
LinkDaViz – Automatic Binding of Linked Data
to Visualizations

Klaudia Thellmann(B), Michael Galkin, Fabrizio Orlandi, and Sören Auer

University of Bonn & Fraunhofer IAIS, Bonn, Germany
klaudia.thellmann@iais.fraunhofer.de, {galkin,orlandi}@iai.uni-bonn.de,

auer@cs.uni-bonn.de

Abstract. As the Web of Data is growing steadily, the demand for user-
friendly means for exploring, analyzing and visualizing Linked Data is
also increasing. The key challenge for visualizing Linked Data consists in
providing a clear overview of the data and supporting non-technical users
in finding suitable visualizations while hiding technical details of Linked
Data and visualization configuration. In order to accomplish this, we pro-
pose a largely automatic workflow which guides users through the process
of creating visualizations by automatically categorizing and binding data
to visualization parameters. The approach is based on a heuristic analy-
sis of the structure of the input data and a comprehensive visualization
model facilitating the automatic binding between data and visualiza-
tion parameters. The resulting assignments are ranked and presented to
the user. With LinkDaViz we provide a web-based implementation of
the approach and demonstrate the feasibility by an extended user and
performance evaluation.

1 Introduction

The amount of data published as Linked Data is continuously increasing, but
for end users it is still cumbersome to exploit and difficult to appraise the value
of this data. A reason for this is that we still lack comprehensive means for
user-friendly and engaging exploration and visualization of Linked Data.

Visualization is one of the most challenging but at the same time rewarding
aspects of exploring Linked Data. We have a plethora of data modalities (factual,
temporal, spatial, statistical, schema and meta data) and vocabularies for all of
these. At the same time there is a vast variety of visualization and exploration
techniques [4], most of which are limited either in generality [5] or usability for
non-technical users [6,10]. Thus, the key challenge of Linked Data visualization
consists in hiding the technical details of Linked Data and visualization con-
figurations and finding a balance between generality and usability. This can be
accomplished by automatizing the process of producing visualizations, which
would greatly facilitate the interaction with data by end users [2,13].

In this article we present our approach LinkDaViz which supports the user
in selecting and configuring visualizations by automatically binding Linked Data
to visualizations. The approach is based on an analysis of the input data struc-
ture and a comprehensive visualization model comprising structural and layout

c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 147–162, 2015.
DOI: 10.1007/978-3-319-25007-6 9

148 K. Thellmann et al.

options. The binding problem between the data and the visualization is reduced
to an assignment problem involving cost functions and heuristics. The resulting
assignments are ranked and the highest ranking visualization instantiations pre-
sented to the user. The user can further refine and configure these visualization
instances.

The contributions of this work are in particular:

– a method for visualization-oriented input data analysis aiming at discovering
structures relevant for visualization,

– a formal visualization model, comprising structural and layout options,
– a visualization recommendation algorithm that automatically binds the

selected data properties to visualization parameters,
– an implementation of the approach with the LinkDaViz web application.

The LinkDaViz visualization tool simplifies the interaction with datasets
unknown to a user in ways unforeseen by the publisher. We demonstrate the
feasibility of our approach with an extensive user study and an evaluation of
scalability and effectiveness.

2 Related Work

Most existing approaches are only usable by a technical audience or limited to
certain domains or data representations [4]. In order to hide complexity of data
selection and visualization configuration, the focus of visualization approaches
has been shifting towards automation [2,5,13].

Klimek et al. [6] implemented a workflow (Payola) based on the Linked Data
Visualization Model (LDVM) [2], which consists of various analyzers for auto-
matically classifying datasets and transformers for mapping the data to visu-
alization abstractions. However, the amount of manual configuration and the
necessary transformation steps between different abstractions might be consid-
ered a shortcoming by non-technical users.

Voigt et al. [14] propose a generic approach for visualization configuration
in form of a faceted browser (Vizboard). The user creates a weighted query
on abstract visualization features, which is used to automatically compute the
visualization suggestions to be presented to the user. LinkDaViz implements a
different mechanism for automatically suggesting visualization without expecting
the user to know beforehand how he intends to visualize the data.

