
Fast Handwritten Digit Recognition
with Multilayer Ensemble Extreme
Learning Machine

Hossein Ghodrati Noushahr, Samad Ahmadi and Arlene Casey

Abstract Conventional artificial neural networks and convolutional neural networks

perform well on the task of automatic handwriting recognition. But, they suffer

from long training times and their complex nature. An alternative learning algo-

rithm called Extreme Learning Machine overcomes these shortcomings by deter-

mining the weights of a neural network analytically. In this paper, a novel classifier

based on Extreme Learning Machine is proposed that achieves competitive accuracy

results while keeping training times low. This classifier is called multilayer ensem-

ble Extreme Learning Machine. The novel classifier is evaluated against traditional

backpropagation and Extreme Learning Machine on the well-known MNIST dataset.

Possible future work on parallel Extreme Learning Machine is shown up.

1 Introduction

Artificial Neural Networks (ANN) have been successfully applied for the difficult

task of handwritten digit recognition. However, ANN that train their weights with

the traditional backpropagation (BP) algorithm suffer from slow learning speed. This

has been a major bottleneck for ANN applications in the past.

Recently, Extreme Learning Machine (ELM) has been proposed as an alternative

to BP for the task of training ANN [8]. ELM follows an approach that aims to reduce

human invention, increase learning accuracy, and to reduce the time to train an ANN.

This is done by randomly initiating the weights, then fixing the weights of the hidden

layer nodes and subsequently determining the weights of the output layer analytically.

H. Ghodrati Noushahr (✉) ⋅ S. Ahmadi ⋅ A. Casey

Centre for Computational Intelligence, School of Computer Science and Informatics,

De Montfort University, The Gateway, Leicester LE1 9BH, UK

e-mail: hossein@ghodrati.net

S. Ahmadi

e-mail: sahmadi@dmu.ac.uk

A. Casey

e-mail: arlene.casey@myemail.dmu.ac.uk

© Springer International Publishing Switzerland 2015

M. Bramer and M. Petridis (eds.), Research and Development
in Intelligent Systems XXXII, DOI 10.1007/978-3-319-25032-8_5

77

78 H. Ghodrati Noushahr et al.

Human invention is reduced as hyper-parameters, such like the learning rate and the

momentum of traditional BP do not have to be determined manually.

ELM was applied successfully on a variety of classification and function approx-

imation tasks [7]. In this paper, a novel classifier based on ELM will be presented

that achieves competitive accuracy results while keeping the training time low and

limiting human invention.

The remainder of this paper is structured as follows. In Sect. 2 the handwriting

recognition problem and the corresponding dataset will be explained in detail. In

Sect. 3 recent classifier for this task will be reviewed. This includes conventional

ANN, but also very successful variations of ANN called convolutional neural net-

works (CNN) that fall into the research area of Deep Learning. Section 4 introduces

ELM and ELM ensemble models. Furthermore, the novel classifier will be presented

in the same section. The results of the experimental work conducted will be shown

in Sect. 5, and Sect. 6 concludes the paper.

2 Problem Definition

Automatic handwriting recognition is a challenging problem that caught academic

and commercial interest. Some commercial applications are: letter sorting in post

offices, personal check reading in banks, or large-scale digitization of manuscripts

[5]. The Mixed National Institute of Standards and Technology Database (MNIST)

is the most widely used benchmark for isolated handwritten digit recognition [10].

It consists of 70,000 images from approx. 250 writers. 60,000 images represent the

training sample, and the remaining 10,000 images the test sample for evaluation.

The images have 28 × 28 = 784 gray-scale pixels (0: background—255: maximum

foreground intensity). Figure 1 shows examples of the ten digits in the MNIST data-

base.

3 Related Work

3.1 Single Hidden Layer Feedforward Neural Networks

ANN are massively parallel distributed processors made up of simple processing

units. ANN are inspired by the human brain and the way it processes information.

Fig. 1 Examples from the

MNIST database

Fast Handwritten Digit Recognition with ML-EELM 79

One of the main benefits of ANN is their ability to detect nonlinear relations and

patterns. Single Hidden Layer Feedforward Neural Networks (SLFN) are ANN with

only one hidden layer. Conventional SLFN train the weights of the ANN with the

BP algorithm. BP is a gradient-based learning algorithm that tunes iteratively all

parameters of the SLFN.

LeCun et al. [9] evaluated SLFN against the MNIST database. A SLFN with 300

hidden layer nodes had an error rate of 4.7 % on the test set. A SLFN with 1,000

hidden layer nodes achieved a slightly better error rate of 4.5 % on the test set.

