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Abstract The problem of finding a feasible schedule for a partially ordered set of

tasks can be formulated as a Disjunctive Temporal Problem (DTP). While there exist

extensions to DTPs that augment them by associating numeric costs to the violation

of individual temporal constraints, they still make the restrictive assumption that

the costs associated with constraints are independent of one another. In this paper

we propose a further extension, which enables the designer to specify (directional)

dependencies between the preferences associated with the constraints. Such prefer-

ences are represented by exploiting Utility Difference Networks (UDNs) that allow

for the definition of structured objective functions based on the notion of condi-
tional difference independence (CDI). Thanks to such conditional independencies,

the specification of the utilities and the computation of the utility of (partial) solu-

tions explored during the search for an optimal solution, turn out to be very similar

to how probabilities are handled within a Bayesian Network. The paper presents

a branch-and-bound algorithm for solving this new class of problems, analyzes its

computational complexity and reports some encouraging experimental results.

1 Introduction

Since the seminal work by Dechter et al. [4], Temporal Constraint Satisfaction Prob-

lems (TCSPs) have drawn the attention of several AI researchers, and many problem

formulations have been proposed along the time. Notably, the notion of Disjunc-

tive Temporal Problems (DTPs) has been introduced in [17], in order to overcome

the limits of Simple Temporal Problems (STPs) [4] by enabling the specification

of temporal constraints consisting of disjuncts, each of which represents a temporal

interval within which legal solutions can be found. This class of problems is expres-
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sive enough to model scheduling problems [12], as well as other problems of interest

in AI (e.g., diagnosis [7, 14]). More recently, the research has been focused on how

to address temporal preferences (i.e., soft constraints). Intuitively, a soft constraint

allows one to express preferences on the distance between any two time points. For

instance, in a calendar management scenario [10], relevant time points are reason-

ably the start and end times of the activities to be scheduled. Soft constraints can

therefore be used to express the preference that some activities should last as long

as possible, or that the distance between the ending of an activity and the starting of

the subsequent one should be minimized.

While solving an STP or a DTP usually comes down to verifying the satisfiabil-

ity of the (hard) constraints specified in the problem, solving a temporal problem

with preferences requires to find an assignment of values to the time points that not

only satisfies all the hard constraints, but also maximizes a given objective function

defined over the soft constraints.

Two main problem formulations taking into account preferences have been

proposed in the literature. In the first one, named Disjunctive Temporal Problem with

Preferences (DTPP) [5], each constraint is augmented with a function that expresses

how well an assignment satisfies the constraint itself. Solving a DTPP requires to find

an assignment that maximizes the sum of the preference functions for each involved

constraint. In the second formulation, named Valued Disjunctive Temporal Problem

[9], each constraint is associated with a value representing the cost “paid” by a solu-

tion when that constraint is violated. Thus, in such a case a constraint can actually

be violated, but its violation comes at a cost. A solution to a VDTP is therefore a

solution whose cost is minimal.
1

Both formulations, however, assume that the preferences (or costs) associated

with the constraints are independent of one another. As a consequence, given a

possible solution, its preference value can be computed by a linear function, that

aggregates the preference value of each single constraint (i.e., how well the solution

satisfies each constraint). Of course, such a function becomes the objective function

to be maximized/minimized.

Such an assumption may prove to be too stringent in many applicative domains.

Surprisingly, the problem of assessing the preference value of an assignment by tak-

ing into account dependencies among constraints has received little attention so far.

To the best of our knowledge, only in [10] the authors propose the Multi-Criteria

extension to DTPPs (MC-DTPP). Intuitively, the problem formulation includes,

besides the disjunctive constraints as usual in DTPPs, also a set of criteria. Each

criterion is a subset of constraints, which are bundled together as they refer to the

same specific feature of the problem at hand. For each criterion (and pair of crite-

ria), the user has to specify a weight denoting how “important” a user considers the

satisfaction of that set of constraints.

