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Abstract Current hardware development trends exhibit clear inclination towards

parallelism. Multicore CPUs as well as many-core architectures such as GPUs or

Xeon Phi devices are widely present in both high-end servers and common desktop

PCs. In order to utilize the computational power of these parallel platforms, the ap-

plications must be designed in a way that intensively exploits parallel processing. In

our work, we propose techniques that simplify the application decomposition process

in data streaming systems. The data streaming paradigm may be applied in many

data-intensive applications, e.g., database management systems or scientific data

processing. In order to employ these techniques, we have developed a data streaming

language called Bobolang that simplifies the design of the application. This approach

allows the programmer to write strictly serial operators in a traditional language and

then interconnect these operators in an execution plan, that presents opportunities

for automated parallel processing.

1 Introduction

Streaming systems represent a specific domain of computing environment. These

systems operate with data streams, which are basically unidirectional flows of struc-

tured tuples. Streams are processed by operators (also denoted functions, kernels, or
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filters) which may have multiple inputs and outputs. These operators transform data

from the input streams by performing their built-in functionalities and pass their re-

sults into the output streams. The operators are usually implemented in a procedural

or object-oriented programming language such as C/C++ and compiled natively.

A streaming application is typically represented as an oriented graph, where the

vertices are operators and the edges prescribe the data flow between them. In the re-

mainder of this paper, we will refer to this graph as the execution plan. The execution

plan is usually described in specialized declarative languages.

There is a large number of existing streaming systems [2–4, 10, 11, 14, 16],

while each is designed for a specific purpose or for a different platform. The stream-

ing systems were originally designed for scenarios, where the data naturally oc-

cur as a stream (e.g., sensory data) and where continuous processing is required.

However, the streaming paradigm can be also used to express parallelism in a more

programmer-friendly way. In this context, we recognize two types of parallelism:

∙ the inter-operator parallelism (concurrent processing of multiple operators), and

∙ the intra-operator parallelism (parallelism within one operator).

The inter-operator parallelism emerges quite naturally in the streaming systems.

It only requires that the operators are truly independent and that there are enough

data fragments to keep multiple operators occupied. The intra-operator parallelism
cannot be achieved automatically by the streaming system task scheduler, since the

operators are usually treated as indivisible blocks of code. However, in some cases,

we can decompose an operator into multiple sub-operators which perform the same

functionality. The decomposed structure leads to a larger execution plan; hence, it

presents more opportunities for inter-operator parallelism.

We narrow our focus on shared memory streaming systems which implement the

data streams as flows of packets and explicitly expose this implementation to the

programmer. Typical representatives of such systems are The Flow Graph compo-

nent from the Intel Threading Building Blocks [13] or the Bobox framework [2]. The

packet-level processing in shared memory permits certain optimizations, especially

when the packets are passed on without modification, or when the data are shallow

copied.

In this paper, we address the issues of effective semiautomated parallelization in

the streaming systems. These systems separate the design of effective code (reduced

to simple serial routines) from the data flow schema where the potential parallelism

is expressed along with requirements for implicit synchronization. Furthermore, we

introduce techniques how to decompose operators in order to express intra-operator

parallelism (within one operator) by the means of inter-operator parallelism (con-

current processing of operators).

The proposed techniques were implemented in Bobolang language [7], which

was designed for the specification of execution plans. This language is integrated

into Bobox framework [2], which provides a runtime for parallel evaluation of the

plans on shared memory systems. This framework is primarily designed for efficient

parallel data processing, thus it provides an excellent platform for our experiments.
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The paper is organized as follows. Related work is collected in Sect. 2. Section 3

presents our approach towards semi-automated parallelization in streaming systems.

The Bobolang language which implements this concept is described in Sects. 4 and

5 concludes the paper.

2 Related Work

Contemporary streaming languages basically differ in their focus designed with

a particular intent which significantly influences their syntax and semantics. The

languages Brook [3], StreaMIT [14] and StreamC [6] are intended for the develop-

ment of efficient streaming applications. They introduce a language based on the

C/C++ syntax, which allows the programmer to implement the operators and to

specify their mutual interconnections. The compiler exploits the streaming nature of

the application to perform specific analyses and optimizations designed with a par-

ticular emphasis on concurrent execution. The compiler also creates a static mapping

of the operators to the execution units such as CPUs, GPUs, or FPGAs.
1

Another language extension designed for the development of streaming applica-

tions is Granular Lucid (GLU) [9]. The operators are implemented in the C language;

their structure is described in Lucid. The parallel evaluation of operators is designed

in a similar way as in Bobolang.

