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Preface

Since its inception in the last decade, the Semantic Web has experienced a steady and
continuous development toward its original vision, both in terms of research and of
technology development and applications. Many of the research results presented in the
initial conferences have now matured and been taken up in commercial settings, giving
rise to new research problems that are now being explored. Large-scale initiatives, such
as some of the most popular datasets in the linked open data cloud, are now considered
as commodities and are part of many services that are being used on a daily basis, not
only inside our research community but also in other research areas.

The International Semantic Web Conference (ISWC) has continued to be the pre-
mier venue for presenting innovative systems, applications, and research results related
to the Semantic Web. In this edition, we aimed at making it even more clear that the
Semantic Web is not only about using the well-known W3C recommendations RDF,
RDF Schema, and/or OWL, and dealing with their associated challenges, but generally
about the combination of semantics, data, and the Web.

This volume contains the proceedings of ISWC 2015, with papers accepted into the
various tracks for which specific calls for papers had been issued. Besides the usual
research track, this year we split the Replication, Benchmark, Data and Software track
and the Semantic Web In-Use track from previous editions into three more specialized
tracks, covering: Empirical Studies and Experiments, In-Use and Software, and Data
Sets and Ontologies.

We received a very good response to all our calls from a truly international com-
munity of researchers and practitioners. The statistics on the submissions and accepted
papers were:

– Research track: 172 papers submitted, with 38 of them accepted
– Empirical Studies and Experiments track: 23 papers submitted, with seven of them

accepted
– In-Use and Software track: 33 papers submitted, with 14 of them accepted
– Data Sets and Ontologies track: 35 papers submitted, with eight of them accepted

All submitted papers were reviewed by at least three Program Committee (PC)
members. In the case of the research track, the review process for each paper was also
overviewed by a senior PC member, whose job was to drive discussions among
reviewers when their points of view diverged, to make sure that clear questions were
sent to the authors so as to give them the opportunity to reply to reviewers during the
rebuttal period, and to provide a final meta-review with a summary of the strongest and
weakest aspects of each of the papers. Finally, the acceptance and rejection of papers
were decided via phone conferences between PC chairs and senior PC members that
lasted two consecutive days.

This year’s edition also had two additional innovations. On the one hand, we
encouraged authors to include pointers to any additional material that supports the



scientific claims made in their papers (e.g., extended technical reports, source code,
datasets, links to applications). This proposal was received well among authors, who
made an extra effort to make such additional material available for reviewers first, and
if their paper was accepted, to make it available together with their camera-ready
version of the paper. Such additional material has been uploaded into a variety of
systems, including figshare, zenodo and institutional repositories of universities and
research centers.

The second request introduced by PC chairs was the suggestion to reviewers to sign
their reviews if they wished, following recent trends on open reviewing, so as to pave
the way for having a more transparent review process for our conference. The number
of signed reviews was still very low, which suggests that there is a need to continue
discussions on whether this open review model is applicable for a conference like
ISWC or should be left to journals, which have a longer review process.

ISWC 2015 also included a Doctoral Consortium track for PhD students from the
Semantic Web community, giving them the opportunity not only to present their work
but also to discuss in detail their research topics and plans and to receive extensive
feedback from leading scientists in the field. The Doctoral Consortium was very effi-
ciently run by Fabio Ciravegna and María-Esther Vidal.

Another unique aspect of the International Semantic Web Conferences is the
Semantic Web Challenge. In this competition, practitioners and scientists are encour-
aged to showcase useful and leading-edge applications of Semantic Web technology.
This year the Semantic Web Challenge was organized by Sean Bechhofer and Kostis
Kyzirakos. It consisted of two main tracks, the Open track, focused on end-user
applications, and the Big Data track, which follows on the success of the Billion Triple
Data track from previous editions.

The ISWC program was further enriched by keynote talks given by leading figures
from both the academic and business world. Specifically, Michael Atkin, Andrew
McCallum, and Ian Horrocks.

As in previous ISWC editions, the conference program also included an extensive
Tutorial and Workshop Program, with eight tutorials and 24 workshops, which were
co-ordinated by Miriam Fernández and Krzysztof Janowicz.

We would like to thank Jeff Z. Pan and Serena Villata for chairing an excellent
Poster and Demo Session, and Vinay Chaudhri and Tony Shaw for co-ordinating the
Industry Track, a forum for the latest discussions and demonstrations of semantic
applications in the commercial world. The Industry Track serves as a complement to
the In-Use and Software Track and shows just how far semantics are expanding
through the enterprise.

The conference also included a Lightning Talk session, where ISWC attendees
could at very short notice get five minutes of attention from the audience, to report on
anything they have done, plan to do, like or dislike about the Semantic Web.

We are also much indebted to Krishnaprasad Thirunarayan, our proceedings chair,
who provided invaluable support in compiling the printed proceedings and exhibited
super-human patience in allowing the other chairs to stretch deadlines to the absolute
limit. Many thanks also to Matthew Horridge and Nadeschda Nikitina, our student
coordinators, and to Juan Sequeda, our publicity chair.
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As has been the case for the past few years, ISWC 2015 also contributed to the
linked data cloud, by providing semantically characterized data on aspects of the
conference. This would not have been possible without the efforts of our metadata
chair, Heiko Paulheim.

We would like to give a special thank you to the local organization chair, Jeff Heflin
and his team, who did a brilliant job in taking care of the local arrangements and
ensuring that anything the Organizing Committee needed was promptly made avail-
able. We would also like to thank the generous contribution from our sponsors and the
fine work of the sponsorship chairs, Michelle Cheatham and Carlos Pedrinaci. Finally,
we are indebted to Andrei Voronkov and his team for providing the sophisticated and
convenient service of EasyChair and to Alfred Hofmann, Anna Kramer, and their team
at Springer for being most helpful with publishing the proceedings.

October 2015 Marcelo Arenas
Oscar Corcho
Elena Simperl

Markus Strohmaier
Mathieu d’Aquin
Kavitha Srinivas

Michel Dumontier
Paul Groth
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Abstract. The original SPARQL proposal was often criticized for its
inability to navigate through the structure of RDF documents. For this
reason property paths were introduced in SPARQL 1.1, but up to date
there are no theoretical studies examining how their addition to the lan-
guage affects main computational tasks such as query evaluation, query
containment, and query subsumption. In this paper we tackle all of these
problems and show that although the addition of property paths has no
impact on query evaluation, they do make the containment and sub-
sumption problems substantially more difficult.

1 Introduction

Following the initial proposal for the SPARQL 1.0 query language [22] a lot of
work has been done by the theory community to study its basic properties. A
seminal paper by Pérez et al. [16] gave us a clean theoretical foundation for the
study of the language, and by now we understand very well the complexity of
query evaluation [12,17], as well as the issues related to basic static analysis
tasks such as containment and equivalence [12,20,21].

However, with the growth of RDF data available on the Web, also came the
need for features not present in the original proposal. One such feature should
allow to navigate though RDF documents and discover how different resourses are
connected. This becomes apparent when considering applications such as linked
data where the local topology of the document often does not provide sufficient
information, and long chains have to be followed to obtain the desired answer. For
this reason the W3C included property paths in the specification of SPARQL 1.1
[10], an extension of the original language with several important features.

Intuitively, a property path searches through the RDF graph for a sequence
of IRIs that form a path conforming to an regular expression. For example,
to infer that one property is a subclass of another we could ask a query
(?x, subclass∗, ?y) and check if our pair is in the answer. Here the property
path is given by the regular expression subclass∗, which specifies that we can
traverse an arbitrary number of subclass property links in order to reach ?y
from ?x.
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 3–18, 2015.
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Although some work has been done on SPARQL with different forms of nav-
igation [1–3,8,9,14,18,24], little is known about the language that has property
paths as specified in the latest standard [10]. Therefore, our goal is to study
theoretical aspects of SPARQL with this functionality. In particular, in this
paper we focus on the fundamental problems of query evaluation, containment,
and subsumption. The first one is key for understanding the properties of any
query language, while the other two are of fundamental importance in query
optimization, ontological reasoning, and managing incomplete information.

So far, these problems have been studied for fragments of SPARQL that allow
only basic operators such as AND, UNION, SELECT, and OPTIONAL (abbrevi-
ated as OPT in this paper) [9,12,20]. It is therefore interesting to see how prop-
erty paths mix with the previous results on core SPARQL. A natural approach
here would be to use techniques from the field of graph databases. After all, RDF
triples closely resemble edges in a labelled graph, and property paths are simi-
lar to regular path queries [5]. However, we will show that this cannot be done
directly, as not only RDF data model is richer than usual graphs [13], but also
the SPARQL 1.1 standard allows for negation in property paths, which is known
to make things more difficult [11,15]. Another challenge is the presence of the
OPT operator (which is not usually included in graph database query languages)
and the way it interacts with property paths. We will show that techniques for
SPARQL without property paths [12,20] cannot be straightforwardly adapted
to deal with the general language. To this end, we develop new techniques that
merge the approaches of [5,20] and use them to obtain matching complexity
bounds for the considered problems.

We begin in Section 3 with a formalisation of property paths according to the
latest specification [10]. We also pinpoint the differences between the resulting
language and known formalisms, and discuss the difficulties they impose on pos-
sible adaptations of known techniques for solving the considered problems. Then,
in Section 4, we study evaluation, containment, and subsumption for SPARQL
with property paths that do not allow for optional matching. In particular, using
techniques from automata theory we show that in this case property paths do
not increase the complexity of evaluation, but have a significant effect on con-
tainment and subsumption. Finally, in Section 5 we study the full language, with
both property paths and optional matching. Blending standard SPARQL and
graph databases techniques we can show that adding OPT usually makes evalu-
ation more difficult, but almost always leaves the complexity of the optimisation
problems intact.

2 Preliminaries

RDF Graphs. Let I, L, and B be countably infinite disjoint sets of IRIs,
literals, and blank nodes, respectively. The set of RDF terms T is I ∪ L ∪ B.
An RDF triple is a triple (s, p, o) from T × I × T, where s is called subject, p
predicate, and o object. An (RDF) graph is a finite set of RDF triples.
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SPARQL Syntax. SPARQL is the standard pattern-matching language for
querying RDF graphs. In what follows we build on the formalisation of the lan-
guage proposed in [17]; in particular, we consider two-placed OPT and adopt set
semantics of queries, leaving three-placed optional and the multiplicities of the
answers as defined in the standard for future work. For now we also concentrate
on the core fragment and introduce property paths in a separate section.

Formally, let V be an infinite set {?x, ?y, . . .} of variables, disjoint from T.
SPARQL (graph) patterns are defined recursively as follows:
1. a triple in (I∪L∪V)× (I∪V)× (I∪L∪V) is a pattern, called triple pattern;
2. if P1 and P2 are patterns, then P1 ANDP2, P1 OPTP2, and P1 UNIONP2 are

patterns, called AND-, OPT-, and UNION-patterns, respectively.
The set of all variables appearing in a pattern P is denoted by var(P ).

In this paper we do not consider FILTER operator, leaving it for future work.
It is also known that arbitrary graph patterns (even without FILTER) may have
counter-intuitive behaviour and bad computational properties [17]. That is why
we concentrate on a restricted class of graph patterns, which is widely used,
has expected behaviour and better computational properties [17,20]—namely,
well designed patterns [17,19]. Formally, a graph pattern P is well designed if it
is UNION-free and each of its OPT-subpatterns P1 OPT P2 is such that all the
variables in var(P2) appearing in P outside this subpattern are also in var(P1).

The class of well designed patterns, denoted AO-SPARQL, is the main class
for this paper. However, we also consider its restrictions and extensions. In par-
ticular, the subclass of AO-SPARQL that allows only for AND-subpatterns
is denoted A-SPARQL. It corresponds to conjunctive queries without non-
distinguished (existential) variables. These classes extend with UNION operator
on the top level to AOU -SPARQL and AU-SPARQL: for example, the patterns
in the former have the form P1 UNION . . . UNION P� where all the Pi are in
AO-SPARQL.

Finally, we also consider the SELECT operator which acts as a result modifier
of a graph pattern. In particular, SELECT queries are expressions of the form

SELECTX WHERE P,

with P a graph pattern and distinguished (projection) variables X a subset of
var(P ). A class of SELECT queries with patterns from a class introduced above
is denoted by adding S to the prefix; for example, AOS-SPARQL stands for
SELECT queries with well designed patterns. Note that patterns can be seen as
queries with all the variables distinguished, so we use “query” as a general term.

SPARQL Semantics. The semantics of graph patterns is defined in terms
of mappings, that is, partial functions from variables V to RDF terms T. The
domain dom(μ) of a mapping μ is the set of variables on which μ is defined. Two
mappings μ1 and μ2 are compatible (written as μ1 ∼ μ2) if μ1(?x) = μ2(?x)
for all variables ?x that are in both dom(μ1) and dom(μ2). If μ1 ∼ μ2, then
μ1 ∪ μ2 denotes the mapping obtained by extending μ1 according to μ2 on all
the variables in dom(μ2) \ dom(μ1).
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Given two sets of mappings M1 and M2, the join, union, and difference of
M1 and M2 are defined respectively as follows:

M1 � M2 = {μ1 ∪ μ2 | μ1 ∈ M1, μ2 ∈ M2, and μ1 ∼ μ2},
M1 ∪ M2 = {μ | μ ∈ M1 or μ ∈ M2},
M1 \ M2 = {μ1 | μ1 ∈ M1 and there is no μ2 ∈ M2 such that μ1 ∼ μ2}.

Based on this, the left outer join of M1 and M2 is defined as

M1 � M2 = (M1 � M2) ∪ (M1 \ M2).

For a triple pattern P and a mapping μ we write μ(P ) for the triple obtained
from P by replacing each variable ?x ∈ dom(μ) by μ(?x). The evaluation �P �G

of a graph pattern P over a graph G is defined as follows:

1. if P is a triple pattern, then �P �G = {μ : var(P ) → T | μ(P ) ∈ G},
2. if P = P1 AND P2, then �P �G = �P1�G � �P2�G,
3. if P = P1 OPT P2, then �P �G = �P1�G � �P2�G,
4. if P = P1 UNION P2, then �P �G = �P1�G ∪ �P2�G.

Finally, the evaluation �Q�G of a query Q of the form SELECTX WHERE P is
the set of all projections μ|X of mappings μ from �P �G to X, where the projection
of μ to X is the mapping that coincides with μ on X and undefined elsewhere.

3 Property Paths in SPARQL

Property paths are a new feature introduced in SPARQL 1.1 [10] to allow for
navigational querying over RDF graphs. Intuitively, a property path views an
RDF document as a labelled graph where the predicate IRI in each triple acts
as an edge label. It then extracts each pair of nodes connected by a path such
that the word formed by the edge labels along this path belongs to the lan-
guage of the expression specifying the property path. Property paths resemble
regular path queries studied in graph databases [4], but these formalisms have
important differences both in syntax and semantics. In this section we define the
new SPARQL operator according to the specification and compare the resulting
extension with known query languages.

3.1 Property Path Expressions

We start with the definition of property path expressions, following the
SPARQL 1.1 specification [10]. We use adopted syntax in spirit of graph database
languages, but note that the standard sometimes uses different symbols for oper-
ators; for example, inverse paths e− and alternative paths e1 + e2 from our
definition are denoted there by ˆe and e1 | e2, respectively.

Definition 1. Property path expressions are defined by the grammar

e := a | e− | e1 · e2 | e1 + e2 | e+ | e∗ | e? | !{a1, . . . , ak} | !{a−
1 , . . . , a−

k },

where a, a1, . . . , ak are IRIs in I. Expressions of the last two forms (i.e., starting
with !) are called negated property sets.
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Fig. 1. Example RDF graph G

When dealing with singleton negated property sets brackets may be omit-
ted: for example, !a is a shortcut for !{a}. Besides the forms in Definition 1 the
SPARQL 1.1 specification includes a third version of the negated property sets
!{a1, . . . , ak, b−

1 , . . . , b−
� }, which allows for negating both normal and inverted

IRIs at the same time. We however do not include this extra form in our formal-
isation, since it is equivalent to the expression !{a1, . . . , ak} + !{b−

1 , . . . , b−
� }.

The set of all property path expressions is denoted by PP. Their normative
semantics is given in the following definition.

Definition 2. The evaluation �e�G of a property path expression e over an RDF
graph G is a set of pairs of RDF terms from T defined as follows:

�a�G = {(s, o) | (s, a, o) ∈ G},
�e−�G = {(s, o) | (o, s) ∈ �e�G},

�e1 · e2�G = �e1�G ◦ �e2�G,
�e1 + e2�G = �e1�G ∪ �e2�G,

�e+�G =
⋃

i≥1�e
i�G,

�e∗�G = �e+�G ∪ {(a, a) | a is a term in G},
�e?�G = �e�G ∪ {(a, a) | a is a term in G},

�!{a1, . . . , ak}�G = {(s, o) | ∃a with (s, a, o) ∈ G and a /∈ {a1, . . . , ak}},
�!{a−

1 , . . . , a−
k }�G = {(s, o) | (o, s) ∈ �!{a1, . . . , ak}�G},

where ◦ is the usual composition of binary relations, and ei is the concatenation
e · . . . · e of i copies of e.

Intuitively, two IRIs are connected by a negated property set if they are
subject and object of a triple in the graph whose predicate is not mentioned
in the set under negation. Note that, according to Definition 2, the expression
!{a−

1 , . . . , a−
k } retrieves the inverse of !{a1, . . . , ak}, and thus it respects the direc-

tion: a negated inverted IRI returns all pairs of nodes connected by some other
inverted IRI. To exemplify, consider the RDF graph G from Figure 1. We have
that �!a�G = {(y, x), (y, z), (v, w)} as we can find a forward looking predicate
different from a for any of these pairs. Note that there is an a-labelled edge
between v and w, but since there is also a b-labelled one, the pair (v, w) is in
the answer. On the other hand, �!a−�G = {(x, y), (z, y), (w, v)}, because we can
traverse a backward looking predicate (either b− or c−) between these pairs.

Note that !{a1, . . . , ak} is not equivalent to !a1+. . . + !ak. To see this consider
again the graph G from Figure 1. We have �!a�G = {(y, x), (y, z), (v, w)} and
�!b�G = {(x, y), (y, z), (y, v), (v, w)}, while �!{a, b}�G = {(y, z)}.
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Property path expressions resemble navigational query languages for graph
databases. Indeed, syntactically, property paths without negated property sets
are nothing more than the well studied 2-way regular path queries (2RPQs) [5],
the default core navigational language for graph databases, with the only minor
exception that the empty 2RPQ ε is not expressible as a property path expres-
sion (see [4] for a good survey on graph database query languages). However,
negated property sets are a unique feature which has not been properly stud-
ied before in the SPARQL literature, as far as we are aware (safe [24], where
nSPARQL¬ language is introduced, which provides much more expressive navi-
gational facilities than property paths, but no evaluation or optimisation bounds
are given, and [1,2], where PSPARQL is studied, whose navigational operator
is incomparable with property paths). Note that if we were working with graph
databases, where predicates come from a finite alphabet Σ, then one could eas-
ily replace !a with a disjunction of all other symbols in Σ. But since we are
dealing with RDF graphs, which have predicates from the infinite set of IRIs I,
we cannot treat this feature in such a naive way. Nevertheless, we can still show
that deciding whether a pair of IRIs belongs to the evaluation of a property
path expression e over an RDF graph G is as easy as computing the answers of
2RPQs—the problem is in low polynomial time. The idea of the algorithm is in
the same spirit as the ideas of standard algorithms for evaluation of 2RPQs [4,7]
and their extensions [1,2,18]: we construct from G and e two nondeterministic
finite automata Ae and AG of special type that can account for negated property
sets, and then check that the cross product of these two automata is nonempty.

Proposition 1. For every property path e and RDF graph G the problem of
deciding whether a pair (a, b) of terms belongs to �e�G can be solved in time
O(|G| · |e|).

3.2 Queries with Property Paths

SPARQL 1.1 incorporates property path expressions on the atomic level by
means of triples with RDF terms or variables on the subject and object positions,
but property path expressions on the predicate position. Formally, we have the
following definition.

Definition 3. A property path pattern is a triple in (I∪L∪V)×PP×(I∪L∪V).

Note, however, that property path patterns are incomparable with triple
patterns, because they allow for property path expressions in predicate positions,
but forbid variables in these positions. We use the notion of atomic patterns as
a general term for triple and property path patterns.

The classes of queries introduced in Section 2 incorporate navigational func-
tionality by allowing arbitrary atomic patterns as graph patterns, along with
complex operator patterns. In our notation this is reflected by letter P in names
of the classes. For example AOUSP-SPARQL is the maximal language consid-
ered in this paper, which allows for AND, OPT, UNION, SELECT operators and



SPARQL with Property Paths 9

arbitrary atomic patterns. Remember, however, that all the patterns we con-
sider are (unions of) well designed patterns, assuming that for fragments with
property paths this notion stays exactly the same as in Section 2.

To complete the formalization of SPARQL with property paths we need to
define the semantics.

Definition 4. For a property path pattern P = (u, e, v) and an RDF graph G
the evaluation �P �G of P over G is the set of mappings

{μ : var(P ) → T | (μ(u), μ(v)) ∈ �e�G},

assuming that mappings μ extends to terms t from T as identity, that is, μ(t) = t.

Having this definition at hand, the semantics of graph patterns and queries
with property paths is exactly the same as in Section 2.

Since property paths resemble 2RPQs, SPARQL with property paths has a
lot in common with other graph database languages, such as conjunctive 2RPQs
(C2RPQs), which extend 2RPQs with conjunction and existential quantification,
and unions of C2RPQs (UC2RPQs), further extending 2RPQs with union on
the top level (see again [4]). However, there are some important differences.

First, SPARQL with property paths allows for both property path patterns
and triple patterns, which may have a variable in the middle position. This is
not possible in (U)C2RPQs.

Second, the UNION operator in SPARQL behaves differently from union in
classical databases and UC2RPQs. In particular, it is not null-rejecting, that
is, the patterns constituting a union may have different sets of variables, and,
hence, the mappings in the evaluation may have different domains, even if the
query is OPT-free.

The third and most important difference is the presence of optional matching
in SPARQL. This unique SPARQL feature requires complete rethinking of many
standard results in database theory, and, as we will see, results on property paths
are not an exception.

In the rest of the paper we study properties of the SPARQL classes with
property paths. It is convenient to start in the next section with classes without
OPT and then continue in Section 5 with the ones incorporating this operator.

4 Properties of Classes without Optional Matching

The fundamental properties of query languages considered in this paper are
complexity of query answering and optimisation problems, such as containment
and subsumption. We begin the study of these properties with OPT-free classes
of SPARQL with property paths.

4.1 Query Evaluation

We start with the most important fundamental problem for query languages—
query evaluation. According to [23], this problem is formalised for any class
X -SPARQL defined in the previous sections as follows.
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Evaluation(X -SPARQL)
Input: An RDF graph G, X -SPARQL query Q, and mapping μ.

Question: Does μ belong to �Q�G?

As discussed above, the class AUS-SPARQL without optional matching and
property paths is just the class of unions of conjunctive queries, for which the
evaluation problem is well known to be NP-complete. Without selection, that is,
without non-distinguished variables, it is in PTIME. Based upon Proposition 1,
we can show that adding property paths to OPT-free SPARQL does not affect the
complexity of query evaluation, same as adding 2RPQs to conjunctive queries.

Proposition 2. The following holds:
– Evaluation(X -SPARQL) is NP-complete for X ∈ {ASP,AUSP};
– Evaluation(AUP-SPARQL) is in PTIME.

4.2 Query Containment

In this section we consider query containment for OPT-free SPARQL with prop-
erty paths. This is one of the fundamental problems for static analysis of query
languages [23], which asks whether all the answers of one query are among
answers of another for any input RDF graph.

Formally, a query Q1 is contained in a query Q2, denoted by Q1 ⊆ Q2, if for
every RDF graph G we have �Q1�G ⊆ �Q2�G. Then, the corresponding decision
problem is defined as follows for classes of queries X1-SPARQL and X2-SPARQL.

Containment(X1-SPARQL,X2-SPARQL)
Input: Queries Q1 from X1-SPARQL and Q2 from X2-SPARQL.

Question: Is Q1 ⊆ Q2?

It is known that containment of 2RPQs and C2RPQs without projection is
PSPACE-complete [6], and EXPSPACE-complete if projection is allowed. Given
the resemblance of 2RPQs and property paths, it is natural to ask whether the
techniques of [6] and [5] can be reused in the context of SPARQL with property
paths. It turns out that, to some extend, this is indeed the case, but the nature
of triples in RDF graphs and the presence of negated property sets oblige us to
rework most of their definitions, including the key one—“canonical database”, in
order to adapt them to the SPARQL scenario. The following examples illustrate
the main challenges that arise and ideas how to overcome them.

Example 1. Consider ASP-SPARQL queries

Q1 = SELECT ?x, ?y, ?z WHERE (?x, !a, ?y) AND (?x, !a, ?z),
Q2 = SELECT ?x, ?y, ?z WHERE (?x, ?v, ?y) AND (?x, ?v, ?z).

One can easily check that Q1 is not contained in Q2. However, a counterexample
for this fact requires a graph in which images of ?x and ?y are connected by a
different property than those of ?x and ?z. It means that we cannot treat !a
just as a usual RDF term, but we need to allow each occurrence of a negated
property set to be witnessed by a fresh term.
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Example 2. Consider now ASP-SPARQL queries

Q3 = SELECT ?x, ?y WHERE (?x, ?v, ?y),
Q4 = SELECT ?x, ?y WHERE (?x, !a, ?y).

Again, Q3 is not contained in Q4. This time, however, counterexamples are
formed by triples of the form (b, a, c), for IRIs b and c. Thus, we cannot just
construct a canonical graph by freezing every variable in the query on the left of
the possible containment, because counterexamples may need to be formed by
mapping some of these variables to negated IRIs from the query on the right.

Taking into account these ideas, we can rework the machinery in [5] so that
the notion of canonical graphs is adapted to SPARQL queries with full property
paths, including the limited negation. Then, using automata techniques, we can
prove results similar to [5] for containment of OPT-free SPARQL with property
paths—it is EXPSPACE-complete in general and PSPACE-complete if the right-
hand side query is a pattern without projection.

Theorem 1. The following holds:
– Containment(X1-SPARQL,X2-SPARQL) is EXPSPACE-complete for X1 ∈

{AP, . . . ,AUSP} and X2 ∈ {ASP,AUSP};
– Containment(X1-SPARQL,X2-SPARQL) is PSPACE-complete for X1 ∈

{AP, . . . ,AUSP} and X2 ∈ {AP,AUP}.
To conclude, we note that in the first case the space used depends expo-

nentially only on the size of each of the union-free subpatterns and not on the
number of these subpatterns. This property is crucial for the results of Section 5.3
(in particular, Theorem 3).

4.3 Query Subsumption

Query containment is a way of specifying that one query is more general than
another, which is common across different query formalisms. However, the unique
SPARQL feature is the ability to return partial answers, and Pérez et al. argued
in [17] that it is more natural to compare SPARQL queries for subsumption,
that is, to check whether for any answer to one query there is a more elaborate
answer to the other one on any input RDF graph.

Formally, a mapping μ is subsumed by a mapping μ′, denoted by μ 	 μ′,
if dom(μ) is contained in dom(μ′) and μ ∼ μ′. A query Q1 is subsumed by a
query Q2 (written as Q1 	 Q2) if for every RDF graph G it holds that for each
μ1 ∈ �Q1�G there exists μ2 ∈ �Q2�G such that μ1 	 μ2. The corresponding
decision problem for classes of queries X1-SPARQL and X2-SPARQL is defined
as follows.

Subsumption(X1-SPARQL,X2-SPARQL)
Input: Queries Q1 from X1-SPARQL and Q2 from X2-SPARQL.

Question: Is Q1 	 Q2?
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Although the notion of subsumption becomes more natural when dealing
with the OPT operator, for completion we still study this problem for the case
of OPT-free SPARQL queries with property paths. We also find it interesting
that the complexity of subsumption ends up being higher than the complexity
of containment for some of the classes.

Before stating the results on subsumption, we give some intuition behind
them and compare subsumption with containment. For a query Q1 from ASP-
SPARQL to be subsumed by a query Q2 from the same class it is necessary that
the set of distinguished variables of Q1 is a subset of the distinguished variables
of Q2. Moreover, Q1 	 Q2 if and only if for every RDF graph G and mapping
μ1 in �Q1�G one can obtain μ1 from some μ2 in �Q2�G by projecting out the
distinguished variables of Q2 that are not distinguished in Q1. The first obvious
consequence of this observation is that in this case the subsumption problem
for ASP-SPARQL is not more difficult than the containment problem, because
Q1 	 Q2 if and only if Q1 is contained in SELECT X WHERE P2, with X the set
of output variables of Q1 and P2 the pattern of Q2. However, rather surprisingly,
the limited projection inherent to the subsumption problem is enough to make
the problem EXPSPACE-hard even for patterns from AP-SPARQL, which do
not have non distinguished variables.

Proposition 3. The problem Subsumption(X1-SPARQL,X2-SPARQL) is
EXPSPACE-complete for X1,X2 ∈ {AP, . . . ,AUSP}.

5 Properties of Classes with Optional Matching

In this section we consider query evaluation, containment, and subsumption for
SPARQL classes that allow for both the OPT operator and property paths.
In addition to the difficulties from the previous section, such as negated prop-
erty sets and non-null-rejecting union, we have to deal with mixture of optional
matching and property paths. To overcome these difficulties we develop non-
trivial compositions of the usual SPARQL and graph databases techniques, as
well as invent new ones.

5.1 Query Evaluation

Complexity bounds for query evaluation of SPARQL classes with (well designed)
optional matching that do not use property paths are by now well under-
stood [12,17]. In particular, the problem is coNP-complete for graph patterns,
that is, queries with all the variables distinguished, and jumps to Σp

2 if arbitrary
SELECT clauses are allowed. In this section we show that adding property paths
to the set of allowed operators preserves these bounds. To this end, we develop
a characterisation similar to the one in [12], by adapting the notions of OPT
normal form and pattern trees to work with property path patterns.

A graph pattern P is in OPT normal form if no OPT operators appear
in AND-subpatterns of P . It was shown in [17, Proposition4.11] that every well



SPARQL with Property Paths 13

designed graph pattern without property path patterns can be transformed to an
equivalent pattern in OPT normal form in polynomial time by means of a set of
rewriting rules that “push” AND inside OPT (recall that well designed patterns
have neither UNION nor SELECT clauses). It is straightforward to check that
these rules are correctly applicable to graph patterns that allow for property
paths, so in what follows we assume that all patterns are in OPT normal form
(in particular, AND-patterns are just AND combinations of atomic patterns).

Each graph pattern P in OPT normal form can be intuitively represented
as a pattern tree Tree(P ), that is, a rooted tree with nodes labelled by sets of
atomic (i.e., triple and property path) patterns which is recursively constructed
as follows:
– if P is an AND-pattern then Tree(P ) consists of a single node labelled with

the set of all atomic patterns in this AND-pattern;
– if P = P1 OPT P2 then Tree(P ) is obtained from Tree(P1) and Tree(P2) by

adding an edge form the root of the former to the root of the latter.
In other words, the labels of nodes in pattern trees correspond to conjunctions
of atomic patterns, while edges represent the structure of optional matching. For
a node n in a pattern tree, and(n) denotes the AND pattern consisting of the
atomic patterns in its label, and var(n) denotes the set of all variables in these
patterns; these notations propagate to sets of nodes and subtrees of pattern trees.
In fact, we are interested only in subtrees containing the root of the original tree,
so in what follows we assume this restriction without mentioning it explicitly. A
node in a pattern tree is a child of a subtree T if it is not in T but its parent is.

It is important to note that pattern trees are unordered, so different pat-
terns may have the same representation. However, we disregard this syntacti-
cal mismatch, because such patterns are always equivalent. This follows from
the fact that for well designed patterns ((P1 OPT P2) OPT P3) is equivalent to
((P1 OPT P3) OPT P2) (this was stated in [16] and proved in [12] for patterns
without property paths, but a generalisation to our case is straightforward).

Example 3. Consider the pattern

((((?x, a + b, ?y) AND (?x, c∗, ?y)) OPT (?x, a, ?z)) OPT (?x, b, ?w)).

The tree representing this pattern is as follows.

{(?x, a + b, ?y), (?x, c∗, ?y)}

{(?x, a, ?z)} {(?x, b, ?w)}

Another interesting property of pattern trees is that for each variable the
set of all nodes with this variable in the labels is always connected. This is a
vivid illustration of the well-designedness property of patterns. Moreover, every
pattern tree Tree(P ) (and hence every well-designed pattern) can be normalised
to an equivalent tree T ′ (called NR normal form [12]) such that var(n′) 
⊆ var(n)
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for every edge (n, n′) in T ′, that is, such that every node introduces a new
variable in comparison to the parent of this node. Transformation to NR normal
form can be done in polynomial time by adding the label of every node without
new variables to the labels of its children and then removing all such nodes from
the tree. In what follows we assume all well designed patterns and corresponding
pattern trees to be in NR normal form.

An intuitive coNP algorithm for evaluation of well designed patterns with
property paths works in the same way as the one described in [12] for the case
without property paths. It consists in the following two steps. Since the input
pattern is in NR normal form, the input mapping μ uniquely defines a subtree
T ′

μ such that dom(μ) = var(T ′
μ). So, on the first step we need to check for the

input graph that μ(and(T ′
μ)) ⊆ G, that is, all the patterns in the subtree under

μ indeed materialise in the input graph G. This check can be done in polynomial
time, because by Proposition 1 property paths have tractable evaluation. On the
second and more difficult step we need to guarantee that μ cannot be consistently
extended to the variables of any child of T ′

μ in T ′. This can be done in coNP by
guessing a counterexample (i.e., an extension) for one of these children.

Same as for patterns without property paths, this algorithm can be extended
to union and selection in a straightforward way. In the latter case the complexity
jumps one level of the polynomial hierarchy, because we have to guess the val-
ues of non-distinguished variables. Combining these results with matching lower
bounds for the classes without property paths [12,17] we obtain the following
proposition.

Proposition 4. The following holds:
– Evaluation(X -SPARQL) is Σp

2 -complete for X ∈ {AOSP,AUOSP};
– Evaluation(X -SPARQL) is coNP-complete for X ∈ {AOP,AUOP}.

The focus of this paper is SPARQL with well designed optional matching, and
we leave a comprehensive study of SPARQL with property paths and arbitrary
nesting of other operators considered in this paper for future work. However, as
a final remark in this section, we note that it is not difficult to show PSPACE-
completeness of evaluation for this class, that is, the same complexity as for any
subclass of this class that allows for arbitrary optional matching [21].

5.2 Query Containment

Now we move to the containment problem of SPARQL with property paths.
As shown in [20], without them the problem Containment(X1-SPARQL,X2-
SPARQL) is NP-complete for any X1-SPARQL that allows for optional match-
ing and for X2-SPARQL = AO-SPARQL, that is for the class of well designed
patterns. If X2-SPARQL also allows for union, then the complexity becomes Πp

2 -
complete (again, for the full range of X1-SPARQL), and the problem is unde-
cidable if X2-SPARQL allows for arbitrary selection. Thus we focus on the most
general case where we can hope for decidability: checking whether a query in
AOUSP-SPARQL is contained in a query in AOUP-SPARQL. Our main result
is that this problem is also decidable, specifically, EXPSPACE-complete.
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As we saw in the previous subsection, the techniques developed in [12,17]
for checking evaluation can be extended to work with property paths with rela-
tively little effort. Later we will see that similar strategy works for subsumption,
because it can be reduced to checking containment of OPT-free queries, which
is extensible to classes with property paths. However, the situation is different
for containment. It is not clear how to apply the known techniques (e.g., the one
in [20, Theorem3.7]) to state the problem in terms of containment of OPT-free
queries. To overcome this, we develop a new characterization of containment that
reduces the problem to a weaker form of containment between OPT-free queries.
Then we take advantage of the automata techniques developed in Section 4.

In what follows we first present our new characterisation for containment for
queries without property paths (which we believe is of independent interest) and
then adapt it to the general case. We start with a definition.

Definition 5. Let

Q1 = SELECTX WHERE P and Q2 = P 1 UNION . . . UNION P k

be queries from AOSP-SPARQL and AOUP-SPARQL respectively, with P , P i

well designed patterns. A good extension E of Q1 over Q2 is an AND pattern

and(Tree(P )) AND and(n1) AND . . . AND and(nm),

where m ≤ k and every nj is obtained from a child of a subtree Tj of one of
Tree(P 1), . . ., Tree(P k) with var(Tj) = X by renaming all variables not in X to
fresh ones. The support sup(E) of E is the set of all the subtrees Tj.

Our new characterisation of containment for the case without property paths
is based on the following lemma.

Lemma 1. Let

Q1 = SELECTX WHERE P and Q2 = P 1 UNION . . . UNION P k

be a AOUS-SPARQL and AOU-SPARQL queries respectively. Then Q1 
⊆ Q2

if and only if there is a good extension E over Q2 of some AOS-SPARQL query
with a pattern P ∗ such that Tree(P ∗) is a subtree of one of the trees representing
components of P and distinguished variables X∗ = X ∩ var(P ∗) that satisfies the
following conditions:
(C1) for each child n of Tree(P ∗), there is no homomorphism h from and(n) to

E such that h(?x) =?x for all variables ?x in var(n) ∩ var(E), and
(C2) for each subtree T of one of Tree(P 1), . . . ,Tree(P k) with var(T ) = X∗ that

is not in sup(E) there is no homomorphism h from and(T ) to E such that
h(?x) =?x, for all variables ?x in var(T ) ∩ var(E).

The intuition behind Lemma 1 is as follows. A good extension E satisfying
conditions (C1) and (C2) gives us a witness for non-containment: it suffices to
consider the “frozen RDF graph” G of E obtained by replacing each variable
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?x by a fresh IRI ax and the mapping μ with μ(?x) = ax, for all ?x ∈ X∗ and
undefined for other ?x. Then conditions (C1) and (C2) are a convenient way of
stating that μ ∈ �Q1�G and μ /∈ �Q2�G.

Observe that the size of a good extension is polynomial in the size of Q1 and
Q2. Thus, Lemma 1 gives us an alternative proof for Πp

2 -membership of contain-
ment of a query in a pattern if both of them do not use property paths. Indeed
to find a counterexample for containment we need to guess a good extension and
then call for a coNP oracle to check conditions (C1) and (C2).

To extend the characterisation of Lemma 1 to queries with property paths
we need the following auxiliary notation. We write P1  P2 for patterns P1

and P2 if for each RDF graph G and mapping μ1 ∈ �P1�G there is a mapping
μ2 ∈ �P2�G such that μ1 ∼ μ2.

We analyse the complexity of containment in the presence of property paths
by means of the following generalised statement.

Lemma 2. Let

Q1 = SELECTX WHERE P and Q2 = P 1 UNION . . . UNION P k

be a AOUSP-SPARQL and AOUP-SPARQL queries respectively. Then Q1 
⊆
Q2 if and only if there is a good extension E over Q2 of some AOSP-SPARQL
query with a pattern P ∗ such that Tree(P ∗) is a subtree of one of the trees
representing components of P and distinguished variables X∗ = X ∩ var(P ∗)
that satisfies E 
 (N UNION S), where
(C1′) N is a union of all and(n) for children n of Tree(P ∗), and
(C2′) S is a union of all and(T ) for subtrees T of trees Tree(P 1), . . . ,Tree(P k)

with var(T ) = X∗ that are not in sup(E).

Using techniques developed in Section 4.2, the condition E 
 (N UNION S)
can be checked in EXPSPACE. This gives us an EXPSPACE upper bound for
containment of AOUSP-SPARQL and AOUP-SPARQL queries. Moreover, the
matching lower bound can be derived from Proposition 3.

Theorem 2. The problem Containment(X1-SPARQL,X2-SPARQL) is
EXPSPACE-complete for X1 ∈ {AOP, . . . ,AOUSP} and X2 ∈ {AOP,AOUP}.

5.3 Query Subsumption

The last problem we study in this paper is subsumption of SPARQL queries with
property paths. Letelier et al. [12,20] proved Πp

2 -completeness of this problem
for all the classes with optional matching but without property paths, even if
arbitrary selection is allowed. Moreover, they provide the following very simple
and useful characterisation for the subsumption of AO-SPARQL patterns: a
pattern P1 is subsumed by a pattern P2 if and only if for every subtree T ′

1 of
Tree(P1) there is a subtree T ′

2 of Tree(P2) such that var(T ′
1) ⊆ var(T ′

2) and there
is a homomorphism from and(T ′

2) to and(T ′
1) that is the identity on var(T ′

1). This
idea extends to patterns with union in the usual way—the subsumption holds if
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and only if for every component of the first pattern there is a subsuming one in
the second.

How can this characterisation be extended to deal with property paths? The
immediate idea is just to replace homomorphism with containment of corre-
sponding OPT-free queries. However, in the presence of union this simple strat-
egy does not always work. Indeed, the pattern (?x, (a + b), ?y) is subsumed by
the pattern (?x, a, ?y)UNION (?x, b, ?y) (in fact, they are equivalent), but not in
any of its components.

As we see, the problem is the disjunction introduced by property paths,
and our characterisation needs to account for this. By doing so we arrive at
the following characterisation. A pattern P1 is subsumed by a pattern P2 if
and only if for every subtree T ′

1 of Tree(P1) the AND-pattern and(T ′
1) is sub-

sumed in the union of all AND-patterns and(T ′
2), where T ′

2 ranges over subtrees
of Tree(P2) with var(T ′

1) ⊆ var(T ′
2). With this characterisation we avoid deal-

ing with optional matching, and can thus solve subsumption by the techniques
introduced in the previous section. As an illustration, we can use this character-
isation in the example above to show that Q1 	 Q2, by choosing the same query
(?x, a, ?y) UNION (?x, b, ?y). By extending this characterisation for all queries
with arbitrary selection we obtain our last theorem.

Theorem 3. The problem Subsumption(X1-SPARQL,X2-SPARQL) is
EXPSPACE-complete for X1,X2 ∈ {AOP, . . . ,AOUSP}.

6 Conclusions

At a first glance it was not clear whether one could combine techniques from
graph databases and the Semantic Web to study SPARQL with property paths.
Indeed, on the one hand, graph database techniques failed short for such study,
because RDF data allows for predicates from an infinite alphabet and property
paths may have negation. On the other hand, even if the machinery developed to
study SPARQL without property paths proved to be inspirational for this work,
the characterisations provided in the literature were too specific to be used in
the general case. In this paper we have shown how these two classes of techniques
can be generalised and combined to reason about SPARQL queries that allow
for property path patterns. In particular, we developed algorithms for evaluating
such queries and deciding their containment and subsumption. Finally we would
like to note that many of the upped bounds obtained here (e.g., all EXPSPACE
and Πp

2 bounds) match the lower bounds for more restricted classes of queries.
As for future work, the main direction we would like to tackle is the addition

of the FILTER operator to the language, since so far this feature of SPARQL has
not been comprehensively considered in the literature. We have some preliminary
results showing that the techniques from Section 5.2 can be extended to work in
this setting. Another interesting direction is to study the fragments with property
paths and full power of optional matching, that is, that allow for three-placed
and not well designed OPTIONAL.
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Abstract. In this paper we propose a general purpose recursion opera-
tor to be added to SPARQL, formalize its syntax and develop algorithms
for evaluating it in practical scenarios. We also show how to implement
recursion as a plug-in on top of existing systems and test its performance
on several real world datasets.

1 Introduction

The Resource Description Framework (RDF) has emerged as the standard for
describing Semantic Web data and SPARQL as the main language for query-
ing RDF. After the initial proposal of SPARQL, and with more data becom-
ing available in the RDF format, users found use cases that required exploring
the structure of the data in more detail. In particular queries that are inher-
ently recursive, such as traversing paths of arbitrary length, have lately been
in demand. This was acknowledged by the W3C committee with the inclusion
of property paths in the latest SPARQL 1.1. standard [12], allowing queries to
navigate paths connecting two objects in an RDF graph.

However, in terms of expressive power, several authors have noted that prop-
erty paths fall short when trying to express a number of important properties
related to navigating RDF documents (cf. [6,7,22]), and that a more powerful
form of recursion needs to be added to SPARQL to address this issue. As a result
various extensions of property paths have been proposed (see e.g. [4,14,17,22]),
but to the best of our knowledge no attempt to add a general recursion operator
to the language has been made.

To illustrate the need for such an operator we consider the case of tracking
provenance of Wikipedia articles presented by Missier and Chen in [19]. They
use the PROV standard [24] to store information about how a certain article
was edited, whom was it edited by and what this change resulted in. Although
they store the data in a graph database, all PROV data is easily representable as
RDF using the PROV-O ontology [27]. The most common type of information
in this RDF graph tells us when an article A1 is a revision of an article A2. This
fact is represented by adding a triple of the form (A1, prov:wasRevisionOf, A2)
to the database. These revisions are associated to user’s edits with the predicate
prov:wasGeneratedBy and the edits can specify that they used a particular article
with a prov:used link. Finally, there is a triple (E, prov:wasAssociatedWith, U) if
the edit E was made by the user U . A snapshot of the data, showing provenance
of articles about Edinburgh, is depicted in Figure 1.
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 19–35, 2015.
DOI: 10.1007/978-3-319-25007-6 2
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Fig. 1. RDF database of Wikipedia traces. The abbreviation wAssocWith is used
instead of wasAssociatedWith and the prov:prefix is omitted from all the properties.

A natural query to ask in this context is the history of revisions that were
made by the same user: that is all pairs of articles (A,A′) such that A is linked
to A′ by a path of wasRevisionOf links and where all of the revisions along the
way were made by the same user. For instance, in Figure 1 we have that the
article 145 “Edinburgh” is a revision of the article 72 “Edinburgh” and all the
intermediate edits were made by User1. Such queries abound in version control
systems (for instance when tracking program development in svn or Git) and
can be used to detect which user introduced errors or bugs, when the data is
reliable, or to find the latest stable version of the data. Since these queries can
not be expressed with property paths [6,17], nor by using standard SPARQL
functionalities (as provenance traces can contain links of arbitrary length), a
general purpose recursion operator seems like a natural addition to the language.

One reason why recursion in SPARQL was not considered previously could
be the fact that in order to compute recursive queries we need to apply the query
to the result of a previous computation. However, typical SPARQL queries do
not have this capability as their inputs are RDF graphs but their outputs are
mappings. This hinders the possibility of a fixed point recursion as the result of
a SPARQL query cannot be subsequently queried. One can avoid this by using
CONSTRUCT queries, which output RDF graphs, and indeed [15] has proposed
a way of defining a fixed point like extension for SPARQL based on this idea.

In this paper we extend the recursion operator of [15] to function over a
more widely used fragment of SPARQL and study how this operator can be
implemented in an efficient way on top of existing SPARQL engines. We begin
by showing what the general form of recursion looks like and how to evaluate it.
After arguing why full fledged recursion is unlikely to perform well on real world
data, we consider a restriction called linear recursion, which is widely used in
the relational context [1,10], and show that it can express almost any use case
found in practice. Next, we develop an elegant algorithm for evaluating this class
of recursive queries and show how it can be implemented on top of an existing
SPARQL system. For our implementation we use Apache Jena framework [13]
and we implement recursive queries as an add-on to the ARQ SPARQL query
engine. We use Jena TDB version 2.12.1, which allows us not to worry about



Recursion in SPARQL 21

queries whose intermediate results do not fit into main memory, thus resulting
in a highly reliable system. Lastly, we test how this implementation performs on
YAGO, LMBD and PROV records of Wikipedia revision history.1

Related Work. The most common recursive functionality available for
SPARQL are property paths. These are either implemented fully [11,13], or with
some limitations that ensure they can be efficiently evaluated [26]. Several exten-
sions of property paths have also been considered by the research community
[3,4,14,22] and although some of them can simulate certain recursive tasks, they
still fail to express arbitrary recursive queries. There were also some attempts
to allow recursion as a programming language construct [5,20], however they do
not view recursion as a part of the language, but as an outside add-on. Regard-
ing attempts to implement a full-fledged recursion as a part of SPARQL, both
[25] and [15] propose a syntax of the recursion operator similar to the one used
here, however, neither of the two describes specific algorithms for its execution,
nor do they analyse its performance, but instead focus on expressive power.

2 Preliminaries

RDF Graphs and Datasets. RDF graphs can be seen as edge-labeled graphs
where edge labels can be nodes themselves, and an RDF dataset is a collection of
RDF graphs. Formally, let I be an infinite set of IRIs2. An RDF triple is a tuple
(s, p, o) from I × I × I, where s is called the subject, p the predicate, and o the
object. An RDF graph is a finite set of RDF triples, and an RDF dataset is a set
{G0, 〈u1, G1〉, . . . , 〈un, Gn〉}, where G0, . . . , Gn are RDF graphs and u1, . . . , un

are distinct IRIs. The graph G0 is called the default graph, and G1, . . . , Gn are
called named graphs with names u1, . . . , un, respectively. For a dataset D and
IRI u we define grD(u) = G if 〈u,G〉 ∈ D and grD(u) = ∅ otherwise. Given two
datasets D and D′ with default graphs G0 and G′

0, we define the union D ∪ D′

as the dataset with the default graph G0 ∪G′
0 and grD∪D′(u) = grD(u)∪grD′(u)

for any IRI u. Union of datasets without default graphs is defined in the same
way, i.e., as if the default graph was empty.

SPARQL Syntax. We assume the familiarity with syntax and semantics of
SPARQL 1.1 query language. However, we do recall two particular features that
will be used: the GRAPH operator and the CONSTRUCT result form.

We assume all variables come from an infinite set V = {?x, ?y, . . .} of vari-
ables. The official syntax for SPARQL 1.1 queries considers several operators
such as OPTIONAL, UNION, FILTER, GRAPH and concatenation via the point
symbol ( . ) to construct what is known as graph patterns. Users then use a result
form such as SELECT or CONSTRUCT to form either result sets or RDF graphs
from the matchings of a graph pattern. We assume that readers are familiar
with graph patterns, we just note the syntax of the GRAPH operator: if P is

1 The implementation, test data and complete formulation of used queries can be found
in the online appendix available at http://web.ing.puc.cl/∼jreutter/Recsparql.html.

2 For clarity of presentation we do not include literals or blank nodes in our definitions.

http://web.ing.puc.cl/~jreutter/Recsparql.html
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Fig. 2. Graphs used for Example 1. The prefixes foaf: and prov: are omitted.

a graph pattern and g ∈ I ∪ V then (GRAPH g P ) is a graph pattern, called
a GRAPH-pattern. The expression (GRAPH g P ) allows us to determine which
graph from the dataset we will be matching the pattern P to. For instance if we
use an IRI in place of g the pattern will be matched against the named graph
with the corresponding name (if such a graph exists in the dataset), and in the
case that g is a variable, P will be matched against all the graphs in the dataset.

Although SELECT queries over graph patterns seem to be the most popular
use of SPARQL, as the results of such queries are not RDF graphs, we will use
the CONSTRUCT operator as a base for recursion. A SPARQL CONSTRUCT
query, or c-query for short, is an expression

CONSTRUCT H DS WHERE P,

where H is a set of triples from (I ∪ V) × (I ∪ V) × (I ∪ V), called a template;
DS is a set of expressions of the form FROMNAMEDu1, . . . ,FROMNAMEDun,
with each ui ∈ I and i ≥ 0, called a dataset clause3; and P is a graph pattern.

The idea behind the CONSTRUCT operator is that the mappings matched
to the pattern P are used to construct an RDF graph according to the template
H. Since all the patterns in the template are triples we will end up with an RDF
graph as desired.

Example 1. Let G and G1 be the graphs in Figure 1 and Figure 2, respectively.
We want to query both graphs to obtain a new graph where each article is
linked to the email of a user who modified it. Assuming we have a dataset with
default graph G and that the IRI identifying G1 is http://db.ing.puc.cl/mail,
this would be achieved by the following SPARQL CONSTRUCT query q:
PREFIX prov: <http://www.w3.org/ns/prov#>
PREFIX prov: <http://xmlns.com/foaf/0.1>
CONSTRUCT {?article prov:wasAttributedTo ?mail}
FROM NAMED <http://db.ing.puc.cl/mail>
WHERE {

?article prov:wasGeneratedBy ?comment .
?comment prov:wasAssociatedWith ?usr .
GRAPH <http://db.ing.puc.cl/mail> {?usr foaf:mbox ?mail}}

3 For readability we assume the default graph as given.
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The result ans(q,D) of evaluating q over D is depicted in Figure 2. The construct
FROM NAMED is used to specify that the dataset needs to include the graph
G1 associated with the IRI http://db.ing.puc.cl/mail.

SPARQL Semantics. The semantics of graph patterns is defined in terms of
mappings [12]; that is, partial functions from variables V to IRIs I. Given a
dataset D, and a graph G amongst the graphs of D, we denote the evaluation of
a graph pattern P over D with respect to G as �P �DG . The evaluation �P �D of a
pattern P over a dataset D with default graph G0 is �P �DG0

. The full definition
of �P �D and �P �DG can be found in the SPARQL standard, here we just note the
semantics of GRAPH-patterns, for which we need some notation.

The domain dom(μ) of a mapping μ is the set of variables on which μ is
defined. Two mappings μ1 and μ2 are compatible (written as μ1 ∼ μ2) if μ1(?x) =
μ2(?x) for all variables ?x in dom(μ1)∩dom(μ2). If μ1 ∼ μ2, then we write μ1∪μ2

for the mapping obtained by extending μ1 according to μ2 on all the variables in
dom(μ2) \ dom(μ1). Given two sets of mappings M1 and M2, the join and union
between M1 and M2 are defined respectively as follows:

M1 �� M2 = {μ1 ∪ μ2 | μ1 ∈ M1, μ2 ∈ M2 and μ1 ∼ μ2},
M1 ∪ M2 = {μ | μ ∈ M1 or μ ∈ M2}

Let us now define the semantics of GRAPH-patterns. Consider a GRAPH-
pattern P = (GRAPH g P ′). Then

�P �DG =

⎧
⎪⎨

⎪⎩

�P ′�DgrD(g) if g ∈ I

⋃
u∈I

(
�P ′�DgrD(u) �� {μg �→u}

)
if g ∈ V

where μg �→u is the mapping with domain {g} and where μg �→u(g) = u.
Next we recall the semantics of SPARQL queries. Let q be a SPARQL query

and D a dataset. The answer ans(q,D) of q over D depends on the form of q:

– If q is a SELECT query, then ans(q,D) is the answer to q as defined in the
SPARQL standard [12].

– If q is a c-query q = CONSTRUCT H DS WHERE P , then let u1, . . . , un

be the IRIs in DS and G1, . . . , Gn the graphs associated to these IRIs; and
consider the dataset D′ = D ∪ {〈u1, G1〉, . . . , 〈un, Gn〉}. We define:

ans(q,D) = {μ(t) | μ ∈ �P �D
′
, t is a triple in H and μ is defined on vars(t)}.

3 Adding Recursion to SPARQL

The most basic example of a recursive query in RDF is reachability: given a
resource x, compute all the resources that are reachable from x via a path of arbi-
trary length. These queries, amongst others, motivated the inclusion of property
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paths into the recent SPARQL 1.1 standard [12]. However, as several authors sub-
sequently pointed out, property paths fall short when trying to express queries
that involve more complex ways of navigating RDF documents (cf. [4,7,8,22])
and as a result several extensions have been brought forward to combat this
problem [2,14,17,22]. Almost all of these extensions are also based on the idea
of computing paths between nodes in a recursive way, and thus share a num-
ber of practical problems with property paths. Most importantly, these queries
need to be implemented using algorithms that are not standard in SPARQL
databases, as they are based on automata-theoretic techniques, or clever ways
of doing Breadth-first search on the graph structure of RDF documents.

3.1 A Fixed Point Based Recursive Operator

We have decided to implement a different approach: a much more widespread
recursive operator that allows us compute the fixed point of a wide range of
SPARQL queries. Before proceeding with the formal definition we illustrate the
idea behind such queries by means of an example.

Example 2. Recall graph G from Figure 1. In the Introduction we made a case
for the need of a query that could compute all pairs of articles (A,A′) such
that A is linked to A′ by a path of wasRevisionOf links and where all of the
revisions along the way were made by the same user. We can compute this with
the following recursive query.
PREFIX prov: <http://www.w3.org/ns/prov#>
WITH RECURSIVE http://db.ing.puc.cl/temp AS {

CONSTRUCT {?newversion ?user ?oldversion}
FROM NAMED <http://db.ing.puc.cl/temp>
WHERE{{

?newversion prov:wasRevisionOf ?oldversion .
?newversion prov:wasGeneratedBy ?edit .
?edit prov:used ?oldversion .
?edit prov:wasAssociatedWith ?user}

UNION{
GRAPH <http://db.ing.puc.cl/temp>
{?newversion ?user ?intversion . ?intversion ?user ?oldversion}}}

}
SELECT ?newversion ?oldversion
FROM <http://db.ing.puc.cl/temp>
WHERE {?newversion ?user ?oldversion}

Let us explain how this query works. The second line specifies that a tempo-
rary graph named http://db.ing.puc.cl/temp is to be constructed according to
the query below which consists of a UNION of two subpatterns. The first pattern
does not use the temporary graph and it simply extracts all triples (A,U,B)
such that A was a revision of B and U is the user generating this revision. All
these triples should be added to the temporary graph.

Then comes the recursive part: if (A,U,B) and (B,U,C) are triples in the
temporary graph, then we also add (A,U,C) to the temporary graph. We con-
tinue iterating until a fixed point is reached, and finally we obtain a graph that
contains all the triples (A,U,A′) such that A is linked to A′ via a path of revi-
sions of arbitrary length but always generated by the same user U . Finally, the
SELECT query extracts all such pairs of articles from the constructed graph.
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As hinted in the example, the following is the syntax for recursive queries. It
is based on the recursive operator that is part of SQL.

Definition 1 (Syntax of recursive queries). A recursive SPARQL query,
or just recursive query, is either a SPARQL query or an expression of the form

WITH RECURSIVE t AS {q1} q2, (1)

where t is an IRI from I, q1 is a c-query, and q2 is a recursive query. The set
of all recursive queries is denoted rec-SPARQL.

Note that in this definition q1 is allowed to use the temporary graph t, which
leads to recursive iterations. Furthermore, the query q2 could be recursive itself,
which allows us to compose recursive definitions. As usual with this type of
queries, semantics is given via a fixed point iteration.

Definition 2 (Semantics of recursive queries). Let q be a recursive query of
the form (1) and D an RDF dataset. If q is a non recursive query then ans(q,D)
is defined as usual. Otherwise the answer ans(q,D) is equal to ans(q2,DLFP),
where DLFP is the least fixed point of the sequence D0,D1, . . . with D0 = D and

Di+1 = D ∪ {〈t, ans(q1,Di)〉}, for i ≥ 0.

In other words, D1 is the union of D with a temporary graph t that cor-
responds to the evaluation of q1 over D, D2 is the union of D with a tempo-
rary graph t that corresponds to the evaluation of q1 over D1, and so on until
Di+1 = Di. Note that the temporary graph is completely rewritten after each
iteration. This definition suggests the following pseudocode for computing the
answers of a recursive query q of the form (1) over a dataset D4:

1. Initialize a temporary RDF graph named after the IRI t as GTemp = ∅.
2. While ans(q1,D ∪ {〈t,GTemp〉}) 
= GTemp do:

– Set GTemp = ans(q1,D ∪ {〈t,GTemp〉})
3. Output ans(q2,D ∪ {〈t,GTemp〉})

Obviously this definition only makes sense as long as such fixed point exists.
From the Knaster-Tarski theorem [16] it easily follows that the fixed point exists
as long as queries used to define recursion are monotone. For the sake of pre-
sentation, here we ensure this condition by disallowing explicit negation (such
as NOTEXISTS or MINUS) and optional matching from our c-queries (note that
under construct queries, this fragment is known to be equivalent to queries defined
by union of well designed graph patterns [15]). It was also shown in [15] that the
existence of a fixed point can be guaranteed even when q1 belongs to a rather tech-
nical fragment that does allow a limited form of negation and optional matching
that extends beyond the use of unions of well designed patterns.

4 For readability we assume that t is not a named graph in D. If this is not the case
then the pseudocode needs to be modified to meet the definition above.
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3.2 Complexity Analysis

Recursive queries can use either the SELECT or the CONSTRUCT result form,
so there are two decision problems we need to analyze. For SELECT queries
we define the problem SelQueryAns, that receives as an input a recursive
query Q using the SELECT result form, a tuple ā of IRIs from I and a dataset
D, and asks whether ā is in ans(Q,D). For CONSTRUCT queries the problem
ConQueryAns receives a recursive query Q with a CONSTRUCT result form,
a triple (s, p, o) over I × I × I and a dataset D, and asks whether this triple
belongs to ans(Q,D).

Proposition 1. SelQueryAns is PSPACE-complete and ConQueryAns is
NP-complete. The complexity of SelQueryAns drops to Πp

2 if one only con-
siders SELECT queries given by unions of well-designed graph patterns.

Thus, at least from the point of view of computational complexity, our class
of recursive queries are not more complex than standard select queries [21] or
construct queries [15]. We also note that the complexity of similar recursive
queries in most data models is typically complete for exponential time; what
lowers our complexity is the fact that our temporary graphs are RDF graphs
themselves, instead of arbitrary sets of mappings or relations.

For databases it is also common to study the data complexity of the query
answering problem, that is, the same decision problems as above but considering
the input query to be fixed. We denote these problems as SelQueryAns(Q) and
ConQueryAns(Q), for select and construct queries, respectively. As we see, the
problem remains in polynomial time for data complexity, albeit in a higher class
than for non recursive queries (see again [21] or [15]).

Proposition 2. Both the problem SelQueryAns(Q) and the problem
ConQueryAns(Q) are PTIME-complete. They remain PTIME-hard even for
queries without negation or optional matching.

However, even if theoretically the problems have the same combined com-
plexity as queries without recursion and are polynomial in data complexity, any
implementation of the above algorithm is likely to run excessively slow due to
a high demand on computational resources (computing the temporary graph
over and over again) and would thus not be useful in practice. For this reason,
instead of implementing full-fledged recursion, we decided to support a frag-
ment of recursive queries based on what is commonly known as linear recursive
queries [1,10]. This restriction is common when implementing recursive opera-
tors in other database languages, most notably in SQL [23], but also in graph
databases [8], as it offers a wider option of evaluation algorithms while maintain-
ing the ability of expressing almost any recursive query that one could come up
with in practice. For instance, as demonstrated in the following section, linear
recursion captures all the examples we have considered thus far and it can also
define any query that uses property paths. Furthermore, it can be implemented
in an efficient way on top of any existing SPARQL engine using a simple and
easy to understand algorithm. Next we formally define this fragment.
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4 Realistic Recursion in SPARQL

The concept of linear recursion has become popular in the industry as a restric-
tion for fixed point operators in relational query languages, because it presents
a good tradeoff between the expressive power of recursive operators and their
practical applicability. Let Q be the query WITH RECURSIVE t AS {q1} q2,
where t is an IRI from I, q1 is a c-query, and q2 is a recursive query. We say that
Q is linear if for every dataset D, the answer ans(Q,D) of the query corresponds
to the least fixed point of the sequence given by

D0 = D, D−1 = ∅,

Di+1 = Di ∪ {〈t, ans(q1, (D ∪ Di \ Di−1))〉}.

In other words, a recursive query is linear if, in order to compute the i-th
iteration, we only need the original dataset plus the tuples that were added to
the temporary graph t in the previous iteration. Considering that the final size
of t might be comparable to the original dataset, linear queries save us from
evaluating the query several times over an ever increasing dataset.

Most of the recursive extensions proposed for SPARQL are linear: from prop-
erty paths [12] to nSPARQL [22], SPARQLeR [14] or Trial [17], and even our
example. Unfortunately it is undecidable to check if a recursive query is lin-
ear (under usual complexity-theoretic assumptions) [9], so one needs to impose
syntactic restrictions to enforce this condition. This is what we do next.

4.1 Linear Recursive Queries

Our queries are made from the union of a graph pattern that does not use the
temporary IRI, denoted as pbase and a graph pattern prec that does mention the
temporary IRI. Formally, a linear recursive query is an expression of the form

WITH RECURSIVE t AS {
CONSTRUCTH DS WHERE pbase UNION prec } qout (2)

with H and DS a construct template and dataset clause as usual, with pbase

and prec graph patterns such that only prec is allowed to mention the IRI
t and with qout a linear recursive query. We further require that the recur-
sive part prec mentions the temporary IRI only once. In order to describe
our algorithm, we shall abuse the notation and speak of qbase to denote
the query CONSTRUCTH DS WHERE pbase and qrec to denote the query
CONSTRUCTH DS WHERE prec, respectively.

This simple yet powerful syntax resembles the design choices taken in most
SQL commercial systems supporting recursion [23] and even graph databases [8].

For example, the query in example 2 is not linear, because the temporary
IRI is used twice in the pattern. Nevertheless, it can be restated as the following
query that uses one level of nesting:
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PREFIX prov: <http://www.w3.org/ns/prov#>
WITH RECURSIVE http://db.ing.puc.cl/temp1 AS {

CONSTRUCT {?newversion ?user ?oldversion}
FROM NAMED <http://db.ing.puc.cl/temp1>
WHERE{

{?newversion prov:wasRevisionOf ?oldversion .
?newversion prov:wasGeneratedBy ?edit .
?edit prov:used ?oldversion .
?edit prov:wasAssociatedWith ?user}

UNION
{}}

}
WITH RECURSIVE http://db.ing.puc.cl/temp2 AS {

CONSTRUCT {?newversion ?user ?oldversion}
FROM NAMED <http://db.ing.puc.cl/temp1>
FROM NAMED <http://db.ing.puc.cl/temp2>
WHERE{

GRAPH <http://db.ing.puc.cl/temp1> {?newversion ?user ?oldversion}
UNION{

GRAPH <http://db.ing.puc.cl/temp1> {?newversion ?user ?intversion}.
GRAPH <http://db.ing.puc.cl/temp2> {?intversion ?user ?oldversion}}}

}
SELECT ?newversion ?oldversion
FROM <http://db.ing.puc.cl/temp>
WHERE {?newversion ?user ?oldversion}

We wrote the union in the first query for clarity, but in general either pbase or
prec can be empty. The idea of this query is to first dump all meaningful triples
from the graph into a new graph http://db.ing.puc.cl/temp1, and then use this
graph as a basis for computing the required reachability condition, that will be
dumped into a second temporary graph http://db.ing.puc.cl/temp25.

Note that these queries are indeed linear, and thus we can perform the incre-
mental evaluation that we have described above. The separation between base
and recursive query also allows us to keep track of changes made in the tempo-
rary graph without the need of computing the difference of two graphs. We have
decided to implement what is known as seminaive evaluation, although several
other alternatives have been proposed for the evaluation of these types of queries
(see [10] for a good survey). Our algorithm is presented in Algorithm 1.

So what have we gained? By looking at Algorithm 1 one realizes that in
each iteration we only evaluate the query over the union of the dataset and the
intermediate graph Gtemp, instead of the previous algorithm where one needed
the whole graph being constructed (in this case Gans). Furthermore, qbase is
evaluated only once, using qrec in the rest of the iterations. Considering that the
temporary graph may be large, and that no indexing scheme could be available,
this often results in a considerable speedup for query computation. As we see
next, the computational complexity is also reduced.
Complexity Analysis. We can find some explanation of why linear recursive
queries behave better in practice when revisiting the computational complexity
of the query answering problem, which shows a reduction in data complexity.

Theorem 1. If Q is a linear recursive query, SelQueryAns(Q) and
ConQueryAns(Q) are NLogSpace-complete.

5 One can show that in this case the nesting in this query can be avoided.
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Algorithm 1. Computing the answer for linear recursive queries of the form
(2)
Input: Query Q of the form (2), dataset D
Output: Evaluation ans(Q, D) of Q over D

1: Set Gtemp = ans(qbase, D) and Gans = Gtemp

2: Set size = |Gans|
3: loop
4: Set Gtemp = ans(qrec, D ∪ {(t, Gtemp)})
5: Set Gans = Gans ∪ Gtemp

6: if size = |Gans| then
7: break
8: else
9: size = |Gans|
10: end if
11: end loop
12: return ans(qout, D ∪ {〈t, Gans〉})

5 Experimental Evaluation

Our implementation of linear recursive queries was carried out using the Apache
Jena framework [13] as an add-on to the ARQ SPARQL query engine. The
version used was Jena TDB 2.12.1 as it allows the user to run queries either in
main memory, or using disk storage when needed. As previously mentioned, since
the query evaluation algorithms we develop make use of the same operations that
already exist in current SPARQL engines, we can use those as a basis for the
recursive extension to SPARQL we propose. In fact, as we show by implementing
recursion on top of Jena, this capability can be added to an existing engine in
an elegant and non-intrusive way6.

We test our implementation using three different datasets. The first one is
Linked Movie Database (LMDB) [18], an RDF dataset containing information
about movies and actors7. The second dataset we use is a part of the YAGO
ontology [28] and consists of all the facts that hold between instances. For the
experiments the version from March 2015 was used. The last dataset is based on
Missier and Chen’s database of Wikipedia traces [19] we described previously.
We chose 3 of their datasets, but since they are very small we enlarge them by
taking disjoint copies of the same data until it reached the desired size. Since
these datasets contain only the traces and nothing else we also added 30% of
random unrelated triples to simulate the database containing other pieces of
information. We grew 4 different datasets out of the provenance traces, of 50,
100, 150 and 200 Mb of size approximately. We refer to these datasets as PROV1,

6 The implementation we use is available at http://web.ing.puc.cl/∼jreutter/
Recsparql.html.

7 We use the data dump available at http://queens.db.toronto.edu/∼oktie/
linkedmdb/.

http://web.ing.puc.cl/~jreutter/Recsparql.html
http://web.ing.puc.cl/~jreutter/Recsparql.html
http://queens.db.toronto.edu/~oktie/linkedmdb/
http://queens.db.toronto.edu/~oktie/linkedmdb/
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Fig. 3. Running times and the number of output tuples for the three datasets.

PROV2, PROV3 and PROV4, respectively8. All the experiments were run on a
MacBook Air with an Intel Core i5 1.3 GHz processor and 4GB of main memory.

5.1 Query Evaluation

Because of the novelty of our approach it was impossible to compare our times
against other implementations, or run standard benchmarks to test the per-
formance of our queries. Furthermore, while our formalism is similar to that of
recursive SQL, all of the RDF systems that we checked were either running RDF
natively, or running on top of a relational DBMS that did not support recursion
as mandated by the SQL standard. OpenLink Virtuoso does have a transitive
closure operator, but this operator can only compute transitivity when starting
in a given IRI. Our queries were more general than this, and thus we could not
compare them. For this reason we invented several queries that are very natural
over the considered datasets and tested their performance. As all property paths
can be expressed by linear recursive queries we will also test our implementation
against current SPARQL systems in the following subsection.

We start our round of experiments with movie-related queries over both
LMDB and YAGO. Since YAGO also contains information about movies, we
have the advantage of being able to test the same queries over different real
datasets (only the ontology differs). We use three different queries, all of them
similar to that of Example 2. The first query Q1 returns all the actors in the
database that have a finite Bacon number9, meaning that they co-starred in the
same movie with Kevin Bacon, or another actor with a finite Bacon number. A
similar notion, well known in mathematics, is the Erdős number. Note that Q1
is a property path query. To test recursive capabilities of our implementation we
use another two queries, Q2 and Q3, that apply various tests along the paths
computing the Bacon number. The query Q2 returns all actors with a finite
Bacon number such that all the collaborations were done in movies with the
same director. Finally the query Q3 tests if an actor is connected to Kevin

8 The datasets are available at http://web.ing.puc.cl/∼jreutter/Recsparql.html.
9 See http://en.wikipedia.org/wiki/Six Degrees of Kevin Bacon.

http://web.ing.puc.cl/~jreutter/Recsparql.html
http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon
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Fig. 4. Evaluation time of QA and QB in our implementation is comparable to that of
Jena or Virtuoso. For PROV4 both queries reported more than 600 seconds in Virtuoso.

Bacon through movies where the director is also an actor (not necessarily in the
same movie). The structure of queries Q2 and Q3 is similar to the query from
Example 2 and cannot be expressed using property paths either. The results of
the evaluation can be found in Figure 3(a). As we can see the running times,
although high, are reasonable considering the size of the datasets and the number
of output tuples (Figure 3(b)).

The next round of experiments pushes our implementation to compute inher-
ently recursive queries. For this we use the query from Example 2 that finds all
pairs of Wikipedia articles whose revision history can be attributed to the same
user. As we implement linear recursion, the version of the query presented in
Section 4 is used. Figure 3(c) shows the running time of this query on the datasets
derived from Wikipedia traces described before; it illustrates that running times
are quite low when we take the number of computed tuples into consideration.

5.2 Comparison with Property Paths

Since to the best of our knowledge no SPARQL engine implements general recur-
sive queries, we cannot really compare the performance of our implementation
with the existing systems. The only form of recursion mandated by the latest
language standard are property paths, so in this section we test how our imple-
mentation stacks against popular systems when executing property paths.

Every property path query is easily expressible using linear recursion. How-
ever, it is not fair to compare our recursive implementation of property paths
to the one in current systems, as they specialize in executing this type of recur-
sive queries, while the recursive operator we introduced is aimed at expressing
a wide variety of queries that lie beyond the scope of property paths. For this
reason highly efficient systems like Virtuoso will run queries they are optimized
for much faster. For instance to run the query Q1 from Subsection 5.1 that com-
putes all actors with a finite Bacon number in LMDB or YAGO Virtuoso takes
less than 10 seconds, while our implementation takes much longer. Part of the
difference in running times could be attributed to the fact that in this particular
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case our implementation runs queries on disc, while Virtuoso can perform them
in main memory, but the main detractor is the fact that Virtuoso is designed
to be efficient at property paths that are given a starting point, while recursive
queries are not since they can express more general queries.

To have a somewhat fair comparison we will use property path queries that
compute all pairs of IRIs connected by a specified property path. We use the
PROV datasets introduced above and in Figure 1 and test for the existence of
property paths wasRevisionOf∗ and (wasGeneratedBy/used)∗. We refer to these
queries as QA and QB .10 Figure 4 presents the time each of the queries takes on
the four PROV datasets of increasing size. We test the recursive implementation
of property paths against the one in Jena and Virtuoso. As we can see our
implementation is quite competitive with systems that specialize in property
paths when we need to compute the entire relation. We can also see that Jena
runs faster than Virtuoso in this case and we believe that this is due to the fact
that Jena implements property paths in a way that returns all pairs of nodes
that are connected by the specified query, while for Virtuoso we need to run the
query from every possible starting point.

5.3 Limiting the Number of Iterations

In practical scenarios users are often interested in running recursive queries only
for a predefined number of iterations. For instance, very long paths between
nodes are seldom of interest and in a many use cases we will be interested in
using property paths only up to depth four or five. For this reason we propose
the following syntax to restrict the depth of recursion to a user specified number:

WITH RECURSIVE t AS {
CONSTRUCTH DS WHERE pbase UNION prec

} MAXRECURSION k qout (3)

Here all the keywords are the same as when defining linear recursion, and k ≥ 1
is a natural number. The semantics of such queries is defined using Algorithm
1, where the loop between steps 4 and 12 is executed precisely k − 1 times.

It is straightforward to see that every query defined using recursion with
predefined number of iterations can be rewritten in SPARQL by explicitly spec-
ifying each step of the recursion and joining them using the union operator. The
question then is, why is specifying the recursion depth beneficial?

One apparent reason is that it makes queries much easier to write and under-
stand. The second reason we would like to argue for is that, when implemented
using Algorithm 1, recursive queries with a predetermined number of steps result
in faster query evaluation times than evaluating an equivalent query with lots of
joins. The intuitive reason behind this is that computing qbase, although expen-
sive initially, acts as a sort of index to iterate upon, resulting in fast evaluation

10 Note that in Virtuoso we need to specify the starting point of a property path. This
is done by extracting each node from a unique triple containing it.
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Fig. 5. Limiting the number of iterations for Q1, Q2 and Q3 over LMDB. Recursion
dominates manually written SPARQL joins when several iterations are required.

times as the number of iterations increases. On the other hand, for even a moder-
ately complex query using lots of joins, the execution plan will seldom be optimal
and will often resort to simply trying all the possible matchings to the variables,
thus recomputing the same information several times.

We substantiate this claim by running two rounds of experiments on LMDB
and YAGO using queries Q1,Q2 and Q3 from Subsection 5.1 and running them
for an increasing number of steps. In the first round we evaluate each of the
queries using Algorithm 1 and run it for a fixed number of steps until the algo-
rithm saturates. In the second round we use a SPARQL rewriting of a recursive
query where the depth of recursion is fixed and evaluate it in Jena.

Figure 5 shows the results over LMDB. The results for YAGO show the same
trend, so we do not include them. As we can see, the initial cost is much higher
if we are using recursive queries, however as the number of steps increases we
can see that they show much better performance and in fact, the queries that
use only SPARQL operators time out after a small number of iterations.

6 Conclusion

As illustrated by several use cases, there is a need for recursive functionalities
in SPARQL that go beyond the scope of property paths. To tackle this issue we
propose a recursive operator to be added to the language and show how it can
be implemented efficiently on top of existing SPARQL systems. We concentrated
on linear recursive queries which have been well established in SQL practice and
cover almost all interesting use cases and show how to implement them as an
extension to Jena framework. Our tests show that, although very expressive,
these queries run in reasonable time even on a machine with limited computa-
tional resources. We also include a command that allows to run recursive queries
for a limited number of steps and show that the proposed implementation out-
performs equivalent queries specified using only SPARQL operators. We believe
all of this to be a good indicator of the usefulness of the recursion operator
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and why it should be a potential candidate for inclusion in the next SPARQL
standard.
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21. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM

Transactions on Database Systems 34(3) (2009)
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Abstract. Federated query engines provide a unified query interface to
federations of SPARQL endpoints. Replicating data fragments from dif-
ferent Linked Data sources facilitates data re-organization to better fit
federated query processing needs of data consumers. However, existing
federated query engines are not designed to support replication and repli-
cated data can negatively impact their performance. In this paper, we for-
mulate the source selection problem with fragment replication (SSP-FR).
For a given set of endpoints with replicated fragments and a SPARQL
query, the problem is to select the endpoints that minimize the number of
tuples to be transferred. We devise the Fedra source selection algorithm
that approximates SSP-FR. We implement Fedra in the state-of-the-art
federated query engines FedX and ANAPSID, and empirically evaluate
their performance. Experimental results suggest that Fedra efficiently
solves SSP-FR, reducing the number of selected SPARQL endpoints as
well as the size of query intermediate results.

Keywords: Linked data · Federated query processing · Source selec-
tion · Fragment replication

1 Introduction

SPARQL endpoints enable to consume RDF data exploiting the expressiveness
of the SPARQL query language. Nevertheless, recent studies reveal that existing
public SPARQL endpoints main limitation is availability [4].

In distributed databases [17], a common practice to overcome availabil-
ity problems is to replicate data near data consumers. Replication can be
achieved by complete dataset replication, active caching, pre-fetching or frag-
mentation [13].

RDF data consumers can replicate subsets of RDF datasets or replicated
fragments, and make them accessible through SPARQL endpoints. This will
provide the support for an efficient RDF data re-organization according to the
needs and computational resource capacity of data consumers, while these data
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 36–51, 2015.
DOI: 10.1007/978-3-319-25007-6 3



Federated SPARQL Queries Processing with Replicated Fragments 37

can be still accessed using SPARQL endpoints. Unfortunately, although SPARQL
endpoints can transparently access replicated fragments, as well as maintain their
consistency [13], federated query engines are not tailored to exploit the benefits
of replicated fragments.

Federated SPARQL engines [1],[6],[9],[18],[21] allow data consumers to exe-
cute SPARQL queries against a federation of SPARQL endpoints. However,
these engines are just designed to select the SPARQL endpoints that ensure
both a complete answer and an efficient execution of the query. In presence of
replication, existing federated query engines may retrieve data from every rele-
vant endpoint, and produce a large number of intermediate results that trigger
many requests to the endpoints. Thus, federated query engines may exhibit poor
performance while availability of the selected SPARQL endpoints is negatively
impacted.

Although the problem of managing RDF data overlapping during federated
query processing has been addressed in [12],[20], the problem of managing repli-
cation in a federation of RDF datasets still remains open. DAW [20] is able to
detect overlapping between datasets and optimize source selection based on that.
However, because DAW is not designed to manage data replication, there is no
support for explicitly define and use replicated fragments. In consequence, DAW
may select redundant data sources and generate a high number of intermediate
results as we will report in our experiments.

In this paper, we build a replication-aware SPARQL federated query engine
by integrating into state-of-the art federated query engines FedX [21] and ANAP-
SID [1], a source selection strategy called Fedra that solves the source selec-
tion problem with fragment replication (SSP-FR). For a given set of SPARQL
endpoints with replicated fragments and a SPARQL query, the problem is to
minimize the number of transferred data from endpoints to the federated query
engines, while preserving answer completeness and reducing data redundancy.

We empirically study federated query engines FedX and ANAPSID extended
with Fedra and DAW on synthetic and real datasets. The results suggest that
Fedra efficiently reduces intermediate results and data redundancy.

The paper is organized as follows. Section 2 describes background and moti-
vations. Section 3 defines replicated fragments and presents the source selection
problem for fragment replication. Section 4 presents the Fedra source selec-
tion algorithm. Section 5 reports our experimental results. Section 6 summarizes
related works. Finally, conclusions and future works are outlined in Section 7.

2 Background and Motivations

Existing SPARQL federated query engines do not support replicated data. To
illustrate, we replicated the DBpedia dataset and defined two federations. The
first is composed of one mirror of DBpedia, and the second of two identical
mirrors of DBpedia. We used FedX [21] and ANAPSID [1] to execute the query in
Figure 1a against both federations. In the first federation, these engines produced
the same query answers. On the other hand, for the second federation, these
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(a) DBpedia Query

s e l e c t d i s t i n c t ?p ?m ?n ?d where {
?p dbprop : name ?m .
?p dbprop : n a t i o n a l i t y ?n .
?p dbprop : d o c t o r a l A d v i s o r ?d

}

(b) Query Execution
#DBpedia Execution Time (ms) # Results
Replicas FedX ANAPSID FedX ANAPSID

1 1,392 22,972 8,921 8,921
2 215,907 1,800,000 418 8,921

Fig. 1. DBpedia query and its execution time and number of results against one and
two replicas of DBpedia for FedX and ANAPSID

query engines have no knowledge about the relationships among the mirrors of
DBpedia, and they contact both data sources. In this way, performance in terms
of execution time and number of results, is seriously degraded as depicted in
Figure 1b.1

Furthermore, if the DAW approach were used, resources of data providers
and consumers would be used to compute and download data summaries. DAW
could select different DBpedia data sources per triple pattern, and execute thus
the join between retrieved data at the federated engine level.

Of course, if federated query engines would know that one endpoint is the
mirror of the other, the source selection pruning could be done more efficiently,
i.e., only one source would be selected to execute the query. This problem is even
more challenging if we consider that one endpoint can partially replicate data
from several RDF datasets, i.e., only fragments of several datasets are replicated.

Fig. 2. Client defines a federation composed of DBpedia (A1), LinkedMDB (A2), and
one Consumer (C1) endpoints with four replicated fragments

1 FedX retrieves less results with two mirrors of DBpedia because it reaches the end-
points maximum number of result rows.
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Suppose a Web application poses federated queries against endpoints A1
(DBpedia) and A2 (LinkedMDB). In order to speed up the queries, a data con-
sumer endpoint C1 with replicated fragments has been installed as in Figure 2.
Fragments are defined as simple CONSTRUCT SPARQL queries with one triple
pattern. Fragments allow for the re-organization of RDF data on C1 to better
address needs of data consumers..

Even in this simple setup, processing our running query against a federation
including A1, A2, and C1 raises the problem of source selection with fragment
replication (SSP-FR). There are at least five options to select sources for execut-
ing this query; these choices produce different number of transferred tuples as
shown in Figure 2: (i) If no information about replicated fragments is available,
all sources may be selected to retrieve data for all the triple patterns. The num-
ber of intermediate results is given in the solution s1. This will be the behavior of
a federated query engine like FedX that ensures answer completeness.2 (ii) End-
points A1 and A2 could be chosen, in this case the number of intermediate results
is given in s2. The number of intermediate results in s2 is less than s1 since some
joins could be executed at A1 and A2. (iii) Another choice may be to use the C1
endpoint in combination with either A1 or A2 (s3, s4). This produces the same
number of intermediate results as in s2, but they have the advantage of access-
ing less public endpoints. (iv) A last choice could be to use the C1 endpoint to
retrieve data for all the triple patterns (s5). This solution profits from replicated
fragments to execute opportunistic joins at C1; thus, it is able to achieve the
best performance in terms of the number of intermediate results.

As the number of transferred tuples increases, the availability of the con-
tacted SPARQL endpoints can be affected. A replication aware federated query
engine could select the best sources to reduce the size of intermediate results
while preserving answer completeness. In this paper, we formally address the
following problem: Given a SPARQL query and a set of relevant SPARQL end-
points with replicated fragments, choose the SPARQL endpoints to contact in
order to produce a complete query answer and transfer the minimum amount of
data. We aim to develop an algorithm that produces solution s5 whenever pos-
sible, providing as output the sources to be used by a federated query engine.

3 Definitions and Problem Description

This section introduces definitions and the source selection problem with frag-
ment replication (SSP-FR).

3.1 Definitions

Fragments are used to replicate RDF data. The data of a fragment is defined
by means of the dataset public endpoint, or authoritative endpoint, and a CON-
STRUCT query with one triple pattern.
2 In order to preserve joins between different endpoints, each triple pattern should be

posed to each endpoint individually.
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Fig. 3. Client defines a federation composed of C1,C2, and C3 that replicates fragments
f2 − f7

Definition 1 (Fragment). A fragment is a tuple f = 〈u, s〉
– u is the non-null URI of the authoritative endpoint where f is available;
– s is a CONSTRUCT query with one triple pattern.

Without loss of generality, s is limited to one triple pattern as in [13],[22];
this reduces the complexity of fragment containment problem as described in
Definition 2. Additionally, we assume replicated fragments comprise RDF data
accessible from public endpoints, i.e., the authoritative endpoints of the repli-
cated fragments are disjoint with data consumer endpoints. This will allow data
consumers to re-organize RDF data replicated from different public endpoints
to fit in this way, their needs and requirements.

In this work, we make the following assumptions: (i) Fragments are replicated
from public endpoints, and there is just one level of replication. (ii) Fragments
are read-only and perfectly synchronized; the fragment synchronization problem
is studied in [13], while querying fragments with divergence is addressed in [16].
(iii) For the sake of simplicity, we suppose that RDF data accessible through the
endpoints are described as fragments.

To illustrate, consider the federation given in Figure 3. This federation
extends the setup in Figure 2. Suppose three Web applications pose queries
against DBpedia and LinkedMDB. To speed up query processing, data consumer
endpoints: C1, C2, and C3 with replicated fragments have been configured.

At startup, the federated query engine loads the fragments description
for each of the federation endpoints, and computes both the fragment and
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containment mappings. The fragment mappings is a function that maps frag-
ments to a set of endpoints; the containment mapping is based on containment
relation (fl � fk) described in the Definition 2.

Two fragments loaded from two different endpoints Ci,Cj that have the
same authoritative endpoint and equivalent construct queries are concatenated
in the fragment mapping. For example, the federated engine loads fragments
〈http://dbpedia.org/sparql, ?film db:director ?director〉 from C1, C2, C3, com-
putes equivalence, and adds in its fragment mapping 〈http://dbpedia.org/sparql,
?film db:director ?director〉 → {C1,C2,C3}.

Query containment and equivalence have been studied extensively. We adapt
the definition given in [11] for the case of a triple pattern query.

Definition 2 (Triple Pattern Containment). Let TP (D) denote the result
of execution of the triple pattern TP against an RDF dataset D. Let TP1 and
TP2 be two triple patterns. We say that TP1 is contained in TP2, denoted by
TP1 � TP2, if for any RDF dataset D, TP1(D) ⊆ TP2(D). We say that TP1 is
equivalent to TP2, denoted by TP1 ≡ TP2, if TP1 � TP2 and TP2 � TP1.

In the case of triple patterns, testing containment [10] amounts to finding
a substitution of the variables in the triple patterns.3 TP1 � TP2, iff there is
a substitution θ such that applying θ to TP2 returns the triple pattern TP1.
Testing triple pattern containment has a complexity of O(1). Solving the deci-
sion problem of triple pattern containment between TP1 and TP2, TP1 � TP2,
requires to check if TP1 imposes at least the same restrictions as TP2 on the
subject, predicate, and object positions, i.e., TP1 should have at most the same
number of unbounded variables as TP2.

For the federation in Figure 3, f5 � f4 because f4 and f5 share the same
authoritative endpoint and there is a substitution θ defined as θ(?genre) =
film genre : 14, θ(?movie) =?movie, and applying θ to f4 returns f5. After
identifying a substitution θ for all pair-wise fragments, it is straightforward to
compute a containment mapping for a federation of SPARQL endpoints.

We can rely on fragment descriptions and the containment property to deter-
mine relevant fragments to a query. Relevant fragments contain relevant RDF
data to each of the triple patterns of the query. A fragment is relevant to a query
Q, if it is relevant to at least one triple pattern of the query.

Definition 3 (Fragment Relevance). Let f be a fragment defined by a triple
pattern TP1. Let TP2 be a triple pattern of a query Q. f is relevant to Q if
TP2 � TP1 or TP1 � TP2.

Table 1a shows the relevant fragments to the triple patterns in query Q, and
the endpoints that provide these fragments. For example, the triple pattern tp1
has two relevant fragments: f6 and f7, and triple pattern tp4 has two relevant
fragments: f4 and f5. Fragment f4 can produce the complete answer of tp4
because f5 � f4, while both f6 and f7 are required to answer tp1.

3 The substitution operator preserves URIs and literals, only variables are substituted.
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Table 1. SSP-FR for query Q over a federation of C1, C2, and C3 of Figure 3

(a) Relevant Fragments to Q

Q triple pattern RF Endpoints
tp1 ?director dbo:nationality ?nat f6 C1

f7 C2
tp2 ?film dbo:director ?director f2 C1,C2,C3
tp3 ?movie owl:sameAs ?film f3 C2,C3
tp4 ?movie linkedmdb:genre ?genre f4 C1,C3

f5 C2

(b) Answer completeness preservation

TP D0(tp) D1(tp) D2(tp)
tp1 {C1,C2} {C1,C2} {C1,C2}
tp2 {C1,C2,C3} {C1} {C3}
tp3 {C2,C3} {C2} {C3}
tp4 {C1,C2,C3} {C3} {C3}

Triples to
transfer

421,675 170,078 8,953

3.2 Source Selection Problem with Fragment Replication (SSP-FR)

Given a SPARQL query Q, a set of SPARQL endpoints E, the set of fragments
F that have been replicated by at least one endpoint in E, a fragment mapping
endpoints(), a containment mapping �.

The Source Selection Problem with Fragment Replication (SSP-FR) is to
assign to each triple pattern in Q, the set of endpoints from E that need to be
contacted to answer Q. A solution of SSP-FR corresponds to a mapping D that
satisfies the following properties:

1. Answer completeness preservation: sources selected in D do not reduce
the query engine answer completeness.

2. Data redundancy minimization: cardinality(D(tp)) is minimized for all
triple pattern tp in Q, i.e., redundant data is minimized.

3. Data transfer minimization: executing the query using the sources
selected in D minimizes the number of transferred data.

We illustrate SSP-FR on running query Q of Figure 3. Table 1a presents
relevant fragments for each triple pattern. Table 1b shows three D(tp) that
ensure the completeness preservation property. It may seem counterintuitive that
these three D(tp) do ensure the completeness preservation property, as they do
not include existing DBpedia triples for dbo:nationality predicate with object
different from dbr:France and dbr:United Kingdom, but as they are not included
in endpoints in E, these triples are inaccessible to the federation. Even if D1

and D2 minimize the number of selected endpoints per triple pattern, only D2

minimizes the transferred data. Indeed, executing tp1, tp2, tp3 against replicated
fragments that are located in the same data consumer endpoint will greatly
reduce the size of intermediate results.

The approach proposed by Saleem et al. [20] is not designed for solving
SSP-FR. Indeed, it does not take into account replicated data, and may produce
a solution as D1. The Fedra algorithm exploits properties of the replicated
fragments and is able to find solution D2.

4 FEDRA: An Algorithm for SSP-FR

The goal of Fedra is to reduce data transfer by taking advantage of the repli-
cation of relevant fragments for several triple patterns on the same endpoint.
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Algorithm 1. Fedra Source Selection algorithm
Require: Q: SPARQL Query; F: set of Fragments; endpoints : Fragment → set of Endpoint; � : TriplePat-

tern × TriplePattern
Ensure: selectedEndpoints: map from TriplePattern to set of Endpoint.
1: function sourceSelection(Q,F,endpoints,�)

2: triplePatterns ← get triple patterns in Q
3: R, E ← ∅, ∅
4: for each tp ∈ triplePatterns do
5: R(tp) ← relevantFragments(tp, F) � Relevant fragments as in Definition 3

6: R(tp) ← {{f : f ∈ R(tp) : tp � f}}⋃{{f} : f ∈ R(tp) : f � tp ∧ ¬(∃g : g ∈ R(tp) : f � g � tp)}
7: E(tp) ← { (

⋃
endpoints(f) : f ∈ fs) : fs ∈ R(tp) }

8: basicGP ← get basic graph patterns in Q
9: for each bgp ∈ basicGP do
10: unionReduction(bgp, E) � endpoints reduction for multiple fragments triples

11: bgpReduction(bgp, E) � endpoints reduction for the bgp triples

12: for each (tp, E(tp)) ∈ E do

13: selectedEndpoints(tp) ← for each set in E(tp) include one element

14: return selectedEndpoints

Algorithm 2. Union reduction algorithm
Require: tps : set of TriplePattern; E : mapping from TriplePattern to set of set of Endpoint
15: procedure unionReduction(tps, E)
16: triplesWithMultipleFragments ← { tp : tp ∈ tps ∧ cardinality(E(tp)) > 1 }
17: for each tp ∈ triplesWithMultipleFragments do
18: commonSources ← (

⋂
f : f ∈ E(tp)) � get sources in all subsets in E(tp)

19: if commonSources �= ∅ then
20: E(tp) ← { commonSources }

Algorithm 1 proceeds in four main steps: I. Identify relevant fragments for triple
patterns, a Basic Graph Pattern (BGP) triple pattern can be contained in one
fragment or a union of fragments (lines 5-6). II. Localize relevant replicated
fragments on the endpoints, e.g., Figure 4 (line 7). III. Prune endpoints for the
unions (line 10). IV. Prune endpoints for the BGPs using a set covering heuristic
(line 11).

Next, we illustrate how Algorithm 1 works on our running query Q and data
consumer endpoints C1, C2, C3 from Figure 3.4

First, for each triple pattern, Fedra computes relevant fragments in R(tp),
and groups them if they provide the same relevant data. For tp1, R(tp1) →
{{f6}, {f7}}. For tp4, as f5 � f4, f5 is safely removed at line 6, and R(tp4) →
{{f4}}. Second, Fedra localizes fragments on endpoints in E(tp). For tp1,
E(tp1) → {{C1}, {C2}}. For tp4, E(tp4) → {{C1, C3}}. Figure 4 shows the
execution plans encoded in R(tp) and E(tp). Triple patterns like tp1, with more
than one relevant fragment, represent unions in the execution plan.

Procedure unionReduction (cf. Algorithm 2) prunes non common end-
points, if possible, to access triple patterns from as few endpoints as possible.
In our running example, it is not possible because there is no common endpoint
that replicates both f6 and f7. However, if, for example, f7 were also replicated
at C1, then only C1 would be selected to execute tp1.

4 As DBpedia is not included in the federation for processing Q, only fragments f6
and f7 are available to retrieve data for tp1 and the engine will not produce all the
answers that would be produced using DBpedia.
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Algorithm 3. Basic graph pattern reduction algorithm
Require: tps : set of TriplePattern; E : mapping from TriplePattern to set of set of Endpoint
21: procedure bgpReduction(tps, E)
22: triplesWithOneFragment ← { tp : tp ∈ tps ∧ cardinality(E(tp)) = 1 }
23: (S, C) ← minimal set covering instance using triplesWithOneFragment�E
24: C’ ← minimalSetCovering(S, C)
25: selected ← get endpoints encoded by C
26: for each tp ∈ triplesWithOneFragment do
27: E(tp) ← E(tp)

⋂
selected

Fig. 4. Execution plan encoded in data structures R (left) and E (right); multiple
subsets represent union of different fragment (ex. {f6}, {f7}); elements of the subset
represent alternative location of fragments (ex. {C1,C3}); bold sources are the selected
sources after set covering is used to reduce number of selected sources

Procedure bgpReduction (cf. Algorithm 3) transforms the join part of
E(tp) (cf. Figure 4) into a set covering problem (cf. line 23). Each triple pattern
is an element of the set to cover, e.g., tp2, tp3, tp4 correspond to s2, s3, s4 (cf.
Figure 5a). And for each endpoint in E(tp), we include the subset of triple pat-
terns associated with that endpoint, e.g., for endpoint C1 we include the subset
{s2,s4} as relevant fragments tp2 and tp4 are replicated by C1 (cf. Figure 5b).
Line 24 relies on an existing heuristic [14] to find the minimum set covering.
In our example, it computes C’={{s2,s3,s4}}. Line 25 computes the selected
endpoints, in our example, selected={ C3 }.

Finally, (Algorithm 1, line 13) chooses among endpoints that provide the
same fragment and reduces data redundancy. For query Q, the whole algorithm
returns D2 of Table 1b.

Proposition 1. Algorithm 1 has a time complexity of O(n.m2), with n the num-
ber of triple patterns in the query, m the number of fragments, k the number of
endpoints, l the number of basic graph patterns in the query, and m � k ∧k � l
holds.

The upper bound given in Proposition 1 is unlikely to be reached, as it
requires for all fragments to be relevant for each of the triple patterns. In practice
(e.g., experiments from Section 5), even for high number of fragments (> 450),
the source selection time remains low (< 2 secs).

Theorem 1. If all the RDF data accessible through the endpoints of a federation
are described as replicated fragments, Fedra source selection does not reduce
query engine answer completeness.
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Fig. 5. Set covering instances of S and C of BGP reduction Algorithm 3 for the query
Q (Figure 3)

Table 2. Dataset characteristics: version, number of different triples (# DT), and
predicates (# P)

Dataset Version date # DT # P
Diseasome 19/10/2012 72,445 19

Semantic Web Dog Food 08/11/2012 198,797 147
DBpedia Geo-coordinates 06/2012 1,900,004 4

LinkedMDB 18/05/2010 3,579,610 148
WatDiv1 104,532 86

WatDiv100 10,934,518 86

5 Experimental Study

The goal of the experimental study is to evaluate the effectiveness
of Fedra. We compare the performance of federated SPARQL queries
using FedX, DAW+FedX, Fedra+FedX, ANAPSID, DAW+ANAPSID, and
Fedra+ANAPSID.

We expect to see that Fedra selects less sources than DAW, and transfers
less data from endpoints to the query engines.

Datasets and Queries: We use the real datasets: Diseasome, Semantic Web
Dog Food, LinkedMDB, and DBpedia Geo-coordinates. Further, we consider
two instances of the Waterloo SPARQL Diversity Test Suite (WatDiv) synthetic
dataset [2,3] with 105 and 107 triples. Table 2 shows the characteristics of these
datasets. The datasets are hosted on local Linked Data Fragment (LDF) servers.

We generate 50,000 queries from 500 templates for the WatDiv federation.
We remove the queries that caused engines to abort execution, and queries that
returned zero results. For the real datasets, we generate more than 10,000 queries
using PATH and STAR shaped templates with two to eight triple patterns,
that are instantiated with random values from the datasets. We include the
DISTINCT modifier in all the queries, in order to make them susceptible to a
reduction in the set of selected sources without changing the query answer.

For each dataset, we setup a ten consumer SPARQL endpoint federation (ten
as in [20]). A consumer SPARQL endpoint is implemented using Jena Fuseki
1.1.15. Each consumer endpoint selects 100 random queries. Each triple pattern

5 http://jena.apache.org/, January 2015.

http://jena.apache.org/
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of the query is executed as a SPARQL construct query with the LDF client6.
The results are stored locally if not present in at least three consumer endpoints
and a fragment definition is created. This replication factor of three was set to
avoid federations where all the fragments were replicated by all the endpoints.

In order to measure the number of transferred data, the federated query
engine accesses data consumer endpoints through a proxy.

Implementations: FedX 3.07 and ANAPSID8 have been modified to call
Fedra and DAW [20] source selection strategies during query processing. Thus,
each engine can use the selected sources to perform its own optimization strate-
gies. Fedra and DAW9 are implemented in both Java 1.7 and Python 2.7.3.
Thus, Fedra and DAW are integrated in FedX (Java) and ANAPSID (Python),
reducing the performance impact of including these new source selection strate-
gies. Proxies are implemented in Java 1.7. using the Apache HttpComponents
Client library 4.3.510. We used R11 to compute the Wilcoxon signed rank
test [24].

Evaluation Metrics: i) Number of Selected Sources (NSS): is the sum of the
number of sources that have been selected per triple pattern. ii) Number of
Transferred Tuples (NTT): is the number of tuples transferred from all the end-
points to the query engine during a query execution.

Further informations (implementation, results, setups details, tests p-values)
are available at https://sites.google.com/site/fedrasourceselection.

5.1 Data Redundancy Minimization

To measure the reduction of the number of selected sources, 100 queries were
randomly chosen, and the source selection was performed for these queries for
each federation using ANAPSID and FedX with and without Fedra or DAW.
For each query, the sum of the number of selected sources per triple pattern was
computed. Boxplots are used to present the results (Figure 6). Both Fedra and
DAW significantly reduce the number of selected sources, however, the reduction
achieved by Fedra is greater than the achieved by DAW.

To confirm it, we formulated the null hypothesis: “Fedra selects the same
number of sources as DAW does”, and performed a Wilcoxon signed rank test,
p-values were inferior or equal to 1.4e-05 for all federations and engines. These
low p-values allow for rejecting the null hypothesis that DAW and Fedra reduc-
tion are similar, and accepting the alternative hypothesis that Fedra reduction
is greater than the one achieved by DAW. Fedra source selection strategy iden-
tifies the relevant fragments and endpoints that provide the same data. Only one

6 https://github.com/LinkedDataFragments, March 2015.
7 http://www.fluidops.com/fedx/, September 2014.
8 https://github.com/anapsid/anapsid, September 2014.
9 We had to implement DAW as its code is not available.

10 https://hc.apache.org/, October 2014.
11 http://www.r-project.org/

https://sites.google.com/site/fedrasourceselection
https://github.com/LinkedDataFragments
http://www.fluidops.com/fedx/
https://github.com/anapsid/anapsid
https://hc.apache.org/
http://www.r-project.org/
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Fig. 6. Number of Selected Sources for execution of ANAPSID (A) and FedX (F) using
Fedra (F+), DAW (D+), and the engine source selection

of them is actually selected; in consequence, a huge reduction on the number of
selected sources of up to 400% per query is achieved.

5.2 Data Transfer Minimization

To measure the reduction in the number of transferred tuples, queries were
executed using proxies that measure the number of transmitted tuples from
endpoints to the engines. Because queries that timed out have no significance
on number of transferred tuples, we removed all these queries from the study.12

Results (Figure 7) show that Fedra source selection strategy leads to executions
with considerably less intermediate results in all the federations except in the
SWDF federation. In some queries of the SWDF federation, Fedra+FedX sends
exclusive groups that include BGPs with triple patterns that do not share a
variable, i.e., BGPs with Cartesian products; in presence of Cartesian product,
large intermediate results may be generated. Queries with Cartesian products
counters Fedra positive impact over other queries.
12 Up to six queries out of 100 queries did not successfully finish in 1,800 seconds,

details available at the web page.



48 G. Montoya et al.

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●●
●

●

●

●

●●●●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●

●

●

●●
●

●

●

●●●●
●
●

F+A D+A A F+A D+A A F+A D+A A F+A D+A A F+A D+A A F+A D+A A

100

102

104

106

Diseasome Geocoordinates LinkedMDB SWDF WatDiv1 WatDiv100

N
um

be
r 

of
 T

ra
ns

fe
rr

ed
 T

up
le

s

●

●
●

●

●
●

●
●●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

F+F D+F F F+F D+F F F+F D+F F F+F D+F F F+F D+F F F+F D+F F

100

102

104

106

Diseasome Geocoordinates LinkedMDB SWDF WatDiv1 WatDiv100

N
um

be
r 

of
 T

ra
ns

fe
rr

ed
 T

up
le

s

Fig. 7. Number of Transferred Tuples during execution with ANAPSID (A) and FedX
(F) using Fedra (F+), DAW (D+), and the engine source selection

Despite that, globally Fedra shows an effective reduction of the number
of transferred tuples. To confirm it, we formulated the null hypothesis: “using
sources selected by Fedra leads to transfer the same number of tuples as using
sources selected by DAW”; and performed a Wilcoxon signed rank test, p-values
were inferior or equal to 0.002 for all federations and engines except SWDF
federation + FedX engine. In consequence, for all combinations of federation and
engines except SWDF+FedX, we can reject the null hypothesis DAW and Fedra
number of transferred tuples are similar and accept the alternative hypothesis
that Fedra achieves a greater reduction of the number of transferred tuples
than DAW. The reduction of the number of transferred tuples is mainly due to
Fedra source selection strategy aims to find opportunities to execute joins in
the endpoints, and mostly, it leads to a significant reduction of the intermediate
results size of up to four orders of magnitude.

6 Related Work

In distributed databases, data fragmentation and replication improve data avail-
ability and query performance [17]. Data fragmentation is tailored for represen-
tative queries; fragments are smartly allocated and replicated across servers for
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balancing workload and reducing size of intermediate results. Linked Data [7] is
intrinsically a federation of autonomous participants where federated queries are
unknown to a single participant, and a tight coordination of data providers is dif-
ficult to achieve. Consequently, federated query engines cannot rely on properties
ensured by an allocation algorithm. SSP-FR challenge is to best use fragment
localities to reduce intermediate results in a given federation.

Recently, the Linked Data fragments approach (LDF) [22,23] proposes to
improve Linked Data availability by moving query execution load from servers
to clients. A client is able to execute locally a restricted SPARQL query by down-
loading fragments required to execute the query from an LDF server through a
simple HTTP request. This strategy allows clients to cache fragments locally and
decreases the load on the LDF server. LDF chooses a clear tradeoff by shifting
query processing to clients, at the cost of slower query execution. In experiments,
we present how to federate several SPARQL consumer endpoints that replicate
fragments from LDF servers. Re-organizing fragments on data consumers opens
the opportunity to process federated queries even with LDF servers.

Col-graph [13] enables data consumers to materialize triple pattern fragments
and to expose them through SPARQL endpoints to improve data quality. A data
consumer can update her local fragments and share updates with data providers
and consumers. Col-graph proposes a coordination free protocol to maintain
the consistency of replicated fragments. Currently, Fedra can process federated
queries over Col-graph collaboration networks if the topology of Col-graph is
restricted to two layers without cycles. Fedra does not yet consider divergence
between fragments produced by concurrent editing, but it is addressed in [16].

HiBISCuS [19] source selection approach has been proposed to reduce the
number of selected sources. The reduction is achieved by annotating sources
with their authority URIs, and pruning sources that cannot have triples that
match any of the query triple patterns. HiBISCuS differs from our aim of both
selecting sources that are required to the answer, and avoiding the selection
of sources that only provide redundant replicated fragments. While not directly
related to replication, HiBISCuS index could be used in conjunction with Fedra
to perform join-aware source selection in presence of replicated fragments.

Recently, QBB [12] and DAW [20] propose duplicate-aware strategies for
selecting sources for federated query engines. Both approaches use sketches to
estimate the overlapping among sources. DAW uses a combination of Min-Wise
Independent Permutations (MIPs) [8], and triple selectivity information to esti-
mate the overlap between the results of different sources. Based on how many new
query results are expected to be found, sources that are below predefined bene-
fits, are discarded and not selected. Compared to DAW, Fedra does not require
to compute data summaries because Fedra relies on fragment definitions and
fragment containment to manage replication. Computing containments based on
fragment descriptions is less expensive than computing data summaries; more-
over, data updates are more frequent than fragment description updates. Fedra
minimizes the number of endpoints and data transfer and produces complete
query answers. Consequently, if DAW and Fedra could find the same number
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of sources to execute a query, Fedra source selection considers the query basic
graph patterns to delegate join execution to the endpoints and reduce interme-
diate results size. This key feature cannot be achieved by DAW as it performs
source selection only at the triple pattern level.

7 Conclusions

In this paper, we illustrated how replicating fragments allow for data re-
organization from different data sources to better fit query needs of data con-
sumers. Then, we proposed a replication-aware federated query engine by extend-
ing state-of-art federated query engine ANAPSID and FedX with Fedra, a
source selection strategy that approximates SSP-FR.

Fedra exploits fragment localities to reduce intermediate results. Experi-
mental results demonstrate that Fedra achieves significant reduction of inter-
mediate results while preserving query answer completeness.

This work opens several perspectives. First, we made the assumption that
replicated fragments are perfectly synchronized and cannot be updated. We can
leverage this assumption and manage the problem of federated query processing
with divergence [16].

Several variants of SSP-FR can also be developed. SSP-FR does not differ-
entiate between endpoints and the cost of accessing endpoints is considered the
same. Finally, SSP-FR and Fedra can be extended to solve the source selection
problem where the number of public endpoint accesses is minimized [16].
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Abstract. Benchmarking is indispensable when aiming to assess tech-
nologies with respect to their suitability for given tasks. While several
benchmarks and benchmark generation frameworks have been devel-
oped to evaluate triple stores, they mostly provide a one-fits-all solution
to the benchmarking problem. This approach to benchmarking is how-
ever unsuitable to evaluate the performance of a triple store for a given
application with particular requirements. We address this drawback by
presenting FEASIBLE, an automatic approach for the generation of
benchmarks out of the query history of applications, i.e., query logs.
The generation is achieved by selecting prototypical queries of a user-
defined size from the input set of queries. We evaluate our approach on
two query logs and show that the benchmarks it generates are accurate
approximations of the input query logs. Moreover, we compare four dif-
ferent triple stores with benchmarks generated using our approach and
show that they behave differently based on the data they contain and
the types of queries posed. Our results suggest that FEASIBLE generates
better sample queries than the state of the art. In addition, the better
query selection and the larger set of query types used lead to triple store
rankings which partly differ from the rankings generated by previous
works.

1 Introduction

Triple stores are the data backbone of many Linked Data applications [9]. The
performance of triple stores is hence of central importance for Linked-Data-based
software ranging from real-time applications [8,13] to on-the-fly data integration
frameworks [1,15,18]. Several benchmarks (e.g., [2,4,7,9,16,17]) for assessing the
performance of the triple stores have been proposed. However, many of them
(e.g., [2,4,7,17]) rely on synthetic data or on synthetic queries. The main advan-
tage of such synthetic benchmarks is that they commonly rely on data generators
that can produce benchmarks of different data sizes and thus allow to test the
scalability of triple stores. However, they often fail to reflect reality. In particu-
lar, previous works [5] point out that artificial benchmarks are typically highly
structured while real Linked Data sources are most commonly weakly structured.

c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 52–69, 2015.
DOI: 10.1007/978-3-319-25007-6 4
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Moreover, synthetic queries most commonly fail to reflect the characteristics of
the real queries sent to applications [3,11]. Thus, synthetic benchmark results
are rarely sufficient to detect the most suitable triple store for a particular real
application. The DBpedia SPARQL Benchmark (DBPSB) [9] addresses a por-
tion of these drawbacks by evaluating the performance of triple stores based
on real DBpedia query logs. The main drawback of this benchmark is however
that it does not consider important data-driven and structural query features
(e.g., number of join vertices, triple patterns selectivities or query execution
times etc.) which greatly affect the performance of triple stores [2,6] during the
query selection process. Furthermore, it only considers SELECT queries. The other
three basic SPARQL query forms, i.e., ASK, CONSTRUCT, and DESCRIBE are not
included.

In this paper we present FEASIBLE, a benchmark generation framework able
to generate benchmarks from a set of queries (in particular from query logs). Our
approach aims to generate customized benchmarks for given use cases or needs of
an application. To this end, FEASIBLE assumes that it is given a set of queries
well as the number of queries (e.g., 25) to be included into the benchmark as
input. Then, our approach computes a sample of the selected subset that reflects
the distribution of the queries in the input set of queries. The resulting queries
can then be fed to a benchmark execution framework to benchmark triple stores.
The contributions of this work are as follows:

1. We present the first structure and data-driven feature-based benchmark gen-
eration approach from real queries. By comparing FEASIBLE with DBPSB,
we show that considering data-driven and structural query features leads to
benchmarks that are better approximations of the input set of queries.

2. We present a novel sampling approach for queries based based on exem-
plars [10] and medoids.

3. Beside SPARQL SELECT, we conduct the first evaluation of 4 triple stores
w.r.t. to their performance on ASK, DESCRIBE and CONSTRUCT queries sepa-
rately.

4. We show that the performance of triple stores varies greatly across the four
basic forms of SPARQL query. Moreover, we show that the features used
by FEASIBLE allow for a more fine-grained analysis of our benchmarking
results.

The rest of this paper is structured as follows: We begin by providing an
overview of the key SPARQL query features that need to be considered while
designing SPARQL benchmarks. Then, we compare existing benchmarks against
these key query features systematically (Section 3) and point out the weaknesses
of current benchmarks that are addressed by FEASIBLE. Our benchmark gener-
ation process is presented in Section 4. A detailed comparison with DBPSB and
an evaluation of the state-of-the-art triple stores follows thereafter. The results
are then discussed and we finally conclude. FEASIBLE is open-source and avail-
able online at https://code.google.com/p/feasible/. A demo can be found at
http://feasible.aksw.org/.

https://code.google.com/p/feasible/
http://feasible.aksw.org/
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2 Preliminaries

In this section, we define key concepts necessary to understand the subsequent
sections of this work. We represent each basic graph pattern (BGP) of a SPARQL
query as a directed hypergraph (DH) according to [14]. We chose this represen-
tation because it allows representing property-property joins, which previous
works [2,6] do not allow to model. The DH representation of a BGP is formally
defined as follows:

Definition 1. Each basic graph patterns BGPi of a SPARQL query can be rep-
resented as a DH HGi = (V,E, λvt), where

– V = Vs ∪ Vp ∪ Vo is the set of vertices of HGi, Vs is the set of all subjects
in HGi, Vp the set of all predicates in HGi and Vo the set of all objects in
HGi;

– E ={e1,. . . , et}⊆ V 3 is a set of directed hyperedges (short: edge). Each edge
e= (vs,vp,vo) emanates from the triple pattern <vs, vp, vo> in BGPi. We
represent these edges by connecting the head vertex vs with the tail hyper-
vertex (vp, vo). We use Ein(v) ⊆ E and Eout(v) ⊆ E to denote the set of
incoming and outgoing edges of a vertex v;

– λvt is a vertex-type-assignment function. Given a vertex v ∈ V , its vertex
type can be ’star’, ’path’, ’hybrid’, or ’sink’ if this vertex participates in
at least one join. A ’star’ vertex has more than one outgoing edge and no
incoming edge. A ’path’ vertex has exactly one incoming and one outgoing
edge. A ’hybrid’ vertex has either more than one incoming and at least one
outgoing edge or more than one outgoing and at least one incoming edge.
A ’sink’ vertex has more than one incoming edge and no outgoing edge. A
vertex that does not participate in any join is of type ’simple’.

The representation of a complete SPARQL query as a DH is the union of
the representations of query’s BGPs. As an example, the DH representation of
the query in Figure 1a is shown in Figure 1b. Based on the DH representation
of SPARQL queries we can define the following features of SPARQL queries:

Definition 2 (Number of Triple Patterns). From Definition 1, the total
number of triple patterns in a BGPi is equal to the number of hyperedges |E| in
the DH representation of the BGPi.

Definition 3 (Number of Join Vertices). Let ST ={st1,. . . , stj} be the set
of vertices of type ’star’, PT ={pt1,. . . , ptk} be the set of vertices of type ’path’,
HB ={hb1,. . . , hbl} be the set of vertices of type ’hybrid’, and SN ={sn1,. . . ,
snm} be the set of vertices of type ’sink’ in a DH representation of a SPARQL
query, then the total number of join vertices in the query #JV = |ST |+ |PT |+
|HB| + |SN |.
Definition 4 (Join Vertex Degree). Based on the DH representation of
SPARQL queries, the join vertex degree of a vertex v is JV D(v) = |Ein(v)| +
|Eout(v)|, where Ein(v) resp Eout(v) is the set of incoming resp. outgoing edges
of v.
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SELECT DISTINCT ∗ WHERE
{
?drug : d e s c r i p t i on ?drugDesc .
?drug : drugType : smal lMolecule .
?drug : keggCompoundId ?compound .
?enzyme : xSubstrate ?compound .
? Chemica l react ion : xEnzyme ?enzyme .
? Chemica lreact ion : equat ion ?ChemicalEquation .
? Chemica l react ion : t i t l e ? React ionTi t l e .
}

(a) Examplary SPARQL query

: drugType
: small
Molecule

Drug
: descri−
ption

drug
Desc

: keggCo−
mpoundId

compound : xSubs−
tract

: xEnzyme enzyme

Chemical
Reaction

: equation Chemical
Equation

Tail of hyperedge

: title

Reaction
T itle

Simple Star Path Sink

(b) Corresponding hypergraph

Fig. 1. DH representation of the SPARQL query. Prefixes are ignored for simplicity

Definition 5 (Triple Pattern Selectivity). Let tpi be a triple pattern and d
be a relevant source for tpi. Furthermore, let N be the total number of triples in
d and Nm be the total number of triples in d that matches tpi, then the selectivity
of tpi w.r.t. d is Sel(tpi, d) = Nm/N .

According to previous works [2,6], a SPARQL query benchmark should vary
the queries it contains w.r.t. the following query characteristics: number of triple
patterns, number of join vertices, mean join vertex degree, query result set sizes,
mean triple pattern selectivities, join vertex types (’star’, ’path’, ’hybrid’, ’sink’),
and SPARQL clauses used (e.g., LIMIT, OPTIONAL, ORDER BY, DISTINCT, UNION,
FILTER, REGEX). In addition, a SPARQL benchmark should contain (or provide
options to select) all four SPARQL query forms (i.e., SELECT, DESCRIBE, ASK,
and CONSTRUCT). Furthermore, the benchmark should contain queries of varying
runtimes, ranging from small to reasonably large query execution times. In the
next section, we compare state-of-the-art SPARQL benchmarks based on these
query features.

3 A Comparison of Existing Benchmarks and Query Logs

Different benchmarks have been proposed to compare triple stores for their query
execution capabilities and performance. Table 1 provides a detailed summary of
the characteristics of the most commonly used benchmarks as well as of two real
query logs. All benchmark executions and result set computations were carried
out on a machine with 16 GB RAM and a 6-Core i7 3.40 GHz CPU running
Ubuntu 14.04.2. All synthetic benchmarks were configured to generate 10 mil-
lion triples. We ran LUBM [7] on OWLIM-Lite as it requires reasoning. All
other benchmarks were ran on virtuoso 7.2 with NumberOfBuffers = 1360000,
and MaxDirtyBuffers = 1000000. As query logs, we used (1) the portion of the
DBpedia 3.5.1 query log (a total of 3,159,812 queries) collected between April
30th, 2010 and July 20th, 20101 as well as (2) the portion of the Semantic Web
Dog Food (SWDF) query log (a total of 1,414,391 queries) gathered between
1 We chose this query log because it was used by DBPSB.
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Table 1. Comparison of SPARQL benchmarks and query logs (F-DBP = FEASIBLE
Benchmarks from DBpedia query log, DBP = DBpedia query log, F-SWDF = FEA-
SIBLE Benchmark from Semantic Web Dog Food query log, SWDF = Semantic Web
Dog Food query log, TPs = Triple Patterns, JV = Join Vertices, MJVD = Mean
Join Vertices Degree, MTPS = Mean Triple Pattern Selectivity, S.D. = Standard
Deviation). Runtime(ms)

LUBM BSBM SP2Bench WatDiv DBPSB F-DBP DBP F-SWDF SWDF

#Queries 15 125 12 125 125 125 130466 125 64030

F
o
rm

s
(%

) SELECT 100 80 91.67 100 100 95.2 97.9 92.8 58.7
ASK 0 0 8.33 0 0 0 1.93 2.4 0.09

CONSTRUCT 0 4 0 0 0 4 0.09 3.2 0.04
DESCRIBE 0 16 0 0 0 0.8 0.02 1.6 41.1

C
la
u
se

s
(%

)

UNION 0 8 16.67 0 36 40.8 7.97 32.8 29.3
DISTINCT 0 24 41.6 0 100 52.8 4.1 50.4 34.18
ORDER BY 0 36 16.6 0 0 28.8 0.3 25.6 10.67

REGEX 0 0 0 0 4 14.4 0.2 16 0.03
LIMIT 0 36 8.33 0 0 38.4 0.4 45.6 1.79

OFFSET 0 4 8.33 0 0 18.4 0.03 20.8 0.14
OPTIONAL 0 52 25 0 32 30.4 20.1 32 29.5

FILTER 0 52 58.3 0 48 58.4 93.3 29.6 0.72
GROUP BY 0 0 0 0 0 0.8 7.6E-6 19.2 1.34

R
e
su

lt
s Min 3 0 1 0 197 1 1 1 1

Max 1.3E+4 31 4.3E+7 4.1E+9 4.6E+6 1.4E+6 1.4E+6 3.0E+5 3.0E+5
Mean 4.9E+3 8.3 4.5E+6 3.4E+7 3.2E+5 5.2E+4 404 9091 39.5
S.D. 1.1E+4 9.03 1.3E+7 3.7E+8 9.5E+5 1.9E+5 1.2E+4 4.7E+4 2208

B
G
P
s

Min 1 1 1 1 1 1 0 0 0
Max 1 5 3 1 9 14 14 14 14
Mean 1 2.8 1.5 1 2.69 3.17 1.67 2.68 2.28
S.D. 0 1.70 0.67 0 2.43 3.55 1.66 2.81 2.9

T
P
s

Min 1 1 1 1 1 1 0 0 0
Max 6 15 13 12 12 18 18 14 14
Mean 3 9.32 5.9 5.3 4.5 4.8 1.7 3.2 2.5
S.D. 1.81 5.17 3.82 2.60 2.79 4.39 1.68 2.76 3.21

J
V

Min 0 0 0 0 0 0 0 0 0
Max 4 6 10 5 3 11 11 3 3
Mean 1.6 2.88 4.25 1.77 1.21 1.29 0.02 0.52 0.18
S.D. 1.40 1.80 3.79 0.99 1.12 2.39 0.23 0.65 0.45

M
J
V
D

Min 0 0 0 0 0 0 0 0 0
Max 5 4.5 9 7 5 11 11 4 5
Mean 2.02 3.05 2.41 3.62 1.82 1.44 0.04 0.96 0.37
S.D. 1.29 1.63 2.26 1.40 1.43 2.13 0.33 1.09 0.87

M
T
P
S

Min 3.2E-4 9.4E-8 6.5E-5 0 1.1E-5 2.8E-9 1.2E-5 1.0E-5 1.0E-5
Max 0.432 0.045 0.53 0.011 1 1 1 1 1
Mean 0.01 0.01 0.22 0.004 0.119 0.140 0.005 0.291 0.0238
S.D. 0.074 0.01 0.20 0.002 0.22 0.31 0.03 0.32 0.07

R
u
n
ti
m
e Min 2 5 7 3 11 2 1 4 3

Max 3200 99 7.1E+5 8.8E+8 5.4E+4 3.2E+4 5.6E+4 4.1E+4 4.1E+4
Mean 437 9.1 2.8E+5 4.4E+8 1.0E+4 2242 30.4 1308 16.1
S.D. 320 14.5 5.2E+5 2.7E+7 1.7E+4 6961 702.5 5335 249.6
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May 16th, 2014 and November 12th, 2014. Note that we only considered queries
(called cleaned queries) which produce at least 1 result after the query execution
(130,466 queries from DBpedia and 64,029 queries from SWDF).2 In the follow-
ing, we compare these benchmarks and query logs w.r.t. the features shown in
Table 1.

LUBM was designed to test the triple stores and reasoners for their reason-
ing capabilities. It is based on a customizable and deterministic generator for
synthetic data. The queries included in this benchmark commonly lead to query
results sizes ranges from 2 to 3200, query triple patterns ranges from 1 to 6,
and all the queries consist of a single BGP. LUBM includes a fixed number of
SELECT queries (i.e., 15) where none of the clauses shown in Table 1 is used.

The Berlin SPARQL Benchmark (BSBM) [4] uses a total of 125 query tem-
plates to generate any number of SPARQL queries for benchmarking. Multi-
ple use cases such as explore, update, and business intelligence are included in
this benchmark. Furthermore, it also includes many of the important SPARQL
clauses of Table 1. However, the queries included in this benchmark are rather
simple with an average query runtime of 9.1 ms and a largest query result set
size of 31.

SP2Bench mirrors vital characteristics (such as power law distributions or
Gaussian curves) of the data in the DBLP bibliographic database. The queries
given in benchmark are mostly complex. For example, the mean (across all
queries) query result size is above one million and the query runtimes are in
the order of 105 ms (see Table 1).

The Waterloo SPARQL Diversity Test Suite (WatDiv) [2] addresses the lim-
itations of previous benchmarks by providing a synthetic data and query genera-
tor to generate large number of queries from a total of 125 queries templates. The
queries cover both simple and complex categories with varying number of fea-
tures such as result set sizes, total number of query triple patterns, join vertices
and mean join vertices degree. However, this benchmark is restricted to conjunc-
tive SELECT queries (single BGPs). This means that non-conjunctive SPARQL
queries (e.g., queries which make use of the UNION and OPTIONAL features) are not
considered. Furthermore, WatDiv does not consider other important SPARQL
clauses, e.g., FILTER and REGEX. However, our analysis of the query logs of DBpe-
dia3.5.1 and SWDF given in table 1 shows that 20.1% resp. 7.97% of the DBpedia
queries make use of OPTIONAL resp. UNION clauses. Similarly, 29.5% resp. 29.3%
of the SWDF queries contain OPTIONAL resp. UNION clauses.

While the distribution of query features in the benchmarks presented so far is
mostly static, the use of different SPARQL clauses and triple pattern join types
varies greatly from data set to data set, thus making it very difficult for any
synthetic query generator to reflect real queries. For example, the DBpedia and
SWDF query log differ significantly in their use of DESCRIBE (41.1% for SWDF vs
0.02% for DBpedia), FILTER (0.72% for SWDF vs 93.3% for DBpedia) and UNION
(29.3% for SWDF vs 7.97% for DBpedia) clauses. Similar variations have been

2 The datadumps, query logs and cleaned queries for both datasets can be downloaded
from project home page
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reported in [3] as well. To address this issue, the DBpedia SPARQL Benchmark
(DBPSB) [9] (which generates benchmark queries from query logs) was proposed.
However, this benchmark does not consider key query features (i.e., number of
join vertices, mean join vertices degree, mean triple pattern selectivities, the
query result size and overall query runtimes) while selecting query templates.
Note that previous works [2,6] pointed that these query features greatly affect
the triple stores performance and thus should be considered while designing
SPARQL benchmarks.

In this work we present FEASIBLE, a benchmark generation framework
which is able to generate a customizable benchmark from any set of queries, esp.
from query logs. FEASIBLE addresses the drawbacks on previous benchmark
generation approaches by taking all of the important SPARQL query features
of Table 1 into consideration when generating benchmarks. In the following, we
present our approach in detail.

4 FEASIBLE Benchmark Generation

The benchmark generation behind our approach consists of 3 main steps. The
first step is the cleaning step. Thereafter, the features of the queries are normal-
ized. In a final step, we then select a sample of the input queries that reflects the
cleaned input queries and return this sample. The sample can be used as seed in
template-based benchmark generation approaches such as DBSBM and BSBM.

4.1 Data Set Cleaning

The aim of the data cleaning step is to remove erroneous and zero-result queries
from the set of queries used to generate benchmarks. This step is not of theoreti-
cal necessity but leads to practically reliable benchmarks. To clean the input data
set (here query logs), we begin by excluding all syntactically incorrect queries.
The syntactically correct queries which lead to runtime errors3 as well as queries
which return zero results are removed from the set of relevant queries for bench-
marking. We attach all 9 SPARQL clauses (e.g., UNION, DISTINCT) and 7 query
features (i.e., runtime, join vertices, etc.) given in Table 1 to each of the queries.
For the sake of simplicity we call these 16 (i.e., 9+7) properties query features
in the following. All unique queries are then stored in a file4 and given as input
to the next step.

