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Abstract This chapter discusses the inherent parallel nature of evolutionary

algorithms, and the role this parallelism can take when implementing them on dif-

ferent hardware architectures. We show the interest in studying ephemeral behaviors

that distributed computing resources may feature and some EA’s self-properties of

interest, such as the fault-tolerant nature that helps to fight the churn phenomenon.

Moreover, interactive versions of EAs, which require distributed computing systems,

allow to incorporate human based knowledge within the algorithm at different levels,

providing new means for improving their computing capabilities while also requiring

a proper analysis of human behavior under an EA framework. A proper understand-

ing of ephemeral properties of hardware resources, human behavior in interactive

applications and intrinsic parallel behaviors of population based algorithms will lead

to significant improvements.

1 Introduction

Although evolutionary algorithms [1], and other population based algorithms, have

been successfully applied to solving a wide number of optimization problems,

researchers typically apply sequential version of the algorithms. Several reasons

explain this traditional approach to software development, including the learning

curve required to properly apply parallel models and libraries, and the wide num-

ber of available software tools that were developed in the traditional sequential

approach. Although things are slightly changing, the literature is still dominated by

sequential EAs.

Nevertheless, parallelism was soon recognized as an intrinsic property of EAs

that works in the background even when a sequential version of the algorithm is

run. The schema theorem, proposed by Holland in the seventies, was in charge of

F. Fernández de Vega (✉)

Centro Universitario de Mérida, Universidad de Extremadura,

Sta. Teresa Jornet, 38, 06800 Mérida (Badajoz), Spain

e-mail: fcofdez@unex.es

© Springer International Publishing Switzerland 2016

P. Novais et al. (eds.), Intelligent Distributed Computing IX,

Studies in Computational Intelligence 616,

DOI 10.1007/978-3-319-25017-5_2

13



14 F.F. de Vega

explaining this inherent parallel property [2]. Although the reasoning is of interest

for understanding how EAs can build solutions to problems, it doesn’t allow to speed

up the behavior of the algorithm: researchers have happily relied on this explanation

for its intrinsic parallel behavior until hard real life problems have been faced. Only

then, researchers have resorted to parallelism, when days, weeks or even months are

consumed until a proper solution is found [3].

This chapter reviews different parallel models that have been proposed, how they

can be deployed on different hardware architectures, and focuses in new properties

that have been studied in the last few years, involving non reliable hardware resources

as well as human interaction with the algorithms, showing that work ahead may

provide new means for improving the performance of the algorithm.

This chapter is organized as follows: In Sect. 2, an overview of available parallel

models is provided; Sect. 3 discusses the role distributed users may have on the algo-

rithm; Finally, Sect. 4 describe our conclusions and paths for future improvement of

parallel EAs.

2 Parallel Models Have Evolved

Embarrassingly parallel models were firstly propose as a way to quickly embody

parallelism within EAs [4]. The easier incarnation of parallelism allows to simulta-

neously evaluate a number of individuals when hardware resources are available. We

must remind that the standard evolutionary loop includes the computationally expen-

sive evaluation of a number of individuals from the population, candidate solution to

the problem at hand, followed by the crossover process that give rise to the new gen-

eration of individuals. Thus, the master-slave based model doesn’t change the main

algorithm, in charge of selecting parents for the next generation and applying genetic

operators, being the fitness function the only one requiring a change. Given that fit-

ness evaluation is typically the most time consuming part of the algorithm, and how

easily a sequential implementation of an EA can be parallelized using this model, it

quickly attracted attention. Thus the simplest parallel EA has been deployed and run

on networks of transputers [5], clusters and grids [6], and more recently on GPUs [7]

and clouds [8], and has probably been the most frequently used version of a parallel

EA.

Nevertheless, researchers soon devised new ways for improving convergence

properties, adding new functions to parallel models that in the end implied a deep

change in the underlying algorithm and produced a change in the process of searching

for solutions. Instead of evaluating single individuals in parallel, researchers decided

to run the main algorithm over a number of them -a subpopulation- within each of

the processors available, thus resulting in the Island Model [9].

Each of the subpopulation run the standard algorithm in the island model, and a

new step, the migration, allows selected individuals to be exchanged among subpop-

ulations -islands- with a given frequency. Thus the researcher must set up the value

of some new parameters: island size, frequency of migration, number of migrating
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individuals, selection operator in charge of selecting migrants, discharging policy

allowing to maintain the size of islands once new individuals arrive, etc. All these

new parameters have already been widely studied, and its influence on the conver-

gence process exposed for different flavors of EAs, including Genetic Algorithms

and Genetic Programming [10]. The conclusions points out the benefit of migrating

individuals, which helps to improve diversity in the subpopulations, thus helping to

find better solutions, regardless of the time saved thanks to the parallel hardware

infrastructure employed.