The X Language [8] is another example of modern streaming language. It is logi-

cally similar to GLU, but it uses different syntax (similar to Bobolang) which clearly

and explicitly describes the connections between operators. This is especially useful

for designing complex algorithms.

The main difference between these languages and our approach is that they lack

support for constructions such as multiplication of inputs/outputs (see Sect. 4.1). The

absence of this feature requires the use of parallelism inside the procedural code of

operators; otherwise, only inter-operator parallelism would be available.

Semiautomatic parallelization is usually studied in a context of particular pro-

gramming languages such as C (Paralax [15]) or Python (Pydron [12]) where the se-

quentially programmed source code is transformed into parallelizable pieces of code.

FastFlow [1] accelerator supports the easy porting of existing sequential C/C++ ap-

plications onto multi-core systems. Code kernels identified by a programmer are

offloaded onto a number of additional threads running on the same CPU.

Despite the abundance of parallelism in streaming applications, it is a nontriv-

ial task to split and efficiently map sequential applications to multicore systems.

Cordes et al. presents an algorithm [5] which automatically extracts pipeline paral-

lelism from sequential ANSI-C applications. This method employs an integer linear

programming (ILP) based approach to automatically control the granularity of the

parallelization.

1
Field-programmable gate array.
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3 Semi-automated Parallelization

Streaming systems naturally introduce concurrent processing of operators, which is

called inter-operator parallelism. The inter-operator parallelism is usually cooper-

ative (i.e. non-preemptive), associated to sending and receiving data between op-

erators, where an incoming packet triggers the execution of the operator (if it was

suspended after finishing the previous work). To balance the load among available

processors, the operator code is usually allowed to migrate across a pool of worker

threads. In other words, the incoming data packets generate a sequence of tasks which

are assigned to worker threads by the underlying scheduler. This mode of concur-

rency is often called pipeline parallelism and it is sometimes considered a special

case of task parallelism.

Although some systems allow parallel code inside individual operators, parallel

programming is difficult for the developer. Instead of implementing intra-operator

parallelism by parallel code inside an operator, we suggest multiplication of the op-

erators in the execution plan and inserting auxiliary operators to dispatch the input

data among the replicas of an operator and to collect the output data. This way, the

available parallelism is explicitly denoted in the execution plan and the individual

copies of the operator may remain sequential.

Of course, the multiplication of an operator must be consistent with its behavior

and the way the data are dispatched. The simplest case, described in Sect. 3.1, is

associated with stateless operators which process each packet of data independently.

If the operator depends on its internal state, a copy of the state must be properly

maintained in every replica of the operator. As we will show in Sect. 3.2, there are

situations where the cost of maintaining the replicated state is significantly lower

than the gain of the parallelization.

The cost of dispatching data and maintaining replicated state depends on the cost

of data transfer between the operators. Consequently, our approach aims at systems

which use shared memory for communication between operators and allow cheap

broadcasting and forwarding of packets via sharing memory regions. In addition, we

rely on the ability of the underlying scheduler to balance the load among processors.

Thanks to this ability, the auxiliary operators are not required to balance the load

exactly since minor skewness will be corrected by the scheduler.

In our approach, the designer of the execution plan decides which operators may

be parallelized and marks them as stateless or parallelizable. In the latter case, the

procedural code of the operator must adhere to the protocol described in Sect. 3.2.

The execution plan will then be automatically transformed by multiplication of se-

lected operators and insertion of auxiliary operators.

Besides the two built-in approaches to parallelization, the plan designer may ex-

plicitly invoke the multiplication of operators, using plan annotations described in

Sect. 4.
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3.1 Data Parallelism

Data-parallel subproblems would be implemented by a parallel for in traditional par-

allel code. In pipeline systems, such subproblems correspond to stateless operators.

Thanks to the absence of internal state, we may split the input stream into several

sub-streams and process each sub-stream independently, by identical replicas of the

original operator. Two auxiliary operators are required, as shown in Fig. 1: The dis-
patch operator distributes incoming packets to its outputs in round robin manner and

the consolidate operator interleaves incoming packets. The auxiliary operators have

negligible overhead, since they only forward incomming packets.

