior
distributions are entirely based on the Riemannian geometry of the
multivariate Gaussian model. More precisely, the proposed Riemannian
Gaussian distribution has two parameters, the centre of mass Ȳ and the
dispersion parameter σ. Its density with respect to Riemannian volume
is proportional to exp(−d2(Y ; Ȳ )), where d2(Y ; Ȳ ) is the square of Rao’s
Riemannian distance. We derive its maximum likelihood estimators and
propose an experiment on the VisTex database for the classification of
texture images.

Keywords: Texture classification · Information geometry · Riemannian
centre of mass · Mixture estimation · EM algorithm

1 Introduction

In information geometry, a parametric family of probability densities is consid-
ered as a Riemannian manifold [1]. Precisely, the role of Riemannian metric is
played by the Fisher metric, and that of Riemannian distance by Rao’s distance.
Rao’s distance has been widely used for several statistical applications includ-
ing object detection and tracking, shape classification, and image segmentation
[2–4]. Nevertheless, none of them have formulated it as a probabilistic approach
to clustering on Riemannian manifolds, which is the main contribution of the
paper.

More precisely, this paper introduces new Riemannian prior (denoted
G(Ȳ , σ)) as Gaussian distributions on the zero-mean multivariate Gaussian
model. These distributions have a unique mode Ȳ (the unique Riemannian centre
of mass), and its dispersion away from Ȳ is given by σ. In order to improve upon
the performance obtained in [5], the present paper uses mixtures of Riemannian
priors as prior distributions for classification. This allows for clustering analysis
to be carried out using an expectation-maximisation, or EM, algorithm, instead
of the essentially deterministic k -means approach of existing works, (e.g. [2–4]).

The paper is structured as follows. Section 2 recalls some definitions concern-
ing the Riemannian geometry of covariance matrices. Section 3 introduces the
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 371–378, 2015.
DOI: 10.1007/978-3-319-25040-3 40
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proposed Riemannian Gaussian distributions. After having presented its max-
imum likelihood estimators and its extension to mixture models in Sect. 4, an
experiment on the VisTex database is proposed in Sect. 5 to evaluate the poten-
tial of the proposed prior for the classification of texture images. Due to the
restriction length, all the mathematical proofs cannot be detailed here and will
be given in a forthcoming journal paper.

2 Riemannian Geometry of Covariance Matrices

Let Pm denote the space of all m × m real matrices Y which are symmetric and
strictly positive definite,

Y † − Y = 0 x†Y x > 0 for all x ∈ R
m (1)

where † denotes the transpose. In many applications [6], Pm arises as a space
of tensors, such as structure tensors in image processing, or diffusion tensors
in medical imaging, (in these examples, m = 2, 3). In general, Pm may also be
thought of as the space of non-degenerate covariance matrices [7].

When thinking of the elements Y of Pm as covariance matrices, it is most
suitable to do so within the framework of the normal covariance model [7,8]. This
model associates to Y ∈ Pm the normal probability density function P (x|Y ) on
R

m, with mean 0 ∈ R
m and covariance Y . Recall that log P (x|Y ) = �(Y ), where

�(Y ) = −1
2

log [det(2πY )] − 1
2

x†Y −1x. (2)

Let us now recall the definition of the Fisher information matrix [8]. Let
p = m(m+1)/2, the dimension of Pm , and Θ an open subset of Rp. Assume θ �→
Y (θ) is a differentiable mapping from Θ to Pm , which is a diffeomorphism. One
refers to the mapping θ �→ Y (θ) as a parameterisation of Pm , with parameters
θ = (θa ; a = 1, . . . , p). Let �(θ) stand for �(Y (θ)) where �(Y ) is the function
defined in (2). The Fisher information matrix I(θ) has matrix elements

Iab(θ) = Eθ

[
∂�(θ)
∂θa

× ∂�(θ)
∂θb

]

, (3)

where Eθ denotes expectation with respect to the normal probability density
function p(x|Y (θ)).

A Riemannian metric on Pm is a quadratic form ds2(Y ) which measures the
squared length of a small displacement dY , separating two elements Y ∈ Pm

and Y + dY ∈ Pm. Here, dY is a symmetric matrix, since Y and Y + dY are
symmetric, by (1). The Rao-Fisher metric is the following [8,9],

ds2(Y ) = tr
(
[Y −1dY ]2

)
, (4)

where tr() denotes the trace.
The Rao-Fisher metric, like any other Riemannian metric on Pm , defines a

Riemannian distance d : Pm × Pm → R+. This is called Rao’s distance, and is
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defined as follows [9,10]. Let Y,Z ∈ Pm and c : [0, 1] → Pm be a differentiable
curve with c(0) = Y and c(1) = Z. The length L(c) of c is defined by

L(c) =
∫ 1

0

ds(c(t)) =
∫ 1

0

‖ċ(t)‖ dt, (5)

where ċ(t) = dc
dt . Rao’s distance d(Y,Z) is the infimum of L(c) taken over all

differentiable curves c as above.
A major property of the Rao-Fisher metric is the following. When equipped

with the Rao-Fisher metric, the space Pm is a Riemannian manifold of nega-
tive sectional curvature. One implication of this property, (called the Cartan-
Hadamard theorem [10]), is that the infimum of L(c) is realised by a unique
curve γ, known as the geodesic connecting Y and Z. The equation of this curve
is the following [9],

γ(t) = Y 1/2 (Y −1/2ZY −1/2)t Y 1/2. (6)

Given the expression (6), it is possible to compute L(γ) from (5). This is precisely
Rao’s distance d(Y,Z). It turns out,

d 2(Y,Z) = tr [log(Y −1/2ZY −1/2)]2. (7)

Since the Rao-Fisher metric gives a mean of measuring length, it can also be
used to measure volume. Indeed, (based on the elementary fact that the “volume
of a cube is the product of the lengths of its sides”), the Riemannian volume
element associated to the Rao-Fisher metric is defined to be [9]

dv(Y ) = det(Y )−m+1
2

∏

i≤j

dYij . (8)

All matrix functions appearing in (6) and (7), (square root, power and loga-
rithm), should be understood as symmetric positive definite matrix functions.

3 Riemannian Gaussian Distributions

The main theoretical contribution of the present paper is to give an original
exact formulation of Riemannian Gaussian distributions. These are probability
distributions on Pm , whose probability density function, with respect to the
Riemannian volume element (8), is of the form,

p(Y | Ȳ , σ) =
1

Z(σ)
exp

[

−d 2(Y, Ȳ )
2σ2

]

, (9)

where Ȳ ∈ Pm and σ > 0 are parameters, and where d(Y, Ȳ ) is Rao’s distance,
given by (7). For brevity, a Riemannian Gaussian distribution, with probability
density function (9), will be called a Gaussian distribution, and denoted G(Ȳ , σ).
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The parameter Ȳ is called the centre of mass, and σ is called the dispersion, of
the distribution G(Ȳ , σ).

Distributions of the form (9) were considered by Pennec [11], defined on
general Riemannian manifolds. However, in existing literature, their treatment
remains incomplete, as it is based on asymptotic formulae, valid only in the
limit where the parameter σ is small, (see [11] (Theorem 5., Page 140) and [12]
(Theorem 3.1.1., Page 434)). In addition to being only approximations, such
formulae are quite difficult, both to evaluate and to apply. These issues, (lack
of an exact expression and difficulty of application), are fully overcome in the
following.

Note also that a more sophisticated description by means of a concentration
matrix instead of a scalar dispersion parameter σ is possible. This approach has
notably been introduced in [11].

3.1 Maximum Likelihood Estimation

Let Y1, . . . , YN be N independent samples from a Gaussian distribution G(Ȳ , σ).
Based on these samples, the maximum likelihood estimate of the parameter Ȳ is
the empirical Riemannian centre of mass ŶN of Y1, . . . , YN defined as the unique
global minimiser ŶN of EN : Pm → R,

EN (Y ) =
1
N

N∑

n=1

d 2(Y, Yn). (10)

Moreover, the maximum likelihood estimate of the parameter σ is the solution
σ̂N of the equation, (for unknown σ),

σ3 × d

dσ
log Z(σ) = EN ( ŶN ). (11)

Both ŶN and σ̂N exist and are unique for any realisation of the samples
Y1, . . . , YN . In practice, Ȳ is first estimated according to (10) then the estimation
of σ is proceed by (11).

3.2 Application to P2

In (9), the normalising factor Z(σ) can be expressed under an integral form as

Z(σ) =
∫

Pm

f(Y | Ȳ , σ) dv(Y ), (12)

where dv(Y ) is the Riemannian volume element (8). It is interesting to note that
Z(σ) is independent from the centre of mass Ȳ . For the space of 2×2 covariance
matrices (i.e. m = 2), the normalising factor admits the following close form
expression:

Z(σ) = 4π2σ2 exp(σ2/4) erf(σ/2), (13)

where erf() is the error function.
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4 EM Algorithm for Mixture Estimation

While successful in application to specific data sets, the Bayesian approach of [5]
summarised in the previous section fails to take into account the presence of
within-class diversity. Precisely, this approach assumes that the given learn-
ing sequence is immediately subdivided into clusters, whose members display
“homogeneous” properties, in the sense that they can be faithfully modelled as
belonging to the same Riemannian prior. Clearly, this is a restrictive assump-
tion. In the presence of within-class diversity, a learning sequence should be
subdivided into classes, whose members display “heterogeneous” properties, in
the sense that they may belong, within the same class, to different clusters, each
corresponding to a different Riemannian prior.

Here, this situation is formulated as follows. If a class C, whose members
are points Y1, . . . , YN ∈ Pm, is expected to contain K clusters, respectively
corresponding to Riemannian priors G(Ȳa, σa), where a = 1, . . . , K, then C is
modelled as a sample of size N , drawn from the mixture of Riemannian priors

p(Y |Θ) =
K∑

a=1

	a p(Y |Ȳa, σa) (14)

where 	1, . . . , 	K are positive weights, with
∑K

a=1 	a = 1, and each density
p(Y |Ȳa, σa) is given by (9).

Now, assume a training sequence is subdivided into classes, each containing
a known numbers of clusters. In order to implement a decision rule which asso-
ciates any test object, described by Yt ∈ Pm, to the most likely cluster within
the training sequence, it is necessary, for each class C, modelled by (14), to find
maximum likelihood estimates of the mixture parameters ϑ = (	a, Ȳ , σa). Here,
this task is realised using an expectation-maximisation (EM) algorithm. Fol-
lowing [13], the starting point for the EM algorithm is the introduction of the
following quantities

ωa(Yj) ∝ 	a × p(Yj |Ȳa, σa) na =
N∑

j=1

ωa(Yj) (15)

where, ∝ denotes proportionality, so that
∑

a ωa(Yj) = 1. To emphasise the
fact that ωa(Yj) and na are computed for a given value of ϑ = (	a, Ȳ , σa),
they shall be denoted ωa(Yj , ϑ) and na(ϑ). The algorithm iteratively updates
ϑ̂ = (	̂a, Ŷa, σ̂a), an approximation of the maximum likelihood estimate of ϑ =
(	a, Ȳa, σa). Precisely, the update rules for 	̂a, Ŷa, and σ̂a are repeated as long
as this introduces a sensible change in the values of 	̂a, Ŷa, and σ̂a. As this is a
non convex problem optimization, we reach a local stationary point. It is hence
useful to run the algorithm several times, with different initialisations to reach
the global optimum. The update rules are the following,

� Update for 	̂a: Based on the current value of ϑ̂, assign to 	̂a the new value

	̂new
a =

na(ϑ̂)
∑K

a=1 na(ϑ̂)
. (16)
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� Update for Ŷa: Based on the current value of ϑ̂, compute Ŷa to be the global
minimiser of the following function,

V (Y |ϑ̂) =
1
2

N∑

j=1

ωa(Yj , ϑ̂) × d 2(Yj , Y ). (17)

Ŷa is the empirical Riemannian centre of mass which may be estimated by a
Riemannian gradient descent algorithm (See [12] for more details).
� Update for σ̂a: Based on the current value of ϑ̂, compute σ̂a to be the
solution of the following equation, for unknown σ,

F (σ) =
1

2na(ϑ̂)
V (Ŷa|ϑ̂) (18)

where F (σ) = σ3 × d
dσ log Z(σ). Practically, a Newton-Raphson procedure is

employed to solve (18).
These three update rules should be performed in the above given order.

Therefore, the “current value of ϑ̂ = (	̂a, Ŷa, σ̂a)” is different, in each one of
them. For instance, in the update rule of σ̂a, the current value of Ŷa is found
from the minimisation of (17), just before.

5 Application to Texture Image Classification

The present section proposes a new decision rule, for the classification of covari-
ance matrices, and applies it to texture classification, using the VisTex data-
base [14]. The following numerical experiment was carried out. Half of the data-
base was used for training, and the other half for testing. Each training image
was subdivided into 169 patches of 128 × 128 pixels, with a 32 pixel overlap.
For each training patch, 6 wavelet subbands were computed using the stationary
wavelet decomposition (with 2 scale) with Daubechies’ filter db4. In texture clas-
sification, multivariate models were found very effective for modelling the spatial
dependency of wavelet coefficients. Hence, two spatial neighborhoods (horizontal
dH and vertical dV ) of one pixel were considered. Each subband s of patch n
gives two bivariate normal populations Πs,n,dH and Πs,n,dV , represented respec-
tively by a point Ys,n,dH and Ys,n,dV ∈ P2. The size of the feature space is hence
F = 12 (6 subbands times 2 spatial supports). For the sake of simplicity, let
say that the training patch n is represented by a set of F covariance matrices
denoted Yf,n.

For each training class, a set of N = 84 “arrays” are extracted. These arrays
Yj are a collection of F covariance matrices and are considered as multivariate
realisations of a mixture distribution (14), with independent components Yf,n

since wavelet subbands are assumed independent. Each class is assumed to con-
tain the same number K of clusters, and is modelled as a sample drawn from a
mixture distribution (14). First, the EM algorithm of Sect. 4 is applied to each
class, leading to maximum likelihood estimates (	̂a, Ŷf,a, σ̂a), for a = 1, . . . , K
and f = 1, . . . , F .
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Table 1. Classification performance on the VisTex database.

Prior Overall Accuracy

Riemannian prior on P2 (K=1) (9) 86.27 ± 0.45 %

Mixture prior on P2 (EM, K=3, (14)) 94.31± 0.42%

Mixture prior on P2 (K-means, K=3) [15] 92.40 ± 0.46 %

Riemannian prior on H [5] 83.29 ± 0.51 %

Mixture prior on H [17] 88.50 ± 0.88 %

Conjugate prior on H 83.48 ± 0.53 %

Each triple of such estimates defines a cluster within the training sequence.
Denote the total number of clusters defined in this way L, and the corresponding
maximum likelihood estimates (	̂c, Ŷf,c, σ̂c), for c = 1, . . . , L and f = 1, . . . , F .
Then, a test population represented by Yt ∈ P2 is associated to the class of the
cluster C∗, realising the minimum over c of,

− log 	̂c + log Z(σ̂c) +
1

2σ̂2
c

F∑

f=1

d 2(Yt, Ŷf,c). (19)

This is the new decision rule, proposed for use with the mixture model (14).
Note that the case K = 1 reduces to a Bayesian classifier with the proposed
Riemannian Gaussian distribution.

Table 1 displays the classification performance in terms of overall accuracy on
the VisTex database. The first two lines correspond to the proposed Riemannian
prior (9) on P2 with respectively K = 1 and K = 3. The third line corresponds to
a nearest centre of mass classifier classically employed in literature [15]. In such
case, the centres of mass Ŷf,c are estimated by using a K-means algorithm. Some
comparisons are also carried out with univariate normal populations where the
mean and standard deviation are computed on Gabor energy subbands (see [16]
for more details). In such case, a Riemannian prior on the Poincaré upper half-
plane H has been introduced in [5] and further extended to mixture models [17].
A conjugate normal-inverse gamma prior on H is also displayed on the last line
of Table 1

As observed in Table 1, the proposed Riemannian prior on P2 based on a
mixture model displays much better performance than other prior. A significant
gain of respectively 2% and 6% is observed when compared to a nearest centre
of mass classifier [15] and to a mixture prior on the Poincaré upper half-plane H.

6 Conclusion

This paper has addressed the problem of classification using Rao’s distance on
the space of covariance matrices. To this aim, a Riemannian Gaussian distribu-
tions has been introduced. Analogous to the classical multivariate Gaussian dis-
tribution, the proposed Riemannian Gaussian distribution has two parameters,
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the centre of mass Ȳ and the dispersion parameter σ. The main difference relies
on the use of the Riemannian distance in the exponential of the pdf instead
of the Mahalanobis distance. After having presented its maximum likelihood
estimators and its extension to mixture models, an experiment on the VisTex
database have shown the potential of the proposed model for the classification
of texture images.
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Abstract. We present a new texture discrimination method for tex-
tured color images in the wavelet domain. In each wavelet subband, the
correlation between the color bands is modeled by a multivariate gen-
eralized Gaussian distribution with fixed shape parameter (Gaussian,
Laplacian). On the corresponding Riemannian manifold, the shape of
texture clusters is characterized by means of principal geodesic analysis,
specifically by the principal geodesic along which the cluster exhibits its
largest variance. Then, the similarity of a texture to a class is defined in
terms of the Rao geodesic distance on the manifold from the texture’s
distribution to its projection on the principal geodesic of that class. This
similarity measure is used in a classification scheme, referred to as prin-
cipal geodesic classification (PGC). It is shown to perform significantly
better than several other classifiers.

Keywords: Texture classification · Rao geodesic distance · Principal
geodesic analysis

1 Introduction

Texture discrimination is an essential task in various image processing applica-
tions, such as image retrieval and image segmentation. Texture is often charac-
terized by means of the distribution of filter responses. In [1] the Rao geodesic
distance (GD) based on the Fisher-Rao metric tensor was proposed as a similar-
ity measure between multivariate generalized Gaussian distributions (MGGDs)
characterizing the wavelet detail features of color textures. Among other advan-
tages, it turns out that, for fixed shape parameter, an analytic expression exists
for the GD on the MGGD submanifold, in contrast to the Kullback-Leibler diver-
gence (KLD), barring the two-dimensional case [2]. Moreover, in [2] it was shown
that, compared to the KLD, the GD provides consistently superior performance
in its application to various texture classification and retrieval experiments.

c© Springer International Publishing Switzerland 2015
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Texture discrimination techniques frequently compute the distance between
the unlabeled (query) texture image and one or several of its nearest neighbors
in the training set. However, they seldom take into account the underlying shape
or variability of the class. When the features consist of distribution parameters,
this may be done by characterizing the shape of the cluster on the correspond-
ing probabilistic manifold. Provided the clusters are compact, the class centroid
yields a convenient summary of the cluster, which may be sufficient to discrim-
inate between the various classes, as was done in [3]. On the other hand, for
non-compact clusters a more sophisticated measure of cluster shape is required.
For this reason in [4] texture classes were modeled by multiple centroids in an
eigenspace of distance matrices.

In this paper we take a different approach which hinges on the observa-
tion that clusters of MGGD dispersion matrices form elongated structures on
the manifold. The elongation is typically very pronounced along one or a few
directions at most. Therefore we choose to characterize the cluster shape intrin-
sically in terms of the cluster’s geodesic subspaces obtained by principal geodesic
analysis. We present a new scheme for texture discrimination on the zero-mean
MGGD manifold with fixed shape. It is based on the geodesic distance between
the unlabeled texture and its projection on the principal geodesic correspond-
ing to the largest eigenvalue for each class. Using data from a challenging color
texture database, we compare the performance of our proposed scheme, which
we refer to as principal geodesic classification, with the performance of the GD-
based k-nearest neighbour classifier and another strategy based on the GD to a
single cluster centroid (‘distance-to-centroid’). This paper builds on our earlier
work in [5], but here we present more mathematical details about the method
and the experiments have been extended significantly.

2 The Manifold of Multivariate Generalized Gaussian
Distributions

In our application the wavelet detail coefficients of color textures are modeled
by means of a zero-mean MGGD, considering the dependence between the color
bands. The wavelet subbands are assumed to be mutually independent. We first
introduce the MGGD model and then we discuss the geodesics, the exponential
map and the Fréchet mean on the MGGD manifold. We assume that, where
necessary, existence and uniqueness conditions are fulfilled.

2.1 The Multivariate Generalized Gaussian Distribution

We adopt the definition of the zero-mean MGGD (or multivariate exponential
power distribution) provided in [1], with the following density function for the
vector x:

f(x |Σ, β) =
Γ

(
m
2

)

π
m
2 Γ

(
m
2β

)
2

m
2β

β

|Σ| 1
2

exp
[

−1
2

(
x ′Σ−1x

)β
]

. (1)
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Here, m is the dimensionality of the probability space, e.g. m = 3 for three-band
color images. Also, Γ (.) denotes the Gamma function and Σ is the dispersion
matrix. β is the shape parameter which controls the fall-off rate of the distrib-
ution. The multivariate Gaussian case is retrieved for β = 1, while we refer to
the case β = 1/2 as the multivariate Laplace distribution. Owing to its heavier
tails, the Laplace distribution is expected to provide a better model for wavelet
statistics; a fact that was confirmed in earlier classification experiments [2]. In
the experiments below, the parameters of the probability models were estimated
via the method of moments, followed by an optimization through maximum
likelihood estimation [2].

2.2 Geodesic Distance

The geodesics for the zero-mean MGGD were derived in [1]. We here only con-
sider the case with fixed shape parameter β, corresponding to a set of subman-
ifolds, each parameterized by the dispersion matrix Σ. The dimensionality of
each submanifold is given by N = m(m + 1)/2, resulting in N = 6 dimensions
for three-band color images. However, it turns out that the metric and geodes-
ics assume a particularly simple form in another parameterization, obtained as
follows [1]. First, we consider the geodesic between two specific dispersion matri-
ces Σ1 and Σ2. Then, we calculate the regular matrix K that simultaneously
diagonalizes Σ1 and Σ2, sending Σ1 to the unit matrix Im and Σ2 to a diagonal
matrix Φ2:

K ′Σ1K = Im, K ′Σ2K = Φ2.

The diagonal elements of Φ2 are the eigenvalues λi
2 of Σ−1

1 Σ2 (i = 1, . . . , m).
With a final coordinate transformation to ri

2 ≡ ln λi
2, the metric elements gij are

constants given by

gii = 3bh − 1
4
,

gij = bh − 1
4
, i �= j,

where bh ≡ 1
4

m + 2β

m + 2
.

In fact it can be proved that K diagonalizes all matrices Σ(t) on the geodesic
between Σ1 and Σ2, parameterized by t (0 ≤ t ≤ 1). As such, K reduces Σ(t) to
Φ(t), a diagonal matrix with elements the eigenvalues λi(t) of Σ−1

1 Σ(t), where
λi
2 ≡ λi(1). The geodesic between Σ1 and Σ2 is then simply a straight line:

ri(t) = ln(λi
2) t, (2)

where ri(t) ≡ ln[λi(t)]. As a result, the geodesic distance between the two dis-
tributions becomes [1]

GD(Σ1, Σ2) =

⎡

⎣
(

3bh − 1
4

)∑

i

(ri
2)

2 + 2
(

bh − 1
4

)∑

i<j

ri
2r

j
2

⎤

⎦

1/2

. (3)
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2.3 Exponential Map

The exponential map, sending tangent vectors to points on the manifold, as well
as its inverse, will be needed for subsequent calculations. A tangent vector in the
starting point (t = 0) of a geodesic provides a ‘velocity vector’ for that geodesic.
In terms of the matrices Φ(t) the tangent vectors T are given by

T =
dΣ(t)

dt

∣
∣
∣
∣
t=0

= (K ′)−1 dΦ(t)
dt

∣
∣
∣
∣
t=0

K−1 = (K ′)−1 ln(Φ2)K−1, (4)

where the last equality follows from (2). Clearly the tangent vector T is also
diagonalized by the same matrix K, resulting in the matrix ln(Φ2). Consequently,
given a tangent vector and a point of application Σ1 on the manifold, to find
the exponential map of the tangent vector T we merely need to calculate the
matrix K that diagonalizes both Σ1 and T , sending Σ1 to the unit matrix. The
only remaining operation is the normalization, since we have to find the point
on the geodesic that lies at a geodesic distance ‖T‖ from Σ1. From (3) and (4) it
follows that rescaling the logarithmic eigenvalues lnλi

2 by a factor k also rescales
the GD by the same factor. Therefore, after calculating the GD, resulting in
a ‘temporary’ value of, say GD0, corresponding to the logarithmic eigenvalues
ln λi

2 obtained by diagonalization of Σ1 and T , we simply need to rescale ln λi
2

by a factor ‖T‖/GD0. Then, the result of the exponential map Σ2 applied to T
is given by

Σ2 = (K ′)−1 ln(Φ2)
‖T‖
GD0

K−1.

Conversely, to find the result of the inverse exponential map, or logarithmic
map, taking a point Σ2 to the tangent vector T in Σ1, with ‖T‖ = GD(Σ1, Σ2),
we first calculate the following ‘temporary’ tangent vector:

T0 = (K ′)−1 ln(Φ2)K−1.

This still needs to be rescaled, resulting in the final image T under the logarith-
mic map:

T = T0
GD(Σ1, Σ2)

‖T0‖ .

2.4 Fréchet Mean

The Fréchet or Kärcher mean provides a generalization to the manifold setting
of the centroid of a cluster of points in a Euclidean space. Given a set of n points
Σj on the fixed-shape zero-mean MGGD manifold, the centroid Σc is obtained
through the following minimization:

Σc = ArgMin
Σ

n∑

j=1

GD2(Σ,Σj). (5)

This poses an optimization problem on the manifold. Assuming that a solution
exists and that it is unique, we solve the problem iteratively by projecting the
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points Σj on the tangent space at the current approximation to the centroid
(initialized by that Σj which minimizes the criterion (5)). Then we calculate
their Euclidean mean on the tangent space and project the result back to the
manifold, as illustrated in Fig. 1(a). This is basically a gradient descent algorithm
on the manifold, which was derived in [6].

3 Principal Geodesic Classification

The proposed principal geodesic classifier on the MGGD manifold is based on
principal geodesic analysis (PGA). We briefly describe PGA in this section,
followed by an outline of the principal geodesic classification (PGC) algorithm.

3.1 Principal Geodesic Analysis

Since a geodesic is in a sense a generalization of a straight line in a Euclidean
space, PGA for a cluster of points on a manifold was proposed as a natural
generalization of principal component analysis (PCA) [7]. PGA yields a set of
nested submanifolds, on which the projected elongation or variance of the cluster
is maximal. Approximating the projection on the subspaces by the inner product
in the tangent space at the centroid, PGA can be carried out through PCA in
the tangent space (exact PGA would computationally be too demanding). The
resulting tangent vectors, which are the eigenvectors of the covariance matrix in
the tangent space, uniquely define a set of geodesic subspaces of the manifold.

It is important to note that PGA yields an (approximately) intrinsic char-
acterization of the cluster, which is certainly to be preferred over tangent space
approximations in the case of elongated structures. For instance, in our experi-
ments we noted that a classifier based on the Mahalonobis distance in the tangent
space at each cluster centroid, did not yield satisfactory results. Although the
issue was not studied in detail, it is possible that the reason lies in the distortion
that occurs through the projection on the tangent space. Indeed, on geometrical
grounds it is clear that, as a result of the distortion, the error on the Mahalanobis
distance is generally larger for more elongated clusters.

3.2 PGC Training and Testing

The PGC training phase consists of providing the model for each class by means
of PGA. In the experiments below, we retain only the first principal geodesic,
characterizing the direction along which the cluster has its largest elongation or
variance.

In the testing phase, each texture in the database is considered one after
the other. Such a test (or query) texture is then projected on the first principal
geodesic of each class. This in itself is an optimization problem, as it involves
finding the point on the geodesic that has the shortest GD to the test point. As
with PGA, the projected point could be approximated by performing the pro-
jection in the tangent space and taking the image under the exponential map.
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However, it will be shown that this noticeably reduces the overall performance
of the classifier. Therefore it is better to carry out the exact projection through
optimization in terms of the parameter t along the principal geodesic. Subse-
quently, the GD is calculated between the test point and its projection on the
principal geodesic. This principal geodesic distance is defined as our similarity
measure between the test point and a class. This is illustrated in Fig. 1(b).

As the wavelet subbands are considered to be mutually independent, this
procedure can be carried out in each individual subband. The total squared GD
between the test point and the class is then taken as the sum of squared GDs in
each individual subband. Finally, the test point is assigned to the class to which
its total principal geodesic distance is the smallest.

Fig. 1. (a) Principle of the iterative algorithm to calculate the centroid of a cluster on
the MGGD manifold. (b) Illustration of classification of a test texture by PGC. For
each class, the distance is calculated of the test texture to its projection on the first
principal geodesic of that class.

4 Classification Experiments

4.1 Experimental Setup

An experiment was set up using data from the Columbia-Utrecht Reflectance
and Texture Database (CUReT). It is characterized by a relatively large within-
class variability, leading to a highly challenging classification task. A subset of
cropped 200×200 RGB images was chosen, belonging to 61 classes. Each class is
made up of a single texture, imaged under varying illumination conditions and
viewpoints [8]. As such, each class consists of 92 images, resulting in a database
of 5612 images to be classified.

The class features were calculated as follows. Every color component of each
image was individually normalized to zero mean and unit standard deviation.
Then, a discrete wavelet transform with three levels and three orientations
(nine subbands) was applied individually on every color component using the
Daubechies filters of length eight. The wavelet detail coefficients of every sub-
band were then modeled jointly over the three color components by an MGGD
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with β = 1 (Gaussian) or β = 1/2 (Laplacian). The resulting dispersion matrices
constitute the feature set for a single image. Next, in all wavelet subbands the
first principal geodesic was computed for each class of 92 images.

Finally, the classification was carried out based on the principal geodesic
distance to each class. The classification performance was measured by the suc-
cess rate using the leave-one-out strategy. We performed a comparison with a
‘distance-to-centroid’ (DtC) classifier that simply calculates the GD of the test
texture to the centroid of each cluster. Another comparison was made with a
k-nearest neighbor (kNN) classifier. Here, k = 91 was chosen since ideally the
other 91 subimages should be the nearest neighbors of a test texture.

4.2 Experimental Results

The results of the classification experiments are presented in Table 1. The highest
classification accuracy is achieved with our proposed principal geodesic classifier,
compared to the DtC classifier and kNN. This indicates that accommodating the
intrinsic variability of the texture classes on the MGGD manifold potentially
leads to a performance improvement.

In addition, the Laplace distribution, for which the GD takes on a closed
form, is indeed seen to perform better than the Gaussian distribution in most
tests, and for PGC in particular.

It is also worth noting that the performance of the DtC classifier is inferior
to that of kNN. Furthermore, it is the only case where the Laplace distribution
performs worse than the Gaussian. This could indicate that, for this particular
database, the characterization of the classes by means of a single centroid entails
an excessive loss of information. We should also mention here that in earlier
results on another database, the DtC scheme did yield considerably better results
than the kNN classifier [3]. This remains a matter for further investigation.

Finally, PGC also offers a significant computational advantage over kNN.
Indeed, although the training phase of PGC is more demanding, during classifi-
cation kNN requires a distance calculation to each image in the database, while
PGC merely needs the principal geodesic distance to each class. The compu-
tational advantage becomes even more pronounced when the approximation is
employed whereby the projection onto the principal geodesic is performed in the
tangent space.

Table 1. Classification success rates (SR), based on Gaussian (G) and Laplace (L)
models of 5612 CUReT color textures for three wavelet scales, using PGC (exact pro-
jection and approximation in the tangent space). This is compared to a distance-to-
centroid (DtC) and a k-nearest neighbor (kNN) classifier.

Classifier PGC exact PGC approx. DtC kNN

Model G L G L G L G L

SR 80.6 82.5 76.6 77.6 72.3 69.8 73.5 75.7
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5 Conclusion

We have presented a new classification scheme for color textures on a probabilis-
tic manifold, exploiting the redundancy of the information in the parameters of
the distribution to characterize the variability of texture classes. The multivari-
ate generalized Gaussian distribution remains an interesting model for multiband
wavelet features, particularly in view of the existence of an analytic expression for
the Rao geodesic distance in the case of a fixed shape parameter. Our proposed
principal geodesic classifier exhibits superior performance in a classification task
on the CUReT texture database, in comparison with a distance-to-centroid and
a k-nearest neighbor classifier.

Various avenues for future research have been identified, starting with exis-
tence and uniqueness conditions for the cluster centroids, projection onto the
principal geodesic, etc. The weaker performance of the distance-to-centroid clas-
sifier in the present experiments is another issue to be investigated. Finally,
projection on multiple geodesic subspaces along interesting directions would be
a logical next development of the principal geodesic classifier.
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Abstract. Practical estimation of mixture models may be problematic
when a large number of observations are involved: for such cases, online
versions of Expectation-Maximization may be preferred, avoiding the
need to store all the observations before running the algorithms. We
introduce a new online method well-suited when both the number of
observations is large and lots of mixture models need to be learned from
different sets of points. Inspired by dictionary methods, our algorithm
begins with a training step which is used to build a dictionary of compo-
nents. The next step, which can be done online, amounts to populating
the weights of the components given each arriving observation. The usage
of the dictionary of components shows all its interest when lots of mix-
tures need to be learned using the same dictionary in order to maximize
the return on investment of the training step. We evaluate the proposed
method on an artificial dataset built from random Gaussian mixture
models.

1 Introduction and Motivation

The problem of estimating the probability density function of an unknown prob-
ability law is old and well-studied and among all the techniques used mixture
models are particularly widespread in practical applications. A lot of work is
thus devoted to the improvement of the speed of the algorithms for mixture
parameters estimation, which is of particular interest in real-time applications
such as object tracking in videos [4,9,10].

The most common axes of research for mixture models can be divided into
three main categories. First, the goal may be to reduce the computational burden
of the algorithm itself: for example k-MLE [7] and cEM [3] are fast variants of
EM where the slow step of soft assignment is replaced by a fast step of hard
assignment. Second, a work on the input data may be done: in [5], coresets
are used to reduce the number of points needed to build the model. Third,
online algorithms can be designed to deal more easily with large datasets [2,10],
avoiding the need to store all the content of the dataset.
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 387–395, 2015.
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We take here a slightly different point of view: we address both the mas-
sive data problem and the online constraint in the case where a large num-
ber of different mixtures from quite similar sets of points are needed. As such,
our new algorithm is divided into two steps: a first training step (which can
be slow but it does not really matter since it will be done only once) is used
to build a dictionary of components (where atoms are the parameters of the
distributions), and a second step uses a nearest-neighbor search to associate
each incoming observation to the most probable component, thus incrementally
populating the vectors of weights of the mixture. This learning step is obvi-
ously online, since the processing can be done observation by observation, and is
faster than Expectation-Maximization (EM), since the nearest-neighbor search
is rather simple compared to a full-blown EM.

We believe that the separation between a training step and learning step for
mixture model can be very useful in numerous applications. For example, in a
video analysis application (on a MPEG compressed stream), the dictionary can
be built on a key-frame and inter-frames can be modeled using the dictionary of
the corresponding key-frame: the dictionary learned on a key-frame will be well
suited for the following images but a new one will be needed if a too different
scene appears.

Our contributions are the following: first we define the co-mixture concept
and present an Expectation-Maximization based algorithm, called co-EM, to
estimate the parameters; then we introduce an online algorithm, called Bag of
Components , which relies on a co-mixture to learn a dictionary of components
and uses a nearest-neighbor search to estimate a new mixture from observations
arriving one by one.

This article is organized as follows: the first part describes the co-mixtures
and the algorithm co-EM; the second part introduces the Bag of Components
and the online algorithm; the next part discusses some improvements over the
basic algorithm; and the last part shows some experimental results.

2 Co-mixture Models

We formally define a co-mixture of exponential families as a set of S mixture
models sharing the same parameters for theirs components:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m1(x;ω(1)
1 . . . ω

(1)
K ) =

∑K
i=1 ω

(1)
i pF (x; θi)

m2(x;ω(2)
1 . . . ω

(2)
K ) =

∑K
i=1 ω

(2)
i pF (x; θi)

. . .

mS(x;ω(S)
1 . . . ω

(S)
K ) =

∑K
i=1 ω

(S)
i pF (x; θi)

(1)

where pF is the exponential family with log-normalizer F and θ1 . . . θK are the
parameters of the components and are shared between all the individual mixtures
of the co-mixture; the S vectors ω

(s)
1 . . . ω

(s)
K are the vectors of weights (thus

positive and normalized to 1).
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In the previous expressions, all the mixtures have the same number of com-
ponents but since the weight associated to a component may be zero, it is not a
limitation.

In order to build such a set of mixtures from a dataset made of S sets of
point X (l) = {x

(l)
1 , . . . , x

(l)
nl } (where nl is the number of observations in the set

of points X (l)), we design an EM-based iterative algorithm, called co-EM. For
clarity, we write a generic version working for any exponential family: it is a
variant of Bregman Soft Clustering [1] for which the maximization is simply an
arithmetic mean in the expectation parameters space (which is in bijection with
the usual parameters). It can be described by three main steps:

– Expectation step,
– Maximization step (set of points by set of points),
– Maximization step (aggregation).

Expectation Step. We compute S responsibility matrices p(1), . . . , p(S): the coef-
ficient p(l)(i, j) measures the likelihood for the observation x

(l)
i from the set of

points X (l) to come from the j-th component of the mixture ml given the cur-
rent estimate of the parameters η1, . . . , ηk and of the weights for the l-th mixture
ω
(l)
1 , . . . , ω

(l)
k . In short, we have:

p(l)(i, j) =
ω
(l)
j pF (x(l)

i , ηj)

m(x(l)
i |ω(l), η)

(2)

Maximization Step (Set of Points by Set of Points). In the first part of the max-
imization step S partial estimates (η(1)

1 , . . . , η
(1)
K ), . . . , (η(S)

1 , . . . , η
(S)
k ) are made,

one for each individual mixture of the comixture.
The new estimates (η(l)

1 , . . . , η
(l)
K ) for the l-th set of points are computed using

the observations for X (l) and the l-th responsibility matrix:

η
(l)
j =

∑

i

p(l)(i, j)
∑

u p(l)(u, j)
t(x(l)

i ) (3)

And the weights of each individual mixtures are updated with:

ω
(l)
j =

1
nl

nl∑

i=1

p(l)(i, j) (4)

Maximization Step (Aggregation). All these partial estimates are then aggre-
gated into the new estimate of the parameters η1, . . . , ηK .

For the component j, the new estimate of ηj is computed with a Bregman
barycenter of all the η

(1)
j , . . . , η

(S)
j :

ηj =
1
S

S∑

l=1

η
(l)
j (5)
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This aggregation step gives the same weight to all the set of points, no matter
the number of components inside, allowing to remove the influence of various set
of points sizes.

Fig. 1. Segmentation with regular EM and co-EM using a 5D RGBxy description of
the images.

The algorithm co-EM converges to the average of the log-likelihoods on all
the individual mixtures of the co-mixture and can be used independently of the
Bag of Components: Fig. 1 shows an image segmentation application.

3 Bag of Components

This online algorithm is inspired by dictionary methods. As such, the training
step amounts to building a dictionary of components (the atoms of the dictio-
nary) and the learning step amounts to computing the activation of each atom
given the observations.

The dictionary can be directly extracted from the output of co-EM (or from
the output of any algorithm building a co-mixture). Given a co-mixture, the
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dictionary is the set of parameters:

D = {θ1, . . . , θK} (6)

Due to the need to build a co-mixture, the training step is potentially expen-
sive but this cost is counterbalanced by two points. First it is made only once and
the results are reused during the learning step. Second, there is no overload if the
set used to build the co-mixtures is a subset of the interesting sets of points: in
this case, since it is not more costly to build a co-mixture of size S with co-EM
than to learn S mixtures with EM, the global cost of the training and learning
steps is still smaller than the cost of doing an EM on all the dataset.

The learning step can be done online: we do not need to work on the entire
input points but we can rather update the model parameters each time we see
a new observation. This step amounts to a hard-assignment step: given a new
observation, we search the most probable component among the atoms of the
dictionary (using a naive linear search):

ı̂ = arg max
θ∈D

pF (xi, θ) (7)

We then increment the value in the bin ı̂ of the histogram which counts how many
observations have been associated to each atom. At the end of the processing,
it is straightforward to go from the histogram to a real vector of weights by
dividing by the total number of observations.

4 Improvements

The previous maximization problem can be rewritten as a nearest-neighbor
search using the bijection between exponential families and Bregman
divergences [1]:

ı̂ = arg min
θ∈D

BF ∗ (t(xi)‖η(θ)) (8)

where F ∗ is the Legendre dual of the log-normalizer F of the exponential family
and η(θ) is the transformation of the natural parameter θ into the space of
expectation parameters.

As such, it is possible to improve the linear time search described previously
by using appropriate nearest-neighbor techniques and data structures such as
Bregman ball tree [8] and to go below the linear time search.

Another possible variant is to enforce the sparsity of the weights: after the
computation of the vector of weights, we are likely to have some components
with a very low weight and thus carrying nearly no information. We assume we
can remove these components by thresholding and renormalizing the weights.
Another choice may be to clusterize the mixture using the k-medoids [6] algo-
rithm to concentrate weights on most important components.
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Fig. 2. From top to bottom: original mixture, Expectation-Maximization, raw Bag of
Components, Bag of Components with weights thresholded. Between parentheses is
the number of components with non-zero weights.

5 Experiments

We evaluate the Bag of Components algorithm on artificially generated mixture
models. In order to generate mixture models sufficiently similar to use with a
dictionary-based method , we first generate a dictionary of multivariate Gaussian
distributions (the covariance matrices are generated from a LDLT decomposi-
tion, where L is a triangular unit matrix and D a diagonal matrix with posi-
tive coefficients). We then generate mixtures by randomly drawing the weights,
imposing that only a small fraction of the components has a non-zero weight (to
enforce some diversity between the random mixtures).

In all the following experiments, the random mixtures are generated from
a dictionary of size 30 with only 30 % of non-zero weights. co-EM builds a 30
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Fig. 3. Computation time for EM and BoC (left) and relative log-likelihood (in percent,
right) with respect to the number of observations during the learning step (from 1000
to 10000, in dimension 5).

components co-mixture from 10 sets of 1000 points. The components of this
co-mixture are used as a dictionary for Bag of Components.

The goal of the first experiment is to visually check the quality of a 1D mix-
ture built with Bag of Components (from 1000 observations). Figure 2 compares
the original mixture (first curve) with the output of EM (second curve, with
10 components) and the output of Bag of Components (third curve). On the
third curve, some components have clearly a low weight compared to the most
prominent Gaussians so in the fourth curve weights are thresholded under 0.06 in
order to keep only 5 components: in this particular case, most of the information
seem to be preserved.

A second experiment in Fig. 3 compares the execution time (left) and the
quality (right) of the output of Bag of Components and of an EM (10 com-
ponents) with respect to the number of points in the input set (from 1000 to
10000 points, in dimension 5). Given a dictionary built with co-EM during a pre-
processing offline step, we build a mixture with the Bag of Components method
from a new input set of points (not present in the dataset used for the dictionary
learning step) and compare the output mixture to the result of a classical EM.

The quality of the mixtures from the two algorithms is compared using the
relative log-likelihood llBoC−llEM

llBoC
so a negative value means Bag of Components

produces worse mixtures than EM: on the explored range, the two algorithms
produce mixtures of similar quality, with roughly between –4 % and –2 % of
relative difference.

The left part of Fig. 3 measures the execution time of Bag of Components
(without the dictionary building step, since this step is made offline): not sur-
prisingly, it is perfectly linear with a speed-up between 1.2 and 4 compared to
EM (which has a very irregular execution time).

The speed-up from EM to Bag of Components is real but not so high. Indeed,
even if the learning step of Bag of Components is made in O(nK) (where n is
the number of observations and K the number of atoms of the dictionary) and
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the EM is made in O(nki) (where k is the number of components and i the
number of iterations), the number of atoms K is higher than the number of
components k (three times in the experiments). The execution time of Bag of
Components is thus of the same order of magnitude than all the iterations of
EM, giving an execution time which can be nearly the same when EM converges
in few iterations. We may increase the speed of Bag of Components by using
a Bregman Ball Tree which would allow a sub-linear nearest-neighbor search.
Moreover, independently of the time, Bag of Components has the big advantage
of being an online algorithm (so in the curves on Fig. 3, each point for Bag of
Components is not a new mixture built from scratch, but only an improvement
of the previous one).

6 Conclusion

We described the notion of co-mixtures along with the algorithm co-EM. It is
used as a basis to design a new algorithm for mixture model learning, called
Bag of Components: this new algorithm works online and allows to build a
mixture faster than Expectation-Maximization. It is well suited when a lot of
mixtures from related or similar sets of points are needed: in such a case, it is
worth building a dictionary on a subset of the sets of points and apply Bag of
Components on the remaining sets of points. It is also interesting when only
a few sets of points are available at a time: the available sets can be used to
learn the dictionary of components and new mixtures can be built on new sets
of points at soon as they become available.

There is room for lots of improvements both on the speed, by using effi-
cient nearest-neighbor or approximate nearest-neighbor techniques, and for the
sparsity of the weights, by evaluating the need and the interest of removing low
weight components. Furthermore, we leave for future work to validate co-EM
and Bag of Components on a real application instead of artificial mixtures.
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Abstract. Stochastic watershed is an image segmentation technique
based on mathematical morphology which produces a probability den-
sity function of image contours. Estimated probabilities depend mainly
on local distances between pixels. This paper introduces a variant of sto-
chastic watershed where the probabilities of contours are computed from
a gaussian model of image regions. In this framework, the basic ingre-
dient is the distance between pairs of regions, hence a distance between
normal distributions. Hence several alternatives of statistical distances
for normal distributions are compared, namely Bhattacharyya distance,
Hellinger metric distance and Wasserstein metric distance.

1 Introduction

Image segmentation is one of the most studied and relevant problems in low level
computer vision. Indeed, the state-of-the-art is vast and rich in multiple para-
digms. We are interested here on approaches based on statistical modeling of
pixels and regions. Examples of methods fitting in such a paradigm and having
excellent performance are mean shift [9] and statistical region merging [15]. Hier-
archical contour detection is another successful paradigm with approaches based
for instance on machine learned edge detection [4] or on watershed transform [6].

Instead of dealing with a determinist set of contours, the idea of the stochastic
watershed [2] (SW) is to estimate a probability density function (pdf) of contours
by MonteCarlo simulations. Some variants included multiscale framework [3],
bagging framework [11], robust framework [5], etc. It was shown in [16] that
the corresponding pdf obtained by SW can be calculated in closed form without
simulation by using graph algorithms, for more recent results see also [17]. Nev-
ertheless, we focuss here on an approach working on simulations. In particular,
our contribution is in the line of [12], where the estimation of the probability of
each contour is based on a regional model of each region, the model being in [12]
the mean color. In the present work, the approach is pushed forward such that
each region should be modeled as a multivariate normal distribution. The basic
ingredient will be a distance between pairs of regions, hence a distance between
normal distributions. In this context, several alternatives of statistical distances
for normal distributions are compared.
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The rest of the paper is organized as follows. In Sect. 2, we remind the Mon-
teCarlo framework of stochastic watershed and in particular the simulation of
regionalized random germs. Section 3 introduces the contribution of the paper:
first, distances between multivariate normal distributions are reviewed; second,
computation of probability density of contours based on a normal region model
is formulated. Results are discussed and compared to statistical region merging
segmentation [15].

2 Remind on Stochastic Watershed

Regionalized Poisson Points. We first consider the notion regionalized ran-
dom points as well as the algorithm used to simulate a realization of N random
germs associated to a spatial density.

A rather natural way to introduce uniform random germs is to generate
realizations of a Poisson point process with a constant intensity θ (i.e., aver-
age number of points per unit area). It is well known that the random number
of points N(D) falling in a domain D, which is considered a bounded Borel
set, with area |D|, follows a Poisson distribution with parameter θ|D|, i.e.,
Pr{N(D) = n} = e−θ|D| (−θ|D|)n

n! . In addition, conditionally to the fact that
N(D) = n, the n points are independently and uniformly distributed over D,
and the average number of points in D is θ|D| (i.e., the mean and variance of a
Poisson distribution is its parameter).

More generally, we can suppose that the density θ is not constant; but consid-
ered as measurable function, defined in R

d, with positive values. For simplicity,
let us write θ(D) =

∫
θ(x)dx. It is also known [13] that the number of points

falling in a Borel set B according to a regionalized density function θ follows a
Poisson distribution of parameter θ(D), i.e., Pr{N(D) = n} = e−θ(D) (−θ(D))n

n! .
In such a case, if N(D) = n, the n are independently distributed over D with the
probability density function θ̂(x) = θ(x)/θ(D). In practice, in order to simulate
a realization of N independent random germs distributed over the image with
the pdf πk(x) we propose to use an inverse transform sampling method. More
precisely, the algorithm to generate N random germs in an image m : E → {0, 1}
according to density θ̂(x) is as follows:

1. Initialization: m(xi) = 0∀xi ∈ E; P = Card(E)

2. Compute cumulative distribution function: cdf(xi) =
∑

k≤i θ̂(xk)
∑P

k=1 θ̂(xk)

3. for j = 1 to N
4. rj ∼ U(1, P )
5. Find the value sj such that rj ≤ cdf(xsj

).
6. m(xsj

) = 1

Marker-Driven Watershed Transform. Let g(x) and mrk(x) be respectively
a (norm of) gradient image and a marker image. Intuitively, the associated water-
shed transformation [6], WS(g,mrk)(x), produces a binary image with the con-
tours of regions “marked” by the image mrk according to the strength of contour
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Fig. 1. Stochastic watershed segmentation of “Custard” image: (a) color image f ,
(b) its color gradient g, (c) top, three realizations of random markers mrkn regionalized
from g, bottom, corresponding watershed lines WS(g, mrkn), (d) estimated density of
contours pdf , (e) segmentation from d. In (c) and (d) images in negative for better
visualization (Color figure online).

given by the gradient image g. The classical paradigm of watershed segmenta-
tion lays on the appropriate choice of markers, which are the seeds to initiate
the flooding procedure.

Probability Density of Contours Using MonteCarlo Simulations of
Watershed. In the stochastic watershed (SW) approach [2], an opposite direc-
tion is followed, by spreading random germs for markers on the watershed seg-
mentation. This arbitrary choice will be balanced by the use of a given number
M of realizations, in order to filter out non significant fluctuations. Each piece of
contour may then be assigned the number of times it appears during the various
simulations in order to estimate a probability density function (pdf) of contours.
In the case of uniformly distributed random germs, large regions will be sampled
more frequently than smaller regions and will be selected more often. Using g(x)
as density for regionalization of random germs involves sampling high contrasted
image areas and it has been proved to be an appropriate choice [2]. In this case,
the probability of selecting a contour will offer a trade-off between strength of
the contours and size of the adjacent regions.

More precisely, given a color image f the associated SW pdf of contours
is obtained as follows. Let {mrkn(x)}M

n=1 be a series of M realizations of N
spatially distributed random markers according to its gradient image g. Each
realization of random germs is considered as the marker image for a watershed
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segmentation of gradient image g in order to obtain the binary image

WS(g,mrkn)(x) =
{

1 if x ∈ Watershed lines
0 if x /∈ Watershed lines

Consequently, a set of M realizations of segmentation is computed, i.e.,
{WS(g,mrkn)}1≤n≤M . Note that in each realization the number of points deter-
mines the number of regions obtained (i.e., essential property of watershed trans-
formation). Then, the probability density function of contours is computed by
the kernel density estimation method as follows:

pdf(x) =
1
M

M∑

n=1

WS(g,mrkn)(x) ∗ Kσ(x). (1)

Typically, the kernel Kσ(x) is a spatial Gaussian function of width σ, which
determines the smoothing effect.

Then, the image pdf(x) can be segmented by selecting the contours of proba-
bility higher than a given contrast [2]. Figure 1 depicts an example of color image
segmentation using SW. As we can note from this example, which includes large
homogenous areas, well contrasted objects as well as textured zones, the pdf and
corresponding segmentation produces relatively satisfactory results. However,
large homogeneous areas are oversegmented and textured zones are not always
well contoured. Obviously, low contrasted areas (e.g., boundary between dog
head and wall) are not properly segmented. All those are well known drawbacks
of SW which have been addressed by the robust stochastic watershed (RSW) [5]
or by the regional regularized stochastic watershed [12]. We adopt here an app-
roach related to the latter one, based on a statistical model of regions.

Let us remind the principle of the RSW [5] since it will be also used in the
results of next section. The fundamental property of watershed is the insensitiv-
ity to the placement of seed points, which usually enables the SW segmentation
to find reliably relevant boundaries, but, in the case of “false boundaries” it
works to our disadvantage. The idea of RSW is to introduce a perturbation εn

(i.e., small amount of noise) into the flooding function g (i.e., gradient) at each
realization n, in order to reduce the number of times that a “false boundary”
will appear. More precisely, the kernel density estimator (1) becomes now

pdf(x) =
1
M

M∑

n=1

WS(g + εn,mrkn)(x) ∗ Kσ(x), (2)

where εn(x) is in our experiments a zero-mean Gaussian white noise with an
intensity-dependent variance from g(x).

3 Multivariate Gaussian Model of Regions in SW

As we just discussed, the watershed segmentation of g from N markers (imposed
minima) produces a set of thin lines dividing the image domain E into N disjoint
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Fig. 2. Tessellation τ of E from watershed WS(x).

regions, denoted {Rr}1≤r≤N . This structure is called tessellation τ of E, see
Fig. 2, defined as a (finite) family of disjoint open sets (or classes, or regions)

τ = {Rr}1≤r≤N , with i �= j ⇒ Ri ∩ Rj = ∅,

such that

E = ∪rRr

⋃
WS(x) ⇔ WS(x) = E \ ∪rRr = ∪li,j .

The watershed lines WS(x) can be decomposed into the curves that separates
the regions. More precisely, let us denote by li,j the curve (or irregular arc
segment) defined as the boundary between regions Ri and Rj , i.e.,

li,j = ∂Ri ∩ ∂Rj .

We obviously have WS = ∪li,j , but we also note that in the case of three (or
more adjacent) regions, their boundary segments intersect at their junctions (or
triple points).

The color image values restricted to each region of the partition, Pi = f(Ri),
can be modeled by different statistical distributions. Here we focuss on a multi-
variate normal model.

3.1 Distances for Multivariate Normal Distributions

Let us consider a family of multivariate normal distributions Pi of mean μi and
covariance matrix Σi, i.e., Pi ∼ N (μi, Σi). Different distances are defined in
the space of Pi.

Bhattacharyya Distance and Hellinger Metric Distance. The Bhattacha-
ryya distance DB(P1, P2) measures the similarity of two discrete or contin-
uous probability distributions P1 and P2. More precisely, it computes the
amount of overlap between the two statistical populations, i.e., DB(P1, P2) =
− log

∫ √
P1(x)P2(x)dx.
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Fig. 3. Given the “Custard” color image (a), (b1)–(b3) are, on the top, three real-
izations of SW lines WS(x, n), at the bottom, the corresponding probability maps
Pr(x, n) using the Bhattacharyya distance (Color figure online).

For multivariate normal distributions the Bhattacharyya distance DB(P1, P2)
is given by

DB(P1, P2) =
1
8
(μ1 − μ2)

T Σ−1(μ1 − μ2) +
1
2

log
(

det Σ√
det Σ1 det Σ2

)

, (3)

where

Σ =
Σ1 + Σ2

2
.

Note that the first term in the Bhattacharyya distance is related to the Maha-
lanobis distance, both are the same when the covariance of both distributions is
the same.

We have 0 ≤ DB ≤ ∞ and it is symmetric DB(P1, P2), it is not a metric.
But DB does not obey the triangle inequality and therefore it is not a metric.
Nevertheless, it can be metrized by transforming it into to the following Hellinger
metric distance DH(P1, P2) given by DH(P1, P2) =

√
1 − exp (−DB(P1, P2)),

such that

DH(P1, P2) =

√
1 −
(

detΣ√
detΣ1 detΣ2

)−1/2

e(−
1
4 (μ1−μ2)

T (Σ1+Σ2)−1(μ1−μ2)). (4)

Hellinger distance is an α-divergence [1], which corresponds to the case α = 0
and it is the solely being a metric distance. Hellinger distance can be related to
measure theory and asymptotic statistics. For more details on Bhattacharyya
and Hellinger distances, see for instance [14].

Wasserstein Metric Distance. The Wasserstein metric is a distance function
defined between probability measures on a given metric space based on the
notion optimal transport [20]. Namely, the W2 Wasserstein distance between
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probability measures μ and ν on R
n is W2(μ, ν) = inf E(‖X − Y ‖2)1/2, where

the infimum runs over all random vectors (X,Y ) ∈ R
n × R

n with X ∼ μ and
Y ∼ ν. For the case of discrete distributions, it corresponds to the well-known
earth mover’s distance [7,18].

In the case of two multivariate normal distributions, the Wasserstein metric
distance is obtained in a closed form as [10,19]:

DW (P1, P2) =
√

‖μ1 − μ2‖2 + Tr (Σ1 + Σ2 − 2Σ1,2), (5)

where

Σ1,2 =
(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2

.

We note in particular that in the commutative case Σ1Σ2 = Σ2Σ1 we have

DW (P1, P2)2 = ‖μ1 − μ2‖2 + ‖Σ
1/2
1 − Σ

1/2
2 ‖2F .

3.2 Probability Density Function Estimation

We have now the ingredients to compute by MonteCarlo simulations the proba-
bility density function from a color image. The idea is to assign to each piece of
contour li,j between regions Ri and Rj the statistical distance between the color
gaussian distributions Pi and Pj :

πi,j =
D(Pi, Pj)∑

lk,l∈WS D(Pk, Pl)
, (6)

where D(Pi, Pj) is any of the distances discussed above. Thus, for any realization
n of SW, denoted WS(x, n), one can compute the following image of weighted
contours:

Pr(x, n) =
{

πi,j if x ∈ lni,j
0 if x /∈ lni,j

where lni,j is the boundary between regions Ri and Rj from WS(x, n). Figure 3
gives an example of three realizations of SW lines WS(x, n) and the correspond-
ing probability maps Pr(x, n) using the Bhattacharyya distance.

Finally, integrating across the M realizations, the MonteCarlo estimate of
the probability density function of contours is given by

pdf(x) =
1
M

M∑

n=1

Pr(x, n) ∗ Kσ(x). (7)

Obviously, this approach is compatible with the robust stochastic watershed
(RSW) variant discussed in previous section, since each realization n of the RSW
produces also a tessellation of E since the image of weighted contours Pr(x, n)
can be computed.
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Fig. 4. Top, image segmentation of “Custard” using gaussian region model SW, where
the first row is pdf(x) and second row the segmentation obtained at a given probability
contrast; middle, gaussian region model RSW: (a) using only color mean [12], (b) Bhat-
tacharyya distance, (c) Hellinger metric distance, (d) Wasserstein metric distance. The
number of realization is M = 50 and the number of random markers at each realization
is N = 200 germs. Bottom, image segmentation of “Custard” using statistical region
merging (SRM) [15]: (e) sum of contours obtained from SRM using nine values of Q
(256, 128, 64, 32, 16, 8, 4, 2, 1), (f) segmentation for Q = 128 and (g) for Q = 32.
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In Fig. 4 is depicted a comparison of image segmentation of “Custard” using
gaussian region model SW and gaussian model RSW. In particular, the pdf(x)
for the three considered distances (Bhattacharyya distance, Hellinger metric dis-
tance and Wasserstein metric distance) is provided, as well as the obtained
segmentation by taking a probability contrast value which provides a similar
degree of segmentation. It is also included the result obtained using only the
color mean as the model proposed in [12]. From this example, and similar ones
obtained from more experiments, Bhattacharyya distance produces good results
and a better selectivity of contours than Hellinger metric distance. The results
obtained by Wasserstein metric distance are also relevant but the influence of
the covariance matrix is less significant, thus being closer to the results obtained
using the distance between only the mean colors. Concerning the comparison
between the standard SW and the RSW paradigm, it is visually observed that
the gaussian model RSW produces improvements on the obtained segmentation
with respect to SW.

We have also included in the figure the results obtained for this example by
statistical region merging (SRM) [15], computed using MATLAB code provided
in [8]. Using the scale parameter Q, we have computed nine segmentations, such
that the sum of contours from the nine images can be viewed as a contours
saliency function. Then, we have selected two values of Q giving segmentation
similar to those of the gaussian region model SW. We observe that the detected
regions are quite similar, however, the precision of contours in SW-approaches
is qualitatively better for such kind of images.

4 Perspectives

Besides a more quantitative assessment of the performance of the proposed algo-
rithms, other related perspectives can be considered in ongoing research. First,
in addition to color information, texture at each pixel x can be described also
by its structure tensor T (x) ∈ SPD(2). Thus, texture at each region Ri can be
described by a zero-mean gaussian distribution N (0, Σi), where the covariance
matrix is given by Σi = |Ri|−1

∑
x∈Ri

T (x). Hence, the approach presented in
the paper can be also used to estimate pdf of contours from texture information
or from color + texture. Second, the use of some available prior knowledge, typ-
ically represented by training images of annotated contours, could be considered
in order to have a (semi-)supervised segmentation. In our framework, this goal
can be formulated as a problem of distance learning in the space of multivariate
normal distributions.
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PSL-Research University, Paris, France

{gianni.franchi,jesus.angulo}@mines-paristech.fr

Abstract. A technique of spatial-spectral quantization of hyperspectral
images is introduced. Thus a quantized hyperspectral image is just sum-
marized by K spectra which represent the spatial and spectral structures
of the image. The proposed technique is based on α-connected compo-
nents on a region adjacency graph. The main ingredient is a dissimilarity
metric. In order to choose the metric that best fit the hyperspectral data
manifold, a comparison of different probabilistic dissimilarity measures
is achieved.

Keywords: Quantization · Hyperspectral images · Information geome-
try · Probabilistic distances · Mathematical morphology

1 Introduction

Gray-level images are pictures where each pixel is a scalar value which usually is
quantized between 0 and 255. Color and hyperspectral images are images where
each pixel can be considered as a vector, such that each coordinate of the vector
corresponds to the intensity of the pixel at a certain wavelength. In addition,
pixels values on spectral images are most of the time different. Quantization of
images can be seen as a way to remove this excess of variability by reducing the
number of (spectral) vectors and therefore to address the curse of dimensionality
[3]. The problem can be addressed using dictionary learning techniques [2]. In
these learning methods, a dictionary composed of k atoms is learned on a set of
vectors. Then each vector is represented by a (low) number of atoms of the dic-
tionary. Among these methods, VQ [7] is a well known technique that quantizes
a set of vectors, since each vector is represented by just one atom of the dictio-
nary. We consider in this paper a vector quantization method for hyperspectral
images, halfway between manifold learning and dictionary learning methods,
since we explore a quantization of the image manifold. First, we review exist-
ing similarity metrics on hyperspectral imaging and consider some probabilistic
distance less known on this domain. Finally we quantize hyperspectral images
using the best distances.

c© Springer International Publishing Switzerland 2015
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2 Quantization of Hyperspectral Images

Background on Hyperspectral Images. Let us consider a hyperspectral
image where each pixel value vi is a spectral vector of dimension d ∈ N, such
that vi ∈ R

d. Because of the curse of dimensionality [3], spectral variability is
added to the vectors. First, let us consider a simple case where vi ∈ [0, 1]d and
d = 1; in this case it is easy to calculate that with 100 points, one get an interval
between points of around 10−2. However, if we consider a space of dimension
d = 10 and if one wants the points to be separated by a ball of radius 10−2, we
can see that this time we need 1020 points. Indeed, in the case of hyperspectral
images, d is usually about one or two hundred, which shows how sparse the
sampled manifold is (or how empty the whole space is), and how crucial is the
question about similarity between spectra. Moreover one can see a hyperspectral
image as a set of spectral classes. If we consider for instance three classes: “road”,
“water”, or “forest”, then each pixel belongs to one of these three classes. Due
to the high dimensional space, each class has a high variability with respect to
the Euclidean distance, and thus this distance will not be discriminative enough
to separate objects from different classes. A solution could be to reduce the
dimension of the manifold or to find another low-dimensional space to embed
data, and then to use Euclidean distance in this space. Actually, we do not focus
here on this kind of classical approach. We assess the interest of metrics on the
original manifold on the d-dimensional space that are more invariant to spectral
variability [1,12,15]. Thanks to this kind of similarities we can expect to improve
hyperspectral image quantization.

Spectral/Spatial Image Quantization. Quantization is the process which
allows to approach a signal with large set of values by a signal on a smaller set.
Images are signals on a spatial domain, so their quantization should takes into
account the expected spatial coherence. To achieve this goal, we choose to use α-
connected components representation [18,20,21], that produces an image parti-
tion into homogenous spatial classes. Two pixels belongs to the same α-connected
component if there is a path linking these pixels such that the similarity between
successive pixels of this path is lower than α. However, α-connected components
algorithm often produces inadequate image partitions, since it fails to respect
image contours. A solution is to first use an initial partition algorithm that would
produce “superpixels” on our image and that must follows main image contours.
Then, the superpixels are connected between then by their region adjacency
graph (RAG). It is a graph where each node is a superpixel, and edges represent
the dissimilarity between superpixels. Here edges are weighted by the dissimilar-
ity between centroids of superpixels. In our case, the superpixels are obtained by
computing the classical watershed on the image. Then the notion of α-connected
components can be extended to RAG [18]. Moreover, by comparing nodes and
thus regions, our quantization is more robust to noise. For this purpose on each
superpixel SPi the value of the original pixels is replaced by the value of its
centroid Ci. Finally the choice of α is done in order to have a fixed number of
centroids, and thus of different spectra.
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Assessment of Image Quantization. Our quantization depends on the RAG
and therefore, on the choice of distance. We focus on the potential interest of
probabilistic distances on spectral pixels. In this context, our assessment is sep-
arated into two steps.

Step 1: Evaluation of the probabilistic distances. We consider that a good
probabilistic distance is a dissimilarity measure that has an invariant behaviour
on each spectral class in a high dimension space. During the process of assess-
ment, hyperspectral images with a ground truth spectral classification are used.
Thus the class of each pixel is known. Moreover for each class the centroid for
a dissimilarity measure can be computed: it corresponds to the vector which
minimizes the cumulated distance to the other vectors of the class. The centroid
represents the class. Figure 1 represents two scatter-plots from a three-classes
hyperspectral image. These scatter-plots depict the distance of each spectrum
to the centroids of each class. A good dissimilarity measure should concentrates
the data of each class around its centroid. In this example, Kullback-Leibler
divergence performs better than L2 norm from this viewpoint. To quantitatively
assess such property, the image is classified by calculating the distance of each
image spectrum to the class centroids. Then, the class of the nearest centroid
is given to each spectrum. After having classified the image, we evaluate the
Overall Accuracy (OA), and the Average Accuracy (AA), that are two measures
commonly used in hyperspectral imaging [10]. In addition, the rank of classifica-
tion is also computed for each pixel. For example, let us consider that we have a
spectrum X and three classes C1, C2, C3, and the spectrum X belongs to cluster
C1. After computing the distance of X to each class centroid, denoted recep-
tively D1,D2,D3, we obtain D1 > D3 > D2. Obviously the classifier would
consider that the class of X is C2. Since in this case D1 is the highest distance,
the classification mistake is very significant. The rank of good classification is
in the present case 3. Hence, the rank of classification (Rank) is obtained as
the mean of rank of good classification over all the pixels, divided by the num-
ber of classes. The more the rank of classification is near to one, the worst a
dissimilarity measure is.

Fig. 1. Scatter plot of distances of pixels (of Pavia image) of cluster 1 (in blue) to the
centroid of cluster 1 in X, to the centroid of cluster 2 in Y, to the centroid of cluster
3 in Z. Similarly, in red for cluster 2, and in green for cluster 3. In (a) we use the L2

norm as dissimilarity measure, in (b) we used the Kullback-Leibler divergence (Color
figure online).
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Step 2: Evaluation of the quantization results. Quantization is a simplifi-
cation operation that can destroy some relevant information. This introduces an
error between the quantized signal and the original signal. This error is gener-
ally called quantization noise (or distortion). Let us consider an image f , and its
quantized version f̂ . The distortion is measured as: ‖f − f̂‖2. Thus this distor-
tion is measured by the L2 norm and this point can be problematic for use since
we compare different measures of dissimilarity. To overcome this problem, we
used as measure the SNR that is also used on signal quantization. Nevertheless,
this metric might not be adapted to images since the spatial distortion is not
taken into account. We propose to introduce an additional measure of distor-
tion adapted to structured signals. The pattern spectrum (PS) [4] corresponds
to the probability density function (pdf) of the granulometric decomposition,
a multi-scale morphological image decomposition. We consider in fact the cumu-
lative distribution function of the difference image |f − f̂ |. A good quantization
schema filters out small spatial structures and keeps most of the large spatial
objects of the image |f − f̂ |. A quantized image f̂A is better than a quantized
image f̂B if the cumulative pattern spectrum of image |f − f̂A| stochastically
dominates [9] the one of |f − f̂B |.

3 Probabilistic Distances on Hyperspectral Images

We focus on spectral metrics which model the data uncertainty as resulting from
randomness. Thus we consider each pixel as a random variable with the proba-
bility distribution obtained by normalizing the vector. Given two vectors X =
(x1, . . . , xd) ∈ R

d, and Y = (y1, . . . , yd) ∈ R
d, they are represented respectively

by their probability distribution function (pdf) as Px = ( x1∑
i xi

, . . . , xd∑
i xi ) ∈ R

d

and Py = ( y1∑
i yi

, . . . , yd∑
i yi

) ∈ R
d. Besides the metric presented here, we also

considered (on [22]) Lp Minkowski norms, Hellinger distance.

Spectral Angle Mapper (SAM). Let us consider a spectrum X ∈ R
d of an

hyperspectral image. It can be considered as a set of n random tests, where
n =

∑
i Xi, and each event Xi is independent and provides a binary outcome.

Thus, each image spectrum can be seen as following a multinomial distribution
of parameter Px. It is then possible to define a Fisher-Rao distance between
X and Y , represented by their pdf Px, Py. This notion corresponds to the
spherical distance [16]: DSpher(X,Y ) = 2 arccos(

∑√
Px,iPy,i). It is called the

spherical distance since it represents the geodesic distance between distributions
that are embedded on a (d − 1)−unit sphere of equation:

∑d
i=1

√
Px,i

√
Px,i =

1. A distance classically used on hyperspectral images is the spectral angle
mapper (SAM) [1,6], which for X,Y is defined between as: DSAM (X,Y ) =
arccos(

∑
XiYi√∑

XiXi

√∑
YiYi

) = 1
2DSpherical(X2, Y 2). This metric is invariant to

spectral multiplication since DSAM (αX, Y ) = DSAM (X,Y ), ∀α ∈ R
∗. So it is

invariant to illumination changes, which can be problematic on remote sensing.
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χ2 Distance. The χ2 distance is a similarity measure obtained from a statistical
test that takes as input two distributions Px, PY . This distance is defined as
Dχ2(X,Y ) =

∑d
i=1

(Px,i−mi)
2

mi
with mi = Px,i+Py,i

2 , and measures the level of
“adequacy” of pair Px, PY [11]. More precisely, it corresponds to the probability
that data of Px follows the law Py.

Kullback-Leibler Divergence. The Kullback-Leibler divergence [16] is a dis-
tinguishability measure between two distributions Px and Py. Divergence
S(Px‖Py) tells us how much the expected lengths of a code change, when the cod-
ing is optimal but made under the assumption that X follows Py. It is defined as:
S(Px‖Py) =

∑
i Px,i log Px,i

Py,i
. The use of an asymmetric divergence may be prob-

lematic for some applications. This is why we try to symmetrize the Kullback-
Leibler divergence and to use the Spectral Information Divergence (SID) [1]:
SID(Px‖Py) = S(Px‖Py) + S(Py‖Px).

Rényi Divergences. The Shannon entropy is a function that corresponds to
the amount of information contained or send by a source of information. Some-
how, the more the source emits different information, the more the entropy is
large. Let us consider a pdf Px with d possible outputs. Then, Shannon defined
that the amount of information produced by knowing that an event of prob-
ability Px,i took place can be approximate by [16,19]: I(Px,i) = − log(Px,i).
The Shannon entropy is a mean of amount of information over Px. It fulfils the
postulate of additivity of information, which states that the information of two
independent events is the sum of each information. However more general mea-
sures can be defined. Rényi [19] proved that to be able to verify the postulate of
additivity of information, it is necessary to have entropy of the form: H(Px) =
g−1

(∑d
i=1 Px,ig(I(Px,i))

)
, with g(x) = cx or g(x) = c2(1−α)x. The first case

leads to the Shannon entropy, whereas the second leads to other functional class
called the Rényi entropy, which is defined by: Hα(Px) = 1

1−α log
(∑d

i=1 Pα
x,i

)
,

Thus the Rényi entropy is a more flexible measure of uncertainty, where the para-
meter α allows different notions of information. The case α = 1 leads to the Shan-
non entropy. Similarly to the Shannon entropy, it is possible to introduce diver-
gence, that are called the Rényi divergence of order α, α > 0 of a distribution Px

from a distribution Py: Sα(P‖Q) = 1
α−1 log

∑
i Pα

x,iP
1−α
y,i . Parameter α involves

a family divergences, where Sα→1 (Px‖Py) = S(Px‖Py). There are two other spe-
cial cases: α = 1/2, which is: Sα=1/2(Px‖Py) = −2 log(1 − DHellinger(X,Y )/2);
and α = 2 which leads to the quadratic Rényi divergence, that is a function
mostly used on finance that check Sα=2(Px‖Py) = log

(
1 + Dχ2(X,Y )

)
.

Mahalanobis Distance. We have considered above that each spectrum follows
a multinomial distribution. It might be possible to consider alternatively that the
spectra follow normal distributions. This model is often used on hyperspectral
imaging. In our case, we assume that each spectrum X follows a multivariate
normal of mean itself and with a fixed covariance for all the spectra. Hence we
have that X ∼ N (X,Σ). It turns out that the Fisher-Rao distance between X,Y
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corresponds to the Mahalanobis distance [13,14] defined as: DMahal(X,Y ) =
(X −Y )T Σ−1(X −Y ). Endowed with this distance, the hyperspectral space is a
submanifold of the manifold of multivariate normal distributions [14]. Moreover
this kind of metric depends on the estimation of the covariance matrix. We have
considered two ways to estimate the covariance matrix. The first one is the biased
empirical covariance estimator: Σ = 1

d

∑d
i=1(Xi − X)(Xi − X)T , where X =

1
d

∑d
i=1 Xi is the empirical mean. The second one is inspired from the work [18],

where thanks to random projections they succeed to have a good estimator of the
Mahalanobis distance. We will denote respectively the corresponding distance
DMahal1 and DMahal2.

Kolmogorov Distance. Spectra X of a hyperspectral image can be represented
by a pdf, but they can also be represented by their cumulative distribution function
(cdf), denoted CX , where Cx,i =

∑i
k=1 Px,k. This function is smoother and less

subject to high noise variation. Then, on can define the Kolmogorov-Smirnov dis-
tance [11] for two spectra X and Y as the maximal difference between their cumula-
tive distribution functions: DKolmo = max (|Px,1 − Py,1|, . . . , |Px,2 − Py,2|) . This
distance happens to be the L∞ norm applied to the cdf’s.

Earth Mover’s Distance. Let us consider two spectra X and Y represented
by their respective pdf Px and Py. Their Earth Mover’s Distance [11] can be

defined as DEMD = minαi,j∈M
(∑d

i=1

∑d
j=1 αi,jC(i, j)

)
, where M = {αi,j ≥

0;
∑d

i=1 αi,j = Py,j ;
∑d

j=1 αi,j == Px,i} and C is the cost function. Different
choices of cost functions have been considered. We adopt here two different cost
functions. The first one can be defined as: C1(i, j) = 1

d |i− j|. In such a case, the
Earth Mover’s Distance is given by [17]: DEMD1 = 1

d‖CPx−CPy‖1 where CPx is
the cumulative distribution function of X, similarly for CPy and Y . One can also
use a thresholded version of the cost function [17] to increase the computation

speed: C2(i, j) =
{ |i − j| if |i − j| ≤ s

s otherwise where s is the value of the threshold. We

will write this distance DEMD2.

Table 1. Comparison of probabilistic distances on hyperspectral images.

Results on ”Pavia” image
L1 L2 L∞ DSpher DSAM DHelli D

χ2 S Sα=1/2 Sα=2 SID DMahal1 DMahal2 DKolmo DEMD1 DEMD2

OA 0.001 0.001 0.003 0.012 0.056 0.001 0.023 0.51 0.50 0.50 0.012 0.009 0.057 0.006 0.008 0.006
AA 0.001 0.001 0.013 0.085 0.12 0.001 0.11 0.25 0.22 0.22 0.089 0.003 0.22 0.09 0.1 0.08
Rank 0.93 0.93 0.91 0.81 0.62 0.46 0.33 0.21 0.47 0.22 0.36 0.58 0.37 0.90 0.90 0.41
SNR 22.82 22.96 22.89 22.72 14.90 21.92 23.90 21.88 21.97 21.20 21.26 21.4 22.0 22.47

Results on ”Indian Pines” image
L1 L2 L∞ DSpher DSAM DHelli D

χ2 S Sα=1/2 Sα=2 SID DMahal1 DMahal2 DKolmo DEMD1 DEMD2

OA 0.016 0.016 0.011 0.016 0.09 0.016 0.30 0.010 0.010 0.010 0.010 0.019 0.068 0.0162 0.029 0.0162
AA 0.012 0.0022 0.014 0.016 0.13 0.016 0.24 0.09 0.09 0.09 0.09 0.016 0.13 0.0019 0.069 0.016
Rank 0.44 0.45 0.45 0.45 0.22 0.46 0.18 0.46 0.44 0.45 0.46 0.39 0.34 0.45 0.45 0.42
SNR 12.86 12.74 12.73 12.73 5.59 12.69 14.01 12.88 12.81 12.86 12.73 12.74 11.01 12.55
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Fig. 2. Representation of the cumulative Pattern Spectrum of Pavia images for different
similarity measures (Color figure online).

Fig. 3. (a) False RGB color image (using three spectral bands) of Indian Pines hyper-
spectral image. False RGB color image of the quantized hyperspectral image K = 1500
thanks to in (b) the norm 2, (c) the SAM, (d) the χ2 distance, (e) the EMD.

4 Results on Hyperspectral Images

The question of the evaluation of the metrics is crucial. We first use two images
conventionally used in hyperspectral image processing: (i) the Pavia image, which
represents the campus of Pavia university (urban scene), of size 610× 340 pixels
and d = 103 spectral bands, and is composed of 9 classes; (ii) the Indian Pines
image, test site in North-western Indiana composed for two thirds of agriculture,

Fig. 4. (a) False RGB color image (using three spectral bands) of Pavia hyperspectral
image. False RGB color image of the quantized hyperspectral image K = 3000 thanks
to in (b) the norm 2, (c) the SAM, (d) the χ2 distance, (e) the EMD.
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and one-third of forest, of 145 × 145 pixels and d = 224 spectral bands, and is
composed of 16 classes. On theses images, we did a quantification, for Indian
Pines we chose K = 1500, and for Pavia university we chose K = 3000. Then,
we calculate on Table 1, the evaluation measures introduced in Sect. 2. We also
plotted the cumulative pattern spectra, on Fig. 2, and examples of quantized
Indian Pines image on Fig. 3, and of Pavia image on Fig. 4. From this study
we can deduce that Mahalanobis distance may have good results, however the
quality of the results of Mahalanobis distance depends on the estimation of
the covariance matrix. We can also deduce that χ2 distance can have excellent
results, and seems to be quite robust to the curse of dimensionality, using this
distance in dimensionality reduction [8] might improve the extracted feature.

5 Conclusion

We have done a systematic study to compare and assess different probabilistic
distances in the context of hyperspectral image quantization. Our results are
consistent to those previously published [1,12,15] for some of the distances. We
infer from our study the importance of using appropriate distances to address
the curse of dimensionality in hyperspectral imaging. A distance that seems to
be rather efficient is the χ2 distance. However, each dissimilarity measure has its
disadvantages and benefits. A potentially interesting approach would be to take
a dissimilarity measure as a linear combination of dissimilarity measures, taking
advantage of the discriminatory power of each of them. This kind of approach is
link with the multiple kernel learning [23]. For the particular problem of image
quantization, which involves computation of centroids, advanced methods to
compute centroid from divergences [5] can improve the results.
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Abstract. Minimum divergence estimators are derived through the dual
form of the divergence in parametric models. These estimators gener-
alize the classical maximum likelihood ones. Models with unobserved
data, as mixture models, can be estimated with EM algorithms, which
are proved to converge to stationary points of the likelihood function
under general assumptions. This paper presents an extension of the EM
algorithm based on minimization of the dual approximation of the diver-
gence between the empirical measure and the model using a proximal-
type algorithm. The algorithm converges to the stationary points of the
empirical criterion under general conditions pertaining to the divergence
and the model. Robustness properties of this algorithm are also pre-
sented. We provide another proof of convergence of the EM algorithm in
a two-component gaussian mixture. Simulations on Gaussian and Weibull
mixtures are performed to compare the results with the MLE.

Introduction

The EM algorithm is a well known method for calculating the maximum like-
lihood estimator of a model where incomplete data is considered. For example,
when working with mixture models in the context of clustering, the labels or
classes of observations are unknown during the training phase. Several variants
of the EM algorithm were proposed, see [11]. Another way to look at the EM
algorithm is as a proximal point problem, see [5,15]. Indeed, one may rewrite
the conditional expectation of the complete log-likelihood as a sum of the log-
likelihood function and a distance-like function over the conditional densities of
the labels provided an observation. Generally, the proximal term has a regular-
ization effect in the sense that a proximal point algorithm is more stable and
frequently outperforms classical optimization algorithms, see [9]. Chrétien and
Hero [4] prove superlinear convergence of a proximal point algorithm derived by
the EM algorithm. Notice that EM-type algorithms usually enjoy no more than
linear convergence.

Taking into consideration the need for robust estimators, and the fact that the
MLE is the least robust estimator among the class of divergence-type estimators
which we present below, we generalize the EM algorithm (and the version in
[15]) by replacing the log-likelihood function by an estimator of a ϕ-divergence
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 417–426, 2015.
DOI: 10.1007/978-3-319-25040-3 45
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between the true distribution of the data and the model. A ϕ-divergence in the
sense of Csiszár [7] is defined in the same way as [3] by:

Dϕ(Q,P ) =
∫

ϕ

(
dQ

dP
(y)

)

dP (y),

where ϕ is a nonnegative strictly convex function. Examples of such divergences
are: the Kullback-Leibler (KL) divergence for ϕ(t) = t log(t)−t+1, the modified
KL divergence for ϕ(t) = − log(t) + t − 1, the hellinger distance for ϕ(t) =
1
2 (

√
t− 1) among others. All these well-known divergences belong to the class of

Cressie-Read functions defined by ϕγ(t) = xγ−γx+γ−1
γ(γ−1) for γ ∈ R \ {0, 1}.

Since the ϕ-divergence calculus uses the unknown true distribution, we need
to estimate it. We consider the dual estimator of the divergence introduced
independently by [2,10]. The use of this estimator is motivated by many reasons.
Its minimum coincides with the MLE for ϕ(t) = − log(t) + t − 1. Besides, it has
the same form for discrete and continuous models, and does not consider any
partitioning or smoothing.

Let (Pφ)φ∈Φ be a parametric model with Φ ⊂ R
d, and denote φT the true

set of parameters. Let dy be the Lebesgue measure defined on R. Suppose that
∀φ ∈ Φ, the probability measure Pφ is absolutely continuous with respect to dy
and denote pφ the corresponding probability density. The dual estimator of the
ϕ-divergence given an n-sample y1, · · · , yn is given by:

D̂ϕ(pφ, pφT
) = sup

α∈Φ

∫

ϕ′
(

pφ

pα

)

(x)pφ(x)dx − 1
n

n∑

i=1

ϕ#

(
pφ

pα

)

(yi), (1)

with ϕ#(t) = tϕ′(t) − ϕ(t). AL Mohamad [1] argues that this formula works
well under the model, however, when we are not, this quantity largely underesti-
mates the divergence between the true distribution and the model, and proposes
following modification:

D̃ϕ(pφ, pφT
) =

∫

ϕ′
(

pφ

Kn,w

)

(x)pφ(x)dx − 1
n

n∑

i=1

ϕ#

(
pφ

Kn,w

)

(yi), (2)

where Kn,w is the Rosenblatt-Parzen kernel estimate with window parameter w.
Whether it is D̂ϕ, or D̃ϕ, the minimum dual ϕ-divergence estimator (MDϕDE)
is defined as the argument of the infimum of the dual approximation:

φ̂n = arg inf
φ∈Φ

D̂ϕ(pφ, pφT
), (3)

φ̃n = arg inf
φ∈Φ

D̃ϕ(pφ, pφT
). (4)

Asymptotic properties and consistency of these two estimators can be found
in [1,3]. Robustness properties were also studied using the influence function
approach in [1,14]. The kernel-based MDϕDE (4) seems to be a better estimator
than the classical MDϕDE (3) in the sense that the former is robust whereas the
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later is generally not. Under the model, the estimator given by (3) is, however,
more efficient especially when the true density of the data is unbounded1, see
[1] for a brief comparison.

Here in this paper, we propose to calculate the MDϕDE using an iterative
procedure based on the work of [15] on the log-likelihood function. This proce-
dure has the form of a proximal point algorithm, and extends the EM algorithm.
Our convergence proof demands some regularity of the estimated divergence with
respect to the parameter vector which is not simply checked using (1). Recent
results in the book of [13] provide sufficient conditions to solve this problem.
Differentiability with respect to φ still remains a very hard task, therefore, our
results cover cases when the objective function is not differentiable.

The paper is organized as follows: In Sect. 1, we present the general context.
We also present the derivation of our algorithm from the EM algorithm and
passing by Tseng’s generalization. In Sect. 2, we present some convergence prop-
erties. We discuss in Sect. 3 the two-gaussian mixture model and a convergence
proof of the EM algorithm in the spirit of our approach. Finally, Sect. 4 contains
simulations confirming our claim about the efficiency and the robustness of our
approach in comparison with the MLE.

1 A Description of the Algorithm

1.1 General Context and Notations

Let (X,Y ) be a couple of random variables with joint probability density function
f(x, y|φ) parametrized by a vector of parameters φ ∈ Φ ⊂ R

d. Let (X1, Y1), · · · ,
(Xn, Yn) be n copies of (X,Y ) independently and identically distributed. Finally,
let (x1, y1), · · · , (xn, yn) be n realizations of the n copies of (X,Y ). The xi’s are
the unobserved data (labels) and the yi’s are the observations. The vector of
parameters φ is unknown and need to be estimated. The observed data yi are
supposed to be real numbers, and the labels xi belong to a space X not neces-
sarily finite unless mentioned otherwise. The marginal density of the observed
data is given by pφ(y) =

∫
f(x, y|φ)dx.

For a parametrized function f with a parameter a, we write f(x|a). We use
the notation φk for sequences with the index above. Derivatives of a real valued
function ψ defined on R are written as ψ′, ψ′′, etc. We use ∇f for the gradient
of a real function f defined on R

d, and Jf for the matrix of second order partial
derivatives. If the function has two (vectorial) arguments D(φ|θ), then ∇1D(φ|θ)
denotes the gradient with respect to the first (vectorial) variable. Finally, for any
set A, we use int(A) to denote the interior of A.

1.2 EM Algorithm and Tseng’s Generalization

The EM algorithm estimates the unknown parameter vector by (see [8]):

φk+1 = arg max
Φ

E
[
log(f(X,Y|φ))

∣
∣Y = y, φk

]
.

1 More investigation is needed here since we may use asymmetric kernels to overcome
this difficulty.
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where X = (X1, · · · ,Xn), Y = (Y1, · · · , Yn) and y = (y1, · · · , yn). By indepen-
dence between the couples (Xi, Yi)’s, previous iteration may be written as:

φk+1 = arg max
Φ

n∑

i=1

E
[
log(f(Xi, Yi|φ))

∣
∣Yi = yi, φ

k
]

= arg max
Φ

n∑

i=1

∫

X
log(f(x, yi|φ))hi(x|φk)dx, (5)

where hi(x|φk) = f(x,yi|φk)
p

φk (yi)
is the conditional density of the labels (at step k)

provided yi which we suppose to be positive dx-almost everywhere. It is well-
known that the EM iterations can be rewritten as a difference between the
log-likelihood and a Kullback-Liebler distance-like function.

φk+1 = arg max
Φ

n∑

i=1

log (g(yi|φ)) +
n∑

i=1

∫

X
log

(
hi(x|φ)
hi(x|φk)

)

hi(x|φk)dx.

The previous iteration has the form of a proximal point maximization of the log-
likelihood, i.e. a perturbation of the log-likelihood by a distance-like function
defined on the conditional densities of the labels. Tseng [15] generalizes this
iteration by allowing any nonnegative convex function ψ to replace the t �→
− log(t) function. Tseng’s recurrence is defined by:

φk+1 = arg sup
φ

J(φ) − Dψ(φ, φk), (6)

where J is the log-likelihood function and Dψ is given by:

Dψ(φ, φk) =
n∑

i=1

∫

X
ψ

(
hi(x|φ)
hi(x|φk)

)

hi(x|φk)dx, (7)

for any real nonnegative convex function ψ such that ψ(1) = ψ′(1) = 0. Dψ(φ1, φ2)
is nonnegative, and Dψ(φ1, φ2) = 0 if and only if ∀i, hi(x|φ1) = hi(x|φ2) dx-
almost everywhere.

1.3 Generalization of Tseng’s Algorithm

We use the relation between maximizing the log-likelihood and minimizing the
Kullback-Liebler divergence to generalize the previous algorithm. We, therefore,
replace the log-likelihood function by an estimate of a ϕ-divergence Dϕ between
the true distribution and the model. We use the dual estimator of the divergence
presented earlier in the introduction (1) or (2) which we denote in the same
manner D̂ϕ unless mentioned otherwise. Our new algorithm is defined by:

φk+1 = arg inf
φ

D̂ϕ(pφ, pφT
) +

1
n

Dψ(φ, φk), (8)
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where Dψ(φ, φk) is defined by (7). When ϕ(t) = − log(t)+ t− 1, it is easy to see
that we get recurrence (6). Indeed, for the case of (1) we have:

D̂ϕ(pφ, pφT
) = sup

α

1
n

n∑

i=1

log(pα(yi)) − 1
n

n∑

i=1

log(pφ(yi)).

Using the fact that the first term in D̂ϕ(pφ, pφT
) does not depend on φ, so it

does not count in the arg inf defining φk+1, we easily get (6). The same applies
for the case of (2). For notational simplicity, from now on, we redefine Dψ with
a normalization by n. Hence, our set of algorithms is redefined by:

φk+1 = arg inf
φ

D̂ϕ(pφ, pφT
) + Dψ(φ, φk). (9)

We will see later that this iteration forces the divergence to decrease and that
under suitable conditions, it converges to a (local) minimum of D̂ϕ(pφ, pφT

). It
results that, algorithm (9) is a way to calculate the MDϕDE.

2 Some Convergence Properties of φk

We show here how, according to some possible situations, one may prove con-
vergence of the algorithm defined by (9). Let φ0 be a given initialization, and let
Φ0 := {φ ∈ Φ : D̂ϕ(pφ, pφT

) ≤ D̂ϕ(pφ0 , pφT
)} which we suppose to be a subset

of int(Φ). We will be using the following assumptions:

A0. Functions φ �→ D̂ϕ(pφ|pφT
),Dψ are lower semicontinuous.

A1. Functions φ �→ D̂ϕ(pφ|pφT
),Dψ and ∇1Dψ are defined and continuous on,

respectively, Φ,Φ × Φ and Φ × Φ;
AC. φ �→ ∇D̂ϕ(pφ|pφT

) is defined and continuous on Φ
A2. Φ0 is a compact subset of int(Φ);
A3. Dψ(φ, φ̄) > 0 for all φ̄ 
= φ ∈ Φ.

Recall also that we suppose that hi(x|φ) > 0, dx − a.e. We relax the convexity
assumption of function ψ. We only suppose that ψ is nonnegative and ψ(t) = 0
iff t = 1. Besides ψ′(t) = 0 if t = 1.

Continuity and differentiability assumptions of function φ �→ D̂ϕ(pφ|pφT
)

for the case of (2) can be easily checked using Lebesgue theorems. Continuity
assumption for the case of (1) can be checked using Theorem 1.17 or Corollary
10.14 in [13]. Differentiability can also be checked using Corollary 10.14 or Theo-
rem 10.31 in the same book. In what concerns Dψ, continuity and differentiability
can be obtained merely by fulfilling Lebesgue theorems conditions. When work-
ing with mixture models, we only need the continuity and differentiability of ψ
and functions hi. The later is easily deduced from regularity assumptions on the
model. For assumption A2, there is no universal method, see paragraph (3) for
an example. Assumption A3 can be checked using Lemma 2 in [15].

We start the convergence properties by proving the decrease of the objective
function D̂ϕ(pφ|pφT

), and a possible set of conditions for the existence of the
sequence (φk)k. The proofs of Propositions 1–3 are adaptations of the proofs
given in [15].
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Proposition 1. (a) Assume that the sequence (φk)k is well defined in Φ, then
D̂ϕ(pφk+1 |pφT

) ≤ D̂ϕ(pφk |pφT
), and ∀k, φk ∈ Φ0. (b) Assume A0 and A2 are

verified, then the sequence (φk)k is defined and bounded. Moreover, the sequence
(D̂ϕ(pφk |pφT ))k converges.

The convergence of the sequence (D̂ϕ(φk|φT ))k is an interesting property, since in
general there is no theoretical guarantee, or it is difficult to prove that the whole
sequence (φk)k converges. It may also continue to fluctuate around a minimum.
The decrease of the error criterion D̂ϕ(φk|φT ) between two iterations helps us
decide when to stop the iterative procedure.

Proposition 2. Suppose A1 verified, Φ0 is closed and {φk+1 − φk} → 0.

(a) If AC is verified, then any limit point of (φk)k is a stationary point of φ �→
D̂ϕ(pφ|pφT );

(b) If AC is dropped, then any limit point of (φk)k is a “generalized” station-
ary point of φ �→ D̂ϕ(pφ|pφT ), i.e. zero belongs to the subgradient of φ �→
D̂ϕ(pφ|pφT ) calculated at the limit point.

Assumption {φk+1 − φk} → 0 used in Proposition 2 is not easy to be checked
unless one has a close formula of φk. The following proposition gives a method
to prove such assumption. This method seems simpler, but it is not verified in
many mixture models, see Sect. 3 for a counter example.

Proposition 3. Assume that A1, A2 and A3 are verified, then {φk+1−φk} → 0.
Thus, by Proposition 2 (according to whether AC is verified or not) any limit
point of the sequence φk is a (generalized) stationary point of D̂ϕ(.|φT ).

Corollary 1. Under assumptions of Proposition 3, the set of accumulation points
of (φk)k is a connected compact set. Moreover, if φ �→ D̂(pφ, pφT

) is strictly convex
in a neighborhood of a limit point of the sequence (φk)k, then the whole sequence
(φk)k converges to a local minimum of D̂(pφ, pφT

).

Proof of Corollary 1 is based on Theorem 28.1 in [12]. Proposition 3 and Corollary
1 describe what we may hope to get of the sequence φk. Convergence of the whole
sequence is bound by a local convexity assumption in a neighborhood of a limit
point. Although simple, this assumption remains difficult to be checked since we
do not know where might be the limit points. Besides, assumption A3 is very
restrictive, and is not verified in mixture models.

Propositions 2 and 3 were developed for the likelihood function in the paper
of [15]. Similar results for a general class of functions replacing D̂ϕ and Dψ

which may not be differentiable (but still continuous) are presented in [5]. In
these results, assumption A3 is essential. Although [6] overcomes this problem,
their approach demands that the log-likelihood has −∞ limit as ‖φ‖ → ∞. This
is simply not verified for mixture models. We present a similar method to [6]
based on the idea of [15] of using the set Φ0 which is valid for mixtures. We lose,
however, the guarantee of consecutive decrease of the sequence.
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Proposition 4. Assume A1, AC and A2 verified. Any limit point of the sequence
(φk)k is a stationary point of φ → D̂(pφ, pφT

). If AC is dropped, then 0 belongs to
the subgradient of φ �→ D̂(pφ, pφT

) calculated at the limit point.

The proof is very similar to the proof of Proposition 2. The key idea is to
use the sequence of conditional densities hi(x|φk) instead of the sequence φk.
According to the application, one may be interested only in Proposition 1 or
in Propositions 2–4. If one is interested in the parameters, Propositions 2 to 4
are needed, since we need a stable limit of (φk)k. If we are only interested in
minimizing an error criterion D̂ϕ(pφ, pφT ) between the estimated distribution
and the true one, Proposition 1 should be sufficient.

3 Case Study: The Two-Component Gaussian Mixture

We suppose that the model (pφ)φ∈Φ is a mixture of two gaussian densities, and
that we are only interested in estimating the means μ = (μ1, μ2) ∈ R

2 and the
proportion λ ∈ [η, 1 − η]. The use of η is to avoid cancellation of any of the two
components, and to keep the hypothesis hi(x|φ) > 0 for x = 1, 2 verified. We
also suppose that the components variances are reduced (σi = 1). The model
takes the form

pλ,μ(x) =
λ√
2π

e− 1
2 (x−μ1)

2
+

1 − λ√
2π

e− 1
2 (x−μ2)

2
.

In the case of ϕ(t) = − log(t)+t−1, the set Φ0 is given by Φ0 = J−1
(
[J(φ0),+∞)

)
.

The log-likelihood function J is clearly of class C1(int(Φ)), where Φ = [η, 1 − η] ×
R

2. The regularization term Dψ is defined by (7) where:

hi(1|φ) =
λe− 1

2 (yi−μ1)
2

λe− 1
2 (yi−μ1)2 + (1 − λ)e− 1

2 (yi−μ2)2
, hi(2|φ) = 1 − hi(1|φ).

Functions hi are clearly of class C1(int(Φ)), hence, assumptions A1 and AC are
verified. We prove that Φ0 is closed and bounded which is sufficient to conclude
its compactness, since the space [η, 1 − η] × R

2 provided with the euclidean
distance is complete.

Closedness is clear since J is continuous and [η, 1−η]×R
2 is complete. Bound-

edness. By contradiction, suppose that Φ0 is unbounded, then there exists a
sequence (φl)l of elements of Φ0 which tends to infinity. Since λl ∈ [η, 1 − η],
then either of μl

1 or μl
2 tends to infinity. Suppose that both μl

1 and μl
2 tend to

infinity, we then have J(φl) → −∞. Any finite initialization φ0 will imply that
J(φ0) > −∞ so that ∀φ ∈ Φ0, J(φ) ≥ J(φ0) > −∞. Suppose that μl

1 → ∞,
and that μl

2 converges2 to μ2. The limit of the likelihood is L(λ,∞, μ2) =
∏n

i=1
(1−λ)√

2π
e− 1

2 (yi−μ2)
2

which is bounded by its value for λ = 0 and μ2 =

2 Normally, μl
2 is bounded; still, we can extract a subsequence which converges.
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1
n

∑n
i=1 yi. Thus, it suffices to choose φ0 such that J(φ0) > J

(
0,∞, 1

n

∑n
i=1 yi

)
.

By symmetry, if φ0 verify:

J(φ0) > max

[

J

(

0,∞,
1
n

n∑

i=1

yi

)

, J

(

1,
1
n

n∑

i=1

yi,∞
)]

, (10)

the set Φ0 becomes bounded. Condition (10) is very natural and means that we
need to start at a likelihood higher than the likelihood of having one component.
Now that Φ0 is compact, part (b) of Proposition 1 is verified and the sequence
(φk)k generated by (9) is well defined and bounded. Moreover, the sequence
(J(φk))k converges. However, Proposition 3 cannot be applied since A3 is not
fulfilled. Take for example μ1 = 0, μ2 = 1, λ = 2

3 , μ′
1 = 1

2 , μ′
2 = 3

2 , λ′ = 1
2 . We get

that Dψ((λ, μ1, μ2), (λ′, μ′
1, μ

′
2)) = 0 although both arguments are different. Still,

Proposition 4 ensures that, since A1, AC and A2 are verified, all limit points
of the sequence (φk)k generated by (9) are stationary points of the likelihood.
But we have no information about the difference between consecutive terms of
the sequence. Note that the case of ψ(t) = ϕ(t) = − log(t) + t − 1, we get the
classical EM, and [15] proved its convergence through Proposition 2.

4 Simulation Study

We summarize the results of 100 experiments on 100-samples by giving the aver-
age of the estimates and the error committed, and the corresponding standard
deviation. The criterion error is the total variation distance which is calculated
using the L1 distance by the Shceffé lemma. We consider the Hellinger divergence
for estimators based on ϕ-divergences which corresponds to ϕ(t) = 1

2 (
√

t − 1)2.
Dψ is calculated with ψ(t) = 1

2 (t − 1)2. The kernel-based MDϕDE is calculated
using the gaussian kernel, and the window is calculated using Silverman’s rule.
Simulations from two mixture models are given below. MLE was calculated using
EM algorithm.