1
Note that soft constraints can equivalently be defined in terms of preferences or costs. In this paper

we will deal with preferences.
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In this paper we propose a different extension, that is suitable to capture a different

kind of dependencies. We start by observing that in many practical problems not only

there exist dependencies among the preferences, but also that such dependencies are

conditional: The best choice for satisfying a constraint might be independent on the

choices for the other constraints given the choices for a limited set of constraints.

We consider the VDTP formulation as our starting point. To represent causal,

directional dependencies, we complement the basic VDTP with a Utility Difference

Network (UDN) [1] that allows for the definition of structured objective functions

based on the notion of conditional difference independence (CDI), after which we

name our extended problem formulation CDI-VDTP. Thanks to such conditional

independencies, the computation of the utility of (partial) solutions explored during

the search for an optimal solution turns out to be very similar to how probabilities

are computed from a Bayesian network.

The paper is organized as follows. After recalling background information in

Sect. 2, we motivate our approach with an example in Sect. 3. In Sect. 4 we formally

define CDI-VDTPs, and in Sect. 5 we propose a way to solve them. Section 6 presents

experimental results, while Sect. 7 critically discusses related work, before conclud-

ing in Sect. 8.

2 Background

2.1 DTPs and VDTPs

A DTP is a pair ⟨𝐗,C⟩ where each element Xi ∈ 𝐗 designates a time point, and each

element i ∈ C is a constraint of the form ci,1 ∨⋯ ∨ ci,ni
, and each disjunct ci,j is of

the form ai,j ≤ Xi,j − X′
i,j ≤ bi,j, with Xi,j,X′

i,j ∈ 𝐗 and ai,j, bi,j ∈ ℜ.

A VDTP is a tuple ⟨𝐗,C, S, 𝜑⟩ where 𝐗, C are as in DTPs, while S and 𝜑 are

defined as follows. The valuation structure S is a tuple S = ⟨E, ⊛, ≻⟩ where E is a

totally ordered (w.r.t. ≻) set of valuations that can be combined with ⊛, a closed,

associative, and commutative binary operator on E. Mapping 𝜑 ∶ C → E assigns

a cost e ∈ E with (the violation of) each constraint  ∈ C. In the weighted VDTP,

structure S is ⟨ℜ+ ∪ {∞},+, >⟩ and the function to optimize is:

∑

i
{𝜑(i)|𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑠(S,i)}.

2.2 Utility Difference Networks

Given a set of finite-domain variables 𝐀 = {A1, … , An} (attributes), a multiat-
tribute utility function u(A1,… ,An) associates a numeric value with each assignment
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𝐚 = a1…an to the attributes. Utility Difference Networks (UDN) [1, 2]
2

are a graphi-

cal representation of multiattribute utility functions that exhibit strong analogies and

properties with the way Bayesian Networks (BN) represent joint probability distrib-

utions.

UDNs introduce the notion of a reference value 𝐚𝐫𝐢 for each attribute Ai. The

notion of reference utility function of a subset of attributes 𝐇 ⊆ 𝐀 is defined as

ur(𝐇) = u(𝐇𝐡
𝐫
), where 𝐡

𝐫
is the reference assignment for variables 𝐇 = 𝐀∖𝐇.

Based on ur, the Conditional Independence relation CDIr and the UDNs are defined

then as follows.

Definition 1 [2] Let 𝐇𝟏, 𝐇𝟐, 𝐇𝟑 be subsets of attributes. Set 𝐇𝟏 is said to be Condi-

tionally Independent of 𝐇𝟐 given 𝐇𝟑 (denoted CDIr(𝐇𝟏,𝐇𝟐|𝐇𝟑)) if for any assign-

ment 𝐡𝟑 ∈ dom(𝐇𝟑), ur(𝐇𝟏|𝐇𝟐𝐡𝟑) = ur(𝐇𝟏|𝐡𝟑).
Let 𝐀 be a set of attributes. A Utility Difference Network (UDN) is a DAG

 = (𝐀,𝐄) such that ∀A ∈ 𝐀 ∶ CDIr(A,Co(A)|Pa(A)), where Pa(A) are the parents

of A, Dn(A) are the descendants of A, and Co(A) = 𝐀∖({A} ∪ Pa(A) ∪ Dn(A)).