Yet, the island model is not the only one available for improving convergence

properties of EAs as well as speeding up the finding of solutions. The cellular model

is another possibility [11]. In this case, individuals from the population are distrib-

uted on a grid, so that interaction required when genetic operators must be applied

only occur within a previously established neighborhood. This means that one indi-

vidual can only interact with surrounding ones, which changes the way chromosome

information spreads along the population [9]. Several authors have applied success-

fully this model borrowed from the cellular automata literature, although the imple-

mentation details make it more difficult to be adopted by researchers.

An interesting difference among the available parallel models, regarding hard-

ware resources to be used and their properties, can be noticed: While for the island

model, each of the subpopulations can run semi-isolated within each of the proces-

sors employed, and only a migrating step is required after a number of generations,

the embarrassingly parallel model requires fitness values computed to be returned to

the master in charge of applying each of the genetic operators, and this implies the

sending of fitness values at least once per generation, which may be of importance or

not depending on the time required to compute fitness values: shorter time to com-

pute fitness value means worse performance of the algorithm, given that the latency

of communications has a larger impact. Similarly, this is also something that must

be taken into account when using the cellular model, which requires communication

among adjacent individuals from the topological point of view that are run on differ-

ent processors every time a crossover operation must be applied. Summarizing, high

latencies will significantly deteriorates the speedup of both cellular and embarrass-

ingly parallel model, even preventing them to compete in certain situations with the

sequential version, while it will not hinder island model to properly finding solutions

in shorter times.

In any case, communication libraries had to be adopted by researchers when

implementing parallel EAs, such as classic PVM or MPI [12], when using clusters of

computers; other different approaches can be considered when resorting to internet

and grid frameworks. Even in this latest hardware infrastructures, interesting soft-

ware packages allow to quickly deploy any algorithm on an easy to build desktop

grid system, such as that based in the BOINC framework [13], which has opened up

a world of possibilities for EAs. As we will see below, a proper study of the dynam-

ics of this model has allowed to develop in the last decade new proposals for parallel

EAs that benefit from the properties of the underlying communication model: in the

area of Grid computing, the well known desktop grid model has been employed to

run massively parallel evolutionary algorithms applied to real-world problems; On
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the other hand, P2P models have allowed to implement new agent based EAs that

change the standard dynamics of the algorithm. Both models have changed the way

we understand the algorithm, and have shed light into some of the properties that the

new parallel models have unveiled.

2.1 Desktop Grids and Shrinking Population

When referring to Desktop Grid Computing, we consider a particular case of Grid

technology where all of the computing resources are homogeneous: desktop personal

computers. Given that all of the computers are based on the same hardware architec-

ture, and basically the same operating system, the grid system significantly simplifies

the way parallel algorithms can be deployed on the network of computers: a single

version of the algorithm must be implemented (linux—i386, for instance), instead of

considering all of the potential hardware architectures and operating systems com-

binations that are present in a more traditional Grid infrastructure. Moreover, avail-

able software tools, such as BOINC [13], allow to easily manage the desktop grid

infrastructure, allowing researchers to only focus on the Evolutionary Algorithm to

be deployed. The basic desktop-grid model follows the master-slave approach, and

is well suited to embarrassingly parallel EAs: typically desktop grids are deployed

within institutions, and communication latencies are thus under control.

The simplicity of desktop grids, has allowed researchers to face hard real life

problems: packages of individuals are distributed every generation along the avail-

able computing nodes, allowing researchers to manage large population sizes for

real life problems requiring long fitness evaluation time [3]. Thus, the model was

shown to perfectly work on desktop grids provided by the researchers. The surprise

came when the model was applied using computing resources provided by volunteers

under the well known volunteer computing model [14].

Volunteer computing is based on the desktop grid model, and desktop comput-

ers are provided by a number of volunteers connected to internet that are willing to

contribute to a scientific project. Thus, the scientist is typically in charge of setting

up the master node, where all of the computing tasks are established, and then, the

volunteers connect to the server and agree to provide computing resources for each

of the tasks. The model has worked fine for decades, being the Seti@home project

one of the best known with several million volunteers providing resources [13]. Nev-

ertheless, and given that resources are switched on and off according to volunteers’

needs, nobody can assure the time a computing node will be alive, and whether a spe-

cific task submitted will be thus completed on time. The dynamic of the volunteer

computing infrastructure is thus characterize by this well known churn phenomena,

and scientists interested in profiting from volunteers must encode a number of fault-

tolerant techniques if they want their project to finish properly [15]. But this inherent

property, churn, was recently considered from a different perspective in the con-

text of EAs, specifically from the point of view of Genetic Programming (GP) with

interesting results.
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2.1.1 Distributed GP and the Churn Phenomena