Mutlu et al. [8] developed an approach for automatically mapping data to
visualizations that have a similar input structure as a given RDF Data Cube.
LinkDaViz follows a similar mapping approach, but is not limited to the Data
Cube vocabulary and has a more generic matching based on bipartite graph
matching.

Bikakis et al. [1] propose rdf:SynopsViz, which comprises features such as on-
the-fly hierarchy construction, statistics, faceted browsing and measuring data
quality through dataset metadata. Bindings for a user-selected visualization (five
types of charts, timeline or treemap) are computed automatically based on a

LinkDaViz – Automatic Binding of Linked Data to Visualizations 149

Fig. 1. The Linked Data Visualization Workflow.

selection of classes and properties. LinkDaViz supports any data types (not
only numeric and dates), offers selection of data properties of different nesting
depth, and automatically recommends visualizations, and not only bindings to
a manually selected visualization.

With LinkDaViz we aim to find a balance between generality and ease of
use. Hence, we aim at improving on existing approaches and supporting the user
in selecting and configuring visualizations for arbitrary Linked Data through
automatic visualization recommendation and intuitive customization.

3 Approach

In this section, the workflow for visualizing Linked Data is described formally.
The goal of the workflow is to support users in selecting and configuring visualiza-
tions by providing a largely automatic visualization workflow. The visualization
workflow is based on the assumption that the user does not necessarily know
how to choose and manually configure visualizations for a certain dataset, but
can decide whether a proposed visualization configuration is reasonable. Thus,
the challenge is to compute a ranked list of visualization configurations from a
subset of a dataset selected by a user for its visualization. It is not in the scope
of this work to guess what part of a dataset the user might be interested in, but
to provide assistance in visualizing a previously specified subset of the data.

The task of finding configurations for a visualization can be modeled as an
assignment problem which describes how the selected data can be mapped to
the visualization’s input parameters. The assignment problem can then be solved
using a weighted bipartite graph matching algorithm.

3.1 Visualization Workflow

The visualization workflow (depicted in Figure 1) guides the user through the
process of visualizing data and starts with the exploration of a dataset. After the

150 K. Thellmann et al.

user has selected the part of the dataset to be visualized, a ranked list of rec-
ommended visualizations is computed. When one of the recommendations is
selected, the resulting visualization is displayed, ready for customization.

For each workflow step, a different representation of data is needed, starting
with the input data model, which is structured in a tree-like fashion suited for
the exploration of data. The LinkDaViz ontology contains a description of the
visualization’s structural and layout parameters and the scales of measurement
used for specifying what types of input data can be mapped to a visualization’s
parameters. The purpose of the ontology is to serve as a basis for the recommen-
dation algorithm so it provides only the information necessary for computing
visualization mappings. The data selected for visualization constitutes a subset
of the input data and serves, together with the visualization options extracted
from the visualization ontology, as input for the recommendation algorithm.

The following subsections contain a detailed description of the data represen-
tations, the formalization of visualizations and the recommendation algorithm.

3.2 Input Data Model

The input data model is a abstract description of the input for the LinkDaViz
tool and is automatically generated for the selected dataset during the data
exploration and selection phase of the visualization workflow. In order to obtain
the model, a tree representation of the input dataset is built automatically level
by level as the user browses through the classes and their appendant properties.
The input data model consists of a finite set DS of datasets and a set of trees
Trees(ds) for each dataset ds ∈ DS. Each tree T ∈ Trees(ds) is a directed tree
T = (V,E, r) with a root node r ∈ V corresponding to an RDF class, and is
defined by a set of nodes V and a set of edges E. For instance, the dataset
depicted in Figure 2 contains statistics about European countries and can be
modeled as two trees T1, T2 with root nodes r1 = Country and r2 = EU-Member.

The set of nodes V consists of inner nodes representing RDF object properties
O ⊂ V and leaf nodes representing RDF data properties D ⊂ V :

V = {r} ∪̇ D ∪̇ O (1)

where for every edge (v, w) ∈ E, v �∈ D (that is, data properties are leaves).
For instance, the data properties nodes of tree T1 from the first level are

D1 = { Name, Population, Area, Code} and one object node O1 = {Capital}.
Each data property node d ∈ D has a scale sdata(d) and a role rdata(d), which
are used in the computation of mappings to visualization options.