UDNs decompose a multiattribute utility function into a sum as BNs decompose

a joint probability distribution into a product, namely:

u(𝐀) =
n∑

i=1
ur(Ai|Pa(Ai))

namely, in order to compute the utility of an assignment 𝐚 to the attributes, it is

sufficient to sum the values of the reference utility functions of each family of the

UDN. A table specifying the values of ur(Ai|Pa(Ai)) is named Conditional Utility

Table (CUT).

3 Motivating Example

Let us consider a simplified planetary rover scenario as the one discussed in [3], and

let us assume that a mission designer is finalizing the mission that a rover has to

carry out. The mission plan has already been outlined, and Fig. 1 shows a portion

of interest; edges between actions represent precedence links. The basic idea is that,

once the rover has collected a soil sample by means of the DRILL action, it ana-

lyzes the sample and moves (DRIVE) to a position suitable for uploading (COMM)

the collected data. The analysis and the movement could in principle be carried on

simultaneously. The designer has to decide the mode with which the activities in

the plan segment have to be completed. Such a decision has to be made balancing

the quality and accuracy with which some activities are performed, against the time

2
Utility Difference Networks are called Marginal Utility Networks (MUT) in [2]. In this paper we

shall stick to the former name.
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Fig. 1 A segment of a rover

plan

DRIVE

DRILL

ANALYZE

COMM

Fig. 2 Modes with which

activities can be completed

and their expected interval

durations

these activities take to be successfully completed. Figure 2 reports, for each action in

the plan, the set of action modes and the associated duration intervals. Further inputs

for the designer’s decision making process are, however, global hard constraints and

preferences. The designer has in fact to take into account that the action COMM, must

be performed within a communication window, which opens over a precise period.

The communication window is a hard constraint since it depends on the position

of a satellite functioning as relay, and hence it is outside the control of the mission

designer. Moreover, some activity modes are usually more preferred than others. For

instance, it is usually preferred, and wiser, to perform a drive action in a slow mode;

however, the fast mode can be used, if necessary, to avoid missing the communication

window. In the tables of Fig. 2, the modes of each action, considered individually,

are ordered from the most preferred down to the least preferred.

The challenge for the designer who has to select a mode for each action arises

when we consider actions as being part of a mission. In such a case, the preferred

mode for an action might depend on the mode already selected for a previous action.

For instance, a scientist would prefer to always drill with modality deep, because such

a mode usually enables the collection of more interesting samples. On the other hand,

when such samples are collected, it is preferable to analyze them with modality test-1
which is the most accurate one. Both modes, however are very time consuming,

moreover the amount of data produced by means of test-1 mode is usually huge; this

impacts the communication, since in that case the 2-channel mode chn-2 would be

preferable, even though the general preference is to use chn-1 mode.

The problem above could actually be encoded as a VDTP, but the only preferences

one could specify would be those informally expressed by the order of the action

modes within the tables in Fig. 2. Solving such a problem, thus, would lead to a

solution that does not take into account the choices already made. In the following

section we first introduce the CDI-VDTP formulation, and then we show how this

rover example can be modeled as a CDI-VDTP.
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4 Generalizing VDTPs to CDI-VDTPs

A CDI-VDTP is an extension to VDTPs in which the evaluation structure S and

mapping 𝜑 are substituted by a Utility Difference Network , and a utility function

u over .