1. A two component gaussian mixture with unknown parameters λ = 0.35, μ1 =
−2, μ2 = 1.5 and known variances equal to 1. Contamination was done by
adding in the original sample to the 5 lowest values random observations
from the uniform distribution U [−5,−2]. We also added to the 5 largest val-
ues random observations from the uniform distribution U [2, 5]. Results are
summarized in Table 1.

2. A two component Weibull mixture with unknown shapes ν1 = 1.2, ν2 = 2 and
a proportion λ = 0.35. The scales are known an equal to σ1 = 0.5, σ2 = 2.
Contamination was done by replacing 10 observations of each sample chosen
randomly by 10 i.i.d. observations drawn from a Weibull distribution with
shape ν = 0.9 and scale σ = 3. Results are summarized in Table 2.

In what concerns our simulation results. The total variation of all three estima-
tion methods is very close when we are under the model. When we added outliers,
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the classical MDϕDE was as sensitive as the maximum likelihood estimator. The
error was doubled. The kernel-based MDϕDE is clearly robust since the total
variation under contamination has slightly increased. Differences in the Weibull
mixture are less apparent. Indeed, this is caused by the fact that symmetric
kernels suffer from a bias on the boundary. Thus, the bias slightly influence our
kernel-based MDϕDE. In more complicated situations, the use of bias-correction
methods or other kernels which are free of the boundary effect is needed. This
is not discussed here for lack of space and is let for future investigations.

Table 1. The mean and the standard deviation of the estimates and the errors com-
mitted in a 100-run experiment of a two-component gaussian mixture. The true set of
parameters is λ = 0.35, μ1 = −2, μ2 = 1.5.

Estimation method λ sd(λ) μ1 sd(μ1) μ2 sd(μ2) TVD sd(TVD)

Without outliers

Classical MDϕDE 0.349 0.049 −1.989 0.207 1.511 0.151 0.061 0.029

New MDϕDE - Silverman 0.349 0.049 −1.987 0.208 1.520 0.155 0.062 0.029

EM (MLE) 0.360 0.054 −1.989 0.204 1.493 0.136 0.064 0.025

With 10 % outliers

Classical MDϕDE 0.357 0.022 −2.629 0.094 1.734 0.111 0.146 0.034

New MDϕDE - Silverman 0.352 0.057 −1.756 0.224 1.358 0.132 0.087 0.033

EM (MLE) 0.342 0.064 −2.617 0.288 1.713 0.172 0.150 0.034

Table 2. The mean and the standard deviation of the estimates and the errors com-
mitted in a 100-run experiment of a two-component Weibull mixture. The true set of
parameter is λ = 0.35, ν1 = 1.2, ν2 = 2.

Estimation method λ sd(λ) ν1 sd(ν1) ν2 sd(ν2) TVD sd(TVD)

Without outliers

Classical MDϕDE 0.356 0.066 1.245 0.228 2.055 0.237 0.052 0.025

New MDϕDE - Silverman 0.387 0.067 1.229 0.241 2.145 0.289 0.058 0.029

EM (MLE) 0.355 0.066 1.245 0.228 2.054 0.237 0.052 0.025

With 10 % outliers

Classical MDϕDE 0.250 0.085 1.089 0.300 1.470 0.335 0.092 0.037

New MDϕDE - Silverman 0.349 0.076 1.122 0.252 1.824 0.324 0.067 0.034

EM (MLE) 0.259 0.095 0.941 0.368 1.565 0.325 0.095 0.035
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Abstract. Our goal is to extend information geometry to situations
where statistical modeling is not obvious. The setting is that of modeling
experimental data. Quite often the data are not of a statistical nature.
Sometimes also the model is not a statistical manifold. An example of
the former is the description of the Bose gas in the grand canonical
ensemble. An example of the latter is the modeling of quantum systems
with density matrices. Conditional expectations in the quantum context
are reviewed. The border problem is discussed: through conditioning the
model point shifts to the border of the differentiable manifold.

1 Introduction

One of the goals of information geometry [1] is the study of the geometry of a
statistical manifold M. A tool suited for this study is the divergence function
D(p||q), called relative entropy in the physics literature. It compares two prob-
ability distributions p and q. It cannot be negative and vanishes if and only if
p = q. In our recent works [2–4] we have stressed the importance of considering
the statistical manifold M as embedded in the set of all probability distributions.
In particular, the divergence function D(p||q), with p not belonging to M, can be
used to characterize exponential families. We also stressed that it is not a strict
necessity that the first argument of the divergence is a probability distribution.
The first example given in this paper is an illustration of this point.

In quantum probability [5,6] both arguments of the divergence function are
replaced by density matrices, which are the quantum analogues of probability
distributions. A renewed interest in quantum probability comes from quantum
information theory (see for instance [6,7]). The theoretical developments are
accompanied by a large number of novel experiments. Some of them are men-
tioned below [8–10]. They confirm the validity of quantum mechanics but chal-
lenge our understanding of nature. The present paper tries to situate some recent
insights in the context of quantum conditional expectations. In particular, weak
measurement theory [11,12] is considered.

2 The Ideal Bose Gas

The result of a thought experiment on the ideal Bose gas is a sequence of non-
negative integers n1, n2, · · · with finite sum

∑∞
j=1 nj < +∞. A model for these

data is a two-parameter family of probability distributions
c© Springer International Publishing Switzerland 2015
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pβ,μ(n) =
1

Z(β, μ)
exp(−β

∑

j

εjnj + βμ
∑

j

nj), (1)

with normalization given by

Z(β, μ) =
∏

j

1
1 − exp(−β(εj − μ))

. (2)

The numbers εj are supposed to be known and to increase fast enough with the
index j to guarantee the convergence of the infinite product. The parameters β
and μ are real. By assumption is β > 0 and μ < εj for all j.

The model space is the statistical manifold M formed by the probability dis-
tributions pβ,μ. However, the data produced by the measurement are strictly
spoken not of a stochastic origin. Indeed, a more detailed modeling of the exper-
iment involves quantum mechanics and quantum measurement theory. The lat-
ter is much debated since the introduction of so-called weak measurements [11].
Hence, we cannot speculate about a possible stochastic origin of the data.

If all we know about the experiment is that it produces the sequence n then
the simplest modeling we can do is to fit (1) to the data with a method which
can be used also outside the conventional settings of statistics. Our proposal is
to do the fitting by minimization of a divergence function.

The Kullback-Leibler divergence between two probability measures can be
easily generalized to a divergence between a sequence of integers n and a point
(β, μ) of the statistical manifold M. Our ansatz is

D(n||β, μ) = lnZ(β, μ) −
∑

j

nj(−βεj + βμ). (3)

Minimizing this divergence produces a best fit for the data. If such a best fit
β, μ exists we say that it is the orthogonal projection of n on M. The reference
to orthogonality is justified by the knowledge that a Pythagorean theorem holds
for the divergence (3) — see [4]. Let us analyze in what follows the properties
of this minimization procedure.

Derivatives of (3) w.r.t. β and μ can be calculated easily. It follows that, if
the minimization procedure has a solution, then it satisfies the pair of equations

∑

j

njεj =
∑

j

εj

exp(β(εj − μ)) − 1
, (4)

∑

j

nj =
∑

j

1
exp(β(εj − μ)) − 1

. (5)

These expressions are well-known in statistical physics, see for instance [13],
Chap. 10.

A metric tensor g(β, μ) is given by the matrix of second derivatives of
D(n||β, μ), evaluated at the minimum. One finds

g(β, μ) =
∑

j

exp(β((εj − μ))
[exp(β(εj − μ)) − 1]2

(
εj − μ)2 −β(εj − μ)
−β(εj − μ) β2

)

. (6)
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It is positive definite and does not depend on the choice of coordinates β, μ of
the statistical manifold M, as it should be.

The next step is the introduction of covariant derivatives ∇a, a = β, μ such
that for all n the Hessian of the divergence D(n||β, μ), evaluated at the pro-
jection point (β, μ) of n on M, equals the Hessian of a potential Φ(β, μ). The
corresponding connection ω satisfies

∇a∂b = ωc
ab∂c. (7)

The existence of this connection ω shows that the Hessian ∇a∇bD(n||β, μ) is
constant on the set of all n which project on the point (β, μ) and equals the
metric tensor g. This gives the inverse of g the meaning of a Fisher information.

A method for calculating ω is given in [4]. It turns out that all coefficients of
ω vanish except ωμ

βμ = 1/β.

3 Quantum Measurements

The quantum analogue of a probability distribution is a density matrix. In the
finite-dimensional case this is a positive-definite matrix whose trace equals 1. Its
eigenvalues λj satisfy λj ≥ 0 and

∑
j λj = 1. Hence they can be interpreted as

probabilities.
On the other hand the state of the quantum system, in the most simple case,

is described by a wave function ψ. This is a normalized element of a Hilbert
space H. Let |ψ〉〈ψ| denote the orthogonal projection onto the subspace Cψ.
This is a density matrix of rank 1. It is generally believed that a measurement
on the quantum system with wave function ψ yields the diagonal part of the
matrix |ψ〉〈ψ| in an orthonormal basis the choice of which is dictated by the
experimental setup. Let (ej)j denote this basis. Then the measured quantities
are the numbers |〈ej |ψ〉|2 (here 〈·|·〉 is the inner product of the Hilbert space).
These are the diagonal elements of the matrix |ψ〉〈ψ|. The diagonal part of this
projection operator is again a density matrix, which we denote diag(|ψ〉〈ψ|). It
is the result of the experiment.

The map

E : |ψ〉〈ψ| → diag(|ψ〉〈ψ|) (8)

can be seen as a conditioning which is introduced by the experimental setup.
Indeed, E is a quantum conditional expectation in the terminology of Petz
(Chap. 9 of [6]). See the Appendix A). Petz gives an overview of quantum prob-
ability theory as it is known today. The part on conditional expectations origi-
nated with the work of Accardi and Cecchini [14] and relies on Tomita-Takesaki
theory.

We are interested in the question how the conditioning interferes with the
modeling of experimental data using a divergence function. The quantum ana-
logue of the Kullback-Leibler divergence (also called the relative entropy) has
density matrices as its arguments. It is given by

D(σ||ρ) = Tr σ ln σ − Tr σ ln ρ. (9)
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Let X denote the set of density matrices σ for which σ ln σ is trace-class. Let
Vσ denote the set of density matrices ρ such that R(σ) ⊂ R(ρ) and σ ln ρ is a
trace-class operator. The domain of D is then

D = {(σ, ρ) : σ ∈ X, ρ ∈ Vσ}. (10)

For the sake of completeness we repeat here the following well-known result
(see Theorem 5.5 of [15])

Theorem 1. D(σ||ρ) ≥ 0, with equality if and only if σ = ρ.

Fix now a model manifold M. It is tradition to work with the quantum analogue
of a Boltzmann-Gibbs distribution, which is a probability distribution belonging
to the exponential family (see for instance [16]). The parametrized density matrix
ρθ ∈ M is of the form

ρθ =
1

Z(θ)
e−θkHk , (11)

with normalization

Z(θ) = Tr e−θkHk . (12)

The operators Hk are self-adjoint. Together they form the Hamiltonian of the
system under consideration. The parameters θ1, θ2, · · · , θn are real numbers.
Note that Einstein’s summation convention is used.

The estimation problem is the question about the optimal choice of the para-
meters θk given the result σ of the experiment. The proposal of information
geometry is to use the divergence function (9) to calculate the orthogonal pro-
jection ρσ of σ onto the model manifold M = {ρθ : θ ∈ Θ}. The projection is
said to be orthogonal because the following Pythagorean relation holds

D(σ||ρθ) = D(σ||ρσ) + D(ρσ||ρθ) (13)

holds for all θ in Θ.
Assume now that an experiment is done in the basis (ψn)n in which the

elements of M are diagonal. Let σc ≡ diag(σ) as before. Then it follows from
Theorem 9.3 of [6] that

D(σ||ρ) = D(σ||σc) + D(σc||ρ) for all ρ ∈ M. (14)

Now fitting the result σc of the experiment with elements of M is equivalent
with fitting the unknown density matrix σ because the difference of the two
divergences is constant, equal to D(σ||σc).

4 Weak Measurements

In many recent experiments the actual state of the system, which is described by
the density matrix σ, is measured in a basis (ψn)n in which σ is far from diag-
onal. Many of these experiments involve so-called quantum entangled particles.
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They confirm [8] that the Bell inequalities, which are derived using probabilistic
arguments (see for instance [17]), can be violated.

Because one knows that the actual state σ is not diagonal one tries to fit a
model which is not diagonal as well. In such a case the above argument based
on (14) cannot be used. Instead, the conditioning implied by the experimental
setup should be included in the modeling of the experiment.

Introduce a conditional manifold

Mc = {ρc : ρ ∈ M and ρ > 0}, where ρc ≡ diag(ρ). (15)

The relation (14) then shows that the optimal ρc, minimizing the divergence
D(σc||ρc), also minimizes D(σ||ρc).

It can happen1 that Mc is in the border region of the manifold of positive-
definite matrices, where the value of the function ρc → D(σ||ρc) can become
very large. This is similar to the effect exploited in weak measurements [11],
namely that the denominator of the so-called weak value can become very small.
See the Appendix B. This suggests that weak measurements can be understood
by the behavior of the divergence function ρc → D(σ||ρc) in the border region.
This idea requires further exploration.

In the more common von Neumann type of experiments the measurement
disturbs the quantum system in such a strong manner that the conditioning of
the experimental setup also changes the state of the quantum system. Repeating
the experiment then reproduces the same outcome as that of the first measure-
ment. This is called the collapse of the wave function. If the outcome ρc of the
experiment is very sensitive to small changes in the state σ of the quantum sys-
tem then one can afford to make the interaction between quantum system and
measurement apparatus so weak that repeated measurements become feasible.
In recent experiments [10] thousands of consecutive measurements were feasi-
ble. They reveal a gradual change of the quantum state σ of the system as a
consequence of the measurements.

5 Summary

Two situations are described where a divergence function is used with arguments
which are not probability distributions. In the example of the ideal Bose gas the
experimental data are sequences n = (nj)j of non-negative integers. It is more
natural to take the sequence n as the first argument of the divergence function
rather than to introduce an empirical measure concentrating on the data points.
In the example of quantum mechanics the arguments are density matrices. The
use of density matrices as the arguments of the divergence has been studied
extensively in the context of quantum probability.

In the final part of the paper we investigate the use of divergences in the
theory of quantum measurements. Our point of view is that any quantum mea-
surement necessarily induces a quantum condition on the range of experimental
1 If Mc is empty there is not much to tell.
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outcomes. The mathematical notion of a quantum conditional expectation is
used — see the Appendix A. The recent development of weak quantum mea-
surements is cast into this terminology. The distinction is made between the
conditioning of the experimental outcomes, which is unavoidable, and the con-
ditioning of the actual state of the system, which is avoided by the weak mea-
surements. The eventual importance of the border of the manifold of positive
definite density matrices is pointed out.

A Quantum Conditional Expectations

Following Petz (see Chap. 9 of [6]) a conditional expectation consists of a
subalgebra A of the algebra B of bounded linear operators in the Hilbert space
H together with a linear map E : B → A. They should satisfy

– I belongs to A and E(I) = I.
– If A ∈ A then also A† ∈ A.
– If B is positive then also E(B) is positive.
– E(AB) = AE(B) for all A ∈ A and B ∈ B.

Take B = I in the latter to find that E(A) = A for all A in A.
In the terminology of [6] a density matrix ρ is preserved by the conditional

expectation A, E if

Tr ρB = Tr ρE(B) (16)

holds for all b in B.
Now, let be given an orthonormal basis (ψn)n of H. Then any bounded oper-

ator B has matrix elements (〈ψm|Bψn〉)m,n. The diagonal part of the operator
B is then defined by linear extension of

diag(B)ψn = 〈ψn|Bψn〉ψn. (17)

The map B → diag(B), together with the algebra of all diagonal operators is a
conditional expectation. In addition, for any density matrix ρ the diagonal part
ρc ≡ diag(ρ) is again a density matrix and it is preserved by this conditional
expectation. Indeed, one has for all ρ and B

Tr ρcB = Tr ρcdiag(B). (18)

B Weak Measurement Theory

In the seminal paper [11] about weak measurements an experimental setup is
proposed. The quantum system contains two parts. The first part is the system
of interest. It is weakly coupled to the second part. On the latter von Neumann
type measurements are performed to collect data. The subsequent experimental
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implementations follow the same scheme. See for instance [9,10]. In the present
paper only the first part of the experimental setup is considered as the quantum
system. The remainder is then considered to be part of the measuring apparatus.

Ref. [12] discusses the notions of pre and post selected states. The density
matrix σ = |ψ〉 〈ψ| of the present paper describes the preselected state. It is the
initial state of the experiment transported forward in time using the Schrödinger
equation. In a von Neumann type of measurement the post selected state is
the state |ψf 〉 〈ψf | obtained after the collapse of the wave function, transported
backwards in time to the point where it meets the preselected state. The claim of
[12] is that the result of the measurement is a so-called weak value of an operator
C, which is the operator of the quantum system to which the measurement
apparatus couples. This weak value is given by

〈C〉 =
〈ψf |Cψ〉
〈ψf |ψ〉 . (19)

It can become arbitrary large by setting up the experiment in such a way that
the overlap |〈ψf |ψ〉|2 of the pre and post selected states is very small. This theory
of weak measurements has been criticized in the literature (see the references in
[12]). Additional experiments are needed for its validation.

In the terminology of the present paper the coupling via the operator C
induces a conditioning on the outcomes of the experiment.
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Abstract. Familiar approaches to risk and preferences involve mini-
mizing the expectation EIP(X) of a payoff function X over a family Γ
of plausible risk factor distributions IP. We consider Γ determined by a
bound on a convex integral functional of the density of IP, thus Γ may
be an I-divergence (relative entropy) ball or some other f -divergence
ball or Bregman distance ball around a default distribution IP0. Using a
Pythagorean identity we show that whether or not a worst case distribu-
tion exists (minimizing EIP(X) subject to IP ∈ Γ ), the almost worst case
distributions cluster around an explicitly specified, perhaps incomplete
distribution. When Γ is an f -divergence ball, a worst case distribution
either exists for any radius, or it does/does not exist for radius less/larger
than a critical value. It remains open how far the latter result extends
beyond f -divergence balls.
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1 Preliminaries

Let Ω be any set equipped with a (finite or σ-finite) measure μ on a σ-algebra
not mentioned in the sequel. The notation IP will always mean a distribution
(probability measure) IP � μ, with density p = dIP/dμ, but p will also denote
any nonnegative (measurable) function on Ω. Equality of functions on Ω is meant
in the μ-almost everywhere (μ-a.e.) sense.

Let B denote the family of functions β(ω, s) on Ω × IR, measurable in ω for
each s ∈ IR, strictly convex and differentiable in s on (0,+∞) for each ω ∈ Ω,
and satisfying

β(ω, 0) = lim
s↓0

β(ω, s), β(ω, s) := +∞ if s < 0. (1)
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Note that the functions β ∈ B are (convex) normal integrands, which takes care
of measurability questions not entered below, see [13].

For β ∈ B define the integral functional

H(p) = Hβ(p) :=
∫

Ω

β(ω, p(ω))μ(dω). (2)

Assume that for a default distribution IP0 with density p0

H(p) ≥ H(p0) = 0 whenever
∫

pdμ = 1. (3)

Fix a measurable function X such that

EIP0(X) =
∫

Ω

X(ω)p0(ω)μ(dω) =: b0 exists, m < b0 < M, (4)

where m and M denote the μ-ess inf and μ-ess sup of X.
We are interested in minimizing EIP(X) subject to IP ∈ Γ when

Γ = {IP : H(p) ≤ k}. (5)

Thus, we address the problem

V (k) := inf
p:
∫

pdμ=1,H(p)≤k

∫

Xpdμ. (6)

In mathematical finance, X is a payoff function depending on a collection ω ∈
Ω of random risk factors. The risk factor distribution is unknown but assumed
to belong to a known family Γ of plausible distributions. Then infIP∈Γ EIP(X)
measures (the negative of) the risk of a financial position with payoff function
X. The same expression arises also in the theory of ambiguity averse preferences.
For details, including axiomatic considerations, we refer to Föllmer and Schied
[8], Hansen and Sargent [11], or Gilboa [9].

It is natural to consider those distributions IP plausible that do not deviate
much from the default distribution IP0. This still admits many choices for Γ ,
according to what measure of deviation is used. The setting (5), introduced in
Breuer and Csiszár [4], appears to cover most choices of interest.

Example 1. Take μ = IP0, thus p0 ≡ 1, and let β(ω, s) = f(s) be an autonomous
convex integrand, with f(1) = 0 to ensure (3). Then H(p) in (2) for p = dIP

dμ

is the f-divergence Df (IP || IP0), introduced in Csiszár [5], and (5) gives the f -
divergence ball {IP : Df (IP || IP0) ≤ k}.

Example 2. Let f be any strictly convex and differentiable function on (0,+∞),
and for s ≥ 0 let β(ω, s) = Δf (s, p0(ω)). Here

Δf (s, t) := f(s) − f(t) − f ′(t)(s − t), (7)
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where f(0) and f ′(0) are defined as limits, and if f(0) = +∞, we set Δf (s, 0) := 0
for s = 0 and Δf (s, 0) := ∞ otherwise.

In this example IP0 � μ is arbitrary, except that in case f ′(0) = −∞ we
assume that p0 > 0 μ-a.e.. Then H(p) equals the Bregman distance [3]

Bf,μ(p, p0) :=
∫

Ω

Δf (p(ω), p0(ω))μ(dω), (8)

and (5) gives the Bregman ball of radius k around IP0.

In the special case f(s) = s log s both examples give as H(p) for p = dIP/dμ the
I-divergence (relative entropy) D(IP || IP0) :=

∫
p log p

p0
dμ.

In the context of risk and preferences, I-divergence balls were used perhaps
first by Hansen and Sargent [10]. Ahmadi-Javid [1] showed the corresponding
risk measure, which he called entropic value at risk, preferable to others from the
point of view of computability, and Strzalecki [14] distinguished it axiomatically.
General f -divergences are used in Maccheroni et al.[12] and Ben-Tal and Teboulle
[2], see also references in [2]. Bregman distances could be used similarly but to
this we do not have references.

2 Basic Facts

Define the function
F (b) := inf

p:
∫

pdμ=1,
∫

Xpdμ=b
H(p). (9)

It is convex, with minimum 0 attained at b = b0, see (3) and (4).
We adopt as standing assumption, in addition to (3) and (4), that

kmax := lim
b↓m

F (b) > 0. (10)

The problem (6) is nontrivial only if (10) holds and k ∈ (0, kmax). Note that
kmax = +∞ if m = −∞ (subject to (10)), and kmax ≤ F (m) if m is finite (strict
inequality is possible). See also Remark 1 later in this Section.

Lemma 1. [4, Proposition 3.1] To each k ∈ (0, kmax) there exists a unique
b ∈ (m, b0) with F (b) = k, and then V (k) = b. A density p attains the minimum
in (6) if and only if it attains that in (9) (for the above b) (Fig. 1).

Lemma 1 relates problem (6) to the problem extensively studied in infor-
mation geometry of minimizing a convex integral functional under moment con-
straints, specifically with moment mapping φ(ω) := (1,X(ω)). We will rely upon
results in Csiszár and Matúš [7] specified for this moment mapping. For proofs
omitted below, see the full version of this paper [6].
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Fig. 1. Lemma 1 relates the solution of the risk problem (6) to the solution of the
information geometry problem (9): F (V (k)) = k.

For φ(ω) above, the value function in [7] is the convex function

J(a, b) := inf
p:
∫

pdμ=a,
∫

Xpdμ=b
H(p), (11)

thus F (b) = J(1, b).
A crucial fact is the instance of [7, Theorem 1.1] that the convex conjugate

J∗(θ1, θ2) := supa,b[θ1a + θ2b − J(a, b)] of J in (11) equals

K(θ1, θ2) :=
∫

β∗(ω, θ1 + θ2X(ω))μ(dω), (12)

β∗(ω, r) := sup
s∈IR

(sr − β(ω, s)) . (13)

Since J may differ from J∗∗ = K∗ only on the boundary of its effective
domain, it follows that at least for b /∈ {m,M}

F (b) = J(1, b) = K∗(1, b) = sup
θ1,θ2

[θ1 + θ2b − K(θ1, θ2)], (14)

or equivalently

F (b) = G∗(b) where G(θ2) := inf
θ1

[K(θ1, θ2) − θ1]. (15)

The following family of non-negative functions on Ω plays a key role like
exponential families do for I-divergence minimization:

pθ1,θ2(ω) := (β∗)′(ω, θ1 + θ2X(ω)), (θ1, θ2) ∈ Θ; (16)

Θ := {(θ1, θ2) ∈ dom K : θ1 + θ2X(ω) < β′(ω,+∞) μ-a.e.}. (17)
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The derivatives of β and β∗ are by the second variable. Note that β∗(ω, r) equals
+∞ if r > β′(ω,+∞), while it is finite and differentiable if r < β′(ω,+∞). Its
derivative (for fixed ω) equals 0 if r ≤ β′(ω, 0) and is positive, growing to +∞
for r ∈ (β′(ω, 0), (β′(ω,+∞)).

The projection to the θ2-axis of the set Θ in (17) coincides with that of
dom K := {(θ1, θ2) : K(θ1, θ2) < +∞}. This projection is an interval, it will be
denoted by Θ2, and its left endpoint by θmin (which may be −∞).

Remark 1. As shown in [4], the interval Θ2 contains the origin, and the default
density p0 belongs to the family (16) with θ2 = 0. Moreover, the standing
assumption kmax > 0 is equivalent to θmin < 0. This implies, in turn, that
F (b) > 0 for each b < b0.

The following lemma gives relevant information about evaluating the function
G in (15). In turn, from G one can calculate the desired V (k) in (6), as the next
Theorem shows. Clearly, dom G := {θ2 : G(θ2) < +∞} = Θ2.

Lemma 2. To each θ2 ∈ Θ2 there exists a unique θ1 = θ1(θ2) with K(θ1, θ2) −
θ1 = G(θ2). Either θ̃1 := sup{θ1 : (θ1, θ2) ∈ dom K} is finite and satisfies
(θ̃1, θ2) ∈ Θ,

∫
pθ̃1,θ2

dμ < 1, then θ1(θ2) = θ̃1, or else a unique θ1 satisfies
(θ1, θ2) ∈ Θ,

∫
pθ1,θ2dμ = 1, then θ1(θ2) equals this θ1.

Fig. 2. Among straight lines passing through (0, −k) and some point (θ2, G(θ2)) with
θ2 < 0, the supporting line to the graph of G has maximum slope (k + G(θ2))/θ2. By
Theorem 1, the infimum V (k) in (6) is equal to the slope of this supporting line.

Theorem 1. For k ∈ (0, kmax)

V (k) = max
θ2<0

k + G(θ2)
θ2

. (18)

A maximizer in (18) is equivalently a maximizer of θ2b−G(θ2) where b = V (k),
and (θ1, θ2) with θ1 = θ1(θ2) as in Lemma 2 is a maximizer in (14) (Fig. 2).
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An identity equivalent to (18) appears, for autonomous integrands and
bounded payoff functions, in Ahmadi-Javid [1, Theorem 5.1].

3 Main Results

For the problem (6), call a density p an (ε-γ)-Almost-Worst-Case-Density
(AWCD), where ε ≥ 0, γ ≥ 0, if

H(p) ≤ k + γ and
∫

Xpdμ ≤ V (k) + ε. (19)

A worst case density (WCD) attaining the minimum in (6) is a (0-0)-AWCD.
Theorem 2 below establishes a clustering property of the (ε-γ)-AWCDs. From

a practical point of view, this may be relevant for efficient hedging against the
almost worst scenarios, but this issue is not entered here.

An extension of the concept of Bregman distance is needed. For any β ∈ B
define Δβ(ω,·)(s, t) as in Example 2, with β(ω, ·) : s �→ β(ω, s) in the role of f .

Then, denoting Δβ(ω,·)(p(ω), q(ω)) briefly by Δβ(p, q), define

B(p, q) = Bβ(p, q) :=
∫

Δβ(p, q)dμ. (20)

For θ2 ∈ Θ2 and θ1(θ2) in Lemma 2, denote

qθ2 := pθ1,θ2 , θ1 = θ1(θ2). (21)

It is a density unless in Lemma 2 the first contingency takes place.

Theorem 2. For k ∈ (0, kmax), each (ε-γ)-AWCD p belongs to the Bregman
neighborhood of radius (γ−θ2ε) of qθ2 in (21) with θ2 < 0 attaining the maximum
in (18), i.e.,

B(p, qθ2) ≤ γ − θ2ε if p is an (ε-γ)-AWCD. (22)

Corollary 1. Each sequence {pn} of (εn-γn)-AWCDs with εn → 0, γn → 0
converges to qθ2 locally in measure.1 In particular, qV2 is uniquely determined.

Proof. By [7, Lemma 4.15], combined with [7, Remark 4.13], we have for each
density p with

∫
Xpdμ finite, and each (θ1, θ2) ∈ Θ,

H(p) = θ1 + θ2

∫

Xpdμ − K(θ1, θ2) + B(p, pθ1,θ2)

+
∫

|β′(ω, 0) − θ1 − θ2X(ω)|+p(ω)μ(dω). (23)

1 This means that μ({ω ∈ C : |pn(ω) − qθ2(ω)| > ε}) → 0 for each C ⊂ Ω with μ(C)
finite, and any ε > 0. If μ is a finite measure, this is equivalent to standard (global)
convergence in measure.
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For θ2 in Theorem 2 and θ1 = θ1(θ2), here pθ1,θ2 = qθ2 and K(θ1, θ2) − θ1 =
G(θ2) = θ2V (k) − k. see Theorem 1. Substituting this into (23) gives

H(p) = k + θ2

(∫

Xpdμ − V (k)
)

+ B(p, qV2)

+
∫

|β′(ω, 0) − θ1 − θ2X(ω)|+p(ω)μ(dω). (24)

Clearly, (24) and (19) imply (22).
The Corollary follows since B(pn, qθ2) → 0 implies convergence of pn to qV2

locally in measure [7, Corollary 2.14].

The function qθ2 = pθ1,θ2 in Theorem 2, uniquely determined by k according
to Corollary 1, will be denoted below by q̂k.

Remark 2. Corollary 1 extends the known result that q̂k is a generalized solu-
tion of problem (9) in the sense [7] that densities pn with

∫
Xpndμ = b =

V (k), H(pn) → F (b) = k converge to q̂k locally in measure, and also establishes
its (new) counterpart for problem (6). The above proof uses the idea of [7],
the key identity (24) is an extension of the generalized Pyhagorean identity [7,
Lemma 4.16] (in case of the currently addressed moment mapping φ) to densities
p that need not satisfy

∫
Xpdμ = b.

By Theorem 2, if p is a WCD then p = qθ2 = q̂k. Hence, necessary conditions
of existence of a WCD are

∫
pθ1,θ2dμ = 1 and

∫
Xpθ1,θ2dμ = V (k) for (θ1, θ2)

with pθ1,θ2 = q̂k. Of course, if these conditions hold for some (θ1, θ2) ∈ Θ then
pθ1,θ2 is a WCD. The mentioned conditions can be seen to hold for q̂k = pθ1,θ2 if
(θ1, θ2) ∈ int dom K, but if (θ1, θ2) is on the boundary of domK then q̂k = pθ1,θ2

is typically not a WCD.

Theorem 3. (i) If q̂k is a density then it is also a WCD for k, except when
θmin and G′(θmin) are finite and

k > kcr := −G(θmin) + θminG
′(θmin). (25)

In the latter case q̂k = q̂kcr and no WCD exists for k.
(ii) A sufficient condition for q̂k to be a density for each k ∈ (0, kmax) is the

finiteness of K(θ1, 0) =
∫

β∗(ω, θ1)μ(dω) for each θ1 ∈ IR.

The condition in (ii) holds, e.g., when H(p) is an f -divergence, see Example 1,
with cofinite f , i.e., f ′(+∞) = +∞. Hence, for f -divergences with cofinite f , a
WCD either exists for each k ∈ (0, kmax) or it exists/does not exist for k not
exceeding/exceeding a critical value. In the case of I-divergence (f(s) = s log s)
this phenomenon has been pointed out in [4].

Our final theorem establishes a similar phenomenon for non-cofinite f (but
then q̂k may fail to be a density, and may depend on k also above the critical
value). It remains open how far this phenomenon extends beyond f -divergences,
but see Example 4 below.
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For β(ω, s) = f(s) with non-cofinite f , the standing assumption kmax >
0 (equivalent to θmin < 0) holds if and only if m > −∞. With no loss of
generality, assume that m = 0. Then K(θ1, θ2) =

∫
f∗(θ1 + θ2X)dμ for θ2 < 0

is finite/infinite if θ1 is less/larger than f ′(+∞), thus θ̃1 in Lemma 2 is equal to
f ′(+∞). Hence, see (21), qθ2 = pθ1,θ2 is a density if and only if

g(θ2) :=
∫

(f∗)′(c + θ2X)dμ ≥ 1, c := f ′(+∞), (26)

and Lemma 2 also gives that

qθ2 = pc,θ2 = (f∗)′(c + θ2X) if g(θ2) ≤ 1. (27)

Theorem 4. When H(p) is an f-divergence with f ′(+∞) = c < +∞, and
m = 0, the WCD exists for all k ∈ (0, kmax) if g(θ2) = +∞ for each θ2 < 0.
Otherwise, denote

θ̃min := inf{θ2 : g(θ2) ≥ 1}, (28)

k̃cr := θ̃minG
′
+(θ̃min) − G(θ̃min). (29)

Then θ̃min ∈ (−∞, 0), k̃cr ∈ (0, kmax), and for k < k̃cr the WCD exists. For
k ≥ k̃cr the function q̂k is of form (27), and it is not a density if k > k̃cr,

Example 3. In the setting of Example 1 with μ = IP0, take f(s) = − log s. Then
H(p) = D(IP0 || IP) for p = dIP/dIP0.

Take specifically Ω = (0, 1), X(ω) = ω, and let μ = IP0 be the distribution
with Lebesgue density 2ω. As f∗(r) = −1 − log(−r) (r < 0), then K(θ1, θ2) =
∫ 1

0
[−1 − log(−θ1 − θ2ω)] 2ωdω and pθ1,θ2(ω) = 1/(−θ1 − θ2ω) for (θ1, θ2) ∈ Θ =

dom K = {(θ1, θ2) : θ1 ≤ 0, θ1+θ2 < 0}. Simple calculus shows that in Lemma 2
the second contingency holds if −2 ≤ θ2 < 0, hence in that case qθ2 = pθ1,θ2 with
θ1 = θ1(θ2) is a density, but this and G(θ2) can not be given explicitly. For θ2 <
−2, in Lemma 2 the first contingency holds, thus θ1(θ2) = 0, qθ2(ω) = (−θ2ω)−1,
and G(θ2) = − 1

2 − log(−θ2). One sees that H(qθ2) ranges from 0 to log 2−1/2 as
θ2 ranges from 0 to −2. Hence the function qθ2(ω) = q̂k(ω) in Theorem 2 equals
the WCD if 0 < k ≤ log 2 − 1/2, while if k ≥ log 2 − 1/2 = k̃cr then qθ2 equals
(−θ2ω)−1, with θ2 ≤ −2 attaining V (k) = maxθ2<0[k+G(θ2)]/θ2. Calculus gives
that this maximum is attained by θ2 = −ek+1/2 and equals V (k) = e−(k+1/2),
and one sees that q̂k(ω) = e−(k+1/2)ω−1 is not a density unless k = log 2 − 1/2.

Example 4. Let Ω, X, μ be as in Example 3, but this time let the default
distribution IP0 be the uniform distribution whose μ-density is p0(ω) = 1

2ω . Take
H(p) = Bf,μ(p, p0), see (8), with f(s) = − log s, i.e., the integral functional (2)
with β(ω, s) = Δf (s, p0(ω)) = − log s − log(2ω) + 2ω(s − 1

2ω ). Then β∗(ω, r) =
log 2ω − log(−r + 2ω), (β∗)′(ω, r) = 1/(−r + 2ω), r < 2ω. The set Θ (equal to
dom K) of this example consists of those (θ1, θ2) for which (θ1, θ2 − θ1) belongs
to the set Θ = dom K of Example 3. Moreover, for such (θ1, θ2) the function
pθ1,θ2(ω) = 1/[−θ1−(θ2−2)ω] coincides with the function pθ1,θ2−2 of Example 3,
which can not be a density if θ2 < 0. Hence, in the present Example no WCD
exists for any k > 0.
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Abstract. We introduce what we will call multivariate divergences
between K, K ≥ 1, signed finite measures (Q1, . . . , QK) and a given
reference probability measure P on a σ-field (X , B), extending the well
known divergences between two measures, a signed finite measure Q1

and a given probability distribution P . We investigate the Fenchel dual-
ity theory for the introduced multivariate divergences viewed as convex
functionals on well chosen topological vector spaces of signed finite mea-
sures. We obtain new dual representations of these criteria, which we
will use to define new family of estimates and test statistics with mul-
tiple samples under multiple semiparametric density ratio models. This
family contains the estimate and test statistic obtained through empirical
likelihood. Moreover, the present approach allows obtaining the asymp-
totic properties of the estimates and test statistics both under the model
and under misspecification. This leads to accurate approximations of the
power function for any used criterion, including the empirical likelihood
one, which is of its own interest. Moreover, the proposed multivariate
divergences can be used, in the context of multiple samples in density
ratio models, to define new criteria for model selection and multi-group
classification.

1 Introduction, Notation and Motivation

On a measurable space (X ,B), let P be a given reference probability measure
(p.m.). Denote by M the real vector space of all signed finite measures (s.f.m.)
on (X ,B). Let

ψ(·) : x := (x1, . . . , xK)� ∈ R
K �→ ψ(x) ∈ [0,+∞] (1)

be a nonnegative closed (equivalently lower semi-continuous) convex function on
R

K , satisfying ψ(1K) = 0, where 1K := (1, . . . , 1)� ∈ R
K , and such that (s.t.)

1K is an interior point of its domain domψ :=
{
x ∈ R

K s.t. |ψ(x)| < ∞}
. We

define the ψ-divergence between K-signed finite measures Q := (Q1, . . . , QK)
and a given p.m. P through

Dψ(Q;P ) :=
∫

X
ψ

(
dQ1

dP
(x), . . . ,

dQK

dP
(x)

)

dP (x), (2)

c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 444–453, 2015.
DOI: 10.1007/978-3-319-25040-3 48
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if Q1, . . . , QK are absolutely continuous (a.c.) with respect to (w.r.t.) P ; If there
exists Qk which is not a.c.w.r.t. P , we set Dψ(Q;P ) = +∞. In the above integral,
dQk

dP (·) is the Radon-Nikodym derivative of Qk w.r.t. P . Obviously, if K = 1, we
obtain the classical definition of ϕ-divergences between two measures (a signed
finite measure Q1 and a probability measure P ). It is clear that any ψ-divergence
is nonnegative, and that the functional Q ∈ MK �→ Dψ(Q;P ) is convex on the
product vector space MK , for any given p.m. P . Moreover, if the function ψ(·)
is strictly convex on a neighborhood of the vector 1K , then we can prove that

Dψ(Q;P ) = 0 if and only if Q1 = · · · = QK = P. (3)

In this paper, we investigate statistical inference for multiple density ratio models
(DRM) of [1]. Suppose we have 1 + K random samples

(X0,1, . . . , X0,n0) , (X1,1, . . . , X1,n1) , . . . , (XK,1, . . . , XK,nK
), (4)

of 1 + K random variables (with values in R
m,m ≥ 1) X0,X1, . . . , XK , with

distributions P,Q1, . . . , QK , respectively. The DRM postulates that

log
(

dQk

dP
(x)

)

= θ�
k hk(x), for all k = 1, . . . , K, (5)

for some known vector valued function hk(x) := (hk,0(x), hk,1(x), . . . , hk,dk
(x))�,

x ∈ R
m, with values in R

1+dK , and corresponding unknown vector-valued para-
meters θk := (αk,β�

k )� ∈ Θk ⊂ R
1+dk . We require, for all k = 1, . . . , K, the

identifiability of the parameter θk, in the sense that

if θ�
k hk(x) = θ′

k
�

hk(x) ∀x − P -a.s., then θk = θ′
k. (6)

We will denote then by θT :=
(
θ1T

�, . . . ,θKT
�

)�
the true value of the para-

meter θ :=
(
θ1

�, . . . ,θK
�

)�
. We require also the first component of hk(·),

for each k, to be the constant one, i.e., hk,0(·) := 1Rm(·), the indicator func-
tion of Rm. This makes the corresponding first real true value αkT , of the vec-
tor θkT := (αkT ,βkT

�)�, a normalization parameter, for all k = 1 . . . , K. In
particular, we have αkT = 0, whenever βkT = 0. We will assume that, for all
k = 1, . . . , K, the interior int(Θk) of the parameter space Θk in R

1+dk is not void.
The function hk(·) in (5) may depend on k, with possibly different dimensions
d1, . . . , dK . Observe also that, for the DRM, the distribution P is unspecified.
Only the density ratios are specified through the vector valued functions hk(·).
The components of hk(·), for each k, may be chosen, for instance, to be the
first 1 + dk elements of some basis functions. For notational convenience, we
will denote qk(θk, x) := exp

{
θ�

k hk(x)
}

,∀x ∈ R
m,∀θk ∈ Θk,∀k = 1, . . . , K.

The DRM writes then dQk

dP (x) = qk(θk, x), x ∈ R
m,θk := (αk,β�

K)� ∈ Θk ⊂
R

1+dk , k = 1, . . . , K. Consider the test problem of the null hypothesis

H0 : Q1 = · · · = QK = P against the alternative H1 : ∃Qk 
= P, (7)
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which is equivalent, in the context of the DRM, to testing H0 : θ1T = · · · =
θKT = 0 against the alternative H1 : ∃θkT 
= 0. In view of the basic property
(3), in order to build a statistical test of the above hypotheses, we can use an
estimate of Dψ(Q;P ), and decide to reject the null hypothesis H0 when the
obtained estimate takes large value. The plug-in estimate of Dψ(Q;P ) writes
D̃ψ(Q;P ) := Dψ(Q̂1, . . . , Q̂K ; P̂ ), obtained from the definition (2) of the ψ-
divergence by replacing the distribution P,Q1, . . . , QK by their corresponding
empirical measures

P̂ :=
1
n0

X0,i∑

i=1

δX0,i
, Q̂1 :=

1
n1

n1∑

i=1

δX1,i
, . . . , Q̂K :=

1
nK

nK∑

i=1

δXK,i
, (8)

associated to the K samples (4). Unfortunately, the above estimate is not gener-
ally well defined, since, the absolute continuity condition is not satisfied (even for
large sample sizes, if the distributions are continuous, or discrete with unbounded
support). Moreover, the plug-in estimate does not use the semiparametric form
of the DRM. In the following section, we will give a new dual representation
for the ψ-divergences, extending to multivariate case the dual representations
obtained in [2,6], and we will show how to use the obtained dual representa-
tion to give well defined estimates using the form of the DRM, in the present
multiple sample context. We will use the Fenchel duality theory for the convex
functionals Q �→ Dψ(Q;P ) on well chosen product topological vector space of
signed measures to be specified in the following sections. For more details and
proofs, we refer to [7].

2 Fenchel Duality of Convex Functions on Finite
Dimensional Vector Spaces

We can refer to [11] for the proof of the following duality theorem on R
k.

Theorem 1. Let g(·) : x ∈ R
K �→ g(x) ∈] − ∞,+∞] be a proper convex func-

tion. Denote by g∗(·) its convex conjugate, called also Fenchel-Legendre trans-
form, defined by g∗(·) : t ∈ R

K �→ g∗(t) := supx∈RK {〈t,x〉 − g(x)} ∈]−∞,+∞],
where 〈t,x〉 := t�x :=

∑K
i=1 tixi is the inner product on R

K . Consider the
convex conjugate of the proper convex function g∗(·), i.e., the function g∗∗(·) :
x ∈ R

K �→ g∗∗(x) := supt∈RK {〈t,x〉 − g∗(t)} ∈] − ∞,+∞]. If g(·) is lower
semi-continuous (l.s.c.), then we have for all x ∈ R

K , g(x) = g∗∗(x), namely,
g(x) = supt∈RK {〈t,x〉 − g∗(t)} , for all x ∈ R

K .

The above theorem means that any proper convex function on R
K , if it is

l.s.c. (or equivalently closed), can be represented as the convex conjugate of
its convex conjugate. By applying the above theorem, we obtain for the func-
tion ψ(·) : ψ(x) = supt∈RK {〈x, t〉 − ψ∗(t)} , for all x ∈ R

K , where ∀t :=
(t1, . . . , tK)� ∈ R

K , ψ∗(t) := supx∈RK {〈t,x〉 − ψ(x)} . We give in the follow-
ing lines, some properties of the convex conjugate ψ∗(·) of ψ(·). For the proofs,
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we can extend, to the multivariate case, the arguments in Sect. 26 of [12]. One
can show that ψ∗(·), in turn, is convex, closed, and proper, since ψ∗(t) > −∞,
for all t ∈ R

K , and ψ∗(0) = 0. It takes its values in ] − ∞,+∞]. Moreover,
the strict convexity of ψ(·) on its domain domψ is equivalent to the condi-
tion that ψ∗(·) is “essentially smooth”, i.e., differentiable on int(domψ∗) and,
if the boundary point set of domψ∗ is not void, the directional derivatives
satisfy, for all boundary point b of domψ∗ , limy→b,y∈domψ∗ ψ∗′(y;x − y) :=
limy→b,y∈domψ∗ limλ↓0

ψ∗(y+λ(x−y))−ψ∗(y)
λ = +∞, ∀x ∈ domψ∗ . In the above

display, ψ∗′(y;x−y) denotes the derivative of ψ∗(·) at the point y in the direction
x−y, which always exists (may be infinite) since ψ∗(·) is convex. Conversely, ψ(·)
is essentially smooth if and only if ψ∗(·) is strictly convex on its domain domψ∗ .
Assume that ψ is differentiable on int(domψ), and denote by ψ′

xk
(·) the partial

derivative ∂ψ
∂xk

(·), for all k = 1, . . . , K. Then, we can give the explicit expression of
ψ∗(t) for all t ∈ {(

ψ′
x1

(x), . . . , ψ′
xK

(x)
) ∈ R

K s.t. x ∈ int (domψ)
}
. Indeed, one

can show that, ∀x ∈ int (domψ), ψ∗ (
ψ′

x1
(x), . . . , ψ′

xK
(x)

)
=

∑K
k=1 xkψ′

xk
(x) −

ψ(x).

3 Fenchel Duality of Convex Functionals on Infinite
Dimensional Vector Spaces

We refer to [4], for the proof of the following duality theorem, for convex func-
tionals on more general vector spaces, with possibly infinite dimension.

Theorem 2. Let S be a locally convex Hausdorff topological vector space, and
g(·) : S �→] − ∞,+∞] be a proper convex function. Denote by g∗(·) the con-
vex conjugate of g(·), i.e., the proper convex function on S∗ (the topological
dual of S) with values in ] − ∞,+∞], defined by g∗(·) : � ∈ S∗ �→ g∗(�) :=
supx∈S {�(x) − g(x)} . If g(·) is l.s.c. on S, then we have the following dual rep-
resentation for g(·) : g(x) = sup�∈S∗ {�(x) − g∗(�)} ,∀x ∈ S.

We will apply the above theorem in order to obtain dual representations for ψ-
divergences. We will look at ψ-divergences as convex functionals Q �→ Dψ(Q;P )
on the product vector space of K well chosen vector spaces of signed finite
measures. Here, P is a fixed reference probability measure. The question is how
to chose the vector spaces S (of signed finite measures) and the topology, on
which the ψ-divergence functionals satisfy all conditions of the above duality
theorem? At the same time, we need to determine the corresponding topological
dual, in order to get sufficiently explicit representations. We give answers to these
questions in the following. Let F := F1 ×· · ·×FK be a collection of measurable
functions defined on X with values in R

K . We will denote by f1, . . . , fK the
K components of any function f ∈ F . The spaces X and R

K are endowed,
respectively, by the σ-field B and the Borel σ-field B(RK), induced by the usual
topology of RK . We assume that all elements f := (f1, . . . , fK)� of F satisfy
the condition

∫

X
|fk(x)| dP (x) < ∞,∀fk ∈ Fk,∀k = 1, . . . , K. (9)
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Denote by Fb the real vector space of all bounded measurable functions
on X with values in R

K . Define the real (product) vector space
MF :=

{
Q ∈ MK :

∫
X |fk(x)| d|Qk(x)| < +∞,∀k = 1, . . . , K,∀f ∈ F}

, and
denote by 〈F ∪ Fb〉 the real vector space induced by the collection F ∪ Fb.
Note that the space MF is not void, since it contains the “K-dimension” mea-
sure vector (P, . . . , P ), by assumption (9). We equip MF with the τF -topology,
the weakest one that makes any mapping Q ∈ MF �→ ∑K

k=1

∫
X fk(x) dQk(x)

continuous, for all f := (f1, . . . , fK)� ∈ 〈F ∪ Fb〉. Then, we have

Proposition 1. (1) The real vector space MF , equipped with the τF -topology,
is locally convex Hausdorff topological vector space; and the topological dual
of MF is given by

M∗
F =

{

Q ∈ MF �→
K∑

k=1

∫

X
fk(x) dQk(x); f ∈ 〈F ∪ Fb〉

}

;

(2) The proper convex function Q ∈ MF �→ Dψ(Q;P ) is lower semi-continuous.

In view of the above theorem, the Fenchel-Legendre transform of the proper
convex function Dψ(·;P ) : Q ∈ MF �→ Dψ(Q;P ) is defined by

D∗
ψ(f) := sup

Q∈MF

{
K∑

k=1

∫

X
fk(x) dQk(x) − Dψ(Q;P )

}

,f ∈ 〈F ∪ Fb〉.

In the following proposition, we give explicit formula for the convex conjugate
D∗

ψ(·). Moreover, we prove that D∗
ψ(·) ≡ Dψ∗(·), in the sense that D∗

ψ(f) =
∫

X ψ∗ (f(x)) dP (x) =: Dψ∗(f), ∀f := (f1, . . . , fK)� ∈ 〈F ∪ Fb〉.
Proposition 2. Assume that, ψ(·) is differentiable on the interior of its
domain domψ, and denote by ψ′

xk
(·), k = 1, . . . , K, the partial derivatives

∂ψ
∂xk

(·), k = 1 . . . , K, respectively. Then, for all Q ∈ MF such that
Dψ(Q;P ) < ∞ and

(
ψ′

x1
(dQ/dP ), . . . , ψ′

xK
(dQ/P )

) ∈ 〈F ∪ Fb〉, the
ψ-divergence Dψ(Q;P ) admits the dual representation Dψ(Q;P ) = supf∈〈F∪Fb〉{∑K

k=1

∫
X fk(x) dQk(x) − ∫

X ψ∗ (f(x)) dP (x)
}

, and the function f(x) :=
(
ψ′

x1

(
dQ
dP (x)

)
, . . . , ψ′

xK

(
dQ
dP (x)

))
, x ∈ X , is a dual optimal solution. Moreover,

if ψ is essentially smooth, then f is unique P -a.s.

The above proposition remains valid if the vector space 〈F∪Fb〉 is restricted
to the class of functions F . We state this result in the following theorem.

Theorem 3. Assume that, ψ(·) is differentiable on the interior of its domain
domψ. Then, for all Q ∈ MF such that Dψ(Q;P ) < ∞ and

(
ψ′

x1
(dQ/dP ), . . . ,

ψ′
xK

(dQ/P )
) ∈ F , the ψ-divergence Dψ(Q;P ) admits the dual representation

Dψ(Q;P ) = supf∈F
{∑K

k=1

∫
X fk(x) dQk(x) − ∫

X ψ∗ (f(x)) dP (x)
}

, and the

function f(x) :=
(
ψ′

x1

(
dQ
dP (x)

)
, . . . , ψ′

xK

(
dQ
dP (x)

))
, x ∈ X , is a dual optimal

solution. Moreover, if ψ is essentially smooth, then f is unique P -a.s.
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4 Inference with Multiple Samples in DRM Through
Dual Representations of ψ-divergences

Here, we consider the Borel σ-filed (X ,B) = (Rm,B(Rm)), and we will use the
notation q(θ, x) := (q(θ1, x), . . . , q(θK , x)) , where θ := (θ�

1 , . . . ,θ�
K)�. Taking

into account the form of the DRM (5), and choosing the class of functions

F :=
K∏

k=1

Fk :=
K∏

k=1

{

x ∈ R
m �→ ψ′

xk
(q(θ1, x), . . . , q(θK , x)) ; θ ∈

K∏

k=1

Θk

}

,

we obtain from Theorem 3, the following dual formula

Dψ(Q;P ) = sup
θ∈∏K

k=1 Θk

{
K∑

k=1

∫

Rm

ψ′
xk

(q(θ, x)) dQk(x)

−
∫

Rm

ψ∗ (
ψ′

x1
(q(θ, x)), . . . , ψ′

xK
(q(θ, x))

)
dP (x)

}

. (10)

Furthermore, the supremum in the above display is unique and achieved in θT :=
(
θ1T

�, . . . ,θKT
�

)�
:

θT = argsup
θ∈∏K

k=1 Θk

{
K∑

k=1

∫

Rm

ψ′
xk

(q(θ, x)) dQk(x)

−
∫

Rm

ψ∗ (
ψ′

x1
(q(θ, x)), . . . , ψ′

xK
(q(θ, x))

)
dP (x)

}

. (11)

The uniqueness of the dual solution θT comes from the uniqueness of the dual
solution f(·) in the above theorem and the identifiability assumption (6). Fur-
thermore, we have, for the function in the second integral in (10) and (11), the
explicit expression

ψ∗ (
ψ′

x1
(q(θ, x)), . . . , ψ′

xK
(q(θ, x))

)
=

K∑

k=1

q(θk, x)ψ′
xk

(q(θ, x)) − ψ (q(θ, x)) .

For notational simplicity, for all θ ∈ ∏K
k=1 Θk, denote by fk(θ, ·) and g(θ, ·),

respectively, the real valued functions

fk(θ, ·) : x ∈ R
m �→ fk(θ, x) := ψ′

xk
(q(θ, x)) , k = 1, . . . , K, (12)

and

g(θ, ·) : x ∈ R
m �→ g(θ, x) :=

K∑

k=1

q(θk, x)ψ′
xk

(q(θ, x)) − ψ (q(θ, x)) . (13)
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We may write also Qf , instead of
∫

X f(x) dQ(x), for any function f and any mea-
sure Q. Whence, the above formulas (10) and (11) can be written, respectively,
under the form

Dψ(Q1, . . . , QK ;P ) = sup
θ∈∏K

k=1 Θk

{
K∑

k=1

Qkfk(θ) − Pg(θ)

}

(14)

and

θT = argsup
θ∈∏K

k=1 Θk

{
K∑

k=1

Qkfk(θ) − Pg(θ)

}

=: argsup
θ∈∏K

k=1 Θk

�ψ(θ). (15)

Whence, by replacing, in the above dual formula, the distributions P,Q1, . . . , QK

by their empirical ones (8), we obtain the following “dual” plug-in estimate of
the ψ-divergence Dψ(Q1, . . . , QK ;P )

D̂ψ(Q1, . . . , QK ;P ) := sup
θ∈∏K

k=1 Θk

{
K∑

k=1

Q̂kfk(θ) − P̂ g(θ)

}

(16)

and the following dual ψ-divergence estimates of the vector parameters θT

θ̂ψ := argsup
θ∈∏K

k=1 Θk

{
K∑

k=1

Q̂kfk(θ) − P̂ g(θ)

}

=: argsup
θ∈∏K

k=1 Θk

�̂ψ(θ). (17)

5 Empirical Likelihood and ψ-divergences Under
the DRM

We give a brief introduction of empirical likelihood (EL) inference under the
DRM; for more information see [3,5,8–10]. For any θ ∈ ∏K

k=1 Θk, the EL associ-
ated to the independent samples (Xk,i, i = 1, . . . , nk), k = 0, 1, . . . , K, under the
DRM (5), is L(θ, p) =

∏K
k=0

∏nk

i=1 p(Xk,i)q(θk,Xk,i). For k = 0, we set θ0 = 0,
and then q(θ0, x) = q(0, x) = 1,∀x. In the EL approach, we consider the proba-
bility distribution P as if it is discrete, and p(Xk,i) is the mass induced by P on
the observation Xk,i, for all k = 1, . . . , K, and all i = 1, . . . , nk. Hence, p can be
seen as a vector in R

∗
+

n, where n := n0+n1+· · ·+nK is the total sample size, and
such that the sum of its components is equal to one. The log-EL is �(θ, p) :=
log

∏K
k=0

∏nk

i=1 p(Xk,i)q(θk,Xk,i) =
∑K

k=0

∑nk

i=1 (log p(Xk, i) + log q(θk,Xk,i)) .
The model assumption (5) implies that

∫
Rm q(θr, x) dP (x) = 1,∀r = 0, 1, . . . ,K.

Thus,
∑K

k=0

∑nk

i=1 p(Xk,i)q(θr,Xk,i) = 1, ∀r = 0, 1, . . . ,K, for the empirical ver-
sion. The profil log-EL (in θ) is then defined by

�(θ) = sup
p∈Cθ

�(θ, p) = sup
p∈Cθ

K∑

k=0

nk∑

i=1

(log p(Xk,i) + log q(θk,Xk,i)) , (18)
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where p, due to the above constraints, is constrained to the set Cθ of all p ∈
R

∗
+

n s.t.
∑K

k=0

∑nk

i=1 p(Xk,i) = 1 and
∑K

k=0

∑nk

i=1 p(Xk,i)q(θr,Xk,i) = 1,∀r =
1, . . . , K. The EL estimate θ̂EL of θT is then θ̂EL := argsup

θ∈∏K
k=1 Θk

�(θ). For a given

θ ∈ ∏K
k=1 Θk, if the condition ∃p ∈ Cθ such that |�(θ, p)| < ∞ is satisfied, then

by Lagrange multipliers theorem, the supremum over p, in (18), is attained when
p(Xk,i) = 1

n{1+∑K
s=1 λ̂s[q(θs,Xk,i)−1]} ,∀k = 0, 1, . . . ,K,∀i = 1, . . . , nk, where

(λ̂1, . . . , λ̂K) is the solution, which depends on θ and on the data, of the system of
equations

∑K
k=0

∑nk

i=1 p(Xk,i)q(θr,Xk,i) = 1,∀r = 1, . . . , K. Given θ̂EL. Inter-
estingly, by differentiating �(θ) w.r.t. θ at the point θ̂EL, and solving the system
of equations (∂/∂αk)�(θ̂EL) = 0, (∂/∂βk)�(θ̂EL) = 0, ∀k = 1, . . . , K, one can
show that the corresponding Lagrange multipliers λ̂1, . . . , λ̂K depend only on
the sample sizes, and we always have λ̂s = ns/n, ∀s = 1, . . . , K. We obtain then,
θ̂EL := argsup

θ∈∏K
k=1 Θk

�(θ) = argsup
θ∈∏K

k=1 Θk

supp∈Cθ
�(θ, p) = argsup

θ∈∏K
k=1 Θk

�d(θ), where

�d(θ) := −n log n−
K∑

k=0

nk∑

i=1

log

(

λ̂0 +
K∑

s=1

λ̂sq(θs,Xk,i)

)

+
K∑

k=1

nk∑

i=1

log q(θk,Xk,i),

with λ̂s = ns/n, ∀s = 0, 1, . . . ,K. The function �d(·) has the same maximum
value and point as the profile log-EL �(·). Moreover, the function �d(·) is para-
metric and simpler than �(·). Therefore, in the literature, �d(·) is regarded as the
profile log-EL instead of �(·). Consider now, in the context of DRM, the test prob-
lem of the null hypothesis H0 : Q1 = · · · = QK = P against the alternative H1 :
∃Qk 
= P, or equivalently H0 : θ1T = · · · = θKT = 0 against the alternative H1 :
∃θkT 
= 0. The corresponding EL ratio statistic can be written as

Sn := 2 log
supθ∈∏K

k=1 Θk
supp∈Cθ

�(θ, p)

supp∈C0

∏K
k=0

∏nk

i=1 p(Xk,i)
= 2

(

sup
θ∈∏K

k=1 Θk

�d(θ) + n log n

)

= 2nD̂ψEL
(Q1, . . . , QK ;P ), where ψEL(·) is the particular nonnegative proper

closed convex function on R
k defined by

ψEL(x1, . . . , xK) =

(
K∑

s=1

ρ̂sϕ1(xs)

)

− ϕ1

(

ρ̂0 +
K∑

s=1

ρ̂sxs

)

, (19)

where ϕ1 is the nonnegative proper closed convex function on R defined by

ϕ1(x) := (x log x − x + 1)1R+(x) + (+∞)1]−∞,0[(x). (20)

Moreover, we have ψEL(1K) = 0, and it is straightforward to see that ψEL(·) is
a member of the ψ-functions considered in (1). Whence, the empirical likelihood
ratio statistic Sn is equal to 2n times the dual estimate of the particular ψEL-
divergence defined by the convex function (19). Moreover, the EL estimate θ̂EL

is equal to the corresponding dual maximum ψEL-divergence estimate, namely,
θ̂EL = argsup

θ∈∏K
k=1 Θk

�̂ψEL
(θ).
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6 Asymptotic Behavior of the Estimates and Test
Statistics

In this section, we give the asymptotic properties of the maximum ψ-divergence
estimates (17) of the parameter θT , and the dual plug-in estimates (16) of the
ψ-divergences Dψ(Q1, . . . , QK ;P ), when ψ is of the form

ψ : x ∈ R
K �→ ψ(x) =

K∑

s=1

ρ̂sϕ(xs) − ϕ

(

ρ̂0 +
K∑

s=1

ρ̂sxs

)

∈ [0,∞], (21)

where ϕ : x ∈ R �→ ϕ(x) ∈ [0,+∞] is any nonnegative proper closed convex
function, satisfying ϕ(1) = 0, and such that 1 is an interior point of its domain
domϕ := {x ∈ R s.t. |ϕ(x)| < ∞}. Note that all functions in (21) are members of
the ψ-functions considered in (1). We assume also that ϕ′(1) = 0, and, without
loss of generally, that ϕ′′(1) = 1. Recall that the particular ψEL-function is
obtained for the particular ϕ-function ϕ(·) = ϕ1(·) given in (20). Whence, the
EL estimate and test statistic will be treated in this section as special case.
Assume that the (1+K) sample sizes, nk, k = 0, 1, . . . ,K, satisfy the condition
nk

n → ρk for some real ρk ∈]0, 1[, when the total sample size n → +∞. We will
use the following assumptions.

(A.1) There exists a neighborhood N(θT ) of θT such that (a) for each k, the
third order partial derivative functions {x ∈ R

m �→ (f ′′′
k (θ, x))i,j,k;

θ ∈ N(θT )} are dominated by some Qk-integrable function; (b) the third
order partial derivative functions {x ∈ R

m �→ (g′′′(θ, x))i,j,k; θ ∈ N(θT )}
are dominated by some P -integrable function;

(A.2) The integrals
∫
Rm |f ′

k(θT , x)|2 dQk(x),
∫
Rm |f ′′

k (θT , x)| dQk(x),
k = 1, . . . , K,

∫
Rm |g′(θT , x)|2 dP (x),

∫
Rm |g′′(θT , x)| dP (x) are finite, and

the matrix D := −∑K
k=1 Qkf ′′

k (θT ) + Pg′′(θT ) is nonsingular.

Theorem 4. Assume that assumptions (A.1) and (A.2) hold.

(1) Let B(θT , n−1/3) :=
{
θ ∈ Θ : |θ − θT | ≤ n−1/3

}
. Then, as n → ∞, with

probability one, �̂ψ(θ) attains its maximum value at some point θ̂ψ in the

interior of the ball B(θT , n−1/3), satisfying �̂ ′
ψ

(
θ̂ψ

)
= 0;

(2)
√

n
(
θ̂ψ − θT

)
converges in distribution to a centered normal random vector

with explicit covariance matrix;
(3) Under the null hypothesis H0, the statistic 2nD̂ψ(Q;P ) convergences in dis-

tribution to a χ2(d × K) random variable;
(4) Under the alternative hypothesis H1,

√
n

(
D̂ψ(Q;P ) − Dψ(Q;P )

)
conver-

gences in distribution to a centered normal random variable with explicit
variance.
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7 Conclusion

We have introduced multivariate divergences between signed finite measure vec-
tors and a given reference probability distribution. We have considered Fenchel
duality theory of such divergences viewed as convex functionals on appropriate
topological vector spaces of signed finite measure vectors and R

K-valued func-
tions. Dual representations of multivariate divergences have been obtained, and
applied for estimating and testing in multi-sample density ratio models. This
approach recovers the dual empirical likelihood one and allows to obtain the
asymptotic properties of the proposed estimates and test statistics, including
the empirical likelihood ones, both under the model and under misspecifica-
tion. In testing context, the obtained asymptotic distributions under alternative
hypotheses lead to accurate approximation of the power functions. Moreover,
the proposed dual estimates of the introduced multivariate divergences can be
used as criteria for model selection, in multi-sample density ratio models, and
for multi-group classification.
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Abstract. We derive independence tests by means of dependence mea-
sures thresholding in a semiparametric context. Precisely, estimates of
mutual information associated to ϕ-divergences are derived through the
dual representations of ϕ-divergences. The asymptotic properties of the
estimates are established, including consistency, asymptotic distribution
and large deviations principle. The related tests of independence are com-
pared through their relative asymptotic Bahadur efficiency and numerical
simulations.

1 Introduction

Measuring the dependence between random variables has been a central aim of
probability theory since its earliest developments. Classical examples of depen-
dence measures are correlation measures, such as Pearson’s correlation or
Kendall’s and Spearman’s correlations. While the first one focuses on linear
relationship between real random variables, the two second ones measure the
monotonic relationship between variables taking values in ordered sets. Pure-
independence measures between variables X and Y taking values in general
measurable sets (X ,AX ) and (Y,AY) can be defined by considering any diver-
gence between the joint distribution P of (X,Y ) and the product of its margins
P

⊥ := PX ⊗ PY . The most outstanding example of such a dependence measure
is the χ2-divergence, for a finite distribution P := (px,y)(x,y), given by

χ2(P,P⊥) :=
1
2

∫

X×Y

(
dP

dP⊥ − 1
)2

dP⊥ =
1
2

∑

(x,y)∈X×Y

(px,y − pxpy)2

pxpy
, (1)

where dP/dP⊥ denotes the density of P w.r.t. P⊥. Another classical example is
the mutual information (MI) associated to Kullback-Leibler (KL) divergence –
denote it by KL-MI, defined by

IKL(P) := K(P,P⊥) :=
∫

X×Y

dP
dP⊥ log

dP
dP⊥ dP⊥. (2)

When dealing with observations of two random variables, we may test the null
hypothesis that these variables are independent by means of estimating such a
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 454–463, 2015.
DOI: 10.1007/978-3-319-25040-3 49
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dependence measure and deciding to reject the independence hypothesis if the
estimate is too far away from zero — the classical χ2-independence test is such
a procedure using the test statistic

2nχ2
(
P̂, P̂⊥

)
= n

∑

(x,y)

(p̂x,y − p̂xp̂y)2

p̂xp̂y
, (3)

where P̂ is the empirical distribution associated to the observations. The depen-
dence measure can also be the KL-MI or any other divergence measure between
P and P

⊥. The tests based on such dependence measures have been extensively
studied when X and Y are finite sets; see e.g. [8], Chap. 8. When dealing with real
or multidimensional continuous variables, numerous nonparametric estimates
of (2) built from i.i.d. samples (X1, Y1), . . . , (Xn, Yn) exist in the literature. See
e.g. [6] for an overview and numerical comparisons of existing estimates. Unfortu-
nately, their (asymptotic) distributions remain inaccessible. Hence, testing inde-
pendence from these estimates requires Monte-Carlo or Bootstrap approxima-
tions of the related p-values.

This paper introduces semiparametric estimates of ϕ-mutual information
(ϕ-MI), i.e., independence measures associated to ϕ-divergence functionals.
These estimates are obtained by making use of a dual representation of ϕ-MI,
presented in Sect. 2.2. Their asymptotic properties are presented in Sect. 3. This
leads to explicit independence tests, whose Bahadur efficiencies are compared
in Sect. 4; the most efficient test is shown to be the one based on KL-MI (2).
Finally, the power of ϕ-MI based tests is compared to classical non-correlation
tests in the Gaussian setting in Sect. 5.

2 Dual Representation of ϕ-Mutual Informations

In this Section, we first define ϕ-mutual informations, then specify the semipara-
metric modeling of the ratio dP/dP⊥, and finally make use of the so-called dual
representation of ϕ-divergences (see [1,4]) to get a dual representation of ϕ-MI.

2.1 Introducing ϕ-mutual Informations

Let (X,Y ) be a random vector taking values in (X × Y,AX ⊗ AY), with joint
distribution P and margins PX and PY . Let ϕ : R → [0,+∞] be some non nega-
tive closed proper convex three times differentiable function such that ϕ(1) = 0,
ϕ′(1) = 0 and ϕ′′(1) = 1. Let us introduce the ϕ-mutual information (ϕ-MI)
Iϕ(X,Y ) = Iϕ(P) of (X,Y ), defined as the ϕ-divergence from P to P

⊥ :=
PX ⊗ PY ; precisely

Iϕ(P) := Dϕ(P,P⊥) =
∫

X×Y
ϕ

(
dP

dP⊥

)

dP⊥. (4)

Note that Iϕ(P) ≥ 0; moreover, if ϕ is strictly convex on some neighborhood
of 1, we have

Iϕ(P) = 0 iff P = P
⊥,
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i.e., the ϕ-MI of (X,Y ) is null if and only if X and Y are independent. KL-MI (2)
is obtained for

ϕ1(x) := x log x − x + 1, x > 0, (5)

while χ2 independence measure (1) is obtained for ϕ2(x) := (x − 1)2/2.

2.2 Semiparametric Modeling of the Ratio dP/dP⊥

Denote the set of probability measures on (X × Y,AX ⊗ AY) by M1. For P ∈
M1, let P⊥ denote the product distribution P⊥ := P1 ⊗ P2 of the margins P1

and P2 of P .
In the following, the distribution P of (X,Y ) is assumed to belong to the

semiparametric model

MΘ :=
{

P ∈ M1 such that
dP

dP⊥ =: hθ; θ ∈ Θ

}

, (6)

where Θ ⊆ R
1+d, with d ≥ 1, is the set of parameters, and hθ(., .) is some

specified real-valued function, indexed by the (1 + d)-dimensional parameter θ.
The following assumptions on the model MΘ will be of use in the sequel.

Assumptions
A1: (hθ(x, y) = hθ′(x, y),∀(x, y) ∈ X × Y) ⇒ (θ = θ′) (identifiability);
A2: There exists (a unique) θ0 ∈ int(Θ) satisfying hθ0(x, y) = 1, ∀(x, y) ∈ X ×Y
(independence is covered by the model).

Denote by θT the true unknown value of the parameter, namely, the unique value
satisfying

dP
dP⊥ (x, y) = hθT

(x, y), ∀(x, y) ∈ X × Y.

Examples 1. 1. If (X,Y ) is a 2-dimensional Gaussian vector with nondegen-
erate covariance matrix, then straightforward computations show that the
ratio dP/dP⊥ can be written under the form of the model (6) with

hθ(x, y) = exp
{
α + β1x + β2y + β3x

2 + β4y
2 + β5xy

}
, (7)

and θ = (α, β1, β2, β3, β4, β5)�. Note that the number of free parameters
in θT := (αT , β�

T )� is d = 5, and that αT is considered as a normalizing
parameter due to the constraint

∫
X×Y hθT

(x, y) dP⊥(x, y) =
∫

X×Y dP(x, y) =
1 since P is a probability distribution.

2. Assume that X ×Y is a finite set; denote by (px,y)(x,y) the density of P with
respect to the counting measure on X × Y. Then

dP
dP⊥ (x, y) =

px,y

pxpy
= exp

⎛

⎝
∑

(a,b)∈X×Y
θa,bδ(a,b)(x, y)

⎞

⎠ =: hθ(x, y), (8)

where
θa,b = log

pa,b

papb
, (a, b) ∈ X × Y.
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3. Assume that (X,Y ) is a 2-dimensional random vector such that P is dom-
inated by the Lebesgue measure on R

2. Denote by c(·, ·) the copula density
associated to (X,Y ), i.e., the density of the copula

C(u, v) :=F (F−1
X (u), F−1

Y (v)), (u, v) ∈]0, 1[2,

where F , FX and FY are, respectively, the cumulative distribution functions
of (X,Y ), X and Y . Assume that c belongs to some parametric model of
copula densities {cβ , β ∈ R

d} and FX and FY belong to some parametric
models, see e.g. [3,7] for examples of such models. We then have the relation

dP
dP⊥ (x, y) = cβ (F γ1

X (x), F γ2
Y (y)).

Numerous examples of models (6) can be then obtained by considering

hθ(x, y) = cβ(F γ1
X (x), F γ2

Y (y)) with θ = (β, γ1, γ2).

We can also deal with semiparametric models induced by parametric mod-
els of copula densities, with nonparametric unknown continuous marginal
distribution functions F1(·) and F2(·),

hθ(x, y) := hθ(x, y, F1(x), F2(x)) = cθ(F1(x), F2(y)); θ ∈ Θ ⊂ R
d.

Other examples of models for dP/dP⊥ can be found in [5].

2.3 Dual Representation of ϕ-mutual Informations

Provided that Assumptions A1 and A3–4 below are fulfilled, a direct application
of the dual representation results for ϕ-divergences obtained in [1,4], yields

Iϕ(P) = sup
θ∈Θ

{∫

X×Y
ϕ′(hθ) dP −

∫

X×Y
ϕ∗ (ϕ′(hθ)) dP⊥

}

, (9)

where ϕ∗ denotes the convex conjugate of ϕ, namely, the real function defined by

ϕ∗(t) := sup
x∈R+

(tx − ϕ(x)), t ∈ R.

Moreover, the supremum in (9) is unique and achieved at θ = θT .

Assumptions
A3: The ϕ-mutual information is finite: Iϕ(P) < ∞.
A4: For all θ ∈ Θ, we have

∫
X×Y |ϕ′(hθ(x, y))| dP(x, y) < ∞.

3 Estimation of ϕ-MI and Tests of Independence

From an i.i.d. sample, (X1, Y1), . . . , (Xn, Yn), of (X,Y ), we aim at testing the
null hypothesis of independence of the margins X and Y , and estimating the
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parameter of interest θT , in the context of the model (6). Hence, we consider the
test problem

H0 : P = P
⊥ against H1 : P �= P

⊥,

which can be reformulated in the context of the present paper as

Iϕ(P) = 0 against Iϕ(P) > 0, (10)

which requires to estimate Iϕ(P).

3.1 Dual Estimation of ϕ-MI

A natural attempt to estimate the ϕ-MI of (X,Y ) consists in considering the
plug-in estimate of Iϕ(P) obtained by replacing P by its empirical counter-part
P̂ := 1

n

∑n
i=1 δ(Xi,Yi). Unfortunately, by doing so, we do not take advantage of

the information carried by the model (6) and we only measure dependence of the
contingency table associated to the sample. When dealing with variables X and
Y absolutely continuous with respect to Lebesgue measure, the contingency table
is a n×n table with all coefficients but diagonal ones equal to zero; particularly,
variables X and Y appear (misleadingly) purely dependent.

An alternative consists in taking advantage of the dual representation (9) by
introducing the semiparametric estimates – say dual estimates – of Iϕ(P) and
θT given by

Îϕ := sup
θ∈Θ

{∫

X×Y
ϕ′(hθ) dP̂ −

∫

X×Y
ϕ∗ (ϕ′(hθ)) dP̂⊥

}

(11)

= sup
θ∈Θ

⎧
⎨

⎩

1
n

n∑

i=1

ϕ′(hθ(Xi, Yi)) − 1
n2

n∑

i=1

n∑

j=1

ϕ∗ (ϕ′(hθ(Xi, Yj)))

⎫
⎬

⎭

θ̂ϕ := arg sup
θ∈Θ

⎧
⎨

⎩

1
n

n∑

i=1

ϕ′(hθ(Xi, Yi)) − 1
n2

n∑

i=1

n∑

j=1

ϕ∗ (ϕ′(hθ(Xi, Yj)))

⎫
⎬

⎭
.(12)

Note that if X × Y is a finite set, then the dual estimate Îϕ, computed in the
context of the model described in Example 1.2, is equal to the plug–in estimate
Iϕ(P̂). Particularly, for ϕ(x) = (x − 1)2/2, we obtain that Îϕ is equal (up to a
factor 1/2n) to the classical χ2 statistic (3).

3.2 Asymptotic Behavior of Dual Estimates

The asymptotic properties of estimates (11) and (12) stated in Propositions 1
and 2 to follow are obtained by classical techniques from M-estimation theory;
they require some regularity and integrability assumptions on hθ, stated below.

Assumptions
A5: the parameter space Θ is a compact subset of R × R

d.
A6:

∫
supθ∈Θ |ϕ′(hθ)| dP < ∞.

A7:
∫

supθ∈Θ ϕ∗(ϕ′(hθ))2 dP⊥ < ∞.
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Note that Assumptions A6–7 imply A3–4.

Proposition 1. Assume that A1, 5–7 hold. Then, the estimates Îϕ of Iϕ(P)
defined by (11) and the estimates θ̂ϕ of θT defined by (12) are consistent. Pre-
cisely, as n → ∞, the following convergences in probability hold

Îϕ → Iϕ(P) and θ̂ϕ → θT .

We now derive the asymptotic distribution of the estimate of KL-MI Iϕ1 (where
ϕ1 is given by (5)) under the null hypothesis of independence, for models MΘ

of the specific form

hθ(x, y) = exp (α + mβ(x, y)) with mβ(x, y) :=
d∑

k=1

βkξk(x)ζk(y), (13)

for some specified measurable real valued functions ξk and ζk, k = 1, . . . , d,
defined, respectively, on X and Y and θ = (α, β�)� ∈ Θ ⊆ R

1+d.

Assumptions
A8: The third order partial derivatives (∂3/∂θ3)ϕ′

1(hθ) (resp. (∂3/∂θ3)ϕ∗
1

(ϕ′
1(hθ))) are dominated, on some neighborhood of θT , by some P-integrable func-

tion (resp. some P
⊥-square-integrable function);

A9: The integrals P ‖(∂/∂θ)ϕ′
1(hθT

)‖2, P⊥ ‖(∂/∂θ)ϕ∗
1(ϕ

′
1(hθT

))‖2,
P

∥
∥(∂2/∂θ2)ϕ′

1(hθT
)
∥
∥, P⊥ ∥

∥(∂2/∂θ2)ϕ∗
1(ϕ

′
1(hθT

))
∥
∥2 are finite, and the matrix

P(∂2/∂θ2)ϕ′
1(hθT

) − P
⊥(∂2/∂θ2)ϕ∗

1(ϕ
′
1(hθT

))

is nonsingular.

Proposition 2. Assume that conditions A1–2, 5–9 hold and that P = P
⊥, in

the context of the model (13) (i.e., θT = θ0 = 0). Then,

(1)
√

nθ̂ϕ1 converges in distribution to a (1 + d)-dimensional centered Gaussian
vector with explicit covariance matrix;

(2) 2nÎϕ1 converges in distribution to the random variable ZtZ, where Z is a
(1+d)-dimensional centered Gaussian vector with explicit covariance matrix.

See [5] for explicit expressions of the asymptotic covariance matrices of
√

nθ̂ϕ1

and Z, as well as the proofs of Propositions 1 and 2.
The decision rule for the test (10) for a signification level α ∈ (0, 1), consists

in rejecting the independence hypothesis if the estimate Îϕ is greater than some
critical value, namely, the quantile q1−α of the distribution of Îϕ. If ϕ = ϕ1

and the sample size is large, the distribution of 2nÎϕ1 can be replaced by the
asymptotic distribution given in Proposition 2.



460 A. Keziou and P. Regnault

4 Bahadur Asymptotic Efficiency of ϕ-MI-Based Tests

Given (Îϕ1)n and (Îϕ2)n two sequences of statistics for the test problem (10),
numbers α ∈ (0, 1), γ ∈ (0, 1) and an alternative P ∈ MΘ, we define ni(α, γ, P ),
for i ∈ {1, 2}, respectively, as the minimal number of observations needed for the
test based on Îϕi

to have signification level α and power level γ. Then, Bahadur
asymptotic relative efficiency of (Îϕ1)n with respect to (Îϕ2)n is defined as (if
the limit exists) limα→0 n2(α, γ, P )/n1(α, γ, P ).

It is well known (see for example [9], Chap. 14), that if both sequences (Îϕ1)n

and (Îϕ2)n satisfy a large deviations principle (LDP) under the null hypothesis
(with good rate functions eϕ1(·) and eϕ2(·)) and also a law of large number under
the alternative hypothesis, with asymptotic means μϕ1(P ) and μϕ2(P ), respec-
tively, then their Bahadur asymptotic relative efficiency equals eϕ1(μϕ1(P ))/
eϕ2(μϕ2(P )). Particularly, the most efficient test maximizes Bahadur slope
eϕ(μϕ(P )).

4.1 A Large Deviations Principle for Dual Estimates of ϕ-MI

The following theorem establishes a LDP for (Îϕ)n under the null hypothesis for
specific models described by Assumptions A11.a or A11.b to follow. It relies on
some generalization due to [2] of classical Sanov’s theorem to finer topologies –
requiring the finiteness of some exponential moments, as stated in Assumption
A10 to follow – and the contraction principle.

Let F be the set of measurable functions from X × Y into R, given by

F := B ∪ {ϕ′(hθ); θ ∈ Θ} ∪ {ϕ∗(ϕ′(hθ)); θ ∈ Θ},

where B is the set of measurable bounded functions from X × Y into R. Let us
introduce the subset

MF :=
{

P ∈ M1 :
∫

X×Y
|f |dP < ∞ and

∫

X×Y
|f |dP⊥ < ∞,∀f ∈ F

}

.

Define on MF the τF -topology as the coarsest one that makes applications P ∈
MF �→ ∫

f dP and P ∈ MF �→ ∫
f dP⊥ continuous, for all f ∈ F .

Assumptions
A10: for all f ∈ F , for all a > 0,

∫
exp(a|f |) dP < ∞.

A11.a: The model
{
hθ(·, ·); θ = (α, β�)� ∈ Θ

}
is of the form

hθ(x, y) = exp (α + mβ(x, y))

with the condition that, for any constant c and any β, we have

P
⊥ (mβ(X,Y ) = c) �= 0 iff β = (0, . . . , 0)�, α = 0 and c = 0.

A11.b: (X,Y ) is finite-discrete, supported by X × Y.
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Proposition 3. Let (X,Y ) be a couple of independent random variables with
joint distribution P = P

⊥ ∈ MΘ ∩ MF .

(1) Assume that A1–2, 5, 10, 11.a hold. Then, the sequence (Îϕ)n of estimates,
of Iϕ(P) = 0, given by (11), satisfies the following large deviation principle

1
n

logP⊥
(
Îϕ > d

)
n→∞−→ −eϕ(d), d > 0, (14)

where eϕ(d) := inf{K(Q,P⊥) : Dϕ(Q|Q⊥) > d}, with

Dϕ(Q,Q⊥) := sup
θ∈Θ

{∫

ϕ′(hθ) dQ −
∫

ϕ∗ (ϕ′(hθ)) dQ⊥
}

, Q ∈ MF .

(2) Assume that A1–2, 5, 11.b hold. Then the above statement holds if MF is
replaced by the set of all discrete-finite distributions with the same finite
support X × Y.

Again, see [5] for the proof and also some sufficient conditions on MΘ for A10
to hold.

4.2 KL-MI Test Is the Most Efficient Test

From the law of large number stated in Proposition 1 and the above LDP, we
can compute and compare Bahadur slopes of ϕ-MI based independence tests,
the final result being stated in the following Theorem.

Theorem 1. Let (X,Y ) be a couple of random variables with joint distribution
P ∈ MΘ ∩ MF . Suppose that either A1–2, 5, 10, 11.a or A1–2, 5, 11.b hold.
For the test problem (10), the test based on the estimate Îϕ1 , see (11), of the
Kullback-Leibler mutual information, is uniformly (i.e., whatever be the alterna-
tive P �= P

⊥) the most efficient test, in Bahadur sense, among all Îϕ-based tests,
including the classical χ2-independence one.

If X × Y is finite and MΘ is given by (8), assumptions A1–2, 5 and 11.b are
obviously fulfilled. We then obtain that KL-MI-based independence test is more
efficient than classical χ2 independence test. This result was already stated in the
context of goodness-of-fit testing, for e.g. in [9], Chap. 14. The above Theorem
extends it to independence testing and to more general probability distributions.

5 Numerical Comparison of Independence Tests

We have compared the powers of KL-MI and χ2-MI independence tests with
non-correlation tests for samples drawn according to bi-variate centered normal
distributions with marginal variances equal to 1 and covariance ρ varying from
0 to 1. We have fixed a signification level α = 0.05 and computed the critical
values of ϕ-MI-based tests whether using the asymptotic distribution of Îϕ1
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stated in Proposition 2 if ϕ = ϕ1 (i.e., for KL-MI) or by means of Monte-
Carlo simulations of the distribution of Îϕ2 (i.e., for χ2-MI). Then we have
estimated the power of these tests as well as of non-correlation tests, still by
Monte-Carlo methods. Figure 1 presents the power curves for KL-MI (plain black
curve), χ2-MI (dotted black curve) independence tests and Pearson (dashed red
curve), Kendall and Spearman (mixed dashed and dotted red and blue curves)
correlation tests, obtained from N = 1000 samples of size n = 50 of bi-variate
Gaussian distributions. For this setting, KL-MI independence test is almost as
powerful as the most uniformly powerful independence test (Pearson). χ2-MI,
Spearman and Kendall tests have comparable powers, slightly lower than KL-MI
and Pearson’s ones.

Other Monte-Carlo based power comparisons in the Gaussian setting are
available in [5], as well as power comparisons for semiparametric copula mod-
els described in Example 1.3, for which critical values are estimated by using
bootstrap methods.
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Fig. 1. Comparison of powers of ϕ-MI and χ2-MI tests with non-correlation tests of
Pearson, Spearman and Kendall tests.

6 Conclusion and Discussion

In this paper, we have defined and studied estimates of ϕ-mutual informations,
based on the dual representation of ϕ-divergences and a semiparametric model-
ing of the density ratio between the joint distribution of the couple and the
product distribution of its margins. The consistency of these estimates has
been established assuming some classical regularity conditions on the model;
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the asymptotic normality has been established for classical Kullback-Leibler
mutual information (KL-MI) and specific models. A class of independence tests
has been derived from these estimates, recovering as a particular case, the classi-
cal χ2-independence test. For a large variety of situations including finite-discrete
random couples, the most efficient test is based on the proposed KL-MI esti-
mates, outperforming the classical χ2-independence one.
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Abstract. The Riemannian trust-region algorithm (RTR) is designed to
optimize differentiable cost functions on Riemannian manifolds. It pro-
ceeds by iteratively optimizing local models of the cost function. When
these models are exact up to second order, RTR boasts a quadratic con-
vergence rate to critical points. In practice, building such models requires
computing the Riemannian Hessian, which may be challenging. A simple
idea to alleviate this difficulty is to approximate the Hessian using finite
differences of the gradient. Unfortunately, this is a nonlinear approxima-
tion, which breaks the known convergence results for RTR.

We propose RTR-FD: a modification of RTR which retains global
convergence when the Hessian is approximated using finite differences.
Importantly, RTR-FD reduces gracefully to RTR if a linear approxima-
tion is used. This algorithm is available in the Manopt toolbox.

Keywords: RTR-FD · Optimization on manifolds · Convergence ·
Manopt

1 Introduction

The Riemannian trust-region method (RTR) is a popular algorithm designed to
minimize differentiable cost functions f over Riemannian manifolds M [1,2].
That is, RTR attempts to compute minx∈M f(x). Starting with a given initial
guess x0 ∈ M, it iteratively reduces the cost f(xk) along a sequence x0, x1, . . .

Under conditions we explicit later, the sequences of iterates produced by
RTR converge to critical points regardless of the initial guess (this is called
global convergence). A critical point x ∈ M is such that gradf(x) = 0, where
gradf(x) is the Riemannian gradient of f at x. Since all global optimizers are
critical points, this property is highly desirable.

RTR proceeds as follows. At the current iterate xk ∈ M, it produces a
candidate next iterate, x+

k ∈ M, by (approximately) minimizing a local model
mk of f in a neighborhood of xk, called a trust region—because this is where
we trust the model. This procedure always reduces the model cost mk, but of
course, the aim is to reduce the actual cost f . RTR then computes the actual cost
improvement and decides to accept or reject the proposed step x+

k accordingly.
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 467–475, 2015.
DOI: 10.1007/978-3-319-25040-3 50



468 N. Boumal

Furthermore, depending on how accurately the actual cost improvement was
predicted by the model, the size Δk of the trust region is reduced, increased or
left unchanged for the next iteration. See Algorithm 1.

To be precise, the inner problem at iteration k takes the following form:

min
η∈Txk

M,‖η‖
P

−1
k

≤Δk

mk(η) := f(xk) + 〈η, gradf(xk)〉xk
+

1
2

〈η,Hk[η]〉xk
, (1)

where TxM is the tangent space to M at x, 〈·, ·〉x is the Riemannian metric on
TxM, Hk : Txk

M → Txk
M is an operator (conditions on Hk are the topic of

this paper), Pk : Txk
M → Txk

M is a symmetric positive definite preconditioner,
‖η‖2

P −1
k

:=
〈
η, P−1

k η
〉

xk
defines a norm and Δk is the size of the trust region at

iteration k. Ideally, Pk is a cheap, positive approximation of the inverse of the
Hessian of f at xk. For a first read, it is safe to assume Pk = Id (identity).

An approximate solution ηk to the inner problem is computed, and the can-
didate next iterate is obtained as x+

k = Retrxk
ηk, where Retrx : TxM → M is a

retraction on M [2, def. 4.1.1]: a relaxation of the differential geometric notion of
exponential. For all x, it satisfies Retrx(0) = x, and the derivative of t �→ Retrxtη
at t = 0 equals η, for all tangent η. Furthermore, Retrxη is smooth in both x and
η. If M is a Euclidean space such as R

n, the classical choice is Retrxη = x + η.
A remarkable feature of RTR is that it guarantees global convergence under

very lax conditions on both the Hk’s and how well (1) is solved [2, thm. 7.4.4].
Essentially two things are required: (a) that the Hk’s be uniformly bounded,

Algorithm 1. RTR : preconditioned Riemannian trust-region method
1: Given: x0 ∈ M, 0 < Δ0 ≤ Δ̄ and 0 < ρ′ < 1/4
2: Init: k = 0
3: repeat
4: ηk = tCG(xk, Δk, Hk, Pk) � solve inner problem (1) (approximately)
5: x+

k = Retrxk(ηk) � candidate next iterate
6: ρ1 = f(xk) − f(x+

k ) � actual improvement
7: ρ2 = mk(0) − mk(ηk) � model improvement
8: if ρ1/ρ2 < 1/4 then � if the model made a poor prediction
9: Δk+1 = Δk/4 � reduce the trust region radius

� if the model is good but the region is too small
10: else if ρ1/ρ2 > 3/4 and tCG hit the boundary then
11: Δk+1 = min(2Δk, Δ̄) � enlarge the radius
12: else
13: Δk+1 = Δk

14: end if
15: if ρ1/ρ2 > ρ′ then � if the relative decrease is sufficient
16: xk+1 = x+

k � accept the step
17: else � otherwise
18: xk+1 = xk � reject it
19: end if
20: k = k + 1
21: until a stopping criterion triggers
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symmetric linear operators, and (b) that the approximate model minimizers ηk

produce at least the following decrease in the model cost at each iteration [2,
eq. (7.14)]:

mk(0) − mk(ηk) ≥ c1‖gradf(xk)‖xk
min (Δk, c2‖gradf(xk)‖xk

), (2)

where ‖η‖2xk
:= 〈η, η〉xk

and c1, c2 > 0 are constants.
Then, two things are known: (a) if ηk is produced by the Steihaug-Toint

truncated conjugate-gradients algorithm (tCG, Algorithm 2), sufficient decrease
is attained; and (b) still using tCG, if Hk is a sufficiently good approximation of
the Riemannian Hessian of f at xk, RTR achieves a superlinear local convergence
rate [2, thm. 7.4.11], i.e., close to an isolated local minimizer, convergence is fast.

As computing the Riemannian Hessian can be cumbersome (at best), there
is a need for good, generic approximations of it. Linear approximations based
on finite differences of the gradient have been proposed [2, § 8.2.1], but they are
impractical, since they require the computation of a full operator Hk expanded in
a basis of Txk

M: this is an issue if the dimension of M is large or if it is difficult
to define natural bases of the tangent spaces, that is, in most cases. Alternatives
based on transporting an approximate Hessian from tangent space to tangent
space may constitute a good solution, especially in low-dimension, even if they
are arguably delicate to implement and typically require extra memory [6,7].

On the other hand, it is quite natural to propose a nonlinear approximation
of the Hessian at xk based on finite differences, as HFD

k [0] = 0 and

HFD
k [η] =

Transpxk←ygradf (y) − gradf(xk)
c

, with

{
c = α/‖η‖xk

,

y = Retrxk
cη,

(3)

where α > 0 is a small constant (more on this later) and Transpx←y is a trans-
porter, i.e., a linear operator from TyM to TxM whose dependence on x and y is
jointly continuous and such that Transpx←x = Id for all x.1 Transporters allow
comparing vectors in different tangent spaces. In this respect, they are loose
relaxations of the concept of parallel transport in differential geometry. For M
a Euclidean space, the classical choice is Transpx←y = Id since TxM ≡ TyM.

HFD
k is cheap and simple to compute: it essentially requires a single extra

gradient evaluation. Unfortunately, because it is nonlinear, the known global
convergence theory for RTR does not apply as is. In this paper, we show how
a tiny modification to the tCG algorithm makes it possible to retain global
convergence even if Hk is only radially linear, by which we mean:

∀η ∈ Txk
M,∀a ≥ 0, Hk[aη] = aHk[η]. (4)

Since HFD
k is radially linear, this is a good first step. We then show that HFD

k sat-
isfies the other important condition, namely, uniform boundedness, under mild
extra assumptions. Lastly, we note that the modification of tCG is innocuous if
Hk is linear, so that it is safe to use the modified version for all purposes.
1 Transporters [7, § 4.3] are mostly equivalent to vector transports [2, def. 8.1.1].
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Algorithm 2. tCG(x, Δ, H, P ) : modified Steihaug-Toint truncated CG
method. It is obtained from the classical tCG by adding the highlighted in-
structions. See Section 4 for details on how to evaluate m(η) and P−1-norms.
1: Given: x ∈ M and Δ, θ, κ > 0, H, P : TxM → TxM,

H radially linear (4), P symmetric positive definite.
2: Init: η0 = 0 ∈ TxM, r0 = gradf(x), z0 = P [r0], δ0 = −z0
3: for j = 0 . . . max inner iterations − 1 do
4: κj = 〈δj , H[δj ]〉x

5: αj = 〈zj , rj〉x /κj

6: if κj ≤ 0 or ‖ηj + αjδj‖P −1 ≥ Δ then
� the model Hessian has negative curvature or TR exceeded:

7: Set τj to be the positive root of ‖ηj + τjδj‖2
P −1 = Δ2

8: ηj+1 = ηj + τjδj � hit the boundary

9: if m(ηj+1) ≥ m(ηj) then � never triggers if H is linear or j = 0

10: return ηj � ηj is sure to decrease the model cost

11: end if

12: return ηj+1

13: end if
14: ηj+1 = ηj + αjδj

15: if m(ηj+1) ≥ m(ηj) then � idem
16: return ηj

17: end if

18: rj+1 = rj + αjH[δj ]
19: if ‖rj+1‖x ≤ ‖r0‖x · min(‖r0‖θ

x, κ) then
20: return ηj+1 � this approximate solution is good enough
21: end if
22: zj+1 = P [rj+1]
23: βj = 〈zj+1, rj+1〉x / 〈zj , rj〉x

24: δj+1 = −zj+1 + βjδj

25: end for
26: return ηlast

We name RTR with the modified tCG algorithm and the finite-difference
Hessian approximation Hk := HFD

k the RTR-FD algorithm. The Manopt toolbox
[4] implements RTR-FD as a default fall-back in case the user does not specify
the Hessian. Experience shows it performs well in practice (see for example [3]).

2 Global Convergence with Bounded, Radially Linear Hk

Let M be a finite-dimensional Riemannian manifold and f : M → R be a scalar
field on M. We use the notation dist(x, y) to denote the Riemannian distance
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between two points x and y on M. The injectivity radius of M is defined as

i(M) := inf
x∈M

sup{ε > 0 : Expx|{η∈TxM:‖η‖x<ε} is a diffeomorphism},

where Expx : TxM → M is the (geometric) exponential map at x; loosely,
the operator that generates geodesics. In other words, for all x, y such that
dist(x, y) < i(M), there exists a unique minimizing geodesic joining x to y.
In particular, i(Rn) = ∞. For such close points, there is a unique, privileged
transporter PTranspx←y, called the parallel transporter [2, p. 148]. Assuming
i(M) > 0, we say f is Lipschitz continuously differentiable [2, def. 7.4.3] if it is
differentiable and there exists β1 such that, for all x, y with dist(x, y) < i(M),

‖PTranspx←ygradf(y) − gradf(x)‖x ≤ β1dist(x, y). (5)

We make the following assumptions. They differ from the standard assump-
tions in only two ways: (a) the Hk’s are allowed to be radially linear rather
than linear, which requires a slight modification of the tCG algorithm, but no
modification of the proofs; and (b) preconditioners are explicitly allowed.

Assumption 1 M has a positive injectivity radius, i(M) > 0.

Assumption 2 f is Lipschitz continuously differentiable (5) and f ◦ Retr is
radially Lipschitz continuously differentiable [2, def. 7.4.1].

Assumption 3 f is bounded below , that is, infx∈M f(x) > −∞.

Assumption 4 The Hk’s are radially linear (4) and bounded, i.e., there exists
β < ∞ such that ‖Hk‖op := max {‖Hk[η]‖xk

: η ∈ Txk
M, ‖η‖xk

= 1} ≤ β, ∀k.

Assumption 5 There exist βP , βP −1 such that, for all k, ‖Pk‖op ≤ βP < ∞
and 1/‖P−1

k ‖op ≥ βP −1 > 0.

Assumption 6 There exist μ, δμ > 0 such that for all x ∈ M and for all
η ∈ TxM with ‖η‖x ≤ δμ, the retraction satisfies: dist(x,Retrxη) ≤ ‖η‖x/μ.

Theorem 1. Under assumptions 1–5, the sequence x0, x1, x2, . . . generated
by the modified RTR-tCG algorithm (Algorithms 1–2) satisfies:
lim inf
k→∞

‖gradf(xk)‖xk
= 0.

Proof. This is essentially Theorem 7.4.2 in [2], with Hk’s allowed to be radially
linear rather than linear, and with the possibility to use a preconditioner Pk.
Without preconditioner (Pk = Id), the proof in [2] turns out to apply verbatim.
In the more general case, it can be verified that the first step η1 computed by
the tCG algorithm at iteration k is the preconditioned Cauchy step:

η1 = argmin
η=−τPkgradf(xk)

mk(η), subject to: ‖η‖P −1
k

≤ Δk and τ > 0. (6)

To verify this, execute the first step of tCG by hand (it is oblivious to the fact
that Hk is only radially linear), and compare the results to the solution of (6).
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The latter is simple to solve since it is a quadratic in τ , to be minimized on an
interval. Using the analytic expression for η1, it can be seen that

mk(0) − mk(η1) ≥ 1
2
‖gradf(xk)‖Pk

min

(

Δk,
‖gradf(xk)‖Pk

‖P
1/2
k ◦ Hk ◦ P

1/2
k ‖op

)

,

where ‖η‖2Pk
= 〈η, Pkη〉xk

. By submultiplicativity of the operator norm,

‖P
1/2
k ◦ Hk ◦ P

1/2
k ‖op ≤ ‖Pk‖op ‖Hk‖op ≤ ββP .

Furthermore, ‖gradf(xk)‖Pk
≥ β

1/2
P −1‖gradf(xk)‖xk

. Thus, the sufficient decrease
condition (2) is fulfilled by η1. If Hk is linear, then tCG guarantees mk(ηj+1) <
mk(ηj) [2, Prop. 7.3.2], so that if η1 is a sufficiently good approximate solution
to the inner problem (which it is), then certainly the solution tCG returns, ηk,
is too. For nonlinear Hk, this is not guaranteed anymore, hence the proposed
modified tCG, which ensures that, if ηj+1 is worse than ηj (as per the model),
then ηj is returned. The latter is at least as good as η1, hence (2) holds. ��

The proof that all accumulations points are critical points holds verbatim,
even though we allow the Hk’s to be merely radially linear [2, Thm. 7.4.4]:

Theorem 2. Under assumptions 1–6, the sequence x0, x1, x2, . . . generated
by the modified RTR-tCG algorithm (Algorithms 1–2) satisfies:
limk→∞ gradf(xk) = 0.

