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Abstract In this paper a novel, ensemble style, classification architecture is

proposed as a solution to the multi-class classification problem. The idea is to use a

non-rooted Directed Acyclic Graph (DAG) structure which holds a classifier at each

node. The potential advantage offered is that a more accurate and reliable classifi-

cation can be obtained when the classification process is conducted progressively,

starting with groups of class labels that are repeatedly refined into smaller groups

until individual labels are arrived at. Reported experimental results indicated that

the proposed DAG classification model can improve classification performance, in

terms of average accuracy and average AUC (Area Under the receiver operating

Curve), in the context of some data sets.

1 Introduction

Classification is concerned with the generation of a model, using pre-labelled

“training” data, that can be used to allocate labels (classes) to previously unseen

data. The nature of the classification problem is characterised by two factors: (i)

the number of class labels that can be assigned to an instance (single-label versus

multi-label classification), and (ii) the number of classes from which the class labels

may be drawn (binary versus multi-class classification). In single-label classifica-

tion a classifier model is generated using a set of training examples where each

example is associated with a single class label c taken from a set of disjoint class

labels C (|C| > 1). If |C| = 2 we have a binary classification problem; if |C| > 2, we

have a multi-class classification problem. The distinction between single-label and
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multi-label classification is that in multi-label classification the examples are each

associated with a set of class labels Z, Z ⊆ C. In the work presented in this paper we

focus on the multi-class single-label classification problem where examples are asso-

ciated with exactly one element of the set of class labelsC. For simplicity, throughout

this work, we will refer to this as “multi-class” classification.

The main issue with multi-class classification is that as the number of classes

increases the classification performance tends to degrade [9]. There are three main

mechanisms for addressing multi-class classification: (i) using a single classifier,

(ii) utilising a collection of binary classifiers such and adopting a One-Versus-All

(OVA) [15] or One-Verses-One (OVO) strategy [16], and (iii) using an “ensemble"of

classifiers. The ensemble strategy has been shown to work well in the context of the

multi-class problem [9, 14, 17]. The ensemble strategy involves using a collection of

classifiers typically arranged in either: (i) a “concurrent” form, such as “Baggin” [6];

or (ii) a “sequential” form, such as “Boosting” [8]. In more recent work on ensemble

classification, hierarchical arrangements of classifiers have been used [4, 10, 11].

A commonly adopted structure is a binary tree constructed in either a bottom-up or

top-down manner [5, 10].

The proposed work is directed at hierarchical ensemble classification where clas-

sifiers are arranged in a more sophisticated structure, than a binary tree structure,

namely a non-rooted Directed Acyclic Graph (DAG) structure. Nodes at leaves hold

classifiers designed to distinguish between individual class labels while the remain-

ing nodes hold classifiers designed to discriminate between groups of class labels.

The intuition here is that if we start off with a “coarse grained” classification, moving

down to a more “fine grained” classification, a more effective classification model

can be produced. This is based on the observation that as the number of classes

increases the classification performance tends to degrade as noted above [9]. In this

context the advantage offered by the DAG structure is that it enables the inclusion

of a greater number of possible class label combinations at each level than in the

case of a binary structure. The main challenges associated with this kind of clas-

sification are: (i) how to distribute (divide) classes between nodes within the DAG

model, (ii) how to determine the starting node among the set of nodes available at the

first level in the DAG, and (iii) how to handle the general drawback associated with

hierarchical forms of ensemble classification, the “successive miss-classification”

problem, whereby if a record is miss-classified early on in the process it will con-

tinue to be miss-classified at deeper levels, regardless of the classifications proposed

at lower level nodes. To address the first issue a “combination technique" is proposed

to assign classes to nodes within the DAG. To address the second challenge the use

of Bayesian classifiers is proposed, one per DAG node, which offers the advantage

that the probability values produced can be used to determine the best starting first

level node. To address the “successive miss-classification” issue two strategies are

proposed: (i) following multiple paths within the DAG by utilising the probability

values generated by the Naive Bayesian classification model to determine where sin-

gle or multiple paths should be followed; and (ii) a pruning scheme, applied during

the generation process, to eliminate the weak classifiers that might affect eventual

classification accuracy.
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The rest of this paper is organised as follows. Section 2 gives a review of related

work on multi-class classification. Section 3 describes the process for generating and

operating the proposed DAG ensemble classification model. Section 4 presents an

evaluation of the proposed DAG classification model as applied to a range of different

data sets. Section 5 concludes the work presented in this paper.