3.2 Multiple Hidden Layer Feedforward Neural Networks

Multiple Hidden Layer Feedforward Neural Networks (MLFN) are identical to

SLFN, but with the main difference that they have more than one hidden layer.

Although it is proven that SLFN are universal approximators [6], MLFN were used

in the past for the handwritten digit recognition problem. In [9] error rates as low as

3.05 and 2.95 % were achieved with a 300-100-10 and a 500-150-10 MLFN.

3.3 Convolutional Neural Networks

LeCun et al. [9] proposed CNN with a focus on automatic learning and higher order

feature selection. CNN combine three architectural ideas to ensure shift, scale, and

distortion invariance: local receptive fields, shared weights, and spatial subsampling.

A node in the hidden layer is not connected to all inputs from the previous

layer, but only to a subregion. The advantage of local receptive fields is that they

reduce dramatically the number of weights compared to fully connected hidden layer.

Furthermore, this approach is computationally less expensive.

Hidden layer nodes are organized in so called feature maps that share the same

weights. As each hidden layer node within a feature map has a different local recep-

tive field, the same pattern can be detected across the whole receptive field. Each fea-

ture map is specialized to recognize a different pattern by having different weights.

The architectural idea of weight sharing reduces even more the number of weights.

The idea of spatial subsampling refers to the reduction of the receptive field res-

olution. In the case of LeNet-5 [9] a non-overlapping 2x2 neighborhood in the pre-

vious layer is aggregated to a single output. The aggregation could be either the

maximum, or the average of the 2x2 neighborhood. The subsampling layer reduces

the number of inputs by the factor 4. Spatial subsampling provides invariance to local

translations.

Convolutional layer implement the local receptive field concept and also the

weight sharing. Subsampling layer realize the idea of spatial subsampling.

Figure 2 illustrates the architecture of LeNet-5 [9]. It consists of 6 layers and con-

volutional layers are labeled Cx, subsampling layers Sx, and fully connected layers

80 H. Ghodrati Noushahr et al.

Fig. 2 Architecture of the CNN LeNet-5 [9]

Fx, where x is the layer index. The first convolutional layer C1 has 6 28x28 feature

maps followed by the subsampling layer S2 with also 6 feature maps that reduce the

size to 14x14. Layer C3 is a 10x10 convolutional layer having 16 feature maps. Layer

S4 is again a subsampling layer that reduces the size further down to 5x5. Layer C5
is a convolutional layer with 120 1x1 feature maps. Layer F6 is a fully connected

layer that computes a dot product between the input vector and the weight vector

and a bias like in traditional ANN.

It can be summarized that CNN scan automatically the input image for higher

order features. The exact position of these higher order features is less relevant, only

the relative position to other higher order feature is relevant. In the case of the number

7 a CNN would look for the endpoint of a horizontal element in the upper left area,

a corner in the upper right area, and an endpoint of a roughly vertical segment in the

lower portion of the image.

LeNet-5 could reach a test error rate of 0.95 % [9] on the MNIST dataset, more

recent classifier based on CNN could reach test error rates as low as 0.23 % [4]. These

error rates are comparable to error rates of humans performing the same task [11].

3.4 Other Approaches

Image deformation is a technique that was applied in some studies for the problem

discussed in this paper. Ciresan et al. [5] deformed the 60,000 training images to get

more training samples. They combined rotation, scaling, horizontal shearing, and

elastic deformations in order to emulate uncontrolled oscillations of hand muscles

and trained with the original and additional training samples several MLFN. A test

error of 0.32 % was reached. Although, 12.1 M weights had to be trained with a total

training time of 114.5 h (Table 1).

Alonso-Weber et al. [1] followed a similar approach. In addition to the above

mentioned deformations, noise was fed into the MLFN by wiping out a proportion

of pixels and also adding pixels randomly. The MLFN had a topology of 300-200-10.

A test error rate of 0.43 % was achieved. No statistics about the training times were

provided (Fig. 3).

Fast Handwritten Digit Recognition with ML-EELM 81

Table 1 Error rates on MNIST database in [5]

Model Topology Best test error (%) Training time Weights (M)

1 1000-500-10 0.44 23.4h 1.34

2 1500-1000-500-10 0.40 44.2h 3.26

3 2000-1500-1000-500-10 0.39 66.7h 6.69

4 2500-2000-1500-1000-500-10 0.32 114.5h 12.11

Fig. 3 Image deformation

examples applied in [1]

4 Extreme Learning Machines

4.1 Review of Extreme Learning Machine

Huang et al. [8] proposed ELM as a new learning algorithm to train SLFN. The

original design objectives and key advantages of ELM compared to conventional

BP are: least human invention, high learning accuracy, and fast learning speed [7].