4.2 Normalization of Feature Vectors

The query selection process of FEASIBLE requires distances between queries to
be computed. To ensure that dimensions with high values (e.g., the result set
size) do not bias the selection, we normalize the query representations to ensure

3 The runtime errors were measured using Virtuoso 7.2.
4 A sample file can be found at http://goo.gl/YUSU9A

http://goo.gl/YUSU9A
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that all queries are located in a unit hypercube. To this end, each of the queries
gathered from the previous step is mapped to a vector of length 16 which stores
the corresponding query features as follows: For the SPARQL clauses, which are
binary (e.g., UNION is either used or not used), we store a value 1 if that clause
in used in the query. Otherwise we store a 0. All non-binary feature vectors are
normalized by dividing their value with the overall maximal value in the data
set. Therewith, we ensure that all entries of the query representations are values
between 0 to 1.

4.3 Query Selection

The query selection process is based on the idea of exemplars used in [10] and is
shown in Algorithm 1. We assume that we are given (1) a number e ∈ N of queries
to select as benchmark queries as well as (2) a set of queries L with |L| = n >> e,
where L is the set of all cleaned and normalized queries. The intuition behind
our selection approach is to compute an e-sized partition L = {L1, . . . , Le} of L
such that (1) the average distance between the points in two different elements
of the partition is high and (2) the average distance of points within a partition
is small. We can then select the point closest to the average of each Li (i.e.,
the medoid of Li) to be a prototypical example of a query from L and include
it into the benchmark generated by FEASIBLE. We implement this intuition
formally by (1) selecting e exemplars (i.e., points that represent a portion of
the space) that are as far as possible from each other, (2) partitioning L by
mapping every point of L to one of these exemplars to compute a partition
of the space at hand and (3) selecting the medoid of each of the partitions of
space as a query in the benchmark. In the following, we present each of these
steps formally. For the sake of clarity, we use the following running example:
L = {q1 = [0.2, 0.2], q2 = [0.5, 0.3], q3 = [0.8, 0.5], q4 = [0.9, 0.1], q5 = [0.5, 0.5]}
and assume that we need a benchmark with e = 2 queries. Note for the sake of
simplicity, we used feature vectors of length 2 instead of 16.

Selection of Exemplars. We implement an iterative approach to the selection
of exemplars (see lines 1-7 of Algorithm 1). We begin by finding the average
L̃ = 1

n

∑

q∈L

q of all representations of queries q ∈ L. In our example, this point

has the coordinates [0.58, 0.32]. The first exemplar X1 is the point of L that is
closest to the average and is given by X1 = arg min

x∈L
d(L̃, x), where d stands for

the Euclidean distance. In our example, this is the query q2 with a distance of
0.08. We follow an iterative procedure to extending the set X of all exemplars:

We first find η = arg max
y∈L\X

(
∑

x∈X
d(x, y)

)

. η is the point that is furthest away from

all exemplars. In our example, that is the query q4 with a distance of 0.45 from
q2. We then add η to X and repeat the procedure for finding η until |X | = e.
Given that e = 2 in our example, we get the set X = {q2, q4} as set of exemplars.
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Algorithm 1. Query Selection Approach
Data: Set of queries L; Size of the benchmark e
Result: Benchmark (set of queries) B

1 L̃ = 1
|L|

∑

q∈L

q ;

2 X1 = {argmin
x∈L

d(L̃, x)} ;

3 X = {X1} ;
4 for i = 2; i ≤ e; i + + do
5 Xi = {argmax

y∈L\X
d(y, X )};

6 X = X ∪ {Xi};
7 end
8 L = ∅;
9 for i = 1; i ≤ e; i + + do

10 Li = {Xi};
11 L = L ∪ {Li};
12 end
13 for i = 1; i ≤ e; i + + do
14 Li = {q ∈ L\X : Xi = argmin

X∈X
d(X, q)}

15 end
16 B = ∅;
17 for i = 1; i ≤ e; i + + do

18 L̃i = 1
|Li|

∑

q∈Li

q;

19 bi = argmin
q∈Li

d(L̃i, q);

20 B = B ∪ {bi};
21 end
22 return B;

Selection of Benchmark Queries. Let X = {X1, . . . , Xe} the set of all exem-
plars. The selection of benchmark queries begins with partitioning the space
according to X . The partition Li is defined as Li = {q ∈ L : ∀j �= i : d(q,Xi) ≤
d(q,Xj)} ((see lines 8-15 of Algorithm 1). It is simply the set of queries that are
closer to Xi than to any other exemplar. In case of a tie, i.e., d(q,Xi) = d(q,Xj)
with i �= j, we assign q to min(i, j). In our example, we get the following parti-
tion: X = {{q1, q2, q3, q5}, {q4}}. Finally, we perform the selection of prototypical
queries from each partition (see lines 17-22 of Algorithm 1). For each partition
Li we begin by computing the average L̃i of all representations of queries in Li.
We then select the query bi = arg min

q∈Li

d(L̃i, q). The set B of benchmark queries

is the set of all queries bi over all Li. Note that |B| = e. In our example, q4
being the only query in the second partition means that q4 is selected as repre-
sentative for the second partition. The average of the first partition is located
at [0.5, 0.375]. The query q2 is the closest to the average, leading to q2 being
selected as representative for the first partition. Our approach thus returns a
benchmark with the queries {q2, q4} as result.

Figures 2a and 2b show Voronoi diagrams of the results of our approach
for benchmarks of size 125 and 175 derived from the DBpedia 3.5.1 query log
presented in Table 1 along the two dimensions with the highest entropy. Note
that some of the queries are superposed in the diagram.
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(a) DBpedia-125 (b) DBpedia-175

Fig. 2. Voronoi diagrams for benchmarks generated by FEASIBLE along the two axes
with maximal entropy. Each of the red points is a benchmark query. Several points are
superposed as the diagram is a projection of a 16-dimensional space unto 2 dimensions.

5 Complexity Analysis

In the following, we study the complexity of our benchmark generation approach.
We denote the number of features considered during the generation process with
d. e is the number of exemplars and |L| the size of the input data set. Read-
ing and cleaning the file can be carried out in O(|L|d) as each query is read
once and the features are extracted one at a time. We now need to compute
the exemplars. We begin by computing the average A of all queries, which can
be carried out using O(|L|d) arithmetic operations. Finding the query that is
nearest to A has the same complexity. The same approach is used to detect the
other exemplars, leading to an overall complexity of O(e|L|d) for the computa-
tion of exemplars. Mapping each point to the nearest exemplar has an a-priori
complexity of O(e|L|d) arithmetic operations. Given that the distances between
the exemplars and all the points in L are available from the previous step, we
can simply look up the distances and thus gather this information in O(1) for
each pair of exemplar and point, leading to an overall complexity of O(e|L|).
Finally, the selection of the representative in the cluster demands averaging the
elements of the cluster and selecting the query that is closest to this point. For
each cluster of size |Cl|, we need (d|Cl|) arithmetic operations to find the aver-
age point. The holds for finding the query nearest to the average. Given that
the sum of the sizes of all the clusters is |L|, we can conclude that the overall
complexity of the selection step is O(d|L|). Overall, the worst-case complexity
of our algorithm is thus O(d|L||E|).

In the best case, no queries passes the cleaning test, leading to no further
processing and to the same complexity as reading the data, which is O(|L|d).
The same best-case complexity holds when a benchmark is generated. Here, the
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filtering step returns exactly e queries, leading to the exemplar generation step
being skipped and thus to a complexity of O(|L|d).

6 Evaluation and Results

Our evaluation comprises two main parts. First, we compare FEASIBLE with
DBPSB w.r.t. how well the benchmarks represent the input data. To this end,
we use the composite error function defined below. In the second part of our
evaluation, we use FEASIBLE benchmarks to compare triple stores w.r.t. their
query execution performance.

6.1 Composite Error Estimation

The benchmarks we generate aim to find typical queries for a given query log.
From the point of view of statistics, this is equivalent to computing a subset of
a population that has the same characteristics (here mean and standard devia-
tion) as the original population. Thus, we measure the quality of the sampling
approach of a benchmark by how much the mean and standard deviation of the
features of its queries deviates from that of the query log. We call μi resp. σi the
mean resp. the standard deviation of a given distribution w.r.t. to the ith feature
of the said distribution. Let B be a benchmark extracted from a set of queries
L. We use two measures to compute the difference between B and L, i.e., the
error on the means Eμ and deviations Eσ

Eμ =
1
k

k∑

j=1

(μi(L) − μi(B))2 and Eσ =
1
k

k∑

j=1

(σi(L) − σi(B))2. (1)

We define a composite error estimation E as the harmonic mean of Eμ and Eσ:

E =
2EμEσ

Eμ + Eσ
. (2)

6.2 Experimental Setup

Data sets and Query Logs: We used the DBpedia 3.5.1 (232.5M triples) and
SWDF (294.8K triples) data sets for triple store evaluation. As queries (see
Section 3), we used 130,466 cleaned queries for DBpedia and 64,029 cleaned
queries for SWDF.

Benchmarks for Composite Error Analysis: In order to compare FEASIBLE
with DBPSB, we generated benchmarks of sizes 15, 25, 50, 75, 100, 125, 150,
and 175 queries from the DBpedia 3.5.1 query log. Recall this is exactly the same
query log used in DBPSB. DBPSB contains a total of 25 query templates derived
from 25 real queries. A single query was generated per query template in order to
generate a benchmark of 25 queries. Similarly, 2 queries were generated per query
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template for a benchmark of 50 queries and so on. The 15-query benchmark of
DBPSB was generated from the 25-query benchmark by randomly choosing 15 of
the 25 queries. We chose to show results on a 15-query benchmark because LUBM
contains 15 queries while SP2Bench contains 12. We also generated benchmarks
of the same size (15-175) from SWDF to compare FEASIBLE’s composite errors
as well as the performance of triple stores across different data sets.

Triple Stores: We used four triple stores in our evaluation: (1) Virtuoso Open-
Source Edition version 7.2 with NumberOfBuffers = 680000, MaxDirtyBuffers
= 500000; (2) Sesame Version 2.7.8 with Tomcat 7 as HTTP interface and
native storage layout. We set the spoc, posc, opsc indices to those specified in
the native storage configuration. The Java heap size was set to 6GB; (3) Jena-
TDB (Fuseki) Version 2.0 with a Java heap size set to 6GB and (4) OWLIM-SE
Version 6.1 with Tomcat 7.0 as HTTP interface. We set the entity index size to
45,000,000 and enabled the predicate list. The rule set was empty and the Java
heap size was set to 6GB. Ergo, we configured all triple stores to use 6GB of
memory and used default values otherwise.

Benchmarks: Most of the previous evaluations were carried out on SELECT
queries only (see Table 1). Here, beside evaluating the performance of triples
stores on SELECT evaluation, we also wanted to compare triple stores on the
other three forms of SPARQL queries. To this end, we generated DBpedia-
ASK-100 (100-ASK-query benchmark derived from DBpedia) and SWDF-
ASK-50 (50-ASK-query benchmark derived from SWDF)5 and compared the
selected triple stores for their ASK query processing performances. Simi-
larly, we generated DBpedia-CONSTRUCT-100 and SWDF-CONSTRUCT-23,
DBpedia-DESCRIBE-25 and SWDF-DESCRIBE-100, and DBpedia-SELECT-
100 and SWDF-SELECT-100 benchmarks to test the selected systems for
CONSTRUCT, DESCRIBE, and SELECT queries, respectively. Furthermore, we gen-
erated DBpedia-Mix-175 (DBpedia benchmark of 175 mix queries of all the four
query forms) and SWDF-Mix-175 to test the selected triple stores for their gen-
eral query processing performance.

Benchmark Execution: The evaluation was carried out one triple store at a time
on one machine. First, all data sets were loaded into the selected triple store.
Once the triple store had completed the data loading, the 2-phase benchmark
execution phase began: (1) Warm-up Phase: To measure the performance of
the triple store under normal operational conditions, a warm-up phase was used
where random queries from the query log were posed to triple stores for 10
minutes; (2) Hot-run Phase: During this phase, the benchmark query mixes
were sent to the tested store. We kept track of the average execution time of each
query as well as of the number of query mixes per hour (QMpH). This phase
lasted for two hours for each triple store. Note that the benchmark and the triple

5 We chose to select only 50 queries because the SWDF log we used does not contain
enough ASK queries to generate a 100-query benchmark.
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store were run on the same machine to avoid network latency. We set the query
timeout to 180 seconds. The query was aborted after that and maximum time of
180 seconds was used as the query runtime for all queries which timed out. All
the data (data dumps, benchmarks, query logs, FEASIBLE code) to repeat our
experiments along with complete evaluation results are available at the project
website.

6.3 Experimental Results

Composite Error. Table 2 shows a comparison of the composite errors of
DBPSB and FEASIBLE for different benchmarks. Note that DBPSB queries
templates are only available for the DBpedia query log. Thus, we were not
able to calculate DBPSB’s composite errors for SWDF. As an overall composite
error evaluation, FEASIBLE’s composite error is 54.9% smaller than DBPSB.
The reason for DBPSB’s error being higher that FEASIBLE’s lies in the fact
that it only considers the number of query triple patterns and the SPARQL
clauses UNION, OPTIONAL, FILTER, LANG, REGEX, STR, and DISTINCT as features.
Important query features (such as query result sizes, execution times, triple pat-
terns and join selectivities, and number of join vertices) were not considered
when generating the 25 query templates.6 Furthermore, DBPSB only includes
SELECT queries. The other three SPARQL query forms, i.e., CONSTRUCT, ASK, and
DESCRIBE are not considered. In contrast, our approach considers all of the query
forms, SPARQL clauses, and query features reported in Table 1.7 It is important
to mention that FEASIBLE’s overall composite error across both data sets is
only 0.038.

Table 2. Comparison of the Mean Eμ , Standard Deviation Eσ and Composite E
errors for different benchmark sizes of DBpedia and Semantic Web Dog Food query
logs. FEASIBLE outperforms DBPSB across all dimensions.

Benchmark FEASIBLE DBPSB Benchmark FEASIBLE
Eμ Eσ E Eμ Eσ E Eμ Eσ E

DBpedia-15 0.045 0.054 0.049 0.139 0.192 0.161 SWDF-15 0.019 0.043 0.026
DBpedia-25 0.041 0.054 0.046 0.113 0.139 0.125 SWDF-25 0.034 0.051 0.041
DBpedia-50 0.045 0.056 0.050 0.118 0.132 0.125 SWDF-50 0.036 0.052 0.043
DDBpedia-75 0.053 0.061 0.057 0.096 0.095 0.096 SWDF-75 0.035 0.051 0.042
DDBpedia-100 0.054 0.064 0.059 0.130 0.132 0.131 SWDF-100 0.036 0.050 0.042
DDBpedia-125 0.054 0.064 0.058 0.088 0.082 0.085 SWDF-125 0.034 0.048 0.040
DBpedia-150 0.055 0.064 0.059 0.107 0.124 0.115 SWDF-150 0.033 0.046 0.038
DBpedia-175 0.055 0.065 0.059 0.127 0.144 0.135 SWDF-175 0.033 0.045 0.038

Average 0.050 0.060 0.055 0.115 0.130 0.121 Average 0.032 0.048 0.039

6 Queries templates available at: http://goo.gl/1oZCZY
7 See FEASIBLE online demo for the customization of these features

http://goo.gl/1oZCZY
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Triple Store Performance. Figure 3 shows a comparison of the selected triple
stores in terms of queries per second (QpS) and query mixes per hour (QMpH)
for different benchmarks generated by FEASIBLE. Table 3 shows the overall
rank-wise query distributions of the triple stores. Our ranking is partly different
from the DBPSB ranking. Overall, (for mix DBpedia and SWDF benchmarks
of 175 queries each, Figure 3e to Figure 3g), Virtuoso ranks first followed by
Fuseki, OWLIM-SE, and Sesame. Virtuoso is 59% faster than Fuseki. Fuseki is
1.7% faster than OWLIM-SE, which in turn 16% faster than Sesame.8

A more fine-grained look at the evaluation reveals surprising findings: On
ASK queries, Virtuoso is clearly faster than the other frameworks (45% faster
than Sesame, which is 16% faster than Fuseki, which is in turn 96% faster than
OWLIM-SE, see Figure 3a). The ranking changes for CONSTRUCT queries: While
Virtuoso is still first (87% faster than OWLIM-SE), OWLIM-SE is now faster
that 14% faster than Fuseki, which in turn is 42% faster than Sesame (Figure
3b). The most drastic change occurs on the DESCRIBE benchmark, where Fuseki
ranks first (66% faster than Virtuoso, which is 86% faster than OWLIM-SE,
which in turns 47% faster than Sesame, see Figure 3c). Yet another ranking
emerges from the SELECT benchmarks, where Virtuoso is overall 55% faster than
OWLIM-SE, which is 41% faster than Fuseki, which in turns 11% faster than
Sesame (Figure 3d). These results show that the performance of triple stores
varies greatly across the four basic SPARQL forms and none of the system is the
sole winner across all query forms. Moreover, the ranking also varies across the
different datasets (see, e.g., ASK benchmark for DBpedia and SWDF). Thus, our
results suggest that (1) a benchmark should comprise a mix of SPARQL ASK,
CONSTRUCT, DESCRIBE, and SELECT queries that reflects the real intended usage of
the triple stores to generate accurate results and (2) there is no universal winner
amongst triple stores, which points again towards the need to create customized
benchmarks for applications when choosing their backend. FEASIBLE addresses
both of these requirements by allowing users to generate dedicated benchmarks
from their query logs.

Some interesting observations were revealed by the rank-wise queries distri-
butions of triple stores shown in Table 3: First, none of the system is sole winner
or loser for a particular rank. Overall, Virtuoso’s performance mostly lies in the
higher ranks, i.e., rank 1 and 2 (68.29%). This triple store performs especially
well on CONSTRUCT queries. Fuseki’s performance is mostly in the middle ranks,
i.e., rank 2 and 3 (65.14%). In general, it is faster for DESCRIBE queries and
is on a slower side for CONSTRUCT and queries containing FILTER and ORDER
BY clauses. While OWLIM-SE’s performance is usually on the slower side, i.e.,
rank 3 and 4 (60.86 %), it performs well on complex queries with large result
set sizes and complex SPARQL clauses. Finally, Sesame is either fast or slow.
For example, for 31.71% of the queries, it achieve the rank 1 (second best after
Virtuoso) and but achieves rank 4 on 23.14% of the queries (second worse after
OWLIM-SE). In general Sesame is very efficient on simple queries with small

8 Note the percentage improvements are calculated from the QMpH values as A is
(1-QMpH(A)/QMpH(B)*100) percent faster than B.
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Fig. 3. Comparison of the triple stores in terms of Queries per Second (QpS) and
Query Mix per Hour (QMpH), where a Query Mix comprise of 175 distinct queries.
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Table 3. Overall rank-wise ranking of triple stores. All values are in percentages.

SWDF DBpedia Overall
Triple Store 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th

Virtuoso 38.29 24.57 21.71 15.43 54.86 18.86 15.43 10.86 46.57 21.71 18.57 13.14
Fuseki 17.14 39.43 32.00 11.43 24.00 34.86 24.00 17.14 20.57 37.14 28.00 14.29
OWLIM-SE 10.29 30.29 21.14 38.29 13.14 24.57 25.14 37.14 11.71 27.43 23.14 37.71
Sesame 37.71 12.00 29.14 21.14 25.71 16.57 32.57 25.14 31.71 14.29 30.86 23.14

result set sizes, a small number of triple triple patterns, and a few SPARQL
clauses. However, it performs poorly as soon as the queries grow in complexity.
These results shows yet another aspect of the importance of taking structural
and data-driven features into consideration while generating benchmarks as they
allow deeper insights into the type of queries on which systems perform well or
poorly.

Finally, we also looked into the number of query timeouts during the complete
evaluation. Most of the systems time out for SELECT queries. Overall, Sesame has
the highest number of timeouts (43) followed by Fuseki (32), OWLIM-SE (22),
and Virtuoso (14). For Virtuoso, the timeout queries have at least one triple
pattern with an unbound subject, an unbound predicate and an unbound object
(i.e., a triple pattern of the form ?s ?p ?o). The corresponding result sets were
so large that they could not be computed in 3 minutes. The other three systems
mostly timeout for the same queries. OWLIM-SE generally performs better for
complex queries with large result set sizes. Fuseki has problems with queries
containing FILTER (12/32) and ORDER BY clauses (11/32 queries). Sesame’s per-
formance is slightly worse for complex queries containing many triple patterns
and joins as well as complex SPARQL clauses. Note that Sesame also times out
for 8 CONSTRUCT queries. All the timeout queries for each triple store are provided
at the project website.

7 Conclusion

In this paper we presented FEASIBLE, a customizable SPARQL benchmark
generation framework. We compared FEASIBLE with DBPSB and showed that
our approach is able to produce high-quality (in terms of their composite error)
benchmarks. In addition, our framework allows users to generate customized
benchmarks suited for a particular use case, which is of utmost importance
when aiming to gather valid insights into the real performance of different triple
stores for a given application. This is demonstrated by our triple store evaluation,
which shows that the ranking of triple stores varies greatly across different types
of queries as well as across datasets. Our results thus suggest that all of the
four query forms should be included in the future SPARQL benchmarks. For
the sake of future work, we have started converting linked data query logs into
RDF and made available through the LSQ [12] endpoint. Beside the key queries
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characteristics discussed in Table 1, we have attached many of the SPARQL
1.1 features to each of the query. We will extend FEASIBLE to query the LSQ
SPARQL endpoint directly so as to gather queries for the benchmark creation
process.
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Abstract. The Web of Linked Data is composed of tons of RDF docu-
ments interlinked to each other forming a huge repository of distributed
semantic data. Effectively querying this distributed data source is an
important open problem in the Semantic Web area. In this paper, we pro-
pose LDQL, a declarative language to query Linked Data on the Web.
One of the novelties of LDQL is that it expresses separately (i) pat-
terns that describe the expected query result, and (ii)Web navigation
paths that select the data sources to be used for computing the result.
We present a formal syntax and semantics, prove equivalence rules, and
study the expressiveness of the language. In particular, we show that
LDQL is strictly more expressive than the query formalisms that have
been proposed previously for Linked Data on the Web. The high expres-
siveness allows LDQL to define queries for which a complete execution
is not computationally feasible over the Web. We formally study this
issue and provide a syntactic sufficient condition to avoid this problem;
queries satisfying this condition are ensured to have a procedure to be
effectively evaluated over the Web of Linked Data.

1 Introduction

In recent years an increasing amount of structured data has been published
and interlinked on the World Wide Web (WWW) in adherence to the Linked
Data principles [3]. These principles are based on standard Web technologies. In
particular, (i) the Hypertext Transfer Protocol (HTTP) is used to access data,
(ii) HTTP-based Uniform Resource Identifiers (URIs) are used as identifiers
for entities described in the data, and (iii) the Resource Description Frame-
work (RDF) is used as data model. Then, any HTTP URI in an RDF triple
presents a data link that enables software clients to retrieve more data by look-
ing up the URI with an HTTP request. The adoption of these principles has lead
to the creation of a globally distributed dataspace: the Web of Linked Data.

The emergence of the Web of Linked Data makes possible an online exe-
cution of declarative queries over up-to-date data from a virtually unbounded
set of data sources, each of which is readily accessible without any need for
implementing source-specific APIs or wrappers. This possibility has spawned
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 73–91, 2015.
DOI: 10.1007/978-3-319-25007-6 5
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research interest in approaches to query Linked Data on the WWW as if it was
a single (distributed) database. For an overview on query execution techniques
proposed in this context refer to [12].

The main contribution of this paper is the proposal of LDQL, a novel query
language for the Web of Linked Data. The most important feature of LDQL is
that it clearly separates query components for selecting query-relevant regions
of the Web of Linked Data, from components for specifying the query result
that has to be constructed from the data in the selected regions. The most basic
construction in LDQL are tuples of the form 〈L,Q〉 where L is an expression used
to select a set of relevant documents, and Q is a query intended to be executed
over the data in these documents as if they were a single RDF repository. In
an abstract setting one can use several formalisms to express L and Q. In our
proposal, for the former part we introduce the notion of link path expressions that
are a form of nested regular expressions (with some other important features)
used to navigate the link graph of the Web. For the latter, we use standard
SPARQL graph patterns. To begin evaluating these queries one needs to specify
a set of seed URIs. The language also possesses features to dynamically (at query
time) identify new seed URIs to evaluate portions of a query. Additionally, such
queries can be combined by using conjunctions, disjunctions, and projection. We
present a formal syntax and semantics for LDQL, propose some rewrite rules,
and study its expressive power.

While there does not exist a standard language for expressing queries over
Linked Data on the WWW, a few options have been proposed. In particular, a
first strand of research focuses on extending the scope of SPARQL such that an
evaluation of SPARQL queries over Linked Data has a well-defined semantics [9,
11,14,18]. A second strand of research focuses on navigational languages [7,14].
Although these languages have different motivations, a commonality of all these
proposals is that, in contrast to LDQL, the definition of query-relevant regions
of the Web of Linked Data and the definition of query-relevant data within the
specified regions are mixed.

As our second main contribution we compare LDQL with three previously
proposed formalisms for querying the Web of Linked Data: SPARQL under
reachability-based query semantics [11], NautiLOD [7], and SPARQL Property
Path patterns under context-based semantics [14]. We formally prove that LDQL
is strictly more expressive than every one of these. We show that for every query
Q in the previous languages, one can effectively construct an LDQL query which
is equivalent to Q. Moreover, for every one of the previous languages, there exists
an LDQL query that cannot be expressed in that language. These results show
that LDQL presents an interesting expressive power.

The downside of the expressiveness provided by LDQL is the existence of
queries for which a complete execution is not feasible in practice. To capture
this issue formally, we define a notion of Web-safeness for LDQL queries. Then,
the obvious question that arises is how to identify LDQL queries that are Web-
safe. Our last technical contribution is the identification of a sufficient syntactic
condition for Web-safeness.
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The rest of the paper is structured as follows. Section 2 introduces a data
model that provides the basis for defining the semantics of LDQL. In Section 3
we formally define the syntax and semantics of LDQL and show some simple
algebraic properties. In Section 4 we compare LDQL with the three mentioned
languages, and in Section 5 we focus on Web-safeness. Section 6 concludes the
paper and sketches future work. Proofs of the formal results in this paper can
be found in an extended version of the paper [13].

A preliminary version of some of the results in this paper have been presented
in a workshop [10]. This paper is a substantial extension of [10] refining the
definition of LDQL and introducing important changes to the syntax and the
semantics of the language. Moreover, the comparison with previous proposals
was not discussed in [10].

2 Data Model

In this section we introduce a structural data model that captures the concept
of a Web of Linked Data formally. As usual [7,9,11,14,18], for the definitions
and analysis in this paper, we assume that the Web is fixed during the execution
of any single query.

We use the RDF data model [5] as a basis for our model of a Web of Linked
Data. That is, we assume three pairwise disjoint, infinite sets U (URIs), B (blank
nodes), and L (literals). An RDF triple is a tuple 〈s, p, o〉 ∈ T with T = (U ∪
B) × U × (U ∪ B ∪ L). For any RDF triple t = 〈s, p, o〉 we write uris(t) to denote
the set of all URIs in t.

Additionally, we assume another infinite set D that is disjoint from U , B,
and L, respectively. We refer to elements in this set as documents and use them
to represent the concept of Web documents from which Linked Data can be
extracted. Hence, we assume a function, say data, that maps each document
d ∈ D to a finite set of RDF triples data(d) ⊆ T such that the data of each
document uses a unique set of blank nodes.

Given these preliminaries, we are ready to define a Web of Linked Data.

Definition 1. A Web of Linked Data is a tuple W = 〈D, adoc〉 that consists
of a set of documents D ⊆ D and a partial function adoc : U → D that is
surjective.

Function adoc of a Web of Linked Data W = 〈D, adoc〉 captures the relation-
ship between the URIs that can be looked up in this Web and the documents
that can be retrieved by such lookups. Since not every URI can be looked up, the
function is partial. For any URI u ∈ U with u ∈ dom(adoc) (i.e., any URI that
can be looked up in W ), document d = adoc(u) can be considered the author-
itative source of data for u in W (hence, the name adoc). To accommodate for
documents that are authoritative for multiple URIs, we do not require injec-
tivity for function adoc. However, we require surjectivity because we conceive
documents as irrelevant for a Web of Linked Data if they cannot be retrieved by
any URI lookup in this Web.
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Fig. 1. The link graph GWex of our example Web of Linked Data Wex.

Let W = 〈D, adoc〉 be a Web of Linked Data. W is said to be finite [11]
if its set D of documents is finite. In this paper we assume that every Web of
Linked Data is finite. Given documents d, d′ ∈ D and a triple t ∈ data(d), we
say that a URI u ∈ uris(t) establishes a data link from d to d′, if adoc(u) = d′.
As a final concept, we formalize the notion of a link graph associated to W.
This graph has documents in D as nodes, and directed edges representing data
links between documents. Each edge is associated with a label that identifies
both the particular RDF triple and the URI in this triple that establishes the
corresponding data link. These labels shall provide the basis for defining the
navigational component of our query language.

Definition 2. The link graph of a Web of Linked Data W = 〈D, adoc〉,
is a directed, edge-labeled multigraph, GW = 〈D,EW 〉, with set of edges
EW ⊆ D × (T × U) × D defined as EW =

{〈dsrc, (t, u), dtgt〉 | t ∈ data(dsrc), u ∈
uris(t) and dtgt = adoc(u)

}
.

For a link graph edge e = 〈dsrc, (t, u), dtgt〉, tuple (t, u) is the label of e.
Moreover, we sometimes write e ∈ GW to denote that e is an edge in the link
graph GW .

Example 1. As a running example for this paper assume a simple Web of Linked
Data Wex = 〈Dex, adocex〉 with three documents, dA, dB, and dC (i.e., Dex =
{dA, dB, dC}). The data in these documents are the following sets of RDF triples:

data(dA) = {〈uA, p1, uB〉, data(dB) = {〈uB, p1, uC〉};
〈uB, p2, uC〉}; data(dC) = {〈uA, p2, uC〉};

and for function adocex we have: adocex(uA)=dA, adocex(uB)=dB, adocex(uC)=
dC, and adocex(p1) = dA (i.e., dom(adocex)={uA, uB, uC, p1}). This Web contains
10 data links. For instance, URI uA in the RDF triple 〈uA, p2, uC〉 ∈ data(dC)
establishes a data link to document dA. Hence, the corresponding edge in the
link graph of Wex is

〈
dC, (〈uA, p2, uC〉, uA), dA

〉
. Figure 1 illustrates the link graph

GWex with all 10 edges.

3 Definition of LDQL

This section defines our Linked Data query language, LDQL. LDQL queries are
meant to be evaluated over a Web of Linked Data and each such query is built
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from two types of components: Link path expressions (LPEs) for selecting que-
ry-relevant documents of the queried Web of Linked Data; and SPARQL graph
patterns for specifying the query result that has to be constructed from the
data in the selected documents. For this paper, we assume that the reader is
familiar with the definition of SPARQL [8], including the algebraic formaliza-
tion introduced in [2,16]. In particular, for SPARQL graph patterns we closely
follow the formalization in [2] considering operators AND , OPT , UNION , FILTER , and
GRAPH , plus the operator BIND defined in [8]. We begin this section by introducing
the most basic concept of our language, the notion of link patterns. We use link
patterns as the basis for navigating the link graph of a Web of Linked Data.

3.1 Link Patterns

A link pattern is a tuple in
(U ∪ { ,+}) × (U ∪ { ,+}) × (U ∪ L ∪ { ,+}).

Link patterns are used to match link graph edges in the context of a designated
context URI. The special symbol + denotes a placeholder for the context URI.
The special symbol denotes a wildcard that will drive the direction of the
navigation. Before formalizing how link graph edges actually match link patterns,
we show some intuition. Consider the link graph of Web Wex in Example 1 (see
Fig. 1), and the link pattern 〈+, p1, 〉. Intuitively, in the context of URI uA, the
edge with label (〈uA, p1, uB〉, uB) from document dA to document dB, matches
the link pattern 〈+, p1, 〉. Notice that in the matching, the context URI uA

takes the place of symbol +, and uB takes the place of the wildcard symbol
. Notice that uB also denotes the direction of the edge that matches the link

pattern. On the other hand, the edge with label (〈uA, p1, uB〉, uA) from dA to
dA, does not match 〈+, p1, 〉; although uB can take the place of the wildcard
symbol , the direction of the edge is not to uB. That is, when matching an edge
labeled by (t, u) we require URI u to be taking the place of a wildcard in the link
pattern. When more than one wildcard symbol is used, the link pattern can be
matched by edges pointing to the direction of any of the URIs taking the place
of a wildcard. For instance, in the context of uA, the link pattern 〈 , p2, 〉 is
matched by edges 〈dA, (〈uB, p2, uC〉, uB), dB〉 and 〈dA, (〈uB, p2, uC〉, uC), dC〉. The
next definition formalizes this notion of matching.

Definition 3. A link graph edge with label (〈x1, x2, x3〉, u) matches a link
pattern 〈y1, y2, y3〉 in the context of a URI uctx if the following two properties
hold:

1. there exists i ∈ {1, 2, 3} such that yi = and xi = u, and
2. for every i ∈ {1, 2, 3} either yi = + and xi = uctx, or yi = xi, or yi = .

One of the rationales for adopting the notion of a context URI and the +
symbol in our definition of link patterns, is to support cases in which link graph
navigation has to be focused solely on data links that are authoritative. A data
link represented by link graph edge 〈dsrc, (t, u), dtgt〉 ∈ GW is authoritative in a
Web of Linked Data W = 〈D, adoc〉 if dsrc = adoc(u′) for some URI u′ ∈ uris(t).
Thus, if we fix a context URI uctx, a link pattern that uses the + symbol allows
us to follow only authoritative data links from document dctx = adoc(uctx).
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3.2 LDQL Queries

The most basic construction in LDQL queries are tuples of the from 〈L,P 〉 where
L is an expression used to select a set of documents from the Web of Linked
Data, and P is a SPARQL graph pattern to query these documents as if they
were a single RDF dataset. In an abstract setting, one can use any formalism
to specify L as long as L defines sets of RDF documents. In our proposal we
use what we call link path expressions (LPEs) that are a form of nested regular
expressions [17] over the alphabet of link patterns. Every link path expression
begins its navigation in a context URI, traverses the Web, and returns a set of
URIs; these URIs are used to construct an RDF dataset with all the documents
to be retrieved by looking up the URIs. This dataset is passed to the SPARQL
graph pattern to obtain the final evaluation of the whole query. Besides the
basic constructions of the form 〈L,P 〉, in LDQL one can also use AND , UNION and
projection, to combine them. We also introduce an operator SEED that is used
to dynamically change, at query time, the seed URI from which the navigation
begins. The next definition formalizes the syntax of LDQL queries and LPEs.

Definition 4. The syntax of LDQL is given by the following production rules
in which lp is an arbitrary link pattern, ?v is a variable, P is a SPARQL graph
pattern (as per [2]), V is a finite set of variables, and U is a finite set of URIs:

q := 〈lpe, P 〉 | (SEED U q) | (SEED ?v q) | (q AND q) | (q UNION q) | πV q

lpe := ε | lp | lpe/lpe | lpe|lpe | lpe∗ | [lpe] | 〈?v, q〉
Any expression that satisfies the production q is an LDQL query, any expres-
sion that satisfies the production lpe is a link path expression (LPE), and
any LDQL query of the form 〈lpe, P 〉 is a basic LDQL query.

Before going into the formal semantics of LDQL and LPEs, we give some
more intuition about how these expressions are evaluated in a Web of Linked
Data W. As mentioned before, the most basic expression in LDQL is of the
form 〈lpe, P 〉. To evaluate this expression over W we will need a set S of seed
URIs. When evaluating 〈lpe, P 〉, every one of the seed URIs in S will trigger a
navigation of link graph GW via the link path expression lpe starting on that
seed. That is, the seed URIs are passed to lpe as context URIs in which the LPE
should be evaluated. These evaluations of lpe will result in a set of URIs that
are used to construct a dataset over which P is finally evaluated.

Regarding the navigation of link graph GW, the most basic form of naviga-
tion is to follow a single link graph edge that matches a link pattern lp. When
a navigation via a link pattern lp is triggered from a context URI u, we pro-
ceed as follows. We first go to the authoritative document for u, that is adoc(u),
and try to find outgoing link graph edges that match lp in the context of u (as
explained in Section 3.1). Every one of these matches defines a new context URI
u′ from which the navigation can continue. More complex forms of navigation
are obtained by combining link patterns via classical regular expression oper-
ators such as concatenation /, disjunction |, and recursive concatenation (·)∗.
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The nesting operator [·] is used to test for existence of paths. When a context
URI u is passed to an expression [lpe], it checks whether GW contains a path from
dctx = adoc(u) that matches lpe. If such a path exists, the navigation can con-
tinue from the same context URI u. The most involved form of navigation is by
using the expression 〈?v, q〉 with q an LDQL query. To evaluate this expression
from context URI u one first has to pass u as a seed URI for q and recursively
evaluate q from that seed. This evaluation generates a set of solution mappings,
and for every one of these mappings its value on variable ?v is used as the new
context URI from which the navigation continues. Finally, note that our notion
of LPEs does not provide an operator for navigating paths in their inverse direc-
tion. The reason for omitting such an operator is that traversing arbitrary data
links backwards is impossible on the WWW.

To formally define the semantics of LDQL we need to introduce some termi-
nology. We first define a function datasetW (·) that from a set of URIs con-
structs an RDF dataset with all the documents pointed to by those URIs
in W. Formally, given a Web of Linked Data W = 〈D, adoc〉 and a set U
of URIs, datasetW (U) is an RDF dataset (as per [2,8]) that has the set of
triples {t ∈ data(adoc(u)) | u ∈ U ∩ dom(adoc)} as default graph. Moreover,
for every URI u ∈ U ∩ dom(adoc), datasetW (U) contains the named graph
〈u,data(adoc(u))〉.
Example 2. Consider the Web Wex in Example 1 and the set of URIs
U = {uA, uC}. Then datasetWex(U) has {〈uA, p1, uB〉, 〈uB, p2, uC〉, 〈uA, p2, uC〉}
as default graph, and two named graphs, 〈uA, {〈uA, p1, uB〉, 〈uB, p2, uC〉}〉 and
〈uC, {〈uA, p2, uC〉}〉.

In the formalization of the semantics of LDQL, we use the standard join oper-
ator �� over sets of solution mappings [8,16]. We also make use of the semantics
of SPARQL graph patterns over datasets as defined in [2]. In particular, given
an RDF dataset D, an RDF graph G in D, and a SPARQL graph pattern P , we
denote by [[P ]]DG the evaluation of P over G in D [2, Definition 13.3].

We are now ready to formally define the semantics of LDQL and LPEs. Given
a Web of Linked Data W and a set S of URIs, we formalize the evaluation of
LDQL queries over W from the seed URIs S, as a function [[·]]SW that given an
LDQL query, produces a set of solution mappings. Similarly, the evaluation of
LPEs over W from a context URI u, is formalized as a function [[·]]uW that given
an LPE, produces a set of URIs.

Definition 5. Given a finite set S ⊆ U , the S-based evaluation of LDQL
queries over a Web of Linked Data W = 〈D, adoc〉, denoted by [[·]]SW , is defined
recursively as follows:



80 O. Hartig and J. Pérez

[[〈lpe, P 〉]]SW = [[P ]]DG where D = datasetW

(⋃
u∈S [[lpe]]uW

)
with default graph G,

[[(SEED U q)]]SW = [[q]]UW ,

[[(SEED ?v q)]]SW =
⋃

u∈U
(
[[q]]

{u}
W �� {μu}) where μu = {?v �→ u} for all u ∈ U ,

[[(q1 UNION q2)]]
S
W = [[q1]]

S
W ∪ [[q2]]

S
W ,

[[(q1 AND q2)]]
S
W = [[q1]]

S
W �� [[q2]]

S
W ,

[[ πV q ]]SW = {μ | there exists μ′ ∈ [[q]]SW such that μ and μ′ are

compatible and dom(μ) = dom(μ′) ∩ V }.

Now for the semantics of LPEs, given a context URI uctx ∈ dom(adoc), the
uctx-based evaluation of LPEs over W, denoted by [[·]]uctx

W , is defined recursively
as follows:

[[ ε ]]uctx
W = {uctx},

[[lp]]uctx
W = {u ∈ U | there exist a link graph edge 〈dsrc, (t, u), dtgt〉 ∈ GW , with

dsrc = adoc(uctx), that matches lp in the context of uctx},

[[lpe1/lpe2]]
uctx
W = {u ∈ [[lpe2]]

u′
W | u′ ∈ [[lpe1]]

uctx
W },

[[lpe1|lpe2]]
uctx
W = [[lpe1]]

uctx
W ∪ [[lpe2]]

uctx
W ,

[[lpe∗]]uctx
W = {uctx} ∪ [[lpe]]uctx

W ∪ [[lpe/lpe]]uctx
W ∪ [[lpe/lpe/lpe]]uctx

W ∪ ... ,

[[ [lpe] ]]uctx
W = {uctx | [[lpe]]uctx

W 	= ∅},

[[ 〈?v, q〉 ]]uctx
W = {u ∈ U | there exists μ ∈ [[q]]

{uctx}
W such that μ(?v) = u}.

Moreover, if uctx /∈ dom(adoc), then [[lpe]]uctx

W = ∅ for every LPE.

Example 3. Let lpeex be the LPE 〈 , p1, 〉∗/[〈 , p2, 〉]. This LPE selects doc-
uments that can be reached via arbitrarily long paths of data links with predi-
cate p1 and, additionally, have some outgoing data link with predicate p2. For
our example Web Wex and context URI uA, the LPE selects documents dA =
adocex(uA) and dC = adocex(uC). More precisely, we have [[lpeex]]

uA

Wex
= {uA, uC}.

Note that document dB can also be reached via a p1–path, but it does not pass
the p2–related test.

Example 4. Consider a set of URIs Sex = {uA} and a basic LDQL
query 〈lpeex, Bex〉 whose LPE is lpeex as introduced in Example 3 and
whose SPARQL graph pattern is a basic graph pattern that contains
two triple patterns, Bex = {〈?x, p1, ?y〉, 〈?x, p2, ?z〉}. Given that we have
[[lpeex]]

uA

Wex
= {uA, uC} (cf. Example 3), datasetWex([[lpeex]]

uA

Wex
) has the default

graph {〈uA, p1, uB〉, 〈uB, p2, uC〉, 〈uA, p2, uC〉} (cf. Example 2). Then, according
to the query semantics, the result of query 〈lpeex, Bex〉 over Wex using seeds Sex

consists of a single solution mapping, namely μ = {?x 
→ uA, ?y 
→ uB, ?z 
→ uC}.

Example 5. Consider an LDQL query qex =
(
SEED ?x

〈
ε, 〈?x, p1, ?w〉〉) whose

subquery is a basic LDQL query that has a single triple pattern as its SPARQL
graph pattern. Additionally, let q′

ex =
〈
lpeex, {〈?x, p1, ?y〉, 〈?x, p2, ?z〉}〉 be the

basic LDQL query introduced in Example 4, and let q′′
ex be the conjunction

of these two queries; i.e., q′′
ex = (qex AND q′

ex). By Example 4 we know that
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[[q′
ex]]

Sex

Wex
= {μ} with μ = {?x 
→ uA, ?y 
→ uB, ?z 
→ uC}. Furthermore, based

on the data given in Example 1, it is easy to see that [[qex]]Sex

Wex
= {μ1, μ2} with

μ1 = {?x 
→ uA, ?w 
→ uB} and μ2 = {?x 
→ uB, ?w 
→ uC}. For the Sex-based
evaluation of q′′

ex over Wex, the result sets [[qex]]Sex

Wex
and [[q′

ex]]
Sex

Wex
have to be joined.

Thus, we need to compute {μ1, μ2} �� {μ}, which results in a single mapping
μ′ = μ1 ∪ μ = {?x 
→ uA, ?w 
→ uC, ?y 
→ uB, ?z 
→ uC}.

3.3 Algebraic Properties of LDQL Queries

As a basis for the discussion in the next sections, we show some simple alge-
braic properties. We say that LDQL queries q and q′ are semantically equivalent,
denoted by q ≡ q′, if [[q]]SW = [[q′]]SW holds for every Web of Linked Data W and
every finite set S ⊆ U .

Lemma 1. The operators AND and UNION are associative and commutative.

Lemma 2. Let q1, q2, q3 be LDQL queries, the following semantic equivalences
hold:

(q1 AND (q2 UNION q3)) ≡ ((q1 AND q2) UNION (q1 AND q3)) (1)
πV (q1 UNION q2) ≡ (πV q1 UNION πV q2) (2)

(SEED U (q1 UNION q2)) ≡ ((SEED U q1) UNION (SEED U q2)) (3)
(SEED ?v (q1 UNION q2)) ≡ ((SEED ?v q1) UNION (SEED ?v q2)) (4)

Lemma 1 allows us to write sequences of either AND or UNION without paren-
theses. Our next result shows the power of the construction 〈?v, q〉. In particular,
it shows the somehow surprising finding that link patterns lp, concatenation /,
disjunction |, and the test [·], are just syntactic sugar as they can be simulated
by using ε, 〈?v, q〉 and (·)∗.

Proposition 1. For every LDQL query q, there exists an LDQL query q′ s.t.
q ≡ q′ and every LPE in q′ consists only of the symbol ε, the construction 〈?v, q〉,
and operator (·)∗.

Proof (Sketch). The proof is based on a recursive translation of link path expres-
sions beginning with link patterns. For instance, a link pattern of the form
〈+, p, 〉 is encoded by 〈?v, 〈ε, (GRAPH ?u (?u, p, ?v))〉〉, and we can similarly
encode all types of link patterns. To encode / we make use of 〈?v, q〉 and the
operator AND inside q as follows. Consider an LPE r = r1/r2. It can be shown
that r is equivalent to 〈?v, q〉 where q is:

( 〈r1, (GRAPH ?x { })〉 AND
(
SEED ?x 〈r2, (GRAPH ?v { })〉) ).

Similarly, to encode | we make use of UNION and to encode [·] we use projection.

Although not strictly necessary, we decided to keep link patterns and oper-
ators /, |, and [·] since they represent a natural and intuitive way of expressing
navigation paths.
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4 Comparison with Previous Linked Data Query
Formalisms

In this section, we compare LDQL with alternative formalisms to query Linked
Data on the WWW. There are some general query languages for the WWW (pro-
posed before the advent of Linked Data) that are related to our proposal; in
particular, WebSQL [15], which is similar in spirit to LDQL but different in the
features that the languages posses. Two main novelties of LDQL compared with
WebSQL are the possibility to dynamically select seed URIs at query time, and
the traversal of links according to properties of the queried documents that can
be defined in the same LDQL query. Neither of these are expressible in WebSQL.
While a complete formal comparison between LDQL and WebSQL is certainly
very interesting, we leave it for future work and, instead, focus on three more
recent proposals of query formalisms for the Web of Linked Data [7,11,14]. We
formally show that LDQL is strictly more expressive than every one of them.

4.1 Comparison with Property Paths Under Context-Based Query
Semantics

Property paths (PPs for short) were introduced in SPARQL 1.1 as a way of
adding navigational power to the language [8]. PPs are a form of regular expres-
sions that are evaluated over a single (local) RDF graph; a PP expression is used
to retrieve pairs 〈a, b〉 of nodes in the graph such that there is a path from a
to b whose sequence of edge labels belongs (as a string) to the regular language
defined by the expression. The syntax of PP expressions is given by the following
grammar1, where p, u1, u2, ... , uk are URIs.

pe := p | !(u1|u2| · · · |uk) | pe/pe | pe|pe | pe∗

A PP-pattern is defined as a tuple of the form 〈α, pe, β〉 where pe is a PP expres-
sion, and α and β are in U ∪ L ∪ V.

In [14] the authors adapted the semantics of PP-patterns so that they can
be used to query the Web of Linked Data. The proposed query semantics is
called context-based semantics [14]. To define this semantics, the authors first
introduce the notion of a context selector for a Web of Linked Data W. This
context selector is a function CW(·) that given a URI u ∈ dom(adoc) returns the
RDF triples in data(adoc(u)) that have u in the subject position. Formally, for
every URI u ∈ dom(adoc) we have CW(u) = {〈s, p, o〉 ∈ data(adoc(u)) | s = u}.
To simplify the exposition, the authors extended the definition of CW(·) to also
handle URIs not in dom(adoc), and literals and blank nodes. For any such RDF
term a they define CW(a) as the empty set.

1 In [14] the reverse path construction ˆpe is also considered. We do not consider it
here as the form of navigation of these reverse paths does not represent a traversal
of the link graph.
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The context-based semantics for PPs over the Web of Linked Data in [14] is
a bag semantics that follows closely the semantics for PPs defined in the norma-
tive semantics of SPARQL 1.1 [8]. Hence, both semantics use a procedure, the
ArbitraryLengthPath procedure [8], to define the semantics of the (·)∗ operator.
It was shown in [1] that for sets semantics, the normative semantics of PPs can
be defined by using standard techniques for regular expressions. To make the
comparison with LDQL, in this paper we adapt the context-based semantics for
PPs presented in [14] by following the techniques in [1], and consider only sets
of mappings. To this end, we define a function [[·]]ctxtW , that given a PP-pattern,
returns its evaluation under context-based semantics over the Web of Linked
Data W. In the definition, for a solution mapping μ and an RDF term α, we use
the notation μ[α] with the following meaning: μ[α] = μ(α) if α ∈ dom(μ), and
μ[α] = α in the other case. Similarly, μ[〈s, p, o〉] = 〈μ[s], μ[p], μ[o]〉.

[[(α, p, β)]]ctxtW = {μ | dom(μ) = {α, β} ∩ V and μ[〈α, p, β〉] ∈ CW (μ[α])}
[[(α, !(u1| · · · |uk), β)]]ctxtW = {μ | dom(μ) = {α, β} ∩ V and exists p s.t.

μ[〈α, p, β〉] ∈ CW (μ[α]) and p /∈ {u1, ... , uk}}
[[(α, pe1/pe2, β)]]ctxtW = π{α,β}∩V

(
[[(α, pe1, ?v)]]ctxtW �� [[(?v, pe2, β)]]ctxtW

)

[[(α, pe1|pe2, β)]]ctxtW = [[(α, pe1, β)]]ctxtW ∪ [[(α, pe2, β)]]ctxtW

[[(α, pe∗, β)]]ctxtW = {μ | dom(μ)={α, β} ∩ V, μ[α]=μ[β] and μ[α]∈ terms(W )}∪
[[(α, pe, β)]]ctxtW ∪[[(α, pe/pe, β)]]ctxtW ∪[[(α, pe/pe/pe, β)]]ctxtW ∪ · · ·

A PP-based SPARQL query [14] is an expression formed by combining PP-
patterns using the standard SPARQL operators AND , UNION , OPT , FILTER and so
on, following the standard semantics for these operators [2]. Our next results
show that LDQL is strictly more expressive than PP-based SPARQL queries
under context-based semantics.

Theorem 1. There exists an LDQL query that cannot be expressed as a PP-
based SPARQL query under context-based semantics.

Proof (Sketch). One can show that LDQL query q =
(
SEED U

〈〈+, p, 〉,
(?x, ?x, ?x)

〉)
with U = {u} cannot be expressed by PPs under context-

based semantics because this semantics is “blind” to triples that are not author-
itative. For instance, in a Web W = 〈{d, d′}, adoc〉 with data(d) = {〈u, p, u′〉},
data(d′) = {〈u′, p, u〉, 〈u, u, u〉}, adoc(u) = d and adoc(u′) = d′, the evaluation of
q is the solution mapping {?x 
→ u}. Notice that the only authoritative triple in
d′ is 〈u′, p, u〉 as d′ = adoc(u′) �= adoc(u). Hence, one can prove that PP-based
SPARQL queries under context-based semantics cannot access triple 〈u, u, u〉 in
d′, and thus, will never have {?x 
→ u} as solution.

Theorem 2. Let α, β ∈ U ∪ L ∪ V. Then, for every PP-pattern 〈α, pe, β〉, there
exists an LDQL query q such that [[〈α, pe, β〉]]ctxtW = [[q]]∅W for every Web of Linked
Data W.
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Proof (Sketch). In the proof we provide a translation scheme from PPs to LDQL.
One major complication is that PPs can retrieve literals and, in general, values
that are not in dom(adoc), which are difficult to handle by LPEs. For every
PP-pattern 〈?x, pe, ?y〉 we construct an LDQL query Qpe(?x, ?y). For example,
for 〈?x, pe1/pe2, ?y〉, our query is π{?x,?y}

(
Qpe1(?x, ?z) AND Qpe2(?z, ?y)

)
, and for

〈?x, !(u1| · · · |uk), ?y〉 the translation is
(
SEED ?x

〈
ε,

(
(?x, ?p, ?y) FILTER (?p �= u1∧

· · · ∧ ?p �= uk)
)〉)

. To handle pe∗ we need to use the construction 〈?v, q〉 of LPEs,
plus (·)∗.

4.2 Comparison with NautiLOD

NautiLOD is a navigation language to traverse Linked Data on the WWW and
to perform actions (such as sending emails) during the traversal [7]. We compare
LDQL with NautiLOD without action rules. The syntax of NautiLOD expres-
sions (without actions) is given by the following grammar (where p ∈ U and P
is a SPARQL graph pattern).

ne := p | pˆ | 〈 〉 | ne/ne | ne|ne | ne∗ | ne[(ASK P )]

In terms of our data model2, the semantics of NautiLOD expressions over a Web
of Linked Data W = 〈D, adoc〉 from URI u ∈ dom(adoc) is defined recursively
as follows.

[[ p ]]uW = {u′ | 〈u, p, u′〉 ∈ data(adoc(u))}
[[ pˆ ]]uW = {u′ | 〈u′, p, u〉 ∈ data(adoc(u))}

[[ 〈 〉 ]]uW = {u′ | 〈u, p, u′〉 ∈ data(adoc(u)) for some p ∈ U}
[[ne1/ne2 ]]uW ={u′′ | u′′ ∈ [[ne2 ]]u

′
W for some u′ ∈ [[ne1 ]]uW with u′ ∈ dom(adoc)}

[[ne1|ne2 ]]uW = [[ne1 ]]uW ∪ [[ne2 ]]uW
[[ne∗ ]]uW = {u} ∪ [[ne ]]uW ∪ [[ne/ne ]]uW ∪ [[ne/ne/ne ]]uW ∪ · · ·

[[ne[(ASK P )] ]]uW = {u′ | u′ ∈ [[ne ]]uW , u′ ∈ dom(adoc) and [[P ]]data(adoc(u′)) �= ∅}
We next show that for every NautiLOD expression there exists an equivalent

LDQL query. Notice that the evaluation of a NautiLOD expression is a set of
URIs, whereas the evaluation of an LDQL query is a set of mappings. Thus, to
formally state our result we compare NautiLOD with LDQL queries that have
a single free variable. Let q(?x) be an LDQL query with ?x as free variable. We
say that q(?x) and a NautiLOD expression ne are equivalent if for every Web of
Linked Data W = 〈D, adoc〉 and URIs u, u′ with u ∈ dom(adoc) it holds that
u′ ∈ [[ne]]uW if and only if {?x 
→ u′} ∈ [[q(?x)]]{u}

W .

Theorem 3. For every NautiLOD expression ne, there exists an LDQL query
q(?x), with ?x a free variable, that is equivalent to ne.
2 In [7], all URIs have an assigned set of RDF triples (which may be empty). In our

data model one can have URIs not in dom(adoc). Hence, to properly capture the
semantics of NautiLOD in terms of our data model we have to introduce conditions
of the form “u′ ∈ dom(adoc).”



LDQL: A Query Language for the Web of Linked Data 85

Proof (Sketch). The proof begins with a simple translation that replaces every
p ∈ U in a NautiLOD expression by a link pattern 〈+, p, 〉. For instance, the
expression p1/p∗

2 is translated into 〈+, p1, 〉/〈+, p2, 〉∗. To translate 〈 〉 and
[(ASK P )] we use 〈?v, q〉. The complete translation poses several other complica-
tions (as described in the extended version [13]). In particular, the last step of
NautiLOD expressions must be translated by using a SPARQL pattern and not
an LPE. For this we use the following property. Given a regular expression r that
does not generate the empty word, one can always write r as r1/a1| · · · |rk/ak

where the ai’s are base symbols of the alphabet. Thus, we can translate r by
using LPEs to translate the ri’s as outlined above; next, translate the ai’s by
using a method similar to the proof of Theorem 2, and finally use UNION for |.

Along the same lines of Theorem 1 one can prove the following result.

Theorem 4. There exists an LDQL query q(?x) that cannot be expressed in
NautiLOD.

4.3 Comparison with SPARQL Under Reachability-Based Query
Semantics

In [11] the author introduces a family of reachability-based query semantics based
on which SPARQL graph patterns can be used as a query language for Linked
Data on the WWW. Similar to how the scope of the SPARQL part of a basic
LDQL query is restricted to particular documents, reachability-based semantics
restrict the scope of SPARQL queries to documents that can be reached by
traversing a well-defined set of data links. To specify what data links belong
to such a set, the notion of a reachability criterion is used; that is, a function
c : T × U × P → {true, false} where P denotes the set of all SPARQL graph
patterns. Then, given such a reachability criterion c, a finite set S of URIs and
a SPARQL graph pattern P , a document d ∈ D is (c, S, P )-reachable in a Web
of Linked Data W = 〈D, adoc〉 if any of the following two conditions holds:

1. There exists a URI u ∈ S such that adoc(u) = d; or
2. there exists a link graph edge 〈dsrc, (t, u), dtgt〉 ∈ GW such that (i) dsrc is

(c, S, P )-reachable in W, (ii) c(t, u, P ) = true, and (iii) dtgt = d.

Notice how the second condition restricts the notion of reachability by
ignoring data links that do not satisfy the given reachability criterion c. Con-
crete examples of reachability criteria are cAll, cNone, and cMatch [11], where cAll
selects all data links, and cNone ignores all data links; i.e., cAll(t, u, P ) = true
and cNone(t, u, P ) = false for all tuples 〈t, u, P 〉 ∈ T × U × P. In contrast
to such an all-or-nothing strategy, criterion cMatch returns true for every data
link whose triple matches a triple pattern of the given graph pattern; formally,
cMatch(t, u, P ) = true if and only if there exists some solution mapping μ such
that μ[tp] = t for an arbitrary triple pattern tp that is contained in P .

Given the notion of a reachability criterion, it is possible to define a family
of (reachability-based) query semantics for SPARQL. To this end, let c be a
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reachability criterion, let S be a finite set of URIs, and let P be a SPARQL
graph pattern. Then, for any Web of Linked Data W = 〈D, adoc〉, the S-based
evaluation of P over W under c-semantics, denoted by [[P ]]R(c,S)

W , is the set of
solution mappings [[P ]]G where G is the RDF graph that consists of all triples
from all documents that are (c, S, P )-reachable in W.

While there exist an infinite number of possible reachability criteria, in this
paper we focus on cAll, cNone, and cMatch. The following two results show that
LDQL is strictly more expressive than SPARQL graph patterns under any of
these three query semantics.

Theorem 5. Let c ∈ {cAll, cNone, cMatch}. For every SPARQL graph pattern P

there exists an LDQL query q such that [[P ]]R(c,S)
W = [[q]]SW for every Web W and

S ⊆ U .

Proof (Sketch). We only sketch the case of cAll-semantics. In this case, one can
prove that the LPE lpecAll = 〈 , , 〉∗ simulates the reachability criterion cAll,
and, thus, [[P ]]R(cAll,S)

W = [[〈lpecAll , P 〉]]SW . One can also find LPEs to simulate cNone
and cMatch.

Theorem 6. Let c ∈ {cAll, cNone, cMatch}. There exists an LDQL query q for
which there does not exist a SPARQL pattern P such that [[P ]]R(c,S)

W = [[q]]SW for
every W and S ⊆ U .

5 Web-Safeness of LDQL Queries

In this section we study the “Web-safeness” of LDQL queries, where, informally,
we call a query Web-safe if a complete execution of the query over the WWW
is possible in practice (which is not the case for all LDQL queries as we shall
see). To provide a more formal definition of this notion of Web-safeness we make
the following observations. While the mathematical structures introduced by
our data model capture the notion of Linked Data on the WWW formally (and,
thus, allow us to provide a formal semantics for LDQL queries), in practice, these
structures are not available completely for the WWW. For instance, given that
an infinite number of strings can be used as HTTP URIs [6], we cannot assume
complete information about which URIs are in the domain of the partial func-
tion adoc (i.e., can be looked up to retrieve some document) and which are not;
in fact, disclosing this information would require a process that systematically
tries to look up every possible HTTP URI and, thus, would never terminate.
Therefore, it is also impossible to guarantee the discovery of every document in
the set D (without looking up an infinite number of URIs). Consequently, any
query whose execution requires a complete enumeration of this set is not feasi-
ble in practice. Based on these observations, we define Web-safeness of LDQL
queries as follows.

Definition 6. An LDQL query q is Web-safe if there exists an algorithm that,
for any finite Web of Linked Data W = 〈D, adoc〉 and any finite set S of URIs,
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computes [[q]]SW by looking up only a finite number of URIs without assuming
an a priori availability of any information about the sets D and dom(adoc).

Example 6. Recall our example queries qex, q′
ex, and q′′

ex (cf. Example 5). For
query qex =

(
SEED ?x

〈
ε, 〈?x, p1, ?z〉〉), any URI u ∈ U may be used to obtain

a nonempty subset of the query result as long as a lookup of u retrieves a
document whose data includes RDF triples that match 〈u, p1, ?z〉. Therefore,
without access to D or dom(adoc) of the queried Web W = 〈D, adoc〉, the com-
pleteness of the computed query result can be guaranteed only by checking each
of the infinitely many possible HTTP URIs. Hence, query qex is not Web-safe.
In contrast, although it contains qex as a subquery, query q′′

ex = (qex AND q′
ex) is

Web-safe, and so is q′
ex = 〈lpeex, Bex〉. Given uA as seed URI, a possible execution

algorithm for q′
ex may first compute [[lpeex]]

uA

W by traversing the queried Web W
based on lpeex. Thereafter, the algorithm retrieves documents by looking up all
URIs u ∈ [[lpeex]]

uA

W (or simply keeps these documents after the traversal); and,
finally, the algorithm evaluates pattern Bex over the union of the RDF data in
the retrieved documents. If W is finite (i.e., contains a finite number of docu-
ments), the traversal process requires a finite number of URI lookups only, and
so does the retrieval of documents in the second step; the final step does not
look up any URI. To see that q′′

ex is also Web-safe we note that after executing
subquery q′

ex (e.g., by using the algorithm as outlined before), the execution of
the other (non-Web-safe) subquery qex can be reduced to a finite number of URI
lookups, namely the URIs bound to variable ?x in solution mappings obtained
for subquery q′

ex. Although any other URI may also be used to obtain solu-
tion mappings for qex, such solution mappings cannot be joined with any of the
solution mappings for q′

ex and, thus, are irrelevant for the result of q′′
ex.

The example illustrates that there exists an LDQL query that is not Web-
safe. In fact, it is not difficult to see that the argument for the non-Web-safeness
of query qex as made in the example can be applied to any LDQL query of the
form (SEED ?x q) where subquery q is a (satisfiable) basic LDQL query; that
is, none of these queries is Web-safe. However, the example also shows that
more complex queries that contain such non-Web-safe subqueries may still be
Web-safe. Therefore, we now show properties to identify LDQL queries that are
Web-safe even if some of their subqueries are not. We begin with queries of the
forms 〈lpe, P 〉, πV q, (SEED U q), and (q1 UNION ... UNION qn).

Proposition 2. An LDQL query q is Web-safe if any of the following properties
holds:

1. Query q is of the form 〈lpe, P 〉 and lpe is Web-safe, where we call an LPE
Web-safe if either (i) it is of the form 〈?v, q′〉 and LDQL query q′ is Web-
safe, or (ii) it is of any form other than 〈?v, q′〉 and all its subexpressions (if
any) are Web-safe LPEs;

2. Query q is of the form πV q′ or (SEED U q′), and subquery q′ is Web-safe; or
3. Query q is of the form (q1 UNION ... UNION qn) and each qi (1 ≤ i ≤ n) is

Web-safe.
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It remains to discuss LDQL queries of the form (q1 AND ... AND qm). Our
discussion of query q′′

ex in Example 6 suggests that such queries can be shown
to be Web-safe if all non-Web-safe subqueries are of the form (SEED ?v q) and
it is possible to execute these subqueries by using variable bindings obtained
from other subqueries. A necessary condition for this execution strategy is that
the variable in question (i.e., ?v) is guaranteed to be bound in every possible
solution mapping obtained from the other subqueries.

To allow for an automated verification of this condition we adopt Buil-Aranda
et al.’s notion of strongly bound variables [4]. To this end, for any SPARQL
graph pattern P , let sbvars(P ) denote the set of strongly bound variables in P
as defined by Buil-Aranda et al. [4]. For the sake of space, we do not repeat
the definition here. However, we emphasize that sbvars(P ) can be constructed
recursively, and each variable in sbvars(P ) is guaranteed to be bound in every
possible solution for P [4, Proposition 1]. To carry over these properties to LDQL
queries, we use the notion of strongly bound variables in SPARQL patterns
to define the following notion of strongly bound variables in LDQL queries;
thereafter, in Lemma 3, we show the desired boundedness guarantee.

Definition 7. The set of strongly bound variables in an LDQL query q,
denoted by sbvars(q), is defined recursively as follows:

1. If q is of the form 〈lpe, P 〉, then sbvars(q) = sbvars(P ).
2. If q is of the form (q1 AND q2), then sbvars(q) = sbvars(q1) ∪ sbvars(q2).
3. If q is of the form (q1 UNION q2), then sbvars(q) = sbvars(q1) ∩ sbvars(q2).
4. If q is of the form πV q′, then sbvars(q) = sbvars(q′) ∩ V .
5. If q is of the form (SEED U q′), then sbvars(q) = sbvars(q′).
6. If q is of the form (SEED ?v q′), then sbvars(q) = sbvars(q′) ∪ {?v}.

Lemma 3. Let q be an LDQL query. For every finite set S of URIs, every
Web of Linked Data W, and every solution mapping μ ∈ [[q]]SW , it holds that
sbvars(q) ⊆ dom(μ).

We are now ready to show the following result.

Theorem 7. An LDQL query of the form (q1 AND q2 AND ... AND qm) is Web-
safe if there exists a total order ≺ over the set of subqueries {q1, q2, ... , qm} such
that for each subquery qi (1 ≤ i ≤ m), it holds that either (i) qi is Web-safe or
(ii) qi is of the form (SEED ?v q) where q is Web-safe and ?v ∈ ⋃

qj≺qi
sbvars(qj).

Proof (Sketch). We prove Theorem 7 based on an iterative algorithm that gener-
alizes the execution of query q′′

ex as outlined in Example 6. That is, the algorithm
executes the subqueries q1 ... qm sequentially in the order ≺ such that each iter-
ation executes one of the subqueries by using the solution mappings computed
during the previous iteration.

With the results in this section we have all ingredients to devise a procedure
to show Web-safeness for a large number of queries (including queries that are
arbitrarily nested). However, as a potential limitation of such a procedure we note
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that Theorem 7 can be applied only in cases in which all non-Web-safe subqueries
are of the form (SEED ?v q). For instance, the theorem cannot be applied to show
that an LDQL query of the form

(
q1 AND (q2 UNION (SEED ?x q3))

)
is Web-safe

if ?x ∈ sbvars(q1) and q1, q2 and q3 are Web-safe. On the other hand, for the
semantically equivalent query

(
(q1 AND q2) UNION (q1 AND (SEED ?x q3))

)
we can

show Web-safeness based on Theorem 7 (and Proposition 2). Fortunately, we may
leverage the following fact to improve the effectiveness of applying Theorem 7
in the procedure that we aim to devise.

Fact 1. If an LDQL query q is Web-safe, then so is any LDQL query q′ with
q′ ≡ q.

As a consequence of Fact 1, we may use the equivalences in Lemma 2 to
rewrite a given query into an equivalent query that is more suitable for testing
Web-safeness based on our results. To this end, we introduce specific normal
forms for LDQL queries:

Definition 8. An LDQL query is in union-free normal form if it is of the
form (q1 AND ... AND qm) with m ≥ 1 and each qi (1 ≤ i ≤ m) is either (i) a
basic LDQL query or (ii) of the form πV q, (SEED U q) or (SEED ?v q) such that
subquery q is in UNION -free normal form. An LDQL query is in union normal
form if it is of the form (q1 UNION ... UNION qn) with n≥1 and each qi (1≤ i≤n)
is in UNION -free normal form.

The following result is an immediate consequence of Lemma 2.

Corollary 1. Every LDQL query is equivalent to an LDQL query in UNION nor-
mal form.

In conjunction with Fact 1, Corollary 1 allows us to focus on LDQL queries
in UNION normal form without losing generality. We are now ready to specify our
procedure that applies the results in this paper to test a given LDQL query q for
Web-safeness: First, by using the equivalences in Lemma 2, the query has to be
rewritten into a semantically equivalent LDQL query qnf =(q1 UNION ... UNION qn)
that is in UNION normal form. Next, the following test has to be repeated for every
subquery qi (1 ≤ i ≤ n); recall that each of these subqueries is in UNION -free nor-
mal form; i.e., qi = (qi1 AND ... AND qimi

). The test is to find an order for their
subqueries qi1, ... , qimi

that satisfies the conditions in Theorem 7. Every top-level
subquery qi (1 ≤ i ≤ n) for which such an order exists, is Web-safe (cf. Theo-
rem 7). If all top-level subqueries are identified to be Web-safe by this test, then
qnf is Web-safe (cf. Proposition 2), and so is q (cf. Fact 1).

The given conditions are sufficient to show Web-safeness of LDQL. It remains
open whether there exists a (decidable) sufficient and necessary condition for
Web-safeness.



90 O. Hartig and J. Pérez

6 Concluding Remarks and Future Work

LDQL, the query language that we introduce in this paper, allows users to
express queries over Linked Data on the WWW. We defined LDQL such that
navigational features for selecting the query-relevant documents on the Web are
separate from patterns that are meant to be evaluated over the data in the
selected documents. This separation distinguishes LDQL from other approaches
to express queries over Linked Data.

We focused on expressiveness, by comparing LDQL with previous formalisms,
and on the notion of Web-safeness. Several topics remain open for future work.
One of them is the complexity of query evaluation. A classical complexity analy-
sis is easy to perform if we assume that all the data and documents are available
as if they were in a centralized repository, and that they can be processed via
a RAM machine model. We conjecture that under this model, the data com-
plexity of evaluating LDQL will be polynomial. Nevertheless, a more interesting
complexity analysis should consider a model that captures the inherent way of
accessing the Web of Linked Data via HTTP requests, the overhead of data com-
munication and transfer, the distribution of data and documents, etc. A more
practical direction for future research on LDQL is the development of approaches
to actually implement LDQL queries efficiently.
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Abstract. Between uri dereferencing and the sparql protocol lies
a largely unexplored axis of possible interfaces to Linked Data, each with
its own combination of trade-offs. One of these interfaces is Triple Pattern
Fragments, which allows clients to execute sparql queries against low-
cost servers, at the cost of higher bandwidth. Increasing a client’s
efficiency means lowering the number of requests, which can among
others be achieved through additional metadata in responses. We noted
that typical sparql query evaluations against Triple Pattern Fragments
require a significant portion of membership subqueries, which check the
presence of a specific triple, rather than a variable pattern. This paper
studies the impact of providing approximate membership functions, i.e.,
Bloom filters and Golomb-coded sets, as extra metadata. In addition
to reducing http requests, such functions allow to achieve full result
recall earlier when temporarily allowing lower precision. Half of the tested
queries from a WatDiv benchmark test set could be executed with up
to a third fewer http requests with only marginally higher server cost.
Query times, however, did not improve, likely due to slower metadata
generation and transfer. This indicates that approximate membership
functions can partly improve the client-side query process with minimal
impact on the server and its interface.

Keywords: Linked data · Querying · Availability · Scalability · sparql

1 Introduction

For a long period of time, querying Linked Data has been a story of two extremes,
with Linked Data documents on the one side and the sparql protocol on the
other. Currently, neither of them is able to drive real-world applications on
the Web. On the one hand, public sparql endpoints are limited in number
and suffer from frequent downtime [4,22]. Their resource consumption is hard to
predict, caused by the expressiveness of the language and individual user demand.
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This downtime results in insufficient reliability for client applications. Linked
Data documents, on the other hand, are more predictable, but link-traversal-
based query methods are significantly slower and result sets have varying levels
of completeness, both of which are undesired traits for user applications. The
issues with these two query solutions hint at a need for other client/server trade-
offs.

Linked Data Fragments (ldf) [25] aim to analyse such trade-offs by proposing
an uniform view on all interfaces to rdf. This reveals a complete spectrum
between Linked Data documents and the sparql protocol, in which the state-
of-the-art of Linked Data publishing can be advanced. This axis can be explored
in the following two dimensions.

– Selector: allowing different, more complex questions for the server
– Metadata: extending the response with more information clients can use

In prior work, Triple Pattern Fragments (tpf) [25] were introduced as an
alternative api with low-server cost. This interface offers a single triple pattern
as selector and includes an estimated number of total matching triples as meta-
data. sparql queries can be evaluated client-side by combining several tpfs,
using the metadata for optimization. Higher query execution time and more
bandwidth are accepted in exchange for a small load on the server, thereby
striking a more sustainable load balance between client and server. Recently, an
algorithm that reduces bandwidth was proposed within the same server restric-
tions [23]. Another direction for improvement is to have servers support other
features along the selector and/or metadata dimensions in addition to tpf.

In this paper, we explore the metadata dimension by adding approximate
membership functions (amf) as a composable feature for Linked Data Frag-
ments apis. An amf is a space-efficient data structure that is able to indicate
whether a set contains an item. False positives can occur with a fixed probability,
but false negatives can not. This work studies their applicability as a server-side
feature in addition to tpf, in order to reduce the number of http requests dur-
ing client-side sparql query execution. We study two different amf techniques:
Bloom filters [3] and Golomb-Coded Sets (gcs) [19]. Concretely, we present i) an
in-depth comparison between different client-side algorithms with or without
Bloom and gcs; ii) a vocabulary to describe approximate membership functions
as metadata for self-descriptive apis; iii) an evaluation of opportunistic querying,
where we strive for result completeness first and validate their correctness later.

First, we present the preliminary concepts and related work in Section 2.
Then, we discuss the motivation, research questions and hypotheses for this
work in Section 3. Next, Section 4 shows how the tpf interface is extended with
amf metadata. After that, we demonstrate how the client benefits from this in
Section 5, and how it enables a more opportunistic form of querying in Section 6.
Finally, we evaluate the query algorithms with and without amf metadata in
Section 7, and conclude in Section 8.
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2 Core Concepts and Related Work

2.1 SPARQL Query Evaluation Using Traditional Web APIs

Linked Data can be published on the Web using different apis, of which
data dumps and sparql endpoints are highly common [5]. The Linked Data
Fragments conceptual framework [25] enables the analysis and comparison of
Web apis by abstracting each api according to how it provides access to parts
of a certain dataset. Each such part is called a Linked Data Fragment (ldf),
which consists of data, metadata, and controls. The data is a set of those triples
of the dataset that match a given interface-dependent selector. The metadata
set consists of triples that describe the dataset and/or the current fragment or
related fragments. Finally, the controls are hypermedia links and/or forms that
allow clients to retrieve other fragments of the same or other datasets.

Both data dumps and sparql endpoint responses can be considered ldfs.
A data dump of a dataset employs all triples in that dataset, usually in a com-
pressed archive, as the data. The metadata set contains data such as publication
date and/or license. No controls are present, because all available data is con-
tained within the archive. The main drawback of dumps that they cannot be
queried “live”: they need to be downloaded in their entirety to evaluate queries.

The sparql protocol [6] exposes rdf graphs on the Web using the sparql
query language [10]. Each response to a CONSTRUCT or DESCRIBE query can be seen
as an ldf, where the data consists of the rdf triples in the dataset that match
the query. The metadata and control sets are empty; controls are implicitly in
the sparql protocol. An advantage of sparql endpoints is their expressiveness:
clients can ask very specific questions about a dataset. However, public sparql
endpoints suffer from a two-sided availability problem: the majority of datasets
is not published as a sparql endpoint (543 opposed to 9960 datasets)1, and
endpoints that are on the Web experience frequent downtime [4].

2.2 SPARQL Query Evaluation Using Triple Pattern Fragments

In addition to describing existing interfaces, ldf also allows defining new inter-
faces with different characteristics. The Triple Pattern Fragments (tpf) inter-
face [24,25] combines the desirable characteristics of data dumps (low server-side
cost) and sparql endpoints (live queryable). Clients can ask a server for triple
patterns; in response, the server sends a tpf, consisting of the triples of the
dataset matching the triple pattern (paged to keep the fragment size reasonably
small), metadata expressing the total number of matching triples, and controls
to retrieve all other tpfs of the same dataset. Complex sparql queries are
evaluated by clients, which split a query into triple patterns and use the meta-
data in fragments to determine an efficient execution order. The advantage of
tpfs is that they only require low processing power on the server side, and are
thus less expensive to host with high availability [25]. The drawback is that

1 http://stats.lod2.eu

http://stats.lod2.eu
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sparql queries have longer query times than on a sparql endpoint. More than
600,000 crawled rdf files are available as tpfs through the lod Laundromat [21].
dbpedia, arguably the most well-known dataset on the Semantic Web, has an
official tpf interface with 99.999% availability [26].

tpfs move the query planning problem to the client. It is up to the client to
make optimal use of metadata exposed by the server. The originally proposed
query planning algorithm is greedy [25]. Assuming a Basic Graph Pattern (bgp)
query, the client downloads results for the triple pattern with the lowest cardi-
nality, based on the count metadata. Possible mappings for each resulting triple
are bound to each remaining pattern, of which the one with lowest cardinality
is subsequently requested from the server.

Van Herwegen et al. improve the greedy algorithm [23], aiming to minimize
the number of http calls by making global instead of local decisions. This is
achieved by downloading two triple patterns separately in case this requires fewer
http calls. Multiple estimation techniques, based on the intermediate results of
the algorithm, are used to predict which query path is least expensive. If the
current path is suboptimal, the algorithm continues from the new path. This
decrease in http requests results, however, in more computational work for the
client because of the more complex join process.

This paper seeks to provide an optimized balance between server-side cost
and query execution time by extending the tpf interface with additional meta-
data, as we will discuss in Sections 4 to 6. The goal is to maintain a low per-
request cost for the server, while reducing the number of requests clients need
to execute to evaluate typical queries.

2.3 Approximate Membership Techniques

In the following, we summarize the Approximate Membership Function (amf)
families of Bloom filters and Golomb-Coded Sets. Both offer approximate mem-
bership assessment with a predefined false positive probability, but with different
size and speed. Recall and precision are important parameters of an amf f . Given
the set of actual members M and a set of elements T for which we want to test
membership, the set of positively tested elements PT = {t ∈ T : f(t) = true}.
We define recallf (T ) = |M ∩PT |/|M | and precisionf (T ) = |M ∩PT |/|PT |. Both
Bloom filters and Golomb-Coded Sets have 100% recall, i.e., all valid members
of M will always be identified, but less than 100% precision.

Bloom Filters. A Bloom filter [3] is a bitmap of m bits populated using k
different hash functions, initialized with all bits set to 0. An item is added by
calculating k locations in the bitmap, which are set to 1. Each one is calculated
by using a different hash function to ensure randomness. An item can be tested
by calculating k locations using the same hash functions. Hence, both insertion
and testing are O(k). The result of a bit-wise AND of those locations in the filter
determines if the item is a member. If false, the item is definitely not in the set.
If true, the item might be in the set, because of false positives.

For a desired false positive probability rate p, the bit-size of a Bloom filter is
proportional to its number of members n. The required size is m = −n · log2 e ·



96 M. Vander Sande

log2 p. For a given m, the optimal number of hashes k that minimizes false
positive probability can be calculated with k = m/n · ln 2. Despite their compact
representation, their size can be too large for network transfer. A solution is using
compressed Bloom filters [15], at the cost of compression and decompression
delays.

Golomb-Coded Sets. Golomb-coded sets (gcs) [19] provide a cleaner vari-
ation of compressed Bloom filters. The outputs of a single hash function are
considered a uniformly distributed list of values instead of a bitmap. The differ-
ences between all values form a geometrically distribution with a parameter p.
Golomb-coding is applied since it is an optimal encoding for discrete geometric
distributions [8].

In terms of size, gcs approaches the theoretical minimum of m = −n · log2 p
more closely than the equivalent Bloom filter. Compared to compressed Bloom
filters, gcs have a minimal size overhead for the same p, but they are more
easily chunked and indexed to deal with uncompressed size issues. Compared to
plain Bloom filters, the query time is magnitudes slower due to decompression.
However, this drawback can be minimized by including an index to quickly find
areas of interest in the filter.

2.4 Query Evaluation with Approximate Membership

In the context of rdf querying, approximate membership functions are included
in several related works, covering i) query routing in networks, ii) selectivity
estimation for optimizing joins, iii) evolutionary querying, and iv) local database
indexes.

Query routing applies Bloom filters in caches and indexes for peer-to-peer,
MapReduce or cloud clusters, and Linked Data networks. Most systems [7,14,20]
construct a data summary of neighboring nodes or clusters to make a query
forwarding decisions. Some algorithms exchange these filters between nodes to
maintain their network [11]. This is common in combination with Distributed
Hash Tables (dht) [11,27], where a dht is used for data routing and Bloom
filters for efficient communication between nodes.

More directly applicable is selectivity estimation of query patterns, e.g., graph
patterns, to improve join performance. One approach is to group different chain-
patterns, i.e. two distinct triple patterns connected by a single variable, according
to their frequency [13]. A Bloom filter tests in what frequency group a chain
pattern resides, which optimizes the pattern execution order. Other applications
include representing equivalent classes to optimize hash joins, ranges of values
for merge joins [16], and distributed n-way joins [2]. Although these works inspire
future directions, many require more than a single triple pattern and have high
demands for the server. Highly relevant is the proposal to extend the ask query
response [12] with combinations of bindings, i.e. two variables in a triple pattern,
to improve source selection in sparql query federation frameworks. Bloom filters
from different sources indicate overlap and save redundant requests. However, the
benefit in a single-server setup is unclear.
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Evolutionary querying is an alternative way of sparql query processing. Pos-
sible solutions are first guessed, and then incrementally refined. Oren et al. use a
combination of fingerprinting and Bloom filters to rapidly evaluate approximate
answers against large rdf datasets [17]. Although this is a centralized solution,
it advocates anytime answers, which is in line with the opportunistic querying
presented in this paper. The algorithm is initiated with random values, which
returns initial results fast, but with low accuracy.

Finally, in the area of databases, Bloom filters are an efficient technique to
prevent unnecessary disk access [18]. In such cases, the size of the filter and its
impact on transfer delays are not applicable.

3 Problem Statement

3.1 Analysis of Query Execution Using Triple Pattern Fragments

The required time for a client evaluate certain sparql queries against tpf inter-
faces can still be unacceptable for responsive applications. A dominant factor
in this time is the high number of http requests. Therefore, by analyzing the
nature of these requests, we can locate possible areas for changing the clien-
t/server trade-offs in the interface. To this end, we executed sample sparql
queries from the WatDiv benchmark [1] against a tpf interface using the greedy
algorithm [25]. WatDiv consists of 20 query templates grouped in four categories,
namely linear (L), star (S), snowflake-shaped (F) and complex (C).2

The execution logs revealed a high number of requests for triple patterns
without variables, i.e. testing the membership of a specific triple in the dataset.
The templates L2, L4, and F3 respectively produced 50%, 51% and 74% mem-
bership subqueries. For S5, F5, C1, and C2, this proportion even reached 95% to
98%. Furthermore, the absolute number of requests of some of these templates is
high (e.g., F3 needed 1,335 membership subqueries). A third of query templates
is thus affected; the remaining 13 templates produced no membership subqueries
at all. While these numbers do not allow generalized conclusions, they are cer-
tainly an important indication that a reduction of membership subqueries can
have a considerable influence on the number of http requests—and thus the
overall query execution time.

3.2 Research Questions and Hypotheses

In the tpf interface, metadata is crucial for clients to evaluate sparql queries
efficiently. By estimating the total number of matches per triple pattern, pat-
terns with higher selectivity can be followed first [23,25]. If we augment this
metadata, clients might be able to make more informed decisions and hence
reduce the number of membership subqueries required to evaluate a sparql

2 The 20 WatDiv templates are graphically displayed at http://db.uwaterloo.ca/
watdiv/basic-testing.shtml. Note that the number of templates per category does
not necessarily reflect actual query distributions for specific datasets.

http://db.uwaterloo.ca/watdiv/basic-testing.shtml
http://db.uwaterloo.ca/watdiv/basic-testing.shtml
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query, at the cost of higher per-request costs. This paper studies the impact of
adding approximate membership functions to fragments in order to reduce the
amount of http requests. In this regard, we pose the following research question:

Question 1: To what extent can approximate membership metadata for tpfs
reduce the number of http requests necessary to evaluate sparql queries?

Probabilistic queries also enable new ways of generating results: uncertain results
can be returned early, and validated later on. We investigate this as follows:

Question 2: To what extent can approximate membership metadata for tpfs
reduce the time to achieve complete recall of sparql query results?

Adding such metadata requires amfs to be generated on the server side, the
impact of which should be investigated:

Question 3: What is the overhead of generating approximate membership meta-
data on the server cpu load at runtime?

The answers to these questions validate our exploration of the metadata dimen-
sion using amfs. Concretely, we test the following hypotheses about the effective-
ness of an interface I ′, which adds an amf feature to the baseline tpf interface I.
First, given the presence of amfs, the client should be able to omit a portion of
requests over http, hence:

Hypothesis 1: The number of http requests required to evaluate minimum a
third of the WatDiv queries against I ′ can be significantly reduced.

Next, as stated above, the reduction in http requests has a direct impact on
the overall execution time, thus:

Hypothesis 2: The time to achieve complete recall when executing WatDiv
queries against I ′ is significantly reduced on average.

Finally, we do not expect much extra load on the server, since an amf using a
non-cryptographic hash function can be computed fast:

Hypothesis 3: The interface I ′ increases server cpu usage only slightly com-
pared to I for the same queries.

4 Extending the TPF Interface with AMF Metadata

The tpf interface responds with rdf documents and is self-descriptive [25],
meaning that i) extensions to the tpf interface are features of a composable
api, ensuring backward-compatibility; ii) clients can discover at runtime which
features are supported. Therefore, servers can add an interface feature, e.g., amfs
as extra metadata, without any interference. This section introduces a generic
ontology to express membership functions such as amfs, followed by its imple-
mentation as a feature on top of the tpf interface.

We created a membership modeling ontology, which we publish and maintain
at http://semweb.mmlab.be/ns/membership and denote with the prefix ms in

http://semweb.mmlab.be/ns/membership
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the remainder of this paper. It defines ms:Function for generic functions and
its subclasses ms:ApproximateMembershipFunction and ms:HashFunction. To allow
for Bloom filters and Golomb-coded sets, the former has ms:BloomFilter and
ms:GolombCodedSet as subclasses. Finally, ms:hashFunction associates instances
of these classes with hash functions that can be instances of algorithms such
as ms:MD5 or ms:MurmurHash3.

Using this ontology, we define an interface feature that provides amf meta-
data in the metadata graph of responses. In regular tpfs, each fragment contains
a void:triples statement expressing the approximate total number of triples in
the dataset that match the tpf’s triple pattern [24]. For instance, each page of
the tpf for the pattern “?x rdf:type foaf:Person” contains a metadata triple
stating there are 96,300 matching triples in the dataset. Given a page size of
100 data triples, these data triples would be spread across 963 pages. Suppose
that during the execution of a certain sparql query, the client arrives at a list of
215 potential mappings for “?x rdf:type foaf:Person”. In order to verify with
a minimum number of http requests whether these mappings are valid, the
215 tpfs for the corresponding triples need to be downloaded, checking which
mappings result in a triple that exists within the dataset.

By defining an interface feature that allows this fragment to contain an
amf, the clients can determine approximately whether a certain ?x results
in a triple of the dataset. Listing 1 shows an example amf for the triple pat-
tern “?x rdf:type foaf:Person”. In this case, it is a Bloom filter with two spe-
cific Murmur functions as hash functions. The hash functions themselves are
not detailed in the listing, but their parameters need to be explicitly available
(either in the response or by dereferencing their URL). Listing 1 explicitly spec-
ifies that the members of the collection are the triples of the fragment, and
that the amf has been built by using the subject of these triples. This allows
the client to interpret how exactly this amf can be used. For instance, if the
triple dbp:Elvis_Presley rdf:type dbo:Artist is part of the dataset, then the
full uri of dbp:Elvis_Presley must yield a positive value in the membership
function. Note that the false positive rate is also specified, allowing a client to
estimate the certainty of each result. Finally, the amf data itself has been made
available in base64-encoded form.

This metadata allows a client to unambiguously recreate the amf and verify
the approximate membership of elements. Note that this self-descriptive app-
roach does not require a contract between the client and the server, e.g., no hash
function has to be agreed upon silently. Furthermore, clients that do not use
this metadata feature, such as the original tpf client [25], will not be affected by
it and can thus continue to use the interface. It is up to the server’s discretion
whether or not to provide an amf on a page. If it is present, an amf-aware client
can use it; if not, the original algorithm without amfs can be followed. This lets
the server choose freely what metadata to include—based on, for instance, the
computational effort to create the amf.
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<#metadata> foaf:primaryTopic <#fragment>.

<#metadata> {

<#fragment> void:triples 96300. # existing count metadata
_:membershipFunction a ms:BloomFilter; # AMF metadata

ms:hashSize 524288;

ms:hashFunction <MyMurmur1>, <MyMurmur2>;

ms:memberCollection [

ms:sourceCollection <#fragment>;

ms:projectedProperty rdf:subject

];

ms:falsePositiveRate 0.05;

ms:falseNegativeRate 0.0;

ms:binaryRepresentation "QmF...ZTY"^^xsd:base64Binary.

}

Listing 1. The self-descriptive amf metadata in the tpf fragment for ?x rdf:type

foaf:Person allows the client to interpret and evaluate approximate membership.

To facilitate implementation, the amf interface feature is the subject of a spec-
ification in the Hydra w3c Community Group, which is available at http://www.
hydra-cg.com/spec/latest/linked-data-fragments/membership-metadata/.

5 SPARQL Query Execution with AMF-enabled TPFs

In order to explain the algorithm to query tpfs with amf metadata, we will
consider the following example query for dbpedia:

Query 1. This sparql query finds artists born in cities named “York”.

Given a regular tpf interface, the algorithms presented in Section 2.2 will com-
pute results for each bgp B by recursively evaluating and binding each triple
pattern tpi ∈ B in an order determined by the count metadata in their respective
fragments. For example, by fetching the first page of the tpfs for Query 1 where
B = {tp1, tp2, tp3}, we obtain the count metadata {(tp1, 96 300), (tp2, 625 811),
(tp3, 2)}. Therefore, we start iterating over tp3, which will supply values for ?c.
This leads to 2 subqueries B′ = {tp1, tp

′
2} where the remaining triple patterns

are bound to concrete values of ?c (note that tp1 is unaffected because it does
not contain ?c). For instance, for ?c = dbp:York, we obtain count metadata
{(tp1, 96 300), (tp′

2, 207)}. Query execution thus continues with the smallest frag-
ment tp′

2, which results in 207 subqueries B′′ = {tp′
1} in which tp1 is bound

http://www.hydra-cg.com/spec/latest/linked-data-fragments/membership-metadata/
http://www.hydra-cg.com/spec/latest/linked-data-fragments/membership-metadata/
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Fig. 1. The triple patterns of Query 1 with the least number of matches at each stage
become nodes in the evaluation tree. Note how the third level of consists entirely of
membership subqueries (single triples), and can thus be evaluated with the help of an
amf.

to possible values of ?p. These 207 subqueries are indeed membership queries,
because they check the presence of a concrete triple without variables, e.g.,
“dbp:Adam_Thomas rdf:type dbo:Artist”. All values of ?p that result in a match
are solution mappings to the query. This process leads to an evaluation tree, as
shown in Figure 1.

An efficient way to realize such evaluation trees are iterator pipelines [9],
which allow for incremental query results. In existing tpf algorithms [23,25],
two principal iterator types are responsible for sparql query evaluation
over tpfs: a TriplePatternIterator for triple patterns and a GraphPattern-

Iterator for bgps. The whole of Section 5 is executed by a GraphPattern-

Iterator, which chains together TriplePatternIterators for each of the three
levels in the tree. Each TriplePatternIterator reads solution mappings from
the iterator above it and tries to extend them with mappings for a given triple
pattern. For instance, the iterator at level 2 with pattern “?p dbo:birthPlace ?c”
receives mappings for ?c from the iterator at level 1. For each ?c, it tries to find
mappings for ?p, which are then passed on to level 3. Finally, the TriplePattern-

Iterator on level 3 with pattern “?p rdf:type dbo:Artist” either confirms or
rejects mappings depending on whether the triple for a given ?p exists. This
produces a total of 207 requests, which amount to 98% of the total http traffic.

Algorithm 1 presents an extension of the original TriplePatternIterator [25]
to make use of amf metadata. When a TriplePatternIterator is initiated,
the corresponding tpf for its initial triple pattern is requested (line 2). This
fragment typically already resides in the client cache, since it was formerly
requested by a GraphPatternIterator for count metadata. If the response con-
tains amf metadata, a membership test function is created and assigned to the
iterator (line 4). In our example, this translates to a request for the tpf for “?p
rdf:type dbo:Artist”, which contains an amf for all mappings of ?p. If no amf
metadata is found, we assign a constant function True that always returns true

(possible match), so that a verification request is always necessary.
When GetNext is called, the TriplePatternIterator first reads an upstream

mapping μs from its source iterator Is (line 14). Then, we test whether the triple
(pattern) tp′ resulting from this mapping is present in the current amf. If the
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1 Function TriplePatternIterator.Init()
Data: A source iterator self.Is; A triple pattern self.tp

2 ftp ← GET tpf for self.tp;
3 if ftp contains amf metadata then
4 self.membership test ← ftp .metadata.amf;
5 else
6 self.membership test ← True where ∀x : True(x) = true;
7 end
8 self.current fragment ← ∅;

9 end
10 Function TriplePatternIterator.GetNext()

Output: The next mapping µn or nil when no such mappings are left
11 µ ← nil;
12 while µ = nil do
13 while self.current fragment does not contain unread triples do
14 self.µs ← self.Is.GetNext();
15 return nil if self.µs = nil;
16 tp′ ← self.µs[self.tp];
17 if self.membership test(tp′) = true then
18 self.current fragment ← GET tpf for tp′;
19 end

20 end
21 t ← an unread data triple from self.current fragment;
22 µ ← a mapping µ′ with dom(µ′) = vars(self.tp) and µ′[self.tp] = t;

23 end
24 return µ ∪ self.µs;

25 end

Algorithm 1. A TriplePatternIterator with support for amf metadata

test returns true, we have a true positive or false positive, so the tpf correspond-
ing to tp′ is fetched and assigned to the iterator. For instance, if the mapping
{?p = Adam_Thomas} returns true, we retrieve the tpf for “dbp:Adam_Thomas
rdf:type dbo:Artist” to verify whether this triple is a true or false positive.
If the test returns false, tp′ is a true negative and need not be checked. For
instance, if the mapping {?p = Barry_Tait} returns false, we are sure the cor-
responding tpf is empty, so we do not need to perform the http request.

For each negative amf result, this proposed extension of the algorithm saves
an http request. Depending on the type of query, cumulative savings can be
extensive, as with Query 1. The positive results, however, still need to be veri-
fied in case false positives would have occurred. While we cannot eliminate the
verification http calls without endangering the correctness (precision) of query
results, it is possible to further reduce the query time, as we will discuss in the
next section.
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Fig. 2. This sparql query execution timeline compares regular and opportunistic
query execution, assuming r total query results and f false positives. Note how both
approaches achieve 100% recall and precision at a shared point in the end, but there
exists a period during which only opportunistic execution reaches 100% recall (shaded).

6 Opportunistic Query Results

In general, query execution does not necessarily end when all valid results have
been obtained; it could be that the engine still spends some time to rule out
possible result candidates before being able to decide that the result set is in
fact complete. Due to the approximate nature of amfs, it is possible that at
a certain point during line 1, the in-memory result set R already contains all r
valid results. However, they cannot be returned yet, because R can still contain
a number of false positives f . Only after the membership of all positive results
of the amf has been verified against the tpf interface, the f false positives can
be discarded and all r matches can be returned safely.

For some use cases, it might be acceptable to temporarily consider incor-
rect results, especially if we are able to indicate which results can be trusted
and which results cannot. If at first, we optimistically assume that all positive
matches of the amf are actual matches (i.e., we disregard the false positive rate),
the client is able to reach 100% recall earlier, temporarily tolerating a precision
below 100%. For each of those approximate matches, the client can express the
probability that it is valid, namely 1−p with p the false-positive rate of the amf.
As membership subqueries progress, the client can update the probability for
true positives from 1 − p to 1, and retract false positives by setting their prob-
ability to 0. This opportunistic method of providing query results is important
if fast results and eventual full precision are preferred over slower results with
immediate precision. At no point in time, incorrect query results are presented
as correct results of the query.

Figure 2 compares regular querying and opportunistic querying. Note in par-
ticular how both approaches eventually reach 100% recall and precision at the
same time. In other words, even though the opportunistic algorithm temporarily
allows uncertain results and thus a precision of less than 100%, the application
eventually obtains the accurate result set. Also, the application that receives the
result knows at each moment in time whether a result is certain or not, and can
thus decide to either use it or not.

As an example, consider an application that displays photos of artists based
on the results a certain sparql query. After a few http calls, the query client
returns 50 matches, all of which have a probability of 99%. The application can
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decide to already start downloading photos of the 50 matching artists, without
displaying them to the user yet. Once 48 of the 50 matches are confirmed, the
48 photos can be displayed immediately; only 2 photos need to be discarded.
The user thus sees the photos faster than if they had only been retrieved after
full precision was achieved. This example indicates that opportunistic query
answering has direct concrete uses in Web applications.

7 Evaluation

In the following, we discuss our evaluation of executing sparql queries against
tpf interfaces with an amf feature. From these experiments, we aim to assess
whether amfs are a valuable asset in the metadata dimension. We first describe
the experiments and their setup. Then, we discuss their results to validate the
three hypotheses of Section 3.2.

7.1 Experimental Setup

We extended the existing implementations of the tpf client3 and server4 to
support both Bloom filters and Golomb-coded sets. The server is configured by
specifying the amf and the desired false positive probability. We chose the 32-bit
MurMurHash3 hash function for gcs and fnv-1 for the Bloom filter. The server
calculates a membership function on the fly for each request for a triple pattern
with a single variable.

We ran the experiments with different false positive probabilities p: 1/1024 ≈
0.1%, 1/128 ≈ 1%, and 1/64 ≈ 1.6%. In each experiment, we executed 250
queries generated from 125 diverse WatDiv sparql templates on three interfaces:
i) regular tpf interface ii) tpf with Bloom filters, and iii) tpf with gcs. All
three cases were tested with both the original and the optimized client; the last
two setups were tested with and without opportunistic querying. All experiments
were run on a single Amazon ec2 machine with an 8-core Intel Xeon e2680 v2
cpu and 15gb ddr3 ram, using a query timeout of 3 minutes and the WatDiv
100M triples dataset from [1]. The http requests were routed through an nginx
cache instance to enable http caching and to enforce a realistic Web bandwidth
of 1Mbps per request. We published the full result logs online.5

7.2 HTTP Requests

Tables 1 to 4 summarize the results of the experiments. They compare each amf-
enabled setup against a regular tpf client/server setup, grouping each of the
250 queries on whether they resulted in an equal, lower, or higher measurement
for i) number of requests, ii) time to first result, iii) time to 100% recall (i.e., with

3 https://github.com/LinkedDataFragments/Client.js/tree/amq
4 https://github.com/LinkedDataFragments/Server.js/tree/amq
5 https://github.com/LinkedDataFragments/TPF-Membership-Metadata-Results

https://github.com/LinkedDataFragments/Client.js/tree/amq
https://github.com/LinkedDataFragments/Server.js/tree/amq
https://github.com/LinkedDataFragments/TPF-Membership-Metadata-Results
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Table 1. Comparison of regular tpf versus tpf with Bloom filter setup (greedy tpf
algorithm)

Table 2. Comparison of regular tpf versus tpf with gcs setup (greedy tpf algorithm)

opportunistic querying enabled), and iv) total query execution time. The number
of queries per group is indicated, together with their average measurement value
in the regular setup, and the average decrease or increase in respectively the
lower and higher groups. For example, the top-left value cell of Section 7.1
shows that, for Bloom filters with p = 1/1024, 126 queries had a lower number
of http requests; for each of these 126 queries, the regular setup needed on
average 45,213 requests, whereas the amf-enabled setup required 15,217 fewer
requests.

Our experiments show that, with p = 1/1024, amf metadata decreases
the number of http calls for roughly half of all considered queries (Bloom:
126 queries or 50.4%; gcs: 123 queries or 49.2%). As expected from the analysis
in Section 3, those queries that benefit from improvements are queries with rela-
tively many http requests: the average number of requests per query in the lower
group is 45,213 (gcs: 45,598), compared to 2,953 (gcs: 2,271) for queries that
do not improve. The improvements let us conclude that a substantial number of

Table 3. Comparison of regular tpf versus tpf with Bloom filter setup (optimized
tpf algorithm)
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Table 4. Comparison of regular tpf versus tpf with gcs setup (optimized tpf algo-
rithm)

these 45,000+ requests per query were membership subqueries; the amf-based
query algorithm manages to decrease their number by 15,217 (gcs: 11,761) on
average. 43 queries (gcs: 43) result in a slightly higher number of requests, albeit
negligible compared to the total number: 10 versus 24,312 (gcs: 18 / 26,919).
Note that in general, the number of requests per query is very high because of
the potentially high number of results in the WatDiv dataset. While numbers
of this scale clearly highlight query patterns, many real-world queries can be
evaluated with tighter constraints.

A similar pattern arises with the optimized tpf algorithm [23], which con-
sumes fewer http requests overall because of full client-side joins, but has poten-
tially longer query times for the same reason. Even more queries benefit from
lower request numbers: 155 (62%) for Bloom and 147 (58.8%) for gcs. We see
a reduction of roughly the same ratio, both with Bloom filters and gcs, although
the absolute request numbers are lower.

The observations generalize to the cases for p = 1/128 and p = 1/64, albeit
with slightly different observations. As is expected from a higher number of false
positives, we see a decreasing average gain with increasing p. Interestingly, we
see the number of queries with fewer http requests increase slightly for higher p
values; we assume this is correlated with the smaller response size, which allows
for a higher throughput.

The above results confirm a substantial positive impact on the number of
http requests, validating Hypothesis 1.

7.3 Query Execution Time

In all cases (excluding 1 or 2 exceptions), both the first result times and total
query times remain the same or even increase, contrarily to what we had
expected. As Tables 1 and 2 indicate, about one in three queries have their
execution time prolonged with about 20 seconds, or a third of their time. This
prolongation is higher for Bloom filters than gcs, which see a more limited effect
absolutely (18 seconds) and proportionally (about a quarter). The cause of these
elevated query times is likely the increased response size: since the server auto-
matically sends amfs for all patterns with one variable (even if the client does
not use the amf), the server-side computation time and client-side retrieval time
increase. Given a connection of 1Mbps and on-the-fly amf generation, as in this
experiment, the decreased number of requests is apparently insufficient for the
considered queries and dataset to result in temporal gains. This is confirmed
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by the fact that gcs performs better, as gcs representations are encoded more
efficiently.

Interestingly, higher false-positive probabilities do not have a profound effect
on query time. For the given constrains, the higher number of requests seems
to be compensated by the decreased complexity of generating, transferring, and
interpreting amfs. This is an indication that further experimentation with low
probabilities might be beneficial.

The prolonged total query time also hinders the effectiveness of opportunis-
tic querying. Whereas its goal is to achieve full recall earlier—at the expense of
temporarily allowing <100% precision—the slower overall execution prevented
a globally positive result. The potential benefit of opportunistic querying is evi-
denced by the 3 queries that, with Bloom filters, achieve 100% recall 41 seconds—
about a third—earlier. Since opportunistic results have no negative influence on
query time, the increased recall times for ±95 queries must be entirely due to the
slower speed of the amf approach under the 1Mbps and on-the-fly constraints.
Should we succeed in speeding up amf generation and/or transfer time, we could
expect to see a broader influence of opportunistic results. Furthermore, the num-
ber of false positives that needed to be revoked was either 0 or 1 for all of the
considered queries, revealing a low temporary impact on precision.

The obtained results for execution time thus invalidate Hypothesis 2, as we
were not able to decrease the time to full recall in general. Further research
will need to assess the relation of this observation to on-the-fly generation and
bandwidth, and perhaps also even higher false positive rates.

7.4 Server Impact

Finally, we measured the average cpu load during query execution for two differ-
ent amf configurations and two different false positive probabilities. Compared
to the normal server cpu usage (9.2%), the amf configurations show an increase
of 1.6% (p = 1/1024), 2% (p = 1/128) and 5.7% (p = 1/64) for Bloom, and
1% (p = 1/1024), 1.6% (p = 1/128), and 1.9% (p = 1/64) for gcs. This is a
very acceptable overhead which does not impact the server’s low-cost nature.
Bloom has a higher impact than gcs because of the many hashes it needs to
calculate, which apparently outweigh the overhead of Golomb compression. Note
that all amf metadata is created at query time and can still benefit from pre-
computation and/or caching. Given the limited increase, the aforementioned
numbers validate Hypothesis 3.

8 Conclusions

The Triple Pattern Fragments api enables client-side sparql execution on low-
cost servers, at the cost of higher execution time and bandwidth usage. In this
paper, we studied the effect of incorporating approximate membership metadata
as an interface feature. In particular, we aimed at reducing http requests by
avoiding expensive triple membership checks. We observed that, for one third of
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a set of diverse query types, most of the request overhead are in fact member-
ship subqueries. At the expense of one extra request to fetch the approximate
membership metadata, potentially many more could be saved. Indeed, the exper-
imental results confirm a drastic decrease in requests for half of the 250 randomly
generated WatDiv queries, while others experience little overhead thanks to local
caching. Furthermore, this addition does not affect the low-cost nature of the
server, which only has a limited load increase. However, there is a computational
overhead on the client for queries that are not improved. An intelligent client
should minimize this, by deciding when to use membership metadata based on
the query type.

Despite the reduction of requests, the total execution time is higher on aver-
age because of long delays introduced to generate amfs. Therefore, we conclude
that this metadata is not suitable for real-time computation. We therefore rec-
ommend to pre-compute or pre-cache it in advance. A strong benefit of http
caching has been proven for tpf querying [25] due to the limited possible num-
ber of requests, and this mechanism can be applied efficiently to tpfs with aug-
mented metadata. While Bloom filters are preferred for lower computation time,
the smaller size of Golomb-coded sets would prevail in the presence of caching.
To prevent the overhead of generating and transferring amfs, they could be
served in a separate resource that clients explicitly request when needed.

While positive membership tests introduce a slight overhead, this can be com-
pensated by enabling opportunistic querying. Our results show that retracting
results after validation is rare and only effects a small number of results. There-
fore, it makes sense to design Web applications that can deal with temporarily
imprecise results.

A major advantage of adding amf metadata to the tpf interface is that it
happens transparently and in a self-descriptive way. The server can choose freely
whether or not to add metadata to a certain response; clients can reactively use
metadata when possible, or ignore it when they do not support or need it. Where
count metadata has proven crucial for the initial design of tpf querying [25], this
first exploration of a new metadata feature was proven an interesting direction.
In the future, we could imagine different such types of join optimizations, based
on optional selectivity information that servers send as metadata to help clients
make intelligent decisions. Studying their impact on real-world scenarios such as
human-crafted knowledge bases can shape further directions.
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Abstract. Client-side query processing techniques that rely on the
materialization of fragments of the original RDF dataset provide a
promising solution for Web query processing. However, because of unex-
pected data transfers, the traditional optimize-then-execute paradigm,
used by existing approaches, is not always applicable in this context,
i.e., performance of client-side execution plans can be negatively affected
by live conditions where rate at which data arrive from sources changes.
We tackle adaptivity for client-side query processing, and present a net-
work of Linked Data Eddies that is able to adjust query execution sched-
ulers to data availability and runtime conditions. Experimental studies
suggest that the network of Linked Data Eddies outperforms static Web
query schedulers in scenarios with unpredictable transfer delays and data
distributions.

1 Introduction

The Linking Open Data cloud has experienced an impressive growth over the last
decade [11], and consequently, the number of Linked Data applications is pro-
gressively increasing [6]. Although this situation evidences the success of Linked
Open Data movements, it also encourages the Semantic Web community to
urgently develop computational tools that effectively manage Linked Data.

Managing Linked Data usually requires accessing RDF datasets through spe-
cific Web access interfaces, e.g., SPARQL endpoints [5] or Triple Pattern Frag-
ments (TPFs) [15]. SPARQL endpoints allow users to pose any SPARQL query
against SPARQL servers, whereas TPFs are specific for triple-patterns, and their
evaluations can be paged and retrieve metadata about the fragment page size,
and the approximated fragment size. Further, SPARQL query engines implement
data management techniques and execute queries against these Web access inter-
faces. Examples include federated query engines for SPARQL endpoints [1,7,12],
and the client-side SPARQL query engine [15] against TPF servers.

Despite these developments, the Web-alike characteristics of Linked Data
sources impose fundamental challenges on Linked Data management. The lack
of statistics about selectivities and data distributions, unpredictable data trans-
fer rates and server workload, can negatively impact the effectiveness of query
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 111–127, 2015.
DOI: 10.1007/978-3-319-25007-6 7
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engines against Linked Data, even in presence of the innovative querying capabil-
ities offered by SPARQL endpoints and TPFs. This problem is mainly generated
because existing Linked Data query engines implement execution query strate-
gies that rely in some way, on the traditional optimize-then-execute paradigm,
instead of following adaptive query strategies that adjust query executions to
unexpected data source conditions. Thus, our main research problem is to devise
adaptive query processing techniques that exploit properties of Linked Data tech-
nologies, and opportunistically adjust schedulers according to data availability
and runtime conditions. Thus, query plans will be changed on a tuple-by-tuple
basis, and answers will be produced as soon as they become available.

Adaptive query processing strategies have been extensively studied in the
context of heterogeneous databases [3,4,10]. They can be divided into intra- and
inter-operator solutions, and routing operators. Additionally, adaptivity can be
implemented at different granularity levels: Fine-grained granularity indicates
adaptation of small processes, e.g., per-tuple basis; while granularity is coarse-
grained whenever adaptivity is attempted for large processes. Intra-operator
techniques implement fine-grained granularity adaptivity, even in the context of
a fixed query plan. Contrary, inter-operator techniques re-schedule initial plans
based on: uncertainties in the execution cost, size of intermediate results, and
unexpected delays. Finally, eddies [9] are routing operators that continuously
reorder a query execution, by routing each intermediate tuple through the query
operators in a variety of orders that simulate different query plans. Routing
policies determine the routing destination of intermediate tuples. Eddies can be
executed in a distributed fashion to avoid bottlenecks of a centralized eddy [13].

Building on these query processing strategies, we devise a novel client-side
query processing engine that builds a network of Linked Data Eddies (nLDE) to
opportunistically execute SPARQL queries against TPF servers. First, an nLDE
relies on TPF metadata [15] to identify an initial bushy tree plan that reduces
intermediate results. Leaves of the plan are grouped in star-shaped subtrees and
internal nodes represent adaptive physical operators. Thus, intra-operator adap-
tivity is initially achieved. Simultaneously, eddies are created and empowered
with Linked Data metadata to route tuples through the adaptive operators by
following a pipeline strategy. We propose an innovative eddy routing policy that
considers well-known SPARQL optimization heuristics [14]. In our approach,
eddies are autonomous and any of them can produce query answers from tuples
that have been already routed through all the nLDE adaptive operators. In this
way, nLDE addresses adaptivity by executing different plans per tuple.

We empirically study the effectiveness of our network of Linked Data Eddies
engine (nLDE engine) on SPARQL queries against RDF data exposed via TPF
servers. Under the assumption of networks with no delays, we compare our query
optimization techniques and adaptive strategies with the current TPF client.
Experimental outcomes suggest that nLDE plans conduce to execution sched-
ulers able to overcome drawbacks caused by the lack of data distributions even
for queries with large intermediate results. Furthermore, we study the perfor-
mance of our nLDE engine in presence of data transfer delays. The observed
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Fig. 1. Different query plans to execute the query from Listing 1.1. The number of
intermediate results produced by each operator are enclosed in parenthesis.

results confirm that routing adaptive query processing strategies provide a flex-
ible solution for Linked Data management in unpredictable environments.

This paper comprises five additional sections. The following section illustrates
a motivating example. We then define our approach in Section 3, and Section
4 presents experimental results. The related work is summarized in Section 5.
Finally, we conclude in Section 6 with an outlook to future work.

2 Motivating Example

Consider the query from Listing 1.1 to retrieve the drugs classified as DBpedia
and Yago alcohols that share same routes of administration to be executed using
the TPFs for the English version of DBpedia.1 The page size of these fragments
is 100 and further metadata for each triple pattern is shown in Listing 1.1.

Listing 1.1. SPARQL query against DBpedia to retrieve information about resources
classified as alcohols. Prefixes are used as in http://prefix.cc/

0 SELECT ∗ WHERE {
1 ?d1 dcterms : s u b j e c t dbped ia : Category : A l c oho l s . # Count : 695
2 ?d2 r d f : t ype yago : A l c oho l s . # Count : 529
3 ?d1 dbprop : r o u t e sO fAdm i n i s t r a t i o n ?o . # Count : 2430
4 ?d2 dbprop : r o u t e sO fAdm i n i s t r a t i o n ?o . } # Count : 2430

We executed the query from Listing 1.1 using first the current TPF client2,
which follows a combination of left-linear plans with Nested Loop Joins to eval-
uate the query, as depicted in Figure 1(a). In this approach, the triple pattern
with the smallest cardinality (Count) is executed first; in our example, this corre-
sponds to tp2 with approximately 529 results. For each binding of tp2, the TPF
client instantiates the next triple pattern, in our example this would be tp4, and
retrieves all the resulting fragments. The execution continues with this strategy
1 http://fragments.dbpedia.org/2014/en
2 https://github.com/LinkedDataFragments/Client.js

http://fragments.dbpedia.org/2014/en
https://github.com/LinkedDataFragments/Client.js
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Fig. 2. Diverse execution plans generated by re-ordering the execution of operators
during query execution. Dashed lines represent routing of tuples to operators.

for each tuple of the intermediate results. The results of executing the example
SPARQL query are reported in the table of Figure 1(c). The execution stopped
after 318.90 seconds, produced 1,398 results, and performed 1,693 requests.

Consider now executing the example query with the plan depicted in
Figure 1(b). The shape of this plan corresponds to a bushy tree in which several
subtrees can be executed simultaneously, reducing the number of intermediate
results. For instance, the left-linear plan in Figure 1(a) for the example query
produces 136 + 71, 141 = 71, 277 intermediate results, while the bushy tree plan
in Figure 1(b) for the same query produces 173+136 = 309 intermediate results.
Moreover, joining the results with a symmetric operator is less expensive in this
case considering the cardinalities and page size of the fragments. For instance,
joining tp2 and tp4 with a Nested Loop Join results in ∼ 535 requests (6 requests
to retrieve the fragment of tp2 plus 529 requests for each binding), while per-
forming a Symmetric Hash Join generates only ∼ 31 requests (6 requests for
tp2 plus 25 requests for tp4). The execution of the bushy tree plan successfully
finalized in 3.03 seconds, and produced 5,651 results3 with 67 requests.

These results were obtained under the assumption of a network with no
delays. However, even efficient plans, like the one from Figure 1(b), can be
affected under the presence of data transfer delays. To illustrate, consider that
the source that resolves tp2 becomes very slow; then, tuples retrieved for tp4
can be routed to another join operator as depicted in Figure 2(a). The result
of re-routing tuples from tp4 is a new plan shown in Figure 2(b), in which the
delayed source is evaluated at the end. The plan can further change, as depicted
in Figure 2(c). We executed the plan from Figure 2(a) on a network with a total
delay4 of 1.99 seconds. When implementing the adaptivity presented in Figure 2,
all the results were produced in 3.86 seconds, which suggests that adaptivity was

3 The same number of results was obtained when executing the query against the
DBpedia endpoint at http://dbpedia.org/sparql.

4 Sum of all elapsed waiting times between receiving a fragment page i and the sub-
sequent page i + 1.

http://dbpedia.org/sparql
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able to hide 1.16 seconds of the total delay. We tackle adaptivity in Linked Data
management, and propose a client-side query engine that builds a network of
routing operators able to adjust execution schedulers to this type of scenarios.

3 Our Approach

We devise a query processing engine tailored to issue SPARQL queries in which
RDF sources are accessed in a triple-pattern fashion. In particular, we focus
on optimizing and executing queries against Triple Pattern Fragment (TPF)
servers [15]. The main components of our engine are: i) The query optimizer,
tailored to reduce the number of intermediate results and requests posed to the
data source; and ii) The adaptive routing query engine that implements a
network of eddies, able to dynamically adapt the optimized plan according to
current execution conditions, e.g., network delays or unpredictable selectivities.

3.1 Query Optimizer

We propose a query optimizer to devise physical plans that can be efficiently exe-
cuted against TPF servers, and make use of the metadata provided in each frag-
ment. Given a query Q, our optimizer (see Algorithm 1) starts retrieving meta-
data for each triple pattern in Q (lines 1-2); in particular, it selects the estimated
number of triples or cardinality of the fragment (count) and the number of triples
accessed per fragment page (pagesize). Then, the algorithm orders the triple
patterns according to their count value (line 3). Following our example query Q
from Listing 1.1, triple patterns are ordered as follows: Q′ = 〈tp2, tp1, tp3, tp4〉.

The optimizer then proceeds in three phases as follows. In the first phase, the
algorithm groups triple patterns as star-shaped groups (SSGs), i.e., sets of triple
patterns that share one variable;5 SSGs can be efficiently executed against RDF
data [16]. The optimizer starts by selecting the first triple pattern of the list Q′

(line 6), i.e., s is the pattern with the smallest cardinality, which in our example
is tp2. Then, s is joined with a triple pattern tp′

i in Q′ that shares variables in
common. If the number of accesses to retrieve the fragment of tp′

i is less than
the estimated number of instances in s, then the optimizer places a Symmetric
Hash Join (��SHJ), otherwise a Nested Loop Join (��NL) is placed (lines 10-13).
For instance, as shown in Section 2, (tp2 ��NL tp4) results in 535 requests, while
(tp2 ��SHJ tp4) generates only 31 requests. The value count of the star is updated
(line 14) with an estimation of the number of intermediate results that will be
generated, i.e., cardinalityEstimation. In the absence of selectivity factors of
triple patterns, we empirically tested different estimators (sum, product, and
maximum) to approximate cardinalityEstimation; we selected the sum since
it provided a more realistic estimation. This stage is completed when all triple
patterns in Q belong to a SSG. The result of this stage is the set S with SSGs,
which in our running example would be: S = {(tp2 ��SHJ tp4), (tp1 ��SHJ tp3)}.

5 A star-shaped group can be composed of only one triple pattern.
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Algorithm 1. Physical Optimizer
Input: Query Q = {tp1, tp2, ..., tpn}
Output: Bushy tree plan PQ for Q
// Get triple pattern metadata

1 for tpi ∈ Q do
2 (tpi.count, tpi.pagesize) ← getMetadata(tpi)

// Order Q such that tp′
i.count ≤ tp′

i+1.count

3 Q′ ← 〈tp′
1, tp

′
2, ..., tp

′
n〉

// Phase 1: Build index star-shaped groups (SSG)
4 S ← ∅
5 while Q′.length() > 0 do
6 s ← Q′.getF irst()
7 varss ← vars(s)

8 for tp′i in Q′ do
9 if |varss ∩ vars(tp′

i)| = 1 then
10 if (tp′

i.count/tp
′
i.pagesize) ≤ s.count then

11 s ← (s ��SHJ tp′
i)

12 else
13 s ← (s ��NL tp′

i)

14 s.count ←cardinalityEstimation(s.count, tp′i.count)
15 Q′.remove(tp′i)
16 S ← S ∪ {s}

// Phase 2: Build bushy tree to combine SSGs with common variables
17 PQ ← S
18 do
19 P ′

Q ← PQ

20 Select si and sj from PQ such that vars(si) ∩ vars(sj) �= ∅
21 PQ ← PQ − {si, sj}
22 PQ ← PQ ∪ {(si ��SHJ sj)}
23 while P ′

Q �= PQ

// Phase 3: Place joins between SSGs with no common variables
24 do
25 Select si and sj from PQ

26 PQ ← PQ − {si, sj}
27 PQ ← (PQ ��SHJ sj)

28 while |PQ| > 1

29 return PQ

In the second phase, the optimizer builds bushy tree plans by combining
subtrees created so far, e.g., the star-shaped groups identified previously. In
order to join two subtrees, the subtrees must share at least one variable in
common (line 20). Following the running example, subtrees (tp2 ��SHJ tp4) and
(tp1 ��SHJ tp3) are joined since they share the variable ?o. All subtrees are joined
in this stage with Symmetric Hash Join operators; which allows for executing
different subtrees of the plan simultaneously. This stage finishes when no subtrees
can be further combined (line 23). The outcome is a set of bushy trees PQ.

Finally, in the third stage, subtrees that could not be joined before (since
they share no variable in common) are combined. For the example query, our
algorithm managed to build the efficient plan from Figure 1(b). In general, the
optimizer produces a bushy tree plan PQ for Q that allows for reducing inter-
mediate results, and opportunistically places join operators aiming at reducing
the number of requests to the sources.
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3.2 Adaptive Routing Query Engine

The plan PQ devised by the optimizer is then executed by the adaptive query
engine designed to operate in unpredictable environments. Our query engine per-
forms routing operator adaptivity [9], able to change the order of the initial plan
according to the current conditions of execution. Tuples generated during query
execution can be routed to physical operators following a different order than
the one designated by the optimizer, but respecting the relationships between
operators in PQ. In our engine, adaptivity is performed on a tuple-based basis.

In order to perform this routing adaptivity, physical operators used to execute
the plan PQ should follow a pipelining strategy [9], i.e., able to produce tuples
incrementally as soon as data from a source become available. This type of
operators are denominated adaptive operators. Considering that PQ contains n
adaptive operators, each operator is identified with a different label from 0 to
n − 1. For example, in Figure 2, the label of the Join operator between tp1 and
tp3 is 0. In addition, each operator has a priority initially given by the execution
order induced by PQ, but operator priorities are updated as the execution goes
on. In the following we define an adaptive operator in our query engine.

Definition 1 (Adaptive Operator). Given an initial query plan PQ for a
query Q, an adaptive operator o is a physical non-blocking operator in PQ.
Each operator o in PQ is annotated with two numbers denoted by label(o) and
priority(o), such that:

– label(o) corresponds to an identifier of o in PQ and is unique;
– priority(o) represents the priority of o in PQ and induces the order in which

o has to be executed in PQ.

During query execution, tuples are sent from adaptive operators to eddies. An
eddy [2] is an operator that serves as a tuple router, that dynamically flows tuples
through plan operators. To do so, eddies rely on tuple annotations denominated
Ready and Done vectors. The Ready vector of a tuple indicates operators eligible
to process that tuple. In our running example, tuples resulting from tp1 should
be processed by operators 0 and 2, but not by operator 1 – according to the
plan from Figure 2(a); therefore, the Ready vector of these tuples is 101. The
Done vector of a tuple indicates the operators that have already processed that
tuple. For instance, if a tuple has only been processed by operator 1, then its
Done vector is 010. All tuples that flowed into an eddy e are introduced into a
routing buffer RBe, and are routed to the next adaptive operator following a
routing policy RPe (cf. Section 3.3). Operators that have not processed a tuple t
in RBe are computed by performing the bitwise operation Readyt − Donet; then,
one adaptive operator is selected by its priority according to the implemented
routing policy RPe. Figure 3 illustrates the components RBe and RPe of an
eddy. In this example, the tuple t = {d1=dbpedia:Bupranolol, o=”Oral, topical”}
in RBe is annotated with Ready=101 and Done=100; RPe decides to route the
tuple to operator 2 since it is the only operator that has not processed t yet.

Eddies in our approach are enhanced with the capability of directly out-
putting results when a tuple has been processed by all operators. This allows for
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Fig. 3. Eddy operator e: Tuples are inserted into the Routing Buffer (RBe), annotated
with Ready and Done vectors. The Routing Policy (RPe) selects the operator to route
tuple t. Eddy outputs a tuple when it has been processed by all operators (Done=111)

pipelining final results efficiently. In contrast, in the distributed eddies proposed
by Tian and DeWitt [13], final results are routed to an intermediary eddy (eddy
sink). When queries produce large amount of results, the eddy sink could become
a bottleneck, while in our approach the final output is produced in parallel by
several autonomous eddies. In the following, we provide a definition of an eddy.

Definition 2 (Eddy Operator). Given an initial query plan PQ with n adap-
tive operators. An eddy e to execute PQ is defined as a 2-tuple=(RBe, RPe) where
RBe corresponds to a routing buffer and RPe is a routing policy. RBe contains
a set of tuples generated during the execution of PQ. Each tuple t in RBe is
annotated with a pair of n-bit vectors named Readyt and Donet, such that:

– A value of ON in the entry i of the Readyt vector of t indicates that t should
be processed by the adaptive operator o such that label(o) = i.

– A value of ON in the entry i of the Donet vector of t indicates that t has
been already processed by the adaptive operator o such that label(o) = i.

– t is produced as an output of the evaluation of PQ when all entries in its
Donet vector are ON (e is autonomous).

RPe is a function to route tuples from the eddy e to adaptive operators of PQ.
RPe receives a tuple t in RBe and outputs the identifier label(o) of the adaptive
operator o where t will be sent to.

Our query engine implements an adaptive network to execute query plans,
called network of Linked Data Eddies (nLDE). An nLDE is composed of a set of
adaptive operators and a set of eddies that dynamically send tuples among each
other, constructing a bipartite graph G (see Figure 4). The number of adaptive
operators is given by the plan to be executed. An eddy can get “clogged” when
non-selective queries are executed against sources, and the transfer rate is faster
than what the eddy is able to process. In order to avoid a “clogged” eddy, several
eddies can be part of an nLDE such that the workload is distributed. This
is particularly important when executing non-selective queries in which large
amounts of intermediate results (tuples) have to travel through the network.
Future work could focus on studying the optimal number of eddies in a network
given the characteristics of a query, or even creating eddies on demand.
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Figure 4 depicts an nLDE with two eddies for the query plan from Figure 2(a)
of our running example. Edges in graph G from eddies to adaptive operators
indicate that tuples were sent through these routes. Assuming that Eddy 0
is the one depicted in Figure 3, the nLDE contains an edge from Eddy 0 to
operators 2 and 1 since tuples {d1=dbpedia:Bupranolol, o=“Oral, topical”} and
{d2=dbpedia:Ethynol} were routed to these operators, respectively. Analogously,
an edge from an adaptive operator to an eddy indicates that at least a tuple was
sent through that route. For instance, Figure 4 depicts an edge from the Join
operator with label 0 to the Eddy 0. When inspecting the routing buffer of Eddy
0 (Figure 3), the tuple {d1=dbpedia:Bupranolol, o=“Oral, topical”} is annotated
with Done=001, indicating that this tuple was only processed by the operator
with label 0, therefore this operator was the one that sent the tuple to Eddy 0.

Besides eddies and adaptive operators, nLDE takes into consideration the
characteristics of SPARQL queries and properties of Linked Data sets accessed
to resolve different portions of a query. This information is denominated Triple
Pattern Descriptor (TD) and consists of annotating the triple patterns from the
query with metadata. A TD is then exploited by eddies in an nLDE to devise
efficient routes to process RDF data. Figure 4 illustrates the TD for our running
example: Triple patterns of the query are annotated with their corresponding
cardinality (number of triples) and with the position of joins (e.g., joins by
subject-subject and object-object) with other patterns. However, one important
factor when executing queries is the selectivity of operators: Operators with high
selectivity produce less intermediate results. Due to skewed data distribution in
RDF datasets, selectivity may vary depending on the RDF resources that are
being processed and cannot be a priori estimated by solely analyzing triple pat-
tern cardinalities. We propose therefore an eddy routing policy (cf. Section 3.3)
tailored for RDF data that considers not only the productivity of operators but
also the position of joins in SPARQL queries [14] to favor the routing of tuples
to join operators where the estimated selectivity is high. In the following, we
define a network of Linked Data Eddies and its components.