2 Literature Review

This section provides a review of “Ensemble” methods for solving the multi-class

classification problem. An ensemble model is a composite model comprised of a

number of learners (classifiers), called base learners or weak learners, that are used

together to obtain a better classification performance than can be obtained when

using a single “stand alone” model. If the base learners in an ensemble model are

all comprised of the same classification algorithm the ensemble model is referred to

as an homogeneous learner, while when different classification algorithms are used

the ensemble model is referred to as heterogeneous learner [17].

Depending on the relationships between the classifiers forming the ensemble, two

main structures can be identified: concurrent (parallel) [6], and sequential (serial) [8].

The hierarchical ensemble methodology is a much more recent approach to solving

the multi-class classification problem which involves the generation of a hierarchi-

cal “meta-algorithm” [4, 10, 11]. Work to date has been mostly directed at binary

tree based hierarchical ensemble classification. Using a binary tree hierarchical clas-

sification model the classifiers are arranged in a binary tree formation such that the

classifiers at the leaves conduct fine-grained (binary) classifications while the classi-

fiers at non-leaf nodes further up the hierarchy conduct coarse-grained classification

directed at categorising records using groups of labels. An example binary tree hier-

archy is presented in Fig. 1. At the root we distinguish between two groups of class

Fig. 1 Binary tree

hierarchical classification

example
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labels {a, b, c} and {d, e}. At the next level we discriminate between smaller groups,

and so on, until we reach classifiers that can assign a single class label to the record.

Although the desired binary tree structure can be constructed in either a bottom-

up or a top-down manner, top down construction is the most widely used because it

tends to produce a more balanced structure and because it is easier to implement [4].

Using the top down approach the process is as follows: Starting at the root of the tree,

a grouping technique is used to segment the records into two clusters, each cluster

is labelled with a group-class label. Then, a classifier is trained to classify records

using the two group-classes. The process continues recursively until classifiers are

arrived at that can assign single class labels to individual records. For classifying

a new record a “path” is followed from the root, according to the classification at

each hierarchy node, until a leaf node associated with a single class label is reached.

As noted in the introduction to this paper successive miss-classification is a general

drawback associated with hierarchical classification, where a miss-classification near

the root of the tree is passed on down the hierarchy. To address this problem a mul-

tiple path strategy, as previously suggested by the authors in [1, 3], can be adopted

whereby multiple paths can be followed within the binary tree hierarchy. However,

experiments also reported in [1, 3], indicated that this did not provide an entirely

satisfactory solution to the problem.

3 Directed Acyclic Graph (DAG) Classification Model
Framework

The nature of the proposed DAG hierarchical classification model is presented in

this section. As noted in the introduction to this paper the model is founded on the

idea of arranging the classifiers into a hierarchical form by utilising a DAG structure

where each node in the DAG holds a classifier. Classifiers at leaves act as binary

classifiers while the remaining classifiers (at the beginning and intermediate nodes)

are directed at groupings of class labels. An example non-rooted DAG classifier for

four class labels C = {a, b, c, d}, is presented in Fig. 2. In this case, the nodes at

the first level are assigned with classes of size three, all possible combination of

size |C| − 1, while nodes at the second level are assigned with classes of size two

(|C| − 2). Classifiers at the first level distinguish between three groups of class labels,

while classifiers at the leaves discriminate between two individual class labels. The

rest of this section is organised as follow. Section 3.1 below explains the generation

of the DAG ensemble model in detail. While Sect. 3.2 presents the operation of the

proposed model.
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Fig. 2 DAG classification

model example

3.1 DAG Generation

To create the desired DAG model, a classifier needs to be generated for each node in

the DAG using an appropriate training set. At “start up” the training set D comprises

a set of n recordsD = {r1, r2,… .rn} such that each record has a class label associated

with it taken from the set C. The process requires a class label grouping mechanism.

One way of doing this is to apply a clustering mechanism such a k-means (k-means

is particularly well suited because the value of k can be pre-specified). In previous

work conducted by the authors [1–3], in the context of binary hierarchies, it was

found that this clustering approach did not work well because similar classes were

grouped together early on in the process so that entire branches ended up dealing

with very similar classes, ideally we would like individual branches to deal with

very different classes so that highly discriminative classifiers can be built at each

leaf node. However, identifying such groups is also not straight forward. Instead,

the use of a combination mechanism is proposed that covers all potential groupings.