Data Scales. The scales of measurement are divided into categorical (Nominal,
Ordinal) and quantitative (Interval, Ratio) scales and are used to categorize
data properties [11]:

S = {Nominal,Ordinal, Interval,Ratio} (2)

The only requirement for Nominal data properties is to have distinguished
values, for instance gender: male and female.

LinkDaViz – Automatic Binding of Linked Data to Visualizations 151

Fig. 2. Input Data Model.

Ordinal data properties additionally have an order between their values,
like the values always, sometimes, never of a Likert scale. For properties of
Ordinal scales, no notion of numerical difference is implied, even if the values
are expressed as numbers.

In case of Interval or Ratio data properties, it makes sense to compute the
numerical difference between their values. The difference between Interval and
Ratio is that for Ratio values, zero is absolute. For instance, temperature can
be measured using the Interval scale Celsius or the Ratio scale Kelvin, which in
contrast to Celsius has an absolute zero point.

Based on these definitions, the hierarchy of scales can be defined as follows:

Nominal ←− Ordinal ←− Interval ←− Ratio (3)

with Nominal being the most generic and Ratio the most specific scale [12].
The categorization of data properties is performed heuristically depending on

the data types of the data property values. Numbers are categorized as Ratio,
dates as Interval and strings as Nominal data. For example, the scales of the
data properties nodes Name, Population ∈ D1 are sdata(Name) = Nominal and
sdata(Population) = Ratio.

Data Roles. Data property nodes d ∈ D also may have the role rdata(d) ∈
R which can be that of an independent variable (Domain) or of a dependent
variable (Range):

R = {Domain,Range,none} (4)

This is needed because due to the structure of some visualizations, only inde-
pendent variables can be reasonably assigned to some of their input parameters,

152 K. Thellmann et al.

while for others only dependent variables are appropriate. Hence, this informa-
tion can be used to exclude certain unreasonable mappings.

The roles that can be associated to the data properties Name, Population
∈ D1 are rdata(Name) = Domain and rdata(Population) = Range. The roles of a
data property can be extracted for instance from the metadata provided by the
RDF Data Cube vocabulary.

Data Selection. The tree-like representation of the input data allows the user to
browse the dataset and select some of the properties for visualization. The data
selection Ts = (Vs, Es, rs) is used as input for the recommendation algorithm
and is a subtree of a tree T ∈ Trees(ds) from a dataset ds ∈ DS from the input
data model, with Ts containing a subset Vs ⊆ V of the nodes of T and all of the
edges Es = E ∩ Vs × Vs between these, and with the same root rs = r ∈ V as T :

Vs = {rs} ∪̇ Ds ∪̇ Os (5)

with Ds ⊂ D and Os ⊂ O.
For instance, the data selected from the EU-Countries dataset in figure 2

consists of two data property nodes from tree T1, namely Name, Population ∈ V .
This selection is a subtree of T1 with the same root node rs = r1 = Country and
the edges Es = E1 ∩ V × V = {(Country, Name), (Country, Population)}.

3.3 Visualization Model

A visualization model is introduced for formally describing the options defining
the structure and the layout of a visualization and a mapping specifying the
configuration of the visualization options. The visualization model VM is com-
posed of sets of structural and layout options SO respectively LO and a set of
all possible mappings M of a data selection Ts to a visualization vis:

VM = (SO,LO,M) (6)

Structural Options. The purpose of the structural options so ∈ SO of a visual-
ization is to define the skeleton of the visualization. For instance, the structure
of a column chart is defined by the following options: SO = {horizontal axis,
vertical axis, groups}. A structural option so ∈ SO is described by a name
nvis(so) ∈ Σ∗, a set of scales svis(so) ∈ P(S), a role rvis(so) ∈ R and a cardi-
nality cvis(so) ∈ C, with Σ∗ being the set of strings in a given alphabet and
C = {(0, 1), (0, ∗), (1, 1), (1, ∗)} being the set of possible cardinalities, and S and
R as in section subsection 3.2.