3.2 Maintaining the Local State

If an operator maintains local state, the parallelization process requires minor mod-

ification of the internal function of the operator as well as different data dispatching

scheme. The parallelization comes at the cost of performing redundant work. It de-

pends on the nature of the operator whether the cost is acceptable, i.e. lower than the

gain by parallelism. The plan designer has to assess the overhead and decide whether

an operator should be parallelized this way. Let us consider a typical schema of a gen-

eral stateful operator with an internal state S:

S ← initial state

while not finished do
tuples ← next part of input (e.g., next packet)

process tuples whilst using and updating state S
end while

If the processing of the tuples and the update of the state can be effectively sep-

arated from each other and the updating of state S takes significantly less time than

the processing of tuples, the stateful operator can be effectively parallelized. The

concurrency is achieved by replicating the operator while each replica has its own

copy of the state. Each replica has a unique index from 0 to R − 1 (for R replicas)

called RID (Replica ID). Each of the replicas then perform the following algorithm:

S ← initial state, phase ← 0
while not finished do

Fig. 1 Parallelization of a

stateless operator
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Fig. 2 Parallelization of a

stateful operator (RIDs are in

brackets)

tuples ← next part of input (e.g., next packet)

if phase mod N = RID then
process tuples whilst using and updating state S

else
update state S using tuples

end if
phase ← phase + 1

end while

We denote operators which are modified in this way as parallelizable.

The schema is depicted in Fig. 2. The broadcast operator which clones its input

for all its outputs is used here instead of the dispatch operator used in the stateless

case. The data are efficient shallow copied in the shared memory. All the operator

replicas receive identical (shallow) copies of the original stream, but they alternate in

the processing of the tuples and in the production of the output stream. The resulting

stream is then gathered by the consolidate operator as in the case of parallelization

of the stateless operators. The body of the operator must be designed by the devel-

oper to support this parallelization. On the other hand, many problems allow simple

decoupling of the tuple processing and state updates simply by creating conditions

in existing code.

4 The Bobolang Language

Bobolang is a declarative language designed for specification of execution plans—

together with the procedural code of individual operators, the execution plans forms

a parallel application. The application requires a runtime environment, essentially

consisting of a dynamic scheduler and streaming support. In our case, the runtime

environment is Bobox [2] where the primary procedural language for operators is

C++; however, Bobolang itself is independent of both the runtime and the associ-

ated procedural language and the same plan may even be used with different imple-

mentations of the operators. For type safety, the Bobolang compiler is supplied with

a dictionary of column types which are provided by the runtime.

The features of Bobolang are shaped by the following objectives:
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∙ Providing a hierarchical decomposition of the execution plan. The operators ref-

erenced in the main plan may either be atomic operators implemented in the as-

sociated procedural language or compound operators whose interior is defined by

a model defined in a model library. All the models are again defined in Bobolang,

allowing for unlimited (but not recursive) decomposition into a tree-like hierarchy

of models with atomic operators at leaves.

∙ Allowing generic models independent of concrete column types. Similarly to

functions in generic programming, generic models infer the number and types

of columns at their interfaces from the context of their instantiation.

∙ Multiplication of inputs, outputs, and operators as a means to provide opportunity

for parallelization. The degree of multiplication is either specified directly in the

model or set to defaults provided from the outer environment. The defaults are set

based on the parallel processing hierarchy of the hardware, considering available

threads, cores, CPU sockets, caches, and/or NUMA nodes.

∙ Automatic multiplication of stateless and parallelizable operators, using insertion

of built-in operators broadcast, dispatch, or consolidate.

A definition of a compound operator is illustrated in the following example:

operator new_operator(int)->(int,int) {
split_op(int)->(int),(int) split;
filter_op(int)->(int,int) filter1, filter2;
join_op(int,int),(int,int)->(int,int) join;

input -> split;
split[0] -> filter1 -> [0]join;
split[1] -> filter2 -> [1]join;
join -> output;

}

The first line declares a new operator called new_operator. The operator has

one input (a stream of integers) and one output (a stream of integer pairs). The body

of the operator has two parts. The first part contains a list of sub-operators, i.e. in-

stances of nested operators from which the operator is composed of. Each line spec-

ifies the operator type together with its input/output data descriptor and declares one

or more local identifiers of the nested operator instances.

The second part specifies the connections between operators. Statement op1 -
> op2 defines the connection of op1 output to op2 input. The corresponding in-

put and output must have the same data type descriptor. The syntax allows creating

chains, so the op1 -> op2 -> op3 statement is just a shorthand expression for

op1 -> op2 and op2 -> op3 statements.

In addition to explicitly defined sub-operators, each body implicitly contains two

special sub-operators—input and output. These sub-operators represent the in-

put and the output of the operator new_operator.

Operators may have multiple inputs or outputs. The inputs/outputs are indexed by

consecutive numbers starting with zero. The index of an output is written in brackets

as a suffix of the identifier of the operator, the index of an input is written analogically
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Fig. 3 Internal structure of

the new_operator

as a prefix. If an operator has only one input/output, the index may be omitted. Note

that the (int),(int) denotes two streams of integers, whereas (int,int)
denotes one stream of integer pairs. The resulting internal structure is depicted in

Fig. 3.