Definition 3 (Network of Linked Data Eddies). Given a query Q and a
query plan PQ for Q, a network of Linked Data Eddies for PQ is a 2-tuple
nLDE = (G,TD), where G is a bipartite graph G = (E ∪ O, V ) and TD is a
triple pattern descriptor. E is a set of eddy operators, O is the set of adaptive
physical operators in PQ, and V is a set of directed edges, such that:

– V ⊆ (E × O) ∪ (O × E).
– If (e, o) belongs to V then the eddy e has routed at least one tuple to the

adaptive operator o.
– If (o, e) belongs to V then the adaptive operator o has sent at least one tuple

to the eddy e.

TD corresponds to a set of pairs (tp, Mtp), where tp is a triple pattern of Q
and Mtp corresponds to metadata of tp. Example of metadata properties could
be: join position, RDF data source, cardinality, and fragment page size.
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Subject Predicate Object Metadata 

?d1 dcterms:subject dbpedia:Category:Alcohols Count =   695  
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Fig. 4. Network of Linked Data Eddies (nLDE). Eddies and adaptive operators con-
stitute a bipartite graph G. Edges in G represent routing paths of tuples. The Triple
Pattern Descriptor (TD) of an nLDE maintains information about triple patterns from
the query: metadata and operator position, e.g., subject-subject (ss), object-object (oo)

In order to ensure the correct processing of tuples, eddies and adaptive oper-
ators should respect a set of rules. For instance, eddies cannot route a tuple to
an arbitrary operator, but it has to consider the processing history of the tuple –
given by its Ready and Done vectors. This restriction is defined in the following.

Definition 4 (Routing Rule from Eddy to Adaptive Operator). Given
an eddy operator e = (RBe, RPe) and a set of adaptive operators O in an nLDE,
RPe routes tuples from RBe according to the following rule:

– e can route a tuple t in RTe to an adaptive operator o ∈ O with identifier
label(o) = i only if Readyt[i] = ON and Donet[i] = OFF; the set of operators
that meet these conditions for t are denominated ‘eligible operators of t’.

Note that an adaptive operator has no restrictions on selecting an eddy to
send a tuple to. However, before sending a tuple to an eddy, the adaptive operator
has to build the Ready and Done vectors of the tuple. The correct creation of
the Ready vector ensures that the tuple will not be processed more than once
by an adaptive operator. Furthermore, the correct creation of the Done vector
guarantees that the tuple will be processed by all the corresponding operators.
In the following, we present the rules to create Ready and Done vectors of tuples.

Definition 5 (Rules to Create Ready and Done Vectors). Given an adap-
tive operator o in an nLDE and a set of eddy operators E. Consider a tuple t
produced by a binary operator o when combining tuples ti and tj. The tuple t is
sent to an eddy operator e ∈ E respecting the following rules:

– Readyt corresponds to the bitwise OR logical operation of the Ready vectors
of ti and tj,

– Donet corresponds to the bitwise OR logical operation of the Done vectors of
ti, tj, and the identifier of o represented by label(o).

In case the operator o is unary, Donet is updated by performing the bitwise OR
logical operation with label(o), while Readyt remains the same.



Networks of Linked Data Eddies 121

The execution of a query Q with an nLDE satisfies the following property:

Property 1 (Soundness). Given a query Q and a network of Linked Data Eddies
nLDE = (G = (E ∪ O, V ), TD) for a query plan PQ. A tuple t produced by an
eddy e ∈ E belongs to the set of answers of the query Q if and only if all the
entries of the Donet vector are equal to ON.

3.3 Routing Policies

Routing Policy from Eddy to Adaptive Operator. Tuples in the routing buffer
of an eddy are processed following a strategy first-come, first-served (FCFS),
i.e., oldest tuples are attended first. When a tuple t is routed from an eddy,
the routing policy selects among the ‘eligible operators of t’ the one with the
highest priority. Operator priorities are initialized according to the plan devised
by the optimizer: Operators with the highest priority value should be executed
first. In our running example, operators 0 and 1 have higher priority values than
operator 2. During query execution, the priority of operator o with label(o) = i
is updated as follows: priority(i) = 1 − #tuples received from i

#tuples routed to i
. Measuring the ratio of

tuples produced vs. consumed by an operator allows for estimating its selectivity.
When join operators exhibit similar performance, an operator is chosen over the
others based on the join position specified in the triple pattern descriptor (TD)
of the nLDE, following the Heuristic 2 by Tsialiamanis et al. [14]. Additionally,
our routing policy respects the following restrictions: 1) Tuples are not routed
to non-symmetric operators, otherwise the number of requests to sources could
be increased; 2) Tuples are not routed to operators that do not share variables
in common, to avoid the generation of large amount of tuples in the network.

Routing Policy from Adaptive Operator to Eddy. As explained in Section 3.2,
there are no restrictions when routing tuples to eddies. However, when several
eddies are part of an nLDE, it is important to design routing policies from adap-
tive operators that allow for distributing the workload among several eddies. In
this work, we implement a simple routing policy in which an operator randomly
chooses an eddy following a uniform distribution, i.e., all eddies have the same
probability to be selected. We empirically tested this policy and observed that
it is able to fairly spread tuples among eddies in the network.

4 Experimental Results

We empirically assess the effectiveness of a client-side network of Linked Data
Eddies (nLDE engine) to adapt query execution schedulers to unknown data
distributions and unexpected data transfer delays. The client-side Web query
engine of Triple Pattern Fragments (TPF client) [15] is used as the baseline of
the study. Below we describe the configuration settings used in our experiments.

Datasets and Query Benchmarks6: TPFs for the English version of DBpe-
dia are used as RDF data servers. We designed two benchmarks of queries by
6 Benchmarks 1 and 2 are available at http://people.aifb.kit.edu/mac/nlde/.

http://people.aifb.kit.edu/mac/nlde/
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analyzing triple patterns and sub-queries answerable for DBpedia. Benchmark
1 comprises 20 queries composed of basic graph patterns of between 4 and 14
triple patterns; these queries are non-selective and produce a large number of
intermediate results. Benchmark 2 is composed of a total of 25 queries that have
basic graph patterns of between three and six triple patterns; five queries about
topics in five domains: Historical, Life Sciences, Music, Sports, and Movies.

Implementations: We implement proxies to configure data transfer delays.
Both the nLDE engine and proxies are implemented in Python 2.7.6. We evalu-
ate our experiments on a network with no delays, and in a fast network which
is simulated with a gamma distribution (α = 1, β = 0.3) of response latency
resulting in an average latency of 0.3 secs. The setting ‘nLDE (No Policy)’ rep-
resents the basic query optimization (no adaptivity): The plan devised by the
optimizer does not change. Experiments were executed on a Debian Wheezy 64
bit machine with CPU: 2x Intel(R) Xeon(R) CPU E5-2670 2.60GHz (16 physical
cores), and 256GB RAM. Timeout was set to 1,800 secs.

Evaluation Metrics: The following metrics are computed separately for each
benchmark. i) Execution Time: Elapsed time spent by a query engine to complete
the execution of a query. It is measured as the absolute wall-clock system time
as reported by the Python time.time() function. ii) Number of Requests: Total
number of requests submitted to the servers during query execution. iii) Number
of Answers: Total number of answers produced during the execution of a query
plan. Queries were run five times and we report on the average time.

4.1 Effectiveness of nLDE Optimization Techniques

The goal of this study is to determining the impact that query selectivity and
size of intermediate results have on the performance of client-side query engines
in networks with no delays. We compare the nLDE engine with the TPF client
on queries of Benchmark 1 and Benchmark 2. To compare the query optimiza-
tion and execution techniques of both engines under the same conditions, the
nLDE engine does not follow any routing policy, i.e., intermediate tuples are
processed following the plan originally produced by the nLDE optimizer (Algo-
rithm 1). Queries in Benchmark 1 are non-selective and produce a large number
of results, while Benchmark 2 comprises very selective queries that produce a
small number of results. Given the selectivity of queries in Benchmark 1, the
timeout at 1,800 secs. is reached in some of the queries. Thus, we present the
number of answers produced before timing out, in addition to the execution
time. Figures 5(a) and (b) report on Execution Time and Number of Answers
in logarithmic scale, respectively. We can observe that plans generated by the
nLDE engine not only speed up the execution time, but they are able to produce
more answers for the executed queries. The nLDE engine only consumes more
time than the TPF client in queries Q5, Q8, Q10, and Q11, but as reported in
Figure 5(b), the TPF client produces less number of answers than the nLDE
engine in these queries. These results suggest that bushy trees comprised of
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Fig. 5. Results for queries of Benchmark 1 for nLDE engine and TPF client; 20 non-
selective queries against TPFs for the English version of DBpedia. a) Execution Time
in secs. (log. scale), b) Number of Answers (log. scale). No delays in data transfer

star-shaped groups in conjunction with the nLDE adaptive operators, provide
efficient execution schedulers to access TPF servers. Furthermore, we evaluate
the overhead that these engines may cause to the data servers during query
execution. Results of the execution of queries of Benchmark 2 are presented on
Figures 6(a) and (b); because both engines produce all answers for each query,
we just report on execution time and the number of requests submitted by each
of the engines to the TPF servers. As can be seen, nLDE bushy plans speed
up query schedulers by up to one order of magnitude, while they submit less
requests to the TPF servers in the majority of the queries. The reason for this
is that left-linear plans as the ones generated by the TPF client in conjunction
with Nested Loop Join operators, may produce a large number of intermediate
results that conduce to large number of requests to the TPF servers. In contrast,
bushy plans composed of star-shaped groups minimize the number of interme-
diate results and in consequence, submit a small number of requests to the TPF
servers. Thus, the nLDE engine is able to retrieve data from the TPF servers in
a more efficient fashion, providing in this way, an effective approach for Linked
Data management even in ideal scenarios of simple queries (Benchmark 2) and
networks with no delays.

4.2 Adaptivity of the nLDE Engine

The goal of this study is to evaluate the performance of the routing policies
implemented by the nLDE engine. Networks with delays allow for evaluating
the adaptivity of engines to unpredictable changes. We simulate a fast network
where data transfer rates are configured to respect a gamma distribution with
α = 1, β = 0.3. Further, we compare the execution time of the nLDE engine
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Fig. 6. Results for queries of Benchmark 2 in nLDE and TPF client; 25 Selective
Queries against TPFs for the English version of DBpedia; Five Queries per Domain.
a) Execution Time in secs. (log. scale), b) Number of Requests (log. scale)-No delays
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Fig. 7. Results for queries of Benchmark 2 in nLDE with No Routing Policy and nLDE
with our Routing Policy. 25 Selective Queries against TPFs for the English version of
DBpedia; Five Queries per Domain. Execution Time in msecs. Fast network simulated
with a Gamma distribution (α = 1, β = 0.3) of delays

when intermediate tuples are executed following the original plan (No Policy)
and when execution schedulers are adapted to the data transfer rates according
to our Routing Policy. Both instances of the nLDE engine produce the same
number of query answers and server requests, so we report on Execution Time in
milliseconds in Figure 7. As can be observed, the nLDE engine with the routing
policy exhibits better performance than the nLDE engine with no policy. It
is important to highlight that this scenario is quite troublesome for a routing
policy. When queries produce a small number of intermediate results the policy
might not have enough information to devise an efficient routing. Additionally,
when network is fast with a relative low latency the policy has to be lightweight
enough to process tuples arriving with fast rates. Despite of these conditions
and the overhead caused by routing intermediate results, the nLDE engine with
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our routing policy is able to faster produce the complete results of the studied
queries. We hypothesize that even better performance will be observed in slower
networks and in presence of messy data distributions.

5 Related Work

We analyze the adaptivity granularity achieved by Web query processing
approaches that rely on HTTP interfaces to access RDF data.

SPARQL endpoints exploit SPARQL expressiveness and efficiently access
RDF data. Nevertheless, they may suffer from typical Web-publishing prob-
lems, i.e., connections may be slow or may, in the extreme, become unavailable.
Existing federated engines, e.g., ANAPSID [1], FedX [12], and SPLENDID [7],
implement adaptivity and mitigate in some way, the impact of these problems.
In FedX and SPLENDID, adaptation is coarse-grained granularity, supporting
the generation of fixed logical query plans according to the available endpoints.
In addition, ANAPSID implements a fine-grained granularity adaptivity, and
provides an intra-operator strategy and non-blocking operators. Thus, ANAP-
SID detects when SPARQL endpoints become unavailable, and opportunistically
produces results as quickly as data arrives from the endpoints. Although these
adaptive query processing techniques may empower SPARQL endpoints, because
the optimize-then-execute paradigm is followed, completeness of the query results
or query execution efficiency is not always achieved. Contrary, our network of
Linked Data Eddies implements routing operator strategies able to change the
logical query plan according to the conditions of the RDF data sources.

Hartig et al. [8] propose a Linked Data traversal approach and provide an
inter-operator approach where source selection and link traversal are interleaved
during query execution time. A non-blocking iterator model that relies on an
asynchronous pipeline of iterators is used for traversing relevant links. Iterators
are executed in an order heuristically determined, e.g., the most selective itera-
tors are executed first. Further, the query engine is able to adapt the execution
to source availability by on-the-fly detecting whenever an HTTP server stops
responding. This approach adapts execution schedulers to uncontrollable net-
work conditions; nevertheless, in presence of arbitrary data distributions, plans
cannot be adapted and performance may be negatively impacted.

Finally, Verborgh et al. [15] propose a novel HTTP interface to access RDF
data that rely on Linked Data Fragments (LDF) which can be easily generated
by RDF data providers. Verborgh et al. also present a client-side Web query
processing strategy for Linked Data Fragments of triple patterns (TPFs). This
client-side query engine enhances Web clients with the capability of executing
SPARQL queries and implements the non-blocking iterator model proposed by
Hartig et al. [8] to adapt the query execution scheduler to different cardinal-
ity distribution of the retrieved TPF servers. Adaptivity is implemented at the
level of TPF pages by interleaving TPF server selection with TPF requests to
ensure thus that requests of more selective pages are executed first. Although
TPF clients may effectively adapt query schedulers to TPFs with arbitrary data



126 M. Acosta and M.-E. Vidal

distributions, data transfer delays can negatively impact their performance. In
contrast, the nLDE engine relies on both metadata provided by TPFs and novel
routing techniques to identify efficient query plans that reduce execution time
and number of requests. Therefore, the nLDE engine dynamically adapts execu-
tion schedulers to changing conditions of the TPF servers.

6 Conclusions and Future Work

We have defined the nLDE engine, a client-side query processing engine that
builds a network of Linked Data Eddies to efficiently access TPF servers. The
nLDE engine implements adaptivity at intra-operator levels as well as routing
strategies that allow for the adaptation of execution schedulers to real-world
conditions. Reported experimental results suggest that the nLDE engine is able
to generate plans that not only increase the number of answers produced, but
also reduce execution time and number of server requests. Moreover, in presence
of unexpected data transfer delays, the nLDE engine is able to route intermediate
results according to data availability and produce answers as soon as they are
retreived from the servers. In the future, we plan to define different routing
policies and cost models that better estimate selectivity of TPFs.

References

1. Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an
adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC
2011, Part I. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011)

2. Avnur, R., Hellerstein, J.M.: Eddies: continuously adaptive query processing. In:
SIGMOD, pp. 261–272 (2000)

3. Babu, S., Bizarro, P.: Adaptive query processing in the looking glass. In: CIDR,
pp. 238–249 (2005)

4. Deshpande, A., Ives, Z.G., Raman, V.: Adaptive query processing. Foundations
and Trends in Databases 1(1), 1–140 (2007)

5. Feigenbaum, L., Williams, G., Clark, K., Torres, E.: SPARQL 1.1 protocol (2013)
6. Fundulaki, I., Auer, S.: Linked Open Data - Introduction to the special theme.

ERCIM News 2014(96) (2014)
7. Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VOID

descriptions. In: COLD Workshop (2011)
8. Hartig, O.: Zero-knowledge query planning for an iterator implementation of link

traversal based query execution. In: Antoniou, G., Grobelnik, M., Simperl, E.,
Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I.
LNCS, vol. 6643, pp. 154–169. Springer, Heidelberg (2011)

9. Hellerstein, J.M., Franklin, M.J., Chandrasekaran, S., Deshpande, A., Hildrum,
K., Madden, S., Raman, V., Shah, M.A.: Adaptive query processing: Technology
in evolution. IEEE Data Eng. Bull. 23(2), 7–18 (2000)

10. Laddhad, K., Sudarshan, S.: Adaptive query processing. Technical Report
05329014, Kanwal Rekhi School of Information Technology, Indian Institute of
Technology, Bombay, Mumbai (2006)



Networks of Linked Data Eddies 127

11. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: Mika, P., Tudorache, T., Bernstein, A.,
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P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796,
pp. 180–196. Springer, Heidelberg (2014)

16. Vidal, M.-E., Ruckhaus, E., Lampo, T., Mart́ınez, A., Sierra, J., Polleres, A.: Effi-
ciently joining group patterns in SPARQL queries. In: Aroyo, L., Antoniou, G.,
Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.)
ESWC 2010, Part I. LNCS, vol. 6088, pp. 228–242. Springer, Heidelberg (2010)



Substring Filtering for Low-Cost Linked Data
Interfaces

Joachim Van Herwegen(B), Laurens De Vocht, Ruben Verborgh,
Erik Mannens, and Rik Van de Walle

Multimedia Lab, Ghent University – iMinds,
Gaston Crommenlaan 8 Bus 201, 9050 Ledeberg-Ghent, Belgium

joachim.vanherwegen@ugent.be

Abstract. Recently, Triple Pattern Fragments (tpfs) were introduced
as a low-cost server-side interface when high numbers of clients need to
evaluate sparql queries. Scalability is achieved by moving part of the
query execution to the client, at the cost of elevated query times. Since
the tpfs interface purposely does not support complex constructs such as
sparql filters, queries that use them need to be executed mostly on the
client, resulting in long execution times. We therefore investigated the
impact of adding a literal substring matching feature to the tpfs inter-
face, with the goal of improving query performance while maintaining low
server cost. In this paper, we discuss the client/server setup and compare
the performance of sparql queries on multiple implementations, includ-
ing Elastic Search and case-insensitive fm-index. Our evaluations indi-
cate that these improvements allow for faster query execution without
significantly increasing the load on the server. Offering the substring fea-
ture on tpf servers allows users to obtain faster responses for filter-based
sparql queries. Furthermore, substring matching can be used to support
other filters such as complete regular expressions or range queries.

Keywords: Linked data · sparql · String matching · Regular
expressions

1 Introduction

The publication of rdf data on the Web is often presented as a dichotomy [6]:
either the entire dataset is made available in a downloadable data dump, or fine-
grained query-level access is provided through a public sparql endpoint [7].
In the first case, users need to download the entire dataset—even if they are
only interested in a specific part of it—and are then free to use it locally in any
way they see fit. Commonly, this means ingesting the triples in a local triple
store and setting up a private sparql endpoint. While this approach is most
straightforward for data publishers and offers most freedom for data consumers,
it also comes with a high burden in terms of needed bandwidth, device capacity,
and technical ability of the data consumer. Especially given the rise of mobile
devices to browse the Web, offline querying of datasets is not viable as the only
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 128–143, 2015.
DOI: 10.1007/978-3-319-25007-6 8
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solution. Furthermore, if datasets change often, synchronizing them with the
latest version becomes a challenge.

In the second case, public sparql endpoints allow users to execute all of
their queries on the server against live data, without having to worry about
huge downloads or updates. However, since all work is shifted to the server,
the endpoint’s load increases drastically, causing an increase in server cost and
potential overloads and subsequent downtime if many complex queries are exe-
cuted. Even though most public servers pose certain limits to query execution,
the low availability of sparql endpoints is a prominent issue [3], and high load
is a potential availability risk. Furthermore, from an economic perspective, not
all data publishers on the public Web are willing and/or able to pay for a com-
putational infrastructure that allows third parties to execute complex queries
free of charge, given that they already provide the data itself for free. Whether
or not the duties of a publisher include live queryable access, the fact is that
only a minority attempts to host a public sparql endpoint [6,20].

Recently, the Triple Pattern Fragments (tpfs) interface was introduced as
an alternative to bridge the gap between the low server load of datasets and
the functionality of a full sparql endpoint. tpfs limit the functionality of the
server to triple pattern requests; more complex sparql queries are executed by
a client-side query processor that decomposes them into triple patterns. Clients
combine intermediary results received from the server locally to find results to
larger queries. This greatly reduces the server load by shifting querying partially
to the client, at the expense of increased query times and bandwidth. While
basic graph pattern queries can be executed efficiently with tpfs, other query
constructs potentially lead to slow queries. The tpf interface, however, is self-
describing, meaning we can transparently add new features to it. While they
might make individual requests more expensive, the number of requests—and
thereby the total sum of all request costs—might be significantly reduced.

In this paper, we investigate a server-side interface feature that allows sparql
queries with certain FILTER patterns to be executed more efficiently. With the
regular tpf interface, all filters have to be evaluated client-side, since only exact
triple patterns have server-side support. Concretely, this means that clients first
have to download all triples that match the remainder of the query, after which
the filter can be applied to these results. This works sufficiently for filters with low
selectively, which sparql endpoints typically also execute at the end. However,
if the filter is the only part of a query that has a high selectivity, the client
cannot solve this query efficiently, since the filter can only be used on triples
that were already downloaded from the server. For this reason, we introduce
substring matching as a server-side interface, allowing the user to request all
literal objects that contain a given string pattern.

In Section 2 we discuss related work, especially regarding query interfaces
and pattern matching, and show how it is related to our current work. Section 3
explains the benefit of adding a substring feature to servers that publish ldfs,
and Section 4 presents two implementations. We then extend the client-side
query algorithm in Section 5 to make use of the substring feature and examine
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its impact on performance and server load in Section 6. We conclude in Section 7
and look at how this work can be extended in the future.

2 Related Work

This paper defines a server-side interface feature for substring search on rdf
object literals. To place the contribution in context, we first discuss the multiple
available interfaces to access Linked Data, followed by an introduction to the
indexing algorithm used later on.

2.1 Web APIS to Linked Data

Linked Data can be published on the Web using different Application Pro-
gramming Interfaces (apis). The Linked Data Fragments conceptual frame-
work [25,27] enables the analysis and comparison of Web apis by abstracting
each api according to how it provides access to parts of a given dataset. Each
such part is called a Linked Data Fragment (ldf), which consists of data, meta-
data, and controls. The data is a set of those triples of the dataset that match
a given interface-dependent selector. The metadata set consists of triples that
describe the dataset and/or the current fragment or related fragments. Finally,
the controls are hypermedia links and/or forms that allow clients to retrieve
other fragments of the same or other datasets.

In addition to describing existing interfaces, ldfs also allow defining new
interfaces with different characteristics. Below, we discuss three types of inter-
faces using the ldf conceptual framework.

Data Dumps. A data dump of a dataset is an ldf whose data consists of
all triples in that dataset, usually in a compressed archive. The metadata set
typically contains data such as publication date and/or license. No controls are
present, because all available data is contained within the archive. Data dumps
are prevalent on the Web: lodstats mentions more than 1,700 data dumps [6],
and the lod Laundromat contains more than 600,000 datasets crawled from the
Web [20]. Their main drawback is that they cannot be queried “live”, i.e., they
need to be downloaded in their entirety before typical sparql queries can be
evaluated over them. Since data dumps can become quite large (several giga-
bytes are not an exception), they are impractical for most use cases—especially
if data changes often and needs to remain up-to-date. Furthermore, setting up
and maintaining a query interface on top of a data dump requires a techni-
cal background and significant computational power, so this is out of reach for
typical desktop users as well as all mobile users.

SPARQL Endpoints. The sparql protocol [7] exposes rdf graphs on the
Web using the sparql query language [13]. Each response to a CONSTRUCT or
DESCRIBE query can be seen as an ldf, where the data consists of the rdf
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triples in the dataset that match the query. The metadata and control sets are
empty; controls are given implicitly through the sparql protocol. The main
advantage of sparql endpoints is their expressiveness: clients can ask very spe-
cific questions about a dataset and retrieve only the results they are interested
in. However, public sparql endpoints suffer from a two-sided availability prob-
lem: the majority of datasets is not published as a sparql endpoint [6], and
those endpoints that are on the Web experience frequent downtime [3]. Further-
more, sparql endpoints have a high per-request cost [25] and are thus relatively
expensive to host.

Triple Pattern Fragments. The Triple Pattern Fragments (tpf) inter-
face [24,25] was designed to combine the desirable characteristics of data dumps
(low server-side cost) and sparql endpoints (live queryable). Clients can ask
a server for triple patterns; in response, the server sends a tpf, consisting of
data triples matching the triple pattern (paged to reduce response sizes), meta-
data expressing the total number of matching triples, and controls to retrieve
all other tpfs of the same dataset. Complex sparql queries are evaluated by
clients, which split a query into triple patterns and use the metadata in fragments
to determine an efficient execution order. The advantage of tpfs is that they
only require low processing power on the server side, and are thus less expensive
to host with high availability [25]. The drawback is that sparql queries have
longer (but more consistent) query times than on a sparql endpoint. More
than 600,000 datasets are available as tpfs through the lod Laundromat [20].
dbpedia, the most well-known dataset on the Semantic Web, has an official tpf
interface with 99.999% availability [26].

tpfs move the query planning problem to the client. It is up to the client to
make optimal use of all metadata exposed by the tpf server, which in the default
case consists of the estimated amount of matched triples for a triple pattern.
Since a tpf server only supports triple patterns, complex sparql structures such
as filters also have to be computed client-side. This can be done by checking all
resulting triples against the filters in the sparql query. The originally proposed
query planning algorithm is a greedy algorithm [25]. Assuming a Basic Graph
Pattern (bgp) query, the client starts by downloading results for the smallest
triple pattern in the bgp, based on the count estimate metadata sent by the
server. The values of each resulting triple are bound to each remaining pattern.
The client then requests the smallest of these bound patterns from the server,
and continues binding results to unbound patterns until all patterns have been
bound. This process is started multiple times if there are multiple unconnected
bgp’s. Computationally this method is quite fast: most of the time the client is
simply waiting on the server response. The downside is that the client can become
stuck in local optima, causing it to execute more requests than a theoretically
optimal solution.

Van Herwegen et al. proposed an improvement to the greedy algorithm [22],
which tries to find a solution using a minimum number of http calls, avoiding
local optima. This is achieved by downloading two triple patterns separately
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from the server and joining them on the client if this requires fewer http calls.
Multiple estimation techniques, based on the intermediate results of the algo-
rithm, are used to predict which query path is least expensive. If the current path
is suboptimal, the algorithm will change it at runtime and continue from the new
path. This decrease in http requests results, however, in more computational
work for the client because of the more complex local joining process.

2.2 Burrows-Wheeler Transform and FM-Index

The Burrows-Wheeler Transform (bwt) [4] was created to transform data so that
it can be compressed more easily without any loss [19]. It is used in multiple
fields, such as bio-informatics [15].

An fm-index is an index on a bwt-transformed dataset to find substrings
in the data by adding some additional metadata [10]. Brisaboa et al. show how
an fm-index can even be used to perform substring matching in a list of strings
instead of a single string, returning all strings that contain a given substring [2].
In Section 4.3, we extend this technique to also allow for case-insensitive matches.

Ferguson shows that it is even possible to execute regular expressions on data
stored using an fm-index [8]. In his paper, he describes a system called femto,
which can index large datasets while still maintaining adequate performance.

2.3 HDT (Header Dictionary Triples)

hdt [9] is a data storage format that optimizes the space required to store
large rdf datasets by storing its uris and literals separately in a compressed
dictionary and storing identifier triplets that reference this compressed data.
Multiple dictionaries are supported by hdt; we are particularly interested in
the dictionary that uses an fm-index to store the object literals, thus allowing
full-text search on triple objects [1,16].

2.4 Full-Text Search in Triple Stores

hdt is not the only way to support full-text search on triples: there exist multiple
other implementations supporting the same functionality or even more [5,17].
Minack et al. [18] performed an extensive comparison of multiple of these imple-
mentations in complete triple stores (unfortunately not including hdt since it
is a data structure and not a triple store). They concluded that most standard
triple stores have sufficient support for full-text search, but that there are still
areas where performance is inadequate.

3 Problem Statement

A common use case for substring matching is when we know the name of an
entity we are looking for, but we do not know its uri. As an example, Listing 1
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SELECT ?movie

WHERE {

?movie dbpedia-owl:starring [ rdfs:label ?name ].

FILTER REGEX(?name, "Matthias Schoenaerts", "i")

}

Listing 1. sparql query to find all movies with Matthias Schoenaerts

contains a query that returns all movies starring the actor Matthias Schoe-
naerts. We assume the user did not know the exact uri that was necessary,
and used string matching to find the uri that corresponds to the person called
“Matthias Schoenaerts”. Since tpf servers only support exact triple pattern
lookups, a client-side algorithm would need to execute the filter locally on all
triples joined by the previous two triple patterns. The first pattern has 200,000
matches and the second one more than 12,000,000, meaning that any solution
would need at least 200 calls (assuming a page size of 100) to obtain results for
the first pattern, and then another 200,000 to map them to their label.

However, if it were possible to filter all literals in the dataset first, we would
only obtain 20 results that would then need to be mapped to the previous pat-
terns, resulting in a total of 40 http requests instead of 200,000. In general,
the ability to solve substring matches is especially useful when all of the triple
patterns have a low selectivity and the string pattern selectivity is quite high.
For this example, the string pattern in Listing 1 is highly selective since there are
only 20 results. These observations lead us to the following research question.

Question 1: How does the performance of queries with FILTER patterns improve
if the tpf interface is extended with substring search on literals?

Extending the interface means that clients are able to send more complex
requests, which could mean a higher per-request cost for servers. At the time,
however, an increased expressivity of requests could lead to a reduction in the
number of requests needed to evaluate a particular sparql query. This brings
us to a second research question:

Question 2: What is the server-side impact of adding support for substring
search to the interface, i.e., can we still maintain the low-cost properties associ-
ated with the tpf interface?

Ultimately, the results of this research should help data publishers decide
whether the costs of adding substring search are worth the expressivity and the
possible improvement in query performance they bring.

Question 3: For which scenarios and types of queries is it beneficial to add
a substring search interface to the server?

Based on the above research questions, we propose the following hypotheses:

Hypothesis 1: The http requests required to solve typical queries with highly
selective REGEX FILTERs can be greatly reduced when a substring search is
present in addition to a tpf interface.
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PREFIX void: <http://rdfs.org/ns/void#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX hydra: <http://www.w3.org/ns/hydra/core#>

<#about> {

<#about> foaf:primaryTopic <#fragment>.

<#fragment> void:subset <http://example.org/mydataset>;

<http://example.org/mydataset> hydra:search [

hydra:template "http://example.org/mydataset{?substring}";

hydra:mapping [ hydra:variable "substring";

hydra:property hydra:freetextQuery ]

].

}

Listing 2. Self-descriptive hypermedia controls in a tpf fragment explain how sub-
string matching can be accessed (TriG syntax).

Hypothesis 2: Queries with REGEX FILTERs that are not highly selective are
unaffected by the presence of a substring search interface.

Hypothesis 3: The cost to offer substring matching is limited such that sub-
string requests can be executed at an acceptable time cost on a typical server.

4 Server-Side Interface

To support substring search, Section 4.1 defines an interface feature that can
work in conjunction with the tpf interface. We evaluated two different tech-
niques to filter through the data: an internal fm-index and an external Elastic-
search1 index, which can be found in Section 4.2 and 4.3, respectively.

4.1 Extension of the TPF Interface

The tpf interface has been designed in a self-descriptive and extensible manner,
so clients can discover what capabilities are supported [25]. Given a single uri
to any resource of the interface, the client can fetch it with http GET, asking for
an rdf representation. In this representation, the clients will find hypermedia
controls, which explain that “this interface can be queried by triple pattern” [24].
This avoids a hard-wired client/server contract. For example, if we visit the
resource http://fragments.dbpedia.org/2014/en in a Web browser, we will see
an html form with fields subject, predicate, object, and this form instructs the
browser how to create http requests against the interface. This same information
is conveyed in the rdf-based representation of the same resource, using the
Hydra Core Vocabulary [14,24].

Since we aim to provide a substring search interface feature, we should sim-
ilarly inform human and machine clients of this functionality and how they can
1 http://www.elastic.co/

http://fragments.dbpedia.org/2014/en
http://www.elastic.co/
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perform such requests. Listing 2 shows an example form in rdf for an exam-
ple fragment of the dataset http://example.org/mydataset/. In this particular
case, it states that substring search is supported on this dataset, and that it can
be performed by appending the search string to http://example.org/mydataset?
substring=. That way, with this resource as a starting point of their query pro-
cess, clients can decide to use substring search during query execution. Should
this not be supported, clients can decide to fall back to other features supported
by the server, such as possibly tpf.

In order to explain the exact type of support for substring matching as
implemented by the server, subproperties of hydra:freetextQuery might be
defined, such as ex:substringQuery or ex:caseInsensitiveSubstringQuery.
This then requires the client to understand such extensions; therefore, it might
be beneficial to always additionally list the base property hydra:freetextQuery
so that more generic clients can still interpret the hypermedia controls and thus
use the interface. Note that due to this self-descriptive mechanism, no hard-
coded contract between clients and servers is necessary, and conventions (such
as ?substring=) need not be standardized but can transparently vary between
servers. Implementers can consult the ldf substring feature specification2 for
a detailed explanation on how to optimally describe the interface.

4.2 Elasticsearch

Elasticsearch is a search server based on the text indexing engine Lucene [12]. It
provides a full-text search engine with an http interface and schema-free json
documents. The fact that it has a Web interface out-of-the-box and is particularly
designed for use in such scenarios, made it an obvious choice as a back-end.
Elasticsearch being a versatile search solution and inheriting Lucene’s extensive
capabilities, it is not trivial to tweak its configuration. It is very strict about
data types and forces developers to think from the beginning about how text
queries will be performed against the underlying data.

The use case mentioned in this paper—searching for arbitrary-length exact
substrings in texts of varying sizes—is not provided by ElasticSearch by default.
For example, when searching for the actor name “Will Smith”, ElasticSearch’
standard tokenizer would match sentences such as “Will Mr. and Ms. Smith be
an awesome movie?”, even though this is not an exact substring match and thus
not a desired result in our use case.

Therefore, it is necessary to force ElasticSearch’ analyzer to keyword-tokenize
each text literal and apply an n-gram analyzer to each of them. The result is a
huge index file, about the size of the original dataset. Furthermore, generic n-
gram matching is very costly: instead of query times in the order of milliseconds,
query times were in the order of dozens of seconds. Configuring ElasticSearch to
work with only prefixes using edge-n-grams, effectively dropping certain results,
mitigated the issue of extremely long query processing times. One could argue
that most users would input prefix queries and expect a text search engine to

2 http://www.hydra-cg.com/spec/latest/linked-data-fragments/substring-search/

http://example.org/mydataset/
http://example.org/mydataset?substring=
http://example.org/mydataset?substring=
http://www.hydra-cg.com/spec/latest/linked-data-fragments/substring-search/
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behave in that way. Whatever the assumption might be, for use in a query
scenario as explained before, results need to be exact and complete.

In ElasticSearch, important choices have to be made to optimize query time,
index size, the number of desired matches, and the nature of the returned
matches given the text search query and the use case. This makes choosing
it for a generic use case where the end-user or application can not be reckoned
with at least more debatable than initially expected. The evaluation in Section 6
shines some light on this aspect.

4.3 Case-Insensitive FM-Index

hdt already included support for substring search by using an fm-index. One
simply has to edit the config file to make sure the correct type of dictionary is
used when generating the hdt file. The problem here was that default fm-index
only supports case-sensitive substring search, while we wanted case-insensitive
searching as well. We will start by briefly explaining the existing algorithms,
followed by our changes to fm-index to make it case-insensitive.

Burrows-Wheeler Transform. As mentioned in Section 2.2, bwt is a tech-
nique developed to transform a string in such a way that identical characters
appear next to each other more often after transformation, while still allowing for
a reverse transformation to the original string [4]. Strings that have sequences
of identical characters are a lot easier to compress when using methods like
move-to-front transform and run-length encoding.

The bwt creates n permutations of a string with length n by cyclically
shifting the characters in the string. These strings are sorted and placed in a
matrix, with each row corresponding to one of the permuted strings. The first
column then corresponds to a sorted list of all characters in the original string.
Since it is impossible to generate the original string from this list, the bwt
actually stores the last column of the matrix, assuming certain characters are
more likely to precede certain other characters, causing the bwt result to have
multiple identical characters next to each other. From this string it actually is
possible to go back to the original.

FM-Index. An fm-index adds metadata to a bwt-transformed string so that it
can be used for full-text search without actually reverting back to the original
string. The extra metadata consists of two parts: an array C containing for each
character the amount of characters that precede it in the sorted string, and a
matrix Occ containing for every character c and every position i how many
times c occurs up to position i in the bwt string. Note that this metadata can
be calculated at runtime and does not need to be stored with the bwt string.

Using these additional elements it is possible to count the number of times
a pattern occurs in O(p) time with p being the length of the pattern. Actually
locating the pattern matches in the string takes O(p+ occ logε u) with occ being
the number of occurrences and u the length of the string.
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FM-Index as a Dictionary. As mentioned before, it is possible to generate
hdt files that use an fm-index to store the literal objects. Brisaboa et al. [2]
describe an adaptation of fm-index to store a list of n strings instead of a single
string, by concatenating all strings and separating them with n+1 occurrences of
a separator character s1 (corresponding to the ascii value 1). Since the bwt sorts
all the prefix strings, the first n+1 characters will be s1, with the first one being
the last s1 of the concatenation and the remaining occurrences of s1 sorted based
on the strings they precede, which is the same order of the concatenated strings
if these are sorted in advance. hdt uses the positions of each s1 to internally
assign ids to the object literals, meaning that id 1 corresponds to string 1 after
sorting the strings.

When converting a part of a bwt string to an original string, it is only possi-
ble to do this backwards since for every character we only know which character
precedes it. Since the ids correspond to the position of the first character of a
string, going backwards would give us the wrong result. As the strings are sorted
in the same order as the ids, simply starting at position id + 1 will give us the
result for a given id.

Case-Insensitive BWT. Sadakane [21] introduces a way to use case-insensitive
searching in a bwt string by changing the algorithm in such a way that lower-
and upper-case characters are interpreted as identical. Once the suffix substrings
have been sorted, substrings starting with the same character will be next to
each other, even if the character has a different casing. This method can even be
extended to treat all kinds of symbols as identical, such as accented characters.

Case-Insensitive FM-Index. Some changes are needed to adapt a case-
insensitive bwt for an fm-index. After concatenating the (case-insensitively)
sorted strings, we replace the last s1 with s255 instead to make sure that if the
last two strings are identical (when ignoring casing) they remain in the same
order after generating the bwt string. Previously this was not a problem since
it was impossible to have identical strings in the concatenation, but now, if we
did not append this character, the ordering of their ids would be reversed.

Some changes also had to be made to the lookup algorithm to take the
different casings into account. The values in the C table are also combined:
C ( A ) = C ( a ), which now corresponds to the number of characters preceding
the A and a characters. Similarly, the Occ matrix values were also merged to
count the number of occurrences of A and a characters.

Since we do not actually change the casing of the strings, no information is
lost and all objects can still be obtained from the triple store. We do need to
introduce an extra step to still support case-sensitive searching by effectively
verifying if the resulting strings match the case of the pattern.
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5 Client-Side Query Algorithm

To make use of the substring functionality of the tpf server we updated the
query execution algorithm as described by Verborgh et al. [25]. This is a greedy
algorithm focusing on bgp queries and evaluating all other query constructs
(filters, unions, etc.) after the bgp parts are resolved. Since evaluating FILTERs
on the server is only advantageous if these are executed before the corresponding
bgps, it was necessary to change this ordering.

To make use of this new feature to solve sparql queries, we adapted how
the client handles regular expression filters. Regular expression filters obviously
support much more than simple string matching, so we first check if the query
we want to execute contains an expression that can be translated into a pattern
matching problem. If the query contains such a filter, we evaluate whether it
would be efficient to solve that filter before the bgp parts are executed. The
standard greedy algorithm starts by finding the triple pattern with the lowest
number of results, then binding these results to the next smallest pattern and
so on until all results are bound. For our implementation, we also check if one
of the substring expressions has at least 100 times less results than the smallest
pattern (100 being the page size). This is still a greedy implementation, albeit
one that takes advantage of the server-side substring feature.

6 Evaluation

6.1 Experimental Setup

We compare multiple situations to evaluate the impact of the substring feature.
We want measure how the performance changed on both client and server on
substring queries, we want to make sure we did not hurt the performance on non-
substring queries, and we also want to compare the fm-index implementation
against adding an external index such as Elasticsearch.

We executed both client and server on the same machine (Intel Core i5-
3230M cpu at 2.60ghz with 8gb of ram) while the Elasticsearch index was
located on a different server (12 Intel Xeon E5-2640 cpu cores at 2.50ghz with
hyperthreading, 64gb of ram) in the same network with a ping time of < 1ms
with the DBpedia2014 dataset without abstracts3. The Elasticsearch index is
on a different server due to the extra memory requirements for the index. All
results can be found online4 as well as the server5 and client6 code.

We performed the following tests:
1. With both Elasticsearch and fm-index, request all objects containing a spe-

cific keyword through the tpf interface, meaning these have to be requested
one page at a time. The keywords are sampled from the list created by Freitas
et al.[11] in such a way that their number of results are spread out.

3 http://wiki.dbpedia.org/Downloads2014
4 http://github.com/LinkedDataFragments/TPF-Substring-Results/
5 http://github.com/LinkedDataFragments/Server.js/tree/feature-substring-search
6 http://github.com/LinkedDataFragments/Client.js/tree/substring

http://wiki.dbpedia.org/Downloads2014
http://github.com/LinkedDataFragments/TPF-Substring-Results/
http://github.com/LinkedDataFragments/Server.js/tree/feature-substring-search
http://github.com/LinkedDataFragments/Client.js/tree/substring
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SELECT ?person ?city WHERE {

?club a dbpedia-owl:SoccerClub;

dbpedia-owl:ground ?city.

?player dbpedia-owl:team ?club;

dbpedia-owl:birthPlace ?city.

?city dbpedia-owl:country dbpedia:Spain.

}

Listing 3. sparql query: Spanish soccer players

2. Evaluate the query in Listing 1 against a regular tpf server and a tpf server
with a substring feature using an fm-index. We used the actor “Johnny
Depp”, who has many substring matches, to have more robust results.

3. Perform a query not containing any substring requirements on both the
original as the fm-indexed version of tpf. For this we used the query in
Listing 3.

6.2 Results

Elasticsearch and FM-Index. The results of the keyword test can be seen in
full in Table 1 and visualized in Figure 1. The differences in results are due to
the fact that our Elasticsearch configuration uses prefix matching. We did not
configure the Elasticsearch index for full substring search since it performs a
lot worse there, both in lookup speed and index size. It is clear that fm-index
performs really well here, scaling linearly with the amount matches because an
increase in matches also results in an increase in pages that need to be requested
from the server.
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Fig. 1. Number of matches and query time for the keywords in Table 1.
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Table 1. fm-index and Elasticsearch comparison.

FM-index Elasticsearch
keyword # matches time (ms) # matches time (ms)

laptop 1,280 1,552 1,089 4,536
tools 6,795 6,900 5,679 24,758
photography 7,030 6,802 5,903 23,209
landing 10,211 8,302 8,735 35,863
computer 53,316 47,817 39,052 113,262
politician 139,952 100,052 103,159 176,938
sun 154,439 111,451 129,868 220,656
car 965,159 785,423 627,020 1,225,449

Table 2. Original implementation and fm-index comparison. cpu and memory strictly
refer to the server process.

“Johnny Depp” Spanish soccer
original FM-index original FM-index

http calls 304,154 174 91,658 91,694
time (ms) 1,189,706 1,352 329,287 319,065

average cpu (%) 58.98 40.67 42.34 45.12
average ram (mb) 3,664 3,563 440 3,290

Original Implementation and FM-Index. The results of the two implemen-
tations are found in Table 2 for both the query where having substring search is
an advantage and the query where it has no influence at all. The results for the
“Johnny Depp” query speak for themselves: where the original implementation
needs to iterate over all the actors, the fm-index can first find the correct actor
and iterate over his movies, having more than 100 times fewer http calls.

The results of the second query are also positive: although more memory is
required to store the fm-index during execution, there is no loss in performance,
both implementations have the same results.

Data Size. Besides those evaluations there is also a difference in storage
required: the original hdt file is 6.4gb while the updated hdt file with fm-index
is 8.2gb in size. The Elasticsearch index for the original hdt file is 52.7gb. fm-
index obviously has a big advantage here due to the fact that it is embedded in
the data itself while Elasticsearch has to duplicate the data.

7 Conclusions

In this paper we discuss how the Triple Pattern Fragments interface can be
extended by adding a substring pattern matching feature to the server, either by
an internal fm-index or external Elasticsearch index. We extended the fm-index
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implementation of hdt to also support case-insensitive searches and updated
the tpf server interface to make use of this functionality.

Our evaluations show that the new interface greatly increases the perfor-
mance for certain queries (validating Hypothesis 1) without harming unrelated
query results (validating Hypothesis 2). Also, the server can execute these sub-
string queries quite fast (validating Hypothesis 3). The fm-index also performed
better than the external Elasticsearch index, but since the functionality of both
systems is not identical—because of the extra features in Elasticsearch—this can
not be used to conclude that one is strictly better than the other.

The type of sparql queries that benefit from the substring interface are
obviously those with a text-centric component. One possible application are
auto-completion widgets, in which terms are suggested to an end user based on
preliminary text input. Other applications include so-called reconciliation tasks,
in which Linked Data identifiers are sought for a large corpus of text strings [23].
Such tasks currently rely on public sparql endpoints, on which they need to
launch relatively costly queries, yet they can be implemented with the substring
interface feature at lower cost and thus improved reliability.

In the future we would like to improve these results by using the femto
system described in Section 2.2 to also allow regular expressions besides simple
pattern matching. It would also be interesting to see what the effect would be
when the updated interface was used in the improved query algorithm described
by Van Herwegen et al.[22] to further enhance query results. Besides partially
replacing regular expression filters, we would also like to use the fm-index to
support other filters, such as date ranges by finding all literals that match a
specific date template. This would follow the tpf principle of solving complex
problems by using simple building blocks.

Another interesting direction to explore is the combination of the substring
interface feature with other interfaces than tpf. As we explained in Section 4,
clients can dynamically discover support for substring matching, analogous to
how they can dynamically discover support for tpf. Suppose a dataset is offered
through a sparql interface, then the tpf interface can still be helpful. After
all, support for substring search in sparql engines is not always available
with high performance (even though derived features, such as prefix search or
bif:contains might be supported). Therefore, sparql queries that rely on text
filters might be evaluated by decomposing them on the client side into a sub-
string search (evaluated on the substring interface) and a regular sparql query
(evaluated on the sparql endpoint) in which the filter has been replaced by
a list of matching substring values. An alternative is that the sparql endpoint
is configured as a client of the substring interface; i.e., that it has access to this
interface to evaluate complex text filters.
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Abstract. As the Web of Data is growing steadily, the demand for user-
friendly means for exploring, analyzing and visualizing Linked Data is
also increasing. The key challenge for visualizing Linked Data consists in
providing a clear overview of the data and supporting non-technical users
in finding suitable visualizations while hiding technical details of Linked
Data and visualization configuration. In order to accomplish this, we pro-
pose a largely automatic workflow which guides users through the process
of creating visualizations by automatically categorizing and binding data
to visualization parameters. The approach is based on a heuristic analy-
sis of the structure of the input data and a comprehensive visualization
model facilitating the automatic binding between data and visualiza-
tion parameters. The resulting assignments are ranked and presented to
the user. With LinkDaViz we provide a web-based implementation of
the approach and demonstrate the feasibility by an extended user and
performance evaluation.

1 Introduction

The amount of data published as Linked Data is continuously increasing, but
for end users it is still cumbersome to exploit and difficult to appraise the value
of this data. A reason for this is that we still lack comprehensive means for
user-friendly and engaging exploration and visualization of Linked Data.

Visualization is one of the most challenging but at the same time rewarding
aspects of exploring Linked Data. We have a plethora of data modalities (factual,
temporal, spatial, statistical, schema and meta data) and vocabularies for all of
these. At the same time there is a vast variety of visualization and exploration
techniques [4], most of which are limited either in generality [5] or usability for
non-technical users [6,10]. Thus, the key challenge of Linked Data visualization
consists in hiding the technical details of Linked Data and visualization con-
figurations and finding a balance between generality and usability. This can be
accomplished by automatizing the process of producing visualizations, which
would greatly facilitate the interaction with data by end users [2,13].

In this article we present our approach LinkDaViz which supports the user
in selecting and configuring visualizations by automatically binding Linked Data
to visualizations. The approach is based on an analysis of the input data struc-
ture and a comprehensive visualization model comprising structural and layout

c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 147–162, 2015.
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options. The binding problem between the data and the visualization is reduced
to an assignment problem involving cost functions and heuristics. The resulting
assignments are ranked and the highest ranking visualization instantiations pre-
sented to the user. The user can further refine and configure these visualization
instances.

The contributions of this work are in particular:

– a method for visualization-oriented input data analysis aiming at discovering
structures relevant for visualization,

– a formal visualization model, comprising structural and layout options,
– a visualization recommendation algorithm that automatically binds the

selected data properties to visualization parameters,
– an implementation of the approach with the LinkDaViz web application.

The LinkDaViz visualization tool simplifies the interaction with datasets
unknown to a user in ways unforeseen by the publisher. We demonstrate the
feasibility of our approach with an extensive user study and an evaluation of
scalability and effectiveness.

2 Related Work

Most existing approaches are only usable by a technical audience or limited to
certain domains or data representations [4]. In order to hide complexity of data
selection and visualization configuration, the focus of visualization approaches
has been shifting towards automation [2,5,13].

Klimek et al. [6] implemented a workflow (Payola) based on the Linked Data
Visualization Model (LDVM) [2], which consists of various analyzers for auto-
matically classifying datasets and transformers for mapping the data to visu-
alization abstractions. However, the amount of manual configuration and the
necessary transformation steps between different abstractions might be consid-
ered a shortcoming by non-technical users.

Voigt et al. [14] propose a generic approach for visualization configuration
in form of a faceted browser (Vizboard). The user creates a weighted query
on abstract visualization features, which is used to automatically compute the
visualization suggestions to be presented to the user. LinkDaViz implements a
different mechanism for automatically suggesting visualization without expecting
the user to know beforehand how he intends to visualize the data.

Mutlu et al. [8] developed an approach for automatically mapping data to
visualizations that have a similar input structure as a given RDF Data Cube.
LinkDaViz follows a similar mapping approach, but is not limited to the Data
Cube vocabulary and has a more generic matching based on bipartite graph
matching.

Bikakis et al. [1] propose rdf:SynopsViz, which comprises features such as on-
the-fly hierarchy construction, statistics, faceted browsing and measuring data
quality through dataset metadata. Bindings for a user-selected visualization (five
types of charts, timeline or treemap) are computed automatically based on a
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Fig. 1. The Linked Data Visualization Workflow.

selection of classes and properties. LinkDaViz supports any data types (not
only numeric and dates), offers selection of data properties of different nesting
depth, and automatically recommends visualizations, and not only bindings to
a manually selected visualization.

With LinkDaViz we aim to find a balance between generality and ease of
use. Hence, we aim at improving on existing approaches and supporting the user
in selecting and configuring visualizations for arbitrary Linked Data through
automatic visualization recommendation and intuitive customization.

3 Approach

In this section, the workflow for visualizing Linked Data is described formally.
The goal of the workflow is to support users in selecting and configuring visualiza-
tions by providing a largely automatic visualization workflow. The visualization
workflow is based on the assumption that the user does not necessarily know
how to choose and manually configure visualizations for a certain dataset, but
can decide whether a proposed visualization configuration is reasonable. Thus,
the challenge is to compute a ranked list of visualization configurations from a
subset of a dataset selected by a user for its visualization. It is not in the scope
of this work to guess what part of a dataset the user might be interested in, but
to provide assistance in visualizing a previously specified subset of the data.

The task of finding configurations for a visualization can be modeled as an
assignment problem which describes how the selected data can be mapped to
the visualization’s input parameters. The assignment problem can then be solved
using a weighted bipartite graph matching algorithm.

3.1 Visualization Workflow

The visualization workflow (depicted in Figure 1) guides the user through the
process of visualizing data and starts with the exploration of a dataset. After the
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user has selected the part of the dataset to be visualized, a ranked list of rec-
ommended visualizations is computed. When one of the recommendations is
selected, the resulting visualization is displayed, ready for customization.

For each workflow step, a different representation of data is needed, starting
with the input data model, which is structured in a tree-like fashion suited for
the exploration of data. The LinkDaViz ontology contains a description of the
visualization’s structural and layout parameters and the scales of measurement
used for specifying what types of input data can be mapped to a visualization’s
parameters. The purpose of the ontology is to serve as a basis for the recommen-
dation algorithm so it provides only the information necessary for computing
visualization mappings. The data selected for visualization constitutes a subset
of the input data and serves, together with the visualization options extracted
from the visualization ontology, as input for the recommendation algorithm.

The following subsections contain a detailed description of the data represen-
tations, the formalization of visualizations and the recommendation algorithm.

3.2 Input Data Model

The input data model is a abstract description of the input for the LinkDaViz
tool and is automatically generated for the selected dataset during the data
exploration and selection phase of the visualization workflow. In order to obtain
the model, a tree representation of the input dataset is built automatically level
by level as the user browses through the classes and their appendant properties.
The input data model consists of a finite set DS of datasets and a set of trees
Trees(ds) for each dataset ds ∈ DS. Each tree T ∈ Trees(ds) is a directed tree
T = (V,E, r) with a root node r ∈ V corresponding to an RDF class, and is
defined by a set of nodes V and a set of edges E. For instance, the dataset
depicted in Figure 2 contains statistics about European countries and can be
modeled as two trees T1, T2 with root nodes r1 = Country and r2 = EU-Member.

The set of nodes V consists of inner nodes representing RDF object properties
O ⊂ V and leaf nodes representing RDF data properties D ⊂ V :

V = {r} ∪̇ D ∪̇ O (1)

where for every edge (v, w) ∈ E, v �∈ D (that is, data properties are leaves).
For instance, the data properties nodes of tree T1 from the first level are

D1 = { Name, Population, Area, Code} and one object node O1 = {Capital}.
Each data property node d ∈ D has a scale sdata(d) and a role rdata(d), which
are used in the computation of mappings to visualization options.

Data Scales. The scales of measurement are divided into categorical (Nominal,
Ordinal) and quantitative (Interval, Ratio) scales and are used to categorize
data properties [11]:

S = {Nominal,Ordinal, Interval,Ratio} (2)

The only requirement for Nominal data properties is to have distinguished
values, for instance gender: male and female.
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Fig. 2. Input Data Model.

Ordinal data properties additionally have an order between their values,
like the values always, sometimes, never of a Likert scale. For properties of
Ordinal scales, no notion of numerical difference is implied, even if the values
are expressed as numbers.

In case of Interval or Ratio data properties, it makes sense to compute the
numerical difference between their values. The difference between Interval and
Ratio is that for Ratio values, zero is absolute. For instance, temperature can
be measured using the Interval scale Celsius or the Ratio scale Kelvin, which in
contrast to Celsius has an absolute zero point.

Based on these definitions, the hierarchy of scales can be defined as follows:

Nominal ←− Ordinal ←− Interval ←− Ratio (3)

with Nominal being the most generic and Ratio the most specific scale [12].
The categorization of data properties is performed heuristically depending on

the data types of the data property values. Numbers are categorized as Ratio,
dates as Interval and strings as Nominal data. For example, the scales of the
data properties nodes Name, Population ∈ D1 are sdata(Name) = Nominal and
sdata(Population) = Ratio.

Data Roles. Data property nodes d ∈ D also may have the role rdata(d) ∈
R which can be that of an independent variable (Domain) or of a dependent
variable (Range):

R = {Domain,Range,none} (4)

This is needed because due to the structure of some visualizations, only inde-
pendent variables can be reasonably assigned to some of their input parameters,
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while for others only dependent variables are appropriate. Hence, this informa-
tion can be used to exclude certain unreasonable mappings.

The roles that can be associated to the data properties Name, Population
∈ D1 are rdata(Name) = Domain and rdata(Population) = Range. The roles of a
data property can be extracted for instance from the metadata provided by the
RDF Data Cube vocabulary.

Data Selection. The tree-like representation of the input data allows the user to
browse the dataset and select some of the properties for visualization. The data
selection Ts = (Vs, Es, rs) is used as input for the recommendation algorithm
and is a subtree of a tree T ∈ Trees(ds) from a dataset ds ∈ DS from the input
data model, with Ts containing a subset Vs ⊆ V of the nodes of T and all of the
edges Es = E ∩ Vs × Vs between these, and with the same root rs = r ∈ V as T :

Vs = {rs} ∪̇ Ds ∪̇ Os (5)

with Ds ⊂ D and Os ⊂ O.
For instance, the data selected from the EU-Countries dataset in figure 2

consists of two data property nodes from tree T1, namely Name, Population ∈ V .
This selection is a subtree of T1 with the same root node rs = r1 = Country and
the edges Es = E1 ∩ V × V = {(Country, Name), (Country, Population)}.

3.3 Visualization Model

A visualization model is introduced for formally describing the options defining
the structure and the layout of a visualization and a mapping specifying the
configuration of the visualization options. The visualization model VM is com-
posed of sets of structural and layout options SO respectively LO and a set of
all possible mappings M of a data selection Ts to a visualization vis:

VM = (SO,LO,M) (6)

Structural Options. The purpose of the structural options so ∈ SO of a visual-
ization is to define the skeleton of the visualization. For instance, the structure
of a column chart is defined by the following options: SO = {horizontal axis,
vertical axis, groups}. A structural option so ∈ SO is described by a name
nvis(so) ∈ Σ∗, a set of scales svis(so) ∈ P(S), a role rvis(so) ∈ R and a cardi-
nality cvis(so) ∈ C, with Σ∗ being the set of strings in a given alphabet and
C = {(0, 1), (0, ∗), (1, 1), (1, ∗)} being the set of possible cardinalities, and S and
R as in section subsection 3.2.

A structure option so ∈ SO has a set of scales svis(so) ⊂ S = {Nominal,
Ordinal, Interval, Ratio}, which represent the kinds of input data that can be
mapped to it. For instance the scales of a column charts structural options are
svis(vertical axis) = {Interval, Ratio}, svis(horizontal axis) = { Nominal} and
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Fig. 3. Example of a structural options mapping.

svis( groups) = {Nominal}, which results in the following pattern describing the
kinds of input data that can be mapped to a column chart:

horizontal axis︸ ︷︷ ︸
Nominal

× groups?
︸ ︷︷ ︸
Nominal

−→ vertical axis︸ ︷︷ ︸
Ratio

(7)

The role rvis(so) ∈ R of a structure option is used to restrict the data prop-
erties to independent or dependent variables that can be mapped to visual-
ization options in order to ensure that the data conforms to the structure of
the visualization. R = {Domain, Range, none}. For instance the roles of a col-
umn charts structural options are rvis(vertical axis) = {Range}, rvis(horizontal
axis) = rvis(groups ) = {Domain}, which results in the following pattern:

horizontal axis × groups?
︸ ︷︷ ︸

domain

−→ vertical axis︸ ︷︷ ︸
range

(8)

The roles of the selected data properties Name and Population, are rvis(Name) =
{Domain} and rvis(Population) = {Range}. This results in the following dis-
tribution of roles:

horizontal axis︸ ︷︷ ︸
domain = Name

−→ vertical axis︸ ︷︷ ︸
range = Population

(9)

Which means that each European country has a population count as value, which
is projected as a vertical bar in a column chart.

Finally, the cardinality cvis(so) ∈ C indicates if a structure option is required
or optional and if it is single or multi-valued. The cardinality is indicated
by affixing ? for cardinality (0, 1), ∗ for (0, ∗) and + for (1, ∗) to the scale
of measurement, with no affix indicating cardinality (1, 1). For instance, the
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cardinalities of the structural options of column charts are: cvis(horizontal
axis) = cvis(groups) = (1, 1) and cvis(vertical axis) = (1, 1), which results in
the pattern:

horizontal axis︸ ︷︷ ︸
Required

× groups?
︸ ︷︷ ︸
Optional

−→ vertical axis︸ ︷︷ ︸
Required

(10)

Layout Options. The layout options LO allow the user to refine the style of the
visualization. As they don’t have any influence on the recommendation, they are
not formally described in detail. For instance, a column chart’s layout can be
specified by the following options: LO = (number grid lines, v-axis label, h-axis
label, stacked columns)

Options Mapping. An options mapping m = (mSO,mLO) of the data selection Ts

to the visualization is composed of a structural options mapping mSO ⊆ SO×Ds

assigning data property nodes to structural options and a layout options map-
ping mLO = {(lo1, value 1), (lo2, value 2), . . ., (lom, value m)} assigning values
to layout options loi ∈ LO for i ∈ {1, . . . , m}, m ∈ N. The structural options
mapping must conform to the cardinality constraints of each structural option as
explained above. Initially, a computed suggestion can be assigned to the struc-
tural options, and predefined default values from the visualization ontology to
the layout options.

An example of a possible mapping of the selected data properties from the
EU-Countries example in subsection 3.2 to a column chart’s structural options
would be m = ({(vertical axis, Population), (horizontal axis, Name)}, {(number
grid lines, 9), (v-axis label, Population Count), (h-axis label, Country), (stacked
columns, false)}). This mapping is depicted in Figure 3 and results in a sta-
tistical visualization of the population count of European countries. Because no
grouping values were specified the optional structural option groups is left out.

3.4 Visualization Recommendation

In order to suggest possible visualization configurations, a recommendation algo-
rithm has been introduced, which automatically binds the selected data prop-
erties to visualization options. For each visualization, the assignment of data
properties to the visualization’s structural options is modelled as a weighted
bipartite graph matching problem and solved by the graph matching algo-
rithm introduced by Kuhn and Munkres[3,7]. The optimal solutions of these
graph matching problems are then ranked to produce a list of recommended
visualizations.

Assignment Problem. The assignment problem for a visualization is defined as
follows: Given the set Ds = {d1, d2 . . . dm} ⊂ Vs of data properties from the data
selection Ts and the set of structural options SO = {so1, so2 . . . son}, find a valid
structural options mapping mSO with maximum possible number of assigned
structure options and minimal cost.
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The lower the cost of a mapping, the better it conforms to the input data
the visualization expects, and thus the higher the likeliness that it corresponds
to what the user envisioned. A high number of assigned data properties ensures
that a large part of the selected data can be visualized.

The cost wij of mapping the data property dj to the structural option soi is
the sum of three penalties, namely scales, roles and optionals penalty, which are
introduced in more detail below.

wij = wscale
ij + wopt

ij + wrole
ij (11)

Scales Penalty. The amount of the scales penalty wscale
ij as displayed in Figure 4a

indicates how well a data property’s scale sdata(d) matches a structural options’s
scales svis(so). The higher the penalty the more unfitting the match of the data
property d and the structural option so. When sdata(d) is contained in svis(so)
this indicates a perfect match, so wscale

ij = 0. In contrast, an invalid match is
given a high penalty wscale

ij = winv, for example winv = 1000.
The values of the penalties are chosen in a way to increase the likeliness of

computing meaningful mappings.
For instance, it is more appropriate to map an Interval data property to

a Nominal structural option than a Ratio property, because less information
is lost for the Interval property, as Interval is more general than Ratio (cf.
subsection 3.2).

Fig. 4. Penalties overview and cost matrix example.

Roles Penalty. The roles penalty wrole
ij is added if the structural option has a

defined role and the data property’s role is not known, which might result in an
incorrect match, or if the option has no role specified but the data property’s
role is known (see Figure 4b). In the latter case, it might be beneficial to favor
mapping properties to the options whose roles are known by penalizing the
mappings to the options with no associated roles. In both cases the role penalty
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has a higher significance than the scale penalty: wrole
ij < wscale

ij for non-perfect
mappings (wscale

ij > 0). In the cases in which either both sides’ roles are known
or not known, no role penalty is added.

Optionals Penalty. In case of optional structural options, an optionals penalty
wopt

ij is introduced to ensure that required structural options are preferred in
the mapping, thus reducing the likeliness of producing an invalid mapping (see
Figure 4 c). Therefore, the optional penalty must be greater than the greatest
scale penalty of valid assignments (which is 40): wopt

ij = 50 < wscale
ij for valid

mappings (wscale
ij < winv).

Cost Matrix. In order to solve an assignment problem a cost matrix W =
(wij)i=1...n,j=1...m is computed for all available visualizations by adding the scale
penalty wscale

ij , the optional penalty wopt
ij and the role penalty wrole

ij . For the for-
mal description, a square matrix is more favorable, which can be achieved by
padding the weight matrix with zeroes (dummy values)[3]. From here on, it is
assumed that the matrix is square: n = m

The cost matrix W for computing the mapping mSO = {(vertical axis,
Population), (horizontal axis, Name)} of a column charts structural options
SO = (horizontal axis, vertical axis, groups) and the data selection D = {Name,
Population} from the EU-Countries is depicted in Figure 4 d.

The column entries from each row are composed of the sum of the scale
weight, role and optional penalty. For instance, the mapping of data property
d1 = Name ∈ D to the structural option svis(s1) = horizontal axis has the
cost w11 = wscale

11 + wrole
11 + wopt

11 = 0. Because the scales sdata(d1) =svis(s1) =
categorical and the roles rdata(d1) = rvis(s1) = domain match, no penalties
are added. As the structural option cardinality cvis(horizontal axis) = (1, 1)
indicates that this option is required, no optionals penalty is added.

Mapping. Given the cost matrix W = (wij)i=1...n,j=1...n as input for the bipartite
graph matching algorithm a maximal mapping from the selected data Ts to the
structural visualization options SO, is computed. That is a permutation π of
{1, 2, . . . , n} is determined with maximum value of

wmSO
=

n∑

i=1

wi,π(i) (12)

Ranking. After computing a mapping for each visualization, the mappings are
ranked and the highest ranking one is presented to the user along with the other
recommendations as alternative visualizations.

A mapping mSO is excluded from the result list if its cost is higher than a
threshold wmSO

≥ winv or if it has unassigned required structural options: � ∃ data
property such that � ∃(soi, data property) ∈ mSO and cv(soi) ∈ {(1, 1), (1, ∗)}.

A mapping mSO1 is ranked higher than a mapping mSO2 if mSO1 has a larger
number of assigned structural options than mSO2 , that is, |mSO1 | > |mSO2 | and
if mSO1 has a lower cost than mSO2 : wmSO1

< wmSO2
.
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4 Implementation

Architecture. In order to guide the user through the process of visualizing Linked
Data, a JavaScript based web-application, LinkDaViz1, has been developed. The
application receives data in RDF or tabular format as input. It consists of a fron-
tend module for exploring and selecting data and configuring visualizations, and
a back-end module for computing visualization recommendations (see Figure 5).
The frontend module is realized using Ember.js2, an open-source JavaScript
client-side MVC framework, and consists of a component for querying and cate-
gorizing data, the visualization widgets library and a component for configuring a
visualization. The selected input dataset is queried and categorized by determin-
ing the scale and role of each data property. The visualization widgets library
contains configurable visualizations for statistical, temporal and geographical
data (e.g. charts based on D3/Dimple3, maps based on Leaflet4 ) and visual-
izations for previews (e.g. tables). The component for configuring visualizations
is in charge of initializing and triggering the rendering of the recommended
visualizations.

Fig. 5. Architecture of LinkDaViz.

1 Publicly available at: http://eis.iai.uni-bonn.de/Projects/LinkDaViz.html
2 http://emberjs.com/
3 http://d3js.org/, http://dimplejs.org/
4 http://leafletjs.com/

http://eis.iai.uni-bonn.de/Projects/LinkDaViz.html
http://emberjs.com/
http://d3js.org/
http://dimplejs.org/
http://leafletjs.com/
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The backend is written in JavaScript and runs on Node.js5, an open-source
runtime environment for server-side applications, and consists of: i) a component
for computing visualization recommendations and ii) a component managing the
data being queried by the frontend through a REST API. The store contains
datasets, the visualization ontology, from where the visualization metadata is
extracted and the saved visualization configurations that can be reloaded for
further customization.

Fig. 6. LinkDaViz - select data: 1. Browse and select data. 2. Explore selection. 3.
Visualize selection.

Data Exploration and Selection. The component for data selection displayed
in Figure 6 of the LinkDaViz UI consists of a tree-view of the input dataset
with labeled nodes for browsing and selecting data (Figure 6 (1)) and a preview
for exploring the selection (Figure 6 (2)). As described in subsection 3.2, the
input dataset is modeled as a list of trees, with RDF classes as root nodes.
Each tree consists of a set of inner nodes representing RDF object properties
and leaf nodes representing RDF data properties. Data properties are labeled
corresponding to the data type of their values (e.g. number, string, date, spatial)
and object properties are labeled as resources. When selecting data properties,
a preview is generated displaying the values of the data properties in a table.
Following the selection step is the actual visualization of the selected data (2).

Visualization Selection and Customization. The component for selecting and
customizing visualizations of the LinkDaViz UI is depicted in (Figure 7) and
consists of a list of visualization suggestions that are computed based on the
dataset’s content (Figure 7 (4)), a configuration component (Figure 7 (5)), the
visualization (Figure 7 (6)) and consumption actions (export, save Figure 7
5 https://nodejs.org/

https://nodejs.org/
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Fig. 7. LinkDaViz - visualize data: 4. Select recommended visualization. 5. Customize
suggested configuration. 6. Visualize data. 7. Customize layout. 8. Save or export
visualization.

(8)) and tuning options (Figure 7 (7)). The configuration component contains
an overview of the selected properties and the suggested mapping (“Visualization
Options”) for the selected visualization. The suggested mapping can be manually
changed by dragging and dropping properties from the list of selected properties
to the visualization options. The visualization’s layout can be customized as well,
for instance by adding labels to the axes or changing the number of grid lines.
Finally, the visualization can be exported in different formats (e.g. PNG, SVG)
and saved for later re-use.

5 Evaluation

In order to evaluate usability, scalability and effectiveness of the LinkDaViz tool,
a comprehensive study has been conducted.

Setup. For the evaluation the application was deployed in Linux Virtual Machine
on Intel Core i5 machine (2.5 GHz, 4GB RAM) and on an Amazon EC2 t2.micro
instance (2.5 GHz, 1 GB RAM). The datasets used for evaluation contain statis-
tical, temporal and geographical data and were collected mainly from the World
Bank Linked Data project, Data.Gov and DataHub.

Methodology. In preparation of the user study, the participants and the eval-
uation criteria were identified, and a list of tasks to perform and a feedback
questionnaire were created. Overall 20 participants of age range 20-30 took part
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Fig. 8. Evaluation Results of LinkDaViz.

in the evaluation, i.e. 15 males, 5 females, 17 students, 2 PhD students and one
working professional. Seven tasks and corresponding questions were composed
in order to evaluate the level of difficulty, the UI design, the effectiveness of the
produced visualizations and the scalability of the recommendation engine. The
tasks the users were asked to perform have been designed according to standard
user evaluation protocols[9] and are the following: 1) Select a dataset, 2) Assign
parameters of a visualization, 3) Visualize data, explore a chart, 4) Modify struc-
tural options of a chart, 5) Modify layout options of a chart, 6) Save a chart, 7)
Visualize another slice of a dataset.

To evaluate effectiveness aspects of the recommendations, the number and
quality of suggested visualizations were measured by exploring and estimat-
ing possible visualizations and configurations of visualizations for a particular
dataset. The quality of recommendations was determined according to how much
of the selected data could be visualized and on the meaningfulness of the sug-
gested visualizations from the perspective of the evaluators.

Scalability was tested by producing visualizations for datasets of different
sizes. The largest dataset consists of about 350 millions triples.

Results. In figure Figure 8a and Figure 8b the number of responses for each ques-
tion regarding the level of difficulty and the UI design are summed up. From the
20 participants who took part in the evaluation, we collected 140 (Figure 8a)
responses to the seven questions on difficulty and 120 (Figure 8b) responses to
the six questions on the UI design. As Figure 8a indicates, the overall impres-
sion of performing the tasks was rated satisfactorily as average to good. The
majority of the participants experienced little difficulties with the tasks given
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and considered the LinkDaViz UI as an effective and easy to use application for
selecting data and configuring visualizations. The design of the UI was also rated
average to good (Figure 8b). LinkDaViz can successfully produce previews and
visualizations of RDF and CSV datasets in the majority of cases, depending on
the quality (e.g. correct datatypes), nature and size of the selected data. The
overall level of satisfaction (Figure 8c – one person didn’t answer the question)
and the quality of recommendations was rated positively. The quality varied with
the number of selected data properties that could be automatically visualized
(Figure 8d) and the meaningfulness of the suggestions (Figure 8e). Having con-
ducted the effectiveness evaluation on six datasets (DS1 to DS6) collected from
Data.Gov it should be noted that there is a negative impact on recommendations
from the varying dataset quality (e.g. wrong datatypes, non-uniform properties,
aggregated values represented like raw data). A visualization has been generated
and displayed for almost every dataset in a reasonable time. However on a selec-
tion from a large, homogeneous dataset with more than 300 millions of triples
no visualization could be produced due to the browsers’ memory limit.

6 Conclusion and Future Work

In this paper we have introduced LinkDaViz, a novel visualization approach
and software implementation which allows for automatic visualization of Linked
Data. A formal description of the approach, the visualization components and the
input data has been provided. Additionally, we have introduced a recommenda-
tion algorithm that automatically binds selected data properties to visualization
options. The validity of our approach has been tested with a comprehensive eval-
uation of our LinkDaViz software tool. We conducted a user study to evaluate
usability, effectiveness and scalability of the tool. The results of the evaluation
are very encouraging, considering the complexity of the task of automating a
typical visualization workflow.

The insight we gained through the evaluation is that we managed to develop
an easy to follow workflow for creating visualizations for RDF data and that the
suggested visualizations were indeed helpful for the participants. However, the
meaningfulness of the recommendations varied depending on the selected subset
of data and the data quality. One possible improvement would therefore be to
provide assistance to the user not only in choosing and configuring visualizations
but also in choosing a reasonable subset of data that can be visualized.
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Abstract. Entity navigation over Linked Data often follows semantic
links by using Linked Data browsers. With the increasing volume of
Linked Data, the rich and diverse links make it difficult for users to
traverse the link graph and find target entities. Besides, there is a neces-
sity for navigation paradigm to take into account not only single-entity-
oriented transition, but also entity-set-oriented transition. To facilitate
entity navigation, we propose a novel concept called link pattern, and
introduce link pattern lattice to organize semantic links when browsing
an entity or a set of entities. Furthermore, to help users quickly find tar-
get entities, top-K link patterns are selected for entity navigation. The
proposed approach is implemented in a prototype system and then com-
pared with two Linked Data browsers via a user study. Experimental
results show that our approach is effective.

Keywords: Entity navigation · Link pattern · Formal concept analysis ·
Link pattern selection

1 Introduction

With the advent of Linked Data, its navigational feature has been largely rec-
ognized during its use in practice. Just as traditional Web browsers allow users
to navigate between HTML pages by following hypertext links, Linked Data
browsers [1,8–11,15] allow users to navigate between entities by following seman-
tic links. However, with the enrichment of available Linked Data on the Web,
challenges in navigating the data space arise: large numbers of linked entities
and high diversity of links among entities. For example, Steven Spielberg in
DBpedia [2] is linked to 117 entities (e.g., Cincinnati, Los Angeles) through 51
semantic links (e.g., birthPlace, residence). Relying solely on link traversal,
users would have to browse and choose among a potentially long list of semantic
links, and synthesize information by themselves. This procedure is often time-
consuming and error-prone.

Besides, there is a necessity for navigation paradigm to take into account
not only single-entity-oriented transition, but also entity-set-oriented transition.
Existing solutions allow users to navigate over Linked Data through common
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 163–179, 2015.
DOI: 10.1007/978-3-319-25007-6 10
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Fig. 1. The context of browsing an entity Fig. 2. The context of browsing a set of
entities

links [10,11]. Yet, there are many potential relationships between the current
entity (entities) and its (their) related entities. As shown in Figure 1, Steven
Spielberg is the producer and also the director of A.I.. As shown in Figure 2,
Tom Cruise starred in 2 films directed by Steven Spielberg. Moreover, there
is a hierarchical relationship among semantic links (e.g., both residence and
birthplace are subproperties of location). These rich structural features could
be leveraged to improve entity navigation.

In order to mitigate the effect of these problems and improve the efficiency of
navigation, we propose a novel approach that facilitates link traversal and assists
users’ navigation. In our approach, a link pattern lattice is constructed to orga-
nize semantic links based on Formal Concept Analysis (FCA) [7], a methodology
of data analysis and knowledge representation. Here, link pattern represents the
rich semantic relationships between the current entity (entities) and its (their)
related entities (e.g., “starred at least k films”, “direct and also produce”). Fur-
ther, there could be an inclusion relationship between link patterns. The link
pattern lattice provides a visual navigation method to explore the information
space [5,6]. However, users’ direct interaction with the complex lattice could
cause the problem of disorientation and cognitive overhead. To lighten users’
navigational burden, we give a method to select top–K link patterns for entity
navigation based on the Budgeted Maximum Coverage (BMC) model [12]. The
contribution of this paper is summarized as follows.

– We present a novel way to organize semantic links. We propose a new notion
of link pattern and give a way to construct the link pattern lattice in the
context of entity browsing.

– We introduce a measure of the “goodness” of link pattern, and give a method
to select top–K link patterns based on the Budgeted Maximum Coverage
(BMC) model.

– We implement the proposed approach in a prototype system and compare it
with two Linked Data browsers by conducting a user study. The experimental
results demonstrate the effectiveness of our approach.

The remainder of this paper is structured as follows. Section 2 discusses related
work. Section 3 introduces the notion of link pattern and a way to construct
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the link pattern lattice in the context of browsing entities. Section 4 describes
an optimization method for link pattern selection. Our evaluation is reported in
Section 5. Section 6 concludes this paper.

2 Related Work

Navigation as an important feature of Linked Data, has been supported by many
Linked Data browsers. Tabulator [1] allows users to browse data by starting from
a single resource and following links to other resources. It also allows users to
select a resource for further exploration in a nest tree view. gFacet [10] is a tool
that supports the exploration of the Web of data by combining graph-based
visualization with faceted filtering functionalities. With gFacet it is possible to
choose one class and then pivot to a related class keeping those filters for the
instances of the second class connected to the filtered instances in the first class.
OpenLink Faceted Search & Find Service1, offers several paths of DBpedia data
exploration, starting from Keyword, URI or Label. It represents metadata by
an entity-attribute-value view. It also provides a facet filter view by selecting
different attributes. Parallax [11] is one of the first browsers to offer pivoting
(or set-oriented browsing) but it is originally tied to Freebase. It shows the
set of resources, accompanied by a list of facets for filtering. It also provides
a list of connections, showing those properties that can be used in a pivoting
operation. VisiNav [9] is a system based on an interaction model designed to
easily search and navigate large amounts of Web data. It provides four atomic
operations over object structured datasets: keyword search, object focus, path
traversal, and facet specification. Users incrementally assemble complex queries
that yield sets of objects. Rhizomer [8] addresses the exploration of semantic
data by applying the data analysis mantra of overview, zoom and filter. Users
can interactively explore the data using facets. Moreover, facets also feature a
pivoting operation. Visor [15] is a generic RDF data explorer that can work over
SPARQL endpoints. In Visor, exploration starts by selecting a class of inter-
est from the ontology. Then, users can pivot to related collections and continue
browsing. Visor provides a hierarchical overview of the collections and also pro-
vides a spreadsheet requiring manual customization to filter the collection.

Whereas the above efforts mainly focus on providing the user with powerful
interaction modes, we aim to appropriately organize and select links, which is
complementary to all of them.

3 Link Pattern Lattice Construction

This section introduces link pattern lattice for organizing semantic links based
on Formal Concept Analysis (FCA) [7]. First, we formally define the notion of
link pattern in Section 3.1 and introduce FCA in Section 3.2. Then we construct
link pattern lattice in our context in Section 3.3.

1 http://dbpedia.org/fct/

http://dbpedia.org/fct/
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3.1 Link Pattern

Let U be a set of URI named entities and L be a set of links including object
properties, property chains and inverse of them. In the implementation of this
study, we only consider those links that directly connect entities or indirectly con-
nect entities through blank nodes. A link graph T ⊆ U ×L×U is a set of triples.
There is a partial ordering � on L, which is deduced from rdfs:subPropertyOf
relationship.

Definition 1 (Link Pattern with Minimum Number Restriction). Let
T be a link graph, k be a positive integer, l ∈ L. A link pattern of l with minimum
k restriction, denoted by LP((min k), l), is a function from 2U to 2U such that

LP((min k), l)(S) = {v ∈ U ||{u ∈ S|(u, l, v) ∈ T}| ≥ k} for S ⊆ U .

The link pattern LP ((min k), l) is proposed to express the degree of connection
between current entities and target entities. For simplicity, we use (min k)l to
denote LP ((min k), l). Note that (min 1)l represents the same meaning as the
traditional link l. We abbreviate (min 1)l to l.

In Figure 1, E1 = {Steven Spielberg}. director−1(E1) ⊇ {A.I., Jurassic
Park}.2 producer−1(E1) ⊇ {A.I., Eagle Eye}. In Figure 2, E2 = {War of the
Worlds, Taken, A.I., Minority Report, Schindler’s List}, S={War of the
Worlds, Taken, A.I.}⊆ E2, narrator(S)={Dakota Fanning, Ben Kingsley,
Morgan Freeman}. ((min 2)starring)(S) = {Dakota Fanning}, which repre-
sents that Dakota Fanning starred at least 2 films in S.

Definition 2 (Conjunctive Link Pattern). Given two link patterns LP1 and
LP2, the conjunctive link pattern of LP1 and LP2, denoted by LP1 ∧ LP2, is a
function from 2U to 2U such that

(LP1 ∧ LP2)(S) = LP1(S) ∩ LP2(S) for S ⊆ U .

In Figure 1, (director−1 ∧ producer−1)(E1) ⊇ {A.I.}, which represents
that Steven Spielberg is the producer and also the director of A.I.. In
Figure 2, (narrator ∧((min 2)starring))(S)={Dakota Fanning}, which repre-
sents Dakota Fanning narrated at least 1 film and also starred at least 2 films
in S.

In this paper, a link pattern can be a link pattern with minimum number
restriction or a conjunctive link pattern. Besides, link patterns with minimum
number restriction can be called atomic link patterns.

Definition 3 (Sub-pattern Relationship). Given two link patterns LP1 and
LP2, LP1 is called a sub-pattern of LP2, denoted by LP1 ⊆ LP2, if LP1(S) ⊆
LP2(S) holds for every subset S of U .

We have the following proposition, the proof of which can be easily obtained from
the definition of sub-pattern and the inference rule for rdfs:subPropertyOf.

2 We use l−1 to denote the inverse of link l.
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Proposition 1. Let l, l1, l2 ∈ L, k, k1, k2 ∈ Z+, and then we have

1. if k1 ≤ k2, then (min k2)l ⊆ (min k1)l.
2. if l1 � l2, then (min k)l1 ⊆ (min k)l2.

3.2 Formal Concept Analysis

In FCA [7], there are three main concepts: formal context, formal concept and
concept lattice.

Definition 4 (Formal Context K ). A formal context is a triple K=(G, M,
I), where G denotes a set of objects, M a set of attributes, and I ⊆ G × M
a binary relation between G and M. The statement (g,m) ∈ I is interpreted
as “the object g has attribute m”. The two derivation operators (·)′

define a
Galois connection between the powersets (2G,⊆) and (2M ,⊆): A

′
= {m ∈ M |

∀ g ∈ A : (g,m) ∈ I} for A ⊆ G, and B
′
= {g ∈ G | ∀ m ∈ B : (g,m) ∈ I} for

B ⊆ M .

Definition 5 (Formal Concept c). Given a formal context K=(G, M, I) and
A ⊆ G, B ⊆ M , a pair c= (A, B) satisfying A

′
= B and B

′
= A, is called a

formal concept of K. A and B are called the extent and intent of c, respectively.
A partial ordering � over the concepts C of K can be defined as follows: (A1,

B1) � (A2, B2) ⇐⇒ A1 ⊆ A2 (⇐⇒ B2 ⊆ B1).
For two concepts c1 and c2, if c1 � c2 and there is no concept c3 with c3

= c1, c3 = c2, c1 � c3 � c2, then c1 is called a child of c2, and c2 is called a
parent of c1. This relationship is denoted by c1 ≺ c2.

Definition 6 (Concept Lattice L). With respect to a formal context K and
the partial order ≺, the concepts in C constitute a lattice, called the concept
lattice of K.

3.3 Link Pattern Lattice Construction Using FCA

FCA is a mathematically well founded classification framework allowing to derive
implicit relationships from a set of objects and their attributes. We construct
link pattern lattice by using FCA. The construction process includes two steps:
constructing a formal context K and generating a link pattern lattice of K.

Firstly, given a link graph T ⊆ U × L × U and a set of entities S ⊆ U being
the focus, we consider the set of links L′ = {l ∈ L|∃u ∈ S,∃v ∈ U, (u, l, v) ∈ T}.
A formal context K = (G,M, I) in FCA can be defined as follows: G = {v ∈
U |∃u ∈ S,∃l ∈ L, (u, l, v) ∈ T} denotes the set of linked entities. M is a subset of
atomic link patterns, i.e., the attributes in M take the form (min k)l. I ⊆ G×M ,
(v, (min k)l) ∈ I iff v ∈ ((min k)l)(S), which means there are at least k entities
in S having link l to v. The algorithm for constructing a formal context K is in
Algorithm 1. Line 3 generates G and line 8-14 generate M and I.

Secondly, we choose a well-known lattice generation algorithm called Bor-
dat [3], which produces both the concepts and the concept lattice. The worst-
case running time of Bordat is O(|G||M |2|N |), where |N | is the number of link
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patterns in the resulting lattice. We will show the running time on real-life data
in our experiments.

With the following examples, we illustrate how to use FCA to construct
link pattern lattice in two cases: single-entity-oriented and entity-set-oriented
transitions.

Algorithm 1. Construct Formal Context
Input: T : a link graph; S: a set of entities
Output: K: a formal context

1 Initialize a formal context K = (G,M, I), G ← ∅, M ← ∅, I ← ∅;
2 L′ ← {l ∈ L|∃u ∈ S,∃v ∈ U, (u, l, v) ∈ T};
3 G ← {v ∈ U |∃u ∈ S,∃l ∈ L, (u, l, v) ∈ T};
4 foreach l ∈ L′ do
5 Find each sup-link lsup of l;
6 if lsup �∈ L′ then
7 L′ ← L′ ∪ {lsup} , T ← T ∪ {(u, lsup, v)|∃u ∈ S,∃v ∈ U, (u, l, v) ∈ T};

8 foreach l ∈ L′ do
9 foreach v ∈ G do

10 k = |{u ∈ S|(u, l, v) ∈ T}|;
11 if k > 0 then
12 for i ← 1 to k do
13 M ← M ∪ {(min i)l};
14 I ← I ∪ {(v, (min i)l)}.

15 return K;

Single-Entity-Oriented. Suppose a user is viewing the RDF description
of Steven Spielberg, as shown in Figure 1. In this case E1 = {Steven
Spielberg} be the focus, the linked entity set G = {A.I., Jurassic
Park, Eagle Eye, Cincinnati, Los Angeles}, and the semantic links L′

= {director−1, producer−1, birthP lace, residence}. Moreover, there is a
subLinkOf hierarchy among these links in Figure 3. The link participator−1

and location are added to L′.
For each link l ∈ L′, we obtain the link patterns of l with minimum k restric-

tion. k is equal to 1 in the single-entity-oriented transition. The atomic link
patterns M = {director−1, producer−1, participator−1, birthP lace, residence,
location}. The formal context K is shown in Table 1.

We have {director−1, producer−1, participator−1}′
= {A.I.} and {A.I.}′

=
{director−1, producer−1, participator−1}. {A.I.} and {director−1, producer−1,
participator−1} satisfy a Galois connection. According to Definition 5, ({A.I.},
{director−1, producer−1, participator−1}) is a formal concept emerging from
Table 1. Its intent {director−1, producer−1, participator−1} represents a con-
junctive link pattern.
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Figure 4 shows the link pattern lattice associated with Table 1. In the dia-
gram, each node denotes a link pattern while edges reflect the partial ordering
≺ between link patterns.

Table 1. An example of formal context

director−1 producer−1 participator−1 birthP lace residence location

A.I. × × ×
Jurassic Park × ×
Eagle Eye × ×
Cincinnati × ×
Los Angeles × ×

Fig. 3. An example of link hierarchy Fig. 4. Link pattern lattice associated
with Table 1.

Entity-Set-Oriented. Suppose the user explores the films directed by Steven
Spielberg by following a director link, as shown in Figure 2. In this case E2 =
{War of the Worlds, Taken, A.I., Minority Report, Schindler’s List} be
the focus, the semantic links L′ = {starring, narrator} and the linked entity
set G = {Tom Cruise, Dakota Fanning, Ben Kingsley, Morgan Freeman}.
Note that the atomic link patterns M = {starring, (min 2)starring, narrator}.
The formal context K is shown in Table 2.

({Dakota Fanning, Ben Kingsley}, {starring, narrator}) is a formal con-
cept emerging from Table 2. Its intent {starring, narrator} represents a con-
junctive link pattern. Besides, ({Dakota Fanning}, {starring, (min 2)starring,
narrator}) is another concept of this context. Furthermore, we have ({Dakota
Fanning}, {starring, (min 2)starring, narrator}) ≺ ({Dakota Fanning, Ben
Kingsley}, {starring, narrator}). The link pattern lattice for Table 2 is shown
in Figure 5.

4 Link Pattern Selection

A link pattern lattice provides a multi-granular, progressive navigation assis-
tance. In some cases, the lattice may have a complex structure so that users feel
disoriented and require several interactions to arrive at target entities.
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For lightening users’ burden, we give a method to select top–K link patterns
from lattice to enable users to find target entities more quickly. Firstly, we intro-
duce three metrics to measure the “goodness” of link patterns in Section 4.1.
Then we select top–K link patterns that are as “good” as possible while being
able to retrieve as many linked entities as possible in Section 4.2.

Table 2. An example of formal context

starring (min2)starring narrator

Cruise × ×
Fanning × × ×
Kingsley × ×
Freeman × Fig. 5. Link pattern lattice for Table 2.

4.1 Metrics of Link Pattern

Given a link pattern lattice LPL of a formal context K = (G, M, I) and a
link pattern c, the “goodness” of link pattern c can be defined from various
perspectives. In this paper, we prefer to provide informative (measured by infor-
mativeness), understandable (measured by conciseness) and specific (measured
by specificness) link patterns.

Informativeness. As to link patterns, the idea is that a link pattern hav-
ing fewer reachable linked entities is more informative. We compute the self-
information of the link pattern c using information theory [13],

info(c) = − log pr(c),

pr(c) =
|ext(c)|

|G| .
(1)

ext(c) is the extent of c. G is the set of linked entities in K. Further, we normalize
info(c) into the range [0, 1] as the informativeness of link pattern c:

infoK(c) =
info(c)
log |G| . (2)

Conciseness. In practice, we use the label of the intent of link pattern c as a
“road sign” in users’ navigation (e.g., director−1∧producer−1∧participator−1).
The longer the lengths of intents become, involving many links at various levels
of generality, the harder it becomes to understand what the link patterns mean
or represent.
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A concise link pattern having a shorter label is more understandable and
preferable. So, we formalize the conciseness of link pattern c as follows:

conc(c) = a−(|inte(c)|−1) (a > 1) . (3)

inte(c) is the intent of c and the value of conc(c) is in the range (0, 1].

Specificness. As shown in Figure 4, the link pattern lattice LPL provides a
hierarchy among link patterns. The depth of link pattern in the hierarchy is
useful. The larger the depth of link pattern is, the more specific the link pattern
is. We measure the depth of link pattern c:

depth(c) = distance(a, c) , (4)

where distance(a, c) is the length of a shortest path from a (the greatest ele-
ment of LPL) to c. Further, we normalize depth(c) into the range [0, 1] as the
specificness of link pattern c:

spec(c) =
depth(c)

D(c)
,

D(c) = distance(a, c, b) .

(5)

distance(a, c, b) is the length of a shortest path from a, through c, to b (the
least element of LPL).

4.2 Selecting Link Patterns

For diversity and coverage considerations, we aim to select top–K link patterns
that are as informative, concise and specific as possible while being able to
retrieve as many linked entities as possible.

Our problem can be formalized based on the Budgeted Maximum Cov-
erage (BMC) model [12]. The BMC problem is defined as follows: Let S =
{S1, S2, . . . , Sm} be a collection of sets defined over a domain of elements
X = {x1, x2, . . . , xn}. Each set has a cost {ci}m

i=1 while each element has a
weight {wi}n

i=1. The goal is to find a collection of sets S′ ⊆ S, such that the
total cost of S′, denoted by c(S′), does not exceed a given budget B, while the
total weight of elements covered by S′, denoted by w(S′), is maximized. c(S′)
and w(S′) are defined as follows:

c(S′) =
∑

Si∈S′
ci , (6)

w(S′) =
n∑

j=1

(
wj · f(xj , S

′)})
, (7)

where

f(xj , S
′) =

{
1 if xj is covered by S′.
0 otherwise.

(8)
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In our context, each link pattern can be considered as a set Si ∈ S and all
the linked entities as the elements X. The weight of each element is trivially set
to 1. The cost of Si is defined as follows:

ci =
(1

e

)σ(Si)

. (9)

σ(Si) is a scoring function of link pattern Si as follows:

σ(Si) = α1 · infoK(Si) + α2 · conc(Si) + α3 · spec(Si) , (10)

where α1, α2, α3 ∈ [0, 1] indicate the weights for each metric to be tuned empir-
ically. According to Equation (9), the higher the score of a link pattern is, the
less the cost is.

BMC is an NP-hard problem and several efficient approximation algorithms
have been developed. By comparing the approximation ratio and the time com-
plexity of these algorithms, we use the 1

2 · (1 − 1
e ) approximation algorithm with

time complexity O(m2n) provided by [12] in our implementation.

5 Evaluation

In this section, we first present the frequency distribution of link patterns in
two real-life datasets (Section 5.1). Then, we describe an overview of the pro-
totype system (Section 5.2) and compare it with two Linked Data browsers by
conducting a user study in section 5.3. Finally, we evaluate the performance of
our approach by measuring the average execution time in section 5.4.

5.1 Data Sets

This section aims to show that minimum number restriction and conjunctive link
patterns do exist widely in real-life data sets such as DBpedia3 and Semantic
Web Dog Food4.

Data Collection. As to DBpedia, we used the DBpedia mapping-based prop-
erties dataset, excluding RDF triples containing literals. We selected 8 classes
(i.e., Scientist, Artist, Athlete, City, River, Company, University, Film).

For each class, we firstly collected the top 1000 entities according to descend-
ing order of the number of their related entities (i.e., the degree of node in RDF
graph). Secondly, we established 100 entity sets and each set included 10 enti-
ties by selecting at random from these 1000 entities. Finally, we calculated the
percentage of entity sets having minimum number restriction (k >1) and con-
junctive link patterns in these 100 entity sets.

As to Semantic Web Dog Food, we firstly selected 3 classes: Person (7,180
entities), Organization (1,965 entities) and Conference (20 entities). For the first
two classes, we collected the top 100 entities (using the same method as above).
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Fig. 6. Link patterns in DBpedia. Fig. 7. Link patterns in Semantic Web
Dog Food.

For Conference, we collected all the entities. Secondly, we established entity sets
for each class. For Person and Organization, we established 10 entity sets and
each set included 10 entities by selecting at random from these 100 entities.
For Conference, we established 5 entity sets and each set included 4 entities by
selecting at random from these 20 entities. The method calculating the frequency
distribution of link patterns was the same as above.

Data Analysis. In Figure 6, minimum number restriction link patterns (e.g.,
(min k)distributor, (min k)developer−1) are found in more than 50% of Film
and Company entity sets. Artist and City have more conjunctive link patterns
(e.g., occupation ∧ foundedBy−1, birthP lace ∧ residence), which occupied 70%
of entity sets.

In Figure 7, around 60% of entity sets of Person have minimum number
restriction link patterns (e.g., (min k)made, (min k)based near). Every class
has more conjunctive link patterns (e.g., made ∧ author−1, affiliation−1 ∧
member).

In summary, we investigate entities having the largest number of linked enti-
ties in two datasets because the above link patterns are more likely to be observed
there. As expected minimum number restriction and conjunctive link patterns
exist widely in many classes, which can be used to improve entity navigation.

5.2 Overview of Prototype

We implemented our proposed approach as a navigation module (called “Link”)
in a Link Data browser, SView5. Figure 8 shows a screenshot of “Link” in SView.

Users can start browsing with an entity URI by entering into the input box
(A). Navigation was provided in the “Link” panel. The left-hand side of the
interface lists the label of link patterns (B). The right-hand side lists linked enti-
ties (C). Users can click the button “browse all” to explore all the linked entities
(D). Also, users can choose some link patterns to filter the target entities (E).
3 http://wiki.dbpedia.org/Downloads2014
4 http://data.semanticweb.org/
5 http://ws.nju.edu.cn/sview/

http://wiki.dbpedia.org/Downloads2014
http://data.semanticweb.org/
http://ws.nju.edu.cn/sview/
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Fig. 8. A screenshot of “Link” in SView.

5.3 User Study

We conducted a user study to compare our approach with two Linked Data
browsers (i.e., OpenLink Faceted Search & Find Service, Rhizomer6), and to
evaluate the effectiveness of our approach.

Table 3. An example of navigation tasks about Steven Spielberg

Tasks

G1
E1 Explore the information related to Steven Spielberg.
F1 Find the films directed and also produced by Steven Spielberg.

G2
E2 Explore the information related to the films directed by Steven Spielberg.
F2 Find the actors starred in at least 2 films directed by Steven Spielberg.

Participant Systems. As reviewed in the Related Work section, the only active
tools capable of entity-set-oriented browsing are gFacet, Parallax, OpenLink
Faceted Search & Find Service, Rhizomer and Visor. We did not include Visor
and gFacet because their interfaces are based on graphs. We did not consider
Parallax because it only tied to Freebase. OpenLink Faceted Search & Find
Service and Rhizomer provide a user interface with HTML and components
similar to those we propose.

Tasks. In a browsing scenario, navigation tasks can be divided into two types:
Explore (a user has a fuzzy need) and Find (a user has a clear need) tasks [14,16].
According to navigation paradigm, tasks can also be divided into two groups:
single-entity-oriented (G1 ) and entity-set-oriented (G2 ) tasks.

6 http://rhizomik.net/html/rhizomer/

http://rhizomik.net/html/rhizomer/
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We used 8 classes of entities from DBpedia dataset in section 5.1. For each
class, we selected 10 entities from the top 1000 entities at random as the starting
points of user navigation. For each starting point, we established 4 navigation
tasks. The navigation tasks about Steven Spielberg is shown in Table 3.

Procedure. The subjects consisted of 24 students majoring in computer science
who were familiar with the Web, but with no knowledge of our project. The
evaluation was conducted in three phases.

Table 4. Navigation questionnaire

Questions

Q1: The number of navigation options (links) was overwhelming.
Q2: The navigation options (links) were well organized.
Q3: The navigation option (link) titles were understood well.
Q4: The navigation options (links) were pleasantly surprising.
Q5: It was easy to reorient myself in the navigation.

Table 5. Results of navigation questionnaire

Response: Mean (SD) F (2, 69) LSD post-hoc
OpenLink Rhizomer SView (p-value) (p < 0.05)

Q1:
3.919 3.75 2.667 21.643 OpenLink,Rhizomer > SView

(0.717) (0.854) (1.095) (0.000)

Q2:
3.026 3.24 4.11 13.580 SView > OpenLink,Rhizomer

(1.052) (1.014) (0.887) (0.000)

Q3:
3.833 4.00 2.583 9.658 Rhizomer,OpenLink > SView

(0.717) (0.582) (0.62) (0.000)

Q4:
2.58 3.25 4.33 11.958 SView > OpenLink,Rhizomer

(0.793) (1.055) (0.778) (0.000)

Q5:
3.917 3.667 3.5 11.367 OpenLink > Rhizomer, SView

(0.514) (0.778) (0.937) (0.000)

First, the subjects learned how to use the given systems through a 20 min
tutorial, and had additional 10 minutes for free use and questions. Second, the
subjects used each of the three systems arranged in random order. For each
system, the subjects were randomly assigned to one starting point, and required
to complete 4 navigation tasks. Meanwhile, the starting points of user navigation
among the three systems were different. The subjects were asked to complete all
the tasks in 30 minutes. We recorded their answers, and the time they spent on
each task.

With regard to each system, the subjects responded to the navigation ques-
tionnaire, as shown in Table 4. Then, for each system, the subjects responded to
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the widely-used system usability scale (SUS) questionnaire [4]. The questions in
the two above questionnaires were responded by using a five-point Likert scale
ranging from 1 (strongly disagree) to 5 (strongly agree). Finally, the subjects
were asked to comment on the three systems.

Results and Discussion

User Experience. Navigation questionnaire Q1–Q5 captured subjects’ naviga-
tion experience with different systems in Table 5. Repeated measures ANOVA
revealed that the differences in subjects’ mean ratings were all statistically sig-
nificant (p < 0.01). LSD post-hoc tests (p < 0.05) revealed that, according
to Q1, OpenLink and Rhizomer provided too many links compared with SView.
According to Q2, SView provided a better organization of links than OpenLink
and Rhizomer. According to Q3, OpenLink and Rhizomer helped subjects more
easily understand the label of links. According to Q4, SView directly provided
subjects with more interesting relationships among the entities. Finally, accord-
ing to Q5, OpenLink and Rhizomer helped subjects keep track of browsing and
provided easy rollback.

Table 6 summarizes SUS scores of different systems. Repeated measures
ANOVA revealed that the difference in SUS score was statistically significant
(p < 0.05). LSD post-hoc tests (p < 0.05) revealed that SView was more usable
than OpenLink and Rhizomer.

Fig. 9. Success rate of Find tasks. Fig. 10. Average consumption time of
Find tasks.

Table 6. SUS scores

Mean (SD) F (2, 69) LSD post-hoc
OpenLink Rhizomer SView (p-value) (p < 0.05)

59.62 67.31 75 10.195 SView > Rhizomer > OpenLink
(9.177) (9.098) (7.706) (0.001)
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User Behavior. Figure 9 shows the success rate of Find tasks. In F1, using
SView, subjects achieved the highest overall success rate. In F2, the situation
was similar. Figure 10 shows the average time spent on Find tasks. According to
F1 and F2, using SView, subjects required far less time to complete these tasks,
because links were appropriately organized and selected.

Fig. 11. Execution time of link pattern
lattice construction.

Fig. 12. Execution time of link pattern
selection.

User Feedback and Discussion. We summarized all the major comments that
were made by at least five subjects. On OpenLink, 21 subjects (88%) said the
large quantities of links often made it difficult to retrieve the target entities. 17
subjects (71%) said the browsing track assisted them to browse intermediate
entities. On Rhizomer, 20 subjects (83%) said faceted navigation helped them
filter out those entities that were not interesting. On SView, 22 subjects (92%)
said recommended patterns provided a fast locating mechanism, but 6 subjects
(25%) said it had some potential risks, such as target losses (i.e., not covering all
the needed entities). 10 subjects (42%) said the diverse link patterns made users
know more potential relationships among the entities, but 8 subjects (33%) said
some link pattern labels were too long to be understood.

5.4 Performance Evaluation

We evaluated the performance of link pattern lattice construction and link pat-
tern selection by measuring the average execution time for varying number of
current entities denoted by m (m from 5 to 200). The two algorithms were imple-
mented in Java and carried out on an Intel Xeon E3 3.2GHz CPU, Windows 7
with 10GB JVM.

As can be seen from Figure 11 and Figure 12, the two algorithms were rea-
sonably fast in practice. When m increased, the curves of the two algorithms
kept ascend slowly. In Figure 11, it took 2 seconds to construct a lattice for 80
current entities, and 5 seconds for 200 current entities.
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6 Conclusion

In this paper, we propose a novel concept called link pattern, in particular link
pattern with minimum number restriction as well as conjunctive link pattern. It
enables a new way of semantic navigation over linked entities. We also describe
how to generate link pattern lattice and how to select top-K link patterns in the
context of entity browsing. The proposed approach is implemented in a prototype
system. The evaluation results demonstrate that link patterns effectively make
explicit complex relationships among entities, and help users discover target
entities more quickly.

Currently, link patterns are generated based on the “local” context, i.e. the
data about current entities being visited. It is interesting to consider a way to
extract link patterns from the “global” context, i.e. the Web of Data. Another
future work is to study “human factors” in the context of entity navigation. For
example, users’ preference on link patterns can be collected and then leveraged
to select patterns more intelligently.
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Abstract. Large knowledge bases, such as DBpedia, are most often cre-
ated heuristically due to scalability issues. In the building process, both
random as well as systematic errors may occur. In this paper, we focus
on finding systematic errors, or anti-patterns, in DBpedia. We show that
by aligning the DBpedia ontology to the foundational ontology DOLCE-
Zero, and by combining reasoning and clustering of the reasoning results,
errors affecting millions of statements can be identified at a minimal
workload for the knowledge base designer.

Keywords: Data quality · Formal ontologies · Foundational ontologies ·
Anti-pattern · DBpedia · DOLCE

1 Introduction

For the creation of large-scale knowledge bases, like DBpedia [18], there is often
a trade off between coverage and precision. They cannot be curated manually,
but only created by applying heuristic methods. Since those heuristics are most
often not 100% exact, the resulting knowledge bases are not free of errors.

In this paper, we concentrate on DBpedia, which is a large-scale, cross domain
knowledge base created from Wikipedia. To that end, Wikipedia infoboxes are
mapped to a central ontology in a crowd-sourced process. Those mappings are
then used to extract the DBpedia knowledge base from Wikipedia dumps. In the
past years, DBpedia has become one of the central hubs of the Linked Open Data
(LOD) cloud [27], with many applications using DBpedia for various purposes.

Due to the importance of DBpedia both as a linking hub in the LOD cloud,
as well as a knowledge base for various applications, many works have been pro-
posed in the recent past which target the improvement of the data in DBpedia.
However, most of those approaches target at identifying individual errors, i.e.,
statements which are likely to be wrong. In contrast, in this paper, we aim at the
identification of systematic errors, such as shortcomings of the heuristics used,
or wrong mappings. Systematic errors are sets of individual errors following a
similar pattern and having a common root cause (e.g., a wrong mapping).
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 180–196, 2015.
DOI: 10.1007/978-3-319-25007-6 11
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Since DBpedia version 3.9, released in 2013, mappings of the DBpedia ontol-
ogy to DOLCE-Zero [9,11], a subset of the modules of the formal ontology
DOLCE, are included in the DBpedia ontology. We exploit those mappings to
identify conflicting statements in DBpedia with the help of a reasoner, and use
clustering to extract common patterns in the justifications. We find that in many
cases, each cluster is related to a particular problem in the construction of the
DBpedia knowledge base. While DOLCE has been used for improving several
ontologies on the T-Box (i.e., terminological) level, this work is novel since it
does not solely aim at improving the T-Box, but also the construction of the
A-Box (assertional level) of a large-scale knowledge base.

The rest of this paper is structured as follows. In section 2, we review related
works both w.r.t. debugging knowledge bases such as DBpedia, as well as the use
of formal top level ontologies for improving such knowledge bases. We introduce
our approach in section 3. An evaluation is carried out in section 4 by examining
the results as well as quantifying the influence of DOLCE-Zero, and by analyzing
the largest clusters identified and a sample from the long tail of non-clustered
statements. We show that both views lead to the identification of a number of
issues in DBpedia by inspecting only a very small fraction of selected statements.
We conclude with a summary and an outlook on future work.

2 Related Work

In this paper, we target the identification of systematic errors in the construction
of the large-scale knowledge base DBpedia. More specifically, we consider the
identification of wrong relation assertions between two individuals.

There is a larger body of work which targets at finding errors in web knowl-
edge bases such as DBpedia. The approaches vary both with respect to the
methods employed as well as to the targeted type of assertions – i.e., identifying
wrong type assertions, relational assertions, literals, etc.

Methods found in the literature range from statistical methods [24] and out-
lier detection [6,22,34] to using external methods, such as web search engines
[17]. In addition, crowdsourcing [1] and games with a purpose [32] have been
proposed as non-automatic means for identifying errors in knowledge bases.

In this paper, we propose the use of reasoning, in combination with fur-
ther processing of the reasoning results by means of data mining. The DBpedia
ontology – as many schemas used for providing Linked Open Data – is not very
expressive, in particular with respect to the presence of disjointness axioms.
Thus, there is a natural limitation for reasoning-based approaches. Hence, such
approaches are often combined with ontology learning as a preprocessing step
to enrich the ontology at hand [16,19,31]. In contrast to those approaches, we
exploit the links to the foundational ontology DOLCE-Zero, and the high-level
disjointness axioms defined therein.

This approach has been applied in the past, starting from the creation of the
DOLCE foundational ontology in 2002 [10], and its use in the restructuring of
WordNet [9,12]. Indeed, one of the main goals of upper level and foundational
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ontologies, jointly with meaning negotiation among ontology designers, and har-
monization of ontologies, is that of “cleaning” a schema or a knowledge base by
inducing inferences (which can produce inconsistencies, or not) due to the axioms
defined on the classes and properties that are used as alignment targets of the
knowledge base schema. Examples include: [26], which describes the detection of
thousands of incoherences in a large collection of medical ontologies; [7], which
uses a foundational ontology to detect incoherences in anti-money-laundering
rules, as well as in suspicious financial transactions; [20], which uses founda-
tional axioms to integrate and cleanup alternative service ontologies; [8], which
also describes the detection of incoherences emerging from the formalization of
a collection of thesauri and classification schemes in the fishery domain.

To our knowledge, foundational ontologies have never been used to detect
inconsistencies in very large knowledge bases at the scale of millions of individ-
uals and facts, although using this approach was actually suggested pretty soon
[15]. More recently, an attempt [29] has been made in using a lightweight (non-
foundational) upper ontology (UMBEL) to populate DBpedia 3.7 with disjoint-
ness axioms, and derive inconsistencies. However, only 55,829 inconsistencies
are detected, from 5 logical-level types, with many of them due to a multi-
hierarchical categorization of certain buildings in that version of DBpedia. To
our knowledge, the latter is also the only approach that tries to target the iden-
tification of systematic errors, instead of individual ones.

3 Approach

We pursue a multi-stage process, as shown in Fig. 1. First, a reasoner is used to
list all property assignment statements that are inconsistent with the ontology,
along with their explanations. Then, those statements are clustered in order to
isolate patterns in the inconsistent statements. The patterns are then examined
manually to assess the inconsistencies identified.

While DBpedia contains type, relational, and literal assertions, we concen-
trate on identifying problems with relational assertions. The type assertions
in DBpedia are mostly correct, but incomplete [23], there exists a reasonable
amount of noise in the relational assertions. For example, Weaver et al. [33]
determine the fraction of wrong relational assertions in Wikipedia links to be
2.8%, a number that can also serve as a rough estimate for DBpedia.

3.1 The Graph

The graph considered is constituted by the DBpedia 2014 ontology, mapping-
based types, and mapping-based properties datasets.1 The alignment to DOLCE-
Zero (see below) is included in the ontology dataset (T-Box: the alignments of
classes and properties), and in the mapping-based types dataset (A-Box: the
1 http://wiki.dbpedia.org/Downloads2014. The namespaces used are:

http://dbpedia.org/resource/, prefix=dbpedia,
http://dbpedia.org/ontology/, prefix=dbo

http://wiki.dbpedia.org/Downloads2014
http://dbpedia.org/resource/
http://dbpedia.org/ontology/
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Fig. 1. The overall process. Statements from the DBpedia RDF graph are examined
together with the subject’s and object’s types. The resulting inconsistent statements
are clustered by similar explanations, and an expert user examines the clusters.

materialized types). The schema mapping has been defined by a DOLCE-Zero
designer (one of the authors of this paper) at the time of the call for mappings
(issued in 2014 by DBpedia maintainers); the mapping is relative to the DBpedia
3.9 ontology and dataset. The alignment has been created by carefully inspecting
the T-Box axioms and a sample of the A-Box axioms for each class and property,
in order to compare the wiki-based ontology development to the actual data
models. The instance type materialization is based on the schema mapping.

For the 2014 release, the DBpedia maintainers have created the ontology
dataset and the materialized instance mappings of DOLCE-Zero with reference
to DBpedia 2014, with the mapping having been defined for the DBpedia 3.9
ontology. This results in a few issues. In particular, as new classes and properties
have been added to the DBpedia 2014 version, some domain and range restriction
axioms have changed, and some infobox mapping has changed as well, some of
the alignments to DOLCE-Zero need to be revised, while some alignments are
missing because of the new classes and properties. For this experiment, we have
not revised the alignments, because the instance type materialization was still
based on the 3.9 mapping in the DBpedia 2014 dataset.2

DOLCE-Zero consists of two OWL ontology modules derived from DOLCE
[9] and the D&S [11] ontologies. The original design was made in the S5 modal
logic [4] (DOLCE), and KIF [14] (D&S). DOLCE covers general distinctions con-
cerning physical and social objects, events, abstractions, attributes, dimensional
regions, as well as mereological (part), participation, inherence (attributive), and
localization relations. In other words, DOLCE covers some of the core ontol-
ogy design patterns that are typically assumed in the majority of conceptual
schemata. D&S defines a vocabulary for roles, frames, concepts, and situations,
which help representing many domains (e.g., biomedicine, law, business, organi-
zations) that are often ambiguous in using words for expressing actual entities
vs. concepts describing various collections of entities.In other words, D&S com-
plements DOLCE with conceptual-level ontology design patterns.

The original DOLCE was hardly reusable on the Semantic Web, because of
idiosyncratic terminological choices, and the strong expressivity of many of its
axioms (n-ary relations, possible world and temporal indexing of relationships,
2 Actually, our approach was capable of automatically discovering the places in which

changes in the DBpedia ontology lead to invalid alignments (cf. Section 4), and led
to fixes that will become part of the DBpedia 2015 version.
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non-trivial first-order co-reference of variables). Therefore, the DOLCE designers
decided soon to create a lighter version in OWL by relaxing n-ary relations,
removing possible world and temporal indexing, and ignoring the most complex
axioms. During the years, additional modules have been developed to cover e.g.
WordNet’s top level, as well as to link the light versions of DOLCE and D&S.
Eventually, two modules have emerged as mostly useful to work with LOD:

– an OWL module called DOLCE+DnS Ultralight (DUL),3 which contains a
simplification of the original DOLCE axioms, with some additional concepts
and relations, and the D&S vocabulary

– an upper level module, called DOLCE-Zero (D0)4 that simplifies some of
the distinctions in DUL, which has been created to optimize the alignment
of WordNet used by the T̀ıpalo method for automatic typing of Wikipedia
resources [13].

D0 is a small set of classes on top of DUL, which deal with ambiguity and com-
pleteness issues. Firstly, it introduces four “union classes” (d0#Characteristic,
d0#Eventuality, d0#Activity, and d0#Location) that generalize some dis-
joint classes from DUL that are sometimes considered too “picky”, e.g. qualities
vs. dimensional regions, events vs. situations, actions vs. tasks, space regions
vs. physical locations. In practice, those distinctions are seldom represented in
lightweight ontologies and natural language lexicons, and often originate debat-
able inconsistencies. Secondly, D0 introduces three top-level classes that have
never been clarified and eventually accepted in DOLCE: d0#CognitiveEntity,
d0#System, and d0#Topic. Those classes are needed in order to align existing
ontologies. The combination of DBpedia Ontology and D0 is coherent in itself
with one exception: in DBpedia, the class dbo#Library is a case of metonymy,
since is a subclass of both Building and Organization. However, the alignments
are respectively to d0#PhysicalObject and to d0#SocialObject, which are dis-
joint classes.

3.2 Identifying Conflicting Statements

For each relation r(s, o) that holds between a subject s and an object o, we
collect all direct types of the subject and the object, i.e., Ts = {T |T (s)}, To =
{T |T (o)}. Those statements – i.e., the relation as well as the type assertions
– are presented to a reasoner, together with the DBpedia and D0 ontologies.
Typically, a statement is detected as conflicted if the domain or range assignment
of r contains a class which is disjoint with a class in Ts or To, respectively. Fig. 2
illustrates such an inconsistency.

Once a reasoner detects such an inconsistency for a statement, it can also
deliver an explanation, i.e., the set of axioms that, together, are inconsistent.
In the example in Fig. 2, it comprises the original relation assertion, the type
assertion for the object, the property’s range assertion, as well as all the subclass,
3 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl, prefix=dul
4 http://www.ontologydesignpatterns.org/ont/dul/d0.owl, prefix=d0

http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
http://www.ontologydesignpatterns.org/ont/dul/d0.owl
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Fig. 2. Conflict detection example for the statement dbpedia#Tim Berners-Lee

dbo#award dbpedia#Royal Society

equivalence, and disjointness assertions depicted in the figure. It is important
to note that a detected inconsistency for a statement does not mean that the
statement as such is wrong. It is rather the case that one of the axioms comprising
the explanation (including the original statement) are wrong, which can also
apply to a type assertion or any axiom in the DBpedia or D0 ontology.

Using a reasoner to check each and every statement in a large-scale dataset
like DBpedia would lead to intractable runtimes. However, it is obvious that
for two pairs of statements r(s, o) and r(s′, o′), the results of an inconsistency
check are equivalent if Ts = Ts′ and To = To′ . Hence, we can cache the reasoning
results for a characteristic signature 〈r, Ts, To〉 and only invoke the reasoner for
statements with a previously unseen characteristic signature.

3.3 Clustering Conflicts

The result of the previous step is a set of conflicting statements, where each
statement has a set of axioms that lead to the conflict. In order to group similar
conflicts, we use clustering and assign statements with similar axiom sets to the
same cluster.

For determining the clusters, we represent each conflicting statement as a
binary feature vector, where the features are the ontology axioms. As a distance
function, we use the Manhattan distance between the feature vectors, i.e., the
number of axioms by which the two explanations differ:

d(A1, A2) = |A1 ∪ A2 − A1 ∩ A2|, (1)

where A1 and A2 are the axiom sets that lead to the inconsistency of two state-
ments. Manhattan distance was chosen for simple computation and interpretabil-
ity (i.e., a distance of n means that two explanations differ in n axioms).

As a clustering algorithm, we use DBSCAN [5]. That clustering algorithm
forms clusters based on density, given two parameters ε and M. A cluster is
formed around an instance if at least M instances are within a distance of ε
of that instance. In our example, this means that clusters contain conflicting
statements whose explanations do not differ by more than ε axioms. DBSCAN
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was used since (a) it does not require specifying the number of clusters upfront,
(b) its efficiency, and (c) its capacity of isolating noise.

Instances which are not assigned to any cluster are marked as noise. These
are conflicting statements whose explanation is not similar to that of at least
M other statements. Hence, choosing the parameter M gives us control on the
minimum frequency of a particular conflict to regard it as a systematic error.

4 Evaluation

We have evaluated our approach on DBpedia 2014, using the mapping-based
types and properties datasets. We have run the conflicting statement detection
and clustering once with, once without the D0 ontology. For reasoning, we used
the HermiT reasoner [28], for clustering, we used a slightly modified version of
the DBSCAN implementation in RapidMiner5,6.

4.1 Basic Results

Without D0, a total of 97,749 statements (0.65% of all statements) was found to
be inconsistent, with 630 different axioms involved in the corresponding expla-
nations. With D0, this number increases to 3,654,255 statements (24.36% of all
statements), with 1,467 axioms involved in the corresponding explanations.

As discussed above, we use caching of reasoner results. In total, the reasoner
had to examine only 34,554 out of 15,001,543 statements, i.e., 0.03%. Computing
the consistency and explanation of a statement took 2.6 seconds on average,
which totals to 25h (i.e., without caching, the whole consistency checking step
would take more than one year). The clustering took around five minutes. All
computations were performed on a standard laptop.

We ran DBSCAN with ε = 2 and ε = 4, and used 5,10,25,50, and 100 as
values for M . The cluster sizes and number of noise instances are depicted in
Table 1. Although the absolute number of clusters when using D0 is only four
times larger, while the total number of detected inconsistent statements is 37
times larger. The reason is that some of the clusters found when using D0 are
quite large, i.e., the inconsistencies found affect a large number of statements. In
fact, the largest 16 clusters are clusters that use D0 axioms in their explanations.

The values in the table also demonstrate the value of clustering: even if
inspecting only a few hundred clusters (each presented as an example statement

5 http://www.rapidminer.com
6 The modification was made in order to make DBSCAN incorporate instance weights

when counting instances. This allows us to reduce the dataset to only one instance
per conflicting set of axioms, and set the number of statements exposing that
conflict as the instance weight. With this modification, the dataset size to be
processed in RapidMiner could be reduced by a factor larger than 1,000. The
modification is contained in the Mannheim RapidMiner Toolbox Extension, avail-
able at https://marketplace.rapidminer.com/UpdateServer/faces/product details.
xhtml?productId=rmx maratool

http://www.rapidminer.com
https://marketplace.rapidminer.com/UpdateServer/faces/product_details.xhtml?productId=rmx_maratool
https://marketplace.rapidminer.com/UpdateServer/faces/product_details.xhtml?productId=rmx_maratool
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Table 1. Number of clusters and noise instances with and without D0 for DBSCAN
different parameter settings of ε and M . #C denotes the number of clusters, �C denotes
the average cluster size, and #N denotes the number of noise instances.

without D0 with D0
ε M #C �C #N #C �C #N

2
5

218 447 355 915 3,992 1,835
4 182 536 264 745 4,903 1,390

2
10

180 540 614 681 5,361 3,392
4 151 644 474 565 6,463 2,574

2
25

129 747 1,406 457 7,981 6,746
4 108 894 1,160 380 9,602 5,454

2
50

98 972 2,529 338 10,779 10,958
4 84 1,139 2,075 288 12,658 8,709

2
100

68 1,370 4,623 254 14,321 16,797
4 62 1,519 3,570 219 16,624 13,537

and the corresponding explanation), a user can fix several million statements in
DBpedia.

At a first manual inspection, we found out that the clusters with the larger ε
value of 4 still looked rather coherent, i.e., the explanations are reasonably similar
to group them together. Moreover, to keep the number of clusters tractable, we
focus on the configuration with ε = 4 and M = 100. Fig. 3 shows the distribution
of clusters with this configuration.

4.2 Major Sources of Inconsistencies

Table 2 depicts the top 10 disjointness axioms, asserted classes, and asserted
properties which occur in the inconsistencies identified by our approach. Again,
the trend is confirmed that the absolute number of problems discovered when
exploiting D0 is by several orders of magnitude larger than when relying only
on the DBpedia ontology.

Furthermore, we can observe that some of the major problem sources, such as
the modeling of species, career stations, and musical artists/bands (see below),
are not captured without D0. This shows that in those areas, the formalization
depth of the DBpedia ontology is rather low.

When using D0, seven out of the ten top 10 disjointness assertions are from
the D0 ontology, while only three come from the DBpedia ontology. The funda-
mental distinction between social and physical objects is responsible for by far
most of the inconsistencies detected.

It is further noteworthy that even for the disjointness axioms asserted in the
DBpedia ontology, the number of conflicts detected when using D0 are higher
in absolute numbers. For example, the disjointness between dbo#Person and
dbo#Event is involved in over 10 times more inconsistencies when using D0. This
is due to the fact that other assertions within D0, such as inverse properties, are
also exploited by the reasoner.
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Fig. 3. Distribution of clusters and their sizes at ε = 4 and M = 100 (note that the
y axis uses a logarithmic scale). Black bars denote clusters of explanations using D0,
grey bars represent clusters of explanations not using D0.

4.3 Evaluation of the Largest Clusters

The 40 largest clusters cover 3,497,068 inconsistent triples, corresponding to
about 96% of all inconsistencies. 36 clusters use axioms from D0, i.e., only four
would be found when considering the DBpedia ontology alone. We report here a
classification of the 40 top clusters, according to the origin of the inconsistency,
and the way(s) to fix it. Each category reveals an anti-pattern, i.e. a modeling
solution used systematically, which produces unintended consequences.

Firstly, all the clusters contain an inconsistency anti-pattern: at least one
domain or range restriction for a property is disjoint with at least one of the
types declared for the subject or the object of an instance of that property.
Formally, assuming the domain EA of explanation axioms, the domain IA ⊂ EA
of inconsistent A-Box axioms, the subsets EAa1,...,an, EAai ⊂ EA of explanation
axioms for each inconsistent A-Box axiom ai ∈ IA, with ρ being the object
property from ai, φ and ψ being domain and range classes for ρ, and χ, ξ being
classes used as types of the individuals from ai, the following description logic
schema and data axiom templates are present in each cluster:

ρ � φ × ψ (2)
φ \ χ 	 ψ \ ξ (3)

ρ(x, y) ∧ (χ(x) 	 ξ(y)) (4)

Secondly, specific anti-patterns emerge from the analysis of the systematic
errors for the top 40 clusters:

Overcommitment (19). A conflict arises between the schema emerging from
data, and the schema from the ontology. In these cases, the ontology provides
a typically reasonable intuition on how a certain property should be used,
e.g., dbo#team is designed as a relation between agents and sports teams,
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Table 2. Top 10 disjointness axioms, classes, and properties involved in the inconsis-
tencies detected.

With DOLCE-Zero Without DOLCE-Zero
dul#PhysicalObject , dul#SocialObject 3,363,689 dbo#Agent , dbo#Place 60,120
dul#Event , dul#Object 174,917 dbo#Person , dbo#TimePeriod 31,330
dbo#Event , dbo#Person 65,649 dbo#Event , dbo#Person 4,443
dbo#Agent , dbo#Place 62,250 dbo#MeanOfTransp. , dbo#Person 1,521
dul#InformationObject , dul#SocialAgent 51,022 dbo#Building , dbo#Person 245
dbo#Person , dbo#TimePeriod 31,323 dbo#Activity , dbo#Person 34
dul#Abstract , dul#Object 27,663 dbo#Person , dbo#Plant 31
dul#InformationObject , dul#Situation 26,693 dbo#Person , dbo#Tower 14
dul#Situation , dul#SocialAgent 20,594 dbo#Mountain , dbo#Person 9
dul#Concept , dul#SocialAgent 12,498 dbo#Person , dbo#UnitOfWork 1
dbo#Species 1,273,521 dbo#TimePeriod 31,330
dbo#Person 1,182,729 dbo#Agent 28,827
dbo#CareerStation 621,575 dbo#Place 17,555
dbo#MusicalArtist 131,810 Wikidata#Q532 9,539
dbo#Event 124,757 dbo#Event 4,295
dbo#Organisation 63,725 dbo#Organisation 1,832
dbo#Band 53,448 dbo#Astronaut 1,488
dbo#Agent 36,472 dbo#Company 1,366
dbo#TelevisionShow 31,607 dbo#Region 640
dbo#TimePeriod 31,330 dbo#Broadcaster 263
dbo#team 1,520,216 dbo#team 39,065
dbo#family 335,398 dbo#birthPlace 10,285
dbo#order 278,229 dbo#district 7,167
dbo#currentMember 260,325 dbo#owner 4,569
dbo#kingdom 244,427 dbo#leaderName 3,414
dbo#phylum 200,431 dbo#province 3,267
dbo#genus 175,478 dbo#deathPlace 2,272
dbo#associatedMusicalArtist 97,243 dbo#location 1,766
dbo#battle 96,112 dbo#recordedIn 1,728
dbo#class 44,434 dbo#locationCity 1,612

but is often used in ways that conflicts arise with the basic intuition. For
example dbo#team can be used as a relation between events and teams par-
ticipating in that event. Since dul#Agent is disjoint with dul#Event, incon-
sistencies are detected. The restriction on the domain of dbo#team results
therefore as an overcommitment : the interpretation of a property universe
is too specific compared to actual usage. Other examples of overcommit-
ment include instances for the properties dbo#associatedMusicalArtist,
dbo#musicalBand, dbo#network, dbo#militaryBranch, etc.