A structure option so ∈ SO has a set of scales svis(so) ⊂ S = {Nominal,
Ordinal, Interval, Ratio}, which represent the kinds of input data that can be
mapped to it. For instance the scales of a column charts structural options are
svis(vertical axis) = {Interval, Ratio}, svis(horizontal axis) = { Nominal} and

LinkDaViz – Automatic Binding of Linked Data to Visualizations 153

Fig. 3. Example of a structural options mapping.

svis(groups) = {Nominal}, which results in the following pattern describing the
kinds of input data that can be mapped to a column chart:

horizontal axis
︸ ︷︷ ︸

Nominal

× groups?
︸ ︷︷ ︸

Nominal

−→ vertical axis
︸ ︷︷ ︸

Ratio

(7)

The role rvis(so) ∈ R of a structure option is used to restrict the data prop-
erties to independent or dependent variables that can be mapped to visual-
ization options in order to ensure that the data conforms to the structure of
the visualization. R = {Domain, Range, none}. For instance the roles of a col-
umn charts structural options are rvis(vertical axis) = {Range}, rvis(horizontal
axis) = rvis(groups) = {Domain}, which results in the following pattern:

horizontal axis × groups?
︸ ︷︷ ︸

domain

−→ vertical axis
︸ ︷︷ ︸

range

(8)

The roles of the selected data properties Name and Population, are rvis(Name) =
{Domain} and rvis(Population) = {Range}. This results in the following dis-
tribution of roles:

horizontal axis
︸ ︷︷ ︸

domain = Name

−→ vertical axis
︸ ︷︷ ︸

range = Population

(9)

Which means that each European country has a population count as value, which
is projected as a vertical bar in a column chart.

Finally, the cardinality cvis(so) ∈ C indicates if a structure option is required
or optional and if it is single or multi-valued. The cardinality is indicated
by affixing ? for cardinality (0, 1), ∗ for (0, ∗) and + for (1, ∗) to the scale
of measurement, with no affix indicating cardinality (1, 1). For instance, the

154 K. Thellmann et al.

cardinalities of the structural options of column charts are: cvis(horizontal
axis) = cvis(groups) = (1, 1) and cvis(vertical axis) = (1, 1), which results in
the pattern:

horizontal axis
︸ ︷︷ ︸

Required

× groups?
︸ ︷︷ ︸

Optional

−→ vertical axis
︸ ︷︷ ︸

Required

(10)

Layout Options. The layout options LO allow the user to refine the style of the
visualization. As they don’t have any influence on the recommendation, they are
not formally described in detail. For instance, a column chart’s layout can be
specified by the following options: LO = (number grid lines, v-axis label, h-axis
label, stacked columns)

Options Mapping. An options mapping m = (mSO,mLO) of the data selection Ts

to the visualization is composed of a structural options mapping mSO ⊆ SO×Ds

assigning data property nodes to structural options and a layout options map-
ping mLO = {(lo1, value 1), (lo2, value 2), . . ., (lom, value m)} assigning values
to layout options loi ∈ LO for i ∈ {1, . . . , m}, m ∈ N. The structural options
mapping must conform to the cardinality constraints of each structural option as
explained above. Initially, a computed suggestion can be assigned to the struc-
tural options, and predefined default values from the visualization ontology to
the layout options.

An example of a possible mapping of the selected data properties from the
EU-Countries example in subsection 3.2 to a column chart’s structural options
would be m = ({(vertical axis, Population), (horizontal axis, Name)}, {(number
grid lines, 9), (v-axis label, Population Count), (h-axis label, Country), (stacked
columns, false)}). This mapping is depicted in Figure 3 and results in a sta-
tistical visualization of the population count of European countries. Because no
grouping values were specified the optional structural option groups is left out.

3.4 Visualization Recommendation

In order to suggest possible visualization configurations, a recommendation algo-
rithm has been introduced, which automatically binds the selected data prop-
erties to visualization options. For each visualization, the assignment of data
properties to the visualization’s structural options is modelled as a weighted
bipartite graph matching problem and solved by the graph matching algo-
rithm introduced by Kuhn and Munkres[3,7]. The optimal solutions of these
graph matching problems are then ranked to produce a list of recommended
visualizations.

Assignment Problem. The assignment problem for a visualization is defined as
follows: Given the set Ds = {d1, d2 . . . dm} ⊂ Vs of data properties from the data
selection Ts and the set of structural options SO = {so1, so2 . . . son}, find a valid
structural options mapping mSO with maximum possible number of assigned
structure options and minimal cost.