Due to the slow learning speed, BP has been a major bottleneck for SLFN appli-

cations in the past decades [8]. ELM follows a very different approach: hidden layer

weights are chosen randomly and the output layer weights determined analytically by

solving a linear system using the least square method. Hence, no hyper-parameters

such like the learning rate or the momentum need to be determined manually com-

pared to traditional BP.

For N arbitrary distinct training samples {(xi, ti)}Ni=1, where xi ∈ Rd
and ti ∈ Rm

,

the output of a SLFN with L hidden nodes is:

fL(x) =
L∑

i=1
𝛽ihi(x) = h(x)𝛽 (1)

where 𝛽 =
[
𝛽1,… , 𝛽L

]T
is the output weight vector between L hidden layer nodes

and m ≥ 1 output nodes. hi(x) is the output in form of a nonlinear activation func-

tion of the ith hidden node for the input x. Table 2 lists the most common activation

functions.

82 H. Ghodrati Noushahr et al.

Table 2 Activation functions in ELM

Sigmoid function h(x) = 1
1+exp(−(𝜔x+b))

Hyperbolic tangent function h(x) = 1−exp(−(𝜔x+b))
1+exp(−(𝜔x+b))

Gaussian function h(x) = exp(−b ‖x − 𝜔‖)

For all N training samples, Eq. 1 can be written in an equivalent compact form

as:

T = H𝛽 (2)

where H is the hidden layer output matrix:

H =
⎡
⎢
⎢
⎢⎣

h(x1)
⋮

h(xN)

⎤
⎥
⎥
⎥⎦
=
⎡
⎢
⎢
⎢⎣

h1(x1) … hL(x1)
⋮ ⋱ ⋮

h1(xN) … hL(xN)

⎤
⎥
⎥
⎥⎦

(3)

and T is the training sample target matrix:

T =
⎡
⎢
⎢
⎢⎣

t1
⋮

tN

⎤
⎥
⎥
⎥⎦
=
⎡
⎢
⎢
⎢⎣

t11 … t1m
⋮ ⋱ ⋮

tN1 … tNm

⎤
⎥
⎥
⎥⎦

(4)

The output layer weights 𝛽 are determined by minimizing the squared approxi-

mation error:

min
𝛽∈RL×m ‖H𝛽 − T‖2 , (5)

The optimal solution to 5 is given by

̂
𝛽 = H+T , (6)

where H+
denotes the Moore-Penrose generalized inverse of matrix H. Algorithm 1

summarizes the ELM learning algorithm.

Algorithm 1 ELM

Input: N arbitrary training samples {(xi, ti)}Ni=1
1: Assign randomly hidden layer weights

2: Calculate the hidden layer output matrix H
3: Calculate the output layer weights 𝛽 ∶ ̂

𝛽 = H+T

Fast Handwritten Digit Recognition with ML-EELM 83

Fig. 4 ELM instances with

different random parameters

4.2 Ensemble ELM

The combination of multiple classifiers reduces the risk of overfitting and leads to

better accuracy compared to single model classifiers. Such combined classifiers are

referred to as ensemble classification models. Based on promising results of ensem-

ble models for ELM presented in [3], an ensemble model called Ensemble ELM

(EELM) will be built and evaluated against the MNIST database.

ELM constructs a nonlinear separation boundary in classification problems. Sam-

ples that are located near the classification boundary might be misclassified by one

single ELM model. Figure 4 illustrates on the left hand side such a misclassification

near the boundary. The classification boundary depends on the randomly initiated

weights of the hidden layer neurons. As these weights are not changed during the

training phase, the classification boundary remains as initialized. The majority vote

of several ELM that are initialized with independent random weights reduces the

misclassification of samples near the classification boundary. Algorithm 2 summa-

rizes the EELM algorithm.

Algorithm 2 EELM

Input:
N arbitrary training samples {(xi, ti)}Ni=1;

Ntest
test samples {(xtesti , ttesti)}Ntest

i=1 ;

Odd number of indepentent ELM: K

Training phase:
1: Create K ELM classifier with independent weights

2: Train all K independent ELM classifier with the training samples

Test phase:
3: For each test sample predict the class as the majority vote of all K independent ELM classifier

Figure 4 illustrates for a K = 3 EELM model the correct classification of a sample

near the classification boundary due to a majority vote of two ELM models. Addi-

tional to [3], further ELM ensembles are mentioned in [7].

