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Abstract Evolution strategies are variants of evolutionary algorithms. In contrast

to genetic algorithms, their search process depends strongly on mutation. Since the

search space is often continuous, evolution strategies use a multivariate normal dis-

tribution as search distribution. This necessitates the tuning and adaptation of the

covariance matrix. Modern evolution strategies apply covariance matrix adaptation

mechanisms in order to achieve this end. However, the covariance estimation is con-

ducted with small sample sizes compared to the search space dimensionality. Regard-

ing the agreement of sample estimate and true covariance, this represents a potential

problem. This paper introduces a new approach by changing the coordinate systems

and implements several sparse covariance matrix techniques. The results are evalu-

ated in experiments.

1 Introduction

Evolution strategies (ESs) are a variant of evolutionary algorithms often used for

continuous black-box optimization. They differ from many other evolutionary algo-

rithms in the role of mutation: While it is only a background operator in genetic

algorithms, it represents the main search operator here. Evolution strategies operate

with a multivariate normal distribution which is used to generate a population of new

search points. Its parameters, the mean and the covariance matrix, must be updated

during a run in order for the strategy to reach the vicinity of optimal points fast and

reliably. The adaptation of the parameters takes the search history and the present

population into account. Due to its importance, research focussed and focusses on the

covariance matrix. The main techniques introduced are based on the sample covari-

ance matrix [1]. The usage of this estimator may bear potential improvement points
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within itself: Evolution strategies typically operate with small population or sample

sizes. The size of the population does not exceed the search space dimensionality.

Estimating the N × N dimensional covariance matrix with a sample size of 𝜇 < N or

𝜇 ≈ N leads to unreliable estimates. All adaptation techniques introduced so far con-

sider correction terms. However, the question remains whether an ES may benefit if

techniques developed for and tailored to the task at hand were introduced.

Literature concerning attempts of combining evolutionary algorithms or related

approaches with statistical estimation methods of high-dimensional covariance

matrices is scarce. So far, we were only able to identify two approaches aside from

our own research: In the first [6], the authors investigated estimation of distribu-

tion algorithms (EDAs) for continuous spaces. The EDA applied a Gaussian search

distortion similar to evolution strategies. The estimation of the covariance matrix

resulted however in matrices that were not positive definite. To circumvent the prob-

lem, a shrinkage procedure was introduced, see e.g. [13]. Very recently, a shrink-

age estimator was integrated into an evolution strategy variant with a single search

point [12].

The research presented here is part of an ongoing investigation into alternative

estimation techniques for high-dimensional covariances [15, 16]. In [15, 16] Ledoit-

Wolf shrinkage estimators were analyzed. While the results were promising, find-

ing the appropriate shrinkage intensity represented a challenge. Therefore, in [14]

another computational simple estimation method was introduced: thresholding. Here

the work begun in [14] is continued by addressing two of open problems remaining:

The first concerns the choice of the thresholding function, the latter the influence of

an important parameter of the thresholding.

The paper is structured as follows. First, the evolution strategy variant consid-

ered in this paper is introduced. Afterwards, we argue why high-dimensional esti-

mation techniques might improve the performance. The next section introduces the

sparse covariance estimation evolution strategy developed. An experimental analy-

sis of the approaches follows, before the paper closes with an outlook on potential

future research.

2 Evolution Strategies

Evolution strategies (ESs) [18, 19] are used for continuous black-box optimization

f ∶ RN → R. Several variants have been introduced (see e.g. [1, 3]). In many cases,

a population of 𝜇 parents is used to create a set of 𝜆 offspring, with 𝜇 ≤ 𝜆. Like all

evolutionary algorithms, evolution strategies operate in a sequence of generations.