4.1 Multiplication of Inputs and Outputs

Some operators have the ability to split (or broadcast) their output into N channels

while other operators can receive their input from multiple channels. Splitting creates

the opportunity for parallelism as the operators between the splitting and merging

operators are multiplicated and run in parallel. Bobolang allows the specification of

multiplicated outputs and inputs and handles the replication of the operators. On the

other hand, the method of splitting (round-robin, hash-based, etc.) as well as merging

(ordered, random) is a matter of agreement between the operators involved and must

be consistent with the properties of the operators in between.

The main objective of the multiplication mechanism is to allow plan description

which does not grow with the degree of multiplication and where the degree of mul-

tiplication may be either be specified explicitly or inferred from the environment.

The mechanism also allows the propagation of multiplication from the main plan to

the lower plans in the model hierarchy, allowing internally parallelized sub-models

to communicate via multiplied channels.

In a Bobolang plan, each input and output may be augmented with a multiplier,
either explicit (a number in curly brackets) or implicit (an asterisk). In both cases,

the multiplier signalizes the ability of the operator to produce or consume multipli-

cated channels, with the specified or an arbitrary degree. As a result, both channels

and operators are multiplicated and the Bobolang compiler tries to find an equilib-

rium which satisfies the following equation for each edge connecting operator the ith
output of the operator opa to the jth input of the operator opb:

d(opa) ⋅ d(outa,i) = d(inb,j) ⋅ d(opb)

Here, d(opa) and d(opb) are the degrees of multiplication of the two operators

while d(outa,i) and d(inb,j) are the degrees of output/input multiplication at the edge

ends. The products at both sides of the equation correspond to the degree of multi-

plication of the connecting channel. A part of the output/input degrees may be set
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by explicit multipliers in the source plan, others are set to 1 where no multiplier is

specified. The degrees associated with implicit multipliers (asterisks) as well as the

degrees of operators are computed by the Bobolang compiler. Whenever the equa-

tions allow a degree of freedom, implicit multipliers are set to default values from

the environment. Once all the input/output degrees are fixed, the degrees of operators

become uniquely determined by propagation from the main plan borders whose mul-

tiplicity degrees are set to 1. Care must be taken when explicit multipliers are used,

because the system of equations may become overconstrained and thus no solution

may be found.

4.2 Intra-operator Parallelization

We described two types of operators in Sect. 3 and methods of parallelizing them.

To make the parallelization process easier, we introduce Bobolang keywords that

specify the type of a sub-operator, so the Bobolang interpret can select appropriate

parallelization method.

The stateless keyword informs the compiler that the sub-operator instance

does not have inner state, so it can be always parallelized. The parallel keyword

denotes operators that are stateful, but have been modified in the way prescribed by

our schema and the programmer explicitly requests that they are parallelized.

stateless stateless_op()->() op1;
parallel parallelizable_op()->() op2;

If we mark the operator as stateless, the operator is automatically replaced

with the following schema (with respect to the number of inputs/outputs):

operator parallelized_stateless (in_type)->(out_type) {
dispatch(in_type)->(in_type)* disp;
stateless_op(in_type)->(out_type) op;
consolidate(out_type)*->(out_type) cons;

input -> disp -> op -> cons -> output;
}

Therefore, when the operator stateless_op is used in an execution plan, it is

decomposed as shown in Fig. 1. The parallel keyword uses very similar schema.

The only difference is that it employs a broadcast operator instead of dispatch
operator as depicted in Fig. 2.
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5 Conclusion

In this paper, we have presented an elegant concept of semi-automated parallelization

designed for data streaming systems. This concept streamlines the implementation

of the core functionality of data processing systems whilst providing a safe way how

to introduce various forms of parallelism into an application.

Data parallel subproblems with no internal state may be parallelized directly by

the means of the replication scheme for stateless operators. The concept of stateless

operator is simpler to handle and less error prone, since the programmer designs

the internal functionality regardless of the level of parallelism. For more complex

cases, we have proposed the concept of parallelizable stateful operator which permits

parallelization at the cost of redundant work.

The presented concepts has been implemented in the Bobolang language and suc-

cessfully applied in the implementation of parallel database engines. The underlying

Bobox system is currently being extended to parallel accelerators such as GPUs and

Xeon Phi devices. Their unique properties become an impulse for further develop-

ment of the Bobolang language and the presented parallelization concepts.
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