84 H. Ghodrati Noushahr et al.

Fig. 5 ELM autoencoder

output weight visualization

4.3 Multilayer ELM

Kasun et al. [2] proposed a multilayer ELM (ML-ELM) based on the idea of autoen-

coding. That is, extract higher order features by reducing the high dimensional input

data to a lower dimensional feature space similar to CNN. This is done as follows:

unsupervised learning is performed by setting the input data as the output data t = x.

The random weights are chosen to be orthogonal as it tends to improve the general-

ization performance. Figure 5 visualizes the output weights of an 784-20-784 ELM

autoencoder. It can be seen that the autoencoder is able to extract digit specific pat-

terns. ML-ELM consists of several stacked ELM autoencoder. In [2] the presented

model has a topology of 784-700-700-15000-10 achieving a test error rate of 0.97 %

while it took only 7.4 m to train the model on a system with an Intel i7-3740QM

CPU at 2.7 GHz and 32 GB RAM.

4.4 Multilayer Ensemble ELM

The novel classifier called Multilayer Ensemble ELM (ML-EELM) presented in this

paper combines concepts of CNN, ensemble models, and the ELM training algo-

rithm. The architectural idea of shift invariance is realized by spatial subsampling.

In order to classify correctly a digit, it is not necessary to know the grey-scale inten-

sity of each pixel. Instead, it is sufficient to know the approximate position of high

intensity activations on the receptive field. Hence, a convolution layer reduces the

image size from 28x28 down to 26x26 by applying an aggregation function to over-

lapping 3x3 regions. A subsampling layer then halves the image resolution further

down to 13x13 by applying an aggregation function to non-overlapping 2x2 regions.

The image is then fed into an EELM model with K instances. The topology of a

single instance is illustrated on Fig. 6.

Fast Handwritten Digit Recognition with ML-EELM 85

Fig. 6 ML-EELM single instance architecture

5 Experimental Setup and Evaluation

Experimental work is focused on ELM, EELM, and the novel classifier: Multilayer

EELM.

Four ELM models with different number of nodes in the hidden layer were created

and tested. The number of hidden layer nodes ranges from 800 to 3,200. Each model

was trained and tested ten times in order to validate the robustness of the model.

The training and testing time, the error rate on the training and test sample, as well

as the standard deviations (SD) for all ten iterations were measured. Table 3 lists all

statistics for the ELM model evaluation. A model with 3,200 hidden nodes could

Table 3 ELM evaluation results for MNIST database

Model Hidden

Layer Nodes

Iterations Training

Time (min)

SD Training

Time (min)

Training

Error Rate

(%)

SD Training

Error Rate

(%)

1 800 10 0.5743 0.0289 8.9837 0.1396

2 1,600 10 1.6786 0.0262 6.2192 0.0832

3 2,400 10 3.4801 0.0326 4.7735 0.0647

4 3,200 10 6.3509 0.1024 3.8955 0.0543

Model Hidden

Layer Nodes

Iterations Test Time

(min)

SD Test

Time (min)

Test Error

Rate (%)

SD Test

Error Rate

(%)

1 800 10 0.0218 0.0019 8.9410 0.1449

2 1,600 10 0.0400 0.0033 6.6860 0.1786

3 2,400 10 0.0576 0.0043 5.6630 0.1189

4 3,200 10 0.1035 0.0079 5.0350 0.0920

86 H. Ghodrati Noushahr et al.

Table 4 EELM evaluation results for MNIST database

Model Hidden

Layer Nodes

K Training

Time (min)

Training

Error Rate

(%)

Test Time

(min)

Test Error

Rate (%)

1 800 3 1.6222 7.8967 0.0694 7.8900

2 800 9 4.8298 6.9233 0.2174 6.7400

3 800 15 8.0541 6.6283 0.3502 6.5700

4 1600 3 4.9866 5.2933 0.1292 5.9500

5 1600 9 14.9735 4.7617 0.3843 5.2900

6 1600 15 25.2254 4.6367 0.6596 5.2400

7 2400 3 10.4370 4.1533 0.1747 5.0800

8 2400 9 31.2249 3.7583 0.5169 4.6300

9 2400 15 52.2731 3.6500 0.9365 4.5300

10 3200 3 19.5807 3.3900 0.2915 4.5900

11 3200 9 57.7446 3.0017 1.2527 4.1600

12 3200 15 97.1288 2.9550 1.5457 4.0700

achieve a test error rate of 5.04 % (SD: 0.09 %). It took on average 6.4 min (SD:

0.1 min) to train the ELM.

