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Abstract. Recently, Triple Pattern Fragments (tpfs) were introduced
as a low-cost server-side interface when high numbers of clients need to
evaluate sparql queries. Scalability is achieved by moving part of the
query execution to the client, at the cost of elevated query times. Since
the tpfs interface purposely does not support complex constructs such as
sparql filters, queries that use them need to be executed mostly on the
client, resulting in long execution times. We therefore investigated the
impact of adding a literal substring matching feature to the tpfs inter-
face, with the goal of improving query performance while maintaining low
server cost. In this paper, we discuss the client/server setup and compare
the performance of sparql queries on multiple implementations, includ-
ing Elastic Search and case-insensitive fm-index. Our evaluations indi-
cate that these improvements allow for faster query execution without
significantly increasing the load on the server. Offering the substring fea-
ture on tpf servers allows users to obtain faster responses for filter-based
sparql queries. Furthermore, substring matching can be used to support
other filters such as complete regular expressions or range queries.

Keywords: Linked data · sparql · String matching · Regular
expressions

1 Introduction

The publication of rdf data on the Web is often presented as a dichotomy [6]:
either the entire dataset is made available in a downloadable data dump, or fine-
grained query-level access is provided through a public sparql endpoint [7].
In the first case, users need to download the entire dataset—even if they are
only interested in a specific part of it—and are then free to use it locally in any
way they see fit. Commonly, this means ingesting the triples in a local triple
store and setting up a private sparql endpoint. While this approach is most
straightforward for data publishers and offers most freedom for data consumers,
it also comes with a high burden in terms of needed bandwidth, device capacity,
and technical ability of the data consumer. Especially given the rise of mobile
devices to browse the Web, offline querying of datasets is not viable as the only
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solution. Furthermore, if datasets change often, synchronizing them with the
latest version becomes a challenge.

In the second case, public sparql endpoints allow users to execute all of
their queries on the server against live data, without having to worry about
huge downloads or updates. However, since all work is shifted to the server,
the endpoint’s load increases drastically, causing an increase in server cost and
potential overloads and subsequent downtime if many complex queries are exe-
cuted. Even though most public servers pose certain limits to query execution,
the low availability of sparql endpoints is a prominent issue [3], and high load
is a potential availability risk. Furthermore, from an economic perspective, not
all data publishers on the public Web are willing and/or able to pay for a com-
putational infrastructure that allows third parties to execute complex queries
free of charge, given that they already provide the data itself for free. Whether
or not the duties of a publisher include live queryable access, the fact is that
only a minority attempts to host a public sparql endpoint [6,20].

Recently, the Triple Pattern Fragments (tpfs) interface was introduced as
an alternative to bridge the gap between the low server load of datasets and
the functionality of a full sparql endpoint. tpfs limit the functionality of the
server to triple pattern requests; more complex sparql queries are executed by
a client-side query processor that decomposes them into triple patterns. Clients
combine intermediary results received from the server locally to find results to
larger queries. This greatly reduces the server load by shifting querying partially
to the client, at the expense of increased query times and bandwidth. While
basic graph pattern queries can be executed efficiently with tpfs, other query
constructs potentially lead to slow queries. The tpf interface, however, is self-
describing, meaning we can transparently add new features to it. While they
might make individual requests more expensive, the number of requests—and
thereby the total sum of all request costs—might be significantly reduced.

In this paper, we investigate a server-side interface feature that allows sparql
queries with certain FILTER patterns to be executed more efficiently. With the
regular tpf interface, all filters have to be evaluated client-side, since only exact
triple patterns have server-side support. Concretely, this means that clients first
have to download all triples that match the remainder of the query, after which
the filter can be applied to these results. This works sufficiently for filters with low
selectively, which sparql endpoints typically also execute at the end. However,
if the filter is the only part of a query that has a high selectivity, the client
cannot solve this query efficiently, since the filter can only be used on triples
that were already downloaded from the server. For this reason, we introduce
substring matching as a server-side interface, allowing the user to request all
literal objects that contain a given string pattern.