3 HFD
k is bounded and radially linear

We now show that setting Hk := HFD
k (3) to approximate the Hessian of f using

finite differences fulfills Assumption 4, under these mild additional assumptions:

Assumption 7. There exist μ′, δμ′ > 0 such that, for all x, y with dist(x, y) ≤
δμ′ , the transporter satisfies ‖Transpx←y‖op ≤ μ′.

Assumption 8. There exist β2, δβ2 > 0 such that, for all x with f(x) ≤ f(x0)
and y with dist(x, y) ≤ δβ2 , it holds that ‖gradf(y)‖y ≤ β2.

Assumption 7 is inconsequential, since ideal transporters are close to isome-
tries: it would make little sense to violate it. Assumption 8 should be easily
achieved, given that f is already assumed Lipschitz continuously differentiable.
These assumptions allow to make the following statement:

Theorem 3. Under assumptions 1–3 and 5–8, with 0 < α < min(δμ, μδμ′ , μδβ2),
the operators HFD

k satisfy Assumption 4, so that the sequence x0, x1, x2, . . . gen-
erated by RTR-FD satisfies:

lim
k→∞

gradf(xk) = 0.

Proof. It is clear that HFD
k is radially linear. Let us show that it is also uniformly

bounded. For all η ∈ Txk
M with ‖η‖xk

= 1 and y = Retrxk
(αη), Assumption 6

ensures that α < δμ implies dist(xk, y) ≤ α/μ < min(δμ′ , δβ2), so that:
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‖HFD
k [η]‖xk

=
1
α

∥
∥Transpxk←ygradf(y) − gradf(xk)

∥
∥

xk

≤ 1
α

(∥
∥Transpxk←y

∥
∥
op

‖gradf(y)‖y + ‖gradf(xk)‖xk

)

≤ (1 + μ′)β2

α
=: β.

Note: The dependence on 1/α is likely artificial and might be removed. One
potential start is to argue that g(y) =

∥
∥Transpx←y − PTranspx←y

∥
∥
op

cannot
grow faster than cx · dist(x, y) for some constant cx (since g(x) = 0 and g is
continuous), and then to use Lipschitz continuous differentiability of f . ��
Corollary 1. If M is a Euclidean space (for example, Rn), equipped with the
standard tools Retrxη = x+η and Transpx←y = Id, under assumptions 2, 3 and
5, the sequence x0, x1, x2, . . . generated by RTR-FD with α > 0 satisfies:

lim
k→∞

gradf(xk) = 0.

Proof. Assumptions 1 and 6 are clearly fulfilled, with i(M) = δμ = ∞ and μ = 1.
Assumptions 7 and 8 are not necessary, since, by Assumption 2, for η �= 0,

‖HFD
k [η]‖xk

/‖η‖xk
=

1
α

‖gradf(xk + cη) − gradf(xk)‖xk
≤ β1 =: β.

��
Corollary 2. If M is a compact manifold and f is twice continuously differen-
tiable, under Assumption 5 and with the same constraint on α as in Theorem 3,
the sequence x0, x1, x2, . . . generated by RTR-FD satisfies: lim

k→∞
gradf(xk) = 0.

Proof. M compact implies assumptions 1, 6 and 7. f twice continuously differ-
entiable with M compact implies assumptions 2, 3 and 8. See [2, Cor. 7.4.6]. ��

4 A Technical Point for Computational Efficiency

Proposition 7.3.2 in [2] ensures that, provided the operator H is linear, then the
model cost strictly decreases at each iteration of tCG: m(ηj+1) < m(ηj). This
notably means that there is no need to track m(ηj). Allowing for nonlinear H’s,
this property is lost. The proposed fix (the modified tCG, Algorithm) tracks the
model cost and safely terminates if a violation (a non-decrease) is witnessed.

A direct implementation of the modified tCG algorithm evaluates the model
cost f(x)+

〈
ηj , gradf(x)

〉
x
+1/2

〈
ηj ,H[ηj ]

〉
x

at each iteration. This is not advis-
able, because it requires computing H[ηj ] whereas only H[δj ] is readily available.

If H were linear, then it would hold that H[ηj+1] = H[ηj + cjδj ] = H[ηj ] +
cjH[δj ], with cj either equal to τj or to αj , as prescribed by the algorithm. This
suggests a recurrence to evaluate the model cost without requiring additional
applications of H, which is what we use in practice. The sequence ζ0, ζ1, . . .
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defined by ζ0 = 0 and ζj+1 = ζj + cjH[δj ] coincides with H[η0],H[η1], . . .
when H is linear. The model cost at ηj is evaluated as f(x) +

〈
ηj , gradf(x)

〉
x

+
1/2

〈
ηj , ζj

〉
x
.

Of course, for nonlinear H, this does not correspond to the original model.
But the convergence result still holds if it corresponds to a model using H̃, where
the H̃’s are still radially linear and uniformly bounded.

Conceptually run tCG a first time as described above. Then, define H̃ such
that it is radially linear, satisfies H̃[ηj ] = ζj and H̃[δj ] = H[δj ], and coincides
with H otherwise. (H̃ is never constructed in practice; it merely serves the
argument.) This is well defined as long as no two vectors among δ1, δ2, . . . , δlast
and η1, η2, . . . , ηlast are aligned on the same (positive) ray (δ0 and η1 are aligned
by construction, in a compatible fashion). We do not prove that this property
holds, but we note that it seems unlikely that it would not, in practical instances.
Then, the operators H̃ remain uniformly bounded provided the ‖ζj‖/‖ηj‖’s are
uniformly bounded. If so, RTR with the modified tCG behaves exactly as if
the models were defined using the H̃’s which satisfy Assumption 4, with true
evaluation of the model. This would ensure global convergence.

In the same spirit, the tCG algorithm requires computations of P−1-norms, to
ensure iterates remain in the trust region. Since the preconditioner is often only
available as a black box P , these P−1-norms are typically computed via recur-
rences that only involve applying P—see [5, eqs.(7.5.5–7)]. These recurrences
make use of the fact that, for linear H, rj+1 is orthogonal to δ0, . . . , δj . This
may not be the case for nonlinear H, so that, in general, using these recurrences
may lead to iterates leaving the trust region. One possible fix is to modify the
recurrences so that they do not assume the aforementioned orthogonality, but
we refrain from doing so in practice, for it does not appear to affect performance.

5 Conclusion

From extensive experience, it seems that RTR-FD achieves a superlinear local
convergence rate, which is expected since HFD

k is “close” to the true Hessian.
See for example [3]. Unfortunately, the existing local convergence analyses rely
deeply on the linearity of Hk. We do not expect that a simple modification
of the argument would suffice to establish superlinear convergence of RTR-FD.
A possible starting point in that direction would be work by Huang et al. on
Riemannian trust regions with approximate Hessians [6,7].

Acknowledgment. The author thanks P.-A. Absil for numerous helpful discussions.
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Abstract. In this work, we consider block-Jacobi methods with Newton
steps in each subspace search and prove their local quadratic convergence
to a local minimum with non-degenerate Hessian under some orthogo-
nality assumptions on the search directions. Moreover, such a method
is exemplified for non-unitary joint matrix diagonalization, where we
present a block-Jacobi-type method on the oblique manifold with guar-
anteed local quadratic convergence.

Keywords: Jacobi algorithms · Local convergence properties · Manifold
optimization · Signal separation

1 Introduction

Jacobi-type methods have been very successful in numerical linear algebra for the
task of diagonalizing matrices, dating back to the seminal work of Carl Gustaf
Jacob Jacobi from 1846 [1], where a scheme is presented to iteratively find the
eigenvalue decomposition of a Hermitian matrix. A characteristic feature of many
Jacobi-type methods is that they act to minimize the distance to diagonality
while preserving some predefined constraints, cf. [2] and the references therein.
Furthermore, their inherent parallelizability makes them also useful for large
scale matrix computations.

In the context of jointly diagonalizing a set of Hermitian matrices, eg. JADE
[3,4] is a very prominent example that borrows the idea of iteratively minimiz-
ing the distance to joint diagonality by means of unitary similarity transforms.
Moreover, Jacobi-type algorithms have also demonstrated their promising per-
formance in solving the problem of blind source separation, such as [5,6].

Block Jacobi-type procedures were developed as a generalization of standard
Jacobi method in terms of grouped variables for solving symmetric eigenvalue
problems or singular value problems [7]. In each Jacobi sweep, it is required
to solve a sequence of sub-optimization problems, which can be computation-
ally expensive or infeasible. To cope with this problem, we propose to employ
a Newton-step that approximates a solution to this sub problem. We show that
under this setting, if the predefined search directions are orthogonal with respect
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 476–483, 2015.
DOI: 10.1007/978-3-319-25040-3 51



Block-Jacobi Methods and Non-unitary JMD 477

to the non degenerate Hessian of the minimum, then the Jacobi method con-
verges locally to that minimum with quadratic, hence superlinear rate. We exem-
plify these insights in order to develop an efficient method for the problem of
non-unitary joint matrix diagonalization (JMD), which arises in the context of
Blind Source Separation.

2 Block-Jacobi-type Methods on Manifolds

From a viewpoint of geometric optimization, Jacobi-type methods can be consid-
ered as a generalization of coordinate descent methods to the manifold setting.
Given some point on a manifold, Jacobi-type methods optimize a cost func-
tion along some predefined directions in the tangent space in order to find the
next iterate on the manifold. In practice, this requires two more algorithmic
ingredients: (i) a map from the tangent space to the manifold, which is tradi-
tionally done via the Riemannian exponential, but also more general concepts
like retraction have been introduced for general line search method adaptions to
the manifold setting; (ii) a practical step-size selection rule that approximates
the search for a minimizer of the restricted cost function. In the following, we
provide a formal setup and introduce some notations that help to make these
concepts more concrete.

Let M be an n-dimensional smooth manifold and consider the problem of
minimizing a smooth function f : M → R. Let the map μ : Rn × M → M be
smooth and fulfill the property that μx : Rn → M, v �→ μ(v, x) is a local
parametrization around x with μx(0) = x1. Actually, it would suffice for μx to
be defined only in an appropriate neighbourhood of 0, but we omit this detail
for the sake of readability. In order to explain the predefined directions on the
manifold for the purpose of optimization, let R

n = ⊕iV
(i) be a vector space

decomposition of Rn into a direct sum of N subspaces Vi, with dimVi = �i. By
a slight abuse of notation, we denote by Vi ∈ R

n×�i also basis of these vector
spaces. Since μx is a local diffeomorphism, its differential map at 0

T0μx : Rn → TxM (1)

is bijective, hence the images of Vi under this map, namely V(i)
x := T0μx(Vi),

form a direct vector space decomposition of the tangent space TxM , i.e.

TxM = ⊕iV(i)
x . (2)

Note, that the restrictions of μx to subspace Vi, i.e. μx(Vi) for all i = 1, . . . , N ,
are often referred to as basic transformations. Our main result in this paper
states that Jacobi-type methods are locally quadratically convergent to a local
minimum of f , if the Hessian at this minimum is non-degenerate and if the above
decomposition of the tangent space is orthogonal w.r.t. this Hessian at the local
minimum.
1 That is, µ−1

x is a coordinate chart around x.
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In the following, we first consider the case where the V(i)
x are one-dimensional,

leading to (one-dimensional) predefined directions in the tangent-space along
which optimization is performed in each step. We then consider the generaliza-
tion to higher dimensions, leading to a manifold adaption of block-coordinate
descent methods on manifolds.

2.1 Coordinate Descent on Manifolds

Let us consider the case where the dimension of the Vi’s is equal to one, i.e.
�i = 1 for all i = 1, . . . n. A straightforward adaption of coordinate descent
methods to manifolds for minimizing a smooth cost function f is now as follows.
It consists of iterating sweeps, where one sweep sequentially works off all the
initially predetermined directions Vi. That is, starting from some point x ∈ M ,
we determine the local minimum2 that is closest to zero of the restricted cost
function t �→ f ◦μx(V1t). This minimum t∗ then delivers the initial point xnew =
μx(V1t

∗) for a subsequent minimization along the next predetermined direction
μxnew(V2t). This procedure is repeated until all directions Vi are worked off. The
Jacobi-sweep is visualized in Fig. 1 and concretized in Algorithm 1.

Algorithm 1. Jacobi-Sweep on a manifold M

INPUT: initial point x(0) ∈ M and and directions Vi, i = 1...n
FOR i = 1, . . . , n DO

STEP 1. Compute the local minimum t∗ with smallest absolute value of

ϕ : R → R, t �→ f ◦ μx(i−1)(Vit) (3)

STEP 2. Set x(i) := μx(i−1)(Vit
∗)

STEP 3. Increase i

It can be shown that a Jacobi method, that is iterating Algorithm 1, leads to
a locally quadratic convergent algorithm, if the descent directions are orthogonal
with respect to the non-degenerated Hessian at a local minimum of f .

Theorem 1 ([8]). Let M be an n-dimensional manifold and let x∗ be a local
minimum of the smooth cost function f : M → R with nondegenerate Hessian
Hf (x∗). If the Vi := T0μx∗(Vi) ∈ Tx∗M are orthogonal with respect to Hf (x∗),
then the Jacobi method is locally quadratic convergent to x∗.

In practice, the search for a local minimum in STEP 1 of Algorithm 1 is
often infeasible. We therefore follow a different approach that is based on a one
dimensional Newton optimisation step. Similar approximations of the optimal
2 The reason why we choose a local and not a global minimum here is that for the

convergence analysis, this choice is needed to be smooth around a minimizer of the
cost function. This can only be guaranteed by choosing the nearest local minimum
along basic transformations.
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Fig. 1. Illustration of Jacobi-type method on smooth manifolds.

step size have already been used in [9,10]. The idea is to replace STEP 1 by the
approximation

t∗ := −
(

d2

d t2 ϕ(t)
∣
∣
t=0

)−1
d
d tϕ(t)

∣
∣
t=0

. (4)

We show in a more general result on block-coordinate descent methods in the
next section that this approximation maintains the local quadratic convergence
property.

2.2 Approximate Block-Coordinate Descent on Manifolds

With the established setting, it is quite easy to generalize the above line-search
methods to so-called block-Jacobi-type methods. The idea is to extend the search
for a new iterate to higher dimensional subspaces, i.e. we drop the assumption
that �i = 1. To search for a new iterate, we propose to extend the one-dimensional
Newton step (4) to higher dimensions. More precisely, for the i-th iteration within
one sweep, we consider the restricted cost function

ϕ : R�i → R, t �→ f ◦ μx(i−1)(Vit). (5)

Note, that now t ∈ R
�i and Vi ∈ R

n×�i . We denote the Hessian matrix of ϕ at 0
as Hϕ(0) and the standard gradient as ∇ϕ(0). The �i-dimensional Newton step

t∗ := −Hϕ(0)−1∇ϕ(0) (6)

is then a straightforward generalization of (4) to higher dimensions. The sweep
for a block-Jacobi method with Newton-step size is summarized in Algorithm 2.

Algorithm 2. Block-Jacobi-Sweep with Newton-step size on a manifold M

INPUT: initial point x(0) ∈ M and and matrices Vi ∈ R
n×�i , i = 1...N

FOR i = 1, . . . , N DO
STEP 1. Compute the t∗ ∈ R

�
i according to (6)

STEP 2. Set x(i) := μx(i−1)(Vit
∗)
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We study local convergence properties of the Block-Jacobi-Sweep on a man-
ifold M with Newton-step size.

Theorem 2. Let M be an n-dimensional manifold and let x∗ be a local minimum
of the smooth cost function f : M → R with nondegenerate Hessian Hf (x∗). If
the subspaces Vi := T0μx∗(Vi) ⊂ Tx∗M are orthogonal with respect to Hf (x∗),
then the Block-Jacobi method which consists of iterating Algorithm 2 is locally
quadratic convergent to x∗.

Sketch of the Proof. The proof is inspired by the local quadratic convergence
result for block-Jacobi methods on manifolds with an exact step-size selection
rule in [11]. It consists of essentially three steps. First, one has to show that a
local minimum x∗ is a fixed-point of the algorithm. Second, we formulate one
sweep as a map s : M �→ M and compute its derivative at x∗. Third, we show
that this derivative vanishes if the subspaces Vi are orthogonal with respect
to the Hessian at x∗. Finally, using the Taylor Series expansion, we can then
conclude that

‖s(x) − x∗‖ ≤ C‖x − x∗‖2 (7)

for all x being close enough to x∗, which ensures local quadratic convergence of
the algorithm.

The fixed-point condition holds because Df(x∗) = 0 implies by use of the
chain rule, that ∇ϕ(0) = 0, and hence t∗(x∗) = 0 for all directions. We now
consider one step within a sweep given by

r : M → M, x �→ μ(Vit
∗(x), x). (8)

Using t∗(x∗) = 0, the derivative of r at x∗ applied to a tangent vector ξ ∈ Tx∗M is

Dr(x)|x=x∗ξ = D1μ(Vi(Dt∗(x)|x=x∗ξ), x∗) + D2μ(0, x∗)ξ (9)
= D1μ(Vi(Dt∗(x)|x=x∗ξ), x∗) + ξ (10)

where Dl denotes the derivative w.r.t. the l-th argument. So the next step is
to calculate Dt∗(x)|x=x∗ξ. Let ek ∈ R

�i be the k-th standard basis vector and
denote

ξk := D1μ(Viek, x) ∈ TxM. (11)

Then the (k, l) entry of Hϕ(0) is Hf (x∗)(ξk, ξl) and the k-th entry of ∇ϕ(0) is
Df(x)ξk. Using the product rule, we have

Dt∗(x)|x=x∗ξ = −(
DHϕ(0)−1ξ

)∇ϕ(0)|x=x∗ − Hϕ(0)−1
(
D∇ϕ(0)|x=x∗ξ

)
(12)

The first summand vanishes since ∇ϕ(0)|x=x∗ = 0. The entries of the vector
on the right-hand side are D(Df(x)|x=x∗ξk)ξ = Hf (x∗)(ξk, ξ). It follows that if
ξ(i) ∈ Vi, i.e. if ξ(i) =

∑
k hkξk is a linear combination of the ξk, then

Dt∗(x)|x=x∗ξ(i) = −Hϕ(0)−1Hϕ(0)|x=x∗

⎡

⎢
⎣

h1,
...

h�i

⎤

⎥
⎦ = −

⎡

⎢
⎣

h1,
...

h�i

⎤

⎥
⎦ , (13)
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so that, by using (10) and the fact that D1μ(Vih, x∗) = ξ(i), the derivative
Dr(x)|x=x∗ annihilates the Vi-component of ξ. On the other hand, if ξ(i),⊥ is
such that Hf (x∗)(ξk, ξ(i),⊥) = 0 for all k, then Dt∗(x)|x=x∗ξ(i),⊥ = 0 and thus

Dr(x)|x=x∗ξ(i),⊥ = ξ(i),⊥. (14)

This shows that the derivative of the i-th step in the Jacobi-Sweep is an orthog-
onal projection with respect to Hf (x∗) onto V⊥

i . Therefore, using the fixed-point
property of x∗ and the chain rule, we conclude that

Ds(x)|x=x∗ξ = 0, (15)

which concludes the proof of Theorem 2.

Remark 1. It is worthwhile to notice that convergence of Jacobi-type algorithms
is strongly dependent on the construction of basic transformations. Local
quadratic convergence can only be attained, when the subspaces in the tangent
space specified by the basic transformations are orthogonal with respect to the
Hessian at a critical point. Unfortunately, both characterization of the Hessian
at critical points and construction of computationally light basic transformations
are non-trivial tasks in general.

3 Applications in Signal Separation

In order to investigate performance of the theoretical results presented in the last
section, we employ the problem of joint matrix diagonalization as an illustrative
and important example. Given a set of m×m real symmetric matrices {Ci}n

i=1,
constructed by Ci = AΛiA

�, for i = 1, . . . , n, where Λi = diag
(
λi1, . . . , λim

) ∈
R

m×m with λij �= 0 for j = 1, . . . , m and A ∈ Gl(m). The problem of estimating
the matrix A given only the set {Ci}n

i=1 leads to finding an X ∈ Gl(m) such
that the matrices Yi = X�CiX are simultaneously diagonalised. In a generic
situation, a joint diagonalizer X can only be determined up to column-wise
permutation and scaling, i.e. if X is a diagonalizer, so is any XDP where D
is an m×m invertible diagonal matrix and P an m×m permutation matrix,
cf. [12] for a uniqueness analysis of non-unitary JMD. To deal with the scaling
ambiguity, we restrict the solutions to the oblique manifold, i.e.

OB(m) :=
{
X ∈R

m×m|ddiag(X�X) = Im, rank X = m
}
, (16)

where ddiag(Z) forms a diagonal matrix, whose diagonal entries are just those
of Z, and Im is the m×m identity matrix.

We employ the popular off-norm function for measuring the diagonality of
matrices, i.e.

f : OB(m) → R, X �→ 1
4

n∑

i=1

∥
∥
∥ off(X�CiX)

∥
∥
∥
2

F
, (17)
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where off(Z) = Z − ddiag(Z) is a matrix by setting the diagonal entries of Z to
zero, and ‖·‖F is the Frobenius norm. In order to develop a block Jacobi algorithm
to minimise the cost function f , we recall firstly a local parameterisation on
OB(m). Let us denote the set of all m×m matrices with all diagonal entries
equal to zero by

off(m) =
{
Z ∈ R

m×m|zii = 0, for i = 1, . . . , m
}
, (18)

then, for every point X ∈ OB(m), the following map

μX : off(m)→OB(m), Z �→X(Im+Z) diag
{

1
‖X(e1+z1)‖ , . . . , 1

‖X(em+zm)‖
}

, (19)

where Z = [z1, . . . , zm] ∈ off(m) and ei is the i-th standard basis vector of Rm, is
a local and smooth parameterisation around X. Let us define the set of matrices,
whose entries are all zero except the (i, j) and (j, i) position, as

Vij :=
{
Z = (zij) ∈ R

m×m|zpq = 0, for (p, q) /∈ {(i, j), (j, i)}}, (20)

with ⊕i�=jVij = off(m). We denote

Vij(X) := { d
d t μX(t · Z)|t=0 |Z ∈ Vij}, (21)

being a predefined vector space decomposition of the tangent space TXOB(m),
i.e. TXOB(m) = ⊕i�=jVij(X).

The results in [4] have shown that the subspaces Vij(X∗) are orthogonal
with respect to Hf (X∗), hence validate the feasibility of construction of a block
Jacobi algorithm with Newton step size selection that is locally quadratically
convergent to an exact joint diagonalizer.
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Fig. 2. Convergence properties of the proposed block Jacobi algorithm.
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The task of our experiment is to jointly diagonalize a set of symmetric matri-
ces {C̃i}n

i=1, constructed by

C̃i = AΛiA
� + εEi, i = 1, . . . , n, (22)

where A ∈ R
m×m is a randomly picked matrix in OB(m), diagonal entries of

Λi are drawn from a uniform distribution on the interval (9, 11), Ei ∈ R
m×m

is the symmetric part of an m × m matrix, whose entries are generated from a
uniform distribution on the unit interval (−0.5, 0.5), representing additive noise,
and ε ∈ R is the noise level. We set m = 5, n = 20, and run six tests in
accordance with increasing noise, by using ε = d × 10−2 where d = 0, . . . , 5.

The convergence of algorithms is measured by the distance of the accumula-
tion point X∗ ∈ OB(m) to the current iterate Xk ∈ OB(m), i.e. by ‖Xk −X∗‖F.
According to Fig. 2, it is clear that our proposed algorithm converges locally
quadratically fast to a joint diagonalizer under the exact nonunitary JMD set-
ting, i.e. ε = 0, while with presence of noise, the algorithm seems to converge
only linearly.
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Abstract. There is already a great number of highly efficient methods
producing components with sparse loadings which significantly facilitates
the interpretation of principal component analysis (PCA). However, they
produce either only orthonormal loadings, or only uncorrelated compo-
nents, or, most frequently, neither of them. To overcome this weakness,
we introduce a new approach to define sparse PCA similar to the Dantzig
selector idea already employed for regression problems. In contrast to the
existing methods, the new approach makes it possible to achieve simulta-
neously nearly uncorrelated sparse components with nearly orthonormal
loadings. The performance of the new method is illustrated on real data
sets. It is demonstrated that the new method outperforms one of the
most popular available methods for sparse PCA in terms of preservation
of principal components properties.

Keywords: Dantzig selector · LASSO · Orthonormal and oblique
component loadings matrices · Optimization on matrix manifolds

1 Introduction

Modern data analysis deals with high-dimensional data sets, which number of
variables is too large to allow an efficient representation. Hence, the first step in
data analysis is traditionally some kind of low-dimensional data representation,
e.g., performing principal component analysis (PCA) [4], and then, followed by
interpretation of the initial variables contributions to the component, namely
the component loadings. However, the classical PCA results involve all p input
variables which complicates the interpretation. For problems with thousands of
variables it is natural to look for solutions using fairly limited part of them,
which, in other words, calls for sparseness. This can be achieved only by modi-
fying the standard PCA to produce sparse component loadings. Let ‖a‖0 denote
the cardinality of a ∈ R

p, i.e., the number of its non-zero entries. Then a is called
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sparse if ‖a‖0 � p. Usually it is more convenient to work with ‖a‖1, which also
promotes sparseness in a, but avoids using discrete variables.

There exist a great number of methods for sparse PCA, and their number
continues to increase. A recent review of different approaches and methods for
sparse PCA is available in a paper of Trendafilov [11]. The existing methods for
sparse PCA have a common weakness: they produce sparse matrices of compo-
nent loadings that are not completely orthonormal, or that the corresponding
components are correlated, or both. Hence, they do not preserve the proper-
ties of the original principal components. Only SCoTLASS [5] and the method
recently proposed by Qi et al. [8] are capable to produce either orthonormal
sparse loadings or uncorrelated components.

Recently, Lu and Zhang [7] consider a novel type of sparse PCA explicitly
controlling the orthonormality of the loadings and the correlations among com-
ponents. They produce nearly uncorrelated components and nearly orthogonal
sparse loadings. Such sparse PCA approximates better the optimal features of
the standard PCA. In their work, the correlation between components is con-
trolled by means of inequality constraints. In this paper we propose another
natural and simple approach to achieve the same goal.

The paper is organized as follows. In the next Sect. 2, the existing methods
for sparse PCA are classified according to the form of the objective function and
the constraints involved in their definitions. It will be seen that there is one way
to define sparse PCA, known as function-constrained form, which is not explored
so far. Section 3 is dedicated to follow this way and define a new sparse PCA.
Finally, the performance of the new method is illustrated on a real large data
set. It is demonstrated that the proposed method outperforms in many occasions
one of the best available methods for sparse PCA, in that it produces solution
with properties very close to the original principal components.

2 Taxonomy of PCA Subject to �1 Constraint (LASSO)

Wright [12] proposed the following taxonomy of problems seeking for sparse
minimizers a of f(a) through the �1 norm:

– Weighted form: min f(a) + τ‖a‖1, for some τ > 0;
– �1-constrained form (variable selection): min f(a) subject to ‖a‖1 ≤ τ ;
– Function-constrained form: min ‖a‖1 subject to f(a) ≤ f̄ .

All three options were explored for regression type of problems when f(a) =
‖Xa−b‖ and X is a given data matrix, e.g., [3,9]. This taxonomy can be restated
accordingly for sparse PCA. For a given p × p correlation matrix R, let f(a) =
a�Ra and consider finding a vector of loadings a, (‖a‖2 = 1), by solving one of
the following:

– Weighted form: max a�Ra − τ‖a‖1, for some τ > 0.
– �1-constrained form (variable selection): max a�Ra subject to ‖a‖1 ≤ τ, τ ∈

[1,
√

p].
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– Function-constrained form: min ‖a‖1 subject to a�Ra ≥ λmax − ε, for some
ε > 0 and with λ the largest eigenvalue of R.

The first two forms were explored in a number of papers. For example, SCoT-
LASS is in the �1-constrained form (variable selection), while SPCA [14] uses
the weighted form to define the sparsification problem. It is interesting that the
function-constrained form has never been used to address PCA sparsification.

Trendafilov [11] adopted the function-constrained approach and considered
several possible definitions of sparse PCA aiming to approximate different fea-
tures of the original PCs. One of these sparse PCA definitions has been identified
to have particularly interesting features, and is considered in details in the next
Sect. 3.

3 Weakly Correlated Sparse Components with Oblique
Loadings

Consider the set of all p×r matrices A with unit length columns, i.e., diag(A�A) =
Ir, where diag(.) of a square matrix produces diagonal matrix with the same main
diagonal. We call this set the oblique manifold OB(p, r) [1,10]. We consider solving
the following matrix optimization problem:

min
OB(p,r)

‖A‖1 + μ‖A�RA − D2‖2F , (1)

where R = X�X, D2 is diagonal matrix whose diagonal entries are dominant
eigenvalues of R, ‖A‖1 =

∑p
i=1

∑r
j=1 |Aij |, and Aij is i-th row j-th column

entry of the matrix of component loadings A. The first term in (1) encourages
the sparseness, while the second term, weighted by a parameter μ, promotes a
solution as close to standard PCA as possible (i.e., the second term promotes
components explaining as much variance as possible).

The components obtained from (1) can be uncorrelated only approximately.
However, this sparse PCA formulation is very interesting, because the resulting
loadings A stay nearly orthonormal and A�RA nearly diagonal. Indeed, let us
consider the Riemannian gradient of h(A) = ‖A�RA − D2‖2F , A ∈ OB(p, r)
with respect to the Euclidean metric 〈U, V 〉 = tr(U�V ). It follows that the
Riemannian gradient is

gradh(A) = ∇h(A) − A diag(A�∇h(A)), (2)

where ∇h(A) = 4RA(A�RA − D2) is the Euclidean gradient of h(A).
By the first order optimality condition gradh(A) = 0 and (2), we have

RA(A�RA − D2) = A diag(A�RA(A�RA − D2)). It follows that

A�RA(A�RA − D2) = (A�A) diag[A�RA(A�RA − D2)]. (3)

It can be shown that, if at the minimum A�RA ≈ D2, then A�A ≈ Ir, where
‘≈’ means approximate with respect to ‖.‖F . Since A�RA = D2 is only possible
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for exact eigenvectors, it cannot be a solution to (1) with the presence of the
‖A‖1 term.

These considerations show that the minimization of ‖A�RA−D2‖F subject
to diag(A�A) = Ir leads to diagonalization of R and orthonormality of A.

In this paper, problem (1) is solved by smoothing its cost function and using
some standard solvers, e.g., Manopt [2]. Specifically, ‖A‖1 is replaced by the

pseudo-Huber loss approximation
∑

ij

(√
A2

ij + ε2 − ε
)
, for some small positive

ε. The parameter ε determines the trade-off between the smoothness of the cost
function and the goodness of the approximation, i.e.,

∑

ij

(√
A2

ij + ε2 − ε
)

→
‖A‖1 as ε → 0. The final problem to solve thus becomes:

min
OB(p,r)

∑

ij

(√
A2

ij + ε2 − ε
)

+ μ‖A�RA − D2‖2F , (4)

In the rest of this work, ε has been fixed to 10−6.

4 Numerical Example

Tests are performed on real DNA methylation data sets using Manopt, a Matlab
toolbox for optimization on manifolds [2]. The data set used is available online on
the NCBI website with the reference number GSE32393 [13]. As a preprocessing
step, 2000 genes are randomly selected and standardized, such that their mean
is equal to 0 and their standard deviation to 1. Three measures are of interest to
evaluate the performances of our method: the variance explained, the orthogo-
nality of the loading factors and the uncorrelation of the resulting components.
Each of these measures is analyzed in regard to the sparseness achieved. For each
run, 10 components were computed, such that A is a 2000 × 10 matrix. While
many runs have been performed, results were so constant that only the mean of
these runs is shown. Results are compared to the method of Journee et al. [6],
which is one of the state of the art methods to perform sparse PCA.

A drawback of our method is that it does not produce exact zero values but
only values that are close to zero. Hence, a threshold th has to be fixed, for the
values below this threshold being reduced to 0. To take this modification into
account, the matrix A was then column-normalized, such that diag(A�A) = I.

First, the sparseness that can be achieved with respect to μ and th is illus-
trated in Fig. 1. As stated above, a large value of μ increases the importance of
the second term in (4) and thus decreases the sparseness.

The ‘trade-off’ curve between the variance explained by the components and
the sparseness of the loading factors is shown in Fig. 2. While the variance of
the components can simply be computed as tr(A�X�XA) for the original PCA,
this measure is not suitable when the new components are correlated, as noted
by Zou et al. [14]. Indeed, since the components are correlated, they ‘share’
some common variance with the measure described above. An adjusted measure,
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Fig. 1. The sparseness of the loading factors, computed as #elements<th

#elements
, is shown with

respect to µ, for different thresholds (th).

proposed by Zou et al. [14], is thus used here. Using the QR decomposition
of the components XA = QR, this measure is computed as tr(R2). Results
for both the non-adjusted (Fig. 2(a)) and the adjusted variance (Fig. 2(b)) are
shown. While the results of Journée’s method look better with the non-adjusted
variance, the difference is small for the adjusted variance. Indeed, because of a
higher correlation between the components for Journée’s method (see below),
more variance explained with the non-adjusted measure is redundant and so
discarded when computing the adjusted variance.

Figure 3 reveals the strengths of our method. First, in Fig. 3(a), the ‘non-
orthogonality’ of the loading factors is computed as ‖ A�A − diag(A�A) ‖F / ‖
diag(A�A) ‖F . A large value indicates that the components are far from orthog-
onal. It can be seen that a high degree of orthogonality is maintained through
any level of sparseness, in contrast to Journée’s method that produces more non-
orthogonal components for high degrees of sparseness. The correlation of the
resulting components is then computed as ‖ A�XX�A − diag(A�XX�A) ‖F
/ ‖ diag(A�XX�A) ‖F (Fig. 3(b)). A high value indicates that the resulting
components are highly correlated. Our method produces also more uncorrelated
components in comparison to Journée’s method.

More research is needed to figure out a more elaborate stopping rule that
relates the unknowns’ convergence to the model parameters. Indeed, since both
the cost function and the gradient depend on μ, it is not straightforward to
determine a standard stopping rule. While some simulations are very fast (< 1 s),
more research should determine whether such a fast computational time can be
reached for every value of μ.



Weakly Correlated Sparse Components with Nearly Orthonormal Loadings 489

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sparseness

no
n−

ad
ju

st
ed

 v
ar

ia
nc

e

th=0.01
th=0.005
th=0.001
GPower, l1−norm
GPower, l0−norm

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sparseness

ad
ju

st
ed

 v
ar

ia
nc

e

th=0.01
th=0.005
th=0.001
GPower, l1−norm
GPower, l0−norm

Fig. 2. The variance of the components, non-adjusted (a) and adjusted (b) plotted in
regards to the sparseness for different thresholds (th). The variance is normalized by
the variance of the components resulting from standard PCA. Results are compared to
the variance of the components of Journée’s method for various degree of sparseness,
both using the l1 and the l0 norm (see [6]).
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Fig. 3. The ‘non-orthogonality’ of the loadings (a) and the correlation of the com-
ponents (b) are shown with respect to the sparseness of the components. Results are
displayed for different thresholds th for our method, and both with the l1 and the l0
norm for Journée’s method.

5 Conclusion

A new approach to solve the sparse PCA problem has been introduced. The
trade-off curve has shown that our method is able to explain a significant part of
the variance even with a high degree of sparseness. However, its strengths lie in
the preservation of the characteristics of the original PCA. Indeed, unlike most
of the existing methods used until now, our method preserves both a high level
of orthogonality between the loading factors and a high uncorrelation between
the resulting components. While experiments at a larger scale are still required,
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tests on a real data set have demonstrated the potential of our method when
orthogonality of the loadings and uncorrelation of the components are required.

Acknowledgements. This paper presents research results of the Belgian Network
DYSCO (Dynamical Systems, Control, and Optimization), funded by the Interuniver-
sity Attraction Poles Programme initiated by the Belgian Science Policy Office. The
authors thank Professor Pierre-Antoine Absil for his advices and the reviewers for their
pertinent comments.

References

1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Man-
ifolds. Princeton University Press, Princeton (2008)

2. Boumal, N., Mishra, B., Absil, P.-A., Sepulchre, R.: Manopt, a Matlab toolbox for
optimization on manifolds. J. Mach. Learn. Res. 15, 1455–1459 (2014)

3. Candès, E.J., Tao, T.: The Dantzig selector: statistical estimation when p is much
larger than n. Ann. Stat. 35, 2313–2351 (2007)

4. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)
5. Jolliffe, I.T., Trendafilov, N.T., Uddin, M.: A modified principal component tech-

nique based on the LASSO. J. Comput. Graph. Stat. 12, 531–547 (2003)
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Abstract. We present a new method to fit smooth paths to a given
set of points on Riemannian manifolds using C1 piecewise-Bézier func-
tions. A property of the method is that, when the manifold reduces to a
Euclidean space, the control points minimize the mean square accelera-
tion of the path. As an application, we focus on data observations that
evolve on certain nonlinear manifolds of importance in medical imag-
ing: the shape manifold for endometrial surface reconstruction; the spe-
cial orthogonal group SO(3) and the special Euclidean group SE(3) for
preoperative MRI-based navigation. Results on real data show that our
method succeeds in meeting the clinical goal: combining different modal-
ities to improve the localization of the endometrial lesions.

Keywords: Path fitting on Riemannian manifolds · Bézier functions ·
Optimization on manifolds · MRI-based navigation · Endometrial surface
reconstruction

1 Introduction

Surface reconstruction problem has been widely studied because of its impor-
tance in different applications such as medical imaging, computer graphics,
mechanical simulations, virtual reality, etc. Particularly, the reconstruction of
surfaces from given 3D point clouds is important since they are frequently used
in medical imaging and computer graphics [4]. For example, one can use a con-
tinuous formulation using PDEs and compute the solution as an implicit surface,
which is usually the zero level set of a sufficiently smooth function. Therefore, one
can control the resulting surface by adding physics-inspired constraints depend-
ing on geometry or external forces [17]. However, when the given data is a set of
curves one needs to find an optimal fitting between them by taking into account
their parametrization and the non-linearity of their spatial evolution. In this
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work, we formulate the problem of reconstructing a surface from a given set of
curves as a smooth path fitting on the space of curves.

Path fitting on manifolds has been addressed in the literature with different
approaches and for various purposes. Generic path fitting methods on manifolds
include splines on manifolds [8], rolling procedures [6], subdivision schemes [10],
gradient descent [13], and geodesic finite elements [15]. Interpolation of rota-
tions (where the manifold M is the special orthogonal group SO(3)) is useful
in robotics for motion planning of rigid bodies and in computer graphics for
the animation of 3D objects [11]. More related to our work, morphing between
shapes can be tackled as an interpolation problem on shape space [5].

With an estimated prevalence of 10 %, endometriosis is one of the most
common clinical problems affecting women of reproductive age [16]. Various
structures can be affected by endometriosis, including the uterosacral ligaments,
rectosigmoid colon, vagina, uterus, and bladder [9]. Generally, the absence of an
accurate preoperative diagnosis leads to unnecessary surgeries even with possible
complications. To reduce the risk of such failure, surgeons need to know exactly
the number, the size, the locations and the depth of infiltration of endometrial
cysts before the intervention. A preoperative mapping of the lesions is crucial for
managing the disease. This mapping can be well defined through medical imag-
ing techniques such as Magnetic Resonance Imaging (MRI) and 2D Transvaginal
Ultrasound (TVUS) [3].

When using these two modalities separately, there is an increased risk of false
negative and false positive, due to their different advantages and inconvenients
[1]. Moreover, they complement each other excellently, as lacking information
from one modality can be provided by the other in terms of spatial, contrast or
temporal resolution. For instance, lesions hard to detect in MRI are revealed at
TVUS acquisition (due to an approximate distance between the probe and the
tissue with relatively free movement). That is why registration is helpful here in
order to show TVUS with lesions into MRI volume.

After TVUS-MRI registration [14], the position p of the ultrasound probe
and its orientation n can be precisely determined within the 3D MRI volume
and around the TVUS curve. They form a certain plane Πn,p. The MRI views
corresponding to the intersections of the MRI volume with the registered planes
Πn,p are used to reproduce the probe movement. As a result, the clinician is able
to explore the MRI volume to search for very close and clear views including
the pelvic organs. We illustrate this idea by fitting a smooth path γ to different
key positions of Πn,p viewed as points on Riemannian manifolds like SO(3)
(rotations) or SE(3) (rotations and translations). For simplicity, we will refer to
the resulting path γ (in both cases) as a preoperative MRI-based navigation to
locate and characterize lesions.

Clinical Context. In practice, TVUS is done on women presenting symptoms
corresponding to the presence of endometrial tissues. When 2D TVUS does not
provide enough information to confirm the diagnosis, MRI is performed. Given
TVUS and MRI, practicians select a set of corresponding landmarks to define
surrounding organ boundaries in both images, manually. These anatomical cor-
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respondences between structures on MRI and TVUS are then used to measure
and locate lesions, separately, which is still a challenging task.

The rest of this paper is organized as follows. Section 2 describes the for-
mulation of our path fitting method. Section 3 presents two applications of this
method: (i) MRI surface reconstruction as a path on shape manifold and (ii)
navigation in the MRI volume as a path on SE(3). We close this paper with a
brief summary in Sect. 4.

2 Problem Formulation

Given a finite set of points p0, . . . , pn at time instants t0, . . . , tn on a Riemannian
manifold M, our goal is to construct a smooth path γ that interpolates pi at ti
for i = 0, . . . , n. When the manifold M reduces to the Euclidean space R

m, we
propose a method that generates a piecewise-Bézier C1 path with minimal mean
squared acceleration. This method improves on the technique recently proposed
in [5], where the choice of the path velocity direction at the interpolation points
was suboptimal even in the Euclidean case. Let the function t �→ βk(t; b0, . . . , bk)
denote the Bézier curve of order k and b0, . . . , bk the control points. For sim-
plicity, we set time instants ti = i with straightforward extension to general
timestamps. In this work, we only use Bézier curves of degree 2 and 3, expressed
in R

m as:

β2(t; b0, b1, b2) = b0(1 − t)2 + 2b1t(1 − t) + b2t
2 (1)

β3(t; b0, b1, b2, b3) = b0(1 − t)3 + 3b1t(1 − t)2 + 3b2t
2(1 − t) + b3t

3. (2)

Using these polynomials, we construct a C1 curve γ : [0, n] → R
m (we call it a

piecewise-Bézier curve) consisting of Bézier curves of degree 2 for the extremal
segments and of degree 3 for the others:

γ(t) =

⎧
⎪⎨

⎪⎩

β2(t; p0, b−
1 , p1) if t ∈ [0, 1]

β3(t − (i − 1); pi−1, b
+
i−1, b

−
i , pi) if t ∈ [i − 1, i], i=2,. . . ,n-1

β2(t − (n − 1); pn−1, b
+
n−1, pn) if t ∈ [n − 1, n],

(3)

where b+i and b−
i are the control points respectively on the right and left hand

side of the interpolation point pi. One can observe that this formulation satisfies
the interpolation conditions γ(ti) = pi. The differentiability condition of the
curve is ensured by imposing velocities to be equal on the left and right of the
interpolation points pis, which allows us to express b+i in terms of b−

i :

b+1 = 5
3p1 − 2

3b−
1 ,

b+i = 2pi − b−
i i = 2, . . . , n − 2,

b+n−1 = 5
2pn−1 − 3

2b−
n−1.

(4)

The resulting optimization problem is an unconstrained minimization with
b−
i as variables and the mean square acceleration of the piecewise-Bézier curve

as the objective function, defined as follows:
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∫ 1

0

‖β̈2(t; p0, b−
1 , p1)‖2dt +

n−2∑

i=1

∫ 1

0

‖β̈3(t; pi−1, b
+
i−1, b

−
i , pi)‖2dt

+
∫ 1

0

‖β̈2(t; pn−1, b
+
n−1, pn)‖2dt. (5)

As the Bézier segments are linear functions of the control points, the objective
function is quadratic. The optimal solution is then computed as a critical point
of the gradient, which gives rise to a linear system of the form: AX = CP where
X =

[
b−
1 . . . b−

n−1

]T ∈ R
n−1×m, P =

[
p0 . . . pn

]T ∈ R
n+1×m, A ∈ R

n−1×n−1

and C ∈ R
n−1×n+1 are tridiagonal matrices with coefficients:

A(1,1:2) =
[
64 24

]
, (6)

A(2,1:3) =
[
24 144 36

]
, (7)

A(i,i−1:i+1) =
[
36 144 36

]
, i = 3 : n − 2 (8)

A(n−1,n−2:n−1) =
[
36 144

]
(9)

and

C(1,1:2) =
[
16 72

]
, (10)

C(2,2:3) =
[
60 144

]
, (11)

C(i,i:i+1) =
[
72 144

]
, i = 3 : n − 2 (12)

C(n−1,n−1:n+1) =
[
72 132 −24

]
. (13)

Since A is invertible, the unique solution is given by:

X = A−1CP = DP with
n∑

j=0

Dij = 1,∀i. (14)

We generalize this result on a Riemannian submanifold M embedded in a
Euclidean space E . In order to make this possible for a Riemannian manifold M,
one needs the tangent space Tp(M) of M at a given point p, the Riemannian
exponential map Expp, and its inverse Logp (see [2,12, Sect. 4] for a formal defin-
ition on specific manifolds). Bézier curves (1) and (2) are generalized by means of
the Riemannian De Casteljau’s algorithm (see, e.g., [5] for the literature). Condi-
tions (4), of the form b+i = pi + α(b−

i − pi) generalize to bi = Exppi
(αLogpi

(b−
i ))

and ensure that γ on M is C1. It then remains to generalize (14) for which we
propose two approaches:

1. method 1: In order to solve the fitting problem on a linear space as for
the Euclidean case, we proceed as follows. We initially choose an arbitrary
point among the pis that we will call a root point, e.g., p0. Next we map the
rest of the given data points to Tp0(M) as p̃i = Logp0

(pi). Then we solve
the linear system X̃ = DP̃ . Finally, we project the solution X̃ back to M
as b−

i = Expp0
(x̃i). Numerically, the choice of the root point may affect the

quality of the solution.
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2. method 2: In order to avoid the dependance on the choice of a single root
point, an alternative is to choose pi as the root point for row i of (14). Thus,
for each i = 1 . . . n − 1 we map the rest of data points into the tangent
space Tpi

(M) using the logarithmic map Logpi
. The mapped data are then

given by P̃ =
[
Logpi

(p0) . . . Logpi
(pn)

]
and the solution is given by x̃i =

Logpi
(b−

i ) =
∑n

j=0 DijLogpi
(pj). Therefore, each x̃i is mapped back to M as

b−
i = Exppi

(x̃i).

As stated earlier, our method minimizes the mean square acceleration objec-
tive when M is a Euclidean space. This follows from the fact that, when M
is a Euclidean space, we have Logp(b) = b − p; this, along with the property∑n

j=0 Dij = 1, makes the root point cancel out and recover (14). Even if they
seem to provide good solutions, the proposed generalizations of (14) do not guar-
antee a minimal mean square acceleration when M is nonlinear. Nevertheless,
we will use the second method for the experiments as it was observed to be more
efficient than the first one, at least when M is the unit sphere S2, the special
orthogonal group SO(3), or the special Euclidean group SE(3).

3 Experimental Results

In this section, we present two different applications of our framework. On
both cases, results are given using real data images obtained from patients with
endometriosis characterized by different localizations and depths of infiltration.
Figure 1(a,b) shows examples of corresponding landmark curves (uterus, rectum,
lesions) in TVUS and MR images. The curves in TVUS have been deformed along
during the exam due to the transducer’s pressure as shown in Fig. 2(a).

3.1 Endometrial Surface Reconstruction

As a first application, we performed our path fitting method to reconstruct the
endometrial surface SMRI from curves in three steps. First, a radiologist was
asked to select different slices (from 4 to 7) and segment curves as boundaries of
an interest zone on each slice. Second, we represented each curve as a point on
the shape manifold. Note that we aligned and fixed the starting point of each
curve (Fig. 1(f)). As given time indexes that have spatial meaning in this case,
we used the z−values for each curve from its corresponding slice. Third, we used
a modified version of [7] to compute a geodesic path between any two points on
shape space. Finally, we applied our method as detailed in Sect. 2 to construct
SMRI (Fig. 1(c) and (h)) as a C1-fitting path between curves (see ‖γ̇(t)‖ in
Fig. 1(d)). To give an idea about the quality of the reconstructed surface, we
show an example of SMRI constructed from a set of 3D curves (f) using a linear
interpolation between them (g) and our method (h).
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Fig. 1. Application 1: from TVUS and MR images (a,b), we reconstruct the MRI
surface (c) as a path γ interpolating 4 key curves extracted on MRI slices. The velocity
of γ is continuous (d). From the 6 key curves (e) with fixed starting points (f) we
reconstruct (g) as a linear interpolation and (h) with our method.

Fig. 2. (a) An illustration of TVUS movement during the exam and (b) is an example
of the intersection between MRI volume and a plane Πn,p by means of interpolation.
(c) and (d) Are two examples of fitting paths on SO(3) and SE(3), respectively.

3.2 MRI-based Navigation

The problem of 2D-3D TVUS-MRI registration was recently addressed by Samir
et al. in [14]. The basic idea of their method is a follows. First, they manually
segment the cylindrical endometrial tissue surface SMRI from the MRI image
and the planar contour from the corresponding TVUS image. This registration
provides a one-to-one correspondence of curves between TVUS and MRI. We
will refer to the resulting intersecting plane by Πn,p (Fig. 2(b)).

To look for a very close and more clear views including the pelvic organs
in the MRI volume, one has to consider the movement of the probe (rotations
only or rotations and translations) to search around Πn,p. We illustrate this idea
by fitting smooth paths of different key positions of Πn,p on SO(3) (rotations:
Fig. 2(c)) and on SE(3) (rotations and translations: Fig. 2(d)). In both cases,
we consider the resulting path γ as a preoperative MRI-based navigation. It is
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Fig. 3. Application 2: examples of uniformly sampled frames from MRI navigation
obtained as a fitting on SE(3).

clear from Fig. 3 that such navigation has more chances to locate the extent of
lesions than TVUS and MRI when used separately. This idea is illustrated in
Fig. 3(frames (2, 4, 6, 9)) where new views as points from γ provide more accurate
characterization of the lesion. In this case, the red coloured areas denotes the
region of interest (delineated by the expert) which were not clear enough or non
visible on sagittal, coronal, and axial views.

4 Summary

In this work, we have proposed a new Riemannian framework for a MR-based
navigation system to locate and characterize endometrial tissues in order to
improve the preoperative diagnosis. The information is available in the form of
landmark curves (extended to surfaces) in the 3D MRI and curves in the 2D
TVUS images. Our approach embeds the TVUS intersecting plane into MRI
and use a new path fitting method to construct an MRI-based navigation. This
way, we have reached very close and more clear views including the pelvic organs
in the MRI volume.
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Abstract. The novel Riemannian view on shape optimization intro-
duced in [14] is extended to a Lagrange–Newton as well as a quasi–
Newton approach for PDE constrained shape optimization problems.
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1 Introduction

Shape optimization problems arise frequently in technological processes which
are modeled in the form of partial differential equations as for example in [2,8]. In
many practical circumstances, the shape under investigation is parametrized by
finitely many parameters, which on the one hand allows the application of stan-
dard optimization approaches, but on the other hand limits the space of reach-
able shapes unnecessarily. Shape calculus which has been the subject of several
monographs [5,10,17] presents a way out of that dilemma. However, so far it is
mainly applied in the form of gradient descent methods, which can be shown
to converge. The major difference between shape optimization and the standard
PDE constrained optimization framework is the lack of the linear space structure
in shape spaces. If one cannot use a linear space structure, then the next best
structure is the Riemannian manifold structure as discussed for shape spaces
for example in [9]. The publication [14] makes a link between shape calculus
and shape manifolds and thus enables the usage of optimization techniques on
manifolds in the context of shape optimization.

In this paper we consider problems of finding the interfaces of two subdo-
mains. It is organized in the following way. In the first part of this paper we
consider an elliptic (Sect. 2) and in the second part a parabolic interface shape
optimization problem (Sect. 3). Section 2 presents a vector bundle framework
[15] based on the Riemannian framework established in [14], which enables the
discussion of Lagrange–Newton methods within the shape calculus framework
for PDE constrained shape optimization. Newton–type methods have been used
in shape optimization since many years, e.g. [7,12]. Often, the unknown diffusiv-
ity in diffusive processes is structured by piecewise constant patches. Section 3
is devoted to efficient methods for the determination of such structured diffu-
sion parameters by exploiting shape calculus. Quasi–Newton methods on general
c© Springer International Publishing Switzerland 2015
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manifolds have already been discussed in [1,6,13]. Here, we specify them for the
particular case of shape manifolds. Finally, Sect. 4 discusses numerical results for
the inverse problem of finding the interfaces of two subdomains.

The methodology and algorithm derived in this paper applies for example to
the problem of inversely determining cell shapes in the human skin as investi-
gated in [11].

2 A Lagrange–Newton Approach on Riemannian
Manifolds

In the first part of this section we formulate a Lagrange–Newton approach for
PDE constrained shape optimiziation problems which is based on Riemannian
vector space bundles. Then, we exemplify these theoretical discussions to an
example which is motivated by electrical impedance tomography.

2.1 Riemannian Vector Bundle Framework

Let (M, g) denote a Riemannian manifold and Ω(u) the interior of a shape
u ∈ M . We consider the following equality constrained optimization problem

min
(y,u)∈E

J(y, u), J : E → R (1)

s.t. au(y, p) = bu(p), ∀p ∈ H (2)

where H is a given Hilbert space H(u) such that E := {(H(u), u) : u ∈ M} is
the total space of a vector bundle (E, π,M), au(·, ·) is a bilinear form and bu(·)
a linear form defined on each fiber H.

The Lagrangian of the minimization problem (1–2) is defined as

L (y, u, p) := J(y, u) + au(y, p) − bu(p) (3)

where (y, u, p) ∈ F := {(H(u), u,H(u)) |u ∈ M}. Its Gradient gradL is based
on the scalar product on TF with T(y,u,p)F ∼= H(u) × TyM × H(u) and its
Hessian HessL on the Riemannian connection on F . For more details we refer
the reader to [15].

Let (ŷ, û) ∈ E solve the optimization problem (1–2). Then, the variational
problem which we get by differentiating L with respect to y is given by

aû(z, p) = − ∂

∂y
J(ŷ, û)z , ∀z ∈ H(û) (4)

and the design problem which we get by differentiating L with respect to u by

∂

∂u

∣
∣
∣
u=û

[J(ŷ, u) + au(ŷ, p̂) − bu(p̂)] w = 0 , ∀w ∈ TûM (5)
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where p̂ ∈ H solves (4). If we differentiate L with respect to p, we get the
state equation. These three (KKT) conditions could be collected in the following
condition:

DL (ŷ, û, p̂)h = 0 , ∀h ∈ T(y,u,p)F (6)

The scalar product on TF can be used to define the gradient of the Lagrangian
gradL ∈ TF as a Riesz representation by the condition

〈gradL , h〉T(y,u,p)F
:= DL (y, u, p)h , ∀h ∈ T(y,u,p)F. (7)

Now, similar to standard nonlinear programming we can solve the problem of
finding (y, u, p) ∈ F with gradL (y, u, p) = 0 as a means to find solutions to
the optimization problem (1–2). This nonlinear problem has exactly the form of
the root finding problems discussed in [14]. Exploiting the Riemannian structure
on TF , we can formulate a Newton iteration involving the Riemannian Hessian
which is based on the resulting Riemannian connection. In each iteration we
have to compute the increment Δξ = (z, w, q)T as solution of

HessL (y, u, p)Δξ = −gradL (y, u, p). (8)

It is advantageous to solve Eq. (8) in a weak formulation, i.e., in detail, the
following equations have to be satisfied for all h = (z̄, w̄, q̄)T ∈ T(y,u,p)F :

H11(z, z̄)+H12(w, z̄)+H13(q, z̄) = −au(z̄, p)− ∂

∂y
J(y, u)z̄ (9)

H21(z, w̄)+H22(w, w̄)+H23(q, w̄) = − ∂

∂u
[J(y, u)+au(y, p)− bu(p)]w̄ (10)

H31(z, q̄)+H32(w, q̄) + H33(q, q̄) = −au(y, q̄)+ bu(q̄) (11)

where the expressions Hij (i = 1, 2, 3) can be found in [15]. A key observation in
[14] is that the expression H22(w, w̄) is symmetric in the solution of the shape
optimization problem. This motivates a shape–SQP method, where away from
the solution only expressions in H22(w, w̄) are used which are nonzero at the
solution. Its basis is the following observation:

If the term H22(w, w̄) is replaced by an approximation Ĥ22(w, w̄), which
omits all terms in H22(w, w̄), which are zero at the solution and if the reduced
Hessian of HessL built with this approximation is coercive, Eq. (8) or Eqs.
(9–11) are equivalent to the linear–quadratic problem

min
(z,w)

1
2

(
H11(z, z)+2H12(w, z)+ Ĥ22(w,w)

)
+

∂

∂y
J(y, u)z +

∂

∂u
J(y, u)w (12)

s.t. au(z, q̄)+
∂

∂u
[au(y, q̄)− bu(q̄)]w = −au(y, q̄)+ bu(q̄) , ∀q̄ ∈ H(u) (13)

where the adjoint variable to the constraint (13) is just p + q. We also omit
terms in H11 and H12, which are zero, when evaluated at the solution of the
optimization problems. Nevertheless, quadratic convergence of the resulting SQP
method is to be expected and indeed observed in Sect. 4.
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2.2 Application of the Riemannian Vector Bundle Framework

We consider a domain Ω(u) := (0, 1)2 ⊂ R2 which is split into the two subdo-
mains Ω1(u), Ω2(u) ⊂ Ω(u) such that ∂Ω1(u) ∩ ∂Ω2(U) = u and Ω1(u) ∪· u ∪·
Ω2(u) = Ω(u) where ∪· denotes the disjoint union. The interface u is an element
of the manifold

B0
e ([0, 1],R2) := Emb0([0, 1],R2)/Diff0([0, 1]) (14)

i.e., an element of the set of all equivalence classes of the set of embeddings

Emb0([0, 1],R2) := {φ ∈ C∞([0, 1],R2) | φ(0) = (0.5, 0), φ(1) = (0.5, 1),
φ injective immersion} (15)

where the equivalence relation is defined by the set of all C∞ re–parametrizations,
i.e., by the set of all diffeomorphisms

Diff0([0, 1],R2) := {φ : [0, 1] → R2 | φ(0) = (0.5, 0), φ(1) = (0.5, 1),
φ diffeomorphism}.

(16)

The construction of the domain Ω(u) from the interface u ∈ B0
e ([0, 1],R2) is

illustrated in Fig. 1.
The PDE constrained shape optimization problem is given in strong form by

min
u

J(y, u) ≡ 1
2

∫

Ω(u)

(y − ȳ)2dx + μ

∫

u

1ds (17)

s.t. − �y = f in Ω(u) (18)
y = 0 on ∂Ω(u) (19)

where f ≡ f1 = const. in Ω1(u), f ≡ f2 = const. in Ω2(u). The perimeter
regularization with μ > 0 in the objective (17) is a frequently used means to
overcome ill–posedness of the optimization problem (e.g. [3]). Let n be the unit
outer normal to Ω1(u) at u. Furthermore, we have interface conditions at the
interface u. We formulate explicitly the continuity of the state and of the flux at
the boundary u as

[[y]] = 0 ,

[[
∂y

∂n

]]

= 0 on u (20)

where the jump symbol [[·]] denotes the discontinuity across the interface u and
is defined by [[v]] := v1 − v2 where v1 := v

∣
∣
∣
Ω1

and v2 := v
∣
∣
∣
Ω2

.

The boundary value problem (18–20) is written in weak form as

au(y, p) = bu(p) , ∀p ∈ H1
0 (Ω(u)) (21)

where

au(y, p) :=
∫

Ω(u)

∇yT ∇pdx −
∫

u

[[
∂y

∂n
p

]]

ds (22)

bu(p) :=
∫

Ω(u)

fpdx. (23)
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Now, F from the previous subsection takes the specific form

F :=
{
(H1

0 (Ω(u)), u,H1
0 (Ω(u))) |u ∈ B0

e ([0, 1],R2)
}

. (24)

For the convenience of the reader we only state the quadratic problem to the
minimization problem (17–19). Its derivation is very technical and achieved by
an application of the theorem of Correa and Seeger [4, Theorem 2.1]. We refer
the reader for its derivation to [15]. Let κ denote the curvature corresponding to
n and ∂

∂τ the derivative tangential to u. If the optimal solution is a straight line
connection of two fixed endpoints, then the QP (12, 13) is given strong form as
the following optimal control problem:

min
(z,w)

F (z, w, y, p) :=
∫

Ω(u)

z2

2
+ (y − ȳ)z dx +

∫

u

μκw − �f� pw ds

+
1
2

∫

u

μ

(
∂w

∂τ

)2

− �f�κpw2 ds

(25)

s.t. − �z = �y + f in Ω(u) (26)
∂z

∂n
= f1w, − ∂z

∂n
= f2w on u (27)

z = 0 on ∂Ω(u) (28)

The adjoint problem to this optimal control problem is given by

−�q = −z − (y − ȳ) in Ω(u) (29)
q = 0 on ∂Ω(u) (30)

and the resulting design equation for the optimal control problem (25–28) by

0 = − [[f ]] (p + κpw + q) + μκ − μ
∂2w

∂τ2
on u. (31)

3 A Quasi–Newton Approach

In this section we first formulate the minimization problem, a parabolic interface
problem, and its shape derivative. The second part of this section presents a
limited memory BFGS quasi–Newton technique in the shape space.

3.1 Problem Formulation and Shape Derivative

We will denote by u the interior boundary of a bounded domain X(u) ⊂ R2 with
fixed Lipschitz boundary Γout := ∂X(u). The interior boundary u is assumed to
be smooth and variable. Moreover, let this domain X(u) split into two disjoint
subdomains X1(u),X2(u) ⊂ X(u) such that X1(u)∪· u∪· X2(u) = X(u), Γbottom∪·
Γleft∪· Γright∪· Γtop = ∂X(u) (=: Γout) and ∂X1(u)∩∂X2(u) = u where ∪· denotes
the disjoint union. An example of such a domain is illustrated in Fig. 1.
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The parabolic PDE constrained shape optimization problem is given by

min
u

J(y, u) :=
∫

X(u)

∫ T

0

(y − ȳ)2dtdx + μ

∫

u

1ds (32)

s.t.
∂y

∂t
− div(k∇y) = f in X(u) × (0, T ] (33)

y = 1 on Γtop × (0, T ] (34)
∂y

∂n
= 0 on (Γbottom ∪ Γleft ∪ Γright) × (0, T ] (35)

y = y0 in X(u) × {0} (36)

where k ≡ k1 = const. in X1(u) × (0, T ], k ≡ k2 = const. in X2(u) × (0, T ] and
n denotes the unit outer normal to X2(u) at u. As mentioned in the previous
section, the perimeter regularization with μ > 0 in the objective (32) is used to
overcome ill–posedness of the optimization problem. We formulate explicitly the
continuity of the state and the flux at u as

[[y]] = 0,
[[

k
∂y

∂n

]]

= 0 on u × (0, T ] (37)

where the jump �·� is defined as in Sect. 2. The shape derivative of J in the
direction of a continuous vector field V is given by

dJ(y, u)[V ] =
∫

u

[∫ T

0

〈V, n〉
[[

−2k
∂y

∂n

∂p

∂n
+ k∇yT ∇p

]]

dt + 〈V, n〉μκ

]

ds (38)

where κ denotes the curvature corresponding to the normal n. Its derivation is
very technical. As in the elliptic case considered in the previous section, it is
achieved by an application of the theorem of Correa and Seeger [4, Theorem
2.1]. For its derivation we refer the reader to [16].

Fig. 1. Example of the domains Ω(u) and X(u)

3.2 Riemannian Limited Memory BFGS Update

As pointed out in [14], shape optimization can be viewed as optimization on
Riemannian shape manifolds and resulting optimization methods can be con-
structed and analyzed within this framework which combines algorithmic ideas
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from [1] with the differential geometric point of view established in [9]. As in [14],
we study connected and compact subsets X(u) of R2 with X(u) �= ∅ and C∞

boundary c = u. In [9], this set of smooth boundary curves c is characterized by
Be(S1,R2) := Emb(S1,R2)/Diff(S1), where Emb(S1,R2) denotes the set of all
C∞ embeddings of S1 into the plane and Diff(S1) the set of all diffeomorphisms
of S1 into itself. A particular point on the manifold Be(S1,R2) is represented by
a curve c : S1 � θ �→ c(θ) ∈ R2. Because of the equivalence relation (Diff(S1)),
the tangent space is isomorphic to the set of all normal C∞ vector fields along
c, i.e., TcBe

∼= {h | h = αn, α ∈ C∞(S1,R)} where n is the unit exterior normal
field of the shape defined by the boundary u = c such that n(θ) ⊥ c′ for all
θ ∈ S1 and c′ denotes the circumferential derivative as in [9]. For our discussion,
we pick the following Sobolev metric family of [9] which defines a Riemannian
metric on Be for A > 0 :

g1 : TcBe × TcBe → R, (h, k) �→
∫

c

αβ + Aα′β′ds = ((I − A�c)α, β)L2(c) (39)

where �c denotes the Laplace–Beltrami operator on the surface c.
The application of quasi–Newton methods is based on the secant condition,

which can be formulated on the Riemannian manifold Be analogously to [1]. In
standard formulation, update formulas require the storage of the whole conver-
gence history up to the current iteration. Limited memory update techniques
have been developed, in order to reduce the amount of storage. In our situation,
a BFGS update Hk of HessJ(ck) can be formulated in the following way:

ρk ← 1
g(wk,sk)

, q ← gradJ(ck)
for i = k − 1, . . . , k − m do

si ← Tsi, wi ← Twi, αi ← ρi g(si, q), q ← q − αidi

end for
z ← gradJ(ck), q ← g(wk−1,sk−1)

g(wk−1,wk−1)
gradJ(ck)

for i = k − m, . . . , k − 1 do
βi ← ρi g(wi, z), q ← q + (αi − βi) si

end for
return q = H−1

k gradJ(ck)
where sk denotes the distance between iterated shapes, wk the difference of
iterated Riemannian shape gradients, T the vector transport of elements in tan-
gential space to updated shape and the memory contains only m shape gradi-
ents. One should note however, that the computation of each gradient involves
the solution of an elliptic equation on the surface c due to the Sobolev met-
ric. I.e., if the shape derivative is given in the form dJ [V ] =

∫
c
γ 〈V, n〉 ds, then

the Riemannian gradient is given as the normal vector field gradJ = gn with
(id − A�c)g = γ.

4 Numerical Results and Implementation Details

The numerical results to the example of the Lagrange–Newton approach of
Sect. 2 are given in Sect. 4.1. The second part of this section discusses numerical
results for the inverse problem of Sect. 3.
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4.1 Lagrange–Newton Approach

We solve the optimal control problem (25–28) by employing a CG–iteration for
the reduced problem (31), i.e., we iterate over the variable w. Each time the CG–
iteration needs a residual of Eq. (31) from wk. We compute the state variable
zk from (26–28) and then the adjoint variable qk from (29, 30), which enables
the evaluation of the residual

rk := − [[f ]]
(
p + κpwk + qk

)
+ μκ − μ

∂2wk

∂τ2
. (40)

In this way we create an iterative solution technique very similar to SQP tech-
niques known from linear spaces by using the QP (25–28) away from the optimal
solution as a means to determine the step in the shape normal direction.

The particular values for the parameters are chosen as f1 = 1000 and f2 = 1
and the regularization parameter as μ = 10. The data ȳ are generated from a
solution of the state Eqs. (18, 19) with u being the straight line connection of
the points (0.5, 0) and (0.5, 1). The starting point of our iterations is described
by a B–spline defined by the two control points (0.6, 0.7) and (0.4, 0.3). We built
three unstructured tetrahedral grids Ω1

h, Ω2
h and Ω3

h with roughly 6000, 24000
and 98000 triangles. In each iteration, the volume mesh is deformed according
to the elasticity equation. The following table gives the distances of each shape
to the solution approximated by dist(uk, u∗) :=

∫
u∗

∣
∣
〈
uk, e1

〉 − 1
2

∣
∣ ds where u∗

denotes the solution shape and e1 = (1, 0) is the first unit vector: This table

It.–No. Ω1
h Ω2

h Ω3
h

0 0.0705945 0.070637 0.0706476

1 0.0043115 0.004104 0.0040465

2 0.0003941 0.000104 0.0000645

demonstrates that quadratic convergence can be observed on the finest mesh,
but also that the mesh resolution has a strong influence on the convergence
properties revealed.

4.2 Quasi–Newton Approach

We test the algorithm developed in Sect. 3 with the problem (17–19) in the
domain X(u) = [−1, 1]2. First, we build artificial data ȳ, by solving the state
equation for the setting X̄2(u) := {x : ‖x‖2 ≤ 0.5}. Afterwards, we choose
another initial domain X1(u) and X2(u). Figure 2 illustrates the interior bound-
ary u around the initial domain X2(u) and the target domain X̄2(u).

We choose the values for the parameters as k1 = 1 and k2 = 0.001 and a
regularization parameter of μ = 0.0001. The final time of simulation is T = 20.
In order to solve the boundary value problem (33–36) we use standard linear
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Fig. 2. Initial and final shape geometry as well as the convergence history of different
BFGS strategies compared to a pure gradient method

finite elements. Furthermore, we choose the implicit Euler method for the tem-
poral discretization. The interval [0, T ] is therefore divided by 30 equidistantly
distributed time steps.

The measurements of convergence rates ideally has to be performed in terms
of the geodesic distance which is a highly expensive operation. In the discrete
setting we therefore compute for each node of the iterated shape cj the shortest
distance to the optimal solution ĉ in normal direction. We then form the L2–
norm of this distance field over ĉ, which is used to measure the convergence. It
should be mentioned that the cost of this operation is quadratic with respect
to the number of nodes on the surface. Starting in one node on cj in normal
direction, the determination of a point of intersection with ĉ requires to check
all boundary segments. This is the reason why we restrict our numerical results
to 2D computations. Following this approach, Fig. 2 visualizes the convergence
history of different BFGS strategies compared to a pure gradient method. It
can clearly be seen that the BFGS methods are superior to the gradient based
method. Furthermore, we partly obtain superlinear convergence in the BFGS
case. It is yet surprising that, in this particular test case, there is hardly any
difference between the number of stored gradients in the limited memory BFGS.

5 Conclusions

The novelties of this paper lie in the generalizations of the Riemannian shape cal-
culus framework in [14] to Lagrange–Newton and quasi–Newton approaches for
PDE constrained shape optimization problems. It is shown that this approaches
are viable and lead to computational methods with superior convergence prop-
erties, when compared to only linearly converging standard steepest descent
methods. We observe very fast convergence to the level of the approximation
error – and this without any line–search. These promising results are to be
extended to more practically challenging problems in a large–scale framework in
subsequent papers. Moreover, as observed during the computations, the shape
deformation sometimes leads to shapes, where normal vectors can no longer be
reliably evaluated. Provisions for those cases have to be developed.
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Abstract. In 1901 Henri Poincaré proposed a new set of equations for
mechanics. These equations are a generalization of Lagrange equations
to a system whose configuration space is a Lie group, which is not neces-
sarily commutative. Since then, this result has been extensively refined
by the Lagrangian reduction theory. In this article, we show the relations
between these equations and continuous Cosserat media, i.e. media for
which the conventional model of point particle is replaced by a rigid body
of small volume named microstructure. In particular, we will see that the
usual shell balance equations of nonlinear structural dynamics can be
easily derived from the Poincaré’s result. This framework is illustrated
through the simulation of a simplified model of cephalopod swimming.

1 Introduction

The aim of this article is to contribute to establish the relations between the
model of Cosserat media [1] and a set of equations first introduced by H. Poincaré
[2] which became over time the corner stone of the Lagrangian reduction the-
ory [3,4]. Though they may seem abstract at first, these equations are in fact
a powerful tool for deriving blindly the balance equations of Cosserat media.
Furthermore, by revealing the intrinsically geometric nature of these media,
they are of great assistance in the implementation of a numerical “geometri-
cally exact approach” of finite elements [5]. We established in [6] the relation
between Cosserat beams and Poincaré equations. This requires their extension
to field theory, as proposed in [7,8]. Here we show that these equations can be
applied to two-dimensional Cosserat media, to recover the so called geometrically
exact balance equations of shells in finite transformations and small strains. In
a second step, we will briefly illustrate the general Poincaré-Cosserat picture by
applying it to an axi-symmetric shell modelling the mantle of cephalopods, i.e.,
the open soft cavity that these animals contract and dilate for jet propulsion, a
topic which is of great interest in the field of soft bio-robotics [9].

2 Poincaré Equations of a Classical Mechanical System

We consider a mechanical system with a configuration group G of transforma-
tions g. If the system is free, its lagrangian L(g, ġ) (with dg/dt = ġ) is invariant
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 511–518, 2015.
DOI: 10.1007/978-3-319-25040-3 55



512 F. Boyer and F. Renda

under any change of inertial frame, and L(g, ġ) = L(g−1g, g−1ġ) = l(η) with
η ∈ g and l the reduced Lagrangian in the Lie algebra g. Poincaré applies the
Hamilton principle to the action

∫ t2
t1

l(η)dt with no use of the group’s para-
meters, but rather by constraining the variations δζ = g−1δg ∈ g to satisfy
δη = d(δζ)/dt + adη(δζ). Then, applying the usual variational calculus leads to
the equations:

d

dt

(
∂l

∂η

)

− ad∗
η

(
∂l

∂η

)

= 0. (1)

These equations named “Poincaré” or “Euler-Poincaré” represent a balance of
conjugate momenta in g∗ and have to be supplemented with the reconstruction
equations ġ = gη.

3 Poincaré Equations of a Cosserat Medium

Let us consider a three-dimensional body B, i.e. a set of material points X of
R

3 labelled by 3 parameters {XI}I=1,2,3 in a Cartesian frame (O,E1, E2, E3)
we call the material frame. A configuration of B is an orientation preserving
embedding Φ : B → E = R

3. Using simplified notations, we call Φ(B) = {x =
Φ(X)/X ∈ B} the current configuration of the body. The ambient space E is
endowed with an orthonormal inertial (o, e1, e2, e3) relative to which a vector
x ∈ E has the expansion x = xiei. Among all the possible configurations of B,
we distinguish one of them Φo(B), called the reference configuration, in which B
is internally at rest. In practise we take (O,E1, E2, E3) = (o, e1, e2, e3) and will
interchangeably speak of an inertial or material frame, depending on the context.
In the subsequent developments, B is a Cosserat medium, i.e. a medium for which
we can define a material p-dimensional subspace D of B, which can be B itself,
in each point of which, a Lie group G of rigid body mechanics (SO(3), SE(2),
SE(3)...) acts on a subspace M of B, named “micro-structure”, to generate all
the configurations Φ(B). The parameterization of B is chosen in such a manner
that D is coordinatized by {Xα}α=1,2..p, with 1 ≤ p ≤ 3. As a result, the
configuration space of such a medium, can be intrinsically defined as the set of
maps:

C = {g : (X1,X2, ...Xp) ∈ D �→ g(X1,X2, ...Xp) ∈ G}. (2)

Following Poincaré’s approach, a Cosserat medium B submitted to a set of exter-
nal forces is governed by the extended Hamilton’s principle, which can be stated
directly on the definition (2) of C (α running from 1 to p), as:

δ

∫ t2

t1

∫ ∫

...

∫

D
L

(

g,
∂g

∂t
,

∂g

∂Xα

)
√

|ho|dX1dX2...dXpdt = −
∫ t2

t1

δWextdt,

(3)
for any δg = gδζ, where δζ ∈ g is a field of material variation of g, achieved
while t and all the Xα are maintained fixed and such that δζ(t1) = δζ(t2) = 0.
In (3), L is the density of the Lagrangian of B per unit of metric volume√|ho|dX1dX2...dXp of Φo(D), with |ho|, the determinant of the Euclidean met-
ric in the natural basis {∂Φo/∂Xα(X)}α=1,2..p. δWext models the virtual work
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of the external forces. Physically, the ∂g/∂t-dependency stands for the kinetic
energy of B while that with respect to the ∂g/∂Xα’s models the internal strain
energy of the material that will be assumed to be elastic. Remarkably, the
Lagrangian is left-invariant in the sense that substituting g by hg with h a
constant transformation in G, does not change the Lagrangian. Physically, this
reflects the fact that the kinetic energy is unchanged by a change of inertial frame
while the internal strain energy is not affected by a rigid overall displacement
by virtue of its material objectivity. As a result, taking h = g−1, allows (3) to
be changed into:

δ

∫ t2

t1

∫ ∫

...

∫

D
L (η, ξα)

√
|ho|dX1dX2...dXpdt = −

∫ t2

t1

δWextdt, (4)

where L is the reduced Lagrangian density, while η = g−1(∂g/∂t) and the
ξα = g−1(∂g/∂Xα) expressions denote left-invariant vector fields in the Lie
algebra g of G. Now, let us invoke the constraints of variation at fixed time and
material labels:

δ
∂g

∂t
=

∂δg

∂t
, δ

∂g

∂Xα
=

∂δg

∂Xα
, for α = 1, 2..p. (5)

Then inserting “δg = gδζ” into (5) gives the following relations, which play a
key role in the variational calculus on Lie groups:

δη =
∂δζ

∂t
+ adη(δζ), δξ =

∂δζ

∂Xα
+ adξα

(δζ). (6)

Finally, using (6) in (4), before the usual by part integration in time, and the
divergence theorem in the chart {Xα}α=1,2..p, gives the Poincaré equations of
a Cosserat medium in the material frame (we use summation convention on
repeated indices α):

∂

∂t

(
∂L

∂η

)

−ad∗
η

(
∂L

∂η

)

+
1

√|ho|

(
∂

∂Xα

(
√

|ho| ∂L

∂ξα

)

−ad∗
ξα

(
√

|ho| ∂L

∂ξα

))

=Fext,

( |ho|
|ho|

)1/2
∂L

∂ξα
να = −F ext, (7)

where ν = ναEα is the unit outward normal to the tangent planes of ∂Φo(D)
pulled-back by the deformation of D, and |ho|1/2dX1dX2 is its metric volume
element. All the terms of the balance (7) define densities of vectors in g∗ related
to the metric volume of Φo(D) (top), and ∂Φo(∂D) (bottom). Alternatively, using
(3) with a Lagrangian density per unit of metric volume

√|h|dX1dX2...dXp of
Φ(D), gives a set of equations on the current configuration that will be detailed
in the case of shells. Finally, all the conjugate momenta and external forces of (7)
are reduced in g∗ and removing the Xα-dependence leads to the equations of a
single rigid microstructure (body) given by (1).
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4 Application to Cosserat Shells

While the case of beams has been addressed in [6]; we here focus on shells,
which will be assumed to endure small strains but finite transformations in
the Lie group G = SE(3) represented by the transformations g = (R, r), with
R ∈ SO(3) and r ∈ R

3 the rotation and translation components.

4.1 Geometrically Exact Shells

Kinematics. In the case of shells, the Cosserat micro-structures M models
rigid material lines, or “directors” (supported by E3), which traverse the shell’s
material mid-surface D (supported by (E1, E2)). The directors are labelled by
(X1,X2), two parameters which define a set of (generally curvilinear) coordi-
nates of Φo(D). The configuration space of one such rigid microstructure, say
the (X1,X2)-director is : g(X1,X2) ∈ SE(3); and the whole configuration space
of the shell is the space of (X1,X2)-parameterized surfaces in SE(3):

C := {g : (X1,X2) ∈ [0, 1]2 �→ g(X1,X2) ∈ SE(3)}. (8)

Note that this definition appears in the basic Cosserat shells kinematics in R
3:

Φ(X1,X2,X3) = r(X1,X2) + R(X1,X2).(X3E3), (9)

where, let us recall that (O,E1, E2, E3) interchangeably defines the material or
inertial frame to which r and R are related. With this definition of the shell
configuration space, the left-invariant fields of the general construction are:

η = g−1 ∂g

∂t
=

(
Ω V
0 0

)
, ξ1 = g−1 ∂g

∂X1
=

(
K1 Γ1

0 0

)
, ξ2 = g−1 ∂g

∂X2
=

(
K2 Γ2

0 0

)
,

(10)
where Ω(X1,X2) and V (X1,X2) denote the linear and angular velocities of the
(X1,X2)-director pulled back in the material frame, while (K1,K2) and (Γ1, Γ2)
are in the same frame, and appear in the shell strain measurements of [5]:

γα = E3.(Γα − Γ o
α), ραβ = E3.((Kα × Γβ) − (Ko

α × Γ o
β )), εαβ = Γα.Γβ − Γ o

α.Γ o
β ,

(11)
where γα, ραβ and εαβ measure the transverse shearing, the curvature and the
membrane stretching and shearing of the shell in the two material directions
with respect to the reference configuration (denoted with the upper index o).
Let us note that these measures, being dependent only on ξ1 and ξ2, satisfy de
facto the frame-indifference requirement of nonlinear structural mechanics.

Geometrically Exact Force Balance of Shells. Based on the previous kine-
matics, the reduced shell’s Lagrangian density of (4) takes the form:

L(η, ξ1, ξ2) = T(η) − U(ξ1, ξ2), (12)
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which, once introduced in the general Cosserat equations (7), cause to appear
the density fields of internal wrenches per unit of metric area of Φo(D):

∂U

∂ξ1
=

( ∂U
∂K1
∂U
∂Γ1

)

=
(

M1

N1

)

,
∂U

∂ξ2
=

( ∂U
∂K2
∂U
∂Γ2

)

=
(

M2

N2

)

. (13)

Once muliplied by
√|ho|, N1 and M1 (respectively N2 and M2) define the

resultant and the momentum of stress forces exerted across the shell cross section
X1 =constant (respectively X2 =constant) per unit of X2-length (X1-length).
Let us give the density of kinetic energy of a shell of mass density ρo in Φo(D):

T(η) =
1
2
(ΩT , V T )

(
ρoJ 0
0 ρolδ

)(
Ω
V

)

, (14)

where we assumed that the director frames are centered on the mass center of
the shell’s directors while l and J = j⊥(E1 ⊗ E1 + E2 ⊗ E2) + j‖E3 ⊗ E3 denote
the length and the geometric inertia tensor of the director respectively. Using
the expression of ad∗ on se(3) ∼= R

6, the field equations of (7) become for a
shell:

ρol(
∂V

∂t
+ Ω × V ) =

1
√|ho|

(
∂
√|ho|Nα

∂Xα
+ Kα ×

√
|ho|Nα) + Next, (15)

ρoJ
∂Ω

∂t
+Ω×ρoJΩ=

1
√|ho|

(
∂
√|ho|Mα

∂Xα
+Kα×

√
|ho|Mα+Γα×

√
|ho|Nα)+Mext.

In (15), all the terms are densities related to the metric volume element
√|ho|dX1

dX2 of Φo(D) and can be equivalently related to
√|h|dX1dX2, the metric

volume element of Φ(D), if in our general picture, we start with a density of
Lagrangian (3) related to the deformed configuration Φ(D). In this latter case,
using the mass conservation ρo

√|ho| = ρ
√|h| and pushing forward the balance

from the material frame to the directors’ frames allows one to rewrite (15) in a
form known in the shell literature [5], where they are derived from Newton laws:

⎧
⎪⎪⎨

⎪⎪⎩

ρl ∂v
∂t = 1√

|h|

(
∂
√

|h|nα

∂Xα

)

+ next,

ρ∂Iω
∂t = 1√

|h|

(
∂
√

|h|mα

∂Xα

)

+ ∂r
∂Xα × nα + mext.

(16)

From the Lie group point of view (16) stands for the Poincaré -Cosserat equations
in the spatial setting where we have ω = RΩ, v = RV , nα = RMα, mα = RMα,
next = RMext, mext = RMext and I = RJRT . In spite of their elegance, these
equations are not practically usable in general. In fact, they would hold perfectly
for a 2-D Cosserat medium whose the micro-structures have a full rank inertia
tensor J , i.e. with non negligible spin and couple stress around the directors, here
modelled by j‖ and the wrench components M31 and M32 of (15). By contrast,
the usual shells have no such features and Eqs. (15) and (16) need to be modified
further to cope with what appears as an artifactual effect, often named “drill
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rotation”, of the nominal Cosserat model. A canonical way to achieve this is to
replace SE(3) in the definition of the configuration space of the shell by S2 ×R

3

where S2 stands for the configuration space of each of the director alone with no
reference to a director frame. Alternatively, one can follow the usual procedure
leading to the symmetry of the Cauchy stress tensor of non-Cosserat 3D media
and neglect M31 and M32 in (15) along with the kinetic momenta around the
directors (i.e. j‖ = 0), which changes the third row of the dynamics (15) into the
static constitutive constraint:

E3.(Γα × Nα + (Kα × E3) × (Mα × E3)) = 0. (17)

Then, rewriting (17) in the field of convected basis on the mid-surface pulled back
in the material frame, i.e. in (Γ1, Γ2, E3), allows one to introduce the effective
stress couple Mα = Mα × E3 = MαβΓα ⊗ Γβ and the effective stress tensor
N = N αβΓα ⊗ Γβ , which is symmetric, as is the Cauchy stress tensor field,
in a conventional (not Cosserat) medium. In the subsequent developments, the
motions will be restricted in such a manner that the “drill rotation” effect does
not express and the full Cosserat-Poincaré Eqs. (15, 16) will hold. However, the
constitutive laws will handle the effective stress and couple stress tensors and
will implicitly take the above constitutive restriction into account.

Constitutive Equations. For isotropic elastic materials in small strains, the
constitutive equations of shells can be stated in the so called reduced Hooke’s
law of shells [5]:

N αβ = Hαβλμ
d ελμ, Mαβ = Hαβλμ

r ρλμ, Qα = Hαβ
s γβ , (18)

where N αβ , Mαβ and Qα are the effective internal stresses which can be defined
as the dual of the strains measurements (11). By contrast to the case of beams
[6], the Cosserat internal stress wrenches of the general construction cannot be
identified to these effective stresses but are rather related to them through the
relation:

∂U

∂ξα
=

( ∂U
∂Kα
∂U
∂Γα

)

=
(

Mα

Nα

)

=
(

(E3 × Γβ)Mαβ

(Kβ × E3)Mβα + ΓβN αβ + E3Qα

)

. (19)

Finally, by substituting (11) into (18) and the result into (19), we obtain the
constitutive laws relating the left-invariant fields of (10) with their dual (13). It
is worth noting here that the constitutive law (18), as it is detailed in [5], does
force (17), along with M31 = M32 = 0.

5 Application to Cephalopod Swimming

In this section, we apply the previous general picture to an axisymetric cephalo-
pod’s shell-like mantle B undergoing a net translation and axi-symmetric shape
deformations along the (o, e3) direction of an inertial frame (o, e1, e2, e3) with
no rotation around it. As a result, the directors have no drill motion, and the
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previous entire Cosserat-Poincaré picture holds. According to the problem sym-
metry, the inertial frame (o, e1, e2, e3) is endowed with a chart of cylindrical
coordinates (r, φ, z) of local basis (er, eφ, e3). The material space B, of material
frame (O,E1, E2, E3) = (o, e1, e2, e3), is identified to D × M, with D the man-
tle’s material mid-surface supported by (E1, E2), and M its director supported
by E3. The reference configuration is Φo(B). Its symmetry axis is (O, e3) and
the cylindrical coordinates of its points are noted (ro, zo, φo). In this context,
D is covered with the polar material chart {X1,X2} = {X,φ} centered on O,
where X is the metric length along the meridians of Φo(D). In any configuration
Φ(B) of the mantle, any cross section fiber crossing D in (X,φ), is supported by
the third unit vector of a director frame deduced from (O,E1, E2, E3) through
a transformation of SE(3) of the form:

g(X,φ) =
(

exp(φê3) 0
0 1

)(
exp(−θêφ) rer + ze3

0 1

)

, (20)

with θ, the angle parameterizing the local rotation of the director with respect
to the z-axis. Using (20) in (10), gives, with se(3) ∼= R

6:

η =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
Ω2

0
V1

0
V3

⎞
⎟⎟⎟⎟⎟⎟⎠

, ξX =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
K2X

0
Γ1X

0
Γ3X

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
−θ′

0
r′ cos θ + z′ sin θ

0
z′ cos θ − r′ sin θ

⎞
⎟⎟⎟⎟⎟⎟⎠

, ξφ =

⎛
⎜⎜⎜⎜⎜⎜⎝

K1φ

0
K3φ

0
Γ2φ

0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

sin θ
0

cos θ
0
r
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where ′ denotes ∂./∂X. These expressions define Γα and Kα (α = X,φ), which
once inserted in (11), give the expressions of strains. Applying Eq. (15) to our
mantle with

√|h| = Γ2φ

√
Γ 2
1X + Γ 2

3X and no φ-dependency of the Lagrangian
density, gives the following three scalar equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρl(∂V1
∂t − V3Ω2) = 1√

|h|
∂
√

|h|N1X

∂X + K2XN3X − K3φN2φ + N1
ext,

ρl(∂V2
∂t + V1Ω2) = 1√

|h|
∂
√

|h|N3X

∂X − K2XN1X + K1φN2φ + N2
ext,

ρj ∂Ω2
∂t = 1√

|h|
∂
√

|h|M2X

∂X − Γ1XN3X + Γ3XN1X + K3φM1φ + M2
ext.

(21)

These balance Eq. (21) which involve densities of wrenches per unit of metric
volume of Φ(D), have to be supplemented with the expressions of η, ξX and ξφ,
the constitutive law (18), the reconstruction equation ∂g/∂t = gη, and a model
of hydrodynamic forces (N1

ext, N
2
ext,M

2
ext). Figure 1 illustrates a simulation result

obtained with the mantle described in [9]. The hydrodynamic forces are modelled
by distributing uniformly along the mantle the thrust exerted on a rigid rocket
of same current shape whose expelled mass is deduced from the time-variations
of the mantle’s volume. With 1.7 as drag coefficient and 1.1 for the added mass
coefficient, the snapshots above illustrate a forward motion of average speed
	 0.14 m/s and maximum internal volume reduction 	 39 %.
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Fig. 1. Some snapshots of a simulated jet-propelled shell-like mantle.

6 Conclusion

In this article we proposed a general picture that permits the derivation of the
balance equations of a Cosserat medium from a unique Lagrangian density. The
approach is systematic and requires no phenomenological inputs. Based on the
Poincaré equations, it allows the recover of the usual formulations of non-linear
shell’s theory, both in the reference and current configuration. It can be used
to model the cephalopod mantle. In future, this model will be used to study
hydrodynamic forces, and extended to the case of an octopus with a mantle
prolonged by eight arms modelled by Cosserat beams.
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Abstract. With respect to the concept of affine tensor, we analyse in
this work the underlying geometric structure of the theories of Lie group
statistical mechanics and relativistic thermodynamics of continua, for-
mulated by Souriau independently one of each other. We reveal the link
between these ones in the classical Galilean context. These geometric
structures of the thermodynamics are rich and we think they might be
source of inspiration for the geometric theory of information based on
the concept of entropy.

1 Affine Tensors

Points of an Affine Space. Let AT be an affine space associated to a linear
space T of finite dimension n. By the choice of an affine frame f composed of a
basis of T and an origin a0, we can associate to each point a a set of n (affine)
components V i gathered in the n-column V ∈ R

n. For a change of affine frames,
the transformation law for the components of a point reads:

V = C + P V ′, (1)

which is an affine representation of the affine group of Rn denoted Aff(n). It is
clearly different from the usual transformation law of vectors V = P V ′.

Affine Forms. The affine maps Ψ from AT into R are called affine forms and
their set is denoted A∗T . In an affine frame, Ψ is represented by an affine function
Ψ from R

n into R. Hence, it holds:

Ψ(a) = Ψ(V ) = χ + Φ V,

where χ = Ψ(0) = Ψ(a0) and Φ = lin(Ψ) is a n-row. We call Φ1, Φ2, · · · , Φn, χ
the components of Ψ or, equivalently, the couple of χ and the row Φ collecting
the Φα. The set A∗T is a linear space of dimension (n + 1) called the vector
dual of AT . If we change the affine frame, the components of an affine form are
modified according to the induced action of Aff(n), that leads to, taking into
account (1):

χ′ = χ − Φ P−1C, Φ′ = Φ P−1, (2)

which is a linear representation of Aff(n).
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 519–528, 2015.
DOI: 10.1007/978-3-319-25040-3 56
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Affine Tensors. We can generalize this construction and define an affine tensor
as an object:

– that assigns a set of components to each affine frame f of an affine space AT
of finite dimension n,

– with a transformation law, when changing of frames, which is an affine or a
linear representation of Aff(n).

With this definition, the affine tensors are a natural generalization of the classical
tensors that we shall call linear tensors, these last ones being trivial affine tensors
for which the affine transformation a = (C,P ) acts through its linear part P =
lin(a). An affine tensor can be constructed as a map which is affine or linear with
respect to each of its arguments. As the linear tensors, the affine ones can be
classified in three families: covariants, contravariant and mixed. The most simple
affine tensors are the points which are 1-contravariant and the affine forms which
are 1-covariant but we can construct more complex ones having a strong physical
meaning, the torsors proposed in [2] and the momenta introduced later. For more
details on the affine dual space, affine tensor product, affine wedge product and
affine tangent bundles, the reader interested in this topic is referred to the so-
called AV -differential geometry [13].

G-Tensors. A subgroup G of Aff(n) naturally acts onto the affine tensors by
restriction to G of their transformation law. Let FG be a set of affine frames of
which G is a transformation group. The elements of FG are called G-frames. A
G-tensor is an object:

– that assigns a set of components to each G-frame f ,
– with a transformation law, when changing of frames, which is an affine or a

linear representation of G.

Hence each G-tensor can be identified with an orbit of G within the space of the
tensor components.

2 Momentum as Affine Tensor

Let M be a differential manifold of dimension n and G a Lie subgroup of Aff(n).
In the applications to Physics, M will be for us typically the space-time and G
a subgroup of Aff(n) with a physical meaning in the framework of classical
mechanics (Galileo’s group) or relativity (Poincaré’s group). The points of the
space-time M are events of which the coordinate X0 is the time t and Xi = xi

for i running from 1 to 3 gives the position.
The tangent space to M at the point X equipped with a structure of affine

space is called the affine tangent space and is denoted ATXM. Its elements are
called tangent points at X. The set of affine forms on the affine tangent space
is denoted A∗TXM. We call momentum a bilinear map μ:

μ : TXM × A∗TXM → R : (
−→
V ,Ψ ) �→ μ(

−→
V ,Ψ )



Entropy and Structure of the Thermodynamical Systems 521

It is a mixed 1-covariant and 1-contravariant affine tensor. Taking into account
the bilinearity, it is represented in an affine frame f by:

μ(
−→
V ,Ψ ) = (χ Fβ + ΦαLα

β)V β

where Fβ and Lα
β are the components of μ in the affine frame f or, equivalently,

the couple μ = (F,L) of the row F collecting the Fβ and the n × n matrix L
of elements Lα

β . Owing to (2), the transformation law is given by the induced
action of Aff(n):

F ′ = F P−1, L′ = (P L + C F )P−1 (3)

If the action is restricted to the subgroup G, the momentum μ is a G-tensor.
Identifying the space of the momentum components μ to the dual g∗ of the Lie
algebra of G thanks to the dual pairing:

μ Z = μ da = (F,L) (dC, dP ) = F dC + Tr(LdP ) (4)

it is noteworthy to observe that the transformation law (3) of momenta is nothing
else the coadjoint action:

μ = Ad∗(a)μ′.

However, this mathematical construction is not relevant for all considered phys-
ical applications and we need to extend it by considering a map θ from G into
g∗ and a generalized transformation law:

μ = a · μ′ = Ad∗(a)μ′ + θ(a), (5)

where θ eventually depends on an invariant of the orbit. It is an affine repre-
sentation of G in g∗ (because we wish the momentum to be an affine tensor)
provided:

∀a, b ∈ G, θ(ab) = θ(a) + Ad∗(a) θ(b) (6)

Remark: this action induces a structure of affine space on the set of momentum
tensors. Let π : F → M be a G-principal bundle of affine frames with the free
action (a, f) �→ f ′ = a · f on each fiber. Then we can build the associated
G-principal bundle:

π̂ : g∗ × F → (g∗ × F)/G : (μ, f) �→ μ = orb(μ, f)

for the free action:

(a, (μ, f)) �→ (μ′, f ′) = a · (μ, f) = (a · μ, a · f)

where the action on g∗ is (5). Clearly, the orbite μ = orb(μ, f) can be identified
to the momentum G-tensor μ of components μ in the G-frame f .
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3 Symplectic Action and Momentum Map

Let (N , ω) be a symplectic manifold. A Lie group G smoothly left acting on
N and preserving the symplectic form ω is said to be symplectic.The interior
product of a vector

−→
V and a p-form ω is denoted ι(

−→
V )ω. A map ψ : N → g∗

such that:
∀η ∈ N , ∀Z ∈ g, ι(Z · η)ω = −d(ψ(η)Z),

is called a momentum map of G. It is the quantity involved in Noether’s theorem
that claims ψ is constant on each leaf of N . In ([8] (Theorem (11.17), p. 109, or
its English translation [11]), Souriau proved there exists a smooth map θ from
G into g∗:

θ(a) = ψ(a · η) − Ad∗(a)ψ(η), (7)

which is a symplectic cocycle, that is a map θ : G → g verifying the identity (6)
and such that (Dθ)(e) is a 2-form. An important result called Kirillov-Kostant-
Souriau theorem reveals the orbit symplectic structure [8] (Theorem (11.34), pp.
116–118). Let G be a Lie group and an orbit of the coadjoint representation
orb (μ) ⊂ g∗. Then the orbit orb (μ) is a symplectic manifold, G is a symplectic
group and any μ ∈ g∗ is its own momentum.

Remark 1: replacing η by a−1 · η in (7), this formula reads:

ψ(η) = Ad∗(a)ψ′(η) + θ(a),

where ψ �→ ψ′ = a · ψ is the induced action of the one of G on N . It is worth
observing it is just (5) with μ = ψ(η) and μ′ = ψ′(η). In this sence, the values of
the momentum map are just the momentum G-tensors defined in the previous
Section.

Remark 2: we saw at Remark of Sect. 2 that the momentum G-tensor μ is iden-
tified to the orbit μ = orb(μ, f) and, disregarding the frames for simplification,
we can identify μ to the component orbit orb(μ).

4 Lie Group Statistical Mechanics

In order to discover the underlined geometric structure of the statistical mechan-
ics, we are interested by the affine maps Θ on the affine space of momentum
tensors. In an affine frame, Θ is represented by an affine function Θ from g∗

into R:
Θ(μ) = Θ(μ) = z + μ Z,

where z = Θ(0) = Θ(μ0) and Z = lin(Θ) ∈ g are the affine components of Θ.
If the components of the momentum tensors are modified according to (5), the
change of affine components of Θ is given by the induced action:

z = z′ − θ(a)Ad(a)Z ′, Z = Ad(a)Z ′. (8)
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Then Θ is a G-tensors. In [8,11], Souriau proposed a statistical mechanics model
using geometric tools. Let dλ be a measure on μ = orb (μ) and a Gibbs proba-
bility measure p dλ with:

p = e−(μ) = e−(z+μ Z).

The normalization condition
∫

orb(μ)
p dλ = 1 links the components of Z, allowing

to express z in terms of Z:

z(Z) = ln
∫

orb(μ)

e−μ Z dλ. (9)

The corresponding entropy and mean momenta are:

s = −
∫

orb(μ)

p ln p dλ = z + M Z, M =
∫

orb(μ)

μ p dλ = − ∂z

∂Z
. (10)

satisfying the same transformation law as the one (5) of μ. Hence M are the
components of a momentum tensor M which can be identified to the orbit
orb(M), that defines a map μ �→ M i.e. a correspondance between two orbits.
This construction is formal and, for reasons of integrability, the integrals will be
performed only on a subset of the orbit according to an heuristic way explained
latter on.

People generally consider that the definition of the entropy is relevant for
applications insofar the number of particles in the system is very huge. For
instance, the number of atoms contained in one mole is Avogadro’s number equal
to 6×1023. It is worth to notice that Vallée and Lerintiu proposed a generalization
of the ideal gas law based on convex analysis and a definition of entropy which
does not require the classical approximations (Stirling’s Formula) [15].