In each generation, the same cycle of processes is carried out. In general, these are

parent selection, recombination, mutation, and survivor selection. In the following,

the processes are described based on the ES variant considered. Here, all 𝜇 par-

ents contribute to create the offspring. First recombination is performed, that is, the

centroid of the parents is computed [3]. All offspring are based on the same origin

and differ only in their mutation vector, a normally distributed random variable with

zero mean and covariance matrix 𝜎
2𝐂 which is added to the mean. After the 𝜆 off-
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spring 𝐲1,… , 𝐲
𝜆

have been created, the individuals are evaluated. In most cases, the

function to be optimized is used directly. In that case, the function is also called fit-

ness. Selection in evolution strategies takes often only the 𝜆 offspring into account

of which the 𝜇 best 𝐲1∶𝜆,… , 𝐲
𝜇∶𝜆 are chosen.

The most important factor concerning the mutation is the covariance matrix. It

must be adapted during the run and fitted to the landscape. Otherwise, the perfor-

mance may be low. Therefore, research on controlling the mutation has a long tra-

dition in ESs. First approaches were already considered in [18]. The next section

describes the variant considered in this paper.

2.1 Covariance Matrix Adaptation: The Population
Covariance

To our knowledge, covariance matrix adaptation comprises two main classes: one

applied in the covariance matrix adaptation evolution strategy (CMA-ES) [11]

and an alternative used in the covariance matrix self-adaptation evolution strategy
(CMSA-ES) [4]. Both are based on a variant of the sample covariance, correcting

the estimate with information from the search history. The present paper focuses

on the CMSA-ES leaving the CMA-ES for future research. One of the reasons is

that the CMSA-ES does only include one additional correction term making it eas-

ier to assess the effects of the thresholding operator. The CMSA-ES considers the

covariance matrix (𝜎(g))2𝐂(g)
with 𝜎

(g)
denoting general scaling factor (or step-size

or mutation strength) and with 𝐂(g)
a rotation matrix. Following the usual practice

in literature on evolution strategies the latter matrix 𝐂(g)
is referred to as covariance

matrix in the remainder of the paper. The CMSA uses covariance matrix adaptation

for the matrix 𝐂(g)
and self-adaptation for the mutation strength.

The covariance matrix update is based upon the common estimate of the covari-

ance matrix using the newly created population. However, the sample consists of the

selected parents and not of the complete set. Restricting the sample, shall induce a

bias towards promising parts of the search space. Since the adaptation of the muta-

tion strength happens separately, the sample is normalized with 𝐳(g+1)m∶𝜆 ∶=
(
𝐱(g+1)m∶𝜆 −

𝐦(g))∕𝜎(g)
before estimating the covariance, see also [11]. Since the centroid used for

the mutation is known, the covariance matrix estimation does not need to re-estimate

the mean. The rank-𝜇 update then obtains the covariance matrix as

𝐂(g+1)
𝜇

∶=
𝜇∑

m=1
wm𝐳

(g+1)
m∶𝜆 (𝐳(g+1)m∶𝜆 )T (1)

which is usually a positive semi-definite matrix since 𝜇 ≪ N. The weights wm
should fulfill w1 ≥ w2 ≥ … ≥ wm with

∑𝜇

m=1 wi = 1. While it is possible to consider

unequal weights, the CMSA-ES usually operates with wm = 1∕𝜇. To derive reliable

estimates larger population sizes are required which would lower the algorithm’s
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speed. Therefore, past covariance matrices are taken into account via the convex

combination of (1) with the sample covariance and the old covariance

𝐂(g+1) ∶= (1 − 1
c
𝜏

)𝐂(g) + 1
c
𝜏

𝐂(g+1)
𝜇

(2)

with the weights usually set to wm = 1∕𝜇 and following [4]

c
𝜏
= 1 + N(N + 1)

2𝜇
. (3)

2.2 Step-Size Adaptation

The CMSA implements the step-size using self-adaptation first introduced in [18]

and developed further in [19]. Here, evolution is used to tune the strategy parameters

of the mutation process. In other words, these parameters undergo recombination,

mutation, and indirect selection processes. The working principle is based on an indi-

rect stochastic linkage between good individuals and appropriate parameters: Well-

adapted parameters should result more often in better offspring than too large or too

small values or misleading directions. Although self-adaptation has been developed

to adapt the whole covariance matrix, it is applied today mainly to adapt the step-size

or a diagonal covariance matrix. In the case of the mutation strength, usually a log-

normal distribution 𝜎
(g)
l = 𝜎

(g)exp(𝜏N (0, 1)) is used for the mutation of the muta-

tion strength. The parameter 𝜏, the learning rate, should scale with 1∕
√
2N. The