In Section 2 we discuss related work, especially regarding query interfaces
and pattern matching, and show how it is related to our current work. Section 3
explains the benefit of adding a substring feature to servers that publish ldfs,
and Section 4 presents two implementations. We then extend the client-side
query algorithm in Section 5 to make use of the substring feature and examine
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its impact on performance and server load in Section 6. We conclude in Section 7
and look at how this work can be extended in the future.

2 Related Work

This paper defines a server-side interface feature for substring search on rdf
object literals. To place the contribution in context, we first discuss the multiple
available interfaces to access Linked Data, followed by an introduction to the
indexing algorithm used later on.

2.1 Web APIS to Linked Data

Linked Data can be published on the Web using different Application Pro-
gramming Interfaces (apis). The Linked Data Fragments conceptual frame-
work [25,27] enables the analysis and comparison of Web apis by abstracting
each api according to how it provides access to parts of a given dataset. Each
such part is called a Linked Data Fragment (ldf), which consists of data, meta-
data, and controls. The data is a set of those triples of the dataset that match
a given interface-dependent selector. The metadata set consists of triples that
describe the dataset and/or the current fragment or related fragments. Finally,
the controls are hypermedia links and/or forms that allow clients to retrieve
other fragments of the same or other datasets.

In addition to describing existing interfaces, ldfs also allow defining new
interfaces with different characteristics. Below, we discuss three types of inter-
faces using the ldf conceptual framework.

Data Dumps. A data dump of a dataset is an ldf whose data consists of
all triples in that dataset, usually in a compressed archive. The metadata set
typically contains data such as publication date and/or license. No controls are
present, because all available data is contained within the archive. Data dumps
are prevalent on the Web: lodstats mentions more than 1,700 data dumps [6],
and the lod Laundromat contains more than 600,000 datasets crawled from the
Web [20]. Their main drawback is that they cannot be queried “live”, i.e., they
need to be downloaded in their entirety before typical sparql queries can be
evaluated over them. Since data dumps can become quite large (several giga-
bytes are not an exception), they are impractical for most use cases—especially
if data changes often and needs to remain up-to-date. Furthermore, setting up
and maintaining a query interface on top of a data dump requires a techni-
cal background and significant computational power, so this is out of reach for
typical desktop users as well as all mobile users.

SPARQL Endpoints. The sparql protocol [7] exposes rdf graphs on the
Web using the sparql query language [13]. Each response to a CONSTRUCT or
DESCRIBE query can be seen as an ldf, where the data consists of the rdf
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triples in the dataset that match the query. The metadata and control sets are
empty; controls are given implicitly through the sparql protocol. The main
advantage of sparql endpoints is their expressiveness: clients can ask very spe-
cific questions about a dataset and retrieve only the results they are interested
in. However, public sparql endpoints suffer from a two-sided availability prob-
lem: the majority of datasets is not published as a sparql endpoint [6], and
those endpoints that are on the Web experience frequent downtime [3]. Further-
more, sparql endpoints have a high per-request cost [25] and are thus relatively
expensive to host.

Triple Pattern Fragments. The Triple Pattern Fragments (tpf) inter-
face [24,25] was designed to combine the desirable characteristics of data dumps
(low server-side cost) and sparql endpoints (live queryable). Clients can ask
a server for triple patterns; in response, the server sends a tpf, consisting of
data triples matching the triple pattern (paged to reduce response sizes), meta-
data expressing the total number of matching triples, and controls to retrieve
all other tpfs of the same dataset. Complex sparql queries are evaluated by
clients, which split a query into triple patterns and use the metadata in fragments
to determine an efficient execution order. The advantage of tpfs is that they
only require low processing power on the server side, and are thus less expensive
to host with high availability [25]. The drawback is that sparql queries have
longer (but more consistent) query times than on a sparql endpoint. More
than 600,000 datasets are available as tpfs through the lod Laundromat [20].
dbpedia, the most well-known dataset on the Semantic Web, has an official tpf
interface with 99.999% availability [26].