Metonymy (11). A conflict arises between two disjoint – but related – inter-
pretations of a same concept. An example appears with dbo#family, used in
triples expressing relations between species. dbo#family has been aligned to
the property dul#specializes, holding for instances of dul#Concept, but
the class dbo#Species has been aligned to dul#Organism, because species
in DBpedia include species as well as individual exemplars of a species (for
example, famous race horses), i.e. dbo#Species is used metonymically in
data. Since dul#Concept is disjoint with dul#Organism, inconsistencies are
detected. The metonymy anti-pattern is difficult to resolve, because it is
due to ambiguities that seem widespread in human language. Metonymy
seems related to human propensity for an economy of means: an interesting
cognitive experiment [25] proves the communicative function of ambiguity
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(cf. also [21] for a discussion). D0 tries to accommodate this “power of ambi-
guity” (cf. Section 3) to a certain extent, but relaxing all distinctions would
prevent inconsistency checking in general. D0 relaxation has been limited to
well known cases of metonymy, and the concept vs. organism metonymy for
natural classifications was not considered.7

Misalignment (5). A conflict arises because a property (or a class) has been
aligned to a wrong D0 entity, which causes inconsistencies in data clas-
sification. For example, the property dbo#commander has been aligned
to dul#coparticipatesWith, but its usage in data is actually a case
of dul#hasParticipant. dul#coparticipatesWith holds for instances of
dul#Object only, but data include a 98% usage between dul#Event and
dul#Object, and only 2% between dul#Object, therefore intended usage
leans clearly towards the participation pattern.
Since the domain of dul#coparticipatesWith is dul#Object, and that of
dul#hasParticipant is dul#Event (with dul#Object owl#disjointWith
dul#Event), inconsistencies are detected. This anti-pattern suggests that
DBpedia ontology choices proposed by the crowd, or by infobox reengineer-
ing, should also be made based on the actual resulting usage in data.

Version branching (3). A conflict arises between an alignment defined on a
version, and a newer version. In these cases, the alignment provided for
an older version, may become incoherent in case of a non-conservative
change of the ontology in the newer version, e.g. dbo#team used to hold
between career stations (professional situations of e.g. an athlete) and teams
in DBpedia 3.9 ontology, but in DBpedia 2014 it holds between agents
and sports teams. Since dul#Situation (aligning dbo#CareerStation),
and dul#Person (aligning dbo#Athlete) are disjoint, inconsistencies are
detected. This anti-pattern suggests that the design of new versions of DBpe-
dia ontology should update the alignments to any change that has been made
in the new version. Since this is an interaction problem, our clustering-based
approach seems particularly appropriate to scale down the time needed to
check all the interactions between the proposed changes in infobox reengi-
neering, crowd modeling, and alignments.

Mistyping (1). A conflict arises between a type φ declared for some argu-
ment (subject or object) of an object property, and an expected type ψ
expected for the universe of that property, when φ \ ψ. This is typically due
to systematic mistyping of individuals, and is not very frequent; an exam-
ple is dbpedia#Alfonso XII of Spain dbo#birthPlace dbpedia#Madrid,
where dbpedia#Madrid is erroneously typed as dbo#Agent. Since dbo#Agent
is disjoint with dbo#Place, which is expected in the range of
dbo#birthPlace, inconsistencies are detected. Places being typed as agents
occasionally occur in DBpedia, with dbpedia#Korea and dbpedia#New
Brunswick being other prominent examples

7 D0 was from WordNet requirements [13], and a new axiom – such as dbo#Species

� dul#Concept � dul#Organism – would be justified only if there is a substantial
amount of individual exemplars (actual organisms) typed as species in DBpedia.
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Table 3. Amount of clusters and inconsistencies found for each anti-pattern in the 40
top clusters, and the expected fix to resolve them.

anti-pattern D0? #clusters #inco % fix type
Overcommitment 16 yes, 3 no 19 587962 .168 Schema restriction axioms

Metonymy yes 11 1277977 .365 Schema or data refactoring
Misalignment yes 5 133663 .038 Alignment tuning

Version branching yes 3 1477296 .422 Alignment tuning, workflow change
Mistyping no 1 10285 .003 Entity typing

Wrong taxonomy yes 1 9885 .003 Schema taxonomical axioms

Wrong taxonomy (1). A conflict arises between a property or class restriction
φ, and another restriction from a property or class ψ, where φ ≡ ψ. For exam-
ple, the inconsistency in triples like dbpedia#2002%E2%80%9303 Plymouth
Argyle F.C. season dbo#team dbpedia#Plymouth Argyle F.C. is due to
the fact that the property dbo#team is owl#equivalentProperty dbo#club,
but a specific domain is only stated for dbo#club (i.e. dbo#Athlete), while
dbo#team is used in triples with subject of type dbo#SportsSeason, which
is aligned to dul#Situation 	 dul#TimeInterval, which are both disjoint
with dbo#Athlete.

Concerning possible fixes for the inconsistencies, solution patterns apply
homogeneously for each of the anti-patterns. In particular, Overcommitment
requires refactoring at the property restriction level, and need non-trivial design
choices; Metonymy requires refactoring of both the ontology and the data, in
order to partition the extension of a metonymical class or property; Misalign-
ment requires tuning the alignments; Version branching requires tuning of the
resulting misalignments, but in general a change in the ontology design work-
flow; Mistyping requires refactoring at the entity typing level; and finally, Wrong
taxonomy needs to be solved at the schema level.

As a summary, Table 3 shows the amount of clusters and inconsistencies
found for each anti-pattern, and the expected fix to resolve them.8

4.4 A Look at the Long Tail

In addition to the analysis of the top clusters, we also looked at the “long tail”,
i.e., the infrequent sources of inconsistencies which DBSCAN assigns to the Noise
cluster. Out of those statements, we drew a random sample of 100 statements,
and evaluated them by hand. From those 100 statements, 64 were actually erro-
neous, 30 were false negatives (i.e., statements which are actually correct), and
the remaining six were unclear or questionable. The main sources for the 64
errors are as follows:

Link in longer text (23). If the value of an infobox key-value pair is a
complex expression containing several links, all of them are extracted

8 A detailed list of findings and proposed solutions is available at http://dws.
informatik.uni-mannheim.de/en/research/dbpedia+dolce/

http://dws.informatik.uni-mannheim.de/en/research/dbpedia+dolce/
http://dws.informatik.uni-mannheim.de/en/research/dbpedia+dolce/
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into a relational statement with the corresponding subject and predicate.
However, this does not always make sense. One example is the state-
ment dbpedia#Cosmo Cramer dbo#occupation dbpedia#Bagel, which is
extracted from the corresponding value Bagel shop worker, with Bagel linked
to the corresponding Wikipedia page.

Wrong link (9). These are simply wrong links in the Wikipedia infobox. Fol-
lowing those links does not make sense to a human visitor of Wikipedia, since
the link is completely wrong. One example is the statement dbpedia#Stone
(band) associatedMusicArtist dbpedia#Dementia, where the object
denotes the disease dementia, not the artist of the same name.

Redirect (7). Redirects are resolved when building DBpedia. This can result in
nonsensical statements. One typical example is the statement dbpedia#Ben
Casey company dbpedia#Bing Crosby. Here, the original infobox value is
Bing Crosby Productions, which would be the correct object for the state-
ment. However, the production company has no Wikipedia page on its own,
but the object is a redirect to the person Bing Crosby, which leads to the
error.

Link/anchor text mismatch (6). This is a special case of wrong links
– here, the anchor link would actually suggest a different link
target. In contrast to wrong links as stated above, following the
link in Wikipedia could actually make sense to a Wikipedia user,
since there is related information on the website. One example
is the statement dbpedia#Deutschland sucht den Super-star judge
dbpedia#MIA., where the judge of the TV show is the singer of the band
MIA., not the band as such. Nevertheless, the page about the band contains
information about the singer.

Metonymy (4). These are a special case of link/anchor mismatches, where the
linked resource and the object which was actually meant share their surface
form. One example is the statement dbpedia#Human Nature (band) genre
dbpedia#Motown, where the object denotes the record label Motown. The
term Motown, however, is often used as a genre name for the artists signed
by the label.

Anchor link (4). When building DBpedia, URI fragments are removed from
the link. However, they are used in Wikipedia to point to certain sections on
a page, which, in total, is on a different, but related topic. Thus, removing the
fragment can sometimes lead to wrong statements in DBpedia. One example
is the statement dbpedia#Pierre Langlais battle dbpedia#First Army
(France), where the original link had a fragment pointing to the section on
the page describing the actual battle.

Multiple Infoboxes (2). If a page contains multiple infoboxes, those can
sometimes lead to wrong statements. One example observed is the Wikipedia
page Snooker World Rankings 1978/1979, which contains infoboxes about
individual players.

Unknown (9). In nine out of 64 cases, the authors of this paper could not find
the reason for the error to come into existence.
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It is noteworthy that in the long tail, i.e., the noise cluster, we could observe
only those kinds of errors which are not specific to a certain class or property, but
uniformly distributed across DBpedia classes and properties. This shows that the
approach actually separates class-specific and class-independent problems, and
assigns the latter to a separate cluster.

Furthermore, the analysis of the long tail has revealed four major sources of
errors in DBpedia, which can be easily identified during the extraction phase
and should obtain further attention in the future: links in longer texts, redirects,
anchor links, and pages with multiple infoboxes. Given that the noise cluster
contains 13,537 instances, these four sources account for an estimate of at least
4,800 wrong statements in total9. A possible treatment strategy could quaran-
tine statements which have one of those characteristics, and treat them with
special care, e.g., check them with a reasoner and/or statistical methods such as
SDValidate [24].

5 Conclusion and Outlook

In this paper, we have shown how mappings to the foundational ontology
DOLCE-Zero, which have been introduced in DBpedia from version 3.9 on, can
be exploited for finding systematic errors in the construction of the DBpedia
knowledge base. The combination of reasoning and clustering of the reasoner’s
explanations helps minimizing the human expert’s workload: for the analysis of
problems affecting millions of statements, no more than 140 statements (40 rep-
resentative examples from the top clusters, plus 100 statements from the long
tail) – i.e., 0.001% of DBpedia – have been inspected manually.

As a result of the analysis, some of the mappings used for creating DBpedia,
as well as a number of assertions in the DBpedia ontology were directly changed.
For problems that were not trivial to resolve, bug reports were filed. Further-
more, we have identified some areas where the construction of DBpedia requires
additional attention, i.e., the extraction of relational statements from infobox
values containing more text than just a plain link or literal, the handling of redi-
rects, and the creation of relational statements from links containing an anchor
fragment. Furthermore, our approach has revealed some non-optimal mappings
between DBpedia and DOLCE-Zero, in particular where a) the DBpedia2014
ontology has used DBpedia 3.9 alignments, but the basic ontology had changed;
and b) some properties are applied ambiguously, which should lead either to a
change of the alignment, or of the DBpedia data or ontology.

So far, we have used a rather naive distance function for clustering the expla-
nations, i.e., Manhattan distance on binary axiom occurrence vectors. More
sophisticated similarity measures can be thought of, but are still subject to
research [2].

The approach presented in this paper can be transferred to other datasets
whose ontology is mapped to DOLCE-Zero. For the future, we are interested
9 Since not all problematic statements rooted in one of those four problems lead to an

inconsistency, we expect the number to be even higher.
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in testing the approach also on other knowledge bases, such as YAGO [30] or
NELL [3], and compare the findings. From such experiments, we expect further
insights in the prevalent challenges for building large-scale knowledge bases.

Acknowledgments. The work presented in this paper was supported by RapidMiner
in the course of the RapidMiner Academia program.
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ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002.
LNCS (LNAI), vol. 2473, pp. 166–181. Springer, Heidelberg (2002)

11. Gangemi, A., Mika, P.: Understanding the semantic web through descriptions and
situations. In: Meersman, R., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, and
ODBASE 2003. LNCS, vol. 2888, pp. 689–706. Springer, Heidelberg (2003)

12. Gangemi, A., Navigli, R., Velardi, P.: The OntoWordNet project: extension and
axiomatization of conceptual relations in WordNet. In: Meersman, R., Schmidt,
D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp.
820–838. Springer, Heidelberg (2003)

13. Gangemi, A., Nuzzolese, A.G., Presutti, V., Draicchio, F., Musetti, A., Ciancarini,
P.: Automatic typing of DBpedia entities. In: Cudré-Mauroux, P., et al. (eds.)
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Abstract. In this paper we tackle the problem of answering SPARQL
queries over virtually integrated databases. We assume that the entity
resolution problem has already been solved and explicit information is
available about which records in the different databases refer to the same
real world entity. Surprisingly, to the best of our knowledge, there has
been no attempt to extend the standard Ontology-Based Data Access
(OBDA) setting to take into account these DB links for SPARQL query-
answering and consistency checking. This is partly because the OWL
built-in owl:sameAs property, the most natural representation of links
between data sets, is not included in OWL 2 QL, the de facto ontology
language for OBDA. We formally treat several fundamental questions
in this context: how links over database identifiers can be represented in
terms of owl:sameAs statements, how to recover rewritability of SPARQL
into SQL (lost because of owl:sameAs statements), and how to check
consistency. Moreover, we investigate how our solution can be made to
scale up to large enterprise datasets. We have implemented the approach,
and carried out an extensive set of experiments showing its scalability.

1 Introduction

Since the mid 2000s, Ontology-Based Data Access (OBDA) [9,14,15] has become
a popular approach for virtual data integration [6]. In (virtual) OBDA, a concep-
tual layer is given in the form of (the intensional part of) an ontology (usually
in OWL 2 QL) that defines a shared vocabulary, models the domain, hides the
structure of the data sources, and can enrich incomplete data with background
knowledge. The ontology is connected to the data sources through a declarative
specification given in terms of mappings [4] that relate symbols in the ontology
(classes and properties) to (SQL) views over data. The ontology and mappings
together expose a virtual RDF graph, which can be queried using SPARQL
queries, that are then translated into SQL queries over the data sources. In this
setting, users no longer need an understanding of the data sources, the relation
between them, or the encoding of the data.

One aspect of OBDA for data integration is less well studied however, namely
the fact that in many cases, complementary information about the same entity
is distributed over several data sources, and this entity is represented using
© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 199–216, 2015.
DOI: 10.1007/978-3-319-25007-6 12
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different identifiers. The first important issue that comes up is that of entity
resolution, which requires to understand which records actually represent the
same real world entity. We do not deal with this problem here, and assume that
this information is already available.

Traditional relational data integration techniques use extract, transform, load
(ETL) processes to address this problem [6]. These techniques usually choose a
single representation of the entity, merge the information available in all data
sources, and then answer queries on the merged data. However, this approach of
physically merging the data is not possible in many real world scenarios where
one has no complete control over the data sources, so that they cannot be mod-
ified, and where the data cannot be moved due to freshness, privacy, or legal
issues (see, e.g., Section 3).

An alternative that can be pursued in OBDA is to make use of mappings to
virtually merge the data, by consistently generating only one URI per real world
entity. Unfortunately, also this approach is not viable in general: 1. it does not
scale well for several datasets, since it requires a central authority for defining
URI schemas, which may have to be revised along with all mappings whenever a
new source is added, and 2. it is crucial for the efficiency of OBDA that URIs be
generated from the primary keys of the data sources, which will typically differ
from source to source.

The approach we propose in this paper is based on the natural idea of rep-
resenting the links between database records resulting from entity resolution in
the form of linking tables, which are binary tables in dedicated data sources that
simply maintain the information about pairs of records representing the same
entity. This bring about several problems that need to be addressed: 1. links over
database identifiers should be represented in terms of OWL owl:sameAs state-
ments, which is the standard approach in semantic technologies for connecting
entity identifiers; 2. the presence of owl:sameAs statements, which are inher-
ently transitive, breaks rewritability of SPARQL queries into SQL queries over
the sources, and one needs to understand whether rewritability can be recovered
by imposing suitable restrictions on the linking mechanism; 3. a similar problem
arises for checking consistency of the data sources with respect to the ontology,
which is traditionally addressed through query answering; 4. since performance
can be prohibitively affected by the presence of owl:sameAs, it becomes one
of the key issues to address, so as to make the proposed approach scalable over
large enterprise datasets.

In this paper we tackle the above issues in the setting where we are given
an OWL 2 QL ontology that is mapped to a set of data sources, which are then
extended with linking tables. Specifically, we provide the following contributions:

– We propose a mapping-based framework that carefully virtually constructs
owl:sameAs statements from the linking tables, and deals with transitivity
and symmetry, in such a way that performance is not compromised.

– We define a suitable set of restrictions on the linking mechanisms that
ensures rewritability of SPARQL query answering, despite the presence of
owl:sameAs statements.
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– We develop a sound and complete SPARQL query translation technique, and
show how to apply it also for consistency checking.

– We show how to optimize the translation so as to critically reduce the size
of the produced SQL query.

– To empirically demonstrate scalability of our solution, we carry out an exten-
sive set of experiments, both over a real enterprise cross-linked data set from
the oil&gas industry, and in a controlled environment; this demonstrates the
feasibility of our approach.

The structure of the paper is as follows: Section 2 briefly introduces the neces-
sary background needed to understand this paper, and Section 3 describes our
enterprise scenario. Section 4 provides a sound and complete SPARQL query
translation technique for cross-linked datasets. Section 5 presents the main contri-
bution of the paper, showing how to construct an OBDA setting over cross-linked
datasets, and Section 6 presents our optimization technique. Section 7 presents an
extensive experimental evaluation. Section 8 surveys related work, and Section 9
concludes the paper.

2 Preliminaries

Ontology Based Data Access. In the traditional OBDA setting (T ,M,D),
the three main components are a set T of OWL 2 QL [12] axioms (called the
TBox), a relational database D, and a set M of mappings. The OWL 2 QL
profile of OWL 2 guarantees that queries formulated over T can be rewritten
into SQL [2]. The mappings allow one to define how classes and properties in T
should be populated with objects constructed from the data retrieved from D
by means of SQL queries. Each mapping has one of the forms:

Class(subject) ← sqlclass Property(subject,object) ← sqlprop,

where sqlclass and sqlprop respectively are a unary and binary SQL query
over D. For both types of mappings we also use the equivalent notation
(s p o) ← sql. Subjects and objects in RDF triples are resources (individuals
or values) represented by URIs or literals. They are generated using templates
in the mappings. For example, the URI template for the subject can take the
form <http://www.statoil.com/{id}> where {id} is an attribute in some DB
table, and it generates the URI <http://www.statoil.com/25> when {id} is
instantiated as "25". From M and D, one can derive a (virtual) RDF graph
GM,D, obtained by applying all mappings. Any RDF graph can be seen as a set
of logical assertions. Thus, the Tbox together with GM,D constitutes an ontology
O = (T , GM,D).

To handle ontology-based integration of cross-linked datasets, we extend here
the traditional OBDA setting with a fourth component AS containing a set of
statements of the form owl:sameAs (o1,o2). Thus, in this paper, an OBDA
setting is a tuple (T ,M,D,AS), and its corresponding ontology is the tuple
O = (T , GM,D ∪ AS). Unless stated differently, in the following we work with
OBDA settings of this form.
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Semantics: To interpret ontologies, we use the standard notions of first order
interpretation, model, and satisfaction. That is, O |= A(v) iff for every model
I of O, we have that I |= A(v). Intuitively, adding an ontology T on top
of an RDF graph G, extends G with extra triples inferred by T . Formally,
the RDF graph (virtually) exposed by the OBDA setting ((T ,M,D,AS) is
G(T ,M,D,AS) = {A(v) | (T , GM,D ∪ AS) |= A(v)}.

SPARQL. SPARQL is a W3C standard language designed to query RDF
graphs. Its vocabulary contains four pairwise disjoint and countably infinite sets
of symbols: I for IRIs, B for blank nodes, L for RDF literals, and V for variables.
The elements of T = I ∪ B ∪ L are called RDF terms. A triple pattern is an
element of (T∪V) × (I∪V) × (T∪V). A basic graph pattern (BGP) is a finite
set of triple patterns. Finally, a graph pattern, Q, is an expression defined by the
grammar

Q ::= BGP | Filter(P, F ) | Union(P1, P2) | Join(P1, P2) | Opt(P1, P2, F ),

where F , is a filter expression. More details can be found in [3].
A SPARQL query (Q,V ) is a graph pattern Q with a set of variables V

which specifies the answer variables—the set of variables in Q whose values
we are interested in. The values to variables are given by solution mappings,
which are partial maps s : V → T with (possibly empty) domain dom(s). Here,
following [9,15], we use the set-based semantics for SPARQL (rather than the
bag-based one, as in the specification).

The SPARQL algebra operators are used to evaluate the different fragments
of the SPARQL query. Given an RDF graph G, the answer to a graph pattern
Q over G is the set �Q�G of solution mappings defined by induction using the
SPARQL algebra operators and starting from the base case: triple patterns. Due
to space limitation, and since the entailment regime only modifies the SPARQL
semantics for triple patterns, here we only show the definition of for this basic
case. We provide the complete definition in our technical report [3].

For a triple pattern B, �B�G = {s : var(B) → T | s(B) ⊆ G} where s(B) is
the result of substituting each variable u in B by s(u). This semantics is known
as simple entailment. Given a set V of variables, the answer to (Q,V ) over G is
the restriction �Q�G|V of the solution mappings in �Q�G to the variables in V .

SPARQL Entailment Regime. We present now the standard W3C seman-
tics for SPARQL queries over OWL 2 ontologies under different entailment
regimes. We use here the entailment regimes only to reason about individuals
and, unlike [9], we do not allow for variables in triple patterns ranging over class
and property names. We leave the problem of extending our results to handle
also this case for future work, but we do not expect this to present any major
challenge.

We work with TBoxes expressed in the OWL 2 QL profile, which however
may contain also owl:sameAs statements. Therefore, we consider two Direct
Semantics entailment regimes for SPARQL queries, which differ in how they
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interpret owl:sameAs: the DL entailment regime (which defines |=DL) inter-
prets owl:sameAs internally, implicitly adding to the ontology O the axioms
to handle equality, i.e., transitivity, symmetry, and reflexivity. Instead, the QL
entailment regime (which defines |=QL) interprets owl:sameAs as a standard
object property, hence does not assign to it any special semantics.

Observe that a basic property of logical equality is that if a and b are equal,
everything that holds for a should hold also for b, and viceversa. In the context
of SPARQL, informally it means that given the answer �B�T ,G∪AS

to a triple
pattern B, if the answer contains the solution mapping s : v �→ o and T |=
owl:sameAs(o, o′), then �B�T ,G∪AS

must also contain a solution mapping s′

that coincides with s but s′ : v �→ o′. Formally, the answer �B�R
T ,G∪AS

to a BGP
B over an ontology O under entailment regime R is defined as follows:

�B�R
O = {s : var(B) → T | (O) |=R s(B)},

Starting from the �B�R
O and applying the SPARQL operators in Q, we compute

the set �Q�R
O of solution mappings.

3 Use Case and Motivating Example

In this section we briefly describe the real-world scenario we have examined at
Statoil, and we illustrate the challenges it presents for OBDA with an example.

At Statoil, users access several databases on a daily basis, some of them are
the Exploration and Production Data Store (EPDS), the Norwegian Petroleum
Directorate (NPD) FactPages, and several OpenWorks databases. EPDS is a
large Statoil-internal legacy SQL (Oracle 10g) database comprising over 1500
tables (some of them with up to 10 million tuples), 1600 views and 700 Gb of
data. The NPD FactPages1 is a dataset provided by the Norwegian government,
and it contains information regarding the petroleum activities on the Norwegian
continental shelf. OpenWorks Databases contain projects data produced by geo-
scientists at Statoil. The information in these databases overlap, and often they
refer to the same entities (companies, wells, licenses) with different identifiers.
In this use case the entity resolution problem has been solved since the links
between records are available.

The users at Statoil need to query (and get an answer in reasonable time) the
information about these objects without worrying about what is the particular
identifier in each database. Thus, we assume that the SPARQL queries provided
by the users will not contain owl:sameAs statements. The equality between
identifiers should be handled internally by the OBDA system. To illustrate this
we provide the following simplified example:

Example 1. Suppose we have the three datasets (from now on D1,D2, D3) with
wellbore2 information, and a dataset D4 with information about companies and

1 http://factpages.npd.no/
2 A wellbore is a hole drilled for the purpose of exploration or extraction of natural

resources.

http://factpages.npd.no/


204 D. Calvanese et al.

D1 D2 D3 D4

id1 Name

a1 ’A’

a2 ’B’

a3 ’H’

id2 Name Well

b1 null 1

b2 ’C’ 2

b6 ’B’ 3

id3 AName

c3 ’U1’

c4 ’U2’

c5 ’U6’

id4 LName

9 ’Z1’

8 ’Z2’

7 ’Z3’

Fig. 1. Wellbore datasets D1, D2, D3, and company dataset D4

licenses, as illustrated in Figure 1. The wellbores in D1, D2, D3 are linked, but
companies in D4 are not linked with the other datasets. These four datasources
are integrated virtually by topping them with an ontology. The ontology contains
the concept Wellbore and the properties hasName, hasAlternativeName and
hasLicense.

The terms Wellbore and hasName are defined using D1 and D2. The prop-
erty hasAlternativeName is defined using D3. The property hasLicense is
defined over the isolated dataset D4. We assume that mappings for wellbores
from Di use URI templates urii. In addition, we know that the wellbores are
cross-linked between datasets as follows: wellbores a1, a2 in D1 are equal to b2, b1
in D2 and c3, c4 in D3, respectively. In addition, a3 is equal to c5. These links
are represented at the ontology level by owl:sameAs statements of the form:
owl:sameAs (uri1(a1),uri2(b2)), owl:sameAs (uri2(b2),uri3(c3)), etc.

Consider now a user looking for all the wellbores and their names. According to
the SPARQL entailment regime, the system should return all the 12 combinations
of equivalent ids and names ((uri1(a1),A), (uri2(b2),A), (uri3(c3),A),

(uri1(a2),B), (uri2(b1),B), etc.) since all this tuples are entailed by the ontol-
ogy and the data (c.f. Section 2). Note that no wellbores from D4 are returned. �

The first issue in the context of OBDA is how to translate the user query into
a query over the databases. Recall that owl:sameAs is not included in OWL
QL, thus it is not handled by the current query translation and optimization
techniques. If we solve the first issue by applying suitable constraints, we get
into a second issue, how to minimize the negative impact on the query execution
time when reasoning over cross-linked datasets.A third issue is how to check,
for instance, whether hasName is a functional property considering the linked
entities. A fourth issue is how to handle the multiplicity of equivalent answers
required by the standard. For instance, in our example, in principle, it could be
enough to pick individuals with template uri1 as class representative, and return
only those triples. In the next sections we will tackle all these issues in turn.

4 Handling owl:sameAs by SPARQL Query Rewriting

In this section we present the theoretical foundations for query answer over
ontology-based integrated datasets. We also discuss how to perform consistency
checking using this approach. We assume for now that the links are given in the
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form of owl:sameAs statements, and address later, in Section 5, the proper
OBDA scenario, where links are not given between URIs, but between database
records. Recall that owl:sameAs is not in the OWL 2 QL profile, and moreover,
by adding the unrestricted use of owl:sameAs we lose first order rewritabil-
ity [1], since one can encode reachability in undirected graphs. This implies that,
if we allow for the unrestricted use of owl:sameAs, we cannot offer a sound
and complete translation of SPARQL queries into SQL.3

We present here an approach, based on partial materialization of inference,
that in principle allows us to exploit a relational engine for query answering in
the presence of owl:sameAs statements. This approach, however, is not feasible
in practice, and we will then show in Section 5 how to develop it into a practical
solution. Our approach is based on the simple observation that we can expand
the set AS of owl:sameAs facts into the set A∗

S obtained from AS by closing it
under reflexivity, symmetry, and transitivity. Unlike other approaches based on
(partial) materialization [8], we do not expand here also data triples (specifically,
those in GM,D), but instead rewrite the input SPARQL query to guarantee
completeness of query answering. We assume that user queries in general will not
contain owl:sameAs statements, and therefore, for simplicity of presentation,
here we do not consider the case where they are present as input. However, our
approach can be easily extended to deal also with owl:sameAs statements in
user queries. Given a SPARQL query (Q,V ) over (T , G ∪ AS), we generate a
new SPARQL query (ϕ(Q), V ) over (T , G ∪ A∗

S) that returns the same answers
as (Q,V ) over (T , G ∪ AS). This approach is very similar to the singularisation
technique in [11]. The translation ϕ(·) is defined as follows.

Definition 1. Given a query (Q,V ), the query (ϕ(Q), V ) is obtained by replac-
ing every triple pattern t in Q with ϕ(t), where:4

– ϕ({?v :P ?w}) = {?v owl:sameAs :a . :a :P :b . :b owl:sameAs?w .}
– ϕ({?v rdf:type :C}) = {?v owl:sameAs :a . :a rdf:type :C .}

The following proposition states that answering SPARQL queries over a TBox
T under the DL entailment regime can be reduced to answering SPARQL queries
under the QL entailment regime (where owl:sameAs has no built-in semantics).

Proposition 1. Given OBDA setting (T ,M,D,AS) and a query (Q,V ), we
have that �Q�DL

T ,GM,D∪AS
|V = �ϕ(Q)�QL

T ,GM,D∪A∗
S
|V .

Consistency Check: Ontology languages, such as OWL 2 QL, allow for the speci-
fication of constraints on the data. If the data exposed by the database through
the mappings does not satisfy these constraints, then we say that the ontology
is inconsistent with respect to the mappings and the data. OBDA allows one to

3 Using the linear recursion mechanism of SQL-99, a translation would be possible,
but with a severe performance penalty for evaluating queries involving transitive
closure.

4 Recall that terms of the form :x are blank nodes that, when occuring in a query,
correspond to existential variables.
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check two types of constraints: (i) functionality of properties (although it cannot
be expressed in OWL 2 QL), which imposes that an individual is connected to
at most one element; (ii) disjointness of classes/properties, which cannot have
(pairs of) individuals in common. In OBDA, consistency checking can be reduced
to query-answering [2]. This does not hold anymore in general, when considering
cross-linked datasets (where UNA does not hold). For instance, suppose we want
to check if the property :hasName in Example 1 is functional. Clearly without
considering equality between datasets the property is functional, however, when
we integrate the datasets, it is not anymore since we have in the graph (url1(a1)
:hasName ‘A’) and (url2(b2) :hasName ‘C’) and (url1(a1) owl:sameAs
url2(b2)). This implies that the wellbore url1(a1) has two names. Using the
translation above we can extend the results in [2] for checking violations of class
disjointness and of functionality of data and object properties, to account for
owl:sameAs statements. For disjointness and functionality of data properties
this is accomplished straightforwardly by the translation. Instead, for function-
ality of object properties, we need to modify the query used in [2] and explicitly
incorporate the negation of owl:sameAs. For instance, to check if functional-
ity of the object property :isRelatedTo might be violated, we can check if the
following query returns a non-empty answer over (T , G ∪ A∗

S):

SELECT ?x ?y1 ?y2 ?y3 WHERE {
?x :isRelatedTo ?y1 . ?x :isRelatedTo ?y2 .
FILTER(?y1 != ?y2 AND NOT EXISTS {?y1 owl:sameAs ?y2} ) }

If the answer is non-empty, the returned elements might witness the violation of
functionality. Notice that, because of the OWA if two elements are not known
to be equal, in general we cannot infer that they are not equal, and hence func-
tionality might still hold in some models. We refer to [3] for more details.

5 Handling Cross-Linked Datasets in Practice

Fig. 2. Linking tables for the wellbores cat-
egory

We now deal with the proper case of
querying cross-linked datasets, where
we are given: (a) an OWL 2 QL TBox,
(b) a collection of datasets, (c) a set
of mappings, and (d) a set of link-
ing tables5 stating equality between
records in different datasets that rep-
resent the same entity. For simplicity,
we can think of each dataset as cor-
responding to a different data source,
but datasets could be decoupled from
the actual physical data sources. In

5 Note that these tables could be available virtually, and hence retrieved through
queries.
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general, in different datasets, the same identifiers might be used to denote dif-
ferent objects, and the same objects might be denoted by different identifiers.
Moreover, each dataset may contain data records belonging to different pairwise
disjoint categories C1, . . . , Cm, for example wellbores, or company names. A cat-
egory corresponds to a set of records that can be mapped to individuals in the
ontology belonging to the same TBox class (different from owl:Thing), and that
could, in principle, be joined. For instance, cats and men belong to the same
class mammal, but a cat can never be joined with a man, hence cat and men
constitute two different categories. We assume that in addition to the datasets
D1, . . . , Dn, for each category C there is a database DC containing the linking
tables for the records in C. Specifically, we denote a linking table for datasets
Di, Dj and category C with LC

ij(idi, idj). A tuple r1, r2 in LC
ij means that the

record r1 in Di represents the same object as the record r2 in Dj . Notice that,
we do not assume that there is a linking table for each pair of datasets Di, Dj

for each category C. The concepts above are illustrated in Figure 2. Our aim is
to efficiently answer user SPARQL queries in this setting.

The approach presented in the previous section is theoretical, and cannot be
effectively applied in practice because: (1) it assumes that the links are given
in the form of owl:sameAs statements whereas in practice, in an cross-linked
setting, they will be given as tables (with the results of the entity resolution
process); and (2) it requires pre-computing a large number of triples (namely
A∗

S) and materializing them into the ontology. Since these triples are not stored
in the database, they cannot be efficiently retrieved using SQL. This negatively
impacts the performance of query execution.

To tackle these problems, in this section we show how to: (a) expose, using
mapping assertions that are optimization-friendly, the information in the tables
expressing equality between DB records, as a set AS of owl:sameAs statements;
(b) extend the mappings so as to encode also transitivity and symmetry (but
not reflexivity), and hence expose the symmetric transitive closure A+

S of AS ;
(c) modify the query-rewriting algorithm (cf. Definition 1) so as to return sound
and complete answers over the (virtual) ontology extended with A+

S . We detail
now the above steps.

(a) Generating AS: We now present a set of constraints on the structure of
the linking tables that are fully compatible with real-world requirements, and
that allow us to process queries efficiently, as we will show below:

1. All the information about which objects of category C are linked in datasets
Di and Dj is contained in LC

ij . Formally: If there are tables LC
ij , LC

ik and LC
kj ,

then LC
ij contains all the tuples in πidi,idj

(LC
ik � LC

kj), when evaluated over
DC .

2. Linking tables cannot state equality between different elements in the same
dataset6. Formally: There is no join of the form LC

ik � · · · � LC
ni such that

6 Observe that this amounts to making the Unique Name Assumption for the objects
retrieved by the mappings from one dataset
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L1,2 L2,3 L1,3

id1 id2

a1 b2

a2 b1

id2 id3

b1 c4

b2 c3

id1 id3

a1 c3

a2 c4

a3 c5

Fig. 3. Linking Tables

(o, o′), with o �= o′, occurs in πLC
ik.idi,LC

ni.idi
(LC

ik � · · · � LC
ni), when evaluated

over DC .

Example 2 (Categories). Consider Example 1. Here we consider only wellbores,
therefore we have a single category Cwb with three linking tables LCwb

12 , LCwb
23 ,

and LCwb
13 as shown in Figure 3. From the constraints above we know that

πid1,id3(L
Cwb
12 � LCwb

23 ) is contained in LCwb
13 , when both are evaluated over DCwb .

�

A key factor that affects performance of the overall OBDA system, is the
form of the mappings, which includes the structure of the URI templates used
to generate the URIs. Here, we discuss how the part of the mappings (includ-
ing URI templates) that deal with linking tables should be designed, so this
approach scales up. The SPARQL-to-SQL translation must add all the SQL
queries defining owl:sameAs. However, as shown in Section 6, we exploit our
URI design to (intuitively) remove as many owl:sameAs SQL definitions as
possible before query execution.

We propose here to use a different URI template uriC,D for each pair con-
stituted by a category C and a dataset D.7 Observe that this design decision
is quite natural, since objects belonging to different categories should not join,
even if in some dataset they are identified in the same way. For example, wellbore
n. 25 should not be confused with the employee whose id is 25.

Next we generate the set of equalities AS extending the set of mappings
M, using a different URI template for each tuple (category C,dataset D). More
precisely, to generate AS out of the categories C1 . . . Cn, M is extended with
mappings as follows. For each category C, and each linking table LC

ij we extend
M with:

uriC,Di
({idi}) owl:sameAs uriC,Dj

({idj}) ← select ∗ from LC
ij (1)

When the category C is clear from the context we write urii to denote uriC,Di

Example 3 (Mappings). To generate the owl:sameAs statements from the
tables in Example 2, we extend our set of mappings M with the following map-
pings (fragment):
7 In the special case where there are several datasets that can be mapped to use

common URIs, there is no need for linking tables or any of the techniques presented
in this paper. We address the more general case, where this is not the case.
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uri1({id1}) owl:sameAs uri2({id2}) ← SELECT * FROM LC
1,2

uri2({id2}) owl:sameAs uri3({id3}) ← SELECT * FROM LC
2,3

Observe that this also implies that to populate the concept Wellbore with ele-
ments from D1, the mappings in M will have to use the URI template: uri1.
�

Considering that the same URIs in different triples of the virtual RDF graph
can be generated from different mapping assertions, we observe that the form of
the templates in the mappings related to linking tables will affect also those in
the remaining mapping assertions in the OBDA system.

(b) Approximating A+
S : To be able to rewrite SPARQL queries into SQL

without adding A∗
S as facts in the ontology, (relying only on the databases), we

embed the owl:sameAs axioms together with the axioms for symmetry and
transitivity into the mappings, that is, extending the notion of T -mappings [14]
(T stands for terminology). Intuitively, T -mappings embed the consequences
from a OWL QL ontology into the mappings. This allow us to drop the implicit
axioms for symmetry, and transitivity from the Tbox T .

For each categoryC and for each set of non-empty tablesLC
i1,i2

LC
i2,i3

. . . LC
in−1,in

,
if LC

i1,in
does not exist, we include the following transitivity mappings in M:

t1({id1}) owl:sameAs tn({idn}) ← select ∗ from LC
i1,i2 � · · · � LC

in−1,in (2)

and for each of the owl:sameAs mapping described in (1) and (2) we include
the following symmetry mappings in M:

tj({idj}) owl:sameAs ti({idi}) ← select ∗ from sqlij (3)

We call the resulting set of mappings MS

(c) Rewriting the query Q: Encoding reflexivity would be extremely detri-
mental for performance, not only by the large number of extra mappings we
should consider but also because it would render the optimizations explained in
the next sections ineffective. Intuitively, the reason for this is that while sym-
metry and transitivity affect only elements which are linked to other datasets,
reflexivity affects all the objects in the OBDA setting. Thus, we would not be
able to distinguish during the query transformation process, which classes and
properties actually deal with linked objects (and should be rewritten) and which
ones are not. Therefore, we modify the query-rewriting technique to keep sound-
ness and completeness with respect to the DL entailment regime while evaluating
the query under the QL entailment regime over (T ,MS ,D).

We modify the query translation as follows:

Definition 2 ((ϕ(Q), V )). Given a query (Q,V ), the query (ϕ(Q), V ) is
obtained by replacing every triple pattern t in Q with ϕ(t), where:
ϕ({?v :P ?w}) is shown in Fig. 4 (A) and ϕ({?v rdf:type :C}) is shown
in Fig. 4 (B).
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{ ?v :P ?w . } UNION {
?v owl:sameAs _:z1 . _z1 :P ?w .
} UNION {
?v :P _:z2 . _:z2 owl:sameAs ?w .
} UNION {
?v owl:sameAs _:a .
_:b owl:sameAs ?w . _:a :P _:b . }

(A)

?v rdf:type :C . UNION {
?v owl:sameAs [ rdf:type :C ] .
}

(B)

Fig. 4. SPARQL translation to handle owl:sameAs without Reflexivity

Intuitively, following up our running example, the first BGP in Fig. 4 (A) gets
all triples such as (uri1(a1), :hasName, A) that do not need equality reasoning.
The second BGP, will get triples such as (uri1(a1), :hasName, C), that require
owl:sameAs(uri1(a1), uri2(b2)). The two last BGPs are used only for object
properties, and it tackles the cases where equality reasoning is needed for the
object (?w).

Recall that we do not allow owl:sameAs in the user query language. There-
fore the user will not be able to query ?x owl:sameAs?x. In principle, we could
also move transitivity and symmetry to the query, but it will not reduce the SQL
query rewriting.

Theorem 1. Given OBDA setting (T ,AS ,M,D) and a query (Q,V ), we have
that �Q�DL

T ,GM,D∪AS
|V = �ϕ(Q)�QL

T ,GMS,D
|V .

6 Optimization

The technique presented in Section 5 can cause excessive overhead on the query
size and therefore on the query execution time, since it has to extend every triple
pattern with owl:sameAs statements. In this section we show how to remove
the owl:sameAs statements that do not contribute to the answer. For instance,
in our running example the property hasLicense is defined over the companies
in D4, which are not linked with the other 3 databases. Thus, the owl:sameAs
statements should not contribute to “populate” this property.

To translate SPARQL to SQL, in the literature [15] and in the implementa-
tion, we encode the SPARQL algebra tree as a logic program. Intuitively, each
SPARQL operator is represented by a rule in the program as illustrated in
Example 4. The translation algorithm employs a well-known process in Logic
Programming called partial evaluation [10]. Intuitively, the partial evaluation of
a SPARQL query Q (represented as a logic program) is another query Q′, that
represents the partial execution of Q. This process iterates over the structure
of the query and specializes the query going from the highly abstract query to
the concrete SQL query over the database. It starts by replacing the atoms that
correspond to leaves in the algebra tree (triple patterns) with the union of all its
definitions in the mappings, and then it iterates over remaining atoms trying to
replace the atoms by their definitions. This procedure is done without executing
any SQL query over the databases.
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Select * WHERE {
?v :hasLicense ?w .
}

(A)

Select * WHERE {
{?v :hasLicense ?w .} UNION {
?v owl:sameAs [ :hasLicense :w ] . } }

(B)

Fig. 5. Optimizable Queries

We detect and remove owl:sameAs statements that do not contribute to
the answer using this procedure. It is critical to notice that this optimization
can be performed because we intentionally added two constraints: (i) we disallow
mappings modeling reflexivity; and (ii) we force unique URIs for each pair of
category/database. We illustrate this optimization in the following example.

Example 4 (Companies). Consider the query asking for the list of companies and
licenses shown in Figure 5 (A). This query is translated into the query (fragment)
shown in Figure 5 (B). Since we know that only wellbore are linked through the
different datasets, it is clear that there is no need for owl:sameAs statements
(nor unions) in this query. In the following, we show how the system partially
evaluates the query to remove such pointless union. This translated query is
represented as the following program encoding the SPARQL algebra tree:

(1)answer(v,w)← union(v,w)
(2) union(v,w)← bgp1(v, w)
(3) bgp1(v, w) ← hasLicense(v,w)
(4) union(v,w)← bgp2(v, w)
(5) bgp2(v, w) ← owl:sameAs(v,x), hasLicense(x,w)

The next step is to replace the leaves of the SPARQL tree (the triple patterns
owl:sameAs and hasLicense ) with their definitions (fragment without includ-
ing transitivity and symmetry):

(6) hasLicense(uri4(v),uri4(w))← sql(v,w)
(7) owl:sameAs(uri1(v),uri2(x)) ← T12(v,w)
(8) owl:sameAs(uri2(v),uri3(x)) ← T23(v,w)
(9) owl:sameAs(uri1(v),uri3(x)) ← T13(v,w)

Thus, the system try to replace hasLicense(x,w) in (5) by its definition in
(6), and analogously with owl:sameAs (5 by the union of 7-9) Using partial
evaluation, the system will try to unify the head of (6) with hasLicense in (5).
The result is:

(5')bgp2(v, uri4(w)) → owl:sameAs(v,uri4(x)), sql(uri4(x),uri4(w))

In the next step, the algorithm will try to unify the owl:sameAs in (5′) with
the head of at least one of the rules (7), (8), (9) (if all matched, it would add the
union of the tree). Given that the URI template (represented as a function)
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uri4 does not occur in any of the rules, the whole branch will be removed. The
resulting program is:

(1)answer(v,w)→ union(v,w)
(2) union(v,w)→ bgp1(v, w)
(4) bgp1(v, w) → hasLicense(v,w)
(5) hasLicense(uri4(v),uri4(w))→ sql(v,w)

This query without owl:sameAs overhead is now ready to be translated into
SQL. �

This process will also take care of eliminating unnecessary SQL queries used
to define owl:sameAs. For instance, if the user queries for wellbores, it will
remove all the SQL queries used for linking company names. This is why we
require a unique URI for each pair category/dataset.

7 Experiments

In this section we present a sets of experiments evaluating the performance of
queries over crossed-linked datasets. We integrated EPDS and the NPD fact
pages at Statoil extending the existing ontology and the set of mappings, and
creating the linking tables. We ran 22 queries covering real information needs
of end-users over this integrated OBDA setting. Since EPDS is a production
server with confidential data, and its loads changes constantly, and in addition
the OBDA setting is too complex to isolate different features of this approach,
we also created a controlled OBDA environment in our own server to perform a
careful study our technique. In addition, we exported the triples of this controlled
environment and load them into the commercial triple store Stardog8 (v3.0.1).

To perform the controlled experiments, we setup an OBDA cross-linked envi-
ronment based on the Wisconsin Benchmark [5].9 The Wisconsin benchmark was
designed for the systematic evaluation of database performance with respect to
different query characteristics. It comes with a schema that is designed so one
can quickly understand the structure of each table and the distribution of each
attribute value. This allows easy construction of queries that isolate the features
that need to be tested. The schema can be used to instantiate multiple tables.
These tables, which we now call “Wisconsin tables”, contain 16 attributes, and
a primary key.

Observe that Ontop does not perform SQL federation, therefore it usually
relies on systems such as Teiid 10 or EXAREME [17] (a.k.a. ADP) to integrate
multiple databases. These systems expose to Ontop a set of tables coming from
the different databases. Thus, to mimic this scenario we created a single database
with 10 tables: 4 Wisconsin tables, representing different datasets, and 6 link-
ing tables. Each Wisconsin table contains 100M rows, the 6 tables occupied ca.
100GB of disk space, exposing +1.8B triples.
8 http://stardog.com
9 All the material to reproduce the experiments can be found online: https://github.

com/ontop/ontop-examples/tree/master/iswc-crosslinked
10 http://teiid.jboss.org

http://stardog.com
https://github.com/ontop/ontop-examples/tree/master/iswc-crosslinked
https://github.com/ontop/ontop-examples/tree/master/iswc-crosslinked
http://teiid.jboss.org
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Fig. 6. Worst Execution Time including fetching time - 2 linked-DS (left) and 3 linked-
DS (right)

The following experiments evaluate the overhead of equality reasoning when
answering SPARQL queries. The variables we considered are: (i) Number of
SPARQL joins (1-4); (ii) Number and type of properties (0-4 /data-object);
(iii) Number of linked datasets (2-3); (iv) Selectivity of the query (0.001%, 0.01%,
0.1%); (v) Number of equal objects between datasets (10%,30%,60%). In total
we ran 1332 queries. The SPARQL queries have the following template:

SELECT * WHERE {
?x rdf:type :Classi . // i =1..4
?x :DataPropertyj−1 ?y1 . ?x :DataPropertyj ?y2 . // j =0..4
?x :ObjectPropertyk−1 ?z1 . ?x :ObjectPropertyk ?z2 . // k =0..4
Filter( ?y < k% ) }

where a 0 or negative subindex means that the property is not present in the
query. When we evaluated 2 datasets we included equalities between elements of
the classes A1 and A2. When we evaluated 3 datasets the equality was between
A1, A2 and A4. The class A3 and the properties S3 and R3 are isolated. We
group the queries in 9 groups: (G1) No properties (c), (G2) 1 d. prop. 0 obj.
prop. (1d), (G3) 0 d. prop. 1 obj. prop. (1o),. . . , (G9)2 d. prop. 2 obj. prop.
(2d2o).

The average start-up time is ≈5 seconds. Observe that SPARQL engines
based on materialization can take hours to start-up with OWL-DL ontologies [9].
The results are summarized in Figure 6. We show the worst execution time in
each group including the time that it takes to fetch the results.

Discussion: The results confirm that reasoning over OBDA-based integrated
data has a high cost, but this cost is not prohibitive. The execution times at
Statoil range from 3.2 seconds to 12.8 minutes, with mean 53 secs, and median
8.6 secs. An overview of the execution times are shown in Fig. 7. The most
complex query had 15 triple patterns, using object and data properties coming
from both data sources.

In the controlled environment, in the 2 linked-datasets scenario, with 120M
equal objects (60%), even in the worst case most of the queries run in ≈ 5min.
The query that performs the worst in this setting, (4 joins, 2 data properties,
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Fig. 7. Overview of query execution times for tests on EPDS at Statoil.

2 object properties, 105 selectivity) returns 480.000 results, and takes ≈ 13min.
When we move to the 3 linked-datasets scenario, most executions (again worst
time in every group) take around than 15min. In this case, the worst query in G9
takes around 1.5hs and returns 1.620.000 results. One can see that the number of
linked datasets is the variable that impacts the most on the query performance.
The second variable is the number of object properties since its translation is
more complex than the one for data properties. The third variable, is the selec-
tivity. It is worth noticing that these results measure an almost pathological
case taking the system to its very limit. In practice, it is unlikely that 60% of
the all the objects of a 300M integrated dataset will be equal and belong to the
same category. Recall that if they are not in the same category, the optimization
presented in Section 6 removes the unnecessary SQL subqueries. For instance,
in the integration of EPDS and NPD there are less than 10.000 equal wellbores
and there are millions of objects of different categories. Moreover, even 1.5hs is
a reasonable time. Recall that Statoil users required weeks to get an answer for
this sort of queries.

Because of the partial evaluation-based optimizations proposed in Section 6,
with 2 datasets 30 out of 48 queries (52 out of 100 with 3 datasets) get optimized
and executed in a few milliseconds. These queries are the ones that join elements
in A1,2,4 (3 datasets) with A3, S3 and R3 elements. Since there is no equality
between these elements, neither through owl:sameAs, nor with standard equal-
ity, the SPARQL translation produces an empty SQL, and no SQL query gets
executed returning automatically 0 answers.

To load the data into Stardog we used Ontop to materialize the triples. The
materialization took 11hs, and it took another 4hs to load the triples into Stardog.
The default semantics that Stardog gives to owl:sameAs is not compliant with
the official OWL semantics since “Stardog designates one canonical individual for
each owl:sameAs equivalence set”; however, one can force Stardog to consider
all the URIs in the equivalence set. Our experiments show that Stardog does not
behave according to the claimed semantics. Details can be found in [3].

8 Related Work

The treatment of owl:sameAs in reasoning and query evaluation has received
considerable interest in recent years. After all, many data sources in the Linked
Opend Data (LOD) cloud give owl:sameAs links to equivalent URIs, so it
would be desirable to use them. Surprisingly, to the best of our knowledge, there
has been no attempt to extend OBDA to take into account owl:sameAs. Next
we discuss several approaches that handle owl:sameAs trough rewriting.
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Balloon Fusion [16] is a line of work that attempts to make use of
owl:sameAs information in the LOD cloud for query answering. The approach
is similar to ours in that it is based on rewriting a query to take into account
equality inferences, before executing it. The treatment of owl:sameAs is seman-
tically very incomplete however, since the rewriting only applies to URIs stated
explicitly in the query. No equality reasoning is applied to the variables in the
query, which is a main point of our work.

The question of equality handling becomes quite different in nature in the
context of a single data store that is already in triple format. Equality can then
be handled essentially by rewriting equal URIs to one common representative.
E.g. [13] report on doing this for an in-memory triple store, while simultaneously
saturating the data with respect to a set of forward chaining inference rules.
Observe that in many scenarios (such as the Statoil scenario discussed here) this
approach is not possible, both due to the fact that the data should be moved
from the original source, and because of the amount of data that should be
loaded into memory. In a query rewriting, OBDA setting, this corresponds to
the idea of making sure that mappings will map equivalent entities from several
sources to the same URI – which is often not practical or even impossible.

Our approach is only valid when the links between records really mean seman-
tic identity. When the links are uncertain, query answering then requires the use
of probabilistic database methods, as discussed e.g. in [7] for a limited type of
queries. Extending these methods to handle arbitrary SPARQL-style queries is
not trivial.

9 Conclusions

In this paper we showed how to represent links over database as owl:sameAs
statements, we propose a mapping-based framework that carefully constructs
owl:sameAs statements to minimize the performance impact of equality rea-
soning. To recover rewritability of SPARQL into SQL we imposed a suitable
set of restrictions on the linking mechanisms that are fully compatible with real
world requirements, and together with the owl:sameAs-mappings make it pos-
sible to do the SPARQL-to-SQL translation. We showed how to answer SPARQL
queries over crossed linked datasets using query transformation. and how to opti-
mize the translation to improve the performance of the produced SQL query. To
empirically support this claim, we provided an extensive set of experiments over
real enterprise data, and also in a controlled environment.

Acknowledgments. This paper is supported by the EU under the large-scale inte-
grating project (IP) Optique (Scalable End-user Access to Big Data), grant agreement
n. FP7-318338.
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Abstract. Ontology-based data access (OBDA) is a recent paradigm
for accessing data sources through an ontology that acts as a concep-
tual, integrated view of the data, and declarative mappings that con-
nect the ontology to the data sources. We study the formal analysis of
mappings in OBDA. Specifically, we focus on the problem of identify-
ing mapping inconsistency and redundancy, two of the most important
anomalies for mappings in OBDA. We consider a wide range of ontology
languages that comprises OWL 2 and all its profiles, and examine map-
ping languages of different expressiveness over relational databases. We
provide algorithms and establish tight complexity bounds for the deci-
sion problems associated with mapping inconsistency and redundancy.
Our results prove that, in our general framework, such forms of mapping
analysis enjoy nice computational properties, in the sense that they are
not harder than standard reasoning tasks over the ontology or over the
relational database schema.

1 Introduction

Ontology-based data access (OBDA) [18] is a recent paradigm for accessing
data sources through an ontology (also called TBox) that acts as a conceptual,
integrated view of the data, and declarative mappings that connect the ontology
to the data sources. The framework of OBDA has received a lot of attention in
the last years: many theoretical studies have paved the way for the construction
of OBDA systems (e.g., [6,11,19] and the development of OBDA projects for
enterprise data management in various domains [2,15].

One important aspect in OBDA concerns the construction of a system spec-
ification, i.e., defining the ontology and the mappings over an existing set of
data sources. Mappings are indeed the most complex part of an OBDA specifi-
cation, since they have to capture the semantics of the data sources and express
such semantics in terms of the ontology. More precisely, a mapping is a set
of assertions, each one associating a query φ(x) over the source schema with
a query ψ(x) over the ontology. The intuitive meaning of a mapping asser-
tion is that all the tuples satisfying the query φ(x) also satisfy the query
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 217–234, 2015.
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ψ(x). We write a mapping assertion as φ(x) � ψ(x). As an example, con-
sider tabP(x, y, z) � person(x), name(x, y), which maps the ontology predicates
person and name to the database relation tabP, thus indicating how ontology
instances can be constructed from the data retrieved at the sources.

The first experiences in the application of the OBDA framework in real-
world scenarios (e.g., [2,15]) have shown that the semantic distance between the
conceptual and the data layer is often very large, because data sources are mostly
application-oriented: this makes the definition, debugging, and maintenance of
mappings a hard and complex task. Such experiences have clearly shown the
need of tools for supporting the management of mappings.

However, no specific approach (with the exception of [17]) has explicitly dealt
with the problem of mapping analysis in the context of OBDA. The work on
schema mappings in data exchange has considered the problem of analyzing the
formal properties of mappings, although in a different framework. Indeed, in data
exchange the ontology is replaced by a relational schema, called target schema,
possibly equipped with tuple-generating dependencies and equality-generating
dependencies [3,10]. Such kinds of dependencies are not able to capture arbitrary
ontology languages, such as those considered in this paper. Also, in data exchange
suitable conditions are imposed on the interaction among database dependencies
to guarantee that finite instances for the target schema exist that are coherent
with the database at the sources, the mapping, and the target dependencies.
Such conditions are normally not imposed in OBDA, where the focus is not
on moving data from the sources to the target, and indeed we do not adopt
them. Among the works on data exchange, [12] is the closest to our approach: it
proposes techniques for the optimization and normalization of schema mappings,
in particular, finding a global, semantically equivalent transformation of a set of
mappings that is optimal with respect to some minimality criterion.

In a recent paper [17], we started providing a theoretical basis for mapping
management support in OBDA, focusing on the formal analysis of mappings in
ontology-based data access. In particular, in that paper the two most important
semantic anomalies of mappings have been analyzed: inconsistency and redun-
dancy. Roughly speaking, an inconsistent mapping for an ontology and a source
schema is a specification that gives rise to logical contradictions with the ontol-
ogy and/or the source schema. Then, a mapping M is redundant with respect
to an OBDA specification if adding M to the specification does not change
its semantics. Verifying whether a mapping is affected by these anomalies is a
crucial task in OBDA. A designer that is creating (or modifying) the mapping
needs to know whether the new (or updated) mapping leads to an inconsistency.
Given the complexity of the OBDA specification, this is very hard to check man-
ually. Similarly, a redundant mapping is not wanted, since it is very difficult to
maintain; furthermore, it may affect the performance of query answering [8].

The work presented in [17] has defined both a local notion of mapping incon-
sistency and redundancy, which focuses on single mapping assertions, and a
global notion, where inconsistency and redundancy is considered with respect
to a whole mapping specification (set of mapping assertions). In this paper,
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we study the computational properties of verifying both local and global map-
ping inconsistency and redundancy in an OBDA specification. We consider a
wide range of ontology languages that comprises the description logics under-
lying OWL 2 and all its profiles (OWL 2 EL, OWL 2 QL, and OWL 2 RL),1

and examine mapping languages of different expressiveness (the so-called GAV
and GLAV mappings [9]) over sources corresponding to relational databases. We
provide algorithms and establish tight complexity bounds for the decision prob-
lems associated with both local and global mapping inconsistency and mapping
redundancy, for both GAV mappings and a large class of GLAV mappings, and
for both combined complexity and TBox complexity (which only considers the
size of the TBox).

The outcome of our analysis is twofold. First, in our framework, it is possible
to define general and modular techniques that are able to reduce the analysis
of mappings to the composition of standard reasoning tasks over the ontology
(inconsistency and instance checking, query answering) and over the data sources
(query answering and containment). This is a non-trivial result, because map-
pings are formulas combining both ontology and data source elements. Moreover,
the above forms of mapping analysis enjoy nice computational properties, in the
sense that they are not harder than the above mentioned standard reasoning
tasks over the ontology and the data sources (see Figure 1 and Figure 2 at the
end of the paper).

The above results allow us to conclude that, in our OBDA framework, the
formal analysis of mappings is feasible, at least for ontology languages enjoying
nice computational properties, as in the case of the three OWL 2 profiles.

The paper is organized as follows. In Section 2 we recall OBDA specifications
and the formal notions of mapping inconsistency and redundancy in OBDA.
In Section 3 we study the complexity of checking local and global mapping
inconsistency, while in Section 4 we study the complexity of verifying local and
global mapping redundancy. We conclude the paper in Section 5.

2 Preliminaries

In the following, we assume to have three pairwise disjoint, countably infinite
alphabets: an alphabet ΓT of ontology predicates, an alphabet ΓS of source
schema predicates, and an alphabet ΓC of constants.

Source Schemas. A source schema S is a relational schema containing rela-
tions in ΓS , possibly equipped with integrity constraints (ICs). A legal instance
D for S is a database for S (i.e., a finite set of ground atoms over S and the
constants in ΓC) that satisfies the ICs of S. We denote by Const(D) the set of
constants occurring in D.

We consider simple schemas, i.e., relational schemas without ICs, and FD
schemas, i.e., simple schemas with functional dependencies (FDs) [1]. We adopt
standard notions for conjunctive queries (CQs) over relational schemas [1], and
1 http://www.w3.org/TR/owl2-profiles/

http://www.w3.org/TR/owl2-profiles/
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by a CQ over a source schema S we mean a CQ over the alphabet of S. With
φ(x) we denote a CQ with free variables x. The number of variables in x is the
arity of the query. A Boolean CQ is a CQ without free variables. Given a CQ q
over S and a legal instance D for S, eval(q,D) denotes the evaluation of q over
D. Throughout the paper S will always denote a source schema.

Ontologies. We consider ontologies expressed in some Description Logic (DL)
language LO and use standard DL notions [16]. In particular, a DL ontology O
is pair 〈T , A〉, where T is the TBox and A is the ABox. O, T , and A will
always have the same meaning in the paper. As in the W3C standard OWL,
we do not interpret ontologies under the Unique Name Assumption. We denote
with Mod(O) the set of models of O, and with O |= α the fact that O entails
a sentence α. Also, by ontology inconsistency we mean the task of deciding
whether Mod(O) = ∅, and by instance checking the task of deciding whether
O |= β, where β is a ground atom. By CQs over O we mean CQs over the
alphabet of the TBox of O, and by CQ entailment the task of checking whether
O |= q, where q is a Boolean CQ. In the following, we consider DLs that are the
logical basis of the W3C standard OWL and of its profiles, i.e., SROIQ [14],
which underpins OWL, DL-LiteR [5], which is the basis of OWL 2 QL, RL [16],
a simplified version of OWL 2 RL, and EL⊥, a slight extension of the DL EL [4],
which is the basis of OWL 2 EL.

Mappings. A mapping assertion m from a source schema S to a TBox T has
the form φ(x) � ψ(x), where φ(x), called the body of m, and ψ(x), called the
head of m, are queries over S and T , respectively, both with free variables x,
which are called the frontier variables. The number of variables in x is the arity
of the mapping assertion. Given a mapping assertion m, we also use FR(m) do
denote the frontier variables x, head(m) to denote the query ψ(x), and body(m)
to denote the query φ(x). We also remark that queries used in our mappings,
besides variables, may contain constants from ΓC . A mapping M from S to T is
a finite set of mapping assertions from S to T . Hereinafter M will always denote
a mapping.

In principle, φ(x) and ψ(x) can be specified in generic query languages. The
literature on data integration and OBDA has mainly considered φ(x) expressed
in a (fragment of) first-order logic, and ψ(x) expressed as a CQ [9,17,18]. In
this paper, we focus on the notable cases in which φ(x) is a CQ over S and ψ(x)
is as follows:

– ψ(x) is a CQ over T . This is a powerful form of GLAV mapping [9], and is
among the most expressive types of mappings studied in the literature. We
refer to it simply as GLAV.

– ψ(x) is a CQ with a bounded number of existential variables in the head. This
is a practically relevant form of GLAV mappings, which we call GLAVBE.

– ψ(x) is a CQ without existential variables in the head. Such mappings are the
most used in OBDA applications [2,13], and are a special case of the W3C
standard R2RML mappings [7]. According to the data integration literature,
we call them GAV.



Mapping Analysis in Ontology-Based Data Access 221

We say that a mapping assertion m is active on a source instance D if
eval(body(m),D) is a non-empty set of tuples of constants. A mapping M is
active on D if all its mapping assertions m ∈ M are active on D.

Without loss of generality, we assume that different mapping assertions use
different variable symbols. A freeze of a set of atoms Γ is a set of ground atoms
obtained from Γ by replacing every variable with a fresh distinct constant. In
this paper, the freeze is always used in the context of a mapping M, so it suffices
to assume that fresh constants do not appear in M. Different freezes of the same
set of atoms are equal up to renaming of constants. Thus, in the following we
assume, without loss of generality, that the freeze of a set of atoms Γ is unique
and is obtained by replacing each variable occurrence x with a fresh constant
cx, and we denote it by freeze(Γ ).

Given a mapping assertion m of arity n and an n-tuple of constants t, we
denote by m(t) the mapping assertion obtained by replacing FR(m) in m with
the constants in t.

OBDA Specifications. An OBDA specification is a triple J = 〈T ,S,M〉.
The semantics of J is given with respect to a database instance D legal for S:
a model for J w.r.t. D is a FOL interpretation I over the alphabet ΓT ∪ ΓC
that satisfies both T and M. Formally, we say that I satisfies the mapping
M if for each assertion m ∈ M and each tuple of constants t such that t ∈
eval(body(m),D) we have that I |= head(m(t)). The set of models of J w.r.t.
D is denoted with Mod(J ,D). Also, we use (J ,D) to denote J with source
instance D, say that (J ,D) is inconsistent if Mod(J ,D) = ∅, and denote with
(J ,D) |= α the entailment of a sentence α by (J ,D).

Example 1. We consider a source schema S where the plants relation contains
data on extraction facilities, while the eZones relation contains data on the areas
used for oil and gas extraction. Below, the underlined attributes represent the
keys of the relations, which can be expressed by FDs.

plants(id pl,pl typ,id zn) eZones(id zn,zn typ)
The following RL TBox models a very small portion of the domain of oil and
gas production extracted from an ontology developed within the Optique EU
project2. In particular, the TBox focuses on the facilities (concept Facility) used
in the oil and gas extraction and on the geographical areas (concept Area) in
which they are located (role locatedIn). Facilities that are located in a marine
area (concept MarArea) are platforms (concept Platform).

T = { Platform � Facility, MarArea � Area, ∃locatedIn � Facility,
∃locatedIn− � Area Facility � Area � ⊥ ∃locatedIn.MarArea � Platform }

An example of a GAV mapping M from S to T follows:

m1 : plants(x, y, z) � Facility(x), locatedIn(x, z)
m2 : plants(x′, ‘pl’, y′) � Platform(x′)
m3 : eZones(z′, ‘mz’) � MarArea(z′).

2 http://www.optique-project.eu/

http://www.optique-project.eu/
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Mapping Inconsistency and Redundancy. The following definitions are
taken from [17].

In brief, a mapping assertion m from S to T is head-inconsistent or body-
inconsistent if head(m) or body(m) have certainly an empty evaluation in every
model for T or legal instance for S, respectively.

Definition 1 (mapping head-inconsistency). Let T be a TBox, S a source
schema, and m : φ(x) � ψ(x) a mapping assertion from S to T . We say that
m is head-inconsistent for T if T |= ∀x.(¬ψ(x)).

Example 2. Let T and S be as in Example 1. Consider the following mapping
assertion:

m : plants(x, ‘pl’, z) � Platform(x),MarArea(x)

Then, m is head-inconsistent for T since T |= Platform � MarArea 	 ⊥.

Definition 2 (mapping body-inconsistency). Let T be a TBox, S a source
schema, and m : φ(x) � ψ(x) a mapping assertion from S to T . We say that
m is body-inconsistent for S if S |= ∀x.(¬φ(x)).

Example 3. Let T and S be as in Example 1. Then, the following mapping
assertion is body-inconsistent for S.

m : plants(x, ‘pl’, z), plants(x, ‘ref’, k) � Facility(x)

We extend the inconsistency notions to whole mapping assertions and whole
mappings.

Definition 3 (local mapping inconsistency). Let T be a TBox, S a source
schema, and m : φ(x) � ψ(x) a mapping assertion from S to T . We say that
m is inconsistent for 〈T ,S〉 if m is head-inconsistent for T or body-inconsistent
for S.

Definition 4 (global mapping inconsistency). Let J = 〈T ,S,M〉 be an
OBDA specification. We say that M is globally inconsistent for 〈T ,S〉 if there
does not exist a source instance D legal for S such that M is active on D and
Mod(J ,D) �= ∅.

Intuitively, it is impossible to consistently activate all the assertions of a
globally inconsistent mapping simultaneously.

Example 4. Let J = 〈T ,S,M〉 be an OBDA specification where T and S are
as in Example 1. Suppose that the mapping M contains the following mapping
assertions:

m1 : plants(x, y, z) � Area(x)
m2 : plants(x′, ‘pl’, z′) � Platform(x′), locatedIn(x′, z′)
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It is easy to see that M is globally inconsistent for 〈T ,S〉, because T |= Platform�
Area 	 ⊥ and every activation of m2 also activates m1, thus implying Platform(x)
and Area(x) for the same individual x.

Then, we recall the notion of global mapping redundancy.

Definition 5 (global mapping redundancy). Let J = 〈T ,S,M〉 be an
OBDA specification and let M′ be a mapping from S to T . We say that M′

is globally redundant for J if, for every source instance D that is legal for S,
Mod(〈T ,S,M〉,D) = Mod(〈T ,S,M ∪ M′〉,D).

Informally, a mapping M′ is redundant for an OBDA specification J if
adding M′ to J produces a specification equivalent to J .

Example 5. Let 〈T ,S,M〉 be an OBDA specification, where T and S are as in
Example 1, and M is as follows:

m1 : plants(x, y, z), eZones(z, ‘mz’) � locatedIn(x, z)
m2 : eZones(x′, ‘mz’) � MarArea(x′)
m3 : plants(y′, ‘pl’, z′), eZones(z′, ‘mz’) � Platform(y′)

Then, {m3} is globally redundant for 〈T ,S, {m1,m2}〉.

Finally, local mapping redundancy is a special case of global mapping redun-
dancy in which the mappings M and M′ are both composed of a single assertion.

3 Complexity of Mapping Inconsistency

We now study local and global mapping inconsistency and show that, for every
DL LO, both problems have the same TBox complexity as ontology inconsistency
in LO. We also establish combined complexity results for the DLs considered in
this paper.

We start with some auxiliary definitions.

Definition 6 (minimal instance activating a mapping). Let M be a map-
ping and let S be a source schema. A minimal instance for S that activates M
is a source instance D legal for S such that M is active on D and, for every
source instance D′ legal for S such that M is active on D′, there exists a homo-
morphism h from Const(D) to Const(D′) that maps constants occurring in M
to themselves and is such that h(D) ⊆ D′, where h(D) = {r(h(c1), . . . , h(cn)) |
r(c1, . . . , cn) ∈ D}.

Given a GLAV mapping assertion m of arity n, we denote by cvars(m)
the sequence of frontier variables occurring together with an existential vari-
able in an atom of the head of m. Moreover, given an n-tuple of con-
stants t, we denote by cvars(m)[t] the tuple of constants obtained from
cvars(m) by replacing each occurrence of a frontier variable with the cor-
responding constant of t. For instance, if m is the assertion φ(x,w) �

R(x, y), S(y, z), T (z, w), R(x, z), S(w, x), then cvars(m) is the tuple of variables
〈x,w, x〉, and if t = 〈a, b〉 then cvars(m)[t] is the tuple of constants 〈a, b, a〉.
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Definition 7 (retrieved ABox). Given a mapping M from S to T
and an instance D legal for S, the ABox retrieved by M from D,
denoted by Retr(M,D), is the ABox defined as follows: Retr(M,D) =
{freezeH (head(m(t))) | t ∈ eval(body(m),D)}), where freezeH (head(m(t))) is
the set of atoms obtained from head(m(t)) by replacing each occurrence of a
(existential) variable x with the fresh constant cx,cvars(m)[t].

3.1 Local Mapping Inconsistency

We start from the following property (whose proof is trivial) for the problem of
head inconsistency.

Lemma 1. Let m be a GLAV mapping assertion, T a TBox, and let A =
freeze(head(m)). Then, m is head-inconsistent for T iff 〈T ,A〉 is inconsistent.

Conversely, inconsistency of an ontology 〈T ,A〉 can be immediately reduced
to head inconsistency, considering T as the TBox of the OBDA specification,
and constructing a GAV mapping assertion m (with no frontier variables) whose
head is the conjunction of the ABox assertions in A. Consequently, the following
property holds.

Lemma 2. For both GAV and GLAV mappings and for every ontology language
LO, the combined (resp., TBox) complexity of mapping head inconsistency is the
same as the combined (resp., TBox) complexity of ontology inconsistency in LO.

Now, from the definition of local mapping inconsistency, it follows that the
TBox complexity of local mapping inconsistency is the same as the TBox com-
plexity of mapping head inconsistency. Therefore:

Theorem 1. For both GAV and GLAV mappings and for every ontology lan-
guage LO, the TBox complexity of local mapping inconsistency is the same as
the TBox complexity of ontology inconsistency in LO.

The above theorem implies row 1 in Figure 1.
Moreover, from the definition of local mapping inconsistency, it follows that,

for simple source schemas, local mapping inconsistency corresponds to mapping
head inconsistency (since all mapping assertions are trivially body-consistent).
Therefore:

Corollary 1. For simple source schemas, for both GAV and GLAV mappings,
and for every ontology language LO, the combined complexity of local mapping
inconsistency is the same as the combined complexity of ontology inconsistency
in LO.

The above result is summarized in row 1 in Figure 2.
Then, we analyze the case of FD schemas. We start by defining the algo-

rithm freezeFD(M,S), which takes as input a mapping M and a source
schema S, and applies the chase procedure [1] to the database instance D =
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⋃
m∈M freeze(body(m)) using the functional dependencies of S, and considering

the constants occurring in D but not occurring in M as unifiable terms (since
they act as “soft constants” differently from the constants occurring in M). Such
a chase procedure runs in PTIME and may end up in two ways: (i) it fails, i.e.,
it derives that two constants occurring in M should be equal (which violates
the Unique Name Assumption of databases); (ii) it returns a database D′ that
is obtained from D by unifying constants occurring in D but not occurring in
M according to the equalities induced by the functional dependencies.

We are now able to show the following lemma.

Lemma 3. Let S be a source schema and let M be a mapping. Deciding whether
there exists a minimal instance D for S that activates M, and computing such
a D if it exists, can be done: (i) in linear time, if S is a simple schema; (ii) in
PTIME, if S is an FD schema.

Proof. The proof easily follows from the fact that the algorithm freezeFD(M,S)
runs in PTIME, and computes a minimal instance D for S that activates M iff
such an instance exists. In particular, for property (i), it is easy to verify that,
if S is a simple schema, then

⋃
m∈M freeze(body(m)) is a minimal instance for

S that activates M. For property (ii), in the case when S is an FD schema, if
the algorithm freezeFD(M,S) fails, then there exists no legal instance for S that
activates M; otherwise, the algorithm returns a database D′ that corresponds
to the application of the equalities induced by the functional dependencies over
the constants occurring in D but not occurring in M. Therefore, there exists a
endomorphism h of the constants in D that is the identity for the constants of
M and is such that h(D) = D′. Due to the property of the chase, it follows that
such an instance D′ is a minimal instance for S that activates M. �

We can now prove the following property.

Theorem 2. For both GAV and GLAV mappings, and for FD schemas, the
combined complexity of local mapping inconsistency is PTIME-complete for
DL-LiteR, RL, and EL⊥, and is N2EXPTIME-complete for SROIQ.

Proof. To decide local mapping consistency of m, besides head inconsistency we
also have to check body inconsistency of m. This corresponds to decide whether
there exists a minimal instance for S that activates the mapping {m}. By Lemma
3, this can be done in PTIME in the case of FD schemas. Moreover, consistency
of a database D with respect to an FD schema S can be immediately reduced
to mapping body inconsistency, by creating a GAV mapping assertion whose
body contains the conjunction of the facts in D. In the case of FD schemas,
this provides a PTIME lower bound for body inconsistency, and hence for local
mapping inconsistency. The lower bound in the case of SROIQ follows from
the lower bound for head inconsistency. �

The above results are summarized in row 1 in Figure 2.
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3.2 Global Mapping Inconsistency

To define a technique for global mapping inconsistency, we start by showing the
following property.

Theorem 3. Let J = 〈T ,S,M〉 be an OBDA specification. Then, M is globally
inconsistent for 〈T ,S〉 iff either freezeFD(M,S) fails or the instance D returned
by freezeFD(M,S) is such that (J ,D) is inconsistent.

Proof. The proof of the only-if part is trivial. For the if part, we will prove the
contrapositive: If M is not globally inconsistent for 〈T ,S〉, then freezeFD(M,S)
returns an instance D such that (J ,D) is consistent.

Let D′ be a source instance legal for S such that M is active on D′, and
let I be a model of (J ,D′). Then, freezeFD(M,S) does not fail and returns
an instance D. Since D is minimal, Definition 6 implies that there exists a
homomorphism h from the constants of D to the constants of D′ such that
h(D) ⊆ D′. Now let I ′ be the interpretation obtained from I by changing the
interpretation of constants as follows: If c occurs in D then cI′

= h(c)I , otherwise
cI′

= cI . It is immediate to verify that I ′ is a model for J w.r.t. D. �
The above theorem immediately implies the following algorithm for deciding

the global inconsistency of a GLAV mapping M for a TBox T and a source
schema S.

Algorithm GlobalInconsistency:
Input: OBDA specification 〈T , S, M〉

if (a) algorithm freezeFD(M, S) fails
then return true
else

let D be the instance returned by freezeFD(M, S);
if (b) (〈T , S, M〉, D) is inconsistent
then return true else return false

The complexity of step (a) of the algorithm, i.e., deciding the existence and
computing a minimal instance for S that activates M, has been established
by Lemma 3. It remains to analyze the complexity of checking inconsistency of
(〈T ,S,M〉,D). To this aim, we present two techniques for deciding the inconsis-
tency of (〈T ,S,M〉,D). First, we use the following property, whose proof easily
follows from Definition 7.

Lemma 4. For every model I of (〈T ,S,M〉,D) there exists a model I ′ of
〈T ,Retr(M,D)〉 such that I and I ′ coincide except for the interpretation of
the constants in Const(Retr(M,D)) \ Const(D). The converse also holds.

From the above lemma, to decide inconsistency of (〈T ,S,M〉,D), we can
compute the ABox A = Retr(M,D) and then check inconsistency of 〈T ,A〉.
Example 6. Let J = 〈T ,S,M〉 be the OBDA specification of Exam-
ple 4. We show how algorithm GlobalInconsistency runs on J . First,
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the algorithm computes a minimal instance D for S by means of the
algorithm freezeFD (cf. Lemma 3). In our example, this actually coin-
cides with computing freeze(body(m)) for each mapping m ∈ M. Hence,
we have that D = {plants(cx, cy, cz), plants(cx′ , pl, cz′)}. The sec-
ond step consists in checking if 〈J ,D〉 is consistent. To this end, one
can exploit Lemma 4 and: (i) compute the ABox A = Retr(M,D),
which is {Area(cx),Area(cx′),Platform(cx′),Platform(cx), locatedIn(cx′ , cz′),
locatedIn(cx, cz)} and (ii) check the consistency of the ontology 〈T ,A〉.
Since, e.g., both Area(cx′) and Platform(cx′) belong to A, and since
T |= Platform � Area 	 ⊥, the ontology 〈T ,A〉 is inconsistent. Hence,
the algorithm returns true.

Now, observe that the cost of computing Retr(M,D) does not depend on
the size of the TBox. This implies that, with respect to TBox complexity, the
complexity of ontology inconsistency is an upper bound for global mapping
inconsistency. Conversely, ontology inconsistency can be easily reduced to global
mapping inconsistency, by creating a GAV mapping assertion (with no frontier
variables) whose head is the conjunction of the ABox assertions in A. Conse-
quently:

Theorem 4. For both simple and FD schemas, for both GAV and GLAV map-
pings, and for every ontology language LO, the TBox complexity of global map-
ping inconsistency is the same as the TBox complexity of ontology inconsistency
in LO.

The above theorem implies row 2 in Figure 1.
To establish combined complexity, we define a second way to decide incon-

sistency of (〈T ,S,M〉,D). We start from the following property.

Lemma 5. Let M be a GLAVBE mapping, and let D be a source instance. Then,
the size of Retr(M,D) is polynomial with respect to the size of M and D.

Proof. When M is a GAV mapping, from Definition 7 it follows that the number
of assertions in Retr(M,D) is bounded by (nc · nv) + (nr · n2

v), where nc is
the number of concepts, nr is the number of roles, and nv is the number of
constants occurring in D and M. When M is a GLAVBE mapping, observe
that, by Definition 7, the number of fresh constants nf occurring in Retr(M,D)
is not greater than m ·k ·nk, where m is the number of mapping assertions in M,
n is the number of constants in D, and k is the maximum number of occurrences
of existential variables in the head of a mapping assertion (observe that k is
the maximum length of cvars(m) in the definition of Retr(M,D)). Since k is
bounded in GLAVBE mappings, we derive that such a number of constants nf

is polynomially bounded. And since the number of assertions in Retr(M,D) is
bounded by (nc · nw) + (nr · n2

w), where nc is the number of concepts, nr is the
number of roles, and nw = nv + nf , the thesis follows. �
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Notice that the above property does not hold for arbitrary GLAV mappings
(for which Retr(M,D) may be of exponential size), so in the rest of this section
we focus on GLAVBE mappings. Notice also that the above lemma does not
imply that for GLAVBE mappings Retr(M,D) can be computed in polynomial
time with respect to the size of M and D: conversely, it is immediate to verify
that deciding whether an ABox assertion belongs to Retr(M,D) is an NP-hard
problem.

From the above lemma and from Lemma 4, it follows that, in the case of
GLAVBE mappings, inconsistency of (〈T ,S,M〉,D) can be decided by checking
the existence of a polynomial subset A′ of Retr(M,D) such that 〈T ,A′〉 is
inconsistent.

Given a mapping assertion m, a grounding for m is the mapping asser-
tion obtained from m by replacing every variable in m with a constant
symbol. A grounding for a mapping M is a set {mg | ∃ m ∈
M s.t. mg is a grounding for m}. Now let D be a source instance. A grounding
G for M is generated by D if, for every mg ∈ G, every atom in body(mg) occurs
in D. Given a grounding G for M, the ABox induced by G, denoted as A(G), is
defined as the set of atoms occurring in the heads of the mapping assertions of G.

Lemma 6. Let M be a GLAVBE mapping and let D be a source instance. Then:
(i) for every grounding G for M that is generated by D, if 〈T ,A(G)〉 is incon-
sistent, then 〈T ,Retr(M,D)〉 is inconsistent; (ii) there exists a grounding G for
M that is generated by D such that G has polynomial size with respect to M and
D, and 〈T ,A(G)〉 is inconsistent iff 〈T ,Retr(M,D)〉 is inconsistent.

Proof. The proof of (i) follows from the fact that there exists a homomorphism
h from Const(A(G)) \ Const(D) to Const(Retr(M,D)) such that h(A(G)) ⊆
Retr(M,D). Consequently, if I is a model for 〈T ,Retr(M,D)〉, we can immedi-
ately derive a model I ′ for 〈T ,A(G))〉 from I by just changing the interpretation
of the constants, defining cI′

= h(c)I for every c ∈ Const(A(G)) \ Const(D),
and cI′

= cI otherwise. Then, the proof of (ii) easily follows from (i), Lemma 5
and the fact that, by definition of Retr(M,D), there exists a grounding G for
M such that A(G) is equal to Retr(M,D). �

Consequently, the following algorithm is able to decide inconsistency of
(〈T ,S,M〉,D).

Algorithm OBDAInconsistency:
Input: OBDA specification 〈T , S, M〉 with M GLAVBE mapping, source instance D

if there exists a polynomial grounding G for M
such that G is generated by D and the ontology 〈T , A(G)〉 is inconsistent
then return true else return false

We are now able to analyze the combined complexity of the algorithm Glob-
alInconsistency when step (b) is executed through the algorithm OBDAInconsis-
tency. As shown by Lemma 3, step (a) can always be executed in polynomial
time. Then, if the ontology inconsistency check is in PTIME, check (b) can
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be executed in nondeterministic polynomial time. Consequently, the algorithm
GlobalInconsistency provides an NP upper bound for DL-LiteR, RL, and EL⊥,
while it provides a N2EXPTIME upper bound for SROIQ.

Concerning the lower bounds, the one for SROIQ is trivial, while the NP
bound for the other three cases can be proved by an easy reduction of conjunctive
query containment in relational databases. Consequently:

Theorem 5. For both simple and FD schemas, and for both GAV and GLAVBE

mappings: (i) if the ontology language is DL-LiteR, RL, or EL⊥, then the com-
bined complexity of global mapping inconsistency is NP-complete; (ii) if the
ontology language is SROIQ, then the combined complexity of global mapping
inconsistency is N2EXPTIME-complete.

The above results are summarized in row 2 in Fig. 2.

4 Complexity of Mapping Redundancy

We now show that local and global mapping redundancy have the same TBox
complexity as instance checking for GAV mappings and CQ entailment over an
ontology for GLAV mappings. We also study the combined complexity for the
DLs considered in this paper. We focus on the global case only, since as we said,
the local redundancy is a special case of the global one. Also, observe that a
mapping M′ is globally redundant for an OBDA specification iff each subset of
M′ is redundant. We thus consider only the case in which M′ = {m}, and with
a slight abuse of notation, we call such case global redundancy of a mapping
assertion m for J .

From now on, we do not consider the trivial case when m is body-inconsistent
for S. Under this assumption, a minimal instance for S that activates {m} always
exists (and the algorithm freezeFD does never fail for every mapping M and
source schema S as input). We notice, however, that all the complexity results
of this section also hold without this assumption.

Theorem 6. Let J = 〈T ,S,M〉 be an OBDA specification and m a mapping
assertion. Then, m is globally redundant for J iff there exists a minimal instance
D for S that activates {m} such that Mod(J ,D) = Mod(〈T ,S,M ∪ {m}〉,D).

Proof (sketch). The proof of the only-if part is trivial. As for the if part, since
a minimal instance has a homomorphism to every other instance, the fact that
the models for a minimal instance are the same can be used to show that, for
every legal instance D′ for S, a model for (〈T ,S,M〉,D′) has to be a model for
(〈T ,S,M ∪ {m}〉,D′) too. �

Based on the above theorem, below we provide an algorithm that establishes
whether m is globally redundant for J by checking whether a suitable Boolean
CQ is entailed by J coupled with the minimal instance that activates {m}
returned by the algorithm freezeFD(M,S) (cf. Lemma 3). In the following, with
a little abuse of notation, we denote with freeze(FR(m)) the tuple obtained by
freezing the frontier variables of m.
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Algorithm mapRedundancy:
Input: OBDA specification 〈T , S, M〉, mapping assertion m

(a) D ← freezeFD({m}, S);
let σ be the substitution derived by freezeFD({m}, S);
tF ← σ(freeze(FR(m)));
if (b) (J , D) |= head(m(tF ))
then return true else return false

In the algorithm, σ denotes the substitution of terms derived by the appli-
cation of freezeFD({m},S), i.e., σ = {x1 → y1, . . . , xn → yn} where each yi
is a constant (either fresh or non-fresh) and each xi is a fresh constant in
freeze(body(m)); σ is applied to the tuple obtained by freezing the frontier vari-
ables of m, in order to propagate the term substitutions derived by the chase to
such a tuple. Notice that, for simple source schemas, σ is the identity and thus it
has no effect. Finally, mapRedundancy verifies whether the Boolean query corre-
sponding to the head of the mapping m whose frontier variables are substituted
with tF is entailed by (J ,D).

The following theorem states that mapRedundancy is sound and complete
with respect to the problem of establishing global mapping redundancy (termi-
nation of the algorithm is straightforward).

Theorem 7. Let J = 〈T ,S,M〉 be an OBDA specification and m a mapping
assertion. Then, m is globally redundant for J iff mapRedundancy(J ,m) returns
true.

As shown in Section 3, step (a) can be executed in polynomial time for both
simple schemas and FD schemas. As for step (b), the first technique we present
is tailored to establish TBox complexity of global mapping redundancy. We first
give the following lemma.

Lemma 7. Let J = 〈T ,S,M〉 be and OBDA specification, D a minimal
instance for S that activates M, and q a Boolean CQ. Then, (J ,D) |= q iff
〈T ,Retr(M,D)〉 |= q.

According to the above result, step (b) of mapRedundancy can be per-
formed by first computing the ABox Retr(M,D), and then checking whether
(T ,Retr(M,D)) |= head(m(σ(freeze(FR(m))))).

Example 7. Consider the OBDA specification J = 〈T ,S,M〉, where T and S
are as in Example 1, and M is as follows:

m1 : plants(x, y, z), eZones(z, ‘mz’) � locatedIn(x, z)
m2 : eZones(x′, ‘mz’) � MarArea(x′).

Moreover, consider the following mapping assertion:

m3 : plants(y′, ‘pl’, z′), eZones(z′, ‘mz’) � Platform(y′).
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The algorithm mapRedundancy first computes D = freezeFD({m},S) =
{plants(cy′ , ‘pl’, cz′), eZones(cz′ , ‘mz’)}. Then, it produces the Boolean CQ
qm3 = head(m(tF )) = Platform(cy′). To check whether (J ,D) |= qm3 the
algorithm computes Retr(M,D) = {locatedIn(cy′ , cz′),MarArea(cz′)}. Since
locatedIn.MarArea 	 Platform ∈ T , we have that 〈T ,Retr(M,D)〉 |= qm3 , and
thus mapRedundancy returns true (i.e., m3 is globally redundant for J ).

For TBox complexity, we notice that in mapRedundancy both step (a) and
the size of Retr(M,D) do not depend on the TBox T . In particular, we have
that:

– In the case of GAV mappings, the check in step (b) corresponds to a linear
number (in the size of head(m)) of instance checking tasks in the language LO
used for T .

– In the case of GLAV mappings, the check in step (b) corresponds to a single
Boolean CQ entailment task in LO.

Thus, mapRedundancy together with the techniques for step (a) and (b) dis-
cussed above allows us to obtain upper bounds for the TBox complexity of global
mapping redundancy. More precisely, the complexity of instance checking in LO
is an upper bound for GAV mappings, while the complexity of CQ entailment
in LO is an upper bound for GLAV.

As for lower bounds, we notice that both instance checking and CQ entail-
ment in LO can be easily reduced to local mapping redundancy for GAV and
GLAV mappings, respectively, with a technique similar to the one we used for
Lemma 2.

The following theorem sums up the above results.

Theorem 8. For both simple and FD schemas, and for every ontology language
LO, the TBox complexity of both local and global mapping redundancy for GAV
and GLAV mappings is the same as the TBox complexity of instance checking
in LO and TBox complexity of CQ entailment in LO, respectively.

The above theorem implies rows 3 and 4 in Figure 1.
Similarly to the case of global mapping inconsistency, since executing step

(b) by computing the retrieved ABox Retr(M,D) requires exponential time in
combined complexity, to establish combined complexity of the overall problem
we need to resort to a different strategy for step (b). To this aim, we exploit
a property that generalizes Lemma 6 (which focuses on inconsistency) to query
entailment. From this property, it follows that, for every CQ q that does not
mention constants occurring in Const(Retr(M,D)) \ Const(D), and for every
GLAVBE mapping M, 〈T ,Retr(M,D)〉 |= q can be decided by checking the
existence of a polynomial grounding G for M that is generated by D such that
〈T ,A(G)〉 |= q. Therefore, the following algorithm for checking CQ entailment
over an OBDA specification J and a source instance D follows.
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GAV GLAV
task DL-LiteR RL EL⊥ SROIQ DL-LiteR RL EL⊥ SROIQ

local inc. =NLOGSPACE =P =P =N2EXPTIME =NLOGSPACE =P =P =N2EXPTIME
global inc. =NLOGSPACE =P =P =N2EXPTIME =NLOGSPACE =P =P =N2EXPTIME
local red. =NLOGSPACE =P =P =N2EXPTIME =NP =NP =NP open
global red. =NLOGSPACE =P =P =N2EXPTIME =NP =NP =NP open

Fig. 1. TBox compl. of mapping inconsistency and redundancy (for both simple and
FD schemas).

GAV GLAVBE
task DL-LiteR RL EL⊥ SROIQ DL-LiteR RL EL⊥ SROIQ

local inc. =NLOGSPACE (SI) =P =P =N2EXPTIME =NLOGSPACE (SI)∗ =P∗ =P∗ =N2EXPTIME∗

=P (FD) =P (FD)∗

global inc. =NP =NP =NP =N2EXPTIME =NP =NP =NP =N2EXPTIME
local red. =NP =NP =NP =N2EXPTIME =NP =NP =NP open
global red. =NP =NP =NP =N2EXPTIME =NP =NP =NP open

Fig. 2. Combined compl. of mapping inconsistency and redundancy (SI = simple
schemas, FD = FD schemas). ∗ The result also holds for arbitrary GLAV mappings.

Algorithm CQEntailment:
Input: OBDA specification 〈T ,S,M〉 with M GLAVBE mapping, source instance D, CQ q

if there exists a polynomial grounding G for M
such that G is generated by D and 〈T ,A(G)〉 |= q
then return true else return false

Then, in the case of GLAVBE mappings we can perform step (b) of mapRe-
dundancy by executing CQEntailment(J ,D, head(m(freeze(FR(m)))).

As for combined complexity, in the following we consider simple source
schemas for the lower bounds and FD source schemas for the upper bounds.
First, step (b) can be executed through the nondeterministic algorithm CQEn-
tailment. Consequently, this algorithm provides an NP upper bound for the case
of GLAVBE mappings if, for the ontology language LO, CQ entailment is in NP,
i.e., for DL-LiteR, RL, and EL⊥. The matching NP lower bounds can be proved
already for GAV mappings, by an easy reduction of conjunctive query contain-
ment in relational databases. In the case of SROIQ, for GLAVBE mappings
we are not able to even prove decidability of global mapping redundancy (since
decidability of CQ entailment in this language is currently an open problem too),
while for the GAV case we can easily derive a N2EXPTIME exact bound.

Theorem 9. For both simple and FD source schemas, global and local mapping
redundancy are: (i) NP-complete w.r.t. combined complexity for both GAV and
GLAVBE mappings, in the case of DL-LiteR, RL, or EL⊥; (ii) N2EXPTIME-
complete w.r.t. combined complexity for GAV mappings, in the case of SROIQ.

The above theorem implies rows 3 and 4 in Figure 2.

5 Conclusions

The tables in Fig. 1 and Fig. 2 report the results presented in Sec. 3 and 4.
These results clarify the complexity of the fundamental mapping analysis tasks
studied in this paper.
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The analysis presented in this paper can be extended in different directions.
First, it would be interesting to establish tight combined complexity bounds
for general GLAV mappings, and extend our study to other forms of mappings
(beyond GLAV), admitting, for instance, forms of negation in the source queries.
Then, it would be interesting to extend our analysis beyond the OWL frame-
work, considering, e.g., DLs interpreted under the Unique Name Assumption, or
languages of the Datalog+/- family. Finally, we believe that the problems and
techniques studied in this paper may constitute the core of practical tools for the
crucial task of constructing, debugging, and maintaining an OBDA specification.
So, an important direction for future work is the implementation and practical
evaluation of techniques for mapping analysis in OBDA.
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Abstract. We present a novel approach to denote mappings between
EL-based ontologies which are defeasible in the sense that such a map-
ping only applies to individuals if this does not cause an inconsistency.
This provides the advantage of handling exceptions automatically and
thereby avoiding logical inconsistencies that may be caused due to the
traditional type of mappings. We consider the case where mappings from
many possibly heterogeneous ontologies are one-way links towards an
overarching ontology. Questions can then be asked in terms of the con-
cepts in the overarching ontology. We provide the formal semantics for
the defeasible mappings and show that reasoning under such a setting
is decidable even when the defeasible axioms apply to unknowns. Fur-
thermore, we show that this semantics actually is strongly related to the
idea of answer sets for logic programs.

1 Introduction

Description logic (DL) based knowledge representation is gaining in popularity
and with that the number of domain ontologies is also on the rise. Especially
in the medical domain, tractable fragments of DLs are heavily used. For exam-
ple, SNOMED CT is a medical ontology which consists of more than 300,000
concepts, and which can be described in the description logic EL [1]. Smaller
fragments of DLs are especially interesting for application scenarios where fast
and efficient reasoning may be critical.

In this paper, we provide a formal framework for dealing with defeasible
reasoning for smaller fragments of DLs, especially in the context of ontology
alignment. In particular we consider a language ER⊥,O which allows for con-
junction, existentials, role chains, disjointness of concepts and ABox statements
and provide a semantics for one-way (defeasible) alignments from terms in sev-
eral ontologies to one overarching ontology such that queries can be asked in
terms of this overarching ontology, while answers may contain instances from
several lower level ontologies. For defeasibility we take motivation from default
logic [21] and define the semantics along similar lines. It turns out that combin-
ing DLs with default-like semantics is not very straightforward as unrestricted
default applications may result in undecidability [2,23]. Previously, decidability
was usually obtained for such logics by restricting defeasibility to known individ-
uals, i.e. to a finite set of entities. In this paper, we show that the combination
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 237–252, 2015.
DOI: 10.1007/978-3-319-25007-6 14
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Veg � NonVeg � ⊥ (1)
∃consumes.EggFood � NonVeg (2)
contains ◦ consumes � consumes (3)

{juliet} � Veg (4)

{romeo} � Eggetarian (5)
Eggetarian � Vegetarian (6)
Eggetarian � ∃eats.Egg (7)
Eggetarian � NonVegetarian � ⊥ (8)

{caesar} � Vegetarian (9)
{caesar} � NotEggetarian (10)

NotEggetarian � Eggetarian � ⊥ (11)
Vegetarian ≡ Veg (12)

NonVeg ≡ NonVegetarian (13)
EggFood ≡ Egg (14)

eats � consumes (15)

Fig. 1. Example mapping with selected axioms.

of defeasible mappings with DLs presented here is decidable even without this
type of restriction. Decidability in our setting results from our restriction to a
tractable language in the EL family, together with the avoidance of recursion
through the defeasible axioms resulting from our specific, but practically impor-
tant application scenario, namely the one-way alignment of ontologies.

Indeed, similar concepts appear in several ontologies from heterogeneous
domains, but these concepts may slightly differ semantically. The motivation
of using defeasible axioms as alignments stems from the need to handle such
heterogeneity among various data models. As we discuss in our previous work
[23], DL axioms are semantically too rigid to be able to deal with alignments in
such heterogeneous settings, in particular in the light of the fact that ontology
alignment systems mostly rely on string similarity matching [7]. For example, the
concept that represents those human beings who consume only vegetarian food
may be part of two different domain ontologies but the notion of what vegetarian
food means might slightly differ depending on the context, e.g. in some places
eggs might be part of a typical vegetarian diet while in others this may not be
so. Aligning these different world views appropriately cannot be done by simply
mapping the respective concepts representing a “vegetarian person” in different
ontologies, as claiming that they were equivalent may lead to inconsistencies.

For example consider the axioms in Figure 1 (see section 2 for explanations
of the notation). Axioms 1–4 represent one ontology and axioms 5–11 another
ontology. An alignment system may give alignments similar to axioms 12–15.
Since romeo is an Eggetarian (axiom 5) he is also a Vegetarian (axiom 6). And
since every Vegetarian is also a Veg as per the mapping axiom 12, romeo is a
Veg. From axioms 5, 7, 14, 15 and 2 we obtain that romeo is also a NonVeg.
But Veg and NonVeg are disjoint classes, so this results in an inconsistency. But
applying the same rules to caesar does not cause an inconsistency. The usual
process of repairing alignments like this is to remove mappings that cause the
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inconsistency [13]. But we would then lose the conclusion that caesar is also
a Veg. If we replace the mapping axioms with defeasible axioms as introduced
below, then we could achieve this outcome where we carry over the similarities
while respecting the differences.

The paper is organized as follows. In section 2, we set the preliminaries by
describing the language ER⊥,O. The context of ontology mappings as well as the
syntax and the semantics of defeasible mapping axioms along with the discussion
on decidability is presented in section 3. Section 4 contains a description of the
relation of the semantics of this approach with that of answer set programming
for logic programs. Finally we discuss related work in section 5 and provide
closing remarks in section 6.

2 The Description Logic ER⊥,O

We consider the DL ER⊥,O (see [1] for further background). Let NC be a set of
atomic concepts (or atomic classes), let NR be a set of roles and let NI be a set
of individuals, which contains an element ιR,D for each pair (R,D) ∈ NR × NC .
These ιR,D are called auxilliary individuals. Complex class expressions (short,
complex classes) in ER⊥,O are defined using the grammar

C ::= A | � | ⊥ | C1 � C2 | ∃R.C | {a},
where A ∈ NC , R ∈ NR and C1, C2, C are complex class expressions. Further-
more, a nominal class (short, nominal) is represented as {a}, where a ∈ NI . A
TBox in ER⊥,O is a set of general class inclusion (GCI ) axioms of the form
C � D, where C and D are complex classes. C ≡ D abbreviates two GCIs
C � D and D � C. An RBox in ER⊥,O is a set of role inclusion (RI ) axioms of
the form R1 ◦ · · · ◦ Rn � R, where R1, . . . , Rn, R ∈ NR. An ABox in ER⊥,O is a
set of GCIs of the form {a} � C and {a} � ∃R.{b} where {a}, {b} are nominals
and C is a complex class.

An ER⊥,O knowledge base or ontology is a set of TBox, RBox and ABox
statements which furthermore satisfy the condition that nominals occur only in
ABox statements. This condition is a restriction of ER⊥,O as compared to, e.g.,
the allowed use of nominals in OWL 2 EL: While we allow for a full ABox, the
TBox remains free of nominals. In particular, axioms such as A � ∃R.{a}, with
A an atomic or complex class other than a nominal, are not allowed.

An initial ER⊥,O knowledge base is an ER⊥,O knowledge base which does
not contain any auxiliary individuals.

Example 1. The following is an example of an (initial) ER⊥,O knowledge base.

Bird � Fly

Penguin � Bird

Penguin � Fly � ⊥
{tom} � ∃hasPet.Penguin
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Table 1. Semantics of the language ER⊥,O

Concept Semantics

� ΔI

⊥ ∅
{a} {aI}

C � D CI ∩ DI

C � D CI ⊆ DI

∃R.D {x | there exists some y with (x, y) ∈ RI and y ∈ DI}
R1 ◦ R2 RI

1 ◦ RI
2

{a} {aI}

Next, we describe the semantics of the language ER⊥,O using the notion
of interpretation. An interpretation I of an ER⊥,O knowledge base KB is a
pair (ΔI , .I) where ΔI is a non-empty set of elements called the domain of
interpretation and .I is the interpretation function that maps every individual
in KB to an element of ΔI , every concept in KB to a subset of ΔI , and every role
to a subset of ΔI×ΔI . Concept expressions are interepreted as shown in Table 1.
An interpretation I is a model of an ER⊥,O knowledge base KB if it satisfies all
the TBox, RBox and ABox axioms such that if C � D then CI ⊆ DI , if R � S
the RI � SI , and {a} � C then aI ∈ CI respectively.

It is well-known that any such knowledge base can be cast into normal form,
as follows.

Definition 1. An initial ER⊥,O knowledge base is in normal form if it contains
axioms of only the following forms, where C,C1, C2,D ∈ NC , R,R1, R2 ∈ NR

and a, b ∈ NI

C � D

∃R.C � D

C � ∃R.D

C1 � C2 � D

C1 � C2 � ⊥
R1 � R

R1 ◦ R2 � R

{a} � C

{a} � ∃R.{b}
Theorem 1. For every initial ER⊥,O knowledge base KB there exists a knowl-
edge base KB ′ in normal form such that KB |= Ā � B if and only if KB ′ |=
Ā � B, where Ā is a class name or a nominal and B is a class name occurring
in KB.

Definition 2. Given an initial ER⊥,O knowledge base KB in normal form, we
define the following:
1. Completion: the completion comp(KB) of KB is obtained from KB by exhaus-

tively applying the completion rules from Figure 2.
2. Clash: a completion comp(KB) of KB contains a clash if {a} � ⊥ ∈

comp(KB), for some nominal class {a}.
It is easily verified that repeated applications of completion rules on an initial

ER⊥,O knowledge base produces only axioms which are also in normal form, with
one exception: Axioms of the form {a} � ∃R.D, with R ∈ NR and D ∈ NC , can
also appear.
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Ā � C, C � D → Ā � D (16)
Ā � C1, Ā � C2, C1 � C2 � D → Ā � D (17)

Ā � C, C � ∃R.D → Ā � ∃R.D (18)
Ā � ∃R.B̄, B̄ � C, ∃R.C � D → Ā � D (19)

C̄ � ∃R.D̄, D̄ � ⊥ → C̄ � ⊥ (20)
Ā � ∃R.B̄, R � S → Ā � ∃S.B̄ (21)

Ā � ∃R1.B̄, B̄ � ∃R2.C̄, R1 ◦ R2 � R → Ā � ∃R.C̄ (22)

Fig. 2. ER⊥,O completion rules. New axioms resulting from the rules are added to the
existing axioms in KB . Symbols of the form Ā can be either a class name or a nominal
class. We initialize comp(KB) with KB and C � C, ⊥ � C, ⊥ � ⊥ for all named classes
C ∈ NC .

It is straightforward to show that comp(KB) is well-defined and that the
completion process has a polynomial time complexity. This and the soundness
and completeness results below are adapted from [1]. Since the proofs are relevant
to understanding the discussions in this paper, we include them in the appendix
of the technical report [22] available online.

Theorem 2. (soundness and completeness) Let KB be an initial ER⊥,O knowl-
edge base in normal form. Then every model of KB is a model of comp(KB).
Furthermore, if comp(KB) contains a clash then KB is inconsistent.

Conversely, if A is an atomic class or a nominal and B is an atomic class
such that KB |= A � B, then A � B ∈ comp(KB). Furthermore, if KB is
inconsistent then comp(KB) contains a clash.

Note now that the ER⊥,O knowledge base given in Example 1 is inconsistent.
Central to the proof of Theorem 2 is the following construction, which we

will also use later in this paper.
Given an ER⊥,O knowledge base KB , let I = I(KB) be defined as the fol-

lowing interpretation of comp(KB).

ΔI = {x{a}, xC | C is a class name in KB and a is an individual in KB}

AI =

⎧
⎪⎨

⎪⎩

∅, if A � ⊥ ∈ comp(KB)
{xC | C � A ∈ comp(KB)} ∪ {x{a} | {a} � A ∈ comp(KB)},

if A � ⊥ ∈ comp(KB)

{a}I =

{
∅, if {a} � ⊥ ∈ comp(KB)
{x{a}}, if {a} � ⊥ ∈ comp(KB)

RI = {(xC , xD) | C � ∃R.D ∈ comp(KB)} ∪
{(x{a}, xD) | {a} � ∃R.D ∈ comp(KB)} ∪
{(x{a}, x{b}) | {a} � ∃R.{b} ∈ comp(KB)}
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The proof of Theorem 2 shows that I is a model of both comp(KB) and KB .

3 Mapping Ontologies with ER⊥,O-Defaults

We consider a rather specific but fundamentally important scenario, namely the
integration of ontology-based information by means of an overarching ontology,
as laid out and applied e.g. in [14,20] – see also the discussion of this in [23].
One of the central issues related to this type of information integration is how to
obtain the mappings of the to-be-integrated ontologies to the overarching ontol-
ogy, as the manual creation of these mappings is very costly for large ontologies.

However, methods for the automated creation of such mappings – commonly
refered to as ontology alignment – are still rather crude [7,12], and are there-
fore prone to lead to inconsistencies of the integrated ontologies, as discussed in
section 1. In order to deal with this, we introduce a defeasible mechanism to deal
with such mappings. For simplicity of presentation we consider only two ontolo-
gies, with one taking the role of the overarching ontology. The other ontology
can be considered the disjoint union of the ontologies which are to be integrated.

The following notion is going to be central.

Definition 3. (defeasible axiom) A defeasible axiom is of the form C �d D or
R �d S, where C,D are class names and R,S are roles.

Intuitively speaking, our intention with defeasible axioms is the following: It
shall function just like a class inclusion axiom, unless it causes an inconsistency,
in which case it should not apply to individuals causing this inconsistency. In a
sense, such defeasible axioms act as a type of semantic debugging of mappings:
The semantics itself encodes the removal of inconsistencies. More specifically
speaking, given a defeasible axiom C �d D, instances of C will also be instances
of D, except those instances of C which cause an inconsistency when also an
instance of D. Such Cs are usually known as exceptions. Of course this intuitive
understanding of defeasible axioms is not entirely straightforward to cast into a
formal semantics.1 We will give such a formal semantics in section 3.1 below.

Definition 4. (mappings) Let O1,O2 be two consistent ER⊥,O knowledge bases.
A (defeasible) mapping from O1 to O2 is a defeasible axiom with the left-hand
side of the axiom a concept or role from O1, and the right-hand side a concept
or role from O2.

Note that here we restrict the mappings to axioms involving roles and atomic
classes. However, we do so without loss of generality as C �d D, for complex
classes C, D, can be replaced by adding the axiom C � A to O1 and the axiom
B � D to O2, where A and B are new concept names, and replacing C �d D in
δ by A �d B. Similarly, our approach encompasses the specific case of ontology
population, where O1 is empty and all mappings are of the form {a} �d C.
1 Different ways how to do this lead to different non-monotonic logics. This is a well-

studied subfield of artificial intelligence, from which we take inspiration.
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Definition 5. (mapped-tuple) Let O1,O2 be two ontologies in ER⊥,O with δ the
set of defeasible mappings from O1 to O2. Then the tuple (O1,O2, δ) is called a
mapped-tuple.

3.1 Semantics and Decidability

Given a mapped-tuple (O1,O2, δ), we define the formal semantics of the map-
pings following our intuitive reading as discussed above. Informally speaking, the
semantics of C �d D is similar to that of normal defaults as in Reiter’s default
logic [21]: if x is in C, then it can be assumed that x is also in D, unless it causes
an inconsistency with respect to the current knowledge.

We define the semantics formally as follows. For each mapping axiom C �d D
in δ we define a set Cand that represents the set of axioms that could be possibly
added to the completion of O2 as a result of the mapping axiom.

Cand(C �d D) ={{a} � D | {a} � C ∈ comp(O1)} (23)

Furthermore, we define the set Candn as the power set of Cand for each
mapping axiom.

Candn(C �d D) ={X | X ⊆ Cand(C �d D)} (24)

Similarly, we define the corresponding sets CandR and CandnR for mapping
axioms involving roles.

CandR(R �d S) ={{a} � ∃S.{b} | {a} � ∃R.{b} ∈ comp(O1)} (25)
CandnR(R �d S) ={X | X ⊆ CandR(R �d S)} (26)

Note that a and b may be auxiliary individuals.

Definition 6. (mapped ontology) Let (O1,O2, δ) be a mapped-tuple. Define
selections and the corresponding mapped ontology as follows:

(i) For each mapping axiom of the form C �d D ∈ δ, a selection for C �d D
is any ΣC�dD ⊆ Candn(C �d D).

(ii) For each mapping axiom of the form R �d S ∈ δ, a selection for R �d S
is any ΣR�dS ⊆ CandnR(R �d S)

(iii) Given selections for all mappings μ ∈ δ, we use Σ to denote their union
Σ =

⋃
μ∈δ Σμ, and call Σ a selection for the given mapped-tuple.

(iv) OΣ
2 = comp(O2) ∪ ⋃

X∈Σ X is then called a mapped ontology.

Note that each mapped-tuple (O1,O2, δ) can give rise to only a finite number
of corresponding mapped ontologies, and the number is bounded by |Candn(C �d

D)||δ1| × |CandnR(R �d S)||δ2|, where δ1 (respectively, δ2) is the set of class
(respectively, role) mappings contained in δ.

Definition 7. (preferred mapping) Let (O1,O2, δ) be a mapped-tuple. Then for
any two mapped ontologies OΣi

2 ,OΣj

2 we say OΣi

2 � OΣj

2 or OΣi

2 is preferred
over OΣj

2 , if all of the following hold.
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- Σi
μ ⊇ Σj

μ, for all μ ∈ δ

- Σi
μ ⊃ Σj

μ, for some μ ∈ δ
Note that μ can be of the form C �d D or R �d S.

The notion of preferred mapping is used to identify the individuals to which the
defeasible axioms maximally apply.

Definition 8. (mapped completion and mapped entailment) Given a mapped-
tuple (O1,O2, δ), let OΣ

2 be a mapped ontology obtained from some selection Σ.
Then the completion comp(OΣ

2 ) obtained by exhaustively applying the rules in
Figure 2 is said to be a mapped completion of (O1,O2, δ) if OΣ

2 is consistent
and there is no consistent mapped ontology OΣi

2 such that OΣi

2 � OΣ
2 holds.

Furthermore, let α an axiom of the form {a} � {b} or {a} � ∃R.{b}. Then
α is entailed by (O1,O2, δ), written (O1,O2, δ) |=d α, if α ∈ comp(OΣ

2 ) for each
mapped completion OΣ

2 of (O1,O2, δ).

Lemma 1. A mapped-tuple (O1,O2, δ) always has a mapped completion.

Proof. There are two conditions for obtaining a mapped completion comp(OΣ
2 ):

(1) OΣ
2 is consistent, and (2) OΣ

2 is maximal with respect to �. It is clear
that there is at least one Σ such that OΣ

2 is consistent, namely Σ = ∅. If this
is the only Σ producing a consistent mapped ontology, then comp(OΣ

2 ) is the
corresponding mapped completion. Now let S be the set of all selections which
produce a consistent mapped ontology. We already know that S is finite, and so
the set of corresponding consistent mapped ontologies is also finite, and therefore
contains maximal elements with respect to the preference relation ≺. Each of
these maximal elements is then a mapped completion of (O1,O2, δ).

Theorem 3. The problem of entailment checking for a mapped-tuple (O1,O2, δ)
is decidable.

Proof. In order to check entailment, it suffices to obtain all the possible mapped
completions as per definition 8. Since there is only a finite number of possible
selections for (O1,O2, δ), then as argued in the proof of Lemma 1 there is only
a finite number of corresponding mapped ontologies, and furthermore we know
that exhaustive application of the completion rules terminates. Hence the task
is decidable. ��

3.2 Applying Defeasible Mappings to Unknowns

So far we have defined the semantics of defeasible mappings and a way to derive
entailments. Using these mappings, queries can be asked in terms of concepts of
the ontology which is being mapped to.

For instance let the ontology O1 have axioms

{john} � USCitizen {john} � Traveler

USCitizen � ∃hasPassport.USPassport,
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let the ontology O2 have axioms

Tourist � ∃hasPP.Passport
∃hasPP.AmericanPassport � EuVisaNotRequired,

and let δ consist of the mappings

Traveler �d Tourist hasPassport �d hasPP

USPassport �d AmericanPassport.

We can then ask questions in terms of the concepts and roles of O2 like “list all
the tourists,” i.e., all instances that belong to the class Tourist, and we would
get the answer john. But if we look carefully, we would also expect john as an
instance of the class EuVisaNotRequired.

However, as per the semantics we have defined in the previous section, we
would not be able to derive this conclusion. This is because the defeasible map-
pings do not apply to unknowns. In this case the unknown in question is john’s
USPassport. We address this issue by modifying the semantics in order to apply
the mappings to unknowns as well.

First of all, recall that the set NI already contains the auxiliary individuals
ιRC for every R ∈ NR and C ∈ NC – we have not yet made use of them, but
we will do so now. In fact, we now modify the completion rules in Figure 2 by
adding two additional rules as follows, and where a ∈ NI , i.e. a may also be an
auxiliary individual.

{a} � ∃R.D �→ {a} � ∃R.{ιRD} (27)
{a} � ∃R.D �→ {ιRD} � D (28)

Furthermore, we retain all the definitions from section 3.1 starting from Cand,
CandR but using the completion compu(O1) obtained by applying the completion
rules in Figure 2 in conjunction with the new rules when producing selections.
We still use comp, the previous version without the new rules, for all other steps.

Returning to the example above, compu(O1) now becomes

{john} � USCitizen {john} � Traveler

USCitizen � ∃hasPassport.USPassport {ιhpp,usp} � USPassport

{john} � ∃hasPassport.{ιhpp,usp},

and from the mappings we obtain

OΣ
2 = comp(O2) ∪ { {john} � Tourist, {john} � ∃hasPP.{ιhpp,usp},

{ιhpp,usp} � AmericanPassport} }.

Note, that this OΣ
2 is the only maximal mapped ontology. When we apply the

completion rules of Figure 2 on OΣ
2 , rule 19 will produce the axiom {john} �

EuVisaNotRequired.
We now show that, under this new version, default mappings behave just as

ordinary mappings provided no inconsistencies arise. This is of course exactly
what we would like to obtain, i.e., the new semantics is conservative in this
respect and “kicks in” only if needed due to inconsistencies.
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Theorem 4. Let (O1,O2, δ) be a mapped-tuple such that for any selection Σ,
OΣ

2 is consistent. Let α be an ER⊥,O axiom of the form {a} � C or {a} �
∃R.{b}, where a, b are named individuals from O1 and C,R are class names,
respectively role names, from O2. Then (O1,O2, δ) |= α if and only if O1 ∪ O2 ∪
δ̄ |= α, where δ̄ is exactly the same as δ but with all �d replaced by �.

Proof. In this case there is only one relevant selection Σ, namely the full selec-
tion, since for every possible Σ, OΣ

2 is consistent.
Consider an interpretation I = I(OΣ

2 ) of OΣ
2 , defined as at the end of Section

2, and recall that I |= OΣ
2 .

Let I ′ be an interpretation of O1 ∪ OΣ
2 which extends I such that ΔI′

=
ΔI∪{xC | C ∈ NO1

C }, and for all C ∈ NO1
C and R ∈ NO1

R , CI′
and DI′

are
constructed from compu(O1) exactly as it is done for I from comp(OΣ

2 ). Then
clearly I ′ |= OΣ

2 ∪ O1. Furthermore, axioms of the form {a} � C, {a} � ∃R.{b}
where a, b ∈ NO1

I , C ∈ NO2
C and R ∈ NO2

R are only produced from the axioms of
OΣ

2 .
Moreover, I ′ |= O1 ∪ O2 ∪ δ̄ holds. To prove this it suffices to show that

I ′ satisfies all axioms C � D ∈ δ̄ and R � S ∈ δ̄ since we already know that
I ′ |= O1 ∪ O2. And indeed, for every axiom C � D ∈ δ̄ (which also means
C �d D ∈ δ), we know that if {a} � C ∈ compu(O1) then {a} � D ∈ OΣ

2 .
Hence, by definition of I ′, a ∈ CI′∩DI′

. Similarly, for every axiom R � S ∈ δ̄, we
know that whenever {a} � ∃R.{b} ∈ compu(O1), we have {a} � ∃S.{b} ∈ OΣ

2 ,
and by definition of I ′, we obtain (a, b) ∈ RI′

, SI′
.

So now, in particular, if O1 ∪ O2 ∪ δ̄ |= α then I ′ |= α, and therefore I |= α,
since α does not contain any class or role names from O1. By definition of I, we
then obtain α ∈ comp(OΣ

2 ) and consequently (O1,O2, δ) |= α as required.
Conversely, consider an interpretation I = I(O) of O = O1∪O2∪ δ̄ obtained

as defined at the end of Section 2, and recall that I |= O.
Now consider O′ = compu(O1) ∪ comp(O2) ∪ δ ∪ Σ and note that OΣ

2 =
comp(O2) ∪ Σ ⊆ O′ and also that O ⊆ O′. Let I ′ = I(O′) be obtained as
defined at the end of Section 2, and recall that I ′ |= O′. By construction, we
also obtain I ′ |= OΣ

2 and also that I ′ and I coincide on the signature of O.
So now, in particular, if (O1,O2, δ) |= α, for α as in the statement of the

theorem, then I ′ |= α, and therefore I |= α, and by definition of I we obtain
α ∈ comp(O1 ∪ O2 ∪ δ̄). Consequently, O1 ∪ O2 ∪ δ̄ |= α as required. ��

4 Relationship with Answer sets

The above semantics is inspired by Reiter’s default logic, as already mentioned.
Formally, we show that it is very closely related with the prominent answer set
semantics from logic programming, which in turn has a well-established rela-
tionship to Reiter’s default logic. We first recall the definition of answer sets
from [10], see [11] for exhaustive background reading.

Definition 9. (answer sets) An extended program is a logic program that con-
tains rules of the form L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln where 0 ≤ m ≤ n
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Table 2. Rewriting of axioms to rules

Axiom Rule

1 C � D D(x) ← C(x)
2 C � ⊥ ¬C(x) ← C(x)
3 ∃R.C � D D(x) ← R(x, y) ∧ C(y)
4 C1 � C2 � D D(x) ← C1(x) ∧ C2(x)
5 C1 � C2 � ⊥ ¬C2(x) ← C1(x), ¬C1(x) ← C2(x)
6 R1 � R R(x, y) ← R1(x, y)
7 R1 ◦ R2 � R R(x, z) ← R1(x, y) ∧ R2(y, z)
8 {a} � C C(a) ←
9 {a} � ∃R.{b} R(a, b) ←

and each Li is a literal A or ¬A. ¬ denotes so-called classical negation, as
opposed to not which denotes default negation.

For Π an extended program that contains no variables and does not contain
not , let Lit be the set of ground literals in the language of Π. The answer set
α(Π) of Π is the smallest subset S of Lit such that
1. for any rule L0 ← L1, . . . , Lm ∈ Π, if L1, . . . L2 ∈ S, then L0 ∈ S, and
2. if S contains a pair of complementary literals, then S = Lit.

For Π a (general) extended program and Lit the set of all literals in the
language of Π, define ΠS, for a set S ⊆ Lit, as the extended program obtained
by deleting, from Π,
1. each rule that has some not L in its body with L ∈ S, and
2. all expressions of the form not L in the bodies of the remaining rules.
Finally, S is an answer set of Π if S = α(ΠS).

Let (O1,O2, δ) be a mapped-tuple. We now define an extended program
Π(O1,O2, δ) as follows. For every axiom of the form C �d D ∈ δ and for all
{a} � C ∈ comp(O1), we add rules of the following form to Π(O1,O2, δ).

C(a) ← (29)
D(a) ← C(a), not ¬D(a) (30)

For mapping axioms of the form R �d S ∈ δ, we add the following rules.

R(a, b) ← (31)
S(a, b) ← R(a, b), not ¬S(a, b) (32)

Furthermore, we add to Π(O1,O2, δ) all possible groundings of the rules obtained
by rewriting comp(O2) as per the rules in Table 2, using all the individuals that
occur in O1,O2.

It should be noted that we do not provide a transformation for axioms of the
form C � ∃R.D in Table 2. This is because for representing defeasible axioms
in logic programs we need the classical negation [10] and to represent axioms
with existentials on the right hand side we require existential rules. Although
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{a} � C (33)
{a} � B (34)

C �d D (35)
B �d E (36)

D � E � ⊥ (37)
D � F (38)
E � F (39)

Fig. 3. Example mapping

a stable model semantics for existential rules has been defined in [17], it is not
defined for extended programs with classical negation. Furthermore, it is not
straightforward to extend the approach from [17] to extended programs. So we
restrict ourselves to showing that our reduction works for the case when axioms
of the form C � ∃R.D are not present. This is sufficient to show that our
approach aligns well with the answer set semantics.

Example 2. Consider the axioms listed in Figure 3 where axioms 33, and 34
are from O1, axioms 37, 38, and 39 are from O2 and the axioms 35, and 36
represent the set δ of defeasible mappings. The corresponding extended program
Π(O1,O2, δ) is as follows.

C(a) ← D(a) ← C(a) ∧ not ¬D(a)

B(a) ← E(a) ← B(a) ∧ not ¬E(a)

¬E(a) ← D(a) F (a) ← D(a)

¬D(a) ← E(a) F (a) ← E(a)

Note there are two answer sets, S1 = {C(a), B(a),D(a),¬E(a), F (a)} and
S2 = {C(a), B(a), E(a),¬B(a), F (a)}, for Π(O1,O2, δ).

Definition 10. Let OΣ
2 be a mapped ontology for (O1,O2, δ), and let comp(OΣ

2 )
be a corresponding mapped completion. Then we define the mapped answer set
S(OΣ

2 ) to be the following set.

{C(a) | C �d D ∈ δ and {a} � C ∈ comp(O1)} ∪
{R(a, b) | R �d S ∈ δ and {a} � ∃R.{b} ∈ comp(O1) ∪

{C(a) | {a} � C ∈ comp(OΣ
2 )} ∪

{¬D(a) | C �d D ∈ δ, {a} � C ∈ comp(O1) and {a} � D �∈ comp(OΣ
2 )} ∪

{R(a, b) | {a} � ∃R.{b} ∈ comp(OΣ
2 )} ∪

{¬S(a, b) | R �d S ∈ δ, {a} � ∃R.{b} ∈ comp(O1) and {a} � ∃S.{b} �∈ comp(OΣ
2 )}

Lemma 2. Let OΣ
2 be a mapped ontology for (O1,O2, δ), and let comp(OΣ

2 ) be
a corresponding mapped completion. Then the mapped answer set S(OΣ

2 ) is an
answer set of Π(O1,O2, δ).

The proofs of this lemma and the next have been omitted due to space
restrictions. They can be found in the appendix of the technical report [22].

Lemma 3. Let (O1,O2, δ) be a mapped-tuple and let S be an answer set
of Π(O1,O2, δ) = Π. Then S = S(OΣ

2 ) for some mapped ontology OΣ
2 of

(O1,O2, δ).
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The following theorem is a now direct consequence of Lemmas 2 and 3.

Theorem 5. Let (O1,O2, δ) be a mapped-tuple. Then (O1,O2, δ) |=d {a} �
C if, and only if, Π(O1,O2, δ) |=S C(a), where |=S represents stable model
entailment.

5 Related Work

This work is relevant to at least two areas of work, (1) advancing the use of
non-monotonic logics in description logics, and especially in the EL family, and
(2) providing a robust mapping language.

We introduced the use of defeasible semantics to denote mappings in [23],
but therein we had to impose a rather significant restriction that exceptions to
the default rules may occur only in the known individuals, a restriction which
we could completely lift with the approach and setting described in the earlier
sections of this work. Our approach provides a significant result over [23] because
(1) It is not straight forward to obtain this result, (2) this approach can be
applied to any logic in the EL family without any change in the semantics,
(3) It removes the 20 year old road block in the research area of defaults and
description logics due to the results from [2], and (4) all of the previously known
decidability results of defaults + dl combinations placed a some sort of restriction
on the applicability of defaults to the individuals: [2], [23] where [23] improved the
results from [2] but by placing a different restriction on applicability of defaults
to unknowns. Furthermore, the mapping scenario presented in this paper is also
a practical approach to querying heterogeneous datasets using our approach
towards a mapping language. It is also established in this paper that the approach
here is closer to Reiter’s semantics than in [23] by showing the similarity with
ASP semantics.

With respect to repairing ontology alignments there are approaches like [1,
16,19]. The work in [19] is specifically close in spirit to our approach, though
we provide a much more detailed semantic treatment which is closely related
to Reiter’s defaults and answer set programming. Furthermore, we also include
defeasible axioms for roles and obtain a mild tractability result. Our approach
also forms a basis for a mapping language rather than focusing on the repairing
of ontology alignments.

In terms of integration of non-monotonic logics with DLs, recent work [4–6]
has been proposed in integrating the semantics of rational closure and KLM
style semantics to DLs. These are alternative semantics to defaults and thus
give a different perspective for apply defeasible logic to DLs. A plethora of other
proposals have been made for the integration of non-monotonic logics with DLs,
and we refer the reader to [15] which provides pointers to most of the prominent
relevant work.

Similar in spirit to our approach, though on a different logic, is also [3].
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6 Conclusion

In this paper we provide an extension for the description logic ER⊥,O with
the ability to have defeasible mappings between ontologies. This work should
be easily extendable to other logics in the EL family, provided soundness and
completeness proofs can be obtained for the base logic along similar lines. We
show a reduction from our semantics of defeasible mappings to that of answer
set programming. This shows that the approach outlined here is very close to
the original notion of defaults. Furthermore, the application of defaults is not
limited to named individuals but also applies to unknowns that are implicitly
referred to in the knowledge base due to existentials.

Of course, our resulting logic appears to be no longer tractable. However,
it should be remarked that the application of a monotonic semantics is com-
pletely impossible in the context of inconsistencies coming from the mappings,
and repair approaches currently require human intervention and are generally
employed at the level of axioms, rather than individuals. Some form of paracon-
sistent reasoning [18] may be a more efficient contender, but then paraconsistent
approaches such as [18] tend to miss many desired consequences.

As a part of future work we consider a smart algorithmization for entailment
checking that would perform with reasonable efficiency. One possible approach
would be to find a method to generate rules that act as templates which could
be used to check which selections used to create the mapped ontologies would
lead to inconsistencies without actually running the completion algorithm on
the mapped ontologies. We also plan to implement the algorithm and perform
a detailed evaluation of its performance with respect to time when compared
to the monotonic extensions and also with respect to the quality of entailments
obtained by defeasible mappings compared to traditional alignments produced
by automatic alignment systems. We could make use of data made available by
the ontology alignment evaluation initiative [8,9]. Good results would lead to
a solid framework towards a robust mapping language for tractable ontology
languages.
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Abstract. Algebras of relations were shown useful in managing ontol-
ogy alignments. They make it possible to aggregate alignments disjunc-
tively or conjunctively and to propagate alignments within a network
of ontologies. The previously considered algebra of relations contains
taxonomical relations between classes. However, compositional inference
using this algebra is sound only if we assume that classes which occur in
alignments have nonempty extensions. Moreover, this algebra covers rela-
tions only between classes. Here we introduce a new algebra of relations,
which, first, solves the limitation of the previous one, and second, incor-
porates all qualitative taxonomical relations that occur between indi-
viduals and concepts, including the relations “is a” and “is not”. We
prove that this algebra is coherent with respect to the simple semantics
of alignments.