The class groupings (sub sets) at each level are determined by finding all possible

classes combinations of size |C| − i (where i is the level number, initially i = 1). As

the process proceeds i is increased by one and consequently the “combination size”

is decreased by one. The process continues until the combination size reaches two.

The process was used to generate the DAG given in Fig. 2. The number of classifiers

to be trained in order to generate the DAG classification model can be calculated

using Eq. 1.

Number Of Classifiers = 2N − N − 2 (1)

where N is the number of class labels in a given data set.

However, using the above mechanism, the number of classifiers to be generated

is large. Breadth and depth pruning mechanisms are thus proposed to reduce the

number of classifiers, as well as, to improve the performance of the suggested model.
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Starting with breadth pruning, in which weak classifiers, at each DAG level, are

eliminated. The weak classifiers are identified by evaluating the classifiers at the

first level and pruning the classifiers associated with an AUC value of less than a

predefined threshold 𝛼. The pruning is transmitted to the remaining levels by only

including nodes that are, directly or indirectly, referenced by the first level nodes.

Note here that the pruning process at the first level is post pruning, while the pruning

at the remanning levels is pre-pruning.

Algorithm 1 presents the proposed DAG generation process with breadth prun-

ing. The input to the algorithm is the training data set D, the set of class labels C,

and the breadth pruning threshold 𝛼. The DAG is created in a top down manner

starting with k = |C| − 1 (where k is the combination size) to k = 2. Because of the

nature of the breadth pruning mechanism the algorithm comprises two procedures:

dagFirstLevelGen, and dagNlevelGen. Starting with dagFirstLevelGen procedure,

which is responsible for generating and pruning the first level in the DAG model.

The process commences (with reference to Algorithm 1 (a)) by finding the set of

size k class combinations, the set Ck (line 10). We then loop through this set (line

12) and on each iteration: (i) find the set of records Di that feature the combination

Ci ∈ Ck (line 13); (ii) identify the training and evaluating records, Ti and Ei (lines

14, and 15); (iii) generate a classifier Gi using Ti (line 16); (iv) evaluate the classifier

Gi using Ei to produce an AUC value (line 17); (v) create a new DAG node, node,

and add the new node to the set of accumulated level k nodes so far, NodeSet (line

18). The next stage is the pruning stage, where the nodes in the NodeSet are arranged

according to their associated AUC values (Line 20). We the loop through this set of

ordered nodes (line 21): if the node associated with a particular AUC value is less

than 𝛼 (line 22), and its classes are included in the remaining nodes in NodeSet (line

23); then the node will be pruned (line 24). (We want to ensure that each class is the

subject of at least one classifier.)

After generating and pruning the first level in the DAG model, the next step is to

generate the remaining levels. The remaining levels in the DAG are created in a recur-

sive manner using the dagNlevelGen procedure (Algorithm 1 (b)). The procedure is

invoked with two parameters: (i) the combination size, k, and a reference to the nodes

in the current level of the DAG, CurrentNodes. For each call to dagNlevelGen the

set of size k class combinations, the set Ck, is calculated (line 30), then pruning is

applied to this set (lines 31-40), where the class combination is only considered if

it is a subset of one or more of the previous levels nodes’ class sets. We then loop

through the pruned combination set (line 42) and on each iteration: (i) find the set of

training set records Ti that feature the combination Ci ∈ Ck (line 43), (ii) generate

a classifier Gi using Ti (line 44); (iii) create a new DAG node, node (line 45); and

(iv) add the new node to the set of accumulated level k nodes so far, NodeSet (line

46). We then loop through the set of current nodes (from the previous iteration) and

add a link from each current node CurrentNodej to the new node node whenever the

set of class labels associated with the new node (Ci) is included in the set of class

labels associated with a current node (Ci ⊂ CurrentNodesj.C). Finally, if k has not

yet reached 2, we repeat (line 53).