tpfs move the query planning problem to the client. It is up to the client to
make optimal use of all metadata exposed by the tpf server, which in the default
case consists of the estimated amount of matched triples for a triple pattern.
Since a tpf server only supports triple patterns, complex sparql structures such
as filters also have to be computed client-side. This can be done by checking all
resulting triples against the filters in the sparql query. The originally proposed
query planning algorithm is a greedy algorithm [25]. Assuming a Basic Graph
Pattern (bgp) query, the client starts by downloading results for the smallest
triple pattern in the bgp, based on the count estimate metadata sent by the
server. The values of each resulting triple are bound to each remaining pattern.
The client then requests the smallest of these bound patterns from the server,
and continues binding results to unbound patterns until all patterns have been
bound. This process is started multiple times if there are multiple unconnected
bgp’s. Computationally this method is quite fast: most of the time the client is
simply waiting on the server response. The downside is that the client can become
stuck in local optima, causing it to execute more requests than a theoretically
optimal solution.

Van Herwegen et al. proposed an improvement to the greedy algorithm [22],
which tries to find a solution using a minimum number of http calls, avoiding
local optima. This is achieved by downloading two triple patterns separately
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from the server and joining them on the client if this requires fewer http calls.
Multiple estimation techniques, based on the intermediate results of the algo-
rithm, are used to predict which query path is least expensive. If the current path
is suboptimal, the algorithm will change it at runtime and continue from the new
path. This decrease in http requests results, however, in more computational
work for the client because of the more complex local joining process.

2.2 Burrows-Wheeler Transform and FM-Index

The Burrows-Wheeler Transform (bwt) [4] was created to transform data so that
it can be compressed more easily without any loss [19]. It is used in multiple
fields, such as bio-informatics [15].

An fm-index is an index on a bwt-transformed dataset to find substrings
in the data by adding some additional metadata [10]. Brisaboa et al. show how
an fm-index can even be used to perform substring matching in a list of strings
instead of a single string, returning all strings that contain a given substring [2].
In Section 4.3, we extend this technique to also allow for case-insensitive matches.

Ferguson shows that it is even possible to execute regular expressions on data
stored using an fm-index [8]. In his paper, he describes a system called femto,
which can index large datasets while still maintaining adequate performance.

2.3 HDT (Header Dictionary Triples)

hdt [9] is a data storage format that optimizes the space required to store
large rdf datasets by storing its uris and literals separately in a compressed
dictionary and storing identifier triplets that reference this compressed data.
Multiple dictionaries are supported by hdt; we are particularly interested in
the dictionary that uses an fm-index to store the object literals, thus allowing
full-text search on triple objects [1,16].

2.4 Full-Text Search in Triple Stores

hdt is not the only way to support full-text search on triples: there exist multiple
other implementations supporting the same functionality or even more [5,17].
Minack et al. [18] performed an extensive comparison of multiple of these imple-
mentations in complete triple stores (unfortunately not including hdt since it
is a data structure and not a triple store). They concluded that most standard
triple stores have sufficient support for full-text search, but that there are still
areas where performance is inadequate.

3 Problem Statement

A common use case for substring matching is when we know the name of an
entity we are looking for, but we do not know its uri. As an example, Listing 1



Substring Filtering for Low-Cost Linked Data Interfaces 133

SELECT ?movie

WHERE {

?movie dbpedia-owl:starring [ rdfs:label ?name ].

FILTER REGEX(?name, "Matthias Schoenaerts", "i")

}

Listing 1. sparql query to find all movies with Matthias Schoenaerts

contains a query that returns all movies starring the actor Matthias Schoe-
naerts. We assume the user did not know the exact uri that was necessary,
and used string matching to find the uri that corresponds to the person called
“Matthias Schoenaerts”. Since tpf servers only support exact triple pattern
lookups, a client-side algorithm would need to execute the filter locally on all
triples joined by the previous two triple patterns. The first pattern has 200,000
matches and the second one more than 12,000,000, meaning that any solution
would need at least 200 calls (assuming a page size of 100) to obtain results for
the first pattern, and then another 200,000 to map them to their label.

However, if it were possible to filter all literals in the dataset first, we would
only obtain 20 results that would then need to be mapped to the previous pat-
terns, resulting in a total of 40 http requests instead of 200,000. In general,
the ability to solve substring matches is especially useful when all of the triple
patterns have a low selectivity and the string pattern selectivity is quite high.
For this example, the string pattern in Listing 1 is highly selective since there are
only 20 results. These observations lead us to the following research question.