One of the main flavors of Evolutionary Algorithms is GP, popularized by Koza in

the nineties [16] as a mean for automatic programming. One of the main features of

GP, considered as a problem, is the bloat phenomenon: given that variable size chro-

mosomes are employed in GP, the evolution dynamics make chromosomes to grow

out of control, which implies an increase in memory consumption and usually time

required to evaluate longer individuals. This behavior in GP has lead researchers

to focus on chromosome growth [17], an although a number of techniques have

already been propose to fight it, we think future research on the topic will show

how this behavior may find a strong connection to improvements on the way GP is

run in parallel systems: a natural load balancing technique could make use of indi-

vidual differences to run them on different computing elements, as well as applying

genetic operations as soon as individuals have been evaluated, thus favoring shorter

computing-times, which typically implies smaller sizes. Thus parallel systems could

naturally fight bloat. We must also bear in mind, the difficulty for properly running

GP on GPUs, which has been an issue in latest years. Although some proposals have

already been published, we still feel there is room for improvement, considering main

differences among GP and other EAs.

Among the different techniques introduced in the literature for the last decades,

the plague operator was proposed to remove progressively individuals from the pop-

ulation as a countermeasure for the bloat phenomenon, thus maintaining the amount

of memory required to manage the population: individuals’ growth is fought with

a shrinking population [18]. Since then, different studies have shown the interest of

considering variable size populations for GP and other EAs, which require a self-

analyzing capability of the algorithm to know when the size must be changed. But

a deeper analysis allowed to recently see the connection between this idea and the

churn phenomenon in volunteer computing infrastructures: if instead of removing

selected individuals, we consider churn phenomenon as the component in charge

of randomly discarding individuals along the run of a GP experiment in a volun-

teer computing environment, we have a quite similar experiment, the only difference

being the way individuals are selected.

In the last few years, a number of experiments have tested this approach showing

that not only Genetic Programming, but also Genetic Algorithms are fault tolerant,

and can cope with up to 30 % of population decrease without applying any particular

fault tolerance technique. This has opened up the possibility of running distributed

versions of the algorithm in non reliable distributed computing resources with results

whose quality does not significantly deteriorates [19], boosting a line of research that

focuses on self-properties of EAs in the context of parallel and distributed systems.

The experiments have thus shown that other network topologies and communication

models can also be employed within this context, such as Peer to Peer networks.
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2.2 To Peer or Not to Peer

Peer to Peer models (P2P), have been recently studied in the context of EAs by

Laredo et al. [20]. One of the main features of the model, is the lack of a central

node, both in terms of hardware resources and in the main algorithm to be run. The

model instead relies in a number of software agents with capability for establish-

ing connections with surrounding agents, being them run on the same or different

computing element.

P2P models require specific communication protocols, that allow agents to know

where other agents are located, and from the algorithmic point of view, also requires

changes when a task must be performed. If we consider EAs in a P2P context, we will

see each of the individuals in the population as an agent. No central storage location

for the population exist anymore, nor a single algorithm applying genetic operations

to the individuals. Instead, each of the agents must include the capability to interact

with other agents, individuals, so that they can crossover and create offspring. New

software tools allow to deploy EAs using P2P models, and some of them rely on

web browsers to run the genetic operations, including fitness evaluations [21]. The

fault tolerance nature of these agent based models have also been studied reaching

similar conclusions as with its volunteer model counterpart [19]. But one of the main

interests now, is the possibility of using web browsers, and also user interaction, as

the underlying system where the algorithms are run. The possibility of allowing users

to interact with the algorithm through a web browser, in the context of P2P EAs but

also when using the master-slave approach, and the churn properties featured are

allowing to explore new properties for distributed EAs.

3 Interactive EAs, Ephemeral Properties and the Role
of Users

Although the possibility for allowing users to interact with EAs was soon recog-

nized as a means for fitness evaluation, similarly as how volunteer computing based

projects invite users to collaborate by performing visual analysis of images [21], in

the context of EAs, the interaction has been exclusively used as a way for aesthetic

assessment in Evolutionary Art. Thus interactive EAs are directly related to Evo-

lutionary Art and Design, and typically the interaction has been facilitated through

web based applications in charge of displaying each of the individuals in the popu-

lation, that are then rated by the users, so that fitness values provided are employed

to apply selection, crossover, etc. Users are thus contributing not only with fitness

values, but also with hardware resources to run the user interface, one of the main

part of the algorithm, and are therefore prone to the same kind of problems that were

previously described in the context of volunteer computing and P2P environments.

Only recently, new software tools have been developed trying to generalize the

model allowing users to both run and/or interact with EAs through the web browser,
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such as Evospace and Evospace-i agent based software models that connect through

web browsers and allow to face any kind of problem by means of Evolutionary

Algorithms [8]. The dynamics of the underlying model feature some of the ephemeral

properties that naturally arise in an agent based model, and have already been studied

with satisfactory results [15]. We will focus now in one component of these latest

distributed models that are increasingly attracting attention: the user.