A Directed Acyclic Graph Based Approach . . . 49

Algorithm 1 (a) DAG Generation

1: INPUT: D = The input training data set, C = The set of Classes featured in D,

2: 𝛼 = Breadth pruning threshold value

3: OUTPUT: The generated DAG

4: Start
5: k = |C| − 1
6: dagFirstLevelGeneration(k)
7: dagNlevelGen(k − 1,NodeSet)
8: End
9: procedure dagFirstLevelGen(k)

10: Ck = Set of size k combinations in C
11: NodeSet = {}
12: for i = 1 to i = |Ck| do
13: Di = Set of records in D that feature Ci (Di ⊂ D)

14: Ti= Set of records in Di for training Gi
15: Ei = Set of records in Di for evaluating Gi
16: Gi = Classifier for Ci built using training set Ti
17: AUCi = Evaluation of Gi using Ei
18: NodeSet = NodeSet ∪ new Node(Gi,Ci,AUCi)
19: end for
20: Arrange nodes in NodeSet in ascending order of associated AUC value

21: for i = 1 to i = |NodeSet| do
22: if (nodei.auc < 𝛼) then
23: if (classesCovered (node.Ci, NodeSet)) then
24: Delete nodei
25: end if
26: end if
27: end for
28: end procedure

Because of the flexibility of: (i) the DAG structure and (ii) the combination tech-

nique used; it is fairly straightforward (in addition to breadth pruning) to apply depth

pruning. Depth pruning in this context is achieved by limiting the number of levels

in the DAG (pre-pruning). Note that the minimum number of levels is always 2. For

simplicity, in this paper we considered the generation of the all levels of the DAG

model (no depth pruning) and the generation of only 2 levels of the DAG (maximum

depth pruning). The idea here is that by applying depth pruning the performance

of the suggested model might be improved because the number of classifiers that

are required to be learned and evaluated will be decreased; consequently scalability,

efficiency, and effectiveness might be improved. For simplicity, and throughout the

rest of this paper, we will refer to these approaches as the standard DAG and the

two-levels DAG approaches respectively.
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Algorithm 1 (b) DAG Generation

29: procedure dagNlevelGen(k,CurrentNodes)
30: Ck = Set of size k combinations in C
31: for i = 1 to i = |Ck| do
32: for j = 1 to j = |CurrentNodes| do
33: if Ci ⊂ CurrentNodesj.C then
34: flag=true, break

35: end if
36: end for
37: if flag == false then
38: Delete Ci
39: end if
40: end for
41: NodeSet = {}
42: for i = 1 to i = |Ck| do
43: Ti = Set of training records in D that feature Ci (Ti ⊂ D)

44: Gi = Classifier for Ci built using training set Ti
45: node = new Node(Gi,Ci)
46: NodeSet = NodeSet ∪ node
47: for j = 1 to j = |CurrentNodes| do
48: if Ci ⊂ CurrentNodesj.C then
49: CurrentNodesj.childNodes = CurrentNodesj.childNodes ∪ node
50: end if
51: end for
52: end for
53: if k > 2 then
54: dagNlevelGen(k − 1,NodeSet)
55: end if
56: end procedure

3.2 DAG Operation

Section 3.1 above described the process for generating the proposed DAG classifica-

tion model. After the model has been generated it is ready for use. In this section the

operation of the suggested model is explained. As noted earlier, two main challenges

are associated with the operation of the proposed DAG model: (i) how to determine

the “start node” among the set of nodes available at the first level, and (ii) how to

address the general drawback associated with hierarchical forms of ensemble classi-

fication, the “successive miss-classification” problem. To address these issues Naive

Bayesian probabilities were utilised to determine the best starting node for the DAG

model, and also to decide whether a single or a multiple path should be followed

at each node; consequently, two strategies are considered for classifying individual

records: single path and multiple path.

The single path strategy is the most straight-forward, and involves following a

single path through the DAG to classify the record. The classification process com-

mences with the evaluation of all classifiers at the first level and selecting the node

who’s classifier generates the highest probability value to be the start node, the
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process continues as directed by the individual node classifications, until a leaf node

is arrived at. Leaf nodes, as already noted, hold binary classifiers; thus when a leaf

node is reached a binary classification can be conducted and a single class label can

be assigned to the record. However, as also already noted, the issue with the single

path strategy is that if a misclassification occurs early on in the process there is no

opportunity for addressing this situation later on in the process. The multiple path

strategy is designed to handle this problem by allowing more than one path to be fol-

lowed within the DAG according to a predefined probability threshold 𝜎 (0 ≤ 𝜎 < 1).