Question 1: How does the performance of queries with FILTER patterns improve
if the tpf interface is extended with substring search on literals?

Extending the interface means that clients are able to send more complex
requests, which could mean a higher per-request cost for servers. At the time,
however, an increased expressivity of requests could lead to a reduction in the
number of requests needed to evaluate a particular sparql query. This brings
us to a second research question:

Question 2: What is the server-side impact of adding support for substring
search to the interface, i.e., can we still maintain the low-cost properties associ-
ated with the tpf interface?

Ultimately, the results of this research should help data publishers decide
whether the costs of adding substring search are worth the expressivity and the
possible improvement in query performance they bring.

Question 3: For which scenarios and types of queries is it beneficial to add
a substring search interface to the server?

Based on the above research questions, we propose the following hypotheses:

Hypothesis 1: The http requests required to solve typical queries with highly
selective REGEX FILTERs can be greatly reduced when a substring search is
present in addition to a tpf interface.
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PREFIX void: <http://rdfs.org/ns/void#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX hydra: <http://www.w3.org/ns/hydra/core#>

<#about> {

<#about> foaf:primaryTopic <#fragment>.

<#fragment> void:subset <http://example.org/mydataset>;

<http://example.org/mydataset> hydra:search [

hydra:template "http://example.org/mydataset{?substring}";

hydra:mapping [ hydra:variable "substring";

hydra:property hydra:freetextQuery ]

].

}

Listing 2. Self-descriptive hypermedia controls in a tpf fragment explain how sub-
string matching can be accessed (TriG syntax).

Hypothesis 2: Queries with REGEX FILTERs that are not highly selective are
unaffected by the presence of a substring search interface.

Hypothesis 3: The cost to offer substring matching is limited such that sub-
string requests can be executed at an acceptable time cost on a typical server.

4 Server-Side Interface

To support substring search, Section 4.1 defines an interface feature that can
work in conjunction with the tpf interface. We evaluated two different tech-
niques to filter through the data: an internal fm-index and an external Elastic-
search1 index, which can be found in Section 4.2 and 4.3, respectively.

4.1 Extension of the TPF Interface

The tpf interface has been designed in a self-descriptive and extensible manner,
so clients can discover what capabilities are supported [25]. Given a single uri
to any resource of the interface, the client can fetch it with http GET, asking for
an rdf representation. In this representation, the clients will find hypermedia
controls, which explain that “this interface can be queried by triple pattern” [24].
This avoids a hard-wired client/server contract. For example, if we visit the
resource http://fragments.dbpedia.org/2014/en in a Web browser, we will see
an html form with fields subject, predicate, object, and this form instructs the
browser how to create http requests against the interface. This same information
is conveyed in the rdf-based representation of the same resource, using the
Hydra Core Vocabulary [14,24].

Since we aim to provide a substring search interface feature, we should sim-
ilarly inform human and machine clients of this functionality and how they can
1 http://www.elastic.co/

http://fragments.dbpedia.org/2014/en
http://www.elastic.co/
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perform such requests. Listing 2 shows an example form in rdf for an exam-
ple fragment of the dataset http://example.org/mydataset/. In this particular
case, it states that substring search is supported on this dataset, and that it can
be performed by appending the search string to http://example.org/mydataset?
substring=. That way, with this resource as a starting point of their query pro-
cess, clients can decide to use substring search during query execution. Should
this not be supported, clients can decide to fall back to other features supported
by the server, such as possibly tpf.

In order to explain the exact type of support for substring matching as
implemented by the server, subproperties of hydra:freetextQuery might be
defined, such as ex:substringQuery or ex:caseInsensitiveSubstringQuery.
This then requires the client to understand such extensions; therefore, it might
be beneficial to always additionally list the base property hydra:freetextQuery
so that more generic clients can still interpret the hypermedia controls and thus
use the interface. Note that due to this self-descriptive mechanism, no hard-
coded contract between clients and servers is necessary, and conventions (such
as ?substring=) need not be standardized but can transparently vary between
servers. Implementers can consult the ldf substring feature specification2 for
a detailed explanation on how to optimally describe the interface.