LinkDaViz – Automatic Binding of Linked Data to Visualizations 155

The lower the cost of a mapping, the better it conforms to the input data
the visualization expects, and thus the higher the likeliness that it corresponds
to what the user envisioned. A high number of assigned data properties ensures
that a large part of the selected data can be visualized.

The cost wij of mapping the data property dj to the structural option soi is
the sum of three penalties, namely scales, roles and optionals penalty, which are
introduced in more detail below.

wij = wscale
ij + wopt

ij + wrole
ij (11)

Scales Penalty. The amount of the scales penalty wscale
ij as displayed in Figure 4a

indicates how well a data property’s scale sdata(d) matches a structural options’s
scales svis(so). The higher the penalty the more unfitting the match of the data
property d and the structural option so. When sdata(d) is contained in svis(so)
this indicates a perfect match, so wscale

ij = 0. In contrast, an invalid match is
given a high penalty wscale

ij = winv, for example winv = 1000.
The values of the penalties are chosen in a way to increase the likeliness of

computing meaningful mappings.
For instance, it is more appropriate to map an Interval data property to

a Nominal structural option than a Ratio property, because less information
is lost for the Interval property, as Interval is more general than Ratio (cf.
subsection 3.2).

Fig. 4. Penalties overview and cost matrix example.

Roles Penalty. The roles penalty wrole
ij is added if the structural option has a

defined role and the data property’s role is not known, which might result in an
incorrect match, or if the option has no role specified but the data property’s
role is known (see Figure 4b). In the latter case, it might be beneficial to favor
mapping properties to the options whose roles are known by penalizing the
mappings to the options with no associated roles. In both cases the role penalty

156 K. Thellmann et al.

has a higher significance than the scale penalty: wrole
ij < wscale

ij for non-perfect
mappings (wscale

ij > 0). In the cases in which either both sides’ roles are known
or not known, no role penalty is added.

Optionals Penalty. In case of optional structural options, an optionals penalty
wopt

ij is introduced to ensure that required structural options are preferred in
the mapping, thus reducing the likeliness of producing an invalid mapping (see
Figure 4 c). Therefore, the optional penalty must be greater than the greatest
scale penalty of valid assignments (which is 40): wopt

ij = 50 < wscale
ij for valid

mappings (wscale
ij < winv).

Cost Matrix. In order to solve an assignment problem a cost matrix W =
(wij)i=1...n,j=1...m is computed for all available visualizations by adding the scale
penalty wscale

ij , the optional penalty wopt
ij and the role penalty wrole

ij . For the for-
mal description, a square matrix is more favorable, which can be achieved by
padding the weight matrix with zeroes (dummy values)[3]. From here on, it is
assumed that the matrix is square: n = m

The cost matrix W for computing the mapping mSO = {(vertical axis,
Population), (horizontal axis, Name)} of a column charts structural options
SO = (horizontal axis, vertical axis, groups) and the data selection D = {Name,
Population} from the EU-Countries is depicted in Figure 4 d.

The column entries from each row are composed of the sum of the scale
weight, role and optional penalty. For instance, the mapping of data property
d1 = Name ∈ D to the structural option svis(s1) = horizontal axis has the
cost w11 = wscale

11 + wrole
11 + wopt

11 = 0. Because the scales sdata(d1) =svis(s1) =
categorical and the roles rdata(d1) = rvis(s1) = domain match, no penalties
are added. As the structural option cardinality cvis(horizontal axis) = (1, 1)
indicates that this option is required, no optionals penalty is added.

Mapping. Given the cost matrix W = (wij)i=1...n,j=1...n as input for the bipartite
graph matching algorithm a maximal mapping from the selected data Ts to the
structural visualization options SO, is computed. That is a permutation π of
{1, 2, . . . , n} is determined with maximum value of

wmSO
=

n
∑

i=1

wi,π(i) (12)

Ranking. After computing a mapping for each visualization, the mappings are
ranked and the highest ranking one is presented to the user along with the other
recommendations as alternative visualizations.