In this paper we suggest following up to two branches from each DAG node as a

maximum. An alternative strategy might be to follow more than two branches per

node, however, this will require more computational resource. Following only two

branches also, of course, allows us to make comparisons with the operation of binary

tree based hierarchical ensemble classifiers. In cases where more than one path is fol-

lowed we may end up with a number of alternative class labels at the leaf nodes of

the DAG, thus we have a set of “candidate class labels”. In order to determine a final

classification we take into consideration the Bayesian probability values identified

along the paths from each relevant leaf node back to the root node, and produce a set

of accumulated values. The class with the highest accumulated Bayesian probability

value is then selected.

When using the multiple-path strategy, the process commences with the evalua-

tion of the classifiers at the first level and selecting one or two nodes to be the start

of the DAG depending on the associated probability (p) for each. This is achieved

by considering the two nodes with highest probability values, if both probabilities

are greater than a predefined threshold 𝜎 then both nodes will be considered to be

start nodes, otherwise the node with the highest associated probability value will be

considered to be the start node. The process is facilitated as follows. At each DAG

node the two class groups associated with the highest probabilities are identified,

then if their probabilities are greater than 𝜎 both branches will be explored, oth-

erwise the branch with the highest associated p value will be selected. In order to

decide the final class label to be assigned to the record among the set of candidate

classes, the class associated with the highest accumulated probability value will be

selected. The accumulated probability for each candidate class is calculated by sum-

ming the probability values identified along the path and then dividing the total by

the number of classifiers that were invoked along the path.

4 Experiments and Evaluation

The effectiveness of the suggested DAG classification model was evaluated using

twelve different data sets taken from the UCI machine learning repository [13], and

pre-processed using the LUCS-KDD-DN software [7]. Ten-fold Cross Validation

(TCV) was used throughout. The evaluation measures used were average accuracy

and average AUC (Area Under the receiver operating Curve). We will discuss the

results in terms of average AUC for simplicity and because of the inclusion of
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unbalanced data sets within the considered evaluation data sets. For comparison

purposes the data sets were also classified using:

1. A “stand alone” Naive Bayes classifier [12], the objective being to compare the

proposed DAG model with a single conventional model. Naive Bayes was chosen

because this was also used in the context of the DAG.

2. A Bagging ensemble [6] using Naive Bayes classifiers as the base classifiers, the

objective being to compare the proposed DAG model with alternative forms of

ensemble.

3. ABinaryTreeHierarchical Ensemble classifier of the form described in Sect. 2,

with a Naive Bayes classifier generated for each tree node, and data segmen-

tation to distribute class labels between nodes within the tree, both single-path

and multi-path strategies were used, the objective being to compare the proposed

DAG model with a simple binary tree model.

4. A One-Versus-One (OVO) classification mechanism using support vector

machines as the base classifiers [16]. The objective being to compare the pro-

posed DAG model with a classification mechanism founded on the use of a set of

binary classifiers for solving the multi-class classification problems.

4.1 Comparison Between DAG Approaches

This section presents the results obtained using the DAG classification approaches,

standard DAG and two-level DAG, coupled with the Single-Path and Multi-Path

strategies with respect to the ten different data sets considered in the evaluation. The

objective of the comparison is to determine the best DAG approach, and to deter-

mine whether following more than one path within the DAG classification model

could address the successive miss-classification issue noted earlier. With respect to

the Multi-Path strategy a very low threshold of 𝜎 = 0.1 × 10−4 was used. In pre-

vious experiments, not reported in this paper, a range of alternative 𝜎 values were

considered and it was found that 𝜎 = 0.1 × 10−4 produced the best performance. The

results, in terms of average accuracy and average AUC, are presented in Table 1 (best

values highlighted in bold). Considering the two different approaches for the DAG

model, standard DAG and two-level DAG, from the table it can be noted that the

two-level DAG produced better results than the standard DAG; the suggested reason

for this is that two-level DAG is simpler and may therefore feature less overfitting.