4.2 Elasticsearch

Elasticsearch is a search server based on the text indexing engine Lucene [12]. It
provides a full-text search engine with an http interface and schema-free json
documents. The fact that it has a Web interface out-of-the-box and is particularly
designed for use in such scenarios, made it an obvious choice as a back-end.
Elasticsearch being a versatile search solution and inheriting Lucene’s extensive
capabilities, it is not trivial to tweak its configuration. It is very strict about
data types and forces developers to think from the beginning about how text
queries will be performed against the underlying data.

The use case mentioned in this paper—searching for arbitrary-length exact
substrings in texts of varying sizes—is not provided by ElasticSearch by default.
For example, when searching for the actor name “Will Smith”, ElasticSearch’
standard tokenizer would match sentences such as “Will Mr. and Ms. Smith be
an awesome movie?”, even though this is not an exact substring match and thus
not a desired result in our use case.

Therefore, it is necessary to force ElasticSearch’ analyzer to keyword-tokenize
each text literal and apply an n-gram analyzer to each of them. The result is a
huge index file, about the size of the original dataset. Furthermore, generic n-
gram matching is very costly: instead of query times in the order of milliseconds,
query times were in the order of dozens of seconds. Configuring ElasticSearch to
work with only prefixes using edge-n-grams, effectively dropping certain results,
mitigated the issue of extremely long query processing times. One could argue
that most users would input prefix queries and expect a text search engine to

2 http://www.hydra-cg.com/spec/latest/linked-data-fragments/substring-search/

http://example.org/mydataset/
http://example.org/mydataset?substring=
http://example.org/mydataset?substring=
http://www.hydra-cg.com/spec/latest/linked-data-fragments/substring-search/
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behave in that way. Whatever the assumption might be, for use in a query
scenario as explained before, results need to be exact and complete.

In ElasticSearch, important choices have to be made to optimize query time,
index size, the number of desired matches, and the nature of the returned
matches given the text search query and the use case. This makes choosing
it for a generic use case where the end-user or application can not be reckoned
with at least more debatable than initially expected. The evaluation in Section 6
shines some light on this aspect.

4.3 Case-Insensitive FM-Index

hdt already included support for substring search by using an fm-index. One
simply has to edit the config file to make sure the correct type of dictionary is
used when generating the hdt file. The problem here was that default fm-index
only supports case-sensitive substring search, while we wanted case-insensitive
searching as well. We will start by briefly explaining the existing algorithms,
followed by our changes to fm-index to make it case-insensitive.

Burrows-Wheeler Transform. As mentioned in Section 2.2, bwt is a tech-
nique developed to transform a string in such a way that identical characters
appear next to each other more often after transformation, while still allowing for
a reverse transformation to the original string [4]. Strings that have sequences
of identical characters are a lot easier to compress when using methods like
move-to-front transform and run-length encoding.

The bwt creates n permutations of a string with length n by cyclically
shifting the characters in the string. These strings are sorted and placed in a
matrix, with each row corresponding to one of the permuted strings. The first
column then corresponds to a sorted list of all characters in the original string.
Since it is impossible to generate the original string from this list, the bwt
actually stores the last column of the matrix, assuming certain characters are
more likely to precede certain other characters, causing the bwt result to have
multiple identical characters next to each other. From this string it actually is
possible to go back to the original.

FM-Index. An fm-index adds metadata to a bwt-transformed string so that it
can be used for full-text search without actually reverting back to the original
string. The extra metadata consists of two parts: an array C containing for each
character the amount of characters that precede it in the sorted string, and a
matrix Occ containing for every character c and every position i how many
times c occurs up to position i in the bwt string. Note that this metadata can
be calculated at runtime and does not need to be stored with the bwt string.