More formally, a CDI-VDTP is a tuple ⟨X,C,, u⟩, where X and C are as in a stan-

dard VDTP; whereas,  = ⟨𝐀,𝐄⟩ is a directed acyclic graph representing a Utility

Difference Network such that:

∙ 𝐀 is the set of network nodes (attributes). For each constraint i ∈ C, there is an

attribute Ai ∈ 𝐀 s.t. dom(Ai) consists of the set {ci,1,… , ci,ni
} of disjuncts in i;

∙ 𝐄 is a set of oriented edges ⟨A,A′⟩ such that A,A′ ∈ 𝐀. The edges in 𝐄 describe

the dependencies among the attributes over which one is interested in finding an

assignment that maximizes the utility u. For instance, the edge ⟨Ai,Aj⟩, means

that the selection of a value for Ai (disjunct for constraint i) (possibly) affects the

utility of the value selection for Aj (i.e., disjunct for j) for maximizing the global

utility.

Thanks to the properties of UDNs, the utility function u is compactly represented

as a set of reference utility functions ur(A|Pa(A)) for each A ∈ 𝐀. In the following,

we shall need to compute the maximum utility achievable given an instance 𝐡 of a

subset𝐇 ⊆ 𝐀 of variables. In analogy with the Most Probable Explanation (MPE) for

Bayesian Networks, we define the Most Preferred Completion (MPC) of an instance

𝐡 as:

𝑀𝑃𝐶(𝐡) = argmax
𝐡

(u(𝐡,𝐡)).

Namely, 𝑀𝑃𝐶(𝐡) is the instance 𝐡 that completes 𝐡 and yields a maximal utility.

Example 1 Let us consider again the planetary rover scenario, and see how it can be

encoded in terms of a CDI-VDTP. The set of temporal variables X consists of a pair

of variables for each action in the plan denoting the start and end time of the action

itself. For instance, given action DRILL, two variables drls and drle are included

in X. Also the communication window is encoded by means of two variables, cws
and cwe. In addition, a variable z is used to encode the time point used as a reference.

As for the set C of constraints, we have a soft constraint for each action in the plan,

for instance the DRILL action is associated with the following constraint:

drl = {[10 ≤ drle − drls ≤ 13] ∨ [5 ≤ drle − drls ≤ 7]}

To model the preference value associated with such a constraint, however, we have to

consider the dependencies of the constraint. In particular, we can assume that DRILL
does not depend on any previous action, but it does influence ANALYZE, which in

turn influences COMM. On the other hand, DRIVE can be considered as independent

of the other actions. Relying on these observations, in Fig. 3 we sketch the UDN

for this problem: Each node corresponds to a constraint in X (including the hard
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CdrvCdrl

Canl

Ccom

Ccw

deep 2
shallow 1

deep shallow
test-1 2 2
test-2 1 0
test-3 0 1

test-1 test-2 test-3
ch-1 -∞ 1 1
ch-2 1 0 0

slow 2
fast 1

satisfied 1
unsatisfied −∞

Fig. 3 The utility difference network for the rover example

constraint on the communication window); edges between nodes denote preference

dependencies; in addition, in analogy to a Bayesian network, each node is associated

with a CUT that defines the preferences for a constraint given its parent nodes.

In this particular case, the utility network has three roots. Two roots are drv and

cw, representing the constraints associated with the drive action and the communi-

cation window, respectively. Being roots, a utility value is directly assigned to each

of their disjuncts. For instance, the utility table associated with drv states that slow
is generally preferred to fast. In addition, since the constraint about the communica-

tion window is hard, it is associated with two “fake modes”, satisfied and unsatisfied,

this last mode has utility −∞, meaning that any solution that violates the commu-

nication window constraint is not acceptable. Note also that these two nodes have

no relationships with the other nodes in the network. The third root is drl, which

influences the constraint anl associated with the analysis action. In this case, the

utility associated with each disjunct in anl depends on the disjuncts that have been

selected for its parents (only drl in this example). The result, thus, is a CUT which

looks like a Conditional Probability Table in Bayesian network. The particular table

in the figure is to be interpreted as follows; independently of how deep the drill oper-

ation is, there is a strong preference in performing test-1; however, if the test-1 is not

possible, test-2 should be preferred when the drill action was deep, whereas test-
3 should be preferred when the drill was shallow. Similarly, anl affects com (i.e.,

the constraint associated with the communication). Note, in this case, that when the

analysis was carried out with mode test-1, the usage of mode ch-1 is practically for-

bidden. On the other hand, the usage of ch-1 should be preferred when the analysis

was conducted either with test-2 or test-3 mode.