CMSA-ES often uses recombination. Among others, self-adaptation with recombi-

nation improves the performance in the presence of noise [2]. While the recombina-

tion of the mutation strength could be realized in several ways, it normally follows

the recombination of the objective values in computing the mean of the mutation

strengths of the parents. The newly created mutation strength 𝜎
(g)
l is then used for

mutating the objective values of the offspring. If the resulting offspring is sufficiently

good, the scale factor is passed to the next generation.

3 A Sparse Covariance Matrix Adaptation

This section introduces the new covariance adaptation technique which uses thresh-

olding to transform the population covariance matrix. The decision for thresholding

is based upon the comparatively computational efficiency of the approach.

The sample covariance (1) has a strong influence on the adaptation. However,

the good properties of the maximum likelihood estimator hold for the case 𝜇 ≫ N
and 𝜇 ≫ 1. In evolution strategies, the sample size seldom exceeds the search space

dimension with 𝜇 < N. For example, [9] recommends to use 𝜆 = ⌊log(3N)⌋ + 4 off-
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spring and to set the size of the parent population to 𝜇 = ⌊𝜆∕2⌋. Thus, a potential

problem arises in high-dimensional settings. For N → ∞, we have 𝜇∕N → 0 contra-

dicting the assumptions on which the estimator was based.

In order to assess the problem in evolution strategies, we take a closer look at the

eigenvalues of the covariance matrix for some selected functions. Figure 1 shows the

development of the ratio of the largest to the smallest eigenvalue of the covariance

matrix on the sphere f (𝐱) = ‖𝐱‖2 and on the discus f (𝐱) = 106x21 +
∑N

i=2 x
2
i . In the

latter case it can be argued that the behavior observed is beneficial. For the sphere, the

figures hint at a potential problem: The gap between largest and smallest eigenvalue

widens for all runs with the problem being more pronounced for the smaller search

space dimensionalities. Furthermore, the extremely small sample size for N = 10
causes a large variation between the runs. It is interestingly less distinct in the case

of the higher dimensional search spaces. This is probably an effect of the parameter c
𝜏

which follows limN→∞ c
𝜏
(N) = ∞ as long as 𝜇 ∝ log(N) or 𝜇 ∝ N. Thus, the influ-

ence of the population covariance lessens. In statistics the problem is well-known

[20, 21] with a long research tradition concerning approaches to counteract the prob-

lematic properties, see e.g. [17] for an overview. Among others, it has been shown

that the eigenstructures of the estimate and the covariance do not agree well.

(a) (b)

(c) (d)

Fig. 1 The development of the ratio of the largest to the smallest eigenvalue of the covariance for

the CMSA-ES on the sphere and the discus. Shown are the results from 15 runs for each dimen-

sionality. a Sphere, N = 10. b Sphere, N = 40. c Discus, N = 10. d Discus, N = 40
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3.1 Space Transformation

Several types of estimators assume a sparse structure of the covariance matrix.

Shortly stated, these approaches work well if many entries are small or even zero.

Then, computationally simple estimation techniques can be applied. In the case of

evolution strategies, a sparseness assumption may not hold in every situation. The

form of the covariance matrix depends strongly on the function landscape and may

vary widely in practice. Furthermore, there may not be any information available

concerning the type of the function itself. Therefore, the covariance matrix is not

considered in the original space but in the eigenspace of the previous covariance

matrix 𝐂(g)
.

Let the covariance matrix 𝐂(g)
be a symmetric, positive definite N × N matrix.