Keywords: Relation algebra · Ontology alignment · Network of
ontologies

1 Introduction

The heterogeneity of ontologies on the semantic web requires finding correspon-
dences between them in order to achieve semantic interoperability. The operation
of finding correspondences is called ontology matching and its result is a set of
correspondences called an alignment [6]. Alignments are used for importing data
from one ontology to another or for translating queries.

In previous work [5], we put forward a framework for manipulating alignments
based on algebras of relations. This allows for merging alignments conjunctively
or disjunctively, amalgamate alignments with relations of different granularity
and compose alignments.

Thegeneral approachwas illustrated in [5] onaparticular algebraA5. It is gener-
ated by 5 atoms: =, >,<, �,⊥, which stand for “equivalent to”, “more/less general
than”, “partially overlaps with” and “disjoint with” respectively. The composition
table of A5 is given in Table 1. It was shown that an algebra of relations induces
composition, union, intersection and conversion operations on alignments.

This may be particularly useful as a fast way to reason about alignments
without resorting to full reasoning. For instance, this may be used for generat-
ing new alignments from existing ones or for checking the unsatisfiability of a
network of ontologies.
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 253–268, 2015.
DOI: 10.1007/978-3-319-25007-6 15
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Example 1. For instance, in Figure 1, there are two correspondences:
“O2:Serial writer is subsumed by O1:Successful creator”and “O2:Serial writer is equiv-
alent to O3:Popular writer”. Subsumption and equivalence are encoded in A5 as
{=, <} and {=} respectively. By composing these relations we infer a correspon-
dence between O1:Successful creator and O3:Popular writer:

(
Successful creator, Serial writer, {=}) ∗ (

Serial writer, Popular writer, {=, <})

=
(
Successful creator, Popular writer, {=} ∗ {=, <})

=
(
Successful creator, Popular writer, (= ∗ =) ∪ (= ∗ <)

)

=
(
Successful creator, Popular writer, {=} ∪ {<})

=
(
Successful creator, Popular writer, {=, <})

However, the algebra of relations A5 suffers from two problems:

1. A5 covers relations only between classes. This leaves out of scope the relations
owl:sameAs (noted =), owl:differentFrom (noted �=), which are defined between
instances, and the instance-class relation rdf:type (∈). Compositional reasoning
with these relations may be used for debugging link sets as shown by Example 1.

Example 2. In Figure 1, composing {<,=} ∗ {=} ∗ {⊥} is equivalent to {⊥},
i.e., “Mystery novelist” and “Academic” are disjoint classes. This leaves aside
further relation composition. Indeed, one would like that {∈}∗{⊥}∗{�} actually
yields {�=}, i.e., “Amanda Cross” is different from “Carolyn Gold Heilbrun”. This
would be very useful for debugging data sets since the actual relation between
these individuals is {=} so the intersection of these relations is empty revealing
unsatisfiability.

However, this requires to compose class relations (⊥) and individual-class
relations (∈). Moreover, this composition yields an individual relation (�=).

To make this work within the considered framework, one needs an algebra
incorporating all these relations. This would allow for encoding such RDF triples
as correspondences and use them for the refinement and evolution of alignments.

2. The algebraic calculus that A5 induces on alignments does not allow for distin-
guishing between unsatisfiability and incoherence of alignments. An alignment

Table 1. Composition table of A5.

* = > < � ⊥
= = > < � ⊥
> > > =><� >� >�⊥
< < =><�⊥ < <�⊥ ⊥
� � >�⊥ <� =><�⊥ >�⊥
⊥ ⊥ ⊥ <�⊥ <�⊥ =><�⊥
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O2

O3

O1

Successful
creator

Amanda Cross

Serial
writer

Mystery
novelist

Carolyn Gold Heilbrun

Author

Popular
writer

Academic

≥

≤ ≥
∈

= ⊥

∈

=

≥

Fig. 1. An example of unsatisfiability in a linked data sets that can be detected through
simple composition of relations across ontologies, data, links and correspondences.

is satisfiable if it has a model, and coherent, if it does not force incoherence on
any of its entities. If, by applying algebraic reasoning on alignments, we deduce a
correspondence

(
C, D, ∅

)
, then it means that the alignments are algebraically

inconsistent. However, algebraic inconsistency does not imply unsatisfiability, as
one would expect. This is illustrated in Example 3.

Example 3. Consider an alignment A with two correspondences between the
same pair of entities: μ =

(
C, D, {⊥}) and υ =

(
C, D, {<,=})

. Their conjunc-
tion is equal to

(
C, D, ∅

)
:

μ ∧ υ =
(
C, D, {⊥}) ∧ (

C, D, {<,=})
=

(
C, D, {⊥} ∩ {=, <}) =

(
C, D, ∅

)
.

This means that A is algebraically inconsistent. But A has models, thus it is
not unsatisfiable. Indeed, if C is interpreted as the empty set, then, whatever the
interpretation of D, both μ and υ are satisfied by this interpretation. However,
A is incoherent, since it does not allow the class C to have instances.

In this paper, we introduce a new algebra of relations A16, which
solves these limitations of A5. A16 incorporates the relations “same as”
(owl:sameAs), “different from” (owl:differentFrom), “is a” (rdf:type), “is not”,
“equivalent to” (owl:equivalentClass), “subsumed by” (rdfs:subClassOf), “disjoint
with” (owl:disjointWith), “partially overlaps with” in compliance with OWL
semantics. The calculus that A16 induces on alignments allows to differenciate
between unsatisfiability and incoherence of alignments.

The paper is structured as follows. In Section 2, we discuss the related
work. Section 3 covers some preliminaries, including networks of ontologies and
algebras of relations. In Section 4, we build the algebra A16 and establish its
soundness with respect to the direct semantics of alignments. In Section 5, we
discuss some changes that A16 brings to the calculus of alignments.
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2 Related Work

This paper is related to formal frameworks for distributed ontologies on the one
hand, and to the theory of qualitative calculi on the other hand.

Languages for distributed ontologies. There are several languages that allow
for expressing relations across ontologies. Among them are Distributed Descrip-
tion Logics (DDL) [3], ε-connections [12], Package-based Description Logics (P-
DL) [2], Integrated Distributed Description Logics (IDDL) [19] and Distributed
Ontology Language (DOL) [14].

Mappings between ontologies in DDL assert relations from the perspective
of the target ontology. Mappings between concepts are expressed as bridge rules,
and those between individuals as individual correspondences. The key feature of
DDL reasoning is subsumption propagation from one ontology to another. Sub-
sumption is not transitive in DDL, thus cannot be propagated by composition.
ε-connections are a framework for modular ontologies. Connection between onto-
logical modules are established with links, which act as inter-ontology properties.
A distinctive feature of ε-connections is that each ontology module is supposed
to model a portion of the domain that is complementary and non-overlapping
with respect to the other ontology modules. As the domains of ontologies in an
ε-connection system must be disjoint, it is not possible to have a concept in some
ontology module that has subconcepts or instances in another ontology. Ontology
importing, which is implemented in P-DL, allows for reusing concepts, relations
and individuals defined in one ontology inside another ontology. Alignments in
IDDL constitute a separate layer and can be regarded independently from ontolo-
gies. This makes possible to reason about alignments alone, considering them as
first class citizens. Some comparative analysis of DDL, ε-connections, P-DL and
IDDL can be found in [10,20].

An algebraic calculus of alignments is not intended as a proof theory for a
particular semantics of alignments. It is a framework, which allows to use custom
algebras of relations for inducing operations on alignments. In this paper, we
limit ourselves with taxonomical relations between classes and instances. We
design the algebra of taxonomical relations to be sound with respect to the
OWL semantics of relations [7]. In principle, algebras of ontology alignment
relations can be designed in compliance with other semantics as well, e.g., with
the integrated semantics used in IDDL.

Qualitative calculi. Algebras of relations have been used in knowledge repre-
sentation and reasoning, particularly in the spatio-temporal domain, since the
pioneering work of Allen [1]. Allen considered the universe of time intervals, for-
malized as pairs of real-valued endpoints, and defined 13 binary relations on that
universe. Between any two time intervals one and only one out of the 13 base
relations holds. This important property allows to factorize the infinite Boolean
algebra of binary relations over the universe into a finite Boolean algebra of
(qualitative) relations of interest. Moreover, these 13 base relations and their
arbitrary unions are closed under composition and converse. This allowed Allen
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to induce composition and converse on the Boolean algebra of relation symbols,
yielding an algebra called the interval algebra.

Allen put forward an algorithm for reasoning over relations between time
intervals based on constraint propagation. This algorithm decides the satisfia-
bility of a network of temporal constraints, consisting of variables ranging over
the universe of time intervals, and binary constraints on variables expressed by
elements of the interval algebra.

The interval algebra is an instance of Tarski’s relation algebra [18]. [13]
defined a class of qualitative binary constraint satisfaction problems (QBCSP),
which is a class of binary constraint satisfaction problems abstracted to relation
algebras. They generalized the constraint propagation algorithm of Allen to an
arbitrary relation algebra. Reasoning with relation algebras is studied in [4,9].

Meanwhile, calculi similar to Allen’s were developed in both temporal and
spatial domains. Among them are two variants of the Region Connection Cal-
culus: RCC5 and RCC8. In order to study the properties of RCC5, RCC8 and
many other calculi existing by that time within a single framework, Ligozat and
Renz [15] proposed a formal definition of the implicit concept of a qualitative
calculus. In the framework of Ligozat and Renz, a qualitative calculus arises from
a partition scheme over some universe. Such calculi can have a weaker algebraic
structure than relation algebras: they can be non-associative.

The development of this paper was initially based on the framework of
Ligozat and Renz. However, the algebra A16 that we construct does not arise
from a partition scheme, but from a more general construct which we call a
general partition scheme. We extend the result of Ligozat and Renz to general
partition schemes.

3 Preliminaries

3.1 Networks of Ontologies

Here we give a logical account of networks of ontologies in the sense of [6].

Definition 1 (Correspondence). Given two ontologies O and O′, with asso-
ciated entity languages Ent(O) and Ent(O′), and a set of alignment relations
R, a correspondence is a triple (e, e′, r), such that e ∈ Ent(O), e′ ∈ Ent(O′)
and r ∈ R.

A correspondence (e, e′, r) is an assertion that a certain pragmatic relation
denoted by the symbol r holds between the entities e and e′.

The entities can be restricted to a particular kind of terms of the ontology
language based on the ontology vocabulary, e.g., named entities. The entity lan-
guage can also be an extension of the ontology language. For instance, it can
be a query language, such as SPARQL [8], adding operations for manipulat-
ing ontology entities that are not available in the ontology language itself, like
concatenating strings or joining relations. The developments of this paper are
independent of the chosen entity language.



258 A. Inants and J. Euzenat

An important component of a correspondence is the relation that holds
between the entities. We fix a set of relations R that is used for expressing
the relations between the entities. The set R can contain relation symbols like
=, which is used by matching algorithms, or IRIs like http://www.w3.org/2004/
02/skos/extensions#broaderPartitive. Relations from ontology languages, such
as owl:sameAs, owl.differentFrom, owl:equivalentClass, owl:disjointWith, rdfs:subClassOf

or rdf:type, can also be used.
An alignment is defined as a set of correspondences.

Definition 2 (Alignment). Given two ontologies O and O′, an alignment is a
set of correspondences between pairs of entities belonging to Ent(O) and Ent(O′)
respectively.

Definition 3 (Network of ontologies). A network of ontologies (Ω,Λ) is
made up of a set Ω of ontologies and a set Λ of alignments between these ontolo-
gies. We denote by Λ(O,O′) the set of alignments in Λ between O and O′.

A correspondence is interpreted with respect to three features: a pair of
models from each ontology and a semantic structure, denoted as Δ. The class of
models of an ontology O is denoted as M(O).

Definition 4 (Satisfied correspondence). A correspondence μ = (e, e′, r) is
satisfied by two models m,m′ of O,O′ for some semantic structure Δ if and only
if (m(e),m′(e′)) ∈ rΔ, such that rΔ provides the interpretation of the relation r
in the structure. This is denoted by m,m′ |=Δ μ.

Three different kinds of semantic structures are outlined in [21]: simple, con-
textualized and integrated. Let us fix two ontologies O1 and O2 and their models
m1 and m2 with domains of interpretation D1 and D2 respectively. An integrated
semantic structure consists of functions εi from the local domains Di (i = 1, 2)
to a global domain D. A simple semantic structure is a particular case of inte-
grated structure: when D = ∪iDi and εi are canonical embeddings of Di into D.
Contextualized semantics is given by a family of binary relations rij (i = 1, 2)
between the local domains Di and Dj .

Below is an example of how relation symbols are interpreted with respect to
each semantics. As an example consider the semantics of the relation symbol 

depending on Δ.


simple(Δ) = {(X,Y ) : X ⊆ D1, Y ⊆ D2 and X ⊆ Y }

integrated(Δ) = {(X,Y ) : X ⊆ D1, Y ⊆ D2 and ε1(X) ⊆ ε2(Y )}

contextual(Δ) = {(X,Y ) : X ⊆ D1, Y ⊆ D2 and r12(X) ⊆ Y }

If Δ is simple, then 
Δ depends only on D1 and D2. In this case the seman-
tics of 
 corresponds to the interpretation of rdfs:subClassOf if we consider O1

and O2 as one large ontology. Likewise, the simple semantics of relation sym-
bols ⊥ (disjointness) and = (equivalence) corresponds to owl:disjointWith and
owl:equivalentClass.

http://www.w3.org/2004/02/skos/extensions#broaderPartitive
http://www.w3.org/2004/02/skos/extensions#broaderPartitive
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Definition 5 (Models of alignments). Given two ontologies O and O′ and
an alignment A between these ontologies, a model of this alignment is a triple
(m,m′,Δ) with m ∈ M(O), m′ ∈ M(O′), and Δ a semantic structure, such
that ∀μ ∈ A, m,m′ |=Δ μ (denoted by m,m′ |=Δ A).

An alignment is said to be satisfiable if it has a model. An alignment is said
to be coherent if, for any of its class entities, it has a model that makes this class
non empty.

3.2 Algebraic Calculus of Ontology Alignments

It was shown that algebras of relations are useful for managing ontologies [5].
The adopted algebraic formalism is Tarskian relation algebras.

Definition 6 (Relation algebra). A relation algebra is an algebra

A = (A,+, ·,−, 0, 1, ; , ,̆ 1′), (3.1)

with binary operations + (Boolean sum), · (Boolean product) and ; (composition,
or relative product), unary operations − (complement) and ˘ (converse), and
constants 0, 1, 1′ ∈ A called zero, unit and identity respectively, such that

1) the reduct (A,+, ·,−, 0, 1) is a Boolean algebra,
2) identity: 1′;x = x; 1′ = x, for all x ∈ A,
3) Peircean law: (x; y)·z = 0 ⇔ (x ;̆ z)·y = 0 ⇔ x·(z; y )̆ = 0, for all x, y, z ∈ A,
4) associativity: (x; y); z = x; (y; z), for all x, y, z ∈ A.

We will denote by A both the algebra and its carrier set. The class of relation
algebras is denoted as RA. In the sequel, by “algebra of relations” we will imply
an instance of RA, if not stated otherwise.

Consider an algebra of relations A. The approach put forward in [5] is that we
allow any element of A to be used in a correspondence. In other words, referring
to the previous subsection, we take R = A.

Each alignment may be normalized through norm to contain exactly one
correspondence between any two entities. A induces the following operations on
alignments:

A ∧ A′ = norm(A ∪ A′) (3.2)
A ∨ A′ = {(e, e′, r + r′) : (e, e′, r) ∈ norm(A) ∧ (e, e′, r′) ∈ norm(A′)} (3.3)

A˘ = {(e′, e, r )̆ : (e, e′, r) ∈ A} (3.4)

If there exists an alignment between ontology O and ontology O′, and another
alignment between O′ and a third ontology O′′, we would like to find which
correspondences hold between O and O′′. The operation that returns this set of
correspondences is called composition.

A ◦ A′ = norm({(e, e′′, r; s) : ∃ (e, e′, r) ∈ A and ∃ (e′, e′′, s) ∈ A′}) (3.5)
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We can regard a network of ontologies as a directed graph, with ontologies
being vertices and alignments being edges. Moreover, one can assume that there
is at most one alignment between any pair of ontologies in the network. A closure
of a network of ontologies can be computed by applying a path-consistency
algorithm, e.g., PC2 [16], which in essence is an iterative application of

AOi,Oj
← AOi,Oj

∧ (AOi,Ok
◦ AOk,Oj

), (3.6)

for every triple (Oi,Oj ,Ok) of ontologies in Λ, until a fixed point is reached.

3.3 Algebras of JEPD Binary Relations

In general terms, a connection between an algebra of relations and some domain
of knowledge is given by specifying a universe of objects and a set of base rela-
tions. For example, the universe of Allen’s interval algebra is the set of time
intervals encoded as pairs of real numbers (x, y), where x > y, whereas base
relations are defined by certain conditions on the endpoints of two intervals.
Here we give an account of algebras that arise from a set of jointly exhaustive
and pairwise disjoint (JEPD) binary relations.

A binary relation over a nonempty set U is a subset of the Cartesian prod-
uct U × U . The converse (also called inverse) of a binary relation R is a rela-
tion symmetric to R, defined as R−1 = {(x, y) : (y, x) ∈ R}. The relation
IdU = {(x, y) ∈ U × U : x = y} is called the identity over U . Composi-
tion of binary relations R and S is defined as R ◦ S = {(x, y) ∈ U × U :
∃z ∈ U such that (x, z) ∈ R and (z, y) ∈ S}. The field of a binary relation R is
defined as Fd(R) = {x ∈ U : ∃y, (x, y) ∈ R or (y, x) ∈ R}.

A set P of binary relations over U is called jointly exhaustive and pairwise dis-
joint, if ∪R∈PR = U × U and R ∩ R′ = ∅ for each R �= R′ ∈ P. Such P is called a
partition of U ×U . We will assume P to be finite. Relations in P are called base rela-
tions. We call an arbitrary union of base relations a P-relation. P-relations form a
subalgebra of the Boolean algebra U ×U , in which the base relations are atoms. If a
P-relation is a union of two or more base relations, it is called a disjunctive relation.
Each P-relation is identified by the set of constituting base relations, thus there is
a one-to-one correspondence between the set of P-relations and the powerset 2P .
In the sequel a set of base relations {R1, . . . , Rn} ⊆ P will denote their union.

Generally speaking, composition of P-relations may not be a P-relation. In
other words, ◦ may not be closed on the set of P-relations. One can approximate
the composition by a so-called weak composition �, defined as the least P-relation
which contains the composition. Weak composition is a binary operation on P-
relations (� : 2P × 2P → 2P).

A partition scheme is a pair (U ,P), where U is a nonempty set and P =
(Ri)i∈I is a partition of U × U , which is closed under converse and contains the
identity over U . Given a partition scheme, both weak composition and converse
become operations on the Boolean algebra 2P . The algebra

AP = (2P ,∪,∩,−U×U , ∅,P, �,−1 , IdU ) (3.7)

is said to be generated by P.
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Proposition 1 (Ligozat and Renz [15]). If (U ,P) is a partition scheme,
then AP satisfies all axioms of RA, except, possibly, the associativity axiom.

An algebra of relations which satisfies all axioms of RA except possi-
bly the associativity axiom is called a non-associative algebra [17]. The
class of non-associative algebras NA is broader than RA. Assume A =
(A,+, ·,−, 0, 1, ; , ,̆ 1′) ∈ NA, x ≤ y is used as a shortcut for x + y = y. By
At(A) we denote the set of atoms of the Boolean reduct of A.

Any finite non-associative algebra A is fully specified by its atom structure.
The atom structure of an algebra A consists of the set of atoms At(A), the set
of identity atoms At(1′) ⊆ At(A), the converse restricted to atoms ˘ : At(A) →
At(A) and the composition restricted to atoms, which is a function CT : At(A)×
At(A) → 2At(A) defined by z ∈ CT (x, y) iff x; y ≤ z. CT is usually specified by
a composition table. The triples (x, y, z), where x, y and z are atoms and which
satisfy x; y ≤ z are called consistent scenarios. In order to find the consistent
scenarios of AP , one has to find all triples (Ri, Rj , Rk) of base relations, for which
∃x, y, z, such that (x, y) ∈ Ri, (y, z) ∈ Rj and (x, z) ∈ Rk.

A non-associative algebra is said to be integral if the composition of any
non-zero elements, i.e., those different from 0, is non-zero. A finite AP is integral
iff the composition of any two base relations is not equal to the empty set.

4 An Algebra of Qualitative Taxonomical Relations

In this section, we define an algebra, which contains the relations “equivalent to”,
“subsumed by”, “disjoint with”, “same as”, “different from”, “is a” and “is not”.
We call an ontology alignment relation taxonomical, if it is associated with some
set-theoretic relation (predicate) R. For instance, subsumption 
 is associated
with the set-theoretic inclusion ⊆. A taxonomical relation holds between two
ontological entities iff the relation R holds between the interpretations of these
entities. A set-theoretic relation R is said to be qualitative, if, for any pair of
sets (x, y), xRy is characterized by 3 parameters: whether each of the sets x∩ y,
x\y, y\x is empty or not.

All relations listed above are taxonomical and qualitative (if interpreted with
the simple semantics of alignments). The simple semantics of alignments assumes
a common domain of interpretation for all ontologies in a network. Given an arbi-
trary infinite domain D, the relations “same as” and “different from” correspond
to binary relations = and �= on D, “equivalent to”, “subsumed by” and “disjoint
with” correspond to binary relations ≡, ⊆ and ⊥ on 2D, and finally “is a” and
“is not” correspond to ∈ and �∈ on D × 2D. Thus, the binary relations =, �=, ≡,
⊆, ⊥, ∈ and �∈ are defined on the set D ∪ 2D, which we will call a universe and
denote as U (D). We will refer to the elements of D as individuals, and to the
elements of 2D as sets.

The relations
G = {=, �=,≡,⊆,⊇,⊥,∈, �∈,�, ��}, (4.1)

where ⊇=⊆−1, �=∈−1 and ��=�∈−1, are not JEPD. What is the minimal parti-
tion P of U (D) ×U (D) that has relations in G as P-relations? Since U (D) ×U (D)



262 A. Inants and J. Euzenat

is a Boolean algebra, the question is to find its subalgebra generated by G.
Atoms of the sought-after subalgebra are nonempty intersections of generators
(the elements of G in our case) and their complements. This yields a partition
P14 with 14 base relations, which are defined below:

=n (α, β) iff α, β are nonempty sets and α = β

< (α, β) iff α, β are nonempty sets and α ⊂ β

> (α, β) iff α, β are nonempty sets and α ⊃ β

� (α, β) iff α, β are sets and α\β, α ∩ β, β\α �= ∅

‖ (α, β) iff α, β are nonempty sets and α ∩ β = ∅

EN(α, β) iff α = ∅, β is a nonempty set
NE(α, β) iff α is a nonempty set and β = ∅

=e (α, β) iff α = β = ∅

∈ (α, β) iff α is an individual, β is a set and α ∈ β

� (α, β) iff α is a set, β is an individual and α � β

�∈ (α, β) iff α is an individual, β is a set and α �∈ β

�� (α, β) iff α is a set, β is an individual and α �� β

=i (α, β) iff α, β are individuals and α = β

�=i (α, β) iff α, β are individuals and α �= β

The relation ⊥, for instance, is equal to the P14-relation {‖, EN,NE, =e}. P14

is closed under converse, but the identity relation IdU(D) does not belong to
P14. It is a disjunctive P14-relation with three identity atoms: =n, =e and =i.
Therefore, (U (D),P14) is not a partition scheme. Below we define a broader class
of partitions that includes P14.

Definition 7 (General partition scheme). Let P = (Ri)i∈I be a partition of
U × U . (U ,P) is called a general partition scheme if P is closed under converse
−1 and the identity IdU is a P-relation (possibly disjunctive).

The following proposition ensures that the algebra AP14 (or simply A14) gener-
ated by P14 is a non-associative algebra.

Proposition 2. Let P = (Ri)i∈I be a partition of U × U , such that it is closed
under converse and the identity IdU is a P-relation (possibly disjunctive). Then
the algebra AP generated by P is a non-associative algebra.

Proof. IdU �Ri = IdU ◦Ri = Ri = Ri ◦IdU = Ri �IdU . The Peircean law follows
from the fact that Ri � Rj ∩ Rk = ∅ iff Ri ◦ Rj ∩ Rk = ∅ [see 15, Lemma2].

The composition table of A14 is given in Table 2. The presence of empty cells
in the composition table means that the algebra A14 is nonintegral.

A14 is not associative. For instance,

=e �(1 � 1) = (=e �1) = {EN, =e, ��},
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Table 3. Composition tables of A16.

� =n > < � ‖ � ��ni NE

=n =n > < � ‖ � ��ni NE

< < =n><�‖ < <�‖ ‖ ���ni ��ni NE

> > > =n><� >� >�‖ � ���ni NE

� � >�‖ <� =n><�‖ >�‖ ���ni ���ni NE

‖ ‖ ‖ <�‖ <�‖ =n><�‖ ��ni ���ni NE

∈ ∈ ∈�∈in ∈ ∈�∈in �∈in =i �=i �=i IE

�∈in �∈in �∈in ∈�∈in ∈�∈in ∈�∈in �=i =i �=i IE

EN EN EN EN EN EN EI EI =e

� =i �=i ∈ �∈in IE

=i =i �=i ∈ �∈in IE

�=i �=i =i �=i ∈�∈in ∈�∈in IE

� � ���ni =n><� >�‖ NE

��ni ��ni ���ni <�‖ =n><�‖ NE

EI EI EI EN EN =e

� =e EN EI

=e =e EN EI

NE NE =n><�‖ ���ni

IE IE ∈�∈in =i �=i

whereas

(=e �1) � 1 = {EN, =e, ��} � 1 = {=n, >,<, �, ‖,=e EN,NE,�, ��}.

How to refine the partition P14 so that it generates an associative algebra, i.e., a
relation algebra? The following proposition defines a condition, which a sought-
for refined partition scheme must satisfy.

Proposition 3. Let (U ,P) be a general partition scheme. If the algebra AP is
associative, then for any base relation R ∈ P there exist identity atoms Idi, Idj ∈
P such that R ⊆ Fd(Idi) × Fd(Idj).

Proof. From Theorem 3.5 [17] it follows that if A ∈ RA, then x;x˘·1′, x ;̆x ·1′ ∈
At(A) for all x ∈ At(A). Applied to AP we obtain that (∀R ∈ P) (∃Idi, Idj ∈ P)
(R�R−1)∩IdU = Idi and (R−1�R)∩IdU = Idj. (∀(x, y) ∈ R) (x, x) ∈ (R�R−1)∩
IdU and (y, y) ∈ (R−1�R)∩IdU , hence x ∈ Fd(Idi) and y ∈ Fd(Idj). Therefore,
(x, y) ∈ Fd(Idi) × Fd(Idj), from which follows that R ⊆ Fd(Idi) × Fd(Idj).

The fields of the identity atoms =n, =e and =i are:

Fd(=n) = 2D\{∅}, Fd(=e) = {∅}, Fd(=i) = D.
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Proposition 3 contains a necessary condition for a general partition scheme
to generate a relation algebra. The fact that the algebra generated by P14 is
not associative implies that P14 violates this condition. More concretely, this
condition fails on the base relations �∈ and ��. Indeed, �∈ is contained in D×2D, but
it is contained in neither D × (2D\{∅}) nor D × {∅}. The necessary refinement
of P14 is the following: �∈ splits into �∈in and IE, likewise �� splits into ��ni and
EI. We denote the refined partition as P16. The refined base relations are:

�∈in (α, β) iff α is an individual, β is a nonempty set and α �∈ β

IE(α, β) iff α is an individual, β = ∅

��ni (α, β) iff α is a nonempty set, β is an individual and α �� β

EI(α, β) iff β is an individual, α = ∅

Weak composition of the algebra A16, which is generated by P16, is specified
in Table 3. It is given by three composition tables. If the composition of two
relations is not given by either table, then it is equal to zero.

Proposition 4. A16 is a relation algebra.

Proof. Associativity can be checked manually, whereas satisfiability of the
remaining axioms of RA follows from Proposition 2.

5 The Calculus of Alignments Revisited

The calculus of alignments defined in [5] assumes that all ontology alignment rela-
tions are elements of an algebra of relations, and vice versa. However, this scheme
does not work with A16. In A16, not all relations are meaningful enough to be used
in alignments. Here we consider the set of base relations independently from the
algebra A16.

Let R be the set of base ontology alignment relations (relation symbols):

R = {≡,�,�, �,⊥,∈, �∈,�, ��,=, �=}. (5.1)

R is so to speak an interface for the algebra A16. Ontology alignment relations
are then refined as disjunctions of symbols in R, denoted as R∨. The relations
≡ ∨ � and ≡ ∨ � are abbreviated as 
 and � respectively.

We distinguish between two kinds of atoms in A16: coherent and incoherent.

Atcoh(A16) = {=n, <,>, �, ‖,∈, �∈in,�, ��ni,=i, �=i} (5.2)
Atincoh(A16) = {=e, EN,NE,EI, IE} (5.3)

Coherent atoms correspond to base ontology alignment relations. A relation
r ∈ A16 is said coherent if all its atoms are coherent. Coherent(r) denotes the
set of coherent atoms in r, and Coherent(A), the set of coherent relations in A.

We further define a function φ from R to A16 (given in Table 4). This function
is naturally extended on R∨, so that φ(r∨s) = φ(r)∪φ(s). Coherent relations of
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Table 4. The function φ from ontology alignment relations R∨ to the algebra A16.

Base OA relation r Synonyms φ(r)

≡ owl:equivalentClass =n,=e

� less general than <, EN
� more general than >, NE
� partially overlaps with �
⊥ owl:disjointWith ‖,=e, EN, NE
∈ is a, rdf:type ∈
�∈ is not �∈in, IE
� �
�� ��ni, EI
= owl:sameAs =i

�= owl:differentFrom �=i

A16 are in a one-to-one correspondence with ontology alignment relations. This
is given by a function η:

η : Coherent(A16) → R∨. (5.4)

The operations on alignments with relations from A16 are defined in the
same way as in Section 3.2. The difference is that we add a correspondence
interpretation level. Let μ =

(
e, e′, r

)
be a correspondence, in which r ∈ A16.

– If r = ∅, then μ is inconsistent.
– If r contains only incoherent atoms (Coherent(r) = ∅), then μ is incoherent.
– In all other cases r is interpreted as η(Coherent(r)) ∈ R∨.

For instance, assume that we want to compose the correspondences μ =(
e, e′, ⊥ )

and υ =
(
e′, e′′, 
 )

. In A5 the relations ⊥ and 
 are considered as
shortcuts for the elements {⊥} and {<,=} respectively. Thus,

μ ◦ υ =
(
e, e′, {⊥}) ◦ (

e′, e′′, {<,=})

=
(
e, e′′, {⊥} ◦ {<,=}) =

(
e, e′′, {<, �,⊥}).

To compose the correspondences with A16, we first get the elements which cor-
respond to ⊥ and 
 (using the function φ) and then compose them:

(
e, e′, {‖,=e, EN,NE}) ◦ (

e′, e′′, {=n, <,=e, EN})

=
(
e, e′, {‖,=e, EN,NE} ◦ {=n, <,=e, EN})

=
(
e, e′′, {=, >,<, �, ‖,=e, EN,NE}).

Finally, μ ◦ υ =
(
e, e′′, η(Coherent({=n, >,<, �, ‖,=e, EN,NE}))

)

=
(
e, e′′, ≡ ∨ � ∨ � ∨ � ∨ ⊥ )

.

This means that we have not deduced anything useful between e and e′′. Indeed,
if e′ is interpreted as an empty set, then for any interpretation of e and e′′ the
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correspondences μ and υ will hold. But if we add one more correspondence,
which guarantees that e′ is not empty, e.g.,

(
e′′′, e′, ∈ )

or
(
e′′′, e′, �

)
, then,

by computing the algebraic closure of these three correspondences, we would
deduce

(
e, e′′, � ∨ � ∨ ⊥ )

.

6 Discussion and Future Work

The algebra that we introduced in this paper, A16, covers all qualitative relations
between ontology entities from the taxonomy perspective. It is better than A5,
which we considered in previous work, in two ways:

– A16 combines class-level and instance-level relations within a single algebra,
– the calculus that it induces on alignments allows to tell between unsatisfia-

bility and incoherence of alignments.

Here are some issues that should be worth of consideration.

Non-taxonomical relations. Algebras of relations for ontology alignment are not
limited to taxonomical relations. For example, one may build an algebra of rela-
tions from biomedical ontologies like SNOMED CT or NDF-RT, using relations
like snomed:hasActiveIngredient or ndfrt:mayTreat. Such an algebra can have, for
example, a composition rule hasActiveIngredient ◦ mayTreat = mayTreat.

Algebraic formalism. The algebra considered is this paper satisfies the axioms of
RA. But weaker structures can be used as algebras of ontology alignment rela-
tions, e.g., non-associative algebras [17], or Boolean algebras with operators [11].

Non-simple semantics of alignments. Here we adopted the simple semantics
of alignments. However, algebraic calculi can potentially be adopted to other
semantics as well, like the integrated semantics, which is more tolerant to het-
erogeneity.
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Abstract. The iterative user interaction approach for data integration
proposed by Falconer and Noy can be generalized to consider interactions
between integration tools (generators) that generate potential schema
mappings and users or analysis tools (analyzers) that select the best
mapping. Each such selection then provides high-confidence guidance
for the next iteration of the integration tool. We have implemented this
generalized approach in CogMap, a matching system for both property
and instance alignments between heterogeneous data. The generator in
CogMap uses the instance alignment from the previous iteration to cre-
ate high-quality property alignments and presents these alignments and
their consequences to the analyzer. Our experiments show that multiple
iterations as well as the interplay between instance and property align-
ment serve to improve the final alignments.

1 Introduction

In recent years, companies have spent more and more effort in building knowledge
graphs based on light-weight ontologies, which incorporate data from multiple
heterogeneous sources (which we will henceforth call “information stores”). A
key challenge of these efforts is determining the best alignment of the schema
of a new store to the ontology of the knowledge graph, while minimizing the
“manual” analytical effort required of a human knowledge engineer.

Most of the current ontology alignment systems, such as those evaluated
recently in the annual ontology alignment evaluation initiative [1], have several
limitations. Most of these alignment algorithms solve one integration problem
(deriving a mapping between two ontologies) using a fully-automated, “one-shot”
approach. Thus, they are often not able to improve by iterating over previous
alignments. Partly for this reason, the results of fully automated algorithms
are often error prone [32] and cannot be reliably used for high-quality data
integration.

Currently much information to be integrated is obtained from non-ontological
sources such as relational databases or XML documents. Classical ontology align-
ment systems are often not able to process this data [1]. To address this need,
systems like OntoDB [20] and standards like D2RQ [3] have emerged. However,
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these solutions do not include semi-automated alignment algorithms which take
instance information into account.

Our approach, implemented in the CogMap system, follows a cognitively-
inspired, iterative approach. With multiple iterations the system is able to
improve over time, since it builds on the results of previous iterations (or, in
the case of the first iteration, seed queries given by the user). At each iteration,
the results are augmented with new information that has been verified by a user
or automated verification capability.

CogMap uses instance information to perform property alignment. While
most state-of-the-art schema alignment algorithms do not take instance infor-
mation into account, focusing exclusively on the alignment of classes and prop-
erties and mainly considering their labels or structural information [7,29], using
instance matching has attended more and more attention over the last years [16].

CogMap explores instances by not only focusing on data properties but
also taking object properties into account. In the case of databases, it follows
foreign keys; with RDF information stores it explores sub-tags. To the best of our
knowledge, there exists no other approach which explores the space of potential
mappings between information stores as we do.

CogMap is not restricted to the alignment of information based on formal
ontologies. It also supports relational databases and XML documents, which can
serve either as the source or the target of an alignment. In addition, CogMap
allows support for other data formats to be added in a modular fashion.

2 Related Work

Many schema alignment systems have been developed in ontology matching. The
development of these systems has largely been driven by the available benchmark
datasets of the ontology alignment evaluation initiative. An overview of the
current systems and their evaluation is given by Grau et al. [14]. The most
important datasets, however, cover only a small problem space.

Although most ontology matching systems ignore instances, there exists
a strand of literature which combines schema alignment and instance align-
ment [16]. Bilke and Naumann [2] developed an approach that first aligns
instances and uses this information for schema alignment. Their evaluation is
based on artificially populated data whereas we employ real-world data infor-
mation stores like Freebase and DBpedia. Bilke et al. [1,26], Thor et al. [34],
Gal [12], and Leme et al. [24] use instances to align schema and resolve conflicts.
Another fully automated system that integrates both schema and instance align-
ment is Paris [33]. Its algorithms are, however, resource intensive, in some cases
taking days to produce a solution. In contrast, the CogMap algorithms are much
less resource intensive and can be run on a typical desktop computer. Wang et
al. investigates the problem of having only a few non-overlapping instances by
approaching the mapping problem as a classification problem. However, this
approach is limited to mapping concepts and ignores properties. Duan et al. [5]
use hashing techniques to speed up instance-based matching. Nunes et al. [30]
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present an instance-based algorithm for complex data property matching. A
prominent example is the system RiMOM, which dynamically combines several
alignment strategies including instance alignment [25]. Due to its recent excel-
lent achievements at the ontology alignment evaluation initiative, we chose this
system for our evaluation.

To the best to our knowledge, none of these approaches is exploring object
properties with an iterative cognitive support approach. QuickMig [4] is a
migration tool for database systems which follows a semi-automated approach.
However, it considers only exact value matches and their results are not used to
improve the ongoing iterations.

A smaller number of systems utilize learning. A prominent example is
SILK [17–19] which learns expressive linking rules by using genetic program-
ming. However, its target user is a technical expert who can, e.g., analyse complex
matching trees while CogMap focuses on domain experts by hiding technical
complexity. LIMES [27] focuses on runtime improvements by using the triangle
inequality. However, it does not allow a user-centric iterative approach. Further-
more, neither system is able to map data properties to object properties, which
is required by the real-world datasets we examined. (See the algorithm section
for details.)

Recently, the ontology alignment evaluation initiative initiated an interac-
tive track which simulates interactive matching [31], where a human expert is
involved to validate mappings found by the matching system. The client was
modified to allow interactive matchers to ask an oracle, which emulates a per-
fect user. The interactive matcher can present a correspondence to the oracle,
which then tells the user whether the correspondence is right or wrong. How-
ever, the initiative uses a dataset which does not contain any instance data and
thus is not suitable for evaluating our approach. The two most successful par-
ticipating systems 2014 were AML[11] with respect to gained f-measure due to
the interactive approach and LogMap [22] with respect to efficiency (number
of interactions required). We have included both systems in our evaluation.

Tools have been developed to support the alignment of databases to ontolo-
gies. One example is OnTop (ontop.inf.unibz.it), which provides a Protégé
plug-in to facilitate the creation of integration rules. OnTop focuses on fast exe-
cution of already existing data integration rules, but not on the (semi-)automated
construction of them. Furthermore, its target ontology is assumed to be small
and to contain only schema information but no instance information. There have
also been attempts to build graphical tools for supporting the user in data inte-
gration. Karma [23], for example, loads data from different information stores
and uses instance information for schema alignment. However, its approach is
different from our algorithm. Karma learns the general structure of fields based
on previous alignments made whereas CogMap operates on instance informa-
tion. Two disadvantages of Karma’s approach are that it generally assumes that
fields (e.g., ids) have similar structures in different datasets and its algorithms
require a large amount of training data.

ontop.inf.unibz.it
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3 The Cognitive Support Approach

Researchers in ontology and schema matching have recently recognized the need
for various types of cognitive support in aligning complex conceptual models
[8,10]. Most approaches are based on advanced visualization of the models to be
integrated and the mappings created by the user [13]. While the appropriate use
of visualizations is known to be a key aspect for successful manual data integra-
tion, visualizations quickly reach their limits in the presence of very complex or
very large models.

Fig. 1. The cognitive support model for data integration by Falconer [9].

Fig. 2. Modified cognitive support Model as implemented in CogMap.
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As a result, recent work has tried to go beyond pure visualization support to
include cognitively efficient interaction strategies to support the user [9]. Falconer
[8] proposed an interactive strategy for data integration where the integration
task is distributed between the user and the tool (Figure 1). The MappingAssis-
tant [32] project used a modified cognitive support model for data integration,
focusing on detecting and correcting incorrect data integration rules.

In our implementation of the cognitive support model, which we call
CogMap, we go one step further and allow the “user” to be either a human user
or an intelligent automated agent. Thus, in our implementation of the cognitive
support model (Figure 2), we distinguish between an analyzer and a generator,
instead of a user and a tool.1

In each iteration, CogMap extracts data based on the results of previous
iterations (or, in the first iteration, based on given seed queries), generates prop-
erty correspondence suggestions, and computes the consequences for the top
suggestions. These consequences are the instances that would be aligned if the
analyzer selects (verifies) this property correspondence. Next, CogMap sends
the ranked correspondences and their consequences to the analyzer. The ana-
lyzer then inspects this information and selects a correspondence. The selected
property correspondence, and the resulting instance alignment, are added to
the evolving results sets, which allows the system to improve its suggestions in
subsequent iterations. The algorithm terminates when no properties remain to
generate new correspondences, or no correspondence is selected by the analyzer.

CogMap is designed to cope with many different types of data stores,
in many different formats. We currently have implemented support for RDF
accessed via SPARQL, relational databases, and general XML based files. This
list is easily extended by implementing our Connector interface.

4 Algorithm

The primary focus of the CogMap algorithm (Algorithm 1) is to construct
property correspondences and instance alignments. An alignment (or mapping)
consists of a set of correspondences. According to Euzenat et al. [6], a correspon-
dence is a 4-tuple 〈es, et, r, c〉, where es and et are source and target entities, r
is a semantic relation, and c is a confidence value (usually, c ∈ [0, 1]). Like most
ontology alignment systems [1], we focus on equivalent relations 〈es, et,≡, c〉.

The algorithm can be split into three phases. The data extraction (lines
4-6) and data exploration (lines 13-16) phases are only executed in the first
iteration (i = 0). The alignment generation and selection (lines 7-12) phase
is repeated until no more correspondences are found. This phase includes the
decision making of the analyzer. The following subsections will explain the phases
in more depth.
1 As stated, the analyzer can be a human. As this paper is about the effectiveness

of the overall approach, we only use simple agents. Sophisticated automated agents
or humans can utilize world knowledge or judgements to select bettter alignments
instead of just picking the highest-scoring ones.
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4.1 Data Extraction and Exploration

We adapt the terms data property, object property, and instances from the
semantic web literature, extending them to databases and XML documents in
an obvious fashion. For example, instances include database rows and XML
nodes.

In the data extraction phase, we extract all data property names and their
corresponding values for M instances into a source table Ts and a target table
Tt (line 5). The left block (2nd column) of Table 1 illustrates the general form
of Ts and Tt after extraction.

In the data exploration phase, we explore the search space by following object
properties. In other words, for each object property op of an instance i, we
examine the object which is the value of that property. Then, for each data

Algorithm 1 High-level algorithm of CogMap.
Input: Ss, St: Seed queries for source and target
Input: M : number of extracted instances of each information store (default: 5000)
Input: k: number of suggestions (default: 5)
Output: X , Y: Set of user-verified property correspondences and instance correspon-
dences

getAlignments

1: X , Y ← ∅
2: i ← 0
3: repeat

� Data Extraction
4: if i=0 then
5: Ts, Tt ← Extract M instances and their data properties and values based on

seeds Ss and St.
6: end if

� Alignment Generation and Selection
7: Xi ← Compute top-k property correspondence suggestions based on Ts, Tt and

Y (if not empty).
8: for every x ∈ Xi do
9: Yx ← Compute instance alignment consequences for x based on Ts, Tt and Y

(if not empty).
10: end for
11: Analyzer selects the optimal x ∈ Xi based on Xi and {Yx| x ∈ Xi}.
12: add x to X , Y ← Yx.

� Data Exploration
13: if i=0 then
14: Is, It ← Extract source and target instance sets from instance alignment Y.
15: Ts, Tt ← Extend tables by following the object-property assertions of Is and

It.
16: end if
17: i ← i + 1
18: until No more suggestions found
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Table 1. General form of source and target table. Initially, the direct data proper-
ties and the corresponding data are imported (left block). Second, and subsequent,
steps further explore the data by including object properties (right blocks). (dp=data
property, op= object property, i = instance, and v = value).

opa opb

dp1 · · · dpn dp1,a · · · dpn,a

i1 v1,1 · · · v1,n v1,1,a · · · v1,n,a · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
im vm,1 · · · vm,n vm,1,a · · · vm,n,a · · ·

property of that object, we add its value to the row for i. Thus, the right blocks
of Table 1 (opa, opb, · · · ) are added during this phase. The reason this exploration
happens at the end of the first iteration (i = 0, line 13-16) is that there may
exist many object properties to follow. This often leads to a large amount of
data. Thus, the idea is to restrict the exploration to the smaller instance sets
Is and It. These instance sets are extracted from the first instance alignment Y
(line 15) such that Is = {es|〈es, et,≡, c〉 ∈ Y} and It = {et|〈es, et,≡, c〉 ∈ Y}.
Then, CogMap only follows the object properties for the instance sets Is and
It which are usually much smaller.

For RDF repositories we utilize SPARQL queries to access data. We do not
rely on the completeness of domain and range restrictions for extracting prop-
erties, since they are often poorly defined (e.g., in DBpedia). Instead we take
the distinct set of all properties of the relevant instances (those retrieved by S
for extraction or those identified as values of object properties for expansion)
as the relevant data properties. For relational data extraction, we just add the
limit M to the seed SQL query S, execute the query, and store the result in
table T . For exploration, we follow the foreign keys according to the definitions
in the database schema. For XML files, we extract every attribute and every
direct child node that has a primitive value from the initial XPath expression
S. We store both attribute and child node values as data properties in Table 1.
For the exploration phase, we inspect the children x of all non-primitive nodes.
From these nodes, we again store the values of every attribute and every direct
child node that has primitive values.

For some properties, a given instance may have multiple values. For sim-
plicity, we consider only single values in this presentation. In practice, we have
found the concatenation of multiple values to be effective. More sophisticated
strategies will be developed in future work. On the other hand, there may exist
properties and/or instances which have almost no assertions, especially in large
RDF knowledge bases and XML documents. To ensure the effectiveness of the
approach, those assertions might need to be ignored. To cope with that issue,
CogMap has an optional parameter φ to filter instances and data properties
with sparse value assertions.
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4.2 Alignment Generation and Selection

The goal of CogMap is to establish instance correspondences and correspon-
dences between data and object properties. In doing so, the space of ontology
elements (in RDF stores) or schema elements (in relational and XML stores)
that CogMap considers is constrained by the seed information S. In addition,
instance alignments are constrained by the domains and ranges of property align-
ments. For example, if we align a property es =id to a property et =movieName,
then the resulting instance alignment is bounded by Ss =movie and St =film as
domains. Thus, there is no need to consider possible correspondences involving
other instances in the information stores.

In addition to the standard data-property to data-property, object-property
to object-property, and instance to instance correspondences, we also support
object- and data-property to data-property correspondences (Example: et =
film/country/./name/ and es = movie/language).

Line 7 of Algorithm 1 first computes the top-k property correspondence sug-
gestions Xi. In the first iteration (i = 0), CogMap uses all available instance
data since no instance alignment exists yet (Y = ∅). For computational reasons,

Table 2. Selected implemented components.

Aggregators

Unions or joins of sets of correspondences. Average, maximum, or multiples of con-
fidence values if correspondences share the same source entity es and target entity
et.

Name Description Filters

TopKFilter Returns the top-k correspondences with the highest confi-
dence value c.

OneToOneFilter Returns a functional one-to-one alignment. We imple-
mented a greedy strategy. First, it orders the correspon-
dences in descending order. Then, it traverses through the
list and drops all correspondences whose entities es or et
have been already matched.

Name Description Property Matchers

PropertyNameMatcher Matches properties according to their name.
ValueLengthMatcher Matches properties p1 and p2 with close average value

length / close percentages of distinct row entries l1 and l2.
The similarity is computed with Min(l1, l2)/(Max(l1, l2).

DistinctValueMatcher

InstanceBasedMatcher If instance alignments Y = ∅, we align properties by con-
catenating all values of all instances for each property and
compute the string similarity. If Y �= ∅, we compute the
property similarities for every instance pair in Y separately
and average over the results.

Instance Matchers

Align instances by concatenating every value for every property and computing their
string similarity. If a specific property p is given, consider only values of that property.
If an instance alignment Y is given, traverse through that alignment and update the
similarities based on the string values of all the given property value(s).
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we use an implicit cutoff at this initial stage. In the following iterations, we can
improve the suggestions by considering the instance correspondences from the
previous iteration and comparing the property values only for the instance pairs
in Y. In these iterations, we do not apply any threshold but rank the correspon-
dences at the end.

Then, we compute the consequences Yx for the top-k suggestions Xi (line 8-
10). That is, for each of those suggested property correspondences, we compute
the instance alignment that will result if this correspondence is selected by the
analyzer. Initially (i = 0), all source instances are compared against all target
instances. In following iterations the instance alignment Y from the previous
iteration is used to compute the new alignment. The threshold applied for the
instance alignment equals the confidence value c of 〈e1, e2,≡, c〉 ∈ Xi.

The value of k is relatively unimportant here. As long as a correct corre-
spondence is in the top-k suggestions, the results of the approach will not be
significantly affected. We have found that k = 5 is generally adequate to achieve
this condition, and results in a reasonable load on human analysts. In an auto-
mated setting it would be easy to use a larger k, which might produce slightly
better results at the price of of somewhat longer run times (to score the extra
suggestions).

Finally, the analyzer selects the optimal x ∈ Xi based on the suggestions Xi

and the consequences {Yx| x ∈ Xi}. As noted above, this selection can either
be made by a human user or by an automated selection function that takes the
confidence value and the suggestions into account. In this paper, we use only
a simple automated agent that selects the best-scoring alignment. Employing
humans or more-sophisticated agents would presumably produce better results,
but then any advantage of the approach might only come from the intelligence in
the human or agent—using a simple agent means that the benefits come from the
overall alignment philosophy. (We plan to address elsewhere the user interface
issues associated with supporting selections by a human.) After selection of x,
we update the seed property alignment X and the seed instance alignment Y for
the next iteration.

CogMap supports many different components to match instances and prop-
erties. Every Filter, Aggregator, and Matcher is a component. Each compo-
nent has an execute() method, which returns a set of alignments.

The components are organized as a tree. The Matchers form the leaves. They
take a source table Ts, a target table Tt, a set of previously verified property
alignments X and a set of instance alignments Y from the previous iteration as
input. An Aggregator executes every component in the list cs and aggregate
the results. It might, for example, just take the maximum confidence value c
of all correspondences with equal entities es and et. A Filter reduces the size
of the alignment of its component after executing it. A simple filter might, for
example, only return the correspondences for which confidence values c are above
a certain threshold.

Table 2 lists a selection of implemented components and a short explanation
of their functionality. CogMap incorporates mechanisms to deal with different
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Table 3. Benchmark Statistics.

Benchmark (1) Benchmark (2)

DBpedia EPG Freebase Fandango
People Cast Film Movie

Format RDF RDB RDF XML
Data Properties 6 18 233 26
Object Properties 0 10 234 14
Instances 1,045,474 6,857 247,608 100,959

PropertyNameMatcher

UnionAvgAggregator

OneToOneFilter

InstanceBasedMatcher

UnionAvgAggregator

OneToOneFilter(A) (B)

Fig. 3. Experiment Configurations.

date and number formats, which are omitted here for brevity, and easy interfaces
to facilitate new component development. Figure 3 provides example trees built
from these components.

5 Evaluation

We have selected two natural alignment tasks using real-world data, assessed the
performance of CogMap on them benchmarks, and compared its performance
with that of AML, LogMap, and RiMOM.

5.1 Benchmarks

The first benchmark aligns all people from DBpedia in FOAF format (wiki.
dbpedia.org/Downloads39#persondata) with cast information of all programs
playing on TV in the U.S. over a two week window from a commercial Elec-
tronic Program Guide (EPG) database. The second benchmark aligns Freebase
films (www.freebase.com/film/film) with movie data from Fandango (www.
fandango.com). Table 3 provides details on the number of instances and proper-
ties of each benchmark.

We designed and selected these benchmarks because existing state-of-the-
art ontology alignment benchmarks, e.g., in the Ontology Alignment Evalua-
tion Intiative campaigns2, lack sufficient instance data, which are required by

2 See oaei.ontologymatching.org

wiki.dbpedia.org/Downloads39#persondata
wiki.dbpedia.org/Downloads39#persondata
www.freebase.com/film/film
www.fandango.com
www.fandango.com
oaei.ontologymatching.org
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CogMap. Because of the size of these benchmarks, it was not possible to pre-
pare in advance an official gold-standard. Instead, a human judge was employed
to grade the correctness of the alignment results, which we discuss below.

5.2 Experiment Setup

We used the following experiment setup to answer three key questions:

– What is the impact of implementing a cognitive support model for align-
ment?

– What is the impact of using instance data for alignment?
– How general is our solution?

We first setup our solution, CogMap, using configuration (A) in Figure 3. A
description of each component used in configuration (A) can be found in Table 2.
CogMap analyzes the property correspondences, and selects the one with the
highest confidence value to iterate on (see lines 11 and 12 of Algorithm 1).

We then created two variants of CogMap to answer the first two experimen-
tal questions above. We first created a variant—called InstMap—by ablating
the cognitive support model used by CogMap. InstMap still uses instance data
but does not iterate on the results to further improve alignment.

We also created a second variant—called Baseline—by ablating both the cog-
nitive support model and the use of instance data. Baseline performs alignment
using a property name matcher, but the other configuration components are the
same (see configuration (B) in Figure 3).

Moreover, we selected three state-of-the-art ontology alignment systems [15]
to compare CogMap against, in order to assess its practical impact. The three
systems are AML [11], LogMap [22], and RiMOM [25]. AML is focused on
computational efficiency and designed to handle very large ontologies. It is
the leading system in the conference and anatomy tracks of the 2014 ontol-
ogy alignment evaluation, in terms of f-measure. LogMap provides a scalable
logical ontology alignment framework. RiMOM automatically combines multi-
ple alignment strategies with the goal of finding the optimal alignment results.
We selected these systems because they are the most established systems in the
2014 ontology alignment evaluation, and an executable version is available to
the public.

Finally, we applied all systems above to both Benchmarks 1 and 2 to assess
their generality, and hence answer the third experimental question. Unless oth-
erwise noted, we set the number of instances to use from each benchmark to
M = 5000, and the fraction of non-null values required for each property to
φ = 0.1. We also converted each benchmark into the RDF OWL syntax because
many of the ontology matching systems compared cannot directly consume
databases or XML files.

All experiments were run on a desktop PC with 4GB of RAM and an Intel
i5 duo-core processor. We used Fast-Join [37] as the underlying matching algo-
rithm for instances. Fast-Join combines both token-based similarity (Jaccard,
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Table 4. Benchmark 1 results.

Baseline AML LogMap RiMOM InstMap CogMap

nDCG@3 0.38 0.76 0.38 0.38 0.76 1.00
nDCG@6 0.35 0.51 0.25 0.48 0.74 0.89

P@3 0.33 0.67 0.33 0.33 0.67 1.00
P@6 0.33 0.33 0.17 0.50 0.67 0.83

Runtime in sec 0.4 2.7 9.1 5.8 1.9 3.0

Cosine, or Dice) and string edit distance. Moreover, it is currently the fastest
matching algorithm (see [21]), by implementing efficient pruning and hash-
ing techniques, with soundness and completeness guarantees. This efficiency is
required because of our large benchmarks, which make it infeasible to compare
every source instance with every target instance.

The output of each system was graded by a human judge familiar with the
data sources in each benchmark3 using the metrics of Precision at n (P@n) and
the normalized (logarithmic) Discounted Cumulative Gain at n (nDCG@n) [38]
where n denotes that the top-n results. Precision P is defined as:

P =
|correct correspondences|

|retrieved correspondences|
and nDCG is defined as:

nDCG =
rel1 +

∑n
i=2

reli
log2i

(1 +
∑n

i=2
1

log2i
)

where reli is 1 if the correspondence at position i is correct and 0 else. nDCG@n
gives more weight to correct correspondences that are ranked higher.

5.3 Results and Discussions

Tables 4 and 5 show the results for benchmarks 1 and 2, respectively. From
these results, we observed that CogMap outperformed InstMap in most cases.
We attribute this improvement to the only difference between the two systems:
CogMap uses a cognitive support model while InstMap does not. Hence, the
use of a cognitive support model has a positive impact on alignment results.

We also observed that InstMap outperformed Baseline in all cases. We
attribute this improvement to the only difference between the two systems: the
use of instance data. For example, Baseline could not correctly align the following
data properties in benchmark 1 by matching just the names of these properties.

first name ⇔ givenName
last name ⇔ surName
full name ⇔ name

3 Determining the correctness of the correspondences produced by each system was
simple for the human judge. We thus believe that the use of a human judge in this
manner did not introduce any biases and did not affect the comparison.
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Table 5. Benchmark 2 results.

Baseline AML LogMap RiMOM InstMap CogMap

nDCG@3 0.38 0.76 0.38 0.38 1.00 1.00
nDCG@6 0.25 0.60 0.49 0.38 0.90 1.00
nDCG@9 0.20 0.68 0.39 0.30 0.79 1.00
nDCG@12 0.17 0.68 0.38 0.25 0.69 0.85

P@3 0.33 0.67 0.33 0.33 1.00 1.00
P@6 0.17 0.50 0.50 0.33 0.83 1.00
P@9 0.11 0.67 0.33 0.22 0.67 1.00
P@12 0.08 0.67 0.33 0.17 0.50 0.75

Runtime in sec 2.6 7.0 21.7 33.2 20.5 29.1

Fig. 4. Results for varying φ (number of non-null values) for CogMap and InstMap
for both benchmarks. For high φ, nDGC and runtime decrease because fewer alignment
candidates remain.

However, InstMap correctly found these alignments because of the overlap
between the instances of these properties. Hence, these results show that the
use of instance data also has a positive impact on performance.

Finally, we observed that CogMap out performed all three state-of-the-art
ontology matching systems compared, i.e. AML, LogMap, and RiMOM. We
attribute this improvement to the following factors:
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Fig. 5. Results for varying M (number of instances) for CogMap and InstMap for
both benchmarks. The more instances included, the higher the overlap and hence better
results (nDCG).

– CogMap uses instance data for alignment.
– CogMap uses an iterative cognitive model for alignment.
– CogMap can ignore rarely used properties by using the φ parameter.

Given the different characteristics of these two benchmark, the results above
suggest the general utility of an alignment system like CogMap that combines a
cognitive support model with the use of instance data. Moreover, the additional
computation does not contribute to a significant increase in runtime. Across
both benchmarks, CogMap had comparable (or better) runtime than the other
state-of-the-art systems compared.

Figures 4 and 5 show the impact of varying φ (the fraction of non-null
values required for each property) and M (the number of instances used) for
CogMap and InstMap on both benchmarks. These results demonstrate the rel-
ative robustness of CogMap to these parameter settings compared to InstMap,
and further demonstrate the positive impact of using a cognitive support model.
For example, we observed on both benchmarks that the performance of CogMap
only became negatively impacted for larger values of φ, which was in contrast to
InstMap. Similarly, the performance of CogMap increased at a faster rate com-
pared to InstMap as M was increased, and plateaued sooner than InstMap.
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6 Conclusion and Future Work

This paper presents a cognitive based approach for aligning properties by taking
instance information into account. The approach is implemented in the system
CogMap which iteratively suggests property correspondences and their conse-
quences in terms of instance alignments. In each round, the system is able to
improve these alignments based on the user verifications of the previous round.
Experiments show that the cognitive based approach outperforms both a base-
line approach and the purely instance-based approach.

Currently, the system is restricted to aligning instances and properties. In
future work, we will enable class alignments and complex matchings [36]. These
complex matchings will be described using the R2RML standard (www.w3.org/
TR/r2rml).

We will extend exploration of the knowledge sources. First, we will integrate
object properties that are more than one hop away. This will require efficient
pruning techniques to avoid an intolerable blowup of both data size and process-
ing requirements. Second, we will use the organization of the knowledge structure
(ontologies and schemas, when they are specified) to widen the search space by,
e.g., exploring the data of the superclasses.

The knowledge structures will also help to improve the alignment itself by
including ideas from [28,29]). Additionally, tree structure learning algorithms,
inspired by [35], will be used to learn the optimal composition of matching trees.

Finally, we plan to explore the possibility of integration into Karma [23],
which we believe would provide a suitable graphical user interface.
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Abstract. Recently, Web search engines have empowered their search
with knowledge graphs to satisfy increasing demands of complex informa-
tion needs about entities. Each engine offers an online knowledge graph
service to display highly relevant information about the query entity in
form of a structured summary called knowledge card. The cards from dif-
ferent engines might be complementary. Therefore, it is necessary to fuse
knowledge cards from these engines to get a comprehensive view. Such
a problem can be considered as a new branch of ontology alignment,
which is actually an on-the-fly online data fusion based on the users’
needs. In this paper, we present the first effort to work on knowledge
cards fusion. We propose a novel probabilistic scoring algorithm for card
disambiguation to select the most likely entity a card should refer to.
We then design a learning-based method to align properties from cards
representing the same entity. Finally, we perform value deduplication to
group equivalent values of the aligned properties as value clusters. The
experimental results show that our approach outperforms the state of
the art ontology alignment algorithms in terms of precision and recall.

1 Introduction

With the prevalence of entity search [1], a large portion of Web queries are to
search entity related information. To support the ever growing information needs,
search engines leverage public available knowledge bases such as Wikipedia and
Freebase to build their own knowledge graphs. When submitting a query to
Google (Bing or Yahoo!), the engine will provide a structured summary called
knowledge card describing attributes of the given entity and relations with other
entities. Such a card can be regarded as a query-based online form of the knowl-
edge graph. Since a query might be ambiguous, it could return several cards
corresponding to different real-world entities. Google returns three cards for the
query “Fox” while Bing returns two more different cards. Even though the two
cards represent the same entity, some property may just appear in one card.
For example, only Google gives an attribute named “Daily sleep” in the card
describing “Fox (animal)”. So it is necessary to fuse knowledge cards from vari-
ous search engines automatically to provide a more comprehensive summary with
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all important facts for a given entity. Also, search engines usually update their
contents quickly so that the fused cards always contain up-to-date information.

Knowledge cards fusion can be regarded as an ontology alignment task. Dif-
ferent from traditional ontology alignment, cards are fused online when a query
is submitted. Actually, it is a new branch of ontology alignment considering that
input ontologies (i.e., cards) might be lack of schema-level information like con-
cepts and domains or ranges of properties. Further, each input ontology (or a
card) only contains a limited number of attribute value pairs. Instances might
be expressed as string values in a card. Equivalent numeric values might use
different units. Therefore, sophisticated ontology alignment algorithms working
for large ontologies with rich information cannot be directly applied.

In this paper, we present the first effort to work on fusing knowledge cards
from various search engines automatically. More specifically, we introduce an
integrated approach with the following contributions. (1) We propose a novel
probabilistic scoring method for knowledge card disambiguation. Two widely
used measures namely the commonness score and the relatedness score in entity
linking are combined to find the most likely Wikipedia entity a card should
refer to. Therefore, different cards representing the same entity can be merged
as aligned instances. (2) We design a learning-based method with four novel
features to predict property alignments. The features include the property sim-
ilarity and different aspects of similarities between values of two properties. In
this way, we not only consider the similarity between two properties but also
leverage their context-based similarities. (3) We normalize values of a same unit
type and complete links for values representing same entities in a pre-processing
step. As a result, equivalent values using different expressions are normalized into
a same value or linked to a same entity. Both data and unit normalization and
missing link completion can further increase the coverage of property alignment.
Moreover, it helps group equivalent values of aligned properties into value clus-
ters during value deduplication. (4) We carried out comprehensive experiments
to test the effectiveness of card disambiguation, property alignment, and value
deduplication on knowledge cards collected from a number of real entity queries.
Furthermore, we convert the cards into ontologies and feed them into several
state of the art ontology alignment tools. Our approach outperforms these tools
in terms of precision and recall for both instance alignment and property align-
ment. The rest is organized as follows. Section 2 gives a brief overview. Section 3
introduces the approach details. Section 4 shows the experiment results. Section 5
lists the related work and Section 6 concludes the paper.

2 Approach Overview

2.1 Problem Definition

Input: Given an entity query, a search engine (e.g., Google) may return zero to
several knowledge cards. Search on a specific KB like Freebase or Wikidata can
also be regarded as a special case of search engine. Each card c describes one real-
world entity e with a label on top. The card can also contain several attribute
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Fig. 1. Knowledge cards from Google and Bing when searching “fox”

value pairs AV Pc={avp1,avp2,. . .,avpm} in which each pair is composed of a
property p and a set of corresponding values Vp,c={v1,v2,. . .,vk}. Among them,
if v links to a knowledge card representing another entity, we call v an object
value. Otherwise, if a value v represents some numeric value of a data type like
length, currency, or date, it is called a numeric value. The remaining values are
string values. Besides, a short abstract might be provided to describe the card.

Output: One or more merged knowledge cards {cm1,cm2,. . .,cmi} are returned.
Each cmi corresponds to a set of cards representing the same entity from different
engines (e.g., cgi). Here, cgi can be a card returned by Google. In cmi, each avpmi

becomes a cluster of the original avps. More precisely, equivalent properties
{p1,p2,. . .,pj} are aligned together to constitute a merged property pmi of avpmi.
Furthermore, the value sets of these properties are grouped into a merged value
set Vm. Each member of Vm is a value cluster containing equivalent values of
aligned properties from different cards.

Taking “fox” as an example query, Figure 1 shows a list of possible knowledge
cards returned by each engine. It also shows the details of two cards from Google
and Bing respectively. The figure illustrates the label, the abstract, attribute
value pairs as well as properties and different types of values in these pairs of
an individual card. Since these two cards represent the same entity, they can be
merged together. Here, we show two aligned pair examples: one is a one-to-one
mapping between two “Founders” properties and their values, while the other is
a one-to-many mapping which will be explained later.

2.2 Challenges

In order to fuse knowledge cards from various search engines for an entity query
effectively, we face several challenges which are listed as follows.

Ambiguous cards from a same Query: Since an input query can be ambiguous,
it may returned several knowledge cards. As shown in Figure 1, Google returns
three different cards and Bing returns five cards. In addition, a card representing
the same entity “Fox Broadcasting Company” may have a different label “FOX
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Fig. 2. Overall workflow of our approach to fuse knowledge cards

(Broadcasting television network)”. How to merge cards into different entities
correctly is challenging. It can also be treated as an instance alignment task.

Same value but Different Expressions: Even two cards are merged correctly,
they might have equivalent properties or values with different expressions. For
example, a card “Inception (2010)” returned by Bing has a property named
“Estimated budget” while the corresponding card from Yahoo! describes the
same meaning by using “Budget”. Furthermore, one value is expressed as “$160
million USD” while the value of the “Budget” property is “$160,000,000”. The
similar situation also occurs when expressing other kinds of values.

One to Many Mappings: A property of one card can be aligned with one or several
properties of another card. As shown in Figure 1, the property “Founded” of the
card “FOX (Broadcasting television network)” introduces the founded date and
the founded place of the company. It should be aligned with two properties
“Founded” and “Place founded” of the card “Fox Broadcasting Company” from
Bing. In most cases, the labels of properties to be aligned are not the same,
sometimes even totally different. Moreover, these properties may share very few
values in common. The above two factors make property alignment difficult.

2.3 Workflow

As shown in Figure 2, there are three main components, namely Card Disam-
biguater, Property Aligner, and Value Deduplicator, to fuse knowledge cards.
When submitting a query, knowledge cards along with other related data are
first fetched from the search engines through the Knowledge Card Extractor.
Then the Card Disambiguater identifies corresponding entities in Wikipedia for
these cards based on a probabilistic scoring algorithm. In this way, we can merge
cards if they represent the same entity. Before aligning properties of these merged
cards, the Property Aligner performs a pre-processing step for data normal-
ization and link completion. In the following step, we design a learning-based
method to predict whether two properties can be aligned. In particular, map-
pings from Wikipedia infobox properties to ontology properties in DBpedia are
used as training data to learn the prediction model. In order to further increase
the accuracy, post-processings including Property Mutual Exclusion Filter and
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Object Value Range Validator are carried out. Finally, the Value Deduplicator
groups equivalent values of aligned properties into value clusters.

3 Approach Details

3.1 Card Disambiguation

Card disambiguation can be treated as an entity linking problem, i.e. linking
a mention found in text to entities defined in a target KB. Due to the wide
coverage of Wikipedia, it is selected as our KB. There are about 4.8M entities
in Wikipedia and it’s continuously growing. A sizable entities can be dealt with
in this step. We use the card label as a mention m for disambiguation. Then we
adopt commonness(m, e) = |Lm,e|∑

e′ |Lm,e′ | as commonness score [14] to measure the
strength m links to a Wikipedia entity e. Here |Lm,e| is the number of links in
Wikipedia with the target e and the anchor text m.

Since the card label might be ambiguous, m can refer to several entities Em.
In order to determine the most likely entity the card should correspond to, we
additionally consider the object values of the card as its context. If an entity
is tightly connected with the corresponding entities of these object values, it
has a high possibility to be the target of the card. For this purpose, we adopt
relatedness(e, v) = 1 − log(1+max(|Le|,|Lev |))−log(1+|Le∩Lev |)

log(|WP |)−log(1+min(|Le|,|Lev |)) as the relatedness
score [15] to measure how close an entity e ∈ Em is to an object value v. Here
|Le| (|Lev |) is the number of links with the target e (or the corresponding entity
ev of v) respectively, Le ∩ Lev is the intersection of links with the target e and
ev, and |WP | is the total number of Wikipedia entities.

We further adopt relatedness(e, Vo) = 1 − ∏
v∈Vo

(1 − relatedness(e, v))
to measure the relatedness between e and a set of object values Vo in
the card. relatedness(e, Vo) is indeed the probabilistic sum of all relat-
edness scores between e and each object value in Vo. We use ê =
arg maxe(commonness(m, e) × relatedness(e, Vo)) as the final score of a pos-
sible entity. Finally, the entity with the highest score greater than a threshold is
selected as the disambiguation result of the card. Note that if a possible entity
of the card does not co-occur with any corresponding entities, the final score is
degraded to its commonness score.

For any v ∈ Vo, in order to get the corresponding Wikipedia entity, we
can leverage object values in the card v links to and use the same formula to
disambiguate v first. After we get the most likely entity ev it refers to, we can
get the relatedness score for relatedness(e, v). So it is a recursive process. In
our implementation, we simply choose the maximal relatedness score between a
possible entity of v and e for relatedness(e, v) as an approximation.

3.2 Aligning Properties Between Cards

Pre-processing. The focus of this step is to normalize values of different types.
More specifically, for a string value, it is lowercased. If it contains any delim-
iter, the value is segmented into different parts by the delimiter and it will be
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normalized by lowercasing all its characters. A numeric value belongs to a par-
ticular type and is often associated with some unit. For instance, a currency
“$160 million USD” from Bing is expressed as “$160,000,000” in Yahoo!. Since
value expressions vary a lot from one unit to another, we need prepare specific
normalization rules for each unit. According to the unit distribution statistics
reported in Section 4.3, by considering only several units such as date time, cur-
rency, length and weight, we can deal with a large proportion of numeric values
in knowledge cards. For an object value, we try to add a missing link to the
correspding Wikipedia entity. The link completion process is same as that of
card disambiguation introduced in Section 3.1.

Learning-Based Property Alignment. In this sub-section, we introduce the
details of our learning-based method to check whether a property pair can be
aligned. If one property is aligned with two or more properties from a second
card, we will consider it as a one-to-many mapping. In particular, we design four
novel features to constitute the learning model. Besides one property-related fea-
ture, we also consider several value-related features because values of a property
can be regarded as its context to help predict property alignments.

– Property Similarity (PS). It measures the similarity between two properties
p1 and p2. We consider two kinds of similarities: the lexical similarity (simls)
and the semantic similarity (simss). The former works well if the property
labels (lp1 and lp2 for p1 and p2 respectively) are close in their lexical forms.
The latter can be a complementary to discover semantically similar proper-
ties in different expressions. So we first use simls(p1, p2) = w× |substr(lp1 ,lp2 )|

min(|lp1 |,|lp2 |)
to calculate the PS value for p1 and p2. If the value is below a threshold,
simss(p1, p2) is further used as the value. |s| is the length of a string s,
substr(s1, s2) returns the longest substring of s1 and s2, and w is a weight.
We set w = 1 if two strings are equal. If s1 is a prefix or a suffix of s2, w
is set to 0.8. While s1 is a substring (except prefix or suffix) of s2, w is 0.6.
Otherwise, w = 0.4. The reason to set different weights is because we assign
different priorities to exact match, prefix or suffix, substring, and overlap. For
simss, we adopt the WUP measure [20] simss(p1, p2) = 2×depth(LCA(sp1 ,sp2 ))

depth(sp1 )+depth(sp2 )

to calculate the relatedness by considering the depths of the two synsets and
the depth of their lowest common ancestor (LCA) in WordNet. spi

is the
most likely synset of pi in the WordNet taxonomy.

– Value Overlap Ratio (VOR). If two properties do not have any value of
the same type (i.e., string, numeric, and object), they are unlikely to be
aligned. Let Tp be the value type set of a property p. For instance, if p has
one numeric value and two object values in a card, Tp = {n, o}. The larger
overlap Tp1 and Tp2 have, the higher coherence two properties achieve. We
use the Jaccard similarity V OR(p1, p2) = |Tp1∩Tp2 |

|Tp1∪Tp2 | to calculate the overlap.
– Value Match Ratio (VMR). It further considers the match ratio of value pairs

of a property pair. The higher the match ratio, the more chance the pair can
be aligned. We use the equation VMR(p1, p2) = |MP(p1,p2)|

|CP(p1,p2)| to measure this
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similarity. A value pair is a match pair if the two values are of the same type
and their similarity is above a matching threshold. MP(p1,p2) is the set of
match pairs of the pair (p1,p2) and CP(p1,p2) is the set of candidate value
pairs. For example, if p1 has one numeric value and one object value while
p2 has only one numeric value, then CP(p1,p2) = 1. If the two values are
dissimilar, then no match pair is found and VMR(p1, p2) = 0.
In order to get match pairs, we define a similarity measure for each spe-
cific value type. For string values, we use the same similarity measure
used for property similarity. For the numeric ones, we used simn(n1, n2) =
1 − dist(abs(n1),abs(n2))

NormFactor to calculate the similarity between n1 and n2.
Here abs(n) returns the absolute value of n, dist is the absolute difference

between n1 and n2, and a NormFactor is an normalization factor which
picks the larger absolute value in general. Numeric values of the date type
are special as each value contains three parts namely year, month, and day.
Sometimes some date value (e.g., 2010-7) is even incomplete. Given a date
type value pair with incomplete parts, we only focus on the common parts
both values have during comparison. For a pair 2010-7-1 and 2011-6, the
day part is ignored. Going back to Equation of simn(n1, n2), we use 360
(counting 30 days per month) for NormFactor instead. Taking the above
value pair as the example, their distance is 330 and the similarity is 1/12
accordingly.

For object values, we choose the ESA (Explicit Semantic Analysis) [6]
measure to compute their similarities. ESA computes semantic relatedness
of natural language texts of arbitrary lengths. It represents the meaning of
texts using relevant Wikipedia entity pages in form of concept vectors. It has
been proved effectively for textual entailment and query expansion. Here, the
similarity simo(o1, o2) between two objects o1 and o2 of a pair is calculated
by using the equation simo(o1, o2) =

∑
wc wc(o1)·wc(o2)√∑

wc wc(o1)2·∑wc wc(o2)2
.

It is actually the cosine similarity between concept vectors wc(o1) and
wc(o2).

– Value Similarity Variance (VSV). It measures the similarity distribution of
match pairs. The smaller the VSV, the more match pairs have high similar-
ities, which indicates that the property pair is more likely to be aligned. We
adopt the equation V SV (p1, p2) =

∑
(1−sim)2

|MP(p1,p2)| where sim is the similarity
score (ranging from 0 to 1) of a match pair.

Post-processing. To increase the precision of property alignment, we design
two heuristic rules to filter out as many false positives as possible.

– Property mutual exclusion filtering. Since a knowledge card only contains a
limited number of highly selected properties, it is unlikely to display redun-
dant properties. Thus properties in a card can be assumed to be distinct
safely. That is, a property is disjoint with any other property in the same
card. Based on this premise, given an aligned property pair predicted by the
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learning model, if one property happens to be in the disjoint set of another
property, the aligned pair should be filtered out.

– Object value range validation. If two properties can be aligned, their ranges
should be compatible. In another word, the categories of their corresponding
values cannot be disjoint. According to this principle, for any object value
pair of two aligned properties, if their categories are disjoint, the property
alignment should be removed. More precisely, for each object value, we use
the categories of the corresponding Wikipedia entity. If the two category sets
have no overlap, we think the categories of the value pair are disjoint.

3.3 Value Deduplication for Aligned Properites

After properties are aligned, values of these aligned properties should be dedu-
plicated so that equivalent ones in different expressions are grouped together
into value clusters. Here, we introduce a simple but effective method. As men-
tioned in Section 3.2, numeric values of the same unit type are normalized. Also,
string values are lowercased and segmented into parts as new string values by
predefined delimiters. For object values, links to their corresponding Wikipedia
entities are completed. The above processing steps ease the deduplication of
these values. That is, if two object values link to the same Wikipedia entity,
they are merged together. For the two normalized numeric values or string val-
ues, we compare their similarity with the corresponding matching threshold to
check whether the two values can be deduplicated.

4 Experiment

4.1 Experiment Setup

We selected a set of queries and submitted them to three search engines to col-
lect knowledge cards to be fused. A query is chosen if at least two engines return
knowledge cards for it. Secondly, a portion of selected queries should be ambiguous
so that some engine will return several possible cards. Third, the returned cards
should have different numbers of attribute value pairs (AVPs). We tried differ-
ent titles of Wikipedia entity pages as well as disambiguation pages, and finally
selected 26,583 different entity queries in total. Among these queries, about one
fifth are ambiguous. Furthermore, We find that more than half of the cards are
medium rich (includes AVPs ranging from 3 to 5), 19% are poor (fewer than 2
AVPs), and 24 percent are rich (more than 6 AVPs). We further randomly chose
154 queries from the above query set. The subset of queries conform the same
richness distribution and have the similar percent of ambiguous queries. As a
result, 464 knowledge cards are collected and manually labeled as ground truths
to evaluate the performance of card disambiguation and property alignment. We
downloaded mapping-based properties under DBpedia 2014 downloads1 to collect

1 http://wiki.dbpedia.org/Downloads2014

http://wiki.dbpedia.org/Downloads2014
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Wikipedia infobox properties and the corresponding ontology properties in DBpe-
dia ontology. Due to the large community of DBpedia, the collected mappings can
be assumed to be of high quality. While it is impossible for these mappings to be
100 percent correct, they can still be used to train a robust learning model for
property alignment. These cards are also converted to ontologies as inputs of sev-
eral ontology alignment tools. We finally compare the alignment performance of
these tools with that of ours. All the data can be downloaded via the following
link2 for the purpose of experiment reproductivity. For more experiment details,
you can refer to our technical report3.

4.2 Card Disambiguation Evaluation

We compare our disambiguation method with two baselines in terms of accuracy
and coverage. One baseline only considers the commonness score and the other
uses the relatedness score. Here, coverage means the fraction of cards that have
been disambiguated w.r.t. all cards while accuracy is the fraction of cards that
are disambiguated correctly. The threshold is 0.01 to filter entities of low scores.

Figure 3 shows the comparison results. Using commonness score only can
deal with the largest number of cards but achieves the lowest accuracy. In most
cases, the card label is an anchor text linking to some Wikipedia entities so
it can always return some entities as the disambiguation result. But the label
is usually ambiguous and can refer to several entities. So using the label alone
cannot distinguish among these possible entities. On the other hand, when con-
sidering the relatedness score only, the coverage becomes slightly lower but the
accuracy increases significantly. This indicates that using object values in the
card as its context can actually help filter unlikely entities the card might refer
to. However, if two possible entities have similar relatedness scores, this baseline
cannot decide which one to choose. For these cases, the commonness score might
help. Therefore, our algorithm combines the strengths of both baselines. As a
result, it gets 100 percent accuracy with very high coverage.

4.3 Unit Distribution Statistics

The same numeric values can be expressed differently using different units of the
same type and should be normalized in a same unit, which has a positive impact
on property alignment and value deduplication. It is impossible to enumerate
all of them so we aim to prepare normalization rules for as few unit types as
possible while still covering a sizeable cases. Since Wikipedia has a wide coverage
and is an important source to build knowledge graphs, we can assume real data
has the similar unit distribution. Thus, we collected 104,101 numeric values with
units from Wikipedia infoboxes to analyze unit distributions. Statistically these
units fall into nine types (i.e., currency, time, length, velocity, voltage, electric
current, frequency, mass and area) and occupy almost 90 percent.

2 http://kcf.hiekn.com/download/experiment.tar.gz
3 http://kcf.hiekn.com/download/tr.pdf

http://kcf.hiekn.com/download/experiment.tar.gz
http://kcf.hiekn.com/download/tr.pdf
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4.4 Property Alignment Performance

In this section, we first discuss how to tune different parameters for the learning-
based alignment on DBpedia mappings. Then we apply the learned model to
aligning properties of real world knowledge cards.

Alignment Performance on DBpedia Mappings. The DBpedia mappings
dataset contains mappings from Wikipedia infobox properties to ontology prop-
erties in DBpedia. According to these mappings, we can get a large number of
Wikipedia infobox property pairs in which each pair maps to the same ontology
property. These pairs are used as positive examples for training a learning-based
alignment model. The negative examples are those property pairs which have
large values for any of the above introduced features but have not been declared
to map to a same ontology property. We then discuss parameter tuning to learn
a best alginment model without overfitting.

First, we determine matching thresholds for string, numeric and object val-
ues respectively to verfiy whether a pair of values of the same type can match.
Changing thresholds will impact the MVR value of each property pair to be
aligned. Instead of training another model to predict the most suitable thresh-
olds, we analyze the precision distribution by setting different thresholds and
pick the one achieving the highest precision. More precisely, we randomly select
200 value pairs for each type (i.e., numeric, string, or object) from positive and
negative examples equally. Then we calculate the similarity of each value pair
accordingly. Given a threshold, if the corresponding property pair is aligned hav-
ing its similarity greater than or equal the threshold, or the property pair cannot
be aligned and the similarity is below the threshold, we mark the value pair “T”
(indicating a true positive or true negative). Otherwise, we mark it “F”. The
whole process is repeated ten times. Then we get the average precision under
this threshold by calculating the proportion of the number of “T”s to the total
number (i.e., 200). The thresholds range from 0 to 1 and the step is 0.1. When
the string threshold is 0.2, we get the highest precision. Similarly, we set the
thresholds for numeric and object values as 0.8 and 0.5 respectively.

Second, we try to find an empirical value of the minimal size of training
data to learn an “approximately best” alignment model. Here, we use Logistic
Regression, one of the most widely used learning algorithms, to learn a model
and test the performance of property alignment under different sizes of training
data. More specifically, we randomly selected 200, 600, 2,000, 6,000, and 10,000
labeled property pairs from positive and negative examples equally. 5-fold cross
validation is performed during model training. When adding the training data
size from 200 to 6,000, the alignment performance improves significantly. But
when we further increase the size to 10,000, the performance is almost unchang-
ing. So we set 6,000 as the empirical training data size for further model selection.

We then use different learning algorithms to train various models. The align-
ment performance under these models are compared. Here, we choose Logistic
Regression (LR), SVM, Decision Tree (DT), and Random Forest (RF) to com-
pare. All the parameters are set as the ones used in the previous step. The learned
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RF model achieves the best F1-Measure. Since we have a post-processing step
to filter out incorrect alignment candidates, we should pay more attention to
recall. In this case, the selected model also has the best coverage.

Finally, we study the contributions of different features. Here, we choose
five groups of feature combinations, namely all our features (All), all features
except property similarity (All-PS), all features except value overlap ratio (All-
VOR), all features except value match ratio (All-VMR), and all features except
value similarity variance (All-VSV). The same training data is used to learn five
different random forest models.

The model using all features performs best. The F1-Measure scores of other
models decrease to a certain extent, which indicates all features have some pos-
itive impacts to boost the performance of property alignment. Moreover, when
removing property similarity from the feature set, the learned model has the
lowest performance. This means that the property similarity feature is a key
factor to judge if a property pair can be aligned.

Alignment Performance on Real Data. From 464 knowledge cards, we ran-
domly selected 3,487 attribute value pairs and asked students to manually label
whether two properties in each pair can be aligned. As a result, 480 pairs are
positive and 3,007 are negative. We applied the best model trained on DBpedia
mappings to predict alignments on the above pairs. Moreover, we have two exten-
sions. One considers pre-processing and the other further adds a post-processing
step. Precision, recall, and F1-Measure are used for effectiveness study.

Fig. 3. Card disambiguation results Fig. 4. Property alignment results

Figure 4 shows the alignment performance based on three methods. If an
entity cannot refer to any Wikipedia entity, property alignment can still be
executed. We get acceptable results without pre-processing. The model especially
with pre-processing can actually predict aligned property pairs with a relatively
high precision (more than 0.8) and almost perfect recall. Furthermore, after post-
processing, the precision increases significantly at the expense of a slight drop
of recall. This shows the effectiveness of post-processing used in post-processing.
Regarding recall decrease, there exist two possible reasons. One is two similar
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(a) Original ontology (b) + value and unit normalization

Fig. 5. Performance comparison of instance alignment

(a) Original ontology (b) + link completion (c) + data normalization

Fig. 6. Performance comparison of property alignment

object values are categorized into different types. The other is the disjoint sets
are too tight so that the mutual exclusion filter kicks out some similar properties.

4.5 Effectiveness of Value Deduplication

Through deduplication, values associated with the same aligned property are
clustered into different groups within an attribute value pair in a fused card.
Our experiments were carried out on the aligned attribute value pairs in the
previous section (where 480 pairs are collected). As a result, we receive 1,431
value clusters which consist of at least one value. It is important to verify both
precision and recall of this step. We manually labeled the correct clusters in
which all the related candidate values are clustered correctly. Statistically, the
recall of this step reaches 73.17% while precision is 98.9%. Due to the pre-
processing, we have normalized both object values and numeric values so that
values with same expressions can be easily deduplicated. However, there still
left a certain amount of values which are not clustered. After analyzing bad
cases, we find that some values may be originally out-of-date or inaccurate. For
instance, a knowledge card of Arrian who is a Greek historian is presented by
all the three search engines. Google and Bing show his death date as 175 AD
while the same property is displayed as 160 AD in the Yahoo!’s card. Since the
similarity between these two dates is below the threshold, they are clustered in
two groups, which reduces the recall. On the other hand, some related values
are not clustered correctly due to the failure in link completion. Considering two
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equivalent object values, if one has completed the link while the other does not,
such a case will fail and reduce the recall.

4.6 Performance Comparison with Ontology Alignment Tools

Actually, card disambiguation and value deduplication can be treated as instance
alignment tasks. So we compare our approach with the state of the art ontology
matching tools for both instance alignment and property alignment. Here, we
selected RiMoM [12], Logmap [11], Falcon-AO [10], and PARIS [19] as the tools
for alignment performance comparison. The former two are among the top-3
tools of the OAEI champaign4 in recent three years. The latter two also support
both alignment tasks and have been widely used in practical applications.

We convert cards returned by one engine for a query into an ontology in the
OWL format. Each card is treated as an instance with several attribute value
pairs. Both object values and numeric values are treated as instances as well.
For each numeric value, it is represented as an instance of a certain unit type (a
concept defined in the unitontology5). The string values are treated as literals.
If a property is associated with instances as its values, it is an ObjectProperty.
Otherwise, it is a DatatypeProperty. Considering that there may be more than
one kind of values in one property of a card, we divide this property into several
ones in which each new property is associated with either instances or literals. A
label is provided for each instance or property. Together with another ontology
returned by a different engine for the same query, the above tools can be executed
to get alignment results for instances and property pairs between two ontologies.

Here, we collected 204 cards from Google and 130 cards from Bing for all
154 queries used in previous experiments. Among 204 cards, there exist 848
properties with 1,377 values in all. Similarly, 610 properties with 913 values are
found in 130 cards. We asked four students to manually label alignment ground
truths. As a result, we totally get 596 instance alignments in which 108 are card
pairs referring to the same entities and 488 are value pairs with two equivalent
object values or numeric values. We also get 427 aligned property pairs.

Instance Alignment. We record the precision, recall, and F1-measure of
instance alignment run by each tool based on the above introduced ontologies as
inputs. As shown in Figure 5(a), our approach not only achieves the best accu-
racy, but also the highest coverage. Among the selected tools, Logmap performs
best especially in terms of recall. This is because Logmap can identify equiva-
lent values of some particular unit type with the help of a Hermit reasoner. For
instance, Logmap can align 105.3 mi2 with 105.30 sq miles while the other tools
fail. Given an alignment returned by our approach (one value is 0.056-0.11kg
and the other value is 0.12-0.24lb), none of the tools are able to find out this
alignment. This shows that Logmap might be able to deal with abbreviations or
alias of some units, but unit conversion is still out of its ability scope.
4 http://oaei.ontologymatching.org/
5 https://code.google.com/p/unit-ontology/

http://oaei.ontologymatching.org/
https://code.google.com/p/unit-ontology/
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Besides the original ontologies, we further add our pre-processing results to
enrich these ontologies. As a result, the enriched ontologies contain normalized
values and units, which are of higher quality with more unified vocabularies.
When using the enriched ontologies as inputs of these tools, almost all tools have
performance increases in terms of recall (shown in Figure 5(b)). This indicates
that these tools do not complete missing links of object values, which can actually
reduce the ambiguities, and thus have positive impacts on instance alignments.

PropertyAlignment. Similarly, during property alignment, we not only use the
original ontologies as inputs for these tools, but also feed them with two enriched
version of ontologies. One enrichment is to add the card links to the original ontolo-
gies. Another is to further add our pre-processing results (i.e., value and unit nor-
malization) similar to the enrichment made for instance alignment.

Figure 6(a), Figure 6(b), and Figure 6(c) show the property alignment per-
formance comparison results of these tools and our approach based on original
ontologies and two versions of enrichments respectively. From these figures, we
can find that all tools are benefited from the two versions of enriched ontolo-
gies and gain precision and recall improvements. Our approach gets the best
performance again. Among these tools, RiMoM is the best. The performance
gap between RiMoM and ours mainly lies on dealing with one-to-many property
alignments. For example, Both “Born” with two object values “July 18, 1918”,
“Mvezo, South Africa” and “Died” with two object values “December 5, 2013”,
“Houghton Estate, Johannesburg, South Africa” of a card should be aligned
with the property “Lived” (who has an object value named “Jul 18, 1918 - Dec
05, 2013 (age 95)” from another card about Nelson Mandela. But RiMoM fails
to find such an aligned property pair. Moreover, a small number of bad cases
happen when one property has multiple values while the other with the same
property name only has one value to be aligned. For example, a property named
“Previous offices” with one value “Representative (NY 9th District) 1993-1999”
cannot be aligned with the property of the same name with multiple values
“Representative NY 9th District (1993 - 1999)”, and “Representative NY 10th
District (1983 - 1993)”. Instead, we are able to solve the above bad cases of
RiMoM thanks for our learning-based property alignment method.

5 Related Work

There are three lines of research related to our work. They are entity search, Web
data fusion, and ontology alignment in the following subsections respectively.

5.1 Entity Search

Entity search has attracted more and more attentions from both academia and
industry. Jeffrey Pound et al. [16] provided a solid framework for ad-hoc object
retrieval. Jeffrey Dalton et al. [4] developed a method for coreference aware
retrieval over a collection of objects containing a large degree of duplication.
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Roi Blanco et al. [2] proposed a content-based recommendation algorithm to
provide a list of related entities for an input entity query. Roi Blanco et al. [3]
presented an evaluation framework for repeatable and reliable semantic search
evaluation. All these work focus on entity retrieval and ranking.

More recently, Daniel M. Herzig et al. [9] proposed different language models
to tackle vocabulary and structure mismatches among different data sources for
heterogenous entity retrieval. In [8], he further proposed a novel method for
on-the-fly entity consolidation during federated entity search. The above two
works consider instance alignment only during the query time. Thus, there is no
existing research work on fusing knowledge cards from various search engines for
an entity query.

5.2 Web Data Fusion

Essentially, knowledge cards fusion is a kind of data fusion considering both
property alignment and instance alignment.

Xuan Liu et al. [13] proposed SOLARIS which starts with returning answers
from the first probed source and refreshes the answers as it probes more sources.
While it considers online data fusion, it expands to more sources iteratively. Dif-
ferent from it, we extract knowledge cards from multiple search engines (sources)
at the same time before further fusion. D.Rinser et al. [17] leverages the inter-
language links to identify equivalent entities. In our work, the link-completer
plays the same role but uses a different method. R.Gupta et al. [7] focuses on
creating a rich-attribute ontology by extracting attributes from query-stream
and plain-text while our work invests heavily in ontology alignment.

More recently, Stefanidis et al. [18] described some efficient block-based entity
resolution on the Web of data. All the above two work are about entity matching
without considering property or class alignment, which are necessary in knowl-
edge cards fusion.

5.3 Ontology Alignment

The closest work to ours is ontology alignment. PARIS [19], Falcon-AO [10],
RiMOM [12], and Logmap [11] are ontology matching tools for the automatic
alignment of entities, properties and classes from multiple ontologies. These tools
get satisfactory results in the recent OAEI campaigns. They are selected to
compare with our approach on alignment performance of knowledge cards fusion.
Different from traditional ontology alignment settings, in our problem, schema-
level information such as domains and ranges of properties are not provided.
Sometimes, links to some object values are missing. Lack of such ontological
knowledge, these tools fail to return important instance alignments or property
alignments. Thus knowledge cards fusion can be seen as a new branch of ontology
alignment task requiring new methods to deal with the above challenges.
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6 Conclusion and Future Work

In this paper, we presented the first effort to work on fusing knowledge cards
from various search engines. We proposed a probabilistic scoring method for
card disambiguation. A learning-based method is then applied to align proper-
ties coming from different cards. Finally, we deduplicate the values of aligned
properties and group these values into clusters. Knowledge cards fusion is actu-
ally a kind of online data fusion task involving both instance alignment and
property alignment. Compared with several state of the art ontology alignment
tools, our approach achieves better accuracy and wider coverage. As for future
work, we plan to handle inconsistent [5] cards and to design ranking functions to
rank values, attribute value pairs, and cards respectively so that we can return
the most relevant fused cards with highly informative information for entity
search.
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Abstract. Levesque’s proper knowledge bases (proper KBs) correspond
to infinite sets of ground positive and negative facts, with the notable
property that for FOL formulas in a certain normal form, which includes
conjunctive queries and positive queries possibly extended with a con-
trolled form of negation, entailment reduces to formula evaluation. How-
ever proper KBs represent extensional knowledge only. In description
logic terms, they correspond to ABoxes. In this paper, we augment them
with DL-Lite TBoxes, expressing intensional knowledge (i.e., the ontol-
ogy of the domain). DL-Lite has the notable property that conjunctive
query answering over TBoxes and standard description logic ABoxes is
reducible to formula evaluation over the ABox only. Here, we investigate
whether such a property extends to ABoxes consisting of proper KBs.
Specifically, we consider two DL-Lite variants: DL-Literdfs , roughly cor-
responding to RDFS, and DL-Litecore , roughly corresponding to OWL 2
QL. We show that when a DL-Literdfs TBox is coupled with a proper KB,
the TBox can be compiled away, reducing query answering to evaluation
on the proper KB alone. But this reduction is no longer possible when
we associate proper KBs with DL-Litecore TBoxes. Indeed, we show that
in the latter case, query answering even for conjunctive queries becomes
coNP-hard in data complexity.

1 Introduction

Many applications involving knowledge representation require an open-world set-
ting, with incomplete information on their domain of interest [2,7,15,16]. In
such conditions, querying a knowledge base is typically based on logical infer-
ence, which is generally computationally infeasible. Indeed, the most successful
applications of logics in Computer Science, namely relational databases [1] and
model checking [5] assume complete information, and are based on the evalu-
ation of logical formulas over a finite model. In particular, evaluating a FOL
formula against a database requires only a simple recursive procedure and is
indeed sub-polynomial (AC 0) in data complexity (i.e., in the computational
complexity measured over the size of the database only). A natural question is
whether there are interesting cases in which logical inference, required to deal
with incomplete information, can be compiled into formula evaluation and hence
c© Springer International Publishing Switzerland 2015
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retain the deductive efficiency of database retrieval without requiring complete
knowledge, as with databases.

Based on this idea, Levesque [17] proposes the notion of a proper knowledge
base (proper KB), where incomplete knowledge amounts to a possibly infinite set
of positive or negative ground facts (without disjunctions or existentials), which
allow for selectively making open and close world assumption on (possibly part
of the extension of) single predicates. For this kind of KB he devises a reason-
ing procedure based on formula evaluation that essentially has the efficiency of
first-order logic evaluation over a finite model (AC 0 in data complexity). This
evaluation procedure is logically sound, and also complete when the formula is
in a special normal form, called NF . This class of formula notably includes con-
junctive queries and positive queries, possibly extended with a controlled form
of negation. Proper KBs are further investigated in [12,18,19].

Compiling logical inference into evaluation is also at the base of one of the
most fruitful developments in description logics (DLs) [3] in the last decade, the
introduction of so called ontology-based query answering systems and the DL-
Lite family [9,10]. These logics are designed for retaining the data complexity
of FOL evaluation, while being able to capture most constructs used in UML
Class Diagrams or Entity Relationship Diagrams [6]. They generalize W3C RDF
Schema (RDFS) [8,14], and are at the base of the OWL 2 QL profile of the W3C
standard OWL 2 [20].

DLs consider knowledge divided into intensional knowledge and extensional
knowledge. Intensional knowledge is expressed as a TBox, i.e., a finite set of
universal logical assertions describing the domain of interest in terms of classes
(called concepts), which are unary predicates, and relationships between classes
(called roles), which are binary predicates. Extensional knowledge is expressed
as an ABox, which consist of a finite set of positive facts involving concepts and
roles of the TBox. (Open-world semantics is assumed.) Often the TBox is used to
capture the ontology of the domain, while the ABox is used to capture contingent
knowledge on individuals belonging to the domain. The main reasoning task of
interest for the logics in the DL-Lite family is query answering, that is, computing
substitutions for the open variables in the query for which the resulting formulas
are logically entailed by the TBox and the ABox. The queries typically considered
are conjunctive queries and the union of conjunctive queries. The first are FOL
formulas where only conjunction and existential quantification is allowed, while
the second include also disjunction (but, no forms of negation, nor universal
quantification). The key feature of the DLs belonging to the DL-Lite family
is the so-called first-order rewritability: query answering for a query Q can be
performed in a sound and complete way by compiling away the TBox into a new
FOL query QT that can be evaluated over the ABox, considered as a database.
As the result, query answering in DL-Lite is AC 0 in data complexity like formula
evaluation in a relational DB.

In this paper, we consider knowledge bases constituted by a TBox expressed
in variants of DL-Lite and an ABox consisting of a Levesque’s proper KB. In
particular we consider two members of the DL-Lite family: DL-Literdfs , which
roughly correspond to RDFS [14], and DL-Litecore , which roughly correspond
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to OWL 2 QL [9,10]. The latter is actually the simplest DL-Lite that includes
assertions of the form A � ∃R.

We show that in the case of proper KBs extended with DL-Literdfs TBoxes,
we can compile away the TBox retaining soundness and completeness of rea-
soning, so that when the resulting query is in NF , the proper KB evaluation
procedure is both sound and complete. (In particular, for conjunctive queries and
union of conjunctive queries, this is always be the case.) This theoretical result
has an immediate practical impact: it is possible to build effective ontology-based
query aswering systems where: (i) RDFS is used to express the ontology of the
domain (considering that DL-Literdfs captures the description logic fragment of
RDFS, i.e., the fragment obtained by dropping RDFS meta-modeling features);
(ii) proper KBs are used to express extensional knowledge in a very rich way,
and (iii) SPARQL is used as a concrete query language for expressing (NF)
first-order queries [21].

Then we turn to DL-Litecore and show that, in this case, it is not possible to
reduce query answering to FOL query evaluation. We do so by proving that even
for conjunctive queries, any sound and complete procedure must be coNP -hard,
and hence, the proper KB evaluation procedure remains sound but must neces-
sarily be incomplete. This has the practical impact of ruling out the possibility
of building sound, complete and computationally tractable ontology-based query
answering systems that adopt OWL 2 QL as the ontology language.1

The rest of the paper is organized as follows. In Sections 2 and 3, we
review proper KBs and DL-Lite. In Section 4, we show soundness and complete-
ness results for TBoxes in DL-Literdfs . In Section 5, we show that moving to
TBoxes in DL-Litecore , we lose the required computational tractability. Finally
in Section 6, we draw some conclusions and discuss future work. An appendix
with the detailed proof of the result in Section 4 completes the paper.

2 Proper Knowledge Bases

Standard Names. We use an ordinary first-order logical language L with an
infinite supply of predicate symbols (including =), an infinite supply of constants,
called standard names (which we write as #1, #2, #3, . . .), and no other function
or constant symbols. We denote the set of standard names by N . We use the
notation αx

n to mean the result of replacing every free occurrence of variable x
in formula α by standard name n. We adopt the usual Tarski semantics for L,
with |= understood as normal logical entailment. However, we make the unique
name assumption for the standard names. This means that we implicitly assume
a theory of equality E formed by the usual axioms of equality (reflexitivity,
symmetry, transitivity, and substitution of equals for equals) together with {n �=
n′ | n and n′ are distinct standard names }. A knowledge base (KB) K consists
of a finite set of sentences (closed formulas) belonging to L. To K we will always
implicitly add the equality theory E . The (implicit) adoption of E implies that

1 In fact, our infeasibility result applies also to EL, and hence rules out also OWL 2
EL [4,20].
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K has a model iff it has a standard model, that is, one where = is interpreted
as identity and the domain is isomorphic to the set of standard names. Hence,
w.l.o.g., we can make domain closure assumption: we can assume that the only
objects in the domain of interpretation are the standard names. A key property
of adopting standard names is the following.

Theorem 1. [17] Suppose that K is a KB (including E) and α a possibly open
formula in L. Let H be the set formed by all the (finitely many) standard names
that appear in K or α and at least one other not occurring in K and α. Then

K |= ∀x.α iff K |= αx
n for every n ∈ H.

This means that we can determine whether ∀x.α is entailed by checking whether
a finite set of instances of α are entailed.

Proper KBs. Following [17], a proper knowledge base A is a finite collection of
sentences of L of the form

∀x.(e ⊃ �),

where

– e is an equality formula, i.e., a quantifier-free formula whose only predicate
is equality, and free variables are among x,

– � is P (x) or ¬P (x), for some predicate P of arity |x| in L,
– “⊃” is the usual material implication connective.

Proper KBs are required to be consistent (under the implicit equality theory
for standard names E). A proper KB can be seen as a finite representation for
a possibly infinite consistent set of ground literals { �θ | A |= �θ }, where θ is
a substitution of free variables by standard names, and �θ denotes � after the
substitution.

Proper KBs can play the role of ABoxes typical of description logics (cf. 3),
since they express extensional knowledge as ABox do. Though, they generalize
ABoxes in several ways as exemplified below.

Using proper KBs, we can encode finite sets of positive facts (i.e., standard
ABoxes), saying that objects or tuples belong to predicates, but also we can
encode negative facts saying that objects or tuples do not belong to predicates.
Indeed any finite set of ground literals can be reformulated as a proper KB, by
simply rewriting any ground literal �θ in the set as ∀x. (x = xθ ⊃ �).

We can make the close-world assumption (like in databases) on selected pred-
icates, using assertions {∀x.(e(x) ⊃ P (x)), ∀x.(¬e(x) ⊃ ¬P (x))}. For example,
the following proper KB

{∀x. (x = #2∨x = #3∨x = #5 ⊃ P (x)), ∀x. (x �= #2∧x �= #3∧x �= #5 ⊃ ¬P (x))}

makes the closed-world assumption on P , saying that the extension of P is
exactly {#2, #3, #5}. This capability can be used, e.g., to describe an authorita-
tive source, which contains exactly all the data about the predicate P .
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We can leave the status of some predicate open for some objects only. For
example we can write

∀x.(x �= #0 ∧ · · · ∧ x �= #9 ⊃ ¬P (x))

saying that only #0, . . . , #9 may belong to P , without saying which. This can be
used to circumscribe the presence of objects in certain data sources. Similarly
we can write

∀x.(x �= #0 ∧ x �= #1 ⊃ ¬R(#100, x)) (1)

saying that the object #100 is not linked through R to any object different
from #0 and #1, leaving open whether R(#100, #0) or R(#100, #1) holds. More
generally, proper KBs can capture quite advanced forms of partial knowledge on
the extension of data sources.

Reasoning with Proper KBs. The reasoning task of interest for proper KBs
is query answering. In particular, as in [17], here we focus implicitly on boolean
queries only. A (boolean) query Q is a sentence, i.e., a closed formula, in L.
Answering Q over a proper KB A consists in checking the entailment

A |= Q.

It is in general undecidable to determine whether or not A |= Q. (Consider the
case A = ∅, where we still need to determine whether an arbitrary first order
formula is valid.) As an alternative, Levesque [17] proposes a limited reasoning
procedure V analogous to the evaluation function used for databases under the
closed-world assumption, which, however, may return 1 (known to be true), 0
(known to be false), or 1

2 (unknown). Given a proper KB A and a query Q, the
evaluation procedure V [A, Q] is defined as follows:

1. (Ground atomic fact) if Q = �θ then

V [A, �θ] =

⎧
⎨

⎩

1 if there is a ∀x.(e ⊃ �) ∈ A s.t. E |= eθ
0 if there is a ∀x.(e ⊃ �) ∈ A s.t. E |= eθ
1
2 otherwise

where � denotes the result of adding or removing negation from �.
2. (Ground equality atom) if Q = (n = n′) then

V [A, (n = n′)] =
{

1 if n and n′ are the same standard name
0 otherwise

3. (Negation) if Q = ¬α then

V [A,¬α] = 1 − V [A, α]

4. (Disjunction) if Q = α ∨ β then

V [A, (α ∨ β)] = max {V [A, α], V [A, β]}
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5. (Conjunction) if Q = α ∧ β then

V [A, (α ∧ β)] = min {V [A, α], V [A, β]}
6. (Existential quantification) if Q = ∃x.α then

V [A,∃x.α] = max
n∈H

V [A, αx
n]

where H is the set of standard names appearing in A or α plus a new one.
7. (Universal quantification) if Q = ∀x.α then

V [A,∀x.α] = min
n∈H

V [A, αx
n]

where again H is the set of standard names appearing in A or α plus a new
one.

Notice that as expected we have that

V [A, α ∧ β] = V [A,¬(¬α ∨ ¬β)], V [A,∀x.α] = V [A,¬∃x.¬α].

The evaluation procedure V is tractable in a very strong sense. Analogously to
database evaluation, is is easy to see that V [A, Q] can be computed in AC 0 in
data complexity, i.e., in the number of standard names mentioned in A and Q.
From a more practical point of view we have:

1. If e is a ground equality formula, then E |= e iff V [∅, e] = 1 and can be
determined in time linear in |e|.

2. V [A, �θ] can be determined in time linear in |A|: scan A for ∀x.(e ⊃ �) or
∀x.(e ⊃ �) and check if E |= eθ.

3. Overall, computing V [A, Q] can be made as efficient as database retrieval
[19].

The procedure V is always logically sound :

Theorem 2. [17] For any proper KB A and any query Q in L, we have:

– if V [A, Q] = 1 then A |= Q;
– if V [A, Q] = 0 then A |= ¬Q.

However V is not (and cannot be) logically complete in general. For example:
E |= (p ∨ ¬p) but V [∅, (p ∨ ¬p)] = 1

2 .

In [17] completeness is shown for a semantically defined sublanguage of L,
called NF , for “normal form”. We say that a set of sentences S is logically
separable iff for every consistent set of ground literals L, if L∪S has no standard
model, then for some α ∈ S, L ∪ {α } has no standard model. Then NF ⊆
L is defined as the least set such that: (i) if α is a ground atom or equality
formula, then α ∈ NF ; (ii) if α ∈ NF , then ¬α ∈ NF ; (iii) if S ⊆ NF , S is
logically separable, and S is finite, then

∧
S ∈ NF ; (iv) if S ⊆ NF , S is logically

separable, and S = {αx
n | n is a standard name }, then ∀x.α ∈ NF .
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Theorem 3. [17] For any proper KB A and any Q in NF , we have:

– if A |= Q then V [A, Q] = 1;
– if A |= ¬Q then V [A, Q] = 0.

Unfortunately NF is a semantical condition and checking if a formula is in
NF is itself undecidable. However an interesting sufficient syntactic condition
for belonging to NF is the following: we say two literals are conflict-free iff either
they have the same polarity, or they use different predicates, or they use different
standard names at some argument position.

Theorem 4. [17] Let Q be a query in L, if all pairs of literals in Q are conflict-
free, then Q in NF .

Notably all positive queries (i.e., without ¬ and ∀), hence including conjunc-
tive queries (i.e., using only ∧ and ∃) and union of conjunctive queries (i.e.,
disjunctions of conjunctive queries), are conflict-free.

3 DL-Literdfs and DL-Litecore

Description logics (DLs) [3] describe the domain of interest in terms of indi-
viduals denoting objects, concepts, denoting sets of objects, and roles, denoting
binary relations between objects. In DLs, starting from concepts names (denoted
by A) and roles names (denoted by R), we can construct complex concepts C,
D and roles ρ, τ by inductively applying suitable constructors that depend on
the DL in question.

A DL knowledge base K consists of a TBox T , expressing intensional knowl-
edge, and an ABox A, expressing extensional knowledge. TBox T is constituted
by a finite set of concept and role inclusions of the form

C � D, ρ � τ

where the form of concepts C,D and roles ρ, τ depend on the specific DL. We
allow inclusions to be cyclic, which is required in virtually all ontology-based
and conceptual modeling applications2. A standard DL ABox A consists of a
finite set of positive ground literals involving concepts and roles of the TBox.

In this paper, we consider DL-Litecore , the simplest language of the DL-Lite
family [9,10]. A TBox in DL-Litecore is a finite set of inclusion assertions of the
form:

C � D, C � ¬D

where concepts C,D and roles ρ, τ are defined by the following syntax:

C,D ::= A | ∃ρ ρ ::= R | R−

where ∃ρ is the projection of binary role ρ on the first component and R− is the
inverse of role R. TBoxes expressed in DL-Litecore capture a core fragment of
2 When a TBox is acyclic, it can be treated as a set of abbreviations and eliminated

w.l.o.g.
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UML class diagrams: isa between classes (A � B, A and B are concepts names),
typing of roles (∃R � A, ∃R− � B), disjointness between classes (A � ¬B), and
mandatory participation of instances of a class to roles (A � ∃R or B � ∃R−),
see [9]. DL-Litecore roughly corresponds to OWL 2 QL profile [20], where we
disallow the use of inclusion assertion on roles ρ � τ .

Besides DL-Litecore , we consider also DL-Literdfs , which is obtained from
DL-Litecore by dropping the possibility of using ∃ρ on the right-hand side of
inclusion assertions, but including inclusion assertions on roles of the form:

ρ � τ

with ρ, τ ::= R | R−. Hence, we loose the possibility of expressing mandatory
participation, but we gain the possibility of expressing “subproperties” through
isa’s on roles, thus capturing RDFS [8] (without meta-level assertions), inter-
preted according to the extensional semantics [14].

We give the semantics of DL-Litecore and DL-Literdfs by exhibiting the FOL
formula corresponding to each concept and role expression. In particular, if t
and t′ are terms, then ρ[t, t′] is the first-order formula defined by

R[t, t′] = R(t, t′)
R−[t, t′] = R(t′, t).

Similarly, C[t] is the first-order formula defined by (below z stands for any vari-
able such that z �= t):

A[t] = A(t)
∃ρ[t] = ∃z.ρ[t, z]

¬A[t] = ¬A(t)
¬∃ρ[t] = ∀z.¬ρ[t, z].

Assertions of the form C � D and of the form ρ � τ correspond, respectively, to

∀x.(C[x] ⊃ D[x]) ∀x, y.(ρ[x, y] ⊃ τ [x, y])

Typically in DL-Lite, we are interested in query answering, where queries
are conjunctive queries or union of conjunctive queries. These are possibly open
formulas expressed in terms of the concepts (unary predicates) and roles (binary
predicate) of T and A. When such formulas are closed we call such queries
boolean. In particular, in this paper, we focus on boolean queries only. Given a
TBox T and ABox A, and a (boolean) query Q we are interested in checking
whether

T ∪ A |= Q

Notably the DL-Lite variants enjoy the first-order rewritability property, which
in our setting says that for every conjunctive query or union of conjunctive
queries Q:

T ∪ A |= Q iff A |= QT
where QT is a union of conjunctive query obtained by rewriting Q using T , e.g.,
by the reformulation algorithm in [9], so as to “compile away” the TBox T , and
evaluate QT over the ABox A only, considered as a database (with complete
information, i.e., closed world assumption). As a result, query evaluation in DL-
Lite is AC 0 in data complexity, i.e., in the size of the ABox.
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4 Proper KBs with DL-Literdfs TBoxes

The question that this paper addresses is whether something analogous to DL-
Lite first-order rewritability holds also in the case of ABoxes consisting of proper
KBs.

More precisely let’s consider KBs formed by a DL-Literdfs TBox T and an
ABox A constituted by an proper KB over the unary and binary predicates
forming the alphabet of the TBox. We restrict our attentions to proper KBs A
that are consistent with the TBox T , i.e., that A �|= ¬T where ¬T denotes the
negation of the conjunction of all assertions in the TBox T . On such KBs, we
consider boolean queries Q, i.e., first-order sentences, and we are interested in
query answering, i.e., checking whether:

T ∪ A |= Q

In particular, we want to study whether there exists another FOL query QT
such that

T ∪ A |= Q iff A |= QT

That is, we want to compile away the TBox and obtain another query QT to
ask over the proper KB A alone. Notice that, differently from the case of stan-
dard DL-Lite, A cannot be seen as a database, since it still includes incomplete
information and the close world assumption cannot be made. However if we can
reduce T ∪ A |= Q to A |= QT , we can then use the evaluation procedure V
to compute V [A, QT ], which is always sound and complete for queries in NF .
Indeed we are also interested in sufficient conditions for completeness. We show
below that when T is a DL-Literdfs TBox, QT can always be obtained. Moreover
there are interesting class of queries Q (including conjunctive queries, and union
of conjunctive queries) for which the evaluation procedure V applied to QT is
indeed complete.

Without loss of generality we assume the query Q to be in negation normal
form (NNF), i.e., with negation appearing only in literals. We use the following
notation: C denotes the concept that results from adding or removing a nega-
tion from C, and ρ− denotes the role that results from adding or removing a
superscript minus from ρ.

Next we define two crucial relations �R and �C denoting the chain of
“asserted” inclusions among concepts and roles respectively.

– The �R relation holding between pairs of roles is the reflexive transitive
closure of the relation

{ (ρ, τ) | ρ � τ ∈ T or ρ− � τ− ∈ T }.

– The �C relation holding between pairs of concept is the reflexive transitive
closure of the relation

{ (C,D) | C � D ∈ T or D � C ∈ T or
C = ∃ρ, D = ∃τ, ρ �R τ }.
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Note that, if C �C D then T |= ∀x.(C[x] ⊃ D[x]) and similarly, if ρ �R τ then
T |= ∀x, y.(ρ[x, y] ⊃ τ [x, y]).

With these two relations at hand, we can define the rewriting QT of a query
Q wrt a DL-Literdfs TBox T .

Definition 1 (Rewriting). Let T be a DL-Literdfs TBox and query Q in NNF,
we define the rewriting QT of Q wrt T to be Q with every positive A(t) replaced
by ∨

C�CA

C[t],

every ¬A(t) replaced by ∨

A�CD

D[t],

every positive R(t, t′) replaced by
∨

ρ�RR

ρ[t, t′],

and every ¬R(t, t′) replaced by
∨

R�Rτ

¬τ [t, t′] ∨
∨

∃R�CD

D[t] ∨
∨

∃R−�CD

D[t′].

As we show below, the resulting formula enjoys the desired property: it is
the result of compiling away the TBox from Q.

Theorem 5. Let T be a DL-Literdfs TBox, A be a proper KB consistent with
T , Q a boolean query in NNF, and QT its rewriting defined as above. Then

T ∪ A |= Q iff A |= QT

Proof. The proof requires extra machinery and has been moved to the appendix.
�

In general, Theorem 5 does not induce an analogue of “first-order rewritabil-
ity”, in the sense that QT cannot be “evaluated” over the ABox A. However, if
QT is NF , then it does, since the evaluation procedure V becomes sound and
complete and hence it becomes sufficient to check whether V [A, QT ] to know
whether A |= QT . Unfortunately checking whether QT is in NF is in general
undecidable. However we can polynomially check QT for conflict-freeness. We
can exploit this for giving a nice sufficient condition for the completeness of V .

Definition 2 (Conflict-free for a TBox). Let T be a DL-Literdfs TBox, Q a
boolean query in NNF and QT its rewriting defined as above. Q is conflict-free
for a TBox T iff QT is conflict-free.
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Note that positive queries are always conflict free for DL-Literdfs TBoxes, includ-
ing conjunctive queries and union of conjunctive queries. For example, if Q is a
conjunctive query then QT is equivalent to a union of conjunctive queries, and
hence is conflict-free.

For conflict free queries, we can exploit Theorem 5 and the soundness and
completenes results for V to get:

Theorem 6. Let T be a DL-Literdfs TBox, A be a proper KB consistent with
T , Q a boolean query in NNF , and QT its rewriting defined as above. If Q is
conflict-free for T , we have:

– T ∪ A |= Q iff V [A, QT ] = 1;
– T ∪ A |= ¬Q iff V [A, QT ] = 0.

Hence, for queries that are conflict-free for the TBox, query answering reduces to
evaluation and is indeed AC 0 in data complexity (i.e., in the number of standard
names occurring in the ABox and in the query).

5 Proper KBs with DL-Litecore TBoxes

Next we investigate KBs formed by a DL-Litecore TBox T and an ABox A formed
as a proper KB. Unfortunately in this case we have a negative result: query
answering by evaluation is in general unachievable even for queries consisting
of boolean conjunctive queries. Indeed, if query aswering by evaluation were
possible the data complexity of query answering would be AC 0. However we
show that, even with a TBox consisting of a single assertion of the form A � ∃R,
conjunctive query answering in proper KBs is coNP -hard in data complexity,
since proper KB assertions like (1) in Section 2 force reasoning by cases on the
data.

Theorem 7. Conjunctive query answering in proper KBs with TBoxes includ-
ing assertions of the form

A � ∃R

is coNP-hard with respect to data complexity.

Proof. The proof is based on a reduction from 2 + 2-CNF unsatisfiability, which
is shown to be coNP -complete in [13]. A 2+2-CNF formula is a CNF formula in
which each clause has exactly four literals: two positive ones and two negative
ones.

Given a 2+2-CNF formula F = c1∧· · ·∧cn, where ci = �i
1+∨�i

2+∨¬�i
1−∨¬�i

2−,
we associate with it the knowledge base K = 〈T ,A〉. The alphabet of K includes
one concept A and five roles P1, P2, N1, N2 and R with the following intuitive
meaning:

– concept A(x) denotes that x is an atomic proposition;
– role P1(x, y) (resp. P2(x, y)) denotes that the atomic proposition y is in first

(resp. second) positive position of the clause x;
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– role N1(x, y) (resp. N2(x, y)) denotes that the atomic proposition y is in first
(resp. second) negative position of the clause x;

– role R(x, y) denotes that the truth value y is assigned to the atomic propo-
sition x.

The TBox T is simply:
A � ∃R

The ABox A is formed by the proper KR equivalent to the following atomic
assertions (see examples in Section 2 for hints on how to represent these finitely
using equality):

A(�11+), A(�12+), A(�11−), A(�12−),
· · ·
A(�n1+), A(�n2+), A(�n1−), A(�n2−),

P1(c1, �
1
1+), P2(c1, �

1
2+), N1(c1, �

1
1−), N2(c1, �

1
2−),

· · ·
P1(cn, �n1+), P2(cn, �n2+), N1(cn, �n1−), N2(cn, �n2−)

¬R(�11+, #2),¬R(�11+, #3),¬R(�11+, #4), · · ·
¬R(�12+, #2),¬R(�12+, #3),¬R(�12+, #4), · · ·
¬R(�11−, #2),¬R(�11−, #3),¬R(�11−, #4), · · ·
¬R(�12−, #2),¬R(�12−, #3),¬R(�12−, #4), · · ·
· · ·
¬R(�n1+, #2),¬R(�n1+, #3),¬R(�n1+, #4), · · ·
¬R(�n2+, #2),¬R(�n2+, #3),¬R(�n2+, #4), · · ·
¬R(�n1−, #2),¬R(�n1−, #3),¬R(�n1−, #4), · · ·
¬R(�n2−, #2),¬R(�n2−, #3),¬R(�n2−, #4), · · ·

where, c1, . . . , cn and �11+, �12+, �11−, �12−, . . . , �n
1+, �n

2+, �n
1−, �n

2− are standard names
chosen to be different from each other. The standard names #0 and #1 are used
to represent the truth values true and false respectively. Intuitively the binary
predicates P1 P2, N1, N2 associate to clauses ci their four atomic propositions
�i
1+, �i

2+, �i
1−, �i

2− in their respective first/second, positive/negative position. The
binary predicate R associates truth values to atomic propositions, which given
the infinite set of assertions of the from ¬R(�, k) can only be either #0 or #1 for
the atomic propositions mentioned in the clauses.

Finally, we consider the following boolean conjunctive query:

Q = ∃x, y1+, y2+, y1−, y2−.
(P1(x, y1+) ∧ R(y1+, #0) ∧ P2(x, y2+) ∧ R(y2+, #0) ∧
N1(x, y1−) ∧ R(y1−, #1) ∧ N2(x, y2−) ∧ R(y2−, #1))

Intuitively query Q checks if it is possible to assign the “wrong” truth value to all
propositions y1+, y2+, y1−, y2− of some clause x. More precisely, checking whether
T ∪ A |= Q (i.e., whether the query is certainly true in T ∪ A) corresponds to
checking whether in every truth assignment for the formula F there exists a clause
whose positive atomic propositions are interpreted as false and whose negative
atomic propositions are interpreted as true, i.e., a clause that is not satisfied. Next
we show that the formula F is unsatisfiable if and only if T ∪ A |= Q.
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“⇒” Towards contradiction, suppose that the formula F is unsatisfiable
but T ∪ A �|= Q. Then there exists a model M such that M |= T ∪ A, but
M �|= Q. Notice that the given the assertions in A the only way not to satisfy Q
is that for each i = 1, . . . , n, we have that either ¬R(�i

1+, #0) or ¬R(�i
2+, #0) or

¬R(�i
1−, #1) or ¬R(�i

2−, #1). On the other hand for each such �i, by the TBox
assertion A � ∃R, there must exists some v such that R(�i, v), and because of
the infinite assertions on ¬R(�i, #2), ¬R(�i, #3), ¬R(�i, #4), . . . it must be the
case that v = #0 or v = #1. So we have that for each clause ci we must have
that R(�i

1+, #1) or R(�i
2+, #1) or R(�i

1−, #0) or R(�i
2−, #0). But this would imply

that the set of clauses F is indeed satisfiable, contradicting the hypotesis.
“⇐” Towards contradiction, suppose that T ∪ A |= Q but the formula F is

satisfied by some truth assignment � to its atomic propositions. Then, let M� be
the interpretation for T ∪ A defined as follows:

AM� = {� | � is an atomic proposition in F}
P

M�

1 = {(ci, �
i
1+) | in F , �i1+ is the first positive atomic proposition of ci}

P
M�

2 = {(ci, �
i
2+) | in F , �i2+ is the second positive atomic proposition of ci}

N
M�

1 = {(ci, �
i
1−) | in F ,�i1− is the first negative atomic proposition of ci}

N
M�

2 = {(ci, �
i
2−) | in F ,�i2− is the second negative atomic proposition of ci}

RM� = {(�, v) | �(�) = v}
It is easy to see that M� is a model of T ∪A. On the other hand, since F is satisfi-
able, for every clause in F there exists a positive atomic proposition interpreted
as true or a negative atomic proposition interpreted as false. It follows that for
every (standard name corresponding to) a clause ci, either P1 or P2 relates ci to
a atomic proposition � such that (�, #1) ∈ R and (�, #0) �∈ R, or either N1 or N2

relates ci to a to a atomic proposition � such that (�, #0) ∈ R and (�, #1) �∈ R.
Hence Q evaluates to false in M�, and therefore T ∪ A �|= Q, contradicting the
hypothesis. �

This theorem rules out DL-Litecore and virtually all variants of DL-Lite,
which allow for expressing A � ∃R, including the two most prominent ones:
DL-LiteR, directly corresponding to OWL 2 QL [20], and DL-LiteA, often used
in ontology-based data access applications [11]. For the same reason, it also rules
out the whole EL family [4].

6 Conclusion

In this paper we have shown that is it feasible to extend Levesque’s proper KBs
with TBoxes expressed in DL-Literdfs while retaining the ability to reason by
evaluating formulas for first-order queries of certain forms and hence solve query
answering in AC 0 in data complexity as for standard database query evalua-
tion. This result is of practical interest considering that DL-Literdfs captures the
description logic fragment of RDFS (i.e., dropping meta-modeling features) and
that SPARQL can be used as a concrete query language for expressing first-order
queries over RDFS [21].
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We also showed that this result cannot be generalized to TBoxes expressed
in OWL 2 QL or any DL-Lite variant that allows for assertions of the form
A � ∃R [9,10], including DL-Litecore , since when combined with the power of
proper KBs, reasoning by cases become necessary (query answering becomes
coNP -hard). In fact, the result applies also to the DL EL [4] and hence to OWL
2 EL [20] as well.

Our result on proper KBs with DL-Literdfs TBoxes could be slightly gener-
alized. In particular, it would be interesting to extend the TBox language, e.g.,
to deal with assertions of the form ρ � ¬τ to express disjoint extension of roles,
and getting closer to OWL 2 QL [9,20], or to by considering n-ary roles [10].
Also, the language of proper KBs themselves can be extended, e.g., to deal with
unknown individuals, i.e., nulls, as in [12]. We leave these extensions for future
studies.

A Appendix

In this appendix we prove Theorem 5. As ABox A we consider any set (possibly
infinite) of assertions of the form A(n), R(n,m) and ¬A(n), ¬R(n,m), where
n and m are standard names. Notice that these ABoxes are more general then
proper KBs (which indeed correspond to certain ABoxes of this form). The TBox
T is a standard DL-Literdfs TBox. We assume A to be consistent with T (i.e.,
A �|= ¬T .) We use the following notation. If M is a logical interpretation, then
the extension of a concept C and a role ρ are respectively:

CM = {n | M |= C[n]}, ρM = {(n, n′) | M |= ρ[n, n′]}.

Note that for any C, C
M

= CM . For any concept C and role ρ, we define

MIN(C) = {n | A |= C[n]}, MIN(ρ) = {(n,m) | A |= ρ[n,m]}.

Note that for any M such that M |= A, MIN(C) ⊆ CM and MIN(ρ) ⊆ ρM . For
any M and C, we define

F (C) =
⋃

D�CC

E(D) where E(C) = MIN(C) ∪
⋂

C�CD

DM .

Note that for any C, MIN(C) ⊆ E(C) ⊆ F (C).

Lemma 1. If M |= A then F (C) ∩ F (C) = ∅.
Proof. Suppose not. Then there is n ∈ F (C) and n ∈ F (C). Then for some
D �C C, n ∈ E(D) and for some D′ �C C, n ∈ E(D′). Since we have D �C C
and C �C D′ (which is contrapositive of D′ �C C), we also have D �C D′.