Twelve EELM models were trained and evaluated. The hidden layers of the mod-

els have 800 to 3,200 nodes. The parameter K for the number of independent models

per EELM was set to 3, 9, and 15. Table 4 lists the training and testing times, as well

as the training and test error rates for all twelve EELM models. The EELM model

#12 (3,200 nodes, K = 15) was trained in 97 min achieving a test error of 4.07 %.

The model #11 (3,200 nodes, K = 9) however, could be trained after only 58 min

having only a slightly higher test error of 4.16 %.

The novel classifier ML-EELM was built and evaluated after having determined

the aggregation functions applied in the convolution and subsampling layers. This

was done by training a simple ELM model with one additional 2x2 subsampling

layer. The average, standard deviation, maximum, and minimum value of all 4 pix-

els were evaluated as aggregation functions. Table 5 lists the results. The average

function achieved the lowest test error rate and was subsequently used as the aggre-

gation function in the convolution and subsampling layers of the ML-EELM model.

A ML-EELM model with K = 15 and 3,200 hidden layer nodes achieved a test error

rate as low as 2.73 % and was trained in only 96 min.

It was observed that with increasing number of hidden layer nodes, and in the case

of EELM with increasing K, the test error rate decreases. The training time grows

linearly with K, and exponentially with the number of hidden layer neurons.

Although the accuracy on the training data set becomes very high with more hid-

den layer nodes, the test error rate does not increase. The effect of improving accu-

racy on the training data and decreasing accuracy on the test data, known as overfit-

ting could not be observed which speaks for the good generalization performance of

ELM.

Fast Handwritten Digit Recognition with ML-EELM 87

Table 5 ELM evaluation results for MNIST database with 2x2 subsampling

Aggregation Hidden

Layer Nodes

Iterations Training

Time (min)

SD Training

Time (min)

Training

Error Rate

(%)

SD Training

Error Rate

(%)

Avg. 3,200 10 7.1067 0.4953 3.0330 0.0567

Std.dev. 3,200 10 6.9656 0.4880 9.5905 0.1104

Max. 3,200 10 6.7650 0.6209 3.5038 0.0284

Min. 3,200 10 7.1850 0.3130 8.7338 0.1090

Aggregation Hidden

Layer Nodes

Iterations Training

Time (min)

SD Test

Time (min)

Training

Error Rate

(%)

SD Test

Error Rate

(%)

Avg. 3,200 10 0.0677 0.0052 3.9120 0.1125

Std.dev. 3,200 10 0.0766 0.0061 12.1140 0.1393

Max. 3,200 10 0.0693 0.0072 4.5010 0.1718

Min. 3,200 10 0.0704 0.0056 10.8430 0.1059

Fig. 7 Graphical evaluation of the results

Other models presented in the literature outperform with regards to the test error

rate the SLFN ELM models presented in this paper. However, the experimental

results confirm the initial design objectives of ELM: least human invention, high

learning accuracy and fast learning speed. No training times were provided in most

of the papers mentioned previously. The training time of 114 h in [5] acts as a guiding

value for the training time of the other models identified in the literature.

ML-EELM, first introduced in this paper, achieves competitive test error rates on

the MNIST database while requiring only fractions of training time on commodity

hardware. The results confirm the conceptual ideas of CNN. Due to the convolution

and subsampling layers in ML-EELM, the feature space could be reduced from 784

down to 169 leading to further improved accuracy rates (Fig. 7).

88 H. Ghodrati Noushahr et al.

Table 6 Model comparison (NA = Not available)

Source Model Accuracy (%) Training Time

[4] CNN 0.23 NA

[5] MLFN 0.32 114 h

[1] MLFN 0.43 NA

[9] CNN 0.95 NA

[2] ML-ELM 0.97 7.4 m

This paper ML-EELM 2.73 96 m

This paper EELM 4.07 97 m

[9] SLFN 4.70 NA

This paper ELM 5.04 6.4 m

ML-ELM presented in [2] achieves slightly higher test error rates than CNN, but

training the model in less time. In general, models trained with ELM outperform all

other models with regards to training time. This is inline with experimental results

from Huang et al. [8]. Table 6 lists a comparison of the models.