In addition, it can be observed that using the multi-path strategy can significantly

improve the classification accuracy with respect to the single path strategy, espe-

cially for the standard DAG approach where the number of levels are higher and

consequently the probability of miss-classification is higher.
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Table 1 Average accuracy and AUC values obtained using proposed DAG models coupled with

the single and multiple path strategies

Data set Classes Single-path strategy Multi-path strategy

Standard Two-level Standard Two-level

Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Nursery 5 79.83 0.40 91.44 0.54 82.32 0.41 90.02 0.58
Heart 5 57.01 0.39 59.91 0.40 56.25 0.37 59.64 0.40
PageBlocks 5 91.83 0.53 92.02 0.49 91.87 0.54 92.05 0.47

Dermatology 6 87.23 0.85 86.09 0.84 87.23 0.85 85.51 0.84

Glass 7 69.81 0.46 57.58 0.48 71.16 0.50 57.18 0.49

Zoo 7 92.18 0.58 93.18 0.59 92.18 0.59 93.18 0.59
Ecoli 8 84.43 0.41 82.40 0.40 82.26 0.38 80.89 0.39

Led 10 75.66 0.76 75.75 0.76 75.53 0.76 75.66 0.76
PenDigits 10 83.59 0.84 83.84 0.84 83.59 0.84 83.84 0.84
Soybean 15 90.57 0.92 90.04 0.92 90.57 0.92 90.04 0.92
Mean 81.21 0.61 81.23 0.63 81.30 0.62 80.80 0.63

4.2 Comparison Between Stand-Alone Classification,
Bagging, Binary Tree, OVO SVM and DAG Ensemble
Classification

In this section a comparison between the proposed DAG classification model and

conventional classification models is presented. In order to conduct a “consistent”

comparison between the DAG and existing conventional models, comparison was

conducted using the same classifier generator. More specifically, comparison between

the operation of a stand alone Naive Bayes classification, Bagging of Naive Bayes

classifiers, binary tree hierarchical classification with a Naive Bayes classifier gen-

erated for each tree node, and Naive Bayes DAG classification was considered. In

addition, a “non-consistent” comparison between the Naive Bayes DAG classifica-

tion model and OVO SVM was conducted. Recall that the objective of this last com-

parison was to compare the suggested model with one of the state of the art methods

for multi-class classification.

Commencing with the comparison between stand alone classification, Bagging

classification, binary tree hierarchical classification, and DAG classification. Table 2

presents the results obtained. Note here that the presented DAG results are the results

obtained using the two-level DAG approach coupled with the multiple-path strategy,

because the foregoing section established that the two-level DAG multiple path strat-

egy produces a better performance. Because of the lower memory requirements for

the two-level DAG compared to the standard DAG, two additional data sets (Chess

KRvK, and Letter recognition) were included in addition to those considered in

Table 1. From the average AUC given in the table, for each method with respect
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Table 2 Average Accuracy and AUC values obtained using “stand-alone” Naive Bayes

classification, Bagging, Binary Tree Based hierarchical ensemble classification, and the proposed

DAG classification model

Data set Classes Naive Bayes Bagging Binary Tree DAG

Single model Ensemble Model Model

Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Nursery 5 90.22 0.45 89.96 0.46 89.09 0.58 90.02 0.58
Heart 5 54.60 0.34 51.28 0.30 53.77 0.36 59.64 0.40
PageBlocks 5 92.69 0.52 92.62 0.52 91.27 0.48 92.05 0.47

Dermatology 6 86.66 0.85 81.00 0.81 84.60 0.84 85.51 0.84

Glass 7 67.83 0.49 55.28 0.46 55.28 0.51 57.18 0.49

Zoo 7 92.27 0.59 94.27 0.62 92.18 0.58 93.18 0.59

Ecoli 8 81.70 0.38 82.56 0.39 64.15 0.27 80.89 0.39
Led 10 75.59 0.76 75.50 0.76 61.13 0.61 75.66 0.76
PenDigits 10 84.94 0.85 84.57 0.85 81.18 0.81 83.84 0.84

Soybean 15 91.11 0.93 86.83 0.89 83.71 0.83 90.04 0.92

ChessKRvK 18 36.32 0.33 35.66 0.34 33.88 0.37 35.36 0.36

LetterRecog 26 57.37 0.57 56.93 0.57 53.44 0.53 55.84 0.56

Mean 75.94 0.59 73.87 0.58 70.31 0.56 74.93 0.60

to the twelve data sets considered, it can be noted that the operation of the proposed

DAG classification model is superior to that for stand alone Naive Bayse classifica-

tion, Bagging ensemble classification, and simple binary tree hierarchical classifi-

cation where the average AUCs obtained from these methods were 0.59, 0.58, 0.56
respectively, while for the DAG model it was 0.60. The proposed DAG classifica-

tion model improved the classification accuracy for four data sets (Nursery, Heart,

Ecoli, and ChessKRvK), although for one data set (Led) the same result obtained

from using stand-alone Naive Bayes classifier.