It is worth noting that at this stage of development, we assume that the utility

values indicated in these tables result from information provided by the problem

designer, who takes into account features of the rover that are not explicitly addressed

by the temporal problem. For example, the preference on a slow drive could be moti-

vated by safety reasons; whereas the preference of the usage of ch-1 to ch-2 could

depend on the fact that the second mode is more resource consuming.
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5 Solving CDI-VDTPs

Search Process. To solve a CDI-VDTP problem we adopt a strategy similar to the

one proposed in [9]. The strategy recursively proceeds in a depth-first manner, and

branches are pruned whenever their utility is guaranteed to fall below the cost of the

best (i.e., maximal) solution found so far.

Our search strategy is outlined in the algorithm in Fig. 4. The algorithm takes as

inputs:

∙ 𝐡: a (partial) assignment of modes to a subset of attributes 𝐇, i.e., a (partial)

hypothesis;

∙ 𝐦𝐩𝐜: the Most Preferred Completion of 𝐡;

∙ 𝐇 = 𝐀∖𝐇 is the set of attributes whose mode has not been assigned yet;

∙ 𝑙𝑤𝑏: the utility of the best solution found so far;

∙ 𝛥: the set of all the best solutions found so far.

It is worth noticing that, while the first three arguments are passed by value,

the last two arguments are passed by reference. Thereby, any change made during

an invocation of solve-CDI-VDTP impacts all instances of the algorithm possibly

solve-CDI-VDTP(h,mpc,H, lwb, Δ)
1. util ← u(h,mpc)
2. if util < lwb then
3. return
4. end if
5. if H = ∅ then
6. if util > lwb then
7. Δ ← ∅
8. lwb ← util
9. end if

10. Δ ← Δ ∪ {h}
11. return
12. end if
13. Ai ← select-attribute(H);
14. H ← H − {Ai}
15. modes ← dom(Ai)
16. while modes = ∅ do
17. m ← select-mode(modes); modes ← modes\{m}
18. h ← h ∪ {Ai ← m}
19. if consistent(h ) then
20. solve-CDI-VDTP(h , MPC(h ),H , lwb, Δ)
21. end if
22. end while

Fig. 4 The solve-CDI-VDTP algorithm
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active on the stack. In particular, when the search terminates 𝛥 contains the set of

best solutions and lwb their utility.

At each invocation, the algorithm determines the upper bound of the utility

achievable by completing the current (partial) solution 𝐡 (line 1), and checks whether

it is lower than the best one so far (line 2); if yes, such a branch is not useful so it

is pruned with the return statement. Otherwise, the algorithm checks whether there

are still variables to be assigned (line 5): if 𝐇 is empty, then all attributes have been

assigned and 𝐡 is a complete solution. At this stage, the algorithm checks whether

the new complete solution is better than any other solution found so far (lines 6–9);

in the positive case, lwb is updated to be the utility of 𝐡, and 𝛥 is emptied as all the

solutions found so far were not optimal. In any case, 𝐡 is added to 𝛥 (line 10).

In case 𝐡 is still a partial solution, the algorithm tries to get closer to a solution

by selecting an attribute Ai from 𝐇 (line 14). Then the algorithm considers each

mode m in dom(Ai) (lines 16–22), in the order determined by function select-mode
(line 17), and generates new hypotheses from them. In particular, for each m ∈
dom(Ai), a new hypothesis 𝐡′ is obtained by adding the assignment Ai ← m to 𝐡.