5 Relativistic Thermodynamics of Continua

Independently of his statistical mechanics, Souriau proposed in [9,10] a thermo-
dynamics of continua compatible with general relativity. In his footstep, one can
quote the works by Iglesias [5] and Vallée [14]. In his Ph.D thesis, Vallée studied
the invariant form of constitutive laws in the context of special relativity where
the gravitation effects are neglected. In [3], the author and Vallée proposed a
Galilean version of this theory of which we recal the cornerstone results.

G being Galileo’s group and M being the space-time equipped with a
G-connection ∇ representing the gravitation, the matter and its evolution is
characterized by a line bundle π0 : M �→ M0. The trajectory of the particle
X0 ∈ M0 is the corresponding fiber π−1

0 (X0). In local charts, X0 is represented
by s′ ∈ R

3 and its position x at time t is given by a map x = ϕ(t, s′). The 4-
velocity

−→
U =

−→
dX/dt is the tangent vector to the fiber parameterized by the time.

β being the reciprocal temperature, that is 1/kBT where kB is Boltzmann’s con-
stant and T the absolute temperature, there are five basic tensor fields defined
on the space-time M:
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– the 4-flux of mass
−→
N = ρ

−→
U where ρ is the density,

– the 4-flux of entropy
−→
S = ρ s

−→
U = s

−→
N where s is the specific entropy,

– Planck’s temperature vector
−→
W = β

−→
U ,

– its gradient f = ∇−→
W called friction tensor,

– the momentum tensor of a continuum T , a linear map from TXM into itself.

In local charts, they are respectively represented by two 4-columns N,W and two
4×4 matrices f and T . Then we proved in [3] the following result characterizing
the reversible processes:

Theorem 1. If Planck’s potential ζ smoothly depends on s′, W and F = ∂x/∂s′

through right Cauchy strains C = FT F , then:

T = U ΠR +
(

0 0
−σv σ

)

(11)

with
Π = −ρ

∂ζ

∂W
, σ = −2ρ

β
F

∂ζ

∂C
FT , (12)

represents the momentum tensor of the continuum and is such that:

(∇ζ)N = −Tr (T f),

Combining this result with the geometric version of the first principle of ther-
modynamics:

Div T = 0, Div
−→
N = 0, (13)

it can be proved that the 4-flux of specific entropy:

−→
S = T

−→
W + ζ

−→
N ,

is divergence free and the specific entropy s is an integral of the motion.

6 Planck’s Potential of a Continuum

Now, let us reveal the link between the previous relativistic thermodynamics
of continua and Lie group statistical mechanics in the classical Galilean context
and, to simplify, in absence of gravitation. In other words, how to deduce T from
M and ζ from z? We work in five steps:

– Step 1: parameterizing the orbit. In order to calculate the integral (9),
the orbit is parameterized thanks to a momentum map. Galileo’s group G is a
subgroup of the affine group GA(4), collecting the Galilean transformations,
that is the affine transformations X = P X ′ + C such that:

C =
(

τ0
k

)

, P =
(

1 0
u R

)

,
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where u ∈ R
3 is a Galilean boost, R ∈ SO(3) is a rotation, k ∈ R

3 is a spatial
translation and τ0 ∈ R is a clock change. Hence Galileo’s group is a Lie group
of dimension 10. Considering its infinitesimal generators Z = (dC, dP ):

dC =
(

dτ0
dk

)

, dP =
(

0 0
du j(d�)

)

,

where j(d�) v = d� × v, the dual pairing (4) reads:

μ Z = l · d� − q · du + p · dk − e dτ0.

The most general form of the action (5) itemizes in:

p = R p′ + m u, q = R (q′ − τ0 p′) + m (k − τ0 u), (14)

l = R l′ − u × (R q′) + k × (R p′) + m k × u, (15)

e = e′ + u · (R p′) +
1
2

m ‖ u ‖2 . (16)

where the orbit invariant m occuring in the symplectic cocycle θ is physically
interpreted as the particle mass. This transformation law reveals the physical
meaning of the momentum tensor components as the linear momentum p,
the passage q, the angular momentum l and the energy e. For the generic
orbits, the dimension of the isotropy group of μ is 2, hence dim(orb(μ)) =
dim G−2 = 8. In the 10 dimensional space g∗ of the momentum components,
the orbit is defined by dim g∗−8 = 2 equations which are invariant by galilean
transformations:

s0 =‖ l0 ‖= Cte, e0 = e − 1
2m

‖ p ‖2= Cte. (17)

where occurs the spin angular momentum l0 = l − q ×p/m. If the particle has
an internal structure, introducing the moment of inertia matrix J and the
spin �, we have, according to König’s theorem:

l0 = J �, e0 =
1
2

� · (J �).

Hence each orbit defines a particle of mass m, spin s0, inertia J and can be
parameterized by 8 coordinates, the 3 components of q, the 3 components of p
and the 2 components of the unit vector n defining the spin direction, thanks
to the momentum map R

3 × R
3 × S

2 → g∗ : (q, p, n) �→ μ = ψ(q, p, n) such
that:

l =
1
m

q × p + s0n, e =
1

2m
‖ p ‖2 +

s20
2

n · (J −1 n).

The corresponding measure is dλ = d3q d3p d2n. For simplicity, we consider
further only a spinless particle, being at rest in a coordinate system X ′, then
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characterized by null components. In another coordinate system X = P X ′+C
with a Galilean boost u and a translation of the origin at k = x (hence τ0 = 0
and R = 1R3), the new components are determined by (14), (15) and (16):

p = m u, q = m x, l = m x × u, e =
1
2

m ‖ u ‖2= 1
2m

‖ p ‖2 .

– Step 2: modelling the deformation. Let us consider N identical particles
contained in a box of finite volume V , large with respect to the particles but
representing the volume element of the continuum thermodynamics. For a
change of coordinate t = t′, x = ϕ(t′, s′), the jacobean matrix reads:

∂X

∂X ′ = P =
(

1 0
v F

)

(18)

Besides, we suppose that the box of initial volume V0 is at rest in the con-
sidered coordinate system (v = 0) and the deformation gradient F is uniform
in the box, then dx = F ds′. According to (3), the linear momentum is trans-
formed according to p = F−T p′. The measure becomes dλ = m3d3x d3p d2n =
m3d3s′ d3p′ d2n. Replacing the orbit by the subset V0×R

3×S
2 and integrating,

(9) gives for a particle after leaving out the primes:

z =
1
2

ln(det(C)) − 3
2

ln β + Cte, (19)

where the value of the constant is not relevant in the sequel.
As pointed out by Barbaresco [1], there is a puzzling analogy between the
integral occuring in (9) and Koszul-Vinberg characteristic function [6,16]:

ψΩ(Z) =
∫

Ω∗
e−μ Z dλ,

where Ω is a sharp open convex cone and Ω∗ is the set of linear strictly positive
forms on Ω̄ −{0}. Considering Galileo’s group, it is worth to remark the cone
of future directed timelike vectors (i.e. such that β > 0) [7] is preserved by
linear Galilean transformations. The momentum orbits are contained in Ω∗

but the integral does not converge neither on the orbits either all the more on
Ω∗.

– Step 3: identification. We claim that Z = (−W, 0) where WT = (β,wT )
is the transposed of the 4-column gathering the components of Planck’s tem-
perature vector. This identification is suggested by the fact that the transfor-
mation law W = P W ′ of vectors is nothing else (8) where Z = (−W, 0). For
the box at rest in the coordinate system X, we put WT = (β, 0).

– Step 4: boost method. A new coordinate system X̄ in which the box has
the velocity v can be deduced from X = P X̄ +C by applying a boost u = −v
(hence k = 0, τ0 = 0 and R = 1R3). The transformation law of vectors gives
the new components W̄T = (β, β vT ) and (8) leads to:

z̄ = z +
m β

2
‖ v ‖2= z +

m

2β
‖ w ‖2 .
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Taking into account (19) and leaving out the bars:

z =
1
2

ln(det(C)) − 3
2

ln β +
m

2β
‖ w ‖2 +Cte. (20)

It is clear from (10) that s is Legendre conjugate of −z, then, introducing the
internal energy (which is nothing else the Galilean invariant e0 of (17)):

eint = e − 1
2m

‖ p ‖2,

the entropy is:

s =
3
2

ln eint +
1
2

ln(det(C)) + Cte,

and, by Z = ∂s/∂M , we derive the corresponding momenta:

β =
∂s

∂e
=

3
2 eint

, w = −grad p s =
3

2 eint

p

m
.

– Step 5: link between z and ζ. As z is an extensive quantity, its value for N
identical particles is zN = N z. Planck’s potential ζ being a specific quantity,
we claim that:

ζ =
zN

N m
=

z

m
=

1
2m

ln(det(C)) − 3
2m

ln β +
1

2β
‖ w ‖2 +Cte.

By (11) and (12), we obtain the linear 4-momentum Π = (H,−pT ) and
Cauchy’s stresses:

H = ρ

(
3
2

kBT

m
+

1
2

‖ v ‖2
)

, p = ρv, σ = −q 1R3 ,

where, by the expression of the pressure, we recover the ideal gas law :

q =
ρ

m
kBT =

N

V
kBT.

The first principle of thermodynamics (13) reads:

∂H
∂t

+ div (Hv − σv) = 0, ρ
dv

dt
= −grad q,

∂ρ

∂t
+ div (ρ v) = 0.

We recognize the balance of energy, linear momentum and mass.

Remark: the Hessian matrix I of −z, considered as function of W through Z,
is positive definite [8]. It is Fisher metric of the Information Geometry. For the
expression (20), it is easy to verify it:

−δM δZ =
1
β

(

eint(δβ)2 + m ‖ δw − δβ

m
p ‖2

)

> 0,
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for any non vanishing δZ taking into account β > 0, eint > 0 and m > 0. On
this ground, we can construct a thermodynamic length of a path t �→ X(t) [4]:

L =
∫ t1

t0

√
(δW (t))T I(t) δW (t)dt,

where δW (t) is the perturbation of the temperature vector, tangent to the space-
time at X(t). We can also define a related quantity, Jensen-Shannon divergence
of the path:

J = (t1 − t0)
∫ t1

t0

(δW (t))T I(t) δW (t)dt.
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Abstract. We introduce the Symplectic Structure of Information Geometry
based on Souriau’s Lie Group Thermodynamics model, with a covariant defi-
nition of Gibbs equilibrium via invariances through co-adjoint action of a group
on its momentum space, defining physical observables like energy, heat, and
momentum as pure geometrical objects. Using Geometric (Planck) Temperature
of Souriau model and Symplectic cocycle notion, the Fisher metric is identified
as a Souriau Geometric Heat Capacity. In the framework of Lie Group Ther-
modynamics, an Euler-Poincaré equation is elaborated with respect to thermo-
dynamic variables, and a new variational principal for thermodynamics is built
through an invariant Poincaré-Cartan-Souriau integral. Finally, we conclude on
Balian Gauge theory of Thermodynamics compatible with Souriau’s Model.

Keywords: Information Geometry � Symplectic Geometry �Momentum Map �
Cartan-Poincaré Integral Invariant � Lie Group Thermodynamics � Geometric
Mechanics � Euler-Poincaré Equation � Gibbs Equilibrium � Fisher Metric �
Maximum Entropy � Gauge Theory

1 Souriau Symplectic Geometry of Statistical Physics

In 1970, Souriau introduced the concept of co-adjoint action of a group on its
momentum space (or “moment map”: mapping induced by symplectic manifold
symmetries), based on the orbit method works, that allows to define physical observ-
ables like energy, heat and momentum as pure geometrical objects (the moment map
takes its values in a space determined by the group of symmetries: the dual space of its
Lie algebra). The moment map is a constant of the motion and is associated to sym-
plectic cohomology (assignment of algebraic invariants to a topological space that
arises from the algebraic dualization of the homology construction). Souriau has
observed that Gibbs equilibrium states are not covariant by dynamical groups (Galileo
or Poincaré groups) and then he has developed a covariant model that he called “Lie
Group Thermodynamics”, where equilibriums are indexed by a “geometric (planck)
temperature”, given by a vector b that lies in the Lie algebra of the dynamical
group. For Souriau, all the details of classical mechanics appear as geometric
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F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 529–540, 2015.
DOI: 10.1007/978-3-319-25040-3_57



necessities (e.g., mass is the measure of the symplectic cohomology of the action of a
Galileo group). Based on this new covariant model of thermodynamic Gibbs equilib-
rium, Souriau has formulated statistical mechanics and thermodynamics in the
framework of Symplectic Geometry by use of symplectic moments and
distribution-tensor concepts, giving a geometric status for temperature, heat and
entropy. This work has been extended by Claude Vallée and Gery de Saxcé [11, 12].
More recently, M. Kapranov (arXiv:1108.3472) has also given a thermodynamical
interpretation of the moment map for toric varieties. The conservation of the moment of
a Hamiltonian action was called by Souriau the “Symplectic or Geometric Noether
theorem”. Considering phases space as symplectic manifold, cotangent fiber of con-
figuration space with canonical symplectic form, if Hamiltonian has Lie algebra,
moment map is constant along system integral curves. Noether theorem is obtained by
considering independently each component of moment map.

We will enlighten Souriau’s Model with Koszul Information Geometry, recently
studied in [10], where we have shown that this last Geometry is founded on the notion
of Koszul-Vinberg Characteristic function wXðxÞ ¼

R
X�

e� x;nh idn; 8x 2 X where Ω is a

convex cone and Ω* the dual cone with respect to Cartan-Killing inner product x; yh i ¼
�B x; hðyÞð Þ invariant by automorphisms of Ω, with B :; :ð Þ the Killing form and hð:Þthe
Cartan involution. This characteristic function is at the cornerstone of modern concept
of Information Geometry, defining Koszul density by Solution of Maximum
Koszul-Shannon Entropy U�ð�nÞ ¼ � R

X�
p�nðnÞ log p�nðnÞdn:

Max
p

�
Z
X�

p�nðnÞ log p�nðnÞdn
2
4

3
5 such that

Z
X�

p�nðnÞdn ¼ 1 and
Z
X�

n:p�nðnÞdn ¼ �n

ð1Þ

p�nðnÞ ¼
e� n;H�1 �nð Þh iR

X�
e� n;H�1 �nð Þh idn

with �n ¼ HðxÞ ¼ @UðxÞ
@x

where UðxÞ ¼ � log
Z
X�

e� x;nh idn

ð2Þ

The inversion H�1ð�nÞ is given by the Legendre transform based on the property that
the Koszul-Shannon Entropy is given by the Legendre transform of minus the loga-
rithm of the characteristic function:

U�ðx�Þ ¼ x; x�h i � UðxÞ with UðxÞ ¼ � log
Z
X�

e� n;xh idn 8x 2 X and 8x� 2 X� ð3Þ

We can observe the fundamental property that E U�ðnÞ½ � ¼ U� E n½ �ð Þ; n 2 X�, and also
as observed by Maurice Fréchet [18] that “distinguished functions” (densities with
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estimator reaching the Fréchet-Darmois bound) are solutions of the Alexis Clairaut
Equation introduced by Clairaut in 1734:

U�ðx�Þ ¼ H�1ðx�Þ; x�� �� U H�1ðx�Þ� � 8x� 2 HðxÞ=x 2 Xf g ð4Þ

In this structure, the Fisher metric IðxÞ makes appear naturally a Koszul hessian

geometry, if we observe that log pxðnÞ ¼ � x; nh i þ UðxÞ ) @2 log pxðnÞ
@x2 ¼ @2UðxÞ

@x2 .

IðxÞ ¼ �En
@2 log pxðnÞ

@x2

� �
¼ � @2UðxÞ

@x2
¼ @2 logwXðxÞ

@x2
¼ En n2

� �� En n½ �2¼ VarðnÞ

ð5Þ

with Crouzeix relation established in 1977, @2U
@x2 ¼ @2U�

@x�2

h i�1
giving the dual metric, in

dual space, where Entropy U� and (minus) logarithm of characteristic functionUare
dual potential functions.

We will see hereafter that Souriau has generalized this Fisher metric for Lie Group
Thermodynamics, and interpreted the Fisher Metric as a Geometric Heat Capacity.

2 Souriau Model of Lie Group Thermodynamics

Souriau has defined Gibbs canonical ensemble on symplectic manifold M for a Lie
group action on M. In classical statistical mechanics, a state is given by the solution of
Liouville equation on the phase space, the partition function. As symplectic manifolds
have a completely continuous measure, invariant by diffeomorphisms, the Liouville
measure λ, all statistical states will be the product of Liouville measure by the scalar
function given by the generalized partition function eUðbÞ� b;UðnÞh idefined by the energy
U (defined in dual of Lie Algebra of this dynamical group) and the geometric tem-
perature b, where U is a normalizing constant such the mass of probability is equal to 1,
UðbÞ ¼ � log

R
M
e� b;UðnÞh idk. Jean-Marie Souriau then generalizes the Gibbs equilib-

rium state to all symplectic manifolds that have a dynamical group. To ensure that all
integrals, that will be defined, could converge, the canonical Gibbs ensemble is the
largest open proper subset (in Lie algebra) where these integrals are convergent.
This canonical Gibbs ensemble is convex. The derivative of U, Q ¼ @U

@b (thermody-
namic heat) is equal to the mean value of the energy U. The minus derivative of this
generalized heatQ, K ¼ � @Q

@b is symmetric and positive (this is a geometric heat
capacity). Entropy s is then defined by Legendre transform of U, s ¼ b;Qh i � U. If this
approach is applied for the group of time translation, this is the classical thermody-
namic theory. But Souriau has observed that if we apply this theory for
non-commutative group (Galileo or Poincaré groups), the symmetry has been bro-
ken. Classical Gibbs equilibrium states are no longer invariant by this group. This
symmetry breaking provides new equations, discovered by Souriau [2–6].
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For each temperature b, Souriau has introduced a tensor ~Hb, equal to the sum of the
cocycle ~H and the Heat coboundary (with [.,.] Lie bracket):

~Hb Z1; Z2ð Þ ¼ ~H Z1; Z2ð Þ þ Q; adZ1ðZ2Þh i with adZ1ðZ2Þ ¼ Z1; Z2½ � ð6Þ

This tensor ~Hb has the following properties:

• ~HðX; YÞ ¼ HðXÞ; Yh i where the map H is the one-cocycle of the Lie algebra g with
values in g�, with HðXÞ ¼ Teh XðeÞð Þ where h the one-cocycle of the Lie group G.
~H X; Yð Þ is constant on M and the map ~H X; Yð Þ : g� g ! < is a skew-symmetric
bilinear form, and is called the Symplectic Cocycle of Lie algebra g associated to
the momentum map J, with the following properties:

~HðX; YÞ ¼ J X;Y½ � � JX ; JYf g with :; :f g Poisson Bracket and J the Moment Map ð7Þ

~Hð X; Y½ �; ZÞ þ ~Hð Y ; Z½ �;XÞ þ ~Hð Z;X½ �; YÞ ¼ 0 ð8Þ

where JX linear application from g to differential function on M :
g ! C1ðM;RÞ

X ! JX
and the associated differentiable application J, called moment(um) map:

J : M ! g� with x 7! JðxÞ such that JXðxÞ ¼ JðxÞ;Xh i;X 2 g ð9Þ

If instead of J we take the following momentum map: J 0ðxÞ ¼ JðxÞ þ Q; x 2 M
where Q 2 g�is constant, the symplectic cocycle h is replaced by h0ðgÞ ¼ hðgÞ þ
Q� Ad�gQ where h0 � h ¼ Q� Ad�gQ is one-coboundary of Gwith values in g�. We
have also properties hðg1g2Þ ¼ Ad�g1hðg2Þ þ hðg1Þ and hðeÞ ¼ 0.

• b 2 Ker ~Hb; such that ~Hb b; bð Þ ¼ 0 ;8b 2 g ð10Þ

• The following symmetric tensor gb, defined on all values of adbð:Þ ¼ b; :½ � is
positive definite

gb b; Z1½ �; b; Z2½ �ð Þ ¼ ~Hb Z1; b; Z2½ �ð Þ ð11Þ

gb b; Z1½ �; Z2ð Þ ¼ ~Hb Z1; Z2ð Þ; 8Z1 2 g; 8Z2 2 Im adb :ð Þ� 	 ð12Þ

gb Z1; Z2ð Þ� 0;8Z1; Z2 2 Im adb :ð Þ� 	 ð13Þ

where the linear map adX 2 glðgÞ is the adjoint representation of the Lie algebra g
defined by X; Y 2 gð¼ TeGÞ 7! adXðYÞ ¼ X; Y½ �, and the co-adjoint representation
of the Lie algebra g the linear map ad�X 2 glðg�Þwhich satisfies, for each n 2 g�and
X; Y 2 g: ad�XðnÞ; Y

� � ¼ n;�adXðYÞh i
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These equations are universal, because they are not dependent of the symplectic
manifold but only of the dynamical group G, the symplectic cocycleH, the temperature
b and the heat Q. Souriau called this model “Lie Groups Thermodynamics”.

We will give the main theorem of Souriau for this “Lie Group Thermodynamics”:
∎ Souriau Theorem of Lie Group Thermodynamics:
Let X be the largest open proper subset of g, the fundamental equations of SouriauR
M
e� b;UðnÞh idk and

R
M
n:e� b;UðnÞh idk are convergent integrals, this set X is convex

and is invariant under every transformation Adgð:Þ, where g 7!Adgð:Þ is the adjoint
representation of G, such that Adg ¼ Teigwith ig : h 7! ghg�1. Let a : G� g� ! g� a
unique affine action a such that linear part is coadjoint representation of G, that is the
contragradient of the adjoint representation. It associates to each g 2 G the linear
isomorphism Ad�g 2 GLðg�Þ, satisfying, for each:

n 2 g� and X 2 g : Ad�gðnÞ;X
D E

¼ n;Adg�1ðXÞ� �
Then, the fundamental equations of Souriau Lie Group Thermodynamics are:

• b ! AdgðbÞ ð14Þ

• U ! U� h g�1� 	
b ð15Þ

• s ! s ð16Þ
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• Q ! aðg;QÞ ¼ Ad�gðQÞ þ h gð Þ ð17Þ

For Hamiltonian, actions of a Lie group on a connected symplectic manifold, the
equivariance of the momentum map with respect to an affine action of the group on the
dual of its Lie algebra has been studied by C.M. Marle & P. Libermann [7, 9]:

∎ Marle’s Formula between cocycles:
Let G be a connected and simply connected Lie group, R : G ! GLðEÞbe a linear

representation of G in a finite-dimensional vector space E, and r : g ! glðEÞbe the
associated linear representation of its Lie algebra g. For any one-cocycle H : g ! Eof
the Lie algebra g for the linear representation r, there exists a unique one-cocycle
h : G ! E of the Lie group G for the linear representation R such that
HðXÞ ¼ Teh XðeÞð Þ, which hasH as associated Lie algebra one-cocycle. The Lie group
one-cocycle h is a Lie group one-coboundary if and only if the Lie algebra one-cocycle
H is a Lie algebra one-coboundary.

Let G be a Lie group whose Lie algebra is g. The skew-symmetric bilinear form
~Hon g ¼ TeG can be extended into a closed differential two-form on G, since the
identity on ~H means that its exterior differential d ~H vanishes. In other words, ~H is a
2-cocycle for the restriction of the de Rham cohomology of G to left invariant dif-
ferential forms. In the framework of Lie Group Action on a Symplectic Manifold,
equivariance of moment could be studied to prove that there is a unique action a(.,.) of
the Lie group G on the dual g� of its Lie algebra for which the momentum map J is
equivariant, that means for each x 2 M:J UgðxÞ

� 	 ¼ aðg; JðxÞÞ ¼ Ad�g JðxÞð Þ þ hðgÞ
where U : G�M ! M is an action of Lie Group G on differentiable manifold M,

the fundamental field associated to an element X of Lie algebra g of group G is the
vectors field XM on M:

XMðxÞ ¼ d
dt
Uexpð�tXÞ xð Þ






t¼0

ð18Þ

with Ug1 Ug2ðxÞ
� 	 ¼ Ug1g2ðxÞ and UeðxÞ ¼ x. U is hamiltonian on a Symplectic

ManifoldM, if U is symplectic and if for all X 2 g, the fundamental field XM is globally
Hamiltonian. The cohomology class of the symplectic cocycle h only depends on the
Hamiltonian action U, and not on J.

3 Fisher Metric of Souriau Lie Group Thermodynamics

If we differentiate this relation of Souriau theorem Q AdgðbÞ
� 	 ¼ Ad�gðQÞ þ h gð Þ,

This relation occurs:

@Q
@b

� Z1; b½ �; :ð Þ ¼ ~H Z1; b; :½ �ð Þ þ Q;Ad:Z1ð b; :½ �Þh i ¼ ~Hb Z1; b; :½ �ð Þ ð19Þ
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� @Q
@b

Z1; b½ �; Z2:ð Þ ¼ ~H Z1; b; Z2½ �ð Þ þ Q;Ad:Z1ð b; Z2½ �Þh i ¼ ~Hb Z1; b; Z2½ �ð Þ ) � @Q
@b

¼ gb b; Z1½ �; b; Z2½ �ð Þ

We observe that the Fisher MetricIðbÞ ¼ � @Q
@b is exactly the Souriau Metric defined

through Symplectic cocycle:

IðbÞ ¼ ~Hb Z1; b; Z2½ �ð Þ ¼ gb b; Z1½ �; b; Z2½ �ð Þ ð20Þ

The Fisher Metric IðbÞ ¼ � @2UðbÞ
@b2

¼ � @Q
@b has been considered by Souriau as

a generalization of “Heat Capacity”. Souriau called it K the “Geometric Capacity”.

For b ¼ 1
kT, K ¼ � @Q

@b ¼ � @Q
@T

@ð1=kTÞ
@T

� ��1
¼ kT2 @Q

@T linking the geometric capacity to

calorific capacity, then Fisher metric can be introduced in Fourier heat equation:

@T
@t

¼ j
C:D

DT with
@Q
@T

¼ C:D ) @b�1

@t
¼ j b2=k

� 	
:IFisherðbÞ

� ��1
Db�1 ð21Þ

We can also observe that Q is related to the mean, and K to the variance of U:

K ¼ IðbÞ ¼ � @Q
@b

¼ varðUÞ ¼
Z
M

UðnÞ2:pbðnÞdx�
Z
M

UðnÞ:pbðnÞdx
0
@

1
A

2

ð22Þ

We observe that the entropy s is unchanged, and U is changed but with linear
dependence to b, with consequence that Fisher Souriau metric is invariant:

s Q AdgðbÞ
� 	� � ¼ sðQðbÞÞ and I AdgðbÞ

� 	 ¼ @2 U� h g�1ð Þbð Þ
@b2

¼ @2U

@b2
¼ IðbÞ ð23Þ

General definition of Heat Capacity has also been introduced by Pierre Duhem [17].

4 Euler-Poincaré Equation of Lie Group Thermodynamics

When a Lie algebra acts locally transitively on the configuration space of a Lagrangian
mechanical system, Henri Poincaré proved that the Euler-Lagrange equations are
equivalent to a new system of differential equations defined on the product of the
configuration space with the Lie algebra. C.M. Marle [8] has written the Euler-Poincaré
equations, under an intrinsic form, without any reference to a particular system of local
coordinates, proving that they can be conveniently expressed in terms of the Legendre
and momentum maps of the lift to the cotangent bundle of the Lie algebra action on the

Symplectic Structure of Information Geometry 535



configuration space. The Lagrangian is a smooth real valued function L defined on the
tangent bundle TM. To each parameterized continuous, piecewise smooth curve
c : t0; t1½ � ! M, defined on a closed interval t0; t1½ �, with values inM, one associates the
value at c of the action integral:

IðcÞ ¼
Zt1
t0

L
dcðtÞ
dt

 �
dt ð24Þ

The partial differential of the function L : M � g ! < with respect to its second
variable d2�L, which plays an important part in the Euler-Poincaré equation, can be
expressed in terms of the momentum and Legendre maps: d2�L ¼ pg� � /t � L � / with
J ¼ pg� � /tð) d2�L ¼ J � L � /Þ the moment map, pg� : M � g� ! g� the canonical
projection on the second factor, L : TM ! T�Mthe Legendre transform, with / :

M � g ! TM=/ðx;XÞ ¼ XMðxÞand/t : T�M ! M � g�=/tðnÞ ¼ pMðnÞ; JðnÞð Þ
The Euler-Poincaré equation can therefore be written under the form:

d
dt

� ad�VðtÞ

 �
J � L � / cðtÞ;VðtÞð Þð Þ ¼ J � d1�L cðtÞ;VðtÞð Þ with dcðtÞ

dt
¼ / cðtÞ;VðtÞð Þ

With HðnÞ ¼ n; L�1ðnÞ� �� L L�1ðnÞ� 	
; n 2 T�M; L : TM ! T�M;H : T�M ! R

Following the remark made by Poincaré at the end of his note, the most interesting
case is when the map �L : M � g ! R only depends on its second variable X 2 g. The
Euler-Poincaré equation becomes:

d
dt

� ad�VðtÞ

 �
d�L VðtÞð Þð Þ ¼ 0 ð25Þ

We can use analogy of structure when the convex Gibbs ensemble is homogeneous
[13]. We can then apply Euler-Poincaré equation for Lie Group Thermodynamics.
Considering Clairaut equation:

s Qð Þ ¼ b;Qh i � U bð Þ ¼ H�1ðQÞ;Q� �� U H�1ðQÞ� 	 ð26Þ

with Q ¼ HðbÞ ¼ @U
@b 2 g�, b ¼ H�1ðQÞ 2 g, a Souriau-Euler-Poincaré equation

can be elaborated for Souriau Lie Group Thermodynamics:

dQ
dt

¼ ad�bQ or
d
dt

Ad�gQ
� �

¼ 0 ð27Þ

An associated equation on Entropy is:
ds
dt

¼ db
dt

;Q

� �
þ b; ad�bQ
D E

� dU
dt

that

reduces to ds
dt ¼ db

dt ;Q
D E

� dU
dt due to n; adVXh i ¼ � ad�Vn;X

� � ) b; ad�bQ
D E

¼
Q; adbb
� � ¼ 0.
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5 Poincaré-Cartan Integral Invariant of Thermodynamics

We will define the Poincaré-Cartan Integral Invariant [1] for Lie Group Thermody-
namics. Classically in mechanics, the Pfaffian form x ¼ p:dq� H:dt is related to
Poincaré-Cartan integral invariant. P. Dedecker has observed, based on the relation
x ¼ @ _qL:dq� @ _qL: _q� L

� 	
:dt ¼ L:dt þ @ _qL- with - ¼ dq� _q:dt, that the property

that among all forms v 	 L:dt mod - the form x ¼ p:dq� H:dt is the only one sat-
isfying dv 	 0 mod -, is a particular case of more general T. Lepage congruence.

Analogies between Geometric Mechanics & Geometric Lie Group Thermody-
namics, provides the following similarities of structures:

_q $ b

p $ Q

(
;

Lð _qÞ $ UðbÞ
HðpÞ $ sðQÞ
H ¼ p: _q� L $ s ¼ Q; bh i � U

8><
>: and

_q ¼ dq
dt

¼ @H
@p

$ b ¼ @s
@Q

p ¼ @L
@ _q

$ Q ¼ @U
@b

8>><
>>: ð28Þ

We can then consider a similar Poincaré-Cartan-Souriau Pfaffian form:

x ¼ p:dq� H:dt $ x ¼ Q; b:dtð Þh i � s:dt ¼ Q; bh i � sð Þ:dt ¼ UðbÞ:dt ð29Þ

This analogy provides an associated Poincaré-Cartan-Souriau Integral Invariant:Z
Ca

p:dq� H:dt ¼
Z
Cb

p:dq� H:dt is transformed in
Z
Ca

UðbÞ:dt ¼
Z
Cb

UðbÞ:dt ð30Þ

We can then deduce an Euler-Poincaré-Souriau Variational Principle for Ther-
modynamics: The Variational Principle holds on g, for variations db ¼ _gþ b; g½ �,
where gðtÞ is an arbitrary path that vanishes at the endpoints,

gðaÞ ¼ gðbÞ ¼ 0 : d
Zt1
t0

U bðtÞð Þ:dt ¼ 0 ð31Þ

6 Compatible Balian Gauge Theory of Thermodynamics

Supported by TOTAL group, Roger Balian has introduced in [15] a Gauge Theory of
Thermodynamics. Balian has observed that the Entropy S (we use Balian notation,
contrary with previous chapter where we use �S as neg-Entropy) can be regarded as an
extensive variable q0 ¼ S q1; . . .; qnð Þ, with qi ði ¼ 1; . . .; nÞ, n independent quantities,
usually extensive and conservative, characterizing the system. The n intensive variables
ci are defined as the partial derivatives:
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ci ¼
@Sðq1; . . .; qnÞ

@qi
ð32Þ

Balian has introduced a non-vanishing gauge variablep0, without physical rele-
vance, which multiplies all the intensive variables, defining a new set of variables:

pi ¼ �p0:ci; i ¼ 1; . . .; n ð33Þ

The 2n+1-dimensional space is thereby extended into a 2n+2-dimensional ther-
modynamic space T spanned by the variables pi;qi with i ¼ 0; 1; . . .; n, where the
physical system is associated with a n+1-dimensional manifold Min T , parameterized
for instance by the coordinates q1; . . .; qn and p0. A gauge transformation which
changes the extra variable p0 while keeping the ratios pi=p0 ¼ �ci invariant is not
observable, so that a state of the system is represented by any point of a
one-dimensional ray lying in M, along which the physical variables
q0; . . .; qn; c1; . . .; cnare fixed. Then, the relation between contact and canonical trans-

formations is a direct outcome of this gauge invariance: the contact structure ~x ¼

dq0 �Pn
i¼1

ci:dq
i in 2n+1 dimension can be embedded into a symplectic structure in 2n

+2 dimension, with 1-form:

x ¼
Xn
i¼0

pi:dq
i ð34Þ

as symplectization, with geometric interpretation in the theory of fibre bundles.
The n +1-dimensional thermodynamic manifolds M are characterized by the

vanishing of this form x ¼ 0. The 1-form induces then a symplectic structure on T :

dx ¼
Xn
i¼0

dpi ^ dqi ð35Þ

Any thermodynamic manifold Mbelongs to the set of the so-called Lagrangian
manifolds in T , which are the integral submanifolds of dx with maximum dimension
(n +1). Moreover, M is gauge invariant, which is implied by x ¼ 0. The extensivity of
the entropy function S q1; . . .; qnð Þ is expressed by the Gibbs-Duhem relation

S ¼ Pn
i¼1

qi @S@qi, rewritten with previous relation
Pn
i¼0

piqi ¼ 0, defining a 2n+1-dimensional

extensivity sheet in T , where the thermodynamic manifolds Mshould lie. Considering
an infinitesimal canonical transformation, generated by the Hamiltonian hðq0; q1; . . .;
qn; p0; p1; . . .; pnÞ, _qi ¼ @h

@pi
and _pi ¼ @h

@qi, the Hamilton’s equations are given by Poisson

bracket:
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_g ¼ g; hf g ¼
Xn
i¼0

@g
@qi

@h
@pi

� @h
@qi

@g
@pi

ð36Þ

The concavity of the entropy S q1; . . .; qnð Þ, as function of the extensive variables,
expresses the stability of equilibrium states. This property produces constraints on the
physical manifolds M in the 2n+2-dimensional space. It entails the existence of a
metric structure [14, 16] in the n-dimensional space qirelying on the quadratic form:

ds2 ¼ �d2S ¼ �
Xn
i;j¼1

@2S
@qi@q j

dqidq j ð37Þ

which defines a distance between two neighboring thermodynamic states.

As dci ¼
Xn
j¼1

@2S
@qi@q j

dq j; then : ds2 ¼ �
Xn
i¼1

dcidqi ¼
1
p0

Xn
i¼0

dpidq
i ð38Þ

The factor 1=p0 ensures gauge invariance. In a continuous transformation gen-
erated by h, the metric evolves according to:

d
ds

ðds2Þ ¼ 1
p0

@h
@q0

ds2 þ 1
p0

Xn
i;j¼0

@2h
@qi@pj

dpidpj � @2h
@qi@q j dq

idq j

 �
ð39Þ

We can observe that this Gauge Theory of Thermodynamics is compatible with
Souriau Lie Group Thermodynamics, where we have to consider the Souriau vector

b ¼
c1
..
.

cn

2
64

3
75; transformed in a new vector pi ¼ �p0:ci; p ¼

�p0c1
..
.

�p0cn

2
64

3
75 ¼ �p0:b ð40Þ

“La Physique mathématique, en incorporant à sa base la notion de groupe,
marque la suprématie rationnelle… Chaque géométrie - et sans doute plus générale-
ment chaque organisation mathématique de l’expérience - est caractérisée par un
groupe spécial de transformations… Le groupe apporte la preuve d’une mathématique
fermée sur elle-même. Sa découverte clôt l’ère des conventions, plus ou moins
indépendantes, plus ou moins cohérentes” G. BACHELARD, Le nouvel esprit
scientifique, 1934
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Abstract. In this contribution, we study systems with a finite number
of degrees of freedom as in robotics. A key idea is to consider the mass
tensor associated to the kinetic energy as a metric in a Riemannian con-
figuration space. We apply Pontryagin’s framework to derive an optimal
evolution of the control forces and torques applied to the mechanical
system. This equation under covariant form uses explicitly the Riemann
curvature tensor.

Keywords: Robotics · Euler-Lagrange · Riemann curvature tensor
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1 Introduction

As part of studies based on the calculus of variations, the choice of a Lagrangian
or a Hamiltonian is essential. When we study the dynamics of articulated sys-
tems, the choice of the Lagrangian is directly linked to the conservation of energy.
The Euler-Lagrange methodology is applied to the kinetic and potential energies.
This establishes a system of second order ordinary differential equations for the
movement. These equations are identical to those deduced from the fundamen-
tal principle of dynamics. The choice of configuration parameters does not affect
the energy value. Because the kinetic energy is a positive definite quadratic form
with respect to the configuration parameters derivatives, its coefficients are ideal
candidates to define and create a Riemannian metric structure on the configura-
tion space. The Euler Lagrange equations have a contravariant tensorial nature
and highlight the covariant derivatives with respect to time with the introduction
of the Christoffel symbols.
• For the control of articulated robot choosing a Hamiltonian and a cost func-
tion are delicate. Here the presence of the Riemann structure is sound. It enables

This contribution is dedicated to the memory of Claude Vallée.

c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 541–549, 2015.
DOI: 10.1007/978-3-319-25040-3 58



542 F. Dubois et al.

a cost function invariant when coordinates change. The application of the Pon-
tryagin method from the optimal Hamiltonian leads to a system of second order
differential equations for the control variables. Its tensorial nature is covariant
and the Riemann-Christoffel curvature tensor is naturally revealed. In this devel-
opment, the adjoint variables are directly interpreted and have a physical sense.

(1) Pontryagin Framework for Differential Equations
We study a dynamical system, where the state vector y(t ; λ(•)) is a function
of time. This system is controlled by a set of variables λ(t) and satisfies a first
order ordinary differential equation:

dy

dt
= f(y(t), λ(t), t). (1)

We suppose also given an initial condition:

y(0 ; λ(•)) = x. (2)

We search an optimal solution associated to the optimal control t �−→ λ(t) in
order to minimize the following cost function J :

J(λ(•)) ≡
∫ T

0

g
(
y(t), λ(t), t

)
dt, (3)

where g(•, •, •) is a given real valued function.
• Pontryagin’s main idea [3] is to consider the differential equation (1) as a
constraint satisfied by the variable y. Then he introduces a Lagrange multiplier
p associated to the constraint (1). This new variable, due to the continuous
nature of the constraint (1), is a covariant vector function of time: p = p(t). A
global Lagrangian functional can be considered:

L(y, λ, p) ≡
∫ T

0

g(y, λ, t) dt +
∫ T

0

p
(dy

dt
− f(y, λ, t)

)
dt.

• Proposition 1. Adjoint Equations. If the Lagrange multiplier p(t) sat-
isfies the so-called adjoint equations,

dp

dt
+ p

∂f

∂y
− ∂g

∂y
= 0 (4)

and the so-called final condition,

p(T ) = 0, (5)

then the variation of the cost function for a given variation δλ of the paramater
is given by the simple relation

δJ =
∫ T

0

[ ∂g

∂λ
− p

∂f

∂λ

]
δλ(t) dt.
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At the optimum this variation is identically null and we find the so-called Pon-
tryagin optimality condition:

∂g

∂λ
− p

∂f

∂λ
= 0. (6)

Proof of Proposition 1. We write in a general way the variation of the
Lagrangian L(y, λ, p) in a variation δy, δλ and δp of the variables y, λ,
and p respectively. We use classical calculus rules as

δ
(∫ T

0

g dt
)

=
∫ T

0

δg dt , δ
(dy

dt

)
=

d
dt

(
δy

)
,

and we integrate by parts. We get

δL =

∫ T

0

[ ∂g

∂y
δy +

∂g

∂λ
δλ
]
dt +

∫ T

0
p
(dδy

dt
− ∂f

∂y
δy − ∂f

∂λ
δλ
)
dt +

∫ T

0
δp
(dy

dt
− f(y, λ, t)

)
dt

=

∫ T

0

[ ∂g

∂y
− p

∂f

∂y

]
δy dt +

∫ T

0

[ ∂g

∂λ
− p

∂f

∂λ

]
δλ dt +

[
p δy

]T

0
−
∫ T

0

dp

dt
δy dt

= p(T ) δy(T ) −
∫ T

0

[ dp

dt
+ p

∂f

∂y
− ∂g

∂y

]
δy dt +

∫ T

0

[ ∂g

∂λ
− p

∂f

∂λ

]
δλ dt

because δy(0) = 0 taking fixed the initial condition (2). By canceling the first
two terms of the right hand side of the previous relation, we find the adjoint
equation (4) giving the evolution of the Lagrange multiplier and the associated
final condition (5). The third term allows to calculate the change in the functional
J(•) for a variation δλ of control. �
(2) Pontryagin Hamiltonian
We introduce the Hamiltonian

H(p, y, λ) ≡ p f − g (7)

and the optimal Hamiltonian

H(p, y) ≡ H(p, y, λ∗)

for λ(t) = λ∗(t) equal to the optimal value associated to the optimal
condition (6).
• Proposition 2. Symplectic form of the Dynamic Equations. With
the notations introduced proviously, the “forward” differential equation (1) and
the “backward” adjoint differential equation (4) take the following symplectic
form:

dy

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂y
. (8)

Proof of Proposition 2. Since ∂H
∂λ = 0 at the optimum, we have ∂H

∂p =
∂H
∂p = f and the first relation of (8) is proven. On the other hand, ∂H

∂y = ∂H
∂y

= p ∂f
∂y − ∂g

∂y and the property is established. �
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(3) Riemanian Metric
We consider now a dynamical system parameterized by a finite number of func-
tions qj(t) like a poly-articulated system for robotics applications, as developed
previously in [1,4,5,7]. The set of all states q ≡ {qj} is denoted by Q. The
kinetic energy K is a positive definite quadratic form of the time derivatives q̇j

for each state q ∈ Q. The coefficients of this quadratic form define a so-called
mass tensor M(q). The mass tensor is composed by a priori a nonlinear regular
function of the state q ∈ Q. We have

K(q, q̇) ≡ 1
2

∑

k �

Mk�(q) q̇k q̇�. (9)

The mass tensor M(q) in (9) is symmetric and positive definite for each state q.
It contains the mechanical caracteristics of mass, inertia of the articulated sys-
tem. With Lazrak and Vallée [1] and Siebert [6], we consider the Riemannian
metric g defined by the mass tensor M . We set:

gk�(q) ≡ Mk�(q).

• With this framework, the space of states Q has now a structure of Rie-
mannian manifold. Therefore all classical geometrical tools of Riemannian geom-
etry can be used (see e.g. the book [2]):

covariant space derivation ∂j ≡ ∂
∂qj

contravariant space derivation ∂j : < ∂j , ∂k >= δj
k

component j, � of the inverse mass tensor M−1: M j�, Mij M j� = δ�
i

connection Γ j
ik = 1

2 M j�
(
∂iM�k + ∂kM�i − ∂�Mik

)
, Γ j

ki = Γ j
ik,

d ∂j = Γ �
jk dqk ∂�, d ∂j = −Γ j

k� dqk ∂�,
relations between covariant components ϕj and contravariant components ϕk

of a vector field: ϕj = Mjk ϕk, ϕk = Mkj ϕj

covariant derivation of a vector field ϕ ≡ ϕj ∂j : dϕ =
(
∂�ϕ

j +Γ j
�k ϕk

)
dq� ∂j

covariant derivation of a covector field ϕ ≡ ϕ� ∂�:
dϕ =

(
∂kϕ� − Γ j

k� ϕj

)
dqk ∂�

Ricci identities:
{

∂jMk� = Γ p
jk M�p + Γ p

j� Mkp ,

∂jM
k� = −Γ k

jp Mp� − Γ �
jp Mpk (10)

gradient of a scalar field: dV = ∂�V dq� =< ∇V , dqj ∂j > and
∇V = ∂�V ∂�

gradient of a covector field ϕ = ϕ� ∂�: dϕ ≡< ∇ϕ , dqj ∂j > and
∇ϕ =

(
∂kϕ� − Γ j

k� ϕj

)
∂k ∂�

second order gradient of a scalar field V : ∇2V = ∇(∇V ) and

∇2V =
(
∂k∂�V − Γ j

k� ∂jV
)
∂k ∂� (11)

components Rj
ik� of the Riemann tensor:

Rj
ik� ≡ ∂�Γ

j
ik − ∂kΓ j

i� + Γ p
ik Γ j

p� − Γ p
i� Γ j

pk (12)
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anti-symmetry of the Riemann tensor: Rj
ik� = −Rj

i�k.
• Proposition 3. Riemanian form of the Euler-Lagrange Equations.
With the previous framework, in the presence of an external potential V = V (q),
the Lagrangian L(q, q̇) = K(q, q̇)−V (q) allows to write the equations of motion
in the classical Euler-Lagrange form:

d
dt

( ∂L

∂q̇i

)
=

∂L

∂qi
(13)

These equations take also the Riemannian form:

Mk�

(
q̈� + Γ �

ij q̇i q̇j
)

+ ∂kV = 0. (14)

Proof of Proposition 3. The proof is presented in the references [5,7]. We
detail it to be complete. We have, due to (9),

∂K

∂q̇k
= Mk� q̇�.

We have also the following calculus:
d
dt

( ∂L

∂q̇k

)
− ∂L

∂qk
=

d
dt

(∂K

∂q̇k

)
− ∂k

(
K − V (q)

)

=
d
dt

(
Mk� q̇�

) − ∂k

(1
2

Mij q̇i q̇j
)

+ ∂kV

=
(
∂jMk�

)
q̇j q̇� + Mk� q̈� − 1

2
(
∂kMij

)
q̇i q̇j + ∂kV

=
(
Mks Γ s

j� + M�s Γ s
jk

)
q̇j q̇� − 1

2
(
Mis Γ s

kj + Mjs Γ s
ki

)
q̇i q̇j + Mk� q̈� + ∂kV

due to the first Ricci identity (10)

=
(
Mks Γ s

ji + Mis Γ s
jk − 1

2
Mis Γ s

kj − 1
2

Mjs Γ s
ki

)
q̇i q̇j + Mk� q̈� + ∂kV

= Mk�

(
q̈� + Γ �

ij q̇i q̇j
)

+ ∂kV

and the relation (14) is established. �
• When a mechanical forcing control u is present (forces and torques typi-
cally), the equations of motion can be formulated as follows:

q̈j + Γ j
k� q̇k q̇� + M j� ∂�V = uj . (15)

We observe that with this form (15) of the equations of motion, the contravariant
components of the control u have to be considered in the right hand side of the
dynamical equations.

(4) Optimal Dynamics
In this section, we follow the ideas proposed in [4,5,7]. The space of states Q has
a natural Riemannian structure. Therefore, it is natural to choose a cost function
that is intrinsic and invariant, and in consequence non sensible to the change of
coordinates. Following Rojas Qinteros’s thesis [4], we introduce a particular cost
function to control the dynamics (15):

J(u) =
1
2

∫ T

0

Mk�(q)uk u� dt. (16)
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The controlled system (15) (16) is of type (1) (3) with
{

Y = {qj , q̇j}, f = {Y j
2 ,−Γ j

k� q̇k q̇� − M j� ∂�V + uj} ,
λ = {uk}, g = 1

2 Mk�(Y1)uk u�.
(17)

The Pontryagin method introduces Lagrangre multipliers (or adjoint states) pj

and ξj to form the Hamiltonian H(Y, P, λ) function of state Y defined in (17)
and adjoint P obtained by combining the two adjoint states:

P = {pj , ξj} (18)

and λ = {uk} as proposed in (17). Taking into account (7), (17) and (18), we
have:

H(Y, P, λ) = pj q̇j + ξj

[ − Γ j
k� q̇k q̇� − M j� ∂�V + uj

] − 1
2

Mk�(Y1)uk u�. (19)

• Proposition 4. Interpretation of One Adjoint State. When the cost
function J defined in (16) is stationary, the adjoint state ξj is exactly equal
to the applied force (and torque!) uj in the right hand side of the dynamic
equation (15):

ξj = uj . (20)

Proof of Proposition 4. Due to the expression (19) of the Hamiltonian func-
tion, the optimality condition ∂H

∂λ = 0 takes the simple form

ξj = Mj� ξ�.

This relation is equivalent to the condition (20). �
• The reduced Hamiltonian H(Y, P ) at the optimum can be explicited with-
out difficulty. We just replace the control force uj by the adjoint state ξj :

H(Y, P ) = pj q̇j + ξj

[ − Γ j
k� q̇k q̇� − M j�(Y1) ∂�V

]
+

1
2

Mk�(Y1) ξk ξ�.

The symplectic dynamics (8) can be written simply:

q̇j =
∂H

∂pj
, q̈j =

∂H

∂ξj
, ṗj = −∂H

∂qj
, ξ̇j = −∂H

∂q̇j
. (21)

The two first equations of (21) give the initial controlled dynamics (15). We have
also

⎧
⎪⎪⎨

⎪⎪⎩

∂H

∂qj
= −(

∂jΓ
i
k�

)
q̇k q̇� ξi − ∂j

(
M i� ∂�V

)
ξi +

1
2
(
∂jM

k�
)
ξk ξ�

∂H

∂q̇j
= pj − 2Γ i

kj q̇k ξi.

We deduce the developed form of the two last equations of (21):
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ṗj =
(
∂jΓ

i
k�

)
q̇k q̇� ξi + ∂j

(
M i� ∂�V

)
ξi − 1

2
(
∂jM

k�
)
ξk ξ� (22)

ξ̇j = 2Γ i
kj q̇k ξi − pj . (23)

(5) Intrinsic Evolution of the Generalized Force
We introduce the covector ξ according to its covariant coordinates: ξ = ξj ∂j .
We have the following result, first established in [4,7]:
• Proposition 5. Covariant Evolution Equation of the Optimal Force.
With the above notations and hypotheses, the forces and torques u satisfy the
following time evolution:

(d2u

dt2

)

j
+ Ri

k�j q̇k q̇� ui +
(∇2

jkV
)
uk = 0. (24)

Proof of Proposition 5. The time covariant derivative of the covector ξ is
given by

dξ

dt
=

(
ξ̇j − Γ i

jk q̇k ξi

)
∂j

that is
(dξ

dt

)

j
= ξ̇j − Γ i

jk q̇k ξi. We report this expression in (23):

pj = Γ i
jk q̇k ξi −

(dξ

dt

)

j
. (25)

We wish to differentiate relative to time the expression pj given in (25). The
covariant derivatives of the covector p can be evaluated as follows:

(dp

dt

)

j
= ṗj − Γ �

jk q̇k p�.

Then we have, taking into account again the relation (25):

ṗj =
d
dt

[
Γ i

jk q̇k ξi −
(dξ

dt

)

j

]
+ Γ �

jk q̇k
[
Γ i

s� q̇s ξi −
(dξ

dt

)

�

]

= ∂�

(
Γ i

jk

)
q̇k q̇� ξi + Γ i

jk q̈k ξi + Γ i
jk q̇k

(dξ

dt

)

i
−

(d2ξ

dt2

)

j

+Γ �
jk Γ i

s� q̇k q̇s ξi − Γ �
jk q̇k

(dξ

dt

)

�

= ∂�

(
Γ i

jk

)
q̇k q̇� ξi + Γ s

kj Γ i
s� q̇k q̇� ξi −

(d2ξ

dt2

)

j
+ Γ i

kj q̈k ξi

due to the simplification of two terms

= ∂�

(
Γ i

jk

)
q̇k q̇� ξi + Γ s

kj Γ i
s� q̇k q̇� ξi −

(d2ξ

dt2

)

j

+Γ i
kj

(
− Γ k

�s q̇s q̇� − Mk� ∂�V + ξk
)

ξi due to (15)

=
(
∂�Γ

i
jk + Γ s

jk Γ i
s� − Γ s

k� Γ i
sj

)
q̇k q̇� ξi −

(d2ξ

dt2

)

j
− Γ i

kj Mk� ∂�V ξi + Γ i
kj ξk ξi
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and

ṗj =
(
Ri

kj� + ∂jΓ
i
k�

)
q̇k q̇� ξi −

(d2ξ

dt2

)

j
− Γ i

kj Mk� ∂�V ξi + Γ i
kj ξk ξi (26)

taking into account the expression (12) of the Riemann tensor. We confront the
relations (26) and (22). We deduce

⎧
⎪⎨

⎪⎩

Ri
kj� q̇k q̇� ξi −

(d2ξ

dt2

)

j
− Γ i

kj Mk� ∂�V ξi + Γ i
kj ξk ξi

= ∂j

(
M i� ∂�V

)
ξi − 1

2
(
∂jM

k�
)
ξk ξ�.

(27)

We take into account the second Ricci identity (10). It comes

(
∂jM

k�
)
ξk ξ� = −Γ k

js ξk ξs − Γ �
js ξ� ξs = −2Γ k

j� ξk ξ� = −2Γ i
jk ξk ξi .

Then we can write the relation (27) in a simpler way:

Ri
kj� q̇k q̇� ξi −

(d2ξ

dt2

)
j

=
[
Γ i

kj Mk� ∂�V + ∂j

(
M i� ∂�V

)]
ξi

=
[
Γ i

kj Mk� ∂�V − Γ i
js Ms� ∂�V − Γ �

js M is ∂�V + M i� ∂�∂jV
]
ξi

=
(
∂�∂jV − Γ s

j� ∂sV
)

M i� ξi =
(∇2

j�V
)
ξ�

due to the expression (11) of the second gradient of a scalar field. We have
established the following evolution equation

(d2ξ

dt2

)

j
+

(∇2
jkV

)
ξk = Ri

kj� q̇k q̇� ξi

and the relation (24) is a simple consequence of the anti-symmetry of the
Riemann tensor and of the identity (20). �

2 Conclusion

We have established that the methods of Euler-Lagrange and Pontryagin conduct
to two second order differential systems that couples state and control variables.
The choice of a Riemannian metric allows the two systems to be in a well-
defined tensorial nature: contravariant for the equation of motion and covariant
for the equation of the control variables. The study of a robotic system, of which
we try to optimize the control, shows how important is the introduction of an
appropriate geometric structure. Riemannian geometry selected on the configu-
ration parameter space favors the metric directly related to the mass tensor as
suggested by the expression of the kinetic energy. An undeniable impact is the
choice of an invariant cost function with respect to the choice of parameters, this
is a stabilizing factor for numerical developments. Pontryagin’s principle applied
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to contravariant equation of motion associated with the cost function conducts
to a mechanical interpretation of adjoint states.

The adjoint control equation is established in a condensed form by the intro-
duction of second order covariant derivatives and shows the Riemann curva-
ture tensor. Moreover, this framework exhibits a numerically stable method
when discretization is considered. The resolution of the coupled system gives
a direct access to control variables without any additional calculation. Thus,
future numerical developments will have to juggle between two coupled systems
of second-order ordinary differential equations: the equation of motion and the
equation for the control.
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Abstract. Riemannian symmetric spaces play an important role in
many areas that are interrelated to information geometry. For instance,
in image processing one of the most elementary tasks is image interpola-
tion. Since a set of images may be represented by a point in the Graßmann
manifold, image interpolation can be formulated as an interpolation prob-
lem on that symmetric space. It turns out that rolling motions, subject to
nonholonomic constraints of no-slip and no-twist, provide efficient algo-
rithms to generate interpolating curves on certain Riemannian manifolds,
in particular on symmetric spaces. The main goal of this paper is to study
rolling motions on symmetric spaces. It is shown that the natural decom-
position of the Lie algebra associated to a symmetric space provides the
structure of the kinematic equations that describe the rolling motion of
that space upon its affine tangent space at a point. This generalizes what
can be observed in all the particular cases that are known to the authors.
Some of these cases illustrate the general results.

Keywords: Rolling · Isometry · Graßmann manifold · Symmetric
spaces · Lie algebra

1 Introduction

Techniques from Riemannian geometry have become increasingly successful and
important in image processing, machine learning and data analysis. This is due
to the fact that data representation is usually more realistic on manifolds rather
then on vector spaces. Examples of manifolds that became popular in computer
vision are: the Graßmann manifold, each point of which is associated to a set
of images; the essential manifold, which parameterizes the epipolar constraint
encoding the relation between correspondences across two images of the same
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scene taken from two different locations; and the manifold of symmetric and
positive-definite matrices (SPD), typically identified with the space of diffu-
sion tensors. These examples do not exhaust the list of manifolds that play an
important role in areas that are interrelated to information geometry, but serve
as motivations for the problems studied here since they are particular cases of
Riemannian symmetric spaces.

Averaging, regression and interpolation problems are often employed in pat-
tern recognition and other related areas of computer vision. Image interpolation
is one of the most elementary image processing tasks. Many image interpolation
techniques have been proposed in the literature. When the data is represented
on some manifolds, one approach that is quite effective is based on the notion of
rolling motions of a manifold over another one. In which concerns the representa-
tion of images by points on the Graßmann, it is known that this correspondence
is many to one. For that reason, results for interpolation on that manifold cannot
be uniquely turned back to a set of interpolating images.

An algorithm to generate interpolating curves on spheres, on the orthogonal
group and on the Graßmann manifold was proposed in [6]. This algorithm was
also implemented in [9] for the essential manifold. Another interesting aspect
of rolling, in the context of computer vision, is that it can be used to solve
multi-class classification problems, as explained in [2]. The main idea behind
these algorithms is to use rolling motions to project the data from the manifold
to a simpler space where classical methods can be applied and then roll back
the solution in order to solve the initial problem on the manifold. It turns out
that these algorithms can be adapted to other manifolds, such as the ellipsoid
with a left-invariant metric [8] or other Riemannian or even pseudo-Riemannian
manifolds, in particular to Riemannian symmetric spaces. This is one of the
main motivations behind the research presented in this paper. Other optimiza-
tion problems and methods to solve them on these manifolds can be found, for
instance, in [1].

In this paper, we concentrate on the rolling motion of symmetric homoge-
neous spaces over the affine tangent space at a point. Section 2 introduces the
necessary background. It recalls the definition of rolling subject to the nonholo-
nomic constraints of “no-slip” and “no-twist”, and contains the fundamentals
of homogeneous symmetric spaces. Our results are given in Sect. 3. Theorem 5
proves a strong relationship between rolling maps and the structure of a Lie
algebra associated to the symmetric space. Theorem 6 shows how to generate
left-invariant parallel vector fields on symmetric spaces from rolling maps. These
results are illustrated by a few examples. Example 1 shows how the Lie algebra
forces the structure of the kinematic equations. This is also illustrated with the
Graßmann manifold in Example 2 and with the Lorentzian sphere, a pseudo-
Riemannian manifold, in Example 3. We finish with a few concluding remarks.

2 Preliminaries

We are interested in submanifolds of a Riemannian manifold M̃. Typically, M̃
will be the Euclidean space IRm.
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2.1 Rolling Maps

In this section we introduce a rolling map of submanifolds isometrically embed-
ded in a Riemannian manifold. The definition of rolling is a generalisation of that
given in [10, Appendix B] applicable to a general situation, where the embed-
ding space IRm is replaced by an orientable Riemannian manifold M̃, cf. [5]. We
assume here and in the remainder of this paper that all manifolds are connected
and orientable.

Let M̃ be a Riemannian complete m-dimensional manifold and let G̃ be the
group of isometries on M̃. Let I ⊂ IR be a closed interval. From now on, we
closely follow the notations used in [5].

Definition 1. Let M and M0 be two n-manifolds isometrically embedded in an
m-dimensional Riemannian manifold M̃. Then a rolling of M on M0 without
slipping or twisting is a map χ : I → G̃ satisfying the following conditions.

Rolling. There is a piecewise smooth rolling curve on M given by σ : I → M
such that:
(a) χ(t) · σ(t) ∈ M0, and
(b) Tχ(t)·σ(t)(χ(t)(M)) = Tχ(t)·σ(t)M0, for all t ∈ I.

These properties imply that at each point of contact, both manifolds,
M0 and χ(t)(M), have the same tangent space. This is identified as a
subspace of the tangent space of M̃ at the considered point. The curve
σ0 : I → M0 defined by σ0(t) := χ(t) · σ(t) is called the development
curve of σ.

No-slip. σ̇0(t) = χ(t)∗ · σ̇(t), for almost all t ∈ I. This condition expresses the
fact that the two curves have the same velocity at the point of contact.

No-twist. the two complementary conditions:
tangential

(
χ̇(t) χ(t)−1

)
∗ (Tσ0(t)M0) ⊂ T⊥

σ0(t)
M0, and

normal
(
χ̇(t) χ(t)−1

)
∗ (T⊥

σ0(t)
M0) ⊂ Tσ0(t)M0, for almost all t ∈ I.

We conclude this part by a crucial observation about the operator
(
χ̇ χ−1

)
∗

made by Sharpe in [10, p. 379], when M̃ is the Euclidean space, and in [5] in
a more general setting. If χ is a rolling map of M upon M0, then in suitable
coordinates in a neighbourhood of p ∈ M0 we may choose orthonormal basis
in TpM̃ = TpM0 ⊕ T⊥

p M0 so that the operator
(
χ̇ χ−1

)
∗ has the matrix form

(m = n + r)
(
χ̇(t) χ(t)−1

)
∗ =

[
0 Xn×r

−XT
n×r 0

]
TpM0

T⊥
p M0

TpM0 T⊥
p M0

(1)

In essence, our main result, Theorem 5 captures the structure of
(
χ̇ χ−1

)
∗ given

by (1), that is carried from the Lie algebra of the symmetry acting transitively
on M.
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2.2 Symmetric Riemannian Homogeneous Spaces

This section gives a very brief introduction to symmetric Riemannian homoge-
neous spaces. For more details we refer to [4].

Let G be a connected Lie group with Lie algebra g. Suppose G acts transi-
tively on a Riemannian manifold M, i.e., there is a smooth map G × M → M,
denoted by (a, p) �→ a · p, such that, for any p ∈ M: a · (b · p) = (ab) · p, for any
a, b ∈ G; e · p = p, where e is the identity element of G; for any q ∈ M there
exists an element a ∈ G such that q = a · p. For an arbitrary fixed point p0 ∈ M
the closed subgroup

H := { a ∈ G : a · p0 = p0 }
is an isotropy group of G at p0. Then M is diffeomorphic to the space G/H of
left cosets aH, with p �→ aH, where a ∈ G is such that p = a · p0. Let the metric
on M be invariant under G, i.e., for any x ∈ G the mapping τ(x) : aH �→ xaH
of G/H onto G/H is an isometry. We will assume further that the homogeneous
space G/H is reductive, i.e., there exists a decomposition g = h ⊕ p, invariant
under Ad(H). The natural projection π : G → M ∼= G/H induces the linear
surjection π∗ : TeG → Tp0M and we have the following isomorphisms

Tp0M ∼= TeG/ ker π∗ ∼= g/h ∼= p.

The space M ∼= G/H is called a symmetric Riemannian homogeneous space
(symmetric space for short) if the above vector subspace p satisfies [p, p] ⊂ h.
For such spaces we have the following relations

g = h ⊕ p, [p, p] ⊂ h, [p, h] ⊂ p and [h, h] ⊂ h.

3 Rolling Riemannian Symmetric Spaces

In the remainder of this paper we assume that a manifold M, isometrically
embedded in the ambient space M̃, is rolling upon its affine tangent space at a
point p0. Let G̃ = G � V be the group of isometries preserving orientation of
M̃. For instance, if the ambient space is IRm, its isometry group is the special
Euclidean group SE(m) = SO(m) � IRm. If χ = (g, s) is a rolling map then χ
acts as follows

I × M̃
χ−−−−→ M̃

I × Tp0M̃
χ∗−−−−→ Tp0M̃

(
t, p

) χ−−−−→ g(t) · p + s(t)

(
t, V

) χ∗−−−−→ g(t)∗ · V

We shall assume that M is the symmetric space G/H, that is M ∼= G/H, so
that the subgroup G ⊂ G̃ acts transitively on M and H is the isotropy group
of p0 ∈ M. We identify elements of Lie algebra g of G with the vector space of
linear maps from Tp0M̃ to itself. Let μ denoting the group action on M then
the above relationships can be illustrated with the following diagrams.
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G × M̃
μ−−−−→ M̃

exp

�
⏐
⏐exp

�
⏐
⏐exp

g × Tp0M̃
μ∗−−−−→ Tp0M̃

(
g, p

) μ−−−−→ g · p

exp

�
⏐
⏐exp

�
⏐
⏐exp

(
X,V

) μ∗−−−−→ X · V

With these assumptions, if χ = (g, s) is a rolling map of M upon its affine
tangent space at p0, then σ(t) = g−1(t) · p0 is the rolling curve.

Proposition 2. Let h be the Lie algebra of the isotropy group H of p0 ∈ M.
Then h(Tp0M) ⊂ Tp0M and h(T⊥

p0
M) ⊂ T⊥

p0
M.

Proof. Let g : (−ε, ε) → H be a differentiable curve in the isotropy group H such
that g(0) is the identity. Moreover, let γ : (−δ, δ) → M̃ be a differentiable curve
in the ambient manifold, with γ(0) = p0. Then c(t, s) := g(t) · γ(s) is a smooth
map from (−ε, ε) × (−δ, δ) to M̃ such that c(t, 0) = p0, for all t ∈ (−ε, ε). The
derivative of c with respect to s is

∂sc(t, 0) = g(t)∗ · γ̇(0),

therefore g(t)∗ is a map from Tp0M̃ to itself. Since H is also a subgroup of a Lie
group G, that acts transitively on M, then, by restricting γ to M, ∂sc(t, 0) =
g(t)∗ · V , where V ∈ Tp0M, is a curve in the tangent space Tp0M. Similarly
g(t)∗ · Λ, where Λ ∈ T⊥

p0
M is a curve in the normal space T⊥

p0
M, because H

is an isometry. Taking derivative with respect to t, noting that g(0) = e, yields
ġ(0)∗ · γ̇(0) = ∂t∂sc(0, 0), where ġ(0)∗ ∈ h. The proof is now complete. �	

The following proposition has been proved in [3].

Proposition 3. Assume that M̃ is Euclidean and let p = g/h, where h is the
Lie algebra of the isotropy group H of p0 ∈ M. Then p(Tp0M) ⊂ T⊥

p0
M and

p(T⊥
p0
M) ⊂ Tp0M.

Remark 4. We are strongly convinced that Proposition 3 is true for general
Riemannian manifolds, although we have not been able to produce a complete
proof yet. Our believe is based on all the cases that we have analyzed including
some of the examples that appear later.

Theorem 5. Let p be as above and χ be a rolling map of a symmetric space
M ∼= G/H embedded in Euclidean space. Then

(
χ̇ χ−1

)
∗ is an element of p.

Proof. Denote
(
χ̇ χ−1

)
∗ by u ∈ g. Let u = uh + up be a decomposition of u into

components in h and p, respectively. For any vector V ∈ Tp0M there is

u · V = (uh + up) · V = uh · V + up · V,

where uh ·V ∈ Tp0M and up ·V ∈ T⊥
p0
M, by Propositions 2 and 3, respectively.

From the tangential part of the “no-twist” conditions u · V ∈ T⊥
p0
M then it

follows that uh · V is zero, for all V ∈ Tp0M. By a similar reasoning with the
normal part of the “no-twist” conditions one shows that also uh · V = 0, for all
V ∈ T⊥

p0
M. Therefore uh ≡ 0 hence u = up ∈ p. This completes the proof. �	
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Theorem 6. Let χ = (g, s) be a rolling map of a symmetric space M ∼= G/H
and σ(t) = g−1(t) · p0 be the corresponding rolling curve. For any V0 ∈ Tp0M
define a vector field along σ by

V (t) := g−1(t)∗ · V0.

Then V is a left-invariant parallel vector field along σ.

Proof. Clearly V (t) ∈ Tσ(t)M. We show first that V is left-invariant. Let La

denote the left translation by a ∈ G then V =
(
Lg−1

)
∗ · V0 and

V (f ◦ Lg) =
((

Lg−1

)
∗ · V0

)
(f ◦ Lg) = V0(f ◦ Lg ◦ Lg−1) = V0(f),

for any differentiable f on M. Hence (Lg)∗V = V0 = V (0) and V is left invariant.
The rolling map χ generates vector field Ṽ along development curve σ0(t) =

χ(t) · σ(t) and since rolling maps preserve covariant differentiation, cf. [5], then
DtV = D̃tṼ , where D̃t is the covariant derivative on the affine tangent space.
Because Ṽ (t) = χ(t)∗ · V (t) =

(
g(t)∗ g−1(t)∗

) · V0 = V0 is constant therefore
DtV = 0, what was to show. �	

Examples. Here we give a few examples of rolling symmetric spaces on their
respective affine tangent spaces. These examples illustrate the main ideas behind
the structure of the rolling maps and decomposition of a Lie algebra.

Example 1 (The Sphere). Consider the well studied problem of rolling the sphere
Sn on its affine tangent space. Since Sn = SO(n + 1)/SO(n) is homogeneous
space, take any p0 ∈ Sn, then H = SO(n) is an isotropy group leaving p0 fixed.

To be more precise, take p0 =
(
0, . . . , 0,−1

)
be the “south pole” of Sn. The

Lie algebra g = so(n + 1) splits into the direct sum p ⊕ h, where

h =
{

x ∈ so(n + 1) : x =
[
A 0
0 0

]

and A ∈ so(n)
}

and p = h⊥ is given by

p =
{

x ∈ so(n + 1) : x =
[

0 m
−mT 0

]

and m ∈ IRn×1

}
∼= Tp0S

n.

It is easy to see that p · p0 = Tp0S
n and h · p0 = 0. Note that span(p0) = T⊥

p0
Sn.

Let χ be the rolling map and let u =
(
χ̇ χ−1

)
∗ then u ∈ g and

〈
u · (p · p0), p0

〉
=

−〈
p · p0, u · p0

〉
. From the tangential part of the “no-twist” condition it follows

that u ∈ p.

Example 2 (The Graßmann Manifold). We now look at the Graßmann manifold
rolling on its affine tangent space, cf. [6]. The Graßmann manifold Grk,n is
defined by Grk,n :=

{
P ∈ s(n) : P 2 = P and rank(P ) = k

}
and considered

embedded in s(n), where s(n) is the set of n × n symmetric matrices. Group



556 K.A. Krakowski et al.

G = SO(n) acts transitively on Grk,n by
(
X,P

) �→ X · P · XT. This action
induces Lie algebra action

(
a, V

) �→ a · V + V · aT. Take P0 =
[
1lk 0
0 0

]
and let

H ⊂ G be the isotropy group leaving P0 fixed. Then

H =
{[

H1 0
0 H2

]

: H1 ∈ SO(k) and H2 ∈ SO(n − k)
}

.

Then Lie algebra h of the group H is

h =
{ [

h1 0
0 h2

]

: h1 ∈ so(k) and h2 ∈ so(n − k)
}

.

The orthogonal complement p = h⊥ is therefore

p =
{ [

0 m
−mT 0

]

: m ∈ IRk×(n−k)

}

.

The tangent and normal spaces at P0 are given by

TP0Grk,n =
{ [

0 Z
ZT 0

]

: Z ∈ IRk×(n−k)

}

and

T⊥
P0
Grk,n =

{ [
S1 0
0 S2

]

: S1 ∈ s(k), S2 ∈ s(n − k)
}

.

The normal part of the “no-twist” conditions
[

u1 u2

−uT
2 u3

] [
S1 0
0 S2

]

+
[
S1 0
0 S2

] [
uT
1 −u2

uT
2 uT

3

]

=
[ [

u1, S1

]
u2 · S2 − S1 · u2

−uT
2 · S1 + S2 · uT

2

[
u3, S2

]
]

yields
[
u1, S1

]
= 0 and

[
u3, S2

]
= 0, for any symmetric S1 and S2. This is only

possible when u1 = 0 and u3 = 0, hence u ∈ p, as expected.

Example 3 (the Lorentzian sphere). We now look at the pseudo-Riemannian case,
cf. [7]. The embedding space is IRn+1 endowed with the Minkowski metric with
the signature (n, 1), denoted by J . Let Sn,1 be the surface defined by

Sn,1 :=
{

x ∈ IRn+1 :
〈
x, x

〉
J

= 1
}

.

Surface Sn,1 is called the Lorentzian sphere also known as de Sitter space. The
symmetry group acting transitively on Sn,1 is SO(n, 1) defined as

SO(n, 1) :=
{

X ∈ IR(n+1)×(n+1) : XTJX = J and detX = 1
}

,

with its Lie algebra so(n, 1) :=
{

Ω ∈ IR(n+1)×(n+1) : ΩTJ = −JΩ
}

. It is

known that Sn,1 = SO(n, 1)/SO(n − 1, 1) is a symmetric space. Choose p0 =(
1, 0, . . . , 0

)
and n > 1 then the isotropy group becomes

H =
{

X ∈ SO(n, 1) : X =
[
1 0
0 SO(n − 1, 1)

] }

.
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Its Lie algebra is therefore

h =
{

x ∈ so(n, 1) : x =
[
0 0
0 so(n − 1, 1)

]}

and its orthogonal complement is

p =
{

x ∈ so(n, 1) : x = J ·
[
0 −uT

u 0

]

and u ∈ IRn×1

}

.

This is consistent with the results in [7].

Cases of symmetric spaces like the essential manifold [9] and the ellipsoid
embedded in a space with a left-invariant metric [8] arise naturally from the
above three examples.

4 Final Remarks

We have proven that the natural decomposition of the Lie algebra associated to
a symmetric space embedded in a Euclidean space provides the structure of the
kinematic equations that describe the rolling motion of that space upon its affine
tangent space at a point. Several examples have been provided to illustrate the
general results.
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6. Hüper, K., Silva Leite, F.: On the geometry of rolling and interpolation curves on
Sn, SOn and Graßmann manifolds. J. Dyn. Control Syst. 13(4), 467–502 (2007)

7. Korolko, A., Silva Leite, F.: Kinematics for rolling a Lorentzian sphere. In: 2011
50th IEEE Conference on Decision and Control and European Control Conference
(CDC-ECC), pp. 6522–6527, December 2011

8. Krakowski, K.A., Silva Leite, F.: An algorithm based on rolling to generate smooth
interpolating curves on ellipsoids. Kybernetika 50(4), 544–562 (2014)

9. Machado, L., Pina, F., Silva Leite, F.: Rolling maps for the Essential Mani-
fold, Chap. 21. In: Bourguignon, J.-P., Jeltsch, R., Pinto, A.A., Viana, M. (eds.)
Dynamics, Games and Science. CIM Series in Mathematical Sciences, pp. 399–415.
Springer, Cham (2015)

10. Sharpe, R.W.: Differential Geometry: Cartan’s Generalization of Klein’s Erlangen
Program. Graduate Texts in Mathematics, vol. 166. Springer, New York (1997)



Enlargement, Geodesics, and Collectives

Eric W. Justh2 and P. S. Krishnaprasad1(B)

1 Department of Electrical and Computer Engineering,
Institute for Systems Research, University of Maryland, College Park 20742, USA

krishna@umd.edu
2 Naval Research Laboratory, Washington, DC 20375, USA

Abstract. We investigate optimal control of systems of particles on
matrix Lie groups coupled through graphs of interaction, and character-
ize the limit of strong coupling. Following Brockett, we use an enlarge-
ment approach to obtain a convenient form of the optimal controls. In
the setting of drift-free particle dynamics, the coupling terms in the cost
functionals lead to a novel class of problems in subriemannian geometry
of product Lie groups.

Keywords: Subriemannian geometry · Subriemannian geodesics · Non-
holonomic integrator · Lie-poisson reduction · Collective behavior

1 Introduction

Consider the drift-free left-invariant system on the Heisenberg group H(3) given
by

ġ = gξ = g(u1X1 + u2X2), g ∈ H(3), ξ ∈ h(3), the Lie algebra of H(3), (1)

where

X1 =

⎡

⎣
0 1 0
0 0 0
0 0 0

⎤

⎦, X2 =

⎡

⎣
0 0 0
0 0 1
0 0 0

⎤

⎦, X3 =

⎡

⎣
0 0 1
0 0 0
0 0 0

⎤

⎦, (2)

is a basis for h(3), with [X1,X2] = X3, [X1,X3] = 0, and [X2,X3] = 0, where

g =

⎡

⎣
1 g12 g13
0 1 g23
0 0 1

⎤

⎦. (3)

The elements of g are real-valued, as are the controls u1 and u2. The Magnus
expansion (single exponential representation) relates the solution g of (1) to the
logarithmic coordinates defined by

g = exp(Z) = exp(z1X1 + z2X2 + z3X3), (4)
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where Z ∈ h(3). Due to the nilpotency of h(3), the Magnus expansion terminates,
so that defining U = (u1X1 + u2X2), the system

Ż = U +
1
2
[Z,U ] +

1
12

[Z, [Z,U ]] − 1
720

[Z, [Z, [Z,U ]]] ± · · · = U +
1
2
[Z,U ], (5)

or equivalently, as in [9],

ż1 = u1, ż2 = u2, ż3 =
1
2
(z1u2 − z2u1), (6)

is a globally valid coordinate representation for the dynamics on H(3) given by
(1). The system (6) is the nonholonomic integrator, a prototype in the study of
subriemannian geometry [4,5]. Other such prototypes may be seen in [1,2].

Although (1) evolves on the Lie group H(3), it can be viewed as a special
case of a dynamics defined on the Lie group Gl(3), the general linear group of
3 × 3 matrices, with initial condition g(0) ∈ H(3), or even as a special case of a
dynamics defined on Mat(3), the vector space of 3 × 3 matrices (with the same
restriction on initial conditions). This latter extrinsic viewpoint is adopted in
the present paper, and while we use the group H(3) as an illustrative example,
the results apply to the Mat(n) setting, n ≥ 3.

We study control of collective dynamics, where the elementary units (par-
ticles) are coupled through a communication graph, and controls are found by
extremizing a particular form of cost functional. In prior work, we used Lie-
Poisson reduction to study such problems, where reduction was made possible
by symmetry of the cost functional, [8] (see also [7]). Here we show that an
extrinsic (enlargement) approach offers the advantage of a convenient form of
the necessary conditions of optimality. This method was pioneered by Brockett
[3] who also developed subriemannian geometry with the nonholonomic integra-
tor (6) and its generalization in [4,5] as model problems. For a penetrating view
of subriemannian geometry see the work of Mikhael Gromov [6].

This paper is organized as follows. In Sect. 2 we formulate an optimal control
problem for a collective of particles, each of which evolves according to the same
right-invariant control-affine dynamics. The Maximum Principle is then applied
to find optimal controls, and through this process, a symmetry of the corre-
sponding hamilton’s equations is observed. In Sect. 3 this symmetry is shown
to yield the Kirillov-Kostant-Souriau (KKS) bracket, and the reduced dynamics
are presented. The limiting case of “strong coupling,” analogous to [8] is also dis-
cussed. Finally, in Sect. 6 we return to the special case of the Heisenberg group
in concluding remarks.

2 Enlargement

Here we use an enlargement approach to formulate and analyze the dynamics
of a collective of particles evolving on copies of a matrix Lie group (such as
H(3)). The basic idea is to formulate a higher-dimensional system more amenable
to analysis, which specializes to the dynamics of interest under appropriately
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constrained initial conditions. As we show by explicit calculation, the optimality
conditions for the enlarged system admit reduction, and the interpretation of
this reduction is provided in the subsequent section.

2.1 Collective Dynamics

For N (identical) particles Qi : R
+ → Mat(n), t �→ Qi(t), i.e., Qi an n × n

matrix with real-valued elements, we consider the right-invariant dynamics

Q̇i =

⎛

⎝A +
m∑

j=1

uj
iBj

⎞

⎠Qi, i = 1, . . . , N, (7)

for some positive integer m, where uj
i : R

+ → R are controls, and A,Bj ∈
Mat(n), j = 1, . . . , m.

For the special case of the nonholonomic integrator (in right-invariant form),
A = 0 (i.e., the system is drift-free), m = 2, B1 = −X1, B2 = −X2, and
Q ∈ H(3). In general, the drift-free restriction is required for the subriemannian
setting. But we postpone this specialization, because certain key results hold in
the more general formulation of (7).

2.2 Cost Functional and Lagrangian

The cost functional we seek to minimize is

L =
∫ T

0

L(u1(t), . . . , uN (t))dt, (8)

with fixed endpoints t = 0 and t = T , where ui ∈ R
m is the column vector of

controls applied to the ith particle, i = 1, . . . , N . The Lagrangian

L =
1
2

(
N∑

k=1

|ui|2 + χ

N∑

k=1

N∑

i=1

αki|uk − ui|2
)

(9)

penalizes (steering) control “energy” and (steering) control differences, with a
nonnegative coupling constant χ determining the relative contribution of these
two terms. In (9), the αki are elements of the adjacency matrix corresponding
to a communication graph, which is assumed to be connected, undirected, and
without self loops. The corresponding graph Laplacian is denoted by β = D−α,
where D is the (diagonal) degree matrix. Here, | · | denotes the norm associ-
ated with a vector inner product 〈·, ·〉 on R

m. A calculation incorporating these
assumptions on the interaction graph shows that we can rewrite (9) as

L =
1
2

N∑

i=1

|ui|2 + χ

N∑

k=1

〈

uk,

N∑

i=1

βkiui

〉

. (10)
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2.3 Pre-hamiltonian

Because the Lagrangian (10) only involves the controls ui, i = 1, . . . , N , the
adjoint system to (7) is

Ṗi = −
⎛

⎝A +
m∑

j=1

uj
iBj

⎞

⎠

T

Pi, i = 1, . . . , N, (11)

where Pi : R+ → Mat(n).
The Pontryagin pre-hamiltonian is defined as

H =
N∑

i=1

〈〈
Q̇i, Pi

〉〉
− L, (12)

where 〈〈·, ·〉〉 denotes a suitable inner product, here the trace inner product,
yielding

H =
N∑

i=1

tr
(
Q̇iP

T
i

)
− L =

N∑

i=1

tr

⎛

⎝

⎛

⎝A +
m∑

j=1

uj
iBj

⎞

⎠QiP
T
i

⎞

⎠ − L

=
N∑

i=1

tr

⎛

⎝

⎛

⎝A +
m∑

j=1

uj
iBj

⎞

⎠Ki

⎞

⎠ − L, (13)

where we have defined

Ki = QiP
T
i , i = 1, . . . , N. (14)

With this definition of Ki we then have

K̇i = Q̇iP
T
i + QiṖ

T
i =

⎡

⎣

⎛

⎝A +
m∑

j=1

uj
iBj

⎞

⎠ ,Ki

⎤

⎦. (15)

Thus, (15) and (13) form a self-contained system involving Ki and ui, i =
1, . . . , N .

2.4 Application of the Maximum Principle

We note that the cost functional L given by (8) with Lagrangian L given by (10)
depends only on the controls u1(t), . . . , uN (t) and L is convex. The Maximum
Principle in the present setting can be stated as follows.

Theorem (Maximum Principle): If u1(t), . . . , uN (t) are optimal controls for
L, (Q1, . . . , QN ) denotes the corresponding optimal trajectory in GL(n)N , and
the only extremals of L are regular extremals, then
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(a) there exist P1(t), . . . , PN (t) such that

H(P1(t), . . . , PN (t), Q1(t), . . . , QN (t), u1(t), . . . , uN (t))

= sup
vk∈Rm, k=1,...,N

H(P1(t), . . . , PN (t), Q1(t), . . . , QN (t), v1, . . . , vN ),

(16)

for a.e. t ∈ [0, T ]; and
(b) defining

H(P1(t), . . . , PN (t), Q1(t), . . . , QN (t))

= sup
vk∈Rm, k=1,...,N

H(P1(t), . . . , PN (t), Q1(t), . . . , QN (t), v1, . . . , vN ),

(17)

we have that P1(t), . . . , PN (t), Q1(t), . . . , QN (t) satisfy hamilton’s equations
for the hamiltonian H.

Applying the Maximum Principle to the specific Lagrangian (10), the first-
order necessary condition for (17) is ∂H/∂uj

i = 0, i = 1, . . . , N, j = 1, . . . , m, and
differentiating (13) with respect to uj

i yields

∂H

∂uj
i

= tr (BjKi) − uj
i − 2χ

N∑

k=1

βkiu
j
k = 0, (18)

so that tr (BjKi) = uj
i + 2χ

∑N
k=1 βikuj

k, where we have used the symmetry of
the graph Laplacian β.

We define

μj
i � tr (BjKi) , i = 1, . . . , N, j = 1, . . . , m, (19)

so that μj
i = uj

i + 2χ
∑N

k=1 βikuj
k, or, equivalently,

μi = ui + 2χ
N∑

k=1

βikuk, (20)

where μi ∈ R
m, i = 1, . . . , N . This can be rewritten, via Kronecker products, as

⎡

⎢
⎣

μ1

...
μN

⎤

⎥
⎦ = ((IN + 2χβ) ⊗ Im)

⎡

⎢
⎣

u1

...
uN

⎤

⎥
⎦. (21)

Defining Ψ � ((IN + 2χβ) ⊗ Im)−1 = (IN + 2χβ)−1 ⊗ Im, and noting that all
eigenvalues of β are real and nonnegative (including exactly one zero eigenvalue),
we see that Ψ is guaranteed to exist for all χ ≥ 0. We then have

⎡

⎢
⎣

u1

...
uN

⎤

⎥
⎦ = Ψ

⎡

⎢
⎣

μ1

...
μN

⎤

⎥
⎦, (22)
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which we can substitute back into the hamiltonian. From (13) and (10), with
the optimal controls substituted in, we find (after some calculation)

h =
N∑

i=1

tr (AKi) +
1
2
[
μT
1 · · · μT

N

]
Ψ

⎡

⎢
⎣

μ1

...
μN

⎤

⎥
⎦. (23)

We have used the notation “h” (rather than “H”) to denote the hamiltonian
because it depends on Qi and Pi only through Ki = QiP

T
i , i = 1, . . . , N , so it

has the interpretation of a reduced hamiltonian on a reduced space. We make
this precise in the next section.

3 Reduction and the Kirillov-Kostant-Souriau Bracket

It can be shown that the passage from the hamiltonian system defined in terms
of Qi, Pi to the system involving only Ki, i = 1, . . . , N , is Lie-Poisson reduction,
and a KKS bracket is obtained:

{φ, ψ} (K1, . . . , KN ) = −
N∑

i=1

〈〈[
δφ

δKi
,

δψ

δKi

]

,Ki

〉〉

, (24)

where φ, ψ : (Mat(n))N → R. Although the KKS bracket (24) is decoupled, we
note that coupling among the Ki, i = 1, . . . , N , remains present in the reduced
dynamics,

K̇i =

⎡

⎢
⎣A +

m∑

j=1

⎛

⎜
⎝
[
μT
1 · · · μT

N

]
Ψ

⎡

⎢
⎣

δi1e
j

...
δiNej

⎤

⎥
⎦

⎞

⎟
⎠Bj ,Ki

⎤

⎥
⎦, i = 1, . . . , N, (25)

where ej is an m-vector with the jth element equal to one and all other elements
zero, and δil is the Kronecker delta (i.e., one for i = l and zero otherwise). The
derivative of the reduced hamiltonian (23), which is incorporated into (25), is
given by

δh

δKi
= AT +

m∑

j=1

⎛

⎜
⎝
[
μT
1 · · · μT

N

]
Ψ

⎡

⎢
⎣

δi1e
j

...
δiNej

⎤

⎥
⎦

⎞

⎟
⎠BT

j , (26)

and the coupling present in the dynamics (25) is thus seen to enter through the
gradient of the hamiltonian (via Ψ , which depends on the interaction graph).

The hamiltonian h is constant along trajectories. Furthermore, tr(Kk
i ) is a

Casimir (commutes with any h under the bracket (24)) for any k > 0 (and
i = 1, . . . , N). Using the Cayley-Hamilton Theorem, we thus have n functionally
independent Casimirs for each i = 1, . . . , N - a total of nN Casimirs.
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4 Strong Coupling Limit

The limit of strong coupling is defined as χ → ∞, and in (25), this limit corre-
sponds to [8]

Ψ∞ = lim
χ→∞ Ψ =

1
N

1N1T
N ⊗ Im, (27)

where 1N = [1 1 · · · 1]T , resulting in K̇i =
[
A +

∑m
j=1 tr

(
BjK̄

)
Bj ,Ki

]
, for

K̄ = 1
N

∑N
i=1 Ki, and in fact

˙̄K =

⎡

⎣A +
m∑

j=1

tr
(
BjK̄

)
Bj , K̄

⎤

⎦, (28)

which is equivalent to the single-particle (N = 1) solution. Along trajectories,
h and the nN Casimirs (n associated with each particle) are constant. In the
χ → ∞ limit, we have n additional constants associated with tr(K̄k), k > 0:
these correspond to “hidden symmetries.”

5 Subriemannian Geodesics

The enlargement process just described can be specialized to the subriemannian
geodesic problem for collectives of particles on matrix Lie groups and metrics of
the form (8) and (9). The value function is the optimal cost of passing between
two configurations. In this context, we require drift-free dynamics, i.e., A = 0,
because the value function shouldn’t depend on which configuration is “initial,”
and which is “final.” The enlarged version of the subriemannian geodesic dynam-
ics are thus

Q̇i =

⎛

⎝
m∑

j=1

uj
iBj

⎞

⎠Qi, i = 1, . . . , N, (29)

i.e., (7) with A = 0, and the optimal controls (used to compute the value func-
tion) are found using (22), (19) and

K̇i =
m∑

j=1

⎛

⎜
⎝
[
μT
1 · · · μT

N

]
Ψ

⎡

⎢
⎣

δi1e
j

...
δiNej

⎤

⎥
⎦

⎞

⎟
⎠ [Bj ,Ki] , i = 1, . . . , N (30)

(i.e., (25) with A = 0). Constancy of h and the Casimirs, along with the limiting
behavior as χ → ∞, may be useful in the process of calculating (or numerically
approximating) the value function, e.g., to exhibit geodesic spheres, as in Fig. 1
of [4].
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6 Concluding Remarks

A class of optimal control problems on a product of matrix Lie groups is inter-
preted in terms of cost-coupled interacting particles. The interactions are gov-
erned by a connected graph and a coupling constant. Using the method of
enlargement due to Brockett, necessary conditions for optimality are derived
and examined in the strong coupling limit. For drift-free dynamics and appro-
priate controllability conditions the setup leads to novel problems of subrie-
mannian geometry, and convenient forms for associated geodesic equations. For
the Heisenberg group (and the nonholonomic integrator), the calculus of vari-
ations can be used for expressions equivalent to (29) and (30) for computing
geodesics and corresponding value functions (metric distances). In the context
of the Heisenberg group, working out the enlargement route for low-dimensional
examples (e.g., N = 2 or N = 3 with various interaction graphs), can help make
contact with these more direct calculations. These details are omitted for space
limitations. The utility of the enlargement approach is in providing a general
technique for a novel class of subriemannian geometries on matrix Lie groups.
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Abstract. We introduce a new approach to goodness-of-fit testing in
the high dimensional, sparse extended multinomial context. The paper
takes a computational information geometric approach, extending clas-
sical higher order asymptotic theory. We show why the Wald – equiv-
alently, the Pearson χ2 and score statistics – are unworkable in this
context, but that the deviance has a simple, accurate and tractable sam-
pling distribution even for moderate sample sizes. Issues of uniformity of
asymptotic approximations across model space are discussed. A variety
of important applications and extensions are noted.

1 Introduction

A major contribution of classical information geometry to statistics is the geo-
metric analysis of higher order asymptotic theory, see the seminal work [2] and
for example [5]. It has excellent tools for constructing higher order corrections
to approximations of sampling distributions, an example being the work on the
geometry of Edgeworth expansions in [2, Chapter 4]. These expressions use cur-
vature terms to correct for skewness and other higher order moment (cumulant)
issues and provide good, operational corrections to sampling distributions, such
as those in Fig. 3(b) and (c) below. However, as discussed in [3,6], these cur-
vature terms grow unboundedly as the boundary of the probability simplex is
approached. Since this region plays a key role in modelling in the sparse setting
– the MLE often being on the boundary – extensions to the classical theory are
needed. This paper starts such a development.

Independently, there has been increased interest in categorical, (hierarchical)
log-linear and graphical models. See, in particular, [6–8,10]. As stated by [7]
‘[their] statistical properties under sparse settings are still very poorly under-
stood. As a result, [analysis of such data] remains exceptionally difficult’.

This paper is an introduction to a novel approach which combines and
extends these two areas. The extension comes from using approximations based
on the asymptotics of high dimensionality (k-asymptotics) rather than the more
familiar sample size approach (N -asymptotics). This is connected to, but distinct
from, the landmark paper by [12] and related work. In particular, for a practical

c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 569–576, 2015.
DOI: 10.1007/978-3-319-25040-3 61
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example of so-called sparse-data asymptotics, see [1, Sect. 6.3]. Computational
information geometry – in all its forms: see, for example, [4,6,11,13] – has been
a significant recent development, and this paper is a further contribution to it.

We address the challenging problems which arise in the high dimensional
sparse extended multinomial context where the dimension k of the underlying
probability simplex, one less than the number of categories or cells, is much more
than the number of observations N , so that boundary effects necessarily occur,
see [3]. In particular, arbitrarily small (possibly, zero) expected cell frequencies
must be accommodated. Hence we work with extended multinomial models thus
taking us out of the manifold structure of classical information geometry, [4].

For practical relevance, our primary focus is on (a) accurate, finite sample
and dimension approximation, rather than asymptotic limiting results per se;
and (b) performance at or near the boundary, rather than (as in earlier studies)
the centre of the simplex.

Section 2.1 shows why the Wald statistic – identical, here, to the Pearson
χ2 or score statistic – is unworkable in this context. In contrast analysis and
simulation exercises (Sect. 2.2) indicate that the same is not true of the deviance
D. We demonstrate that a simple normal (or shifted χ2) approximation to the
distribution of D is accurate and tractable even as the boundary is approached.
In contrast to other approaches, this appears to hold effectively uniformly across
the simplex. The worst place is at its centre (where all cells are equiprobable),
due to discretisation effects. However, further theory shows that, even here,
the accuracy of approximation improves without limit when N, k → ∞ with
N/k → c > 0.

Section 3 considers the uniformity of asymptotic approximations. Its three
subsections address issues associated with the boundary, higher moments and
discreteness, respectively.

2 Analysis

2.1 Why the Wald Statistic is Unworkable

With i ranging over {0, 1, ..., k}, let n = (ni) ∼ Multinomial (N, (πi)), where
here each πi > 0. In this context the Wald, Pearson’s χ2, and score statistics all
coincide, their common value, W , being

W :=
k∑

i=0

(πi − ni/N)2

πi
≡ 1

N2

k∑

i=0

n2
i

πi
− 1.

Defining π(α) :=
∑

i πα
i we note the inequality, for each m ≥ 1,

{
π(−m) − (k + 1)m+1

}
≥ 0,

in which equality holds if and only if πi≡1/(k + 1) – i.e. iff (πi) is uniform.
We then have the following theorem, which establishes that the statistic W is
unworkable as πmin := min(πi) → 0 for fixed k and N .
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Theorem 1. For k > 1 and N ≥ 6, the first three moments of W are:

E(W ) =
k

N
, var(W ) =

{
π(−1) − (k + 1)2

}
+ 2k(N − 1)

N3

and E[{W − E(W )}3] given by
{
π(−2) − (k + 1)3

} − (3k + 25 − 22N)
{
π(−1) − (k + 1)2

}
+ g(k,N)

N5

where g(k,N) = 4(N − 1)k(k + 2N − 5) > 0.
In particular, for fixed k and N , as πmin → 0

var(W ) → ∞ and γ(W ) → +∞

where γ(W ) := E[{W − E(W )}3]/{var(W )}3/2.

2.2 The Deviance Statistic

Unlike the triumvirate of statistics above, the deviance has a workable distribu-
tion in the same limit: that is, for fixed N and k as we approach the boundary of
the probability simplex. The paper [3] demonstrated the lack of uniformity across
this simplex of standard first order N -asymptotic approximations. In sharp con-
trast to this we see the very stable and workable behaviour of the k-asymptotic
approximation to the distribution of the deviance.

Define the deviance D via

D/2 =
∑

{0≤i≤k:ni>0} ni log(ni/N) −
k∑

i=0

ni log(πi)

=
∑

{0≤i≤k:ni>0} ni log(ni/μi),

where μi := E(ni) = Nπi. We will exploit the characterisation that the
multinomial random vector n has the same distribution as a vector of inde-
pendent Poisson random variables conditioned on their sum. Specifically, let
the elements of (n∗

i ) be independently distributed as Poisson Po(μi). Then,
N∗ :=

∑k
i=0 n∗

i ∼ Po(N), while (ni) := (n∗
i |N∗ = N) ∼ Multinomial(N, (πi)).

Define

S∗ :=
(

N∗

D∗/2

)

=
k∑

i=0

(
n∗

i

n∗
i log(n∗

i /μi)

)

where D∗ is defined implicitly and 0 log 0 := 0. The terms ν, τ and ρ are defined
by the first two moments of S∗ via

(
N
ν

)

:= E(S∗) =
(

N
∑k

i=0E(n∗
i log {n∗

i /μi})

)

,
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(
N ρτ

√
N

· τ2

)

:= cov(S∗) =

(
N

∑k
i=0Ci

· ∑k
i=0Vi

)

,

where Ci := Cov(n∗
i , n

∗
i log(n∗

i /μi)) and Vi := V ar(n∗
i log(n∗

i /μi)). Careful
analysis gives:

Theorem 2. Each of these terms ν, τ and ρ are bounded as πmin → 0 and
hence the distribution of the deviance is stable in this limit.

Moreover, these terms can be easily and accurately approximated using standard
truncate and bound computational methods, exploited below.

Under standard Lindeberg conditions, multivariate central limit theorem
(CLT) gives for large k and N that S∗ is approximately distributed as a bivariate
normal N2(E(S∗), cov(S∗)). Mild conditions (see [12]) ensuring uniform equicon-
tinuity of the conditional characteristic functions D∗/2|{N∗ = N} (see [14]) then
gives, in the same limit,

D/2 = D∗/2|{N∗ = N} ∼ N1(ν, τ2(1 − ρ2)). (1)
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Fig. 1. Stability of the sampling distributions

3 Uniformity of Asymptotic Approximations

3.1 Uniformity Near the Boundary

In general asymptotic approximations are not uniformly accurate as is shown
in [3]. Consider the consequences of Theorem 1 when πmin is close to zero as
illustrated in Fig. 1. This shows, in panel (a), the distribution, π, where we see
that πmin is indeed very small. Here, and throughout, we plot the distributions in
rank order without loss since all sampling distributions considered are invariant
to permutation of the labels of the multinomial cells. Panel (b) shows a sample
of 1000 values of W drawn from its distribution when there are N = 50 obser-
vations in dimension k = 200. The extreme non-normality, and hence the failure
of the standard N -asymptotic approximation, is evident. In contrast, consider
panel (c), which shows 1000 replicates of D for the same (N, k) values. The much
greater stability, which is implied by Approximation (1), is extremely clear in
this case.
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The performance of Approximation (1) can, in fact, be improved by simple
adjustments. Here we show a couple of examples in Fig. 2. Panel (a) shows a
QQ-plot of the deviance, against the normal, in the case where the underlying
distribution is shown in Fig. 1(a) – one that is very close to the boundary. We see
the normal approximation is good but shows some skewness. Panel (b) shows a
scaled χ2-approximation, designed to correct for skewness in the sampling dis-
tribution, while panel (c) shows a symmetrised version of the deviance statistic,
defined by randomising across upper and lower tails of the test statistic, which,
if it is used for testing against a two tailed alternative, is a valid procedure. Both
these simple corrections show excellent performance.
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Fig. 2. Evaluation of the quality of k-asymptotic approximations

Having seen that the N -asymptotic approximation does not hold uniformly
across the simplex, it is natural to investigate the uniformity of the k-asymptotic
approximation given by (1). This approximation exploited a bivariate normal
approximation to the distribution of S∗ = (N∗,D∗/2)T and it is sufficient to
check the normal approximation to any linear function of N∗ and D∗/2. In
particular, initially, we focus on the component D∗. We note that we can express
D∗/2 via

D∗/2 =
∑

{0≤i≤k:n∗
i >0} n∗

i log(n∗
i /μi) = Γ ∗ + Δ∗ (2)

where

Γ ∗ :=
k∑

i=0

αin
∗
i and Δ∗ :=

∑

{0≤i≤k:n∗
i >1} n∗

i log n∗
i ≥ 0

and αi := − log μi. It is insightful to consider the terms Γ ∗ and Δ∗ separately.