The condition holds for the original adaptation since (2) combines a positive definite

with a positive semi-definite matrix. As we will see below, in the case of threshold-

ing the assumption may not always be fulfilled. Let 𝐯1,… , 𝐯N denote the N eigen-

vectors with the eigenvalues 𝜆1,… , 𝜆N , 𝜆j > 0. The definiteness of 𝐂(g)
guarantees

their existence. The eigenvectors form a orthonormal basis of RN
, i.e., 𝐯Ti 𝐯i = 1 and

𝐯Ti 𝐯j = 0, if i ≠ j. Define 𝐕 ∶= (𝐯1,… , 𝐯N). It then holds that 𝐕−1 = 𝐕T
. Switch-

ing to the eigenspace of 𝐂(g)
results in the representation of the covariance matrix

𝛬
(g) = 𝐕𝐂(g)𝐕T

with 𝛬
(g)

a diagonal matrix containing the eigenvalues. Diagonal

matrices are sparse, thus for the estimation of the covariance matrix the more effi-

cient procedures for sparse structures could be used. However, it is not the goal to

re-estimate 𝐂(g)
but to estimate the true covariance matrix of the distribution indi-

cated by the sample 𝐳1;𝜆,… , 𝐳
𝜇;𝜆.

Before continuing, it should be noted that several definitions of sparseness have

been introduced. For instance, the number of non-zero elements in a row may

not exceed a predefined limit s0(N) > 0, i.e., maxi
∑N

j=1 𝛿(|aij| > 0) ≤ s0(N), which

should grow only slowly with N. This definition can, however, be relaxed to a more

general definition of sparseness, also referred to as approximate sparseness [5] on

which the adaptive thresholding considered is based. Applying thresholding in our

case requires that the true covariance matrix of the selected set has an approximately

sparse structure in the eigenspace of 𝐂(g)
. Assuming the validity of the assumption,

we change the coordinate system in order to perform the covariance matrix estima-

tion. Reconsider the normalized (aside from the covariance matrix) mutation vectors

𝐳1;𝜆,… , 𝐳
𝜇;𝜆 that were associated with the 𝜇 best offspring. Denoting their represen-

tation in the eigenspace as �̂�m;𝜆 = 𝐕T𝐳m;𝜆 for m = 1,… , 𝜇 leads to the new popula-

tion covariance

�̂�
𝜇
=

𝜇∑

i=1
wi�̂�m;𝜆�̂�Tm;𝜆 (4)

which is used to derive the final estimate. In the next section, potential techniques

for sparse covariance matrices are discussed.
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3.2 Sparse Covariance Matrix Estimation

Several methods have been developed for estimating sparse covariance matrices:

Among others banding, tapering, and thresholding can be applied, see e.g. [17].

While all three are based on the assumption that many entries of the true covari-

ance are zero, banding and tapering assume an ordering of the variables which is not

present in the case of evolution strategies.

Therefore, only thresholding remains. Thresholding discards entries which are

smaller than a given threshold 𝜀 > 0. For a matrix 𝐀∈ RN×N
, the thresholding oper-

ator T
𝜀
(𝐀) is defined as

T
𝜀
(𝐀) ∶= (aij𝛿(|aij| ≥ 𝜀))N×N (5)

with 𝛿(⋅) = 1 if the condition is fulfilled and zero otherwise. The choice of the thresh-

old is critical for the quality of the resulting estimate. Equation (5) represents an

example of universal thresholding with a hard thresholding function. Soft threshold-

ing is also common, examples of this function class comprise e.g.

s
𝜆
(x) = sign(x)(|x| − 𝜆)+ (soft-thresholding) (6)

s
𝜆
(x) = |x|(1 − |𝜆

x
|𝜂)+ (Lasso) (7)

with (x)+ ∶= max(0, x). Adaptive thresholding which considers the current data for

determining the threshold 𝜆ij appears as more appropriate for evolution strategies

than using constant thresholds. Following [5], we use

𝜆ij ∶= 𝜆ij(𝛿) = 𝛿

√
�̂�ij logN

𝜇
(8)

where 𝛿 > 0 can be either chosen as a constant or be obtained using cross-validation.