Using these additional elements it is possible to count the number of times
a pattern occurs in O(p) time with p being the length of the pattern. Actually
locating the pattern matches in the string takes O(p+ occ logε u) with occ being
the number of occurrences and u the length of the string.
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FM-Index as a Dictionary. As mentioned before, it is possible to generate
hdt files that use an fm-index to store the literal objects. Brisaboa et al. [2]
describe an adaptation of fm-index to store a list of n strings instead of a single
string, by concatenating all strings and separating them with n+1 occurrences of
a separator character s1 (corresponding to the ascii value 1). Since the bwt sorts
all the prefix strings, the first n+1 characters will be s1, with the first one being
the last s1 of the concatenation and the remaining occurrences of s1 sorted based
on the strings they precede, which is the same order of the concatenated strings
if these are sorted in advance. hdt uses the positions of each s1 to internally
assign ids to the object literals, meaning that id 1 corresponds to string 1 after
sorting the strings.

When converting a part of a bwt string to an original string, it is only possi-
ble to do this backwards since for every character we only know which character
precedes it. Since the ids correspond to the position of the first character of a
string, going backwards would give us the wrong result. As the strings are sorted
in the same order as the ids, simply starting at position id + 1 will give us the
result for a given id.

Case-Insensitive BWT. Sadakane [21] introduces a way to use case-insensitive
searching in a bwt string by changing the algorithm in such a way that lower-
and upper-case characters are interpreted as identical. Once the suffix substrings
have been sorted, substrings starting with the same character will be next to
each other, even if the character has a different casing. This method can even be
extended to treat all kinds of symbols as identical, such as accented characters.

Case-Insensitive FM-Index. Some changes are needed to adapt a case-
insensitive bwt for an fm-index. After concatenating the (case-insensitively)
sorted strings, we replace the last s1 with s255 instead to make sure that if the
last two strings are identical (when ignoring casing) they remain in the same
order after generating the bwt string. Previously this was not a problem since
it was impossible to have identical strings in the concatenation, but now, if we
did not append this character, the ordering of their ids would be reversed.

Some changes also had to be made to the lookup algorithm to take the
different casings into account. The values in the C table are also combined:
C ( A ) = C ( a ), which now corresponds to the number of characters preceding
the A and a characters. Similarly, the Occ matrix values were also merged to
count the number of occurrences of A and a characters.

Since we do not actually change the casing of the strings, no information is
lost and all objects can still be obtained from the triple store. We do need to
introduce an extra step to still support case-sensitive searching by effectively
verifying if the resulting strings match the case of the pattern.



138 J. Van Herwegen et al.

5 Client-Side Query Algorithm

To make use of the substring functionality of the tpf server we updated the
query execution algorithm as described by Verborgh et al. [25]. This is a greedy
algorithm focusing on bgp queries and evaluating all other query constructs
(filters, unions, etc.) after the bgp parts are resolved. Since evaluating FILTERs
on the server is only advantageous if these are executed before the corresponding
bgps, it was necessary to change this ordering.

To make use of this new feature to solve sparql queries, we adapted how
the client handles regular expression filters. Regular expression filters obviously
support much more than simple string matching, so we first check if the query
we want to execute contains an expression that can be translated into a pattern
matching problem. If the query contains such a filter, we evaluate whether it
would be efficient to solve that filter before the bgp parts are executed. The
standard greedy algorithm starts by finding the triple pattern with the lowest
number of results, then binding these results to the next smallest pattern and
so on until all results are bound. For our implementation, we also check if one
of the substring expressions has at least 100 times less results than the smallest
pattern (100 being the page size). This is still a greedy implementation, albeit
one that takes advantage of the server-side substring feature.

6 Evaluation

6.1 Experimental Setup

We compare multiple situations to evaluate the impact of the substring feature.
We want measure how the performance changed on both client and server on
substring queries, we want to make sure we did not hurt the performance on non-
substring queries, and we also want to compare the fm-index implementation
against adding an external index such as Elasticsearch.

We executed both client and server on the same machine (Intel Core i5-
3230M cpu at 2.60ghz with 8gb of ram) while the Elasticsearch index was
located on a different server (12 Intel Xeon E5-2640 cpu cores at 2.50ghz with
hyperthreading, 64gb of ram) in the same network with a ping time of < 1ms
with the DBpedia2014 dataset without abstracts3. The Elasticsearch index is
on a different server due to the extra memory requirements for the index. All
results can be found online4 as well as the server5 and client6 code.