3.2 Uniformity and Higher Moments

One way of assessing the quality of the k-asymptotic approximation for the
distribution of Γ ∗ would be based on how well the moment generating function
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of the (standardised) Γ ∗ is approximated by that of a (standard) normal. Writing
the moment generating function as

Mγ(t) = exp

(
− E(Γ ∗)√

V ar(Γ ∗)

)
exp

⎡
⎣

k∑
i=0

⎧
⎨
⎩

∞∑
h=1

(−1)h

h!
μi(log μi)

h

(
t√

V ar(Γ ∗)

)h
⎫
⎬
⎭

⎤
⎦

then, when analysing where the approximation would break down, it is natural
to make the third order term (i.e. the skewness)

k∑

i=0

μi(log μi)3

as large as possible for fixed mean E(Γ ∗) = −∑k
i=0 μi log(μi) and V ar(Γ ∗) =

∑k
i=0 μi(log μi)2.
Solving this optimisation problem gives a distribution with three distinct val-

ues for μi. An example of this is shown in Fig. 3, where k = 200. Panels (b) and
(c) are histograms for a sample of 1000 values of W and D, respectively, drawn
from their distribution when N = 30. In this example, we see both the Wald
and deviance statistics are close to normal but with significant skewness which
disappears with a larger sample size. This is to be expected from the analysis
of [9,12] who look at the behaviour of deviance, when bounded away from the
boundary of the simplex, when both N and k tend to infinity together. In par-
ticular [9] shows the accuracy of this normal approximation improves without
limit when N, k → ∞ with N/k → c > 0. Symmetrising the deviance would
of course reduce this skewness, but in this example would hide the underlying
geometric structure and only works in the two tailed testing problem.

3.3 Uniformity and Discreteness

In fact the hardest cases for the normal approximation (1) to the distribution of
the deviance are in complementary parts of the simplex to the hardest cases from
the Wald statistic. For W , it is the boundary where there are problems, while
for (1) the worst place is the centre of the simplex, i.e. the uniform distribution.
The difficulties there are not due to large higher order moments, but rather to
discreteness.
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In this analysis consider again decomposition (2). Note that Γ ∗ is completely
degenerate here, while there are never any contributions to the Δ∗ term from
cells for which ni is 0 or 1. However, for k >> N , we would expect that for all i,
n∗

i ∈ {0, 1}, with high probability, hence, after conditioning on N∗ = N there is
no variability in D – it has a completely degenerate (singular) distribution. In
the general case all the variability comes from the cases where n∗

i > 1 and these
events can have a very discrete distribution – so the approximation given by the
continuous normal must be poor.

We illustrate this ‘granular’ behaviour in Fig. 4. Panel (a) shows the uniform
distribution when k = 200, panel (b) displays 1000 realisations of D when N =
30. The discreteness of the distribution is very clear here, and is also illustrated
in panel (c) which shows a QQ-plot of the sample against a normal distribution.
Note that any given quantile is not far from the normal, but the discreteness of
the underlying distribution means that not all quantiles can be attained. This
may, or may not, be a problem in a goodness-of-fit testing situation.
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Fig. 4. Behaviour at the centre of the simplex, N=30

Again following the analysis of [9] this behaviour will disappear as N gets
larger relative to k. This is shown in Fig. 5 where the N is now 60 – twice what
it was in Fig. 4. The marked drop in granularity of panel (b) between Figs. 4 and
5 is due to the much greater variability in the maximum observed value of n∗

i

as N increases. Clearly, for the distribution of any discrete random variable to
be well approximated by a continuous one, it is necessary that it have a large
number of support points, close together. The good news here is that, for the
deviance, this condition appears also to be sufficient.

4 Discussion

Overall, we have seen that the deviance remains stable and eminently useable
in high-dimensional, sparse contexts – of accelerating practical importance. Dis-
creteness issues are rare, predictable and well-understood, while simple modifi-
cations are available to deal with any higher moment concerns, such as skewness.
When using the deviance, computational information geometry can be used to
gain insight into the power of the implicit likelihood ratio test, exploiting the
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fact that D is constant on high-dimensional affine subspaces in the mean para-
meterisation, [6], while both its null and alternative approximating distributions
depend only on a few low-order moments, inducing a pivotal foliation.
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Abstract. Local mixture models give an inferentially tractable but still
flexible alternative to general mixture models. Their parameter space
naturally includes boundaries; near these the behaviour of the likelihood
is not standard. This paper shows how convex and differential geometries
help in characterising these boundaries. In particular the geometry of
polytopes, ruled and developable surfaces is exploited to develop efficient
inferential algorithms.

Keywords: Computing boundaries · Computational information geom-
etry · Embedded manifolds · Local mixture models · Polytopes · Ruled
and developable surfaces

1 Introduction

Often, in statistical inference, the parameter space of a model includes a bound-
ary, which can affect the maximum likelihood estimator (MLE) and its asymp-
totic properties. Important examples include the (extended) multinomial family,
logistic regression models, contingency tables, graphical models and log-linear
models, all of which are commonly used in statistical modelling, see [2]. In
[12,22,23], it is shown that the MLE in a log-linear model exists, if and only
if, the observed sufficient statistic lies in the interior of the marginal polyhedron
i.e. away from the boundary. The paper [14] studies the influence of the non-
existence of the MLE on asymptotic theory, confidence intervals and hypothesis
testing for a binomial, a logistic regression model, and a contingency table. Fur-
ther, in [2] a diagnostic criterion is provided for the MLE which defines how
far it is required to be from the boundary so that first order asymptotics are
adequate.

Boundary computation is, in general, a hard problem, [13,14]. Although it is
insufficiently explored in statistics, there are numerous mathematical and com-
putational results in other literatures. Their focus are on (i) approximating a
convex closed subspace by a polytope, see [5,7,10,17] and (ii) approximating a
polytope by a smooth manifold, see [6,15,16].

While the general problem of computing boundaries is difficult, in this paper
we show some new results about computing them for local mixture models
(LMM), introduced in [19] and studied further in [3]. The parameter space of
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a LMM includes two forms of boundary: the hard and soft. Here we consider a
continuous and a discrete LMM: based on the normal and Poisson distributions
respectively. We show here that the boundary can have both discrete and smooth
aspects, and provide novel geometric methods for computing the boundaries.

Section 2 is a brief review of LMM’s and their geometry, while Sect. 3 intro-
duces some explicit, and new, results on the structure of the fibre of a local
mixture in important examples and uses the classical geometric notions of ruled
surfaces in the computations. Section 4 concludes with discussion and future
directions.

2 Local Mixture Models

The theory of local mixture models is motivated by a number of different statisti-
cal modelling situations which share a common structure. Suppose that there is a
baseline statistical model which describes the majority of the observed variation,
but there remains appreciable residual variation that is not consistent with the
baseline model. These situations include over-dispersion in binomial and Poisson
regression models, frailty analysis in lifetime data analysis [4] and measurement
errors in covariates in regression models [20]. Other applications include local
influence analysis [9] and the analysis of predictive distributions [19].

The geometric complexity of the space of general mixture models means that
undertaking inference in this class is a hard problem. It has issues of identifica-
tion, singularity and multi-modality in the likelihood function, interpretability
problems and non-standard asymptotic expansions.

The key identification and multi-modality problem comes from the general
observation that if a set of densities f(x; θ) lies uniformly close to an low-
dimensional −1-affine space – as defined by [1]– then all mixtures of that model
would also lie close to that space. Hence the space of mixtures is much lower
dimensional than might be expected. The local mixture model, [3,19], is designed
to have the ‘correct’ dimension by restricting the class of mixing distributions to
so-called localising distributions. This allows a much more tractable geometry
and corresponding inference theory. The restriction often comes only at a small
cost in modelling terms. The local mixture model is, in geometric terms, closely
related to a fibre-bundle over the baseline model, and has the elegant informa-
tion geometric properties, described formally in Theorem1, that (i) inference
on the ‘interest parameters’ of the baseline model only weakly depends on the
values of the nuisance parameters of the fibres because of orthogonality, (ii) the
log-likelihood on the fibre has only a single mode due to convexity (iii) the local
mixture model is a higher order approximation to the actual mixture.

As defined in [19] a LMM is a union of −1-convex subsets of −1-affine sub-
spaces of the set of densities, in the information geometry of Amari, [1]. Here −1
refers to the α = −1 or mixture connection.

Definition 1. Let S be a common sample space. The local mixture, of order k, of
a regular exponential family f(x;μ) in its mean parameterization, μ, is defined as

g(x;λ, μ) = f(x;μ) + λ2 f (2)(x;μ) + · · · + λk f (k)(x;μ), λ ∈ Λμ ⊂ R
k−1 (1)
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where λ = (λ2, · · · , λk) and f (j)(x;μ) = ∂jf
∂μj (x;μ). Also qj(x;μ) := f(j)(x;μ)

f(x;μ) ,
then for any fixed μ,

Λμ =
{

λ|1 +
∑k

j=2
λj qj(x;μ) ≥ 0,∀x ∈ S

}

,

is a convex subspace obtained by intersection of half-spaces. Its boundary is called
the hard boundary and corresponds to a positivity condition on g(x;λ, μ).

A local mixture model has a structure similar to that of a fibre bundle and
for each fixed μ0 the subfamily, g(x;λ, μ0), is called a fibre – although more
strictly it is a convex subset of the full fibre. The paper [3] shows that LMMs
have the following excellent statistical properties.

Theorem 1. (i) The set {g(x;λ, μ0)−f(x;μ0)} is −1-flat and Fisher orthogonal
to the score of f(x;μ) at μ0. Thus μ and λ are orthogonal parameters.
(ii) On each fibre the log-likelihood function is concave - though not necessarily
strictly concave.
(iii) A continuous mixture model

∫
f(x;μ) dQ(μ) can be approximated by a LMM

to an arbitrary order if Q satisfies the properties of a localizing distribution
defined in [19].

In such an approximation the parameter vector λ represents the mixing dis-
tribution Q through its moments; however, for some values of λ a LMM can
have moments not attainable by a mixture model of the form

∫
f(x;μ) dQ(μ).

A true LMM, defined in [3], is a LMM which behaves similarly to a mixture
model, in terms of a finite set of moments. For a true LMM, additional to hard
boundary, there is another type of restricting boundary, called soft boundary,
and characterized by following definition.

Definition 2. For a density function f(x;μ) with k finite moments let,

Mk(f) := (Ef (X), Ef (X2), · · · , Ef (Xk)).

Then g(x;μ, λ), defined in Definition 1, is called a true local mixture, if and
only if, for each μ in a compact subset I, Mk(g) lies inside the convex hull of
{Mr(f)|μ ∈ I}.

The boundary of the convex hull is called the soft boundary.

Inferentially Model (1) might be used for marginal inference about μ where
λ is treated as a nuisance parameter in, for example, random effect or frailty
models, see [18,19]. The properties of Theorem 1 on the (μ, λ)-parameterization
guarantees asymptotic independence of μ̂ and λ̂ and simplifies determination
of (μ̂, λ̂), [8]. Therefore, the profile likelihood method would be expected to
be a promising approach for marginal inference about μ when λ is away from
boundaries. This intuition is confirmed by simulation exercises. To use such an
approach in general it is necessary that the analyst can compute the inferential
effect of the boundary. The rest of this paper explores the geometric structure of
the boundaries of LMMs and the computational consequences of such a structure.
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3 Computing the Boundaries

In this section we compute the hard and soft boundaries for LMMs of order
k = 4, as lower order LMMs have trivial boundaries and typically LMMs with
k > 4 do not add greatly to modelling performance, see [21].

3.1 Hard Boundary for the LMM of Poisson Distribution

Consider the following LMM of the Poison probability mass function p(x;μ),

g(x;μ, λ) = p(x;μ) +
∑4

j=2
λj p(j)(x;μ), λ ∈ Λμ ⊂ R3. (2)

It is straightforward to show that

Eg(X) = Ep(X) = μ, V arg(X) = V arp(X) + 2λ2, (3)

illustrating that the λ parametrization of LMMs is tractable and intuitive as the
model in Eq. (2) produces higher (lower) dispersion compared to p(x;μ). Fur-
thermore, as shown in [3], the other parameters also have interpretable moment
based meanings.

For model (2), the hard boundary is obtained by analysing half spaces
defined, for fixed μ, by

Sx =
{
λ|A2(x)λ2 + A3(x)λ3 + A4(x)λ4 + 1 ≥ 0,∀x ∈ Z

+
}
,

where Aj(x)’s are polynomials of x defined by Definition 1. The space Λμ, for
fixed μ, will be the countable intersection of such half spaces over x ∈ {0, 1, . . . }
i.e., we can write Λμ =

⋂
x∈Z+ Sx. In fact, as we show in Proposition 1, the space

can be arbitrarily well approximated by a polytope. In this paper all proofs are
omitted due to space constraints.

Proposition 1. For a LMM of a Poisson distribution, for each μ, the space Λμ

can be arbitrarily well approximated, as measured by volume for example, by a
finite polytope.

Figure 1 shows some issues related to this proposition. It shows two slices
through the space Λμ by fixing a value of λ2 (left panel) and λ3 (right panel).
The shaded polytope is a subset of Λμ in both cases. The lines are sets of the
form

A2(x)λ2 + A3(x)λ3 + A4(x)λ4 + 1 = 0,

for different values of x ∈ {0, 1, 2, · · · }, with solid lines being support lines and
dashed lines representing redundant constraints. In R

3 a finite number of such
planes will define a polytope which is arbitrarily close to Λμ. A second feature,
which is clear from Fig. 1, is that parts of the boundary look like they can be
well approximated by a smooth curve, ([6,15,16]), which has the potential to
simplify computational aspects of the problem.
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Fig. 1. Left: slice through λ2 = −0.1; Right: slice through λ3 = 0.3. Solid lines represent
active and dashed lines redundant constraints. For our model λ4 > 0 is a necessary
condition for positivity.

3.2 Hard Boundary for the LMM of Normal

In the previous example the boundary was defined by a countable intersection
of half-spaces. Now we look at an example, the LMM of normal distributions,
where we have an uncountably infinite intersection of half spaces and we observe
a smooth, manifold like boundary with lower dimensional sets of singularities.
First, we need to review some classical differential geometry.

Ruled and Developable Surfaces

Definition 3. A ruled surface is a surface generated by a smooth curve, α(x) ⊂
R

3, and a set of vectors, β(x) ⊂ R
3, with following parameterization

Γ (x, γ) = α(x) + γ · β(x), x ∈ I ⊂ R, γ ∈ R
3.

If, in addition, at each x the three vectors β(x), β′(x) and α′(x) are coplanar
then Γ (x, γ) is called a developable surface ([11, p.188]).

Cylinders and cones are simple ruled surfaces which are also developable.
Another way of constructing a developable surface is by finding the envelope
of a one-parameter family of planes, see [24, Sects. 1, 2, 3, 4 and 5].

Definition 4. Let λ = (λ2, λ3, λ4) ∈ R
3 and a(x) = (a1(x), a2(x), a3(x)) where

d(x) and aj(x), j = 1, 2, 3 are differentiable functions of x. The family of planes,
A = {λ ∈ R

3| a(x) ·λ+d(x) = 0, x ∈ R}, each determined by an x ∈ R, is called
a one-parameter infinite family of planes. Each element of the set

{λ ∈ R
3|a(x) · λ + d(x) = 0, a′(x) · λ + d′(x) = 0, x ∈ R}

is called a characteric line of the surface at x and the union is called the envelope
of the family.
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An envelope of the set of characteristic lines is the set of points

{λ ∈ R
3|a(x) · λ + d(x) = 0, a′(x) · λ + d′(x) = 0, a′′(x) · λ + d′′(x) = 0, x ∈ R}

and is called the edge of recession.

Under general regularity conditions the envelope will be a ruled (often a devel-
opable) surface, and we will use such a construction in this paper to find the
boundary of an LMM.

Application to LMMs. Consider the LMM of a normal distribution N(μ, σ),
where σ > 0 is fixed and known, and for which, without loss of generality, we
assume σ = 1. Let y = x − μ, then

Λμ = {λ |(y2 − 1)λ2 + (y3 − 3y)λ3 + (y4 − 6y2 + 3)λ4 + 1 ≥ 0,∀y ∈ R}. (4)

is the intersection of infinite set of half-spaces in R3.

λ2

λ3 λ4
λ4

λ3

λ2

Fig. 2. Left: The hard boundary for the normal LMM (shaded) as a subset of a self
intersecting ruled surface (unshaded); Right: slice through λ4 = 0.2.

To understand the boundary of Λμ we first use Definition 4 to define the
envelope of a one parameter set of planes in R

3. These planes, in λ-space, are
parameterised by y ∈ R, and are the solutions of

(y2 − 1)λ2 + (y3 − 3y)λ3 + (y4 − 6y2 + 3)λ4 + 1 = 0.

The envelope of this family forms a ruled surface, and can be thought of as a self-
intersecting surface in R

3. The surface partitions R
3 into disconnected regions

and one of these – the one containing the origin (0, 0, 0) – is the set Λμ. Figure 2
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shows the self-intersecting surface and the shaded region is the subset which is
the boundary of Λμ.

While the boundary of Λμ will have large regions which are smooth, it also has
singular lines and points. These are the self-intersection points of the envelope
and it is at these points where the boundary fails to be an immersed manifold-
but is still locally smooth. The general structure of the boundary is a non-smooth
union of a finite number of smooth components.

3.3 Soft Boundary Calculations

The previous section looks at issues associated with the hard boundary cal-
culations for LMMs. In this section we look at similar issues connected with
computing soft boundaries, Definition 2, in moment spaces for true LMMs.

For visualization purposes, consider k = 3 and we use the normal example
from the previous section. The moment maps are given by

M3(f) = (μ, μ2 + σ2, μ3 + 3μσ2),
M3(g) = (μ, μ2 + σ2 + 2λ2, μ

3 + 3μσ2 + 6μλ2 + 6λ3).

Suppose I = [a, b], then M3(f) defines a smooth space curve, ϕ : [a, b] → R
3.

To construct the convex hull, denoted by convh{M3(f), μ ∈ [a, b]}, all the lines
between ϕ(a) and ϕ(μ) and all the lines between ϕ(μ) and ϕ(b), for μ ∈ [a, b], are
required. Each of the two family of lines are attached to the curve and construct
a surface in R

3. Hence, we have two surfaces each formed by a smooth curve
and a set of straight lines (Fig. 3, right). Thus we have the following two ruled
surfaces,

{
γa(μ, u) = ϕ(μ) + u La(μ), surface a,
γb(μ, u) = ϕ(μ) + u Lb(μ), surface b,

where u ∈ [0, 1], and for each μ ∈ [a, b], La(μ) is the line connecting ϕ(μ) to
ϕ(a), and similarly Lb(μ) is the line between ϕ(b) and ϕ(μ).

Fig. 3. Left: the 3-D curve ϕ(μ); Middle: the bounding ruled surface γa(μ, u); Right:
the convex subspace restricted to soft boundary.

The soft boundary of the Poisson model can be characterized similarly.
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4 Discussion and Future Work

This paper gives an introduction to some of the issues associated with comput-
ing the boundaries of local mixture models. Understanding these boundaries is
important if we want to exploit the nice statistical properties of LMM, given by
Theorem 1. The ‘cost’ associated with these properties is that boundaries will
potentially play a role in inference giving, typically, non-standard results. The
boundaries described in this paper have both discrete aspects, (i.e. the ability
to be approximated by polytopes), and smooth aspects (i.e. regions where the
boundaries are exactly or approximately smooth). It is an interesting and impor-
tant open research area to develop computational information geometric tools
which can efficiently deal with such geometric objects.
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Abstract. We generalize the O( dn
ε2

)-time (1 + ε)-approximation algo-
rithm for the smallest enclosing Euclidean ball [2,10] to point sets in
hyperbolic geometry of arbitrary dimension. We guarantee a O

(
1/ε2
)

convergence time by using a closed-form formula to compute the geodesic
α-midpoint between any two points. Those results allow us to apply the
hyperbolic k-center clustering for statistical location-scale families or for
multivariate spherical normal distributions by using their Fisher infor-
mation matrix as the underlying Riemannian hyperbolic metric.

1 Introduction and Prior Work

Given a metric space (X, dX(., .)), fitting the smallest enclosing ball of a point
set P = {p1, . . . , pN} consists in finding the circumcenter c ∈ X minimizing
maxp∈P dX(c, p). In practice, this non-differentiable problem is computationally
intractable as the dimension increases, and has thus to be approximated. A
simple algorithm was proposed in [2] for euclidean spaces and generalized in [7]
to dually flat manifolds.

In this article, we consider the case of the hyperbolic Poincaré conformal ball
model Bd which is a model of d-dimensional geometry [8]. Even if balls in this
hyperbolic model can be interpreted as euclidean balls with shifted centers [9], we
cannot transpose directly results obtained in the euclidean case to the hyperbolic
one because the euclidean enclosing balls may intersect the boundary ball ∂Bd

(and are thus not proper hyperbolic balls, see Fig. 1).
An exact solution for the hyperbolic Poincaré ball was proposed in [6] as a

LP-type problem, but such an approach cannot be used in practice in high dimen-
sions. A generic Riemannian approximation algorithm was studied by Arnaudon
and Nielsen [1] but no explicit bounds were reported in hyperbolic geometry
besides convergence, and moreover the heuristic assumed to be able to precisely
cut geodesics and that step was approximated in [1].

We propose an intrinsic solution based on a closed-form formula making
explicit the computation of geodesic α-midpoints (generalization of barycenter
between two points) in hyperbolic geometry. We derive a (1 + ε)-approximation
algorithm for computing and enclosing ball in hyperbolic geometry in arbitrary

c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 586–594, 2015.
DOI: 10.1007/978-3-319-25040-3 63
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Fig. 1. Difference between euclidean MEB (in blue) and hyperbolic MEB (in red) for
the set of blue points in hyperbolic Poincaré disk (in black). The red cross is the
hyperbolic center of the red circle while the pink one is its euclidean center (Color
figure online).

dimension in O(dn
ε2 ). This is all the more interesting from a machine learning

perspective when dealing with data whose underlying geometry is hyperbolic. As
an example, we illustrate our results on location-scale families or on multivariate
spherical normal distributions. In the reminder, we assume the reader familiar
with the basis of differential and Riemannian geometry, and recommend the
textbook [8], otherwise.

The paper is organized as follows: Sect. 2 presents the exact computation of
the α-midpoint between any arbitrary pair of points. Section 3 describes and ana-
lyzes the approximation algorithms for (i) fixed-radius covering balls and (ii)
minimum enclosing balls. Section 4 presents the experimental results and dis-
cusses on k-center clustering applications.

2 Geodesic α-midpoints in the Hyperbolic Poincaré ball
model

Let 〈·, ·〉 and ‖x‖ =
√〈x, x〉 denote the usual scalar product and norm on the

euclidean space R
d. The Poincaré conformal ball model of dimension d is defined

as the d-dimensional open unit ball Bd = {x ∈ R
d : ‖x‖ < 1} together with the

hyperbolic metric distance ρ (., .) given by:

ρ (p, q) = arcosh
(

1 +
2‖p − q‖2

(1 − ‖p‖2) (1 − ‖q‖2)
)

, ∀p, q ∈ B
d.

This distance induces on B
d a Riemannian structure.

Definition 1. Let p, q ∈ B
d and γp,q the unique geodesic joining p to q in

the hyperbolic Poincaré model. For α ∈ [0, 1], we define the α-midpoint, p#αq,
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between p and q as the point mα ∈ γp,q ([0, 1]) ⊂ B
d on the geodesic γp,q such

that

ρ (p,mα) = αρ (p, q).

Lemma 1. For all α ∈ [0, 1], we can compute the α-midpoint p#αq between two
points p, q in the d-dimensional hyperbolic Poincaré ball model in constant time.

Proof. We first consider the case where one of the point, say p, is equal to the
origin (0, . . . , 0) of the unit ball. In this case, the only geodesic running through
p and q is the straight euclidean line. As the distance ρ on the hyperbolic ball
is invariant under rotation around the origin, we can assume without loss of
generality that q = (xq, 0, 0, . . . , 0), xq ≥ 0. In this case, we have:

ρ (p, q) = arcosh
(

1 +
2‖q‖2

1 − ‖q‖2
)

= log
(

1 + ‖q‖
1 − ‖q‖

)

= log
(

1 + xq

1 − xq

)

, (1)

using arcosh (x) = log
(
x +

√
x2 − 1

)
. The α-midpoint p#αq has coordinates

(xα, 0, . . . , 0), xα ≥ 0, which satisfies ρ (p, p#αq) = αρ (p, q). By (1), this is

equivalent to solving, after exponentiating, 1+xα

1−xα
=

(
1+xq

1−xq

)α

. It follows that:

xα =
cα,q − 1
cα,q + 1

, where cα,q := eαρ(p,q)

(

=
(

1 + xq

1 − xq

)α)

. (2)

For p = (0, . . . , 0) and q 
= p arbitrary, we have p#αq = ‖xα‖
‖q‖ q, taking (2) as

a definition for xα with cα,q = eαρ(p,q).
Now, for arbitrary p and q, we first perform a hyperbolic translation T−p of

vector −p to both p and q in order to resort to the preceding case, then compute
the α-midpoint and translate it using the inverse hyperbolic translation Tp. The
translation of x ∈ B

d by a vector p ∈ B
d of the hyperbolic Poincaré conformal

ball model is given by (see [8], page 124 formula (4.5.5)):

Tp (x) =

(
1 − ‖p‖2)x +

(‖x‖2 + 2〈x, p〉 + 1
)
p

‖p‖2‖x‖2 + 2〈x, p〉 + 1
, (3)

Since hyperbolic translations preserve the hyperbolic distance, using Definition 1,
we have indeed

Tp (T−p (p)#αT−p (q)) = p#αq.

Note that those computations can be made exactly without numerical loss
since they involve only rationals and square root operations, see [3].

3 Approximation Algorithms: Enclosing Balls
and Minimum Enclosing Balls

In the following, we will denote by P = {p1, . . . , pN} a set of N points of the
hyperbolic Poincaré ball model. For q ∈ B

d, we write ρ (q, P ) := maxp∈P ρ (q, p).
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Definition 2. Let r > 0. A point c ∈ B
d is called the center of a hyperbolic

enclosing ball of P of radius r (abbreviated EHB (P, r)) if

ρ (c, P ) ≤ r. (4)

If c is the center of a EHB of minimal radius among all hyperbolic enclosing
balls of P , then c is called the center of a minimum hyperbolic enclosing ball of
P (abbreviated MEHB (P )).

As the MEHB is unique [1], let R∗ denote its radius and c∗ its center. In practice,
computing the MEHB (P ) is intractable in high dimensions, we will focus on
approximation algorithms by modifying (4).

Definition 3. The point c ∈ B
d is the center of an (1 + ε)-approximation of

EHB (P, r) if ρ (c, P ) ≤ (1 + ε) r and the center of an (1 + ε)-approximation of
MEHB (P ) if ρ (c, P ) ≤ (1 + ε) R∗.

3.1 A (1 + ε)-approximation of an Enclosing Ball of Fixed Radius

We generalize the EHB (P, r) approximation introduced in [10], Algorithm 2
Sect. 3.1, to point clouds in the hyperbolic Poincaré ball model. Given P , r > R∗

and ε, this algorithm returns the center of a (1+ε)-approximation of EHB (P, r).

Algorithm 1. (1 + ε)-approximation of EHB (P, r)
1: c0 := p1

2: t := 0
3: while ∃p ∈ P such that p /∈ B (ct, (1 + ε) r) do
4: let p ∈ P be such a point
5: α := ρ(ct,p)−r

ρ(ct,p)

6: ct+1 := ct#αp
7: t := t+1
8: end while
9: return ct

As in [1] or [7], we took into consideration the fact that this geometry is not
euclidean. The update move (step 5 and 6) consists in taking a point ct+1 on the
geodesic from ct to p such that the ball B (ct+1, r) “touches” p (i.e. such that
ρ (ct+1, p) = r).

Proposition 1. Algorithm1 returns the center of an (1 + ε)-approximation of
EHB (P, r) in O

(
1/ε2

)
iterations (exactly less than 4/ε2 iterations).

Proof. Let ρt := ρ (ct, c
∗). Figure 2 illustrates the update of ct, straight lines

represent geodesic between points. From step 5 and 6, we have ρ (ct+1, pt) = r
which implies ρ (ct+1, ct) > εr. Since B (c∗, R∗) is a MEHB , ρ (c∗, pt) ≤ R∗.
Denote the angle ∠c∗ct+1ct by θ and the distance ρ (c∗, pt) by r′. The hyperbolic
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law of cosines gives: cos (θ) sh (ρt+1) sh (r) = ch (ρt+1) ch (r) − ch (r′), so that
cos (θ) ≥ 0 since ch (r′) ≤ ch (r) and ch (ρt+1) ≥ 1.

Let θ′ be the angle ∠ctct+1c
∗, it follows that cos (θ′) ≤ 0. Let h

be the distance between ct and ct+1, the hyperbolic law of cosines gives
0 ≤ cos (θ′) sh (h) sh (ρt+1) = ch (h) ch (ρt+1) − ch (ρt) . Thus ch (ρt) ≥
ch (h) ch (ρt+1). After T iterations, we have the following inequality:

ch (ρ1) ≥ ch (ρ1)
ch (ρT )

≥ ch (h)T ≥ ch (εr)T
, (5)

which proves that the algorithm converges since ch (εr) > 1. We can rewrite (5)
as:

T ≤ log (ch (ρ1))
log (ch (εr))

≤ log (ch (2r))
log (ch (εr))

≤ 4
ε2

(6)

using the fact that ρ1 ≤ 2r and that f := r �→ log(ch(2r))
log(ch(εr)) is a decreasing function

from [0,+∞[ to ]0,+∞[ with limr=0+ f (r) = 4/ε2.

ct+1

ct

c∗

pt

h < εr

ρt+1

ρt

r′ ≤ rr

θ

θ′

Fig. 2. Update of ct

We now show how far from the real center c∗ of the MEHB is the center of
an (1 + ε)-approximation of EHB (P, r). We need the following lemma which
generalizes Lemma 2 from [5]. For this, denote by 〈., .〉p the scalar product given
by the Riemannian metric on the tangent space TpB

d in p ∈ B
d and by expp :

TpB
d → B

d the exponential map.

Lemma 2. For every tangent vector v ∈ Tc∗Bd, there exists p ∈ P ∩ Hv such
that ρ (c∗, p) = R∗ where we denoted by

Hv =
{
expc∗ (u) ∈ B

d, u ∈ Tc∗Bd, 〈v, u〉c∗ ≥ 0
}

(7)

the points in B
d obtained by following geodesics whose tangent vector at point c∗

lie in the half-space defined by v.
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Proof. Assume it exists v ∈ Tc∗Bd such that for all p ∈ P ∩ Hv, ρ (c∗, p) < R∗.
We will show that “moving” c∗ in the direction −v results in a new center c
whose distance to P is strictly less than R∗, contradicting the fact that c∗ is the
center of MEHB (P ).

For each point q ∈ P not in Hv we have

d

dt
ρ (expc∗ (−tv) , q)

∣
∣
∣
∣
t=0

=
〈− exp−1

c∗ (q)
ρ (c∗, q)

,−v

〉

c∗
< 0 (8)

by (7). So we can find t > 0 small enough to obtain ρ (expc∗ (−tv) , p) < R∗ for
all p ∈ P since there is only a finite number of points in P .

Proposition 2. Let c be the center of an (1 + ε)-approximation of EHB (P, r).
We have the following inequality:

ρ (c, c∗) ≤ arcosh
(

ch ((1 + ε) r)
ch (R∗)

)

(9)

where c∗ and R∗ are respectively the center and radius of the MEHB (P ).

Proof. We can assume that c 
= c∗, otherwise (9) is true. Let d := ρ (c, d∗).
Consider the geodesic γ : [0, d] → M from c c∗. By applying the preceding
lemma with v := γ̇ (d), we obtain a point p ∈ P ∩ Hv such that ρ (c∗, p) = R∗.
By definition, the angle θ := ∠cc∗p is obtuse.

We name h the distance ρ (c, p) and apply the hyperbolic law of cosines to
obtain 0 ≥ cos (θ) sh (d) sh (R∗) = ch (d) ch (R∗) − ch (h). Since c is the center of
an (1+ε)-approximation de EHB (P, r), h ≤ (1 + ε) r. we deduce ch ((1 + ε) r) ≥
ch (h) ≥ ch (d) ch (R∗) from which we derive (9).

3.2 A (1 + ε + ε2/4)-approximation of MEHB (P )

We can use the previous results to derive an algorithm computing the MEHB (P )
in hyperbolic geometry of arbitrary dimension. The proposed algorithm (Algo-
rithm2) consists in a dichotomic search of the radius of the MEHB (P ). Indeed,
we can discard a radius smaller than R∗ using (6) and use inequality (9) in order
to obtain a tighter bound.

Proposition 3. Algorithm2 returns the center of an (1+ ε+ ε2

4 )-approximation
of MEHB (P ) in O

(
1
ε2 log

(
1
ε

))
iterations.

Proof. In Algorithm 2, as ρ (p1, P ) > R∗, the first call to Algorithm1 returns an
(1 + ε/2)-approximation of EHB (ρ (p1, P ) , P ). The fact that c is the center of
an (1+ ε/2) approximation of EHB (P, rmax) becomes a loop invariant. We also
ensure that at each loop

rmin ≤ R∗ ≤ rmax, (10)

so that the maximum number T of iterations of Alg1 (P, r, ε/2) can be bounded
by

T ≤ log (ch (ρ (c1, c∗)))
log (ch (εr/2))

≤ log (ch (1 + ε/2) r) − log (ch (rmin))
log (ch (rε/2))

(11)
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Algorithm 2. (1 + ε)-approximation of EHB (P )
1: c := p1

2: rmax := ρ (c, P ); rmin = rmax
2

; tmax := +∞
3: r := rmax;
4: repeat
5: ctemp := Alg1

(
P, r, ε

2

)
, interrupt if t > tmax in Alg1

6: if call of Alg1 has been interrupted then
7: rmin := r
8: else
9: rmax := r ; c := ctemp

10: end if
11: dr := rmax−rmin

2
; r := rmin + dr ; tmax := log(ch(1+ε/2)r)−log(ch(rmin))

log(ch(rε/2))

12: until 2dr < rmin
ε
2

13: return c

using (9) and the left side of (6) and (10). At the end of the repeat-until loop, we
know that rmax ≤ R∗ +dr and that c is the center of an (1+ ε/2) approximation
of EHB (P, rmax). So

ρ (c, P ) ≤
(
1 +

ε

2

)
rmax ≤

(
1 +

ε

2

) (
R∗ + rmin

ε

2

)
≤

(

1 + ε +
ε2

4

)

R∗. (12)

This approximation is obtained in precisely O
(

N
ε2 log

(
1
ε

))
since after T iterations

of the main loop, dr ≈ R∗
2T .

4 Experimental Results

4.1 Performance

To evaluate the performance of Algorithm 2, we computed MEHB centers for
a point cloud of N = 200 points for different values of the dimension d and
the precision parameter ε. For each test, the point cloud was sampled uniformly
(euclidean sampling) in the unit ball of dimension d. In order to check the rel-
evance of our theoretical bounds, we plotted in Fig. 3 the average number of
α-midpoints calculations and the mean execution time as a function of ε for dif-
ferent values of d. We evaluated convergence comparing the returned values of
c to a value c∗ computed with high precision. The algorithms have been imple-
mented in Java using the arbitrary-precision arithmetic library Apfloat.

4.2 One-Class Clustering in Some Subfamilies of Multivariate
Distributions

One-class clustering consists, given a set P of points, to sum up the informa-
tion contained in P while minimizing a measure of distortion. In our case,
we associate to a point set P a point c minimizing ρ (c, P ), i.e. the center
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Fig. 3. Number of α-midpoint calculations (left) as a function of ε and execution time
(right) as a function of ε, both in logarithmic scale for different values of d. We observe
that the number of iterations does not depend on d, and that the running time is
approximately O( dn

ε2
) (vertical translation in logarithmic scale).

Fig. 4. (Best viewed in color). Graphical representation of the center of the MEHB ,
in the (μ, σ) superior half-plane (left), by showing corresponding probability density
functions (right). In red (point E) is represented the center of MEHB (A,B,C). In pink
(point D) is the 1/2-midpoint between A and B. The geodesic joining A to B is also
displayed (Color figure online)

of the MEHB (P ). This is particularly relevant when applied to parameteri-
zations of subfamilies of multivariate normal distributions. Indeed, a sufficiently
smooth family of probability distributions can be seen as a statistical manifold
(a Riemannian manifold whose metric is given by the Fisher information matrix,
see [4]). As proved in [4],

– the family N(
μ, σ2Id

)
of d-variate normal distributions with scalar covariance

matrix (Id is the d × d identity matrix)
– the family N(

μ,diag
(
σ2
1 , . . . , σ

2
n

))
of n-variate normal distributions with diag-

onal covariance matrix
– the family N(μ0, Σ) of d-variate normal distributions with fixed mean μ0 and

arbitrary positive definite covariance matrix Σ

all induce a hyperbolic metric on their respective parameter spaces. We can thus
apply Algorithm2 to those subfamilies in order to perform one-class clustering
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using their natural Fisher information metric. An example showing how differ-
ent from the euclidean case the results are is given in Fig. 4. We used the usual
Möbius transformation between the Poincaré upper half-plane and the hyper-
bolic Poincaré conformal ball model, see [6].

As a byproduct, we can derive a solution to the k-center problem for those
specific subfamilies of multivariate normal distributions in 2O(k log k log(1/ε)/ε2)dn.

Acknowledgements. We would like to thank François Pachet for his kind support
and advice.
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Abstract. Brain Computer Interfaces (BCI) based on electroen-
cephalography (EEG) rely on multichannel brain signal processing. Most
of the state-of-the-art approaches deal with covariance matrices, and
indeed Riemannian geometry has provided a substantial framework for
developing new algorithms. Most notably, a straightforward algorithm
such as Minimum Distance to Mean yields competitive results when
applied with a Riemannian distance. This applicative contribution aims
at assessing the impact of several distances on real EEG dataset, as the
invariances embedded in those distances have an influence on the clas-
sification accuracy. Euclidean and Riemannian distances and means are
compared both in term of quality of results and of computational load.

Keywords: Information geometry · Riemannian means · Brain-
Computer Interfaces · Steady State Visually Evoked Potentials

1 Introduction

Brain-Computer Interfaces (BCI) allow interaction with a computer or a machine
without relying on the user’s motor capabilities. In rehabilitation and assistive
technologies, BCI offer promising solutions to compensate for physical disabili-
ties. To record brain signals in BCI systems, the most common choice is to rely
on electroencephalography (EEG) [15], as the recording systems are smaller and
less expensive than other brain imaging technologies (such as MEG or fMRI).
BCI systems rely on different brain signals, such as event-related desynchro-
nization or evoked potentials. The former is observed in the premotor cortex
when the subject imagines moving some part of his own body (also known as
Motor Imagery paradigm) and the latter qualifies the brain response to a spe-
cific sensory stimulation, usually visual or auditory. This contribution focuses on

c© Springer International Publishing Switzerland 2015
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Steady-State Visually Evoked Potentials (SSVEP), which are potentials emerg-
ing when a subject concentrates his attention on a stimulus blinking at a given
frequency. Shortly after the user concentrates on this stimulus, brain waves in
visual cortex could be observed with matching frequencies. To date, BCI still
faces challenges and a major limitation is the EEG poor spatial resolution. This
limitation is due to the volume conductance effect [15], as the skull bones act as
a non-linear low pass filter, mixing the brain source signals and thus reducing
the signal-to-noise ratio.

Consequently, spatial filtering methods are used, such as xDAWN [17], Inde-
pendent Component Analysis (ICA) [20], Common Spatial Pattern (CSP) [10]
and Canonical Correlation Analysis (CCA) [12]. Spatial filters, obtained by diag-
onalization of data covariance matrices, enhance the differences between vari-
ances of signals of different classes/tasks. They are efficient on clean datasets
obtained from strongly constrained environment. However they are sensitive
to artifacts and outliers [13,19]. Working directly on covariance matrices is
advantageous: it simplifies the whole BCI system [21], avoiding the alignment of
two learning steps (spatial filters and classifiers) that might lead to overfitting.
Covariance matrices being Symmetric and Positive-Definite (SPD), they are best
handled by tools provided by Riemannian geometry. Classification in the space
of SPD matrices eliminates the need of spatial filters and improves the system
robustness [5,7,21].

A classification technique referred to as minimum distance to Riemannian
mean (MDRM) has been recently introduced to EEG classification [5]. It entirely
relies on covariance matrices and the fact that they belong to the manifold of
SPD matrices. New EEG trials are assigned to the class whose average covari-
ance matrix is the closest to the trial covariance matrix according to the affine-
invariant Riemannian metric [14]. It is a simple, yet robust classification scheme
outperforming complex and highly parametrized state-of-the-art classifiers. The
limitations of using Euclidean metrics in the computation of distances between
SPD matrices and their means have been demonstrated [3]. Using information
geometry, a number of Riemannian distances have been developed and appro-
priately used on SPD matrices [1,3]. The present work applies some of these
distances to SSVEP data, providing a practical analysis and a comparison with
Euclidean distance.

Moreover, most applications of Riemannian geometry to BCI are thus far
focusing only on Motor Imagery (MI) paradigm. Riemannian BCI is well suited
for MI experiment as the spatial information linked with synchronization are
directly embedded in covariance matrices obtained from multichannel record-
ings. However, for BCI that rely on evoked potential such as SSVEP or event-
related potential, as P300, frequency or temporal information are needed. In [7],
the authors propose a rearrangement of the covariance matrices that embed the
timing or the frequency information, thus allowing a direct application of the
Riemannian framework. This contribution relies on this rearrangement to apply
MDRM on covariance matrices of SSVEP signals. The signals are recorded in an
application of assistive robotics where an SSVEP-based BCI is used in tandem
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with a 3D touchless interface based on IR-sensors as a multimodal system to
control an arm exoskeleton [11].

The paper is organized as follows: Sect. 2 describes the framework for the
classification of covariance matrices. The distances and means considered for
this study are presented. In Sect. 3, the classification results obtained on real
EEG dataset are presented and discussed. Section 4 concludes this paper.

2 Classification of Covariance Matrices for SSVEP

A SSVEP classifier based on covariance matrices is presented. The computation
of means of training covariance matrices is crucial to the classifier performance.

2.1 Means for Covariance Matrices

In the following, we will consider covariance matrices belonging to the manifold
MC of the C × C symmetric positive definite matrices, defined as:

MC =
{
Σ ∈ R

C×C : Σ = Σᵀ and xᵀΣx > 0,∀x ∈ R
C\0

}
.

Given a set of covariance matrices {Σi}i=1,...,I , we consider the mean matrix Σ̄
of the set, which is a covariance matrix that minimizes the sum of the squared
distances to matrices Σi:

Σ̄ = μ(Σ1, . . . , ΣI) = arg min
Σ∈MC

I∑

i=1

dm(Σi, Σ), (1)

where m = 1 when d(·, ·) is a divergence (i.e. a generalization of squared dis-
tance), and m = 2 when d(·, ·) is a distance.

From Eq. (1), several means can be defined and those considered in this study
are indicated in Table 1. We consider the Euclidean distance dE, as a baseline,
yielding the arithmetic mean. The first considered Riemannian distance is the
Log-Euclidean dLE distance. Its mean is expressed explicitly [3]. The second is the
Affine-Invariant dAI [14]. Unlike the dLE, it does not have an explicit expression
for the mean. It could be efficiently computed with the gradient-based iterative
algorithm proposed in [8]. The two last distances considered in this study are
the log-determinant α-divergence [6] and the Bhattacharyya distance [16], the
later being a special case of the former with α = 0. Since the α-divergence is not
symmetrical, its right version is used in this work [6].

2.2 Minimum Distance to Mean Classifier for SSVEP

The considered classifier is referred to as Minimum Distance to Mean (MDM),
and is inspired from [5] where it is limited to Riemannian mean. Covariance
matrices of EEG trials are classified based on their distance to the centers of
the classes, equal to means. To embed frequency information in the covariance
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Table 1. Distances, divergences and means considered in the experimental study.

Distance/Divergence Mean References

Euclidean dE(Σ1, Σ2) = ‖Σ1 − Σ2‖F Σ̄E = 1
I

∑I
i=1 Σi

Log-Euclidean dLE(Σ1, Σ2) = ‖log(Σ1) − log(Σ2)‖F Σ̄LE =

exp
(∑I

i=1 log(Σi)
) [2,3]

Affine-invariant dAI(Σ1, Σ2) = ‖log(Σ−1
1 Σ2)‖F Algorithm 3 in [8] [8,14]

α-divergencea dα D(Σ1, Σ2)
−1<α<1

= 4
1−α2 log

det( 1−α
2 Σ1+ 1+α

2 Σ2)

det(Σ1)
1−α
2 det(Σ2)

1+α
2

Algorithm 1 in [6] [6]

Bhattacharyya dB(Σ1, Σ2) =

(

log
det 1

2 (Σ1+Σ2)

(det(Σ1) det(Σ2))1/2

)1/2

Algorithm 1 in [6] [6,16]

aFor α = −1, the log-determinant α-divergence is defined as: tr(Σ−1
1 Σ2 − I) − log det(Σ−1

1 Σ2), and for

α = 1: tr(Σ−1
2 Σ1 − I) − log det(Σ−1

2 Σ1) [6]

matrices, we use a construction of matrices proposed in [7]. Let X ∈ R
C×N be

an EEG trial measured on C channels and N samples in a SSVEP experiment
with F stimulus blinking at different frequencies. The covariance matrices are
estimated from a modified version of the input signal X:

X ∈ R
C×N →

⎡

⎢
⎣

Xfreq1
...

XfreqF

⎤

⎥
⎦ ∈ R

FC×N , (2)

where Xfreqf
is the input signal X band-pass filtered around frequency freqf ,

f = 1, . . . , F . Henceforth, all EEG signals will be considered as filtered and
modified by Eq. (2). The associated covariance matrix Σ ∈ MFC is estimated
using the Schäfer shrinkage estimator [18].

For SSVEP classification, K = F +1 classes are considered: one class for each
target frequency, and one for the resting state. As described in Algorithm1, from
I labelled training trials {Xi}I

i=1 recorded per subject, K centers of classes Σ̄(k)

are estimated (step 3). In this step, outlier matrices are removed to have a reliable
mean estimation, using an offline Riemannian potato [4]. A new unlabeled test
trial Y is predicted to belong to the class whose mean Σ̄(k) is the closest to the
trial covariance matrix, w.r.t. one of the distances from Table 1 (step 5). Remark
that test trial has to be finished before being classified: in this paper, there is no
early classification.

3 Experimental Results

This section presents experimental results obtained applying Euclidean and
Riemannian distances in SSVEP classification task. The first part of this section
describes the data used and the second part provides the assessment of the clas-
sification for the considered distances and divergences.

3.1 SSVEP Dataset

The experimental study is conducted on multichannel EEG signals recorded
during an SSVEP-based BCI experiment [11]. EEG are recorded on C = 8
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Algorithm 1. Minimum Distance to Mean Classifier
Inputs: Xi ∈ R

FC×N , for i = 1, . . . , I, a set of labelled EEG trials.
Inputs: I(k), a set of indices of trials belonging to class k.
Input: Y ∈ R

FC×N , an unlabeled test EEG trial.
Output: k∗, the predicted label of Y .
1: Compute covariance matrices Σi of Xi

2: for k = 1 to K do
3: Compute center of class : Σ̄(k) = μ(Σi : i ∈ I(k))
4: end
5: Compute covariance matrix Σ of Y , and classify it : k∗ = arg mink d(Σ, Σ̄(k))
6: return k∗

channels (i.e. Oz, O1, O2, PO3, POz, PO7, PO8, PO4) from 12 subjects. The
subjects are presented with F = 3 visual target stimuli blinking respectively at
13 Hz, 17 Hz and 21 Hz. It is a K = 4 classes setup combining F = 3 stimulus
classes and one resting class (no-SSVEP). In a session, 32 trials are recorded:
8 for each visual stimulus and 8 for the resting class. The number of sessions
recorded per subject varies from 2 to 5. For each subject, a test set is made of
32 trials while the remaining trials (which might vary from 32 to 128) make up
for the training set.

3.2 Results and Discussion

The MDM classifier is simple. Once the covariance matrices have been esti-
mated, the only major calculations involved are the mean and distance com-
putations. The covariance matrices obtained from SSVEP data extended with
Eq. (2) have interesting features, allowing the discrimination between signals of
identical sources but with different frequencies. Figure 1 shows the K classes
mean covariance matrices Σ̄(k) from subjects with the highest (a) and lowest
(b) classification accuracies. The three 8× 8 diagonal blocks hold the covariance
matrices of the F = 3 target frequencies. Inter-frequencies covariances blocks are
almost null. In each mean covariance matrix, the block holding the covariance
of the target frequency has the largest values. For the resting class, all F blocks
tend to have similar and small values. These features are more visible in the
subject with the highest classification accuracy, and less visible in the one with
lowest classification accuracy. Contrary to discriminative classifiers classically
used in BCI, such as LDA or SVM [9] which can appear as black-boxes with
difficult interpretation, it is very interesting to see that the presented covariance
based classifier uses features with a simple representation, and thus allows for an
intuitive understanding. The observed covariance matrices have a physiological
meaning and interpretation. In this framework, EEG processing complexity is
encoded by a dedicated distance and not by a machine learning algorithm.

Based on those covariance matrices, the different distances and means of
Table 1 are compared in terms of classification accuracy and average CPU time
elapsed on a trial classification, which involves the computation of 4 means of
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Fig. 1. Representation of covariance matrices: each image is the covariance matrix
mean Σ̄(k) of the class k, for one session of the recording. The diagonal blocks show
the covariance in different frequency bands, i.e. 13 Hz in the upper-left block, 21 Hz in
the middle, and 17 Hz in the bottom-right. The two chosen subjects are those with the
highest (a) and the lowest (b) BCI performance.
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Table 2. Subject classification accuracies (acc(%)) and average CPU time (time(s))
elapsed for the classification of a single trial. Classification is performed with MDM
using either Euclidean or Riemannian means (see Table 1). Results obtained with a
state-of-the-art method using CCA and SVM [12] are included.

CCA+SVM [12] Euclidean Riemannian

arithmetic Log-Euclidean Affine-Invariant α-divergence Bhattacharyya

Sub acc (%) acc (%) time(s) acc (%) time(s) acc (%) time(s) acc (%) time(s) acc (%) time(s)

1 54.68 53.12 0.025 71.88 0.150 73.44 0.194 59.37 0.155 68.75 0.225

2 37.50 43.75 0.020 78.13 0.160 79.69 0.190 79.69 0.200 81.25 0.065

3 89.06 67.19 0.020 85.94 0.120 85.93 0.205 95.31 0.155 85.94 0.100

4 79.69 54.68 0.030 84.38 0.225 87.50 0.315 89.07 0.250 85.94 0.100

5 50.00 37.50 0.020 62.50 0.115 68.75 0.290 73.44 0.140 65.62 0.125

6 87.50 34.37 0.015 84.38 0.120 85.94 0.210 87.50 0.145 82.81 0.100

7 77.08 60.42 0.027 87.50 0.267 88.54 0.410 91.66 0.417 86.46 0.137

8 73.44 67.19 0.035 90.63 0.215 92.19 0.290 92.19 0.290 92.19 0.125

9 60.94 57.81 0.035 70.31 0.275 70.31 0.380 75.00 0.300 67.19 0.134

10 67.97 38.28 0.035 75.00 0.254 80.47 0.514 82.03 0.510 78.13 0.160

11 71.88 48.44 0.025 60.94 0.144 65.63 0.235 57.81 0.150 75.00 0.105

12 95.63 71.25 0.032 96.25 0.292 96.69 0.534 95.62 0.634 96.88 0.300

Avg. 70.45 52.83 0.027 78.98 0.194 81.27 0.314 81.56 0.279 80.51 0.140

class and a distance to each mean. One can note that for an optimal imple-
mentation, the 4 means are computed only once. Table 2 summarizes results
obtained for each subject and each distance/divergence. Results obtained with
a state-of-the-art method are also included, combining CCA and SVM [12].

Euclidean distance yields drastically low accuracy. This supports the fact
that using Euclidean distance and arithmetic mean on SPD matrices is not
appropriate. This is generally attributed to the invariance under inversion that
is not guaranteed (i.e. Σ̄(Σi) �= Σ̄−1(Σ−1

i )) and the fact that the determinant of
the arithmetic mean of SPD matrices can be larger than the determinant of its
parts; it is referred to as the swelling effect. Since the value of the determinant
is a direct measure of dispersion of the multivariate variables (i.e. EEG channels
and frequency bands), it leads to poor discrimination in the classification task.
The swelling effect of arithmetic mean is shown in Fig. 2: the determinant of the
arithmetic mean is strictly larger than other means, the Log-Euclidean, Affine-
Invariant and Bhattacharyya ones yielding similar determinants, close to trials
values.

Using Riemannian distances significantly improves classification perfor-
mances, with regards to state-of-the-art method (70.45 %) and Euclidean dis-
tance. The α-divergence yields the best results (81.56 %). The value of α was
set to 0.6 through cross-validation. This procedure lasted 225.42 s and makes
α-divergence the most costly method, due to the optimization of its parameter
α. Log-Euclidean yields lower classification accuracy (average 78.98 %) but could
be computed faster than α-divergence or Affine-Invariant distance. However, the
Bhattacharyya distance has the lowest computational cost of the considered Rie-
mannian distances (average CPU time 0.140 s), with a higher average accuracy
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of 80.51 %. So, it is good trade-off between efficiency and speed. The accura-
cies and CPU time of the α-divergence at different values of α are shown in
Fig. 3. It is seen that for α = ±1, where α-divergence represents a Bregman
divergence associated with the log-determinant function, the classification accu-
racy are drastically low (25 %). For the rest, the accuracy varies smoothly with
changes in α, with the highest accuracy scored while α is positive.

This experiment on real EEG data shows that it is crucial to process covari-
ance matrices with dedicated Riemannian tools, impacting the efficiency of the
classification.

4 Conclusion

Riemannian approaches have been successfully applied on EEG signals for brain
computer interfaces. Straightforward algorithms, such as Minimum Distance to
Mean, provide competitive results with state-of-the-art methods, without requir-
ing meticulous parametrization or optimization. Working on covariance matri-
ces in Riemannian spaces offers a wide choice of distances, embedding desirable
invariances: it is thus possible to avoid the computation of user-specific spatial
filters which are sensitive to artifacts and outliers. Nonetheless, the estimation of
the Riemannian geometric mean has a strong impact on the classifier accuracy.
This study investigates the performance of several distances and divergence on
a real EEG dataset in the context of BCI based on the SSVEP paradigm. The
experimental results indicate that the α-divergence yields the best accuracy after
the selection of the best α values, but the Bhattacharyya distance has the lowest
computational cost while providing decent accuracies.
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Abstract. We consider the geodesic equation on the elliptical model,
which is a generalization of the normal model. More precisely, we charac-
terize this manifold from the group theoretical view point and formulate
Eriksen’s procedure to obtain geodesics on normal model and give an
alternative proof for it.

1 Introduction

The study of statistical manifolds began from a geometrical consideration on
statistical estimation (Ref. Amari, Nagaoka 2001). Especially, the geodesics on
statistical manifolds has been investigated since Rao 1945. In this article, we
consider a special type of statistical manifold called the elliptical model, which
is defined by each family of the elliptical distributions. The elliptical distrib-
utions are known to be important probability distributions in the multivariate
statistics. It includes the multivariate normal distribution, Student-t and Cauchy
distribution as special case (Ref. Calvo, Oller 1982; Muirhead 2001). Then the
Normal model is a special case of the elliptical model.

Let Pn(R) be the set of n-dimensional positive-definite symmetric matri-
ces. The normal model is a Riemannian manifold with one coordinate system
{(μ,Σ) ∈ Rn × Pn(R)} equipped with the metric

ds2 = (tdμ)Σ−1(dμ) +
1
2
tr((Σ−1dΣ)2).

This metric is defined by the Fisher information matrix. It is known that the
geodesic equation on normal model is given as

{
μ̈ − Σ̇Σ−1μ̇ = 0,

Σ̈ + μ̇tμ̇ − Σ̇Σ−1Σ̇ = 0.
(1)

The solution of this geodesic equation was firstly obtained by Eriksen. He
obtained the geodesic by extracting a block matrix in a matrix exponential as
follows:
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Theorem 1 (Eriksen 1987). For any x ∈ Rn, B ∈ Symn(R), define a matrix
exponential Λ(t) by

Λ(−t) := exp(−tA) =:

⎛

⎝
Δ δ Φ
tδ ε tγ
tΦ γ Γ

⎞

⎠ , A :=

⎛

⎝
B x 0
tx 0 −tx
0 −x −B

⎞

⎠ ∈ Mat2n+1. (2)

Then, the curve (μ(t), Σ(t)) := (−Δ−1δ,Δ−1) is the solution of the geodesic
Eq. (1) on Nn satsfying the initial condition

(μ(0), Σ(0)) = (0, In), (μ̇(0), Σ̇(0)) = (x,B).

�
After that, in Calvo, Oller 1991, the explicit formula for geodesics on normal
model was obtained by solving general differential equation that includes (1).
Recently, Imai, Takaesu, Wakayama 2011 concretely calculated the exponential
matrix given in (2), and reproved the result of Calvo, Oller 1991.

However, the question remains how to give a geometrical explanation for the
result about the geodesic by Eriksen 1987. On the other hand, Eriksen pointed
out that the matrix A in (2) is regarded as an element of the p-part of the Cartan
decomposition so(n + 1, n) = p ⊕ k. And it is well known that geodesics on a
symmetric spaces are obtained from matrix exponential. Considering these facts,
it is suggested that there is a similar aspect for normal model with symmetric
spaces. Indeed, the 1-dimensional normal model is a symmetric isometric to the
Poincaré upper half plane. The result of Eriksen was geometrically explained in
Imai, Takaesu, Wakayama 2011.

The purpose of this article is as follows. First, to give the geodesic on
elliptical model explicitly. And secondly, to attempt a group theoretical inter-
pretation to the result of Eriksen 1987 for the geodesic on more than 1-
dimensional normal model. In Sect. 2, using a result of Calvo, Oller 2001, we
see that the elliptical models are simultaneously embedded into a symmetric
space Pn+1(R) � GL(n + 1)/O(n + 1) as Riemannian manifolds, except a small
class. In particular, the normal model is regarded as a Riemannian submanifold
of Pn+1(R). In Sect. 3, we rewrite the geodesic equation on normal model as
a differential equation of a curve on Pn+1(R). In other words, we express the
geodesic equation on normal model as the linear projection from the geodesic
equation on Pn+1(R). Taking advantage of this expression, we rewrite the geo-
desic equation on elliptical model in the same manner. In Sect. 4, we formulate
the procedure to obtain the geodesic by Theorem 1. For this purpose, we use
the geometric structure of the positive-definite symmetric matrices based on the
group actions. And we give an alternative proof of Theorem 1.

2 Elliptical Model and its Embedding

In this section, we consider the elliptical model, that includes the normal model
for its special case.
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2.1 Elliptical Model En(α)

Put dα := (n + 1)α2 + 2α (α ∈ C). For α ∈ C which satisfies dα > −1/n, we
define an n(n + 3)/2-dimensional Riemannian manifold En(α) = (M,ds2) by

M = {(μ,Σ) ∈ Rn × Pn(R)} ,

ds2 = (tdμ)Σ−1(dμ) +
1
2
tr((Σ−1dΣ)2) +

dα

2
tr2

(
Σ−1dΣ

)
. (3)

Here, (3) is a scale-transformed metric of the Fisher metric defined from a family
of elliptical distributions {f(x;μ,Σ)}μ,Σ (see Calvo, Oller 2001). Then, each
elliptical model is isometric to En(α). Hereafter, we call En(α) an elliptical
model. Notice that for α1, α2 ∈ C, α1 �= α2 that satisfy dα1 = dα2 , we have
En(α1) � En(α2) as Riemannian manifolds. And in particular, En(0) is the
normal model, and we write En(0) = Nn.

Example 1. The metric of N1 = {(μ, σ2)} is

ds2 = σ−2(dμ2 + 2dσ2).

Then, N1 is isometric to the Poincaré H, and is a symmetric space. We have
following isomorphisms (see Imai, Takaesu, Wakayama 2011):

N1
∼−→ H ∼= SL(2,R)/SO(2) ∼= SOo(2, 1)/S(O(2) × O(1))

(μ, σ2) �→ 1√
2
μ + iσ = g.i ←� gK �→ Ad(g)

(4)
where Ad(g) ∈ End(sl2(R)) is the adjoint action defined by Ad(g) : X �→ gXg−1.

2.2 Embedding of En(α) into Pn+1(R)

By using a result of Calvo, Oller 2001, we see that all the elliptical models En(α)
for α ∈ R are simultaneously embedded into a symmetric space Pn+1(R) �
GL(n + 1)/O(n + 1) as Riemannian manifolds.

The Symmetric Space Pn(R). Consider the set Pn(R) of n-dimensional
positive-definite symmetric matrices. The tangent space of Pn(R) is Symn(R).
The following bijection is known:

GL(n,R)/O(n) ∼= Pn(R)
gK �→ Ψ = gIn

tg.

The GL(n,R)-invariant Riemannian metric on Pn(R) is defined by ds2 =
1
2 tr

(
(Ψ−1dΨ)2

)
. Moreover, Pn(R) � GL(n)/O(n) with this metric is known

to be a Riemannian symmetric space, Ref. Helgason 1962.
The geodesic equation on Pn(R) and its solution Ψ(s) that satisfies Ψ(0) = Ψ1

are given by
Ψ̇(s) = Ψ(s)H, Ψ(s) = exp(Hs)Ψ1.
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Here H is a constant matrix that commutes with Ψ1. For two matrices A,B,
define 〈A,B〉 := tr(AtB), ‖A‖ := 〈A,A〉1/2. Then, the Riemannian distance
between Ψ1, Ψ2 ∈ Pn(R) is written as

d(Ψ1, Ψ2) =

√
1
2
‖ ln(Ψ−1/2

1 Ψ2Ψ
−1/2
1 )‖ =

(
1
2

n∑

i=1

ln2 λi

)1/2

,

where λi denotes an eigenvalue of Ψ−1
1 Ψ2.

Embedding and Homogeneity of En(α). For our purpose, we rewrite the
embedding of elliptical models into Pn+1(R) by Calvo, Oller 2001 as follows. Put
|A| := detA.

Lemma 1. For each α ∈ R, we have the embedding of En(α) into Pn+1(R) as
a Riemannian manifold:

fα : En(α) ↪→ Pn+1(R)

(μ,Σ) �→ |Σ|α
(

Σ + μtμ μ
tμ 1

)

.

fα(En(α)) � En(α) is a non-geodesic submanifold of Pn+1(R). �

Then as a corollary of this result, elliptical models En(α) (α ∈ R) are simul-
taneously embedded into a symmetric space Pn+1(R).

Proposition 1. 1. Pn+1(R) is decomposed as follows:

Pn+1(R) =

{(
Σ + μtμ μ

tμ 1

) ∣∣det Σ = 1

}
�
⊔

α∈R

{
|Σ|α

(
Σ + μtμ μ

tμ 1

) ∣∣det Σ �= 1

}

=: Q �
⊔

α∈R

Rα. (5)

For each α ∈ R, we have the isometry

En(α) ∼−→ Q  Rα ⊂ Pn+1(R)

(μ,Σ) �→
(

Σ + μtμ μ
tμ 1

)

.
(6)

2. Consider the action Ψ �→ gΨ tg of GL(n+1,R) on Pn+1(R) � GL(n+1)/O(n+
1). Then, for each α ∈ R, the subgroup

GA(α) :=
{

|P |α
(

P δ
0 1

)
∣
∣P ∈ GL(n,R), δ ∈ Rn

}

(α ∈ R)

of GL(n + 1,R) acts transitively on Q  Rα � En(α).
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3. For any Ψ ∈ Pn+1(R), put Ψ =
(

A B
tB D

)

, A ∈ Pn(R), B ∈ Mn,1(R),D > 0.

Then, we have
Ψ ∈ Q ⇔ det

(
D−1A − D−2BtB

)
= 1. (7)

And provided that Ψ /∈ Q,

Ψ ∈ Rα ⇔ α =
log D

log |D−1A − D−2(BtB)| . (8)

We have seen that each elliptical model En(α) � Q  Rα is identified as the
orbit of the subgroup GA(α) ⊂ GL(n + 1) through In+1 ∈ Pn+1(R), equipped
with the metric induced from the metric on Pn+1(R).

GL(n) ⊂ GA(α) ⊂ GL(n + 1)

� � �

Pn(R) ⊂ En(α) � Q  Rα ⊂ Pn+1(R)

= = =

{

|Σ|α
(

Σ 0
0 1

)}

⊂
{

|Σ|α
(

Σ + μtμ μ
tμ 1

)}

⊂
{

Ψ =
(

A B
tB D

)}

In particular, En(α) is a homogeneous space. Then, in the arguments of
geodesics on En(α), we only have to consider the geodesics that go through
In+1 ∈ Pn+1(R) without loss of generality.

We can also embed isometric elliptical models into Pn(R) simultaneously.

Proposition 2. 1. Assume that n ≥ 2. Then, for any α ∈ R, α �= −1/n, we
have the following decomposition:

Pn+1(R) =
⊔

β>0

{

|Σ|α
(

Σ + βμtμ βμ
βtμ β

)}

=:
⊔

β>0

R′
β . (9)

The subgroup GA(α) acts transitively on each R′
β (β > 0) by Ψ �→ gΨ tg. And

each R′
β is isometric to En(α) by the map

En(α) ∼−→ R′
β ⊂ Pn+1(R)

(μ,Σ) �→
(

Σ + β2μtμ β3/2μ
β3/2tμ β

)

.
(10)

2. For any Ψ ∈ Pn+1(R), put Ψ =
(

A B
tB D

)

, A ∈ Pn(R), B ∈ Mn,1(R),D > 0.

Then, β > 0 such that Ψ ∈ R′
β is uniquely determined by

β =
(

D

|D−1A − D−2BtB|α
)1/(nα+1)

. (11)

By the above proposition, we get the orbit decomposition

GL(n + 1,R) =
⊔

β>0

GA(α) gβ O(n + 1) (gβ ∈ R′
β , α ∈ R, α �= −1/n).

The complete invariant β > 0 on each orbit is given by (11).
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3 Geodesics on Elliptical Model

In this section, we regard the normal model Nn as a submanifold of Pn+1(R).
And we rewrite the geodesic equation on Nn as a system of linear equation. We
also rewrite the geodesic equation on elliptical model En(α) in the same manner.

3.1 Geodesic Equation on Nn

The geodesic Eq. (1) on Nn can be partially integrated as
{

μ̇ = Σx,

Σ̇ = Σ(B − xtμ),
(12)

where (μ̇(0), Σ̇(0)) = (x,B) ∈ Rn × Symn(R) are the integration constants. We
express (μ(t), Σ(t)) as a curve S(t) on Nn ⊂ Pn+1(R).

Lemma 2. The Eq. (12) is written as the geodesic equation on Nn � Q  R0:

(In, 0)S−1Ṡ = (B, x), S(t) =
(

Σ + μtμ μ
tμ 1

)

. (13)

We notice that geodesics on the symmetric space Pn+1(R) are given by matrix
exponentials. In other words, the geodesic equation is given by

S−1Ṡ = C, (14)

where C ∈ Mn+1(R) is a constant matrix. We get the geodesic equation on
Nn formally by the linear projection of (14). As we see in Theorem 1, geodesic
equation on normal model has been solved. We will give an alternative proof
for it.

3.2 Geodesic Equation on En(α) and its Solution

The geodesic equation on elliptical model En(α) is given by
⎧
⎨

⎩

μ̈ − Σ̇Σ−1μ̇ = 0,

Σ̈ + μ̇tμ̇ − Σ̇Σ−1Σ̇ − dα

ndα + 1
tμ̇Σ−1μ̇Σ = 0,

(
dα := (n + 1)α2 + 2α

)

(15)
(cf. Calvo, Oller 2001). Integrating (15) by part, we get

⎧
⎨

⎩

μ̇ = Σx,

Σ̇ = Σ

(

B − xtμ +
dα

ndα + 1
(tμx)In

)

,
(16)

where (μ̇(0), Σ̇(0)) = (x,B) ∈ Rn × Symn(R) are the integration constants.
We can assume (μ(0), Σ(0)) = (0, In) because of the homogeneity of En(α).
Hereafter, we assume that α ∈ R and regard En(α) � Q  Rα as a submanifold
in Pn+1(R).
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Proposition 3. The Eq. (16) is written as the geodesic equation on En(α) �
Q  Rα:

(In, 0)S−1
α Ṡα = (B, x) +

d

dt
Fα(t)(In, 0), Sα(t) = |Σ|α

(
Σ + μtμ μ

tμ 1

)

, (17)

Fα(t) = −α log |Sα| + dαtrB · t.

Corollary 1. The equations in (17) are written as

(In, 0)
(
T−1

α

)′
= (−B,−x) T−1

α ,

Tα = e−dαtrB·t|Sα|αSα = |e−tBΣ|dα

(
Σ + μtμ μ

tμ 1

)

.

Remark 1. Let S �→ S∗ = S−1 be the involution of Pn+1(R) � GL(n+1)/O(n+
1). The geodesic equation on Pn+1(R) is written by using the dual coordinates:
S̈∗ = S−1S̈S−1. In general, such form of equations are explicitly written in
Barbaresco 2014 as the geodesic equations for the Koszul Hessian metric. Equa-
tion (17) is obtained by adding the submanifold-constrain condition:

S̈∗ = S−1S̈S−1 + λ(t)
∂g

∂S
,

where g(S) = α log |S|− ((n+1)α+1) log |ten+1Sen+1| and λ(t) is the Lagrange
multiplier.

4 Geometric Description of Theorem1

In this section, we formulate Theorem 1. First, we observe the geometric struc-
ture of P2n+1(R). On the basis of these observations, we give a group theoretical
interpretation for the matrix A and the extraction of a block matrix from Λ(−t)
in (2).

4.1 Geometric Structure of P2n+1(R)

We extend the embedding in Calvo, Oller 2001.

Lemma 3. Let Pm+n(R) be the set of (m + n)-dimensional positive-definite
symmetric matrices. Then, any Λ ∈ Pm+n(R) can be uniquely written as follows:

Λ =
(

S + cΓ tc cΓ
Γ tc Γ

)

, S ∈ Pm(R), Γ ∈ Pn(R), c ∈ Mm,n. (18)

From above formula, we have

tr
(
(Λ−1dΛ)2

)
= tr

(
(S−1dS)2

)
+ 2tr

(
Γ tdcS−1dc

)
+ tr

(
(Γ−1dΓ )2

)
. (19)

Moreover, taking S̃ ∈ GL(m)/O(m), Γ̃ ∈ GL(n)/O(n) such that S = S̃tS̃, Γ =
Γ̃ tΓ̃ , we have

Λ = gtg, g =
(

S̃ cΓ̃
0 Γ̃

)

. (20)
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Remark 2. (19) includes a result of Calvo, Oller 2001 with n = 1. Equation (20)
is a weak form of Cholesky decomposition.

Proposition 4. 1. Define the Lie group H = SO(n + 1, n) by

H :=
{
h ∈ GL(2n + 1,R)| thJh = J

}
, J :=

⎛

⎝
In

1
In

⎞

⎠ .

Let h be the Lie algebra of H and h = p ⊕ k be the Cartan decomposition.
Then, we have

p = sym2n+1∩h =

⎧
⎨

⎩
X =

⎛

⎝
B x D
tx 0 −tx
tD −x −B

⎞

⎠ ; B,D ∈ Mn, tB = B, tD = −D

⎫
⎬

⎭
.

(21)
2. Consider the map π′ : P2n+1(R) � Λ �→ S ∈ Pn+1(R) defined by the decom-

position (18) and its restriction π := π′|P2n+1(R)∩H . Then, the image of π
coincides with Nn;

π : P2n+1(R) ∩ H � Q  R0 � Nn.

3. For any X ∈ sym2n+1 ∩ h, define Λ(t) := exp(tX). Then, S(t) := π(Λ(t)) ∈
Pn+1(R) is a curve on Q  R0 � Nn. In particular, If D = 0 for X in the
form of (21), S(t) satisfies the equation

(In, 0)S−1Ṡ(t) = (B, x). (22)

In other words, defining (μ(t), Σ(t)) by S(t) =:
(

Σ + μtμ μ
tμ 1

)

, (22) is written

as the geodesic equation on normal model for (μ,Σ).

In this proposition, we see that the matrix A in (2) is an element of p =
sym2n+1 ∩ h, which appears in the Cartan decomposition h = p ⊕ k. And we
regard the extraction of a block matrix in (2) as the projection π to an element in
Cholesky decomposition. Based on these description, we can give an alternative
proof for Theorem 1. Our argument can be summarized as follows.

sym2n+1 ∩ h → P2n+1(R) ∩ H � Nn ⊂ Pn+1(R)
A �→ etA = Λ(t) �→ π(Λ(t)) = S(t) : geodesic.

Proof. 1. The Cartan decomposition h = p ⊕ k gives the eigenspace decompo-
sition of h for the transpose map X �→ tX (Ref. Helgason 1962). Thus, the
first equation of (21) holds. By the definition of the Lie algebra h, we see
that

h =
{
Y | J tY J = −Y

}
.

Then, any X ∈ sym2n+1 ∩ h is the form of (21).
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2. We show that π(Λ) ∈ Nn for any Λ = gtg ∈ P2n+1(R) ∩ H. Put

g =
(

S̃ ∗
0 Γ̃

)

, S̃ =
(

P μ
0 a

)

, P, Γ̃ ∈ GL(n,R), μ ∈ Rn, a ∈ R.

Since Λ = gtg ∈ H, g satisfies J(gtg)J = tg−1g−1. Then we have

Γ̃ tΓ̃ = tP−1P−1.

Therefore,
1 = detΛ = (det g)2 = a2(det P )2(det Γ̃ )2 = a2,

so we have

π(Λ) = S̃tS̃ =
(

P μ
0 a

)(
tP 0
tμ a

)

∈ Q  R0 � Nn.

Here we can take P ∈ GL(n,R), μ ∈ Rn arbitrarily, so we see that π is
surjective.

3. We give the proof in next subsection as an alternative proof for Theorem 1.

4.2 Alternative Proof for Theorem 1

If D = 0, Λ(t) = exp(tX) is identified with the matrix exponential in (2). We
will proof (22) by calculating the sub-block in the differential equation of Λ(t).
We set the matrix-valued functions S(t),b(t) by

S−1(t) :=
(

Δ δ
tδ ε

)

, b(t) :=
(

Φ
tγ

)

.

We notice that S(t) = π(Λ(t)). First, we can see that

Λ(t) =
(

S(In+1 + bΔtbS) −SbΔ
−ΔtbS Δ

)

, Λ−1(t) =
(

S−1 b
tb Δ−1 + tbSb

)

.

From the differential equaiton Λ̇(t) = XΛ(t), we get
⎛

⎝
−B −x ∗
−tx 0 ∗
∗ ∗ ∗

⎞

⎠ = (Λ−1(t))′Λ(t) =
(

(S−1)′S(In+1 + bΔtbS) − ḃΔtbS ∗
∗ ∗

)

,

and

ḃ =
(−B −x

−tx 0

)

b +
(

0
txΓ

)

.

Combining above two equations, we get
{

(S−1)′S −
(−B −x

−tx 0

)}
{
In+1 + bΔtbS

}
+

(
0

txΓ

)

ΔtbS = 0.

Then, multiplying (In, 0) ∈ Mn,n+1(R) to both sides from the left, we get
{
(In, 0)(S−1)′S − (−B,−x)

} {
In+1 + bΔtbS

}
= 0.



614 H. Inoue

Since Λ(0) = I2n+1, we see that In+1+bΔtbS is contained in a neighbor of In+1

for any sufficient small t ∈ R. Therore, for such t, we have

(In, 0)(S−1)′S = (−B,−x),

so that S(t) satisfies the geodesic Eq. (13) on Q  R0 � Nn. �
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Abstract. We introduce a class of paths or one-parameter models con-
necting arbitrary two probability density functions (pdf’s). The class is
derived by employing the Kolmogorov-Nagumo average between the two
pdf’s. There is a variety of such path connectedness on the space of
pdf’s since the Kolmogorov-Nagumo average is applicable for any con-
vex and strictly increasing function. The information geometric insight is
provided for understanding probabilistic properties for statistical meth-
ods associated with the path connectedness. The one-parameter model is
extended to a multidimensional model, on which the statistical inference
is characterized by sufficient statistics.

1 Introduction

Information geometry has provided intrinsic understandings in a variety of math-
ematical sciences such as statistics, information science, statistical physics and
machine learning [1,2,9]. We view the parameter describing objects and natures
in the science as a coordinate expressing the geometric space in which such a
viewpoint gives clear and strong intuition to understand the interactive mecha-
nism for backgrounds of the science applied. A typical example is a parametric
family of pdf’s including the Gaussian distribution model. Information geome-
try directly reveals the central role of the parameter to give the uncertainty and
probability excluding apparent properties depending on the choice of the parame-
ter. The nonparametric formulation for information geometry is discussed from
a point of infinite dimensional manifold or functional manifold such as Hilbert
and Banach manifolds [3,18,21–23,27]. There are several difficulties unless some
integrability assumptions are imposed.

We employ the Kolmogorov-Nagumo average to avoid such a technical prob-
lem mentioned above, see [15–17] for the detailed discussion on the Kolmogorov-
Nagumo average from statistical physics. This average is also called quasi-
arithmetic mean as in [19], where a generalized upper bounds on Bayes error
using quasi-arithmetic means is discussed.

We view the Kolmogorov-Nagumo average between two pdf’s as a path con-
necting the pdf’s. A convexity property guarantees the existence of such a path
without such integrability assumptions. We can make a freehand drawing for the
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 615–624, 2015.
DOI: 10.1007/978-3-319-25040-3 66
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path on the infinite-dimensional space. The path is characterized as a geodesic
curve in a dualistic pair of linear connections. In particular, we consider the
path in a class of information divergence which the pair of linear connections
are associated with, see [6,8,9,12] for the divergence geometry.

The paper is organized as follows. Section 2 introduce φ-path employing the
Kolmogorov-Nagumo average with respect to a generator function φ. Typical
examples are discussed. In Sect. 3 we consider a pair of parallel transport and
the geodesic associated. We show that a φ-path is a geodesic curve with respect to
a parallel transport associated with the generator function φ. Section 4 provides
the dualistic pair of linear connections associated with information divergence.
We show that the φ-path is explicitly given in the framework. Finally we overview
the discussion here with existing literature,

2 φ-path Connectedness

Let FP be the space of all P -a.s. strictly positive pdf’s with respect to a probabil-
ity measure P of a data space X . For example, P is taken as a standard Gaussian
measure and the uniform probability measure corresponding to continuous and
discrete random variables, respectively. Thus a pdf f of FP associates with a
probability measure Pf (B) =

∫
B

f(x)dP (x). If we take another measure Q that
is mutually absolute continuous with P , then FP is changed to FQ defined by
{(∂P/∂Q)f : f ∈ FP }. Let φ be a monotone increasing and concave function
defined on R+. Then there exists the inverse function φ−1 that is monotone
increasing and convex in R. The Kolmogorov-Nagumo average for f and g in FP

is defined by

φ−1
(
(1 − t)φ(f(x)) + tφ(g(x))

)
. (1)

for t, 0 ≤ t ≤ 1. From the convexity of φ−1 we observe that

0 ≤ φ−1
(
(1 − t)φ(f(x)) + tφ(g(x))

)
≤ (1 − t)f(x) + tg(x),

which implies that

0 ≤
∫

X
φ−1

(
(1 − t)φ(f(x)) + tφ(g(x))

)
dP (x) ≤ 1.

We define κt to satisfy that
∫

X
φ−1

(
(1 − t)φ(f(x)) + tφ(g(x)) − κt

)
dP (x) = 1 (2)

and we write

ft(x, φ) = φ−1
(
(1 − t)φ(f(x)) + tφ(g(x)) − κt

)
, (3)

which we call the φ-path connecting f and g. By the definition of κt, we know
κt ≤ 0 with equality if t = 0 or t = 1. The simplest example is φ(x) = x, in which
the φ-path is noting but the mixture geodesic, or ft(x, φ) = (1 − t)f(x) + tg(x)
with κt = 0. We note the existence for κt for all t ∈ [0, 1] as follows.
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Theorem 1. There uniquely exists κt satisfying (2).

Proof. Let Bδ = {x ∈ X : f(x) ≥ φ−1(δ), g(x) ≥ φ−1(δ)}. Then we see that
∫

X
φ−1((1 − t)φ(f(x)) + tφ(g(x)) + c)dP (x) ≥ φ−1(c + δ)P (Bδ).

We observe that limc→∞ φ−1(c + δ) = +∞ since φ−1 is convex and monotone
increasing from the assumption of φ. Also P (Bδ) > 0 for sufficiently small δ.
This guarantees the existence of such a κt to satisfy (2) and the uniqueness is
trivial.

Accordingly we see that the space FP is path-connected for any monotone
increasing and concave function φ since we can define F (φ) : [0, 1] → FP by
F (φ)(t) = ft(·, φ), where ft(x, φ) is defined in (3). There is a variety of path-
connectedness in FP because the choice for φ is rather arbitrary. Let us consider
a few of examples as follows.

Example 1. (i). φ0(x) = log(x). The φ0-path is given by

ft(x, φ0) = exp((1 − t) log f(x) + t log g(x) − κt),

where

κt = log
∫

exp((1 − t) log f(x) + t log g(x))dP (x).

(ii). φη(x) = log(x + η) with η ≥ 0. The φη-path is given by

ft(x, φη) = exp
[
(1 − t) log{f(x) + η} + t log{g(x) + η} − κt

]
,

where

κt = log
[ ∫

exp{(1 − t) log{f(x) + η} + t log{g(x) + η}}dP (x) − η
]
.

We note that κt is well defined because

exp
[
(1 − t) log{f(x) + η} + t log{g(x) + η}] ≥ η.

(iii). φβ(x) = (xβ − 1)/β with β ≤ 1. The φβ-path is given by

ft(x, φβ) = {(1 − t)f(x)β + tg(x)β − κt} 1
β ,

where κt is the normalizing factor. We observe that −1 ≤ κt ≤ 0 since
∫

X
{(1 − t)f(x)β + tg(x)β − κ} 1

β dP (x) ≥ (−κ)
1
β

for any κ < 0. We note that the explicit form of κt is not known in general.
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On the other hand, there is another way to normalize (1) as

gt(x, φ) = zt
−1φ−1((1 − t)φ(f(x)) + tφ(g(x)),

where

zt =
∫

X
φ−1((1 − t)φ(f(x)) + tφ(g(x))dP (x).

In Examples (i) and (ii) κt = log zt; in Example (iii) there is no explicit relation
of κt with zt.

3 A Pair of Parallel Transports

We discuss a geometric characterization for the φ-path C(φ) = {ft(x, φ) : 0 ≤
t ≤ 1} connecting f and g. We introduce an extended expectation using the
generator function φ as

E(φ)
f {a(X)} =

∫

X

1
φ′(f(x))

a(x)dP (x)
∫

X

1
φ′(f(x))

dP (x)
.

We note that
(i). E(φ)

f (c) = c for any constant c.

(ii). E(φ)
f {ca(X)} = cE(φ)

f {a(X)} for any constant c.

(iii). E(φ)
f {a(X) + b(X)} = E(φ)

f {a(X)} + E(φ)
f {b(X)}.

(iv). E(φ)
f {a(X)2} ≥ 0 with equality if and only if a(x) = 0 for P -almost every-

where x in X .
We note that, if φ(t) = log t, then E(φ) reduces to the usual expectation. Let Hf

be a Hilbert space with the inner product defined by 〈a, b〉f = E(φ)
f {a(X)b(X)},

and the tangent space

Tf = {a ∈ Hf : 〈a, 1〉f = 0}.

For a statistical model M = {fθ(x)}θ∈Θ

E(φ)
fθ

{∂iφ(fθ(X))} = 0

for all θ of Θ, where ∂i = ∂/∂θi with θ = (θi)i=1,··· ,p. Further,

E(φ)
fθ

{∂i∂jφ(fθ(X))} = E(φ)
fθ

{ φ′′(fθ(X))
φ′(fθ(X))2

∂iφ(fθ(X))∂iφ(fθ(X))
}

. (4)

If φ(t) = log t, then (4) is nothing but the Bartlett identity. Here we have to
remark that the existence of the generalized expectation and these two identities
are not always guaranteed, so we assume the existence and differentiability.
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The geometric meaning of the φ-path is important to understand the statis-
tical applications via φ-path. Let C be a path connecting f and g such that C

is parametrized as ft(x), where f0 = f and f1 = g. Define A
(φ)
t (x) of Tft

by the
solution for a differential equation

Ȧ
(φ)
t (x) − E(φ)

ft

{
A

(φ)
t ḟt

φ′′(ft)
φ′(ft)

}
+ E(φ)

ft
{A

(φ)
t (X)}E(φ)

ft

{φ′′(ft(X))
φ′(ft(X))

ḟt(X)

}
= 0.

(5)

Then we confirm that

d

dt
E(φ)

ft
{A

(φ)
t (X)} = 0.

The idea of parallel transport provides a characterization of φ-path defined
in Sect. 2.

Theorem 2. The geodesic curve {ft}0≤t≤1 by the parallel displacement A(φ) is
the φ-path defined in (3).

Proof. We apply the parallel displacement to A
(φ)
t (x) = (d/dt)φ(ft(x)) as

d2

dt2
φ(ft(x)) − E

(φ)
ft

{ d

dt
φ(ft(x))ḟt

φ′′(ft)

φ′(ft)

}
+ E

(φ)
ft

{ d

dt
φ(ft(x))

}
E

(φ)
ft

{
ḟt

φ′′(ft)

φ′(ft)

}
= 0,

which is written by

d2

dt2
φ(ft(x)) − E(φ)

ft

{ d2

dt2
φ(ft(x))

}
= 0. (6)

Hence we can solve this differential equation as

φ(ft(x)) = (1 − t)φ(f(x)) + tφ(g(x)) − κt,

or equivalently ft(x) is nothing but f
(φ)
t (x) as defined in (3). This completes the

proof.

Similarly we define B
(φ)
t (x) of Tft

by the solution for a differential equation

Ḃ
(φ)
t (x) − B

(φ)
t ḟt

φ′′(ft)
φ′(ft)

+ B
(φ)
t E(φ)

ft

{
ḟt

φ′′(ft)
φ′(ft)

}
= 0. (7)

We observe the following by an argument similar to that just before Theorem 2.

d

dt
E(φ)

ft
{B

(φ)
t (X)} = 0.

Applying to B
(φ)
t (x) = (d/dt)φ(ft(x)) we find that

φ′(ft(x))f̈t(x) = 0, (8)
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of which the solution is given by ft(x) = (1 − t)f(x) + tg(x). Hence the geodesic
curve by the parallel displacement B(φ) is always the mixture curve, of which
the discussion is independent of φ.

Basically the φ-path can connect between any f and g in FP . Let f0, · · · , fK

be distinct in FP . Then the φ-surface is defined by

M (φ) = {fπ(x) := φ−1
( K∑

k=0

πkφ(fk(x)) − κπ

)
: π ∈ SK}

where π = (π0, · · · , πK) and SK denotes a K-dimensional simplex {π : πk ≥
0,

∑K
k=0 πk = 1}. In this way φ-surface M (φ) connects among any K pdf’s fk’s.

Further, M (φ) is total geodesic.

Theorem 3. Let {ft(x, φ)}0≤t≤1 be the φ-path connecting fπ(0) and fπ(1) of
M (φ). Then, ft(·, φ) ∈ M (φ) for any t ∈ (0, 1).

Proof. By definition,

ft(x, φ) = φ−1((1 − t)φ(fπ(0)(x)) + tφ(fπ(1)(x)) − κt)

which is nothing but fπt
(x), where πt = (1 − t)π(0) + tπ(1) We conclude that

{ft(x)}0≤t≤1 is embedded in M (φ) since {πt}0≤t≤1 is a curve in the simplex SK .
The proof is complete.

4 Minimum Divergence Geometry

4.1 U-divergence and the Geodesic Associated

Assume that U(s) is a convex and increasing function and let ξ(t) =
argmaxs{st − U(s)}. Then the U -divergence is defined

DU (f, g) =
∫

{U(ξ(g)) − fξ(g)}dP −
∫

{U(ξ(f)) − fξ(f)}dP.

In fact, U -divergence is the difference of the cross entropy CU (f, g) with the
diagonal entropy CU (f, f), where CU (f, g) =

∫ {U(ξ(g)) − fξ(g)}dP . See [8,9]
for the detailed discussion

We review the geometry generated by the U -divergence DU (f, g) based on a
manifold of finite dimension M = {fθ(x) : θ ∈ Θ} and vector fields X and Y on
M as follows. The Riemannian metric is

G(U)(X,Y )(f) = −
∫

Xf Y ξ(f)dP

for f ∈ M and linear connections ∇(U) and ∗∇(U) are

G(U)(∇(U)
X Y,Z)(f) = −

∫

XY f Zξ(f)dP (9)



Path Connectedness on a Space of Probability Density Functions 621

and

G(U)(∗∇(U)
X Y,Z)(f) = −

∫

Zf XY ξ(f)dP (10)

for f ∈ M . The components are given by

G
(U)
ij (θ) = −E(ξ)

fθ

{
∂iξ(fθ)∂jξ(fθ)

}
, (11)

G(U)(∇(U)
∂i

∂j , ∂k)(θ) = −E(ξ)
fθ

{(
∂i∂jξ(fθ) − ξ′′(fθ)

ξ′(fθ)2
∂iξ(fθ)∂jξ(fθ)

)
∂kξ(fθ)

}

(12)
and

G(U)(∗∇(U)
∂i

∂j , ∂k)(θ) = −E(ξ)
fθ

{
∂kξ(fθ)∂i∂jξ(fθ)

}
(13)

for θ ∈ Θ, where ∂i = ∂/∂θi.
Let C be a one-parameter model parametrized by C = {ft(x) : 0 ≤ t ≤ 1}.

We consider a two-parameter model to include C as

M1(h) = {f(t,s)(x) = (1 − s)ft(x) + sh(x) : 0 ≤ t ≤ 1, 0 ≤ s ≤ 1}, (14)

where h is arbitrarily fixed in FP . Apply M1(h) to the formula (12), and thus

G(U)(∇(U)
∂1

∂1, ∂2)(t, s)

= −E(ξ)
f(t,s)

{(
∂1∂1ξ(f(t,s)) − ξ′′(f(t,s))

ξ′(f(t,s))2
∂1ξ(f(t,s))∂1ξ(f(t,s))

)
∂2ξ(f(t,s))

}
.

Here we confirm that

∂2ξ(f(t,s)) = ξ′(f(t,s))(h − ft)

and

∂1∂1ξ(f(t,s)) − ξ′′(f(t,s))
ξ′(f(t,s))2

∂1ξ(f(t,s))∂1ξ(f(t,s)) = (1 − s)ξ′(f(t,s))∂1∂1f(t,s)

Therefore,

G(U)(∇(U)
∂1

∂1, ∂2)(t, 0) = −E(ξ)
ft

{(ξ′(ft))2∂1∂1ft(h − ft)}. (15)

Let {ft(x)}0≤t≤1 is a ∇(U)-geodesic with an affine parameter t. By definition for
any Riemannian metric G,

G(∇(U)

ḟt
ḟt, ηt) = 0 (16)

for any ηt of Tft
. We observe that if G = G(U) and ηt = ∂2, then

G(∇(U)

ḟt
ḟt, ηt) = G(U)(∇(U)

∂1
∂1, ∂2)(t, 0)
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which means that

E(ξ)
ft

{
(ξ′(ft))2

d2

dt2
ft(h − ft)

}
= 0 (17)

for any h of FP according to f(t,0)(x) = ft(x). Because (17) holds for any h in
FP , we conclude that

d2

dt2
ft = c1(t){ξ′(ft)}−1 (18)

for almost everywhere x in the sense of P , where c1(t) is a constant in x. Imme-
diately we know c1(t) = 0 since the integration for both sides in (18) leads to
c1(t)

∫
(ξ′(ft))−1dP = 0. This implies that

ft(x) = (1 − t)f(x) + tg(x).

There is another discussion parallel to that for M1. Consider another two-
parameter model to include C, which is parametrized by

M2(h) = {f∗
(t,s)(x) = ξ−1((1 − s)ξ

(
ft(x)) + sξ(h(x)) − κ(t, s)

)
: 0 ≤ t ≤ 1, 0 ≤ s ≤ 1},

where h ∈ FP and κ(t, s) is the normalizing factor. We note that κ(t, 0) = 0.
Applying M2(h) to the formula (13), an argument similar to that above yields
that

G(U)(∗∇(U)
∂1

∂1, ∂2)(t, 0) = −E
(ξ)
ft

[
{−ξ(ft) + ξ(h) − ∂2κ(t, s)|s=0}{∂2

1ξ(ft) − ∂2
1κ(t, 0)}

]
.

(19)
Assume that ft(x) is a ∗∇(U)-geodesic with an affine parameter t. Then,

G(U)(∗∇(U)
∂1

∂1, ∂2)(t, 0) = 0

for any h of FP . It follows from (19) that (d2/dt2)ξ(ft(x)) = (d2/dt2)κ(t, 0) for
almost everywhere x in the sense of P , where (d2/dt2)κ(t, 0) is a constant in x.
This implies that

ft(x) = ξ−1((1 − t)ξ(f(x)) + tξ(g(x)) − κt),

where κt = κ(t, 0). Now we can summarize our discussion as follows.

Theorem 4. Let ∇(U) and ∗∇(U) be linear connections associated with
U -divergence DU as defined in (9) and (10) and let C(φ) be the φ path connecting
f and g of FP as defined in (3). Then a ∇-geodesic curve connecting f and g is
equal to C(id), where id denotes the identity function; while a ∗∇-geodesic curve
C∗

t connecting f and g is equal to C(ξ), where

ξ(t) = argmaxs{st − U(s)}.
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5 Conclusion

We cast a new light on the Kolmogorov-Nagumo average in which a φ-path is
defined in a simple manner via the generator function φ. The idea of φ-path
is robust and generative, so that we can define the φ-path connecting between
arbitrary two pdf’s without any integrability assumptions. Thus the geometry
associated with φ-path is appropriate to object a space of all pdf’s. The approach
to the infinite-dimensional space by Orlicz space is rigorous with a framework
of Banach manifold, cf. [21]. However, the theory does not have a direct connec-
tion with the nonparametric statistics which has been established in statistical
literature. The framework of Hilbert space is more feasible to apply to discus-
sion of statistics and machine learning based on an empirical datasets [18]. In
particular, this is compatible with the framework on semiparametric inference
in which the statistical model has parametric and nonparametric components.
However, it is necessary to assume some integrability conditions such as finite
entropy condition. In this sense the approach by φ-path is more robust.

We have discussed a specific property of φ-path with respect to the geometry
associated with U -divergence. There are several applications of statistics and
machine learning using U -divergence for robust statistics and boosting learn-
ing algorithm, see [10,11,13,14,20,24]. In the class of U -divergence a extensive
perspective is given in [4,5]. The U -divergence is closely related with Tsallis
entropy [25,26] if U is taken by a power exponential function. We will discuss
these applications in the φ-path geometry as a future work. The application for
semiparametric model and inference will be promising from this viewpoint.

Acknowledgments. Authors were supported by Japan Science and Technology
Agency (JST), Core Research for Evolutionary Science and Technology (CREST), and
express sincere gratitude to the reviewers for their helpful comments and suggestions
for improving the original manuscript.
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Abstract. It is well-known, since [12], that cells in the primary visual
cortex V1 do much more than merely signaling position in the visual field:
most cortical cells signal the local orientation of a contrast edge or bar –
they are tuned to a particular local orientation. This orientation tuning
has been given a mathematical interpretation in a sub-Riemannian model
by Petitot, Citti, and Sarti [6,14]. According to this model, the primary
visual cortex V1 lifts grey-scale images, given as functions f : R

2 → [0, 1],
to functions Lf defined on the projectivized tangent bundle of the plane
PTR

2 = R
2 × P

1. Recently, in [1], the authors presented a promising
semidiscrete variant of this model where the Euclidean group of roto-
translations SE(2), which is the double covering of PTR

2, is replaced by
SE(2, N), the group of translations and discrete rotations. In particu-
lar, in [15], an implementation of this model allowed for state-of-the-art
image inpaintings.

In this work, we review the inpainting results and introduce an
application of the semidiscrete model to image recognition. We remark
that both these applications deeply exploit the Moore structure of
SE(2, N) that guarantees that its unitary representations behaves simi-
larly to those of a compact group. This allows for nice properties of the
Fourier transform on SE(2, N) exploiting which one obtains numerical
advantages.

1 The Semi-discrete Model

The starting point of our work is the sub-Riemannian model of the primary
visual cortex V1 [6,14], and our recent contributions [1–4]. This model has also
been deeply studied in [8,11]. In the sub-Riemannian model, V1 is modeled as
the projective tangent bundle PTR

2 ∼= R
2 × P

1, whose double covering is the
roto-translation group SE(2) = R

2
� S

1, endowed with a left-invariant sub-
Riemannian structure that mimics the connections between neurons. In particu-
lar, grayscale visual stimuli f : R

2 → [0, 1] feeds V1 neurons N = (x, θ) ∈ PTR
2
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with an extracellular voltage Lf(ξ) that is widely accepted to be given by
Lf(ξ) = 〈f, Ψξ〉. The functions {Ψξ}ξ∈PTR2 are the receptive fields. A good fit
is Ψ(x,θ) = π(x, θ)Ψ where Ψ is the Gabor filter (a sinusoidal multiplied by a
Gaussian function) and π(x, θ)Ψ(y) := Ψ(R−θ(x − y)).

In this work we consider a slightly different setting, by assuming that neurons
are sensible only to a finite (small) number of orientations. This assumption is
based on the observation of the organization of the visual cortex in pinwheels:
we conjecture that there are topological constraints that prevent the possibility
of detecting a continuum of directions even when sending the distance between
pinwheels to zero. This assumption leads us to consider the group of translations
and discrete rotations SE(2, N) = R

2
� ZN , for some N ∈ N, where the action

of k ∈ ZN on R
2 is the rotation of angle 2πk/N .

To be more precise, our model is based on the following assumptions:

1. Grayscale visual stimuli coming from the retina are modeled as functions
f ∈ L2(R2);

2. The primary visual cortex is modeled as SE(2, N) and its activation patterns
as ϕ ∈ L2(SE(2, N));

3. There exists a linear function L : L2(R2) → L2(SE(2, N)) that lifts visual
stimuli to activation patterns in the primary visual cortex, of the form
Lf(x, k) = 〈f, π(x, k)Ψ〉 for some Ψ ∈ L2(R2).

4. An excited neuron activate neighboring neurons according to the SDE

dAt = X1dWt + dΘt, (1)

where X1(x, k) = cos(2πk/N)∂x1 + sin(2πk/N)∂x2 , W is a Wiener process
and Θ is a Poisson jump process on ZN with jump probability equal to 1/2
on both sides.

Remark 1. Observe that the lift operator L respects the shift-twist symme-
try of V1. (See e.g. [5].) That is, letting Λ be the left regular representation
of SE(2, N) in L2(SE(2, N)) (i.e., [Λ(x, k)ϕ](y, h) = ϕ((x, k)−1(y, h))) and π
the quasi-regular representation of SE(2, N) in L2(R2) (i.e., [π(x, k)f ](y) =
f(R−k(y − x))), it holds Λ(x, k)Lf = L(π(x, k)f).

2 Image Inpainting

The algorithm we now present for image inpainting is inspired by the neurophys-
iological process of amodal completion, that is, the perception of a shape even
when it is not actually drawn. A famous example is that of the Kanizsa triangle.
Our working assumption is that amodal completion is caused by the following
neurophysiological principle: Corrupted images are reconstructed by the natural
diffusion in V1, induced by the SDE (4), which for small times follows the less
expensive paths (geodesics) to activate unexcited neurons.
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From the practical point of view, images are reconstructed through the fol-
lowing algorithm. For details see [1].

Algorithm 1. Image inpainting algorithm
Data: Input (corrupted) image f ∈ L2(R2). The corrupted points are

assumed to be those x’s such that f(x) = 0.
Result: Inpainted image f̃ ∈ L2(R2).

1 h ← GaussianFilter(f)
2 Lh ← Lift(h)
3 Lh ← EvolveDiffusion(Lh)
4 return Project(Lh)

A description of the 4 functions used in Algorithm 1 follows.