The variable �̂�ij in (8) is determined as �̂�ij =
1
𝜇

∑𝜇

m=1[(ẑmi − Zi)(ẑmj − Zj) − ĉ𝜇ij ]
2

with

ĉ𝜇ij denoting the (i, j)-entry of �̂�(g+1)
𝜇

, ẑmi the ith component of �̂�m∶𝜆, and Zi ∶=
(1∕𝜇)

∑𝜇

m=1 ẑmi.
While thresholding respects symmetry and non-negativeness properties, it results

only in asymptotically positive definite matrices. Thus, for finite sample sizes, it does

neither preserve nor induce positive definiteness in general. Due to this potential

problem, future research will investigate repair mechanisms as well as alternative

thresholding functions, see e.g. [7]. Here, the soft-thresholding (6) and the Lasso

thresholding function (7) are considered. While it is common to exclude the diagonal

entries of the covariance from thresholding, this may not be always appropriate for

optimization since the nature of the functions may vary widely. Our previous experi-

ments did not show a clear advantage for either method. Therefore, both versions are

taken into account. In combination with the thresholding function, the following four
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ES types are investigated: (1) CMSA-Thres-ES (abbreviated to Thres): an evolution

strategy with CMSA which applies thresholding in the eigenspace of the covariance

with soft-thresholding, (2) CMSA-ThresL-ES (abbreviated to ThresL): the same as

above but using the Lasso thresholding, (3) CMSA-Diag-ES (abbreviated to Diag):

an ES with covariance matrix adaptation with thresholding in the eigenspace of

the covariance, preserving the diagonal elements, and using soft-thresholding, (4)

CMSA-DiagL-ES (abbreviated to DiagL): the variation with the Lasso function.

4 Experiments

Two series of experiments were conducted: The first with the aim to gain more

insight regarding the choice of the parameter 𝛿. Our first approach was to make this

parameter data dependent by setting it to 𝛿 = 2max(�̂�
𝜇
). Since [5] recommends to

use either 𝛿 = 2 or to conduct cross-validation, we performed a short experimental

analysis and took a closer look at the development of the eigenvalues on the sphere

and on the discus. We considered the 𝛿 = 2, 3, and 4 for the CMSA-ThresL-ES with

the search space dimensionalities set to N = 10, 20, 40, and 100.

The second series of experiments compares the different shrinkage variants with

the original CMSA-ES. Two thresholding operators, soft thresholding and Lasso

thresholding (with 𝜂 = 4), are taken into account. The comparison is based on the

search space dimensions N = 10 and 20. The second series of experiments uses a

maximal number of fitness evaluations of FEmax = 2 × 105 N. While the experiments

revealed that longer experiments are necessary in order to derive meaningful find-

ings for the difficult multimodal functions, the task was delegated to future research

because of the computing time required.

All strategies start from randomly chosen positions, sampled uniformly from the

interval [−4, 4]N . The ESs used 𝜆 = ⌊log(3N) + 8⌋ offspring and 𝜇 = ⌈𝜆∕4⌉ parents.

An equal setting of weights wm was used with wm = 1∕𝜇. A run terminates before

reaching the maximal number of evaluations, if the difference between the best value

obtained so far and the optimal fitness value |fbest − fopt| is below a predefined tar-

get precision set to 10−8. For each fitness function and dimension, 15 runs are con-

ducted. In order not to waste resources, a run is restarted when a search stagnation is

observed. The latter is characterized by observing changes of the best values below

10−8 over the last 10 + ⌈30N∕𝜆⌉ generations.