We performed the following tests:
1. With both Elasticsearch and fm-index, request all objects containing a spe-

cific keyword through the tpf interface, meaning these have to be requested
one page at a time. The keywords are sampled from the list created by Freitas
et al.[11] in such a way that their number of results are spread out.

3 http://wiki.dbpedia.org/Downloads2014
4 http://github.com/LinkedDataFragments/TPF-Substring-Results/
5 http://github.com/LinkedDataFragments/Server.js/tree/feature-substring-search
6 http://github.com/LinkedDataFragments/Client.js/tree/substring

http://wiki.dbpedia.org/Downloads2014
http://github.com/LinkedDataFragments/TPF-Substring-Results/
http://github.com/LinkedDataFragments/Server.js/tree/feature-substring-search
http://github.com/LinkedDataFragments/Client.js/tree/substring
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SELECT ?person ?city WHERE {

?club a dbpedia-owl:SoccerClub;

dbpedia-owl:ground ?city.

?player dbpedia-owl:team ?club;

dbpedia-owl:birthPlace ?city.

?city dbpedia-owl:country dbpedia:Spain.

}

Listing 3. sparql query: Spanish soccer players

2. Evaluate the query in Listing 1 against a regular tpf server and a tpf server
with a substring feature using an fm-index. We used the actor “Johnny
Depp”, who has many substring matches, to have more robust results.

3. Perform a query not containing any substring requirements on both the
original as the fm-indexed version of tpf. For this we used the query in
Listing 3.

6.2 Results

Elasticsearch and FM-Index. The results of the keyword test can be seen in
full in Table 1 and visualized in Figure 1. The differences in results are due to
the fact that our Elasticsearch configuration uses prefix matching. We did not
configure the Elasticsearch index for full substring search since it performs a
lot worse there, both in lookup speed and index size. It is clear that fm-index
performs really well here, scaling linearly with the amount matches because an
increase in matches also results in an increase in pages that need to be requested
from the server.
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Fig. 1. Number of matches and query time for the keywords in Table 1.
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Table 1. fm-index and Elasticsearch comparison.

FM-index Elasticsearch
keyword # matches time (ms) # matches time (ms)

laptop 1,280 1,552 1,089 4,536
tools 6,795 6,900 5,679 24,758
photography 7,030 6,802 5,903 23,209
landing 10,211 8,302 8,735 35,863
computer 53,316 47,817 39,052 113,262
politician 139,952 100,052 103,159 176,938
sun 154,439 111,451 129,868 220,656
car 965,159 785,423 627,020 1,225,449

Table 2. Original implementation and fm-index comparison. cpu and memory strictly
refer to the server process.

“Johnny Depp” Spanish soccer
original FM-index original FM-index

http calls 304,154 174 91,658 91,694
time (ms) 1,189,706 1,352 329,287 319,065

average cpu (%) 58.98 40.67 42.34 45.12
average ram (mb) 3,664 3,563 440 3,290

Original Implementation and FM-Index. The results of the two implemen-
tations are found in Table 2 for both the query where having substring search is
an advantage and the query where it has no influence at all. The results for the
“Johnny Depp” query speak for themselves: where the original implementation
needs to iterate over all the actors, the fm-index can first find the correct actor
and iterate over his movies, having more than 100 times fewer http calls.

The results of the second query are also positive: although more memory is
required to store the fm-index during execution, there is no loss in performance,
both implementations have the same results.

Data Size. Besides those evaluations there is also a difference in storage
required: the original hdt file is 6.4gb while the updated hdt file with fm-index
is 8.2gb in size. The Elasticsearch index for the original hdt file is 52.7gb. fm-
index obviously has a big advantage here due to the fact that it is embedded in
the data itself while Elasticsearch has to duplicate the data.

7 Conclusions

In this paper we discuss how the Triple Pattern Fragments interface can be
extended by adding a substring pattern matching feature to the server, either by
an internal fm-index or external Elasticsearch index. We extended the fm-index
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implementation of hdt to also support case-insensitive searches and updated
the tpf server interface to make use of this functionality.