A mapping mSO is excluded from the result list if its cost is higher than a
threshold wmSO

≥ winv or if it has unassigned required structural options: � ∃ data
property such that � ∃(soi, data property) ∈ mSO and cv(soi) ∈ {(1, 1), (1, ∗)}.

A mapping mSO1 is ranked higher than a mapping mSO2 if mSO1 has a larger
number of assigned structural options than mSO2 , that is, |mSO1 | > |mSO2 | and
if mSO1 has a lower cost than mSO2 : wmSO1

< wmSO2
.

LinkDaViz – Automatic Binding of Linked Data to Visualizations 157

4 Implementation

Architecture. In order to guide the user through the process of visualizing Linked
Data, a JavaScript based web-application, LinkDaViz1, has been developed. The
application receives data in RDF or tabular format as input. It consists of a fron-
tend module for exploring and selecting data and configuring visualizations, and
a back-end module for computing visualization recommendations (see Figure 5).
The frontend module is realized using Ember.js2, an open-source JavaScript
client-side MVC framework, and consists of a component for querying and cate-
gorizing data, the visualization widgets library and a component for configuring a
visualization. The selected input dataset is queried and categorized by determin-
ing the scale and role of each data property. The visualization widgets library
contains configurable visualizations for statistical, temporal and geographical
data (e.g. charts based on D3/Dimple3, maps based on Leaflet4) and visual-
izations for previews (e.g. tables). The component for configuring visualizations
is in charge of initializing and triggering the rendering of the recommended
visualizations.

Fig. 5. Architecture of LinkDaViz.

1 Publicly available at: http://eis.iai.uni-bonn.de/Projects/LinkDaViz.html
2 http://emberjs.com/
3 http://d3js.org/, http://dimplejs.org/
4 http://leafletjs.com/

http://eis.iai.uni-bonn.de/Projects/LinkDaViz.html
http://emberjs.com/
http://d3js.org/
http://dimplejs.org/
http://leafletjs.com/

158 K. Thellmann et al.

The backend is written in JavaScript and runs on Node.js5, an open-source
runtime environment for server-side applications, and consists of: i) a component
for computing visualization recommendations and ii) a component managing the
data being queried by the frontend through a REST API. The store contains
datasets, the visualization ontology, from where the visualization metadata is
extracted and the saved visualization configurations that can be reloaded for
further customization.

Fig. 6. LinkDaViz - select data: 1. Browse and select data. 2. Explore selection. 3.
Visualize selection.

Data Exploration and Selection. The component for data selection displayed
in Figure 6 of the LinkDaViz UI consists of a tree-view of the input dataset
with labeled nodes for browsing and selecting data (Figure 6 (1)) and a preview
for exploring the selection (Figure 6 (2)). As described in subsection 3.2, the
input dataset is modeled as a list of trees, with RDF classes as root nodes.
Each tree consists of a set of inner nodes representing RDF object properties
and leaf nodes representing RDF data properties. Data properties are labeled
corresponding to the data type of their values (e.g. number, string, date, spatial)
and object properties are labeled as resources. When selecting data properties,
a preview is generated displaying the values of the data properties in a table.
Following the selection step is the actual visualization of the selected data (2).

Visualization Selection and Customization. The component for selecting and
customizing visualizations of the LinkDaViz UI is depicted in (Figure 7) and
consists of a list of visualization suggestions that are computed based on the
dataset’s content (Figure 7 (4)), a configuration component (Figure 7 (5)), the
visualization (Figure 7 (6)) and consumption actions (export, save Figure 7
5 https://nodejs.org/

https://nodejs.org/

LinkDaViz – Automatic Binding of Linked Data to Visualizations 159

Fig. 7. LinkDaViz - visualize data: 4. Select recommended visualization. 5. Customize
suggested configuration. 6. Visualize data. 7. Customize layout. 8. Save or export
visualization.

(8)) and tuning options (Figure 7 (7)). The configuration component contains
an overview of the selected properties and the suggested mapping (“Visualization
Options”) for the selected visualization. The suggested mapping can be manually
changed by dragging and dropping properties from the list of selected properties
to the visualization options. The visualization’s layout can be customized as well,
for instance by adding labels to the axes or changing the number of grid lines.
Finally, the visualization can be exported in different formats (e.g. PNG, SVG)
and saved for later re-use.