Now consider the cases for n ∈ E(D). If n ∈ MIN(D), then A |= D[n].
Since A �|= ¬T , A �|= D′[n] and so n �∈ MIN(D′). Moreover, since M |= A it
follows n ∈ DM , and hence n �∈ D′M . Since by definition D′ �C D′, we get
n �∈ ⋂

D′�CE EM . This contradicts n ∈ E(D′).
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On the other hand, if n ∈ ⋂
D�CE EM , then n ∈ D′M

, so n �∈ D′M . Since
M |= A, n �∈ MIN(D′). Moreover n �∈ ⋂

D′�CE EM , since D′ �C D′. This again
contradicts n ∈ E(D′). �

For any M and ρ, we define

G(ρ) =
⋃

τ�Rρ

H (τ) where H (ρ) = MIN(ρ) ∪ [(E(∃ρ) × E(∃ρ−)) ∩
⋂

ρ�Rτ

τM ].

Lemma 2. G(ρ) ⊆ F (∃ρ) × F (∃ρ−).

Proof. We prove it for ρ = R. (The case of R− is analogous.) If (n,m) ∈ G(R)
then for some ρ �R R, (n,m) ∈ H (ρ). There are two cases: if (n,m) ∈ MIN(ρ),
then n ∈ MIN(∃ρ) and then m ∈ MIN(∃ρ−), in which case, n ∈ E(∃ρ) and m ∈
E(∃ρ−); if (n,m) ∈ (E(∃ρ × E(∃ρ−)), then again n ∈ E(∃ρ) and m ∈ E(∃ρ−).
Since ρ �R R, ∃ρ �C ∃R and ∃ρ− �C ∃R−. It follows that n ∈ F (∃R) and
m ∈ F (∃R−). �

Given a logical interpretation M , we define a related one M ∗ by AM ∗
= F (A)

and RM ∗
= G(R).

Lemma 3. If M |= A then M ∗ |= T .

Proof. First suppose C � D ∈ T . Note that if C �C D, then {E | E �C C} ⊆
{E | E �C D}, and so F (C) ⊆ F (D). Because of the restriction on the TBOX
language, C = A or C = ∃ρ. In the case of A, we have AM ∗

= F (A); in the
case of ∃ρ, we have ∃ρM ∗ ⊆ F (∃ρ) by Lemma 2. In both cases, CM ∗ ⊆ F (C).
Similarly, because of the language restriction, D = A or D = ¬A, and so either
way F (D) ⊆ DM ∗

(since F (¬A) ⊆ F (A) by Lemma 1). It then follows that
CM ∗ ⊆ F (C) ⊆ F (D) ⊆ DM ∗

.
Now suppose ρ � τ ∈ T . As above, we have that if ρ �R τ , then {ρ′ | ρ′ �R

ρ} ⊆ {τ ′ | τ ′ �R τ}, and so G(ρ) ⊆ G(τ). It follows that ρM ∗
= G(ρ) ⊆ G(τ) =

τM ∗
. �

Lemma 4. If M |= A then M ∗ |= A.

Proof. We consider the four cases of assertions in A.
Suppose A(n) ∈ A. Then n ∈ MIN(A), so n ∈ E(A) ⊆ F (A). Therefore,

M ∗ |= A(n).
Suppose ¬A(n) ∈ A. Then n ∈ MIN(¬A) and n �∈ AM . Now suppose that

D �C A for some D. Then n �∈ MIN(D) since otherwise A |= ¬T . Since n �∈ AM ,
n �∈ E(D). Since this holds for any D �C A, n �∈ F (A) and hence M ∗ |= ¬A(n).

Suppose R(n,m) ∈ A. Then (n,m) ∈ MIN(R), so (n,m) ∈ H (R) ⊆ G(R).
Therefore, M ∗ |= R(n,m).

Finally, suppose ¬R(n,m) ∈ A. Then (n,m) �∈ RM . Now suppose that τ �R

R for some τ . Then (n,m) �∈ MIN(τ) since otherwise A |= ¬T . Since (n,m) �∈
RM , (n,m) �∈ H (τ). Since this holds for any τ �R R, (n,m) �∈ G(R) and hence
M ∗ |= ¬R(n,m). �
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Lemma 5. T |= (QT ⊃ Q).

Proof. Assume that M |= T and prove by induction on |Q| that if M |= QT
then M |= Q. Here are the base cases only.

Suppose Q = A(n) and M |= QT . So for some C �C A, M |= C[n]. Since
M |= T , M |= A(n).

Suppose Q = ¬A(n) and M |= QT . So for some A �C D, M |= ¬D[n]. Since
M |= T , M |= ¬A(n).

Suppose Q = R(n,m) and M |= QT . So for some ρ �R R, M |= ρ[n,m].
Since M |= T , M |= R(n,m).

Suppose Q = ¬R(n,m) and M |= QT . So one of the following: for some
R �R τ , M |= ¬τ [n,m] or for some ∃R �C D, M |= ¬D[n] or for some ∃R− �C

D, M |= ¬D[m]. In all cases, since M |= T , M |= ¬R(n,m). �

Lemma 6. If M |= A and M ∗ |= Q, then M |= QT .

Proof. The proof is by induction on |Q|. Here are the base cases only.
Suppose M ∗ |= A(n). So for some C �C A, n ∈ E(C). There are two cases:

n ∈ MIN(C) or n ∈ CM . Either way, since M |= A, M |= C[n]. So M |= QT .
Suppose M ∗ |= ¬A(n). So for every C �C A, n �∈ E(C) and so n �∈ E(A). So

for some A �C D, n �∈ DM , and thus M |= D[n]. Therefore M |= QT .
Suppose M ∗ |= R(n,m). So for some ρ �R R, (n,m) ∈ H (ρ). There are two

cases: (n,m) ∈ MIN(ρ) or (n,m) ∈ ρM . Either way, since M |= A, M |= ρ[n,m].
So M |= QT .

Suppose M ∗ |= ¬R(n,m). So for every ρ �R R, (n,m) �∈ H (ρ) and so
(n,m) �∈ H (R). Then (n,m) �∈ RM ∩ (E(∃R) × E(∃R−)). There are three cases:
(n,m) �∈ RM , in which case for some R �R τ , M |= ¬τ [n,m], namely τ = R;
or n �∈ E(∃R) in which case for some ∃R �C D, n �∈ DM , and so M |= D[n]; or
m �∈ E(∃R−) in which case for some ∃R− �C D, m �∈ DM , and so M |= D[m].
In all cases, M |= QT . �

Finally we are ready to prove the main claim.

Main Claim. T ∪ A |= Q iff A |= QT .

Proof. (⇐) Suppose A |= QT . Let M be any logical interpretation such that
M |= T ∪ A. Since, M |= A and A |= QT , M |= QT . Since M |= T , M |= Q by
Lemma 5. Therefore, T ∪ A |= Q.

(⇒) Suppose A �|= QT . Then, there is an M such that M |= A and M �|= QT .
By Lemma 3, M ∗ |= T . By Lemma 4, M ∗ |= A. By Lemma 6, M ∗ �|= Q.
Therefore, T ∪ A �|= Q. �
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Abstract. It has been shown, both theoretically and empirically, that
performing core reasoning tasks on large and expressive ontologies in
OWL 1 and OWL 2 is time-consuming and resource-intensive. More-
over, due to the different reasoning algorithms and optimisation tech-
niques employed, each reasoner may be efficient for ontologies with dif-
ferent characteristics. In this paper, we present R2O2, a meta-reasoner
that automatically combines, ranks and selects from a number of state-
of-the-art OWL 2 DL reasoners to achieve high efficiency, making use
of performance prediction models and ranking models. Our comprehen-
sive evaluation on a large ontology corpus shows that R2O2 significantly
and consistently outperforms 6 state-of-the-art OWL 2 DL reasoners on
average performance, with an average speedup of up to 14x. R2O2 also
shows a 1.4x speedup over Konclude, the current dominant OWL 2 DL
reasoner.

1 Introduction

Core reasoning services such as consistency checking and classification are at the
heart of ontology-based applications. For expressive description logics (DLs),
such reasoning services have a very high worst-case complexity. For instance,
satisfiability checking for SROIQ, the description logic underpinning OWL 2
DL, has worst-case complexity of 2NExpTime-complete [4]. Recent work has
also demonstrated empirically [5,11,15] that large and complex ontologies indeed
pose a real computational challenge even for state-of-the-art reasoners.

In the past decade, highly optimised ontology reasoners such as FaCT++ [25],
HermiT [8] and Konclude [22] have been developed that are capable of reasoning
about highly expressive DLs. They implement different reasoning algorithms and
employ different sets of preprocessing and optimisation techniques. As a result,
they are optimised for certain, but not all ontologies. Dramatic differences in
reasoning time among reasoners, sometimes by up to four orders of magnitude,
have been observed for some ontologies [5]. Such disparities can cause significant
and unnecessary loss in productivity for developers and users of ontologies.

The robustness of ontology reasoners was recently investigated [10], with a
particular focus on reasoning efficiency. It was observed that given a corpus of
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 322–338, 2015.
DOI: 10.1007/978-3-319-25007-6 19
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ontologies and a number of state-of-the-art reasoners, it is highly likely that one
of the reasoners performs sufficiently well on any given ontology in the corpus.
However, this virtual best reasoner is only found a posteriori, and the paper did
not discuss how the best reasoner may be selected automatically. It only stated
that this task is not straightforward.

The prediction of ontology reasoning performance was recently studied [15,
17], where a prediction model, either a classifier or a regression model, is trained
for a given reasoner to make predictions on reasoning time (discretised or actual)
of a given ontology. High prediction accuracy is achieved for some state-of-the-
art reasoners. These prediction models enable efficient and accurate estimation
of a reasoner’s performance on an ontology. However, it was not discussed how
these models can be used to improve reasoning efficiency.

Portfolio-based algorithm selection methods [13] have been successfully
applied to SAT and constraint satisfaction problems. The portfolio SAT solver
SATvilla has consistently outperformed single SAT solvers in many SAT com-
petitions [30]. Compared to SAT, ontology languages are more expressive with
the inclusion of many more language constructs. As a result, it is more challeng-
ing to accurately characterising ontology complexity. Moreover, the performance
of a portfolio-based algorithm heavily depends on the accuracy of performance
prediction models, and this dependency makes it difficult to further improve its
efficiency.

Recently we conducted a preliminary study [14] on constructing a portfolio-
based OWL reasoner from six reasoners: FaCT++, HermiT, JFact, MORe, Pel-
let and TrOWL. This preliminary study made use of classifiers that predict
discretised reasoning time. Evaluation shows that, for average performance, it
outperforms all of the component reasoners. However, due to increasing sizes
of the bins (discretised reasoning time), a best reasoner may not be identified.
Moreover, Konclude, a dominant OWL 2 DL reasoner was not included in the
study, making its results less significant.

The above work motivates and enables us to propose R2O2, a meta-reasoner
that combines reasoners with their respective prediction models, and aims at
determining the most efficient reasoner for a given ontology. It achieves this
by (1) training prediction models for predicting actual reasoning time for all
reasoners, (2) learning ranking models (simply rankers) that automatically and
efficiently rank the reasoners according to their predicted reasoning performance,
and (3) selecting a possible best reasoner given the outputs of the rankers.

Our main contribution is the proposal of a novel meta-reasoner, R2O2, that
automatically and efficiently combines, ranks and selects OWL reasoners with
the aim of determining the most efficient reasoner for a given ontology. We
conducted a comprehensive evaluation on more than 2,000 ontologies and six
state-of-the-art OWL 2 DL reasoners, including Konclude, the current dominant
reasoner. The evaluation shows that, for average performance over a large ontol-
ogy corpus, R2O2 significantly and consistently outperforms all six reasoners,
achieving an average speedup of up to 14x, and a 1.4x speedup over Konclude.
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R2O2 also outperforms the traditional portfolio-based approach (that does not
perform ranking) with a 1.5x speedup.

2 The Meta-reasoner R2O2

R2O2 is a supervised meta-reasoner that utilises the state-of-the-art performance
prediction models of different reasoners and ranking models (or rankers). R2O2

encompasses a number of component reasoners and operates in two phases: offline
training and online reasoning. During the training phase, R2O2 trains rankers
that rank component reasoners on their predicted reasoning time data gener-
ated by performance prediction models for these reasoners. After training is
completed, R2O2 makes predictions of the most efficient reasoners for unseen
ontologies, and carries out actual reasoning.

More specifically, the training phase of R2O2 is divided into two steps:
1. Given a set of training ontologies, each represented by values of ontology

metrics, and actual reasoning time for a set of reasoners on each ontology,
the performance prediction model of each reasoner is built, following the
methodology in [17]. That is, we build a Random Forest-based regression
model for each reasoner with the metrics as features (see Section 2.2).

2. Given another set of training ontologies (distinct from the ones used in the
first step), we generate a ranking matrix where each row represents the values
of ontology metrics and a ranking of the reasoners where the ranking is made
according to their predicted reasoning time. Rankers are then trained on this
ranking matrix to learn how the characteristics of an ontology represented
by its metrics can be optimally mapped to relative ordering of the predicted
performance of reasoners (see Section 2.3).
In the reasoning phase, given an unknown ontology, R2O2 makes perfor-

mance predictions for all the component reasoners. R2O2 then ranks the reason-
ers according to their predicted reasoning time. The rankings recommended by
the trained rankers are averaged across all the rankers to determine a unique
rank for each reasoner. The highest ranked reasoner will be eventually chosen to
perform the reasoning task for the ontology (see Section 2.4).

In the reasoning phase, in our context, R2O2’s main difference from the tradi-
tional portfolio-based approach (denoted PR) in the spirit of SATzilla [31] is that
PR always selects the most efficient reasoner for any given ontology according to
predicted reasoning time of all component reasoners. That is, given a new ontol-
ogy, PR computes its ontology metrics, estimates the predicted reasoning time
of each component reasoner using the corresponding prediction model, and rec-
ommends the reasoner predicted to be the fastest. In contrast, R2O2 uses a best
possible reasoner by recommending the top ranked reasoner from an aggregation
of the rankings of component reasoners, according to their predicted reasoning
time, estimated by the trained rankers. Our evaluation shows that R2O2 highly
and consistently outperforms PR.

Learning rankers from preferences has recently received much attention in
the machine learning community [6]. Contrary to the classification problems, in
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the ranking matrix, a training example (i.e. an ontology) is not assigned a single
label, but a set of preferences of multiple labels representing reasoners, where
one is preferred over another according to their predicted reasoning performance
(i.e., the more efficient a reasoner is, the higher its rank is). Once a ranker is
learned, our goal is to use it in predicting the most likely relative ordering (i.e.,
ranking) of all reasoners under consideration for unknown ontologies represented
by their ontology metrics.

In our approach, the learning of our rankers is based on preference learn-
ing [6], which is concerned with the acquisition of preference models from data.
In general, the goal of preference learning is to learn preference orders (i.e. rank-
ings) of all possible labels (i.e. performance prediction models) from a training
example (i.e. ranking matrix) and predict an ordering (i.e. ranking) to an unseen
instance (i.e. ontology).

In the rest of this section, we describe how R2O2 is built in more detail.

2.1 Notation Definition

The following notations will be used in the paper:
– Let R = {r1, . . . , rn} be a set of n reasoners.
– Let R̂ = {r̂1, . . . , r̂n} be a set of n performance prediction models such that

for each reasoner ri ∈ R, r̂i ∈ R̂ predicts the actual reasoning time of ri on a
given ontology, i.e., r̂i estimates the performance of ri.

– Let RM = {rm1, . . . , rmm} be a set of m rankers. Each ranker produces a
ranking of the reasoners based on their predicted reasoning performance for a
given ontology. Specifically, a ranker rm is a function that, given an ontology o
and a set of reasoners R, rm(o,R) produces an ordering, a permutation, of R.

– Let OM = {om1, . . . , omq} be a set of q ontology metrics.
– Given a reasoner r (resp. a performance prediction model r̂) and on ontology

o, let RT (r, o) (resp. RT (r̂, o)) represent the actual (resp. predicted) reasoning
time of r on o.

– Let O ⊆ O = {o1, . . . , op} be a set of p ontologies that can be reasoned
about by at least one reasoner in R, i.e., for each o ∈ O, there is at least
one reasoner in R that can successfully complete the reasoning task (e.g.,
classification) without any errors and within the specified time limit. Note
that O includes those ontologies that timeout for some reasoners. Let Oc ⊆ O
be the set of common ontologies that can be reasoned about by all reasoners
in R (no errors and no timeout). Note that Oc also includes those ontologies
that timeout for some reasoners. Two disjoint subsets Or and Ot are drawn
from Oc, for training the rankers and testing R2O2, respectively. Furthermore,
for each reasoner ri, let set Opi

⊆ O \ (Or ∪ Ot) represent a separate subset
of ontologies that ri can successfully reason about, without timing out. Opi

is
used for training the performance prediction model r̂i for reasoner ri.
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2.2 Building Performance Prediction Models

For each reasoner ri ∈ R, we train a Random Forest-based prediction model, a
regression model, r̂i ∈ R̂ on the training data Opi

with the aim of estimating the
actual, but not discretised, reasoning time of ri. Ontology metrics [17] are collected
for ontologies in O and used as features to train prediction models in R̂.

The produced prediction models in R̂ will be used for generating a ranking
matrix to train the rankers in RM . R2 (i.e. the coefficient of determination)
is widely used to assess the quality of regression models. In our context, R2

indicates how well each prediction model r̂ approximates the actual reasoning
time of the corresponding reasoner r. It is possible that two different reasoners
are predicted to have the same reasoning time on a given ontology. R2 is used
for tie-breaking purposes in R2O2, which will be explained in Section 2.4.

2.3 Generating the Ranking Matrix and Training Rankers

Once the performance prediction models in R̂ are built, a ranking matrix is
constructed for training the rankers in RM .

Recall that Or ⊆ Oc is the set of common ontologies for training rankers.
Initially, we build a |Or| × (q + n) data matrix Md (recall that |OM | = q,
|R| = |R̂| = n), where row i represents oi ∈ Or and is constructed as:

(omi,1, . . . , omi,q
︸ ︷︷ ︸
ontology metrics

), (RT (r̂1, oi), . . . , RT (r̂n, oi)
︸ ︷︷ ︸

predicted reasoning time

) (1)

where omi,j is the value of the j-th ontology metric omj of ontology oi, and
RT (r̂s, oi) denotes the reasoning time predicted by the prediction model r̂s for
ontology oi.

Based on the data matrix Md, we build the corresponding |Or| × (q + n)
ranking matrix Mr, where row i is represented as:

(omi,1, . . . , omi,q
︸ ︷︷ ︸
ontology metrics

), ( π(r̂1, oi), . . . , π(r̂n, oi)
︸ ︷︷ ︸
ranking of prediction models

) (2)

where π(r̂s, oi) denotes the rank of the prediction model r̂s (hence the corre-
sponding reasoner rs) on ontology oi, determined by RT (r̂s, oi). In the ranking
matrix Mr, the more efficient a performance prediction model is, the higher
ranked it is (the smaller the ranking number is).

For example, suppose that there are 3 reasoners {r1, r2, r3}, and thus 3 per-
formance prediction models {r̂1, r̂2, r̂3}. Given an ontology oi, suppose that the
predicted reasoning time for oi estimated by the models is 100s, 90s, and 10s
respectively, i.e., (RT (r̂1, oi), RT (r̂2, oi), RT (r̂3, oi)) = (100s, 90s, 10s). Thus,
the ranking of the prediction models is (π(r̂1, oi), π(r̂2, oi), π(r̂3, oi)) = (3, 2, 1).
If the estimated reasoning time is (10s, 10s, 100s) instead, the ranking produced
will be (1, 1, 3).



R2O2: An Efficient Ranking-Based Reasoner for OWL Ontologies 327

To recommend the most likely best reasoner, we note that our goal is not
to predict the absolute expected reasoning time of any component reasoner,
but rather the relative performance of the reasoners. Therefore, we generate a
ranking matrix using ontology metrics and the rankings of the reasoners on the
training data Or to train rankers.

Once the ranking matrix Mr is generated, each ranker rmi ∈ RM is trained
on Mr. In our context, the problem of learning a ranker is to induce a ranking
function f that can order n performance prediction models r̂1, . . . , r̂n ∈ R̂. That
is, rmi ∈ RM takes as input an ontology and a set of reasoners R, and produces
as output a permutation π of R. The interpretation of this permutation is that
r̂i is preferred to (more efficient than) r̂j whenever RT (r̂i, o) < RT (r̂j , o) for a
given o. These function rmi ∈ RM are then used to estimate the rankings of
the performance prediction models for unknown ontologies.

Different ranking models that use different ranking measure to evaluate the
performance of the learned rankers [6]. Thus, the maximisation of the ranking
measure will lead to the maximisation of a ranker’s performance. Normalised
Discounted Cumulative Gain (NDCG) and Mean Average Precision (MAP) have
often been used to measure ranking performance [3].

Five ranking models are included: k-NN (the nearest neighbor-based app-
roach), RPC (the pairwise binary classification approach), BinaryART (the
ranking tree-based approach), ARTForests (the ranking forest-based approach),
and RegRanker (the regression-based approach). Readers interested in the details
of the rankers are referred to [23].

In this work, we apply rank average, a widely-used rank aggregation method
from a number of state-of-the-art rankers to induce the final ranking function f .
Experimentally we also observe that aggregation of such rankings usually leads
to better and more stable ranking performance.

2.4 Invoking the Meta-reasoner R2O2

Once the rankers in RM are trained, for an unknown ontology, R2O2 combines
the rankings estimated by different trained rankers in RM to produce a final
ranking, and selects the best reasoner based on it, as given in Algorithm 1. A
detailed description is provided below.

1. Given an unknown ontology ot, R2O2 first calculates its values of ontology
metrics in OM (line 1).

2. Initialise a variable ranking as a sequence of 0’s, where the length of ranking
is |R̂| = n. Intuitively, ranking keeps a merged ranking list of n prediction
models produced by the trained rankers in RM . For instance, for n = 3
prediction models (reasoners) R̂ = {r̂1, r̂2, r̂3} with RT (r̂1) < RT (r̂2) <
RT (r̂3), ranking stores their current ranking, and is a permutation of (1, 2, 3)
(line 2).

3. For each ranker rmi ∈ RM , R2O2 finds and merges the ranking of n pre-
diction models. The merge operation is implemented as a pointwise sum-
mation of rankings produced by all rankers. For example, if n = 3 and
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Algorithm 1. Predict the most efficient reasoner in R2O2.
Input: ot a test ontology, RM = {rm1, . . . , rmm} the learned rankers,

and Ω = {R2(r̂1), . . . , R
2(r̂n)} the R2 values of prediction models in R̂

Output: The most efficient reasoner rbest for ontology ot
1 omt ← generateOntologyMetrics(ot)
2 ranking ← (0, . . . , 0)
3 foreach rmi ∈ RM do
4 rankingi ← recommendRanking(rmi, omt)
5 ranking ← mergeRanking(ranking, rankingi)

6 foreach r̂j ∈ R̂ do
7 π(r̂j , ot) ← averageRanking(ranking, |RM|, r̂j)
8 rbestCandidate ← arg min

r̂j∈R̂

π(r̂j , ot)

9 if (|rbestCandidate| ≥ 2) then
10 rbest ← tieBreaking(rbestCandidate, Ω)

11 else
12 rbest ← rbestCandidate

13 return rbest

ranking = (1, 1, 3) and a new ranking (1, 2, 3) is produced by a ranker, then
ranking is merged as (1, 1, 3) + (1, 2, 3) = (2, 3, 6) (lines 3-5).

4. For each prediction model r̂j ∈ R̂, R2O2 computes its average ranking from
the variable ranking over |RM | (lines 6-7). Then, R2O2 selects the prediction
model(s) (rbestCandidate) whose rank is the minimum. If only one top-ranked
prediction model r̂k ∈ R̂ is selected, the corresponding reasoner rk ∈ R is
chosen to perform the reasoning task for ot (line 12).
However, if two or more prediction models are selected, a tie-breaking method
is applied to select one of them (line 10). This method takes into consideration
the R2 values of the prediction models that are described from Section 2.2.
Our tie-breaking finds the best possible prediction model r̂k by identifying
the prediction model that is the most accurate:

r̂k = arg max
r̂i∈R̂

R2(r̂i), (3)

where we choose r̂i that maximises its R2 value R2(r̂i) (the higher the better).
Finally, R2O2 determines rk ∈ R as r̂best, and invokes it to perform reasoning
for the ontology ot.
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3 Evaluation

3.1 Data Collection

For this work, we collected ontologies from the ORE 2014 reasoner competi-
tion [1], comprising a total of 16,555 ontologies.1 In our evaluation, we randomly
choose 25% of the ORE 2014 dataset by splitting it into four groups by per-
centiles of file size; and randomly sampling from within these groups. This is to
ensure that files of different sizes are sufficiently represented. As a result, 4,138
ontologies were eventually used in our evaluation.

Six state-of-the art OWL 2 DL reasoners that participated in ORE 2014
reasoner competition are used as component reasoners for R2O2: FaCT++ [25],
HermiT [8], JFact,2 Konclude [22], MORe [20] (with HermiT as the underlying
OWL 2 DL reasoner), and TrOWL [24].3 The versions of the reasoners are the
same as those in ORE 2014. The competition framework is adapted to invoke
the reasoners and to record their runtime.

The reasoning time (for consistency checking and classification) of each rea-
soner is measured for each ontology in the dataset on a high-performance server
running OS Linux 2.6.18 and Java 1.6 on two dual-core AMD Opteron 2218
processors each at 2.6GHz, with a maximum of 10GB memory allocated to the
reasoner. A timeout of one hour wall-time is imposed on each (reasoner, ontol-
ogy) pair.

Of the 4,138 ontologies, 2,847 ontologies (which we denote by O in
Section 2.1) are successfully reasoned by at least one reasoner (without errors and
within the one-hour time limit). In O, 2,407 ontologies are successfully reasoned
by all the six component reasoners, while the others encountered processing
errors by at least one reasoner. These 2,407 common ontologies constitute the
dataset Oc.

A 10-fold cross validation is employed to adequately assess the performance
of R2O2. In each fold, O is split according to Section 2.1. In the experiment,
each of Opi

, Or and Ot is approximately 40%, 50% and 10% of the size of O
respectively. The performance evaluation results presented in the rest of this
section is the average across the 10 folds.4

Note that TrOWL is an approximate reasoner, hence it is sound but incom-
plete. All the other five reasoners are sound and complete. As an approximate
reasoner, TrOWL gains efficiency by sacrificing completeness. This results in
significant performance gain, as can be seen in Table 1. Hence, to assess the
impact of TrOWL’s inclusion on R2O2’s performance, we conduct two sets of
experiments, one with TrOWL included and one without.

1 http://www.easychair.org/smart-program/VSL2014/ORE-index.html
2 http://jfact.sourceforge.net
3 The Chainsaw reasoner [26] (an OWL 2 DL reasoner that participated in ORE 2014)

is excluded due to reasoning errors in an excessive number of ontologies.
4 Data associated with the evaluation can be found at http://www.csse.monash.edu.

au/∼yli/r2o2/.

http://www.easychair.org/smart-program/VSL2014/ORE-index.html
http://jfact.sourceforge.net
http://www.csse.monash.edu.au/~yli/r2o2/
http://www.csse.monash.edu.au/~yli/r2o2/
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3.2 Training R2O2

Training the Prediction Models. Using the 91 ontology metrics proposed previ-
ously [17,32] and dataset Op, a performance prediction model is trained for each
reasoner. Specifically, one Random Forest-based regression model (i.e., those in
R̂) is trained for each of the six reasoners (i.e., those in R). All the regression
models in R̂ are shown to be highly accurate, achieving high R2 values that
range from 0.73 (Konclude) to 0.91 (TrOWL).

Training the Ranking Models. Using the predicted reasoning time of the ontolo-
gies in Or obtained from R̂ as features, we trained five rankers (i.e., those in RM)
specified in Section 2.2. The performance of each ranker is evaluated in terms of
precision at 1 (P@1). For a ranker, P@1 measures the proportion of the predic-
tion model correctly ranked as the fastest. All rankers show high performance,
achieving a P@1 between 88.7% and 90.6%.

3.3 Performance Evaluation of R2O2

We also employ P@1 as a performance metric for evaluating R2O2. For R2O2,
P@1 measures the proportion of the component reasoner selected being the most
efficient. We choose P@1 as we are only interested in evaluating how accurately
R2O2 is able to recommend the single most efficient component reasoner, but
not its ability to generate a total ranked list of the reasoners.

Besides the six component reasoners, we also compare R2O2 against a
Portfolio-based reasoner (denoted PR) in the spirit of SATzilla [30] as well as
the virtual best reasoner (denoted VBR), which always selects the most efficient
component reasoner for any given ontology.

Table 1 and Table 2 show and compare the performance of R2O2 against all
the other reasoners, across the 10 folds. TrOWL is in incomplete reasoner, and it
gains efficiency by ignoring/approximating certain difficult language constructs.
Two sets of experiments were conducted to assess the impact on performance of
including TrOWL as a component reasoner in R2O2, one with TrOWL (Table 1)
and one without (Table 2). For each reasoner r, three values are presented: (1)
the average reasoning time per ontology (the lower the better), (2) the percentage
of r being the most efficient (P@1, the higher the better), and (3) the average
number of ontologies timed out on r (the lower the better) per fold. For R2O2,
average ranking time per ontology is 0.03ms, trivial compared to reasoning time.
For (1) and (2) above, the rank of each reasoner is also presented (the lower the
better). As can be seen, in both experiments, R2O2 is the closest to VBR, and
is more efficient than other reasoners with a speedup of up to 14x. It can also be
observed that R2O2 times out on the smallest number of ontologies, which shows
that R2O2 is not only efficient, its performance is also stable (less fluctuations).

It can be observed that Konclude dominates the other component reasoners,
with a significantly faster reasoning time and a much larger percentage of being
the fastest. However, R2O2 outperforms Konclude in both experiments, with
a speedup of 1.48x and 1.46x respectively. This attests to the effectiveness of
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Table 1. Performance comparison, with TrOWL included as a component reasoner,
between reasoners for Ot on: (1) average reasoning time per ontology (in seconds) for
Ot, (2) average percentage of ontology being the fatest (P@1), and (3) average number
of timeout ontologies per fold. The best performance values (lower is better) are typeset
in bold. For comparison purposes, performance figures for the virtual best reasoner
(VBR) are also shown.

Reasoner Runtime in seconds (rank) % P@1 (rank) No. timeout

FaCT++ 108.05 (7) 5.49 (4) 6.4

HermiT 75.31 (6) 0.00 (8) 3.9

JFact 239.93 (8) 0.07 (7) 12.4

Konclude 26.00 (4) 90.85 (2) 1.5

MORe 39.01 (5) 2.32 (5) 2.2

TrOWL 21.50 (2) 1.37 (6) 0.8

PR 24.24 (3) 90.00 (3) 1.5

R2O2 17.52 (1) 91.30 (1) 1.0

VBR 2.94 (–) – 0.0

Table 2. Performance comparison, excluding TrOWL, between reasoners for Ot on:
(1) average reasoning time per ontology (in seconds) for Ot, (2) average percentage
of ontology being the fatest (P@1), and (3) average number of timeout ontologies per
fold. The best performance values (lower is better) are typeset in bold. For comparison
purposes, performance figures for the virtual best reasoner (VBR) are also shown.

Reasoner Runtime in seconds (rank) % P@1 (rank) No. timeout

FaCT++ 116.32 (6) 6.16 (4) 6.9

HermiT 79.39 (5) 0.11 (7) 4.1

JFact 234.4 (7) 0.14 (6) 13.2

Konclude 24.01 (2) 91.76 (2) 1.5

MORe 48.78 (4) 2.29 (5) 3.0

PR 24.36 (3) 90.53 (3) 1.5

R2O2 16.46 (1) 92.25 (1) 0.9

VBR 7.52 (–) - 0.3

R2O2’s approach: the combination of accurate performance prediction models
and rankers successfully identifies the rare cases when another reasoner is faster
than Konclude, and improves overall reasoning performance.

The evaluation also demonstrates the performance disparity among the rea-
soners. For example, JFact has the largest average runtime. However, it is the
fastest for a small portion of ontologies, hence contributing to meta-reasoning.
On the other hand, HermiT has a much smaller average runtime, but with less
contribution to meta-reasoning. Moreover, even with a dominant reasoner such
as Konclude, the other reasoners do outperform it sometimes (approximately
10%), and the performance of R2O2 as well as VBR validates the value of
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meta-reasoning: that the combination of reasoners indeed improves reasoning
performance.

The effect of TrOWL is a little surprising. The performance of both PR and
R2O2 remain relatively unchanged with or without the inclusion of TrOWL.
However, VBR is significantly faster when TrOWL is included than when it is
not, and it does not timeout on any ontology. It seems to suggest that TrOWL
indeed reduces reasoning time for some hard ontologies. Further investigation is
required to study the impact on reasoning performance and completeness.

To better assess reasoning performance, Figure 1 below shows a boxplot
depicting the distributions of reasoning performance of the nine reasoners
(including TrOWL and VBR). In a boxplot, the box itself contains the mid-
dle 50% of the values, the median (resp. mean) is represented by the horizontal
bar (resp. ‘+’) inside the box. The upper (resp. lower) whisker extends to the
highest (resp. lowest) value within the upper (resp. lower) quartile. The reason-
ing time of all ontologies (across 10 folds) are also shown as dots in the plot
to show their distributions. As can be seen, besides VBR, R2O2 has the lowest
mean as well as median values, demonstrating its efficiency as well as stability.

Fig. 1. A boxplot of the distributions of actual reasoning time (log-transformed) for
the nine reasoners.

From Table 1 above, among the component reasoners, it seems that Konclude
and TrOWL dominate the other component reasoners, as they are the fastest
component reasoners and faster than the others by a large margin. It seems to
make intuitive sense that they are the most efficient for most ontologies, and
that R2O2 (and VBR) selects these two reasoners most of the time as the most
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efficient reasoner. However, this is not the case, as can be seen in Table 3 below.
To better understand the reasoner selection based on performance, we discretise
ontology reasoning time (in seconds) into four bins: ‘A’ (0, 1), ‘B’ [1, 10), ‘C’
[10, 100), and ‘D’ [100, 3,600]; and partition ontologies into these bins by their
reasoning time by VBR. For brevity reasons only the figures for the experiment
that includes TrOWL are shown. Note that in the training of R2O2, actual, but
not discretised, reasoning is predicted.

Table 3. The percentage of each component reasoner being the most efficient reasoner
(P@1=1) for each bin as well as for all the ontologies in Ot. The highest percentage in
each bin is typeset in bold.

Reasoner A B C D All

FaCT++ 3.79 8.52 9.35 50.00 5.49
HermiT 0 0 0 0 0
JFaCT 0 0.25 0 0 0.07
Konclude 96.21 86.22 37.38 0.00 90.85
MORe 0.00 1.25 48.60 40.00 2.32
TrOWL 0.00 4.14 4.67 10.00 1.37

Table 3 shows the percentage each component reasoner being the most effi-
cient (P@1=1) for ontologies in each bin and overall. A number of interesting
observations can be made.
– Even though Konclude is the most efficient among the six reasoners, as can

be seen in Table 1, Konclude does not dominate the other reasoners in bins
‘C’ and ‘D’, the bins for most difficult ontologies. Furthermore, even though
Konclude has the fastest average runtime and overall P@1 value, it is not the
fastest for any of the hardest ontologies (bin ‘D’).

– Even FaCT++ is only the fastest with a very small percentage overall
(P@1=5.49%), it is the fastest for half of the most difficult ontologies (bin
‘D’).

– MORe has an even smaller percentage of being the fastest overall
(P@1=2.32%), it is the fastest for 40% of the most difficult ontologies (bin
‘D’). It is also the dominate reasoner for bin ‘C’.

4 Related Work

Boolean satisfiability checking, or SAT, is a well-known and widely stud-
ied NP-complete decision problem. Many theoretical advances and practically
useful heuristics have been developed over the past decades. However, it is
recently recognised that the empirical hardness of NP-complete problems such
as SAT [19,28] is still not well understood, and that theoretical, worst-case com-
plexity analysis does not always provide useful insights on hardness of real-world



334 Y.-B. Kang et al.

problem instances. Hence, more research is needed to understand the sources of
instance hardness and reasons why certain optimisations are effective while oth-
ers are not, given a specific problem instance.

Ontology reasoning tasks such as consistency checking is a type of hard deci-
sion problems that may go beyond NP-hard. For very expressive DLs, ontology
reasoning has a very high worst-case complexity of 2NExpTime-complete [4].
The research community has recognised the importance of empirical studies given
the rapid development in ontology reasoning optimisation.

Ontology reasoners have been repeatedly benchmarked over the years [2,5,7,
16]. It is observed from these benchmarking efforts that different reasoners have
different levels of support, robustness and efficiency for ontologies with different
features (e.g., language constructs used and their interactions), confirming the
need for further investigation of sources of instance hardness.

Recently, the OWL Reasoner Evaluation (ORE) workshop series began an
OWL reasoner competition [1,9] on a number of reasoning tasks (consistency
checking, classification, and realisation) and for different profiles of the OWL
language (OWL 2 DL and EL). The recent reasoner Konclude [22] is a novel
parallellised OWL 2 DL reasoner. It is very efficient, significantly outperforming
other reasoners in the latest ORE 2014 competition, winning 5 of the 6 categories.
As part of the competition, the ontology corpus and the competition framework
have been made publicly available, making it easy to reuse the data and to
reproduce the results.

The empirical robustness of OWL reasoners was investigated [10]. A reasoner
is said to be successful for a given ontology if it successfully loads the ontology
and performs reasoning within a specified timeout cutoff (e.g., two hours). A
reasoner is robust if it is successful for at least 90% of a given corpus. Experiments
on 4 OWL reasoners and three corpora of ontologies revealed that the best combo,
the virtual best reasoner (or the meta-reasoner), is “extremely robust over all
corpora” [10], achieving an overall robustness of over 98% for all three corpora.
However, such a meta-reasoner was only identified manually and post festum.

Inspired by the success of empirical software engineering research, we pro-
posed a number of metrics to measure the design complexity of ontologies [32].
These metrics measure various aspects of complexity: overall complexity of the
ontology, complexity of classes and properties, as well as those characterising
complex class and property expressions.

We studied the problem of estimating ontology reasoning time by applying
machine learning techniques to building classifiers [15] and regression models [17]
to estimate (discretised or actual) reasoning time of a given (ontology, reasoner)
pair. High accuracy was achieved in both approaches, which were used to iden-
tify important features that affect performance the most, and to identify perfor-
mance hotspots efficiently. An ontology is represented by a number of syntactic
and structural metrics that are efficient to calculate. These metrics are used as
features to train classifiers and regression models, one for each reasoner.

A different, local, reasoning performance prediction method was proposed
in [21]. It decomposes an ontology into smaller subsets with increasing sizes, and
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then extrapolates their performance to the entire ontology. The local approach
does not require a corpus, but instead does require repeated reasoner invocations
over ontology subsets. Using the k-NN classifier as a baseline, it was observed
that using only one metric, number of axioms, the local approach achieves com-
parable classification performance with [15]. The local prediction approach can
be regarded as an online prediction approach as it needs to invoke reasoners on
the subsets of growing sizes, whereas [15,17] as well as this work are offline.

Understanding empirical hardness of ontologies has also garnered attention in
recent years. The identification of sources of ontologies in terms of performance
hotspots was investigated [11,17], where hotspots are found in a number of hard
biomedical ontologies. The removal of such hotspots dramatically reduces the
reasoning time of the remaining ontology. However, as a result, reasoning sound-
ness and completeness cannot be guaranteed.

Portfolio-based algorithm selection [13] has been successfully applied to com-
binatorial optimisation and constraint satisfaction problems. SATzilla [30], for
instance, a portfolio SAT solver, has demonstrated higher efficiency over single
solvers. Compared to ontology languages OWL and OWL 2, k-SAT instances
are described by a simpler language, whereas OWL and OWL 2 contain many
more language constructs (various class expressions, property expressions and
axioms). The richness of the ontology languages make it difficult to define fea-
tures to sufficiently describe characteristics of ontologies. Moreover, SATzilla
does not employ a ranking component but solely relies on prediction models.
Evaluation in Section 3 above shows that R2O2 outperforms a SATzilla-style
portfolio reasoner, demonstrating the advantages of integrating a ranking com-
ponent.

Recently, preference learning [6] has been shown to be effective for developing
meta-learners with an aim to predicting the most efficient algorithm from a few
promising ones on different types of datasets such as those represented using
meta-features [23] and data streams [27]. In these studies, preference learning has
been demonstrated to significantly reduce optimisation time needed for choosing
a best model on a given dataset.

Often, ranking algorithms in preference learning use machine learning
approaches by analysing the association information between characteristics of
a given dataset (in our context, ontology metrics) and the relative performance
of the available algorithms. Such ranking algorithms include the algorithms pro-
posed in [23] such as the nearest neighbour-based approach, the pairwise binary
classification approach, the regression-based approach, the ranking tree-based
approach and the ranking forest-based approach. Also, the learning-to-rank app-
roach [29] and the label ranking approach [12] have been shown to be used for
preference learning. In R2O2, we utilise some of the ranking algorithms intro-
duced in [23] to predict the most efficient reasoners for a set of new ontologies.
The incorporation of such a ranking component demonstrably improves reason-
ing efficiency.
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5 Conclusions

In this paper, we present R2O2, a novel meta-reasoner that combines component
reasoners in an efficient way, by automatically selecting the reasoner that is most
likely the most efficient for any given ontology. A key novel feature of our app-
roach is the incorporation of reasoner ranking to determine the best component
reasoner according to their predicted reasoning time. Another important feature
is the use of prediction models for ontology reasoners for estimating reasoning
time. The performance of R2O2 is further improved by the incorporation of the
second-order prediction (ranking), as compared to the traditional portfolio-based
meta-reasoning approach.

Our comprehensive, large-scale evaluation involving more than 4,000 ontolo-
gies and 6 state-of-the-art OWL 2 DL reasoners—including the currently dom-
inant reasoner Konclude—demonstrates the superiority of our meta-reasoner,
in both efficiency and stability. A speedup of up to 14x is achieved, with a
1.4x speedup over Konclude. We show that R2O2 achieves significant efficiency
improvements over the 6 component reasoners, as well as a SATzilla-style port-
folio reasoner with a 1.5x speedup.

In future we will investigate novel prediction models and ranking models to
further improve their accuracy, as well as the performance of R2O2. We will study
the effectiveness of incorporting additional efficient reasoners such as ELK [18]
that provide efficient reasoning support of less expressive DLs. Moreover, we will
also investigate sources of instance hardness by studying similarity of ontologies
that have similar performance for a given reasoner.

Acknowledgments. We thank Andreas Steigmiller for his kind and timely assistance
in helping us set up the ORE 2014 reasoner competition framework in our evaluation.
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on data streams. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS
2014. LNCS, vol. 8777, pp. 325–336. Springer, Heidelberg (2014)

28. Vardi, M.Y.: Boolean satisfiability: Theory and engineering. Commun. ACM 57(3),
5 (2014)

29. Xu, J., Li, H.: Adarank: a boosting algorithm for information retrieval. In: 30th
International ACM Conference on Research and Development in Information
Retrieval, SIGIR 2007, New York, NY, USA, pp. 391–398. ACM (2007)

30. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla-07: the design and
analysis of an algorithm portfolio for SAT. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 712–727. Springer, Heidelberg (2007)

31. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based algo-
rithm selection for SAT. J. Artif. Int. Res. 32(1), 565–606 (2008)

32. Zhang, H., Li, Y.-F., Tan, H.B.K.: Measuring design complexity of Semantic Web
ontologies. Journal of Systems and Software 83(5), 803–814 (2010)



Rewriting-Based Instance Retrieval for Negated
Concepts in Description Logic Ontologies

Jianfeng Du1(B) and Jeff Z. Pan2

1 Guangdong University of Foreign Studies, Guangzhou 510006, China
jfdu@gdufs.edu.cn

2 The University of Aberdeen, Aberdeen AB24 3UE, UK

Abstract. Instance retrieval computes all instances of a given concept
in a consistent description logic (DL) ontology. Although it is a popu-
lar task for ontology reasoning, there is no scalable method for instance
retrieval for negated concepts by now. This paper studies a new app-
roach to instance retrieval for negated concepts based on query rewrit-
ing. A class of DL ontologies called the inconsistency-based first-order
rewritable (IFO-rewritable) class is identified. This class guarantees that
instance retrieval for an atomic negation can be reduced to answering
a disjunction of conjunctive queries (CQs) over the ABox. The IFO-
rewritable class is more expressive than the first-order rewritable class
which guarantees that answering a CQ is reducible to answering a dis-
junction of CQs over the ABox regardless of the TBox. Two sufficient
conditions are proposed to detect IFO-rewritable ontologies that are not
first-order rewritable. A rewriting-based method for retrieving instances
of a negated concept is proposed for IFO-rewritable ontologies. Prelimi-
nary experimental results on retrieving instances of all atomic negations
show that this method is significantly more efficient than existing meth-
ods implemented in state-of-the-art DL systems.

1 Introduction

Description logics (DLs) [2] are popular knowledge representation languages
underpinning the Web Ontology Language (OWL). A DL ontology consists of
a TBox and an ABox, where the TBox describes relations between concepts
and roles, and the ABox describes instances of concepts and roles. DLs enable a
number of tasks for ontology reasoning based on the classical first-order seman-
tics. Among these tasks, instance retrieval is a popular one which computes all
individuals in a consistent DL ontology that are instances of a given concept.

Most studies on instance retrieval focus on atomic concepts, namely concept
names. It is well-known that instance retrieval for atomic concepts is tractable
for those DLs that underpin the three profiles QL, EL and RL of OWL 2, the
newest version of OWL. There have also been optimization and approximation
techniques proposed for instance retrieval in expressive DLs [13,17,21]. However,
to the best of our knowledge, there is seldom any dedicated study on instance
retrieval for negated concepts. A negated concept is of the form ¬C where C is
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 339–355, 2015.
DOI: 10.1007/978-3-319-25007-6 20
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a DL concept without the negation symbol ¬. In the reality, it is often required
to compute instances of a negated concept. For example, one may often raise
questions like the following ones upon a DL ontology describing people in uni-
versities: Who is not an undergraduate? Who does not have a friend who is a
professor? Who does not get a PhD degree from a Chinese university?

According to the semantics of DLs, the set of instances of a negated concept
¬C cannot be returned as the set of those instances explicitly declared in the
given ontology, nor the complement set of the set of instances of C. A common
sound and complete method for instance retrieval for ¬C is to reduce the problem
to instance retrieval for PC , where PC is a fresh atomic concept, by adding
an axiom ¬C � PC to the TBox. This method is commonly implemented in
state-of-the-art DL systems. However, the added axiom ¬C � PC introduces
concept disjunctions and cannot be expressed in DLs that guarantee tractable
instance retrieval. To guarantee tractability, one may apply another method
which retrieves all instances of ¬C by checking if {C(a)} is consistent with the
given ontology for every individual a in the ontology. However, this method is
hardly scalable for large DL ontologies with many individuals.

Inspired by the successful query rewriting approach to ontology reasoning
(see e.g. [5,7]), we solve the problem of instance retrieval for negated concepts
from a new perspective, i.e., by query rewriting. There are some challenges in
making use of query rewriting. First of all, existing query rewriting methods
are designed for conjunctive queries (CQs) but not for negated concepts. It
requires us to establish a connection between negated concepts and CQs. More
importantly, it is required that the applicable DLs be as expressive as possible.

In this paper we tackle all the above challenges and make the follow-
ing contributions. Firstly, we identify a class of DL ontologies, called the
inconsistency-based first-order rewritable (IFO-rewritable) class, which guaran-
tees that instance retrieval for an atomic negation is reducible to answering a
disjunction of CQs over the ABox. The class is characterized by an inconsistency-
rewritten set of Boolean conjunctive queries (BCQs) whose size is finite and
independent of the ABox. From an inconsistency-rewritten set S of BCQs for an
atomic concept A, we can extract a disjunction of CQs QD(x) in time linear in
the size of S such that the set of instances of ¬A is the set of answers of QD(x)
in the ABox.

Secondly, we show that the IFO-rewritable class is more expressive than the
first-order rewritable class, where the latter is commonly used in query rewriting
and guarantees that answering a CQ is reducible to answering a disjunction of
CQs over the ABox. We propose two sufficient conditions for detecting IFO-
rewritable ontologies that are not first-order rewritable. One condition relies on
extracting first-order rewritable subsets of the given ontology and can be checked
regardless of the ABox in time polynomial in the size of the TBox. The other
condition is applicable to the DL ELR⊥ and can be checked in time polynomial
in the size of the ABox by considering certain subgraphs of the ABox graph.

Finally, we conduct experiments on large first-order rewritable ontologies to
demonstrate the advantages of exploiting inconsistency-rewritten sets of BCQs
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to retrieve instances of atomic negations. We compare this proposed method
with the two aforementioned methods for instance retrieval for atomic nega-
tions. Experimental results obtained by several state-of-the-art DL systems show
that the proposed method is significantly more efficient than the two afore-
mentioned methods in retrieving instances of all atomic negations. Moreover,
among all compared methods only the proposed one is scalable for large ontolo-
gies with tens of millions of assertions. All proofs are available at http://www.
dataminingcenter.net/rebsir/ISWC15-full.pdf.

2 Preliminaries

We assume that the reader is familiar with DLs [2]. A DL ontology consists of a
TBox and an ABox, where the TBox is a finite set of axioms on relations between
concepts and roles, and the ABox is a finite set of assertions declaring instances
of concepts and roles. In this work we only consider normalized ABoxes. An
ABox is said to be normalized if it consists of basic assertions that are concept
assertions of the form A(a) or role assertions of the form r(a, b), where A is an
atomic concept, r is an atomic role, and a and b are individuals. Other concept
assertions and role assertions can be normalized to basic ones in a standard way.
For a normalized ABox A, let Ind(A) denote the set of individuals appearing A
and Cn(A) the set of atomic concepts appearing in A.

The semantics of DLs coincides with the classical first-order semantics. A
DL ontology O is said to be consistent, denoted by O �|= ⊥, if it has at least
one model, otherwise inconsistent, denoted by O |= ⊥. An ABox A is said to be
consistent with a TBox T if T ∪ A is consistent. An individual a is said to be
an instance of a concept C in O if the concept assertion C(a) is satisfied by all
models of O, denoted by O |= C(a). The problem of instance retrieval for C in
O is to compute the set of instances of C in O.

A conjunctive query (CQ) Q(x) is a formula of the form ∃y φ(x,y), where
φ(x,y) is a conjunction of atoms over atomic concepts, atomic roles and the
(in)equality predicate, x are answer variables, and y are quantified variables. A
CQ without answer variables is called a Boolean conjunctive query (BCQ). Here
a BCQ is written and treated as a set of atoms. For example, the BCQ ∃x A(x)∧
B(x) is written as {A(x), B(x)}. A disjunction of CQs, also called a union of
CQs or a UCQ in the literature, is a formula of the form Q1(x) ∨ . . . ∨ Qn(x)
where n ≥ 1 and Q1(x), . . . , Qn(x) are CQs. We say a disjunction of BCQs QD

is entailed by O, denoted by O |= QD, if QD is satisfied by all models of O. A
tuple t of individuals is called an answer to a disjunction of CQs QD(x) in an
ontology O if O |= QD(t), where QD(t) is a disjunction of BCQs obtained from
Q(x) by replacing variables in x with corresponding individuals in t. The set of
answers to QD(x) in O is denoted by ans(O, QD(x)). For a disjunction of BCQs
QD, ans(O, QD) = {〈〉} if O |= QD, or ans(O, QD) = ∅ otherwise.

Datalog± [4] is highly related to DLs. It extends datalog with existential
rules, which are formulae of the form ∀x∀y φ(x,y) → ∃z ϕ(x,z), where φ(x,y)
and ϕ(x,z) are conjunctions of atoms (often treated as sets of atoms), and x,

http://www.dataminingcenter. net/rebsir/ISWC15-full.pdf
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y and z are pairwise disjoint sets of variables. The part of R at left-hand side
of → is the body of R, whereas the part of R at right-hand side of → is the
head of R. An existential rule R is called an equality generating dependency
(EGD) if the head of R is of the form x1 = x2 where x1 and x2 are different
variables appearing in the body of R; called a constraint if the head of R is
empty; otherwise, called a tuple generating dependency (TGD). A TGD is said
to be linear if its body contains a single atom; multi-linear if all atoms in its
body have the same variables. A linear TGD is also a multi-linear TGD.

A datalog± program is a finite set of existential rules, amounting to the
conjunction of all existential rules in it. Since existential rules are formulae in
first-order logic with equality, a TBox expressed in some DLs can be translated
to a datalog± program. It follows that an ontology expressed in some DLs can
be translated to the union of a datalog± program and a normalized ABox. We
call such an ontology datalog±-translatable. For a datalog±-translatable ontology
with TBox T , throughout this paper we use SD

T to denote the set of TGDs
translated from T , SC

T to denote the set of constraints translated from T , and
SE

T to denote the set of EGDs translated from T . Since datalog± works with
the unique name assumption, this assumption is also adopted in an arbitrary
datalog±-translatable ontology, which means that all individuals appearing in
the ontology are interpreted as different in any model of the ontology.

By |S| we denote the cardinality of a set S. A substitution for a first-order
entity (such as atom, formula, etc.) E is a mapping from variables in E to
individuals or variables; it is ground if it maps variables in E to individuals only.

We recall the notions of first-order rewritability and separability in the con-
text of DLs [4]. A set SD of TGDs is said to be first-order rewritable if, for
every conjunctive query Q(x), there exists a finite disjunction of conjunctive
queries QD(x) such that ans(SD ∪ A, Q(x)) = ans(A, QD(x)) for all ABoxes
A. It has been shown [4] that a set SD of TGDs is first-order rewritable if all
TGDs in SD are multi-linear. A set SE of EGDs is said to be separable from
a set SD of TGDs if the following holds for every ABox A: if there exists an
EGD ∀xφ(x) → x1 = x2 in SE and a ground substitution σ for x such that
SD ∪ A |= φ(xσ) and x1σ �= x2σ, then there is a ground substitution θ for
x such that A |= φ(xθ) and x1θ �= x2θ; otherwise, SD ∪ SE ∪ A |= Q if and
only if SD ∪ A |= Q for all BCQs Q. It has been shown [4] that deciding if
SD ∪ SC ∪ SE ∪ A |= Q for a first-order rewritable set SD of TGDs, a set SC of
constraints, a set SE of EGDs separable from SD, an ABox A and a BCQ Q is
in AC0 in data complexity, the complexity measured in the size of A only.

3 Rewriting-Based Instance Retrieval

Query rewriting is an efficient and scalable approach to reasoning over ontologies
that are expressed in lightweight DLs and have large ABoxes. The idea is to
rewrite a given CQ into a disjunction of CQs or a datalog program such that
the given CQ can be answering by evaluating the rewriting result over the ABox
only. Query rewriting has been implemented in modern DL systems such as
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Rapid [7] and MASTRO [5]. To enable query rewriting for all CQs, we require
that the back-end ontology be first-order rewritable based on the first-order
rewritable class of TGDs. We call a DL ontology O with TBox T first-order
rewritable if it is a datalog±-translatable ontology such that SD

T is first-order
rewritable, SE

T is separable from SD
T and SC

T can be arbitrary. It has been shown
[4] that most DLs in the DL-Lite family [6], such as DL-LiteX and DL-LiteX,�
for X ∈ {F ,R,A}, express first-order rewritable ontologies, where DL-LiteR
underpins the QL profile of OWL 2.

Inspired by the exciting progress on query rewriting, we intend to solve the
problem of instance retrieval for negated concepts by exploiting query rewriting.
As mentioned in Section 1, there are challenges in making use of query rewriting,
including the establishment of a bridge from negated concepts to CQs and the
guarantee of the expressivity for applicable DLs. To tackle these challenges, we
start with the study on instance retrieval for atomic negations.

Given a consistent DL ontology O with ABox A and an atomic negation ¬A,
the basic idea for instance retrieval for ¬A in O is to compute a disjunction of
CQs QD(x) such that the set of answers to QD(x) in A amounts to the set of
instances of ¬A in O. To compute QD(x), we first compute a set S of BCQs,
each of which is entailed by A ∪ {A(a)} for some instance a of ¬A in O, and
then construct QD(x) from S. We call the set of BCQs computed in the first
step an inconsistency-rewritten set, which is formally defined below.

Definition 1. Given an atomic concept A and a consistent DL ontology O with
ABox A, a set S of BCQs is called an inconsistency-rewritten set for A in O
if S has a finite size that is independent of the size of A, A �|= ∨ S, and for all
individuals a in O, O ∪ {A(a)} |= ⊥ if and only if A ∪ {A(a)} |= ∨ S. O is said
to be inconsistency-based first-order rewritable (simply IFO-rewritable) for A,
if there is an inconsistency-rewritten set of BCQs for A in O.

The IFO-rewritable class is characterized by inconsistency-rewritten sets of
BCQs. Note that all BCQs considered in this paper do not contain individuals.
After an inconsistency-rewritten set S of BCQs for A is computed, the set of
instances of ¬A in an IFO-rewritable ontology O for A can be computed as
the set of answers to a disjunction of CQs QD(x) in the ABox A of O, where
QD(x) is extracted from S by separating an atom over A from the other atoms
in every BCQ in S. We introduce some notations to explain this method. Given
a set S of BCQs and an atomic concept A, we call the set of BCQs in S that
contain at least one atom over A the A-projection of S, denoted by S|A. For a
BCQ Q that has some atoms over A, we call a pair 〈A(t), Q′〉 for t a variable
an A-bipartition of Q if Q′ ∪ {A(t)} = Q and A(t) �∈ Q′. By bipart(Q,A) we
denote the set of A-bipartitions of Q. Let �S,A(z) =

∨{Q′[t/z] | Q ∈ S|A,
〈A(t), Q′〉 ∈ bipart(Q,A)}, where Q′[t/z] denotes the CQ obtained from Q′ by
renaming t to z, and z does not occur in S and is the unique answer variable in
Q′[t/z]. The following theorem shows a method for extracting a disjunction of
CQs from an inconsistency-rewritten set of BCQs.
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Theorem 1. Let A be an atomic concept, O an IFO-rewritable ontology for A
with TBox T and ABox A, and S an inconsistency-rewritten set of BCQs for A
in O. Then the set of instances of ¬A in O is ans(A, �S,A(z)).

Note that the disjunction of CQs computed by the above method is indepen-
dent of the size of the ABox. It follows that checking an instance of a given atomic
negation in an IFO-rewritable ontology can be done in AC0 in data complexity.

Example 1. This example illustrates how to retrieve instances of an atomic nega-
tion ¬A in an IFO-rewritable ontology for A after an inconsistency-rewritten set
of BCQs for A is computed. Let O be a consistent DL ontology with TBox T
and ABox A. The TBox T consists of the following three axioms.

Husband � ∃marries.Woman � �≤1 marries.� ∃marries.Woman � ¬Woman

The ABox A consists of the following four assertions.

marries(Tom,Ann) Woman(Ann) marries(Aba,Bob) Woman(Aba)

Consider computing all instances of ¬Woman in O. By Definition 1 it can
be checked that S = {Q1, Q2, Q3} is an inconsistency-rewritten set of BCQs
for Woman in O, where Q1 = {marries(x, y), Woman(y), Woman(x)}, Q2 =
{Husband(x), Woman(x)}, and Q3 = {marries(x, y1), marries(x, y2), y1 �= y2}.
We have S|Woman = {Q1, Q2}. The disjunction of CQs extracted from S|Woman is
�S,Woman(z) = (∃ymarries(z, y) ∧ Woman(y)) ∨ (∃xmarries(x, z) ∧ Woman(x)) ∨
Husband(z). The set of answers to �S,Woman(z) in A is S = {Tom, Bob}, which
is the set of instances of ¬Woman in O by Theorem 1.

By ρ(R) we denote the BCQ ∃xφ(x) if R is a constraint ∀xφ(x) →, or the
BCQ ∃xφ(x) ∧ x1 �= x2 if R is an EGD ∀xφ(x) → x1 = x2. For a first-order
rewritable set S of TGDs and a BCQ Q, by γ(Q,S) we denote a set SQ of
BCQs such that S ∪ A |= Q if and only if A |= ∨ SQ for all ABoxes A. The
following theorem shows that a consistent first-order rewritable ontology is an
IFO-rewritable ontology for an arbitrary atomic concept in the ontology.

Theorem 2. Let O be a consistent first-order rewritable ontology with TBox T .
Then

⋃{γ(ρ(R),SD
T ) | R ∈ SC

T }∪{ρ(R) | R ∈ SE
T } is an inconsistency-rewritten

set of BCQs for an arbitrary atomic concept in O.

Example 2. This example illustrates how to compute an inconsistency-rewritten
set of BCQs from the ontology O given in Example 1, which is also a first-order
rewritable ontology. According to Theorem 2, we first translate T to the union
of a set SD

T of TGDs, a set SC
T of constraints and a set SE

T of EGDs, where

SD
T = {∀xHusband(x) → ∃ymarries(x, y) ∧ Woman(y)},

SC
T = {∀x, ymarries(x, y) ∧ Woman(y) ∧ Woman(x) →},

SE
T = {∀x, y1, y2 marries(x, y1) ∧ marries(x, y2) → y1 = y2}.
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SD
T contains a linear TGD and is first-order rewritable. SE

T is separable from SD
T .

Now, we compute γ(ρ(R),SD
T ) for all R ∈ SC

T by a query rewriting method such
as the one implemented in Rapid [7], yielding Q1 = {marries(x, y), Woman(y),
Woman(x)} and Q2 = {Husband(x), Woman(x)}. We compute ρ(R) for all R ∈
SE

T , yielding Q3 = {marries(x, y1), marries(x, y2), y1 �= y2}. Eventually, we obtain
an inconsistency-rewritten set of BCQs for an arbitrary atomic concept in O,
which is S = {Q1, Q2, Q3}.

The expressivity of the IFO-rewritable class is actually higher than that of the
first-order rewritable class. In the following, we present two sufficient conditions
for detecting IFO-rewritable ontologies that are not first-order rewritable.

A Condition Based on Reachability from Constraints and EGDs. To
facilitate finding inconsistency-responsible subsets of a consistent DL ontology
O, we restrict O to be a datalog±-translatable ontology. In such an ontology, the
inconsistencies are caused by constraints or EGDs translated from the TBox and
inconsistency-responsible subsets of the TBox can be found by backward traver-
sal from constraints or EGDs. To explain the method for backward traversal
from constraints or EGDs, we introduce the notion of triggering below.

Definition 2. Given a set S of TGDs, we say a predicate P triggers another
predicate P ′ in S if either there is a TGD R ∈ S such that P appears in the body
of R and P ′ appears in the head of R, or there exists a predicate P ′′ such that
P triggers P ′′ and P ′′ triggers P ′ in S. Moreover, we say a predicate P triggers
a constraint or an EGD R in S if P triggers at least one predicate appearing in
the body of R in S; we say a TGD R ∈ S triggers a constraint or an EGD R′

in S if there is a predicate appearing in the head of R triggers R′ in S.
For a constraint or an EGD R and a set S of TGDs, by trg(R,S) we denote the

set of TGDs in S that trigger R in S. Then trg(R,S) is essentially the unique
maximal subset of S that can be backward traversed from R. By considering
trg(R,S) for all constraints or EGDs R rather than the original TBox, we can
obtain a condition for detecting IFO-rewritable ontologies that are not first-order
rewritable. The following theorem shows this condition and the corresponding
method for computing an inconsistency-rewritten set of BCQs, where pred(S)
denotes the set of predicates appearing in a set S of existential rules.

Theorem 3. Let O be a consistent datalog±-translatable ontology with TBox T ,
and A an atomic concept in O. If for all R ∈ SC

T , A �∈ pred(trg(R,SD
T )∪{R}) or

trg(R,SD
T ) is first-order rewritable, and for all R ∈ SE

T , A �∈ pred(trg(R,SD
T ) ∪

{R}) or {R} is separable from trg(R,SD
T ), then

⋃{γ(ρ(R), trg(R,SD
T )) | R ∈

SC
T , A ∈ pred(trg(R,SD

T ))} ∪ {ρ(R) | R ∈ SE
T , A ∈ pred(trg(R,SD

T ))} is an
inconsistency-rewritten set of BCQs for A in O.

The condition given in the above theorem can be checked regardless of the
ABox in time polynomial in the size of the TBox, because computing trg(R,SD

T )
can be done in time polynomial in the size of SD

T for every constraint or EGD
R. The following example shows a datalog±-translatable ontology that satisfies
this condition for some atomic concept but is not first-order rewritable.
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Example 3. Let O be a consistent datalog±-translatable ontology whose TBox
T consists of the following three axioms.

∃r.A � A A � B � ⊥ B � C � ⊥
Consider computing an inconsistency-rewritten set of BCQs for C in O by the
method in Theorem 3. We first translate T to the union of a set SD

T of TGDs, a
set SC

T of constraints and a set SE
T of EGDs, where SD

T = {∀x, y r(x, y)∧A(y) →
A(x)}, SC

T = {R1 : ∀x A(x) ∧ B(x) →, R2 : ∀x B(x) ∧ C(x) →}, and SE
T = ∅.

Since the CQ A(x) cannot be rewritten to a finite disjunction of CQs QD(x) such
that ans(SD

T ∪ A, A(x)) = ans(S, QD(x)) for all ABoxes A, SD
T is not first-order

rewritable, and nor is O. But we can show that O is IFO-rewritable for C. Since
trg(R1,SD

T ) = SD
T and trg(R2,SD

T ) = ∅, we have C �∈ pred(trg(R1,SD
T ) ∪ {R1})

and C ∈ pred(trg(R2,SD
T ) ∪ {R2}). Moreover, since trg(R2,SD

T ) is empty, it is
clearly first-order rewritable. Hence an inconsistency-rewritten set of BCQs for
C in O is γ(ρ(R2), trg(R2,SD

T )) = {ρ(R2)}, where ρ(R2) = {B(x), C(x)}.

A Condition Based on Rooted Subgraphs of the ABox Graph. Let O
be a consistent DL ontology with TBox T and ABox A, and A an atomic concept.
Another condition for guaranteeing the existence of an inconsistency-rewritten
set of BCQs for A in O is that, there is a set S of small subsets of A such that the
number of assertions in any S ∈ S is not greater than a given threshold n and
every instance a of ¬A in O is also an instance of ¬A in T ∪ S for some S ∈ S.
The validness of this condition can be shown as follows. Let SA = {Sa ∪{A(a)} |
O |= ¬A(a)} where Sa is an element in S such that T ∪ Sa |= ¬A(a), then
A �|= ∨ SA, and for all individuals a in O, O ∪ {A(a)} |= ⊥ if and only if
A∪{A(a)} |= ∨ SA. By lift(S) we denote the set of atoms obtained from a set S
of assertions by replacing different individuals in S with different variables. Let
S ′
A = {lift(S) | S ∈ SA}, then the size of S ′

A is independent of the size of A and
at most polynomial in the size of T with an exponent not greater than n+1. If
T ∪S |= ⊥ implies T ∪ lift(S) θ |= ⊥ for all ground substitutions θ for lift(S), S ′

A

will be an inconsistency-rewritten set of BCQs for A.
To satisfy the above condition as possible, we restrict O to be an ELR⊥

ontology made up of an ELR⊥ TBox and a normalized ABox. An ELR⊥ TBox
consists of role inclusions of the form r1 ◦ . . . ◦ rk � s and concept inclusions
of the form C � D, where k ≥ 1, r1, . . . , rk, s are atomic roles, and C and D
are EL⊥ concepts recursively constructed by ⊥, �, atomic concepts, existential
restrictions ∃s.C and concept conjunctions C �D. The above condition requires
computing small ABox subsets preserving instances of ¬A in the ontology. In an
ELR⊥ ontology, these ABox subsets can be treated as maximal rooted subgraphs
of the ABox graph. Before showing this result, we formally provide the related
notions below.

Definition 3. The ABox graph of a normalized ABox A, denoted by G(A), is
a graph G = (V,E,L) where V = Ind(A) is a set of vertexes, E = {(a, b, r) |
r(a, b) ∈ A} is a set of labeled edges, and L : Ind(A) �→ 2Cn(A) is a label function
such that L(a) = {A | A(a) ∈ A} for all a ∈ V . We say a graph G′ = (V ′, E′, L′)
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is a subgraph of G = (V,E,L), wirtten G′ ⊆ G, if V ′ ⊆ V , E′ ⊆ E and for all
a ∈ V ′, L′(a) ⊆ L(a). We say an individual a has a path to another individual
b in G = (V,E,L), if there is a sequence of labeled edges (a, a1, r0), (a1, a2, r1),
. . . , (an, b, rn) in E. A root a of a graph G = (V,E,L) is an individual in V
such that for all individuals b other than a in V , a has a path to b in G. A rooted
subgraph G′ of G is a subgraph of G that has at least one root; it is maximal if
there is no rooted subgraph G′′ of G such that G′ ⊆ G′′ and G′′ �⊆ G′.

Every normalized ABox has a one-to-one mapping to its ABox graph. By
G−(G) we denote the unique ABox mapped from an ABox graph G = (V,E,L),
i.e., G−(G) = {A(a) | a ∈ V,A ∈ L(a)} ∪ {r(a, b) | (a, b, v) ∈ E}.

Example 4. Suppose an ABox A consists of the following 5+m assertions.

r(a1, a2) r(a2, a1) r(a1, b) r(a2, b) A(b) r(c1, b) . . . r(cm, b)

The ABox graph G(A) of A is shown below. We can see that G({r(a1, a2),
r(a2, a1), r(a1, b), r(a2, b), A(b)}) is a maximal rooted subgraph of G(A) which
has two roots a1 and a2; moreover, for all 1 ≤ i ≤ m, G({r(ci, b), A(b)}) is also
a maximal rooted subgraph of G(A) with the unique root ci.

L(a1) = ∅ a1

r

��

r

���
��

��
��

� c1

r

����
��
��
��

L(ci) = ∅ for all 1 ≤ i ≤ m

L(a2) = ∅ a2

r

��

r �� b cmr
�� L(b) = {A}

In general, all maximal rooted subgraphs of an ABox graph can be retrieved
in time polynomial in the size of the ABox, by first identifying all roots of
maximal rooted subgraphs and then computing all full subgraphs led by these
roots. A full subgraph of G = (V,E,L) led by an individual a is a subgraph
G′ = (V ′, E′, L′) of G such that V ′ = {a} ∪ {b | a has a path to b in G}, E′ =
{(b, c, r) ∈ E | b ∈ V ′, c ∈ V ′} and L′(b) = L(b) for all b ∈ V ′. There is a unique
full subgraph led by a certain individual. The roots of maximal rooted subgraphs
are identified as those individuals a having paths to any individual that has
paths to a in the ABox graph. The maximal rooted subgraph in which a is a
root can be defined as the full subgraph led by a. The following theorem shows
the correctness of this method for computing all maximal rooted subgraphs.

Theorem 4. Let G = (V,E,L) be an ABox graph and a an individual in V .
Then (1) if a is a root of some maximal rooted subgraph of G, then a has paths
to any individual that has paths to a in G; (2) if a has paths to any individual
that has paths to a in G, then the full subgraph of G led by a is a maximal rooted
subgraph of G in which a is a root.

The following lemma shows that the required set of ABox subsets that pre-
serves all instances of ¬A in an ELR⊥ ontology can be defined as the set of
G−(G) for G a maximal rooted subgraph of the ABox graph.
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Algorithm. ComputeInconsistencyRewrittenSet(T , A, A)
Input: An ELR⊥ ontology with TBox T and ABox A, and an atomic concept A.
Output: An inconsistency-rewritten set of BCQs for A in T ∪ A.
1: SQ ← ∅;
2: for each G in NonIsomorphicMRS(G(A)) and each individual a in G do
3:
∣
∣ if A(a) �∈ A and there is no Q ∈ SQ and ground substitution θ for Q such that

Qθ ⊆ G−(G) ∪ {A(a)} then
4:
∣
∣
∣
∣ if T ∪ G−(G) |= ¬A(a) then

5:
∣
∣
∣
∣
∣
∣ Q ← lift(G−(G) ∪ {A(a)}); // replace diff. individuals with diff. variables

6:
∣
∣
∣
∣
∣
∣ for each Q′ ∈ SQ such that Qθ ⊆ Q′ for some substitution θ for Q do

7:
∣
∣
∣
∣
∣
∣
∣
∣ SQ ← SQ \ {Q′};

8:
∣
∣
∣
∣
∣
∣ SQ ← SQ ∪ {Q};

9: return SQ;

Fig. 1. The algorithm for computing an inconsistency-rewritten set of BCQs

Lemma 1. Given an atomic concept A and a consistent ELR⊥ ontology O with
TBox T and ABox A, if a is an instance of ¬A in O, then there is a maximal
rooted subgraph G of G(A) such that T ∪ G−(G) |= ¬A(a).

By the above lemma, we can use an integer threshold n to determine (in
PTime in data complexity) if a consistent ELR⊥ ontology has an inconsistency-
rewritten set of BCQs for an arbitrary atomic concept. That is, if the number
of assertions in any maximal rooted subgraph of the ABox graph is not greater
than n, then we can find an inconsistency-rewritten set of BCQs for a given
atomic concept by the algorithm shown in Fig. 1.

The resulting set SQ of the algorithm ComputeInconsistencyRewrittenSet(
T , A, A) only keeps the most general BCQs, where a set of atoms (or BCQ)
Q is said to be more general than another set of atoms (or BCQ) Q′ if there
is a substitution θ for Q such that Qθ ⊆ Q′. To avoid generating equivalent
BCQs up to renaming of variables, the algorithm only handles non-isomorphic
subgraphs of G(A), where two subgraphs G1 and G2 are said to be isomor-
phic if lift(G−(G1)) and lift(G−(G2)) are equivalent up to renaming of variables.
In the algorithm, NonIsomorphicMRS(G(A)) denotes the set of non-isomorphic
maximal rooted subgraphs of G(A), i.e., any two subgraphs in this set are not
isomorphic. The cardinality of this set is at most polynomial in the size of T
with an exponent not greater than n. The algorithm handles all subgraphs G
in NonIsomorphicMRS(G(A)) and all individuals a in G to construct SQ. In case
A(a) ∈ A, since T ∪A is consistent and G−(G)∪{A(a)} ⊆ A, T ∪G−(G)∪{A(a)}
is also consistent, i.e., T ∪ G−(G) �|= ¬A(a). In case there is some Q ∈ SQ that
is more general than G−(G) ∪ {A(a)}, since no individual occurs in Q, the BCQ
lift(G−(G) ∪ {A(a)}) is less general than Q and thus is not added to SQ. In
other cases (lines 4–8), if and only if T ∪ G−(G) |= ¬A(a), all BCQs that are
less general than lift(G−(G)∪{A(a)}) are removed from SQ, making SQ contain
only the most general BCQs; moreover, lift(G−(G) ∪ {A(a)}) is added to SQ.
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The algorithm first computes NonIsomorphicMRS(G(A)) regardless of T in
time polynomial in the size of A, and then computes SQ from NonIsomorphic-
MRS(G(A)) regardless of A in time polynomial in the size of T . The correctness
follows from Lemma 1 and the following lemma, as shown in Theorem 5.

Lemma 2. For an ELR⊥ TBox T and a set S of assertions such that T ∪ S is
inconsistent, T ∪ lift(S) θ is inconsistent for all ground substitutions θ for lift(S).

Theorem 5. Given an atomic concept A and a consistent ELR⊥ ontology O
with TBox T and ABox A, ComputeInconsistencyRewrittenSet(T , A, A)
returns an inconsistency-rewritten set SQ of BCQs for A in O, when |G−(G)| is
not greater than a fixed constant n for all maximal rooted subgraphs G of G(A).

Example 5. Consider the ontology O given by Example 3 where its ABox A is
given by Example 4. O is a consistent ELR⊥ ontology, but it is not first-order
rewritable. Suppose the threshold n is 5. We show that there is an inconsistency-
rewritten set of BCQs for B in O. The maximal rooted subgraphs of G(A) given
in Example 4 are G0, G1, . . . , Gm, where G−(G0) = {r(a1, a2), r(a2, a1), r(a1, b),
r(a2, b), A(b)} and G−(Gi) = {r(ci, b), A(b)} for all 1 ≤ i ≤ m. Since |G−(Gi)| ≤
n for all 0 ≤ i ≤ m, we call ComputeInconsistencyRewrittenSet(T , A, B).
Initially, we have NonIsomorphicMRS(G(A)) = {G0, G1} and set SQ = ∅. For
G−(G0) and a1, since B(a1) �∈ A, SQ = ∅ and T ∪ G−(G0) |= ¬B(a1), we add
Q1 = {r(x, y), r(y, x), r(x, z), r(y, z), A(z), B(x)} to SQ. For G−(G0) and a2,
since Q1 · {x/a2, y/a1, z/b} = G−(G0) ∪ {B(a2)}, a2 is not handled. For G−(G0)
and b, since B(a1) �∈ A, T ∪ G−(G0) |= ¬B(b) and Q1 is not more general than
G−(G0) ∪ {B(b)}, we add Q2 = {r(x, y), r(y, x), r(x, z), r(y, z), A(z), B(z)} to
SQ. For G−(G1) and c1, since B(c1) �∈ A and T ∪ G−(G1) |= ¬B(c1), we add
Q3 = {r(x, y), A(y), B(x)} to SQ; moreover, since Q3 is more general than Q1, we
remove Q1 from SQ. For G−(G1) and b, since B(b) �∈ A and T ∪G−(G1) |= ¬B(b),
we add Q4 = {r(x, y), A(y), B(y)} to SQ; moreover, since Q4 is more general
than Q2, we remove Q2 from SQ. Finally we get SQ = {Q3, Q4}, which is an
inconsistency-rewritten set of BCQs for B in O.

The DL ELR⊥ is a core of the EL profile of OWL 2, roughly correspond-
ing to this profile without range restrictions and nominals. However, extend-
ing the algorithm in Fig. 1 to deal with range restrictions or nominals is hard
or even impossible. On the one hand, applying the algorithm to ELR⊥ plus
range restrictions or inverse roles is incorrect since Lemma 1 does not hold. For
example, consider a consistent ontology O with TBox T = {∃r.A � B � ⊥,
∃s−.� � A} and ABox A = {r(a, b), s(c, b)}, where s−.� � A says that the
range of s is A. It can be seen that a is an instance of ¬B in O, but it is not an
instance of ¬B in either T ∪ G−(G1) or T ∪ G−(G2), where G1 = G({r(a, b)})
and G2 = G({s(c, b)}) are the two maximal rooted subgraphs of G(A). To han-
dle range restrictions or inverse roles, we need to consider maximal connected
components of G(A) in which all edges are treated as undirected, but the sizes
of these components can easily be greater than a given threshold. On the other
hand, applying the algorithm to ELR⊥ plus nominals is incorrect since Lemma 2
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does not hold. For example, consider a TBox T = {∃r.{b} � ⊥} and a set of
assertions S = {r(a, b)}. It can be seen that T ∪ S is inconsistent, but since
lift(S) = {r(x, y)}, T ∪ lift(S) θ = T ∪ {r(a, a)} is consistent for θ = {x/a, y/a}.
To extend the algorithm to handle nominals, we need to keep individuals in the
resulting set of BCQs. But then it is hard to guarantee that the resulting set is
an inconsistency-rewritten set since its size may depend on the size of the ABox.

Handling General Negated Concepts. The proposed method for instance
retrieval for atomic negations can be extended to handle general negated con-
cepts ¬C. It can be seen that the set of instances of ¬C in a DL ontology O
amounts to the set of instances of ¬PC in O ∪ {PC � C}, where PC is a fresh
atomic concept not in O. Therefore, the proposed method still works for retriev-
ing instances of ¬C as long as O ∪ {PC � C} is an IFO-rewritable ontology for
PC .

4 Experimental Evaluation

The goal of our preliminary experiments is to verify if the proposed method
is significantly more efficient and scalable than existing methods in retrieving
instances of all atomic negations. We focused on first-order rewritable ontologies
and implemented the method in JAVA (based on Theorems 1&2), using the
query-rewriting system Rapid [7] to compute inconsistency-rewritten sets and
using the database system MySQL to store and access ABoxes. We call the
implemented system REwriting-Based System for Instance Retrieval (REBSIR).

We collected two groups of ontologies, where one group was from the Lehigh
University Benchmark (LUBM) [11] and the other from DBPedia (version 2014)1

[3]. Since Rapid cannot handle axioms about concrete roles (i.e. datatype prop-
erties), we removed axioms about concrete roles from both the LUBM TBox
and the DBPedia TBox, rendering them first-order rewritable. In addition, since
there is no constraint translated from the LUBM TBox and none of the atomic
negations has instances in LUBM ontologies, we added disjointness axioms to
the LUBM TBox for every two sibling atomic concepts in the concept hierarchy
such that they have no common instances in any original LUBM ontology. At last
we obtained five consistent ontologies named LUBMdn (n = 1, 5, 10, 50, 100) for
the first group, where n is the number of universities. For the second group, we
dumped basic assertions about atomic concepts and abstract roles (i.e. object
properties) in the DBPedia TBox from DBPedia-as-Tables2 to construct the
ABox. Since the downloaded DBPedia TBox and DBPedia-as-Tables were gen-
erated separately, our constructed ABox was inconsistent with the TBox. To
restore consistency, we first computed all minimal conflicts (i.e. minimal subsets
of the ABox that are inconsistent with the TBox) by using the rewriting-based
method proposed in [8], then removed from the ABox a small hitting set S for the
set of minimal conflicts. S was iteratively computed by, in each iteration, adding

1 http://downloads.dbpedia.org/2014/dbpedia 2014.owl.bz2
2 http://web.informatik.uni-mannheim.de/DBpediaAsTables/

http://downloads.dbpedia.org/2014/dbpedia_2014.owl.bz2
http://web.informatik.uni-mannheim.de/DBpediaAsTables/
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Table 1. The statistics about test ontologies

Ontology #C #R #TA #AA #I

LUBMd1–LUBMd100 43 25 158 100,543–13,824,437 17,174–2,179,766

DBPedia1%–DBPedia100% 811 1,309 3,679 141,039–14,164,192 116,683–3,695,525

Note: #C/#R/#TA/#AA/#I is the number of atomic concepts/abstract roles/
TBox axioms/ABox assertions/individuals.

Table 2. The number of timeout cases (* for running out of memory)

System LUBMd1 LUBMd5 LUBMd10 DBPedia1% DBPedia5% DBPedia10%

FaCT++ 0 21 19 0 1 1

KAON2 0 0 0 63 400 734

Pellet 12 12 43 0 0 *811

HermiT 36 38 38 811 811 811

to S an assertion that locates in the most minimal conflicts without any ele-
ment in S. Finally, we kept n% of assertions in the modified ABox and obtained
five consistent ontologies named DBPedian%, where n = 1, 5, 10, 50, 100. The
statistics about all test ontologies are summarized in Table 1.3

We first compared the proposed method with the common method imple-
mented in most state-of-the-art DL systems. For every atomic negation ¬A, the
common method first adds a new axiom ¬A � PA to the TBox and then retrieves
instances of PA, where PA is a fresh atomic concept. Since the performance of
the common method may vary with different DL systems, we compared REB-
SIR with FaCT++ (version 1.6.3) [19], KAON2 (version 2008-06-29) [14], Pellet
(version 2.3.1) [18] and HermiT (version 1.3.8) [9]. We set a time limit of five
minutes for retrieving instances of a single atomic negation. All experiments
were conducted on a laptop with Intel Dual-Core 2.60GHz CPU and 8GB RAM,
running Windows 7 with the maximum Java heap size set to 8GB.

For the LUBMd (resp. DBPedia) TBox, REBSIR computes an inconsistency-
rewritten set made up of 3,178 (resp. 865,437) BCQs in 200 milliseconds (resp.
65 seconds). This computation is done once before retrieving instances of any
atomic negation in a test ontology.

All compared systems except REBSIR run out of memory for LUBMd50,
LUBMd100, DBPedia50% and DBPedia100%, and sometimes exceed the time
limit of five minutes for other ontologies. Table 2 reports the number of time-
out cases. REBSIR has no timeout cases, thus it does not appear in the table.
Figure 2 shows the comparison results on the average execution time (in mil-
liseconds) for retrieving instances of an atomic negation. The displayed exe-
cution time for REBSIR includes the equally shared time for computing the
inconsistency-rewritten set, while the execution time for other systems excludes

3 All test ontologies and compared systems including REBSIR and others are available
at http://www.dataminingcenter.net/rebsir/.

http://www.dataminingcenter.net/rebsir/
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Note: Ln and Dn are respectively short for LUBMdn and DBPedian%. The average
execution time is not shown if the system runs out of memory in a test ontology.

Fig. 2. The average execution time for retrieving instances of an atomic negation

the time for loading the test ontology. Moreover, for all compared systems except
FaCT++, the execution time in a timeout case is approximated as five minutes
since these systems are forced to stop handling the current atomic negation and
start handling the next atomic negation once timeout occurs.

As can be seen in Fig. 2, FaCT++ works much better on DBPedian% than
on LUBMdn. Pellet also works better on DBPedian% than on LUBMdn, except
that for DBPedia10% it runs out of memory. KAON2 works much better on
LUBMdn than on DBPedian%, possibly because the resolution-based method
used in KAON2 works worse with more axioms in the TBox. HermiT works
sightly better on LUBMdn than on DBPedian%. It cannot finish within the time
limit for any atomic negation in any DBPedia ontology. Our system REBSIR
is the best among all compared systems. It is significantly more efficient than
other compared systems and scales to tens of millions of assertions. In particular,
it only spends one minute or so on average to retrieve instances of an atomic
negation in the two largest ontologies that have more than ten million assertions.

We also compared the proposed method with the consistency checking (CC-)
based method under the same test environment. For retrieving instances of an
atomic negation ¬A in a consistent ontology O, the CC-based method retrieves
the set S of instances of A in O, and then for every individual a occurring in
O but not in S, checks if O ∪ {A(a)} |= ⊥ to determine instances of ¬A in
O. We implemented the CC-based method in the state-of-the-art DL system
ELK (version 0.4.1) [15], which is highly optimized for DLs in the EL family
[1]. We removed axioms that are not supported by ELK from LUBMdn and
kept DBPedian% intact. In this experiment, REBSIR has a similar performance
on the modified test ontologies, but ELK (with the default four workers) cannot
finish retrieving instances of any atomic negation in any test ontology within the
time limit. Although ELK is highly efficient in performing a consistency check,
it fails to perform tens of thousands of consistency checks within the time limit
and is impractical for instance retrieval for negated concepts.
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5 Related Work

In DL systems, instance retrieval for a concept C is often reduced to instance
retrieval for an atomic concept PC by adding C � PC to the TBox and then
solved by certain reasoning methods. Tableau-based methods [2] are common
reasoning methods implemented in state-of-the-art DL systems such as FaCT++
[19], Pellet [18] and HermiT [9]. In [13] existing optimization techniques are
summarized and some new optimization techniques are proposed for instance
retrieval inside tableau-based methods. In [21] a filter-and-refine paradigm is
proposed for optimizing instance retrieval inside tableau-based methods. It
first computes obvious non-instances and obvious instances and then performs
instance checking for remaining candidate instances. We do not explicitly com-
pare the above optimization techniques with our proposed method because these
techniques have at least partially been implemented in most DL systems. For
reasoning in expressive DLs, resolution-based methods [14] are another popu-
lar paradigm, implemented in a modern DL system KAON2. Our experimental
results have shown that our proposed method is more efficient and scalable than
both tableau-based and resolution-based methods in retrieving instances of all
atomic negations.

Instance retrieval is also related to conjunctive query answering (CQA).
There are three efficient approaches to CQA. The first approach is query rewrit-
ing, which has been adapted in this work. The second approach is materializa-
tion, implemented in scalable DL systems such as WebPIE [20]. It computes
an ABox completion containing all ABox consequences wrt the TBox so that
subsequent reasoning can be performed in the ABox completion only. The last
approach (see e.g. [16]) is a combination of query rewriting and materialization,
which first approximates an ABox completion, then rewrites the given query
to another one so as to filter out incorrect answers. Except for a query rewrit-
ing method proposed in [10], all the above approaches are only applicable to
Horn fragments of DLs and cannot be applied to instance retrieval for negated
concepts due to the necessity of adding non-Horn features (i.e. concept disjunc-
tions) to the given ontology. The method proposed in [10], however, involves a
rather complicated step for transforming disjunctive datalog to datalog and has
no evaluation result by now. Recently, a hybrid approach to CQA is proposed in
[22]. It first computes a lower bound and an upper bound of the set of answers,
then computes answers between the two bounds. Similarly, it needs to add non-
Horn features to the ontology before applied to instance retrieval for negated
concept, making the complexity beyond PTime in data complexity. In [12] the
CQA problem extended by negative atoms is studied for two simple DLs in the
DL-Lite family. However, the study [12] focuses on the computational complexity
and does not provide practical solutions to the extended CQA problem.
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6 Conclusion and Future Work

In this paper we have studied a new approach to instance retrieval for negated
concepts based on query rewriting. We identified the class of IFO-rewritable
ontologies which guarantees that instance retrieval for an atomic negation can
be reduced to answering a disjunction of CQs over the ABox. To show that
the IFO-rewritable class is more expressive than the first-order rewritable class,
we presented two sufficient conditions for detecting IFO-rewritable ontologies
that are not first-order rewritable. An IFO-rewritable ontology O for an atomic
concept A is characterized by an inconsistency-rewritten set of BCQs for A,
which witnesses the inconsistency of O ∪ {A(a)} for all instances a of ¬A in O.
We empirically showed that using inconsistency-rewritten sets makes instance
retrieval for all atomic negations more efficient and scalable than existing meth-
ods.

For future work, we plan to conduct extensive experiments on more IFO-
rewritable ontologies. Moreover, we plan to develop incremental methods for
computing inconsistency-rewritten sets. Finally, we intend to discover more suf-
ficient conditions for detecting IFO-rewritable ontologies. In particular, we plan
to relax the second sufficient condition from ELR⊥ to more expressive DLs by
considering concept disjunctions and cardinality restrictions.

Acknowledgments. This work is partly supported by NSFC (61375056), Guang-
dong Natural Science Foundation (S2013010012928) and the EC MSC K-Drive project
(286348).
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Abstract. We introduce optimization techniques for reasoning in DLN–
a recently introduced family of nonmonotonic description logics whose
characterizing features appear well-suited to model the examples nat-
urally arising in biomedical domains and semantic web access control
policies. Such optimizations are validated experimentally on large KBs
with more than 30K axioms. Speedups exceed 1 order of magnitude. For
the first time, response times compatible with real-time reasoning are
obtained with nonmonotonic KBs of this size.

1 Introduction

Recently, a new family of nonmonotonic Description Logics (DLs), called DLN,
has been introduced [8]. It supports normality concepts NC to denote the nor-
mal/standard/ prototypical instances of a concept C, and prioritized defea-
sible inclusions (DIs) C �n D with the following meaning: “by default, the
instances of C satisfy D, unless stated otherwise”, that is, unless some higher
priority axioms entail C � ¬D; in that case, C �n D is overridden. The nor-
mal/standard/prototypical instances of C are required to satisfy all the DIs that
are not overridden in C.

Given the negligible number of applications based on nonmonotonic logics
deployed so far, DLN has been designed to address real-world problems and con-
crete knowledge engineering needs. In this regard, the literature provides clear and
articulated discussions of how nonmonotonic reasoning can be of help in impor-
tant contexts related to the semantic web, such as biomedical ontologies [25,28]
(with several applications, such as literature search) and (semantic web) policy
formulation [29]. These and other applications are extensively discussed in [8].

The distinguishing features in DLN’s design are: (i) DLN adopts the sim-
plest possible criterion for overriding, that is, inconsistency with higher priority
axioms; (ii) all the normal instances of a concept C conform to the same set
of default properties, also called prototype in the following; (iii) the conflicts
between DIs that cannot be resolved with priorities are regarded as knowledge
representation errors and are to be fixed by the knowledge engineer (typically,
by adding specific DIs). No traditional nonmonotonic logic satisfies (i), and very
few satisfy (ii) or (iii). DLN behaves very well on application examples due to
the following consequences of (i)–(iii) (a comparison with other nonmonotonic
DLs with respect to these features is summarized in Table 1):
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 356–372, 2015.
DOI: 10.1007/978-3-319-25007-6 21
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No inheritance blocking : In several nonmonotonic logics a concept with excep-
tional properties inherits none of the default properties of its superclasses. This
undesirable phenomenon is known as inheritance blocking.

No undesired closed-world assumption (CWA) effects: In some nonmonotonic
DLs, an exceptional concept is shrinked to the individuals that explicitly belong
to it, if any; hence, it may become inconsistent.

Control on role ranges: Unlike most nonmonotonic DLs, DLN axioms can
specify whether a role should range only over normal individuals or not.

Detect inconsistent prototypes: DLN facilitates the identification of all con-
flicts that cannot be resolved with priorities (via consistency checks over nor-
mality concepts), because their correct resolution is application dependent and
should require human intervention (cf. [8, Sec. 1] and Example 1 below).

Tractability : DLN is currently the only nonmonotonic DL known to preserve
the tractability of all low-complexity DLs, including EL++ and DL-lite (that
underly the OWL2-EL and OWL2-QL profiles). This opens the way to processing
very large nonmonotonic KBs within these fragments.

Table 1. Partial comparison with other nonmonotonic DLs, cf.[8], where CIRC,
DEF, AEL, TYP, RAT, PR stand, respectively, for Circumscribed DLs, Default DLs,
Autoepistemic DLs, DLs with Typicality, DLs with Rational Closure, and Probabilistic
DLs.

CIRC DEF AEL TYP RAT PR
Features [5,6] [1,2] [13] [17,18] [10,11] [12] [22] DLN

no inheritance blocking � � � � � �
no CWA effects � � � � �
fine-grained control on role ranges sometimes �
detects inconsistent prototypes sometimes � �
preserves tractability �(∗)

(*) It holds for subsumption, assertion checking, concept consistency,KBconsistency.

The performance of DLN inference has been experimentally analyzed on large
KBs (with more than 20K concept names and over 30K inclusions). The results
are promising; still, as defeasible inclusions approach 25% of the KB, query
response time slows down enough to call for improvements. In this paper, we
study two optimization techniques to improve DLN query response time:

1. Many of the axioms in a large KB are expected to be irrelevant to the given
query. We investigate the use of module extractors [24,27] to focus reasoning
on relevant axioms only. The approach is not trivial (module extractors are
unsound for most nonmonotonic logics, including circumscription, default
and autoepistemic logics) and requires an articulated correctness proof.

2. We introduce a new algorithm for query answering, that is expected to
exploit incremental reasoners at their best. Incremental reasoning is cru-
cial as DLN’s reasoning method iterates consistency tests on a set of KBs
with large intersections. While the assertion of new axioms is processed very
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efficiently, the computational cost of axiom deletion is generally not negligi-
ble. We introduce an optimistic reasoning method that is expected to reduce
the number of deletions.

Both optimizations are validated experimentally. Speedups exceed 1 order of
magnitude. To the best of our knowledge, this is the first time that response
times compatible with real-time reasoning are obtained with nonmonotonic KBs
of this size.

The paper is organized as follows: Sec. 2 provides the basics of DLN and
illustrates its inferences with examples. Sections 3 and 4 introduce the two opti-
mization methods, respectively, and prove their correctness. Their experimental
assessment is in Sec. 5. Proofs have been omitted due to space limitations. They
can be found in [7], together with further explanations and examples. We assume
the reader to be familiar with description logics, see [15] for all details. The code
and test suites are available at: http://goo.gl/KnMO9l.

2 Preliminaries

Let DL be any classical description logic language (see [15] for definitions), and
let DLN be the extension of DL with a new concept name NC for each DL
concept C. The new concepts are called normality concepts.

A DLN knowledge base is a disjoint union KB = S ∪ D where S is a finite
set of DLN inclusions and assertions (called strong or classical axioms) and D is
a finite set of defeasible inclusions (DIs, for short) that are expressions C �n D
where C is a DL concept and D a DLN concept. If δ = (C �n D), then pre(δ)
and con(δ) denote C and D, respectively. Informally speaking, the set of DIs
satisfied by all the instances of a normality concept NC constitute the prototype
associated to C.

DIs are prioritized by a strict partial order ≺. If δ1 ≺ δ2, then δ1 has higher
priority than δ2. DLN solves automatically only the conflicts that can be settled
using ≺; any other conflict shall be resolved by the knowledge engineer (typically
by adding suitable DIs). Two priority relations have been investigated so far.
Both are based on specificity : the specific default properties of a concept C have
higher priority than the more generic properties of its superconcepts (i.e. those
that subsume C). The priority relation used in most of [8]’s examples identifies
those superconcepts with strong axioms only:

δ1 ≺ δ2 iff pre(δ1) �S pre(δ2) and pre(δ2) ��S pre(δ1) .1 (1)

The second priority relation investigated in [8] is

δ1 ≺ δ2 iff rank(δ1 ) > rank(δ2 ), (2)

where rank(·) is shown in Algorithm 1 and corresponds to the ranking function of
rational closure [11,12]. This relation uses also DIs to determine superconcepts,
1 As usual, C �S D means that S |= C � D.

http://goo.gl/KnMO9l
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Algorithm 1. Ranking function
Input: Ontology KB = S ∪ D
Output: the function rank(·)
i := −1; E0 := {C � D | C �n D ∈ D}1

repeat2

i := i + 13

Ei+1 := {C � D ∈ Ei | S ∪ Ei |= C �⊥}4

forall C �n D s.t. C � D ∈ Ei \ Ei+1 do5

assign rank(C �n D) := i6

until Ei+1 = Ei7

forall C �n D ∈ Ei+1 do assign rank(C �n D) := ∞8

return rank(·)9

so (roughly speaking) a DI C �n D—besides defining a default property for
C—gives the specific default properties of C higher priority than those of D.
The advantage of this priority relation is that it resolves more conflicts than
(1); the main advantage of (1) is predictability; e.g. the effects of adding default
properties to an existing, classical KB are more predictable, as the hierarchy
used for determining specificity and resolving conflicts is the original, validated
one, and is not affected by the new DIs (see also the related discussion in [3,4],
that adopt (1)).

The expression KB |≈ α means that α is a DLN consequence of KB. Due
to space limitations, we do not report the model-theoretic definition of |≈ and
present only its reduction to classical reasoning [8]. For all subsumptions and
assertions α, KB |≈ α holds iff KBΣ |= α, where Σ is the set of normality
concepts that explicitly occur in KB ∪ {α}, and KBΣ is a classical knowledge
base obtained as follows (recall that KB = S ∪ D):

First, for all DIs δ ∈ D and all NC ∈ Σ, let:

δNC =
(
NC � pre(δ) � con(δ)

)
. (3)

The informal meaning of δNC is: “NC’s instances satisfy δ”.
Second, let S ′ ↓≺δ denote the result of removing from the axiom set S ′ all

the δNC
0 such that δ0 �≺ δ:

S ′ ↓≺δ= S ′ \ {δNC
0 | NC ∈ Σ ∧ δ0 �≺ δ} .

Third, let δ1, . . . , δ|D| be any linearization of (D,≺).2

Finally, let KBΣ = KBΣ
|D|, where the sequence KBΣ

i (i = 1, 2, . . . , |D|) is
inductively defined as follows:

KBΣ
0 = S ∪ {

NC � C | NC ∈ Σ
}

(4)

KBΣ
i = KBΣ

i−1 ∪ {
δNC
i | δi ∈ KB,NC ∈ Σ, and

KBΣ
i−1 ↓≺δi ∪ {δNC

i } �|= NC � ⊥}
. (5)

2 That is, {δ1, . . . , δ|D|} = D and for all i, j = 1, . . . , |D|, if δi ≺ δj then i < j.
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In other words, the above sequence starts with KB’s strong axioms extended
with the inclusions NC � C, then processes the DIs δi in non-increasing priority
order. If δi can be consistently added to C’s prototype, given all higher priority
DIs selected so far (which is verified by checking that NC �� ⊥ in line (5)), then
its translation δNC

i is included in KBΣ (i.e. δi enters C’s prototype), otherwise
δi is discarded, and we say that δi is overridden in NC.

2.1 Examples

We start with a brief discussion of DLN’s conflict handling. Most other logics
silently neutralize the conflicts between nonmonotonic axioms with the same (or
incomparable) priorities by computing the inferences that are invariant across
all possible ways of resolving the conflict. A knowledge engineer might solve it
in favor of some of its possible resolutions, instead; however, if the logic silently
neutralizes the conflict, then missing knowledge may remain undetected and
unfixed. This approach may cause serious problems in the policy domain:

Example 1. Suppose that project coordinators are both administrative staff and
research staff. By default, administrative staff are allowed to sign payments,
while research staff are not. A conflict arises since both of these default policies
apply to project coordinators. Formally, KB can be formalized with:

Admin �n ∃has right.Sign (6)
Research �n ¬∃has right.Sign (7)

PrjCrd � Admin 	 Research (8)

Leaving the conflict unresolved may cause a variety of security problems. If
project coordinators should not sign payments, and the default policy is open
(authorizations are granted by default), then failing to infer ¬∃has right.Sign
would improperly authorize the signing operation. Conversely, if the authoriza-
tion is to be granted, then failing to prove ∃has right.Sign causes a denial of
service (the user is unable to complete a legal operation). To prevent these prob-
lems, DLN makes the conflict visible by inferring KB |≈ N PrjCrd � ⊥ (showing
that PrjCrd’s prototype is inconsistent). This can be proved by checking that
KBΣ |= N PrjCrd � ⊥, where Σ = {N PrjCrd}. Then KBΣ consists of (8),
N PrjCrd � PrjCrd, and the translation of (6) and (7) (none overrides the other
because none is more specific under any of the two priorities):

N PrjCrd 	 Admin � ∃has right.Sign,
N PrjCrd 	 Research � ¬∃has right.Sign. �

Here is another application example from the semantic policy domain, showing
DLN’s behavior on multiple exception levels.

Example 2. We are going to axiomatize the following natural language policy: “In
general, users cannot access confidential files; Staffcan read confidential files;Black-
listed users are not granted any access. This directive cannot be overridden.” Note
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that each of the above directives contradicts (and is supposed to override) its pre-
decessor in some particular case. Authorizations can be reified as objects with
attributes subject (the access requestor), target (the file to be accessed), and priv-
ilege (such as read and write). Then the above policy can be encoded as follows:

Staff � User (9)
Blklst � Staff (10)

UserReqst �n ¬∃privilege (11)
StaffReqst �n ∃privilege.Read (12)

BlkReq � ¬∃privilege (13)

where BlkReq
.= ∃subj.Blklst, StaffReqst .= ∃subj.Staff, and UserReqst

.=
∃subj.User. By (9), both the specifity relations (1) and (2) yield (12) ≺ (11),
that is, (12) has higher priority than (11). Let Σ = {NStaffReqst}; (12) over-
rides (11) in NStaffReqst (under (1) as well as (2)), so KBΣ consists of: (9),
(10), (13), plus

NStaffReqst � StaffReqst

NStaffReqst 	 StaffReqst � ∃privilege.Read

Consequently, KB |≈ NStaffReqst � ∃privilege.Read. Similarly, it can be
verified that:

1. Normally, access requests involving confidential files are rejected, if they
come from generic users: KB |≈ NUserReqst � ¬∃privilege;

2. Blacklisted users cannot do anything by (13), so, in particular:
KB |≈ NBlkReq � ¬∃privilege. �

Some application examples from the biomedical domain can be found in [8]
(see Examples 3, 4, 10, 12, and the drug contraindication example in Appendix
C). Like the above examples, they are all correctly solved by DLN with both
priority notions. Applicative examples hardly exhibit the complicated networks
of dependencies between conflicting defaults that occur in artificial examples.
Nonetheless, we briefly discuss the artificial examples, too, as a means of com-
paring DLN with other logics such as [5,12,26].

In several cases, e.g. examples B.4 and B.5 in [26], DLN agrees with [5,12,26]
under both priority relations. Due to space limitations, we illustrate only B.4.

Example 3 (Juvenile offender). Let KB consist of axioms (14)–(18) where J, G, M,
P abbreviate JuvenileOffender, GuiltyOfCrime, IsMinor and ToBePunished,
respectively.

J � G (14)
J � M (15)

M 	 G �n ¬P (16)
M �n ¬P (17)
G �n P (18)

J � G (19)
J � M (20)

NJ � J (21)
NJ 	 M 	 G � ¬P (22)

NJ 	 M � ¬P (23)
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On one hand, criminals have to be punished and, on the other hand, minors
cannot be punished. So, what about juvenile offenders? The defeasible inclusion
(16) breaks the tie in favor of their being underage, hence not punishable. By
setting Σ = {NJ}, priorities (1) and (2) both return axioms (19)–(23) as KBΣ .
Then, clearly, KBΣ |= NJ � ¬P which is DLN’s analogue of the inferences of
[5,12,26].

In other cases (e.g. example B.1 in [26]) DLN finds the same conflicts as
[5,12,26]. However, DLN’s semantics signals these conflicts to the knowledge
engineer whereas in [5,12,26] they are silently neutralized.

Example 4 (Double Diamond). Let KB be the following set of axioms:

A �n T (24)
A �n P (25)
T �n S (26)
P �n ¬S (27)

S �n R (28)
P �n Q (29)
Q �n ¬R (30)

DIs (26) and (27) have incomparable priority under (1) and (2). Consequently,
it is easy to see that NA � S and NA � ¬S are both implied by KBΣ and hence
the knowledge engineer is warned that NA is inconsistent. The same conflict is
silently neutralized in [5,12,26] (A’s instances are subsumed by neither S nor ¬S
and no inconsistency arises). Similarly for the incomparable DIs (28) and (30)
and the related conflict.

The third category of examples (e.g. B.2 and B.3 in [26]) presents a more var-
iegated behavior. In particular, [12] and DLN with priority (2) solve all conflicts
and infer the same consequences; [26] solves only some conflicts; [5] is not able
to solve any conflict and yet it does not raise any inconsistency warning; DLN

with priority (1) cannot solve the conflicts but raises an inconsistency warning.
Here, for the sake of simplicity, we discuss in detail a shorter example which has
all relevant ingredients.

Example 5. Let KB be the following defeasible knowledge base:

A �n B (31) A �n C (32) B �n ¬C (33)

According to priority (1) all DIs are incomparable. Therefore, DLN warns (by
inferring NA � ⊥) that the conflict between NA � C and NA � ¬C cannot be
solved. Note that [5] adopts priority (1), too, however according to circumscrip-
tion, any interpretation where A’s instances are either in ¬C � B or in C is a
model, so A is satisfiable (the conflict is silently neutralized). Under priority (2),
instead, axiom (31) gives (31) and (32) higher priority than (33). Consequently,
NA � C prevails over NA � ¬C. In this case, DLN and rational closure infer the
same consequences.
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3 Relevance and Modularity

The naive construction of KBΣ must process all the axioms in KBΣ
all = KBΣ

0 ∪
{δNC | δ ∈ D, NC ∈ Σ}. Here we optimize DLN inference by quickly discarding
some of the irrelevant axioms in KBΣ

all using modularization techniques.
Roughly speaking, the problem of module extraction can be expressed as

follows: given a reference vocabulary Sig , a module is a (possibly minimal) subset
M ⊆ KB that is relevant for Sig in the sense that it preserves the consequences
of KB that contain only terms in Sig .

The interest in module extraction techniques is motivated by several ontol-
ogy engineering needs. We are interested in modularization as an optimization
technique for querying large ontologies: the query is evaluated on a (hopefully
much smaller) module of the ontology that preserves the query result (as well
as any inference whose signature is contained in the query’s signature).

However, the problem of deciding whether two knowledge bases entail the same
axioms over a given signature is usually harder than standard reasoning tasks.
Consequently deciding whether KB′ is a module of KB (for Sig) is computationally
expensive in general. For example, DL–Litehorn complexity grows from PTIME
to coNP-TIME-complete [21]; for ALC, complexity is one exponential harder [16],
while for ALCQIO the problem becomes even undecidable [23].

In order to achieve a practical solution, a syntactic approximation has been
adopted in [19,27]. The corrisponding algorithm 
⊥∗-Mod(Sig ,KB) is defined
in [27, Def. 4] and reported in Algorithm 2 below. It is based on the property of
⊥-locality and �-locality of single axioms (line 15). An axiom is local w.r.t. Sig
if the substitution of all non-Sig terms with ⊥ (resp. �) turns it into a tautology.

The module extractor identifies a subset M ⊆ KB of the knowledge base
and a signature Sig (containing all symbols of interest) such that all axioms in
KB \ M are local w.r.t. Sig . This guarantees that every model of M can be
extended to a model of KB by setting each non-Sig term to either ⊥ or �. In
turn, this property guarantees that any query whose signature is contained in
Sig has the same answer in M and KB.

The function x-Mod(Sig ,KB) (lines 9-19), where x stands for � or ⊥,
describes the procedure for constructing modules of a knowledge base KB for
each notion of locality. Starting with an empty set of axioms (line 11), iteratively,
the axioms α that are non-local are added to the module (line 16) and, in order
to preserve soundness, the signature against which locality is checked is extended
with the terms in α (line 15). Iteration stops when a fixpoint is reached.

Modules based on a single syntactic locality can be further shrinked by itera-
tively nesting �-extraction into ⊥-extraction, thus obtaining 
⊥∗-Mod(Sig ,KB)
modules (lines 1-8).

The notions of module and locality must be extended to handle DIs, before
we can apply them to DLN. Definition 1 generalizes the substitutions operated
by the module extraction algorithm, abstracting away procedural details. As in
[27], both X̃ and sig(X) denote the signature of X.

2 For efficiency, this test is approximated by a matching with a small set of templates.



364 P.A. Bonatti et al.

Algorithm 2. 
⊥∗-Mod(Sig ,KB)
Input: Ontology KB, signature Sig
Output: 
⊥∗-module M of KB w.r.t. Sig

// main

begin1

M := KB2

repeat3

M′ := M4

M := 
-Mod(⊥-Mod(M,Sig),Sig)5

until M �= M′
6

return M7

end8

function x-Mod(KB,Sig) // x ∈ {⊥, 
}9

begin10

M := ∅, T := KB11

repeat12

changed = false13

forall α ∈ T do14

if α is not x-local w.r.t. Sig ∪ M̃ then15

M := M ∪ {α}16

T := T \ {α}17

changed = true18

until changed = false19

return M20

end21

Definition 1. (Module, locality) A 
⊥∗-substitution for KB and a signature
Sig is a substitution σ over K̃B \ Sig that maps each concept name on � or ⊥,
and every role name on the universal role or the empty role. A strong axiom α
is σ-local iff σ(α) is a tautology. A DI C �n D is σ-local iff C � D is σ-local.
A set of axioms is σ-local if all of its members are. We say that an axiom α is
�-local (resp. ⊥-local ) if α is σ-local where the substitution σ uniformly maps
concept names to � (resp. ⊥).

A (syntactic) module of KB with respect to Sig is a set M ⊆ KB such that
KB \ M is σ-local for some 
⊥∗-substitution σ for KB and M̃ ∪ Sig.

Let ModDI(Sig ,KB) be the variant of 
⊥∗-Mod(Sig ,KB) where the test in
line 2 is replaced with (the complement of) the � or ⊥-locality condition of
Def. 1 (that covers DIs, too). Using the original correctness argument for 
⊥∗-
Mod(Sig ,KB) cf. [19, Prop.42], it is easy to see that ModDI(Sig ,KB) returns a
syntactic module of KB w.r.t. Sig according to Def. 1. If KB contains no DIs
(i.e. it is classical), then Def. 1 is essentially a rephrasing of standard syntactic
notions of modules and locality,3 so
3 Informally, 
⊥∗-Mod’s greedy strategy tends to find small Def. 1’s modules.
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for all queries α such that α̃ ⊆ Sig , M |= α iff KB |= α. (34)

However, proving that 
⊥∗-ModDI(Sig ,KB) is correct for full DLN is far
from obvious: removing axioms from KB using module extractors is incorrect
under most nonmonotonic semantics (including circumscription, default logic
and autoepistemic logic). The reason is that nonmonotonic inferences are more
powerful than classical inferences, and the syntactic locality criterions illustrated
above fail to capture some of the dependencies between different symbols.

Example 6. Given the knowledge base {� � AB} and Sig = {A}, the module
extractor returns an empty module (because by setting B = � the only axiom
in the KB becomes a tautology). The circumscription of this KB, assuming that
both A and B are minimized, does not entail A � ⊥, while the circumscription
of the empty module entails it.

Now we illustrate the correct way of applying 
⊥∗-ModDI to a DLN KB =
S ∪ D and a query α (subsumption or assertion). Let Σ be the union of α̃ and
the set of normality concepts occurring in KB. Let

M0 = ModDI(Σ,KB ∪ NΣ) ,

where NΣ abbreviates {NC � C | NC ∈ Σ}.

Example 7. Let KB be the knowledge base:

A � B (35)
A �n D 	 E (36)

B 	 C � A (37)
F �n A (38)

and α the query NA � D. M0 is calculated as follows: first, since no normality
concept occurs in KB, Σ is equal to the signature α̃ = {NA,D}.

Algorithm 2 calls first the function ⊥-Mod(KB ∪ NΣ,Σ). Notice that by
replacing C and F with ⊥, axioms (37) and (38) become tautologies. Con-
sequently, it is easy to see that the returned knowledge base is KB′ =
{(35), (36),NA � A}.

Then, �-Mod is called on KB′ and Σ. Now, replacing B with � makes A � B
a tautology, so the resulting knowledge base is KB′′ = {(36),NA � A}. It is easy
to see that a fix point is reached and hence KB′′ is returned.

We shall prove that (KB ∩ M0)Σ can be used in place of KBΣ to answer
query α. This saves the cost of processing KBΣ

all \ M, where

M = (KBΣ
0 ∩ M0) ∪ {δNC | δ ∈ D ∩ M0, NC ∈ Σ}.

Note that KBΣ
all \ M is usually even larger than KB \ M0 because for each DI

δ �∈ M0, all its translations δNC (NC ∈ Σ) are removed from M.

Lemma 1. M is a module of KBΣ
all w.r.t. Σ.

Lemma 2. If M is a module of KB w.r.t. a signature Sig and KB′ ⊆ KB, then
KB′ ∩ M is a module of KB′ w.r.t. Sig.
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The relationship between (KB ∩ M0)Σ and KBΣ is:

Lemma 3. KBΣ ∩ M ⊆ (KB ∩ M0)Σ ⊆ KBΣ .

As a consequence, the modularized construction is correct:

Theorem 1. (KB ∩ M0)Σ |= α iff KBΣ |= α.

Proof. By Lemmas 1 and 2, and (34), KBΣ |= α iff KBΣ ∩M |= α. The Theorem
then follows by Lemma 3. �

4 Optimistic Computation

The construction of KBΣ repeats the concept consistency check (5) over a
sequence of knowledge bases (KBΣ

i−1 ↓≺δi ∪ {δNC
i }) that share a (possibly large)

common part KBΣ
0 , so incremental reasoning mechanisms help by avoiding mul-

tiple computations of the consequences of KBΣ
0 . On the contrary, the set of δNC

j

may change significantly at each step due to the filtering ↓≺δi . This operation
requires many axiom deletions, which as already highlighted in [20], are less effi-
cient than monotonically increasing changes. The optimistic algorithm introduced
here (Algorithm 3) computes a knowledge base KB∗ equivalent to KBΣ in a way
that tends to reduce the number of deletions, as it will be assessed in Sec. 5.

Phase 1 optimistically assumes that the DIs with the same priority as δNC
i

do not contribute to entailing NC � ⊥ in (5), so they are not filtered with ↓δi

in line 3. Phase 2 checks whether the DIs discarded during Phase 1 are actually
overridden by applying ↓δi (lines 14 and 21). DIs are processed in non-increasing
priority order as much as possible (cf. line 19) so as to exploit monotonic incre-
mental classifications.

The following theorem shows the correctness of Alghorithm 3 in case the
normality concepts do not occur in KB, but only in the queries. We call such
knowledge bases N-free. It is worth noting that the optimistic method is not
generally correct when KB is not N-free and |Σ| > 1, yet it may still be applicable
after the module extractor if the latter removes all normality concepts from KB.

Theorem 2. If KB is N-free, then Algorithm 3’s output is equivalent to KBΣ.

5 Experimental Assessment

Currently there are no “real” KBs encoded in a nonmonotonic DL, because
standard DL technology does not support nonmonotonic reasoning. The non-
monotonic KBs encoded in the hybrid rule+DL system DLV-Hex [14] are not
suited to our purposes because they do not feature default inheritance due to a
restriction of the language: DL predicates cannot occur in rule heads, so rules
cannot be used for encoding default inheritance. Consequently, synthetic test
cases are the only choice for evaluating our algorithms. We start with the two
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Algorithm 3. Optimistic-Method
Input: KB = S ∪ D, Σ
Output: a knowledge base KB∗ such that KB∗ ≡ KBΣ

// Phase 1

compute a linearization δ1, . . . , δ|D| of D1

Π := ∅ // Π collects the prototypes2

Δ := ∅ // ordered list of all discarded δNC
i3

for i = 1, 2, . . . , |D| do4

for NC ∈ Σ do5

Π ′ := Π ∪ {δNC
i }6

if KBΣ
0 ∪ Π ′ �|= NC � ⊥ then7

Π := Π ′
8

else9

append δNC
i to Δ10

// Phase 2

KB∗ = KBΣ
0 ∪ Π11

while Δ �= ∅ do12

extract from Δ its first element δNC
i13

if (KBΣ
0 ∪ Π) ↓≺δi ∪{δNC

i } �|= NC � ⊥ then14

KB∗ := KB∗ ∪ {NC � ⊥}15

extract all δNE
k with E = C from Δ16

else17

// δNC
i is actually overridden

δ := δi18

while Δ contains some δND
j such that δ ≺ δj do19

extract from Δ the first such δND
j20

if (KBΣ
0 ∪ Π) ↓≺δj ∪{δND

j } �|= ND � ⊥ then21

KB∗ := KB∗ ∪ {ND � ⊥}22

extract all δNE
k with E = D from Δ23

δ := δj24

test suites introduced in [8] as they have been proved to be nontrivial w.r.t. a
number of structural parameters, including nonclassical features like exception
levels and the amount of overriding. The two test suites are obtained by modi-
fying the popular Gene Ontology (GO)4, which contains 20465 atomic concepts
and 28896 concept inclusions. In one test suite, randomly selected axioms of GO
are turned into DIs, while in the second suite random synthetic DIs are injected
in GO. The amount of strong axioms transformed into DIs is controlled by CI-
to-DI-rate, expressed as the percentage of transformed axioms w.r.t. |GO| while
the amount of additional synthetic DIs is controlled by Synthetic-DI-rate, i.e. the
ratio |D|/|GO|. The number of conflicts between DIs can be increased by adding

4 http://www.geneontology.org

http://www.geneontology.org
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an amount of random disjointness axioms specified by parameter DA-rate (see
[8] for further details).

The experiments were performed on an Intel Core i7 2,5GHz laptop with 16
GB RAM and OS X 10.10.1, using Java 1.7 configured with 8 GB RAM and
3 GB stack space. Each reported value is the average execution time over ten
nonmonotonic ontologies and fifty queries on each ontology. For each parameter
setting, we report the execution time of: (i) the naive DLN reasoner of [8]; (ii)
the optimistic method introduced in Sec. 4 (Opt); (iii) the module extraction
method of Sec. 3 (Mod) using the module extraction facility of the OWLAPI;
(iv) the sequential execution of Mod and Opt, i.e. Algorithm 3 is applied to
KB ∩ M0. This combined method is correct by Theorem 2 and Theorem 1.

Table 2. Impact of |D| on performance (sec) – DA rate = 15% – priority (1)

CI-to-DI naive opt mod mod+opt

05% 12.91 05.93 00.30 00.25
10% 22.37 11.13 00.32 00.27
15% 31.50 15.90 00.37 00.32
20% 42.97 20.67 00.40 00.33
25% 55.22 25.17 00.44 00.36

Synth DIs naive opt mod mod+opt

05% 11.64 06.94 0.41 0.42
10% 21.66 11.21 0.62 0.67
15% 32.80 14.90 1.11 1.64
20% 41.51 18.82 2.01 1.42
25% 51.85 22.33 3.05 2.09

Table 2 shows the impact of the number of DIs on response time for the two
test suites, as DI rate ranges from 5% to 25%. The methods Mod and Mod+Opt

are slightly less effective in the second suite probably because random defaults
connect unrelated parts of the ontology, thereby hindering module extraction. In
both suites, Opt’s speedup factor (w.r.t. the naive method) is about two, while
on average Mod is approximately 87 times faster in the first test suite (max.
speedup 125), and 28 times faster in the second (max. speedup 35). On average,
the combined method yields a further 13% improvement over Mod alone; the
maximum reduction is 31% (2nd suite, Synthetic-DI-rate=25%, DA-rate=15%).
The additional conflicts induced by injected disjointness axioms have moderate
effects on response time (cf. Table 3). Mod+Opt’s average response time across
both test suites is 0.7 sec., and the longest Mod+Opt response time has been
2.09 sec. As a term of comparison, a single classification of the original GO takes
approximately 0.4 seconds.

Table 4 is the analogue of Table 2 given priority (2). With respect to pri-
ority (1), the computation time for KBΣ and query answering in the first test
suite grows faster for the naive algorithm, while there are smaller differences
for the optimized approaches (the reponse times of the combined approach are
almost identical). In the second test suite, the performance of the naive algo-
rithms decreases less dramatically, while the optimized methods seem slightly
less effective than in the first test suite. In all cases, the speedups of Mod and
Mod-Opt remain well above one order of magnitude. The performance as DAs
grow has similar features (see Table 5).
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Table 3. Impact of DAs on performance (sec) – DI rate = 15% – priority (1)

Test suite 1 (CI-to-DI)

DA naive opt mod mod+opt

05% 29.88 13.21 0.36 0.31
10% 32.96 14.08 0.37 0.32
15% 31.50 15.90 0.37 0.32
20% 34.23 16.23 0.39 0.33
25% 36.47 17.80 0.40 0.34
30% 37.71 18.09 0.40 0.34

Test suite 2 (Synth. DIs)

DA naive opt mod mod+opt

05% 28.20 12.63 0.99 0.84
10% 30.18 13.68 1.04 0.97
15% 32.80 14.90 1.11 1.06
20% 35.68 16.29 1.18 1.10
25% 37.46 17.02 1.25 1.15
30% 38.37 18.79 1.36 1.23

Table 4. Impact of |D| on performance (sec) – DA rate = 15% – priority (2)

CI-to-DI naive opt mod mod+opt

05% 22.01 05.74 00.30 00.25
10% 52.82 11.48 00.32 00.28
15% 81.84 16.56 00.34 00.31
20% 133.62 20.51 00.38 00.33
25% 193.27 26.42 00.41 00.36

Synth DIs naive opt mod mod+opt

05% 12.76 07.21 0.45 0.46
10% 23.72 14.44 0.81 0.86
15% 34.53 17.05 1.57 1.21
20% 44.92 21.77 2.67 1.96
25% 55.92 25.77 3.87 2.46

Table 5. Impact of DAs on performance (sec) – DI rate = 15% – priority (2)

Test suite 1 (CI-to-DI)

DA naive opt mod mod+opt

05% 84.53 15.02 0.34 0.29
10% 90.38 16.12 0.35 0.30
15% 91.84 16.56 0.35 0.31
20% 92.93 16.67 0.36 0.31
25% 93.54 17.76 0.37 0.32
30% 96.37 19.49 0.38 0.33

Test suite 2 (Synth. DIs)

DA naive opt mod mod+opt

05% 29.55 14.93 1.28 1.07
10% 30.81 15.82 1.41 1.15
15% 34.54 17.05 1.57 1.21
20% 36.79 16.93 1.62 1.27
25% 40.86 17.90 1.78 1.36
30% 43.35 18.74 1.79 1.34

The above test sets are N-free. We carried out a new set of experiments by
randomly introducing normality concepts in DIs, within the scope of quanti-
fiers.5 Specifically, ∃R.C is transformed into ∃R.NC. The response times of the
naive algorithm and Mod6 under priority (1) are listed in Table 6 for increas-
ing values of |Σ| (that is directly related to the amount of normality concepts
occurring in KB). We estimate that the values of |Σ| considered here are larger
than what should be expected in practice, given the specific role of explicit nor-
mality concepts, cf. footnote 5. Such values are also much larger than in N-free

5 So far, all the application examples that are not N-free satisfy this restriction, as
apparently the only purpose of explicit normality concepts is restricting default role
ranges to normal individuals, cf. Ex. 12 and the nomonotonic design pattern in [8,
Sec. 3.3].

6 In this setting Opt and Mod+Opt are not applicable, in general.
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Table 6. Impact of normal roles values (sec) – DI rate = 25% DA rate = 15%

|Σ| 50 100 150 200 250

Test suite 1

naive 1794.37 >30 min. >30 min. >30 min. >30 min.
mod 2.31 7.26 14.77 25.32 39.22

Test suite 2

naive >30 min. >30 min. >30 min. >30 min. >30 min.
mod 103.4 211.5 327.4 459.2 586.7

experiments, where |Σ| is bounded by the query size. Response times increase
accordingly. In most cases, the naive algorithm exceeded the timeout. In the
first test suite, Mod remains well below 1 minute; in the second suite it ranges
between 100 seconds and 10 minutes. The reason of the higher computation
times in the second suite is that the extracted modules are significantly larger,
probably due to the random dependencies between concept names introduced
by fully synthetic DIs.

6 Conclusions

The module-based and optimistic optimizations introduced here are sound and
complete, where the later applies only if the knowledge base is N-free. In our
experiments, the combined method (when applicable) and the module-based
method make DLN reasoning at least one order of magnitude faster (and up to
∼780 times faster in some case). In most cases, optimized reasoning is compatible
with real time DLN reasoning. This is the first time such performance is reached
over nonmonotonic KBs of this size: more than 20K concept names and over 30K
inclusions.7 Our approach brings technology closer to practical nonmonotonic
reasoning with very large KBs. Only the random dependencies introduced by
synthetic DIs, combined with numerous restrictions of role ranges to normal
individuals, can raise response time over 40 seconds; in most of the other cases,
computation time remains below 2 seconds.

We are currently exploring a more aggressive module extraction approach,
capable of eliminating some of the normality concepts in Σ and related axioms.
Besides improving performance over non-N-free KBs, a more powerful module
extractor might enable the application of the combined Mod+Opt method to
non-N-free DLN knowledge bases, by removing all normality concepts from KB
before Opt is applied.

We are also planning to adopt a different module extractor [24] that is promis-
ing to be faster than the OWLAPI implementation.

Last but not least, we are progressively extending the set of experiments
by covering the missing cases and by widening the benchmark set, using real
ontologies different from GO as well as thoroughly synthetic ontologies.
7 Good results have been obtained also for KBs with ∼5200 inclusions under rational

closure semantics [9,10].
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Abstract. One of the main challenges in the Data Web is the iden-
tification of instances that refer to the same real-world entity. Choos-
ing the right framework for this purpose remains tedious, as current
instance matching benchmarks fail to provide end users and develop-
ers with the necessary insights pertaining to how current frameworks
behave when dealing with real data. In this paper, we present lance,
a domain-independent instance matching benchmark generator which
focuses on benchmarking instance matching systems for Linked Data.
lance is the first Linked Data benchmark generator to support complex
semantics-aware test cases that take into account expressive OWL con-
structs, in addition to the standard test cases related to structure and
value transformations. lance supports the definition of matching tasks
with varying degrees of difficulty and produces a weighted gold standard,
which allows a more fine-grained analysis of the performance of instance
matching tools. It can accept any linked dataset and its accompanying
schema as input to produce a target dataset implementing test cases
of varying levels of difficulty. We provide a comparative analysis with
lance benchmarks to assess and identify the capabilities of state of the
art instance matching systems as well as an evaluation to demonstrate
the scalability of lance’s test case generator.

1 Introduction

Instance matching (IM), refers to the problem of identifying instances that
describe the same real-world object (alternative names include entity resolu-
tion [1], duplicate detection [2], record linkage [3] and object identification in the
context of databases [4]). With the increasing adoption of Semantic Web Tech-
nologies and the publication of large interrelated RDF datasets and ontologies
that form the Linked Data Cloud,1 it is crucial to develop IM techniques adapted
to this setting that is characterized by an unprecedented number of sources across

This work was partially supported by the EU FP7 projects LDBC (FP7-ICT-2011-8
#317548) and H2020 PARTHENOS (#654119).

1 http://linkeddata.org/
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which to detect matches, a high degree of heterogeneity both at the schema and at
the instance level, and rich semantics that accompany schemas defined in terms
of expressive languages such as OWL, OWL 2, and RDFS. For such data, many
IM techniques have recently been proposed (e.g., [5,6], survey in [7]).

Clearly, the large variety of IM techniques requires their comparative evalu-
ation to determine which technique is best suited for a given application. Per-
forming such an assessment generally requires well-defined and widely accepted
benchmarks to determine the weak and strong points of the methods or sys-
tems and to motivate the development of better systems in order to overcome
identified weak points. Hence, suited benchmarks help push the limit of existing
systems, advancing both research and technology. A number of benchmarks have
already been proposed, both for relational and XML data [8] and, more recently,
for RDF data, the type of data prevalent in the Web of Data [9–12].