The temporal consistency of the new hypothesis 𝐡′ is then verified by means of func-

tion consistent (line 19), that performs an STP consistency check. Finally, function

solve-CDI-VDTP is recursively invoked over the new hypothesis 𝐡′ and the new set

of unassigned variables 𝐇
′

(line 20).

The choice of the next attribute/mode to assign (calls to select-attribute and

select-mode) can benefit from the heuristics established for DTP solving [19], such

as conflict-directed backjumping, removal of subsumed variables, semantic branch-

ing, and no-good recording. However, in addition to such standard techniques, the

choice of the next mode m to try for an attribute Ai can be determined by exploiting

𝐦𝐩𝐜. In particular, if 𝐦𝐩𝐜 = MPC(𝐡) assigns mode mmpc to attribute Ai which is

chosen next, that should be the first mode to try for Ai, since it maximizes the utility

according to the UDN. Note that, in general, given a hypothesis 𝐡 there may be sev-

eral completions that maximize the utility, that may assign different modes to Ai. If

the MPC computation is able to return all of them, the calls to select-mode should

return them before the other modes of Ai.

MPC Computation. As pointed out in [2], one of the most desirable character-

istics of UDNs is that most inference algorithms developed for BNs can be adapted

with small changes to perform useful inferences on UDNs.

In particular, the computation of the MPC of a hypothesis 𝐡 can be performed

by adapting algorithms for computing the MPE of some evidence in a BN. We have

chosen to use the jointree algorithm (see, e.g., [16]), which is particularly well-suited

to the reuse of partial results for the incremental computation of the MPC of a new

hypothesis 𝐡′.
A jointree  derived from a UDN  = ⟨𝐀,𝐄⟩ is an undirected tree whose nodes

(clusters) are subsets Cli ⊆ 𝐀 s.t. each family 𝐹𝑎𝑚(Aj) = {Aj} ∪ Pa(Aj) (Aj ∈ 𝐀) is

associated with a cluster Cli that contains Fam(Aj). The computation of MPC follows

the same steps of the classic jointree algorithm for BNs, except that the products of

probabilities are replaced by sums of reference utilities, and sums of probabilities
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are replaced by the computation of the max of reference utilities. For example, the

potential of a cluster Clj is:

𝜙i =
∑

Fam(Aj)⊆Cli

ur(Aj|Pa(Aj))

instead of being the product of the CPTs contained in Cli.
After arbitrarily choosing a root, the jointree algorithm consists of an inward and

an outward message passing phase, where messages flow respectively from the leaves

to the root and vice-versa. In particular, during the inward phase, node Cli sends to

its parent node Clj a message i,j:

i,j = max
Cli∖i,j

(

𝜙i +
∑

k≠j
k,i

)

(1)

where i,j = Cli ∩ Clj. Assume that message i,j has been cached during the com-

putation of MPC(𝐡), and it turns out that it does not change during the computation

of MPC(𝐡′), where 𝐡′ is derived from 𝐡 by adding an attribute assignment. Then,

node Cli can avoid sending a message to node Clj. In turn, if node Clj does not

receive messages from its children and has an unchanged potential, it can avoid the

computation of the message for its parent.

It is easy to see that the replacement of
∑

with max in the UDN computations

greatly increases the chance that messages can be reused. Indeed, the max operator

can “absorb” changes in one or more items leaving i,j unchanged.