5 Evaluation

In order to evaluate usability, scalability and effectiveness of the LinkDaViz tool,
a comprehensive study has been conducted.

Setup. For the evaluation the application was deployed in Linux Virtual Machine
on Intel Core i5 machine (2.5 GHz, 4GB RAM) and on an Amazon EC2 t2.micro
instance (2.5 GHz, 1 GB RAM). The datasets used for evaluation contain statis-
tical, temporal and geographical data and were collected mainly from the World
Bank Linked Data project, Data.Gov and DataHub.

Methodology. In preparation of the user study, the participants and the eval-
uation criteria were identified, and a list of tasks to perform and a feedback
questionnaire were created. Overall 20 participants of age range 20-30 took part

160 K. Thellmann et al.

Fig. 8. Evaluation Results of LinkDaViz.

in the evaluation, i.e. 15 males, 5 females, 17 students, 2 PhD students and one
working professional. Seven tasks and corresponding questions were composed
in order to evaluate the level of difficulty, the UI design, the effectiveness of the
produced visualizations and the scalability of the recommendation engine. The
tasks the users were asked to perform have been designed according to standard
user evaluation protocols[9] and are the following: 1) Select a dataset, 2) Assign
parameters of a visualization, 3) Visualize data, explore a chart, 4) Modify struc-
tural options of a chart, 5) Modify layout options of a chart, 6) Save a chart, 7)
Visualize another slice of a dataset.

To evaluate effectiveness aspects of the recommendations, the number and
quality of suggested visualizations were measured by exploring and estimat-
ing possible visualizations and configurations of visualizations for a particular
dataset. The quality of recommendations was determined according to how much
of the selected data could be visualized and on the meaningfulness of the sug-
gested visualizations from the perspective of the evaluators.

Scalability was tested by producing visualizations for datasets of different
sizes. The largest dataset consists of about 350 millions triples.

Results. In figure Figure 8a and Figure 8b the number of responses for each ques-
tion regarding the level of difficulty and the UI design are summed up. From the
20 participants who took part in the evaluation, we collected 140 (Figure 8a)
responses to the seven questions on difficulty and 120 (Figure 8b) responses to
the six questions on the UI design. As Figure 8a indicates, the overall impres-
sion of performing the tasks was rated satisfactorily as average to good. The
majority of the participants experienced little difficulties with the tasks given

LinkDaViz – Automatic Binding of Linked Data to Visualizations 161

and considered the LinkDaViz UI as an effective and easy to use application for
selecting data and configuring visualizations. The design of the UI was also rated
average to good (Figure 8b). LinkDaViz can successfully produce previews and
visualizations of RDF and CSV datasets in the majority of cases, depending on
the quality (e.g. correct datatypes), nature and size of the selected data. The
overall level of satisfaction (Figure 8c – one person didn’t answer the question)
and the quality of recommendations was rated positively. The quality varied with
the number of selected data properties that could be automatically visualized
(Figure 8d) and the meaningfulness of the suggestions (Figure 8e). Having con-
ducted the effectiveness evaluation on six datasets (DS1 to DS6) collected from
Data.Gov it should be noted that there is a negative impact on recommendations
from the varying dataset quality (e.g. wrong datatypes, non-uniform properties,
aggregated values represented like raw data). A visualization has been generated
and displayed for almost every dataset in a reasonable time. However on a selec-
tion from a large, homogeneous dataset with more than 300 millions of triples
no visualization could be produced due to the browsers’ memory limit.

6 Conclusion and Future Work

In this paper we have introduced LinkDaViz, a novel visualization approach
and software implementation which allows for automatic visualization of Linked
Data. A formal description of the approach, the visualization components and the
input data has been provided. Additionally, we have introduced a recommenda-
tion algorithm that automatically binds selected data properties to visualization
options. The validity of our approach has been tested with a comprehensive eval-
uation of our LinkDaViz software tool. We conducted a user study to evaluate
usability, effectiveness and scalability of the tool. The results of the evaluation
are very encouraging, considering the complexity of the task of automating a
typical visualization workflow.