1. GaussianFilter: Smooths the input via a Gaussian filter. As explained in [2],
the result of this procedure is generically a Morse function (i.e. with isolated
non-degenerate critical points only).

2. Lift: Given a Morse function h lifts it to Lh defined on SE(2, N), obtained
as follows. We let θ(x) ∈ [0, π) to be orientation of ∇h(x), when it is well
defined. Then, we define Lh(x, k) = h(x) if k ∼= θ(x) and 0 otherwise Here, the
formulation k ∼= θ(x) means that 2πk/N is the nearest point to θ(x) among
{2π
/N | 
 ∈ ZN}. Since h is a Morse function, θ(x) is not well defined on
isolated points. In this case, we let Lh(x, h) := h(x)/N for any h ∈ ZN .

3. EvolveDiffusion: Given a function Lh on SE(2, N) evolves it according to
(4). An efficient way to compute this diffusion is presented in [1], and recalled
in Algorithm 2.

4. Project: Given a function ϕ on SE(2, N) returns its projection on R
2 defined

as Pϕ(x) := maxk∈ZN
ϕ(x, k).

Remark 2. The Lift procedure detailed above is not obtained via a convolution
with an oriented wavelet as it is supposed to be the case in V1. However, it can be
seen as the limit when the support of the wavelet tends to zero and experiments
have shown that it yields more precise reconstructions.

Algorithm 2. Evolution of the diffusion, as explained in [1]

1 Function EvolveDiffusion:
Data: A function ϕ on SE(2, N)
Result: The evolved function ϕ̃

2 For k = 0, . . . , N − 1 let ϕ̂k ← F(ϕ(·, k))
3 For x ∈ R

2 let {ψ̂k(x)}k ← Solution of an ODE with datum {ϕ̂k(x)}k

4 For k = 0, . . . , N − 1 let ψ(·, k) ← F−1(ψ̂k)
5 return ψ

6 end

In Fig. 1 we present two different inpainting results. While the first one is
obtained using Algorithm 1, to produce the second one we added some heuristic
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Fig. 1. Two inpaintings.

procedure (detailed in [1,15]) in order to prevent the diffusion from modifying
the non-corrupted part of the image.

3 Image Recognition

The fact that images are lifted to V1, which has the (group) structure of
SE(2, N) allows for a natural description of the process of invariant image
recognition. (That is, recognizing images under the roto-translation action of
SE(2, N).) Namely, we propose to use the bispectrum as an invariant under the
action of SE(2, N). These invariants are well established in statistical signal
processing [7] and have been introduced and studied in the context of SE(2, N)
and of compact groups in [18]. We mention also [13], devoted to the bispectrum
on homogeneous spaces of compact groups.

Let us introduce some generalities on the (generalized) Fourier transform on
SE(2, N). Since this group is a non-commutative unimodular semi-direct prod-
uct, computing the Fourier transform of an L2(SE(2, N)) requires the knowledge
of the (continuous) irreducible unitary representations Tλ of SE(2, N). Here, λ
is an index taking values in the dual object of SE(2, N), which is denoted by

̂SE(2, N) and is the set of equivalence classes of irreducible unitary representa-
tions. (See, e.g., [10].) Exploiting the semi-direct product structure of SE(2, N),
by Mackey machinery this dual can be shown to be the union of the slice S ⊂ R

2,
which in polar coordinates is R

∗
+ × [0, 2π/N), to which we glue ZN on 0. Since it

is possible to show that to invert the Fourier transform it is enough to consider
representations parametrized by S, we will henceforth ignore the ZN part of the
dual. A crucial fact for the following is that SE(2, N) is a Moore group, that
is, all the Tλ act on finite-dimensional spaces, that is C

N for λ ∈ S. This is
not true for the roto-translation group SE(2) and is indeed one of the main
theoretical advantages of the semi-discrete model.

The matrix-valued Fourier coefficient of a function ϕ ∈ L2(SE(2, N)) ∩
L1(SE(2, N)) for λ ∈ ̂SE(2, N) is ϕ̂(Tλ) =

∫
SE(2,N)

f(a)Tλ(a−1) da. This is
essentially the same formula for the Fourier transform on R, which is a scalar
and is obtained using the representations Tλ(x) = e2πixλ. As usual, the above
formula can be extended to a linear isometry F : L2(SE(2, N)) → L2( ̂SE(2, N)).
The bispectrum of ϕ is then the quantity

Bϕ(λ1, λ2) = ϕ̂(Tλ1) ⊗ ϕ̂(Tλ2) ◦ ϕ̂(Tλ1 ⊗ Tλ2)∗ ∀(λ1, λ2) ∈ S.
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This quantity can be interpreted as the Fourier transform of the triple correlation
function, see [13].

In a forthcoming paper we will present (in a more general setting) the fol-
lowing result.

Theorem 1. The bispectral invariants discriminate on the set G of functions
ϕ ∈ L2(SE(2, N)) such that the matrices ϕ̂(Tλ) are invertible for a.e. λ ∈ S.
That is, ϕ1, ϕ2 ∈ G are such that Bϕ1 = Bϕ2 if and only if ϕ1 = Λ(x, k)ϕ2 for
some (x, k) ∈ SE(2, N).

Unfortunately, when considering the lifts of visual stimuli f ∈ L2(R2) under
lifts, an easy computation shows that L̂f(Tλ) = ωf (λ) ⊗ ωΨ (λ) where ωf (λ) =
(f̂(R−kλ))k∈ZN

∈ C
N . This immediately implies that rank L̂f(Tλ) ≤ 1 and

hence that range L ∩ G = ∅.
Using the previous formula for the Fourier transform of lifted functions and

under mild assumptions on the wavelet Ψ one can show that the bispectrum
B(λ1, λ2) is completely determined by the quantity

I2f (λ1, λ2) = 〈ωf (λ1) � ωf (λ2), ωf (λ1 + λ2)〉. (2)

It is still an open question (although we conjecture it to be true) whether the
bispectrum discriminates on a “big” set of rangeL.

To bypass the difficulty posed by the non-invertibility of the Fourier trans-
form for lifted functions, we are led to consider the rotational bispectrum:

B̃ϕ(λ1, λ2, k) := ϕ̂(TRhλ1)⊗ ϕ̂(Tλ2)◦ ϕ̂(Tλ1 ⊗Tλ2)∗ ∀(λ1, λ2) ∈ S,∀h ∈ ZN .

Observe that the rotational bispectrum is invariant only under the action of
ZN ⊂ SE(2, N) but not under translations. To avoid this problem, let us consider
the set A ⊂ L2(R2) of compactly supported functions with non-zero average1.
We can then define the barycenter cf ∈ R

2 of f ∈ A as

cf =
1

avg f

(∫

R2
x1f(x) dx,

∫

R2
x2f(x) dx

)

, j = 1, 2,

and the centering operator Φ : A → A as Φf(x) := f(x − cf ). Then, considering
the lift Lc = L ◦ Φ, we have that Lcf = Lcg if and only if g is a translate of f .

Finally, we have the following.

Theorem 2. Let R ⊂ L2(R2) be the set of compactly supported functions f
such that

1. f̂(λ) �= 0 for a.e. λ ∈ R
2;

2. the circulant matrix associated with ωf (λ) is invertible for a.e. λ ∈ R
2.

Then, if Ψ ∈ R the rotational bispectrum discriminates on Lc(R ∩ A). That is,
for any f, g ∈ R ∩ A it holds that B̃Lcf = B̃Lcg if and only if f = π(x, k)g for
some (x, k) ∈ SE(2, N).

Moreover, since set R is residual in the compactly supported functions
L2(R2), the rotational bispectrum is generically discriminating on the compactly
supported functions of L2(R2).
1 Recall that the average of f ∈ L1(R2) is avg f =

∫
R2 f(x) dx.
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Let us observe that, if Ψ ∈ R, then B̃Lcf (λ1, λ2, k) is completely determined
by the quantities

I2f (λ1, λ2, k) = 〈ωΦf (Rkλ1) � ωΦf (λ2), ωΦf (λ1 + λ2)〉.
In particular, computing the rotational bispectrum requires N times more oper-
ations than computing the bispectrum.

3.1 Implementation and Numerical Experiments

We now describe how to efficiently compute the bispectrum invariants2. The
same method, with the obvious modifications, also works for the computation
of the rotational bispectrum. We then show that the difference in norm of the
bispectrum and the rotational bispectrum strongly separates images of different
objects. The next natural step, that we will tackle in a forthcoming paper, is to
use these invariants in machine learning algorithms as SVM’s or AdaBoosts.

As previously remarked, to compute the bispectrum invariants it is enough
to compute the quantities I2f (λ1, λ2) given in (3). Thus, the main obstacle is to
efficiently and precisely compute the vectors ωf (λ) for a given λ. This vector is
obtained by evaluating the Fourier transform of f on the orbit of λ under the
action of the rotations R 2πk

N
for k ∈ ZN .

Since the Fourier transform f̂ of an image is given as a discrete matrix,
the usual way to proceed would be to implement rotations as functions on the
plane and then evaluate f̂(R 2πk

N
λ) by bilinear interpolation on the values of f̂ .

However, this requires a lot of matrix products and, especially for values of λ
very near to 0 where most of the information for natural images is contained, is
prone to errors.

We thus chose to consider only N = 6 and to work with images composed of
hexagonal pixels. This choice was motivated by the following reasons:

– It is well-known that retinal cells are distributed in an hexagonal grid.
– Hexagonal grids are invariant under the action of Z6 and discretized transla-

tions, which is the most we can get in the line of the invariance w.r.t. SE(2, 6).
– We can exploit the Spiral Architecture introduced by Sheridan [16,17]. This

is a way to index hexagons of the grid with only one index which allows to
introduce an operation, spiral multiplication, that, with the same complexity
of a normal multiplication, computes rotations by multiples π/3.

– There exist efficient methods [9] to simulate hexagonal pixels by oversampling
the image by a ratio of 7 and then using so-called hyperpels composed of 56
pixels to approximate an hexagonal pixel.

Indeed, once the spiral addressing described in [9] has been implemented
in the function SpiralAddr and the spiral multiplication in SpiralMult, to
evaluate ωf (λ) it suffices to apply Algorithm 3.

2 The iPython notebook with the code is available at http://nbviewer.ipython.org/
github/dprn/GSI15/blob/master/Invariants-computation.ipynb.

http://nbviewer.ipython.org/github/dprn/GSI15/blob/master/Invariants-computation.ipynb
http://nbviewer.ipython.org/github/dprn/GSI15/blob/master/Invariants-computation.ipynb
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Algorithm 3. Evaluation of ωf (λ)

1 Function Omega(F,λ):
Data: F: FFT of the input image f oversampled by a factor of 7
λ: The spiral address of the hexagon where to compute ωf (λ)
Result: The vector ωf (λ)

2 For k = 0, . . . , N − 1 let ωf (λ)k ← SpiralAddr(F,SpiralMult(λ,k))
3 return ωf (λ)

4 end

Fig. 2. Hexagons used
in the computation of
the invariants. The cov-
ered area corresponds to
roughly 11 square pixels.

bisp. rot. bisp.
Max. Min Max. Min

Triangle 9.2 × 1010 7.0 × 1012 2.2 × 1011 1.7 × 1013

Rectangle 7.9 × 1010 8.2 × 1012 1.9 × 1011 2.0 × 1013

Ellipse 7.4 × 1010 7.1 × 1012 1.8 × 1011 1.7 × 1013

Star 7.2 × 1010 5.5 × 1012 1.7 × 1011 1.3 × 1013

Diamond 3.7 × 1010 5.4 × 1012 9.2 × 1010 1.3 × 1013

Fig. 3. Results of the comparisons of the invariants.

To test the invariants, we built a library composed of 5 geometrical figures
rotated of angles πk/3, k ∈ Z6, and 14 natural images and computed the invari-
ants corresponding to λ1 and λ2 chosen between the subset of central hexagons
of the grid shown in Fig. 2, obtaining a vector I2f of invariants with 49 elements.
Then, for each geometrical figure f , we computed the difference in norm ‖I2f −I2g‖
between its invariants and those of another image g, for all the images. In the
second and third column of Table 3 we reported the maximal difference w.r.t. the
rotated of the same image and the minimal difference w.r.t. the other images.
In particular, since the difference between these two values is at least in the
order of 102, we observe that already simply using the norm seems to be a good
discriminating factor for these simple images.

We then repeated the same test with the rotational bispectrum, whose results
are reported in the fourth and fifth column of Fig. 3. We point out that, accord-
ingly to our conjecture regarding the completeness of the bispectrum, considering
the rotational invariants do not seem to add discriminating power.

4 Conclusions

In this work we presented a framework for image reconstruction and invariant
recognition. We remark that the numerical work for the image recognition part
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has just started. Presently, we are testing the bispectrum as a source of invariant
for different machine learning algorithms. In particular, the AdaBoost algorithm
seems very promising and well adapted to the problem.
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Abstract. Based on Hoeffding’s mass concentration inequalities, non-
asymptotic confidence sets for circular means are constructed which are
universal in the sense that they require no distributional assumptions.
These are then compared with asymptotic confidence sets in simulations
and for a real data set.

1 Confidence Sets for Means of Circular Data

In applications, data assuming values on the circle, i.e. circular data, arise fre-
quently, examples being measurements of wind directions, or time of the day
patients are admitted to a hospital unit. We refer to the literature for an overview
of statistical methods for circular data, e.g. [5,9,10].

Here, we will concern ourselves with the arguably simplest statistic, the mean.
But, given that a circle does not carry a vector space structure, i.e. there is
neither a natural addition of points on the circle nor can one divide them by a
natural number, what should the meaning of “mean” be?

In order to simplify the exposition, we specifically consider the unit circle
in the complex plane, S1 = {z ∈ C : |z| = 1}, and we assume the data can
be modelled as independent random variables Z1, . . . , Zn which are identically
distributed as the random variable Z taking values in S1.

Of course, C is a Euclidean (i.e. real) vector space, so the Euclidean sample
mean Z̄n = 1

n

∑n
k=1 Zk ∈ C is well-defined. However, unless all Zk take identical

values, it will (by the strict convexity of the closed unit disc) lie inside the circle,
i.e. its modulus |Z̄n| will be less than 1. Though Z̄n cannot be taken as a mean
on the circle, if Z̄n �= 0 one might say that it specifies a direction; this leads to
the idea of calling Z̄n/|Z̄n| the circular sample mean of the data.

Observing that the Euclidean sample mean is the minimiser of the sum of
squared distances, this can be put in the more general framework of Fréchet
means [6]: define the set of circular sample means to be

μ̂n = argmin
ζ∈S1

n∑

k=1

|Zk − ζ|2, (1)

T. Hotz—wishes to thank Stephan Huckemann from the Georgia Augusta University
of Göttingen for fruitful discussions concerning the first construction of confidence
regions described in Sect. 2.
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and analoguously define the set of circular population means of the random
variable Z to be

μ = argmin
ζ∈S1

E|Z − ζ|2. (2)

Then, as usual, the circular sample means are the circular population means
with respect to the empirical distribution of Z1, . . . , Zn.

The circular population mean can be related to the Euclidean population
mean EZ by noting that E|Z − ζ|2 = E|Z −EZ|2 + |EZ − ζ|2 (in statistics, this
is called the bias-variance decomposition), so that

μ = argmin
ζ∈S1

|EZ − ζ|2 (3)

is the set of points on the circle closest to EZ. It follows that μ is unique if
and only if EZ �= 0 in which case it is given by μ = EZ/|EZ|, the orthogonal
projection of EZ onto the circle; otherwise, i.e. if EZ = 0, the set of circular
population means is all of S1. Analogously, μ̂n is either all of S1 or uniquely
given by Z̄n/|Z̄n| according as Z̄n is 0 or not.

The expected squared distances minimised in (2) are given by the metric
inherited from the ambient space C; therefore μ is also called the set of extrinsic
population means. Had we measured distances intrinsically along the circle, i.e.
using arc-length instead of chordal distance, we had obtained what is called the
set of intrinsic population means. We will not consider the latter in the following,
see e.g. [8] for a comparison and [1,2] for generalizations of these concepts.

Our aim is to construct confidence sets for the circular population mean μ
which form a superset of μ with a certain (so-called) coverage probability which
is required to be not less than some pre-specified signifance level 1 − α ∈ (0, 1).

The classical approach is to construct an asymptotic confidence interval
where the coverage probability converges to 1−α when n tends to infinity. This
can be done as follows: since Z is a bounded random variable,

√
n(Z̄n − EZ)

converges to a bivariate normal distribution when identifying C with IR2. Now,
assume EZ �= 0 so μ is unique. Then the orthogonal projection is differentiable
in a neighbourhood of EZ, so the δ-method can be applied and one easily obtains

√
nArg(μ−1μ̂n) D→ N

(

0,
E(Im(μ−1Z))2

|EZ|2
)

(4)

where Arg : C \ {0} → (−π, π] ⊂ IR denotes the argument of a complex number
(it is defined arbitrarily at 0 ∈ C), while multiplying with μ−1 rotates such that
EZ = μ is mapped to 0 ∈ (−π, π], see e.g. [9, Proposition 3.1] or [8, Theorem 5].
Estimating the asymptotic variance and applying Slutsky’s lemma, one arrives
at the asymptotic confidence set CA = {ζ ∈ S1 : |Arg(ζ−1μ̂n)| < δA} provided
μ̂n is unique, where the angle determining the interval is given by

δA =
q1− α

2

n|Z̄n|

√
√
√
√

n∑

k=1

(Im(μ̂−1
n Zk))2 (5)

with q1− α
2

denoting the (1 − α
2 )-quantile of the standard normal distribution.
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There are two major drawbacks to the use of asymptotic confidence intervals:
firstly, by definition they do not guarantee a coverage probability of at least 1−α
for finite n, so the coverage probability for a fixed distribution and sample size
may be much smaller; we will demonstrate this for simulated data in Sect. 4.
Secondly, they assume that EZ �= 0, so they are not applicable to all distribu-
tions on the circle. Of course, one could test the hypothesis EZ = 0, possibly
again by an asymptotic test, and construct the confidence set conditioned on this
hypothesis having been rejected, setting CA = S1 otherwise. But this sequential
procedure would require some adaptation for mutiple testing – we come back to
this point in Sect. 5 – and it is not commonly implemented in practice.

We therefore aim to construct non-asymptotic confidence sets for μ which
are universal in the sense that they do not make any distributional assump-
tions about the circular data besides them being independent and identically
distributed. It has been shown in [8] that this is possible; however, the confi-
dence sets that were constructed there were far too large to be of use in prac-
tice. Nonetheless, we start by varying that construction in Sect. 2 but using
Hoeffding’s inequality instead of Chebyshev’s as in [8]. Considerable improve-
ments are possible if one takes the variance E(Im(μ−1Z))2 “perpendicular to
EZ” into account; this is achieved by a second construction in Sect. 3. We illus-
trate and compare those confidence sets for simulations and for an application
to real data in Sect. 4, discussing the results obtained in Sect. 5.

2 Construction Using Hoeffding’s Inequality

We modify the construction in [8, Sect. 6] by replacing Chebyshev’s inequality –
which is too conservative here – by three applications of Hoeffding’s inequality
[7, Theorem 1]: if U1, . . . , Un are independent random variables taking values in
the bounded interval [a, b] with −∞ < a < b < ∞ then Ūn = 1

n

∑n
k=1 Uk with

EŪn = ν fulfills

P(Ūn − ν ≥ t) ≤
[(

ν − a

ν − a + t

)ν−a+t (
b − ν

b − ν − t

)b−ν−t
] n

b−a

(6)

for any t ∈ (0, b − ν). Denoting the bound on the right hand side by β(t), an
elementary calculation shows that it is (as expected) strictly decreasing in t
with β(0) = 1 and limt→b−ν β(t) =

(
ν−a
b−a

)n. By continuity, we conclude that the

equation β(t) = γ has a unique solution t = t(γ, ν, a, b) for any γ ∈
((

ν−a
b−a

)n
, 1

)
;

t is strictly decreasing in γ and another elementary calculation shows that ν +
t(γ, ν, a, b) is strictly increasing in ν (which is also to be expected). While there is
no closed form expression for t(γ, ν, a, b), it can without difficulty be determined
numerically.

Note that the estimate

β(t) ≤ exp(−2nt2/(b − a)2) (7)



638 T. Hotz et al.

is often used and called Hoeffding’s inequality [7]. While this would allow to solve
explicitly for t, we prefer to work with β as it is sharper, especially for ν close
to b as well as for large t. Nonetheless, it shows that the tail bound β(t) tends
to zero as fast as if using the central limit theorem which is why it is widely
applied for bounded variables, see e.g. [3].

We construct our first confidence set as the acceptance region of a series of
tests: for any ζ ∈ S1 we will test the hypothesis that ζ is a circular population
mean. Well, this hypothesis is equivalent to saying that there is some λ ∈ [0, 1]
such that EZ = λζ. Multiplication by ζ−1 then rotates EZ onto the non-negative
real axis: Eζ−1Z = λ ≥ 0.

Now fix ζ and consider Xk = Re(ζ−1Zk), Yk = Im(ζ−1Zk) for k = 1, . . . , n
which may be viewed as the projection of Z1, . . . , Zk onto the line in the direction
of ζ and onto the line perpendicular to it. Both are sequences of independent
random variables with values in [−1, 1] and EXk = λ, EYk = 0 under the
hypothesis. They thus fulfill the conditions for Hoeffding’s inequality with a =
−1, b = 1 and ν = λ or 0, respectively.

We will first consider the case of non-uniqueness, μ = S1, or equivalently
λ = 0. Then, assuming α

4 > 2−n, the critical value s0 = t(α
4 , 0,−1, 1) is well-

defined and we get P(X̄n ≥ s0) ≤ α
4 , and also, by considering −X1, . . . ,−Xn,

that P(−X̄n ≥ s0) ≤ α
4 . Analogously, P(|Ȳn| ≥ s0) ≤ 2α

4 = α
2 . We conclude that

P(|Z̄n| ≥ √
2s0) = P(|X̄n|2+ |Ȳn|2 ≥ 2s20) ≤ P(|X̄n|2 ≥ s20)+P(|Ȳn|2 ≥ s20) ≤ α.

Rejecting the hypothesis μ = S1, i.e. EZ = 0, if |Z̄n| ≥ √
2s0 thus leads to a test

whose probability of false rejection is at most α.
In case λ > 0, i.e. under the hypothesis that ζ is the unique circular

population mean, we use the monotonicity of ν + t(γ, ν, a, b) in ν and get
P(X̄n ≤ −s0) = P(−X̄n ≥ s0) ≤ P

(−X̄n ≥ −λ + t(α
4 ,−λ,−1, 1)

) ≤ α
4 as

well. For the perpendicular direction, however, we may now work with 3
8α, so

consider sp = t( 38α, 0,−1, 1) – which is also well-defined since 3
8α ≥ α

4 > 2−n

by the assumption made above. Rejecting if X̄n ≤ −s0 or |Ȳn| ≥ sp then will
happen with probability at most α

4 + 2 3
8α = α under this hypothesis. In case

we already rejected the hypothesis μ = S1, i.e. if |Z̄n| ≥ √
2s0, ζ will not be

rejected if and only if X̄n > s0 > 0 and |Ȳn| < sp < s0 which is then equivalent
to |Arg(ζ−1Z̄n)| = arcsin(|Ȳn|/|Z̄n|) < arcsin(sp/|Z̄n|).

Letting the confidence set CH comprise all ζ which we could not reject means

ζ ∈ CH if α ≤ 2−n+2 or |Z̄n| ≤
√

2s0 or |Arg(ζ−1μ̂n)| < arcsin
sp

|Z̄n| , (8)

so that a non-trivial confidence set CH �= S1 is given by directions at an angle
less than δH = arcsin(sp/|Z̄n|) from the circular sample mean μ̂n. The above
discussion shows that the coverage probability of CH is then – for any sample
size n and any distribution of Z – guaranteed to be 1 − α.

From (7), we obtain the estimate α ≤ exp(−ns20/2) which implies that s0 is of
the order n− 1

2 . Now, if μ is unique consider ζ = −μ which has τ = EX̄n < 0 to see
that the probability of obtaining the trivial confidence set CH = S1 is eventually
bounded by P(ζ ∈ CH) ≤ P(X̄n > −s0) ≤ P(X̄n > τ

2 ) = P(X̄n − EX̄n >
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− τ
2 ) ≤ exp(−nτ2/8), and hence will go to zero exponentially fast as n tends

to infinity (note that eventually α > 2−n+2). Moreover, since Z̄n → EZ, with
sp < s0 also δH is of the order n− 1

2 , just like the angle δA for the asymptotic
confidence interval.

3 Estimating the Variance

From the central limit theorem for μ̂n in case of unique μ, cf. (4), we see that
the aymptotic variance of μ̂n gets small if |EZ| is close to 1 (then EZ is close to
the boundary S1 of the unit disc which is possible only if the distribution is very
concentrated) or if the variance E(Im(μ−1Z))2 in the direction perpendicular
to μ is small (if the distribution were concentrated on ±μ this variance would
be zero and μ̂n would equal μ with large probability). While δH (|Z̄n| being the
denominator of its sine) takes the former into account, the latter has not been
exploited yet. To do so, we need to estimate E(Im(μ−1Z))2.

Now, varying the construction in Sect. 2, consider Vn = 1
n

∑n
k=1 Y 2

k which
under the hypothesis that the corresponding ζ is the unique circular population
mean has expectation σ2 = Var(Yk). Once again we will apply (6), this time
to 1 − Vn = 1

n

∑n
k=1(1 − Y 2

k ) which then is the mean of n independent random
variables taking values in [0, 1], having expectation 1−σ2. We thus obtain P(σ2 ≥
Vn + t) = P(1−Vn ≥ 1−σ2 + t) ≤ α

4 for t = t(α
4 , 1−σ2, 0, 1), the latter existing

if α
4 > (1 − σ2)n. Since 1 − σ2 + t(α

4 , 1 − σ2, 0, 1) increases with 1 − σ2, there is
a minimal σ2 for which 1 − Vn ≥ 1 − σ2 + t(α

4 , 1 − σ2, 0, 1) holds and becomes
an equality; we denote it by σ̂2 = Vn + t(α

4 , 1 − σ̂2, 0, 1). Inserting into (6), it by
construction fulfills

α

4
=

[(
1 − σ̂2

1 − Vn

)1−Vn
(

σ̂2

Vn

)Vn
]n

. (9)

It is easy to see that the right hand side depends continuously on and is strictly
decreasing in σ̂2 ∈ [Vn, 1], thereby traversing the interval [0, 1] so that one can
again solve the equation numerically. We then may, with an error probability of at
most α

4 , use σ̂2 as an upper bound for σ2; comparing the condition (1−σ̂2)n < α
4

with (9), σ̂2 > Vn exists for any Vn < 1 and else σ̂2 = 1 is the trivial upper bound.
With such an upper bound on its variance, we now can get a better estimate

for P(Ȳn > t). Indeed, one may use another inequality by Hoeffding [7, Theo-
rem 3]: the mean W̄n = 1

n

∑n
k=1 Wk of a sequence W1, . . . , Wn of independent

random variables taking values in (−∞, 1], each having zero expectation as well
as variance ρ2 fulfills for any w ∈ (0, 1)

P(W̄n ≥ w) ≤
[(

1 +
w

ρ2

)−ρ2−w (

1 − w

)w−1
] n

1+ρ2

. (10)

Again, an elementary calculation shows that the right hand side is strictly
decreasing in w, continuously ranging between 1 and

(
ρ2

1+ρ2

)n as w varies in
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(0, 1), so that there exists a unique w = w(γ, ρ2) for which the right hand side
equals γ, provided γ ∈

((
ρ2

1+ρ2

)n
, 1

)
. Moreover, the right hand side increases

with ρ2 (as expected), so that w(γ, ρ2) is increasing in ρ2, too.
Therefore, under the hypothesis that the corresponding ζ is the unique

circular population mean, P
(|Ȳn| ≥ w(α

4 , σ2)
) ≤ 2α

4 = α
2 . Now, since

P
(
w(α

4 , σ2) ≥ w(α
4 , σ̂2)

)
= P(σ2 ≥ σ̂2) ≤ α

4 , setting sv = w(α
4 , σ̂2) we get

P
(|Ȳn| ≥ sv

) ≤ 3
4α. Note that ρ2

1+ρ2 increases with ρ2, so in case s0 exists σ̂2 ≤ 1

implies α
4 > 2−n ≥ (

σ̂2

1+σ̂2

)n, i.e. the existence of sv.

Because the bound in (10) for ρ2 = 1 agrees with the bound in (6) for a = −1,
b = 1 and ν = 0, we have sv ≤ s0. So we can argue as for CH before – which allows
us to construct a confidence set CV for μ with coverage probability at least 1−α
by letting ζ ∈ CV if α ≤ 2−n+2 or |Z̄n| ≤ √

2s0 or |Arg(ζ−1μ̂n)| < arcsin sv

|Z̄n| .
Consequently, if CV is non-trivial – which happens if and only if CH is non-

trivial – then it is given by all ζ ∈ S1 forming an angle less than arcsin(sv/|Z̄n|)
with the circular sample mean μ̂n. This angle depends via σ̂2 on ζ, though, so
we set δV = supζ∈CV

|Arg(ζ−1μ̂n)|. Since sv ≤ s0, it nonetheless follows that
the asymptotic behaviour of CV is qualitatively the same as that of CH .

4 Simulation and Application to Real Data

We will compare the asymptotic confidence set CA, the confidence set CH con-
structed directly using Hoeffding’s inequality in Sect. 2, and the last confidence
set CV taking the variance perpendicular to the circular population mean into
account by reporting their corresponding opening angles δA, δH , and δV in
degrees (◦) as well as their coverage frequencies in simulations.

Implementation. All computations have been performed using our own code
based on the software package R [11]. In order to determine δV , all ζ ∈ S1 with
1800

π Arg ζ ∈ Z have been considered which corresponds to a grid of angles with
a spacing of 0.1◦.

Simulation 1: two points of equal mass at ±10◦. First, we consider a rather
favourable situation: n = 400 independent draws from the distribution with
P(Z = exp(10πi/180)) = P(Z = exp(−10πi/180)) = 1

2 . Then we have |EZ| =
EZ = cos(10πi/180) ≈ 0.985, implying that the data are highly concentrated,
μ = 1 is unique, and the variance of Z in the direction of μ is 0; there is only
variation perpendicular to μ, i.e. in the direction of the imaginary axis.

Table 1 shows the results based on 10,000 repetitions for a nominal coverage
probability of 1 − α = 95%: the average δH is about 3.5 times larger than δV

which is about twice as large as δA. As expected, the asymptotics are rather
precise in this situation: CA did cover the true mean in about 95% of the cases
which implies that the other confidence sets are quite conservative; indeed CH

and CV covered the true mean in all repetitions. One may also note that the
angles varied only little between repetitions, δV a little more than the others.
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Table 1. Results for simulation 1 (two points of equal mass at ±10◦) based on 10,000
repetitions with n = 400 observations each: average observed δH , δV , and δA (with
corresponding standard deviation), as well as frequency (with corresponding standard
error) with which μ = 1 was covered by CH , CV , and CA, respectively; the nominal
coverage probability was 1 − α = 95 %.

confidence set mean δ (± s.d.) coverage frequency (± s.e.)

CH 8.2◦ (±0.0005◦) 100.0 % (±0.0 %)

CV 2.3◦ (±0.0252◦) 100.0 % (±0.0 %)

CA 1.0◦ (±0.0019◦) 94.8 % (±0.2 %)

Table 2. Results for simulation 2 (three points placed asymmetrically) based on 10,000
repetitions with n = 100 observations each: average observed δH , δV , and δA (with
corresponding standard deviation), as well as frequency (with corresponding standard
error) with which μ = 1 was covered by CH , CV , and CA, respectively; the nominal
coverage probability was 1 − α = 90 %.

confidence set mean δ (± s.d.) coverage frequency (± s.e.)

CH 16.5◦ (±0.8502◦) 100.0 % (±0.0 %)

CV 5.0◦ (±0.3740◦) 100.0 % (±0.0 %)

CA 0.4◦ (±0.2813◦) 62.8 % (±0.5 %)

Simulation 2: three points placed asymmetrically. Secondly, we consider a sit-
uation which has been designed to show that even a considerably large sam-
ple size (n = 100) does not guarantee approximate coverage for the asymp-
totic confidence set CA: the distribution of Z is concentrated on three points,
ξj = exp(θjπi/180), j = 1, 2, 3 with weights ωj = P(Z = ξj) chosen such
that EZ = |EZ| = 0.9 (implying a small variance and μ = 1), ω1 = 1% and
Arg ξ1 > 0 while Arg ξ2,Arg ξ3 < 0. In numbers, θ1 ≈ 25.8, θ2 ≈ −0.3, and
θ3 ≈ −179.7 (in ◦) while ω2 ≈ 94%, and ω3 ≈ 5%.

The results based on 10,000 repetitions are shown in Table 2 where a nom-
inal coverage probability of 1 − α = 90% was prescribed. Clearly, CA with its
coverage probability of less than 64% performs quite poorly while the others are
conservative; δV ≈ 5◦ still appears small enough to be useful in practice, though.

Real data: movements of ants. N. I. Fisher [5, Example 4.4] describes a data
set of the directions 100 ants took in response to an illuminated target placed
at 180◦ for which it may be of interest to know whether the ants indeed (on
average) move towards that target. The data set is available as Ants radians
within the R package CircNNTSR [4].

The circular sample mean for this data set is about −176.9◦; for a nominal
coverage probability of 1 − α = 95% one gets δH ≈ 27.3◦, δV ≈ 20.4◦, and
δA ≈ 9.6◦ so that all confidence sets contain ±180◦. The data set’s concentration
is not very high, however, so that the circular population mean could – according
to CV – also be −156.5◦ or 162.7◦.



642 T. Hotz et al.

5 Discussion

We have derived two confidence sets, CH and CV , for the set of circular sam-
ple means. Both guarantee coverage for any finite sample size – at the cost of
potentially being quite conservative – without making any assumptions on the
distribution of the data (besides that they are independent and identically dis-
tributed): they are non-asymptotic and universal in this sense. Judging from the
simulations and the real data set, CV – which estimates the variance perpendic-
ular to the mean direction – appears to be preferable over CH (as expected) and
small enough to be useful in practice.

While the asymptotic confidence set’s opening angle appears to be less than
half of the one for CV , it has the drawback that even for a sample size of n = 100
it may fail to give a coverage probability close to the nominal one; also, one has
to assume that the circular population mean is unique. Of course, one could
also devise an asymptotically justified test for the latter but this would entail
a correction for multiple testing (for example working with α

2 each time) which
would also render the asymptotic confidence set conservative.

Further improvements would require sharper “universal” mass concentration
inequalities taking the first or the first two moments into account; that, however,
is beyond the scope of this article.
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Abstract. In this paper we study two forms of blurring effects that
may appear in the reconstruction of 3D Electron Microscopy (EM),
specifically in single particle reconstruction from random orientations of
large multi-unit biomolecular complexes. We model the blurring effects
as being due to independent contributions from: (1) variations in the
conformation of the biomolecular complex; and (2) errors accumulated
in the reconstruction process. Under the assumption that these effects
can be separated and treated independently, we show that the overall
blurring effect can be expressed as a special form of a convolution oper-
ation of the 3D density with a kernel defined on SE(3), the Lie group
of rigid body motions in 3D. We call this form of convolution mixed
spatial-motional convolution. We discuss the ill-conditioned nature of the
deconvolution needed to deblur the reconstructed 3D density in terms of
parameters associated with the unknown probability in SE(3). We pro-
vide an algorithm for recovering the conformational information of large
multi-unit biomolecular complexes (essentially deblurring) under certain
biologically plausible prior structural knowledge about the subunits of
the complex in the case the blurring kernel has a special form.

1 Introduction

Reconstructing three dimensional densities associated with large biomolecular
complexes using single particle 3D Electron Microscopy (EM) has proved very
promising in structural biology and other biological applications. The reader is
referred to [4] for general introduction and extensive references.

At the core of single particle reconstruction lies the problem of reconstruction
of a 3D volume from thousands of very noisy 2D projections of the volume formed
along random (unknown) projection directions relative to the body-fixed frame
of the biomolecular complex. What makes this problem different from standard
tomography is exactly the fact that the projection directions are unknown and
need to be determined before one can apply a standard 3D reconstruction such as
weighted back-projection. In addition, due to certain biological restrictions the
signal to noise ratio in a single projection image is extremely low (e.g., typically
c© Springer International Publishing Switzerland 2015
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at the order of 1/100). The reason one has to deal with such random projections
is that in single particle EM imaging (specifically cryo-EM) one essentially takes
a 2D image of a layer of a frozen sample containing a large number of copies or
instances of a biomolecular complex lying at random positions and orientations
within the sample. The output of a reconstruction algorithm is a blurred 3D
(so-called) density map representing the Coulomb potentials of the atoms of the
biomolecular complex under experiment improve our algorithm [4].

In this paper (in Sect. 2) we study two sources of blurring: the first one is
due to variations in the structure or conformational states of the biomolecular
complex in the sample (i.e., not all instances of the biomolecular complex are
exactly the same). The second source of blurring is due to errors introduced in
the process of reconstructing the 3D density from the collected images. We first
show that each of these blurring effects can be modeled as a specific form of
averaging or convolution of the ground truth 3D volume with probability den-
sity (kernel) defined on SE(3), the group of rigid body motions. The associated
blind deblurring or deconvolution is severely ill-posed and requires prior informa-
tion or information (fusion) from other imaging modalities to yield a well-posed
problem. In certain cases of dealing with large multi-unit complexes, however,
one may have information about the shape of the subunits and the problem
recovering the shape of the complex basically boils down to recovering the rela-
tive positions of the subunits. In Sect. 3 we derive a set of equations describing
blurring of a rigid body model under a SE(3) kernel in terms of the body para-
meters and the parameters of the kernel (in particular its Lie-algebraic SE(3)
mean and covariance). We also derive a simple algorithm for recovering confor-
mational information under the assumption of isotropic blurring and we show
the application of this algorithm to simulated data; and we conclude the paper in
Sect. 4. We mention that closely related works include [6] and [7], where, respec-
tively, Eculidean convolution and spherical convolution have been employed to
model the blurring effects.

2 Blurring as Mixed Spatial-Motional Convolution

In this section we study two sources of blurring effects in 3D single particle EM,
both of which can be modeled using probability densities on SE(3). The first
effect is conformational blurring within a biomolecular complex due to internal
motions. The second is blurring during the process of reconstructing 3D densities
from an ensemble of noisy 2D projections. As an idealization, we assume that
these effects can be treated independently.

The preparation of the sample for single particle EM usually starts with
a solution containing the designated biomolecular complex, each consisting of
multiple macromolecules, and freezing the solution in the form of a very thin
layer. For various reasons the instances of the biomolecular complex in the sample
may not have exactly the same shape. For example, they may be at different
conformational states (e.g., open or close) or their subunits might have been
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displaced in the freezing process. Let us consider a biomolecular complex with
3D density ρ consisting of N macromolecular subunits

ρ(r) =
N∑

i=1

ρi(r), (1)

where ρi : R3 → R is the 3D density of subunit i. Often in large biomolecular
complexes we may model ρi as a rigid body. In this case, we model the effect
of conformational states or motions as the ensemble or average of the action of
SE(3) on the rigid bodies. Specifically, let · denote the standard SE(3) action
in R

3

r �→ g · r = R r + t, (2)

where each g ∈ SE(3) is represented with the rotation-translation pair (R, t) ∈
SO(3) × R

3, and the group operation for SE(3) is g1 ◦ g2 = (R1R2, g1 · t2).
Then a copy (or instance) of subunit i ≥ 2 with density ρi might be under
transformation g relative to the subunit i = 1, which can be described in the
global (lab) coordinates as ρi(g−1 ·r). Throughout the sample the copies might go
through different transformations which we model by a SE(3) probability density
fi : SE(3) → R and the ensemble average of such motional or conformational
variations can be modeled as

ρ̃i(r) = (fi � ρi)(r) :=
∫

SE(3)

fi(g)ρi(g−1 · r)dg (3)

where dg is the Haar measure for SE(3). The above operation may be called
mixed spatial-motional convolution. The operation resembles convolution on
SE(3),

(k ∗ fi)(g) :=
∫

SE(3)

k(h)fi(h−1 ◦ g)dh,

which we denote with an asterisk ∗ rather than a �, but fi�ρi is not a convolution
since the functions under operation have different domains.

The total conformationally blurred 3D density with body 1 fixed can then
can be expressed as

ρ̃(r) =
N∑

i=1

ρ̃i(r) =
N∑

i=1

(fi � ρi)(r). (4)

In the above f1 is assumed to be the Dirac delta function at the identity of
SE(3), denoted by δ(g). As far as cryo-EM imaging is concerned, (3) and hence
(4) show non-physical ensemble averages, since they are not directly measured.
This is in contrast to Small-Angle-X-ray-Scattering (SAXS) measurements in
which the ensemble average is measured directly [3]. Here, the actual averaging
or superposition of the different (continuum of) conformational states is to hap-
pen in the reconstruction process (algorithm). Specifically, in the imaging step,
many copies of the biomolecular complex in each conformational state, posi-
tioned and oriented randomly throughout the sample, are imaged separately.
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Then, these 2D images are fed to a 3D reconstruction algorithm to reconstruct a
3D density. Therefore, one expects that the ensemble averaging should happen
in the reconstruction process. However, this also means that what a specific algo-
rithm does may matter. We first consider an idealized algorithm (meaning that
the algorithm introduces no errors). We also assume that we have an algorithm
designed to deal with homogeneous samples. Most commonly used algorithms
are such and they assume a single conformational state of the biomolecular com-
plex in the sample. To be compatible with this assumption we also assume that
the probability densities associated with conformational state variation (fi’s) are
unimodal and concentrated enough (i.e., small conformational variations within
the sample). Before proceeding further, we mention that the problem of hetero-
geneity of data is a challenging problem in single particle reconstruction, which
in reality limits the accuracy of these methods [4, p. 266], [5]. Source of het-
erogeneity could range from impurity in the sample to presence of ligands and
different conformational states. The latter is our main focus here. Here, we have
distinguished between large and small variation in conformational states. The
presence of large deviations in conformational states essentially is equivalent to
a multi-modal or non-concentrated distribution fi. The existence of such modes
or classes makes the 3D reconstruction problem much more difficult. Specifically,
the step of classification of the images will be very hard for heterogeneous data
due to the intermingling between variation in pose and conformational state
as portrayed on the 2D projections ([5], and see below). Nevertheless, specific
algorithms for heterogeneous data have been developed (see e.g., [11]), but the
subject is still in its fancy [5].

In the rest of discussion for convenience we consider a biomolecular com-
plex comprised of only two subunits ρ(r) = ρ1(r) + ρ2(r), and we assume
that its conformational states are determined only by a single copy of SE(3),
i.e., the total density under a conformational state change g ∈ SE(3) is
ρg(r) = ρ1(r) + ρ2(g−1 · r). We assume that g has the SE(3) probability density
f . A typical biomolecular complex in the frozen sample will be ρg(h−1 ·r), where
h = (Rh, th) ∈ SE(3) denotes a random orientation (pose) and position of the
biomolecular complex in the sample. Henceforth we use the following notation:

ρh
g (r) := ρg(h−1 · r) = ρ(g−1 · (h−1 · r)) = ρ((h ◦ g)−1 · r).

In the imaging process an image from each copy of ρh
g (r) is formed by the pro-

jection operation (along the z axis)

ph
g (x, y) =

∫

ρh
g (r)dz (5)

where r = [x, y, z]�. A typical (homogeneous) 3D reconstruction algorithm first
brings all the 2D images to a common origin, which we assume is the origin of
the lab frame. Due to the large amount of noise in these images, they are class
averaged. This process can be described as an in-plane SE(2) blurring [8,9].
A class is meant to correspond to the biomolecular complex being imaged along
similar directions (ideally exactly the same direction). This means that a class
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roughly corresponds to images from the copies of the biomolecular complex in
the sample that are at the same orientation, i.e., a full 3D rotation modulo an
in-plane rotation in the x − y plane.

The next step is finding the actual projection direction for each class relative
to the body-fixed frame of the biomolecular complex. This is known as angular
reconstitution (see [12,14] and references therein for related methods). Assuming
the angles are found correctly, the actual 3D reconstruction is the standard
tomographic reconstruction. Often the weighted backprojection algorithm is used,
which given enough number of sampled projection directions can reconstruct the
3D volume without any aliasing [4]. In our case this means that the ensemble
average ρ̃(r) is reconstructed. Hence, although, as mentioned before, ρ̃(r) in (4)
is a non-physical ensemble average, it can be realized in the 3D reconstruct
due to the fact that the 2D images are averaged from many of copies of the
biomolecular complex at different conformational states and also the fact that
the steps involved in the reconstruction are linear operations. Notice, however,
that this is under the assumption of the steps of centering the 2D projection,
classification, and angular reconstitution are error free. In reality, all these steps
are highly prone to error due to the extremely high level noise in the image
formation process. Additionally, notice that a possible interplay between g and
h can result in complications in the classification step. However, also note that
whether such an interplay (and the ensued misclassification) necessarily results
in reconstruction errors also depends on the structure of the complex (e.g., if
certain symmetries exist then the misclassification won’t be harmful).

We postulate that the output of the 3D reconstruction is a version of the
conformationally blurred density ρ̃, where an additional SE(3) blurring kernel
includes both motional blurring due to class averaging and reconstruction errors.
That is, the contribution to the blurred density of the biomolecular complex from
the ith macromolecular subunit will be of the form

˜̃ρi(r) = (k � ρ̃i)(r) = (k � (fi � ρi))(r) = ((k ∗ fi) � ρi)(r).

Here k : SE(3) → R is the reconstruction blurring kernel that contains contri-
butions from both class averaging effects and 3D reconstruction.

Of course, we state this under certain assumptions most notably that con-
formational states and projections orientations do not interplay and that error
kernels are independent of the poses. Both assumptions are plausible under small
conformational variation and if many different poses are available. We also add
that in many image processing applications modeling blurring using a convolu-
tion is a viable and common approach (independent of the source and mechanism
of the blurring which could be highly nonlinear). However, the more challenging
part is the fact that the kernel is unknown and hence one has to resort to blind
de-convolution methods.
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3 Recovering Conformational Information Based
on Moment Matching

Blind deconvolution or deblurring, in general, without prior information is ill-
posed and difficult. In certain biological applications the goal is to understand
the conformational state of a large biomolecular complex comprised of subunits,
while the structure of each of subunit is a-priori known, and the goal is to
find the relative position (pose) of the subunits with respect to each other.
For example, given a complex comprised of two subunits the goal might be to
decide whether it is in close or open configuration or to find the relative position
of the two subunits. We assume that each subunit can be modeled by a rigid
body, in particular, an ellipsoid itself modeled by a Gaussian in R

3. This, in
particular, means that in (1) ρi’s are assumed to be known up to a rotation and
translation. Furthermore, we assume that upon reconstruction we can separate
the reconstructed subunits ρ̃i from each other. This may be done through a 3D
segmentation algorithm, manually, or using a clustering algorithm such k-means.
The extent to which this assumption is practical or valid depends on the problem
and needs further verification. Assuming these simplifications, in the following
we will consider blurring a 3D Gaussian distribution with an SE(3) kernel and
find the mean and covariance of the blurred density in terms of the parameters
(mean and covariance) of the kernel and the density.

Parameterization of SE(3) Kernel. Let se(3) denote the Lie algebra of
SE(3). Also let exp : se(3) → SE(3) denote the matrix exponential and
log : SE(3) → se(3) its inverse. Recall that an element Ω ∈ se(3) can be repre-

sented as Ω =
[

ΩR ωt

0 0

]

, where ΩR is a 3×3 skew-symemtri matrix and ωt ∈ R
3.

We will need the following well-known fact which gives a closed form expression
for the logarithm map (see e.g., [10] for a proof):

Proposition 1. Let Ω =
[

ΩR ωt

0 0

]

∈ se(3). Then eΩ =
[

eΩR eu−1
u |u=ΩR

ωt

0 1

]

.

Conversely if g =
[

R t
0 1

]

∈ SE(3), then log(g) =
[

log(R) u
eu−1

∣
∣
u=log(R) t

0 0

]

∈
se(3). This result holds if all the eigenvalues of Ω are less than π in absolute
value or equivalently g has no eigenvalue of −1.

We now define the notion of Lie-algebraic mean [13] (also known as bi-invariant
mean [1,10]) and covariance [2] for SE(3)-valued random variables:

Definition 1. Let g be an SE(3)-valued random variable with probability den-
sity f : SE(3) → R. Then we define a mean μg of g as a solution to1

E{log(μ−1
g g)} =

∫

SE(3)

log(μ−1
g g)f(g)dg = 0 (6)

1 Here μg and Σg are not functions of g, but are properties of the random variable g
that has distribution f(g).
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and the associated covariance Σg

Σg := E{vec(Ωg)vec(Ωg)�} =
∫

SE(3)

vec(Ωg)vec(Ωg)�f(g)dg (7)

where vec : se(n) → R
6 is an isomorphism between se(3) and R

6 and Ωg =
log(gμ−1

g ).

Due to topological constraints the Eq. (6) for mean has always at least two
solutions on SE(3). However, it can be shown that if f is concentrated in a
small enough region, then there exists a unique mean in that region [10]. To our
knowledge stronger results are not known. The covariance Σg depends on the
isomorphism used. We use the standard isomorphism induced by the basis

E1 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎤

⎥
⎥
⎦, E2 =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦, E3 =

⎡

⎢
⎢
⎣

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦, (8a)

E4 =

⎡

⎢
⎢
⎣

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦, E5 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦, E6 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦. (8b)

Thus, if Ω =
∑N

i=1 ωiEi, then we have vec(Ω) = (ω1, · · · , ω6)� ∈ R
6.

Mean and Covariance of the Blurred 3D Density. Consider the model:

y = Rr + t, r ∈ R
3, E{r} = 0,E{rr�} = Cr, g =

[
R t
0 1

]

∈ SE(3), (9)

with g and r being statistically independent. This model corresponds to the
mixed spatial-motional convolution (3). The goal is to express the Euclidean
mean and covariance matrix of y (which we assumed can be estimated from
blurry 3D reconstruction) in terms of covariance Cr (which we assumed is given)
and SE(3) mean and covariance of g which are to be estimated. Denote the
SE(3)-mean of g by μg, where μg =

[
μR μt

0 1

]

. Note that
∫

log(μ−1
g g)f(g)dg = 0

implies that
∫

μ−1
g log(gμ−1

g )μgf(g)dg = 0 and
∫

log(gμ−1
g )f(g)dg = 0, hence

g = elog(gμ−1
g )μg = eΩgμg, E{Ωg} = 0, where Ωg = log(gμ−1

g ) =

[
ΩR ωt

0 0

]
∈se(3).

(10)
The following proposition gives the first two moments of y up to 2nd order terms
in terms of those of r and g. The proof is straightforward using Proposition 1
and some algebraic manipulation.
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Proposition 2. Under statistical independence of rotation and translation at
the Lie algebra (i.e., independence of ΩR and ωt in (10)) and statistical inde-
pendence of g and r the forward equations for the mean and covariance of y in
(9) up to second order are:

E{y} = E{t} 2nd= (I +
1
2
E{Ω2

R})μt (11a)

Cy = E{RCrR
�} + Ct

2nd= C̃r + E{ΩRC̃rΩ
�
R} +

1
2
E{Ω2

R}C̃r +
1
2
C̃rE{Ω2

R}
+ E{ΩRμtμ

�
t Ω�

R} + E{ωtω
�
t } (11b)

where C̃r = μRCrμ
�
R and the expectations of quantities quadratic in ΩR and ωt

can be expressed in terms of the SE(3) covariance of g, i.e., Σg in (7).

Simplified Equations Under Isotropic Blurring. The unknowns in (11) are
the 6×6 covariance matrix Σg and the 6×1 vector μg, which in general amounts
to 27 unknowns, whereas the number of independent equations is 9. However,
if we assume that blurring is isotropic in translational and rotational directions,
i.e., Σg is diagonal and variances along E1, E2 and E3 are equal to σ2

R and along
E4, E5 and E6 are σ2

t , then the number of unknowns will be 8. Thus, we have

E{y} = E{t} 2nd= (1 − σ2
R)μt (12a)

Cy
2nd= μRCrμ

�
R + σ2

R

(
tr(Cr)I3 − 3μRCrμ

�
R

)
+ σ2

R

(‖μt‖2I3 − μtμ
�
t

)
+ σ2

tI3,
(12b)

where I3 is the 3 × 3 identity matrix. The interesting point here is that if μt is
large (even for small rotational noise σ2

R) Cy can become large merely due to
large translational mean. Considering our argument about blurring due to 3D
reconstruction errors the assumption of isotropic blurring might not be justified,
nevertheless, as a starting point to solve the inverse problem in Proposition 2 we
choose this assumption. Figure 1a shows the blurring effect of an istropic SE(3)
kernel with mean μg = I4, σR = π/10 and σt = 1

10 applied to a unit vector
along the z-direction in R

3.

(a) Example of blurring by an
isotropic SE(3) kernel.

(b) The right panel shows the blurred version of
right configuration in our numerical simulation.

Fig. 1. Examples of blurring under SE(3) kernels.

Algorithm. The two equations in (12) are coupled and nonlinear in the
unknowns; however, by fixing σ2

R in (12a) and μt in (12b) they decouple. Thus,
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in the first step, we find μt from (12a) (fixing σ2
R) and in the next step μR, σ2

R, σ2
t

from (12b) using min-square fitting, and iterate these steps. Specifically, based
on (12b) we consider the cost function

F (μR, σ
2
R, σ

2
t )

= ‖μRCrμ
�
R + σ

2
R

(
tr(Cr)I3 − 3μRCrμ

�
R

)
+ σ

2
R

(‖μt‖2
I3 − μtμ

�
t

)
+ σ

2
t I3 − Cy‖2

F , (13)

where ‖ · ‖F is the Frobenius norm. We solve the regularized minimization

min
μR∈SO(3),σ2

R,σ2
t

Fr(μR, σ2
R, σ2

t ;λR, λt) (14)

where Fr(μR, σ2
R, σ2

t ;λR, λt) = F (μR, σ2
R, σ2

t )+λR(σ2
R)2+λt(σ2

t )2 and λR, λt > 0
are small regularization weights. Our experiments show that although the num-
ber of unknowns is more than the number of equations in (12a) and (12b),
still sensitivity can be high; thus we add the regularization terms in this mini-
mization. Solving (14) in an alternative minimization fashion results in simple
(closed-form) eigendecomposition-based solution for μR and scalar min-square
solution with thresholding to enforce σ2

R, σ2
t ≥ 0.

Numerical Simulations. We simulate a complex with two subunits ρ1 and ρ2
modeled with two Gaussians r1 and r2 with covariances Cr1 = diag(3, 2, 1) and
Cr2 = diag(4, 3, 5), respectively. We consider two SE(3) blurring kernels with

μg1 =

⎡

⎢
⎣

0.6063 0.3861 −0.6952 5.0000
−0.7453 −0.5807 0.3275 5.0000
−0.2773 0.7167 0.6399 5.0000

0 0 0 1.0000

⎤

⎥
⎦, μg2 =

⎡

⎢
⎣

−0.6196 −0.3585 −0.6983 −1.0000
−0.3601 −0.6607 0.6587 −3.0000
−0.6975 0.6595 0.2802 −2.0000

0 0 0 1.0000

⎤

⎥
⎦ (15)

and with variances (σ2
R1

, σ2
t1) = (0.2, .02) and (σ2

R2
, σ2

t2) = (.1, .01). We generate
T = 2000 i.i.d. samples of ri,gi (i = 1, 2) and then yi according to (9). The
left panel in Fig. 1b shows the original configuartion and the right panel shows
the blurred configuration, in which the subunits appear bloated (blue (or ·) and
black (or *) correpond to r1 and r2, respectively). We run a k-means algorithm to
separate the two clouds (subunits). Using the above algorithm with λR = λt = 1
to get the estimates:

μ̂g1 =

⎡

⎢
⎣

−0.7361 0.4145 −0.5351 4.7676
−0.3606 −0.9092 −0.2082 4.8539
−0.5728 0.0397 0.8187 4.7737

0 0 0 1.0000

⎤

⎥
⎦, μ̂g2 =

⎡

⎢
⎣

−0.6596 −0.5253 −0.5375 −0.9976
−0.2048 −0.5625 0.8010 −3.0366
−0.7232 0.6384 0.2635 −2.0821

0 0 0 1.0000

⎤

⎥
⎦ (16)

and σ̂2
R1

= 0.15, σ̂2
t1 = 0.89, σ̂2

R2
= 0.11, and σ̂2

t2 = 0.09. There is an inde-
terminacy in estimating μg in the form of a rotation by π, i.e., a factor of the
form Π =

[
−1 0 0
0 −1 0
0 0 1

]

and its permutations. After fixing the indeterminacy, we get
d(μR1 , μ̂R1) = 0.2491π and d(μR2 , μ̂R2) = 0.0751π, where d(·, ·) is the standard
Riemannian distance on SO(3). Thus, the error in estimating μg is low; however,
estimating σ2

R and σ2
t is more difficult. Nevertheless, note that μg is the more

important or informative variable in determining relative configurations.
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4 Conclusions

In this paper we reproted preliminary studies for the modeling of blurring effects
in 3D reconstruction of densities in single particle EM using SE(3) blurring ker-
nels. We derived a set of blurring equations relating the parameters of the original
3D density and the blurring kernel to quantities which can be calculated from the
reconstructed density. The equations are highly ill-posed to invert. However, in
the case of a multi-unit complex one might have prior knowledge about the shape
of the subunits. We examined this in the case of isotropic blurring and derived
a simple regularized minimization algorithm to find conformational information
of the complex (i.e., the relative positions of subunits). We plan to improve our
algorithm e.g., by using more prior information and better regularizations.

Acknowledgements. Research reported in this publication was supported by the
National Institute of General Medical Sciences of the National Institutes of Health
under award number R01GM113240.
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Abstract. We consider a framework for nonlinear operators on func-
tions evaluated on graphs via stacks of level sets. We investigate a family
of transformations on functions evaluated on graph which includes adap-
tive flat and non-flat erosions and dilations in the sense of mathematical
morphology. Additionally, the connection to mean motion curvature on
graphs is noted. Proposed operators are illustrated in the cases of func-
tions on graphs, textured meshes and graphs of images.

1 Introduction

Recent years have witnessed an enormous growth of interest in the description
and analysis of problems via similarities or dependencies between data elements.
A common way to represent this structure is to use graphs, so that data ele-
ments are indexed by graph nodes, and the strength of dependences between
pairs of elements is represented by corresponding weighted graph edges. In this
paper, we analyze nonlinear (morphological) operators in the context of discrete
signal processing on graphs [27]. Our framework is used to extend the tradi-
tional adaptive (non-flat) morphology on images to more complex structures as
sets of images, meshes, point clouds [3] and so on. In graph-based modeling,
digital images are a particular case, where the pixel information is represented
by the two-dimensional rectangular grid, and pixels correspond to graph nodes
related by links according to the four or eight adjacent neighborhood. On the
one hand, we note that in the literature, one can find some works about non-
linear filters on graphs and hypergraphs, particularly mathematical morphology
operators in the algebraic sense [6,14,21,32], where the couple of nonlinear oper-
ator (dilation/erosion) are maps from two different lattices, i.e., they are maps
“from nodes to edges” or “edges to nodes”. On the other hand, some regular-
ization techniques and nonlinear operators have been introduced for functions
evaluated on graph via directional derivative [8,28,29] or discrete version of the
p-Laplacian [9]. We adopt a different viewpoint, our approach is inspired from the
signal processing approach on graphs [12,24–26]. Thus, we firstly review graph
signal decomposition by upper level sets, convolution and diffusion on graphs,
and then we present a general formulation of flat and non-flat morphology on
graphs, a family of nonlinear transformations and its connection to mean curva-
ture motion on graphs [4,11,12]. Finally, we include some examples to illustrate
the interest of our method.
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 654–663, 2015.
DOI: 10.1007/978-3-319-25040-3 70
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2 Convolution and Morphology by Stacks on Graphs

We start by introducing the notation used throughout this paper. The objects
under study are considered as the nodes (or vertices) of the graph G. A sim-
ple, connected, undirected, and weighted graph G = (V,E ) consists of a set of
nodes V = {v1, v2, . . . , vN} and edges E = {(vn, vm, wnm)}, vn, vm ∈ V, where
(vn, vm, wnm) denoted an edge of weight wnm between node vn and vm. For
ease of exposition and to avoid tedious notation, in the sequel we use only sub-
scripts to denote the vertices in the graph, i.e., V = {1, 2, . . . , N}. The degree
dn of a node n is the sum of the edge-weights connected to node n, and the
degree matrix of the graph consists of degrees of all nodes arranged in a diago-
nal matrix D = diag{d1, d2, . . . , dN}. Denote the maximal and minimal degrees
by d+ = maxi∈V di :=

∨
i∈V di and d− = mini∈V di :=

∧
i∈V di. The adja-

cency matrix W of the graph is an N × N matrix with W(n,m) = wnm,
the combinatorial Laplacian matrix is L = D − W and the graph Laplacian
L = I − D−1/2WD−1/2 is a generalizations of the Laplacian on the grid, where
frequency and smoothness are relative to W and interrelated through these oper-
ators [5]. A graph signal is defined as a scalar valued discrete mapping f : V → R,
such that f(n) is the value of the signal on node n. Thus a graph signal can also
be represented as a vector f in the space of functions from V to R, denoted
by V, with indices corresponding to the nodes in the graph. Additionally, we
often analyze operators transforming signals evaluated on graphs, for instance
φ : f → φ(f), in this case we say that φ ∈ V × V. Finally, the graph Fourier
transform f̂ of a function f ∈ V is the expansion of f in terms of the eigenvectors
of the graph Laplacian, denoted by Λl, with l = 1, · · · , N . More precisely, it
is defined in [26] by f̂(l) := 〈f , Λl〉 =

∑N
n=1 Λ∗

l (n)f(n), by using the conjugate
matrix in the definition.1

Definition 1. The upper level set (ULS) of f ∈ V at level λ ∈ R is defined by
χ(f , λ) = {n ∈ V : f(n) ≥ λ}.
The set of ULS constitutes a family of decreasing sets: λ ≥ μ ⇒ χ(f , λ) ⊆ χ(f , μ)
and χ(f , λ) = ∩{χ(f , μ), μ < λ}. Any graph signal f ∈ V can be viewed as
a unique stack of its cross-sections, which leads to the following superposition
description.

Definition 2. The threshold-max superposition of f ∈ V is defined by: f(n) =∨{λ ∈ R : n ∈ χ(f , λ)}.
This definition say that for each node n, the signal f can be recomposed from
the ULS finding the largest value of λ where the predicate n ∈ χ(f , λ) is valid.
Similar to the image description as a topographic surface in [17,18,33], we con-
sider here the alternative stacking reconstruction using a numerical sum of the
characteristic function of upper level sets.
1 For a given matrix W = [W(i, j)], the conjugate of W to be W∗ = [−W(j, i)], i.e.,
W∗ is derived from W by transposing and negating.
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Definition 3. The threshold-linear superposition of f ∈ V is defined by: f(n) =
∫ +∞
0

χ(f , λ)(n)dλ

In the particular case of discrete range, T = {c1, c2, . . . , c|T |}, the signal f
can be reconstructed from the discrete stack χ(f , λ) via addition, i.e., f(n) =∑

λ∈T χ(f , λ)(n).

Definition 4. We shall say that an operator φ ∈ V×V commutes with thresh-
olding if φ (χ(f , λ)) = χ (φ(f), λ) for any signal f ∈ V and any value λ ∈ R.

In other words, if an operator φ commutes with thresholding, processing by φ
the upper level set at λ gives the same result as processing first the signal f byφ
and then thresholding φ(f) at level λ.

Definition 5. We shall say that an operator φ obeys the threshold-linear super-
position provided that φ(f) =

∫ +∞
0

φ (χ(f , λ)) dλ for any signal f ∈ V × R
+.

As it was pointed out in [18], for grey scale images, the threshold-max superpo-
sition is more general than the thresholded-linear superposition since the latter
applies only to nonnegative input signals, while the former applies to any real-
valued input signal. But alternatively, the max-superposition can be applied
only when φ (χ(f , λ)) are binary signals, an assumption not needed by the lin-
ear superposition. In fact, the threshold sum/integral ties well also with linear
systems. In our case, we assume that f ∈ V × R

+ is continuous and nonnegative
so we will consider the reconstruction formula given by (5).

Proposition 1. The class of operators φ ∈ V×V that obey the threshold-linear
superposition: (a) is closed under minimum, maximum and composition. (b)
It forms a vector space over the field of real numbers under vector addition
(φ1 + φ2)(f) := φ1(f) + φ2(f) and the scalar multiplication (cφ)(f) := cφ(f) with
c ∈ R.

2.1 Convolution on Graphs

For signals f ,g ∈ L2(R), the convolution product h = f ∗ g satisfies

h = (f ∗ g) =
∫

R

ĥ(ξ) exp{2πiξt}dξ =
∫

R

f̂(ξ)ĝ(ξ) exp{2πiξt}dξ. (1)

By replacing the complex exponentials in (1) with the graph Fourier transform,
i.e., the graph Laplacian eigenvectors Λl, in [26] has defined a generalized convolu-
tion of signals f ,g ∈ V by (f ∗g) :=

∑N
l=1

[
f̂(l)ĝ(l)Λl

]
=

∑N
l=1 [(Λ∗

l f) (Λ∗
l g) Λl] =

∑N
l=1 [Λ∗

l (fg)Λl] =
∑N

l=1 f(l)g(l).

Proposition 2. The linear operator associated to the convolution signal func-
tion g commutes with the stacking of cross-sections according to the threshold-
linear superposition, i.e., (f ∗ g) =

∫ +∞
0

(χ(f , λ) ∗ g) dλ
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2.2 Diffusion on Graphs

Consider an arbitrary graph G = (V,E ,W) with Laplacian matrix L and a
signal f ∈ V → R

N . For a given constant σ > 0, define the time-varying vector
fσ,t ∈ R

N as the solution of the linear differential equation:

∂fσ,t

∂t
= −σLfσ,t, fσ,0 = f , (2)

where σ is the thermal conductivity [25] and controls the heat diffusion rate. The
differential equation in (2) represents the heat diffusion process on the graph G
due to the fact that −L can be shown to be the discrete approximation of
the continuous Laplacian operator used to characterize the heat diffusion in
physics [15,25]. The general solution of the heat equation on R

N is obtained by
convolution [10]. However, the solution of (2) denoted by fLσ,t ∈ V × V, is given
by the matrix exponential as follows

fLσ,t := exp (−σLt) f (3)

which can be verified by direct substitution in (2). It is important to

note that for a given time t, the n-th element of fσ,t(n) is ∂fLσ,t(n)

∂t =∑
k∈N (n) σW(n, k)(fLσ,t(k) − fLσ,t(n)) where N (n) is the neighborhood of n, i.e.,

the set of k such that W(i, k) > 0. Thus, the heat flow on an edge grows propor-
tionally with both the “temperature differential” fLσ,t(k)− fLσ,t(n) and the weight
W(n, k). Now in Proposition 3, we see the behavior of the graph diffusion in the
stack of cross-sections.

Proposition 3. The operator fLσ,t in Eq. (3) associated to the diffusion of a
graph signal f , commutes with the stacking of cross-sections according to the
threshold-linear superposition, i.e., fLσ,t(n) =

∫ +∞
0

(χ(f , λ))Lσ,t(n)dλ.

Note that the right part of the equality means that the graph diffusion is applied
in each upper level set of the graph signal function f . The proof of Propo-
sition 3 is straightforward by means of Taylor series expansion of the graph
heat equation and interchanging summation and integration, i.e., fLσ,t(n) =
∑∞

k=0
(−σLt)kf

k! =
∫ +∞
0

∑∞
k=0

(−σLt)k

k! χ(f , λ)(n)dλ =
∫ +∞
0

(χ(f , λ))Lσ,t(n)dλ. At
this point, we should highlight that the behavior of the diffusion in (3) is
controlled by the choice of the Laplacian matrix, i.e., therefore expression (3)
includes isotropic and anisotropic diffusion.

2.3 Morphological Operators in Graphs

In the case of a graph value function f ∈ V, we can have the following counter-
parts of dilation and erosion of numerical functions [7,13] viewed as a convolution
in max-plus algebra (and its adjoint/dual algebra).

Definition 6. The matrix W is a morphological weight matrix if −∞ ≤
W(n,m) ≤ 0, for all n,m.
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Note that is a really simple characterization of the weight matrix because in later
definition do not require symmetry (W(n,m) = W(m,n)) neither zero-diagonal
(W(i, i) = 0) as in [31].

Definition 7. The dilation of a signal function f on a graph G = (V,E ) is
defined by δW(f)(n) =

∨N
m=1(f(m) + W(n,m)) := W ⊕ f(n) and the dual

adjoint erosion is given by εWf(n) :=
∧N

m=1(f(m)+W∗(n,m)) =
∧N

m=1(f(m)−
W(m,n)) := W∗ � f(n)

We remark that, εW, δW are both in V × V and include morphological trans-
formations by flat, non-flat, adaptive [7] and nonlocal structuring elements [31].
Additionally, Theorem 1 do not require the symmetry in the matrix W as in
[31]. A crucial point is the existence of a Galois adjunction theorem [13,23] for
graph valued signals.

Theorem 1. Given a W morphological weight matrix and, the pair of operators
(εW, δW) defines an Galois adjunction, i.e., for all f ,g in V → R, we have
W ⊕ f ≤ g ⇐⇒ f ≤ W∗ � g.

Proof. W ⊕ f ≤ g ⇐⇒ ∀n,
∨N

m=1(f(m) + W(n,m)) ≤ g(n)
⇐⇒ ∀n,∀m, f(m) + W(n,m) ≤ g(n),
⇐⇒ ∀n,∀m, f(m) ≤ g(n)−W(n,m), ⇐⇒ ∀m, f(m) ≤ ∧N

n=1 g(n)−W(n,m),
⇐⇒ ∀m, f(m) ≤ ∧N

n=1 g(n) + W∗(m,n), ⇐⇒ ∀m, f ≤ W∗ � g.

However, we do not have an order between the original signal f and its dilation
or erosion, i.e., we have W∗ � f ≤ W ⊕ f , but f � W ⊕ f neither W� � f .

Definition 8. A morphological weight matrix W is called conservative if
W(i, i) = 0 for all i ∈ 1 . . . , N.

Proposition 4. If W is a conservative morphological weight matrix then W∗ �
f ≤ f ≤ W ⊕ f for every f in V → R.

Thanks to Theorem 1, we can have a large set of morphological filters such as
openings, closings, alternate sequential filters, leveling and so on, because they
are defined by combination of dilations and erosions [16,22].

Definition 9. A morphological weight matrix B is called flat if B(i, j) = 0 or
B(i, j) = −∞ for all i, j ∈ 1 . . . , N.

Proposition 5. The flat dilation and erosion obey both the threshold-max super-
position and the threshold linear superposition, i.e., δB(f) =

∨+∞
λ=0{δB (χ(f , λ)) =

1} =
∫ +∞
0

δB(χ(f , λ))dλ

Since by Propositions 1 and 5, we can directly have that the class of operators
φ ∈ V × V that obey the threshold-linear superposition also contain morpho-
logical gradients (difference between dilation and erosion), opening and closing
(composition of dilation and erosion), top-hat transformation, granulometries,
reconstruction operators, leveling, additive morphological decompositions [30]
and skeleton transformation (based on generalized Lantuejoul formula).
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(a) Original (b) Dilation

(c) Erosion (d) Curv. motion

Fig. 1. Illustration of nonlinear filters on textured mesh. The textured mesh is obtained
from [2]. Note that both colors and mesh coordinates have been modified in the process-
ing. (d) Curvature motion is obtained by iterating ψL,.5 (Color figure online).

2.4 Morphological Operators via Convolution on Graph

Definition 10. For a graph signal value f ∈ V, the convolution-thresholding non-
linear operator associated to the heat diffusion W of conductivity σ at scale t, and
the threshold τ , with τ ∈ [0, 1], is the mapping F(V, R) → F(V, R) defined by

ψL, τ (f) =
∫ +∞

0

[
(χ(f , λ))Lσ,t ≥ τ

]
dλ (4)

The next proposition is easy to prove.



660 S. Velasco-Forero and J. Angulo

Proposition 6. For all f ∈ V: (a) ψL, τ (f) satisfies the threshold-linear super-
position in Definition 3. (b) ψL, τ (f) is monotonous with respect to the choice of
τ , i.e., τ1 ≤ τ2 ⇒ ψL, τ1(f) ≤ ψL, τ2(f).

We can also prove that (4) is increasing.

Proposition 7. If f1 ≤ f2, then ψL, τ (f1) ≤ ψL, τ (f2) for all σ, t ≥ 0.

Proof. We note that (3) follows the called comparison principle, (Lemma 2.6,
property (d) in [12]), i.e. if f1 ≤ f2, then (f1)Lσ,t ≤ (f2)Lσ,t for all σ, t ≥ 0. The
proof is completed by applying this result in each ULS and integrating in λ.

Proposition 8. For the case of a flat morphological weight matrix B, the
morphological flat operators in Proposition 5 correspond to the convolution-
thresholding nonlinear operator in (4) with particular values of τ as follows:
δB(f) = lim

τ→0+
ψB, τ (f) and εB(f) = lim

τ→1−
ψB, τ (f).

Proposition 9. For a binary signal S ∈ V×{0, 1}, the set of measures Vol(S) =∑
i∈S di. Let ρ(L) be the spectral radius of the graph Laplacian, L, then iterations

in Proposition 8 on the graph with initial set S are stationary if either of the
two conditions are satisfied: σ ≤ ρ(L)−1 log

(
1 + τd

r/2
− (Vol(S))−1/2

)
or σ ≤

τ
||Lχ(S)||V,∞

The proof is direct by using Lemma 2.2 and Theorem 4.2 in [12]. Now, we point
out a link of the operator in (4) with motion by mean curvature on a graph.

Proposition 10. The operator in (4) in the case of τ = .5 is an iteration with
of the approximate motion by mean curvature on a graph.

Firstly, the ψL, .5 is an iteration of the well-known Merriman, Bence and Osher
(MBO) [20] threshold dynamics algorithms on graphs. The MBO algorithm is
obtained by time splitting the Allen-Cahn phase-field equation for motion by
mean curvature.2 The resulting scheme alternates two steps, diffusion, and simple
thresholding [12]. Secondly, several papers use the MBO algorithm on a graph
to approximate motion by mean curvature [12,19]. It is important to note that
the curvature is defined by means of the isotropic total variation [12] instead of
the one-Laplacian as it is the case in [8,9,28,29].

2 The semi-linear heat equation called the Allen-Cahn equation is a reaction-diffusion
equation of mathematical physics of the form:

∂u

∂t
− δu +

W ′(u)

ε2
= 0 ∈ R

N × (0, ∞) (5)

which was introduced by S.M. Allen and J.W. Can (1979) [1] to describe the process
of phase separation in iron alloys, including order-disorder transitions. Here W is a

function that has only two equal minima; its typical form is W (v) = (v2−1)2

2
, W ′

denotes the derivative and ε is a positive parameter.
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(a) Original (b) τ = .9

(c) τ = .1 (d) τ = .5

Fig. 2. G is the five-nearest neighbors with W the Euclidean distance between pairs of
images. Lines are linking images that where W(i, j) is not zero. Diffusion parameters
(t = 20 and σ = .03). Note that digits tend to be similar in (d) (after ten iterations).

2.5 Examples of Applications

The family of filters proposed can be used to analyze any function defined on the
vertices of a graph. We provide some illustrations of the results in color data on
mesh in Fig. 1 and images on a graph of images in Fig. 2. We first constructed a
graph from these datasets by treating the nodes in the graph to be the sample
points in the dataset and the edges weight to be the similarity between the
features of the different samples. Edge weights were determined via the Radial
Bases Function (RBF) kernel with σ2 set to the variance in the respective dataset
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W(i, j) = exp(− ||xi−xj ||2
2σ2 ). Finally, in Fig. 2 we have considered a subset of the

USPS handwritten digit database for illustration. Each image is a digit in a
28 × 28 grey scale image which is considered in our approach as a multivariate
vector in R

784. This random weight graph has nodes on images and weights in
the 5-KNN graph considering the Euclidean distance. We only use 200 images
of two digits (0,9) to illustrated the merits of our approach.

3 Conclusion and Perspectives

We have analyzed nonlinear operators on stack of graphs as a discrete adapta-
tion of non-flat morphological transformation. This approach is based on connec-
tion between diffusion+ thresholding operators and morphological operators. We
have proved adjunction of pair dilation and erosion in signal on graphs. Finally,
we have illustrated the interest and behavior of such operators in some problems
of image processing and pattern recognition.
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Abstract. In his 2005 paper, S.T. Smith proposed an intrinsic Cramér-
Rao bound on the variance of estimators of a parameter defined on a Rie-
mannian manifold. In the present technical note, we consider the special
case where the parameter lives in a Lie group. In this case, by choosing,
e.g., the right invariant metric, parallel transport becomes very simple,
which allows a more straightforward and natural derivation of the bound
in terms of Lie bracket, albeit for a slightly different definition of the esti-
mation error. For bi-invariant metrics, the Lie group exponential map we
use to define the estimation error, and the Riemannian exponential map
used by S.T. Smith coincide, and we prove in this case that both results
are identical indeed.

1 Introduction

The Cramér-Rao bound is a lower bound on the achievable precision of any
unbiased estimator of a vector θ which parametrizes a family of probability
distributions p(X|θ), from a sample X1, · · · ,Xn. This bound is standard in clas-
sical estimation theory. Differential geometry considerations in statistics can be
traced back to equivariant estimation [10] (see also [6] and references therein for
a more recent exposure) and of course to the work by Fisher on the Informa-
tion metric, and all the works that followed, notably in information geometry.
The paper [11] proposes to derive an intrinsic Cramér-Rao bound for the case
where the parameter lives in a Riemannian manifold. The two examples given
are subspace estimation (that pertains to the Grassman manifold) and covari-
ance matrix estimation (that pertains to the cone of positive definite matrices),
both examples being related to signal processing applications. See also the nice
extensions proposed since then by N. Boumal [8,9], and our gentle introduction
to the subject [2] for more details.

Our motivating example is the so-called Wahba’s problem [13], named after
Grace Wahba, which is an optimization problem where the parameter is a rota-
tion matrix, but which can also be viewed as the search for a maximum likelihood
rotation estimator. The application invoked in [13] is satellite attitude determi-
nation. The derivation of more sophisticated attitude estimators has been the
subject of a lot of research over the last decade, mainly driven by the burst
of mini UAVs (unmanned aerial vehicles), especially quadrotors. The reader is
referred to, e.g., [4] for examples.
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 664–672, 2015.
DOI: 10.1007/978-3-319-25040-3 71
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In the present paper we propose a general derivation of an intrinsic Cramér-
Rao lower bound on Lie groups, that is similar to the one proposed by S.T.
Smith on manifolds, that is, we retain terms up to the second order in the
estimation error. The discrepancy between the estimation and the true parameter
is naturally defined in terms of group operation (which makes it intrinsic). Thus,
the bound differs from the Euclidean one because of the non-commutativity of
the group operation, yielding some additional terms that are expressed thanks
to the Lie bracket (or alternatively structure constants). It is interesting to note
our result coincides with the result of S.T. Smith in the case where the metric
is bi-invariant, as in SO(3). However, both formula disagree in the general case,
as the definition of estimation error in terms of group multiplication differs from
the intrinsic estimation error based on the Riemannian exponential proposed by
S.T. Smith.

2 An Intrinsic Cramér-Rao Bound on Lie Groups

We compute here the Intrinsic Cramér-Rao Lower Bound (ICRLB) on a Lie
group G, up to the second order terms in the estimation error log(gĝ−1), where
g ∈ G is the true value of the parameter and ĝ ∈ G the estimate.

2.1 Preliminaries

Let G be a Lie group of dimension n. To simplify notations we assume G is a
matrix Lie group. The tangent space at the Identity element Id, denoted g, is
called the Lie Algebra of G and can be identified as R

n, that is

g ≈ R
n.

The (group) exponential map

exp :g �→ G

ξ → exp(ξ),

provides a local diffeomorphism in a neighborhood of Id. The (group) logarithmic
map

log : G �→ g,

is defined as the principal inverse of exp. For any estimator ĝ of a parameter
g ∈ G, it allows to measure the mean quadratic estimation error projected onto
the Lie algebra (the error being intrinsically defined in terms of group operation,
where the group multiplication replaces the usual addition in R

n)

Eg

(
log(gĝ(X)−1)

)

where E denotes the expectation assuming X is sampled from P(X|g). The
logarithmic map allows also to define a covariance matrix of the estimation
error:

P = Eg

(
log(gĝ(X)−1) log(gĝ(X)−1)T

) ∈ R
n×n. (1)
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2.2 Main Result

Consider a family of densities parameterized by elements of G

p(X|g), X ∈ R
k, g ∈ G.

Using the exponential map, the intrinsic information matrix J(g) can be defined
in a right-invariant basis as follows: for any ξ ∈ R

n,

ξT J(g)ξ =

∫ (
d

dt t=0
log p (X | exp (tξ) g)

)T ( d

dt t=0
log p (X | exp (tξ) g)

)
p(X | g)dX, (2)

and then J(g) can be recovered using the standard polarization formulas

ξT J(g)ν =
1
2

(
(ξ + ν)T

J(g) (ξ + ν) − ξT J(g)ξ − νT Jν
)
.

Besides, using the fact that
∫

p (X | exp (tξ) g) dX is constant (equal to 1), which
implies

0 =
d

dt

∫
p (X | exp (tξ) g) dX =

∫ (
d

dt
log p (X | exp (tξ) g)

)
p (X | exp (tξ) g) dX,

(3)
we have, differentiating equality (3) a second time w.r.t t and reusing that d

dtp =
p d

dt log p:

0 =
∫ (

d2

dt2
log p (X | exp (tξ) g)

)

p (X | g) dX

+
∫ (

d

dt t=0
log p (X | exp (tξ) g)

)(
d

dt t=0
log p (X | exp (tξ) g)

)

p(X|g)dX,

allowing to recover an intrinsic version of the classical result according to which
the information matrix can be also defined using a second order derivative

ξT J(g)ξ = −Eg

(
d2

dt2
log p (X | exp (tξ) g)

)

.

Let ĝ be an unbiased estimator of g in the sense of the intrinsic (right invariant)
error gĝ−1, that is,

∫

X

log
(
gĝ (X)−1

)
p (X|g) dX = 0.

Let P be the covariance matrix of the estimation error as defined in (1). Our
main result of this section is as follows

P �
(

Id +
1
12

P.H

)

J(g)−1

(

Id +
1
12

P.H

)T

, (4)
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where we have neglected terms of order Eg

(
‖log

(
gĝ (X)−1

)
‖3

)
, and where H

is the (1,3)-structure tensor defined by

H (X,Y,Z) := [X, [Y,Z]] ,

and where P.H is the tensor contraction of P and H on the two first lower
indices of H, defined by (P.H)kl =

∑
ij P ijH l

ijk. Using the structure constants
of G defined by

[ei, ej ] :
∑

k

ck
ijek, (adei

)j
k = ck

ij , (5)

note that the components of H can be expressed by the equality

Hm
ijk =

∑

l

cm
il cl

jk. (6)

The latter result is totally intrinsic, that is, it is independent of the choice of the
metric in the Lie algebra g.

For small errors, we can neglect the terms in P on the right hand side (cur-
vature terms) yielding the approximation which reminds the Euclidean case

P =

∫

X

log
(
gĝ (X)−1) log

(
gĝ (X)−1)T p (X|g) dX � J (g)−1 + curvature terms .

2.3 Proof of the Result

Let ĝ be an unbiased estimator of g in the sense of the intrinsic (right invariant)
error gĝ−1, that is,

∫

X

log
(
gĝ (X)−1

)
p (X|g) dX = 0.

If we let ξ be any vector of the Lie algebra and t ∈ R, the latter formula holds
with g replaced by exp (tξ) g and X sampled from p(X| exp (tξ) g). Thus we
have Eexp(tξ)g

(
log

[
exp (tξ) gĝ (X)−1

])
= 0 for any t ∈ R. Differentiating this

equality written as an integral over X we get

d

dt

∫

X

log
[
exp (tξ) gĝ (X)−1

]
p (X| exp (tξ) g) dX = 0.

Formally, this implies at t = 0
∫

X

(
D log |gĝ(X)−1

[
ξgĝ(X)−1] p (X|g)+log

(
gĝ(X)−1)Dp (X | ·) |g [ξg]

)
dX = 0. (7)
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For any linear form u(·) of the Lie algebra g we have thus:

−
∫

X

u

(
D log |gĝ(X)−1

[
ξgĝ (X)−1]

)
p (X|g) dX

=

∫

X

u

(
log
(
gĝ(X)−1)Dp(X | ·)|g[ξg]

)
dX

�
√(∫

X

u
(
log (gĝ(X)−1)

)2
p(X|g)dX

)(∫

X

(
D log p(X | ·)|g[ξg]

)2
p(X|g)

)
dX,

(8)

where we used the Cauchy Schwarz inequality and the relationships

Dp = pD log p, and then p = (
√

p)2.

We then introduce a basis of g and the vector Ã(X) = log(gĝ(X)−1). According
to (2) the right-hand integral in (8) is J(g), which yields (u being assimilated to
a vector of g):

(

uT

∫

X

D log |gĝ(X)−1 [ξ×gĝ(X)−1]p(X|g)dX

)2

�
(

uT

[∫

X

Ã(X)Ã(X)T p(X|g)dX

]

u

)(

ξT J(g)ξ
)

,

(9)

where we added the subscript × to ξ, distinguishing the element ξ× of g and the
column vector ξ containing its coordinates in the chosen basis. Now we compute
a second-order expansion (in the estimation error) of the left-hand term. To do
so, we note from the Baker-Campbell-Hausdorff (BCH) formula retaining only
terms proportional to t

log [exp (tξ) Q] = log [exp (tξ) exp (log(Q))]

= tξ − 1

2
[log(Q), tξ] +

1

12

[
log(Q), [log(Q), tξ] + O

(|| log(Q)||3)] tξ.

This gives the formula below: the second-order expansion in log(Q) of the deriv-
ative of the left-hand term w.r.t to t. Note that this approximation will be inte-
grated over Q in Eq. (11) and therefore a rigorous reasoning should prove the
density p is small where the higher-order terms become larger. Here we assume
p is sufficiently peaked for this approximation to be valid.

D logQ[(ξ)×Q] = [I − 1
2
adlog(Q) +

1
12

ad2log(Q)]ξ. (10)

Moreover we have by linearity (ξ is here deterministic):

Eg

(
1
2

[
log

(
gĝ(X)−1

)
, tξ

]
)

=
1
2

[
Eg

(
log

(
gĝ(X)−1

))
, tξ

]
= 0,

and also
Eg[x, [x, ξ]] =

∑
H l

ijkEg(xixj)ξkel = G0ξ,
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where G0 is a matrix whose entries are functions of Eg(xxT ) and the structure
constants (see (5)): G0 is defined by G0 = P.H, i.e. G0

k,l =
∑

ij P ijH l
ijk with H

defined as in (6). We introduce the latter second-order expansion in the error in
Eq. (9):
[
uT

∫
X

[
I +

1

12
ad2

Ã(X)

]
p(X|g)dXξ

]2
�
(

uT

[∫
X

Ã(X)Ã(X)T p(X|g)dX

]
u

)(
ξT J(g)ξ

)
.

(11)
Letting P =

∫
X

Ã(X)Ã(X)T p(X|g)dX we get:

[

uT

(

I +
1
12

G0(P )
)

ξ

]2

�
(
uT Pu

) (
ξT J(g)ξ

)
.

Replacing ξ with the variable ξ = J(g)−1
(
I + 1

12G0(P )
)
u directly allows to

prove that

P �
(

1 +
1
12

G0(P )
)

J(g)−1

(

1 +
1
12

G0(P )
)T

, (12)

where
G0(P ) = Eg

[
log

(
gĝ−1

)
,
[
log

(
gĝ−1

)
, ·]] . (13)

Remark 1. If the model is equivariant, i.e., verifies ∀h ∈ G, p
(
hX|gh−1

)
=

p (X|g) (see [2,6]), the study can be restricted to equivariant estimators (estima-
tors verifying ĝ(hX) = ĝ(X)h−1). In this case Eq. (13) simplifies:

G0(P ) =
∫

X

[
log

(
gĝ(X)−1

)
,
[
log

(
gĝ(X)−1

)
, ·]] p(X|g)dX

=
∫

X

[
log

(
ĝ(gX)−1

)
,
[
log

(
ĝ(gX)−1

)
, ·]] p(gX|Id)dX

=
∫

X′

[
log

(
ĝ(X ′)−1

)
,
[
log

(
ĝ(X ′)−1

)
, ·]] p(X ′|Id)dX ′,

where the integration variable X has been replaced by X ′ = gX in the latter
equality. Thus if the model is equivariant, the Cramér-Rao bound is constant
over the Lie group.

3 Links with the More General Riemannian Manifolds
Case

In the paper [11], the author derives the following intrinsic Cramér-Rao bound
(see Corollary 2). Assume θ lives in a Riemannian manifold and θ̂ is an unbiased
estimator, i.e. Eg(exp−1

θ θ̂) = 0 where exp is the geodesic exponential map at
point θ associated with the chosen metric. The proposed ICRLB writes (up to
higher order terms)

P := Eg

(
exp−1

θ θ̂
) (

exp−1
θ θ̂

)T

� J(θ)−1 − 1
3

(
Rm(P )J(θ)−1 + J(θ)−1Rm(P )

)
,
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where for sufficiently small covariance norm the matrix Rm(P ) can be approxi-
mated by the quadratic form

Ω → 〈Rm(P )Ω,Ω〉 = Eg

〈
R

(
exp−1

θ θ̂, Ω
)

Ω, exp−1
θ θ̂

〉
,

where R is the Riemannian curvature tensor at θ.
The considered error log(gĝ−1) being right-invariant, we can assume g = Id

to compare our result to the latter. We then see, that up to third order terms,
formula (12) coincides indeed with the result of [11] if

G0(P ) = −4Rm(P ),

where
〈Rm(P )ξ, ξ〉 = Eg

〈
R

(
log

(
gĝ(X)−1

)
, ξ

)
ξ, log

(
gĝ(X)−1

)〉
,

and
〈
G0(P )ξ, ξ

〉
= Eg

〈[
log

(
gĝ(X)−1

)
,
[
log

(
gĝ(X)−1

)
, ξ

]]
, ξ

〉
.

If the metric is bi-invariant, as is the case for G = SO(3), we recover the
result of [11]. Indeed, for bi-invariant metrics on Lie groups, the Riemannian
curvature tensor satisfies for right-invariant vector fields (see, e.g., [1])

R(X,Y )Z = −1
4
[[X,Y ], Z]. (14)

The question of comparing both formulas boils down to proving for Z random
vector s.t. E(Z) = 0 that Eg〈ξ, [Z, [Z, ξ]]〉 = −4Eg〈R(Z, ξ)ξ, Z〉. It can be verified
as follows:

−4Eg〈R(Z, ξ)ξ, Z〉 = Eg〈[[Z, ξ], ξ], Z〉 = Eg〈[Z, [Z, ξ]], ξ〉 = Eg〈ξ, [Z, [Z, ξ]]〉
where the second equality stems from a property of the bi-invariant case (e.g.,
[1]) that generalizes the mixed product on SO(3) property, namely 〈[X,Y ], Z〉 =
〈[Z,X], Y 〉.

3.1 Differences

If the metric is not bi-invariant the results are different. This is merely because
then the Lie group exponential map and the Riemannian exponential map are
not the same. Thus, our definition of the estimation error differs, so it is logical
that the results be different.

4 Conclusion

In this paper, we have proposed an intrinsic lower bound for estimation of a
parameter that lives in a Lie group. The main difference with the Euclidean
case is that the estimation error between the estimate and the true parameter
underlying the data is measured in terms of group multiplication (that is, the
error is an element of the group). This is a much more natural way to measure
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estimation errors, and it has been used in countless works on statistical estima-
tion and filtering on manifolds. But it comes at a price of additional terms in
the bound, that are not easy to interpret. The bound is not closed-form, but by
retaining only first and second order terms in the estimation error, we ended up
with a closed form bound, that is the covariance of any unbiased estimator is
lower bounded by the inverse of the intrinsic Fisher information matrix, as in
the Euclidean case, plus additional terms that are functions of the covariance.
Moreover, the nice structure of Lie groups allows straightforward calculations,
and the bound is expressed with the help of the Lie bracket, this, in turn, being
related to the sectional curvature at the identity, helping to draw a link with the
general result of S.T. Smith on Riemannian manifolds [11].

This note generalizes previous calculations [3] obtained on SO(3), in the con-
text of attitude filtering for a dynamical rigid body in space, the latter Cramér-
Rao bound being compared to the covariance yielded by the intrinsic Kalman
filter of [4]. It would be interesting to apply the obtained general bound to pose
averaging (that is on SE(3)), as, e.g., proposed in [12], which could be then
attacked by means of intrinsic stochastic approximation as in, e.g., [5] or [7].

Another future route could be to derive an intrinsic Cramér-Rao bound on
homogeneous spaces. It is interesting to note that both examples of [11] are
homogeneous spaces. Moreover, the results on manifolds are bound to be local,
but we can hope for results on Lie groups and homogeneous spaces with a large
domain of validity (if not global).
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Abstract. We present in this paper a novel non-parametric app-
roach useful for clustering independent identically distributed stochas-
tic processes. We introduce a pre-processing step consisting in map-
ping multivariate independent and identically distributed samples from
random variables to a generic non-parametric representation which fac-
torizes dependency and marginal distribution apart without losing any
information. An associated metric is defined where the balance between
random variables dependency and distribution information is controlled
by a single parameter. This mixing parameter can be learned or played
with by a practitioner, such use is illustrated on the case of clustering
financial time series. Experiments, implementation and results obtained
on public financial time series are online on a web portal http://www.
datagrapple.com.

1 Introduction

Random walks are sometimes used to perform data clustering [13] or can be
a point of view on spectral clustering [21,27]. In this paper, we consider the
original converse problem: clustering random walks. These stochastic processes
are an important mathematical formalization used to model, for instance, the
path of molecules travelling in gas, or financial market prices as stated in the
random walk hypothesis [3] and the efficient-market hypothesis [12].

1.1 Clustering Time Series

Partition-based clustering is the task of grouping a set of objects in such a way
that objects in the same group (cluster) are more similar to each other than
those in different groups. This task leverages a representation of the dataset
and a distance between objects. In practice, such semantic representation and
distance are unknown and the ones used are motivated by some heuristics.

When working with time series, researchers have considered, for instance,
Lp metrics or Dynamic Time Warping (DTW) [7] for comparing them, and
wavelets [23] or SAX [19] as means of representation. These approaches were
found useful to detect anomalies in time series [16] with a strong focus on pattern
recognition [15].

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-25040-3 72
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Fig. 1. Different criteria (apparently signal shape and homothetic scaling) are used for
grouping these random walks in the two examples

1.2 Shortcomings of a Standard Approach

To understand why a standard approach fails to properly cluster random walks,
we have to give a close look at the definition: a random walk is the sum

∑
i Xi of

a series of independent and identically distributed (i.i.d.) random variables Xi.
So, there are no temporal patterns and thus approaches looking for them such
as using a distance DTW and compressing time series using patterns as a way
of representation are useless here. Note also that all information is carried by
the increments Xi, it is therefore the underlying time series to study. By using
a Lp metric between the increment time series, we may capture similarity in co-
movements but, informally, we observe that we lose information of the random
walk “shape”, a criterion to take into account to cluster random walks as we can
see it in the left panel of Fig. 1. Moreover, since increments are independent and
identically distributed, time does not matter in these time series and we actually
consider equivalence classes of random walks consisting in all the permutations
of the Xi. To cluster this special kind of time series, one cannot simply use the
standard machinery of machine learning on time series. Common normalizations
do not make sense either. So, this work is a first step to study the problem of
clustering random walks with application to financial time series in mind [20].

To alleviate the shortcomings of a standard approach, this paper propounds
in Sect. 2.1 a proper random walk representation capturing all information which
is leveraged by a relevant distance. In Sect. 2.3, the approach is validated on syn-
thetic datasets. In-depth results using the presented workflow on real and public
financial time series from the credit default swap market, and implementations
for reproducible research are available online (http://www.datagrapple.com).

2 Generic Non-parametric Representation

We explain in this section our approach to represent and then cluster N random
walks using a pre-processing we dubbed TS-GNPR for Generic Non-Parametric
Representation of random walk Time Series.

http://www.datagrapple.com
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2.1 Representation and Distance

Let (Ω,F ,P) be a probability space. Ω is the sample space, F is the σ-algebra
of events, and P is the probability measure. Let V be the space of all continuous
real valued random variables defined on (Ω,F ,P). Let U be the space of ran-
dom variables following a uniform distribution on [0, 1] and G be the space of
absolutely continuous cumulative distribution functions (cdf). We define the fol-
lowing representation of random vectors, that actually splits the joint behaviours
of the marginal variables from their distributional information:

Let T be a mapping which transforms a random vector X = (X1, . . . , XN )
into its TS-GNPR, an element of UN × GN representing X, defined as

T : VN → UN × GN (1)
X �→ (GX(X), GX)

where GX = (GX1 , . . . , GXN
), and GXi

being the cumulative distribution func-
tion of Xi. T is a bijection, and thus preserves the whole information. Note that
it replicates Sklar’s theorem [26], seminal result of copula theory.

Statistical distances (or non-metric divergences) have been intensively stud-
ied [4] for data processing. One important class of divergences is f -divergences
that ensures the property of information monotonicity [1]. Informally, informa-
tion monotonicity guarantees that the divergence between coarse-binned his-
tograms is less than fine-binned histograms as some information are lost due to
the binning process.

In our setting, which actually does not require the copula theory framework,
using the generic non-parametric representation, we introduce artificially a sep-
arable divergence as follows: we leverage TS-GNPR by defining a distance dθ

between random variables taking into account both distributional forms and
joint behaviours.

Let (X,Y ) ∈ V2. Let GX , GY be vectors of marginal cdf.
We define the following distance depending on θ ∈ [0, 1]:

d2θ(X,Y ) = θd2
1(GX(X), GY (Y )) + (1 − θ)d20(GX , GY ),

where

d21(GX(X), GY (Y )) = 3E[|GX(X) − GY (Y )|2], (2)

and

d20(GX , GY ) =
1
2

∫

R

(√
dGX

dλ
−

√
dGY

dλ

)2

dλ. (3)

As particular cases, d0 is the Hellinger distance, a particular f -divergence,
quantifying the similarity between two probability distributions, and the distance
d1 =

√
(1 − ρS)/2 is a distance correlation measuring statistical dependence

between two random variables, where ρS is the Spearman’s correlation between
X and Y .
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We can notice that for θ ∈ [0, 1], 0 ≤ dθ ≤ 1 and for 0 < θ < 1, dθ is a metric.
For θ = 0 or θ = 1, the separation axiom of metrics does not hold. This distance
dθ is invariant under diffeomorphism, i.e. let h : V → V be a diffeomorphism, let
(X,Y ) ∈ V2, we have dθ(h(X), h(Y )) = dθ(X,Y ). It is a desirable property as it
ensures to be insensitive to scaling (e.g. choice of units) or measurement scheme
(e.g. device, mathematical modelling) of the underlying phenomenon.

To apply the proposed distance on sampled data, we define a statistical esti-
mate of dθ: distance d1 working with continuous uniform distributions can be
approximated by rank statistics yielding to discrete uniform distributions, in
fact coordinates of the multivariate empirical copula [9]; distance d0 can be
approximated using its discrete form working with estimates of marginal densi-
ties obtained from a basic kernel density estimator. For computing d1, we need
a bijective ranking function and since we consider application to time series, it
is natural to choose arrival order to break ties. Let (Xi)M

i=1 be M realizations of
X ∈ V. Let SM be the permutation group of {1, . . . , M} and let σ ∈ SM be any
fixed permutation, say σ = Id{1,...,M}. A bijective ranking function for (Xi)M

i=1

can be defined as a function

rkX : {1, . . . , M} → {1, . . . , M} (4)
i �→ #{k ∈ {1, . . . , M} | Pσ}

where Pσ ≡ (Xk < Xi) ∨ (Xk = Xi ∧ σ(k) ≤ σ(i)).
Let (Xi)M

i=1 and (Yi)M
i=1 be M realizations of random variables X,Y ∈ V. An

empirical distance between realizations of random variables can be defined by

d̃2θ
(
(Xi)M

i=1, (Yi)M
i=1

) a.s.= θd̃21 + (1 − θ)d̃20, (5)

where

d̃21 =
3

M2(M − 1)

M∑

i=1

(
rkX(i) − rkY (i)

)2

(6)

and

d̃20 =
1
2

+∞∑

k=−∞

(√
gh

X(hk) −
√

gh
Y (hk)

)2

, (7)

h being a suitable bandwidth, and gh
X(x) = 1

M

∑M
i=1 1{	x

h
h ≤ Xi < (	x
h
+1)h}

being a density histogram estimating the probability density function gX from
(Xi)M

i=1, M realizations of random variable X ∈ V.