3.1 Distributed Users

The fact that users collaborating with interactive EAs, deployed through the web, are

part of the algorithm changes the way we understand distributed EAs. On the first

hand, users may visit a website but their collaboration is not guaranteed: in order for

the evolutionary algorithm to progress, users must get involved in the experiment.

Similarly as with volunteer computing experiments, the scientists must properly pro-

vide information of interest that attract users attention. On the other hand, and given

that usually web browser must remain open with the application running while the

user is devoting attention to other tasks, the experiment must keep user interest to

collaborate and donate both computing resources and their time. Finally, when repet-

itive actions are required by the user, some kind of reward may be necessary if we

want to fight the problem of users fatigue. These are some open problems in the

area, and although efforts are applied trying to model users interaction that may in

the future reduce the number of times an action is required from the user, we still

lack a general solution to that problem [22].

Also, the number of users to be involved in a given experiment and also the way

they interact should be adjusted: although typically users are simply in charge of

rating individuals, different possibilities could be also adopted, such as asking users

to select the parents for a crossover operation, so that indirectly a fitness evaluation

is performed every time new children is generated. As we will show below, this

later approach has been recently adopted in the context of unplugged evolutionary
algorithms [23], but it is not still a common method.

Therefore, the actual influence of users in interactive EA experiments still allow

for deeper studies, and a number of questions remain to be explored: is it possible to

allow users to perform other operations different from fitness evaluations? What are

the main reasons that lead a user to apply a specific rate to a given individual? Is it

useful to allow different users to rate the same individual? What is the situation in the

context of evolutionary art? These and other questions are leading efforts in the area,

and one of the most recently proposed approaches is the Unplugged Evolutionary

Algorithm.
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3.2 Unplugged EAs

The idea behind the model arise from the interactive version of the EA: human beings

are in charge of performing fitness evaluations. The question is: is it possible to del-

egate all of the operations to human beings? In the context of Evolutionary Art, the

idea of making artists to perform the whole evolutionary algorithms tries to analyze

the creative model when applied by a team of artists: they apply every operation

required for an evolutionary algorithm so that no computer is required in the exper-

iment.

Thus, a team of five artists developed an artistic experiment: each of the artist was

in charge of producing an artwork every week by applying any kind of crossover and

mutation over two works of their colleagues produced the week before. This way,

instead of explicitly asking for fitness values -rates- for each of the paintings, the

artists introduce an indirect fitness evaluation: only the two preferred works are given

best rates and selected as an inspiration source when producing offspring. After ten

weeks of work, a collective art work was produced and interesting information on

the operations applied were described within forms provided to artists [24].

The analysis of the work gives us some clues for a better understanding of the cre-

ative processes developed by human artists, such as information on the key elements

when applying crossover or mutation. For instance, artists always perceive a story

within each figurative work, that may lead mutation operations towards a new work.

Figurative work is typically preferred, instead of abstract works that are usually the

output of evolutionary art experiments [23]. Yet, is not easy to foresee how some of

the concepts learnt can in the future be incorporated into software tools in charge of

producing human-like art.

On the other hand, if we want to fully emulate the creative process developed

by human artists, a possible way to future improvement should include studying

audience response to the work, including audience understanding of the genetic

operations developed. Given the need of an audience when an art work is exhib-

ited, audiences should be somehow included in the Evolutionary Art loop, being

part of experimental research, and artworks should be exhibited in art museums and

galleries.

4 Conclusions

This chapter presents an overview of latest attempts to parallelize Evolutionary Algo-

rithm considering different points of view. On the one hand we have reviewed the

models that have arisen in the last decade, such as those based on agents making use

of Desktop grids and P2P infrastructures; on the other hand we have seen new paths

that are being explored when distributed users are included as part of the parallel

versions of the algorithm, particularly when art and creativity are pursued.
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This review has led us to a number of questions that show paths towards future

improvements on the way we understand and apply parallel and distributed ver-

sions of the Evolutionary Algorithms, that may be summarized as follows: (i) a

proper understanding of the dynamics of algorithms employing variable size chro-

mosomes, such as GP, as well as employing self-properties that allow to be aware

of individual-size dynamics may make it easier to profit from parallel infrastruc-

tures, including GPUs as well as those characterized by ephimeral properties, such

as desktop grids. (ii) the proper understanding of users interaction dynamics in the

context of unplugged evolutionary algorithms may provide clues to improving how

distributed interactive evolutionary algorithms are applied when facing evolution-

ary art project. It can make it easier for scientists to atract users and also avoid users’

fatigue, as well as provide a better understanding of creative process that helps in the

future to improve computer assited creativity.
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