Our evaluations show that the new interface greatly increases the perfor-
mance for certain queries (validating Hypothesis 1) without harming unrelated
query results (validating Hypothesis 2). Also, the server can execute these sub-
string queries quite fast (validating Hypothesis 3). The fm-index also performed
better than the external Elasticsearch index, but since the functionality of both
systems is not identical—because of the extra features in Elasticsearch—this can
not be used to conclude that one is strictly better than the other.

The type of sparql queries that benefit from the substring interface are
obviously those with a text-centric component. One possible application are
auto-completion widgets, in which terms are suggested to an end user based on
preliminary text input. Other applications include so-called reconciliation tasks,
in which Linked Data identifiers are sought for a large corpus of text strings [23].
Such tasks currently rely on public sparql endpoints, on which they need to
launch relatively costly queries, yet they can be implemented with the substring
interface feature at lower cost and thus improved reliability.

In the future we would like to improve these results by using the femto
system described in Section 2.2 to also allow regular expressions besides simple
pattern matching. It would also be interesting to see what the effect would be
when the updated interface was used in the improved query algorithm described
by Van Herwegen et al.[22] to further enhance query results. Besides partially
replacing regular expression filters, we would also like to use the fm-index to
support other filters, such as date ranges by finding all literals that match a
specific date template. This would follow the tpf principle of solving complex
problems by using simple building blocks.

Another interesting direction to explore is the combination of the substring
interface feature with other interfaces than tpf. As we explained in Section 4,
clients can dynamically discover support for substring matching, analogous to
how they can dynamically discover support for tpf. Suppose a dataset is offered
through a sparql interface, then the tpf interface can still be helpful. After
all, support for substring search in sparql engines is not always available
with high performance (even though derived features, such as prefix search or
bif:contains might be supported). Therefore, sparql queries that rely on text
filters might be evaluated by decomposing them on the client side into a sub-
string search (evaluated on the substring interface) and a regular sparql query
(evaluated on the sparql endpoint) in which the filter has been replaced by
a list of matching substring values. An alternative is that the sparql endpoint
is configured as a client of the substring interface; i.e., that it has access to this
interface to evaluate complex text filters.
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Figueroa, M.C.: Compressing semantic metadata for efficient multimedia retrieval.
In: Bielza, C., Salmerón, A., Alonso-Betanzos, A., Hidalgo, J.I., Mart́ınez, L.,
Troncoso, A., Corchado, E., Corchado, J.M. (eds.) CAEPIA 2013. LNCS, vol. 8109,
pp. 12–21. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-642-40643-0 2

2. Brisaboa, N.R., Cánovas, R., Claude, F., Mart́ınez-Prieto, M.A., Navarro, G.: Com-
pressed string dictionaries. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011.
LNCS, vol. 6630, pp. 136–147. Springer, Heidelberg (2011)

3. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.: sparql web-
querying infrastructure: ready for action? In: Proceedings of the 12th International
Semantic Web Conference, November 2013. http://link.springer.com/chapter/10.
1007/978-3-642-41338-4 18

4. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Tech. Rep. SRC-RR-124, Digital Equipment Corporation (1994)

5. Erling, O., Mikhailov, I.: RDF support in the virtuoso DBMS. In: Pellegrini, T.,
Auer, S., Tochtermann, K., Schaffert, S. (eds.) Networked Knowledge - Networked
Media. SCI, vol. 221, pp. 7–24. Springer, Heidelberg (2009)

6. Ermilov, I., Martin, M., Lehmann, J., Auer, S.: Linked open data statistics: collec-
tion and exploitation. In: Klinov, P., Mouromtsev, D. (eds.) KESW 2013. CCIS,
vol. 394, pp. 242–249. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-642-41360-5 19

7. Feigenbaum, L., Williams, G.T., Clark, K.G., Torres, E.: sparql 1.1 protocol.
Recommendation, World Wide Web Consortium, March 2013. http://www.w3.
org/TR/sparql11-protocol/

8. Ferguson, M.P.: FEMTO: fast search of large sequence collections. In:
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