The insight we gained through the evaluation is that we managed to develop
an easy to follow workflow for creating visualizations for RDF data and that the
suggested visualizations were indeed helpful for the participants. However, the
meaningfulness of the recommendations varied depending on the selected subset
of data and the data quality. One possible improvement would therefore be to
provide assistance to the user not only in choosing and configuring visualizations
but also in choosing a reasonable subset of data that can be visualized.

Acknowledgments. The research and implementation of this work has been con-
ducted by the University of Bonn within the LinDA project, funded by the Euro-
pean Union’s Seventh Framework Programme under grant agreement no 610565 and
at Fraunhofer IAIS within the European Union’s Horizon 2020 research and innovation
programme under grant agreement no 644564 for the project BigDataEurope (http://
www.big-data-europe.eu/).

http://www.big-data-europe.eu/
http://www.big-data-europe.eu/

162 K. Thellmann et al.

References

1. Bikakis, N., Skourla, M., Papastefanatos, G.: rdf:Synopsviz - a framework for
hierarchical linked data visual exploration and analysis. In: 11th Extended
Semantic Web Conference (ESWC 2014) (2014)

2. Brunetti, J.M., Auer, S., Garćıa, R., Kĺımek, J., Nečaský, M.: Formal linked data
visualization model. In: Proc. IIWAS, IIWAS 2013, pp. 309–318. ACM, NY (2013)

3. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems, Revised Reprint:
Other titles in applied mathematics. Society for Industrial and Applied Mathemat-
ics (SIAM) (2009)

4. Dadzie, A.S., Rowe, M.: Approaches to visualising linked data: A survey. Semantic
Web 2(2), 89–124 (2011)

5. Höfler, P., Mutlu, B.: Code query wizard and vis wizard: Supporting exploration
and analysis of linked data. ERCIM News (96) (2014)

6. Kĺıme, J., Helmich, J., Nečaský, M.: Payola: collaborative linked data analysis and
visualization framework. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S.,
Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 147–151. Springer, Heidelberg
(2013)

7. Munkres, J.: Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics 5(1), 32–38 (1957)

8. Mutlu, B., Hoefler, P., Sabol, V., Tschinkel, G., Granitzer, M.: Automated visual-
ization support for linked research data. In: Lohmann, S. (ed.) CEUR Workshop
Proceedings, vol. 1026, pp. 40–44. CEUR-WS.org (2013)

9. Nielsen, J., Landauer, T.K.: A mathematical model of the finding of usability
problems. In: Proceedings of the INTERACT 1993 and CHI 1993 Conference on
Human Factors in Computing Systems, pp. 206–213. ACM (1993)

10. Skjaeveland, M.G.: Sgvizler: a javascript wrapper for easy visualization of sparql
result sets. In: Simperl, E., Norton, B., Mladenic, D., Della Valle, E., Fundulaki,
I., Passant, A., Troncy, R. (eds.) The Semantic Web: ESWC 2012 Satellite Events,
Lecture Notes in Computer Science, vol. 7540, pp. 361–365. Springer, Heidelberg
(2015). http://dx.doi.org/10.1007/978-3-662-46641-4 27

11. Stevens, S.S.: On the theory of scales of measurement. Science 103, 677–680 (1946)
12. Stevens, S.S.: Measurement. In: Maranell, G.M. (ed.) Scaling; a Sourcebook for

Behavioral Scientists. Aldine Publishing Company (1974)
13. Voigt, M., Pietschmann, S., Grammel, L., Meißner, K.: Context-aware recommen-

dation of visualization components. In: 4th Int. Conf. on Information, Process, and
Knowledge Management, eKNOW 2012, pp. 101–109 (2012)

14. Voigt, M., Pietschmann, S., Meißner, K.: A semantics-based, end-user-centered
information visualization process for semantic web data. In: Semantic Models for
Adaptive Interactive Systems, pp. 83–107. Springer (2013)

http://dx.doi.org/10.1007/978-3-662-46641-4_27

	LinkDaViz -- Automatic Binding of Linked Data to Visualizations
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Visualization Workflow
	3.2 Input Data Model
	3.3 Visualization Model
	3.4 Visualization Recommendation

	4 Implementation
	5 Evaluation
	6 Conclusion and Future Work
	References