Comparing with the use of the binary tree based structure a significant improve-

ment was recorded when using the DAG model. The suggested reason for this is that

the DAG model provides for greater flexibility than in the case of the binary tree

model because of the overlap between class groups represented by nodes at the same

level in the hierarchy. The consequence of this is that the overlap partly mitigates

against the early miss-classification issue. In addition, pruning the weak classifiers

from the DAG model results in a better classification accuracy than in the case of

the binary tree structure where all the classifiers are used.

With respect to the comparison with stand alone Naive Bayes classification and

Bagging ensemble classification, it is interesting to note that the proposed DAG

classification model tends to improve the classification effectiveness with respect

to unbalanced datasets such as: Nursery, Heart, Ecoli, and ChessKRvK. It is conjec-

tured that the combination techniques, used to distribute class labels between nodes

within the DAG, helps in the handling of unbalanced datasets. With respect to the
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Table 3 Average Accuracy and AUC values obtained using the proposed Naive Bayes DAG

coupled with the multi-path strategy, and One-versus-One using SVM as the base classifier

Data set Naive Bayes OVO

DAG SVM

Acc. AUC Acc. AUC

Nursery 90.02 0.58 99.69 0.64
Heart 59.91 0.40 53.01 0.22

PageBlocks 92.02 0.49 92.58 0.50
Dermatology 86.09 0.84 88.73 0.86
Glass 57.18 0.49 72.04 0.47

Zoo 93.18 0.59 94.00 0.58

Ecoli 82.40 0.40 82.95 0.36

Led 75.75 0.76 75.62 0.76
PenDigits 83.84 0.84 98.60 0.99
Soybean 90.04 0.92 92.54 0.91

ChessKRvK 35.36 0.36 86.40 0.81
LetterRecog 55.85 0.56 82.92 0.83
Mean 75.14 0.60 84.92 0.66

“non-consistent” comparison between Naive Bayes DAG and OVO SVM, Table 3

presents the results obtained in terms of average accuracy and average AUC (best

results highlighted in bold font). From the table it can be observed that the Naive

Bayes DAG produced the best classification accuracy with respect to six of the twelve

data sets considered (Heart, Glass, Ecoli, Zoo, Led, and Soybean), although for one

data set (Led) the same result was produced using OVO SVM. In the remaining six

cases, the OVO SVM produced the best result.

4.3 Note on Efficiency

The number of classifiers required to be generated or evaluated with respect to the

suggested DAG approaches can not be determined in advance because of the applica-

tion of the breadth pruning scheme, but the efficiency can be evaluated according to

the generation and classification time. Unfortunately space limitations preclude the

presentation of a detailed run time analysis here, however, the analysis of run times

indicates that following multiple paths within the hierarchical classification model

consumes more run time than in the case of following only a single path, regardless

of the adopted structure (binary tree or DAG structure). With respect to the proposed

DAG approaches, the two level DAG approach, in which depth and breadth pruning

were adopted, requires less run time. Regarding comparison between the DAG struc-

ture and binary tree structure, as excepted, the binary tree approach requires less run
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time because the proposed DAG structure is more complex. Of course, with respect

to comparison with the conventional methods, single Naive classifier and Bagging

classification, the proposed DAG approach requires more run time. However, the

generation of the model needs to be done only once. Regarding the comparison with

OVO SVM, the stat-of-the-art approach for multi-class classification, the DAG clas-

sification model is more efficient than OVO SVM according to the recorded gener-

ation and classification run times.

5 Conclusion

A hierarchical ensemble classification model for multi-class classification using a

Directed Acyclic Graph (DAG) structure has been presented. The DAG structure

facilitated the use of three mechanisms to address the successive miss-classification

problem associated with hierarchical classification. The first mechanism was the

combination technique used to group classes across nodes at individual levels in the

DAG so that an overlap exists between the class groups; unlike in the case of binary

tree based ensemble classifiers where this option is not available. The second mech-

anism was the option to follow multiple paths down the hierarchy by utilising the

probability values generated by the Naive Bayes classifiers generated for each node

in the DAG. The third mechanism was the pruning scheme applied to eliminate the

weak classifiers that can affect classification effectiveness. From the reported eval-

uation it was demonstrated that the proposed DAG classification model could be

successfully used to classify data in a more effective manner than when alternative

conventional methods were used, such as Naive Bayes, Bagging, and OVO SVM

with respect to some of the data sets considered in the evaluation. In addition, it was

demonstrated that following more than one path in the DAG tended to produce a bet-

ter classification effectiveness with respect to the majority of the data sets considered.