4.1 Test Suite Und Performance Measure

The algorithms were implemented in MATLAB. The paper uses the black box opti-

mization benchmarking (BBOB) software framework and test suite, see [10]. The

framework
1

can be used to benchmark and compare continuous black-box optimiz-

1
Current software and tutorials under http://coco.gforge.inria.fr.

http://coco.gforge.inria.fr
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ers and provides easy means to generate tables and figures. This paper considers the

24 noiseless functions of the test suite [8]. In order to lower the possibility that an

algorithm benefits from initialisation effects, the position of the optimum is changed

from run to run. The test suite comprises four function classes which differ in the

degree of difficulty they pose for the optimization: separable functions (function ids

1–5), functions with low/moderate conditioning (ids 6–9), functions with high con-

ditioning (ids 10–14), and two groups of multimodal functions (ids 15–24), with the

last comprising functions with a weak global structure.

Following [10], the expected running time (ERT) is used as the performance mea-

sure. It is defined as the expected value of the function evaluations (f -evaluations)

required to reach the target value with the required precision for the first time, see

[10]. In this paper, ERT = #(FEs(fbest≥ftarget ))
#succ

is used as an estimate. It is obtained by

summing up the evaluations FEs(fbest ≥ ftarget ) in each run until the fitness of the

best individual is smaller than the target value, divided by the number of all success-

ful runs.

4.2 Results and Discussion

First, we describe the results from the parameter dependency experiments. The

thresholding should on the one hand “stabilize” the covariance matrix in the sense

that the eigenvalues do not diverge unless of course it is required to optimize the

function. On the other hand, it should not delay or prohibit the adaptation of the

covariance matrix to the function space. Summarizing the effects of operating with

a data independent 𝛿 from {2, 3, 4}, this detrimental behavior can be observed. Thus,

Fig. 2 only shows the development of the ratio of the largest and the smallest eigen-

value for the sphere and the discus for two exemplary search space dimensions using

the data dependent 𝛿. Comparing Figs. 2 to 1 reveals that for the sphere the varia-

tion between the runs is reduced even for the smaller search space. In the case of the

discus, the increase of the ratio is slower, which could result in slower convergence.

The findings for the BBOB test suite indicate advantages for thresholding in many

cases. The outcome of the comparison depends on the function class. In the case of

the separable functions with ids 1–5, the strategies behave on the whole very similar

for 10D and 20D. Concerning the particular functions, differences are revealed as

Tables 1 and 2 show for the expected running time (ERT) provided for several preci-

sion targets. In the case of the sphere (function with id 1) and the separable ellipsoid

(id 2), all strategies reach the final precision goal in all runs. For both functions, ESs

with thresholding are the fastest. In the case of the sphere, preserving the diagonal

elements appears slightly advantageous, however, all variants are close together. For

the ellipsoid, the gap widens. Interestingly, two variants remain close together: the

CMSA-Thres-ES and the CMSA-DiagL-ES which differ in the thresholding func-

tion as well as in the decision whether to subject the diagonal entries to thresholding

or not. No strategy reaches the required target precision in the case of the separable
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(a) (b)

(c) (d)

Fig. 2 Development of the ratio of the largest and the smallest eigenvalue of the covariance matrix

of the CMSA-ThresL-ES on the sphere. Shown are the results from 15 repeats for each dimension-

ality. a Sphere, N = 10. b Sphere, N = 40. c Discus, N = 10. d Discus, N = 40

Rastrigin (id 3) and the separable Rastrigin-Bueche (id 4). Since all strategies only

achieve the lowest target precision of 101, a comparison is not performed and due to

page restrictions the data are removed from the tables. In the case of the linear slope

(id 5) all strategies are successful. While the thresholding variants perform better for

the smaller search space probably due to the more stable behavior of the covariance

adaptation, the advantage is lost for N = 20 as Table 2 shows.