Computational Complexity. Due to space reasons, we just give some insights

about the complexity of the proposed solve-CDI-VDTP algorithm; a more detailed

analysis of a similar algorithmic approach applied to multi-agent diagnosis can be

found in [8]. First of all, we note that the algorithm adopts a recursive strategy for

exploring the search space, whose size is bounded by the size of the largest attribute

domain, let say Dmax, and by the number of attributes |A|, namely by the upper

bound Dmax
|A|

(note, however, that the exploration of the whole search space is very

unlikely to occur, since this would require that function consistent never prunes the

domains of the attributes). The two main sub-functions of solve-CDI-VDTP, namely

consistent and MPC, can in principle hide further significant computational cost. It

is possible to show that the former is polynomial in |A| as the consistency check

can be reduced to a number of invocations of checks over a Simple Temporal

Network (STN) proportional to |A| (see [8]). On the other hand, MPC is more

complex, as we have seen, since its computation mirrors the computation of the

MPE in Bayesian networks, which, as pointed out by Park and Darwiche [13], can

be computed in space and time complexity exponential in the width of a given

order of the BN nodes, and such a width is itself O(|A|). In our implementation,

we used a jointree algorithm, which in the worst case has complexity O(Dmax
|A|).
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The computational complexity of the solve-CDI-VDTP algorithm is given by mul-

tiplying the size of the search space by the complexity of MPC, and is therefore

exponential in the number of attributes |A|: O(Dmax
|A| ⋅ Dmax

|A|) = O(Dmax
2|A|).

6 Experimental Results

We have implemented the approach described in this paper as a Perl 5.16 program,

exploiting the Boost::Graph module for representing STNs and checking their con-

sistency with the Johnson algorithm, and the Graph module for representing the

UDNs. Since the paper presents a new problem (namely, the CDI-VDTP), it is not

possible to compare our prototype implementation with previous approaches. There-

fore we shall focus on the feasibility of the approach and on the effectiveness of the

caching technique discussed above.

The tests have been run on a virtual machine running Linux Ubuntu 12.04,

equipped with an i7 M640 CPU at 2.80 GHz, and 4 GB RAM. We have consid-

ered three test sets TS1, TS2 and TS3 of increasing scale, each containing 25 cases.

Table 1 reports the following characteristics:

∙ number #vars of variables and number #constrs of temporal constraints; #constrs
is given as the sum of the number of domain constraints, shared by all test cases,

and the number of constraints that change for each case;

∙ #edges of the UDN describing the dependencies among constraints.

Note that, for all test sets, the UDN networks are non-trivial, since they contain sev-

eral dependencies among constraint preferences (represented by edges).

In order to appreciate the effectiveness of caching in the jointree algorithm

(Sect. 5), we have run the test cases both with and without caching. Table 2 shows

the average of the following statistics for the three test sets:

Table 1 Number of constraints, and size of UDNs

TS1 TS2 TS3

#vars 84 164 244

#constrs 142 + 7 282 + 14 422 + 21
UDN #edges 29 59 89

Table 2 Avg time per sol (sec), and number of sols

Cache TS1 TS2 TS3

yes no yes no yes no

time/sol 2.6 6.1 8.8 23.3 15.4 40.9

#sols 3 3.8 3.7
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∙ time/sol: time to compute a solution;

∙ #sols: number of preferred solutions found.

Note that caching reduces the time needed for finding a solution by about 66% for

TS1, and about 62% for TS2 and TS3.

7 Related Work

Since the first formulation of the DTP with preferences (DTPPs) presented in [17],

many alternative algorithms and techniques have been discussed in order to effi-

ciently solve the problem. A first class of solutions are based on a semi-ring struc-

ture [5], which is used for combining local preference values into a global preference,

and for ordering such global preferences so as to compare alternative solutions. Other

approaches, such as MAXILITIS [11] are based on SAT algorithms, and ARIO [15]

in particular is based on SAT algorithms designed for solving a given DTPP encoded

as a Mixed Logical Linear Program (MLLP).