2.2 Parameter Selection Using Clustering Stability

To effectively use dθ it boils down to select a particular value for θ. For instance,
this value can be chosen by an expert who intends to give more weight on joint
behaviours rather than distribution information, or the converse if one focuses on
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marginals. To aggregate both information in a balanced data-driven manner, we
suggest using stability principles. Several researchers [6,8,18,25] advocate that
stability of some kind is a desirable property of clustering, i.e. partitions obtained
should be similar while data undergo small perturbations, yet some critics have
arose [5,17] warning about the pitfalls of using stability as a method for clustering
validation and model selection. In [24], authors conclude that stability is still a
relevant criterion over finite samples.

Similarity Between Partitions. To measure clustering stability, we first have
to define a similarity measure between clusters, and then partitions. We consider
a correlation-flavoured similarity which can be seen as the scalar product of
representation vectors [10]. Given two clusters C1 and C2, their similarity sC is
defined by

sC(C1, C2) =
#(C1 ∩ C2)√
#(C1)#(C2)

(8)

where #(C) is the number of elements in a cluster C. Given two partitions P1

and P2, with the same size K, of a dataset X , i.e. Pi = {Ck
i }K

k=1 for i ∈ {1, 2},
and X =

⊎K
k=1 Ck

i , we define a similarity sP between P1 and P2 by averaging
the pairwise similarities between clusters from P1 and P2, where each cluster
in P1 is optimally assigned to a cluster in P2 with respect to maximizing the
average cluster similarity, i.e.

sP (P1, P2) = max
σ∈SK

1
K

K∑

k=1

sC(Ck
1 , C

σ(k)
2 ) (9)

Hungarian algorithm [22] is used to find the best assignment σ between the
clusters from P1 and P2.

Time Stability of a Clustering. Many different kind of data perturbations
can be considered, a popular one being the bootstrap [11] as it preserves the
statistical properties of the initial sample. In the context of time series context,
it seems more natural to consider perturbations due to a time-sliding window.
In a steady regime, practitioners want their model stable with respect to passing
time. Since increments of the random walks are i.i.d. this perturbation also
preserves the data statistical properties.

To define time stability, we suggest to apply a clustering algorithm at dif-
ferent periods and compute the partition similarities between the resulting clus-
terings. More precisely, we propose to apply the same clustering algorithm to a
sliding window, compute all the similarities between partitions of two successive
windows and finally average all of them.

Let X = (x1, . . . , xN )� be a matrix describing N time series, where each xi

is a vector in RT and T is the time horizon under focus. Given a window of
width H, we note PK

H (t) the partition computed by a given clustering algorithm
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on the window ]t − H, t]. Given a number of cluster K, a window width H, and
a time step δt, the stability index is defined by

SI(X,K,H, δt) =
1
W

T∑

t=H

sP(PK
H (t),PK

H (t + δt)) (10)

where W =
⌊

T−H
δt

⌋
+ 1 is the number of slidings.

Stability Index for Model Selection. We present a simple example where
time series are aggregated using a one level factorial model:

∀i ∈ [1, N ], ∀t ∈ [1, T ],

xi(t) =
√

ρmm(t) +
√

ρkfk(i)(t) +
√

ρsεi(t) (11)

where m, (fk)K
k=1 and (εi)N

i=1 are multivariate uncorrelated Gaussian noises,
ρm, ρk ≥ 0, such that ρm + ρk ≤ 1, and ρs = 1 − ρm − ρk.

In economical terms, m is a systemic factor that correlates all the xi together
whereas (fk)K

k=1 are sectoral factors that lead to the grouping of the time series in
K clusters. Finally, (εi)N

i=1 are residual noises that decrease pairwise correlations.
Two series xi and xj belong to the same clusters if they share the same sectoral
factor, that is if k(i) = k(j).

Here we choose K = 10 clusters among N = 100 time series, for an horizon
T = 500. Time series are evenly distributed among the factors, forming clusters
of size N

K = 10. We choose ρm = 40% and ρk = 30%. We compute our stability
index with a window of size H = T

2 = 250 and a time step δt = 5 and obtain
the results shown in Fig. 2. We see that the stability index is equal to 1 for
degenerated cases K = 1 and K = N but also for the ground truth K =
10 clusters. This stability index usefulness depends on the signal-to-noise ratio√

ρk/(1 − ρk), usually small in applications, and the length of the time series,
usually finite horizon in applications, to obtain a good estimate. The mentioned
bias which is obvious for K = 1 or K = N exists for all values of K. We look
for an estimate of this bias by computing the stability score on purely Gaussian
noise and obtain the following stability curve plotted on Fig. 3.

We thus propose the following adjusted stability index by subtracting this
estimate. Given a set of time series X and a multivariate Gaussian noise N , we
define the adjusted stability index by

ASI(X,K,H, δt) =
SI(X,K,H, δt) − SI(N ,K,H, δt)

1 − SI(N,K,H, δt)
(12)

θ� can be estimated similarly with this stability index.

2.3 Validation and Experiments

To benchmark our approach, we use the following generative model that gener-
alizes the one presented in Sect. 2.2. Let S ∈ N. Let (K1, . . . , KS) ∈ NS . Let
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Fig. 2. Using time stability we accu-
rately detect 10 clusters

Fig. 3. Estimate of the stability index
bias obtained on purely Gaussian noise

(Y s
k )Ks

k=1, 1 ≤ s ≤ S, be i.i.d. random variables following a standard normal
distribution. Let p,K ∈ N. Let N = pK

∏S
s=1 Ks. Let (Zi

k)K
k=1, 1 ≤ i ≤ N , be

independent random variables. For 1 ≤ i ≤ N , we define

Xi =
S∑

s=1

Ks∑

k=1

βs
k,iY

s
k +

K∑

k=1

αk,iZ
i
k, (13)

where αk,i = 1, if i ≡ k − 1 (mod K), 0 otherwise; βs
k ∈ [0, 1], βs

k,i = βs
k,

if �iKs/N� = k, 0 otherwise. (Xi)N
i=1 are partitioned into Q = K

∏S
s=1 Ks

clusters of p random variables each. Playing with the model parameters, we
define in Table 2 some interesting test case datasets to study distribution clus-
tering, dependence clustering or a mix of both. For clarity, we set S ≤ 2
and K ≤ 4, and use the following notations as a shorthand: N := N (0, 1);
J :=

∑
n≥0(−1)n1{t=Tn}, with Tn =

∑n
i=1 Xi and Xi ∼ Pois(λ) are i.i.d., with

λ = 5; L := Laplace(0, 1/
√

2); S := t-distribution(3)/
√

3.
Our approach is essentially not algorithm dependent as can be seen in Table 1

where k-means++ [2] and Ward, a hierarchical clustering, algorithms have the
same behaviour on datasets A, B and C which are described in Table 2. As
expected algorithms working on standard representation, and TS-GNPR with
θ = 1 (working only on rank correlations) cannot retrieve distribution informa-
tion which is the only information present in dataset A, whereas TS-GNPR with
θ = 0 (working only on distributions) or estimated θ� (working on an optimal
mix of co-movements and distributions) can. On dataset B containing only co-
movements information, all approaches but expectedly TS-GNPR with θ = 0
perform accurately. Nonetheless, when distribution and dependence information
are mixed (dataset C), only TS-GNPR with θ� can recover the ground truth.
Notice that TS-GNPR with θ = 1 achieves a much better Adjusted Rand Index
(ARI) [14] than the standard representations (0.72 against 0.45) which shows
that working on a proper representation, even if only a part of the total infor-
mation is available, is a better practice than working directly on the time series
where heavy-tailed distributions can obfuscate the dependence relations between
them.
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Table 1. Comparative results for test case datasets

Adjusted Rand Index

Algo. Representation A B C

X 0 0.94 0.42
(X − μX)/σX 0 0.94 0.42
(X − min)/(max−min) 0 0.48 0.45
TS-GNPR θ = 0 1 0 0.47
TS-GNPR θ = 1 0 0.91 0.72

Ward TS-GNPR θ� 1 0.92 1

X 0 0.90 0.44
(X − μX)/σX 0 0.91 0.45
(X − min)/(max−min) 0.11 0.55 0.47
TS-GNPR θ = 0 1 0 0.53
TS-GNPR θ = 1 0.06 0.99 0.80

k-m++ TS-GNPR θ� 1 0.99 1

Table 2. Model parameters for some interesting test case datasets

Dataset Clustering N M Q K1 β1
k K2 β2

k Zi
1 Zi

2 Zi
3 Zi

4

A Distribution 400 10000 4 0 0 0 0 N J L S
B Dependence 300 500 30 3 0.1 10 0.1 N N N N
C Mix 100 1000 20 0 0 10 0.1 N N J J

3 Discussion

The aim over the long term is to design a full framework for the study of ran-
dom walks in finite samples which will tackle multivariate inference and outlier
detection based on clustering dynamics. The presented work was but a first step
toward this goal by allowing us to have a proper data representation with a
model selection based on a criterion that is dear to practitioners in finance, i.e.
time stability. To complete this work, it remains to show that clustering using
TS-GNPR could achieve consistency in simple factorial models where correla-
tion matrices are slightly perturbed. We might also wish to improve the distance
working on the TS-GNPR representation as we may want to compare distribu-
tions differently by taking into account, for instance, tail dependence.
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Abstract. This paper highlights some more examples of maps that fol-
low a recently introduced “symmetrization” structure behind the average
consensus algorithm. We review among others some generalized consen-
sus settings and coordinate descent optimization.

1 Introduction

The linear consensus algorithm [1]

xk(t + 1) = xk(t) +
∑N

j=1 ajk(xj(t) − xk(t)), k = 1, 2, ..., N, (1)

with ajk ≥ 0, or equivalently for xk ∈ R, x(t + 1) = A(t)x(t) where the
matrix A has off-diagonal components Ajk = ajk and diagonal component
Akk = 1 − ∑N

j=1 ajk, features several geometric structures that could serve
as a basis for generalization. In previous work we have considered the struc-
ture of (1) on a cone space, associated to the Hilbert metric, which generalizes
(1) e.g. towards “non-commutative consensus” and the Kraus maps of quantum
dynamics [2]. More recently [3], we have explored a structure related to the net-
work interaction and generalized (1) into a “symmetrization” class of iterative
maps, which is restricted to linear procedures but allows to cover consensus on
(quantum) probability spaces and some geometric control design algorithms.

In the present paper, we want to give a few more examples of applications
covered by the former approach. In particular:

– In Sect. 3 we show how symmetrization readily applies to the modeling of
some direct variants of (1).

– In Sect. 4 we slightly relax the symmetrization assumptions to model gradient
and coordinate descent (for a quadratic cost function to stay in the linear
context).

The intended message of this paper is in showing the possibility to model a set
of a priori different maps as one class of dynamics.

We denote by I the identity matrix and by e the identity element of a group;
when numbering group elements we use the convention g1 = e.

c© Springer International Publishing Switzerland 2015
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2 Symmetrization

Let us first recall the symmetrization framework developed in [3]. The main
point is to write an iterative map

x(t + 1) = Φ(x(t), t) (2)

as a stochastic combination of actions of a discrete group G, i.e.

Φ(·, t) =
∑|G|

i=1wi(t)a(gi, ·) (3)

where gi ∈ G are the elements of the group, a(gi, ·) is a linear action associated
to gi on the space X � x, and the wi satisfy: wi(t) ≥ 0 for all i,

∑|G|
i=1wi(t) = 1.

The iterative map (2) can then be lifted, possibly non-uniquely, to dynamics
on the stochastic weights of group elements. I.e. we can write

x(t) =
∑|G|

i=1 pi(t) a(gi, x(0))

and describe the evolution of the pi(t). Explicitly, defining πi(k) such that
gπi(k) = g−1

i gk in the group sense, we have

pk(t + 1) =
∑|G|

i=1 wi(t) pπi(k)(t), k = 1, 2, ..., |G|, (4)

starting with p1(0) = 1 for g1 = e and pk(0) = 0 for k �= 1. In general, |G| can
be much larger than the dimension of X . Yet the interesting point is that (4)
is completely independent of X and of the particular action a(gi, ·). This has
allowed us to cover with one single model, consensus on variables belonging to
vector spaces, so-called “symmetric consensus” on probabilities over a discrete
set and similarly “symmetric quantum consensus”. In the two latter applications,
not only marginal probabilities but also all multi-partite correlation probabilities
converge to the same values for all agents.

It is not difficult to see that the |G|×|G| state matrix describing (4) is doubly
stochastic. It is hence stable and features as a particular stationary point the
uniform weight distribution p = p̄ where p̄k = 1/|G| for all k. For this stationary
point, in the X space, we have

x̄ = 1
|G|

∑|G|
i=1 a(gi, x(0)).

We hence call x̄ the symmetrization of x0 with respect to (G, a(·, ·)), and a
fortiori if Φ can be written as (3) then x̄ is a stationary point of Φ.

In general the goal of Φ is to make x converge to x̄. A sufficient condition
for this is that the associated lift (4) makes p converge to p̄. In some situations,
especially with time-varying Φ, the lift might provide more insights, e.g.:

Proposition 1. Given δ > 0, T > 0, denote S(t) ⊆ G the set of gi for which
∑t+T

t′=t wi(t′) > δ. If there exist δ > 0, T > 0 and H ⊆ G generating G such that
• g1 = e ∈ S(t) for each t and • H ⊆ S(t) for each t,
then the dynamics (4) makes p converge to p̄.
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With different choices of the lift, Proposition 1 can prove convergence of
several different linear iterative maps at once, instead of having to repeat a
“similar” proof argument for each specific map separately. In [3] a few examples
are given. In the following we present a few others. Note that each of these
examples has been efficiently solved on its own in the respective literature; our
point here is that a common framework is established for all of them.

3 Variations on Consensus

Let us first review how (1) can be cast into the symmetrization framework, at
least for the usual case where A is doubly stochastic, implying a.o.

∑
j ajk ≤ 1 for

all k. Take Ḡ = PermN the group of permutations on N elements. The easiest
case is “gossip”, where at each t a single pair (m,n) of agents interacts with
amn = anm �= 0: we can then write w1 = 1 − am,n for g1 = e and wi = am,n for
gi the pairwise permutation of (m,n), all other wi zero. Several variations that
allow several interactions at once, admit a similarly direct treatment.

For a general situation with A doubly stochastic, we use a result by Birkhoff
[4] to decompose Φ into a convex sum of permutations. If there exists α > 0 such
that akk > α for all k, then Ã = 1

1−α (A − αI) is also doubly stochastic and by
applying the Birkhoff result to Ã, we obtain a decomposition of A = αI+(1−α)Ã
into permutation matrices weighted by wi and where w1 ≥ α. Except for special
time dependencies of the ajk(t), generally an element for which wi > δ at some
t satisfies

∑t+T
t′=t wi(t′) > δ for all t, for T large enough. We then say that all

elements are recurrent. In this case, Proposition 1 ensures that p(t) converges
to the uniform distribution p̄ over all elements of the group G ⊆ Ḡ generated by
the elements that appear in the decomposition. Concretely, for instance:

– For pairwise gossip, if the interaction graph corresponding to the ājk =
∑t+T

t′=t ajk(t′) is connected, then the associated pairwise permutations gen-
erate all of Ḡ = PermN . A generalization to the case where the interaction
graph is composed of several connected components is immediate.

– When ajk = β/N for all j �= k and some β ∈ (0, 1), an associated lift would
be w1 = 1 − β and wi = β/N for all gi which are a power 1 to N − 1 of
the circular permutation gc : (1, 2, 3, ..., N) → (N, 1, 2, ..., N − 1). These form
a closed subgroup G ⊂ PermN . But still, having p converge to the uniform
distribution over these N elements is sufficient to have the xk converge to
1/N

∑N
k=1 xk(0) for each k. Problems with the lift could arise if an element of

PermN\G appears rarely, i.e. without belonging to the set S(t) of Proposition
1 for any large T . This seems unlikely in practical situations.

In this setting, whether xk is a scalar, vector or other object of a linear
space X does not matter, it just affects the group actions. Another action allows
to apply the same group dynamics to the symmetrization of joint probability
distributions, both classical and quantum, over a finite set [3]. We now turn to
different variants of (1) for xk ∈ R.
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3.1 Consensus with Antagonistic Interactions

A variant of consensus proposed e.g. in [5] considers that agents might be
attracted to the opposite of the values of some neighbors, i.e. the dynamics
become

xk(t + 1) = akk xk(t) + ajkxj(t) (5)

with akk = 1 − ∑
j �=k |ajk| > 0, but possibly some negative ajk for j �= k.

To cover this possibility, we take G̃ the group corresponding to all permuta-
tion matrices with arbitrary sign ±1 on each component; we call this “general-
ized” permutations. This can be viewed as a particular product of the group of
permutations with the group {−1, 1}N . We then lift (5) as follows.

– Take the Birkhoff decomposition associated to the corresponding standard
consensus algorithm, where each ajk in (5) is replaced by |ajk|. This gives
nonzero weights w̃i on the gi ∈ G corresponding to permutation matrices.

– Then sequentially consider each pair (j, k) for which ajk < 0 and swap the
weights attributed to the generalized permutation matrices which are equal
up to the sign of their element (j, k).

Convergence of (5) is efficiently characterized a.o. in [6]. We just provide an
informal summary on the basis of G̃. As for standard consensus, we may generally
assume that all the elements appearing in the lift are recurrent. The generated
group G over which we get p = p̄ at convergence then depends (only) on the
group generated by the appearing elements. Three main situations can occur:

– The interaction graph is not connected.
– The component (k, k) takes the same sign in the matrices associated to all the

generated group elements. By group properties, this implies that all compo-
nents (j, j) have the same sign in all the generated group elements, provided
the interaction graph is connected. Then in terms of xk, the agents split into
two communities with opposite component values as t → ∞.

– The component (k, k) can take opposite signs in the generated group elements.
Then, thanks to group properties, for each j, k there should be an equal num-
ber of elements with negative component (j, k) as with positive component
(j, k) in the generated group G. This implies that when p converges to p̄ uni-
form over G, the corresponding xk converge to 0.

Our lift can involve many elements but still a finite number, i.e. it abstracts
away the exact values of the aj,k(t) in (5). While our framework may appear
more cumbersome than the graph analysis of [6], it can also yield more precise
results in some cases. Indeed, we can exactly cover the following example which
[6] provides as an inconclusive case of their graph-conditions-based theorem:

xk(t + 1) = 1/2 (x1(t) + x2(t)) , k = 1, 2; t even
xk(t + 1) = (−1)k/2 (x2(t) − x1(t)) , k = 1, 2; t uneven.

The dynamics can be explicitly solved and converges to x1 = x2 = 0 after
iterations t = 0, t = 1, yet the theorem of [6] cannot tell this. In terms of our
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lift, we have three recurrent elements

g1 =
(

1 0
0 1

)

; g2 =
(

0 1
1 0

)

; g3 =
(

0 −1
−1 0

)

with weights w1 = 1/2, w2(t) = 1/4 + (−1/4)t, w3(t) = 1/4 − (−1/4)t. These
weights are in fact irrelevant, we only need to compute that g1, g2, g3 generates
a 4-group element, together with g4 = −g1. We then readily conclude that the
system converges to x̄ = 1

4

∑4
i=1 gi x = 0.

At this stage we do not claim that the group lift approach is efficiently
scalable to larger problems. Yet it might suggest e.g. how to adapt the graph
analysis argument of [6] towards covering the above example.

3.2 Doubly Sub-stochastic Matrices

Consensus is a particular linear dynamics which features a one-dimensional
invariant space. In iterative maps, the most common situation is when there
is only one target invariant point. This happens with “smaller than stochastic”
A. Shifting the invariant point to x = 0, we define the following class of systems:

xk(t + 1) =
∑N

j=1 ajk(t) xj(t) with 1 ≥ ∑
j |ajk(t)| for all k, t (6)

1 ≥ ∑
k |ajk(t)| for all j, t.

Such system can be straightforwardly rewritten as consensus with (possibly
antagonistic interactions and) a virtual leader x0(t) = 0, hence proving con-
vergence is not a big issue. Again our intended contribution is more to show
that this dynamics, as well, can be cast into the class of symmetrization algo-
rithms. For simplicity of notations we describe the following assuming ajk ≥ 0
for all j, k.

Take the same group G̃ as in Sect. 3.1. We first define bjk = ajk + cjk with
cjk ≥ 0 and such that

∑N
j=1 bjk =

∑N
j=1 bkj = 1 for all k, i.e. the state matrix

associated to the bjk is doubly stochastic. Such a construction is always possible
for a sub-stochastic matrix, e.g. as follows:

1. Let a′
jk := ajk for all j, k.

2. Compute ac
k =

∑N
j=1 a′

jk and ar
k =

∑N
j=1 a′

kj for all k.
3. Since

∑
k ac

k =
∑

j,k a′
jk =

∑
k ar

k: if ac
k < 1 for some k then there exists k′

such that ar
k′ < 1, and vice versa. Else ac

k = ar
k = 1 for all k, i.e. the a′

jk

matrix is already doubly stochastic and we can stop.
4. Find ar

m = max(ar
k : ar

k < 1) and ac
n = max(ac

k : ac
k < 1). Then let bmn =

a′
mn + cmn with cmn = 1 − max(ar

m, ac
n), and bjk = a′

jk for all (j, k) �= (m,n).
5. Define a′

jk := bjk for all j, k and iterate the procedure starting again from 1.

This procedure converges to a doubly stochastic matrix. Indeed, at each iteration:
if the a′

jk are doubly sub-stochastic then also the bjk are; and the bjk matrix has
at least one more row or column whose elements sum to 1 than the a′

jk matrix.
Define by {w̃i} a lift of the dynamics associated to the standard consensus

xk(t+1) =
∑N

j=1 bjk(t)xj(t). We then sequentially go through all (j, k) for which
cjk > 0 and transform the weights as follows.
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1. Let w′
i = w̃i for all i and choose some (j, k) for which cjk > 0.

2. Denote f−
jk(m) = n such that gn is identical to gm except that the matrix

element (j, k) associated to gm has an opposite sign in gn. Then for all i for
which gi has a positive element (j, k), apply

wi = (1 − cjk
2bjk

)w′
i, wf−

jk(i)
= cjk

2bjk
w′

i.

3. Let w′
i = wi, choose a different (j, k) with cjk > 0 and iterate from point 1.

The weight modification in point 1 above preserves the total weight,
∑

i wi =∑
i w′

i. The wi remain non-negative, since cjk ≥ 0, bjk ≥ 0, ajk ≥ 0 and 1− cjk
2bjk

=
1− cjk

2cjk+2ajk
> 0. Summing up the effect on

∑
i wia(gi, ·), we see that when point

1 treats (j, k), the matrix components different from (j, k) undergo no change
while the component on (j, k) is modified:

from
∑

i∈Fj,k
w′

i =: B1 to
∑

i∈Fj,k
w′

i

(
(1 − cjk

2bjk
) − cjk

2bjk

)
=: B2,

where Fj,k ⊂ G̃ is the subset of group elements whose associated matrix have a
coefficient +1 at position (j, k). By definition of the lift, we have B1 = bjk. We
then get B2 = B1(1 − cjk

bjk
) = ajk, thus indeed the matrix that we had to model.

From there, we can go on and analyze convergence of the resulting group
dynamics. By construction, if G contains gi then also contains gf−

jk(i)
for each

(j, k) for which cjk > 0. Hence if p(t) converges to p̄ uniform over G, then the cor-
responding (j, k) elements will be zero in the matrix associated to 1

|G|
∑|G|

i=1a(gi, ·).

4 Gradient Descent and Coordinate Descent

In optimization, the gradient descent method consists in iteratively searching for
min f(x) by applying

x(t + 1) = x(t) − α gradx f(x(t)), α > 0, x ∈ R
N . (7)

For a local quadratic expansion f = 1
2xT Ax around the minimum, A sym-

metric positive definite, approximating (7) by a linear map, there is a trivial
symmetrization viewpoint on the resulting x(t + 1) = x(t) − αAx(t).

In the eigenbasis of A, (7) becomes xk(t + 1) = (1 − α ak)xk(t) with ak

the associated eigenvalues. For stable algorithms, (1 − α ak) ∈ (−1, 1) such that
the associated state transition matrix is (diagonal and) doubly substochastic.
A simplified version of Sect. 3.2 then rewrites this iteration as symmetrization
over the group G represented by diagonal N × N matrices with elements ±1.
This abstract definition does not require to actually compute the eigenbasis –
only assume it exists and the ak are small enough. Yet this viewpoint must be
adapted to address the following.
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4.1 Coordinate Descent

Coordinate descent selects some k ∈ {1, 2, ..., N} at each step and applies gradi-
ent descent to minimize f(x) along a line where only xk varies, assuming fixed
all xj with j �= k. This comes closer to a (possibly stochastically) time-varying
map as in consensus. It links to symmetrization as follows, e.g. for N = 2: define

y =
(√

a1 0
0

√
a2

) (
cos θ sin θ

− sin θ cos θ

)

x

such that f(x) = 1
2 xT Ax = 1

2 yT y. This simplifies the cost function, but coor-
dinate descent now implies iterative optimization along two arbitrary lines, of
slopes tan φ1 = tanθ a2/a1 and tanφ2 = −cotanθ a2/a1. In general those lines
are not orthogonal, but f will still be quadratic along each of them. It is not
difficult to see that we can then write, if k ∈ {1, 2} is chosen at time t:

y(t + 1) = (1 − λ) y(t) + λ (reflection of y(t) around axis of slope cotanφk)

= (1 − λ) y(t) + λ

(− cos 2φk sin 2φk

sin 2φk cos 2φk

)

y(t),

for some λ ∈ (0, 1). In general, (1 − λ) + λ(cos + sin) > 1 and the associated
transition matrix is not sub-stochastic. Nevertheless, we were able to write this
as symmetrization with respect to the 8-element group G =

{

g±
1 = ±

(
1 0
0 1

)

, g±
2 = ±

(
1 0
0 −1

)

, g±
3 = ±

(
0 1
1 0

)

, g±
4 = ±

(
0 1

−1 0

)}

.

Explicitly, y(t + 1) = (w1+g+1 + w2−g−
2 + w2+g+2 + w3−g−

3 + w3+g+3 ) y(t) with

w1+ = 1 − λ; w2− = λ ( 14 + cosφk

2 ); w3+ = λ ( 14 + sinφk

2 )

w2+ = λ ( 14 − cosφk

2 ); w3− = λ ( 14 − sinφk

2 ).

By construction
∑

gi∈G wi = 1. However we do not have wi > 0 for all i. This
requires to slightly generalize the class of dynamics accepted on the group. In
the present case:

The state transition matrix for the weights pi(t) on the group G is symmetric
and doubly stochastic, up to having possibly negative off-diagonal components.
Hence it still features p̄ as a stationary point. Its convergence is not as straight-
forward to analyze as standard consensus. However thanks to symmetry, in a
time-varying context it suffices for convergence to examine the common Lya-
punov function V (t) =

∑
i (pi(t))2.

For this particular example, i.e. a two-dimensional x, the state transition
matrices for the pi(t) further admit an efficient tensor product decomposition
such that convergence conditions can be easily formalized. At this point we can-
not claim that the symmetrization framework is efficient to study convergence
for high-dimensional x. Yet, the possibility to model the system as symmetriza-
tion, with generalized (possibly negative) weights, could suggest a way to include
coordinate descent in versatile theoretical formalizations that exploit the sym-
metrization structure.
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5 Conclusion

We have abstractly defined a “symmetrization” class of linear iterative maps.
This class comprises a great variety of algorithms, as illustrated in [3]. The
present paper highlights some further elements of the class. Although each
instance encountered so far, admits a relatively easy specific convergence proof,
the common symmetrization framework allows to treat them all at once, modulo
a finite group analysis step. In the future we hope that further properties of this
symmetrization class can be exploited in general analyzes.

Acknowledgments. I thank F.Ticozzi and L.Mazzarella for sharing ideas on the
symmetrization approach and R.Sepulchre for encouraging to address these particular
applications.
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Abstract. Scaled Bregman distances SBD have turned out to be useful
tools for simultaneous estimation and goodness-of-fit-testing in paramet-
ric models of random data (streams, clouds). We show how SBD can
additionally be used for model preselection (structure detection), i.e. for
finding appropriate candidates of model (sub)classes in order to support
a desired decision under uncertainty. For this, we exemplarily concentrate
on the context of nonlinear recursive models with additional exogenous
inputs; as special cases we include nonlinear regressions, linear autore-
gressive models (e.g. AR, ARIMA, SARIMA time series), and nonlinear
autoregressive models with exogenous inputs (NARX). In particular, we
outline a corresponding information-geometric 3D computer-graphical
selection procedure. Some sample-size asymptotics is given as well.

Keywords: Scaled Bregman distances · Model selection · Nonlinear
regression · AR · SARIMA · NARX · Autorecursions · 3D score surface

1 Introduction and Results

Especially within the last two decades, some distances (divergences, (dis)similarity
measures, discrepancy measures) between probability distributions have been suc-
cessfully used for (minimum distance) parameter estimation and goodness-of-fit
testing. Amongst them, let us mention exemplarily the φ-divergences of Csiszar
[5] and Ali & Silvey [1], as well as the classical Bregman distances (see e.g. Pardo
& Vajda [12]) which also include the density power divergences of Basu et al. [2].
Some comprehensive coverages can e.g. be found in Pardo [11] and Basu et al. [3].
Recently, Stummer and Vajda [15] (cf. also Stummer [14]) introduced the con-
cept of scaled Bregman distances (SBD), which cover all the above-mentioned
distances as special cases; see Kißlinger & Stummer [6,7] for some applications
of SBD to simultaneous parameter estimation and goodness-of-fit investigations,
and Kißlinger & Stummer [8] for utilizations in robust change point detections. In
this paper, we would like to indicate how SBD can be employed for model search
c© Springer International Publishing Switzerland 2015
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within a context which covers many widely used intertemporal respectively inter-
spatial models:

Let k ∈ Z ∪ {−∞} be either an integer or −∞. For the set τ := {m ∈ Z :
m ≥ k} let the generation of the m-th data point be represented by the random
variable Xm which takes values in some space X 1, e.g. X is a finite or infinite
set/space of d-dimensional vectors or X is a set/space of special functions. We
consider collections (Xm,m ∈ τ) of data which are autorecursions in the sense of

Fγm+1

(
m + 1,Xm+1,Xm,Xm−1, . . . , Xk, Zk−, am+1, am, am−1, . . . , ak

)
= εm+1,

m ≥ k, (1)

where (εm+1)m≥k is a family of independent and identically distributed (i.i.d.)
random variables on some space Y 2 having parametric distribution Qθ (θ ∈ Θ).
The nonlinear function F is parametrized by γm+1 ∈ Γ ; notice that Γ and
Θ can be any sets but typically consist of numbers or vectors (of numbers).
Furthermore, the (ak)m≥k are independent variables which we assume to be non-
stochastic (deterministic). For a comfortable unified treatment of subclasses with
different lags, we use the “backlog-input” Zk− to denote additional input on X
and a before k needed to get the recursion started. Technically, without loss of
generality we suppose zero expectation EQθ

[εm+1] = 0 (m ≥ k). Moreover, for
k �= −∞ we assume the initial data Xk as well as the backlog-input Zk− to be
deterministic, for the sake of brevity; the case of random Xk, Zk− can be treated
analogously.

Notice that in (1), the recursive appearance of the “next” data point Xm+1 is
given only implicitly; this suffices for our purposes. However, in most applications
one can equivalently isolate Xm+1 from the “other input” in terms of, say,

Xm+1 = g
(
fγm+1(m + 1, Xm, Xm−1, . . . , Xk, Zk−, am+1, am, am−1, . . . , ak), εm+1

)

m ≥ k, (2)

for some appropriate functions fγm+1 and g. This is in particular helpful for
explicit forecasting, with which we do not deal here; the outer function g(·, ·)
often describes a (possibly vector-component wise) addition g(z1, z2) = z1 + z2
or (possibly vector-component wise) multiplication g(z1, z2) = z1 · z2, or some
weighted variant thereof; in the light of this, (εm+1)m≥k can be interpreted as
“randomness-driving innovations (noise)”.

The general context (1) allows for a broad spectrum of applications; for
instance, the following well-known, very widely used models are covered:

(I) nonlinear regressions with deterministic independent variables:

Xm+1 = fγm+1(am+1, am, am−1, . . . , ak, Zk−) + εm+1, m ≥ k, (3)

1 Equipped with some σ-algebra A .
2 Equipped with some σ-algebra B.
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with the special case of fixed lag r ∈ N0 in the independent variables

Xm+1 = fψ(am+1, . . . , am−r+1) + εm+1, m ≥ k,

where all necessary aj with j < k are interpreted as part of Zk−. The most
prominent context is linear regression where fψ is an affine-linear function
fψ(am+1, am, am−1, . . . , am−r+1) = ψ−1 + ψ0 · am+1 + . . . + ψr · am−r+1 for
some vector of real numbers ψ = (ψ−1, ψ0, . . . , ψr) with ψr �= 0; altogether,
one has constant parameter vector γm+1 = (r, ψ) = (r, ψ−1, ψ0, . . . , ψr) for
all m ≥ k. The case r = 0 gives Xm+1 = ψ−1 + ψ0 · am+1 + εm+1 (m ≥ k).

(II) AR(r): univariate linear autoregressive models (time series) of order r ∈ N:

Xm+1 = fψ(Xm,Xm−1, . . . , Xm−r+1) + εm+1, m ≥ k, (4)

where fψ(Xm,Xm−1, . . . , Xm−r+1) := ψ1 · Xm + . . . + ψr · Xm−r+1 for
some vector of real numbers ψ = (ψ1, . . . ψr) with ψr �= 03. All necessary
Xj with j < k are interpreted as part of Zk−. In terms of the backshift
operator B defined by B Xm := Xm−1, the corresponding r-polynomial
ψ1 · B + ψ2 · B2 + . . . + ψr · Br, and the identity operator 1 given by
1Xm := Xm, the Eq. (4) can be rewritten as

(
1 −

r∑

j=1

ψjB
j
)
Xm+1 = εm+1, m ≥ k,

which is a special case of (1) with Fγm+1

(
Xm+1,Xm,Xm−1, . . . , Xk, Zk−

)
=

(
1 − ∑r

j=1 ψjB
j
)
Xm+1 with constant parameter vector γm+1 = (r, ψ) for

all m ≥ k. As an explicit example, the AR(2) amounts to

Xm+1 − ψ1 · Xm − ψ2 · Xm−1 = εm+1, m ≥ k.

We also define AR(0) by Xm+1 = εm+1 (m ≥ k).
(III) ARIMA(r, d, 0): linear autoregressive integrated models (time series) of

order r ∈ N0 and d ∈ N0. By definition, this means that the transformed
sequence (Ym+1)m≥k := ((1−B)dXm+1)m≥k is an AR(r) model; notice that
for d = 1 one has Ym+1 := Xm+1 − Xm and for general d, Ym+1 is nothing
but the d-fold backward difference built from the original-data extraction
{Xm+1, . . . , Xm−d+1}. Hence, an ARIMA(r, d, 0) model is described by

(
1 −

r∑

j=1

ψjB
j
)(

1 − B
)d

Xm+1 = εm+1, m ≥ k; (5)

where all necessary Xj with j < k are interpreted as part of Zk−. With
the help of the binomial expansion (1 − B)d = 1 +

∑d
j=1

(
d
j

)
(−1)j · Bj

3 Notice that, here, for the definition of AR models we do not assume the stationarity
of (Xm)m≥k.
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one can easily rewrite (5) in terms of (2) with corresponding function fγ

with parameter vector γ = (r, d, ψ1, . . . , ψr) as well as g(z1, z2) = z1 + z2.
Clearly, ARIMA(r, 0, 0) coincides with AR(r), and e.g. ARIMA(2, 1, 0) is
given by

Xm+1 = (1 + ψ1) · Xm + (ψ2 − ψ1) · Xm−1 − ψ2 · Xm−2 + εm+1, m ≥ k,

which formally looks like an AR(3) model with some special structure on
the corresponding parameter vector ψ = (ψ1, ψ2, ψ3) := (1 + ψ1, ψ2 −
ψ1,−ψ2).

(IV) SARIMA(r, d, 0)(R, D, 0)s: linear seasonal autoregressive integrated mod-
els (time series) of order d ∈ N0 of non-seasonal differencing, order r ∈ N0

of the non-seasonal AR-part, length s ∈ N0 of a season, order D ∈ N0

of seasonal differencing and order R ∈ N0 of the seasonal AR-part. This
means

(
1−

r∑

j=1

γjB
j
)(

1−
R∑

i=1

γiB
s·i

)(
1−B

)d (
1−Bs

)D

Xm+1 = εm+1, m ≥ k,

(6)
where all necessary Xj with j < k are interpreted as part of Zk−. One can
straightforwardly rewrite (6) equivalently in terms of (2) with a correspond-
ing function fγ and g(z1, z2) = z1 + z2, too. Notice that SARIMA(r, d, 0)
(0, 0, 0)0 is the same as ARIMA(r, d), and e.g. SARIMA(0, 1, 0)(0, 1, 0)365

is given by

Xm+1 = Xm + Xm−364 − Xm−365 + εm+1, m ≥ k .

(V) NARX: nonlinear autoregressive models with exogenous input:

Xm+1 = fγ

(
Xm,Xm−1, . . . , Xk, Zk−, am+1, am, am−1, . . . , ak

)
+ εm+1 , m ≥ k,

with some nonlinear function fγ (including a fixed lag for the involved
variables) and deterministic independent variables (am)m≥k. Accordingly,
(1) holds with Fγ(Xm+1, . . .) = Xm+1 − fγ(. . .). As a special case, one
gets nonlinear autoregression models of order r in the sense that (4) for
a nonlinear function fγ holds. Furthermore, (3) is covered as well. For a
survey on NARX methods in time, frequency and spatio-temporal systems,
see Billings [4].

This finishes the overview of covered special cases of (1) which are widely
applicable. Within this underlying general autorecursion framework (1), we intro-
duce stepwise a universal information-geometric toolbox for model-search, in
the following. To start with, let us first recall that under a4 correct model
((Fγ0

m+1
)m≥k, Qθ0) the sample (Xk+N ,Xk+N−1, . . .) behaves in a way such that

the derived quantities
{

Fγ0
k+i

(
k + i,Xk+i,Xk+i−1, . . . , Xk, Zk−, ak+i, ak+i−1, . . . , ak

)}

i=1,...,N

4 The use of the indefinite article reflects the possible non-uniqueness.
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behave like a sample of size N from an iid sequence under the distribution Qθ0 .
This means that under a correct model the corresponding empirical distribution

P�0

N [ · ] :=
1
N

·
N∑

i=1

δ
F

γ0
k+i

(
k+i,Xk+i,Xk+i−1,...,Xk,Zk−,ak+i,ak+i−1,...,ak

)[·] (7)

converges to Qθ0 as the sample size N tends to ∞, and thus

Dα,β(P�0

N , Qθ0) −−−−→
N→∞

0 (8)

for a very broad spectrum D := {Dα,β(·, ·) : α ∈ [α, α], β ∈ [β, β]} of dis-
tances (divergences, (dis)similarity measures, discrepancy measures) Dα,β(P,Q)
between probability distributions P ,Q. In (7), we have used �0 := (γ0

k+i)i≥1 and
δy for Dirac’s one-point distribution at y (i.e. δy[A] = 1 iff y ∈ A and δy[A] = 0
else); thus, P�

N is nothing else but the histogram-according probability distrib-
ution where the probability mass function (pmf) p�

N corresponds to the relative
frequencies5

p�
N (y) =

1
N

· #
{

i ∈ {1, . . . , N} :

Fγk+i

(
k + i,Xk+i,Xk+i−1, . . . , Xk, Zk−, ak+i, ak+i−1, . . . , ak

)
= y

}
(9)

for all y ∈ Y . As an example, for an AR(2) model the pmf (9) simplifies to

p�
N (y) =

1
N

· #
{

i ∈ {1, . . . , N} : Xk+i − γ1 · Xk+i−1 − γ2 · Xk+i−2 = y
}

.

Hence, in the light of (8), preselection is to find “good” candidates ((Fγm+1)m≥k,
Qθ) for an unknown correct model ((Fγ0

m+1
)m≥k, Qθ0) in the sense that they fulfill

Dᾰ,β̆(P�
N , Qθ) ≈ 0 for large enough sample size N, (10)

for some arbitrarily fixed probability distance Dᾰ,β̆(·, ·) ∈ D , (ᾰ, β̆) ∈ [α, α] ×
[β, β]. Because of the unavoidable imprecision ≈ in (10), the amount of prese-
lected models may be quite large; to narrow this down it makes sense to replace
the criterion (10) by

Dα,β(P�
N , Qθ) ≈ 0 for large enough sample size N

and all (α, β) ∈ [α, α] × [β, β]. (11)

Accordingly, we propose the following procedure which we call universal model-
search by probability distance (UMSPD): choose (Fγm+1)m≥k from a principal
model class (according to fundamental insights from the situation-based context)

5 One can also take variants which (according to some principle) “synthetically un-
zero-ize” the empirical probability mass of non-appearing outcomes.
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– e.g. one out of (I) to (V) – and choose Qθ from some prefixed principal class of
parametric distributions (e.g. Gaussian distributions, binomial distributions6),
and find γm+1 ∈ Γ (m ≥ k) as well as θ ∈ Θ such that (11) holds where the con-
crete data are plugged into P�

N . To implement this graphically, one can plot the
corresponding 3D surface S := {(α, β, Dα,β(P�

N , Qθ) : α ∈ [α, α], β ∈ [β, β]}; if
(the z-coordinate of) S is (over a longer period of sampling) smaller than some
threshold, say T 7, then the model ((Fγm+1)m≥k, Qθ) is preselected in the sense
of short-listed. Since the concrete data set was realized with a certain probabi-
lity, the threshold should be taken in a way to reflect the preselection decision
with appropriately high probabilistic confidence. Of course, the search for good
γm+1 ∈ Γ (m ≥ k) as well as θ ∈ Θ can be operationalized in a fast interactive
(semiautomatic) way, especially for the many models which have constant para-
meter γm+1 ≡ γ, or γm+1 = h(m + 1, γ). The advantage of this approach is that
after the preselection process one can continue to work with Dα,β(·, ·) in order
to perform amongst all preselected candidate models a statistically sound infer-
ence in terms of simultaneous exact parameter-estimation (of (γm+1)m≥k, θ))
and goodness-of-fit. With UMSPD, we have settled these tasks approximately
(with maybe good precision already).

Two issues must be discussed particularly: (VI) the choice of the distance
family D , and (VII) the choice of the threshold T . Concerning (VI), we pro-
pose to use Dα,β(P�

N , Qθ) := Bφα
(P�

N , Qθ ||Mβ)8 derived from the following
general concept of Stummer & Vajda [15] (see also Stummer [14], Kißlinger &
Stummer [6]):

Definition 1. Let φ : (0,∞) 
→ IR be a finite convex function, continuously
extended to t = 0, with right-hand derivative φ′

+. Furthermore, let P,Q be two
probability distributions on Y (with |Y | ≥ 2) and M an arbitrary distribution
(measure) on Y having densities p = dP

dλ , q = dQ
dλ , m = dM

dλ w.r.t. a σ-finite
distribution λ. Then the Bregman distance of P,Q scaled by M is defined by

0 ≤ Bφ (P,Q ||M)

=
∫

Y

[

φ

(
p(y)
m(y)

)

− φ

(
q(y)
m(y)

)

− φ′
+

(
q(y)
m(y)

)

·
(

p(y)
m(y)

− q(y)
m(y)

)]

dM(y)

(12)

=
∫

Y

[

m(y)·
{

φ

(
p(y)
m(y)

)

− φ

(
q(y)
m(y)

)}

− φ′
+

(
q(y)
m(y)

)

·(p(y) − q(y))
]

dλ(y).

(13)

6 In the sense of putting probability mass
(

c
j

)
θj (1 − θ)c−j (θ ∈]0, 1[) on the j-th

point yj of a finite set Y = {y1, . . . , yc}.
7 Which may vary in α, β.
8 Notice that P�

N is a discrete distribution and hence the reference distribution λ is
typically the counting distribution (attributing the value 1 to each possible outcome);
if Qθ has a different reference distribution λ of completely different type (e.g. Qθ is
a classical (absolutely) continuous distribution, say Gaussian, and accordingly λ is
the Lebesgue measure), then one can e.g. smooth the histogram and hence P�

N , or
“discretize” Qθ by appropriately partitioning its support.
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To guarantee the existence of the integrals in (12), (13) (with possibly infinite
values), the zeros of p, q,m have to be combined by proper conventions; if Y is
an infinite space, the integrals may take the infinite value ∞.

If p(y) > 0, q(y) > 0 for all y ∈ X and the function φ is convex on [0,∞),
continuous on (0,∞) as well as strictly convex at 1 with φ(1) = 0, then (13)
leads to the special case (cf. Stummer [14], Stummer and Vajda [15])

Bφ (P,Q ||Q) =
∫

Y

q(y) · φ

(
p(y)
q(y)

)

dλ(y) =: DCAS
φ (P,Q) (14)

which is nothing but the well-known Csiszar-Ali-Silvey φ-divergence between P
and Q [1,5]; for φ(t) = φ∼

1 (t) := t log t + 1 − t ≥ 0 (t > 0) one ends up with
the KL divergence DCAS

φ∼
1

(P,Q), for φ(t) = φ∼
0 (t) := − log t + t − 1 ≥ 0 with the

reversed KL divergence DCAS
φ∼
0

(P,Q) = DCAS
φ∼
1

(Q,P ), and for φ(t) = φ∼
α (t) :=

tα−1
α(α−1) − t−1

α−1 ≥ 0 (α ∈ IR\{0, 1}) with the power divergences DCAS
φ∼

α
(P,Q) (cf.

Liese & Vajda [9], Read & Cressie [13]) with Pearson’s chi-square divergence as
the most prominent special case α = 2. Moreover, Bφ (P,Q ||1) =: DCBD

φ (P,Q)
corresponds to the classical Bregman distances where M = 1 stands for the
unscaled case m(x) ≡ 1 (see e.g. Pardo & Vajda [12] for finite probability spaces,
and e.g. Nock et al. [10] for applications in the framework of universal nearest
neighbor classification); the special case DCBD

φ∼
α

(P,Q) coincides with the density
power divergences of Basu et al. [2].

Returning back to the central model-search task, for the rest of this paper we
confine ourselves to the general context of finite state space Y with |Y | < ∞,
φ = φα and Mβ = Wβ(P�

N , Qθ) in the sense that mβ(y) = wβ(p�
N (y), qθ(y)) ≥ 0

for some β-family of “scale-connectors” wβ : [0, 1] × [0, 1] 
→ [0,∞] between the
probability mass functions p�

N (y) and qθ(y). Accordingly, one obtains the new
class of model-preselection scores Dα,β(P�

N , Qθ) := Bφα
(P�

N , Qθ ||Wβ(P�
N , Qθ))

in terms of the scaled Bregman distances9,10

0 ≤ Bφα
(P�

N , Qθ ||Wβ(P�
N , Qθ))

=
∑

y∈Y

wβ(p�
N (y), qθ(y)) ·

[

φα

(
p�

N (y)
wβ(p�

N (y), qθ(y))

)

− φα

(
qθ(y)

wβ(p�
N (y), qθ(y))

)

−φα
′
+

(
qθ(y)

wβ(p�
N (y), qθ(y))

)

·
(

p�
N (y)

wβ(p(y), qθ(y))
− qθ(y)

wβ(p�
N (y), qθ(y))

)]

. (15)

9 Choosing the counting distribution for λ; one can use (15) also for non-probability
contexts (e.g. general nonnegative vectors) with

∑
x∈X p(x) �= 1,

∑
x∈X q(x) �= 1.

10 In case of w(u, v) = w(v, u) for all (u, v), one can easily produce symmet-
ric preselection-score versions by means of either Bnew

φ,W (P, Q) + Bnew
φ,W (Q, P ),

max{Bnew
φ,W (P, Q) , Bnew

φ,W (Q, P )}, min{Bnew
φ,W (P, Q) , Bnew

φ,W (Q, P )}; this also works
for φ(t) = φ1(t) together with arbitrary scale-connectors w.
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The corresponding 3D preselection-score surface11 S := {(α, β, Bφα
(P�

N ,
Qθ||Mβ) : α ∈ [α, α], β ∈ [β, β]} may look like the one in Fig. 1(a). The scale
connector family (wβ)β may be chosen in a way to favor those models for which
the data-derived quantities do not appear as outliers12 and inliers13 in a proba-
bilistic sense; for instance, for the choice φα(t) = φ∼

2 (t) we get from (15)

Bφ∼
2
(P�

N , Qθ ||Wβ(P�
N , Qθ)) =

∑

y∈Y

(p�
N (y) − qθ(y))2

wβ(p�
N (y), qθ(y))

;

hence, the scale connector wβ(u, v) should be small for (u, v) “close” to (1, 0)
(outliers) at least for some β and also small for (u, v) “close” to (0, 1) (inliers)
at least for some β (and maybe reflect also further features of situation-based
importance). For example, this can be achieved with the choice wβ(u, v) =
w∼

β (u, v) := uβ · v1−β (β ∈ [0, 1], with β = 0 corresponding to the Csiszar-
Ali-Silvey φα-divergences); see Fig. 1(b), (c) for exemplary parameter choices.
Other scale connectors can be found in Kißlinger & Stummer [7,8]. Finally, con-
cerning the above-mentioned task (VII) we exemplarily show how to quantify
the above-mentioned preselection criterion “the 3D surface S should be smaller
than a threshold T” by some sound asymptotic analysis for the above special
choices φα(t) = φ∼

α (t) and wβ(u, v) = w∼
β (u, v). The cornerstone is the following

assertion under the true model ((F 0
γm+1

)m≥k, Qθ0) to be traced:

Theorem 1. Let Qθ0 be a finite discrete distribution with c := |Y | ≥ 2 possible
outcomes and strictly positive densities qθ0(y) > 0 for all y ∈ Y . Then for each
α > 0, α �= 1 and each β ∈ [0, 1[ the random scaled Bregman power distance

2N · Bφ∼
α

(
P�0

N , Qθ0 | (P�0
N )β · Q1−β

θ0

)
=: 2N · B(α, β; �0, θ0;N)

is asymptotically chi-squared distributed in the sense that

2N · B(α, β; �0, θ0;N) L−−−−→
N→∞

χ2
c−1.

In terms of the corresponding χ2
c−1-quantiles, one can derive the threshold T

which the 3D preselection-score surface S has to (partially) exceed in order to
believe with appropriate level of confidence that the investigated model
((Fγm+1)m≥k, Qθ) is not good enough to be preselected. The proof of Theo-
rem (1) will appear elsewhere, as part of a complete treatment for simultaneous
model preselection, parameter estimation and goodness-of-fit tests for general φ
and w.

11 Goodness-of-approximation score surface.
12 Quantities which modelwise should be rare but actually appear much more often.
13 Quantities which modelwise should be very frequent but actually appear much less

often.
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Fig. 1. (a): 3D score surface for model preselection; (b), (c): scale-connectors
w∼

β (u, v) = uβ · v1−β
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Abstract. In the context of sensor networks, gossip algorithms are a
popular, well established technique, for achieving consensus when sensor
data are encoded in linear spaces. Gossip algorithms also have several
extensions to non linear data spaces. Most of these extensions deal with
Riemannian manifolds and use Riemannian gradient descent. This paper,
instead, studies gossip in a broader CAT (κ) metric setting, encompass-
ing, but not restricted to, several interesting cases of Riemannian man-
ifolds. As it turns out, convergence can be guaranteed as soon as the
data lie in a small enough ball of a mere CAT (κ) metric space. We
also study convergence speed in this setting and establish linear rates of
convergence.

1 Introduction

In the field of distributed algorithms, the consensus problem has attracted much
attention. Whether in database management [Bur06], clock synchronization
[SG07] or signal estimation in wireless sensor networks [SRG08]. Consider a net-
work of sensors in which each sensor is able to make local measurements. Because
of resource constraints, each sensor can only communicate with its neighbors
in terms of network topology. The sensors seek to reach a consensus on their
measurements. If the measurement data can be encoded in a vector space (for
example temperatures or velocities); gossip algorithms [BGPS06] are known effi-
cient candidates that converge with exponential speed towards a consensus state,
assuming the network is connected.

Prior Work. There has been significant work in order to extend the gossip
algorithms to cases where data cannot be encoded in a Euclidean space (e.g.
space of 3-D rotations, Grassmannians...). Recently [Bon13] used the framework
of stochastic gradient descent to cast the asynchronous consensus problem as a
problem of minimizing a cost function (the sum of pairwise distances squared);
the author then proposes a gossip algorithm analogous to that of [BGPS06] in the
case of manifolds of nonpositive curvature. In [BJ] we have provided an adaption
of the Random Pairwise Gossip (RPG) algorithm [BGPS06] to the purely metric
setting of CAT (0) spaces; convergence with linear rate was established.

Paper Contribution. In this paper, we extend the previous result to the case
of positive curvature, the CAT (κ) metric space with κ > 0. The main result is
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 702–709, 2015.
DOI: 10.1007/978-3-319-25040-3 75
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that provided the initial set of data is located inside a compact of sufficiently
diameter, we can ensure the same results, (convergence at linear rate) as the
nonpostive curvature case.

2 Framework

2.1 Notation

Assume V is some finite set. We denote by P2(V ) the set of pairs of elements
in V : P2(V ) = {{v, w} : v �= w}. Notice that, by definition, for v �= w, {v, w} =
{w, v} whereas (v, w) �= (w, v). Throughout the paper, M will denote a metric
space, equipped with metric d. Associated with any subset S ⊂ M, we define
its diameter diam(S) = sup{d(s, s′) : s, s′ ∈ S}. We also define (closed) balls
B(x, r) = {y ∈ M : d(x, y) ≤ r}. Random variables are denoted by upper-case
letters (e.g., X, . . . ) while their realizations are denoted by lower-case letters
(e.g. x, . . . ) Without any further notice, random variables are assumed to be
functions from a probability space Ω equipped with its σ-field F and probability
measure P; x = X(ω) denotes the realization associated to ω ∈ Ω. For any set
S and any subset A, δ{A} denotes the indicator function that takes value 1 on
A and 0 otherwise.

2.2 Network

We consider a network of N agents represented by a graph G = (V,E), where
V = {1, . . . , N} stands for the set of agents and E denotes the set of avail-
able communication links between agents. A link e ∈ E is given by a pair
{v, w} ∈ P2(V ) where v and w are two distinct agents in the network that
are able to communicate directly. Note that the graph is assumed undirected,
meaning that whenever agent v is able to communicate with agent w, the recipro-
cal communication is also assumed feasible. This assumption makes sense when
communication speed is fast compared to agents movements speed. When a com-
munication link e = {v, w} exists between two agents, both agents are said to
be neighbors and the link is denoted v ∼ w. We denote by N (v) the set of all
neighbors of the agent v ∈ V . The number of elements in N (v) is referred to as
the degree of v and denoted deg(v).

2.3 Time

As in [BGPS06], we assume that the time model is asynchronous, i.e. that each
agent has its own Poisson clock that ticks with a common intensity λ (the clocks
are identically made), and moreover, each clock is independent from the other
clocks. When an agent clock ticks, the agent is able to perform some compu-
tations and wake up some neighboring agents. This time model has the same
probability distribution than a global single clock ticking with intensity Nλ and
selecting uniformly randomly a single agent at each tick. This equivalence is
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described, e.g. in [BGPS06]. From now on, we represent time by the set of inte-
gers: for such an integer k, time k stands for the time at which the kth event
occurred.

2.4 Communication

At a given time k, we denote by Vk the agent whose clock ticked and by Wk the
neighbor that was in turn awaken. Therefore, at time k, the only communicating
agents in the whole network are Vk and Wk. A single link is then active at each
time, hence, at a given time, most links are not used. The previously described
time model implies that (Vk,Wk)’s are independent and identically distributed.

It is going to turn out convenient to consider directly the link {Vk,Wk},
forgetting which node was the first to wake up and which node was second. In
this case P[{Vk,Wk} = {v, w}] is of course symmetric in (v, w). One has:

P[{Vk,Wk} = {v, w}] =

{
1
N ( 1

deg(v) + 1
deg(w) ) if v ∼ w

0 otherwise

The communication framework considered here is standard [BGPS06].

2.5 Data

Each node v ∈ V stores data represented as an element xv belonging to some
space M. Initially each node v has a value xv(0) and X0 = (x1(0), . . . , xN (0))
is the tuple of initial values of the network. We focus on iterative algorithms
that tend to drive the network to a consensus state; meaning a state of the form
X∞ = (x∞, . . . , x∞) with: x∞ ∈ M. We denote by xv(k) the value stored by the
agent v ∈ V at the k-th iteration of the algorithm, and Xk = (x1(k), . . . , xN (k))
the global state of the network at instant k. The general scheme is as follows:
network is in some state Xk−1; agents Vk and Wk wake up, communicate and
perform some computation to lead the network to state Xk.

3 CAT (κ) Metric Spaces

3.1 Preliminary Definitions

Definition 1 (Geodesic, Segments). A path c : [0, l] → M, l ≥ 0 is said
to be a geodesic if d(c(t), c(t′)) = |t − t′|, for all (t, t′) ∈ [0, l]2; x = c(0) and
y = c(1) are the endpoints of the geodesic and l = d(x, y) is the length of the
geodesic. The image of c is called a geodesic segment with endpoints x and y. If
there is a single segment with endpoints x and y, it is denoted [x, y].

Definition 2 (Midpoint). The midpoint of segment [x, y] is denoted
〈

x+y
2

〉
,

it is defined as the unique point m such that d(x,m) = d(y,m) = d(x, y)/2.
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In what follows we also use notation: Dκ = π√
κ

and: rκ = Dκ

2 .
Convexity can have several meaning in the context of metric spaces (cf., e.g.

[Cha06, p.403]).

Definition 3 (Convexity). A subset S of M is said convex when for every
couple of points (x, y) ∈ S2, every geodesic segment γ joining x and y in (M, d)
is such that γ ⊂ S.

3.2 The CAT (κ) Inequality

Definition 4 (CAT (κ) Inequality). Assume (M, d) is a metric space and Δ =
(c0, c1, c2) is a geodesic triangle with vertices p = c0(0), q = c1(0) and r = c2(0)
and with perimeter strictly less than 2Dκ. Let Δ̄ = (p̄, q̄, r̄) denote a comparison
triangle in M2

κ. Δ is said to satisfy the CAT (κ) inequality if for any x = c0(t)
and y = c2(t′), one has:

d(x, y) ≤ d̄(x̄, ȳ)

where x̄ is the unique point of [p̄, q̄] such that d(p, x) = d̄(p̄, x̄) and ȳ on [p̄, r̄]
such that d(p, y) = d̄(p̄, ȳ).

Definition 5 (CAT (κ) Metric Space). A metric space (M, d) is said CAT (κ)
if every geodesic triangle of M satisfies the CAT (κ) inequality.

3.3 Further Proprieties of CAT (κ) Spaces

Proposition 1 ([BH99] [prop. II.1.4]). Let M denote a CAT (κ) metric
space.

1. If x and y in M are such that d(x, y) < Dκ, there exists a unique geodesic
[x, y] joining them.

2. For any x ∈ M, the ball Bx,r with r < rκ is convex.

For notational convenience, define the functions: Cκ(t) = cos(
√

κt), Sκ(t) =
sin(

√
κt)√

κ
, χκ(t) = 1 − Cκ(t).

4 Algorithm

At each count of the virtual global clock one node v is selected uniformly ran-
domly from the set of agents V ; the node v then randomly selects a node w from
N (v). Both nodes v and w then compute and update their value to 〈xv+xw

2 〉.
Remark 1. Please note that given two points x, y ∈ M, their midpoint is not
necessarily well-defined when κ > 0. However if d(x, y) < Dκ then according
to a result in CAT (κ) metric space [BH99, p.160] their midpoint exists and is
unique. If one can ensure that the convex hull of the initial set of points is of
diameter < Dκ, then by convexity the points will remain in that hull and the
algorithm will be well defined.
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Algorithm Random Pairwise Midpoint
Input: a graph G = (V, E) and the initial nodes configuration Xv(0), v ∈ V
for all k > 0 do

At instant k, uniformly randomly choose a node Vk from V and a node Wk uni-
formly randomly from N (Vk).
Update:

XVk(k) =
〈

XVk
(k−1)+XWk

(k−1)

2

〉

XWk(k) =
〈

XVk
(k−1)+XWk

(k−1)

2

〉

Xv(k) = Xv(k − 1) for v �∈ {Vk, Wk}
end for

5 Convergence Results

In order to study convergence we recall the following assumptions, already
explained in Sect. 2.

Assumption 1.

1. G = (V,E) is connected
2. (Vk,Wk)k≥0 are i.i.d random variables, such that:

(a) (Vk,Wk) is independent from X0, . . . , Xk−1, (V0,W0), . . . , (Vk−1,Wk−1),
(b) P[{V0,W0} = {v, w}] = 1

N (deg−1(v) + deg−1(w))δ{v ∼ w}
3. κ > 0
4. (M, d) is a complete CAT (κ) metric space.
5. diam({Xv(0) : v ∈ V }) < rκ

We are ensured that Algorithm Random Pairwise Midpoint is well-defined.
Since, by convexity of balls with radius smaller than rκ [BH99, p.167] points
will remain within distance less than rκ of each other. Moreover midpoints are
well-defined and unique since rκ < Dκ.

We now define the disagreement function:

Definition 6. For x ∈ Mn define:

– Δκ(x) = 1
2

∑
v∼w

{v,w}∈E

1
N (deg(v)−1 + deg(w)−1)χκ(d(xv, xw))

– σ2
κ(x) = 2

N

∑
{v,w}∈P2(V ) χκ(d(xv, xw))

One can remark that for all k ≥ 0, (v, w) ∈ V 2: σ2
κ(Xk) ≥ 0 and Δκ(Xk) ≥ 0.

Notice that σ2
κ(x) = 0 implies that for all {v, w} ∈ P2(V ): χκ(d(v, w)) = 0; and,

since 0 ≤ d(v, w) ≤ π
2
√

κ
, it implies that d(v, w) = 0, hence the system is in a

consensus state. Moreover, when κ → 0, χκ(d(v, w)) → d2(v, w).
Using the following well known lemma in positive curvature trigonometry.

Lemma 1 (Law of Cosines). Given a complete manifold Mn
κ with constant

sectional curvature κ and a geodesic triangle Δ(pqr) in Mn
κ, assume max{d(p, r),

d(q, r), d(p, q)} < rκ and let α :=
�
prq. We have:

Cκ(d(p, q)) = Cκ(d(p, r))Cκ(d(q, r)) + Sκ(d(p, r))Sκ(d(q, r)) cos(α)
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We prove following proposition.

Proposition 2. Under Assumption 1, for any triangle Δ(pqr) in C where m is
the midpoint of [p, q] we have:

χκ(d(m, r)) ≤ χκ(d(p, r)) + χκ(d(q, r))
2

Proof. Using the trig we get:
Cκ(d(p, r)) + Cκ(d(q, r)) − 2Cκ(d(m, r)) ≤ 2Cκ(d(m, r))Cκ(d(p, q)) −

2Cκ(d(m, r))
Since max{d(m, r), d(p, q)} < π

2
√

κ
we have: 0 ≤ Cκ(d(p, q)) ≤ 1 and 0 ≤

Cκ(d(m, r)) ≤ 1 Which means that: 2Cκ(d(m, r))Cκ(d(p, q))−2Cκ(d(m, r)) ≤ 0.
And thus:

2χκ(d(m, r)) ≤ χκ(d(p, r)) + χκ(d(q, r))

Proposition 3.

E[σ2
κ(Xk+1) − σ2

κ(Xk)] ≤ − 1
N

EΔκ(Xk)

Proof. At round k, two nodes woke up with indices Vk and Wk, it follows that:
N(σ2

κ(Xk) − σ2
κ(Xk−1)) = −χκ(d(XVk

(k − 1),XWk
(k − 1))) +

∑
u∈V

u�=Vk,u�=Wk

Tκ(Vk,Wk, u)
Where Tκ is defined as:

Tκ(Vk, Wk, u) = 2χκ(d(Xu(k), Mk))−χκ(d(Xu(k), XVk
(k−1)))−χκ(d(Xu(k), XWk

(k−1))) .

Now, using the inequality of Proposition 2, one gets that Tκ(Vk,Wk, u) ≤ 0
and:

N(σ2
κ(Xk) − σ2

κ(Xk−1)) ≤ χκ(d(XVk
(k − 1),XWk

(k − 1))) .

Taking expectations on both sides and dividing by N gives:
E[σ2

κ(Xk) − σ2
κ(Xk−1)] ≤ − 1

N E[χκ(d(XVk
(k − 1),XWk

(k − 1)))]

Recalling that P[{Vk,Wk} = {u, v}] = 1
N ( 1

deg u + 1
deg v ) when u ∼ v and 0

otherwise, and that (Vk,Wk) are independent from Xk−1, one can deduce:
E[χκ(d(XVk

(k − 1),XWk
(k − 1)))] = E[Δκ(Xk−1)]

Which yields:
E[σ2

κ(Xk+1) − σ2
κ(Xk)] ≤ − 1

N EΔκ(Xk)

Proposition 4. Assume G = (V,E) is an undirected connected graph, there
exists a constant Cκ depending on the graph only such that:

∀x ∈ MN ,
κ

π2
Δκ(x) ≤ σ2

κ(x) ≤ CκΔκ(x)
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Proof. First when κ → 0:

Δ0(x) =
∑

v∼w

1
N

(deg(v)−1 + deg(w)−1)d2(xv, xw)

≤ 2
N

∑

v∼w

d2(xv, xw)

≤ 2
N

∑

{v,w}∈P2(V )

d2(xv, xw) = 2σ2
0(x)

For the second inequality, consider v �= w two vertices in V, not necessarily
adjacent. Since G is connected, there exists a path u0 = v, . . . , ul = w such that
ui ∼ ui+1. Then, using Cauchy-Schwartz inequality:

d(xv, xw)
2 ≤ l

l−1∑

i=0

d
2
(xui

, xui+1 ) ≤ deg(G)

2
diam(G)

l−1∑

i=0

(deg(ui)
−1

+ deg(ui+1)
−1

)d
2
(xui

, xui+1 )

where deg(G) denotes the maximum degree max{deg(v) : v ∈ V } and diam(G)
the diameter of G. Hence taking CG = (N − 1)deg(G)

2 diam(G) ≥ 1, one recover
the sought inequality for κ → 0.

One has: 2κ
π2 x2 ≤ χκ(x) ≤ κ

2x2 when 0 ≤ x < π
2
√

κ
. Hence, under Assump-

tion 1, χκ and d are equivalent.

Lemma 2. Assume an is a sequence of nonnegative numbers such that an+1 −
an ≤ −βan with β ∈ (0, 1). Then,

∀n ≥ 0, an ≤ a0 exp(−βn)

Proof. Indeed if ln = log an, then ln+1−ln ≤ log(1−β) ≤ −β. Hence ln ≤ l0−βn.
Taking exponential on both side gives the expected result.

Theorem 1. Let Xk = (x1(k), ..., xN (k)) denote the sequence of random vari-
ables generated by Algorithm Random Pairwise Midpoint; under Assumption 1,
there exists L ∈ (−1, 0) such that,

EΔκ(Xk) ≤ exp(Lk)

Proof. Denote by an = Eσ2
κ(Xk). From Propositions 4 and 3, we know that the

constant L = − 1
2CG

verifies an+1 − an ≤ Lan with L ∈ (−1, 0) since CG ≥ 1.
We conclude using Lemma 2.

The proof of the following theorem is the same as the one for the nonpositive
curvature case, see [BJ].

Theorem 2. Let Xk = (X1(k), ...,XN (k)) denote the sequence generated by
Algorithm Random Pairwise Midpoint, then under Assumption 1, there exists a
random variable X∞ taking values in the consensus subspace, such that Xk tends
to X∞ almost surely.
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Abstract. We review the manifold projection method for stochastic
nonlinear filtering in a more general setting than in our previous paper
in Geometric Science of Information 2013. We still use a Hilbert space
structure on a space of probability densities to project the infinite dimen-
sional stochastic partial differential equation for the optimal filter onto a
finite dimensional exponential or mixture family, respectively, with two
different metrics, the Hellinger distance and the L2 direct metric. This
reduces the problem to finite dimensional stochastic differential equa-
tions. In this paper we summarize a previous equivalence result between
Assumed Density Filters (ADF) and Hellinger/Exponential projection
filters, and introduce a new equivalence between Galerkin method based
filters and Direct metric/Mixture projection filters. This result allows us
to give a rigorous geometric interpretation to ADF and Galerkin filters.
We also discuss the different finite-dimensional filters obtained when pro-
jecting the stochastic partial differential equation for either the normal-
ized (Kushner-Stratonovich) or a specific unnormalized (Zakai) density
of the optimal filter.

1 The Filtering Problem in Continuous Time

The state of a system X evolves over time according to some stochastic process
driven by a noise W . We cannot observe the state directly but we make an
imperfect measurement Y which is also perturbed stochastically by random noise
V . In a diffusion setting this problem is formulated as

dXt = ft(Xt) dt + σt(Xt) dWt, X0, dYt = bt(Xt) dt + dVt, Y0 = 0. (1)

In these equations the unobserved state process {Xt, t ≥ 0} takes values in R
n,

the observation {Yt, t ≥ 0} takes values in R
d and the noise processes {Wt, t ≥ 0}

and {Vt, t ≥ 0} are two Brownian motions. The nonlinear filtering problem
consists in finding the conditional probability distribution πt of the state Xt

given the observations up to time t and the prior distribution π0 for X0. Let
us assume that X0, and the two Brownian motions are independent. Let us
also assume that the covariance matrix for Vt is invertible. We can then assume
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 713–722, 2015.
DOI: 10.1007/978-3-319-25040-3 76
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without any further loss of generality that its covariance matrix is the identity.
We introduce a variable at defined by at = σtσ

T
t . With these preliminaries,

and a number of rather more technical conditions for which we refer to [9],
one can show that πt satisfies the Kushner–Stratonovich equation. We further
suppose that the measure πt is determined by a probability density pt. A formal
calculation then gives the following Stratonovich calculus version of the optimal
filter stochastic PDE (SPDE) for the evolution of p:

dpt = L∗
t pt dt − 1

2
pt [|bt|2 − Ept

{|bt|2}] dt +
d∑

k=1

pt [bk
t − Ept

{bk
t }] ◦ dY k

t . (2)

We use Stratonovich calculus because we need the formal chain rule to hold
when identifying the projected evolution from the projected right hand side of
the equation, as we hint below after Eq. (7).

Here L∗ is the formal adjoint of L – the so-called forward diffusion operator
for X, where the backward diffusion operator is defined by:

Lt =
n∑

i=1

f i
t

∂

∂xi
+

1

2

n∑
i,j=1

aij
t

∂2

∂xi∂xj
, L∗

tφ = −
n∑

i=1

∂

∂xi
[f i

tφ] +
1

2

n∑
i,j=1

∂2

∂xi∂xj
[aij

t φ].

If the coefficients f and b are linear, σ is deterministic (and does not depend on
X), and if the prior distribution is normal, this equation can be solved analyt-
ically to give the so-called Kalman Filter, where p is a Gaussian density. This
Kalman filter reduces the problem to a vector SDE for the mean and a matrix
SDE for the covariance matrix of the normal distribution. However, in general
the optimal filter is not finite dimensional. We should point out that, in the
general case, the preferred SPDE for the optimal filter is a SPDE for an unnor-
malized version q of the optimal filter density p. The Zakai equation for a specific
unnormalized density qt(x) of the optimal filter reads, in Stratonovich form

dqt = L∗
t qt dt − 1

2
qt |bt|2 dt +

d∑

k=1

qt [bk
t ] ◦ dY k

t , q0 = p0,

see for example Eq. 14.31 in [1]. This is a linear Stochastic PDE and as such it is
more tractable than the KS Equation. The reason why we still resort to KS will
be clarified when we introduce the projection filter below. A general advantgage
of the Zakai version is the possibility to derive a robust non-stochastic PDE for
the optimal filter, see for example [10].

2 The Projection Method: From PDEs to ODEs

As we summarized previously in [3], the projection method can be understood
abstractly as a technique to approximate the solution of a differential equation
on a Riemannian manifold M . Given a vector field X defined on M , we wish to
find the trajectory of a particle p as it flows along X . We attempt to approximate
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this trajectory by choosing a submanifold Σ of M and using the Riemannian
metric on M to project X applied to the current approximation p′ in Σ onto
the tangent space of Σ at p′. This gives rise to a tangent vector X ′ on Σ that is
closest to the original L2 tangent vector X in p′. One hopes that the trajectories
of X ′ will be a good approximation for the trajectories of X .

The approach becomes interesting for the filtering problem when one con-
siders an infinite dimensional Hilbert manifold M where the exact stochastic
PDE solution for the optimal filter evolves (in Stratonovich calculus), and a
finite dimensional Σ where the projected stochastic ODE for the approximate
filter will evolve. This idea was first sketched by Hanzon in [11] and fully devel-
oped in [2,8,9]. This is not only interesting for filtering. Indeed many standard
approaches to the numerical solution of PDE’s can be re-interpreted geometri-
cally this way. Thus we will attempt to numerically solve the filtering problem by
mapping the space of probability distributions into a Hilbert manifold and then
projecting onto a finite dimensional submanifold. In fact the Hilbert manifolds
we use will simply be Hilbert spaces.

3 Choice of Hilbert Space Structure

There are two obvious ways of embedding the state of our system as belonging in
a Hilbert space. One can consider

√
p which lies inside L2(R) or one can assume

that p is itself square integrable and so lies inside L2(R). These two approaches
give two different metrics on the space of probability distributions. The former
yields the Hellinger metric, the latter we will call the direct L2 metric.

Since the first approach requires no further assumptions on the integrability
of p than p being integrable to one, the Hellinger metric immediately seems more
attractive from a theoretical standpoint. Moreover, its definition can be extended
to probability measures via their densities and it is invariant with respect to the
base measure used to express densities of the two measures.

The direct L2 metric is only defined on square integrable distributions and is
not invariant under reparameterizations. However, it has one distinct advantage
over the Hellinger metric: it is defined in terms of p rather than

√
p. Since the

metric is bilinear in p, using the L2 metric gives more convenient formulae for
particular manifolds like mixture distributions than does the Hellinger metric,
as we shall observe explicitly later. In [3] we observed that the direct metric also
offers numerical advantages for mixture manifolds.

We should finally point out that the space of probability distributions is
not a submanifold of L2(R). Fortunately we can view the stochastic PDE we
wish to solve as an equation on the whole of L2(R) and so avoid the thorny
question of defining a manifold structure on the space of probability measures,
which is solved in [9] by introducing an enveloping manifold for the exponential
case. A discussion on whether (the above Zakai version of) the optimal filter
equation can be seen as a functional equation in L2 is in the monograph [1].
More generally, the study of the infinite dimensional geometry for spaces of
probability distributions is a broad field that has received increased attention
over the last two decades, and we refer for example to [12,14].
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4 Exponential and Mixture Submanifolds

Earlier research in [5,6,8,9] illustrated in detail how the Hellinger distance and
the metric it induces on a finite dimensional exponential family, namely the
Fisher metric, are ideal tools when using the projection onto exponential families
of densities. The above references illustrate this by applying the above framework
to the infinite dimensional stochastic PDE describing the optimal solution of the
nonlinear filtering problem. The use of exponential families allows the correction
step in the filtering algorithm to become exact, so that only the prediction step
is approximated. Furthermore, and independently from the filtering application,
exponential families and the Fisher metric are known to interact well thanks to
a number of properties we will explain shortly.

We give now a summary of why the Fisher metric/Hellinger distance works
well with exponential families and a summary of the Fisher-metric based pro-
jection filter. Section 4.2 will deal with the direct metric and mixtures families.

4.1 Exponential Families

We use the following equivalent notations for multiple partial differentiation:

∂k

∂θi1 · · · ∂θik

= ∂k
i1,··· ,ik

.

Let {c1, · · · , cm} be scalar functions ci : R
n → R, i = 1, 2, · · · ,m such that

{1, c1, · · · , cm} are linearly independent, and assume that the convex set

Θ0 := {θ ∈ R
m : ψ(θ) = log

∫

exp[θT c(x)] dx < ∞},

has non–empty interior. Then

p(x, θ) := exp[θT c(x) − ψ(θ)],

where Θ ⊆ Θ0 is open, is called an exponential family of probability densities.
We define Eθ[ϕ] :=

∫
ϕ(x)p(x, θ)dx. An important role in exponential families

is played by differentiation of ψ. In fact for an exponential family ψ is infinitely
differentiable in Θ and

Eθ{ci} = ∂iψ(θ) =: ηi(θ), Eθ{cicj} = ∂2
ijψ(θ) + ∂iψ(θ) ∂jψ(θ),

and more generally

Eθ{ci1 · · · cik} = exp[−ψ(θ)]
∂k exp[ψ(θ)]
∂θi1 · · · ∂θik

.

The Fisher information matrix satisfies

gij(θ) = ∂2
ijψ(θ) = ∂iη

j(θ) .
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The quantities
(η1, · · · , ηm) ∈ E = η(Θ) ⊂ R

m

form a coordinate system for the given exponential family. The two coordinate
systems θ (canonical parameters) and η (expectation parameters) are related
by diffeomorphism, and according to the above results the Jacobian matrix of
the transformation η = η(θ) is the Fisher information matrix. The canonical
parameters and the expectation parameters are biorthogonal w.r.t. the Fisher
information metric.

We can now look at the particular shape taken by the Fisher metric projection
for exponential families. We obtain

Πθ[v] =
m∑

i=1

[
m∑

j=1

gij(θ) (Eθ[vcj ] − Eθ[v]Eθ[cj ])] (ci(·) − Eθ[ci])p(·, θ). (3)

The Fisher metric projection amounts to take covariance expectations of the
function to be projected with the family exponents. The Fisher metric works
well with exponential families essentially because in case of exponential families
the square root amounts simply to add a 1/2 factor into the exponent of the
family of density, and then differentiation of exponential functions is easy and
regular.

4.2 Mixture Families

Besides exponential families, there is another general framework that is pow-
erful in modeling probability densities, and this is the mixture family. Mixture
distributions are ubiquitous in statistics and may account for important stylized
features such as skewness, multi-modality and fat tails.

We define a mixture family as follows. Suppose we are given m + 1 fixed
squared integrable probability densities, say q = [q1, q2, . . . , qm+1]T . Suppose we
define the following space of probability densities:

p(x, θ) = θ1q1(x) + θ2q2(x) + · · · + θmqm(x) + (1 − θ1 − · · · − θm)qm+1(x), (4)

θ ∈ Θ, Θ = {θ : θi ≥ 0 for all i, θ1 + · · · + θm < 1}.

For convenience, define θ̂(θ) := [θ1, θ2, . . . , θm, 1−θ1 −θ2 − . . .−θm]T . With this
definition, p(x, θ) = θ̂(θ)T q(x). If we consider the direct L2 distance, the metric
h(θ) that is induced on p(x, θ) and the related projection become very simple.
Indeed, one can immediately check from the definition of h that for the mixture
family we have tangent vectors and metric

∂p(·, θ)
∂θi

= qi − qm+1, hij(θ) =
∫

(qi(x) − qm(x))(qj(x) − qm(x))dx =: hij

i.e., the L2 direct metric (and matrix) does not depend on the specific point θ
of the manifold. The same holds for the tangent space as we just saw. The L2

projection is thus particularly simple:
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Πθ[v] =
m∑

i=1

[
m∑

j=1

hij 〈v, qj − qm+1〉] (qi − qm+1). (5)

We conclude by observing that, from the above calculations, the manifold
for the direct metric that simplifies our projection equations drastically is the
mixture choice. We analyzed numerical studies of the projection filter for the
quadratic sensor with this direct metric - mixture setup and for the Hellinger-
exponential setting in [3] under the special case of a scalar system for X,Y and
with “qi normal with mean μi and variance σ2

i ” and with “ci(x) = xi”.
More generally, the motivation for considering these particular submanifolds

is that, even in low dimensions, they allow us to reproduce many of the qual-
itative phenomena seen in the filtering problem. In particular we can produce
highly skewed distributions and multi modal distributions. Many other possible
choices of submanifold are worth consideration and are being investigated. In
this respect, it is worth mentioning that in general there is no strict algorithmic
method to select the manifold for a specific filtering problem, and this turns out
to be a case by case matter. For example, in the quadratic sensor case one may
expect a bimodal conditional density for the optimal filter, so one knows one
will probably need about five parameters (two means, two standard deviations
and a mixing parameter). As a general recipe, one can try a specific projection
filter with a small manifold based on qualitative or heuristic considerations, as
in the above-mentioned quadratic sensor case. Once this is done, one measures
the L2 norm of the projection residuals, and if this is large one may increase the
manifold dimension until a sufficiently small projection residual norm is attained.

5 The Projected Equation

We now derive the direct L2 projection filter for a general manifold M . Let M
be an m dimensional submanifold of L2 parameterized by θ = (θ1, θ2, . . . , θm).
Define vi = ∂p

∂θi so that {v1, v2, . . . vm} gives a basis for the tangent space of M
at a point θ.

The direct L2 metric induces a Riemannian metric hij(θ) on M . By projecting
both sides of the Stratonovich equation for the evolution of pt given above, we
can obtain a stochastic differential for the evolution of the parameter θ.

To simplify the result, we introduce the following notation:

γ0
t (p) :=

1
2

[|bt|2 − Ep{|bt|2}] p, γk
t (p) := [bk

t − Ep{bk
t }]p, (6)

for k = 1, · · · , d. Using the chain rule

dp(θt) =
m∑

i=1

∂p(θt)
∂θi

◦ dθi
t (7)

one can then show [2] that the projected equation for θ is equivalent to the
stochastic differential equation:
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dθi =
m∑

j=1

hij

{

〈p(θ),Lvj〉dt − 〈γ0(p(θ)), vj〉dt +
d∑

k=1

〈γk(p(θ)), vj〉 ◦ dY k

}

. (8)

Here 〈·, ·〉 denotes the direct L2 inner product. If preferred, one could instead
project the Kushner–Stratonovich equation using the Hellinger metric instead.
This yields the following stochastic differential equation [9]:

dθi =
m∑

j=1

gij

(

〈L∗p(θ)
p(θ)

, vj〉dt − 〈1
2
|b|2, vj〉dt +

d∑

k=1

〈bk, vj〉 ◦ dY k

)

(9)

It is now possible to explain why we resorted to the Kushner-Stratonovich (KS)
Equation rather than the unnormalized but linear Zakai equation in deriving the
projection filter. Consider the nonlinear terms in the KS Eq. (2), namely

1
2

pt Ept
{|bt|2} dt,

d∑

k=1

pt [−Ept
{bk

t }] ◦ dY k
t .

Consider first the Hellinger projection filter (9). By inspection, we see that there
is no impact of the nonlinear terms in the projected equation. Therefore, pro-
jecting the Zakai equation would result in the same Hellinger projection filter.

Proposition 1. The Hellinger projection takes care of dimensionality reduction
and adds normalization as a bonus, without further approximation. Hellinger
projection of either KS or the Zakai Eq. leads to the same projection filter given
by Eq. (9).

This equivalence between KS and Zakai projection, however, is broken when we
project according to the L2 direct metric, obtaining the projection filter (8). For
this filter we do have an impact of the nonlinear terms. In fact, it is easy to
adapt the derivation of the L2 direct filter to the Zakai equation, which leads to
the filter

dθi =
m∑

j=1

hij

{

〈p(θ),Lvj〉dt − 〈1
2

|bt|2 p(θ), vj〉dt +
d∑

k=1

〈bk
t p(θ), vj〉 ◦ dY k

}

(10)
which is clearly different from (8).

Proposition 2. For the L2 direct metric projection filter, the dimensionality
reduction approximation coming with the projection does not take care of nor-
malization and we obtain two different projection filters depending on whether
we project the normalized KS Equation or the unnormalized Zakai Equation,
leading to Eqs. (8) and (10) respectively.

Since we aim at studying mostly the pure dimensionality reduction approxima-
tion, we use KS rather than Zakai, meaning that for the L2 direct metric pro-
jection filter we will consider Eq. (8) rather than (10). A numerical comparison
of the two projection filters for the cubic sensor is under investigation.
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6 Equivalence with ADF and Galerkin Filters

The projection filter with specific metrics and manifolds can be shown to be
equivalent to earlier filtering algorithms. We summarize the equivalence results
here, starting from

ADF = ProjectionFilter(Hellinger, Exponential) (full details in [9]).

By computing the c-moments of the optimal filter η̂i(t) = E[ci(Xt)|Yt] =∫
ci(x)pt(x)dx with p the optimal filter (2), one can write an equation for the

dη̂i(t) vector driven by dY . This will not be a closed vector differential equation,
in that the right hand side will depend on the whole filter pt and not just on
its moments η̂t. However, if we replace the optimal filter pt in the right hand
side of this equation for dη̂(t) with the exponential density in the family with
exponent c characterized by the expectation parameters η̂, then we can close
the differential equation and obtain a finite dimensional filter. This will not be
the optimal filter but just an approximation, as the replacement is based on an
arbitrary assumption. This approximation is called exponential assumed density
filter (E-ADF). The resulting equation is

dηi
t = Eηt

{Lt ci} dt − 1
2 [Eηt

{|bt|2 ci} − Eηt
{|bt|2} ηi

t ] dt

+
d∑

k=1

[Eηt
{bk

t ci} − Eηt
{bk

t } ηi
t ] ◦ dY k

t , i = 1, · · · ,m.
(11)

Recall from our earlier section on exponential families that η’s are an alternative
coordinate system to θ in the exponential manifold, so that the above equation
for η can be seen as evolving in the exponential manifold. In fact, we can say
more. In [9] we proved the following

Theorem 1. The E-ADF (11) and the projection filter (9) on the same expo-
nential family coincide. Forcing an exponential density on the right-hand-side
of the exponent-moments equation results in the same filter as projecting the
optimal filter onto the exponential family in Hellinger distance.

This result is important because it shows that a heuristic approximation like the
E-ADF can be justified in rigorous geometric terms by resorting to the Hellinger
distance.

We now move to our second equivalence result:

Galerkin Filter = ProjectionFilter(Direct, Mixture) ([2] for details).

Our second equivalence result is that the projection filter in direct metric
for simple mixture families is equivalent to an approximated filter derived via a
Galerkin method, as first noticed in the preprint [7].

The basic Galerkin approximation is obtained by approximating the exact
solution of the filtering SPDE (8) with a linear combination of basis functions
φi(x), namely

p̃t(x) :=
�∑

i=1

αi(t)φi(x). (12)
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Ideally, the φi can be extended to indices � + 1, � + 2, . . . ,+∞ so as form a basis
of L2. The method can be sketched intuitively as follows. We could write the
optimal filtering Eq. (2) as

〈−dpt + L∗
t pt dt − γ0

t (pt) dt +
d∑

k=1

γk
t (pt) ◦ dY k

t , ξ〉 = 0

for all smooth L2 test functions ξ such that the inner product exists.
We replace this equation with the equation where pt is replaced by p̃t in (12)

and ξ is given by φ1, . . . , φ�. Using the linearity of the inner product in each
argument and integration by parts we obtain easily a stochastic ODE for the
combinators α(t). We call this equation the Galerkin filter for φ.

Consider now the projection filter with the manifold (4) and the direct metric.
The projection filter Eq. (8) specializes to an equation that can be shown, by
inspection, to be identical to the equation for the dα(t) coming from the Galerkin
method if one sets

� = m+1, αi = θi and φi = qi − qm+1 for i = 1, . . . , m, and αm+1 = 1, φm+1 = qm+1.

The choice of the simple mixture is related to a choice of the L2 basis in the
Galerkin method. A typical choice could be based on Gaussian radial basis func-
tions, see for example [13]. We have thus sketched the proof of the following

Theorem 2. For simple mixture families (4), the direct-metric projection filter
(8) coincides with a Galerkin method where the basis functions are the mixture
components q.

However, this equivalence holds only for the simple mixture family (4). More
complex mixture families, such as the one we used to analyze the quadratic
sensor in [3], will not allow for a Galerkin-based filter and only the L2 projection
filter can be defined there. Note also that even in the simple case (4) our L2

Galerkin/projection filter will be different from the Galerkin projection filter
seen for example in [4], because we use Stratonovich calculus to project the
Kushner-Stratonovich equation in L2 metric.
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Abstract. Clustering, classification and Pattern Recognition in a set
of data are between the most important tasks in statistical researches
and in many applications. In this paper, we propose to use a mixture
of Student-t distribution model for the data via a hierarchical graph-
ical model and the Bayesian framework to do these tasks. The main
advantages of this model is that the model accounts for the uncertainties
of variances and covariances and we can use the Variational Bayesian
Approximation (VBA) methods to obtain fast algorithms to be able to
handle large data sets.

1 Introduction

Clustering and classification of a set of data are not trivial problems. In fact,
we can consider them as ill-posed inverse problems in which the solutions are
not unique. Mixture models are natural ones for classification and clustering
[1–8]. The Mixture of Gaussians (MoG) models have been used very extensively
[9–11]. In this paper, we propose to use a mixture of Student-t model and a
Bayesian framework for these tasks. The main advantages of this model is that
the model accounts for the uncertainties of variances and covariances and we
can use the Variational Bayesian Approximation (VBA) methods to obtain fast
algorithms as well. Even if this model may have been used before [12–26], here
we propose a novel unifying presentation for all the steps: training, supervised
or semi-supervised classification and clustering (non-supervised). We also use
VBA framework and some simplifications to develop fast algorithms to be able
to handle big data sets.

2 Mixture Models for Classification and Clustering

A mixture model is generally given as:

p(x |a ,Θ,K) =
K∑

k=1

ak pk(xk|θk), (1)

c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 723–731, 2015.
DOI: 10.1007/978-3-319-25040-3 77



724 A. Mohammad-Djafari

where K is the number of classes, a = {ak, k = 1, · · · ,K} the proportion
parameters and Θ = {θk, k = 1, · · · ,K} all the other parameters of the
model. If we assume different classes can be modeled by the same family
pk(xk|θk) = p(xk|θk) and introduce a hidden class variable cn ∈ {1, · · · ,K},
then for a given sample xn in class k we can write:

p(xn|cn = k,θk) = p(xn|θk) (2)

or
p(xn, cn = k|ak,θk,K) = ak p(xn|θk). (3)

The Mixture of Gaussians (MoG) corresponds to the case where p(xn|cn =
k,θk) = N (x |μk,Σk) with θk = (μk,Σk).

Now, imagine a set of data X = {xn, n = 1, · · · , N} where each element xn

can be in one of these classes. Then, we can write:

p(X n, cn = k|a ,θ) =
N∏

n=1

p(xn, cn = k|a ,θ). (4)

Noting by c = {cn, n = 1, N} with cn ∈ {1, · · · ,K}, a = {ak, k = 1, · · · ,K}
and Θ = {θk, k = 1, · · · ,K}, we have:

p(X n, c|a ,Θ,K) =
∏N

n=1

∏K
k=1 p(cn = k) p(xn|θk)

=
∏N

n=1

∏K
k=1 ak p(xn|θk).

(5)

The classification problems can then be summarized as follows:

Training: Given a set of (training) data X and classes c, estimate the para-
meters a and Θ. The classical frequentist method is the Maximum Likelihood
(ML) which defines the solution as

(â , Θ̂) = arg max
(a,Θ)

{p(X , c|a ,Θ,K)}. (6)

The Bayesian way is to assign priors p(a |K) and p(Θ|K) =
∏K

k=1 p(θk), then
the joint posterior laws is given by:

p(a ,Θ|X , c,K) =
p(X , c|a ,Θ,K) p(a |K) p(Θ|K)

p(X , c|K)
(7)

where
p(X , c|K) =

∫∫

p(X , c|a ,Θ|K)p(a |K) p(Θ|K) da dΘ (8)

from which we can deduce â and {θ̂k, k = 1, · · · ,K} either as the Maximum A
Posteriori (MAP) or Posterior Mean (PM).

Supervised Classification: For a given sample xm and given the parameters
K, a and Θ determine

p(cm = k|xm,a ,Θ,K) =
p(xm, cm = k|a ,Θ,K)

p(xm|a ,Θ,K)
(9)
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where p(xm, cm = k|a ,Θ,K) = akp(xm|θk) and

p(xm|a ,Θ,K) =
K∑

k=1

ak p(xm|θk) (10)

and its best class k∗, for example the MAP solution:

k∗ = arg max
k

{p(cm = k|xm,a ,Θ,K)} . (11)

Semi-supervised Classification: For a given sample xm and given the para-
meters K and Θ, determine the probabilities

p(cm = k|xm,Θ,K) =
p(xm, cm = k|Θ,K)

p(xm|Θ,K)
(12)

where

p(xm, cm = k|Θ,K) =
∫∫

p(xm, cm = k|a ,Θ,K)p(a |K) da (13)

and

p(xm|Θ,K) =
K∑

k=1

p(xm, cm = k|Θ,K) (14)

and its best class k∗, for example the MAP solution:

k∗ = arg max
k

{p(cm = k|xm,Θ,K)} . (15)

Clustering or Non-supervised Classification: Given a set of data X , deter-
mine K and c. When these are determined, we can also determine the charac-
teristics of those classes a and Θ. To do this we need the following relations:

p(K = L|X ) =
p(X ,K = L)

p(X )
=

p(X |K = L) p(K = L)
p(X )

(16)

and

p(X ) =
L0∑

L=1

p(K = L) p(X |K = L), (17)

where L0 is the a priori maximum number of classes and

p(X |K = L) =
∫∫ ∫∫ ∏

n

L∏

k=1

akp(xn, cn = k|θk)p(a |K) p(Θ|K) da dΘ. (18)

As we will see later the main difficulty is the computation of these two last
equations. The Variational Bayesian Approximation technics try to find upper
and lower bounds for them.
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3 Mixture of Student-t Model

Let us consider the following representation of the Student-t probability density
function (pdf):

T (x |ν,μ,Σ) =
∫ ∞

0

N (x |μ, z−1Σ)G(z|ν
2
,
ν

2
) dz, (19)

where

N (x |μ,Σ)= |2πΣ|− 1
2 exp

[− 1
2 (x − μ)′Σ−1(x − μ)

]

= |2πΣ|− 1
2 exp

[− 1
2Tr

{
(x − μ)Σ−1(x − μ)′}]

,
(20)

and
G(z|α, β) =

βα

Γ (α)
zα−1 exp [−βz] . (21)

Let us also consider the finite mixture of Student-t model:

p(x |{νk,ak,μk,Σk, k = 1, · · · ,K},K) =
K∑

k=1

ak T (xn|νk,μk,Σk). (22)

Introducing the hidden variables znk this model can be written via:

p(xn, cn = k, znk|μk,Σk,K) = ak N (xn|μk, z−1
n,kΣk)G(zn,k|νk

2
,
νk

2
). (23)

Noting by: Z = {znk}, z k = {znk, n = 1, · · · , N}, c = {cn, n = 1, · · · , N},
θk = {νk,ak,μk,Σk}, Θ = {θk, k = 1, · · · ,K} and assigning the priors p(Θ) =∏

k p(θk), we can write:

p(X , c,Z ,Θ|K) =
∏

n

∏
k akN (xn|μk, z−1

n,kΣk)G(znk|νk

2 , νk

2 ) p(θk) (24)

Then, the joint posterior law of all the unknowns (c,Z ,Θ) given the data X
and K can be written as

p(c,Z ,Θ|X ,K) =
p(X , c,Z ,Θ|K)

p(X |K)
. (25)

The main task now is to propose some approximations to it in such a way that we
can use it easily in all the above mentioned tasks of classification or clustering.
The main idea behind the VBA technics is exactly this.

4 Variational Bayesian Approximation (VBA)

4.1 Main Idea

The main idea behind the VBA is to propose an approximation q(c,Z ,Θ)
for p(c,Z ,Θ|X ,K). This approximation can be in such a way that
KL(q : p) be minimized. Interestingly, by noting that p(c,Z ,Θ|X ,K) =
p(X , c,Z ,Θ|K)/p(X |K), it is easy to showed that
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KL(q : p) = −F(q) + ln p(X |K) (26)

where
F(q) = 〈− ln p(X , c,Z ,Θ|K)〉q (27)

is called free energy of q and we have the following properties:

– Maximizing F(q) or minimizing KL(q : p) are equivalent and both give un
upper bound to the evidence of the model ln p(X |K).

– When the optimum q∗ is obtained, F(q∗) can be used as a criterion for model
selection.

– If p is in the exponential family, then choosing appropriate conjugate pri-
ors, the structure of q will be the same and we can obtain appropriate fast
optimization algorithms.

In our case, noting that

p(X , c,Z ,Θ|K) =
∏

n

∏

k

p(xn, cn, znk|ak,μk,Σk, νk)
∏

k

[p(αk) p(βk) p(μk|Σk) p(Σk)]
(28)

with

p(xn, cn, znk|ak,μk,Σk, νk) = N (xn|μk, z−1
n,kΣk)G(znk|αk, βk) (29)

is separable, in one side for [c,Z ] and in other size in components of Θ, we
propose to use

q(c,Z ,Θ) = q(c,Z ) q(Θ). (30)

With this decomposition, the expression of the Kullback-Leibler divergence
becomes:

KL(q1(c,Z )q2(Θ) : p(c,Z ,Θ|X ,K)

=
∑

c

∫∫ ∫∫

q1(c,Z )q2(Θ) ln
q1(c,Z )q2(Θ)

p(c,Z ,Θ|X ,K)
dΘ dZ (31)

and the expression of the Free energy becomes:

F(q1(c,Z )q2(Θ)) =
∑
c

∫∫ ∫∫
q1(c,Z )q2(Θ) ln

p(X , c,Z |Θ,K)p(Θ|K)

q1(c,Z )q2(Θ)
dΘ dZ . (32)

In the following we propose appropriate priors and obtain the expressions of
q and appropriate fast algorithms.

5 Proposed VBA for Mixture of Student-t Priors Model

As we discussed in previous section, here we consider the Mixture of Student-t
priors model and propose appropriate conjugate priors and appropriate factor-
ized form for the testing or approximation q and finally give the details of the
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parameters updating algorithm. To be able to propose conjugate priors for all the
parameters, we change slightly the model by replacing νk in the Gamma expres-
sion G(zn,k|νk

2 , νk

2 ) of the Student-t expression by two parameters G(zn,k|αk, βk):

p(xn, cn = k, znk|ak,μk,Σk, αk, βk,K) = ak N (xn|μk, z−1
n,kΣk)G(zn,k|αk, βk).

(33)
The final hierarchical model that we propose is shown in the Fig. 1.

Fig. 1. Graphical representation of the model.

5.1 Conjugate Priors

In the following, noting by Θ = {(ak,μk,Σk, αk, βk), k = 1, · · · ,K}, we propose
to use the factorized prior laws:

p(Θ) = p(a)
∑

k

[p(αk) p(βk) p(μk|Σk) p(Σk)] (34)

with the following components:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p(a) = D(a |k0), k0 = [k0, · · · , k0] = k01
p(αk) = E(αk|ζ0) = G(αk|1, ζ0)
p(βk) = E(βk|ζ0) = G(αk|1, ζ0)
p(μk|Σk) = N (μk|μ01, η−1

0 Σk)
p(Σk) = IW(Σk|γ0, γ0Σ0)

(35)

where

D(a |k) =
Γ (

∑
l kk)

∏
l Γ (kl)

∏

l

akl−1
l (36)

is the Dirichlet pdf,
E(t|ζ0) = ζ0 exp [−ζ0t] (37)

is the Exponential pdf,

G(t|a, b) =
ba

Γ (a)
ta−1 exp [−bt] (38)
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is the Gamma pdf and

IW(Σ|γ, γΔ) =
| 12Δ|γ/2 exp

[− 1
2Tr

{
ΔΣ−1

}]

ΓD(γ/2)|Σ| γ+D+1
2

. (39)

is the inverse Wishart pdf.
With these prior laws and the likelihood: p(xn|c(n), z k(n),Θ, k) we can

obtain the joint posterior law:

pk(c,Z ,Θ|X ) =
p(X , c,Z ,Θ)

p(X )
. (40)

Now, we have to choose a factored form for q in such a way that we can
transform the optimization of the KL(q : p) or the free energy F(q) to the
updating of the parameters of the different components of q. We propose to use
the following decomposition:

q(c,Z ,Θ) = q(c,Z ) q(Θ)
=

∏
n

∏
k[q(cn = k|znk) q(znk)]∏

k[q(αk) q(βk) q(μk|Σk) q(Σk)] q(a).
(41)

with: ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q(a) = D(a |k̃), k̃ = [k̃1, · · · , k̃K ]
q(αk) = G(αk|ζ̃k, η̃k)
q(βk) = G(βk|ζ̃k, η̃k)
q(μk|Σk) = N (μk|μ̃, η̃−1Σk)
q(Σk) = IW(Σk|γ̃, γ̃Σ̃)

(42)

With these choices, we have

F(q(c,Z ,Θ)) = 〈ln p(X , c,Z ,Θ|K)〉q(c,Z ,Θ)

=
∏

k

∏
n F1kn

+
∏

k F2k

(43)

with
F1kn

= 〈ln p(xn, cn, znk,θk)〉q(cn=k|znk)q(znk)

F2k
= 〈ln p(xn, cn, znk,θk)〉q(θk)

(44)

Now, to obtain the expressions of the updating expressions of the tilded para-
meters, we need to go to the following three steps:

– E step: Optimizing F with respect to q(c,Z ) when keeping q(Θ) fixed, we
obtain the expression of q(cn = k|znk) = ãk, q(znk) = G(znk|α̃k, β̃k).