Matlab R2014a (8.3.0.532) was used for the computation of the ELM, EELM,

and ML-EELM models on a Windows 7 64 bit system with 8 GB RAM and an Intel

Core i5-2310 CPU at 2.90 GHz.

6 Conclusion

ELM could successfully be applied for the task of handwritten digit recognition

based on the MNIST dataset. Competitive results were achieved with a test error

rate of only 2.73 % with a novel multilayer ensemble ELM model presented first in

this paper. While these results cannot beat the results of CNN, classifier based on

ELM are relatively easy to create, have good generalization performance and most

important, have fast learning speed. An ELM model with 3,200 hidden layer nodes

can be trained in just about 6 min on a standard commodity desktop PC.

Moreover, Huang et al. [8] applied ELM to a variety of classification and function

approximation problems and found that ELM learns up to hundreds times faster than

BP. Furthermore, they observed that ELM does not face BP specific issues like local

minima, improper learning rates and overfitting. The results presented in this paper

confirm the initial design objectives of ELM.

ELM has great potential for applications where the training data changes fre-

quently and hence the models need to be re-trained often. This could be the case

when writing styles of different individuals have to be learned in high frequencies.

Moreover, the parallel computation possibility of EELM and ML-EELM models

with a large number of K individual instances could further improve the accuracy of

ELM based classifier while keeping the training time low. Wang et al. [12] have made

Fast Handwritten Digit Recognition with ML-EELM 89

first efforts to implement parallel ELM using MapReduce on some classification

problems. A parallel implementation of EELM or ML-EELM is recommended as

possible future research.

References

1. Alonso-Weber, J., Sesmero, M., Sanchis, A.: Combining additive input noise annealing and

pattern transformations for improved handwritten character recognition. Expert Syst. Appl.

41(18), 8180–8188 (2014)

2. Cambria, E., Huang, G.B., Kasun, L.L.C., Zhou, H., Vong, C.M., Lin, J., Yin, J., Cai, Z., Liu,

Q., Li, K., Leung, V.C., Feng, L., Ong, Y.S., Lim, M.H., Akusok, A., Lendasse, A., Corona,

F., Nian, R., Miche, Y., Gastaldo, P., Zunino, R., Decherchi, S., Yang, X., Mao, K., Oh, B.S.,

Jeon, J., Toh, K.A., Teoh, A.B.J., Kim, J., Yu, H., Chen, Y., Liu, J.: Extreme learning machines

[Trends & Controversies]. IEEE Intell. Syst. 28(6), 30–59 (2013)

3. Cao, J., Lin, Z., Huang, G.B., Liu, N.: Voting based extreme learning machine. Inf. Sci. 185(1),

66–77 (2012)

4. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classi-

fication. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3642–

3649 (2012)

5. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, big, simple neural nets

for handwritten digit recognition. Neural Comput. 22(12), 3207–3220 (2010)

6. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal

approximators. Neural Netw. 2(5), 359–366 (1989)

7. Huang, G., Huang, G.B., Song, S., You, K.: Trends in extreme learning machines: a review.

Neural Netw. 61, 32–48 (2015)

8. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neu-

rocomputing 70(1–3), 489–501 (2006)

9. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document

recognition. Proc. IEEE 86(11), 2278–2323 (1998)

10. LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes, C., Denker, J., Drucker, H., Guyon, I.,

Müller, U., Säckinger, E., Simard, P., Vapnik, V.: Comparison of learning algorithms for hand-

written digit recognition. In: International Conference on Artificial Neural Networks, pp. 53–60

(1995)

11. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117

(2015)

12. Wang, B., Huang, S., Qiu, J., Liu, Y., Wang, G.: Parallel online sequential extreme learning

machine based on MapReduce. Neurocomputing 149, 224–232 (2015)

	Fast Handwritten Digit Recognition with Multilayer Ensemble Extreme Learning Machine
	1 Introduction
	2 Problem Definition
	3 Related Work
	3.1 Single Hidden Layer Feedforward Neural Networks
	3.2 Multiple Hidden Layer Feedforward Neural Networks
	3.3 Convolutional Neural Networks
	3.4 Other Approaches

	4 Extreme Learning Machines
	4.1 Review of Extreme Learning Machine
	4.2 Ensemble ELM
	4.3 Multilayer ELM
	4.4 Multilayer Ensemble ELM

	5 Experimental Setup and Evaluation
	6 Conclusion
	References