The evaluation also indicated that the overall performance of the DAG structure was

clearly superior to a simple binary tree structure.

References

1. Alshdaifat, E., Coenen, F., Dures, K.: Hierarchical classification for solving multi-class prob-

lems: a new approach using naive bayesian classification. In: Proceedings of the Ninth Inter-

national Conference on Advanced Data Mining and Applications (ADMA’13), pp. 493–504.

Springer (2013)

2. Alshdaifat, E., Coenen, F., Dures, K.: Hierarchical single label classification: an alternative

approach. In: Proceedings of the Thirty-third BCS SGI International Conference on Innovative

Techniques and Applications of Artificial Intelligence (BCS SGAI’13), pp. 39–52. Springer

(2013)

3. Alshdaifat, E., Coenen, F., Dures, K.: A multi-path strategy for hierarchical ensemble classifi-

cation. In: Proceedings of the Tenth International Conference on Machine Learning and Data

Mining in Pattern Recognition (MLDM’14), pp. 198–212. Springer (2014)



A Directed Acyclic Graph Based Approach . . . 57

4. Athimethphat, M., Lerteerawong, B.: Binary classification tree for multiclass classification

with observation-based clustering. In: Proceedings of the Ninth International Confer-

ence on Electrical Engineering/Electronics, Computer, Telecommunications and Information

Technology (ECTI-CON’12), pp. 1–4. IEEE (2012)

5. Beygelzimer, A., Langford, J., Ravikumar, P.: Multiclass classification with filter trees (2007).

Preprint, available at http://hunch.net/jl/projects/reductions/mc_to_b/invertedTree.pdf

6. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

7. Coenen, F.: The LUCS-KDD discretised/normalised arm and carm data library. http://www.

csc.liv.ac.uk/frans/KDD/Software/LUCS_KDD_DN

8. Freund, Y., Schapire, R.: A short introduction to boosting. J. Japn. Soc. Artif. Intell. 14(5),

80–771 (1999)

9. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann,

Burlington (2011)

10. Kumar, S., Ghosh, J., Crawford, M.: Hierarchical fusion of multiple classifiers for hyperspectral

data analysis. Pattern Anal. Appl. 5(2), 210–220 (2002)

11. Lei, H., Govindaraju, V.: Half-against-half multi-class support vector machines. In: Proceed-

ings of the Sixth International Workshop on Multiple Classifier Systems (MCS’05), pp. 156–

164. Springer (2005)

12. Leonard, T., Hsu, J.: Bayesian Methods: An Analysis for Statisticians and Interdisciplinary

Researchers. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Uni-

versity Press, Cambridge (2001)

13. Lichman, M.: UCI machine learning repository. http://archive.ics.uci.edu/ml

14. Oza, N., Tumer, K.: Classifier ensembles: select real-world applications. Inf. Fusion 9(1), 4–20

(2008)

15. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res. 5, 101–141

(2004)

16. Tax, D., Duin, R.: Using two-class classifiers for multiclass classification. In: Proceedings of

the Sixteenth International Conference on Pattern Recognition, pp. 124–127. IEEE (2002)

17. Zhou, Z.H.: Ensemble learning. In: Encyclopedia of Biometrics, pp. 270–273. Springer (2009)

http://hunch.net/ jl/projects/reductions/mc_to_b/invertedTree.pdf
http://www.csc.liv.ac.uk/ frans/KDD/Software /LUCS_KDD_DN
http://www.csc.liv.ac.uk/ frans/KDD/Software /LUCS_KDD_DN
http://archive.ics.uci.edu/ml

	A Directed Acyclic Graph Based Approach  to Multi-Class Ensemble Classification
	1 Introduction
	2 Literature Review
	3 Directed Acyclic Graph (DAG) Classification Model Framework
	3.1 DAG Generation
	3.2 DAG Operation

	4 Experiments and Evaluation
	4.1 Comparison Between DAG Approaches
	4.2 Comparison Between Stand-Alone Classification, Bagging, Binary Tree, OVO SVM and DAG Ensemble Classification
	4.3 Note on Efficiency

	5 Conclusion
	References