In the case of the functions with low to moderate conditioning (id 6–9), the step

ellipsoid with id 7 is the most difficult function to optimize for the ESs. Experiments

with a larger number of maximal function evaluations will be performed in future

research. In the case of the remaining functions, we see a separation between the

attractive sector (id 6) and the Rosenbrock variants (ids 8 and 9). In the case of the

attractive sector and N = 10, see Table 1, the original CMSA-ES could only reach

the required target precision in eight of the 15 runs, whereas the thresholding variants

resulted only in one or two unsuccessful runs. Increasing the search space dimension-

ality, causes all runs of the CMSA-ES to be unsuccessful while the thresholding vari-

ants still achieve two or three successful runs. On the original Rosenbrock function

(id 8), the CMSA-Thres-ES with the soft-thresholding function is the worst perform-

ing strategy. For N = 20, Table 2, the CMSA-DiagL-ES which uses the Lasso also
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exhibits slower convergence. Here, the CMSA-ES is marked as the best strategy for

many intermediate precision targets. However, the CMSA-Diag-ES and the CMSA-

ThresL-ES achieve very similar results. Interesting is the mixture of thresholding

target and thresholding function. The interactions will be investigated more closely

in future work. In the case of the rotated Rosenbrock (id 9), the CMSA-ThresL-ES

shows the best results.

For the ill-conditioned functions (id 10–14), the findings are mixed. On some

functions, especially on the ellipsoid (id 10) and the bent cigar (id 12), the original

CMSA-ES has the lowest ERT values for the precision targets. For N = 10, Table 1,

all strategies are successful for the ellipsoid (id 10), the discus (id 11), the bent cigar

(id 12), and the sum of different powers (id 14). For the higher-dimensional search

space, the bent cigar leads to problems for the CMSA-Thres-ES and the CMSA-

DiagL-ES. Again, there appears to be an interaction between thresholding target and

function. Only the CMSA-ES and the CMSA-Diag-ES are able to reach the final pre-

cision target on the sharp ridge (id 13) for N = 10. Since this occurs just once in both

cases, more experiments are clearly necessary. Interestingly, differences between the

group consisting of the CMSA-ES, the CMSA-ThresL-ES, and the CMSA-Diag-ES

and the remaining strategies can be observed. The latter group is unable to achieve

comparable performance on f11, f12, and f13 with more unsuccessful runs and larger

expected numbers of function evaluations especially for the lower targets.

The group of multi-modal functions represents challenges for all ESs under con-

sideration: The functions Rastrigin (id 15), Weierstrass (id 16), Schaffer F7 with

condition number 10 (id 17), Schaffer F7 with condition 1000 (id 18), and Griewank-

Rosenbrock F8F2 (id 19) cannot be solved with the final target precision required.

Partly, this may be due to the maximal number of fitness evaluations. Even the best

performing methods of the 2009 BBOB workshop required more evaluations than we

allowed in total. Thus, longer experiments should be conducted in future research.

Concerning the preliminary targets with lower precision, thresholding variants often

achieve the best results. However, more experiments are required. In the case of

N = 20, the number of function evaluations necessary for the best algorithms of 2009

to reach even the lower precision target of 10−1 exceeds our total budget. Therefore,

no analysis is attempted and the results are not shown in Table 2.

The last group, the multi-modal functions with weak global structures, are also

difficult to solve and struck from Table 2. Only for function 21, Gallagher 101 peaks,

and function 22, Gallagher 21 peaks, successful runs are observed for N = 10,

see Table 1. In the case of the first, the CMSA-Thres-ES achieves the best results,

whereas the original CMSA-ES is the best strategy to tackle function 22.

To summarize the findings, thresholding appears as a means to improve the per-

formance. However, we observe an interaction between thresholding function and

threshold target that should be analyzed further.
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5 Conclusions and Outlook

The focus of the paper lay on the covariance matrix adaptation in evolution strate-

gies. In many cases, the sample covariance is used which gives cause for concern

regarding that its quality may be poor in situations where the estimation is only

based on a small sample. Alternative approaches have been developed in the field

of statistics. Evolution strategies require, however, methods that do not increase the

computational effort considerably. Therefore, the paper investigated and compared

several thresholding techniques which originate from estimation theory for high-

dimensional spaces. The performance of the resulting new evolution strategies were

compared to the original variant on the black-box optimization benchmarking test

suite. The results were promising with the new variants performing better for sev-

eral function classes. Concerning the variants of thresholding, more experiments and

analyses are required in order to identify the best solution and to shed more light on

the interaction between thresholding function and thresholding target.
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