A different formulation of the disjunctive temporal problem with preferences is

proposed in [9]. The novel formulation, dubbed Valued Disjunctive Temporal Prob-

lems (VDTPs), differs from DTTPs as it associates a single weight to each constraint

as a whole, rather than a preference function at the object level as in a DTPP. Such

a weight has to be interpreted as a cost a solution gathers when that specific con-

straint is violated; namely, when the solution does not satisfy any of the disjuncts

mentioned in the constraint. In [9], VDTPs are solved by means of a branch-and-

bound algorithm exploiting a meta-CSP representation of the temporal problem. In

particular, each disjunctive constraint of the temporal problem is associated with a

variable of the meta-CSP whose domain corresponds to the set of disjuncts in the

constraint itself. The formulation of the CDI-VDTP presented in this paper takes a

similar approach in formulating a meta-CSP. Also in CDI-VDTP, in fact, each con-

straint in the original temporal problem is mapped into a corresponding variable in

the meta-CSP; the domain of such a meta-variable coincides with the set of disjuncts

mentioned by the constraint itself. A significant difference, however, is that we do

not associate a cost to the violation of a constraint as a whole, rather we associate

a preference value to each of the disjunct of the constraint (i.e., to each value in the

domains of meta-variables).

The approaches and formulations mentioned so far, however, all assume that the

preference evaluation of a constraint is independent of the assignments made for the

satisfaction of the other constraints. To the best of our knowledge, only the Multi-

Criteria approach to DTPPs (MC-DTPPs) [10] takes up the challenge of finding opti-

mal solutions in which the preference value of a constraint does depend on how other

constraints are actually satisfied by a given solution. More precisely, in a MC-DTPP,

one can define a criterion as a set of constraints; the rationale is that all the constraints

related to some particular feature of the problem at hand should be collected within

a single criterion. Each criterion is therefore associated with a weight, denoting the
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importance that criterion has for the user. In addition, a triangular matrix of coeffi-

cients is used to represent the magnitude of correlations between any two criteria.

The preference value of a solution is therefore computed as a weighted summation of

the utilities associated with each criterion. The main difference between MC-DTPP

and our CDI-VDTP formulation is that in a CDI-VDTP the dependencies among the

constraint are not undirected as in a MC-DTPP. In fact, MC-DTPP criteria define

subsets of constraints that are somehow related with each other, but there is no way

to express a causal directionality of such relationships. In many practical cases, how-

ever, such a directionality exists. (Consider for example business process workflows

[6], supply chains and production systems [18], and so on.) The CDI-VDTP formu-

lation takes advantage of the causal directionality, and enables the user to express

conditional independences among constraints by relying on the graph-based repre-

sentation of the UDNs.

8 Conclusions

In this paper we raised the issue of how dealing with preferences that are not com-

pletely independent of one another in a disjunctive temporal problem. As far as we

know, such a problem has received little attention, and only in [10] a Multi-Criteria

DTPP has been proposed.

In this paper we extended the VDTP formulation [9] of temporal problems with

the notion of Conditional Difference Independence. The resulting framework, named

CDI-VDTP, enables a user to take advantage of the causal dependencies between

the preferences associated with the constraints, and to define an objective function

shaped over a Utility Difference Network (UDN), in which each node corresponds

to a constraint and (oriented) edges between nodes represent causal dependencies.

Solving a CDI-VDTP, thus, consists in computing solutions whose utility is optimal;

this can be achieved by exploiting algorithms which are similar to those used for com-

puting probabilities in a Bayesian network, but applied to the UDN. In the paper we

also presented a branch-and-bound algorithm for solving CDI-VDTPs by exploring

the space of possible solutions. Results collected by a preliminary implementation

have been discussed, and show that the proposed solution is actually feasible.

As a future work, we intend to further extend the CDI-VDTP formulation with

the addition of a set of variables that, although included within the UDN, are not

associated with temporal constraints. The rationale would be to explicitly model via

these variables aspects of the domain under consideration that might affect the pref-

erence values of a subset of constraints. For instance, in the planetary rover scenario,

the level of battery power could be represented explicitly within the UDN by means

of a specific variable; such a variable could then affect the duration of actions such

as drive or communicate depending on the assumed level of power. Problems like

planning and diagnosis could therefore exploit such a richer CDI-VDTP to create

expectations or verify hypotheses.
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