This paper presents the Linked Data Instance Matching Benchmark Gener-
ator2 (Lance), a novel IM benchmark generator for assessing IM techniques for
RDF data with an associated schema. The main features of Lance are:

Wider Set of Test Cases. Lance supports a set of test cases based on transfor-
mations that distinguish different types of matching entities. Similarly to existing
IM benchmarks, Lance supports the value-based (typos, date/number formats,
etc.) and structure-based (deletion of properties, aggregations, splits, etc.) test
cases. Lance is the first benchmark generator to support explicitly advanced
semantics-aware test cases that go beyond the standard RDFS constructs. These
test cases test the use of RDFS/OWL semantics to identify matches, and include
tests involving instance (in)equality, class and property equivalence and disjoint-
ness, property constraints, as well as complex class definitions. Lance also sup-
ports simple combination (SC) test cases (implemented using the aforementioned
transformations applied on different triples pertaining to the same instance), as
well as complex combination (CC) test cases (implemented by combinations of
individual transformations on the same triple).

Similarity Score and Fine-Grained Evaluation Metrics. Lance provides
an enriched, weighted gold standard and related evaluation metrics, which allow
a more fine-grained analysis of the performance of systems for tests with varying
difficulty. In particular, the ground truth (or gold standard, i.e., pairs consisting
of an entity in the source dataset and its matching entity in the target dataset) is
enriched with annotations specific to the test case that generated each pair, i.e.,
the type of test case it represents, the property on which a transformation was
applied, and a similarity score (or weight) that essentially quantifies the difficulty
of finding a particular match. This detailed information, which is not provided by
previous benchmarks, allows Lance to adopt more detailed views and evaluation
metrics to assess the completeness, soundness, and overall matching quality of
an IM system. In particular, Lance uses the average similarity score of the
gold standard in combination with the standard deviation of the weight of each
pair from the average score in order to asses the benchmark’s level of difficulty.

2 http://www.ics.forth.gr/isl/lance

http://www.ics.forth.gr/isl/lance
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This fine-grained analysis allows Lance users to more easily identify the reasons
underlying the obtained performance results, and thereby supports IM systems’
debugging and extension.

High Level of Customization and Scalability Testing. Lance provides
the ability to build a benchmark on top of any dataset, thereby allowing the
implementation of diverse test cases for different domains, dataset sizes and
morphology. This makes Lance highly customizable and domain-independent.
Perhaps more importantly, this feature allows also systematic scalability test-
ing of IM systems, a feature which is not available in most state-of-the-art IM
benchmarks.

The rest of the paper is structured as follows: in Section 2, we discuss related
work; Section 3 describes the different components of our benchmark generator;
Section 4 demonstrates the suitability of our benchmark generator in assessing
and identifying the capabilities of an IM system; Section 5 concludes the paper.

2 Related Work

Several benchmarks have been proposed for testing the performance of IM sys-
tems for Linked Data. These benchmarks were the first to consider structure-
based test cases, as previous benchmarks for relational and XML data primarily
focused on value-based ones. A summary of the benchmarks relevant for Lance
is shown in Table 1; a more complete survey can be found in [13].

Table 1. IM benchmark summary showing dataset
size (VOL), supported test cases (value-based
(VAL), structure-based (STR), semantics-aware
(SEM)) and support for multilinguality (ML). A star
(*) indicates a benchmark proposed by OAEI [9].

Benchmark VOL VAL STR SEM ML

Synthetic IM benchmarks

IIMB (2009) [14]* 2K
√ √

ltd

IIMB (2010) [15]* 14K
√ √

ltd

PR (2010) [16]* 9K
√ √

IIMB (2011) [17]* 4K
√ √

ltd

Sandbox (2012) [18]* 4K
√

IIMB (2012) [18]* 2K
√ √

ltd

RDFT (2013) [19]* 4K
√ √ √

ID-REC (2014) [20]* 3K
√

ONTOBI (2010) [10] 14K
√ √

ltd
√

Lance (2015)
√ √ √ √ √

Real IM benchmarks

ARS (2009) [14]* 1M
√ √

DI (2010) [15]* 6K
√ √

DI (2011) [17]* N/A
√ √

Our approach is based
on the test cases proposed
by our previous work SPIM-
BENCH [12] but unlike
SPIMBENCH, Lance is a
domain-independent bench-
mark generator.

OAEI. The most impor-
tant initiative regarding IM
benchmarks is the Ontology
Alignment Evaluation Initia-
tive (OAEI) [9] that organizes
a related annual track since
2009. OAEI proposes bench-
marks based on both real and
synthetic datasets. Synthetic
datasets are mostly small (up
to a few thousand instances)
but allow a more accurate
evaluation of the matching
quality of IM systems, since
they provide an accurate gold
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standard that is automatically constructed. Real datasets are much larger (mil-
lions of instances) and allow evaluating the scalability of IM frameworks; never-
theless, the provided gold standard is error-prone, as it is practically infeasible
to identify the complete and correct set of matches either manually (ARS [14])
or semi-automatically (DI 2010 [15], DI 2011 [17]). Thus, evaluating the abil-
ity of IM methods to scale comes at the price of a less accurate evaluation of
matching quality. Lance avoids this trade-off, as it generates the datasets along
with the gold standard containing the matched instances. Most OAEI bench-
marks consider both value-based and structure-based test cases (see Table 1).
The support for semantics-aware test cases is limited to the IIMB benchmarks:
IIMB 2009 considered only simple features such as class hierarchies and the
OWL sameAs, whereas later versions used the SWING benchmark data genera-
tor [21] to support more complex cases, but still in a limited fashion compared to
Lance. Multilinguality (an important feature in practice) supported by Lance,
is considered by RDFT [19] only.

ONTOBI. ONTOBI is a synthetic IM benchmark that uses the DBpedia ontol-
ogy (v.3.4) to propose 16 different test cases that include spelling mistakes, sup-
pressed comments, change in date and number formats, deleted data types, lan-
guage modifications, random names changes, synonym-based changes, disjunct
dataset and flattening/expansion of the structure. ONTOBI is a domain-specific
benchmark that supports mainly value and structure based test cases, as well
as a limited amount of semantics-aware ones. It considers larger datasets than
OAEI, but still in the range of a few thousand triples.

SWING. The SWING benchmark data generator [21] provides a general frame-
work for creating IM benchmarks; it supports various test cases based on value
and structure transformations at the instance level. The semantics-aware test
cases are built upon class and property subsumption hierarchies, class disjoint-
ness and inverse properties. Lance builds on SWING to implement most of the
value-based test cases, but is also applying some novel value-based transforma-
tions, as well as a richer set of structure-based and semantics-aware test cases.
SWING generates an artificial benchmark (without size limitations) and the cor-
responding gold standard, based on a given schema, thus allowing the creation
of domain-independent benchmarks suitable for both scalability and matching
quality evaluation. However, unlike Lance, SWING does not support weighted
gold standards and thus provides less insights for developers to debug or improve
their IM system.

3 LANCE

3.1 Transformation-Based Test Cases

In Lance we propose a set of value-based, structure-based, and semantics-aware
test cases. The former two are implemented using transformations as proposed
in Ferrara et. al [21] on data and object type properties respectively; the last
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refers to the use of a subset of OWL semantic constructs. Value and structure-
based test cases are produced by applying the appropriate transformation(s) on
a source instance to obtain a target instance. The same principle holds in the case
of semantics-aware test cases, with the difference that appropriate instance-level
triples are constructed and added in the target dataset to consider the respective
OWL constructs. This pair of instances is then used as input for the instance
matching system (along with the gold standard) to test its performance.

Value-based Test Cases refer to scenarios implemented using transformations
on instance data type properties that consider mainly typographical errors and
the use of different data formats. In Lance we extended the transformations of
SWING [21], by adding antonyms, country abbreviations and multilinguality.

Table 2. Lance value-based transformations

vt1 Blank char. Addition/Deletion

vt2 Random char. Addition/Deletion/Modification

vt3 Token Addition/Deletion/Shuffle

vt4 Date Formats

vt5 Country & Simple Abbreviations

vt6 Synonym/Antonym

vt7 Stem of a Word

vt8 Multilinguality

Table 2 presents the trans-
formations implemented in
Lance. Each transformation
takes as input a data type
property and a severity that
determines how severe this
modification is. Transforma-
tions vt1-vt3 can be per-
ceived as different cases of
misspellings. vt4 addresses
the use of different date
formats; Abbreviations are
addressed by vt5: Lance

supports abbreviations that are very common in texts (such as “United States
of America” vs “USA”), as well as those of SWING. vt6 refers to the use of
synonyms and antonyms taken from Wordnet3. Stemming is applied using trans-
formation vt7. Lance also supports multilinguality (transformation vt8) from
English to 64 languages.

Structure-Based Test Cases are based on transformations applied on object
and data type properties of instances such as splitting, aggregation, deletion and
addition. Splitting refers to expanding properties whereas aggregation refers to
merging a number of properties to a single one. In addition to property aggrega-
tion we support all the structure-based transformations that are proposed and
implemented in SWING. These transformations are a superset of those consid-
ered in other IM benchmarks (see Section 2).

Semantics-Aware Test Cases are primarily used to examine if the matching
systems take into consideration OWL and OWL 2 axioms to discover matches
between instances that can be found only when considering schema information.
The axioms that we consider in Lance are:

• class and property equivalence (equivalentClass, equivalentProperty)
• instance (in)equality (sameAs, differentFrom)

3 http://wordnet.princeton.edu/

http://wordnet.princeton.edu/
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Table 3. Semantics-aware test cases

source dataset target dataset schema triples gs
ltSubC (u1, rdf:type, C1) (u′

1, rdf:type, C
′
1) (C1, subClassOf, C

′
1) (u1, u

′
1)

ltEqC (u1, rdf:type, C1) (u′
1, rdf:type, C

′
1) (C1, equivalentClass, C

′
1) (u1, u

′
1)

ltSameAs1

(u′
1, rdf:type, C1) (u1, u

′
1)

(u1, rdf:type, C1) (u′
2, rdf:type, C1) (u1, u

′
2)

(u2, rdf:type, C1) (u′
1, sameAs, u

′
2) (u2, u

′
2)

(u2, u
′
1)

ltDiff (u1, rdf:type, C1)
(u′

1, rdf:type, C1)
(u1, u

′
1)(u′′

1 , rdf:type, C1)
(u′

1, differentFrom, u
′′
1 )

ltDisjC (u1, rdf:type, C1) (u′
1, rdf:type, C

′
1) (C1, disjointWith, C

′
1) —

ltFuncP (u1, p1, o1) (u1, p1, o
′
1)

(p1, rdf:type (o1, o
′
1)FunctionalProperty)

ltInvFuncP (u1, p1, o1) (o1, p1, u
′
1)

(p1, rdf:type, (u1, u
′
1)InverseFunctionalProperty)

ltUnionOf (u1, rdf:type, C1) (u′
1, rdf:type, C

′
1) (C′

1, unionOf, {C1, C2, . . .) (u1, u
′
1)

ltIntersect1 (u1, rdf:type, C1) (u′
1, rdf:type, C

′
1)

(C1, intersectionOf, S) (u1, u
′
1)

(C′
1, intersectionOf, S)

ltIntersect2 (u1, rdf:type, C1) (u′
1, rdf:type, C

′
1)

(C1, intersectionOf, S)
(u1, u

′
1)(C′

1, intersectionOf, S
′)

S′ ⊂ S

• class and property disjointness (disjointWith, AllDisjointClasses, property-
DisjointWith, AllDisjointProperties)
• class and property hierarchies (subClassOf, subPropertyOf)
• property constraints (FunctionalProperty, InverseFunctionalProperty)
• complex class definitions (unionOf, intersectionOf)

Table 3 shows some of these semantics-aware test cases: column schema
triples refers to schema triples that the instance matcher under test should
take into consideration when performing the matching tasks and gs shows the
pairs of matches (ui, ui′) that will be included in the gold standard. In all the
tables we write ui to refer interchangeably to an RDF instance and its URI. The
rules in Table 3 should not be viewed as inference rules, but as hints for a system
to derive that a match holds.
Class Hierarchy & Equivalence: test cases ltSubC, ltEqC shown in Table 3
consider the subClassOf and equivalentClass constructs respectively. Given a
source URI u1, instance of class C1, we create target URI u′

1, instance of class
C ′

1 by copying all the properties of u1 (except rdf:type triples) to create u′
1. For

ltSubC, C1 is a subclass of C ′
1 (schema triple (C1, subClassOf, C ′

1)) and u1 and
u′
1 are considered as matches in the gold standard since they are of similar type

due to the subClassOf semantics that specify that a class contains all instances
of its subclasses. For ltEqC, C1 and C ′

1 are equivalent classes (schema triple
(C1, equivalentClass, C ′

1)), so the two instances are considered matches since



LANCE 381

they are of the same type due to the semantics of class equivalence, according
to which two equivalent classes have the same set of instances.

The rationale for properties is exactly the same since subPropertyOf and equi-

valentProperty axioms have similar semantics as their class counterparts. Test
cases for subClassOf and subPropertyOf hierarchies are supported by the IM
benchmarks that provide a limited support for this type of tests [10,14,15,17,18].
Instance (in)equality : test case ltSameAs1 shown in Table 3 is a complex test
for OWL construct sameAs; for this case we consider two source URIs u1 and u2

instances of the same class C1; for u1 and u2, we create target instances u′
1 and

u′
2. These are added in the target dataset along with triple ( u′

1, sameAs, u′
2 ). A

matcher that understands the semantics of sameAs should report all possible four
matches between instances u1, u′

1, u2 and u′
2, otherwise it will report matches

( u1, u′
1 ) and ( u2, u′

2 ). OWL construct differentFrom is used to explicitly
state that two resources refer to different real world objects. Test case ltDiff
shown in Table 3 follows the same lines as the test case for sameAs construct:
for a source instance u1, we create two target instances u′

1 and u′′
1 by copying

all the properties of u1 (including the rdf:type property). Target instance u′′
1 is

obtained by applying additional value and structure transformations to u′
1. Triple

(u′
1, differentFrom, u′′

1) is also added in the target dataset. If the matcher does
not take under consideration the differentFrom construct it should produce a
match between instances u1 and u′′

1 when it should not, since there is an explicit
statement that these two instances refer to a different real world object (u1,
differentFrom, u′′

1). Note that for all the test cases concerning sameAs and dif-

ferentFrom OWL constructs, we assume that the source and target instances are
of the same type (i.e., belong to the same class).
Class Disjointness: test case ltDisjC shown in Table 3 addresses class disjoint-
ness. To implement this test we produce target instance u′

1 from source instance
u1 as discussed before; these are instances of two disjoint classes C1 and C ′

1 -
schema triple (C1, disjointWith, C ′

1) - respectively. In this case, the matcher
should not return any match since according to the OWL semantics, two dis-
joint classes cannot share the same set of instances. Disjointness of properties
follows the same rationale as disjointness of classes. Test cases for AllDisjoint-

Classes and AllDisjointProperties follow the same principles for disjointWith

and propertyDisjointWith respectively.
Functional & Inverse Functional Properties: A functional property is a property
that can have only one (unique) value y for each instance x. Inverse functional
properties are useful to denote values that uniquely identify an entity. Note that,
due to the fact that the semantics of OWL do not include the Unique Name
Assumption, inverse functional properties should not be viewed as integrity con-
straints, because they cannot directly (by themselves) lead to contradictions.
Instead, they force us to assume (infer) that certain individuals are the same as
declared by the OWL semantics. ltFuncP test case shown in Table 3 considers
FunctionalProperty: for a source instance u1, subject of triple (u1, p1, o1) with
p1 being a functional property (schema triple (p1, rdf:type, FunctionalProper-
ty)) we produce a triple (u1, p1, o′

1 ) in the target dataset, where o′
1 is obtained
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by applying a set of value and structure based transformations. If the matcher
takes into consideration the fact that p1 is a functional property, then it should
produce a match between instances o1 and o′

1 since according to the semantics of
FunctionalProperty if a property p is declared as functional, then an instance u
cannot have two properties p with different values. The same rationale is followed
for ltInvFuncP test case that addresses InverseFunctionalProperty.
Complex Class Definitions: Lance supports test cases for the unionOf and in-

tersectionOf constructs shown in Table 3. As with all OWL constructs, the
semantics of unionOf are intentional: unionOf implies a subsumption relationship
between the constituents of the union, and the union itself. Therefore, if a class
A is defined as a union of A1, A2, . . ., Ak then all instances that are known to
be instances of any Ai,...,Ak will also be instances of their union. In ltUnionOf
we assume that C ′

1 is defined as a union of a set of classes C1, C2, . . . Ck. For
this test, we create for u1 instance of class C1 in the source dataset, u′

1 instance
of class C ′

1 in the target dataset. According to the unionOf semantics, u′
1 is an

instance of class C ′
1, and hence we go back to the subClassOf test case. Hence,

we add (u1, u′
1) as matched instances in the gold standard.

Similar to unionOf, intersectionOf semantics are also intentional: if a class
A is defined as an intersection of A1, A2, . . ., Ak then A contains exactly those
instances that are common to all classes. In addition, A is defined as the subclass
of A1, A2, ... Ak. In ltIntersect1, u1 is an instance of class C1 in the source
dataset and u′

1 is an instance of class C ′
1 in the target dataset. C1 and C ′

1 are
defined as the intersection of the same set of classes S. In that case, u1 and
u′
1 have the same type, and we include pair (u1, u′

1) in the gold standard. In
ltIntersect2, classes C1 and C ′

1 are defined as the intersection of two different
sets of classes S and S′, the latter being a subset of the former. Instances u1 and
u′
1 are again reported as matches in the gold standard since they have the same

type (through the semantics of intersectionOf).

Simple and Complex Combination Test Cases. In Lance we consider
combinations of the aforementioned test cases. We distinguish between simple
combination (SC) test cases based on value, structure based and semantics-aware
test cases, applied on different triples pertaining to one class instance. For exam-
ple, for an instance u1, we can perform a value-based transformation on its triple
(u1, p1, o1) where p1 is a data type property and a structure-based transforma-
tion on its triple (u1, p2, o2). We also consider complex combination (CC) test
cases that are based on combinations of test cases applied to a single triple along
with a transformation applied to the class of the instance. For instance, when
a semantics-aware test case is considered, then for a triple (u1, p1, o1) we can
produce a triple (u1, p′

1, o′
1) where p1 is a subproperty of p′

1 and o′
1 is obtained

by applying a value transformation on o1.

3.2 Weighted Gold Standard

In the following, we present the weighted gold standard generated by Lance. We
begin by presenting how we store the transformations that were used to generate



LANCE 383

a target instance u′
i based on a source instance ui. Thereafter, we present our

approach to computing similarity scores for each pair (ui, u
′
i).

Computing the Similarity Scores. To improve the debugging of instance
matching tools and algorithms, we assign a similarity score (weight) to each
pair of instances that should be matched. In essence, the weight of a match
(ui, u

′
i) quantifies how similar the source and target instances are. We adopt an

information-theoretical approach to compute the weight w of (ui, u
′
i) by measur-

ing the information loss that results from applying transformations to the source
data to generate the target data. The basic idea behind our approach is to apply
a multi-relational learning (MRL) approach L to the input knowledge base K
and the transformed knowledge base K ′. By comparing the description of ui in
L(K) and u′

i in L(K ′), we should then be able to quantify how much information
was lost through the transformation of K to K ′. We implement this insight in
the current version of Lance by using RESCAL [22,23] as MRL approach.

The idea behind RESCAL is that each RDF graph K can be represented as a
tensor T of order 3 and dimensions |R|× |R|× |P |, where R is the set of all RDF
resources, P is the set of all RDF properties and T (i, j, k) = 1 iff < ui, pk, uj >∈
K. Let T (·, ·, k) be the kth |R| × |R|-matrix that makes up T , i.e., the matrix
that is such that T (·, ·, k)ij = 1 iff < ui, pk, uj >∈ K. RESCAL approximates
the matrix A which minimizes the error ||T (·, ·, k)−XkAX�

k ||2F over all T (·, ·, k)
simultaneously. Based on A and the Xk matrices, we can approximate the whole
of T to a tensor T̃ with T̃ (·, ·, k) = XkAX�

k . As shown in previous work [23],
each matrix T̃ (i, ·, ·) contains all predicted relations of the resource ui. Hence,
it can be regarded as a complete description of ui. The similarity in information
content of ui and u′

i can thus be computed by using the squared cosine of the
angle between the matrices T̃ (i, ·, ·), T̃ ′(i, ·, ·), where T̃ ′(i, ·, ·) is the tensor that
results from applying the transformations above to the input (K):

cos2(T̃ (i, ·, ·), T̃ ′(i, ·, ·)) =

∑

jk

T̃ (i, j, k)T̃ ′(i, j, k)

||T̃ (i, ·, ·)||2F ||T̃ ′(i, ·, ·)||2F
. (1)

A squared cosine value close to 1 suggests that ui and u′
i contain similar informa-

tion and that the information loss due to the transformation was small. Hence, it
should be easier for an instance matching framework to detect this match than
a match with a smaller squared cosine similarity.

On the hardware used for our evaluation of Lance (see Section 4), RESCAL’s
performance grew linearly with the size of the benchmark. In particular, the
approach required approximately 6 minutes to compute T̃ for 104 triples. While
the corresponding waiting times are acceptable for up to medium-sized datasets
(i.e., data sets in orders of magnitude up to 105 triples), they are too large to
be used when generating large benchmarks with more than 106 triples. We thus
extended the approach above to be used on larger data sets by using sampling.

The idea behind our sampling approach is to partition the input knowledge
base K into n partitions K1 . . . Kn of the same size and run the approach above
on user-selected partitions. Now for each pair of resources (ui, u

′
i) from the gold
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standard that belongs to the user-chosen partitions, we can compute a weight
where instance ui, and its transformed instance ui are stored in partitions Ki

(input knowledge base) and K ′
i (transformed knowledge base). In addition, we

know how many transformations of which type were used to generate u′
i out of

ui. Based on this information, we can compute how much each transformation
contributes to the information loss that occurs when generating ui out of u′

i

by solving the corresponding linear regression problem. Note that the matrices
generated when applying our approach are commonly degenerate and that we
thus use a numerical solver based on gradient descent to detect an approximate
solution.

3.3 Metrics

The performance metric(s) in a benchmark determine the effectiveness and effi-
ciency of the IM systems and tools. Traditionally, IM benchmarks focus on the
quality of the output in terms of standard metrics such as precision, recall and
f-measure [24]. In Lance, opportunities for more sophisticated metrics arise due
to the use of a weighted gold standard, which records, for each match, the sim-
ilarity (or weight) of its source and target instances that is in the range 0 . . . 1,
and essentially quantifies the difficulty for an IM system to find this match.

In particular, a weight close to 1 means that the two instances are similar
i.e., practically no transformations were applied to the source instances in order
to generate the target instance; this match can be discovered relatively “eas-
ily” by an IM system and is hence considered a low-difficulty match. On the
other hand, a weight close to 0 means that the target instance was obtained by
applying complex transformations such as changing the topology of the graph
through semantics-aware test cases (i.e., changing the class type of an instance),
together with structure-based ones. This is a difficult match to discover for an
IM system, since it needs to use effective similarity algorithms and be aware
of possibly complex constraints or lower the employed threshold consequently
affecting negatively precision.

In particular, by knowing the similarities of the matched instances recorded
in the gold standard of a Lance benchmark (say wi), we can compute its aver-
age similarity score and the standard deviation of its similarities. These two
numbers describe the average “difficulty” of the matched instances (i.e., of the
test cases implemented in the benchmark) and the spread of the similarity scores
(difficulty) in their range (0 . . . 1).

A benchmark with a high average similarity score contains matched instances
that are easier to find (easier cases have weights close to 1); a benchmark with a
high standard deviation means that the weights are spread out from the average,
so there is a larger variety of weights in the gold standard. The formulas are:

μ = 1
N

∑N
i=1 wi σ = 1

N

∑N
i=1(wi − μ)2

In a similar fashion, we can compute the average and standard deviation of
the true positives of a tested IM system (returned matches that are also in the
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gold standard). By comparing these numbers with the corresponding numbers
for the benchmark, we can get a more fine-grained understanding of the system’s
effectiveness. In particular, comparing the averages, we can determine whether
the IM system was able to find the easier or the more difficult matches; comparing
the standard deviations gives an indication of whether the system is good for
a specific range of transformations (as indicated by a deviation that is smaller
than the benchmark’s standard deviation) or for many different ones.

4 Evaluation

Applicability and Scalability. Our evaluation focused on demonstrating the
capability of our benchmark generator in assessing and identifying the strengths
and weaknesses of instance matching systems. For this purpose, we evaluated
LogMap Version 2.4 [25] using the MoRe [26] reasoner, OtO [27] and LIMES [6]
running the EAGLE [28] algorithm (Section 4.1). We chose these tools because
they are prototypical working instances of existing IM systems4. LogMap con-
siders both schema and instance level matching; hence it should perform well
on all variations of the benchmark. OtO on the other hand, needs to be config-
ured manually to implement instance matching tasks, so we assume that it will
perform well on tasks with value transformations. The same holds for EAGLE,
which can learn specifications and focuses on instance matching tasks only; we
expect EAGLE to have a hard time at finding matches when faced with semantic
transformations. We also report on the scalability aspect of Lance (Section 4.1).
The purpose of this experiment is to show that Lance can be used for source
datasets of arbitrary size and can generate target datasets that implement a
large number of test cases without any additional processing overhead.

Datasets. We used as source datasets those generated by LDBC’s5 SPIMBEN-
CH [12]. Nevertheless, various data generators can be used in order to pro-
duce the source datasets. Indicatively we name Berlin SPARQL Benchmark
(BSBM) [31], the DBpedia SPARQL Benchmark [32] and UOBM [33]. Due to
space constraints we only present results achieved when using SPIMBENCH
datasets. We produced two datasets, one with 10K triples and around 500
instances, and a larger one with 50K triples and around 2500 instances. All exper-
iments were conducted on an Intel(R) Core(TM) 2 Duo CPU E8400 @3.00GHz
with 8G of main memory running Windows 7 (64-bit).

Implementation of LANCE. Lance6 is a highly configurable instance match-
ing benchmark generator for Linked Data that consists of two components : (i) an
4 Attempts to evaluate Lance benchmarks with systems such as RiMOM-IM [29],

COMA++ [30] and CODI [17] were not successful. We were not able to work
with RiMOM-IM due to incomplete information regarding the use of the system;
COMA++ supports instance-based ontology matching but does not aim for instance
matching per se. Finally CODI is no longer supported by the development team.

5 LDBC Semantic Publishing Benchmark: http://ldbcouncil.org/developer/spb
6 The code of Lance is available at https://github.com/jsaveta/Lance

http://ldbcouncil.org/developer/spb
https://github.com/jsaveta/Lance
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Fig. 1. Lance System Architecture

RDF repository that stores the source datasets and (ii) a test case generator (see
Figure 1). The test case generator takes as input a source dataset and produces
a target dataset that implements various test cases according to the specified
configuration parameters to be used for testing instance matching tools. It con-
sists of the Initialization, Resource Generator and the Resource Transformation
modules. The first reads the test case generation parameters and retrieves by
means of SPARQL queries the schema information (e.g., schema classes and
properties) from the RDF repository that will be used for producing the target
dataset. The Resource Generator uses this input to retrieve instances of those
schema constructs from the RDF repository and passes those (along with the
configuration parameters) to the Resource Transformation Module. The latter
returns for a source instance ui the transformed instance u′

i and stores this in
the target dataset; this module is also responsible in producing an entry in the
gold standard. Once Lance has performed all the requested transformations,
the Weight Computation Module calculates the similarity scores of the produced
matches as discussed in Section 3.2. The configuration parameters specify the
part of the schema and data to consider when producing the different test cases
as well as the the percentage and the type of transformations to consider. More
specifically, parameters for value-based test cases specify the kind and severity of
transformation to be applied; for structure and semantics-aware test cases the
parameters specify the type of transformation to be considered. The idea behind
configuration parameters is to allow one to tune the benchmark generator into
producing benchmarks of varying degrees of difficulty which test different aspects
of an instance matching tool. Lance is implemented in Java and in the current
version we use OWLIM Version 2.7.3. as our RDF repository.
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4.1 Experimental Results

Applicability of LANCE. In order to show that Lance is well suited to
identify strong and weak points of state-of-the-art IM systems, we provided the
tools at hand with difficult tasks and allowed the whole of the source dataset to
be transformed so as to obtain the target dataset. Figure 2 reports the results
for the different types of test cases and for datasets up to 10K and 50K triples.
In all cases, we measured recall, precision, f-measure along with the similarity
score and standard deviation we introduced in Section 3.3.

Fig. 2. Applicability experiments for LogMap, EAGLE and OtO

Fig. 3. Standard Deviation for LogMap,
EAGLE, OtO, for 10K and semantics-aware
test cases. The standard deviation of the gold
standard is also shown (column Lance).

As expected, LogMap responds
well to the value-based test cases
having a high precision and recall
(close to 0.75) but its performance
degrades when the instances are
involved in semantics-aware test
cases with precision and recall
(below 0.4). Still, the large num-
ber of transformations applied to
the source dataset to generate the
target dataset suggest that LogMap
does indeed perform sufficiently
well when faced with semantics-
aware transformations. OtO gives
very good precision results for the
value-based test cases but faces
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many issues concerning all the others as in some cases is not able to find any
match (recall is below 0.1). EAGLE also reacts as expected. The algorithm
performs well when faced with syntactic transformations. Increasing changes
to the topology of the underlying RDF graphs (the case of semantics-aware
test cases) leads to a degradation of the performance of the algorithm. The
performance of EAGLE is not consistent since it is non-deterministic and uses
unsupervised learning. We ran EAGLE thrice for both datasets. The similarity
scores as well as the standard deviation of the results returned by the instance
matching systems provide insights on the ability of the systems to address the
challenges proposed by Lance benchmarks. Figures 3 and 4 give the standard
deviation and similarity scores for all three systems and for the semantics-aware
test cases in the case of the 10K triples dataset. They also show the corresponding
quantities for the benchmark itself for comparison. We can see that LogMap
reports scores and standard deviation close to the ones given by Lance verifying
that it can address the “difficult” test cases. EAGLE and OtO report lower
similarity scores and standard deviation, meaning that they cannot address the
challenges imposed by the, harder, semantics-aware test cases. In summary, we
conclude that Lance is able to determine the capabilities of the IM systems and
also reflect the difficulty of the test cases through the weighted gold standard.

Fig. 4. Similarity score distribution for LogMap, EAGLE, OtO, for 10K and semantics-
aware test cases. The similarity score of the benchmark is also shown (column Lance).

Scalability. We also studied the scalability of the test case generator by measur-
ing the runtime required by our framework to generate the target datasets for all
different test cases, for various dataset sizes and percentages of source instances
to be transformed. This time also includes the time required to retrieve the
source instances from the RDF repository as previously discussed. We observe
that the time for the data transformation is linear to the dataset size.
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5 Conclusions

This paper presents Lance, an instance matching benchmark generator focus-
ing on benchmarking instance matching systems for Linked Data. Lance is a
domain-independent, highly modular and configurable generator that can accept
as input any linked dataset and its accompanying schema to produce a target
dataset implementing matching tasks of varying levels of difficulty. Lance is the
first Linked Data benchmark generator to support complex semantics-aware test
cases that take into account expressive OWL constructs, in addition to the stan-
dard test cases related to structure and value transformations. The former type
is largely absent in previous efforts. Lance also produces a provably correct gold
standard that allows a more fine-grained analysis of the performance of instance
matching tools. This is in contrast to other benchmarks which are either based on
manually generated gold standards, or based on gold standards produced semi-
automatically (and are thus limited by the quality of the used approach, often
producing inaccurate gold standards). Moreover, Lance proposes the use of a
weighted gold standard which records the similarity between a pair of matched
instances as well as information on the type of transformation that was used to
produce said match. This motivates the developers of IM systems to try bench-
marks of varying levels of difficulty, and helps them identify the weak points of
their systems, explain benchmark performance and more easily debug them. In
the future, we plan to extend Lance to work with spatial and streaming data;
we also intend to work with datasets that include blank nodes thereby creating
more challenging tasks for instance matching tools. Last, we plan to evaluate
the frequency of appearance of the various types of transformations in existing
datasets that would help us create realistic test cases.
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24. Goutte, C., Gaussier, É.: A probabilistic interpretation of precision, recall and
F -score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M.
(eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005)
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Abstract. Instance matching has emerged as an important problem in
the Semantic Web, with machine learning methods proving especially
effective. To enhance performance, task-specific knowledge is typically
used to introduce bias in the model selection problem. Such biases tend to
be exploited by practitioners in a piecemeal fashion. This paper introduces
a framework where the model selection design process is represented as a
factor graph. Nodes in this bipartite graphical model represent opportu-
nities for explicitly introducing bias. The graph is first used to unify and
visualize common biases in the design of existing instance matchers. As
a direct application, we then use the graph to hypothesize about poten-
tial unexploited biases. The hypotheses are evaluated by training 1032
neural networks on three instance matching tasks on Microsoft Azure’s
cloud-based platform. An analysis over 25 GB of experimental data indi-
cates that the proposed biases can improve efficiency by over 65% over a
baseline configuration, with effectiveness improving by a smaller margin.
The findings lead to a promising set of four recommendations that can be
integrated into existing supervised instance matchers.

Keywords: Instance matching · Model selection · Decision-making bias

1 Introduction

With its growing cross-domain collection of ontologies and instances, the Seman-
tic Web has evolved into a diverse information space [21], [15]. Its growth has
motivated researchers to investigate high-quality and automated solutions to the
instance matching problem, which concerns identifying pairs of instances that
refer to the same underlying entity [14].

Given their robust generalization properties, machine learning methods have
come to dominate instance matching [17], [2], [19]. Once a machine learning
model (e.g. a neural network) is trained on labeled data, unseen data is classified,
and :sameAs-like links are forged between equivalent instances [21].

Designing a full instance matching system requires a practitioner to make
decisions with respect to the model selection problem. For example, a practitioner
must decide on a sampling strategy for acquiring labeled data, craft functions
for converting raw labeled data into feature vectors, decide on a classifier and
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hyperparameter optimization strategy (for tuning the classifier), and partition
the labeled data into training and validation sets. In order to keep the model
selection process tractable, it is necessary to base some of these decisions on task-
specific knowledge. For example, certain features, such as phonetic and string-
similarity features, are known to be especially effective for instance matching
tasks that involve names and misspellings [4]. As another example, the real-
world observation that class distribution in the instance matching problem often
exhibits data skew (Section 3) influences sampling decisions (Section 4.1).

Given the challenging nature of instance matching in the Semantic Web, sys-
tems have become steadily more complex as practitioners have exploited task-
specific knowledge as piecemeal heuristics to improve overall system performance
[12], [17], [19]. These heuristics inevitably bias both the design and performance
of any system that relies on them. For example, recent studies of dataset bias in
the computer vision community show that systems that exhibit superior perfor-
mance on one set of benchmarks may not necessarily be superior on a different
dataset [20]. The reason was that, whether consciously or subconsciously, sys-
tem designers used their knowledge of the task and the dataset to bias model
selection decisions. Understanding such decision-making biases is a crucial step
for subsequent research to reproduce and improve complex models, as well as to
adapt them to novel situations without repeating the entire design process.

This paper attempts to achieve this goal by explicitly modeling decision-
making bias in instance matching model selection as a bipartite undirected
graphical model called a factor graph [10], with factor nodes representing
bias opportunities. Several common decision-making biases in existing instance
matching designs are explained and visualized by using this model. As a direct
application of this visualization, we use the model to derive new opportunities for
decision-making bias that, to the best of our knowledge, are not utilized by the
majority of instance matchers. We empirically evaluate the proposed biases by
training 1032 neural networks on Microsoft Azure’s cloud-based platform using
labeled data from three challenging instance matching benchmarks.

Evaluations on the test data lead to a set of four general recommendations
that could potentially be used to improve existing supervised machine learning-
based instance matchers both in terms of effectiveness and efficiency. Specifically,
the analysis shows that (1) proportionate allocation stratified sampling [13] is
a better sampling strategy for labeled data than a balanced (and traditionally
more favored) approach, that (2) the training and validation sets should be as
equal-sized as possible, that, (3) despite much lower efficiency, a hyperparam-
eter optimizer based on grid search is no more effective than a random search
conducted around reasonably set default hyperparameter values, and that, (4)
under reasonable supervision assumptions, a setting that favors validation over
training leads to run-time reductions of almost 70%, with a relatively smaller
loss in effectiveness. Together, the last two recommendations are shown to lead
to efficiency savings of over 65% with a small increase in effectiveness as well.

To enable repeatability, we provide screenshots of the employed experimental
template, which may be run in a browser on a free MS Azure subscription.
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For further analysis, all 25 GB of structured experimental data are exposed on
a high-availability server via a public URL.

2 Related Work

In the general Artificial Intelligence community, instance matching is a 50-year
old problem that continues to be actively researched, with a good survey of
frameworks provided by Köpcke and Rahm [11]. Examples of some Semantic Web
instance matching systems are Silk, RDF-AI and Limes [21], [18] [14]. Recent
years have seen a proliferation of sophisticated machine learning approaches
for improving instance matching performance, with Soru and Ngomo providing
a comparative evaluation of various supervised classifiers [19], and Köpcke et
al. providing a comparative evaluation of various competing systems that have
emerged as popular choices for practitioners [12]. The latter work, in particular,
showed that most systems only succeeded in certain settings, with hand-crafted
features and with non-trivial amounts of training data [12]. In a similar manner,
other systems have made expert-guided decisions on model and feature selection,
an example being the random forest-based system of Rong et al. [17]. Instead
of developing another instance matcher that competes with existing systems,
the goal of this work is to model the myriad model selection decisions made by
instance matching practitioners using a unified framework.

There are two important lines of prior research that come closest to this goal.
The first line of research concerns knowledge-guided model construction in the
context of expert systems [5]. In contrast, this work considers knowledge-guided
model selection decisions in a machine learning-based instance matching context.
A second, more recent line of research, attempts to unify various applications of
Statistical Relational Learning (SRL) using Markov Logic [7]. This paper takes a
complementary approach by restricting the application (e.g. instance matching)
but not restricting the learning technique (e.g. SRL). Instead, we investigate and
exploit the decision-making biases that go into the design of a generic machine
learning-based instance matcher.

Much of the discourse on machine learning models in this paper is derived
from classic material, Bishop’s text being the primary reference [3]. Rojas’ text
is used for a more detailed discourse on neural networks [16]. Factor graphs, a
special class of probabilistic graphical models central to the developments herein,
are detailed in the text by Koller and Friedman [10].

3 Preliminaries

In the Semantic Web, link discovery is the problem of locating pairs of instances
that satisfy a hidden specification function [14]. Without loss of generality, the
specification function is often assumed to be that of equivalence, in which case
the problem is referred to as instance matching [11]. Forging such :sameAs-like
links between entities is important for maintaining connectivity in Linked Open
Data per the fourth Linked Data principle [21].
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Before the emergence of the RDF data model, it was often the case in the
Relational Database literature that schema matching and record linkage tasks
were considered orthogonal components of the broader data integration applica-
tion [11]. The dominance of the RDF data model in the Semantic Web enables
practitioners in the related sub-areas of ontology matching and instance matching
to cross-fertilize their research, a manifestation of which is the annual Ontology
Alignment Evaluation Initiative1. Although this paper primarily covers instance
matching, an evaluation task in Section 5 also involves ontology matching.

An important issue that affects real-world instance matching problem
instances is data skew [15]. Consider two RDF datasets GA and GB with respec-
tive sets of instances EA and EB . A näıve instance matcher attempts to classify
the full Cartesian product space EA × EB , a process that is time-prohibitive
even for moderate datasets. Under reasonable assumptions, the number of true
positives is O(min(|EA|, |EB |)) and is far outnumbered by the number of true
negatives (a quadratic function) [4], [15]. One common technique that reduces
this skew before further processing is blocking [15], [14]. A blocking algorithm
clusters instances into blocks, based on a heuristic function. Instances sharing
a block are paired and become candidates for further evaluation. Although the
size of the candidate set is small relative to the Cartesian product, the skew is
not completely eliminated and is still quite considerable (Section 5).

This paper assumes that the specification function is unknown but that it
can be approximated through training a machine learning classifier. A typical
machine learning-based instance matcher works as follows. First, a candidate set
of instance pairs is generated through blocking, as described above [15]. Next,
each pair is converted to a feature vector [4]. The choice of features is important,
and guided by knowledge of the task [12]. Thus, it is a source of decision-making
bias in the model selection design process, as described in the next section. A set
of labeled feature vectors is split into training and validation sets and respectively
used to train and tune the classifier, which is then used to label unseen instance
pairs (the test data). The choice of classifier, the number of labeled samples
on which the classifier is trained, the hyperparameter tuning strategy and the
proportion of positively and negatively labeled samples are all issues that are
crucial to the design and complexity of the final instance matcher. A framework
for this decision-making process is subsequently presented.

4 Decision-Making Bias in Model Selection

Before a machine learning classifier can be trained on labeled data, the model
selection problem must be solved. For instance, a practitioner must craft the
features that should be extracted from the data, and decide on hyperparam-
eter optimization and sampling strategies. Usually, there are many choices
at each step of the decision process, including default options (e.g. bag-of-
words features for text representations [19], and random search for hyperpa-
rameter optimization [1]) derived from a survey of existing instance matchers.
1 http://oaei.ontologymatching.org/

http://oaei.ontologymatching.org/
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Empirical evidence indicates that this passive effort is typically insufficient, with
non-trivial tasks demanding considerable model selection effort [12]. We also
note that this decision-making process is not restricted to the machine learning
component of model selection, but is an integral design component of any non-
trivial system that models some phenomenon and is required to be empirically
testable2.

In this broader model selection process, decision-making bias arises because it
is infeasible to consider all points in the design space, even when certain aspects
of the model are fixed (e.g. restricting the instance matcher to only use machine
learning). The decisions are typically justified through a variety of means, most
notably early experimental findings or a study of existing systems [12], [4]. As
briefly illustrated in Section 2, recent instance matchers have become steadily
more complex in an effort to outperform the state-of-the-art. With added com-
plexity, it becomes important to model the set of (possibly interlinked) decisions
in order to reproduce (and improve upon) the system.

Figure 1 illustrates a possible framework for this process, namely a bipartite
undirected graphical model, or a factor graph [10]. In the figure, oval nodes
represent sets of objects, with shaded nodes representing sets provided to a
practitioner a priori3. As in traditional factor graphs, the square nodes (labeled
Nodes 1-4 ) represent points of interaction between their neighboring decision
nodes [10]. Described below, these nodes can also be used to exercise prior task-
specific knowledge to bias certain decisions towards a model selection outcome
that is expected to be empirically favorable.

4.1 Node 1: Decision-Making Bias in Sampling Strategy

In a supervised setting, data has to be collected and labeled in order to train
(and tune) the machine learning classifier. Intuitively, the more labeled data is
collected, the better the performance of the classifier. Labeling data can be a
costly endeavor. The level of supervision, expressed as a percentage of the labeled
instances to the total instances, depends directly on the allocated labeling budget.
Once the level of supervision is determined (e.g. 50%), a practitioner has to pick
an appropriate sampling strategy. With simple random sampling, an instance from
the data pool is chosen (for labeling) with uniform probability till the budget is
exhausted. Data skew can be problematic for this default strategy, since under
moderate budgets, the probability of under-sampling true positives is high.

The risk of under-representing true positives in the labeled set can be mit-
igated by randomly sampling q/2 instances from each of the two classes, with
q the total number of labelings allowed by the budget. This technique, which
is a variant of stratified sampling, was designed by statisticians to reduce the
variance caused by simple random sampling in skewed datasets [13].
2 In the context of instance matching, for example, the choice of machine learning is

itself a model selection decision, since it indicates that we model the unknown link
specification function (see Section 3) using a trainable classifier.

3 Thus, these nodes represent the fixed aspects of the model, or the design constraints,
described in the previous paragraph.
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Fig. 1. A factor graph representing the model selection process. The oval nodes repre-
sent generic sets of objects (the concrete results of design decisions) while the square
nodes represent opportunities for decision-making bias based on exploiting task-specific
knowledge. Shaded nodes represent sets provided a priori (and are hence, design con-
straints) and the dashed lines indicate specific influences studied in this work.

Existing stratified sampling strategies used in several instance matchers
attempt an approximate balancing strategy in order to eliminate the skew from
the labeled set [12]. This violates a key assumption of predominant machine
learning theory, namely that the labeled data has (at least approximately) the
same distribution as the unlabeled test data [3]. In keeping with machine learn-
ing norm, the authors hypothesize that skew should not be eliminated in the
labeled set for good empirical performance on test data. In other words, the
domain expert should use her knowledge of data skew to perform proportionate
allocation stratified sampling [13]. For example, if the domain expert estimates,
a priori or through experience and an educated guess, that 90% of the data
pool is negatively labeled, she should use this estimate to sample 0.9q and 0.1q
instances from the negative and positive pools respectively. We empirically com-
ment on this hypothesis in Section 5. In Figure 1, this influence is noted through
the dashed line incident on Node 1. We note that decision-making bias arises in
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the choice of sampling strategy because of knowledge of the task. If, for some
reason, the practitioner suspects that her data does not exhibit skew, the bias
should be in the opposite direction. A third alternative is that nothing can be
said about the data with reasonable probability. In this case, it is dangerous to
introduce any bias at all in the choice of sampling strategy; a better approach
is to model the data distribution through additional analysis.

4.2 Node 2: Decision-Making Bias in Feature Crafting

In many instance matching tasks, special features can be devised (or chosen
from a global feature space, as illustrated in Figure 1) to maximize performance.
Traditionally, string similarity and token similarity features such as Levenstein
and tf-idf have been popular; other practitioners have followed suit with pho-
netic and numeric functions as well [4], [17]. Crafting features for a machine
learning problem using knowledge of the underlying task is by no means unique
to instance matching, but also arises in other tasks such as speech recognition
and computer vision [3]. Research on this issue in recent years have led to the
emergence of deep learning techniques for automatically devising high-level fea-
tures [8], but to the best of our knowledge, deep learning has not been applied
to instance matching. Thus, decision-making bias in crafting features remains
important in current instance matchers. For example, Soru and Ngomo favor
token-based features in their evaluations [19], while Rong et al. devise special
features individually for short text, descriptions and dates [17]. We do not study
this bias further in this paper, but leave an extensive treatment for future work.

4.3 Node 3: Decision-Making Bias in Training-Validation Strategy

The labeled sets of feature vectors need to be split up into training and vali-
dation sets, which are both assumed to have the same proportion of positive
and negative samples. A practitioner is typically expected to provide a sampling
parameter that determines the ratio4 of the size of the training set to the labeled
set. In the literature, authors have experimented with several ratios, the most
common being 50% and 90% (with the other 50% and 10% used for validation)
[2], [19]. Once the sampling (and splitting) process is complete, a hyperparam-
eter optimization strategy must also be chosen, in order to minimize chances of
overfitting [3]. In principal, the validation set can be used to provide an unbiased
estimate of classifier error [3]. Thus, the chosen optimizer makes hyperparameter
assignments so as to maximize validation set performance [1].

Two extreme (and common) cases of hyperparameter optimization strate-
gies are random search and grid search strategies [1]. In a random search, the
optimizer randomly tests s different hyperparameter settings before selecting
the best one, s being a user-defined parameter. A grid search, which can be
performed at arbitrarily fine levels of granularity, exhaustively searches through
combinations of hyperparameter value assignments.

4 If the training ratio is r, the validation ratio is automatically 1 − r.
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We argue that there is scope for introducing decision-making bias by exploit-
ing information about the level of supervision (or indirectly, the labeling budget).
This hypothesis is indicated by the dashed lines in Figure 1 incident on Node
3. The rationale behind the hypothesis is as follows. First, the training time for
most machine learning models depends directly on the size of the training set [3].
Thus, if the level of supervision is low, training times are also expected to be low.
Thus, expensive grid search can potentially compensate for the adverse effects of
low supervision. The level of supervision can also be used to inform the training-
validation ratio under the assumption that both parameter and hyperparameter
optimization (controlled by the training and validation sets respectively) exhibit
diminishing returns with more labeled data. The choice of ratio is important
under efficiency considerations, as making the validation set larger allows the
training time to be reduced, along with better hyperparameter optimization.
In principle, this form of bias can be used for more efficient training, without
significantly sacrificing performance (and possibly improving it), as empirically
investigated in Section 5.

4.4 Node 4: Decision-Making Bias in Classification

Node 4 offers additional potential for decision-making bias that involves choos-
ing an appropriate machine learning classifier based on task-specific information.
As one example, boosted multi-layer perceptrons were recently investigated for
minimally supervised instance matching tasks (with extremely low labeling bud-
gets) [9]. Similarly, logistic regression models were empirically demonstrated to
be suitable for noisy instance matching tasks [19]. The takeaway is that, if the
characteristics of the dataset are known, prior experience can be used to inform
the choice of classifier. Conversely, if nothing is known about the data with rea-
sonable certainty, a caveat similar to the one presented in Section 4.1 applies.
A practitioner may be forced to investigate several classifiers and training algo-
rithms (e.g. through pilot experiments) before selecting one.

4.5 Undirected vs. Directed Graphical Representation

There are two reasons why the model selection process in Figure 1 is framed
as an undirected graphical model rather than a directed model (e.g. a Bayes
Network [10]). First, decision making processes are typically iterative in real-
world operational settings, and not necessarily causal as directed edges in a Bayes
Network would seem to indicate. In a ‘first pass’, for example, a practitioner
may choose default settings to get an initial feel for system performance on a
specific instance matching task. If the task is inherently less challenging than
presupposed5, the default settings may be adopted with minor changes. For
more challenging cases, an iterative trial-and-error model selection process may
be necessary for good performance.

5 Two concrete examples are the OAEI benchmarks Restaurants and Persons 1, which
have yielded 90%+ f-scores in several Semantic Web evaluations [19], [9].
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A second reason for choosing a factor graph is its bipartite nature. Crucially,
the graph allows us to distinguish between decision nodes and object nodes
and captures the mutual influence exerted by various components of the model
selection process on each other. The graph can also serve as a visual tool and be
crafted in as much detail as warranted by the practitioner and the task. These
advantages allow us to detect potential beneficial sources of decision-making bias
(or lack thereof). The dashed edges in Figure 1 are examples of bias that the
graph allowed us to detect and exploit. To the best of our knowledge, these
biases have not been exploited in recent instance matchers. For example, we are
unaware of any instance matcher that has explicitly used the labeling budget to
inform training-validation ratios.

The factor graph may also be useful where several (possibly conflicting)
sources of decision-making bias are involved in the design of the instance
matcher. This scenario can occur because of differences in opinion (among col-
laborators) about dataset characteristics, different practical experiences or sim-
ply a lack of evidence. The factor graph is useful in this scenario because, by
definition, factors are used to model probability distributions over neighboring
object nodes. In principal, this is similar to the framework used by Domingos
and Richardson whereby Markov logic was used to unify various applications of
Statistical Relational Learning [7]. Although not explored here, the probabilistic
study of decision-making bias is the natural next step for attempting to explain
the bias and is left for future work.

4.6 The Cost of Decision-Making Bias

Throughout this paper, the assumption is that introducing decision-making bias
into the model selection process is beneficial to actual system performance, that
is, reduces the variance of prediction. We note that the concept of both intro-
ducing and penalizing statistical bias in model selection to reduce variance is
well established [3]. The Occam’s razor principle essentially states that, all else
equal, simple hypotheses are inherently more superior than complex hypotheses
[3]. The no free lunch theorem of Wolpert and Macready disproves this superior-
ity in the mathematical sense [22]; in this framework, simplicity itself is a form
of decision-making bias that makes model selection tractable.

In the present context, this finding has an intuitive takeaway, namely that
each decision-making bias introduced into the system implies a cost. The reason
is that biases are introduced precisely because a practitioner has task-dependent
knowledge; the more the system is tuned for the specific task, the less applicable
it will be to other tasks. In the longer run, this may be undesirable if instance
matching tasks of many different flavors are involved, and a single system is
expected to service them over a long horizon. With respect to the current state of
the research, this is also problematic; if researchers exhibited significant decision-
making bias in their design, their system may not perform as expected beyond
the datasets in their experimental design. The computer vision community has
already begun addressing this issue as dataset bias [20]. Given the complexity of
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Table 1. Test suite details. The second column only includes true negatives and pos-
itives in the candidate set (see Section 5.1). Mean sparsity (with resp. standard devi-
ations in paranthesis) is the average percentage of features set to 0 in an arbitrary
feature vector in the true negatives/positives in the candidate set. A skew of y% at x%
(with x=10/50/90%) indicates that y% of the negative pool equals x% of the positive
pool. Exact numbers may vary slightly due to rounding error

Dataset Name True Nega-
tives/Positives

Mean Negatives/
Positives Sparsity

Skew at
10%/50%/90%

Amazon-Google
Products (AGP)

95,889/1300 67.64%/55.68%
(7.66%/9.14%)

0.14%/0.68%/1.22%

Abt-Buy (AB) 40,917/1097 63.06%/58.00%
(12.27%/12.20%)

0.27%/1.34%/2.41%

Film (F) 53,070/412 88.12%/80.79%
(4.85%/6.96%)

0.078%/0.39%/0.70%

recent instance matchers in the Semantic Web (see Section 2), we believe that
costs introduced by decision-making bias are worth investigating.

5 Experiments

5.1 Test Suite: Preparation and Statistics

The proposed biases are tested on three instance matching benchmarks.
Two benchmarks, Amazon-GoogleProducts and Abt-Buy are public e-commerce
datasets evaluated by Köpcke et al. on state-of-the-art approaches [12]. As the
authors of that evaluation noted, these are difficult test cases in that the best
supervised performance (in terms of f-scores; see Section 5.2) achieved on them
was well below 70% [12]. The third test case concerns real-world film data from
IMDB, but with artificial semantic noise injected into the data using an estab-
lished Semantic Web generator [6]. The final test case involves both instance and
ontology matching and has been used in OAEI evaluations.

We do not consider other OAEI benchmarks like Persons and Restaurants
(see footnote 5) in these evaluations. The main reason is that even simple systems
have performed well on these test cases, leaving little room for more improve-
ment. A second reason is that the datasets used in our evaluations have also
been used in at least three recent evaluations [12], [19], [9]. Because performance
on them continues to be poor, they present interesting challenges for modern
matchers. Finally, the most recent OAEI instance matching benchmarks do not
have publicly accessible ground-truths at the time of writing.

As performing classification on all O(n2) instance pairs (with n being the
number of instances) is infeasible, blocking techniques are used to heuristically
generate a smaller candidate set of instance pairs that does not exclude the
true positives [14], [4]. Instance pairs not in the candidate set are automatically
classified as negatives. In this paper, we use a recently proposed unsupervised
method called Attribute Clustering to generate a high-performing candidate set
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[15]. Algorithm parameters are adjusted to ensure that all true positives in the
ground-truth are included. Table 1 summarizes test suite details; note that the
candidate set is still skewed, but less so (by over three orders of magnitude) than
the space of all O(n2) pairs.

Once generated, all instance pairs in the candidate set are converted into
binary feature vectors. Specifically, for every pair of matching attributes in every
instance pair (or properties in RDF terminology), 28 features are generated,
including phonetic, numeric and string comparison features. This feature set is
used because of good performance in prior work6 and shown to exhibit high
performance [4]. In pilot experiments, the features were also found to work well
in binary rather than real-valued form, possibly because of reduced classifier
overfitting due to sparsity. As another advantage, sparsity is also known to lead
to faster training convergence [16], [3]. Complete details on feature generation
are provided on the project website (footnote 11).

5.2 Methodology

All experiments were run on Microsoft Azure’s cloud-based machine learning stu-
dio7 on a free preview subscription. At the time of experimentation, Microsoft
was the only cloud vendor that offered a full suite of easy-to-deploy machine
learning facilities. Since that time, some other vendors have released similar
products, most notably Amazon. We leave repeating the experiments herein on
alternate cloud vendors for future work. In all experiments, the classifier is fixed
as a fully-connected, two-class neural network with a single hidden layer compris-
ing 100 sigmoid units to guarantee sufficient expressivity [16]. The backpropaga-
tion algorithm is used for training the network, with five algorithm parameters8

constituting the hyperparameters that need optimizing. Since the feature set is
also fixed, the experimental goal is to test newly proposed biases.

To this end, four categorical variables are introduced to investigate the dashed
influences in Figure 1, namely Skew ={True, False}, Hyper ={Random Search,
Grid Search}, Level-of-Supervision ={10%, 50%, 90%}, Training-ratio= {90%,
50%, 10%}. Skew relates to Node 1 decision-making bias, with a True value
indicating that complete data skew is maintained in the labeled set. A False
value indicates instead that equal numbers are maintained (called the balanced
approach; see Section 4.1). Hyper refers to the two hyperparameter optimiza-
tion strategies employed in this work. Specifically, Random Search explores ten
randomly chosen hyperparameter vectors in an attempt to improve upon the
default hyperparameter settings in their neighborhood. Grid Search performs a
full hyperparameter sweep at a pre-defined granularity9. Level-of-Supervision or

6 This is an example of Node 2 decision-making bias (Section 4.2).
7 Accessed at https://studio.azureml.net/.
8 The learning rate, number of learning iterations, initial learning weights diameter,

momentum and normalizer type.
9 Based on the observed data, the MS Azure grid search setting divides the hyperpa-

rameter space into roughly 20-30 grid cells.

https://studio.azureml.net/
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LoS refers to the quantity |LabeledDataPool|/|DataPool|; note that both neg-
atively and positively labeled samples are included in the numerator, with Skew
determining the relative proportion. Training-ratio is the ratio r in footnote 6.

For each test case and joint assignment to the four categorical variables, a
model selection framework of the form in Figure 1 can be fully instantiated, with
the end result being an instance matcher. This model is tested on the portion of
the data pool that was not sampled and included in the labeled set. We measure
instance matching performance using precision and recall metrics. Let the set of
samples labeled as positives by the classifier be denoted as P , with RP ⊆ P being
the true positives retrieved by the classifier. Let TP denote the set of all true
positives. The ratios |RP |/|P | and |RP |/|TP | respectively quantify precision
and recall . Their harmonic mean, or f-score, illustrates their tradeoff and is a
measure of system effectiveness [19].

To measure system efficiency, we record and add the run-times of both hyper-
parameter optimization and classifier training. The Microsoft Azure platform
allows the experimenter to record fine-grained run-times of read and write times
as well. These are not included herein as they are subject to data-center vari-
ance. Note that the actual optimization and classifier training takes place on a
single node (attested to by the MS Azure documentation), and is not subject
to such variance. Thus, the reported run-times are expected to be low-variance
proxies for true model selection time.

Ten random trials are conducted for each dataset and joint categorical assign-
ment, with the random number generator provided by Microsoft Azure. In total,
almost10 3×2×2×3×3×10 = 1080 model selection experiments were conducted
to investigate the biases. All 25 GB of experimental data, structured in directo-
ries and spreadsheets, have been made available on a high-availability server11,
together with screenshots of the experimental template that was used and all
experimental data.

5.3 Results and Analysis

The subsequent analysis focuses is on the data tabulated in Table 2, with
Skew=True. We comment on the Skew=False case, but due to space constraints,
reproduce the full table for Skew=False only on the project website.

A cursory count of the bold (or better) f-score values in the two Hyper
columns of Table 2 shows that, on 17/27 cases, Grid Search outperforms Random
Search as a hyperparameter optimization strategy. This is expected (since Grid
Search explores more hyperparameter space) and is closer to the empirical norm
in the literature [12]. A more informed analysis indicates that Random Search
also has its merits. The mean difference in f-scores between Grid Search and
Random Search is 0.99%, which is not statistically significant from 0 at the 95%

10 The actual number was 1032. In the final phase of the experimental runs, 48 trials
on the Film dataset did not terminate due to subscription exhaustion.

11 The project website is accessed at https://sites.google.com/a/utexas.edu/
mayank-kejriwal/projects/semantics-and-model-selection

https://sites.google.com/a/utexas.edu/mayank-kejriwal/projects/semantics-and-model-selection
https://sites.google.com/a/utexas.edu/mayank-kejriwal/projects/semantics-and-model-selection
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Table 2. Mean results (over 10 random trials/cell) on described metrics (Section 5.2)
for the three test cases (Table 1) and with Skew=True. The bold lines separate (from
top to bottom) results for Training-ratio=90%, 50% and 10% respectively. Bold values
indicate better performance across the two Hyper columns, and shaded cells indicate
best values across the three Training-ratio segments

Test |LoS
Hyper=Random Search Hyper=Grid Search

Precision Recall F-score Run-time Precision Recall F-score Run-time

AGP 10% 54.13% 25.77% 34.89% 14.16s 48.62% 33.08%39.37%26.02s

AGP 50% 61.51% 28.77% 39.20%1m 0.47s 54.76% 29.23%38.11% 1m 50.70s

AGP 90% 73.27% 27.69% 40.22% 1m 31.93s 65.67% 33.85%44.67%3m 8.97s

AB 10% 70.00% 6.38% 11.70% 7.80s 72.90% 7.90% 14.26%13.10s

AB 50% 71.90% 20.07%31.38%25.01s 63.10% 19.34% 29.61% 44.99s

AB 90% 91.67% 20.00% 32.84% 36.81s 85.19% 20.91%33.58%1m 18.35s

F 10% 68.46% 57.48%63.99% 56.72s 86.20% 51.35% 64.36%57.85s

F 50% 83.59% 79.13%81.30%2m 1.34s 83.42% 78.16% 80.70% 3m 53.09s

F 90% 74.07% 97.56%84.21%3m 29.42s 76.09% 85.37% 80.46% 6m 49.84s

AGP 10% 45.47% 35.64%39.96%10.16s 49.46% 31.28% 38.33% 17.88s

AGP 50% 55.50% 34.92% 42.87% 32.02s 57.87% 35.08%43.68%1m 8.56s

AGP 90% 66.67% 36.92% 47.53% 54.73s 62.79% 41.54%50.00%1m 57.03s

AB 10% 52.10% 16.31% 24.85% 6.31s 48.23% 24.82%32.78%22.72s

AB 50% 67.77% 14.96% 24.51% 14.93s 67.77% 14.96% 24.51% 31.64s

AB 90% 76.32% 26.36% 39.19%23.00s 63.83% 27.27%38.22% 45.24s

F 10% 79.93% 57.95% 67.19% 18.32s 80.00% 62.53%70.20%35.97s

F 50% 85.85% 85.44% 85.65% 1m 10.78s 85.51% 85.92%85.71%2m 24.32s

F 90% 73.59% 95.12% 82.98% 2m 3.22s 74.07% 97.56%84.21%6m 9.18s

AGP 10% 39.88% 40.94%40.41%5.71s 44.93% 34.44% 38.99% 8.49s

AGP 50% 54.02% 21.69% 30.96% 11.43s 48.06% 28.62%35.87%20.15s

AGP 90% 58.33% 32.31% 41.58% 16.95s 64.18% 33.08%43.66%32.02s

AB 10% 0% 0% 0% 4.84s 0% 0% 0% 5.68s

AB 50% 63.72% 13.14%21.79%6.92s 62.62% 12.23% 20.46% 10.46s

AB 90% 68.97% 18.18% 28.78% 8.85s 60.00% 19.09%28.97%14.86s

F 10% 75.00% 32.35% 45.20% 8.38s 74.47% 32.86%45.60%14.07s

F 50% 84.08% 64.08% 72.73% 22.57s 82.08% 68.93%74.93%44.91s

F 90% 77.55% 92.68% 84.44% 35.34s 78.00% 95.12%85.71%1m 14.33s

confidence level12 (c.l.). When contrasted with the (statistically significant at
the 99% c.l.) average percentage increase of 93.44% in run-time of Grid Search
over Random Search, the latter is clearly a better choice.

In terms of run-time, two definitive observations can be derived from Table
2. First, when comparing a row across LoS settings, the run-time declines
(as LoS declines), albeit not proportionally. This is again expected, since the

12 Significance levels were tested using the Student’s t-test for sample means.
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backpropagation algorithm does not typically13 run in linear time in the training
set size [16]. Similarly, when comparing across table segments (different values
of Training-ratio) run-time also declines. The latter observation is interesting
because the same amount of labeled data is used for a fixed LoS ; the change is
merely in the relative proportion allocated to training versus validation.

Quantitatively, the average percentage reduction in run-time when compar-
ing Training-ratios of 90% against 50% (with mean taken at all values of LoS and
Hyper in Table 2) is 30.83%, which is statistically significant at the 99% c.l., while
the average f-score increases by 4.08% (not statistically significant from 0 at the
95% c.l.). The difference is more dramatic when performing the same comparison
but with Hyper=Grid Search at Training-ratio=90% and Hyper=Random Search
at Training-ratio=50%. The average run-time for this case reduces by 66.70%,
while the average f-score increases by 11.98%. Although the f-score increase is
not significant (even at 95% c.l.), the run-time reduction is significant at the
99% level.To the best of our knowledge, the only (Relational Database) data
matcher that has used a Training-ratio of 50% is MARLIN, which continues to
outperform many systems [2], [12]. Systems can improve efficiency and (poten-
tially) effectiveness by using this combined bias (that is, favoring Hyper=Random
Search and Training-ratio=50% over alternate options).

As another example of how Figure 1 can favorably inform the model selec-
tion process, consider system performance at LoS values of 50% and 90%, and
with Training-ratio=10%. While system performance at Training-ratio=10%
degrades significantly14 at LoS=10%, with AB achieving 0% f-score, the loss
is less drastic at other LoS values. At LoS=50% and 90%, the average percent-
age reductions in f-score (compared to the best f-score achieved by the other
two Training-ratio settings) are 21.56% and 18.99%, with average run-times
decreasing by 70.16% and 67.59% respectively. Although there is a cost15 (in lost
f-score performance) to using Training-ratio=10%, a practitioner constrained by
efficiency (e.g. in real-time applications) should consider this bias.

The analysis is concluded with a brief note on the Skew=False setting. The
broad conclusions noted above were also found to hold for this setting; a com-
parison between the two settings found that Skew=False performed much worse
overall than Skew=True, with the average f-score reducing by 58.27% and 63.71%
across the Hyper=Random Search and Grid Search settings respectively. These
values are statistically significant at the 99% level. This confirms machine learn-
ing theory [3], in that the training set should be as representative of the full
skewed distribution as possible. Traditional systems tended to (approximately)
favor the balancing (i.e. Skew=False) heuristic [12].

13 Empirically, that is. A closed-form formula is not known [16].
14 The exception is AGP, which achieves its best f-score performance (40.41%) at

Training-ratio=90% when LoS=10%.
15 Even with only six sample (mean) data point comparisons for the two LoS settings

described, the f-score reductions are significant at the 95% level but not the 99%
level. Both run-time reductions are significant at the 99% level.
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Standard deviations on all effectiveness metrics across each set of trial runs
were observed to be very low (in many cases 0), an advantage of cloud-based
experimentation in obtaining reliable estimates. Run-time standard deviations
were also extremely low (<< 5% on average). The last point justifies the chosen
proxy for true model selection run-time in Section 5.2.

6 Summary and Future Work

This paper studies the application of decision-making bias to the instance match-
ing model selection problem. First, the model selection design process is pre-
sented as a factor graph, with one class of nodes representing opportunities for
bias. Existing decision-making biases in the instance matching literature are
explicitly cast as special fragments of this model. These biases, and their mutual
influences on each other, can then be visualized or further analyzed by a practi-
tioner to understand the full extent of their design decisions.

As one form of analysis, we show that the model can be used to hypoth-
esize about unexploited potential biases. Four specific recommendations were
derived from the analysis. First, a practitioner should not artificially balance the
labeled data but maintain skew through proportionate allocation stratified sam-
pling (Skew=True). Secondly, good results are achieved, on average, when the
training and validation ratios are equal (Training-ratio=50% ). Third, the mean
difference in effectiveness (i.e. f-scores) is not significant when a more expensive
hyperparameter optimization strategy (Hyper=Grid Search) is preferred over
simple random search in the neighborhood of default hyperparameter values
(Hyper=Random Search), despite considerably increased run-times. Together,
the last two prescriptions can be used to achieve a run-time reduction of over
65%, along with a slight increase in effectiveness.

Future work will study decision-making bias on a more theoretical foun-
dation, and use the factor graphs for probabilistically reasoning about multiple
sources of bias, as explained in Section 4.5. Also interesting is the issue of whether
the proposed model can be applied to applications other than instance matching.
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Abstract. The amount of scholarly data available on the web is steadily increas-
ing, enabling different types of analytics which can provide important insights 
into the research activity. In order to make sense of and explore this large-scale 
body of knowledge we need an accurate, comprehensive and up-to-date ontolo-
gy of research topics. Unfortunately, human crafted classifications do not satis-
fy these criteria, as they evolve too slowly and tend to be too coarse-grained. 
Current automated methods for generating ontologies of research areas also 
present a number of limitations, such as: i) they do not consider the rich amount 
of indirect statistical and semantic relationships, which can help to understand 
the relation between two topics – e.g., the fact that two research areas are asso-
ciated with a similar set of venues or technologies; ii) they do not distinguish 
between different kinds of hierarchical relationships; and iii) they are not able 
to handle effectively ambiguous topics characterized by a noisy set of relation-
ships. In this paper we present Klink-2, a novel approach which improves on 
our earlier work on automatic generation of semantic topic networks and ad-
dresses the aforementioned limitations by taking advantage of a variety of 
knowledge sources available on the web. In particular, Klink-2 analyses net-
works of research entities (including papers, authors, venues, and technologies) 
to infer three kinds of semantic relationships between topics. It also identifies 
ambiguous keywords (e.g., “ontology”) and separates them into the appropriate 
distinct topics – e.g., “ontology/philosophy” vs. “ontology/semantic web”. Our 
experimental evaluation shows that the ability of Klink-2 to integrate a high 
number of data sources and to generate topics with accurate contextual meaning 
yields significant improvements over other algorithms in terms of both preci-
sion and recall. 

Keywords: Scholarly data · Ontology learning · Bibliographic data · Scholarly 
ontologies · Data mining 

1 Introduction 

The amount of scholarly data available on the web is steadily increasing, enabling 
different types of analytics which can provide important insights into the research 
activity. Increasingly, Semantic Web standards are being used to represent this com-
plex data and, as a result, we have seen the emergence of a number of bibliographic 
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repositories in the Linked Data Cloud [1, 2, 3] and a variety of ontologies to describe 
scholarly data, including SWRC1, BIBO2, BiDO3, AKT4 and FABIO5. The semantic 
enhancement of scholarly articles, known as semantic publishing [4], is also becom-
ing an important topic, attracting the interest of major publishers and leading to the 
formation of new communities (e.g., FORCE116), workshops (e.g., Linked Science at 
ISWC, Sepublica at ESWC, SAVE-SD at WWW), and challenges (e.g., the ESWC 
Semantic Publishing Challenge7).  

Indeed, today’s scientific knowledge is so vast that scientists necessarily tend to 
specialize in relatively narrow fields, thus potentially missing important links across 
different fields and/or ending up reinventing solutions already available in other do-
mains. However, there is growing consensus that semantic technologies can help to 
overcome this problem by improving our ability to discover, query, explore, annotate 
and visualize research information on the web [4, 5, 6, 7, 8, 9, 10]. Nonetheless, we 
still face some important technical challenges before this vision can be realized. These 
crucially include the problem of identifying and modelling the various relationships 
that exist between components of the research environment. While this task is rela-
tively easy when describing the relationships between real world entities, such as 
authors and organizations, it becomes much harder when taking in consideration ab-
stract concepts, such as the notion of research topic. For example, while it is easy to 
retrieve all the co-authors of Enrico Motta, it is much more difficult to identify all the 
papers of Enrico Motta which are relevant to research on the Semantic Web or one of 
its sub-areas. For this reason many popular systems for the exploration of research 
data, such as Google Scholar8, Microsoft Academic Search9 and Scopus10, sidestep 
the challenge of identifying research topics and linking them to other relevant re-
search entities, and simply use keywords as proxy. Unfortunately, this purely syntac-
tic solution is unsatisfactory, as it fails i) to distinguish research topics from other 
keywords which can be used to annotate papers; ii) to deal with situations where mul-
tiple labels exist for the same research area; iii) to deal with the fact that a keyword 
may denote different topics depending on the context, and iv) to model and take ad-
vantage of the semantic relationships that hold between research areas, treating them 
instead as lists of unstructured keywords.  

The traditional way to address the problem of identifying and structuring research 
topics has been to adopt human-crafted taxonomies, such as the ACM Computing 
Classification System11. Unfortunately, as we discussed in [11], this solution also 
presents a number of problems. First, building a large taxonomy of research areas 
requires a large number of experts and is an expensive and lengthy process.  
                                                           
1 http://ontoware.org/swrc/ 
2 http://bibliontology.com. 
3 http://purl.org/spar/bido 
4 http://www.aktors.org/publications/ontology 
5 http://purl.org/spar/fabio 
6 https://www.force11.org 
7 https://github.com/ceurws/lod/wiki/SemPub2015 
8 https://scholar.google.com 
9 http://academic.research.microsoft.com/ 
10 http://www.scopus.com/ 
11 http://www.acm.org/about/class/2012 
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For example, the 2012 version of ACM taxonomy was finalized fourteen years after 
the previous version. Hence, by the time these taxonomies are released they tend to be 
already obsolete, especially in fields such as Computer Science, where the most inter-
esting topics are the newly emerging ones. Moreover, these taxonomies are very 
coarse-grained and usually represent wide categories of approaches, rather then the 
fine-grained topics addressed by researchers. For example, in the ACM Classification, 
the Semantic Web area is characterized as “Semantic web description languages” and 
has only two sub-areas: “OWL” and “RDF”. Finally, these taxonomies are ambi-
guous, since the semantics of their links is not specified.  

For these reasons, it is our view that building large-scale and timely taxonomies of 
research topics is a task that needs to be tackled through automatic methods and in 
2012 we developed Klink [11], an algorithm which takes as input large amounts of 
scholarly metadata and automatically generates an OWL ontology containing all the 
research areas mined from the input data and their semantic relationships. This ap-
proach was demonstrated to work very well in comparison with the state of art and the 
ontology produced by Klink has been used to provide a comprehensive semantic topic 
network for Rexplore [5], a novel system which integrates semantic technologies, 
statistical analysis and visual analytics to provide effective support for making sense 
of scholarly data. In particular, the ontology generated by Klink enhances semantical-
ly a variety of data mining and information extraction techniques, and improves 
search and visual analytics. A variation of Klink was also used in the field of recom-
mender systems to improve significantly the performance of a state of the art content-
based recommender [12].   
However, both Klink and similar solutions – e.g., [8, 13, 14], suffer from a number of 
limitations. First, they only consider the graph of co-occurrences between keywords 
[11] and/or direct semantic relationships [12], thus ignoring relevant indirect statistic-
al and semantic relationships – e.g., the situation where two topics are related to the 
same conferences or associated to the same standards, knowledge which can improve 
the robustness and the performance of a solution, especially in the presence of noisy 
data. Moreover, they fail to deal with keywords which can denote different topics 
depending on the context in which they are used – e.g., “java” can be a programming 
language, but also an Indonesian island. 

To address these problems we have developed Klink-2, an evolution of the Klink 
algorithm that addresses these limitations and provides a much better performance 
than Klink. Klink-2 introduces a number of new features, including: 

• The ability to take as input any kind of statistical or semantic relationship 
between scholarly keywords and other entities – e.g., authors, organiza-
tions, venues and others.  

• The ability to handle ambiguous keywords characterized by a noisy set of 
relationships – e.g., “java”, by splitting them into multiple topics and labe-
ling them correctly with their highest level super topic – e.g., “java (pro-
gramming)” and “java (Indonesia)”. 

• The ability to scale up to large interdisciplinary ontologies, by being able to 
generate the topic ontology incrementally on different runs, rather than hav-
ing to process all the data at the same time.  
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In the rest of the paper we will describe Klink-2 in detail, illustrating the main fea-
tures of the algorithm and analyzing its performance in comparison to a number of 
alternative algorithms. In particular, we will show that the ability of Klink-2 to inte-
grate a high number of data sources and to generate topics with accurate contextual 
meaning yields significant improvements over the other tested algorithms in terms of 
both precision and recall. 

2 The Klink-2 Algorithm 

2.1 Data Model 

Many classifications of research areas simply take in consideration a single hierar-
chical relation, for example the 2012 ACM Classification uses skos:narrower to build 
a taxonomy of topics in computer science. However, as we discussed in [11], this is a 
limited solution and therefore our model12, which builds on the BIBO ontology13, uses 
a richer set of relationships: 

1) skos:broaderGeneric. This is used when we have solid evidence that a topic is a 
sub-area of another one – e.g., “linked data” is a sub-area of “sematic web”.  

2) contributesTo (sub-property of skos:related). This indicates that while a topic, x, 
is not a sub-area of another one, y, its research outputs contribute to research in 
y to the extent that, for the purposes of querying and exploration, it is useful to 
consider x as ‘under’ y. For example, research on “ontology” contributes to re-
search on “semantic web”.  

3) relatedEquivalent (sub-property of skos:related). This indicates that two topics 
can be treated as equivalent for the purpose of exploring research data – e.g., 
“ontology mapping” and “ontology matching”. 

Skos:broaderGeneric and relatedEquivalent are necessary to build a taxonomy of 
topics and to handle different labels for the same research areas, while contributesTo 
provides an additional relationship that can be used to assist the user in browsing 
research topics [5] and analyzing research data –e.g., for identifying topic-based re-
search communities [10]. 

2.2 Overview of Klink-2 

Klink-2 takes as input a set of scholarly keywords and their relationships with a varie-
ty of entities, including research papers, venues, authors, and organizations. The out-
put is a populated OWL ontology describing the semantic relationships between the 
research topics identified from the set of keywords and the other data provided as 
input. This semantic network can then be used for improving the processes of search-
ing and performing analytics on scholarly data [3, 5, 6, 7]. As in the case of the Klink 
algorithm, Klink-2 generates an ontology of research topics linked by the three rela-
tionships introduced above. To support those scenarios where we simply wish to gen-
                                                           
12 http://kmi.open.ac.uk/technologies/rexplore/ontologies/BiboExtension.owl 
13 http://purl.org/ontology/bibo/ 
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Figure 1 shows the difference between Klink and Klink-2 in terms of relationships 
processed to create the topic network. Klink integrates a number of external sources, 
but only in order to produce an unbiased co-occurrence graph, which is the only 
knowledge used by the inference process. Klink-2 can instead exploit multiple rela-
tionships and thus take advantage of the rich network of interconnections between the 
different types of research entities, including papers, authors, venues, and technolo-
gies.  

The Klink-2 algorithm is structured as follows: 

1. Each pair of keywords whose number of common relationships with other 
scholarly entities is higher than a threshold is analyzed to check whether a hie-
rarchical relationship between the components of the pair can be inferred. If 
this is the case, skos:broaderGeneric and contributesTo relationships are de-
rived. 

2. Each keyword is analyzed in order to detect possible multiple meanings asso-
ciated to it. The keywords that seem ambiguous are split into multiple topics 
with unique meaning, which are then compared to the other keywords, possi-
bly inferring new relationships.  

3. The keywords which appear to be very similar are merged together and the re-
latedEquivalent semantic relationships are inferred. As in the previous case, 
the aggregated keywords are then compared to the already computed ones.  

4. Step 2 and 3 are repeated until no new keywords are split or aggregated. Then 
Klink-2 filters out the keywords that do not represent research areas, fixes the 
loops in the topic network, and generates the triples describing the semantic re-
lationships between topics. 

In what follows we will describe the different phases of the algorithm. We will dis-
cuss only briefly the steps already present in the original Klink algorithm – e.g., filter-
ing out keywords which do not denote research areas, to focus instead on the novel 
solutions. 

2.3 Inferring Semantic Relationships 

Klink-2 examines each pair of keywords which share a minimum number of relation-
ships to the same scholarly entities and infers the semantic relationships discussed in 
Section 2.1 by means of three metrics: i)  , , which uses a semantic variation of 
the subsumption method to estimate whether a hierarchical relationship exists be-
tween two topics; ii) , , which uses temporal information also to estimate 
whether a hierarchical relationship exists between two topics; and iii) , , which 
estimates the similarity between two topics. The first two are used as statistical indi-
cators to detect skos:broaderGeneric and contributesTo relationships, while the other 
is used to infer relatedEquivalent relationships.  

These metrics are computed for each semantic or statistical relation R linking key-
words x and y to a set of entities. The keywords (e.g., “semantic web”) are mapped to 
entities (e.g., dbpedia:Semantic_Web) by using DBpedia spotlight14. Of course, the 
                                                           
14 spotlight.dbpedia.org 
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selected relationships should have a minimum degree of quality and number of linked 
entities to be analyzed statistically. Hence, in some cases, it can be convenient to ag-
gregate a number of similar semantic relations. For example, DBpedia uses a variety 
of different relations to connect topics to prominent authors in a discipline, such as 
dbpprop:field, dbpprop:fields, dbpedia-owl:knownFor. We can thus consider these 
relations as equivalent for our purposes, so as to improve the number of linked entities 
and the robustness of the statistical inferences. 

2.3.1   Hierarchical Relationship Indicators 
A classical way to infer a hierarchical relationship between two entities, which can 
occur in a set of documents, is the subsumption method [13]. According to this ap-
proach, term x subsumes term y if P(x|y) ≥ α and P(y|x) < 1, with α usually set to 0.8. 
The original Klink improved on this method by considering the similarity between the 
distributions of co-occurring keywords as well as their string similarity. Klink-2 gene-
ralizes this approach by taking also in consideration the relationships linking key-
words x and y to common entities. It does it by computing the conditional probability 
that an entity e linked to x by relation R will also be linked to y by the same relation. 
For example, a relationship between “semantic web” and “linked data” can also be 
inferred by the probability that an author working in one of these topics would also 
work in the other, or that a tool used in one of these topics would be used in the other. 
Hence, for every relation R, Klink-2 computes two statistical indicators ( ,  and , ) that are used to detect a hierarchical relationship and then establish its na-
ture. 

Our approach distinguishes two classes of relations: quantified and unquantified 
ones. An unquantified relation is a triple in the form of rel(t, e) linking a topic t to an 
entity e. For instance, this could be a triple of the form isAbout(p, t) from the SWRC 
ontology, which states that a publication p is about topic t. A quantified relation is a 
quadruple in the form of rel(t, e, q), where q quantifies numerically the intensity of 
the relationship. For example, haveCitationInTopic(a, t, 25) points to the fact that 
author a has 25 citations in topic t. The former are usually queried directly from RDF 
repositories, while the latter are inferred from metadata.  

Using these input data we compute the statistical indicator ,  between key-
words x and y for relation R with the following formula: 

 , ,, ,, · , · ,    (1) 

The first factor gives the direction of the possible hierarchical relationship, while 
the others give the intensity. ,,  is the conditional probability that an element asso-

ciated with keyword x will be associated also with keyword y. If R is an unquantified 
relation, ,   is simply the number of elements associated with both x and y ac-
cording to relation R. For example, in the case of isAbout(p, x), ,  is equal to 
the number of co-occurrences between x and y,  while ,  and ,  indicate 
the total number of publications in x and y. If R is a quantified relation, we should also 
take into account the intensity of the relationship. In this case, ,  is computed 
as the summation of the minimum values quantifying the two relationships connecting 
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x and y with e. For example, in the case of the relationship haveCitationInTop-
ic(a,x,c), ,  is the sum of the minimum numbers of citations in x and y received 
by each author, while ,  and ,  are respectively the sum of the total 
number of citations in x and in y received by all authors.  ,  measures the semantic similarity of x and y and is computed as the cosine 
similarity between the two vectors in which each index represents the keyword k, which 
has in common with x and/or y a set of instantiations of a relation, say R, with the same 
scholarly entities, with the values equal to ,  for x and ,  for y. 

Finally ,  defines the string similarity between two keywords. It is com-
puted as the linear combination of a number of string metrics based on the longest 
common sub-string, the percentage of identical words, the number of characters in 
common, the presence of acronyms, and so on.  

When ,  we infer that, according to relation R, x is a candidate to be-
coming a sub-area of y, while when , , x is a candidate to becoming a 
super-area of y. The value of  can be set manually by analyzing the trade-off be-
tween precision and recall or alternatively it can be estimated by running the algo-
rithm on training data and using the Nelder-Mead algorithm [12] to choose the thre-
sholds which maximize the performances (usually in term of F-measure). 

It is interesting to note that the formula used by the original Klink algorithm [11] 
can be considered (except for the improved ,  component) as a ,  indi-
cator, using as relation isAbout(p,x). 

In many cases, it is also useful to consider the diachronic component of the rela-
tionships between two keywords, e.g. how their relationship evolved in time. For 
example, in the case of isAbout(p,x), it can be argued that after some time certain 
topics may stop to co-occur simply because their association has become implicit. 

This may cause a statistical indicator, which does not consider the diachronically 
dimension, to miss some important semantic relationships. Moreover the temporal 
dimension is useful to understand better the nature of the relationship linking two 
topics. The fact that the relationship was strong when one of the topics was young 
may point to the fact that this topic actually derived from the other and thus is truly 
one of its sub-areas. For this reason, Klink-2 computes also , , a temporal ver-
sion of , , which gives more weight to the information associated with the first 
years of x. This is calculated using a variation of formula (1) in which ,  is 
computed by weighting the number and intensity of the relationships in each year 
according to the distance from the debut of x. The weight is computed as w(year, x)= 
(year - debut(x) +1) –γ, with γ>0 (γ=2 in the prototype). 

2.3.2   Inferring Hierarchical Semantic Relationships 
A hierarchical relationship between two topics (represented by the keywords) is in-
ferred when a sufficient number of indicators, i.e., a number above a given threshold, 
agree on the direction of the relationship. The precise threshold depends on the de-
sired precision/recall trade-off. In some rare cases the situation may arises where indi-
cators provide conflicting information – i.e., both x > y and y > x are suggested. In 
such a case we compute the difference between the two groups and go for a ‘majority 
vote’, assuming the difference is higher than the given threshold.  
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The nature of the inferred relationship is assessed by Klink-2 using a rule-based 
approach. This method takes into consideration a variety of factors, including the 
number of publications associated to x and y, the number of entities related to them, 
their debut years (i.e., the years in which the keywords first appeared), and the preva-
lence of ,  indicators versus ,  ones. If x is older, associated with more 
entities and there is a prevalence of ,  indicators, Klink-2 will infer a 
skos:broaderGeneric relationship. If these conditions do not apply, it will infer a con-
tributesTo relationship. If the choice is unclear, it will be conservative and generate a 
contributesTo relationship since it provides a less risky assumption. A 
skos:broaderGeneric(x,y) relationship is transitive and implies that every publication 
tagged with x should also be tagged with y. Hence it is important to minimize as much 
as possible errors with the derivation of skos:broaderGeneric relationships, which 
will adversely affect the exploration of the scholarly data.  

At the end of each main analysis loop, Klink-2 will also run the fixLoops() pro-
cedure, which detects loops in the graph of skos:broaderGeneric relationships and 
breaks them by eliminating the relationships with weaker statistical indicators.  

2.3.3   Inferring RelatedEquivalent Relationships 
Klink-2 uses the ,  similarity metric to infer relatedEquivalent relationships. 
We compute ,  by normalizing ,  with respect to the similarity between 
the super-areas and the siblings of x and y, according to the previously inferred hierar-
chical relationships. For this reason the relatedEquivalent relationships start to be 
inferred only after the first loop. The rationale is that for considering two elements in 
a taxonomy near enough to be merged they must be not only similar in absolute 
terms, but also more similar to each other than their super areas and siblings are to 
each other. Hence, we adopt the following formula: 

 , ,,  , ,                        (2) 

This formula is an evolution of the one used in Klink and proved to work better 
both on scholarly domains and on other domains [12]. Each pair of keywords which 
receives enough positive indicators is then linked by a similarity link. These pairs are 
then given in input to a bottom-up single-linkage hierarchical clustering algorithm 
[14], labeled in the pseudocode as mergeSimilarKeywords(), which uses as distance 
criterion a linear combination of the ,  indicators. For each pair of keywords 
clustered together, Klink-2 infers a relatedEquivalent relationship. The keywords in 
the cluster are then merged by aggregating all their relationships and will be re-
analyzed in the next loop to infer additional relationships 

2.4 Handling Ambiguous Keywords 

The assumption that each keyword can be mapped to only one topic is unsafe, even 
when we consider keywords which were directly associated to a paper by the authors 
themselves. Our analysis on a subset of the Scopus dataset revealed mainly three cat-
egories of ambiguous keywords: 
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1. Terms which happen to have two or more different meanings, e.g., “java”, the 
programming language, and “java”, the island.  

2. Vague terms, with meaning that can change according to the paper they are as-
sociated to – e.g., “mapping”. 

3. Terms that used to have a unique meaning, but are now used in specialized 
ways by different research communities – e.g. “ontology”.  

The first case is the most trivial, but also the one that may yield the biggest mis-
takes. For example, the original version of Klink, when processing a mixed database 
of life science and computer science, would infer that “owl” is both a sub-area of 
“semantics” and of “birds”. The second case is partially addressed by the original 
Klink by excluding from the process the generic terms that co-occur significantly with 
a very high number of uncorrelated keywords. However, this quick solution may lose 
potentially interesting pieces of information. For example, we may assume with a 
good degree of confidence that the keyword “mapping”, when combined with “ontol-
ogy” and “interoperability”, acquires an accurate meaning that is useful to capture. 
The third category is subtler, but can still yield a number of problems both for users, 
who may want to query the data using only the meanings more commonly used in 
their research community, and for algorithms that rely on statistical inferences. For 
example, “ontology” is used by most philosophers with the original meaning of study 
of the nature of being, while computer scientists usually refer to it as a practical tool 
for modeling a domain.  

The ambiguous keywords are usually associated with a noisy set of relationships, 
which hinders the statistical inference process discussed in section 2.3. For this rea-
son, Klink-2 addresses these cases by detecting the ambiguous terms and splitting 
them in multiple distinct topics. Differently from the disambiguation of probabilistic 
topic models [15, 16, 17], this process is driven by both pre-existing and inferred 
semantic relationships.  

 

function splitAmbiguosKeywords(keywords, rel) returns (keywords) { 
 foreach k in keywords { 
  related_keywords = getRelatedKeywords(keywords, rel); 
  clusters = quickHierarchicalClustering(related_keywords, rel); 
  if ( count(clusters) > 1) { 
   clusters2 = intersectBasedClustering(related_keywords, rel); 
   if ( count(clusters2) > 1) { 
    keywords = split(k, clusters2, keywords, rel); } 
  } 
 } 
return keywords; 
} 

Algorithm 2. Detecting and splitting ambiguous keywords. 

The first step is to quickly detect that a keyword x is probably ambiguous and thus a 
valid candidate to be analyzed more in depth. Since Klink-2 aims to be a scalable me-
thod, able to process a very large number of keywords, this first phase should be as 
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quick as possible. To this purpose, we first select the keywords which share with x a 
minimum number of relationships to the same entities. We then run a hierarchical bot-
tom-up clustering algorithm on this set of keywords, using as initial distance a linear 
combination of the ,  indicators. At each iteration of the algorithm, the distances 
between the new cluster n and each other cluster c is quickly updated by computing the 
weighted average of the distances between the merged elements and c, using as weight 
the number of papers associated with each keyword. If the algorithm yields more than 
one cluster, Klink-2 estimates that the analyzed keyword is connected to two or more 
distinct groups of keywords and thus may be ambiguous. For example, the keywords 
associated to ‘owl’ would be grouped in two clusters, one including terms such as ‘RDF 
and ‘semantic web’ and the other including terms such as ‘raptores’ and ‘barn owl’. 
However, it would be careless to directly generate new topics from this result, since a 
keyword may actually be associated with different groups of keywords without neces-
sary being ambiguous. For this reason we run a slower and more accurate clusterization 
algorithm only on the keywords that yielded more than one cluster in the first phase. 
This method, intersectBasedClustering(), assigns to each cluster a pseudo-
keyword, whose relationships are recomputed by considering only the entities that are 
connected both with the potential ambiguous keyword and at least one of the other key-
words occurring in the cluster, which thus act as disambiguators. For example, in the 
case of “owl”, the isAbout relation will be recomputed by considering only the publica-
tions tagged by the intersection of “owl” and a number of keywords associated to the 
general meaning of either “semantics” or “birds”. The clustering process is then res-
tarted and, at each iteration, the distances between clusters are re-calculated by updating 
the pseudo-keywords. If the process yields more than one cluster, the original keyword 
is used to produce as many topics as the resulting number of clusters. This is done by 
inserting the pseudo-keywords associated with the final clusters in the set of keywords 
to analyze, after labeling them accordingly to the most important high-level topics in the 
cluster. The related higher-level keyword used in the label is the member of the cluster 
with the highest harmonic mean between the number of co-occurrences with the original 
keyword and its total number of associated publications. For example, “owl” may be 
split into two different pseudo-keywords: “owl (semantics)” and “owl (birds)”. These 
keywords will be associated with the set of disambiguated relationships re-computed 
during the clustering process and will be compared with the other keywords for infer-
ring new relationships. 

In some cases, it would be inconvenient for the algorithm to return all the possible 
meanings of a keyword. For example, a researcher interested in the Semantic Web 
would just want the algorithm to automatically assign to “owl” the meaning of “owl 
(semantics)”, without actually producing a second topic related to birds. For this rea-
son, the approach can also be run in contextual mode. In this modality, Klink-2 will 
only keep the disambiguated keyword that is more similar to the input keywords, 
according to the cosine distance of the associated keyword distributions. Hence, if the 
input keywords were about the Semantic Web, “owl” will automatically take the cor-
rect contextual meaning and have its relationships disambiguated by using keywords 
about “semantics”.  
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The threshold to stop the clustering process can be set to a high value, so to address 
only the first two categories of ambiguous keywords, or can be relaxed to tackle also 
the third one. While the second solution may produce an excessively fine-grained set 
of topics, it will also reduce the noise in the data and foster the quality of the relation-
ships, by mapping each topic to a very accurate and unique meaning. 

2.5 Triple Generation 

Klink-2 exits the main loop when it has no more keywords to analyze. It then filters 
the keywords considered “not academic” or “too generic” according to a number of 
heuristics, such as the profile of distribution of their co-occurrences or their absence 
from relevant academic sources – this process is fully described in [11]. While the 
first version of Klink used to filter the keywords before analyzing them, Klink-2 does 
it afterwards. This is because the ability to process ambiguous keywords can actually 
generate usable topics from many of the keywords that the original version would 
have discarded. In this phase, Klink-2 also deletes the redundant relationships which 
would be entailed by other relationships. Finally, Klink-2 generates the triples de-
scribing the research topics and their relationships. The output can be used to create a 
new OWL knowledge base or can be added to an existing one. In the latter case 
Klink-2 will check the relationships for inconsistencies and loops and may delete 
some of them. Being able to build an ontology iteratively on different runs is indeed 
very useful to address scalability, since the algorithm will not be forced to load the 
full graph of all existing keywords, but can run on different sub-taxonomies, which 
are then merged.  

3 Evaluation 

We tested our approach on the keywords of a dataset extracted from Scopus, consist-
ing of 16 million publications about computer science and life sciences. Additional 
knowledge about these keywords and their relationships was extracted from DBpedia, 
Google Scholar and Wikipedia. We evaluated our method by testing a number of 
alternative algorithms for their ability of building an ontology about the Semantic 
Web and related areas. To this end, we adopted as gold standard the ontology used in 
[11], after updating it by i) mapping some of the terms in the ontology to keywords 
used by Scopus (e.g., “linked datum”), which were not present in the data used in the 
2012 evaluation, and ii) adding 30 new topics co-occurring with “Semantic Web” and 
“Semantics” in the Scopus database. The new version of the ontology was validated 
and corrected by three external domain experts with publications in ISWC and ESWC 
conferences. The resulting gold standard15 includes 88 topics linked by 133 semantic 
relationships (263 when taking in consideration also the subsumption relationships 
that can be derived from transitive relations).  

                                                           
15 The gold standard and the data generated in the evaluation are publicly available at 

http://kmi.open.ac.uk/technologies/rexplore/iswc2015/. 
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There are a variety of approaches for learning taxonomies or ontologies, including 
natural language processing [21], clustering techniques [22], statistical methods [13], 
and methods based on spreading activation [19]. Text2Onto [21] is a popular system 
for learning ontologies, which represents the learned ontological structures in a prob-
abilistic ontology model and uses natural language processing techniques. The Lex-
ico-Syntactic Pattern Extraction (LSPE) approach [23] exploits linguistic patterns, 
e.g., “such as…” and “and other…”, to discover relationships between terms. Howev-
er, these approaches are based on the analysis of textual documents, while Klink-2 
focuses instead on metadata, statistics and semantic relationships, since its scope is a 
large-scale analysis of research data. 

The TaxGen framework [14] creates taxonomies from a set of documents by means 
of a hierarchical agglomerative clustering algorithm and text mining techniques. 
Klink-2 also adopts a clusterization algorithm for inferring the relatedEquivalent 
relationship and handling ambiguous keywords. 

A very popular statistical approach is the subsumption method [13], which com-
putes the conditional probability for a keyword to be associated with another in order 
to infer hierarchical relationships, as discussed in section 2.2. The same idea is ex-
tended in the GrowBag algorithm [8], which enriches the original model by using 
second order co-occurrences made explicit by a biased PageRank algorithm. The 
original Klink algorithm [11] also used statistical methods on the co-occurrence 
graph, while Klink-2 goes a step further by allowing the use of semantic or statistical 
relationships from multiple sources. The use of multiple sources for this task was also 
strongly advocated by Wohlgenannt et al [19], who proposed a framework for infer-
ring lightweight ontologies which first build a semantic network through co-
occurrence analysis, trigger phrase analysis, and disambiguation techniques, and then 
uses spread activation to find candidate concepts. Klink-2 does a similar co-
occurrence analysis, but also uses indirect relationships and generates novel topics 
derived from the combination of different keywords. Similarly to the approach of 
Wohlgenannt et al, Klink-UM [12], a variation of Klink designed to generate 
lightweight ontologies for recommender systems, adopts spreading activation for 
tailoring semantic relationships to user needs. 

Klink-2 is able to manage ambiguous keywords by generating multiple topics with 
a unique meaning, according to the semantic context. This is conceptually similar to 
the disambiguation performed by probabilistic topics models which detect latent top-
ics by exploiting Probabilistic Latent Semantic Indexing (pLSI) [15] or Latent Dirich-
let Allocation [16]. For example the Author-Conference-Topic (ACT) model [17] 
treats authors as probability distributions over topics, conferences and journals. Diffe-
rently from them, our approach uses explicit semantic relationships, rather than latent 
semantic, to drive the generation of unambiguous topics. These topics are accurately 
described by a number of semantic relationships and not simply as term distributions. 

Methods for automatically learning ontologies can be complementary to crowd-
sourcing ontology verification [18, 19], a process in which a large number of workers 
solve micro-tasks for validating and correcting semantic relationships.  

As mentioned in the introduction, Klink-2 is currently integrated in the Rexplore 
system [5], and is used to semantically enhance a number of algorithms for exploring 
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research data. Nowadays we have several interesting tools which exploit semantic 
technologies to make sense of research. The Saffron system [9], which builds on the 
Semantic Web Dog Food Corpus [1], allows for advanced expert search and estimates 
the strength of an author/topic relationship by analyzing co-occurrences on the Web. 
Arnetminer [17] also provides support for expert search and a variety of analytics on 
research topics. RKBExplorer [3] is an application that generates comprehensive vi-
sualizations of the research environment from a number of heterogeneous data 
sources. Klink-2 can benefit these systems by generating an accurate, large-scale and 
up-to-date topic network. 

5 Conclusions 

We presented Klink-2, a novel approach to generate semantic topic networks which 
can integrate a number of web sources and exploit multiple semantic and statistical 
relationships. The output can be useful to a vast number of tools as it can be used to 
provide a semantic structure to support the identification, search, exploration and 
visualization of research data. The evaluation shows that Klink-2 performs signifi-
cantly better than alternative solutions. In particular, Klink-2 is able to yield a good 
precision (80%) even when a very high recall (90%) is needed. 

Our approach opens up many interesting directions of work. On the research side, 
we plan to investigate diachronically the shift in meaning of scholarly keywords to 
better characterize the evolution of research areas. We also want to exploit natural 
language processing techniques to augment our semantic model with additional enti-
ties (e.g., methods, tools, and standards) which can be extracted from the text of sci-
entific publications. Finally, on the technology transfer side, we are currently collabo-
rating with two major academic publishers, who are looking to deploy Klink-2 in their 
organizations, thus providing a strong semantic topic structure to support classifica-
tion, search and exploration in their digital libraries. 
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Abstract. Web tables form a valuable source of relational data. The Web
contains an estimated 154 million HTML tables of relational data, with
Wikipedia alone containing 1.6 million high-quality tables. Extracting the
semantics of Web tables to produce machine-understandable knowledge
has become an active area of research.

A key step in extracting the semantics of Web content is entity
linking (EL): the task of mapping a phrase in text to its referent
entity in a knowledge base (KB). In this paper we present TabEL, a
new EL system for Web tables. TabEL differs from previous work by
weakening the assumption that the semantics of a table can be mapped
to pre-defined types and relations found in the target KB. Instead, TabEL
enforces soft constraints in the form of a graphical model that assigns
higher likelihood to sets of entities that tend to co-occur in Wikipedia
documents and tables. In experiments, TabEL significantly reduces error
when compared to current state-of-the-art table EL systems, including a
75% error reduction on Wikipedia tables and a 60% error reduction on
Web tables. We also make our parsed Wikipedia table corpus and test
datasets publicly available for future work.

Keywords: Web tables · Entity linking · Named entity disambiguation ·
Graphical models

1 Introduction

Web tables, or HTML tables on the Web, are a valuable source of relational
data and an important input for information extraction (IE) systems. It is
estimated that out of a total of 14.1 billion tables on the Web, 154 million
tables contain relational data [1] and Wikipedia alone is the source of nearly
1.6 million relational tables. Unlike text, a single relational table contains a
high-quality set of relation instances, along with associated metadata (in the
form of column headers). The wealth and utility of relational tables on the Web
has made semantic interpretation of tables, i.e. the task of converting Web tables
into machine-understandable knowledge, an active area of research [2–12].

A key step in extracting the semantics of Web content is entity linking (EL):
the task of mapping phrases of text to their referent entities in a given Knowledge
Base (KB). For example, in Table 1, the EL task is to link “Chicago” in the second
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 425–441, 2015.
DOI: 10.1007/978-3-319-25007-6 25
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column to its corresponding entity Chicago (the city) in a KB, e.g. YAGO [13].1

Polysemy of phrases is the main challenge for EL systems. An EL system must
disambiguate each given phrase utilizing clues from surrounding content, called
the context of the phrase. In Table 1, the phrase “New York” occurs multiple times,
but it is evident from context that it refers to the city in the second column and
to the state in the third column.

Table 1. Table containin g a list of tallest
buildings in the U.S. and the city and
state that they are located in. Underlines
represent an existing reference to an entity
in a KB.

Building Name City State
One WTC New York New York
Willis Tower Chicago Illinois
...

...
...

MetLife Tower New York New York

We present TabEL, a system that
performs the Entity Linking task
on phrases in cells of Web tables.
Existing table semantic interpretation
systems typically employ graphical
models to jointly model three semantic
interpretation tasks: entity linking,
column type identification and relation
extraction from tables (detailed in
Section 2) [4,6,7,12]. Such joint models
are based on a strong assumption
that the column types and relations
expressed in a table can be mapped to
pre-defined types and relations in the
target KB. While the type and relation
information conveyed by the structure
of tables are valuable clues for the EL task, relying on a strict mapping into a
KB is prone to errors as KBs can be incomplete or noisy.

In this paper, we investigate an alternative to the strict mapping into a
KB. TabEL incorporates type and relation information through a graphical
model of soft constraints. The constraints encode a preference for sets of referent
entities that are “coherent”, in that pairs of entities in the set tend to co-occur
in Wikipedia documents and tables. Although our graphical model is densely
connected (see Section 3), we show in experiments that we can tractably arrive
at disambiguations using the Iterative Classification Algorithm (ICA) [14]. In
experiments, we show that TabEL is more accurate than previous work, reducing
error over the benchmark system [4] by ∼60% on Web tables. TabEL performs
particularly well on Wikipedia tables and reduces error over previous work by
∼75%. In ablation studies, we analyze the impact of TabEL’s components on
accuracy and demonstrate that our features result in an improvement of ∼12%
over a system that chooses the most usual meaning of a phrase as its referent
entity.

Finally, we release our table corpus containing more than 1.6 million tables
from Wikipedia. We also make datasets of entity-annotated Wikipedia and Web
tables publicly available for future table EL systems.2

1 https://gate.d5.mpi-inf.mpg.de/webyagospotlx/Browser?entityIn=%3C
Chicago%3E

2 http://websail-fe.cs.northwestern.edu/TabEL/

https://gate.d5.mpi-inf.mpg.de/webyagospotlx/Browser?entityIn=%3C
Chicago%3E
http://websail-fe.cs.northwestern.edu/TabEL/
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2 Preliminaries

The general task of semantic interpretation of tables takes as input a table and a
reference Knowledge Base (KB), and typically includes the following sub-tasks:
1. Entity linking (EL): the task of finding phrases of text, called mentions, in

cells and associating each with its referent entity
2. Column type identification: the task of associating a column in a table with

the KB type of entities it contains
3. Relation extraction: the task of associating a pair of columns in a table with

the KB relation that holds between each pair of entities in a given row of
the columns
The referent entities, types and relations are all grounded in the given KB.

As a concrete example, given Table 1 and the YAGO [13] KB, the entity linking
task would include linking “Chicago” to the entity Chicago in the KB.3 Type
identification would include associating the second column to the City type in
the KB.4 The relation extraction task would include identifying the relation
isLocatedIn between entities Willis Tower and Chicago.5

In this paper, we focus on just the first semantic interpretation task, entity
linking. We now formally define the EL task for tables. We also introduce
notation that will be used in the rest of this paper.

Formal Definition

A potential mention is a phrase in text whose referent entity in the given KB is
unknown. We denote a potential mention for a phrase s as ms,? (where ? denotes
an unknown entity). An annotated mention, on the other hand, is a phrase whose
referent entity is known and is denoted by ms,e, where s is the phrase of text
whose referent entity is e.

A table from the Web is represented as a matrix, T , of cells containing r rows
and c columns. Tables that use row- and column-spans can be easily normalized
into an r× c matrix by duplicating cells. T [i, j] represents the cell in the ith row
and jth column of T .

Task: Given a table T and a KB K of entities, the entity linking task is to
identify and link each potential mention in cells of T to its referent entity e ∈ K.

3 System Description

Given a table T and a KB K, TabEL performs the EL task in three steps:
1. mention identification: identifies each potential mention, ms,?, in cells of T

3 https://gate.d5.mpi-inf.mpg.de/webyagospotlx/Browser?
entityIn=%3CChicago%3E

4 https://gate.d5.mpi-inf.mpg.de/webyagospotlx/Browser?entity=%3Cwordnet city
108524735%3E

5 https://gate.d5.mpi-inf.mpg.de/webyagospotlx/WebInterface?
L01=%3CWillis Tower%3E\&L0R=%3CisLocatedIn%3E&L02=%3CChicago%3E

https://gate.d5.mpi-inf.mpg.de/webyagospotlx/Browser?entityIn=%3CChicago%3E
https://gate.d5.mpi-inf.mpg.de/webyagospotlx/Browser?entityIn=%3CChicago%3E
https://gate.d5.mpi-inf.mpg.de/webyagospotlx/Browser?entity=%3Cwordnet_city_108524735%3E
https://gate.d5.mpi-inf.mpg.de/webyagospotlx/Browser?entity=%3Cwordnet_city_108524735%3E
https://gate.d5.mpi-inf.mpg.de/webyagospotlx/WebInterface?L01=%3CWillis_Tower%3E&L0R=%3CisLocatedIn%3E&L02=%3CChicago%3E
https://gate.d5.mpi-inf.mpg.de/webyagospotlx/WebInterface?L01=%3CWillis_Tower%3E&L0R=%3CisLocatedIn%3E&L02=%3CChicago%3E
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2. entity candidate generation: for each potential mention ms,?, identifies a set
of candidate entities, C(ms,?) - a subset of entities in K that are possible
referents of ms,?

3. disambiguation: for each potential mention ms,?, chooses an entity e ∈
C(ms,?) (its candidate set), as the referent entity of ms,?, based on its
context.
TabEL uses a supervised learning approach, and uses annotated mentions in

tables to train its components. Like most EL systems, TabEL also relies on a
prior estimate that a given string s refers to a particular entity e, i.e. P (e|s). As
in previous work [15], we estimate this distribution P (e|s) from hyperlinks on
the Web and in Wikipedia, as described in Section 4.

While we use YAGO as our knowledge base in our experiments, our approach
is general and can use any KB, given some labeled examples for that KB and a
suitable entity-similarity measure that we use in our system.

3.1 Mention Identification

The first step for any EL system is to find potential mentions that can be linked
to their referent entities in K. Given the text content, tq, of each cell of the
input table, TabEL identifies as a potential mention the longest phrase, s of tq
that has non-zero probability in P (e|s) for some e. If the length of s is less than
the length of tq, TabEL finds the longest phrase starting after s and so on. For
example, for a cell with text “Barack Obama & Mitt Romney”, TabEL finds two
potential mentions: one for “Barack Obama” and one for “Mitt Romney”.

3.2 Candidate Generation

T [i, j]

Fig. 1. Graphical Model used for
disambiguation. Circles represent
variables and edges represent their
dependencies. For brevity, we show
non-adjacent dependencies only
for the cell T [i; j]

For each potential mention, ms,?, TabEL
sets the set of candidate entities C(ms,?) for
the mention to be all those e for which
P (e|s) has non-zero probability, i.e. C(ms,?) =
{e|P (e|s) > 0}. For example, the candidate
entity set for the phrase “Chicago” would
contain the entities Chicago, Chicago Bulls,
Chicago (1927 film), etc.

3.3 Disambiguation

Our disambiguation technique is based on the
assumption that entities in a given row or
column tend to be related. As we show in our
experiments, when disambiguating multiple
cells of a table, we can achieve higher accuracy
by preferring sets of disambiguations that
are coherent (i.e. sets composed of related
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entities). To exploit this fact, we utilize a collective classification technique in
which soft constraints encourage disambiguations of mentions in the same row
and column to be related to one another. The disambiguations in a given table
are optimized jointly, to arrive at a globally coherent set of entities.

In the disambiguation step, an EL system needs to choose an entity from the
candidate set C(ms,?) as the referent entity of a given mention ms,?. We represent
a table, T , as a graphical model in which each potential mention is associated
with a discrete random variable, whose possible values are its candidate entities.
Each variable has a direct dependency with all other variables in its row and
column. The model can be drawn as a Markov Network, shown in Figure 1, in
which each row (and each column) forms a fully-interconnected clique.

Our graphical model is much more densely connected than the models used in
previous work on this task [4,7]. However, we find that an iterative, approximate
inference approach is tractable for the model. TabEL uses the Iterative
Classification Algorithm (ICA) [14] to collectively disambiguate all mentions
in a given table. ICA is an iterative inference method which greedily re-assigns
each variable to its maximum-likelihood value, conditioned on the current values
of other variables. In each iteration, we compute the maximum-likelihood value
for each variable using a trained local classifier, MLR, which takes the form of a
logistic-regression-based ranking model. Algorithm 1 shows how ICA performs
iterative inference over the graphical model to find a high-likelihood set of
referent entities for all mentions in a given test table. The method initializes
each mention with an entity using MLR (lines 2 to 4) and then iteratively
re-computes features and assignments (lines 6 to 18) until there is no change in
assignment for any mention or the maximum iteration limit is reached.

MLR ranks the candidate entities for a given mention, based on a set of
features computed from the current settings of the other variables. The local
model MLR is trained in advance on a set of annotated mentions. MLR utilizes
the following groups of features:

Prior probability features, P (e|s) are estimated from hyperlinks on the
Web and in Wikipedia. For example, the phrase “Chicago” appears 16,884 times
as an anchor text in Wikipedia. It links to one of 289 distinct pages including
the city, the movie, the music band etc. But the string “Chicago” most likely
refers to the city (P (Chicago City |“Chicago”) = 0.80). For each distinct source
of hyperlinks, we compute features for both case-sensitive and case-insensitive
matching of the phrase. In addition, we include the averages of case-sensitive
and case-insensitive probability estimates across all sources.

Semantic relatedness (SR) features are used to measure the coherence
between a candidate entity and other entities in the table. TabEL has three SR
based features: average SR between a candidate entity and all entities in the
mention’s 1) row, 2) column, and 3) context i.e. row and column.

In TabEL, we use SR defined between a pair of Wikipedia pages based on
their in-link and out-link overlap. We use the SR implementation from Hecht
et al. [16]. This is a modified version of Milne-Witten Semantic Relatedness
measure [17] in which the links in the first paragraph of a Wikipedia page
are considered more important than other links when calculating relatedness.
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Algorithm 1. ICA for Disambiguation in TabEL
1: function TabEL-ICA(MLR, T , maxIter) � MLR: Local Disambiguation Model

� T : Input Table
� maxIter: Maximum number of inference iterations

2: for all ms,? ∈T do
3: ms,? ← ms,e0 � where e0 ← MLR(C(ms,?))
4: end for
5: k ← 1
6: do
7: for all ms,? ∈T do
8: � Re-calculate features according to current assignment to other variables
9: reCalculateFeatures(ms,?)

10: end for
11: hasChange ← False
12: for all ms,? ∈T do
13: ms,ek−1 ← ms,ek � Re-assign value. ek ← MLR(C(ms,ek−1))
14: if ek−1 == ek then
15: hasChange ← True
16: end if
17: end for
18: while hasChange AND k < maxIter
19: end function

The average SR value between a candidate entity and entities in a mention’s
context is an important feature for the EL task in tables, as shown by our
experiments in Section 5. In the special case of applying TabEL to Wikipedia
tables, we also include a feature for relatedness between the candidate entity
and the Wikipedia page containing the table.

Mention-Entity Similarity features capture the similarity between the
context of a potential mention and the context-representation of each of its
candidate entities. We define the context of a mention as the contents of the cells
in its row and column. The context-representation of an entity is the aggregation
of the contexts in which it occurs in the training data.

For example, mChicago,? is a potential mention in the cell T [2, 2] in
Table 1. The highlighted column is referred to as the column context
of the mention, denoted by XC(T [2, 2]). Similarly, the highlighted row
is referred to as the row-context and denoted by XR(T [2, 2]). Consider
the entity New York City in T [1, 2] in Table 1. Its context contains
entities Chicago, One World Trade Center, MetLife Tower etc. To construct
a context-representation for New York City, we aggregate the contexts of all
mentions in our table corpus that link to New York City.

In general, the row and column contexts of a mention in cell T [i, j] are given by:

XR(T [i, j]) = T [i, ·] \ T [i, j]

XC(T [i, j]) = T [·, j] \ T [i, j]

where T[i,·] refers to the cells in the ith row and T[·, j] refers to cells in the
jth column. XR

W (T [i, j]) denotes a multiset of word tokens found in XR(T [i, j]).
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XR
E(T [i, j]) denotes a multiset of entities found in XR(T [i, j]). Similarly, we

define XC
W (T [i, j]) and XC

E(T [i, j]) to denote multisets of word tokens and
entities found in XC(T [i, j]).

The context-representation of an entity can be derived from a corpus of tables,
T with annotated mentions. We define two kinds of context-representations for
an entity: 1) word-context-representation, RW (e) is an aggregation of words and
their frequencies from the contexts of all cells in T which contain a reference to
e. 2) entity-context-representation RE(e) is a similar aggregation of entities and
their frequencies. Formally,

RW (e) = �T∈T
(
XR

W (T [i, j]) � XC
W (T [i, j])

)

RE(e) = �T∈T
(
XR

E(T [i, j]) � XC
E(T [i, j])

)

where, m·,e ∈ T[i, j], i.e. the cell T [i, j] contains a mention whose target entity
is e and � denotes a multiset union.

TabEL uses the following six features based on similarity between a mention’s
contexts and a candidate entity’s context-representations.

Text-context similarity features

SC

(
XW (T [i, j]),RW (ec)

)

SC

(
XR

W (T [i, j]),RW (ec)
)

SC

(
XC

W (T [i, j]),RW (ec)
)

Entity-context similarity features

SC

(
XE(T [i, j]),RE(ec)

)

SC

(
XR

E(T [i, j]),RE(ec)
)

SC

(
XC

E(T [i, j]),RE(ec)
)

where, SC denotes cosine similarity between the two multisets. We weight
the multiplicity of the words and entities in these multisets by their Residual
IDF (r-idf) values [18], which we pre-computed for our corpus.

Existing Link features are related to mentions that are already linked
to their referent entity in the input table. We include two boolean features in
our system. The first feature captures whether there is an existing mention in
the context of ms,? with the same surface s that links to the candidate entity.
The second feature captures whether the candidate is linked from a surface s′

different from s in the input table.
Surface features are related to the phrase, s of the potential mention ms,?.

We have two boolean features. The first feature is true if s is the only text content
in its cell, false otherwise. The second feature is true if s exactly matches the
name of an entity in the input KB, K.

4 Implementation

Table Corpus: Our dataset of tables T has 1.6 million Wikipedia tables.
We extracted all HTML tables from Wikipedia which had the class attribute
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“wikitable” (used to easily identify data tables) from the November 2013 XML
dump of English Wikipedia using the Sweble parser [19].6 As described in Section
2, all HTML tables are represented as an r × c matrix of cells. Tables in T
contain ∼ 30 million hyperlinks in all. 75% of these hyperlinks are used to build
other resources described below. The other 25% are exclusively used for training,
validation and testing of the local disambiguation model MLR, described in
Section 3.3.

Knowledge Base of Entities: We use YAGO, which contains more than
2.8 million entities, as our reference KB, K. TabEL links mentions to one of
these 2.8 million entities in K. YAGO contains a bi-directional mapping between
Wikipedia pages and its entities. We exploit this mapping to identify the YAGO
entity of the targets of hyperlinks in T .

Source of Annotated Mentions: As mentioned in Section 3, we utilize
a dataset of annotated mentions to train the MLR model and to construct
context representations described in Section 3.3. As explained above, pages on
Wikipedia can be easily mapped to entities in the YAGO knowledge base. Thus,
annotated mentions can be obtained from hyperlinks on the Web and Wikipedia
by considering the anchor text as the phrase and the link target as its referent
entity in the KB, K.

To reliably estimate the probability that a surface s refers to an entity e, we
use hyperlinks from both the Web and Wikipedia. The Google Cross-Lingual
Dictionary for English Wikipedia Concepts described by Spitkovsky et al.[20]
contains a dataset of all hyperlinks on the Web which link to a page in Wikipedia.
We augmented this with hyperlinks obtained from Wikipedia. We mined over
100 million hyperlinks from the Web and Wikipedia and obtained a large dataset
of annotated mentions. With the availability of high quality resources such
as the Google Cross-Lingual Dictionary, EL systems that rely only on prior
probability, P (e|s), can still perform very well. We include a system, TabELprior

in our experiments which disambiguates a potential mention by choosing the
most frequently linked entity, for a given phrase, as its referent entity.

5 Experiments

In this section, we evaluate the accuracy of TabEL and compare with previous
work on both (i) Web tables and (ii) Wikipedia tables. In an ablation study we
evaluate the utility of each group of features employed in TabEL, and establish
the importance of features that are based on entity co-occurrence. We show the
effectiveness of the collective inference method, ICA, in improving the accuracy
of TabEL.

Evaluation Metric: TabEL performs disambiguation on all test mentions and
always chooses an entity that exists in the given KB. Thus, following previous
work on table EL, we use accuracy as our main metric for evaluation and

6 http://dumps.wikimedia.org/enwiki/20131104/

http://dumps.wikimedia.org/enwiki/20131104/
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comparison with other table EL systems. We define accuracy as the fraction
of test set mentions that an EL system links correctly. For comparison with text
EL systems, we use the macro-averaged precision, recall and F1 metrics, which
are popularly used for the text EL task.

5.1 Web Tables

To evaluate the performance of TabEL on Web tables, we use the Web Manual
dataset from previous work by Limaye et al. [4], both with and without
corrections as described below. The Web Manual dataset consists of more than
9,000 test mentions from 428 tables from the Web. Using methods from Gupta et
al. [21], this dataset was originally created (in [4]) by finding Web tables similar
to a seed set of 36 non-infobox tables from Wikipedia. Out of the 9,036 test
mentions in the Web Manual dataset, we found that around 5% of the gold
annotations were erroneous. Mulwad et al. [7] have also noted errors in the gold
annotations of this dataset, but left corrections to future work. We re-labeled
these erroneous mentions and created a new dataset, Web Manual-Fixed, of
Web tables with corrected annotations.

Table 2. Accuracy comparison between previous work and TabEL on Web and
Wikipedia tables datasets

Dataset Limaye et al. [4] TabELprior TabEL

Web Manual 81.37 84.41 89.41

Web Manual- Fixed - 87.56 92.94

Wiki Links 84.28 91.27 97.16

Wiki Links- Random - 87.83 96.17

Table 2 shows the accuracy of TabELprior and TabEL on the fixed dataset,
Web Manual-Fixed. For completion and comparison with previous work,
we also show the accuracy of our system on the original Web Manual
dataset. TabEL outperforms previous work on the Web Manual dataset
and TabELprior on the Web Manual-Fixed dataset. A list of errors we
found in the gold annotations in Web Manual and the re-annotated dataset
Web Manual-Fixed are available on our project web page.

5.2 Wikipedia Tables

In Table 2 we show the performance of TabEL on two datasets derived from
Wikipedia. We adopted the Wiki Links dataset from previous work by Limaye
et al. [4], which consists of more than 140,000 test mentions from around 3,000
tables from Wikipedia. TabEL outperforms previous work by reducing the error
on the Wiki Links dataset by more than 75%.

We evaluate on a second dataset, Wiki Links-Random, of Wikipedia tables
in an attempt to provide a more comprehensive measure of performance. The
Wiki Links dataset, from Limaye et. al [4], was originally constructed by
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choosing Wikipedia tables which contained links in at least 90% of their cells.
We believe that this dataset is possibly biased as the high density of links
in the tables suggests that the tables are important and probably contain
commonly known entities in their cells. This bias is evident from the contrast
in performance of TabELprior on the Wiki Links and Wiki Links-Random
datasets. The TabELprior system, which selects the most common referent entity
for a given text mention, performs much better on Wiki Links compared
to Wiki Links-Random. Thus, we created the Wiki Links-Random dataset
containing randomly selected Wikipedia tables, irrespective of the density of
existing links in the tables. Wiki Links-Random consists of around 50,000
test mentions from around 3000 tables randomly drawn from Wikipedia. Each
existing link in a table is used as a test mention, with its target entity treated
as a gold annotation.

Table 2 shows that TabEL achieves very high accuracy on both Wiki Links
and Wiki Links-Random datasets. Performing table EL on Wikipedia tables
at high level of accuracy is important as many systems utilize links in Wikipedia
tables to create RDF triples or to support table search systems (see Section 7).

5.3 Disambiguating Missing Wikipedia Links

An interesting variation of the EL task for tables is to identify and disambiguate
unlinked mentions to entities in a Wikipedia table - while retaining existing links,
unlike the experiments above in Section 5.2 in which all existing links were
removed. To evaluate TabEL on this task, we created a dataset, TabEL 35K,
containing 35,000 randomly selected annotated mentions in Wikipedia. These
mentions are not used in estimating prior probabilities and in building
context representations. TabEL performs particularly well on this task and
its accuracy on this dataset is 98.38%, while the accuracy of TabELprior is
88.13%. Interestingly, we found that 16% of the errors made by TabEL on this
dataset are actually not errors in TabEL, but instead errors in the hyperlinks
within Wikipedia. Another 22% of the errors are cases for which both the gold
annotation and TabEL’s annotation can be considered correct for the mention.
Details of all errors made by TabEL on this dataset can be found linked from
our project page.

5.4 Comparison with other Table EL Systems

Zhang et al. [12] introduced a table EL system that jointly performs the three
semantic interpretation tasks. Direct comparison with this system is difficult as
this work presented results on the EL task on the union of Web Manual and
Wiki Links datasets and used the F1 metric. Compared to 83.7 F1 in this work,
TabEL achieves F1 of 96.92. This is equal to the accuracy of our system on the
union of Web Manual and Wiki Links as TabEL does not ignore any test
mention.
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5.5 Comparison With Text EL System

EL techniques for free-text input are well established [15,22–29] and it can be
argued that they can be applied to tabular data as well. Here, we evaluate the
performance of many existing text EL systems on the Web Manual-Fixed
dataset and show that TabEL outperforms all text EL systems on the table EL
task. Our results show that the table EL task is better addressed by systems
like TabEL that are specifically designed to handle tabular data.

Table 3. Macro-averaged precision, recall and F1 score comparison with six
text-EL systems on Web Manual-Fixed dataset. GERBIL link for results:
http://gerbil.aksw.org/gerbil/experiment?id=201507180000

AGDISTIS

[29]

Babelfy

[30]

Dbpedia

Spotlight [28]

KEA

[31] NERD-ML

[32]

WAT

[33]

TabEL

Macro-Precision 0.7773 0.9464 0.8248 0.9209 0.7611 0.9490 0.9855

Macro-Recall 0.3587 0.3431 0.1086 0.369 0.6907 0.3442 0.9237

Macro-F1 0.3835 0.3663 0.1637 0.4008 0.697 0.3695 0.9237

We used the GERBIL framework [34] to compare against text EL systems.
Each table in the test dataset is converted into text format with their mentions
identified and given to the GERBIL framework as input. Table 3 shows the
macro-averaged precision, recall and F1 scores of TabEL compared with six
other text EL systems. TabEL significantly outperforms all text EL systems
on precision, recall and F1.

5.6 Ablation Study

We performed an ablation study on the TabEL 35K dataset to evaluate the
effectiveness of each group of features used in MLR. Table 4 shows the groups
of features in descending order of the percentage increase in error when that
feature group is removed from MLR. All feature groups included in MLR have
a positive effect on the system, with the SR group of features being the most
valuable of all. Context-based features also have a high impact on the accuracy
of the overall system.

6 Analysis

In our experiments above, we show that TabEL consistently outperforms
previous state-of-the-art systems. One reason for this is that joint approaches,
such as the one in [4], make the common most-specific type (CMST ) assumption:
that all else being equal, an EL system should prefer to link mentions within
a column to entities sharing a common most-specific type grounded in a KB.
In principle, this assumption could be leveraged to prefer disambiguations that
resulted in column entities sharing the same data type, and thereby improve
accuracy. However, this assumption is often violated in practice because existing
KBs, in which the types are grounded, are incomplete and noisy. In fact, when
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mapped to types in the DBpedia ontology, we find that only 24.3% of the columns
from Wikipedia tables satisfy the CMST assumption. Further, when a CMST
does exist for a column, it is often not specific enough to aid EL: over 50%
of the entities in a column remain ambiguous even after restricting entities to
the column’s CMST. As a result, rather than restricting EL targets based on
strict types in a KB, we use a weaker type constraint encoded by features based
on entity co-occurrence statistics, i.e. SR and entity context similarity features.
At the same time, rather than using a joint model to solve the EL and type
identification tasks together, our system solves the EL task for tables in isolation.
This allows TabEL to sidestep the risks of making the CMST assumption. It has
also been found in previous work by Venetis et al. [10] that solving the table
column type-identification task in isolation yields better performance than an
approach that tackles the three table semantic interpretation tasks jointly.

6.1 Effectiveness of ICA

Table 3 shows the number of iterations it took ICA to converge and the
improvement of accuracy due to inference performed in multiple iterations on
two test datasets. Results show that collective inference is useful for this task.

6.2 Analysis of Entity Prevalence Bias
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Fig. 2. (a) Histogram of in-link counts
(in log-scale) of targets of mentions in
Wikipedia tables. A normal distribution
fit is shown in red (b) Variation of TabEL
performance as number of in-links of the
target entity varies.

The EL task is known to be easy for
prominent entities and particularly
difficult for the long-tail of less
common entities. Here, we analyze the
distribution of prominence of entities
in Wikipedia tables and show that
our system performs equally well even
for the long tail of less prominent
entities. On the other hand, accuracy
of the TabELprior system is low for
less prominent entities and high for
common entities.

We use the number of in-links to
an entity in Wikipedia is an indica-
tor of its prominence. Figure 2 (a) shows
a histogram of the number of in-links
(in log-scale) of the target entity of
mentions in the TabEL 35K dataset.
Interestingly, the number of in-links of
mention targets is log-normally distri-
buted. The estimated normal distribu-
tion fit is also shown.