– M step: Optimizing F with respect to q(Θ) when keeping q(c,Z ) fixed,
we obtain the expression of q(a) = D(a |k̃), k̃ = [k̃1, · · · , k̃K ], q(αk) =
G(αk|ζ̃k, η̃k), q(βk) = G(βk|ζ̃k, η̃k), q(μk|Σk) = N (μk|μ̃, η̃−1Σk), and
q(Σk) = IW(Σk|γ̃, γ̃Σ̃), which gives the updating algorithm for the cor-
responding tilded parameters.
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– F evaluation After each E step and M step, we can also evaluate the expression
of F(q) which can be used for stopping rule of the iterative algorithm. Also,
final value of this expression for each value of K, noted Fk, can be used as
a criterion for the model selection, i.e.; the determination of the number of
clusters.

The expressions of all the tilded parameters update as well as the expres-
sion of FK are easily obtained thanks to the properties of the conjugate priors.
However, these expressions are cumbersome and will be given in the appendix.

6 Conclusion

Clustering and classification of a set of data are between the most important
tasks in statistical researches for many applications such as data mining in biol-
ogy. Mixture models and in particular Mixture of Gaussians are classical models
for these tasks. In this paper, we proposed to use a mixture of Student-t distrib-
ution model for the data via a hierarchical graphical model. Then, we proposed
a Bayesian framework to do these tasks. The main advantages of this model is
that the model accounts for the uncertainties of variances and covariances and
we can use the Variational Bayesian Approximation (VBA) methods. To obtain
fast algorithms and be able to handle large data sets, we used conjugate priors
everywhere it was possible. The proposed algorithm has been used for cluster-
ing, classification and discriminent analysis of some biological data, but in this
paper, we only presented the main algorithm.
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www.erasysbio.net/index.php?index=272) project of ERASYSBIO.
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Abstract. The textile plot proposed by Kumasaka and Shibata (2008)
is a method for data visualization. The method transforms a data matrix
in order to draw a parallel coordinate plot. In this paper, we investigate
a set of matrices induced by the textile plot, which we call the textile set,
from a geometrical viewpoint. It is shown that the textile set is written
as the union of two differentiable manifolds if data matrices are restricted
to be full-rank.

1 Introduction

The textile plot is a method for data visualization proposed by [3]. In this section,
we briefly describe the method. We define the textile set by a set of matrices
induced by the textile plot. We will use bold uppercase letters for matrices and
bold lowercase letters for column vectors.

Let X = (x1, . . . ,xp) ∈ R
n×p be a data matrix of n individuals and p

variates, where each xi is a column vector. For example, imagine a data of char-
acteristics of n students in a school. Then the first column of X may represent
age, the second is height, the third is weight, and so on. Note that, in each
column, every element has the common unit ([years], [cm], [kg], etc.). For sim-
plicity, we assumed that the data matrix has no missing value and that each
variate is numeric, although the original method of [3] can deal with missing
and categorical values. Each column of X is assumed to be non-degenerate, i.e.,
take at least two distinct values. In the following, without loss of generality, we
assume the data is scaled:

x′
j1n = 0 and ‖xj‖ = 1,

where x′ is the transpose of x, ‖x‖ = (x′x)1/2 is the Euclidean norm, and
1n = (1, . . . , 1)′ ∈ R

n.
The textile plot generates another matrix Y ∈ R

n×p from X by location and
scale transformations in the following way. For simplicity, we do not change the
order of columns as opposed to [3]. The matrix Y = (y1, . . . ,yp) is defined by

yj = bjxj , j = 1, . . . , p,

where (b1, . . . , bp)′ is the unit eigenvector corresponding to the maximum eigen-
value of the sample correlation matrix (x′

ixj)
p
i,j=1. The resultant matrix Y is

used to draw a parallel coordinate plot (e.g. [2]). Refer to [3] for details.
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 732–739, 2015.
DOI: 10.1007/978-3-319-25040-3 78
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If we replace the condition of the maximum eigenvalue with some eigenvalue,
we have a necessary condition

∃λ ∈ R, ∀k ∈ {1, . . . , p},

p∑

�=1

(x′
kx�)b� = λbk.

This condition can be written in terms of (y1, . . . ,yp). Indeed, multiplying bk to
both sides, we have a condition

∃λ ∈ R, ∀i ∈ {1, . . . , p},

p∑

j=1

y′
iyj = λ‖yi‖2. (1)

Furthermore, the conditions
∑p

j=1 b2j = 1 and ‖xj‖ = 1 imply

p∑

j=1

‖yj‖2 = 1. (2)

An extra constraint y′
j1n = 0 can be removed by the orthogonalization argu-

ment. More precisely, the constraint is represented by yj = Qzj , where Q is
a fixed n × (n − 1) matrix such that (1n/

√
n,Q) is an orthogonal matrix. The

vector zj ∈ R
n−1 has no constraint. By substituting yj = Qzj to (1) and (2), we

have the same equations as (1) and (2) for zj ∈ R
n−1 without extra constraints.

The textile set is defined as follows.

Definition 1 (Textile Set). Let n and p be positive integers. Then the set
of matrices Y = (y1, . . . ,yp) ∈ R

n×p that satisfy (1) and (2) is denoted by
Tn,p ⊂ R

n×p, and called the textile set in this paper. The set of Y that satisfies
(1) is denoted by Un,p and called the unnormalized textile set.

If ‖yi‖ �= 0 for all i, the condition (1) is equivalent to

y′
1(

∑
k yk)

‖y1‖2 = · · · =
y′

p(
∑

k yk)
‖yp‖2 (= λ) . (3)

We investigate geometric properties of the textile set. It is shown that the
restriction of Tn,p to full-rank matrices consists of two differentiable submanifolds
of R

n×p. The result will be needed in the future to understand, for example,
probabilistic properties of Y when the original data matrix X is distributed
according to multivariate normal distributions.

In Sect. 2, examples for small p or small n are given. In Sect. 3, a topological
property is studied. The main result is given in Sect. 4.

2 Low-Dimensional Cases

If p = 1, it is easy to see that

Un,1 = R
n and Tn,1 = Sn−1 = {y ∈ R

n | ‖y‖ = 1}.
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In particular, T1,1 is the two-point set {−1, 1}.
If p = 2, then

Un,2 =
{
(y1,y2) | ∃λ, (λ − 1)‖y1‖2 = y′

1y2 = (λ − 1)‖y2‖2
}

= {(y1,y2) | ‖y1‖ = ‖y2‖} ∪ {(y1,y2) | y′
1y2 = 0}

= {(y1,y2) | ‖y1‖ = ‖y2‖} ∪ {(y1,y2) | ‖y1 − y2‖ = ‖y1 + y2‖}
and

Tn,2 =

{
(y1,y2)

∣∣∣∣ ‖y1‖ = ‖y2‖ =
1√
2

}
∪ {(y1,y2) | ‖y1 − y2‖ = ‖y1 + y2‖ = 1}

Thus Tn,2 is the union of two manifolds, each of which is diffeomorphic to Sn−1×
Sn−1. The intersection of the two manifolds is a non-empty set

{

(y1,y2)
∣
∣
∣
∣ ‖y1‖ = ‖y2‖ =

1√
2
, y′

1y2 = 0
}

,

which is diffeomorphic to the Stiefel manifold. In particular, Tn,2 is connected
if n ≥ 2. In contrast, T1,2 consists of 8 points: (±1/

√
2,±1/

√
2), (±1, 0) and

(0,±1).
Consider the case n = 1 for general p. Let [p] = {1, . . . , p}.

Proposition 1. If n = 1, then the unnormalized textile set is

U1,p =

{
p∑

i=1

yi = 0

}

∪
⎛

⎝
⋃

∅�=I⊂[p]

{yi = yj (i, j ∈ I), yk = 0 (k /∈ I)}
⎞

⎠,

which consists of a (p − 1)-dimensional plane and 2p − 1 lines. Correspondingly,
the textile set T1,p consists of a (p − 2)-dimensional manifold

Sp−1 ∩
{

p∑

i=1

yi = 0

}

and 2(2p − 1) points

⋃

∅�=I⊂[p]

⋃

e∈{−1,1}

{

yi =
e

√|I| (i ∈ I), yk = 0 (k /∈ I)

}

.

Proof. Fix (y1, . . . , yp) ∈ R
1×p and let I be the set of i such that yi �= 0. Then

the condition (1) is rewritten as

∃λ, ∀i ∈ I,

∑
j∈I yj

yi
= λ.

This condition is satisfied if and only if
∑

i∈I yi = 0 or yi = yj for any i, j ∈ I.
The expressions of U1,p and T1,p then follow. �
Corollary 1. If (y1, . . . , yp) ∈ U1,p and yi �= 0 for all i, then

∑n
j=1 yj = 0 or

y1 = · · · = yp.
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3 The Closedness Property

In this section, we show that Un,p is closed, which implies Tn,p is compact. This
property is not obvious from the definition since Un,p is the union of an infinite
number of closed subsets. In contrast, Un,p is easily shown to be connected.
Indeed, Un,p is a cone since the condition (1) is invariant under the scalar multiple
of Y . In the following, we assume p ≥ 2 since Un,1 = R

n.
For each 1 ≤ i < j ≤ p, define a set Zij ⊂ R

n×p by

Zij =
{
(y1, . . . ,yp) | (‖yj‖2yi − ‖yi‖2yj)′(

∑
k yk) = 0

}
. (4)

Since Zij is the zero set of a continuous function, it is closed.
We prove the following proposition.

Proposition 2. Let p ≥ 2. Then we have

Un,p =
⋂

1≤i<j≤p

Zij . (5)

In particular, Un,p is closed and Tn,p is compact.

Proof. Define two vectors v = (vi)
p
i=1 and w = (wi)

p
i=1 by vi = y′

i(
∑p

k=1 yk)
and wi = ‖yi‖2. Then the condition (1) is written as v = λw for some λ.

We first show that the condition (1) is equivalent to linear dependence of
the vectors v and w. If (1) is satisfied, then v = λw and the linear dependence
follows. Conversely, assume v and w are linearly dependent. Then either v = λw
for some λ or w = 0. The former is the same as (1). If w = 0, then ‖yi‖ = 0 for
any i, which implies v = 0. Hence the condition (1) is fulfilled.

The vectors v and w are dependent if and only if viwj − vjwi = 0 for any
pair of i and j. This equation is equivalent to Y ∈ Zij . Hence Y ∈ Un,p if and
only if Y ∈ ⋂

i<j Zij . �
Remark 1. The Eqs. (4) and (5) show that Un,p is an algebraic variety.

4 Main Result

Let n ≥ p. Denote the set of all full-rank matrices by

V ∗ = {Y ∈ R
n×p | rank(Y ) = p}.

The set V ∗ is called the noncompact Stiefel manifold in literature (e.g. [1]).
Although V ∗ depends on n and p, we omit the indices just for simplicity.

The restriction of Un,p to V ∗ is denoted by

U∗
n,p = Un,p ∩ V ∗

=
{
Y ∈ R

n×p | rank(Y ) = p, Y satisfies (3)
}

.

Note that, for Y ∈ V ∗, the condition (1) is equivalent to (3). We can also define
T ∗

n,p in the same manner. However, it is sufficient to study only U∗
n,p. Indeed,

the two sets T ∗
n,p and U∗

n,p are related to each other by the projection to the unit
sphere (2). We will show that U∗

n,p is the union of two differentiable manifolds.
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Remark 2. The (compact) Stiefel manifold is defined by {Y ∈ R
n×p | Y ′Y =

Ip}, where Ip is the identity matrix. This manifold is contained in U∗
n,p since the

condition (3) is satisfied with λ = 1 if Y ′Y = Ip.

The sets U∗
n,p and V ∗ are closed under multiplication of orthogonal matrix

from the left. In other words, the group O(n) acts on U∗
n,p and V ∗, respectively.

By the Gram-Schmidt orthonormalization, each equivalence class of the quotient
space V ∗/O(n) is identified with an upper-triangular matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y11 · · · y1p

0
. . .

...
...

. . . ypp

0 · · · 0
...

...
0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, yii > 0 (1 ≤ i ≤ p). (6)

See e.g. Example 4.1.2 of [1]. Let us call it the canonical form. The set of all
canonical forms is denoted by

V ∗∗ =
{
Y ∈ R

n×p | Y is written as (6)
}
.

Correspondingly, define

U∗∗
n,p = Un,p ∩ V ∗∗

= U∗
n,p ∩ V ∗∗

=
{
Y ∈ R

n×p | Y is written as (6), Y satisfies (3)
}
.

Let π : V ∗ → V ∗∗ be a map defined by the Gram-Schmidt orthonormaliza-
tion. Since π is a submersion, π−1(A) is a submanifold of V ∗ for any submanifold
A of V ∗∗. Therefore we investigate U∗∗

n,p instead of U∗
n,p = π−1(U∗∗

n,p).
For each canonical form Y ∈ V ∗∗, (3) is written as

y1is1 + · · · + yiisi

y2
1i + · · · + y2

ii

=
s1
y11

, i = 2, . . . , p, (7)

where sj = yjj + · · · + yjp.

Example 1. If p = 2, (7) is

y12(y11 + y12) + y2
22

y2
12 + y2

22

=
y11 + y12

y11
.

This is equivalent to

y2
11 = y2

12 + y2
22 or y12 = 0.

The two equations represent hyperbola and plane, respectively. Thus U∗∗
n,2 is the

union of the two-dimensional manifolds. �
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Our main theorem is stated as follows.

Theorem 1. Let n ≥ p ≥ 3. Then we have a decomposition

U∗∗
n,p = M1 ∪ M2,

where M1 and M2 are differentiable manifolds with dimension

dim M1 =
p(p + 1)

2
− (p − 1),

dim M2 =
p(p + 1)

2
− p,

respectively. The manifold M2 is connected while M1 may not.

Proof. Let Y = (y1, . . . ,yp) ∈ V ∗∗. We solve the Eq. (7). Recall that si =
yii + · · · + yip.

We will consider two cases, s1 �= y11 and s1 = y11. Put

M1 = U∗∗
n,p ∩ {s1 �= y11}, M2 = U∗∗

n,p ∩ {s1 = y11}. (8)

(i) First consider the case s1 �= y11. We solve (7) with respect to the (p − 1)
underlined variables in

⎛

⎜
⎜
⎜
⎜
⎜
⎝

y11 y12 · · · y1,p−1 y1p

y22 y2,p−1 y2p

. . .
...

...
yp−1,p−1 yp−1,p

0 ypp

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

In other words, the underlined variables are considered as dependent variables
and the others are independent variables. Denote the independent variables by
r, that is,

r = (y11, . . . , y1p, y22, . . . , y2,p−1, . . . , yp−1,p−1) ∈ R
p(p+1)/2−(p−1).

First focus on y2p. Let i = 2 in (7) to obtain

y12s1 + y22s2
y2
12 + y2

22

=
s1
y11

.

In this equation, y2p is contained only in s2 and its coefficient y22/(y2
12 + y2

22)
is not zero since Y ∈ V ∗∗. The other variables are contained in r. Hence y2p is
written as a rational function of r.

In the following, we use induction to show that yip is written as a rational
function of r for each 2 ≤ i ≤ p− 1. We have already proved the claim for i = 2.
Let i ≥ 3 and assume that the claim is correct up to i − 1. In (7), the variables
not in r are y2p, . . . , yip. Furthermore, the coefficient of yip is not zero. Hence
yip is a rational function of r and y2p, . . . , yi−1,p. By induction, yip is written as
a rational function of r.
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Finally, we focus on ypp. Let i = p in (7). Then, by noting sp = ypp, we have
∑p−1

k=1 ykpsk + y2
pp

∑p−1
k=1 y2

kp + y2
pp

=
s1
y11

,

that is,

y2
pp =

∑p−1
k=1(y11ykpsk − y2

kps1)
s1 − y11

, (9)

where we used the condition s1 − y11 �= 0. Therefore, ypp has a positive solution
if and only if the right hand side of (9) is positive, in that case the solution is
unique.

In summary, over the domain

D =
{
r ∈ R

p(p+1)/2−(p−1) | s11 �= y11, the right hand side of (9) is positive
}

,

the quantities y2p, . . . , ypp are uniquely written as differentiable functions (ratio-
nal functions and square root). Since D is an open set, we deduce that M1 is
a differentiable manifold as long as D is not empty. We give an element of D
explicitly. Let y11 = · · · = yp−1,p−1 = 1, y1p = α ∈ (0, 1), and the other variables
in r be zero. Then (7) implies yip = α (2 ≤ i ≤ p − 1), and (9) is

y2
pp = (p − 1)(1 − α2) > 0.

It was shown that M1 is a (possibly unconnected) differentiable manifold.
(ii) Next consider the case s1 = y11. In this case, (7) is simplified to

i∑

k=1

yki(sk − yki) = 0, i = 2, . . . , p. (10)

We solve (10) with respect to the p underlined variables in
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y11 · · · · · · · · · y1,p−1 y1p

. . .
...

...
yp−3,p−3 · · · yp−3,p−1 yp−3,p

yp−2,p−2 yp−2,p−1 yp−2,p

yp−1,p−1 yp−1,p

0 ypp

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The underlined variables are dependent variables and the others are independent
variables. Denote the independent variables by r.

Then by the condition s1 = y11,

y1p = −
p−1∑

j=2

y1j .

In particular, y1p is written as a linear function of r.
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Use induction to show that yip is written as a rational function of r for each
1 ≤ i ≤ p − 3. We have already proved the claim for i = 1. Let 2 ≤ i ≤ p − 3
and assume the claim is correct up to i − 1. In (10), the variables not in r are
y1p, . . . , yip. In addition, the coefficient of yip is positive. Hence yip is a rational
function of r and (y1p, . . . , yi−1,p). By induction, yip is written as a rational
function of r.

Finally, we focus on a := yp−2,p−1, b := yp−2,p, and c := yp−1,p. The Eqs.
(10) for i = p − 2, p − 1, p are

R1 + yp−2,p−2(a + b) = 0, (11)
R2 + yp−2,p−2a + ab + yp−1,p−1c = 0, (12)
R3 + yp−2,p−2b + ab + yp−1,p−1c = 0, (13)

where the terms without a, b, c are abbreviated to Ri (i = 1, 2, 3). The difference
between (12) and (13) is

R4 + yp−2,p−2(a − b) = 0.

From this and (11), we obtain a and b. Then c is determined from (12).
It was shown that M2 is a differentiable manifold. Since r has no constraint,

M2 is connected. �
Corollary 2. Let n ≥ p ≥ 1. Then U∗

n,p is the union of two differentiable
manifolds:

U∗
n,p = π−1(M1) ∪ π−1(M2),

where π is the Gram-Schmidt orthonormalization map, and M1 and M2 are
defined by (8).
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Abstract. In anomalous statistical physics, deformed algebraic struc-
tures are important objects. Heavily tailed probability distributions, such
as Student’s t-distributions, are characterized by deformed algebras. In
addition, deformed algebras cause deformations of expectations and inde-
pendences of random variables. Hence, a generalization of independence
for multivariate Student’s t-distribution is studied in this paper. Even if
two random variables which follow to univariate Student’s t-distributions
are independent, the joint probability distribution of these two distribu-
tions is not a bivariate Student’s t-distribution. It is shown that a bivari-
ate Student’s t-distribution is obtained from two univariate Student’s
t-distributions under q-deformed independence.

Keywords: Deformed exponential family · Deformed independence ·
Statistical manifold · Tsallis statistics · Information geometry

1 Introduction

In the theory of complex systems, heavily tailed probability distributions are
important objects. Power law tailed probability distributions and their related
probability distributions have been studied in anomalous statistical physics
([6,12,15]). One of an important probability distribution in anomalous statistical
physics is a q-Gaussian distribution. It is a noteworthy fact that a q-Gaussian
distribution coincides with a Student’s t-distribution in statistics. Hence we can
discuss Student’s t-distributions from the viewpoint of anomalous statistical
physics. Though Student’s t-distributions have been studied by many authors
(cf. [3,7]), our motivation is quite different from the others.

Heavily tailed probability distributions including Student’s t-distributions
are represented using deformed exponential functions (cf. [11,12]). However,
these functions do not satisfy the law of exponents. Hence deformed algebraic
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structures are naturally introduced (cf. [4,6]). Once such a deformed algebra
is introduced, the sample space can be regarded as a some deformed algebraic
space, not the standard Euclidean space (cf. [11]). Hence it is natural to intro-
duce suitable deformed expectations and independences of random variables. In
fact, we find that the duality of exponential and logarithm can express the notion
of independence of random variables. Hence we can generalize the independence
using deformed exponential and deformed logarithm functions [9].

In this paper, we summarize such deformed algebraic structures, then we
apply these deformed algebras to multivariate Student’s t-distributions. Even if
two independent random variables follow to univariate Student’s t-distributions,
the joint probability distribution is not a bivariate Student’s t-distribution.
Hence we show that a bivariate Student’s t-distribution can be obtained from
two univariate Student’s t-distributions under q-deformed independence with a
suitable normalization.

We remark that deformed algebraic structures for statistical models and gen-
eralization of independence are discussed in information geometry. (cf. [5,9,11].
See also [1].) Though normalizations of positive densities are necessary in
the arguments of generalized independence, statistical manifold structures are
changed by normalizations of positive densities. In particular, generalized confor-
mal equivalence relations for statistical manifolds are needed (cf. [9,10]). Hence
a statistical manifold of the set of bivariate Student’s t-distributions with q-
independent random variables is not equivalent to a product statistical manifold
of two sets of univariate Student’s t-distributions.

2 Deformed Exponential Families

In this paper, we assume that all objects are smooth for simplicity. Let us begin
by reviewing the foundations of deformed exponential functions and deformed
exponential families (cf. [9,12]).

Let χ be a strictly increasing function from (0,∞) to (0,∞). We define a
χ-logarithm function or a deformed logarithm function by

lnχ s :=
∫ s

1

1
χ(t)

dt.

The inverse of lnχ s is called a χ-exponential function or a deformed exponential
function, which is defined by

expχ t := 1 +
∫ t

0

u(s)ds,

where the function u(s) is given by u(lnχ s) = χ(s).
From now on, we suppose that χ is a power function, that is, χ(t) = tq. Then

the deformed logarithm and the deformed exponential are defined by

lnq s :=
s1−q − 1

1 − q
, (s > 0),

expq t := (1 + (1 − q)t)
1

1−q , (1 + (1 − q)t > 0).
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We say that lnq s is a q-logarithm function and expq t is a q-exponential function.
By taking a limit q → 1, these functions coincide with the standard logarithm
ln s and the standard exponential exp t, respectively. In this paper, we focus on
q-exponential case. However, many of arguments for q-exponential family can be
generalized for χ-exponential family ([9,11]).

A statistical model Sq is called a q-exponential family if

Sq =

{

p(x, θ)

∣
∣
∣
∣
∣
p(x; θ) = expq

[
n∑

i=1

θiFi(x) − ψ(θ)

]

, θ ∈ Θ ⊂ Rn

}

,

where F1(x), . . . , Fn(x) are functions on the sample space Ω, θ = t(θ1, . . . , θn)
is a parameter, and ψ(θ) is the normalization with respect to the parameter θ.

Example 1 (Student’s t-distribution). Fix a number q (1 < q < 1+2/d, d ∈ N),
and set ν = −d − 2/(1 − q). We define an n-dimensional Student’s t-distribution
with degree of freedom ν or a q-Gaussian distribution by

pq(x;μ,Σ) :=
Γ

(
1

q−1

)

(πν)
d
2 Γ

(
ν
2

) √
det(Σ)

[

1 +
1
ν

t(x − μ)Σ−1(x − μ)
] 1

1−q

,

where X = t(X1, . . . , Xd) is a random vector on Rd, μ = t(μ1, . . . , μd) is a
location vector on Rd and Σ is a scale matrix on Sym+(d). For simplicity, we
assume that Σ is invertible. Otherwise, we should choose a suitable basis {vα} on
Sym+(d) such that Σ =

∑
α wαvα. Then, the set of all Student’s t-distributions

is a q-exponential family. In fact, set

zq =
(πν)

d
2 Γ

(
ν
2

) √
det(Σ)

Γ
(

1
q−1

) , R̃ =
zq−1

q

(1 − q)d + 2
Σ−1, and θ = 2R̃μ. (1)

Then we have

pq(x;μ,Σ) =
1
zq

[

1 +
1
ν

t(x − μ)Σ−1(x − μ)
] 1

1−q

=

[(
1
zq

)1−q

− 1 − q

(1 − q)d + 2

(
1
zq

)1−q
t(x − μ)Σ−1(x − μ)

] 1
1−q

= expq

[

−t(x − μ)R̃(x − μ) + lnq
1
zq

]

= expq

⎡

⎣
d∑

i=1

θixi −
d∑

i=1

R̃iix
2
i − 2

∑

i<j

R̃ijxixj − 1
4

tθR̃−1θ + lnq
1
zq

⎤

⎦.

Since θ ∈ Rd and R̃ ∈ Sym+(d), the set of all Student’s t-distributions is a
d(d+3)/2-dimensional q-exponential family. The normalization ψ(θ) is given by

ψ(θ) =
1
4

tθR̃−1θ − lnq
1
zq

.
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3 Statistical Manifold Structures Based on q-Fisher
Metric

In this section we give a brief review of statistical manifold structures on a q-
exponential family. We consider a q-Fisher metric in this paper. However, it
is known that a q-exponential family naturally has three kinds of statistical
manifold structures. See [2,9,11] for more details.

Let Sq be a q-exponential family. The normalization ψ(θ) on Sq is convex, but
may not be strictly convex. Hence we assume that ψ is strictly convex throughout
this paper. In fact, we obtain the following proposition.

Proposition 1. Let Sq = {p(x; θ)} be a q-exponential family. Then the normal-
ization function ψ(θ) is convex.

Proof. Set u(x) = expq x and ∂i = ∂/∂θi. Then we have

∂ip(x; θ) = u′
(∑

θkFk(x) − ψ(θ)
)

(Fi(x) − ∂iψ(θ)),

∂i∂jp(x; θ) = u′′
(∑

θkFk(x) − ψ(θ)
)

(Fi(x) − ∂iψ(θ))(Fj(x) − ∂jψ(θ))

−u′
(∑

θkFk(x) − ψ(θ)
)

∂i∂jψ(θ).

Since ∂i

∫
Ω

p(x; θ)dx =
∫

Ω
∂ip(x; θ)dx = 0 and

∫
Ω

∂i∂jp(x; θ)dx = 0, we have

Zq(p) =
∫

Ω

{(p(x; θ)}qdx =
∫

Ω

u′
(∑

θkFk(x) − ψ(θ)
)

dx,

∂i∂jψ(θ) =
1

Zq(p)

∫

Ω

u′′
(∑

θkFk(x) − ψ(θ)
)

×(Fi(x) − ∂iψ(θ))(Fj(x) − ∂jψ(θ))dx.

For an arbitrary vector c = t(c1, c2, . . . .cn) ∈ Rn, since Zq(p) > 0 and u′′(x) > 0,
we have

n∑

i,j=1

cicj(∂i∂jψ(θ)) =
1

Zq(p)

∫

Ω

u′′
(

n∑

k=1

θkFk(x) − ψ(θ)

)

×
{

n∑

i=1

ci(Fi(x) − ∂iψ(θ))

}2

dx ≥ 0.

This implies that the Hessian matrix (∂i∂jψ(θ)) is semi-positive definite. ��
From the assumption for ψ(θ), we can define the q-Fisher metric and the

q-cubic form by

gij(θ) = ∂i∂jψ(θ), Cijk(θ) = ∂i∂j∂kψ(θ),

respectively. For a fixed real number α, set

g
(
∇q(α)

X Y,Z
)

= g
(
∇q(0)

X Y,Z
)

− α

2
C (X,Y,Z) ,
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where ∇q(0) is the Levi-Civita connection with respect to g. Since g is a Hessian
metric, from standard arguments in Hessian geometry [13], ∇q(e) := ∇q(1) and
∇q(m) := ∇q(−1) are flat affine connections and mutually dual with respect to g.
Hence the quadruplet (Sq, g,∇q(e),∇q(m)) is a dually flat space.

Next, we consider deformed expectations for q-exponential families. We define
the escort distribution Pq(x; θ) of p(x; θ) ∈ Sq and the normalized escort distri-
bution P esc

q (x; θ) by

Pq(x; θ) = {p(x; θ)}q,

P esc
q (x; θ) =

1
Zq(p)

{p(x; θ)}q, where Zq(p) =
∫

Ω

{p(x; θ)}qdx,

respectively. Let f(x) be a function on Ω. The q-expectation Eq,p[f(x)] and the
normalized q-expectation Eesc

q,p [f(x)] are defined by

Eq,p[f(x)] =
∫

Ω

f(x)Pq(x; θ)dx, Eesc
q,p [f(x)] =

∫

Ω

f(x)P esc
q (x; θ)dx,

respectively. Under q-expectations, we have the following proposition. (cf. [8])

Proposition 2. For Sq a q-exponential family, (1) set φ(η) = Eesc
q,p [logq p(x; θ)],

then φ(η) is the potential of g with respect to {ηi}. (2) Set ηi = Eesc
q,p [Fi(x)]. Then

{ηi} is a ∇q(m)-affine coordinate system such that

g

(
∂

∂θi
,

∂

∂ηj

)

= δj
i .

��
We define an α-divergence D(α) with α = 1 − 2q and a q-relative entropy (or a
normalized Tsallis relative entropy) DT

q by

D(1−2q)(p(x), r(x)) =
1
q
Eq,p[logq p(x) − logq r(x)] =

1 − ∫
Ω

p(x)qr(x)1−qdx

q(1 − q)
,

DT
q (p(x), r(x)) = Eesc

q,p [logq p(x) − logq r(x)] =
1 − ∫

Ω
p(x)qr(x)1−qdx

(1 − q)Zq(p)
,

respectively. It is known that the α-divergence D(1−2q)(r, p) induces a statistical
manifold structure (Sq, g

F ,∇(2q−1)), where gF is the Fisher metric on Sq and
∇(2q−1) is the α-connection with α = 2q −1, and the q-relative entropy DT

q (r, p)
induces (Sq, g,∇q(e)).

Proposition 3 (cf. [10]). For a q-exponential family Sq, the two statistical
manifolds (Sq, g

F ,∇(2q−1)) and (Sq, g,∇q(e)) are 1-conformally equivalent. ��
We remark that the difference of a α-divergence and a q-relative entropy is
only the normalization q/Zq(p). Hence a normalization for probability density
imposes a generalized conformal change for a statistical model.
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4 Generalization of Independence

In this section, we review the notions of q-deformed product and generalization
of independence. For more details, see [9,11].

Let us introduce the q-deformed algebras since q-exponential functions and
q-logarithm functions do not satisfy the law of exponent. Let expq x be a q-
exponential function and lnq y be a q-logarithm function. For a fixed number q,
we suppose that

1 + (1 − q)x1 > 0, 1 + (1 − q)x2 > 0, y1−q
1 + y1−q

2 − 1 > 0, (2)
y1 > 0, y2 > 0. (3)

We define the q-sum ⊕̃q and the q-product ⊗q by the following formulas [4]:

x1⊕̃q
x2 := lnq

[
expq x1 · expq x2

]

= x1 + x2 + (1 − q)x1x2,

y1 ⊗q y2 := expq [lnq y1 + lnq y2]

=
[
y1−q
1 + y1−q

2 − 1
] 1

1−q

.

Since the base of an exponential function and the argument of a logarithm func-
tions must be positive, conditions (2) and (3) are necessary. We then obtain
q-deformed law of exponents as follows.

expq(x1 ⊕̃q
x2) = expq x1 · expq x2, lnq(y1 · y2) = lnq y1 ⊕̃q lnq y2,

expq(x1 + x2) = expq x1 ⊗q expq x2, lnq(y1 ⊗q y2) = lnq y1 + lnq y2.

We remark that the q-sum works on the domain of a q-exponential function
and a q-product works on the target space. This implies that the domain of
q-exponential function (i.e. the total sample space Ω) may not be a standard
Euclidean space.

Let us recall the notion of independence of random variables. Suppose that X
and Y are random variables which follow to probabilities p1(x) and p2(y), respec-
tively. We say that two random variables are independent if the joint probability
p(x, y) is given by the product of p1(x) and p2(y):

p(x, y) = p1(x)p2(y).

Hence p1(x) and p2(y) are marginal distributions of p(x, y). When p1(x) > 0 and
p2(y) > 0, the independence is equivalent to the additivity of information:

ln p(x, y) = ln p1(x) + ln p2(y).

Let us generalize the notion of independence based on q-products. Suppose
that X and Y are random variables which follow to probabilities p1(x) and p2(y),
respectively. We say that X and Y are q-independent with e-normalization (or
exponential normalization) if a probability density p(x, y) is decomposed by

p(x, y) = p1(x) ⊗q p2(y) ⊗q (−c),
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where c is the normalization defined by
∫∫

Supp(p(x,y))⊂ΩX×ΩY

p1(x) ⊗q p2(y) ⊗q (−c) dxdy = 1.

We say that X and Y are q-independent with m-normalization (or mixture nor-
malization) if a probability density p(x, y) is decomposed by

p(x, y) =
1

Z(p1, p2)
p1(x) ⊗q p2(y),

where Z(p1, p2) is the normalization defined by

Z(p1, p2) :=
∫∫

Supp(p(x,y))⊂ΩX×ΩY

p1(x) ⊗q p2(y) dxdy.

In the case of q-exponential families, including the standard exponential families,
we can change normalizations from exponential type to mixture type and vice
versa. (See the calculation in Example 1.) Hence we can carry out e- and m-
normalization simultaneously. However, e- and m-normalizations are different in
general [14].

In some problems, the normalization of probability density is not necessary.
In this case, we say that X and Y are q-independent if a positive function f(x, y)
is decomposed by a q-product of two probability densities p1(x) and p2(y):

f(x, y) = p1(x) ⊗q p2(y).

The function f(x, y) is not necessary to be a probability density. In addition,
the total integral of f(x, y) may diverge.

5 q-independence and Student’s t-distributions

In this section, we consider relations between univariate and bivariate Student’s
t-distributions

Suppose that X1 and X2 are random variables which follow to univariate
Student’s t-distributions p1(x1) and p2(x2), respectively. Even if X1 and X2 are
independent, the joint probability p1(x1)p2(x2) is not a bivariate Student’s t-
distribution [7]. We show that q-deformed algebras work for bivariate Student’s
t-distributions.

Theorem 1. Suppose that X1 and X2 are random variables which follow to
univariate Student’s t-distributions p1(x1) and p2(x2), respectively, with same
parameter q (1 < q < 2). Then there exist a bivariate Student’s t-distribution
p(x1, x2) such that X1 and X2 are q-independent with e-normalization.

Proof. Suppose that X1 follows to a univariate Student’s t-distribution (or a
q-Gaussian distribution) given by

p(x1;μ1, σ1) =
Γ

(
1

q−1

)

√
π
√

3−q
q−1Γ

(
3−q

2(q−1)

)
σ1

[

1 − (1 − q)
(x1 − μ1)2

(3 − q)σ2
1

] 1
1−q

,
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where μ1 (−∞ < μ < ∞) is a location parameter, and σ1 (0 < σ < ∞) is a scale
parameter. Similarly, suppose that X2 follows to p(x2;μ2, σ2). By setting

zq(σ1) =

√
π
√

3−q
q−1Γ

(
3−q

2(q−1)

)
σ1

Γ
(

1
q−1

) =
√

3 − q

q − 1
Beta

(
3 − q

2(q − 1)
,
1
2

)

σ1,

we obtain a q-exponential representation as follows:

p(x1;μ1, σ1) = expq

[

θ1x1 − θ11x 2
1 − (θ1)2

4θ11
+ lnq

1
zq(σ1)

]

,

where θ1 and θ11 are natural parameters defined by

θ1 =
2μ1{zq(σ1)}q−1

(3 − q)σ2
1

, θ11 =
{zq(σ1)}q−1

(3 − q)σ2
1

.

We remark that the normalization zq(σ1) can be determined by the parameter
θ11. Therefore, p(x1;μ1, σ1) is uniquely determined from natural parameters θ1

and θ11. Set θ2 and θ22 by changing parameters to μ2 and σ2. Then we obtain
a positive density by

p(x1;μ1, σ1) ⊗q p(x2;μ2, σ2)

= expq

[

θ1x1 + θ2x2 − θ11x 2
1 − θ22x 2

2 − (θ1)2

4θ11
− (θ2)2

4θ22
+ A(θ)

]

, (4)

where A(θ) is given by

A(θ) = lnq
1

zq(σ1)
+ lnq

1
zq(σ2)

.

Recall that p(x1;μ1, σ1)⊗q p(x2;μ2, σ2) is not a probability distribution. Set
the e-normalization function c by

c = A(θ) − lnq
1
zq

=
(

lnq
1

zq(σ1)
+ lnq

1
zq(σ2)

)

− lnq
1
zq

, (5)

where zq is the m-normalization function of bivariate Student’s t-distribution.
As a consequence, we have

p(x1, x2) = p(x1;μ1, σ1) ⊗q p(x2;μ2, σ2) ⊗q (−c)

= expq

[

θ1x1 + θ2x2 − θ11x 2
1 − θ22x 2

2 − (θ1)2

4θ11
− (θ2)2

4θ22
+ lnq

1
zq

]

.

This implies that X1 and X2 are q-independent with e-normalization, and the
joint positive measure p(x1, x2) is a bivariate Student’s t-distribution. ��
Let us give the normalization function zq in θ-coordinate, explicitly. Using a
property of gamma function, we have
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Γ
(

1
1−q

)

νΓ
(

ν
2

) =
Γ

(
ν+2
2

)

νΓ
(

ν
2

) =
1
2
.

Hence the m-normalization function of bivariate Student’s t-distribution is sim-
ply given by

zq = 2π
√

det Σ.

From Equation (1) and (4), the constant zq should be given by

zq = 2π

(
4(2 − q)2

(2π)2q−2
det R̃

) 1
2(q−2)

=
(

2 − q

π

) 1
q−2

(θ11θ22)
1

2q−4 .

6 Concluding Remarks

In this paper, we showed that a bivariate Student’s t-distribution can be obtained
from two univariate Student’s t-distributions using e- and m-normalizations.
Recall that statistical manifold structures of statistical models are changed by
their normalizations. Hence a statistical manifold structure of a bivariate Stu-
dent’s t-distribution does not coincide with the product manifold structure of
two univariate Student’s t-distributions.
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PSL-Research University, Fontainebleau, France

{emmanuel.chevallier,jesus.angulo}@mines-paristech.fr
2 Thales Air Systems, Surface Radar Domain, Technical Directorate,

Advanced Developments Department, 91470 Limours, France

Abstract. The two main techniques of probability density estimation on
symmetric spaces are reviewed in the hyperbolic case. For computational
reasons we chose to focus on the kernel density estimation and we provide
the expression of Pelletier estimator on hyperbolic space. The method is
applied to density estimation of reflection coefficients derived from radar
observations.

1 Introduction

The problem of probability density estimation is a vast topic. Their exists several
standard methods in the Euclidean context, such as histograms, kernel methods,
or the characteristic function method. These methods can sometimes be trans-
posed to the case of Riemannian manifolds. However, the transposition often
introduces additional computational efforts. This additional effort depends on
the method used and the nature of the manifold. The hyperbolic space is one
of the most elementary non-Euclidean spaces. It is one of the three simply con-
nected isotropic manifolds, the two others being the sphere and the Euclidean
space. The specificity of the hyperbolic space enables to adapt the different den-
sity estimation methods at a reasonable cost. Convergence rates of the density
estimation using kernels and orthogonal series were progressively generalized to
Riemannian manifolds, see [1–3]. More recently convergence rates for the kernel
density estimation without the compact assumption have been introduced [4],
which enables the use of Gaussian-type kernels [5]. One already encounters the
problem of density estimation in the hyperbolic space for electrical impedance
[2] and networks [6]. We are interested here in the estimation of the density of
the reflection coefficients extracted from a radar signal [7]. These coefficients
have a intrinsic hyperbolic structure [8,9]. For computational reasons we chose
to focus our applications on the kernel density estimation. The paper begins with
an introduction to the hyperbolic geometry in Sect. 2. Section 3 reviews the two
main density estimation techniques on the hyperbolic space. Section 4 presents
an application to radar data estimation.
c© Springer International Publishing Switzerland 2015
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2 The Hyperbolic Space and the Poincaré Disk Model

The hyperbolic geometry results of a modification of the fifth Euclid’s postulate
on parallel lines. In two dimensions, given a line D and a point p /∈ D, the hyper-
bolic geometry is an example where there are at least two lines going through p,
which do not intersect D. Let us consider the unit disk of the Euclidean plane
endowed with the Riemannian metric:

ds2
D

= 4
dx2 + dy2

(1 − x2 − y2)2
(1)

where x and y are the Cartesian coordinates. The unit disk D endowed with
dsD is called the Poincaré disk and is a model of the two-dimensional hyperbolic
geometry H2. The construction is generalized to higher dimensions. It can be
shown that the obtained Riemannian manifold Hn is homogeneous. In other
words,

∀p, q ∈ Hn,∃ϕ ∈ ISO(Hn), ϕ(p) = q

where ISO(Hn) is the set of isometric transformations of Hn.
In R

n the convolution of a function f by a kernel g consists in the integral of
translated kernel weighted by f in each point p of the support space. The group
law + of R

n is an isometry that enables to transport the kernel in the whole
space. In the Riemannian setting the definition of convolution f ∗ g needs some
homogeneity assumption: in an homogeneous space it is possible to transport a
kernel from a reference point to any other point by an isometry. Let the isotropy
group of p be the set of isometries that fix p. The convolution is properly defined
for kernels that are invariant under elements of the isotropy group of p, for a p
in Hn. Formally, let Kpref

be a function invariant to the isotropy group of pref .
Let Kp = Kpref

◦ ϕp,pref
with ϕp,pref

an isometry such that ϕp,pref
(p) = pref .

When it exists, since Hn is homogeneous, we can define the convolution of a
function f by the kernel Kpref

by:

(f ∗ Kpref
)(q) =

∫

p∈Hn

f(p)Kp(q)dvol

where vol is the hyperbolic measure.
Furthermore it can be shown that for any couple of geodesic γ1 and γ2 starting

from p ∈ Hn, there exists ϕ in the isotropy group of p such that ϕ(γ1) = γ2. In
other words, a kernel Kp invariant under the isotropy group of p looks the same
in every directions at point p. For more details on the hyperbolic space, see [10].

3 Non-parametric Probability Density Estimation

Let Ω be a space endowed with a probability measure. Let X be a random
variable Ω → Hn. The measure on Hn induced by X is noted μX . We assume
that μX has a density, noted f , with respect to vol, and that the support of X
is a compact set noted Supp(X). Let (x1, .., xk) ∈ (Hn)k be a set of draws of X.
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Let μk = 1
k

∑
i δxi

denote the empirical measure of the set of draws. This section
presents the main techniques of estimation of f from the set of draws (x1, .., xk).
The estimated density at x ∈ Hn is noted f̂k(x) = f̂k(x, x1, ..., xk). Observe that
f̂k(x) can be seen as a random variable. The relevance of density estimation
technique depends on several aspects. Recall that Hn is isotropic, every point
and direction is indiscernible. In absence of prior information on the density, the
estimation technique should not privilege specific directions or locations. This
results in a homogeneity and an isotropy condition. Convergence rates of the
different density estimators is widely studied. Results were first obtained in the
Euclidean case, and are progressively extended to the probability densities on
manifold [1–4]. The last aspect, is computational. Each estimation technique
has its own computational framework, which presents pro and cons given the
different applications. For instance, the estimation by orthogonal series presents
an initial pre-processing, but provides a fast evaluation of the estimated density
in compact manifolds. These aspects are studied for the main techniques of
density estimation in the remaining of the paper.

Every standard density estimation technique involves a scaling parameter.
This scaling factor controls the influence of the observation xi on the estimated
density at x, depending on the distance between x and xi. In the experiments,
the scaling factor is chosen following the framework proposed in [11]: a cross
validation of the likelihood of the estimator.

3.1 Characteristic Function, or Orthogonal Series

Let U ∈ Hn be such that Supp ⊂ U . Consider a generalized orthonormal basis
(ej) consisting of eigenfunctions of the Laplace operator on L2(U). Recall that

〈f, g〉 =
∫

U

fgdvol,

where x denotes the complex conjugate of x. Eigenfunctions of the Laplace
operator in Hn behave similarly to the eigenfunctions in the real case. Thus, if
the density f is in L2(U) the Fourier-Helgason transform gives:

f =
∑

j

〈f, ej〉 ej , or f =
∫

B
〈f, ej〉 ejdej ,

respectively when U is compact and non compact. B is a subset of the eigen-
functions of the Lapacian. See [12] for an expression of dej and B when U = Hn.
The law of large number gives,

〈f, ei〉 =
∫

fejdvol = E (ej(X)) ≈ 1
k

k∑

j=1

ej (xi) .

Let eλ be such that Δeλ = λeλ, where Δ denotes the Laplace operator. Given
T > 0, let BT = {eλ ∈ B, λ < T}. The density estimator becomes:
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f̂k =
1
k

∑

ej∈BT

[
k∑

i=1

ej (xi)

]

ej , or f̂k =
1
k

∫

BT

[
k∑

i=1

ej (xi)

]

ejdej .

The parameter T plays the role of the inverse of the scaling parameter. In
the Euclidean context, this is equivalent to the characteristic function density
estimator. The choice of the basis is motivated by the regularity of the eigenfunc-
tions of the Laplace operator. Let IT be the indicator function of BT in B. For a
right BT , the inverse Fourier Helgason transform of IT , FH−1(IT ), is invariant
under the isotropy group of a p ∈ Hn. Then, the estimator is a convolution [13]
written as

f̂k = μk ∗ FH−1(IT ),

In other words, the estimation does not privilege specific locations or directions.
Convergence rates are provided in [2]. When U is compact, the estimation f̂ is
made through the estimation of N scalar product, that is to say kN summation
operation. However, the evaluation at x ∈ Hn involves only a sum of N terms.
On the other hand, when U is not compact, the evaluation of the integral requires
significantly higher computational cost. Unfortunately, the eigenfunction of the
Laplacian for U ⊂ Hn are only known for U = Hn. See [1,14] for more details
on orthogonal series density estimation on Riemannian manifolds.

3.2 Kernel Density Estimation

Let K : R+ → R+ be a map which verifies the following properties:∫
Rn K(||x||)dx = 1,

∫
Rn xK(||x||)dx = 0, K(x > 1) = 0, sup(K(x)) = K(0).

Given a point p ∈ Hn, expp defines a new injective parametrization of Hn. The
Lebesgue measure of the tangent space is noted Lebp. The function θp : Hn → R+

defined by:

θp : q �→ θp(q) =
dvol

dexp∗(Lebp)
(q), (2)

is the density of the Riemannian measure with respect to the image of the
Lebesgue measure of TpHn by expp. Given K and a scaling parameter λ, the
estimator of f proposed by Pelletier in [3] is defined by:

f̂k =
1
k

∑

i

1
λn

1
θxi

(x)
K

(
d(x, xi)

λ

)

. (3)

It can be noted that this estimator is the usual kernel estimator in the case
of Euclidean space. Convergence rates are provided in [3] for the case of com-
pact manifold. In the present situation, we only have a compact hypothesis on
Supp. The notion of the double of a manifold [20] enables to consider any com-
pact manifold with boundaries as a sub-manifold of a compact manifold without
boundaries. This enables to extend the convergence rates to the present situa-
tion. These rates are similar to those of the orthogonal series. In [3] is further-
more shown that xi is the intrinsic mean of 1

θxi
(.)K(d(., xi)/λ). Under reasonable
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assumptions on the true density f , the shape of the kernel does not have a sig-
nificant impact on the quality of the estimation in the Euclidean context [15].
Figure 1 experimentally confirms the result in H2.

Given a reference point pref ∈ Hn, let

K̃(q) =
1

kλn

1
θpref

(q)
K

(
d(pref , q)

λ

)

. (4)

Note first that if φ is an isometry of Hn, θp(q) = θφ(p)(φ(q)). After noticing that
K̃ is invariant under is isotropy group of pref , a few calculations lead to:

f̂k = μk ∗ K̃. (5)

As the density estimator based on the eigenfunction of the Laplacian opera-
tor, the kernel density estimator is a convolution and does not privilege specific
locations or directions. In order to evaluate the estimated density at x ∈ Hn, one
first need to determine the observations xi such that d(x, xi) < λ, and perform
a sum over the selected observations.

One still needs to obtain an explicit expression of θp. Given a reference point
p, the point of polar coordinates (r, α) of the hyperbolic space is defined as the
point at distance r of p on the geodesic with initial direction α ∈ S

n−1. Since the
Hn is isotropic the expression the length element in polar coordinates depends
only on r. Expressed in polar coordinates the hyperbolic metric expression is
[16,17]:

gHn
= dr2 + sinh(r)2gSn−1 .

The polar coordinates are a polar expression of the exponential map at p. In
an adapted orthonormal basis of the tangent plane the metric takes then the
following form:

G =
(

1 0
0 sinh(r)2 1

r2 In−1

)

(6)

where G is the matrix of the metric and In−1 is the identity matrix of size n−1.
Thus, using (6), the volume element dμexp∗

p
is given by

dvol =
√|G|.dexp∗

p(Lebp) = (1r sinh(r))n−1dexp∗
p(Lebp). (7)

where r = d(p, q). From (2) and (7), one obtains

θp(q) = (1r sinh(r))n−1 . (8)

Finally, plugging (8) into (3) gives

f̂k =
1
k

∑

i

1
λn

d(x, xi)n−1

sinh(d(x, xi))n−1
K

(
d(x, xi)

λ

)

. (9)
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Fig. 1. Consider a law X whose density in the tangent plane at (0, 0) is a centered
hemisphere. From a set of draws, the density is estimated using two standard kernels of
the Euclidean plane, K(||x||) = 3

π
(1−||x||2)21||x||<1 and K(x) = 220

81π
(1−||x||3)31||x||<1.

The L1 distance between the estimated and the true density is plotted depending on
the number of draws.

4 Application to Radar Estimation

4.1 From Radar Observations to Reflection Coefficients µk ∈ D

Let us discuss briefly how radar data is related to hyperbolic space via reflec-
tion coefficients, for more details see [9]. Each radar cell is a complex vector
z = (z0, · · · , zn−1) considered as a realization of a centered stationary Gaussian
process Z = (Z0, · · · , Zn−1) of covariance matrix Rn = E[ZZ∗]. The matrix Rn

has a Toeplitz structure, that is to say (Rn)i,j = (Rn)i+1,j+1 for 0 ≤ i, j < n.
For 1 ≤ k ≤ l ≤ n − 1, the k-th order autoregressive estimate of Zl is given
by Ẑl = −∑k

j=1 a
(k)
j Zl−j , where the autoregressive coefficients a

(k)
1 · · · a(k)

k are
chosen such that the mean squared error E(|Zl − Ẑl|2) is minimized. In practice,
reflection coefficients are estimated by regularized Burg algorithm [7]. The last
autoregressive coefficient a

(k)
k is called the k-th reflection coefficient, denoted by

μk and which has the property |μk| < 1. The coefficient for k = 0 corresponds to
the power, denoted P0 ∈ R

∗
+. The reflection coefficients induce a (diffeomorphic)

map ϕ between the Toeplitz Hermitian positive definite (HPD) matrices of order
n, T n, and reflection coefficients:

ϕ : T n → R
∗
+ × D

n−1, Rn �→ (P0, μ1, · · · , μn−1)

where D = {ζ ∈ C : |ζ| < 1} is the open unit disk of the complex plane.
Diffeomorphism ϕ is very closely related to theorems of Trench [19].

The Riemannian geometry of the space of reflection coefficients has been
explored in [8] through the Hessian of Kähler potential, whose metric is

ds2 = n
dP 2

0

P 2
0

+
n−1∑

k=1

(n − k)
|dμk|2

(1 − |μk|2)2 . (10)
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According to the metric (10) the space T n can be seen as a product of the
Riemannian manifold

(
R

∗
+, ds20

)
, with ds20 = n(dP 2

0 /P 2
0 ) (logarithmic metric mul-

tiplied by n), and (n − 1) copies of
(
D, ds2k

)
1≤k≤n−1

, with ds2k = (n − k)ds2
D
.

(
R

∗
+ × D

n−1, ds2
)

is a Cartan–Hadamard manifold whose sectional curvatures
are bounded, i.e., −4 ≤ K ≤ 0. This metric is related to information geometry
and divergence functions [18]. From the product metric, closed forms of the Rie-
mannian distance, arc-length parameterized geodesic, etc. can be obtained [8,9].

The next paragraph presents the estimations of the marginal densities coef-
ficients μk.

4.2 Experimental Results

Data used in the experimental tests are radar observations from THALES X-
band Radar, recorded during 2014 field trials campaign at Toulouse Blagnac
Airport for European FP7 UFO study (Ultra-Fast wind sensOrs for wake-vortex
hazards mitigation). Data are representative of Turbulent atmosphere monitored
by radar in rainy conditions. Figure 2 illustrates the density estimation of the six
reflection coefficients on the Poincaré unit disk. For each coefficient the dataset
is composed of 120 draws.

µ1 µ2 µ3 µ4 µ5 µ6

Fig. 2. Estimation of the density of the 6 first coefficients µk under rainy conditions.
The expression of the used kernel is K(x) = 3

π
(1 − x2)21x<1

5 Conclusion and Perspectives

We have discussed the problem of density estimation on the hyperbolic space.
After having computed the volume change factor, we have adopted the approach
based on kernel density estimation by Pelletier [3]. The method has been used to
estimate the density of reflection coefficients from radar signals. According to the
diffeomorphism between Toeplitz HPD matrices and reflection coefficients [19],
densities estimated on a product of Poincaré disk can be interpreted as a proba-
bility density on the space of Toeplitz HPD matrices. Other symmetric homoge-
nous spaces such as the Siegel disk can be addressed using similar methods.
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The link between the Siegel disk and the space of Toeplitz-Block-Toeplitz HPD
matrices makes of it an other interesting study case.

Alternative approaches of density estimation can be considered in future
research. For data lying in a known compact symmetric subspace of the hyper-
bolic space, it is possible to use the orthogonal series technique, where the eigen-
functions of Laplace operator are numerically estimated. From an application
viewpoint, densities from radar reflection coefficients can be used as basic ingre-
dient in radar detection algorithms (finding modes of density and segmenting
the density).
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Abstract. We address here the problem of perceptual colour his-
tograms. The Riemannian structure of perceptual distances is measured
through standards sets of ellipses, such as Macadam ellipses. We pro-
pose an approach based on local Euclidean approximations that enables
to take into account the Riemannian structure of perceptual distances,
without introducing computational complexity during the construction
of the histogram.

Keywords: Colour images · Image histograms · Riemannian metrics

1 Introduction

The histogram of the intensities is a fundamental descriptor of a grayscale image.
It is one of the most important tools to address problems such as contrast
enhancement (by histogram linear stretching or using advanced approaches [1]),
image segmentation (by 1D clustering), texture processing [2], image retrieval [3],
etc. The standard way of computing a histogram is to cut the value space into
regular bins and to count the number of pixels that fall into each bin. How-
ever the obtained histogram presents important discontinuities. One thus prefers
sometimes to use kernel methods which provide smoother results. One sometimes
considers the color space as a part of a three dimensional Euclidean space. Under
this assumption, the histogram of a color image can be built in the same way as
for gray scale image. However, the distances induced on colours by the human
perceptual system cannot be represented by a Euclidean space structure. Obser-
vation showed that the perceptual relation between colours is better represented
in the framework of Riemannian manifolds. The local metrics of the Riemannian
structure are experimentally measured by a set of ellipses, such as the Macadam
ellipses [4], BFD-P [5] and RIT-DuPont [6]. This Riemannian structure makes
the construction of the histogram difficult. On the one hand, except rare sit-
uations, there are no regular tilings of the space. On the other hand, kernel
methods have been generalized to Riemannian manifolds in [7], but requires the
knowledge of the geodesics. In this paper, we propose an approach that takes
into account the Riemannian structure while keeping the computation in the
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 762–769, 2015.
DOI: 10.1007/978-3-319-25040-3 81



Perceptual Image Histograms 763

Euclidean framework. Thus we propose a way of building histograms that bet-
ter respects the perceptual distances than histograms built in Euclidean spaces,
without increasing the computation time.

2 Image Histogram and Density Estimation

Let us consider an image I as a map:

I :
{

D → V
p �→ I(p)

We have, for instance V = R for grey-scale images or V = R
n for multi-

spectral images. D is the support space of pixels/voxels, typically a subset of
Z
2 or Z

3. The set of values {I(p), p ∈ D} is interpreted as a set of realizations
of a random variable X. Let us assume that a reference measure μ is given on
the space V . Furthermore, make the strong assumption that the law of X has
a density f with respect to μ. The density f is an interesting quantity in image
processing.

There are various ways of addressing the problem of probability density esti-
mation. In the Euclidean context the most popular techniques are mainly the
histograms, the kernels, and the characteristic function density estimator. The
characteristic function density estimator consists in the estimation of the Fourier
transform or series of the density. Each of these three techniques can be trans-
ported in most of Riemannian manifolds. However, the kernel methods become
often significantly simpler than the two others. On the one hand, the histogram
requires a regular tiling of the space which is a difficult problem for most of
Riemannian manifolds. On the other hand the characteristic function method
requires explicit expressions of the eigenfunctions of the Laplacian operator,
these functions being known only in a few spaces. For its part, the kernel method
only requires the knowledge of geodesic distances. In what follows, we chose to
focus on the kernel method. Recall that the kernel method in the Euclidean case
has the following form:

f(x) =
1
k

∑

pi∈{pixels}

1
λn

K(
||x − I(pi)||

λ
)

where λ is a scaling parameter, n the dimension of the space, k the number
of pixels, and K : R+ → R+ a map which obeys the following properties:∫
Rn K(||x||)dx = 1,

∫
Rn xK(||x||)dx = 0, sup(K(x)) = K(0). In this paper,

we assume a supplementary condition of bounded support K(x > 1) = 0.

3 Basics on Riemannian Manifolds

Let M be a topological space, homeomorphic to an open subset of R
n. An

homeomorphism is bijective continuous map whose inverse is also continuous.
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Let φ be an homeomorphism from Uφ ⊂ R
n to M. φ is a parametrization of M.

A Riemannian metric is a smooth field of scalar product on Uφ. In other words,
a Riemannian metric associates a positive definite matrix to each points of Uφ.
A smooth path is a map γ : [a, b] → M such that φ−1 ◦ γ is piece-wise C1. Let
γ be such a path. The Riemannian metric induces a notion of length on smooth
path:

L(γ) =
∫ b

a

√
〈(φ−1 ◦ γ)′(t), (φ−1 ◦ γ)′(t)〉(φ−1◦γ)(t)dt

Where 〈., .〉(φ−1◦γ)(t) is the scalar product attached to the point (φ−1 ◦γ)(t). The
notion of shortest path between two points induces a distance on M. A shortest
path is called a geodesic path and can be seen as straight segments.

The scalar product is entirely determined by its unit ball. Expressed in vector
coordinates, the associated unit ball takes the form of an ellipse in two dimensions
or of an ellipsoid in three dimensions. Thus, the Riemannian metric is given by
a field of ellipses or ellipsoids.

4 Perceptual Metric on Colours

Already Riemann used colour as an illustration of the applicability of his geom-
etry [8], and concrete examples of such colour geometries were developed by
Helmholz [9], Schrödinger [10] and Stiles [11].

4.1 Ellipses, Local Metric

The first experimental determination of the field of ellipses describing the
Riemannian metric of the colour space was performed by MacAdam [4]. The
experiment consisted of about 25 000 colour matches with one observer, and the
ellipses were derived from the covariance matrices of the repeated observations.
Later, it has become common practice to denote ellipses obtained in this manner
as JND (just noticeable difference) ellipses or ellipsoids.

Later, another type of experiment has become more commonplace. Pairs of
colours that are barely perceptually different, are presented to the observer, who
is given the task to estimate the magnitude of the perceptual distance using a
set of standard pairs. Ellipses, ellipsoids and metrics obtained in this way are
normally denoted supra-threshold ellipses. Examples of supra-threshold color
difference based data include BFD-P [5] and RIT-DuPont [6].

4.2 Global Model

Data sets of measurements provide information on distances through the local
metric or through distances between specific colours. A global model provides an
analytic expression of the distance between two arbitrary colours. The closest the
proposed expression is to the Riemannian perceptual distances, the better the
model is. The more conventional procedure for going from a tristimulus space to
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a space closer linked to a perceptual homogeneous space typically includes the
following steps. First, apply a linear transform in the tristimulus space such that
the base gets close to the cone fundamentals of the retina. Secondly, perform
a non-linear compression of the coordinates (e.g., logarithmic or cubic root) in
order to mimic the non-linear response of the human visual system. Finally, per-
form a linear transformation of the resulting coordinates in order to correspond
better to the perceptual attributes of colour. Typically, the first coordinate is a
weighted sum of the coordinates and represent a lightness correlate, whereas the
two other coordinates are weighted differences, and represent colour opponent
channels such as, e.g., red–green and blue–yellow.

In order to identify the different parameters of the various transforms, differ-
ent optimisation criteria are used. In the CIELAB colour space [13], the para-
meters were optimised such that the lightness should correspond to perceived
lightness, and that the Euclidean metric in the resulting space should correspond
to perceptual colour differences. For the IPT colour space [14], the parameters
were optimised in order to achieve a constant perceived hue along straight radial
lines in cylindrical coordinates. It is furthermore reasonably well established that
in such perceptual spaces, the Euclidean metric is not the one best correspond-
ing to the perceived colour differences, and other models have been proposed,
see, e.g., Luo et al. [15] and Farup [12]. In the hyperbolic models proposed in
Farup [12], histograms can be computed using adapted kernels, see [16].

5 Kernel Density Estimation Using Local Euclidean
Approximations

In general Riemannian manifolds, computing the distance between two arbitrary
points given the metric field is a difficult problem. Indeed, finding the distance
is a minimization problem over a set of paths. However, for two close points, the
local metric provides a satisfying approximation of the Riemannian distance.
A probability density measures the ratio between the probability of an infinites-
imal volume element and its volume. It is thus a local notion. The central idea
of this section takes advantage of the fact that histograms mainly involves local
phenomena. Since in a Riemannian manifold the computation of an histogram
does not involve computation of long geodesics, the need of a global model that
provides distances between every pairs of colours is of lower importance than in
most applications.

Figure 1 shows a set of ellipses in the projective ab plane. Let us assume
that these ellipses represent the local perceptual metric. Let c be a point where
the metric has been measured through the ellipse Ec. In a neighborhood of c,
computing distances using the metric measured at c is a better approximation
of the perceptual distance than using the canonical euclidean distance of the ab
plane. At a point p where the metric is originally unknown, a metric interpolated
from the neighbor points ci has all the odds of being more relevant than the
canonical Euclidean metric of the map, see Fig. 1.
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Let dR(p, q) be the perceptual distance between color p and color q. dR(p, q)
is the Riemannian distance induced by the field of ellipses. Let ||p − q|| be the
distance associated with the canonical scalar product of the ab plane, and ||p−q||c
be the distance associated with the scalar product induced by the ellipse Ec.
Let B(c,R) and Bc(c,R) be the respective balls of center c and radius R. The
previous discussion can be formalized as follow. It can be shown that:

limx→c
||x − c||c
dR(x, c)

= 1

while if ||.||c 	= ||.||, the equality case being exceptional,

limx→c
||x − c||
dR(x, c)

	= 1

Therefore for such a c there exists A > 0 such that,

∀R > 0,∃x ∈ B(c,R), A <

∣
∣
∣
∣
||x − c||
dR(x, c)

− 1
∣
∣
∣
∣ . (1)

On the other hand there exists a real positive number Rc = Rc,A such that,

∀x ∈ B(c,Rc),
∣
∣
∣
∣
||x − c||c
dR(x, c)

− 1
∣
∣
∣
∣ < A. (2)

We have

supB(c,Rc)

(∣
∣
∣
∣
||x − c||c
dR(x, c)

− 1
∣
∣
∣
∣

)

< A < supB(c,Rc)

(∣
∣
∣
∣
||x − c||
dR(x, c)

− 1
∣
∣
∣
∣

)

.

Thus for x ∈ B(c,Rc), ||x− c||c is preferred to ||x− c||. Consider a kernel K and
a scaling parameter λ such that

λ ≤ Rc and Bc(c, λ) ⊂ B(c,Rc).

For x ∈ B(c,Rc), K
(

||x−c||c
λ

)
is preferred to K

(
||x−c||

λ

)
. For x /∈ B(c,Rc),

K
(

||x−c||c
λ

)
= K

(
||x−c||

λ

)
= 0. Thus under these assumptions on the scaling

parameter λ, the histogram

f(x) =
1
k

∑

pi∈{pixels}

1
λn

K

( ||x − I(pi)||I(pi)

λ

)

(3)

is preferred to the classical histogram. We think that the hypothesis on λ is
reasonable in practice, its validation is a subject of further research. Note that
the higher the resolution of the image is, the smaller λ is and then the more the
hypothesis becomes reasonable.
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5.1 Metric Interpolation and Euclidean Approximation

Let M be topological space, homeomorphic to an open subset of Rn. Let φ be an
homeomorphism from Uφ ⊂ R

n to M. A set of scalar products Gci is given for
a set of points (ci) ∈ M. We consider here the problem of interpolation of the
field of metrics. Let F1 and F2 be two smooth metric fields that coincide with
the observed ellipses at the points (ci). Despite the intuition, if no assumption
is made on φ regarding the Riemannian distance, there are no criteria that
enables to prefer F1 or F2. The problem of metric tensor interpolation is thus
a difficult problem. In this paper, we adopt an elementary solution. Ellipses are
represented in the projective ab plane. A Delaunay triangulation with respect
to the canonical Euclidean metric of the plane is performed on the set (ci). At
a point p in the triangle cicjck the parameters of the interpolated ellipse Ep are
linearly interpolated between the parameters of Eci , Ecj , and Eck with respect to
the barycentric coordinates of p. If p does not belong to one of the triangles of
the Delaunay triangulation, we set Ep = Eq where q is the projection of p on the
convex hull of the set of centers.

5.2 Experimental Results

The RIT-DuPont dataset [6] shows that the perceptual metric is dependent of
the luminance. Nevertheless, for visualization purpose we choose to abandon
the luminance information in order to work with two dimensional data. The
Macadam ellipses were measured at a fixed luminance, in the CIE chromaticity
diagram. The ellipses are transported in the L = 40 plane of the Lab space. For-
getting the luminance coordinate, one obtains then a transport of the Macadam
ellipses in an ab plane. Remind that the proposed framework is independent
of the dimension and can be used in three dimensional spaces with standard
datasets of ellipsoids.

Figure 1 presents the transported Macadam ellipses in the projective ab plane,
the Delaunay triangulation of the set of centers and the interpolation of the
ellipses. Figure 2 represents the density of the Riemannian measure with respect
to the Lebesgue density of the plane. Recall that the expression of the density
is given by

√
det(G) where G is the metric tensor derived from the ellipse.

Fig. 1. (a) Macadam ellipses transported in an ab plane, (b) Delaunay triangulation,
(c) ellipses interpolation
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Fig. 2. (a) Color photography (b) local density change induced by the interpolated
ellipses, (c) Zoom adapted to colours present in the photography

Fig. 3. The histogram of the image of Fig. 2(a) is computed using: the canonical Euclid-
ean metric of the ab projective plane in (a), the canonical metric followed by a division
by the local density of the perceptual metric in (b) and the formula (3) in (c) (Color
figure online).

Figure 3 presents the histograms of the image of Fig. 2(a). Panels (b) and (c)
aim a studying the density f with respect to the perceptual Riemannian volume
measure. The main difference between (b) and (c) is that in (c) the shape of the
kernel follows the Riemannian metric. The density with respect to the Euclidean
measure is visibly different from the histogram with respect to the Riemannian
measure. The amplitude of the upper spot, representing white colours, is signifi-
cantly decreased when using the Riemannian measure. Perceptually, this results
from the fact that the eyes have an higher sensitivity around white than around
blue.

6 Conclusion

Given a set of ellipses representing the perceptual metric on colours, we proposed
an approach for histogram computation that takes into account the Riemannian
structure of the perceptual metric without introducing supplementary compu-
tational complexity. Indeed, the step of ellipses interpolation only has to be
achieved once and does thus not introduce computational complexity. The rel-
evance of the approach is conditioned by the relevance of the set of perceptual
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ellipses and the quality of the interpolation. The deep problem of metric tensor
interpolation has been partially left aside and will be subject of future research.
The second topic of our future research will be on the convergence of the pro-
posed histogram to the density of the underlying random variable with respect
to the interpolated Riemannian metric.
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Abstract. Air traffic management (ATM) aims at providing companies
with a safe and ideally optimal aircraft trajectory planning. Air traffic
controllers act on flight paths in such a way that no pair of aircraft
come closer than the regulatory separation norm. With the increase of
traffic, it is expected that the system will reach its limits in a near future:
a paradigm change in ATM is planned with the introduction of trajectory
based operations. This paper investigate a mean of producing realistic air
routes from the output of an automated trajectory design tool. For that
purpose, an entropy associated with a system of curves is defined and
a mean of iteratively minimizing it is presented. The network produced
is suitable for use in a semi-automated ATM system with human in the
loop.

1 Introduction

Based on recent studies [1], traffic in Europe is expected to grow on an aver-
age yearly rate of 2.6 %, yielding a net increase of 2 million flights per year at
the 2020 horizon. Long term forecast gives a two fold increase in 2050 over the
current traffic, pointing out the need for a paradigm change in the way flights
are managed. Two major framework programs, SESAR (Single European Sky
Air traffic management Research) in Europe and Nextgen in the US have been
launched in order to first investigate potential solutions and to deploy them
in a second phase. One of the main changes that the air traffic management
(ATM) system will undergo is a switch from airspace based to trajectory based
operations with a delegation of the separation task to the crews. Within this
framework, trajectories become the basic object of ATM, changing the way air
traffic controllers will be working. In order to alleviate the workload of con-
trollers, trajectories will be planned several weeks in advance in such a way that
close encounters are minimized and ideally removed. For that purpose, several
tools are currently being developed, most of them coming from the field of robot-
ics [6]. Unfortunately, flight path issued by these algorithms are not tractable for
a human controller and need to be simplified. The purpose of the present work
is to introduce an automated procedure that takes as input a set of trajectories
and outputs a simplified one that can be used in an operational context. Using
an entropy associated with a curves system, a gradient descent is performed in
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 770–778, 2015.
DOI: 10.1007/978-3-319-25040-3 82
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order to reduce it so as to straighten trajectories while avoiding areas with low
air craft density, thus enforcing route-like behavior. This effect is related to the
fact that entropy minimizing distributions favor concentration.

2 Entropy Minimizing Curves

2.1 Motivation

As previously mentioned, air traffic management of the future will make an
intensive use of 4D trajectories as a basic object. Full automation is a far reaching
concept that will probably not implemented before 2040–2050 and even in such a
situation, it will be needed to keep humans in the loop so as to gain a wide societal
acceptance of the concept. Starting from SESAR or Nextgen initial deployment
and aiming towards this ultimate objective, a transition phase with human-
system cooperation will take place. Since ATC controllers are used to a well
structured network of routes, it is advisable to post-process the 4D trajectories
issued by automated systems in order to make them as close as possible to
line segments connecting beacons. To perform this task, in an automatic way,
flight paths will be moved Add “iteratively” to dictionary so as to minimize an
entropy criterion, that enforces avoidance of low density area and at the same
time penalize length. Compared to already available bundling algorithms [3]
that tend to move curves to high density areas, this new procedure generates
geometrically correct curves, without excess curvature.

2.2 Entropy of a System of Curves

Let a set γ1, . . . γN of smooth curves be given, that will be aircraft flight paths
for the air traffic application. It will be assumed in the sequel that all curves are
smooth mappings from [0, 1] to a domain Ω of R2 with everywhere non vanishing
derivatives in ]0, 1[. This last condition allows to view trajectories as smooth
immersions with boundaries and is sound from the application point of view as
aircraft velocities cannot be 0 expect at the endpoints. A classical performance
indicator used in ATM is the aircraft density [2], obtained from sampled positions
γi(tj), j = 1 . . . ni. It is constructed from a partition Uk, k = 1 . . . P of Ω by
counting the number of samples occurring a given Uk then dividing out by the
total number of samples n =

∑N
i=1 ni. More formally, the density dk in the

subset Uk of Ω is:

dk = n−1
N∑

i=1

ni∑

j=1

1Uk
(γi(tj)) (1)

with 1Uk
the characteristic function of the set Uk. It seems natural to extend

the density obtained from samples to another one based on the trajectories
themselves using an integral form:

dk = λ−1
N∑

i=1

∫ 1

0

1Uk
(γi(t)) dt (2)
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where the normalizing constant λ is obtained as:

λ =
P∑

k=1

N∑

i=1

∫ 1

0

1Uk
(γi(t)) dt =

N∑

i=1

∫ 1

0

P∑

k=1

1Uk
(γi(t)) dt

and since Uk, k = 1 . . . P is a partition:

λ =
N∑

i=1

∫ 1

0

γi(t)dt (3)

Density can be viewed as an empirical probability distribution with the Uk

considered as bins in an histogram. It is thus natural to extend the above com-
putation so as to give rise to a continuous distribution on Ω. For that purpose,
a kernel function K : R → R

+ is selected and a smooth version of the density [5]
is defined as a mapping d from Ω to [0, 1]:

d : x �→
∑N

i=1

∫ 1

0
K (‖x − γi(t)‖) dt

∑N
i=1

∫
Ω

∫ 1

0
K (‖x − γi(t)‖) dtdx

(4)

Standard choices for the K function are the ones used for non-parametric
kernel estimation like the Epanechnikov function:

K : x �→ (
1 − x2

)
1[−1,1](x)

When K is compactly supported, which is the case of the Epanechnikov
function and all its relatives, it comes:

∫

Ω

K (‖x − γi(t)‖) dx =
∫

R2
K (‖x‖) dx

provided that Ω contains the set:

{x ∈ R
2, inf

i=1...N,t∈[0,1]
‖x − γi(t)‖ ≤ A}

where the interval [−A,A] contains the support of K. The case of kernels
with unbounded support, like Gaussian functions, may be dealt with provided
Ω = R

2. In the application considered, only compactly supported kernels are
used, mainly to allow fast machine implementation of the density computation.
Normalizing the kernel is not mandatory as the normalization occurs with the
definition of d. It is nevertheless easier to consider only kernels satisfying:

∫

R2
K (‖x‖) dx = 1

Using the polar coordinates (ρ, θ) and the rotation invariance of the inte-
grand, the relation becomes:

2π

∫

R+
K(ρ)ρdρ = 1
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Which yields a normalizing constant of 2/π for the Epanechnikov function,
instead of the usual 3/4 in the real case. When the normalization condition is
fulfilled, the expression of the density simplifies to:

d : x �→ N−1
N∑

i=1

∫ 1

0

K (‖x − γi(t)‖) dt (5)

As an example, one day of traffic over France is considered and pictured on
Fig. 1 with the corresponding density map, computed on a evenly spaced grid
with a normalized Epanechnikov kernel:

Fig. 1. Traffic over France and associated density

Unfortunately, density computed this way suffers a severe flaw for the ATM
application: it is not related to the shape of trajectories but also to the time
behavior. Formally, it is defined on the set Imm

(
[0, 1],R2

)
of smooth immer-

sions from [0, 1] to R
2 while the space of primary interest will be the quotient

by smooth diffeomorphisms of the interval [0, 1], Imm
(
[0, 1],R2

)
/Diff([0, 1]).

Invariance of the density under the action of Diff([0, 1]) is obtained as in [4]
by adding a term related to velocity in the integrals. The new definition of d
becomes:

d̃ : x �→
∑N

i=1

∫ 1

0
K (‖x − γi(t)‖) ‖γ′

i(t)‖dt
∑N

i=1

∫
Ω

∫ 1

0
K (‖x − γi(t)‖) ‖γ′

i(t)‖dtdx
(6)

Assuming again a normalized kernel and letting li be the length of the curve
γi, is simplifies to:

d̃ : x �→
∑N

i=1

∫ 1

0
K (‖x − γi(t)‖) ‖γ′

i(t)‖dt
∑N

i=1 li
(7)

The new Diff -invariant density is pictured on Fig. 2 along with the standard
density. While the overall aspect of the plot is similar, one can observe that
routes are more apparent the right picture and that the density peak located
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above Paris area is of less importance and less symmetric is due to the fact that
near airports, aircraft are slowing down and this effect exaggerates the density
with the non-invariant definition.

Fig. 2. Density (left) and Diff invariant density (right) for the 12th February 2013
traffic

Having a density at hand, the entropy of the system of curves γ1, . . . , γN is
defined the usual way as:

E(γ1, . . . , γN ) = −
∫

Ω

d̃(x) log
(
d̃(x)

)
dx

2.3 Minimizing the Entropy

In order to fulfill the initial requirement of finding bundles of curve segments as
straight as possible , one seeks after the system of curves minimizing the entropy
E(γ1, . . . , γN ), or equivalently maximizing:

∫

Ω

d̃(x) log
(
d̃(x)

)
dx

The reason why this criterion gives the expected behavior will become more
apparent after derivation of its gradient at the end of this part. Neverthe-
less, when considering a single trajectory its is intuitive that the most concen-
trated density distribution is obtained with a straight segment connecting the
endpoints.

Letting ε be a perturbation of the curve γj such that ε(0) = ε(1) = 0,
the first order expansion of −E(γ1, . . . , γN ) will be computed in order to get
a maximizing displacement field, analogous to a gradient ascent1 in the finite
dimensional setting. The notation:

∂F

∂γj

1 Choice has been made to maximize the opposite of the entropy, so that the algorithm
will be a gradient ascent one.
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will be used in the sequel to denote the derivative of a function F of the
curve γj in the sense that for a perturbation ε:

F (γj + ε) = F (γj) +
∂F

∂γj
(ε) + o(‖ε‖2)

First of all, please note that since d̃ has integral 1 over the domain Ω:

∫

Ω

∂d̃(x)
∂γj

(ε)dx = 0

so that:

− ∂

∂γj
E(γ1, . . . , γN )(ε) =

∫

Ω

∂d̃(x)
∂γj

(ε) log
(
d̃(x)

)
dx (8)

Starting from the expression of d̃ given in Eq. 7, the first order expansion of
d̃ with respect to the perturbation ε of γj is obtained as a sum of a term coming
from the numerator: ∫ 1

0

K (‖x − γj(t)‖) ‖γ′
j(t)‖dt (9)

and a second one coming from the length of γj in the denominator. This last
term is obtained from the usual first order variation formula of a curve length:

∫

[0,1]

∥
∥γ′

j(t) + ε′(t)
∥
∥ dt

=
∫

[0,1]

∥
∥γ′

j(t)
∥
∥ dt +

∫

[0,1]

〈
γ′

j(t)
‖γ′

j(t)‖
, ε′(t)

〉

dt + o(‖ε‖2)

Using an integration by part, the first order term can be written as:

∫

[0,1]

〈
γ′

j(t)
‖γ′

j(t)‖
, ε′(t)

〉

dt (10)

= −
∫

[0,1]

〈(
γ′′

j (t)
‖γ′

j(t)‖

)

N
, ε

〉

dt (11)

with: (
γ′′

j (t)
‖γ′

j(t)‖

)

N
=

γ′′
j (t)

‖γ′
j(t)‖

− γ′
j(t)

‖γ′
j(t)‖

〈
γ′

j(t)
‖γ′

j(t)‖
,

γ′′
j (t)

‖γ′
j(t)

〉

the normal component of:
γ′′

j (t)
‖γ′

j(t)‖
for a curve in R

2.
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The integral in 9 can be expanded in a similar fashion. Using as above the
notation ()N for normal components, the first order term is obtained as:

∫

[0,1]

〈(
γj(t) − x

‖γj(t) − x‖
)

N
, ε

〉

K ′ (‖γj(t) − x‖) ‖γ′
j(t)‖dt (12)

−
∫

[0,1]

〈(
γ′′

j (t)
‖γ′

j(t)‖

)

N
, ε

〉

K (‖γj(t) − x‖) dt (13)

From the expressions in 12 and 10, the first order variation of the entropy is:

1
∑N

i=1 li
(14)

(∫

[0,1]

〈∫

Ω

(
γj(t) − x

‖γj(t) − x‖
)

N
K ′ (‖γj(t) − x‖) log d̃(x)dx, ε

〉

‖γ′
j(t)‖dt (15)

−
∫

[0,1]

(∫

Ω

K (‖γj(t) − x‖) log d̃(x))dx

) 〈(
γ′′

j (t)
‖γ′

j(t)‖

)

N
, ε

〉

dt (16)

+
(∫

Ω

d̃(x) log(d̃(x))dx

) ∫

[0,1]

〈(
γ′′

j (t)
‖γ′

j(t)‖

)

N
, ε

〉

dt

)

(17)

As expected, only moves normal to the trajectory will change at first order
the value of the criterion: the displacement of the curve γj will thus be performed
at t along the normal vector Nγj

(t) and is given, up to the (
∑N

i=1 li)−1 term by:

∫

Ω

(
γj(t) − x

‖γj(t) − x‖
)

N
K ′ (‖γj(t) − x‖) log d̃(x)dx‖γ′

j(t)‖ (18)

−
(∫

Ω

K (‖γj(t) − x‖) log d̃(x))dx

)(
γ′′

j (t)
‖γ′

j(t)‖

)

N
(19)

+
(∫

Ω

d̃(x) log(d̃(x))dx

) (
γ′′

j (t)
‖γ′

j(t)‖

)

N

)

(20)

The first term in the expression will favor moves towards areas of high den-
sity, while the second and third one are moving along normal vector and will
straighten trajectory.

In practical implementation, the scaling factor in front of the whole expres-
sion is dropped and moves are made proportionally to the given vector. As usual
with gradient ascent algorithms, one must carefully select the step taking in the
maximizing direction in order to avoid divergence. A simple fixed step strategy
was selected here and gives satisfactory results. The procedure applied to one
day of traffic over France yields the picture of Fig. 3 As expected, a route-like
network emerges. In such a case, since the traffic comes from an already orga-
nized situation, the recovered network is indeed a subset of the route network
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Fig. 3. Initial and Bundled traffic of the 24/02/2013

in the french airspace. Please note that there is a trade-off between density
concentration and minimal curvature of the recovered trajectories.

In the second example of Fig. 4, the problem of automatic conflict solving is
addressed. In the initial situation, aircraft are converging to a single point, which
is unsafe. Air traffic controllers will proceed in such a case by diverting aircraft
from their initial flight path so as to avoid each other, but only using very simple
maneuvers. An automated tool will make a full use of the available airspace and
the resulting set of trajectories may fail to be manageable by a human: in the
event of a system failure, no backup can be provided by controllers. The entropy
minimization procedure was added to an automated conflict solver in order to
end up with flight paths still tractable by humans. The final result is shown on
the right part of Fig. 4, where encounters no longer exists but aircraft are bound
to simple trajectories, with a merging and a splitting point. Note that since the
automated planner acts on velocity, all aircraft are separated in time on the
inner part.

Fig. 4. Initial flight plans and final ones

3 Conclusion and Future Work

Algorithms coming from the field of shape spaces emerge as a valuable tool
for applications in ATM. In this work, the foundations of a post processing
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procedure that may be applied after an automated flight path planner are pre-
sented. Entropy minimization makes straight segments bundle emerge, which ful-
fills the operational requirements. Computational efficiency has to be improved
in order to release an usable building block for future ATM systems. One way
to address this issue is to compute kernel density estimators using GPUs which
excel in this kind of task, very similar texture manipulations. Furthermore, the-
oretical insights have to be gained in the next step of the work.
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Abstract. We introduce a novel kernel density estimator for a large
class of symmetric spaces and prove a minimax rate of convergence as
fast as the minimax rate on Euclidean space. We prove a minimax rate of
convergence proven without any compactness assumptions on the space
or Hölder-class assumptions on the densities. A main tool used in proving
the convergence rate is the Helgason-Fourier transform, a generalization
of the Fourier transform for semisimple Lie groups modulo maximal com-
pact subgroups. This paper obtains a simplified formula in the special
case when the symmetric space is the 2-dimensional hyperboloid.

1 Introduction

Data, while often expressed as collections of real numbers, are often more nat-
urally regarded as points in non-Euclidean spaces. To take one example, radar
systems can yield the data of bearings for planes and other flying objects; those
bearings are naturally regarded as points on a sphere [8]. To take another exam-
ple, diffusion tensor imaging (DTI) can yield information about how liquid flows
through a region of the body being imaged; that three-dimensional movement
can be expressed in the form of symmetric positive definite (3 × 3)-matrices [8].
To take yet another example, the nodes of certain hierarchical real-world net-
works can be regarded as having latent coordinates in a hyperboloid [2,6]. In
all such examples, the spaces can be regarded as subsets of Euclidean space,
but Euclidean distances between data points do not reflect the true distances
between the points. Ordinary kernel density estimators applied to the sample
data, expressed as points in Euclidean space, generally will not be optimal in
terms of the L2-risk with respect to the volume measure on the non-Euclidean
manifold.

The literature offers some generalizations of kernel density estimation for
(Riemannian) manifolds. One example for compact manifolds [7] requires that
the kernels have small enough supports. Another example for compact manifolds
[3] requires that the kernels generally vary at each point and the true density
satisfies a Sobolev condition. A minimax rate in terms of a Sobolev parameter
is proven. Moreover, that generalized kernel does not vary when the compact
manifold is symmetric [3]. Another example for complete manifolds requires that
analogues of kernels have to be chosen at each point [5]. A minimax convergence
rate in terms of a Hölder class exponent and the differentiability of the true
density is proven [5]. It is also noted in [3] that harmonic techniques, used to
c© Springer International Publishing Switzerland 2015
F. Nielsen and F. Barbaresco (Eds.): GSI 2015, LNCS 9389, pp. 779–787, 2015.
DOI: 10.1007/978-3-319-25040-3 83
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prove minimax convergence rates in terms of a Sobolev parameter in the compact
case, extend to general symmetric spaces and in particular unify kernel density
estimations on Euclidean space and compact manifolds.

The goal of this paper is to investigate kernel density estimation on a large
class of symmetric spaces manifolds, describing the construction in detail and
proving a minimax rate of convergence with no requirements that the space be
compact, no requirements that the kernel vanish outside of a neighborhood, no
Hölder class assumptions, and no requirement that the kernel be defined for each
point of the space. The idea of kernel density estimation is to smooth out, or
convolve, an empirical estimator with some noise K so as to obtain a smooth
estimate of the true density on R

n. Noise is a random translation of points on R
n.

Thus while K is also a density on R
n, we should really think of K as a density

on the space of translations of Rn (which is usually identified with R
n itself.) On

a general Riemannian manifold X, noise is generally a density on a more general
space G of symmetries of X – and generally G cannot be identified with X. For
example, noise on a hyperboloid H2 of uniform curvature −1 can be regarded
as a density on the space SL2 of (2 × 2)-matrices with determinant 1: each such
matrix determines a distance-preserving smooth map from the hyperboloid to
itself.

Thus the class of manifolds X on which we define our estimator are certain
symmetric spaces, manifolds equipped with spaces of symmetries. In particular,
the symmetric spaces we consider are quotients X = G/K of a semisimple
Lie group G modulo a maximal compact subgroup K. An example of such a
symmetric space is the (non-compact) hyperboloid of uniform curvature −1,
which can be regarded as the quotient SL2/SO2 of the group SL2 of (2 × 2)-
matrices with determinant 1 by the group SO2 of (2×2)-rotation matrices with
positive determinant.

We define a G-kernel density estimator

f̂
(n,h,T )
x̂1,x̂2,...,x̂n

: X → R,

an estimator for a density on the space X defined in terms of samples
x̂1, x̂2, . . . , x̂n ∈ X, a bandwidth parameter h, and a cutoff parameter T . The G-
kernel used to define our estimator is a density on G. An example of a G-kernel
is a generalized Gaussian, a solution to the heat equation on G. Under smooth-
ness assumptions, we bound the risk of the G-kernel density estimator in terms
of h, T , n, and the sum of the restricted roots of X [Theorem 1]. Optimizing h
and T in terms of n, we obtain a minimax rate of

n−2α/(2α+dimX),

where α is a smoothing parameter, under natural assumptions on the density
space and generalized kernel (D.1)–(D.5) [Corollary 2]. We then obtain a simpli-
fied formula (3), that can be easily implemented on a computer, for the special
case where X is the hyperboloid.
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2 Background

The main contribution of this paper is to use a specific extension of Harmonic
Analysis to investigate kernel density estimation in detail for a large class of
symmetric spaces, including non-compact symmetric spaces. Therefore we briefly
recall the basic theory of Helgason-Fourier Analysis and fix some relevant nota-
tion for use throughout the paper. We refer the reader to [9] for a detailed
treatment of the theory, and to [4] for an example of how the theory is applied
to the deconvolution of noise.

2.1 Convolution

The convolution of densities on R
n, necessary to deconvolve noise and smooth

out empirical observations to obtain density estimators, is defined as follows. For
a pair g, f of densities on R

n equipped with the Lebesgue measure μRn , define
the density g ∗ f on R

n by the rule

(g ∗ f)(t) =
∫

Rn

g(x)f(t − x) dμRn .

Convolution, which involves the operation of subtraction, generalizes to sym-
metric spaces defined as follows. A Lie group is a manifold G consisting of
invertible matrices such that multiplication and inversion are smooth maps

· : G × G → G, (−)−1 : G → G.

We take a G-space X to be a Riemannian manifold X equipped with an action

G × X → X

of a Lie group G, a function whose restriction to a function X → X for each
g ∈ G is an isometry. For a density g on a Lie group G having Haar measure μG

and density f on a G-space X having volume measure μX, define the density
g ∗ f on R

n by the rule

(g ∗ f)(t) =
∫

G

g(x)f(x−1t) dμG.

Convolutions allow us to define ordinary kernel density estimators on R
n and

more general G-kernel density estimators on certain spaces X with symmetries
described by a group G. Just as Fourier analysis is useful for indirectly construct-
ing and analyzing convolutions of densities on R

n, a more general Helgason-
Fourier Analysis will allow us to indirectly construct and analyze convolution
of densities on more general manifolds. We define all relevant spaces, define the
transform, and give an explicit formula for the inverse transform.
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2.2 The Symmetric Space

We henceforth fix the following data.

1. connected noncompact semisimple Lie group G with finite center
2. maximal compact connected Lie subgroup K of G.

The symmetric space X on which we wish to define a density estimator is
the quotient space

X = G/K.

Let G = KAN be an Iwasawa decomposition of G, a decomposition of G
into a product of Lie subgroups such that A is Abelian and N is nilpotent.
Let M be the centralizer of A in K. Let g, k, a, n represent the Lie algebras of
G,K,A,N, respectively. Define kg ∈ G, ag ∈ A, and ng ∈ N so that g =
kgagng. Let μG denote the Haar measure on G and μX denote the volume
measure on X. Let ρ be half of the sum of positive restricted roots of X. We also
write c for the Harish-Chandra function on a∗, which plays a role in defining
the Plancherel measure on an appropriate analogue of frequency space for an
appropriate analogue of Fourier Analysis; we refer the reader to [9] for suitable
definitions. Let C∞

c (N) denote the set of C∞ real-valued functions with compact
support on a manifold N .

2.3 Helgason-Fourier Transform

The Helgason-Fourier transform H sends each f ∈ C∞
c (X) to the map

H[f ] : a∗ × K/M → R

defined as follows, where f̂ is the lift of f to a right K-invariant function on G:

(H[f ])(s, kM) =
∫

G

f̂(g)e(ρ−iλ)(log ag−1k−1 ) dμG, (s, kM) ∈ (a∗ ⊗ C) × K/M,

The Helgason-Fourier transform extends to an isometry

L2(X, μX) → L2(a∗ × K/M,
μλ ⊗ μK/M

|c(λ)2| ),

where the measure on the analogue a∗ × K/M of frequency space in Fourier
Analysis is given in terms of standard measures as well as the Harish-Chandra
c-function.

As in the classical case, for each f ∈ C∞
c (X) we have a Plancherel identity

∫

G/K

|f(x)|2dμX =
∫

λ∈a∗

∫

kM∈K/M

|Hf (ρ + iλ, kM)|2 dμλ

|c(λ)2|dμK/M. (1)

The Helgason-Fourier transform H sends convolutions to products in the
following sense. We have for each left and right K-invariant h ∈ C∞

c (G) and
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f ∈ Cc(X) the following identity, where h̄ is the well-defined density on X =
G/K sending each element gK to h(g):

H[h ∗ f ] = H[h̄]H[f ],

The inverse Helgason-Fourier transform H−1, for f ∈ C∞
c (X), satisfies

f(x) =
∫

λ∈a∗

∫

kM∈K/M

Hf(iλ + ρ, kM)e(iλ+ρ)(log ak(x))
dμλ

|c(λ)2|dμK/M.

3 The G-kernel Density Estimator

In Euclidean space, kernel density estimation smooths out the empirical distrib-
ution around each observation. Formally, the ordinary kernel density estimator
fn,h satisfies

fn,h = F−1
[
φ̂F [Kh]

]
,

where F denotes the ordinary Fourier transform, φ̂ denotes the empirical char-
acteristic function of the samples, K denotes a kernel, h denotes a bandwidth
parameter, and F [Kh](s) = F [K](hs).

Define the G-Kernel Density Estimator f (n,T,h) by

f (n,T,h) = H−1
[
φ̂HKhI(−T,+T )

]

where we abuse notation and treat HKh as the function sending (iλ+ρ, kM) to
HK(h(iλ+ ρ),M), I(−T,+T ) as the function sending (iλ+ ρ, kM) to 1 if |λ| � T
and 0 otherwise, and

φ̂(s, kM) =
1
n

n∑

i=1

es(log ak(Xi)) (2)

for observed samples X1, . . . , Xn ∈ X and density K on G invariant under left
and right multiplication by K.

Let X denote a symmetric space such that for fixed semisimple Lie group G
X = G/K for a maximal complete subgroup K. Let fX denote a density on X
with respect to the standard volume measure dμX. Let K denote a density on
G with respect to the Haar measure dμG.

First of all, we assume our densities are L2.

(D.1) Assume fX ∈ L2(X, dμX) and K ∈ L2(G, dμG).

Second of all, we need to restrict K to guarantee that its Helgason-Fourier
transform is well-defined. Thus we assume K is K-invariant in the following
sense.

(D.2) Assume K(acb) = K(c) for c ∈ G a, b ∈ K.
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Third of all, we make assumptions on the smoothness of the true density
fX . The operator Δk defined below in terms of the Helgason-Fourier transform,
generalizes the kth derivative operator from integers k to non-negative real num-
bers k.

(D.3) There exist α > 1 and Q > 0 such that

fX ∈ Fα(Q) = {fX ∈ L2(X, dμX) : ‖Δα/2fX‖2 � Q},

where Δα/2fX denotes the unique function h ∈ L2(X, dμX) such that

Hh(s, kM) = (s(s − 2ρ))
α/2HfX(s, kM)

Last of all, we make assumptions on the smoothness of the kernel K.

(D.4) There exist constants β, γ, C1, C2 > 0 such that

C1e
− |s|β

γ � |HK(s, kM)| � C2e
− |s|β

γ

for all s ∈ a∗ ⊗ C.

(D.5) For some α > 1, there exist a constant A > 0 such that

ess sup
s∈a∗⊗C

|HK(s, kM) − 1|
|s|α � A

3.1 Main Theorems

Proofs of the following main results can be found in [1].

Theorem 1. Assume (D.1)–(D.5). Then for a density fX on a symmetric
space X,

E‖f
(n,T,h)
X − fX‖2 � QA2h2α + QT−2α + C

T dimX

n
e[−(2/γ)(h|ρ|)β ].

for some constant C > 0 not dependent on T, α,Q, n.

By choosing a smooth enough kernel density K, an optimal cutoff of T and
optimal bandwidth h, we obtain the following rate of convergence.

Corollary 1. Assume (D.1)–(D.5). Then

E‖f
(n,T,h)
X − fX‖2 � Cn−2α/(2α+dimX)

for some constant C > 0 not dependent on T, α,Q, n and

T =
[

2αQn

dimXC
e[−(2/γ)(h|ρ|)β ]

]1/(2α+dimX)

h ∈ O(n−1/(2α+dimX)).
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The convergence rate for the upper bound is matched by the lower bound,
as shown below.

Theorem 2. Assume (D.3). There exists a constant C > 0 such that

inf
g(n)

sup
fX∈Fα(Q)

E‖g(n) − fX‖2 � Cn−2α/(2α+dimX)

where the infimum is taken over all estimators g(n).

By the previous results, we obtain our minimax rate below for our adapted
kernel density estimator.

Corollary 2. If fX and K satisfy (D.1)–(D.5), the minimax rate for f
(n,T,h)
X is

n−2α/(2α+dimX).

4 A Special Case: H2

Hyperbolic spaces provide a logical, generative model for real-world networks
[2,6]. The simplest example of a hyperbolic space is the 2-dimensional hyper-
boloid H2 of constant curvature −1. Other examples are the nodes of hierarchi-
cal, tree-like networks under the minimum path length metric. In fact, sampling
points from H2 according to a node density and assigning edges based on geodesic
distances generates networks sharing strikingly similar global and local features
(e.g. clusterability, power law distributions, significant clustering coefficients,
exchangeability) of real-world hierarchical networks (e.g. online social networks,
the Internet) [6]. The inference of a generative density on H2 from sample net-
works provides a succinct description of the large-scale geometric structure of
the samples. Efficient non-parametric density estimation on H2 should provide
important foundational tools for capturing large-scale geometric structure from
a broad class of hierarchical networks [2].

4.1 2-Dimensional Hyperboloid

For this paper, we regard the hyperboloid H2 as the Poincaré half-plane

H2 = {z ∈ C | Im(z) > 0},

equipped with the Riemannian metric

ds2 = y−2(dx2 + dy2).

The space H2 is isometric to the quotient space

H2 = SL2/SO2.
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Under this identification, the matrices in SL2 act on H2 by Möbius transforma-
tions: (

a b
c d

)

(z) =
az + b

cz + d
.

Our density estimator is defined on H2 because SL2 is a semisimple Lie group
admitting an Iwasawa decomposition as SL2 = SO2AN, where A is the group of
diagonal (2×2)-matrices in SL2 with non-negative entries and N is the group of
upper triangular (2 × 2)-matrices with 1’s along the diagonal. For each z ∈ H2,
nz and az are characterized by

(nz)1,2 = Re(z), (az)1,1 = Im(z)1/2.

The Harish-Chandra c-function satisfies the formula

c(λ)−2 =
1

8π2
λ tanh(πλ).

There exists a unique restricted root of H2 = SL2/SO2. Under the natural
identification of A with the Lie group of multiplicative non-negative real numbers
and hence an identification of a∗ with R, we identify the unique restricted root
(taking a (2 × 2)-matrix to the difference in its diagonal elements) with 1 and
hence ρ with 1/2.

4.2 Hypergaussian Kernel

We can also choose our kernel K to be the Hypergaussian, an analogue of a
Gaussian density on Euclidean space defined as follows in [4]. Just as ordinary
Gaussians are characterized as solutions to the heat equation, we define K to
be the unique (SO2-invariant solution) to the heat equation on H2, lifted to a
function on SL2. Concretely,

H[K](s, kM) ∝ es(s−1)

and hence K satisfies the assumptions (D.1), (D.2), and (D.4) for β = 2 and
γ = 1.

4.3 Simplified Formula

Under these simplifications, our SL2-kernel density estimator takes the form:

f (n,T,h)(z) ∝ 1
n

n∑

i=1

∫ +T

−T

∫ 2π

0

F (Zi, θ, λ)
λ tanh(πλ)

8π2
dθ dλ, (3)

where F is defined as follows by letting kθ denote rotation by θ:

F (Z, θ, λ) = Im(kθ(Z))
1
2−iλe−(h2

4 +h2λ2)(Im(kθ(Z)))
1
2+iλ.
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5 Conclusion

We have introduced a new density estimator on a large class of symmetric spaces,
and have proven a minimax rate of convergence identical to the minimax rate
of convergence for a Euclidean kernel density estimator. We then specialize our
generalized kernel density estimator to the hyperboloid, motivated by applica-
tions to network inference. Future work will explore adaptivity, optimizations
in implementation, and applications to symmetric spaces other than the hyper-
boloid.
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