We divide the TabEL 35K dataset
into 5 bins at equal intervals of in-link
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counts (in log scale). Figure 2 (b) shows how the performance of TabEL varies as
the number of in-links of a mention’s target varies. The accuracy of our system
remains nearly the same across these bins.

6.3 Run Time Analysis

To estimate the scalability of our system, we measured the time taken to
disambiguate mentions in each dataset. Table 4 shows the disambiguation time
per-table and the number of iterations for collective inference in to converge.
Limaye et. al. [4] reported a disambiguation time of 0.7 s / table.

Table 4. Per-table disambiguation time and number of inference iterations of TabEL
on different datasets

Dataset Average Time (s/table) No. of iterations

Web Manual- Fixed 1.12 6

Wiki Links- Random 2.32 18

Wiki Links 31.9 27

The Wiki Links dataset is densely populated with mentions, hence the
higher run-time. There are many parameters, such as number of candidates,
maximum number of inference iterations, convergence criteria, that can be tuned
to further improve the disambiguation time of our system.

Table 5. Effect of varying the maximum number of candidates on TabEL’s accuracy
on the TabEL 35K dataset

Max No. of Candidates Average No. of Candidates TabEL Accuracy

5 1.68 0.73

10 2.32 0.83

15 2.97 0.90

20 3.54 0.94

25 4.04 0.96

40 7.18 0.98

One possible optimization for TabEL is the number of entities in the
candidate set. We vary a global parameter to threshold the number of candidates
for each mention and analyze its effect on the accuracy of TabEL on the
TabEL 35K dataset. We find that changing this parameter from 5 to 20 results
in a considerable jump in accuracy. Increasing this threshold further gives
diminishing returns. Table 5 shows these results along with the average number
of candidates per mention as this threshold is varied.

7 Previous Work

Cafarella et al. [1] pioneered the work on Web tables and found that there are
154 million tables on the Web that contain relational data. Since then, various
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efforts have been made to extract semantics from Web tables. Muñoz et al. [5,35]
described an approach that relies on existing links to convert Wikipedia tables to
RDF triples. They use facts from an existing knowledge base (KB) like DBpedia,
in order to find existing relations in pairs of columns in tables, and then extract
new relations for entities in corresponding columns. Sekhavat et al. [36] proposed
a probabilistic approach to augment a KB with facts from tabular data using a
Web text corpus and natural language patterns associated with relations in the
KB. These methods of RDF extraction which rely on existing links in tables can
benefit significantly from our system TabEL, which achieves better precision than
previous work on the entity linking task on Web tables and performs especially
well on Wikipedia tables.

Syed et al. [9] describe methods to automatically infer a partial semantic
model of Web tables using Wikitology [37], a topic ontology built using
Wikipedia’s articles and associated pages. Their system tackles all three tasks of
semantic interpretation of tables. Mulwad et al. [6,7] also jointly model entity
linking, column type identification and relation extraction using a graphical
model. The closest previous work for our system is by Limaye et al. [4] and
Zhang et al. [12]. Both their systems jointly model the entity linking, column class
identification and relation extraction tasks for Web tables. As argued in Section
1, owing to heavy reliance on the correctness and completeness of a KB, joint
models run the risk of negatively affecting performance on entity linking. Venetis
et al. [10] have shown that a system built to handle only the type identification
task performs better than the joint model in [4] on this task. In TabEL, we focus
on the individual task of entity linking, and show EL can be similarly improved
by solving it in isolation, rather than through a joint approach.

Finally, previous work has studied applications built upon extracted Web
tables. Table augmentation has been studied by Das et al.[38], Gupta et al.[21],
Fan et al.[39] and our previous work [40]. Das et al.[38] and our previous work
[40] also studied table search, the task of returning a list of tables for a given
text query ranked by their relevance to a text query. All these systems utilize
existing entity references in tables in different ways, and adding more links to
tables using TabEL may improve the accuracy of the applications.

8 Conclusion and Future Work

In this paper, we described our table entity linking system TabEL. TabEL uses
a collective classification technique to collectively disambiguate all mentions in
a given table. Instead of using a strict mapping of types and relations into a
reference Knowledge Base, TabEL uses soft constraints in its graphical model
to sidestep errors introduced by an incomplete or noisy KB and outperforms
previous work on multiple datasets. We also showed that TabEL performs equally
well even for the long tail of infrequently-mentioned entities – for which the EL
task is particularly hard. Ablation studies demonstrate the effectiveness of our
Semantic Relatedness features.
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We made our table corpus containing 1.6 million Wikipedia tables publicly
available along with annotated datasets which can be used by future table-EL
systems for comparison.

In future work, we plan to integrate TabEL with systems that identify
column types and relations between columns of a table to convert table data
into machine-understandable formats like RDF. Finally, we plan to release our
code in future.

Acknowledgments. This research was supported in part by NSF grant IIS-1351029
and the Allen Institute for Artificial Intelligence.
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Abstract. Semantic relatedness and disambiguation are fundamental
problems for linking text documents to the Web of Data. There are many
approaches dealing with both problems but most of them rely on word
or concept distribution over Wikipedia. They are therefore not appli-
cable to concepts that do not have a rich textual description. In this
paper, we show that semantic relatedness can also be accurately com-
puted by analysing only the graph structure of the knowledge base. In
addition, we propose a joint approach to entity and word-sense disam-
biguation that makes use of graph-based relatedness. As opposed to the
majority of state-of-the-art systems that target mainly named entities,
we use our approach to disambiguate both entities and common nouns.
In our experiments, we first validate our relatedness measure on multiple
knowledge bases and ground truth datasets and show that it performs
better than related state-of-the-art graph based measures. Afterwards,
we evaluate the disambiguation algorithm and show that it also achieves
superior disambiguation accuracy with respect to alternative state-of-
the-art graph-based algorithms.

1 Introduction

With the advancements in Linked Data, more and more graph-based (i.e. RDF)
structured knowledge bases become available. Still, most of the digital content
we produce as a society is in text format. Linking unstructured text to structured
data is fundamental for leveraging the benefits of the vast amounts of knowledge
(in text as well as in structured format) available.

In this paper, we tackle two strongly interdependent problems, semantic relat-
edness and disambiguation. The aim of semantic relatedness is to weight the
semantic associations between pairs of concepts. The aim of entity and word-
sense disambiguation, is to link strings in the text to the corresponding concepts
in external knowledge bases (KBs). These problems are fundamental for the
integrationn text and structured data. The most important cue for disambigua-
tion is the semantic relatedness between the concepts mentioned in a particular
context (i.e., text), therefore the two problems are highly interdependent.
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With respect to these two problems, with the exception of some very recent
approaches, most systems use distributional semantics techniques and tradition-
ally require detailed textual description of concepts. Furthermore, since the relat-
edness is distilled from vast amount of text documents, these approaches do not
have the capability of extracting the explicit relations between concepts.

These limitations can be overcome by using knowledge-based systems. While
the idea of using structured knowledge for assessing semantic relatedness can be
tracked back more than fifty years, research is still needed in order to under-
stand how the relatively new, very broad KBs like DBpedia, Freebase, YAGO,
can be most effectively used. In this paper, we first introduce a novel graph-based
relatedness measure that uses the paths in the KB in order to score the associ-
ation between pairs of concepts. Afterwards, we propose a joint disambiguation
approach that can use any path-based pairwise relatedness. Our experiments for
assessing the quality of our relatedness measure show higher positive correlations
to human judgements than the current state of the art. Similarly, our experi-
ments for assessing the quality of disambiguation show that graph-based joint
disambiguation produces superior results as compared to very recent alternative
graph-based approaches.

1.1 Related Work on Semantic Relatedness

Semantic relatedness of entities has been heavily researched over the past couple
of decades. Two main directions can be identified. The first one, which we call
corpus-based, models entities as multi-dimensional vectors that are computed
based on distributional semantics techniques [4,9]. The de facto standard cor-
pus is Wikipedia. The second direction, which we call structure-based or graph-
based and which makes the focus of this paper, relies on a graph structured KB.
Approaches of this type have been very prolific since the publication of Word-
Net [29,30]. However, most WordNet based semantic relatedness measures rely
on hierarchical relations (isA, broaderOf). The problem with such measures is
that they cannot exploit other semantically rich properties of concepts in more
complex KBs.

Other structure-based approaches use the network of Wikipedia pages formed
by their hyperlink connections [7,18,24]. Their drawback is that they require
pages that contain hyperlinks to the targeted concepts, or that the concepts
themselves have corresponding pages. Furthermore, the hyperlinks do not pro-
vide any semantics to the relation between the source and target concepts.

Recent approaches that are motivated by Linked Data make use of the differ-
ent types of relations that exist in structured KBs (i.e., DBpedia). Some of them
suffer from the drawback of requiring domain adaptation, and focus on manually
selected types of concepts and relations [15,20]. Other measures are very restric-
tive, computing semantic similarity between either neighbouring concepts, or con-
cepts connected through a single intermediate node by the same relation type [23].

The approach that is most related to ours is the very recent work of Schu-
macher and Ponzetto [27]. Like us, the authors automatically weight relations
in the knowledge graph and use them to compute relatedness between concepts
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that are not directly connected. However, their weighting scheme considers infor-
mation theoretic global measures for the relationship type and object, while our
measures are local, specific to the targeted pair and therefore less computation-
ally demanding. Furthermore, our local measures have the added advantage of
requiring very little update overhead when the background KB changes, while
the global ones require the update of all scores. In our work, we have compared
all our methods to their approach and we report our findings in the Evaluation
section of this paper.

We evaluate our approach with both DBpedia and Freebase, from three per-
spectives: (1) named entity (NE) relatedness; (2) common noun similarity; and
(3)common noun relatedness. Our extensive evaluation sheds light not only on
our measures, but also on the general use of path-based relatedness measures on
the used knowledge graphs.

1.2 Related Work on Entity and Word-Sense Disambiguation

An important class of related methods to disambiguation is formed by the
centrality-based approaches. For each ambiguous word, the selected sense is the
one that has the highest graph centrality with respect to the candidate senses of
the other words in context. They have mostly been used on WordNet [2,17,21].
A very recent centrality-based approach is AGDISTIS [32]. To the best of our
knowledge, it is the only previous approach that achieves entity disambiguation
by using only DBpedia knowledge. After finding the candidate sets for all the
ambiguous named entities, AGDISTIS extracts a subgraph of DBpedia that con-
tains all the candidate senses of all the targeted entities as well as their n-hop
neighbours and the relations between them. Then, the HITS algorithm is run
over the extracted subgraph and for each targeted entity, DBpedia concept that
has the highest authority score is selected. All these centrality-based suffer from
the drawback that the selection of the senses of entities and words is “infested”
by the wrong candidate senses.

Another important research direction related to ours uses graph-based relat-
edness measures on a semantic network that is built on-the-fly on top of the
words that make the definitions that describe the candidate senses [6,11,28]. A
similar dependence to the text that describes senses is noticed in most of the
other systems [5,8,16] that link to DBpedia, as they apply their algorithms on
Wikipedia text. In this paper, we research novel graph-based methods that do
not require textual description of senses.

2 Path-Based Relatedness Measures on Knowledge
Graphs

2.1 Preliminaries

In this section, we define and formalise the main concepts we refer to in this
paper. By knowledge graph we refer to any graph used to represent knowledge
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about concepts and relations between them. A knowledge graph can be seen as a
property graph, a graph whose nodes and edges have properties. Also, knowledge
graphs are a superset of multigraphs because they can contain multiple edges
between the same pair of nodes. An RDF KB is in this case also a knowledge
graph. Given a triple of the form < s, p, o >, the predicate p and object o
resources become nodes in the graph connected by an edge of type p.

Definition 1. We define a knowledge graph as a directed graph G(V,E, T , τ),
where V represents the set of all vertices, E represents the set of all edges (that
we also call relations), connecting vertices in V , T is the set of edge types, and
τ : E → T is a function that maps every edge in E to a type in T .

Although the edges are directed, we consider that the reverse relations also
hold and can be traversed. The assumption behind this decision is that all seman-
tic relations can be considered to have a semantically sound inverse relation. We
use E∓ to denote the set of edges in the graph united with the set of their
reversed edges, and T ∓ to denote the set of relationship types united to the set
of their reversed types.

Definition 2. A path P through the knowledge graph G(V,E, T , τ) is a
sequence of nodes and relations n1

τ1→ n2
τ2→ ...,

τK−1→ nK such that for every
two consecutive nodes in the sequence, nk−1, nk, there exists an edge e ∈ E∓ of
type τk−1 ∈ T ∓.

Using these definitions, we now introduce the path-based relatedness mea-
sures that we analyse in this paper. We start with a baseline measure inspired
from social network analysis and afterwards we describe in detail the measure
that makes the main contribution of this paper.

2.2 Baseline - Katz Relatedness

The length of the shortest path between two nodes is a common way of mea-
suring proximity between nodes in a graph. However, it lacks the ability to
discriminate between the relatedness of many node pairs, for example, a node
will be considered of equal relatedness to all its 2-hop neighbours. To better
differentiate, other methods make use of more and longer paths than just the
shortest. Here, we adapt Katz’s [13] centrality measure that is commonly used in
social network analysis. This centrality measure has inspired another previously
proposed semantic relatedness measure [22]. The idea is that the effectiveness
of a link between two nodes is governed by a known, constant probability, α. In
case of a path made up of k nodes, the probability of the path is αk. We use
this idea in a relatedness measure, where the relatedness between two nodes is
the accumulated score over the top-k shortest paths between them.

rel
(k)
Katz(x, y) =

∑

p∈SP
(k)
xy

αlength(p)

k
(1)

where SP
(k)
xy is the set of the top-k shortest paths between concepts x and y.
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2.3 Exclusivity-Based Relatedness

The rationale behind the previous relatedness measure is that the more and
shorter relation paths between two nodes, the higher their relatedness. However,
it has been long known that not all direct relationships weight the same. Manual
assignment of weights based on relationship type is infeasible, given the great
amount of relationship types in knowledge graphs (almost 14000 in Freebase
and more than 1100 in DBpedia). Therefore, we must devise automatic ways of
assessing the importance of individual direct relations.

At the core of our next suggested measure, is one main rationale: a relation
between two concepts is stronger if each of the concepts is related through the
same type of relation to fewer other concepts. We name this property of relations
exclusivity and we formalise it in the following.

Definition 3. Given an edge e of type τ between two adjacent nodes x and y,
directed from x to y, we define the exclusivity of edge e as the probability that,
if we randomly select an edge e′ out of the set of all edges of type τ that exit
node x and all edges of type τ entering node y, that edge e′ is edge e. Formally,

exclusivity(x τ→ y) =
1

|x τ→ ∗| + |∗ τ→ y| − 1
; (2)

where |x τ→ ∗| denotes the number of relations of type τ ∈ T that exit node x,
and |∗ τ→ y| denotes the number of relations of type τ ∈ T that enter node y.

1 is subtracted from the denominator because the relation x
τ→ y is otherwise

counted twice, once for the relations of x and once for the relations of y. As of
Formula 2, the exclusivity score of a relation lies inside the (0, 1] interval, with
value 1 being obtained when the targeted relation is the only relation of its type
for both x and y.

Fig. 1. Example exclusivity

Example 1. Let us look at the toy example in Figure 1, where we consider node C
a country and all the other nodes, people. The exclusivity of the bornIn relations
is 1/n, for the senatorOf relations it is 1/m , and for the presidentOf relation
exclusivity is 1. Naturally, n would be much higher than m, giving the bornIn
relation a smaller exclusivity than the senatorOf and presidentOf relations.
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Since the exclusivity is computed for each individual relation, the bornIn
relations to a small country will have a higher exclusivity than the bornIn rela-
tions to a bigger country. Extrapolating this measure to nodes that are not
directly connected, people born in the same small country will be more related
to each other than people born in a bigger country, and senators of a country
will be more related to each other than random citizens born in the country.

An important property of our exclusivity property of relations is symmetry:

exclusivity(x τ→ y) = exclusivity(y τ−
→ x). Symmetry of exclusivity is crucial

for consistency with our assumption that relations in the knowledge graph can
be traversed in both directions.

Given a path through G, P = n1
τ1→ n2

τ2→, ..., nK , with τi ∈ T ∓ its weight
can be computed by Formula 3.

weight(P) =
1

∑
i 1/exclusivity(ni

τi→ ni+1)
; (3)

Then, given two nodes x and y we compute their relatedness as the sum of
the path weights of the top-k paths with highest weight between them. In order
to give preference to shorter paths, we introduce a constant length decay factor,
α ∈ (0, 1]. When α = 1 longer paths are not penalised.

rel
(k)
Excl(x, y) =

∑

Pi∈P
(k)
xy

αlength(Pi)weight(Pi); (4)

This being the exclusivity based relatedness measure, we now move on to the
problem of word-sense disambiguation and our proposed solution.

3 Joint Disambiguation on Knowledge Graphs

Joint disambiguation approaches treat disambiguation as a combinatorial opti-
misation problem. Given multiple ambiguous words, the correct senses for all
words are selected simultaneously, by maximising a function of relatedness
between the selected senses. Therefore, this methodology avoids the influence
that wrong senses might have on the final solution. Having a context of n words,
with each word wi having mi possible senses, a solution R contains n senses,
one sense for each word. There are

∏

i∈[1,n]

mi solutions. We denote the set of all

solutions as R. A solution R∗ is chosen that has the highest coherence. The
most common way of computing the coherence of a solution R is by summing up
all the pairwise relatedness scores of the senses in R, as shown in Formula (5).
In this approach, the disambiguated sense s∗

w of word w is the sense of w that
belongs to solution R∗ as shown in Formula (6):

R∗ = arg max
R∈R

∑

s∈R

∑

s′∈R;
s′ �=s

rel(s, s′); (5)

s∗
w = R∗[w]; (6)
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In Formula (5), the rel(s, s′) factor represents any pairwise relatedness mea-
sure. What sets graph-based joint disambiguation apart from other methods of
joint disambiguation, is that rel(s, s′) is a graph-based measure. This problem
is equivalent to the problem of finding the clique with the maximum sum of
edge weights which is an NP-hard problem. We solve it by using the branch-
and-bound algorithm wrapped in an approximate search routine. For complete
details about the algorithm we refer to Hulpuş [10], page 114. However, any
maximum edge weight clique finding algorithm can be used instead.

3.1 Kan-Dis: The Knowledge Graph Based Disambiguation System

In order to evaluate the joint disambiguation with DBpedia, we implemented a
system whose disambiguation process is illustrated in Figure 2.

Fig. 2. Disambiguation process with Kan-Dis

We are only interested in disambiguating the nouns and noun-phrases of the
document. We extract them by using the Stanford CoreNLP toolkit1. After the
noun-phrases are extracted, the possible senses of the noun-phrases are retrieved
from a Lucene Index2 where we have indexed all DBpedia concepts based on their
names.

In order to form groups of words to be simultaneously disambiguated (dis-
ambiguation context), we cluster the noun-phrases based on their co-occurrence
in a reference corpus (i.e., Wikipedia). We experimented with two clustering
algorithms: Louvain, which is a modularity-based community finding algorithm
and hierarchical clustering with various linkage types and dendrogram cutting
thresholds. The relatedness measures are computed between all pairs of candi-
dates for the noun-phrases in each cluster. These relatedness scores are then sent
to the joint disambiguation algorithm. The last two steps are part of the joint
disambiguation algorithm, and they can be replaced with any other disambigua-
tion algorithm.

1 http://nlp.stanford.edu/software/corenlp.shtml
2 http://lucene.apache.org/core/

http://nlp.stanford.edu/software/corenlp.shtml
http://lucene.apache.org/core/
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4 Experiments and Results

We have described our relatedness measures and how we plan to use it for dis-
ambiguation. In the following, we detail the experiments we made to validate
our hypothesis that our exclusivity based measure for relatedness correlates with
human assessments. Afterwards we detail our experiments that show that path-
based joint disambiguation outperforms centrality based disambiguation.

4.1 Evaluation of Relatedness Measures

We now present the experiments we carried out in order to verify the suitability
of the proposed measures for assessing semantic relatedness. We follow the most
established methodology for validating semantic relatedness measures, which
consists of computing the correlation between human assessed scores and the
proposed automatic measures. Our main hypothesis is that the exclusivity-based
measure of relatedness will improve over the baseline and show high positive
correlation to human assessments.

Ground-Truth Datasets. We experiment with five of the most commonly
used datasets:

R&G [26] is one of the oldest and most used datasets that contain human
assessment of word similarity. It contains 65 pairs of words together with
the overall assessment of humans, gathered from 51 subjects. The users were
requested to judge the “similarity of meaning” on a scale from 0.0 to 4.0,
where a high score means high similarity.

WordSim353 [1,3] contains 353 pairs of words assessed on a scale from 0 to
10 by 13 to 16 human users. Agirre et al [1] split the dataset through another
user study in two overlapping parts
WS353-Sim - containing 203 pairs that the users considered suitable for

similarity computation;
WS353-Rel - containing 252 pairs that the users considered suitable for

relatedness computation;
R122 [31] is more recent and was created specifically for measuring relat-

edness [31] . It contains 122 pairs of words, scored within a range from
0.0 (completely unrelated) to 4.0 (very strongly related), each pair being
evaluated by 14 to 22 annotators out of a total of 92 participants.

KORE [9] has also been created for measuring relatedness, but between NEs.
It consists of 21 main entities, whose relatedness to other 20 entities each
has been manually assessed, leading to 420 entity pairs.

Except for the last dataset, all others contain pairs of words rather than
DBpedia concepts. Table 1 shows the exact number of pairs of words that we
could directly and unambiguously link to concepts from DBpedia and Freebase.
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Table 1. Number of concept pairs per ground truth dataset

Dataset R&G WS353-Sim R-122 WS353-Rel KORE

#pairs 38 139 93 168 419

Knowledge Bases. In order to verify the generalisability of our measures, we
evaluate them with both DBpedia and Freebase. All reported experiments were
run on DBpedia 2014 version3, and Freebase dump4 from 18th January 2015.
We remove from the graph of DBpedia the so-called stopURIs [12,27]. Regard-
ing Freebase, we remove all edges with an exclusivity score lower than 10−7 as
they bring no impact on our measures due to their very small contribution, but
they dramatically impact the performance of graph traversal algorithms. Table 2
shows the sizes of the resulting knowledge graphs.

Table 2. Number of elements in the knowledge bases

KB #nodes #relationships #relationship types

DBpedia 7,514,827 35,762,630 1,198

Freebase 41,527,432 253,813,430 13,991

Regarding the DBpedia graph, we experiment with two settings:

– the full graph: DBpedia Full;
– the categories and types graph: DBpedia Categories;

In the case of the latter, we restrict the graph traversals to the relationships:
rdf:type, dcterms:subject, skos:broaderOf, skos:narrowerOf, rdfs:subClassOf. We
expect that the aforementioned properties are mostly useful in assessing similar-
ity of concepts. We similarly expect that the full set of properties is most useful
when assessing relatedness.

Compared Methods. We report our results on the methods described in
Section 2. We have experimented with various values for the α parameter for
both Katz relatedness and exclusivity based relatedness. In the following, we
report the values obtained with α ∈ {0.25, 0.5} for Katz relatedness, and with
α ∈ {0.25, 0.5, 0.75, 1} for exclusivity-based methods. We have also experimented
with different k (1 to 20) values for the top-k paths in Katz as well as the exclu-
sivity based methods. We report our results for top-1, top-5 and top-10 paths.

For comparison to related work, we have also implemented the combIC mea-
sure of Schuhmacher & Ponzetto [27]

3 http://wiki.dbpedia.org/Downloads2014
4 https://developers.google.com/freebase/data

http://wiki.dbpedia.org/Downloads2014
https://developers.google.com/freebase/data
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Results. Tables 3, 4, and 5 show the Spearman correlations obtained. In Table 3,
we show the results on the datasets assessed for semantic similarity of common
nouns and noun-phrases.

Table 3. Spearman correlations with ground truth on common nouns similarity
datasets: R&G and WS353-Sim.

Dataset Method DBpedia CAT DBpedia Full Freebase
top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10

Katz α = 0.25 0.79 0.78 0.79 0.71 0.67 0.64 0.45 0.41 0.51
Katz α = 0.5 0.79 0.78 0.79 0.71 0.67 0.63 0.45 0.41 0.20
Katz α = 0.75 0.79 0.78 0.78 0.71 0.67 0.61 0.45 0.41 0.11

R & G ER α = 0.25 0.79 0.81 0.81 0.72 0.73 0.73 0.67 0.66 0.67
ER α = 0.5 0.78 0.82 0.81 0.66 0.73 0.73 0.67 0.66 0.67
ER α = 0.75 0.76 0.79 0.81 0.66 0.75 0.75 0.67 0.66 0.67
ER α = 1 0.76 0.79 0.81 0.66 0.72 0.74 0.61 0.60 0.61
CombIC 0.74 0.57 0.59

Katz α = 0.25 0.74 0.75 0.75 0.69 0.66 0.64 0.29 0.30 0.33
Katz α = 0.5 0.74 0.75 0.74 0.69 0.65 0.61 0.29 0.30 0.20
Katz α = 0.75 0.74 0.74 0.72 0.69 0.64 0.58 0.29 0.29 0.17

WS 353-Sim ER α = 0.25 0.77 0.78 0.78 0.68 0.67 0.66 0.58 0.57 0.57
ER α = 0.5 0.76 0.77 0.77 0.63 0.64 0.63 0.59 0.59 0.59
ER α = 0.75 0.71 0.73 0.73 0.59 0.61 0.61 0.59 0.59 0.59
ER α = 1 0.63 0.68 0.69 0.54 0.57 0.58 0.59 0.59 0.59
CombIC 0.72 - - 0.59 - - 0.40 - -

We notice that all measures have very high correlation with human assess-
ment of similarity, when used on the DBpedia Categories. Our Exclusivity based
relatedness performs best, reaching 0.82 correlation with the R&G dataset for
α = 0.5 and when top-5 paths are used. For comparison, CombIC reaches 0.74 in
the same setup. ER also performs better than Katz and this is visible especially
on the Freebase corpus.

Table 4 presents the results on the datasets assessed for semantic relatedness
of common nouns and noun-phrases. We notice that overall, the results are much
lower than for the similarity datasets (Table 3). No method correlates more than
0.57 with human assessment. Most likely, the cause of this poor assessment of
noun relatedness has to do with the type of knowledge within the analysed KBs.
They contain encyclopedic knowledge rather than common sense knowledge. For
example, humans assess relatedness of concepts in pairs (caffeine, headache) and
(game, victory) as moderately to strongly related but the KBs do not have any
path shorter than 6 between them.

Nevertheless, ER performs much better than both CombIC and Katz. ER
with α = 0.25 produces the best results on the noun relatedness datasets, which
means that the smaller the influence of the longer paths, the better. We also
notice that all measures perform extremely poorly when used on Freebase. This
indicates that Freebase’s graph structure connects in a less meaningful way the
concepts referred to by common nouns, than DBpedia.

Table 5 shows the results obtained on the KORE dataset, which contains
pairs of NEs assessed for semantic relatedness. On this dataset, the first thing to
notice is that all measures perform very bad on DBpedia Categories, but very
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Table 4. Spearman correlations to ground truth on common nouns relatedness
datasets: R-122 and WS353-Rel

Dataset Method DBpedia CAT DBpedia Full Freebase
top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10

Katz α = 0.25 0.56 0.54 0.52 0.46 0.45 0.44 0.17 0.15 0.15
Katz α = 0.5 0.56 0.52 0.50 0.46 0.43 0.40 0.17 0.15 0.15
Katz α = 0.75 0.56 0.50 0.49 0.46 0.41 0.40 0.17 0.15 0.15

R 122 ER α = 0.25 0.57 0.57 0.55 0.56 0.55 0.54 0.33 0.32 0.32
ER α = 0.5 0.56 0.55 0.53 0.53 0.52 0.51 0.32 0.32 0.31
ER α = 0.75 0.52 0.53 0.50 0.50 0.49 0.48 0.33 0.32 0.31
ER α = 1 0.46 0.49 0.46 0.49 0.47 0.45 0.33 0.32 0.31
CombIC 0.53 - - 0.41 - - 0.20 - -

Katz α = 0.25 0.44 0.44 0.44 0.45 0.40 0.38 0.14 0.16 0.20
Katz α = 0.5 0.44 0.44 0.44 0.45 0.40 0.38 0.14 0.16 0.21
Katz α = 0.75 0.44 0.44 0.44 0.45 0.40 0.38 0.14 0.16 0.22

WS 353-Rel ER α = 0.25 0.48 0.48 0.47 0.47 0.46 0.46 0.35 0.35 0.35
ER α = 0.5 0.47 0.48 0.48 0.44 0.44 0.45 0.35 0.35 0.35
ER α = 0.75 0.47 0.48 0.47 0.42 0.43 0.44 0.35 0.34 0.34
ER α = 1 0.46 0.47 0.47 0.40 0.41 0.42 0.34 0.33 0.34
CombIC 0.45 - - 0.42 - - 0.14 - -

well on Freebase. This indicates that Freebase’s structure has a focus on named
entities. On this dataset as well, ER outperforms both other methods, but from
a smaller distance than on the other datasets.

The results clearly show that the exclusivity-based measure we introduce in
this paper outperforms the Katz relatedness as well as the CombIC measure [27].
The measure that overall obtains the highest results is exclusivity based relat-
edness, with the α parameter set to 0.25 (ER 0.25). These results show that our
graph-proximity measures are able to accurately capture semantic relatedness
and similarity on both DBpedia and Freebase. We also notice the trend that
the lower α values lead to better performance. This indicates that the lower the
influence of longer paths, the better.

Table 5. Spearman correlations to ground truth on NE relatedness dataset KORE

KORE
DBpedia CAT DBpedia Full Freebase

top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10
Katz α = 0.25 0.31 0.33 0.32 0.56 0.53 0.49 0.57 0.58 0.57
Katz α = 0.5 0.31 0.33 0.32 0.57 0.50 0.48 0.57 0.58 0.56
Katz α = 0.75 0.31 0.32 0.32 0.56 0.48 0.46 0.57 0.58 0.55
ER α = 0.25 0.35 0.35 0.35 0.62 0.62 0.62 0.64 0.64 0.64
ER α = 0.5 0.35 0.35 0.35 0.62 0.63 0.63 0.63 0.63 0.63
ER α = 0.75 0.35 0.35 0.34 0.60 0.61 0.61 0.60 0.61 0.61
ER α = 1 0.34 0.34 0.34 0.60 0.61 0.61 0.60 0.60 0.61
CombIC 0.33 - - 0.60 - - 0.61 - -

4.2 Evaluation of Joint Disambiguation with DBpedia

We now present the experiments we carried out in order to evaluate the pro-
posed approach to disambiguation. Our hypothesis is that joint disambiguation
approaches perform better than the graph centrality based approaches.
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Evaluated Methods. In order to test our hypothesis, we implement Kan-Dis
introduced earlier. We use it with three settings:

Joint ER implements joint disambiguation with our Relation Exclusivity based
relatedness measure, with α = 0.25 and top-5 most relevant paths.

Joint CombIC implements joint disambiguation with CombIC [27] related-
ness measure;

HITS Authority implements the HITS centrality based disambiguation algo-
rithm used by AGDISTIS [32].

Ground Truth Datasets. We are using five commonly used datasets of texts
that have been manually annotated by humans:

NYT10 dataset consists of ten excerpts from news articles published by New
York Times [16]. Each text has all the meaning bearing phrases annotated
with at most one DBpedia resource.

Aquaint50 dataset contains 50 documents from the AQUAINT corpus, that
were used by Milne and Witten [19]. They have been linked and disam-
biguated to Wikipedia articles by their system, and the results were evalu-
ated using Amazon Mechanical Turk5.

IITB dataset contains 103 manually annotated documents. It has been pub-
lished by Kulkarni et al [14].

RSS500 [25] dataset contains 500 manually annotated sentences mainly from
news documents, automatically scrapped from RSS feeds.

Reuters-21578 [25] dataset contains 145 news randomly sampled from
Reuters-21578 news articles dataset. The sampled news items were manually
annotated with the linked named entities by domain experts.

Each of these datasets was produced with a particular purpose. NYT10 and
IITB try to link as many meaning bearing words as possible. The other three
focus on named entities only. Some datasets link every mention of a concept,
while others link only the first occurrence. To deal with these differences, we use
various performance measures, as follows.

Performance Measures. In order to understand the performance of the relat-
edness measures and the joint disambiguation algorithm, we evaluate them under
two tests.

The first test is an annotation test and consists of the traditional infor-
mation retrieval evaluation measures, precision and recall. This test is highly
influenced by the noun-phrase extraction phase. In case our text analysis com-
ponent extracts different noun-phrases than the ground truth, it is penalised.
Similarly, if the ground truth targets only named entities, the precision of our
systems is penalised, since we target both named entities and common nouns.
As we consider noun-phrase extraction a complementary problem to word-sense
disambiguation, we reduce its influence by devising the so-called disambiguation
test.
5 https://www.mturk.com

https://www.mturk.com
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The Noun-Phrase Disambiguation Test The second test is a “disambiguation
test” as it verifies to what extent a noun-phrase whose corresponding DBpe-
dia concept is set by humans is linked and disambiguated by the system to
the same DBpedia concept. It computes the disambiguation accuracy measure
(denoted by Acc) by dividing the number of correctly linked noun phrases that
are both annotated in the ground truth and extracted by the system, to the
total number of noun-phrases both annotated by humans and extracted by the
system. As such, as opposed to the “annotation test”, the results obtained at
the “disambiguation test” cancel out the impact of the noun phrase extraction.
Furthermore, since many entities are not ambiguous in DBpedia, we also report
a variation of this measure, in which we compute the disambiguation accuracy
only on the entities and words that have more than one candidate sense (denoted
by Acc>1).

Results. Table 6 shows the results achieved by the evaluated algorithms. It is
easily noticeable that joint disambiguation performs generally better than the
centrality based one, especially when used with CombIC relatedness. On both
hierarchical and Louvain clustering, joint disambiguation with CombIC achieves
best precision. With respect to recall, HITSAuthority used by AGDISTIS tends
to perform better. The most relevant performance measure for our setup are the
accuracies Acc and Acc>1. The accuracy of 0.916 achieved by joint disambigua-
tion with CombIC on the Reuters dataset means that out of the noun phrases
that are annotated in the dataset and extracted by Kan Dis, 91.6% are linked
to the correct DBpedia concept. The 0.727 Acc>1 score means that out of the
noun-phrases that are annotated in the ground truth dataset, were extracted
by Kan Dis, and have more than one disambiguation candidate, 72% were dis-
ambiguated to the correct DBpedia concept. The Acc>1 scores of joint disam-
biguation with CombIC are with 0.1 higher than those of HITSAuthority in
average.

Regarding the datasets, there is a noticeable decrease of precision for the
datasets that only annotate named entities (AQUAINT, RSS500, Reuters). This
is because Kan Dis links and disambiguates both common nouns and named
entities. Therefore, in order to get an idea of its performance, the Acc and Acc>1

measures are the most conclusive. We notice that on RSS500 the accuracies of
all the methods are very poor. This is due to the fact that RSS500 contains
single sentences, therefore there might be not sufficient context for achieving
correct disambiguation.

The disambiguation context produced with hierarchical clustering leads to
higher precision but lower recall than Louvain clustering. This is due to the used
dendrogram cutting threshold that we use (0.8) with hierarchical clustering and
that leads to smaller clusters than the Louvain clusters. Small clusters tend
to be cleaner, therefore the disambiguation accuracy improves. However, the
small clusters have less disambiguation cues, and lead to more words not being
disambiguated, producing lower recall.
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Table 6. Disambiguation results: P - precision; R - recall; Acc- linking accuracy, Acc>1

- disambiguation accuracy for words with more than 1 candidate. Joint ER uses decay
0.25 and top 5 paths.

Dataset Method Hierarchical Louvain

P R F Acc Acc>1 P R F Acc Acc>1

HITS Authority 0.567 0.584 0.572 0.834 0.658 0.576 0.593 0.581 0.851 0.693
NYT10 Joint ER 0.607 0.573 0.585 0.919 0.842 0.586 0.590 0.585 0.885 0.79

Joint CombIC 0.613 0.568 0.586 0.912 0.82 0.595 0.601 0.595 0.892 0.802
HITS Authority 0.417 0.435 0.420 0.761 0.591 0.417 0.436 0.421 0.760 0.587

IITB Joint ER 0.437 0.432 0.429 0.775 0.653 0.429 0.437 0.428 0.780 0.626
Joint CombIC 0.472 0.413 0.435 0.813 0.717 0.446 0.428 0.431 0.802 0.710
HITS Authority 0.247 0.583 0.341 0.801 0.594 0.247 0.582 0.340 0.800 0.589

AQUAINT Joint ER 0.257 0.563 0.346 0.809 0.638 0.250 0.574 0.341 0.816 0.688
Joint CombIC 0.264 0.564 0.353 0.824 0.708 0.256 0.583 0.348 0.831 0.733
HITS Authority 0.171 0.543 0.238 0.760 0.315 0.171 0.543 0.238 0.760 0.315

RSS500 Joint ER 0.190 0.524 0.252 0.784 0.224 0.174 0.540 0.240 0.763 0.307
Joint CombIC 0.194 0.524 0.256 0.789 0.241 0.176 0.540 0.242 0.768 0.321
HITS Authority 0.152 0.700 0.235 0.894 0.704 0.152 0.701 0.235 0.894 0.704

REUTERS Joint ER 0.156 0.653 0.237 0.906 0.652 0.153 0.692 0.236 0.892 0.638
Joint CombIC 0.162 0.633 0.241 0.929 0.727 0.159 0.676 0.241 0.906 0.729

5 Conclusion and Future Work

In this paper, we have proposed a novel measure for assessing strength of rela-
tions in knowledge graphs, called relation exclusivity. We used this measure for
computing semantic relatedness as well as similarity. Besides, we also proposed
an entity and word-sense disambiguation pipeline Kan Dis that uses the pro-
posed relatedness measures. We analysed our approach from different perspec-
tives, on five ground truth datasets, and three knowledge graphs. We showed
that when used with full DBpedia or Freebase it achieves better results than
state-of-the-art approaches.

With respect to our disambiguation approach, we focused specifically on
graph-based algorithms. We implemented algorithms from the related work and
used them in the same experimental setup with ours, in order to obtain a conclu-
sive comparison. We then showed that joint path-based disambiguation achieves
better performance than the graph centrality based approach.

An interesting outcome of our experiments is that while CombIC achieved
much worse performance when evaluated against human assessment of relat-
edness, it achieved the best disambiguation capability. This indicates that for
disambiguation, measures must have additional properties than correlation to
human assessment of relatedness. One such property might be the scale of the
resulted scores. We plan to investigate this in future work.

A very interesting future research path is that of extraction of relevant rela-
tion paths between given concepts. We plan to investigate and formally evaluate
if the paths deemed relevant by our measure are indeed relevant to humans.
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12. Hulpuş, I., Hayes, C., Karnstedt, M., Greene, D.: Unsupervised graph-based topic
labelling using dbpedia. In: WSDM, pp. 465–474. ACM, New York (2013)

13. Katz, L.: A new status index derived from sociometric analysis. Psychometrika
18(1), 39–43 (1953)

14. Kulkarni, S., Singh, A., Ramakrishnan, G., Chakrabarti, S.: Collective annota-
tion of wikipedia entities in web text. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2009,
pp. 457–466. ACM, New York (2009)

15. Leal, J.P., Rodrigues, V., Queirs, R.: Computing semantic relatedness using dbpe-
dia. In: Simes, A., Queirs, R., da Cruz, D.C. (eds.) SLATE. OASICS, vol. 21,
pp. 133–147 (2012)
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Abstract. We tackle the problem of resolving coreferences in textual
content by leveraging Semantic Web techniques. Specifically, we focus
on noun phrases that coreference identifiable entities that appear in the
text; the challenge in this context is to improve the coreference resolution
by leveraging potential semantic annotations that can be added to the
identified mentions. Our system, SANAPHOR, first applies state-of-the-art
techniques to extract entities, noun phrases, and candidate coreferences.
Then, we propose an approach to type noun phrases using an inverted
index built on top of a Knowledge Graph (e.g., DBpedia). Finally, we use
the semantic relatedness of the introduced types to improve the state-
of-the-art techniques by splitting and merging coreference clusters. We
evaluate SANAPHOR on CoNLL datasets, and show how our techniques
consistently improve the state of the art in coreference resolution.

1 Introduction

Natural language understanding is often referred to as an AI-complete task,
meaning that it belongs to the class of the most difficult problems in Artificial
Intelligence, which would require machines to become as intelligent as people
prior to being solved. While perfect natural language understanding is still out
of reach, recent advances in machine learning, entity linking, and relationship
mining are closing the gap between humans and machines when it comes to
processing natural language. Semantic technologies have played a key role in
those developments, by providing mechanisms to classify, describe, and interre-
late entities using machine-processable languages.

Less attention has however been given to the problem of leveraging Semantic
Web techniques and knowledge bases to find all expressions referring to the same
entity in a text, i.e., coreference resolution. While a flurry of previous contribu-
tions have proposed techniques to resolve coreferences (see the Related Work
section below), the extent to which semantic technologies can be leveraged in
this context remains unclear. In this paper, we investigate this question and
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M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 458–473, 2015.
DOI: 10.1007/978-3-319-25007-6 27



SANAPHOR: Ontology-Based Coreference Resolution 459

introduce SANAPHOR, a new system focusing on the last stage of a typical corefer-
ence resolution pipeline and improving the quality of the coreference clusters by
exploiting semantic entities and fine-grained types to split or merge coreference
clusters.

The following piece of text, for example, motivates our approach:
“Laiwu City of Shandong Province has established a cell structure cultivation
center ... currently Shangong has established ten agricultural development and
model zones similar to that of Laiwu City.”
With purely syntactic and grammatical approaches, it is easy to get confused
between the name of the province and the name of the city, since they ini-
tially appear together. In fact, Stanford Coref will put occurrences of both the
province and the city into one coreference cluster. Access to external knowledge
such as ontologies or knowledge bases is key in this context.

In the following, we add a semantic layer on top of the prominent Stanford
Coref pipeline1 to tackle such cases. Throughout our process, we leverage a
number of state-of-the-art Semantic Web techniques ranging from entity linking
to type ranking. We concentrate on type-based coreferences, excluding part-of-
speeches that do not bare self-contained semantics (e.g. determiners, pronouns
etc).

In summary, the contributions of this work are:

– A new system that adds a semantic layer to the state-of-the-art Stanford
Coref pipeline.

– A novel NLP technique that leverages the semantic web to better resolve
coreferences.

– An empirical evaluation of our system on standard datasets showing that our
techniques consistently improve on the state-of-the-art approach by tackling
those cases where semantic annotations can be beneficial.

The rest of this paper is structured as follows: in the rest of this section
we define the concepts of coreference and anaphora by presenting several exam-
ples; in Section 2 we discuss related work in Semantic Web technologies and on
coreference resolution systems; Section 3 describes the architecture of the sys-
tem we propose; finally, Sections 4 and 5 describe the experimental evaluation
of SANAPHOR and conclude the paper.

1.1 Preliminaries

We start below by introducing the terminology used throughout the rest of
this paper. Some of the linguistic units appearing in textual contents have the
function of representing physical or conceptual objects. Linguists often call such
units referring expressions, while the objects are called referents and the relations
that unite a referring expression and its referent are called references. In the
following example: So Jesus said again, “I assure you, I am the gate for the
sheep. All those who came before me were thieves and robbers. [. . . ] I have other
sheep too. They are not in this flock here.” the referring expressions are:
1 http://nlp.stanford.edu/projects/coref.shtml

http://nlp.stanford.edu/projects/coref.shtml
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– Noun Phrases (NPs) and pronouns referring to people (e.g. Jesus ; all those
who came before me), things (the gate), classes (sheep; they) or that desig-
nate interlocutors (I ; you)

– clauses, that names facts (I am the gate for the sheep; I have other sheep
too; they are not in this flock here)

– the adverb here that designates a location.

In order to satisfy cohesion [14], the same object is often recalled throughout
the text repeatedly so that it can be enriched with new attributes.

In this context, linguists often distinguish coreference from anaphora. The
difference between the two concepts is subtle and is explained in the following.
We have a coreference every time two (possibly different) referring expressions
denote the same referent, that is, the same entity. For example, in the sentence
Abraham Lincoln, the first president of the USA, died in 1865., “Abraham Lin-
coln” and “the first president of the USA” refer to the same entity, thus, they co-
refer. We have an anaphora every time the reference of an expression E2, called
anaphoric expression, is function of a previous expression E1, called antecedent,
so that one needs E1 to interpret E2. For example, in the sentence I like dragons!
Those animals are really cute! “those animals” is an anaphoric expression and
the reader needs to know that it refers to “dragons” (the antecedent) in order
to understand the sentence. Finally, the two concepts can be combined:

– The sentence You have a cat? I don’t like them. is a case of anaphora with-
out coreference since the pronoun them needs the antecedent a cat to be
interpreted (it is the anaphoric), but the two references do not designate the
same object (a cat = an individual / them = the entire species).

– The sentence about Abraham Lincoln we presented before is an example of
coreference without anaphora, since if we remove “Abraham Lincoln” one
can still understand the sentence.

– The sentence The dragon is coming. It is going to burn the city! is an example
of anaphora and coreference since one needs an antecedent to resolve “It”,
and both “It” and “the dragon” refer to the same entity.

In this paper we show how entity types can be used in order to resolve the two
last cases.

2 Related Work

2.1 Named Entity Recognition

Named entity recognition (NER) refers to the task of correctly identifying words
or phrases in textual documents that represent entities such as people, organi-
zations, locations, etc. During the last decades, NER has been widely studied
and the best NER approaches nowadays produce near-human recognition accu-
racy for generic domains such as news articles. Several prominent NER systems
employ supervised learning methods based on maximum entropy [4] and condi-
tional random fields [8], or fuse the results of other systems using a supervised
classifier [33].
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2.2 Entity Linking

Entity linking is the task of associating a textual mention of an entity to its
corresponding entry in a knowledge base. It can be divided into three subtasks:
mention detection, link generation, and disambiguation [21]. One of the main
issues that needs to be tackled when doing entity linking is the ambiguity of the
textual representation of the entity given as input. For example, the mention
“Michael Jordan” can be linked to both Michael Jordan the basketball player and
Michael Jordan the well-known machine learning professor. Much work has been
done on entity linking. Recently, Houlsby and Ciaramita dealt with ambiguities
by using a variant of LDA in which each topic is a Wikipedia article (that is,
an entity) [17]. Cheng and Roth used Integer Linear Programming to combine
relational analysis of entities in the text, features extracted from external sources
and statistics on the text [6].

In the context of this paper, both NER and Entity Linking are prerequisites
for coreference resolution as we take advantage of external knowledge to improve
the resolution of coreferences and hence must first identify and link as many
entity mentions as possible to their counterparts in the knowledge base. Since,
however, those two tasks are not the focus of this work, we decided to use in this
paper the TRank pipeline because of its simplicity and its good performance in
practice on our dataset (see Section 4).

2.3 Entity Types

Knowing the types of a certain entity is valuable information that can be used
in a variety of tasks. Much work has been done on extracting entity types both
from text and from semi-structured data. In this context, Gangemi et al. [9]
exploit the textual description of Wikipedia entities to extract entity types,
Nakashole et al. [24] designed a probabilistic model to extract the types out of
knowledge base entities, and Paulheim and Bizer [28] worked on adding missing
type statements by exploiting statistical distributions of types as subjects and
objects of properties. Much effort has been put also on ranking entity types
in several contexts. TRank [38] is a system for ranking entity types given the
textual context in which they appear. Tylenda et al. [39] select the most relevant
types to summarize entities. In this paper we leverage entity types as evidences
for deciding if, given a piece of text, different entity mentions refer to the same
entity or not.

2.4 Coreference and Anaphora

According to Ng [25], practically all coreference and anaphora resolution systems
are instantiations of a seven-step generic algorithm2:

2 Note that steps 3, 5 and 6 can be absent in a coreference or anaphora resolution
algorithm. Moreover, existing algorithms differ in the way these seven steps are
implemented



462 R. Prokofyev et al.

1. Identification of referring expressions: This first step is mostly to iden-
tify all of the pronouns and noun phrases in the text. Clauses and adverbs can
also be spotted.
2. Characterization of referring expressions: This second step consists
of determining and computing the information regarding referring expressions
that might be relevant to its linking to another expression in the text. Most
approaches rely on some preprocessing modules (e.g. part-of-speech tagging,
parsing, named entity recognizer,. . . ) to perform this step ; however, they dif-
fer in the level of sophistication of the extracted information, ranging from
knowledge-rich to knowledge-poor (see below).
3. Anaphoricity determination: Involves distinguishing anaphoric expres-
sions, that should have an antecedent, from non-anaphoric expressions, that
should not. Thus, this step is always performed as part of anaphora resolution,
but not always for coreference resolution (see 1.1).
4. Generation of antecedent candidates: This fourth step identifies a set
of potential antecedents, named candidates, that linearly precedes the anaphoric
expression in the text.
5. Filtering: This step involves removing from the set some unlikely candidates
based on ensemble of hard constraints, for example morphologic, syntactic and
semantic constraints.
6. Scoring/Ranking: The aim of this step, that is optional, is to rank remain-
ing candidates according to an ensemble of soft constraints, also called prefer-
ences, that often depend on psycholinguistic and discourse principles (especially
focus [34], centering [12] or accessibility [1]).
7. Searching/Clustering: Finally, the goal of this last step is to select an
antecedent for a given anaphoric expression from the set of candidates returned
by the fifth and/or the sixth steps. If step 6 has been performed, then searching
becomes the task of selecting the highest-ranking element in the candidate list;
otherwise, the “best” expression is selected as the antecedent in accordance with
criteria specified by the resolution algorithm. In the case of coreference resolu-
tion, this process corresponds to applying a single-link clustering algorithm to
each anaphoric expression to cluster the referring expressions in the document
and generate a partition.

Although this generic algorithm characterizes most of the resolution
pipelines, research on coreference and anaphora resolution in computational lin-
guistics has been proceeding in many different directions for the last 30 years.
Nevertheless, it is possible to identify important trends [7,25,27]. In the context
of this paper, two trends are of particular significance and are presented below.

First, coreference and anaphora resolution systems can be classified with
respect to the types of knowledge sources they leverage. One typically differ-
entiates Knowledge-rich systems from knowledge-lean systems. Early anaphora
resolution systems [11,35] as well as more recent ones [5,13,26,29,37,40] are
knowledge-rich systems that rely on domain informations (such as FrameNet,
WordNet, Wikipedia, Yago, etc.), semantic and discourse analysis, and sophis-
ticated inference mechanisms (induction for example). Knowledge-lean systems
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Standford
Determinstic Coreference ResolutionBoth George W. Bush 

and Al Gore today con-
tinue to press their cas-
es literally and figura-
tively. Meanwhile , Vice 
President Gore contin-
ued his appeal for pa-
tience while he con-
tests Bush 's claim to 

"Al Gore", "Gore"[ ] "Vice President Gore", "Vice President"[ ]
"Australia", "Qintex Australia", "Qintex Ltd.", "Australia 's Qintex"[ ]

Fig. 1. The Stanford Coref system takes plain text as an input and outputs clusters
([]) of mentions ("") which are potentially coreferenced.

instead rely only on morphological and possibly syntactic information [3,18,19,
23], and reach high performance without semantic and world knowledge. Our
system belongs to the first category, using YAGO and DBpedia.

Early coreference and anaphora resolution systems also differ from more
recent ones by the fact that they adopt knowledge-based approaches, in which the
rulesets used in filtering and scoring/ranking (see steps 5 and 6 above) are based
on a set of hand-coded heuristics that specify whether two referring expressions
can or cannot have any coreferential/anaphoric relationship [12,16]. Actually,
these approaches are often called linguistic approaches as they are based on lin-
guistic theories. In contrast, corpus-based approaches acquire knowledge using a
learning algorithm and training data, i.e., a corpus annotated with coreference
and anaphora information in filtering and scoring/ranking [10,15,36]. Again, our
own system belongs to the first category.

3 System Architecture

In this section, we describe the overall architecture of SANAPHOR and provide
details on each of its components.

3.1 System Input

Starting from the Stanford Coref framework [19] (Figure 1), which covers
the steps 1-7 described in Section 2.4, we obtain for each document (e.g., a
news article) a set of clusters containing textual mentions. The clusters are non-
overlapping and contain potentially coreference mentions. In addition, Stanford
Coref associates a headword to each mention (especially for long mentions) when
possible.
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3.2 System Overview

Many potential improvements are conceivable throughout the generic pipeline
introduced in Section 2.4. In that context, our efforts first focused on improv-
ing coreference resolution using semantic word and phrase similarities based on
Word Vectors [22]. However, word vectors did not work well in our experiments.
For example, the vector of the word “shepherd” was very close to the vector
of “sheep”, which is reasonable, but does not work well for the coreference res-
olution task, since these two words often appear in one document. Motivated
by the results analysis presented above, SANAPHOR focuses instead on splitting
and merging of candidate clusters (see Step 7 in Section 2.4) using semantic
information, as it is (in our opinion) the most susceptible to benefit from a tight
integration of semantic technologies.

Figures 2 and 3 give an overview of our system, illustrating the preprocessing
steps and the splitting/merging steps respectively. SANAPHOR receives as input
the clusters of coreferences generated by Stanford Coref. Each cluster is a set
of mentions extracted from the original text. Each mention comes in the form of

Semantic Typing

"Al Gore"{t2}, "Gore"{t1}[ ] "Vice President Gore"{t2}, "Vice President"{t2}[ ]
"Australia"{t3}, "Qintex Australia"{t4}, "Qintex Ltd."{t4}, "Australia 's Qin....[ ]

"Al Gore", "Gore"[ ] "Vice President Gore", "Vice President"[ ]
"Australia", "Qintex Australia", "Qintex Ltd.", "Australia 's Qintex"[ ]

Entity Linking

DBpedia
Inverted Index

DBpedia Index

"Al Gore"{e1}, "Gore"[ ] "Vice President Gore", "Vice President"[ ]
"Australia", "Qintex Australia"{e2}, "Qintex Ltd."{e2}, "Australia 's Qintex"{e2}[ ]

Recognized entities are typed 
and omitted mentions get 

typed by the string similarity to 
YAGO types.

YAGO Index

Fig. 2. The pre-processing steps of SANAPHOR annotating semantics to the mentions.



SANAPHOR: Ontology-Based Coreference Resolution 465

a string and, potentially, an associated headword (the most salient word in the
mention). The mentions can be either Named Entities, pronouns, or determin-
ers, as identified and clustered by Stanford Coref. Our system then takes those
clusters and proceeds in two successive steps I) Preprocessing, where we lever-
age linked data to represent named entities with their semantic counterparts
(either Entities or Types) whenever possible; II) Cluster Optimization, where
using annotations obtained from the preprocessing step we derive a strategy
for splitting clusters containing unrelated mentions, or, conversely for merging
mentions that semantically should belong together.

We describe in more detail the functionalities provided by those components
in the following, starting with the semantic annotation pipeline and then moving
to cluster management methods.

3.3 Semantic Annotation

Entity Linking. The goal of the Entity Linking component is to link entity
mentions to DBpedia entries. We exploit an inverted index associating DBpedia

"Al Gore"{t2}, "Gore"{t1}[ ] "Vice President Gore"{t2}, "Vice President"{t2}[ ]
"Australia"{t3}[ ] "Qintex Australia"{t4}, "Qintex Ltd."{t4}, "Australia 's Qin....[ ]

"Al Gore"{e1}, "Gore"{t1}, "Vice President Gore"{t2}, "Vice President"{t2}[ ]
 "Australia"{t3}[ ] "Qintex Australia"{t4}, "Qintex Ltd."{t4}, "Australia 's Qin....[ ]

"Al Gore"{t2}, "Gore"{t1}[ ] "Vice President Gore"{t2}, "Vice President"{t2}[ ]
"Australia"{t3}, "Qintex Australia"{t4}, "Qintex Ltd."{t4}, "Australia 's Qin....[ ]

Type Based Splitting

Cluster with mentions containing unrelated 
types get split into new clusters.

Type Based Merging

Cluster with mentions containing related types 
get merged.

Fig. 3. The final type-based splitting and merging of the clusters in SANAPHOR.
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labels to entity URIs. In order to generate high-quality links, we decided to
only link mentions that exactly match DBpedia labels3. Entities with multiple
aliases are handled by using Wikipedia redirection links and, in order to foster
precision, by discarding URIs that link to ambiguous entities (i.e., entities having
a wikiPageDisambiguates property).

Semantic Typing. The next step in our preprocessing pipeline is assigning
Types to mentions appearing in the text. In this context, we use the YAGO ontol-
ogy as a target database. We created an inverted index of the types obtained
from the YAGO ontology4 and performed a string matching between every men-
tion and the inverted index. For example, a noun phrase “rock singer” is typed as
Wikicategory American Rock Singers . For the mentions linked in the previous

step, we employ the mappings between DBPedia and YAGO ontologies provided
by TRank Hierarchy [38] to map DBPedia types to YAGO ones.

We chose to optimize our preprocessing steps for precision rather then recall,
since the subsequent steps rely on precise linking to be effective at improving the
mention clusters. As a result, we do not annotate labels that refer to multiple
entity types.

3.4 Cluster Management

Splitting Coreference Clusters. The first task SANAPHOR undertakes to opti-
mize the clusters of mentions is to split clusters containing mentions of different
types. This step tackles cases where Stanford Coref was not able to deal with
ambiguity in the text, for example for the following cases: “Aspen”(the Colorado
city) and “Aspen”(the tree), which can be wrongly interpreted as referring to
the same referent, thus producing a series of incorrect coreferences. Instead,
SANAPHOR leverages the output of the entity linking process to resolve the ambi-
guity of the mentions: since during the linking phase the two mentions will
probably be associated to different entities, the system can decide to split them
into separate clusters.

The result of the semantic annotation phase is a series of sets {S0, . . . ,Sn},
one per coreference cluster, containing entities e ∈ E and/or fined-grained seman-
tic types t ∈ T attached to each mention m ∈ M. The splitting process examines
all pairs of mentions {mi,mj} in a given cluster, and decides whether or not to
split the cluster depending on the potential entities {ei, ej} and types {ti, tj}
attached to the mentions. Formally, we split a cluster whenever, ∀{mi,mj} ∈ S:

– ∃{ei, ej} | ei �= ej or
– ∃{ti, tj} | ti � tj (where � stands for equivalence or subsumption relation

w.r.t. the type hierarchy of the ontology), or

3 We have also tried more complex methods that take context into account, such as
DBPedia Spotlight, but they lead to less precise linkings and worse overall results.

4 http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/
research/yago-naga/yago/downloads/

http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/
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– ∃{ei, tj} | T (ei) � tj (where T (ei) stands for the type of ei according to the
ontology).

Since a coreference cluster might also contain non-annotated mentions, we
need a way to properly assign them to the split clusters. In order to do this, we
first identify the words that belong exclusively to one of the mentions mi or mj .
We assign all other mentions to one of the new clusters based on the overlap of
their words with the exclusive words of each new cluster.

However, these steps alone do not systematically result in a substantial per-
formance increase due to many possible reductions of the original mention. For
example, a text might contain “Aspen Airways” first and then have the word
“Aspen” to refer to the airline, which our method might incorrectly link to a
city or a tree type. To overcome this problem, we introduce a simple heuristic
that ignores entity linkings of the mentions whose words represent a complete
subset of any other mention in the same cluster.

Merging Coreference Clusters. The second task that we are tackling in the
context of cluster management is merging, that is, joining pairs of sets {Si, Sj}
that contain similar entities or types. For instance, consider the mention “Hosni
Mubarak”, the former president of Egypt, which can also be referred to as “Pres-
ident Mubarak” in a news article. In such a case, Stanford Coref might assign
those two mentions to two different clusters. Thus, starting from entity and type
linking as before, we propose to merge clusters, each of which contains at least
one mention that refers to the same entity. Formally, two sets {Si, Sj} corre-
sponding to two clusters are merged whenever:

– ∃ (ei ∈ Si ∧ ej ∈ Sj) | ei ≡ ej or
– ∃ (ei ∈ Si ∧ tj ∈ Sj) | T (ei) ≤ tj and when the condition just above does

not apply.

We note that in this step we do not use any heuristic to pre-filter the clusters.
Our system, SANAPHOR, is available as an open-source5 extension to Stanford

Coref. The pipeline allows to use different entity and type linkers for future
experiments.

4 Experimental Evaluation

4.1 Datasets

We evaluate our system on standard datasets from the CoNLL-2012 Shared
Task on Coreference Resolution [30] distributed as a part of the OntoNotes 5
dataset6. We use only the English part of the dataset which consists of over
one million words from newswire, magazine articles, broadcast news, broadcast

5 http:///github.com/xi-lab/sanaphor
6 https://catalog.ldc.upenn.edu/LDC2013T19

http:///github.com/xi-lab/sanaphor
https://catalog.ldc.upenn.edu/LDC2013T19
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conversations, web data, telephone conversations and English translation of the
New Testament.

The English dataset is split into three: development, training and test sub-
collections. The development dataset is intended to be analyzed during the devel-
opment of the coreference resolution system in order to build intuitions and tune
the system. The training dataset is designed to be used in the supervised train-
ing phase, while the final results have to be reported on the test dataset. In
the following sections, we analyze results and we design our methods based on
the development collection and report the final results based on the test collec-
tion. Since our system improves on the Stanford Coreference Resolution System,
which already includes supervised models, we do not directly use the training
sub-collection in our pipeline.

4.2 Metrics

Many metrics have been proposed to evaluate the performance of coreference
resolution systems, from early metrics like MUC [41], to the most recent metric
proposed—BLANC [32].

As a final evaluation metric, we use the most recently proposed BLANC,
which addresses the drawbacks of previously proposed metrics such as MUC,
B-cubed [2], or CEAF [20], as it neither ignores singleton mentions nor does it
inflate the final score in their presence.

In addition, we use a pairwise metric based on the Rand Index [31] to evaluate
the performance of the individual parts of our system in isolation.

4.3 Analysis of the Results of Stanford Coreference Resolution
System

We start by analyzing the results of the Stanford Coref on the development
dataset in the context of two possible error classes: 1) mentions that were put into
one cluster, but that in fact belong to different clusters, 2) mentions that refer
to the same thing, but that were put into different clusters. Additionally, since
we focus on noun-phrase mentions, we want to see how many noun-only clusters
exist in the dataset in order to estimate the effect of a possible improvement.

Overall, the Stanford Coref system creates 5078 coreference clusters, out
of which 270 clusters need to be merged and 77 “has-to-be-merged” clusters are
noun-only. The total number of clusters that should be split is 118, out of which
52 are noun-only.

As we can observe, the total amount of potential split and merge clusters
account for approximately 8% of total data, which can result in a significant per-
formance improvement for coreference resolution (for which even small improve-
ments are considered as important given the maturity of the tools developed
over more than 30 years).

In the following, we report results for the different steps in our pipeline on
the test dataset.
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Table 1. Cluster linking distributions for all the clusters and for noun-only clusters

0 Links 1 Distinct Link 2 Distinct Links 3 Distinct Links

All Clusters 4175 849 49 5
Noun-Only Clusters 1208 502 33 2

4.4 Preprocessing Results

The main innovation of SANAPHOR is the semantic layer that enhances classic
coreference clustering, hence we focus on evaluating clusters that contain at
least one entity (or one type) at the output of our preprocessing steps. The
overall recall of our approach is therefore bound by the number of clusters that
were identified as containing linked entities and/or types.

In total, we linked 2607 mentions out of 9664 noun phrase mentions (i.e.,
mentions that have nouns as headwords) extracted by Stanford Coref from
the CoNLL dev dataset. Out of these 9664 mentions, 4384 were recognized
by Stanford Coref as entities. Table 1 summarizes the distribution of clusters
and the links obtained using our preprocessing step.

For evaluation purposes, we consider only clusters that contain at least one
link. Moreover, we make the following distinction of clusters for evaluation pur-
poses:

– All Linked Clusters. That is, clusters that contain at least one linked
mention, or

– Noun-Only Linked Clusters. These are clusters which contain at least
one linked mention, headwords, but have no pronouns nor determiners.

We make this distinction in order to evaluate whether considering clusters with
pronouns and determiners (which bare little semantic information) affects the
overall results.

4.5 Cluster Optimization Results

Now, we turn our attention to the evaluation of the effectiveness of our cluster
optimization methods (splitting and merging). The following experiments are
performed on the CoNLL test dataset. We compute Precision, Recall and F1
metrics for the clusters on which we operate. Since we are evaluating clusters,
we use the pairwise definition of the metrics (see Section 4.2).

We distinguish the results for both the split and merge operations as com-
pared to the ground-truth. For instance, for all the clusters generated by each
system, we perform pairwise comparisons of all mentions in the clusters and
evaluate whether the two mentions were correctly separated (in case of a split)
or put together (in case of a merge).

Table 2 summarizes the results of our evaluation. As can be seen, SANAPHOR
outperforms Stanford Coref in both the split and merge tasks for both All and
Noun-Only clusters. Moreover, we notice that the absolute increase in F1 score
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Table 2. Results of the evaluation of the cluster optimization step (split and merge).

SANAPHOR Stanford Coref

P(%) R(%) F1(%) P(%) R(%) F1(%)

Split
All Clusters 82.56 90.27 86.25 71.39 100.00 83.31
Noun-Only Clusters 78.99 90.38 84.30 58.43 100.00 73.76

Merge
All Clusters 94.58 100.00 97.21 96.65 55.10 70.18
Noun-Only Clusters 76.92 100.00 86.96 85.00 56.67 68.00

for the split task is greater for the Noun-Only case (+10.54% vs +2.94%). This
results from the fact that All Clusters also contain non-noun mentions, such as
pronouns, which we don’t directly tackle in this work but have to be assigned
to one of the splits nevertheless. Our approach in that context is to keep the
non-noun mentions with the first noun-mention in the cluster, which seems to
be suboptimal for this case.

For the merge task, the difference between All and Noun-Only clusters is
much smaller (+27.03% for the All Clusters vs +18.96% for the Noun-Only case).
In this case, non-noun words do not have any effect, since we merge clusters and
also include all other mentions.

4.6 End-to-End Performance

Finally, and in addition to the previous results that reflect the effectiveness of
SANAPHOR on relevant clusters, we evaluate the impact of our approach on the
end-to-end coreference resolution pipeline using the CoNLL test collection. In
that context, we use the Precision, Recall and F1 scores of the BLANC metric
(Section 4.3). Our system consistently outperforms the Stanford Coref baseline
in both Precision (60.63% vs 60.61%), Recall (55.16% vs 55.07%) and F1 values
(57.11% vs 57.04%). The reason behind the limited improvement on the overall
dataset is imputable to the recall we achieve during the linking step (see Section
4.4) and to the limited number of cases in which a split or a merge is required
(8% of the total data).

To further elaborate on the significance of our results, we also ran our
SANAPHOR pipeline on the data where we annotated all entities with the “gold”
(i.e., ground-truth) URLs. This corresponds to the optimal case where the sys-
tem is able to link all possible entities correctly. The performance of Stanford
Coref for such a best-case scenario is 57.17% in terms of F1, which is comparable
to the performance of our entity linking method, thus confirming the validity of
our approach.

5 Conclusions

In this paper, we tackled the problem of coreference resolution by leveraging
semantic information contained in large-scale knowledge bases. Our open-source
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system, SANAPHOR, focuses on the last stage of a typical coreference resolution
pipeline (searching and clustering) and improves the quality of the coreference
clusters by exploiting semantic entities and fine-grained types to split or merge
the clusters. Our empirical evaluation on a standard dataset showed that our
techniques consistently improve on the state-of-the-art approach by tackling
those cases where semantic annotations can be beneficial.

Our approach can be extended in a number of ways. One of the limitations
of SANAPHOR affecting its recall is due to the potential lack of information being
available in the knowledge base. In that sense, techniques that take advantage
of a series of knowledge bases (e.g., based on federated queries), that identify
missing entities in the knowledge base or that dynamically enrich the knowledge
base could be developed. Another interesting extension would be to bring more
structure to the coreference clusters, for example by introducing semantic links
between the candidates in order to foster more elaborate post-processing at the
merging step.
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Abstract. The increasing amount of data on the Web, in particu-
lar of Linked Data, has led to a diverse landscape of datasets, which
make entity retrieval a challenging task. Explicit cross-dataset links,
for instance to indicate co-references or related entities can significantly
improve entity retrieval. However, only a small fraction of entities are
interlinked through explicit statements. In this paper, we propose a
two-fold entity retrieval approach. In a first, offline preprocessing step,
we cluster entities based on the x–means and spectral clustering algo-
rithms. In the second step, we propose an optimized retrieval model
which takes advantage of our precomputed clusters. For a given set of
entities retrieved by the BM25F retrieval approach and a given user
query, we further expand the result set with relevant entities by con-
sidering features of the queries, entities and the precomputed clusters.
Finally, we re-rank the expanded result set with respect to the relevance
to the query. We perform a thorough experimental evaluation on the Bil-
lions Triple Challenge (BTC12) dataset. The proposed approach shows
significant improvements compared to the baseline and state of the art
approaches.

1 Introduction

The emergence of the Web of Data, particularly supported through W3C stan-
dards such as RDF and the Linked Data principles [2], has led to a wide range
of semi-structured RDF data being available on the Web. Data is spread across
datasets, complemented through a growing amount of entities as part of struc-
tured annotations of Web documents, using RDFa or Microformats. Recent stud-
ies have shown that approximately 26% of pages already contain structured
annotations [19].

Web data forms a highly heterogeneous knowledge-graph spanning an esti-
mated 100 billion triples [17], with a wide variety of languages, schemas, domains
and topics [7]. Even though a large number of entities and concepts are highly
overlapping, that is they represent the same or related concepts, explicit links are
still limited and often concentrated within large established knowledge graphs,
like DBpedia [1].

The entity-centric nature of the Web of data has led to a shift towards tasks
related to entity and object retrieval [3,21] or entity-driven text summariza-
tion [6]. Major search engine providers such as Google and Yahoo! already exploit

c© Springer International Publishing Switzerland 2015
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such data to facilitate semantic search using knowledge graphs, or as part of sim-
ilar efforts such as the EntityCube-Renlifang project at Microsoft Research [14].
In such scenarios, data is aggregated from a range of sources calling for efficient
means to search and retrieve entities in large data graphs. Specifically, entity
retrieval (also known as Ad-Hoc Object retrieval) [17,21] aims at retrieving rel-
evant entities given a user query. The result is a ranked list of entities [3]. By
simply applying standard keyword search algorithms, like the BM25F, promis-
ing results can be achieved. A common practice is to construct indexes over the
textual descriptions (literals) of entities.

In most cases, queries are entity centric. However, there are a large number of
queries that are also topic-based, e.g. ‘U.S. Presidents’. Therefore, approaches
like [21] have proposed retrieval techniques that make use of the explicit links
between entities in the WoD for results or query expansion. For instance, follow-
ing owl:sameAs or rdfs:seeAlso predicates from dbp:Barack Obama, one can
retrieve co-references or highly related entities. However, considering the size of
the WoD such statements are very sparse (see Figure 1a).

In this work, we propose a method for improving entity retrieval results in two
aspects. We improve the task by expanding and re-ranking the result set from a
baseline retrieval model (BM25F). Sparsity of explicit links is addressed through
clustering of entities based on their similarity, using a combination of lexical
and structural features. Consequently, we expand the result set with additional
entities from the cluster space (clusters with which the baseline entities are
associated), retrieved from the baseline.

For the expanded result set, there is a need for re-ranking. The re-ranking
considers the similarity of entities to the user query, and their relevance likeli-
hood based on the corresponding entity type, defined as query type affinity. We
empirically model the query type affinity between the entity type in a query (e.g.
‘Barack Obama’ isA Person) and the entity types in the result set (see Section
3.2).

In terms of scalability and efficiency, the clustering process is carried out
offline, where we bucket entities of particular types together before clustering.
This improves the efficiency by reducing the run-time of the clustering algorithms
(Section 4.2 and 7.3). The entity retrieval, expansion and re-ranking on the
other hand are performed online and the computational overhead is negligible
(Section 5 and 7.3).

Our experimental evaluation is carried out on the BTC12 dataset [19], and
using the SemSearch1 query dataset. The individual steps in our approach are
evaluated through a reliable crowdsourced evaluation approach. The results show
that the proposed approach outperforms existing basslines for the entity retrieval
task.

The main contributions of our work are as follows: (a) an entity retrieval
model combining keyword search and entity clustering, and (b) an entity ranking
model considering the query type affinity w.r.t the set of relevant entity types.

1 http://km.aifb.kit.edu/ws/semsearch10/

http://km.aifb.kit.edu/ws/semsearch10/
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2 Related Work

A large portion of queries issued in Web search engines target entities or contain
semantic resources (such as types, relations and attributes) [17] as a primary
intent. Consequently, the identification of entity-centric queries has become of
particular concern for commercial search engines serving as a means to narrow
the search space and to provide contextual query results [12]. Thus, the tra-
ditional task of Ad-hoc Document Retrieval (ADR) [11] is moving towards an
entity retrieval task [17]. Hence, instead of top–k document retrieval that match
a keyword query, the task and therefore the results are increasingly becoming
entity-centric.

Following this direction, Tonon et al. [21] proposed a hybrid approach based
on query expansion and relevance feedback techniques on top of the BM25 rank-
ing function to build an entity retrieval framework. In contrast to this work, we
use the state-of-the-art BM25F [5,20] to assign varying degrees of importance
to different parts of a document. Further, through an offline pre-processing step
we are able to infer links between similar entities for the retrieval process. This
is particularly important when considering datasets that have less links between
entities, a significant feature of the work by Tonon et al [21]. Another advantage
of adopting BM25F is penalising documents/entities, consisting of long textual
literals, in the final ranking [10]. Sindice [15] is another approach focusing on
indexing RDF documents. It supports data discovery and integration by taking
advantage of DBpedia entities as a source to actively index resources. The pro-
cess performed by Sindice plays a key role in centralising disparate data sources
on the Web. The adoption of entities and foremost entity types (topics) is also
supported by [3] in the recommendation of entities in Web search. Our approach
can benefit Sindice by indexing documents following a topic-based fashion.

Zhiltsov and Agichtein [23] propose a learning to rank approach, where they
model the relations between entities through a various set of features, such as
language models and other query related features (e.g query length). Finally,
through tensor matrix factorisation they find latent similarities between enti-
ties, later used in their learning to rank model. One major disadvantage of this
approach is that it is supervised, hence, unlikely to perform reasonably well on
ad-hoc entity search tasks.

3 Approach and Overview

In this section, we motivate and define our work in the context of the addressed
challenge, and provide an overview of our approach.

3.1 Preliminaries

The entity retrieval (ER) task, also known as ad-hoc object retrieval, is concerned
with retrieving a top–k ranked set of entities from dataset for a given a user
query q. User queries are typically entity centric. A dataset in our case is a set of
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triples 〈s, p, o〉, where s is the subject (the URI of an entity), p is the predicate,
and o is the object (a URI or a literal). An entity profile of e is the set of triples
sharing the same subject URI s. The type of an entity is determined by the
object of the triple te = 〈s, rdf:type, o〉. Additionally, we define the query type
tq, corresponding to the entity type in q, e.g. ‘Barack Obama’, hence tq hasType
Person.

3.2 Motivation: Result Set Expansion and Query Affinity in Entity
Retrieval

Recent studies [21] have shown that explicit similarity statements, which indi-
cate some form of similarity or equivalence between entities, for instance through
predicates such as owl:sameAs, are useful for improving entity retrieval results
as retrieved through approaches like BM25F, i.e. improving significantly on
standard precision/recall metrics. However, such explicit similarity statements
usually are sparse and often focused towards a few well established datasets
like DBpedia, Freebase etc. One main reason is that these datasets represent
known, and well structured graphs, which show a comparably high proportion
of such dedicated similarity statements, in turn linking similar entities within
and beyond their original namespace.

In Figure 1a we show the total amount of explicit similarity state-
ments (on the x–axis) that interlink entities in the BTC12 dataset. Refer-
ring to [21], here we specifically consider triples of the form 〈e, p, e′〉 where
the predicate p ∈ {owl:sameAs, skos:related, dbp:wikiPageExternalLink,
dbp:wikiPageDisambiguates, dbp:synonym}. These are plotted against the
total number of object properties (y–axis), where each point in the plot rep-
resents a graph in the BTC12 collection. From the figure, it is obvious that the
number of explicit similarity statements is very sparse, considering the size of
the dataset.

Nonetheless, missing links between entities can be partially remedied by
computing their pair-wise similarity, thereby complementing statements like
owl:sameAs or skos:related. Given the semi-structured nature of RDF data,
graph-based and lexical features can be exploited for similarity computation.
Particularly, lexical features derived from literals provided by predicates such as
rdfs:label or rdfs:description are prevalent in LOD. Our analysis on the BTC12
dataset reveals that a large portion of entities (around 90%) have an average
literal length of 50 characters.

Furthermore, while the query type usually is not considered in state of the art
ER methods, we investigated its correlation with the corresponding entity types
from the query result set. We refer to a ground truth2 using the BTC10 dataset.
We focus only on relevant entities for q. We analyze the query type affinity of
the result sets by assessing the likelihood of an entity in the results to be of the
same type as the query type. Figure 1b shows the query type affinity. On the
x-axis we show the query type, whereas on the y-axis the corresponding relevant

2 http://km.aifb.uni-karlsruhe.de/ws/semsearch10/Files/assess

http://km.aifb.uni-karlsruhe.de/ws/semsearch10/Files/assess
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Fig. 1. (a) Number of explicit similarity statements in contrast to the frequency of
object property statements overall, shown for all data graphs. (b) Query type affinity
shows the query type and the corresponding entity types from the retrieved and relevant
entities.

entity types are shown. Figure 1b shows that most queries have high affinity with
a specific entity type, with the difference being the query type Person, where
relevant entities have a wider range of types.

Our work exploits such query type affinity to improve the ranking of entities
for a query q (see Section 5). Based on these observations, we argue that (a)
entity clustering can remedy the lack of existing linking statements and (b)
entity re-ranking considering the query type affinity are likely to improve the
entity retrieval task.

3.3 Approach Overview

In this work we propose a novel approach for the entity retrieval task which
builds on the observations described earlier. Figure 2 shows an overview of the
proposed approach. The individual steps are outlined below and described in
detail in Section 4 and 5. We distinguish between two main steps: (I) offline pre-
processing, including step I.a and I.b in the following overview, and (II) online
entity retrieval, covered by steps II.a to II.c.

Fig. 2. Overview of the entity retrieval approach.
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I.a Entity Feature Vectors: We construct the entity feature vector as follows:
F (e) = {W1(e),W2(e), φ}, where W1(e) and W2(e) represent the unigrams and
bigrams extracted from literals of e, and φ represents the structural features.

I.b Entity Bucketing & Clustering: is used to compute implicit relationships
between entities emerging from their feature vectors. For the sake of efficiency,
before we proceed with entity clustering, we exploit the locality-sensitive hashing
(LSH) algorithm for bucketing.

II.a Query Analysis: As part of the retrieval task, we initially analyse the
given user queries q. From the query terms, which typically represent named
entities, we determine the type of the named entity, e.g. ‘Location’ in order to
support the query type affinity-based reranking at a later stage.

II.b Entity Retrieval: In the retrieval process, we rely on a combination of
standard IR approaches, like BM25F and further expand the result set with
entities showing a high similarity according to the computed clusters.

II.c Entity Ranking. In the final step, we rank the expanded entity result set
for q, taking into account similarity to the query and the modelled query type
affinity.

4 Data Pre-processing and Entity Clustering

In this section, we describe the offline pre-processing to cluster entities and
remedy the sparsity of explicit entity links.

4.1 Entity Feature Vectors

Entity similarity is measured based on a set of structural and lexical fea-
tures, denoted by the entity feature vector F (e). The features for clustering
are described below.

Lexical Features: We consider a weighted set of unigrams and bigrams for an
entity e, by extracting all textual literals used to describe e denoted as W1(e)
and W2(e). The weights are computed using the standard tf–idf metric. Lexical
features represent core features when considering the entity retrieval task, more
so for the clustering process. A high lexical similarity between an entity pair is a
good indicator for expanding the result set from the corresponding cluster space.

Structural Features: The feature set φ(e) considers the set of all object
properties that describe e. The range of values for the structural features is
φ(o, e) → [0, 1], i.e., to indicate if a object value is present in e. Feature Space:
To reduce the feature space, we filter out items from the lexical and structural
features that occur with low frequency across entities and presumably, have a
very low impact on the clustering process due to their scanty occurrence.
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4.2 Entity Bucketing and Clustering

Entity Bucketing. In this step we bucket entities of a given entity type by
computing their MinHash signature, which is used thereafter by the LSH algo-
rithm [18]. This step is necessary as the number of entities is very large. In this
way we reduce the number of pair-wise comparisons for the entity clustering, and
limit it to only the set of entities within a bucket. Depending on the clustering
algorithm, the impact of bucketing on the clustering scalability varies. Since the
LSH algorithm itself has linear complexity, bucketing entities presents a scal-
able approach considering the size of datasets in our experimental evaluation. A
detailed analysis is presented in Section 7.

Entity Clustering. Based on the computed feature vectors, we perform entity
clustering for the individual entity types and the computed LSH buckets. Taking
into account scalability aspects of such a clustering process we consider mainly
two clustering approaches: (i) X–means and (ii) Spectral Clustering. In both
approaches we use Euclidean distance as the similarity metric. The dimensions
of the Euclidean distance are the feature items in F (·). The similarity metric is
formally defined in Equation 1.

d(e, e′) =
√∑

(F(e) − F(e′))2 (1)

where the sum aggregates over the union of feature items from F(e),F(e′). The
outcome of this process is a set of clusters C = {C1, . . . , Cn}. The clustering
process represents a core part of our approach from which we expand the entity
results set for a given query, beyond the entities that are retrieved by a baseline as
a starting point. The way the clusters are computed has an impact on the entity
retrieval task, thus we present a thorough evaluation of cluster configurations in
Section 7.1.

X–means. To cluster entities bucketed together through the LSH algorithm
and of specific entity types, we adopt an extended version of k-means clustering,
presented by Pelleg et al. which estimates the number of clusters efficiently [16].
X–means overcomes two major drawbacks of the standard k-means clustering
algorithm; (i) computational scalability, and (ii) the requirement to provide the
number of clusters k beforehand. It extends the k–means algorithm, such that
a user only specifies a range [Kmin, Kmax] in which the number of clusters, K,
may reasonably lie in. The bounds for K in our case are set to [2, 50] clusters.

Spectral Clustering. In order to proceed with the spectral clustering process,
we first construct the adjacency matrix A. The adjacency matrix corresponds
to the similarity between entity pairs d(e, e′) of a given entity type and bucket.
Next, from A we compute the unnormalised graph Laplacian [22] as defined in
Equation 2:

L = diag(A) − A (2)

where, diag(A) corresponds to the diagonal matrix, i.e., diag(A)i,i = Ai,j for
i = j.
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From matrix L we are particularly interested in specific properties, which we
use for clustering and which are extracted from the eigenvectors and eigenvalues
by performing a singular value decomposition on L. The eigenvectors correspond
to a square matrix n×n, where each row represents the projected entity into a n-
dimensional space. Eigenvectors are later used to cluster entities using standard
k–means algorithm.

However, an important aspect that has impact on the clustering accuracy, is
the number of dimensions considered for the k–means and the k itself. We adopt
a heuristic proposed in [22]. The number of dimensions that are used in the
clustering step corresponds to the first spike in the eigenvalue distribution. In
addition, this heuristic is also used to determine the number k for the clustering
step.

5 Entity Retrieval - Expansion and Reranking

In this section, we describe the online process of entity retrieval, including the
process of expansion and re-ranking of the query result set.

5.1 Query-Biased Results Expansion

Having obtained an initial result set Eb = {e1, . . . , ek} through a state of the
art ER method (BM25f), the next step deals with expanding the result set for
a given user query. From entities in Eb, we extract their corresponding set of
clusters C as computed in the pre-processing stage. The result set is expanded
with entities belonging to the clusters in C. We denote the entities extracted
from the clusters with Ec.

There are several precautions that need to be taken into account in this
step. We define two threshold parameters for expanding the result set. The first
parameter, cluster size, defines a threshold with respect to the number of entities
belonging to a cluster. If the number is above a specific threshold, we do not take
into account entities from that cluster. The underlying rationale is that clusters
with a large number of entities tend to be generic and less homogeneous, i.e.
they tend to be a weak indicator of similarity. The second parameter deals with
the number of entities with which we expand the result set for a given entity
cluster. The entities are considered based on their distance to the entity eb. We
experimentally validate the two parameters in Section 7.

The fit of expanded entities ec ∈ Ec concerns their similarity to query q
and the similarity to eb, which serves as the starting point for the expansion
of ec. We measure the query-biased entity similarity in Equation 3, where the
first component of the equation measures the string distance of ec to q, that
is ϕ(q, ec). Furthermore, this is done relative to entity eb, such that if the eb is
more similar to q, ϕ(q, eb) < ϕ(q, ec) the similarity score will be increased, hence,
the expanded entity ec will be penalized later on in the ranking (note that we
measure distance, therefore, the lower the sim(q, e) score the more similar an
entity is to q).
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The second component represents the actual distance score d(eb, ec).

sim(q, ec) = λ
ϕ(q, ec)

ϕ(q, eb)
+ (1 − λ)d(eb, ec) (3)

We set the parameter λ = 0.5, such that entities are scored equally with respect
to their match to query q and the distance between entities, based on our baseline
approach. The main outcome of this step is to identify possibly relevant entities
that have been missed by the scoring function of BM25F. Such entities could be
suggested as relevant from the extensive clustering approaches that consider the
structural and lexical similarity.

5.2 Query Analysis for Re-ranking

Following the motivation example in Figure 1b, an important factor on the
re-ranking of the result set is the query type affinity. It models the relevance
likelihood of a given entity type te for a specific query type tq. We give priority to
entities that are most likely to be relevant to the the given query type tq and are
least likely to be relevant for other query types t′q. The probability distribution is
modeled empirically based on a previous dataset, BTC10. The score γ, we assign
to any entity coming from the expanded result set is computed as in Equation 4.

γ(te, tq) =
p(te|tq)∑

t′
q �=tq

(
1 − p(te|t′

q)
) (4)

An additional factor we use in the re-ranking process is the context score.
To better understand the query intent, we decompose a query q into its
named entities and additional contextual terms. An example is the query
q = {‘harry potter movie’} from our query set, in which case the contextual
terms would be ‘movie’ and the named entity ‘Harry Potter ’ respectively. In
case of ambiguous queries, the contextual terms can further help to determine
the query intent. The context score (see Equation 5) indicates the relevance of
entity e to the contextual terms Cx of the query q. For entities with a high
number of textual literals, we focus on the main literals like labels, name etc.

context(q, e) =
1

|Cx|
∑

cx∈Cx

1e has cx (5)

5.3 Top–k Ranking Model

The final step in our entity retrieval approach, re-ranks the expanded entity
result set for a query q. The result set is the union of entities E = Eb ∪ Ec. In
the case of entities retrieved through the baseline approach e ∈ Eb, we simply
re-use the original score, but normalize the values between [0, 1]. For entities
from Ec we normalize the similarity score relative to the rank of entity eb (the
position of eb in the result set) which was used to suggest ec. This boosts entities
which are the result of expanding top-ranked entities.

rank score(e) =

{
sim(q,e)
rank(eb)

if e ∈ Ec

bm25f(q, e) otherwise
(6)
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The final ranking score α(e, tq), for entity e and query type tq assigns higher
rank score in case the entity has high similarity with q and its type has high
relevance likelihood of being relevant for query type tq. Finally, depending on
the query set, in case q contains contextual terms we can add context(q, e) by
controlling the weight of λ (in this case λ = 0.5).

α(e, tq) = λ (rank score(e) ∗ γ(te, tq)) + (1 − λ) ∗ context(q, e) (7)

The score α is computed for all entities in E. In this way based on observations
of similar cases in previous datasets, like the BTC10 we are able to rank higher
entities of certain types for specific queries.

6 Experimental Setup

Here we describe our experimental setup, specifically the datasets, baselines and
the ground truth. The setup and evaluation data are available for download3.

6.1 Evaluation Data

Dataset. In our experimental setup we use the BTC12 dataset [9]. It represents
one of the largest periodic crawls of Linked Data, also containing well-known
knowledge bases like Freebase and DBpedia. The overall statistics of the data
are: (i) 1.4 billion triples, (ii) 107,967 graphs, (iii) 3,321 entity types, and (iv)
454 million entities.

Entity Clusters. The statistics for the generated clusters are as follows: the
average number of entities fed into the LSH bucketing algorithm is 77,485,
whereas the average number of entities fed into x–means and spectral is 400.
The number of generated entity buckets by LSH is 20,2009, while the number
of clusters for x–means and spectral is 13 and 38, with an average of 10 and 20
entities per cluster respectively.

Query Dataset. To evaluate our retrieval approach we use the SemSearch4

query set from 2010 with 92 queries. The SemSearch query set is a standard
collection for evaluating entity retrieval tasks.

6.2 Baseline and State of the Art

Baseline. We distinguish between two cases for the original BM25F baseline: (i)
Bt and (ii) Bb. In the first case, we use the title or label of an entity as a query
field, whereas in the second case we use the full body of an entity (consisting of
all textual literals). The scoring of the fields is performed similar as in [5].

State of the Art. We consider the approach proposed in [21] as the state-of-
the-art. Similar to their experimental setup, we analyze two cases: (i) S1 and (ii)
3 http://l3s.de/∼fetahu/iswc2015/
4 http://km.aifb.kit.edu/ws/semsearch10/

http://l3s.de/~fetahu/iswc2015/
http://km.aifb.kit.edu/ws/semsearch10/
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S2. S1 expands the entity set from the baseline approach with directly connected
entities, and S2 expands with entities up to the second hop. For further details
we refer the reader to [21]. In our experiments, we found that the S2 did not
result in any significant change in performance when compared to S1, and we
therefore do not report further on S2.

Our Approaches. We analyze two entity retrieval techniques from our app-
roach. The first is based on the x–means clustering approach, which we denote
by XM. The second technique is based on spectral clustering and is denoted
by SP. In both cases, we only expand the result set with entities coming from
clusters with a total of ten entities associated with a cluster (see Section 5.1),
and finally add only the most relevant entity based on the sim(q, ec) score.

BTC Indexes. For the baseline, we generate a Lucene index, where we index
entity profiles on two fields title and body (consisting of all the textual literals
of an entity). The second index is an RDF index over the BTC dataset with
support for SPARQL queries, for which we use the RDF3X tool [13]. The first
index is used for the baseline approach, while the second for the state of the art
approach.

6.3 Ground Truth for Evaluation of Entity Retrieval

For each query in the SemSearch2010 query set, we first establish the ground
truth through crowdsourcing. Crowdsourced evaluation campaigns for the task
of ad-hoc object retrieval have been shown to be reliable [4,8]. For each of the 92
queries, we pool the top 50 entities retrieved by the various methods, resulting
in the top-k pooled entities corresponding to the query. By doing so we generate
4,600 query-entity pairs.

We deploy atomic tasks in order to acquire relevance labels from the crowd
for each query-entity pair. We follow the key prescriptions for task design and
deployment that emerged from the work of Blanco et al. [4] to build a ground
truth. Workers are asked to assess the relevance of each retrieved entity to the
corresponding query on a 5-point Likert-type scale5.

We collect 5 judgements from different workers for each pair to ensure reliable
relevance assessments and discernible agreement between workers. This results
in a total of 23,000 judgements. The final relevance of an entity is considered to
be the aggregated relevance score over the 5 judgements. We assess and compare
the performance of the different methods by relying on the ground truth thus
generated (see Section 7).

6.4 Evaluation Metrics

Evaluation metrics assess the clustering accuracy and the retrieval performance.

Cluster Accuracy. As an initial evaluation, we assess the quality of our clusters.
From a set of entities belonging to the same cluster, the accuracy is measured
5 1:Not Relevant, 2:Slightly Relevant, 3:Moderately Relevant, 4:Fairly Relevant and
5:Highly Relevant.
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as the ratio of entities that belong together over the total number of entities in a
cluster, where assessments are obtained through crowdsourcing (see Section 7).

Precision. P@k measures the precision at rank k, in our case k = {1, . . . , 10}.
It is measured as the ratio of retrieved and relevant entities up to rank k over
the total number of entities retrieved up to rank k.

Recall. R@k is measured as the ratio of retrieved and relevant entities up to
rank k over the total number of relevant entities up to rank k. The total number
of relevant entities for a query is determined by the relevance judgements on a
large pool of entities.

Mean Average Precision. MAP provides an overall precision of a retrieval
approach across all considered ranks.

Normalized Discounted Cumulative Gain. It takes into account the rank-
ing of entities generated using one of the retrieval approaches and compares it
against the ideal ranking in the ground truth.

nDCG@k =
DCG@k

iDCG@k
DCG@k = rel1 +

k∑

i=2

reli
log2i

where DCG@k represents the discounted cumulative gain at rank k, and
iDCG@k is the ideal DCG@k computed from the ground truth.

7 Evaluation and Discussion

In this section we report evaluation results of the two main steps in our approach.
We first evaluate the quality of the pre-processing step, i.e., the clustering results
for the x–means and spectral clustering algorithms. Next, we present the findings
from our rigorous evaluation of the entity retrieval task.

7.1 Cluster Accuracy Evaluation

Considering the large number of clusters that are produced in the pre-processing
step for a given type and bucket, evaluating the accuracy and quality of all clus-
ters is infeasible. We randomly select 10 entity types and 10 buckets, resulting in
100 clusters for evaluation, where for each cluster we randomly select a maximum
of 10 entities.

To evaluate the cluster accuracy, we deploy atomic microtasks modeled such
that a worker is presented with sets of 10 entities belonging to a cluster, along
with a description of the entity in the form of the entity profile. The task of the
worker is to pick the odd entities out (if any). We gather 5 judgments from dif-
ferent workers for each cluster. By enforcing restrictions available on the Crowd-
Flower platform, and following state of the art task design recommendations,
we ensure that we receive judgments from the best workers (workers with high
reputation as indicated by CrowdFlower).
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Figure 3b presents our findings for the evaluation of the clustering process.
We note that for x–means and spectral clustering approaches, nearly 35% and
38% of the clusters are judged to be perfect respectively (i.e., the entities within
the cluster were all found to belong together). 39% of the clusters corresponding
to spectral clustering and 40% of the clusters corresponding to x-means, have an
accuracy of 80%. Considering its multidimensional representation of the entities,
spectral clustering has higher accuracy and it does not have clusters below 70%
accuracy. The lowest accuracy of 70% for spectral clustering implies that in
each cluster there were only 3 entities that did not belong to the cluster. The
implications of an accurate clustering process become clearer in the next section,
where we assess the accuracy of finding relevant entities in the generated entity
clusters.
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Fig. 3. (a) Worker agreement on cluster accuracy for spectral and x–means clustering.
(b) Cluster accuracy for the spectral and x–means clustering approaches.

Figure 3a presents the pairwise agreement between workers on the quality of
each cluster. In case of the spectral clustering, we observe a high inter-worker
agreement of 0.75 as per Krippendorf’s Alpha. We observe a moderate inter-
worker agreement of 0.6 as per Krippendorf’s Alpha on the clusters resulting
from x–means.

7.2 Entity Retrieval Evaluation

Figure 4a presents a detailed comparison between the P@k for the different
methods. The proposed approaches outperform the baseline and state of the art
at all ranks. The precision is highest at P@1 = 0.6 whereas for the later ranks it
stabilizes at 0.4. In contrast to our approach, the performance of the baseline and
the state of the art is more uniform, and is around P@k = 0.25. The best overall
performing approach is the retrieval approach based on spectral clustering SP .
Table 1 shows the details about the performance of the respective approaches as
measured for our evaluation metrics.
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Fig. 4. (a) P@k for the different entity retrieval approaches under comparison. (b) The
relevant entity frequency based on their graded relevance (from 2-Slightly Relevant to
5-Highly Relevant) for the different methods.

An interesting observation is that for our approaches the best performance
is achieved when querying for the field title. In the case of the baseline, the best
performance is achieved when querying for the field body (Bb) while the same is
inconclusive in case of the state-of-the-art methods (S1t and S1b). We achieve
a significantly higher retrieval performance when using the title field. This can
be explained by the fact that entities that match a query on their title field
when compared to those that match a query on their body field, have a higher
likelihood of being an exact match.

The high gain in performance through our methods (SP and XM ) stems
mainly from the two steps in our approach. The first step expands the result
set with relevant entities as shown in Figure 4b. The figure shows the number
of relevant entities corresponding to the different grading scales as described in
Section 7.1. In all cases we note that our methods find more relevant entities.
The second step which re-ranks the expanded result set helps in reducing the
number of ‘non-relevant’ entities. We find that S1t has a 14% decrease of non-
relevant entities, whereas SPt and XMt depict a 35% decrease, respectively. In
second case where we query the body field, the number of ‘non-relevant’ entities
for S1b decreases by about 13%, while SPb and XMb depict a 24% decrease.

We additionally analyze the performance of the entity retrieval approaches
through the NDCG@k metric. Figure 5 shows the NDCG scores. Similar to our
findings for P@k presented in Table 1, our approaches perform best for the query
field title and significantly outperform the approaches under comparison.

Next, we present observations concerning the different query types and the
entity result set expansion (see Section 5.1) parameters. In Figure 6a we show
the improvement we gain in terms of MAP for the different query types. We
observe that there is quite a variance for the different query types, however, in
nearly all cases, the biggest improvement is achieved through the SP approach.
Interestingly for the query type ‘Creative Work’ the state of the art is nearly
as good as the XM approach, whereas in the case of ‘Weapon’ the baseline
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Table 1. Performance of the different entity retrieval approaches. In all cases our
approaches are significantly better in terms of P/R (p < 0.05 measured for t-test)
compared to baseline and state of the art. There is no significant difference between
SP and XM approaches.

Bt Bb S1t S1b SPt SPb XMt XMb

P@10 0.103 0.170 0.222 0.240 0.413 0.394 0.417 0.381
R@10 0.052 0.089 0.112 0.118 0.206 0.219 0.216 0.215
MAP 0.110 0.191 0.224 0.246 0.497 0.426 0.482 0.407
Avg(R) 0.031 0.058 0.063 0.074 0.132 0.133 0.131 0.130
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performs best. One possible explanation for this is that in the case of ‘Creative
Work’ the explicit entity similarity statements are abundant.

Addressing the case of optimizing our retrieval approaches, SP and XM ,
we experimentally show the impact that the expansion of the result set has
on the measured performance metrics. Here, we show the impact on the average
NDCG score. Figure 6b shows the performance at average NDCG for the varying
cluster size and number of entities added (result set expansion) for every entity
in Eb. The best performance is achieved for a rather smaller cluster size ranging
between 5 and 10 entities per cluster. Regarding the number of entities with
which the result set is expanded for every eb, the best performance is achieved
by expanding with one entity per cluster. The increase in cluster size and number
of entities attributes to a decrease in performance.

7.3 Discussion

Scalability. In the pre-processing stage we introduced the clustering approaches,
which first bucket entities together based on the LSH algorithm. This particular
step significantly improves the scalability of such an offline step. If considering
the x-means algorithm, under the simplistic assumption that it represents the
original k–means for which the complexity is O(ndk+1log(n)) (we assume the
number of dimensions for the Euclidean space is fixed) for a fixed number of
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Fig. 6. (a) The aggregated MAP for different query types and for the different retrieval
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clusters and dimensions. Now, clustering without the bucketing step, we would
have around n = 77, 485 entities for clustering with an average of k = 13 clusters.
Hence, O(77485d·13+1log(77485)) > O(400d·13+1log(400)), where after bucketing
we have on average n = 400. Thus, we see a significant decrease in the runtime
(while the complexity in theory remains of the same magnitude). For the case of
spectral clustering this is even more evident, where for the adjacency matrix we
consider n(n−1)/2 entity pairs, and its singular value decomposition (dependent
on the algorithm used) is cubical in terms of big-O notation.

Crowdsourced Evaluation: Precautions. In order to ensure that we acquire
reliable responses from the crowd workers, we take several precautions while
designing the tasks for the evaluation of clusters, as well as establishing the
ground-truth for the retrieval of entities. We provide clear instructions and exam-
ples to avoid misinterpretations in the relevance scoring, leading to a bias in the
judgements. We compensate workers with monetary incentives that are propor-
tionate to their contribution. In addition, we use gold standard questions as
recommended by previous works to curtail malicious activity.

Caveats and Limitations. Considering the optimization of the pre-processing
step, the process scales well even for large datasets like the BTC. The retrieval
task itself is an online process with no complex approaches and hence the corre-
sponding computational overhead is negligible for the user. We acknowledge the
need to re-cluster entities periodically in order to maintain a persistently good
entity retrieval performance. However, we believe that this is a relatively minor
overhead, when compared to the improvement in performance that it brings
about, and given the fact that it is an offline process which can be scaled using
parallel infrastructure.
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8 Conclusions and Future Work

In this work, we presented an approach to improve the performance of entity
retrieval on structured data. Building on existing state of the art methods,
we follow an approach consisting of offline preprocessing clustering, and online
retrieval, results expansion and reranking. Preprocessing exploits x–means and
spectral clustering algorithms using lexical as well as structural features. The
clustering process was carried out on a large set of entities (over 450 million).
The evaluation of the clustering process shows that over 80% of clusters have an
accuracy of more than 80%. As part of the online entity retrieval, for a given a
starting result set of entities as retrieved by the baseline approach BM25F we
further expand the result set with relevant entities. Additionally, we propose an
entity ranking model that takes into account the query type affinity. Finally, we
carry out an extensive evaluation of the retrieval process using the SemSearch
and the BTC12 datasets. The results show that our methods outperform the
baseline and state of the art approaches. In terms of standard IR metrics, our
method in combination with one of the clustering approaches, e.g. SPt improves
over S1t with ΔP@10 = +0.19, ΔMAP = +0.273 and ΔR@10 = +0.1.
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Abstract. The dynamic nature of Web data gives rise to a multitude of
problems related to the description and analysis of the evolution of RDF
datasets, which are important to a large number of users and domains,
such as, the curators of biological information where changes are constant
and interrelated. In this paper, we propose a framework that enables
identifying, analysing and understanding these dynamics. Our approach
is flexible enough to capture the peculiarities and needs of different appli-
cations on dynamic data, while being formally robust due to the satis-
faction of the completeness and unambiguity properties. In addition, our
framework allows the persistent representation of the detected changes
between versions, in a manner that enables easy and efficient navigation
among versions, automated processing and analysis of changes, cross-
snapshot queries (spanning across different versions), as well as queries
involving both changes and data. Our work is evaluated using real Linked
Open Data, and exhibits good scalability properties.

1 Introduction

With the growing complexity of the Web, we face a completely different way of
creating, disseminating and consuming big volumes of information. The recent
explosion of the Data Web and the associated Linked Open Data (LOD) ini-
tiative has led several large-scale corporate, government, or even user-generated
data from different domains (e.g., DBpedia, Freebase, YAGO) to be published
online and become available to a wide spectrum of users [22]. Dynamicity is an
indispensable part of LOD; LOD datasets are constantly evolving for several
reasons, such as the inclusion of new experimental evidence or observations, or
the correction of erroneous conceptualizations [23]. Understanding this evolu-
tion by finding and analysing the differences (deltas) between datasets has been
proved to play a crucial role in various curation tasks, like the synchronization
of autonomously developed dataset versions [3], the visualization of the evolu-
tion history of a dataset [13], and the synchronization of interconnected LOD
datasets [15]. Deltas are also necessary in certain applications that require access
to previous versions of a dataset to support historical or cross-snapshot queries
c© Springer International Publishing Switzerland 2015
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[21], in order to review past states of the dataset, understand the evolution pro-
cess (e.g., to identify trends in the domain of interest), or detect the source
of errors in the current modelling. Unfortunately, it is often difficult, or even
infeasible, for curators or editors to accurately record such deltas; studies have
shown that manually created deltas are often incomplete or erroneous, even for
centrally curated datasets [15]. In addition, such a recording would require a
closed and controlled system, and is thus, not suitable for the chaotic nature of
the Web.

To study the dynamics of LOD, we propose a framework for detecting and
analysing changes and the evolution history of LOD datasets. This would allow
remote users of a dataset to identify changes, even if they have no access to the
actual change process. Apart from identifying the change, we focus on empow-
ering users to perform sophisticated analysis on the evolution data, so as to
understand how datasets (or parts of them) evolve, and how this evolution is
related to the data itself. For instance, one could be interested in specific types
of evolution, e.g., transfers of soccer players, along a certain timeframe, e.g.,
DBpedia versions v3.7-v3.9, with emphasis on specific parts of the data, e.g.,
only for strikers being transferred to Spanish teams. This motivating example
is further discussed in Section 2, where we give an informal description of our
framework. We restrict ourselves to RDF1 datasets, which is the de facto stan-
dard for representing knowledge in LOD. Analysis of the evolution history is
based on SPARQL [18], a W3C standard for querying RDF datasets. Details on
RDF and SPARQL appear in Section 3.

Regarding change detection, our framework acknowledges that there is no
one-size-fits-all solution, and that different uses (or users) of the data may require
a different set of changes being reported, since the importance and frequency of
changes vary in different application domains. For this reason, our framework
supports both simple and complex changes. Simple changes are meant to capture
fine-grained types of evolution. They are defined at design time and should
meet the formal requirements of completeness and unambiguity, which guarantee
that the detection process is well-behaved [15]. Complex changes are meant
to capture more coarse-grained, or specialized, changes that are useful for the
application at hand; this allows a customized behaviour of the change detection
process, depending on the actual needs of the application. Complex changes are
totally dynamic, and defined at run-time, greatly enhancing the flexibility of our
approach. More details on the definition of changes are given in Section 4.

To support the flexibility required by complex changes, our detection process
is based on SPARQL queries (one per defined change) that are provided to the
algorithm as configuration parameters; as a result, the core detection algorithm
is agnostic to the set of simple or complex changes used, thereby allowing new
changes to be easily defined. Furthermore, to support sophisticated analysis of
the evolution process, we propose an ontology of changes, which allows the per-
sistent representation of the detected changes, in a manner that permits easy
and efficient navigation among versions, analysis of the deltas, cross-snapshot

1 http://www.w3.org/RDF/

http://www.w3.org/RDF/
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Fig. 1. Motivating Example

or historical queries, and the raising of changes as first class citizens. This, in a
multi-version repository, allows queries that refer uniformly to both the data and
its evolution. This framework provides a generic basis for analyzing the dynamics
of LOD datasets, and is described in Section 5.

In our experimental evaluation (Section 6), we used 3 real RDF datasets of
different sizes to study the number of simple and complex changes that usually
occur in real-world settings, and provide an analysis of their types. Moreover,
we report the evaluation results of the efficiency of our change detection process
and quantify the effect of the size of the compared versions and the number of
detected changes in the performance of the algorithm. To our knowledge, this is
the first time that change detection has been evaluated for datasets of this size.

2 Motivating Example

In our work, we provide a change recognition method, which, given two dataset
versions Dold, Dnew, produces their delta (Δ), i.e., a formal description of the
changes that were made to get Dnew from Dold. The naive approach is to express
the delta with low-level changes (consisting of triple additions and deletions).
Our approach builds two more layers on top of low level changes, each adding a
semantically richer change vocabulary.

Low-level changes are easy to define and detect, and have several nice prop-
erties [24]. For example, assume two DBpedia versions of a partial ontology
with information about football teams (Figure 1 (top)), in which the RDF
class of Real Madrid CF is subclass of SoccerClub. Commonly, change detection
compares the current with the previous dataset version and returns the low-
level delta containing the added triples: (Mikel Lasa, team, Real Madrid CF),
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(Mikel Lasa, name, Mikel Lasa), (Mikel Lasa, type, Athlete). Clearly,
the representation of changes at the level of (added/deleted) triples, leads to
a syntactic delta, which does not properly capture the intent behind a change
and generates results that are not intuitive enough for the human user. What
we would like to report is: Add Player(“Mikel Lasa”, Real Madrid CF), which
corresponds to the actual essence of the change.

In order to achieve this, we need an intermediary level of changes, called sim-
ple changes. Simple changes are fine-grained, predefined and domain-agnostic
changes. In our example, the low-level changes found as added triples, reflect
three simple changes, namely, two Add Property Instance changes, for the prop-
erty:team and property:name, and one Add Type To Individual change, for
denoting the type of athlete (Figure 1). Interestingly, a simple change can group
a set of different low-level changes.

However, it is still not easy for the user who is not domain expert and familiar
with the notion of triples to define simple changes. To address this problem,
changes of coarser granularity are needed. The main idea is to group simple
changes into complex ones, that are data model agnostic and carry domain-
specific semantics, thereby making the description of the evolution (delta) more
human-understandable and concise. In our example, the three simple changes
can be grouped under one complex, called Add Player. The change’s definition
includes two arguments: Add Player(“Mikel Lasa”, Real Madrid CF). Such a
complex change consumes the corresponding simple changes, thus, there is no
need for further reporting them.

In a nutshell, complex changes are user-defined, custom changes, which intend
to capture changes from the application perspective. Different applications are
expected to use different sets of complex changes. Complex changes are defined
at a semantic level, and may be used to capture coarse grained changes that
happen often; or changes that the curator wants to highlight because they are
somehow useful or interesting for a specific domain or application; or changes
that indicate an abnormal situation or type of evolution. Thus, complex changes
build upon simple ones because, intuitively, complex changes are much easier to
be defined on top of simple changes.

On the other hand, complex changes, being coarse-grained, cannot capture
all evolution aspects; moreover, it would be unrealistic to assume that complex
changes would be defined in a way that captures all possible evolution types.
Thus, simple changes are necessary as a “default” set of changes for describing
evolution types that are not interesting, common, or coarse-grained enough to
be expressed using complex changes.

3 Preliminaries

We consider two disjoint sets U, L, denoting the URIs and literals (we ignore
here blank nodes that can be avoided when data are published according to the
LOD paradigm); the set T= U × U × (U ∪ L) is the set of all RDF triples. A
version Di is a set of RDF triples (Di ⊆ T); a dataset D is a sequence of versions
D = 〈D1, . . . ,Dn〉.
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SPARQL 1.1 [18] is the official W3C recommendation language for querying
RDF graphs. The building block of a SPARQL statement is a triple pattern tp
that is like an RDF triple, but may contain variables (prefixed with character ?);
variables are taken from an infinite set of variables V, disjoint from the sets U,
L, so the set of triple patterns is: TP= (U∪V)× (U∪V)× (U∪L∪V). SPARQL
triple patterns can be combined into graph patterns gp, using operators like
join (“.”), optional (OPTIONAL) and union (UNION) [1] and may also include
conditions (using FILTER). In this work, we are only interested in SELECT
SPARQL queries, which are of the form: “SELECT v1, . . . , vn WHERE gp”,
where n > 0, vi ∈ V and gp is a graph pattern.

Evaluation of SPARQL queries is based on mappings, which are partial func-
tions μ : V �→ U ∪ L that associate variables with URIs or literals (abusing
notation, μ(tp) is used to denote the result of replacing the variables in tp with
their assigned values according to μ). Then, the evaluation of a SPARQL triple
pattern tp on a dataset D returns a set of mappings (denoted by [[tp]]D), such
that, μ(tp) ∈ D for μ ∈ [[tp]]D. This idea is extended to graph patterns by
considering the semantics of the various operators (e.g., [[tp1 UNION tp2]]D =
[[tp1]]D ∪ [[tp2]]D). Given a SPARQL query “SELECT v1, . . . , vn WHERE gp”,
its result when applied on D is (μ(v1), . . . , μ(vn)) for μ ∈ [[gp]]D. For the precise
semantics and further details on the evaluation of SPARQL queries, the reader
is referred to [1,16].

4 Semantics

4.1 Language of Changes

We assume a set L = {c1, . . . , cn} of changes, which is disjoint from V, U, L. The
set L is called a language of changes and is partitioned into the set of simple
changes (denoted by Ls) and the set of complex changes (denoted by Lc). Each
change has a certain arity (e.g., Add Player has two arguments); given a change
c, a change specification is an expression of the form c(p1, . . . , pn), where n is
the arity of c, and p1, . . . , pn ∈ V.

As was made obvious in Section 2, the detection semantics of a change spec-
ification are determined by the changes that it consumes and the related condi-
tions. Formally:

Definition 1. Given a simple change c ∈ Ls, and its change specification
c(p1, . . . , pn), the detection semantics of c(p1, . . . , pn) is defined as a tuple
〈δ, φold, φnew〉 where:

– δ determines the consumed changes of c and is a pair δ = (δ+, δ−), where
δ+, δ− are sets of triple patterns (corresponding to the added/deleted triples
respectively).

– φold, φnew are graph patterns, called the conditions for Dold, Dnew, respec-
tively.
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Definition 2. Given a complex change c ∈ Lc, and its change specification
c(p1, . . . , pn), the detection semantics of c(p1, . . . , pn) is defined as a tuple
〈δ, φold, φnew〉 where:

– δ determines the consumed changes of c and is a set of change specifi-
cations from Ls, i.e., δ = {c1(p11, . . . , p

1
n1), . . . , cm(pm1 , . . . , pmn m)} where

{c1, . . . , cm} ⊆ Ls.
– φold, φnew are graph patterns, called the conditions for Dold, Dnew, respec-

tively.

In our running example, the detection semantics of Add Property Instance
(Mikel Lasa,team, Real Madrid CF) are: δ+ = {(Mikel Lasa, team,Real
Madrid CF )}, δ− = ∅, φold = “ ”, φnew = “ ”. Additionally, the detection
semantics of Add Player(“Mikel Lasa”, Real Madrid CF) are: Add
Property Instance(Mikel Lasa, team, Real Madrid CF), Add Property
Instance(Mikel Lasa, name, “Mikel Lasa”), Add Type To Individual
(Mikel Lasa, Athlete).

The structure of the above definitions determines the SPARQL to be used for
detection (see Subsection 5.2, and [20]). Any actual detection will give specific
values (URIs or literals) to the variables appearing in a change specification. For
example, when Add Property Instance is detected, the returned result should
specify the subject and object of the instance added to the property; essen-
tially, this corresponds to an association of the three variables (parameters)
of Add Property Instance to specific URIs/literals. Formally, for a change c, a
change instantiation is an expression of the form c(x1, . . . , xn), where n is the
arity of c, and x1, . . . , xn ∈ U ∪ L.

4.2 Detection Semantics

Simple changes. For simple changes, a detectable change instantiation corre-
sponds to a certain assignment of the variables in δ+, δ−, φold, φnew, such that
the conditions (φold, φnew) are true in the underlying datasets, and the triples in
δ+, δ− have been added/deleted, respectively, from Dold to get Dnew. Formally:

Definition 3. A change instantiation c(x1, . . . , xn) of a simple change spec-
ification c(p1, . . . , pn) is detectable for the pair Dold,Dnew iff there is a μ ∈
[[φold]]Dold ∩ [[φnew]]Dnew such that for all tp ∈ δ+: μ(tp) ∈ Dnew \ Dold and for
all tp ∈ δ−: μ(tp) ∈ Dold \ Dnew and for all i: μ(pi) = xi.

Simple changes must satisfy the properties of completeness and unambiguity;
this guarantees that the detection process exhibits a sound and deterministic
behaviour [15]. Essentially, what we need to show is that each change that the
dataset underwent is properly captured by one, and only one, simple change.
Formally:

Definition 4. A detectable change instantiation c(x1, . . . , xn) of a simple
change specification c(p1, . . . , pn) consumes t ∈ Dnew \ Dold (respectively, t ∈
Dold \ Dnew) iff there is a μ ∈ [[φold]]Dold ∩ [[φnew]]Dnew and a tp ∈ δ+ (respec-
tively, tp ∈ δ−) such that μ(tp) = t and for all i: μ(pi) = xi.
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Fig. 2. Visualization of Completeness and Unambiguity

The concept of consumption represents the fact that low-level changes are
“assigned” to simple ones, essentially allowing a grouping (partitioning) of low-
level changes into simple ones. To fulfil its purpose, this “partitioning” should be
perfect, as dictated by the properties of completeness and unambiguity. Formally:

Definition 5. A set of simple changes C is called complete iff for any pair
of versions Dold, Dnew and for all t ∈ (Dnew \ Dold) ∪ (Dold \ Dnew), there is
a detectable instantiation c(x1, . . . , xn) of some c ∈ C such that c(x1, . . . , xn)
consumes t.

Definition 6. A set of simple changes C is called unambiguous iff for any pair
of versions Dold, Dnew and for all t ∈ (Dnew\Dold)∪(Dold\Dnew), if c, c′ ∈ C and
c(x1, . . . , xn), c′(x′

1, . . . , x
′
m) are detectable and consume t, then c(x1, . . . , xn) =

c′(x′
1, . . . , x

′
m).

In a nutshell, completeness guarantees that all low level changes are associ-
ated with at least one simple change, thereby making the reported delta complete
(i.e., not missing any change); unambiguity guarantees that no race conditions
will emerge between simple changes attempting to consume the same low level
change (see Figure 2 for a visualization of the notions of completeness and unam-
biguity). The combination of these two properties guarantees that the delta is
produced in a complete and deterministic manner. Regarding the simple changes,
Ls, used in this work (for a complete list, see [20]), the following holds:

Proposition 1. The simple changes in Ls [20] are complete and unambiguous.

Complex Changes. As complex changes can be freely defined by the user,
it would be unrealistic to assume that they will have any quality guarantees,
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such as completeness or unambiguity. As a consequence, the detection process
may lead to non-deterministic consumption of simple changes and conflicts; to
avoid this, complex changes are associated with a priority level, which is used to
resolve such conflicts.

The detection for complex changes is defined on top of simple ones. A com-
plex change is detectable if its conditions are true for some assignment, while
at the same time the corresponding simple changes in δ are detectable. How-
ever, this naive definition could lead to problems, as it could happen that the
same detectable simple change instantiation is simultaneously contributing in the
detection of two (or more) complex changes. Such a case would lead to undesir-
able race conditions, so we define a total order (called priority, and denoted by
<) over Lc, which helps disambiguate these cases. This leads to the following
definitions:

Definition 7. A complex change instantiation c(x1, . . . , xn) is initially
detectable for the pair Dold, Dnew iff there is a μ ∈ [[φold]]Dold ∩[[φnew]]Dnew such
that c′(μ(p′

1), . . . , μ(p′
m)) is detectable for all c′(p′

1, . . . , p
′
m) ∈ δ, and μ(p′

i) = xi

for i = 1, . . . , n.

Definition 8. An initially detectable complex change instanti-
ation c(x1, . . . , xn) consumes a simple change instantiation c′(x′

1, . . . , x
′
m) iff

c′(p′
1, . . . , p

′
m) ∈ δ and there is a μ ∈ [[φold]]Dold ∩ [[φnew]]Dnew such that for all

i, μ(pi) = xi, μ(p′
i) = x′

i.

Definition 9. A complex change instantiation c(x1, . . . , xn) is detectable for the
pair Dold,Dnew iff it is initially detectable for the pair Dold,Dnew and there is
no initially detectable change instantiation c′(x′

1, . . . , x
′
m) such that c < c′ and

c, c′ have at least one consumed simple change instantiation in common.

5 Change Detection for Evolution Analysis

5.1 Representing Detected Changes

We treat detected changes (i.e., change instantiations) as first-class citizens in
order to be able to perform queries analysing the evolution of datasets. Further,
we are interested in performing combined queries, in which both the datasets
and the changes should be considered to get an answer. To achieve this, the
representation of the changes that are detected on the data cannot be separated
from the data itself.

For example, consider the following query: “return all the left backs born
before 1980, which were transferred to Athletic Bilbao between versions Dold and
Dnew and used to play for Real Madrid CF in any version”. Such a query requires
access to the changes (to identify transfers to Athletic Bilbao), and to the data
(to identify which of those transfers were related to left backs born before 1980);
in addition, it requires access to all previous versions (cross-snapshot query) to
determine whether any of the potential results (players) used to play for Real
Madrid CF in any version.
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Fig. 3. The Ontology of Changes

To answer such queries, the repository should include all versions, as well
as their changes. We opt to store the changes in a structured form; their rep-
resentation should include connections with the actual entities (e.g., teams or
players) and the versions that they refer to. This can be achieved by representing
changes as RDF entities, with connections to the actual data and versions, so
that a detectable change can be associated with the corresponding data entities
that it refers to.

In particular, we propose the use of an adequate schema (that we call the
ontology of changes) for storing the detected changes, thereby allowing a supervi-
sory look of the detected changes and their association with the entities they refer
to in the actual datasets, facilitating the formulation and the answering of queries
that refer to both the data and their evolution (see Figure 3). In a nutshell, the
schema in our representation describes the change specifications and detection
semantics, whereas the detected changes (change instantiations) are classified as
instances under this schema. More specifically, at schema level, we introduce one
class for each simple and complex change c ∈ L. Each such class c is subsumed
by one of the main classes “Simple Change” or “Complex Change”, indicating
the type of c. Each change is also associated with its user-defined name, a num-
ber of properties (one per parameter), and the names of these parameters (not
shown in Figure 3 to avoid cluttering the image).

For complex changes, we also store information regarding the changes being
consumed by each complex change, as well as the SPARQL query used for its
detection, which is automatically generated at change definition time; this is done
for efficiency, to avoid having to generate this query in every run of the detection
process. Note that the information related to complex changes is generated on
the fly at change creation time (in contrast to simple changes, which are built
in the ontology at design time). All schema information is stored in a dataset-
specific named graph (“D/changes/App1/schema”, for a dataset D and a related
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application App1); this is necessary because each different application may adopt
a different set of complex changes.

At instance level, we introduce one individual for each detectable change
instantiation c(x1, . . . , xn) in each pair of versions (AddPI1 and AddPlayer1).
This individual is associated with the values of its parameters, which are essen-
tially URIs or literals from the actual dataset versions. This provides the “link”
between the change repository and the data, thereby allowing queries involving
both the changes and the data. In addition, complex changes are connected with
their consumed simple ones. The triples that describe this information are stored
in an adequate named graph (e.g., “D/changes/v1-v2”, for the changes detected
between v1, v2 of the dataset D).

5.2 Change Detection Process and Storage

To detect simple and complex changes, we rely on plain SPARQL queries, which
are generated from the information drawn from the detection semantics of the
corresponding changes (Definition 1 and 2). For simple changes, this informa-
tion is known at design time, so the query is loaded from a configuration file,
whereas for complex changes, the corresponding query is generated once at
change-creation time (run-time) and is loaded from the ontology of changes (see
Figure 3). For examples of such queries, see [20]. The results of the generated
queries determine the change instantiations that are detectable; these results
determine the actual triples to be inserted in the ontology of changes.

The SPARQL queries used for detecting a simple change are SELECT queries,
whose returned values are the values of the change instantiation; thus, for each
variable in the change specification, we put one variable in the SELECT clause.
Then, the WHERE clause of the query includes the triple patterns that should (or
should not) be found in each of the versions in order for a change instantiation
to be detectable; more specifically, the triple patterns in δ+ must be found in
Dnew but not in Dold, the triple patterns in δ− must be found in Dold but not
in Dnew, and the graph patterns in φold, φnew should be applied in Dold, Dnew,
respectively.

The generation of the SPARQL queries for the complex changes follows a
similar pattern. The main difference is that complex changes check the existence
of simple changes in the ontology of changes, rather than triples in the two ver-
sions (as is the case with simple changes detection); therefore, complex changes
should be detected after the detection of simple changes and their storage in
the ontology. Note also that the considered simple changes should not have been
marked as “consumed” by other detectable changes of a higher priority; thus,
it is important for queries associated with complex changes to be executed in a
particular order, as implied by their priority.

Following detection, the information about the detectable (simple or com-
plex) change instantiations is stored in the ontology of changes along with any
new consumptions of simple changes. To do so, we process each result row to
create the corresponding triple blocks, as specified in Section 5.1. This is done as
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a separate process that first stores the triple blocks in a file (on disk) and subse-
quently uploads them in the triple store (in our implementation, we use Virtuoso2

and its bulk loading process for triple ingestion). Note that the detection and
storing of changes could be done in one step, if one used an adequately defined
SPARQL INSERT statement3 that identified the detectable change instantia-
tions, created the corresponding triple blocks and inserted them in the ontology
using a single statement. However, this approach turned out to be slower by 1
to 2 orders of magnitude, partly because it does not exploit bulk updates based
on multiple threads, and also because bulk loading is much faster.

6 Experimental Evaluation

Our evaluation focuses on identifying the number and type of simple and complex
changes that usually occur in real-world settings, study the performance of our
change detection process and quantify the effect of different parameters in the
performance of the algorithm. Our experiments are based on the changes defined
in [20].
Setting. For the management of linked data (e.g., storage of datasets and query
execution), we worked with a scalable triple store, namely the open source version
of Virtuoso Universal Server4, v7.10.3209 (note that, our work is not bounded
to any specific infrastructure or triple-store). Virtuoso is hosted on a machine
which uses an Intel Xeon E5-2630 at 2.30GHz, with 384GB of RAM running
Debian Linux wheezy version, with Linux kernel 3.16.4. The system uses 7TB
RAID-5 HDD configurations. From the total amount of memory, we dedicated
64GB for Virtuoso and 5GB for the implemented application. Moreover, taking
into account that CPU provides 12 cores with 2 threads each, we decided to use a
multi-threaded implementation; specifically, we noticed that the use of 8 threads
during the creation of the RDF triples along with the ingestion process gave us
optimal results for our setting. This was one more reason to select Virtuoso for
our implementation, as it allows the concurrent use of multiple threads during
ingestion. To eliminate the effects of hot/cold starts, cached OS information etc.,
each change detection process was executed 10 times and the average times were
considered.

For our experimental evaluation, we used 3 real RDF datasets of different
sizes: a subset of the English DBpedia4 (consisting of article categories, instance
types, labels and mapping-based properties), and the FMA5 and EFO6 datasets.
Table 1 summarizes the sizes of the evaluated versions of these datasets. To
evaluate the performance of the complex change detection process, we created
3 sets of complex changes, one for each dataset. To do this, we exploit domain

2 http://virtuoso.openlinksw.com
3 http://www.w3.org/TR/2013/REC-sparql11-update-20130321/
4 http://dbpedia.org
5 http://sig.biostr.washington.edu/projects/fm/AboutFM.html
6 http://www.ebi.ac.uk/efo/

http://virtuoso.openlinksw.com
http://www.w3.org/TR/2013/REC-sparql11-update-20130321/
http://dbpedia.org
http://sig.biostr.washington.edu/projects/fm/AboutFM.html
http://www.ebi.ac.uk/efo/
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Table 1. Evaluated Datasets: Versions and Sizes

DBpedia FMA EFO

Version v3.7 v3.8 v3.9 v1.4 v3.0 v3.1 v2.44 v2.45 v2.46 v2.47 v2.48 v2.49 v2.50

# Triples 49M 63M 68M 1.51M 1.67M 1.71M 0.38M 0.38M 0.39M 0.39M 0.4M 0.4M 0.42M

Table 2. Sets of Complex Changes for DBpedia, FMA and EFO

DBpedia FMA EFO

Add Subject (1) Add Concept (1) Add Definition (1)

Delete Subject (1) Delete Concept (1) Add Synonym (1)

Add Thing (1) Add Restriction (1) Delete Definition (1)

Delete Thing (1) Delete Restriction (1) Delete Synonym (1)

Add Athlete (1) Add Synonym (1) Mark as Obsolete (2)

Update Label (2) Update Comment (2) Update Comment (2)

Add Place (2) Update Domain (2) Update Domain (2)

Delete Place (2) Update Range (2) Update Label (2)

Add Person (3) Add Observation (3) Update Range (2)

Delete Person (3) Delete Observation (3) Update Property (4)

experts knowledge7, so as to have sets of changes that reflect real-users needs
and show similar characteristics, namely (i) same number of complex changes in
the sets and (ii) very close numbers of simple changes consumed by the complex
changes in the sets. Table 2 presents the particular complex changes used for each
dataset along with the number of simple changes consumed (for the definition
of the changes, see [20]).

For DBpedia and FMA, let DBp1, DBp2 and FMA1, FMA2 stand for the
pairs of versions (v3.7, v3.8), (v3.8, v3.9), and (v1.4, v3.0), (v3.0, v3.1), respec-
tively. Similarly, we denote with EFO1 the pair of versions (v2.44, v2.45) of the
EFO dataset, with EFO2 the pair of versions (v2.49, v2.50), and so forth. To
our knowledge, this is the first time that change detection has been evaluated
for datasets of this size.
Detected Simple Changes. Figure 4 summarizes the number and type of
simple changes that appear in the evaluated datasets. We note the large number
of changes which occurred during DBpedia evolution compared to the FMA and
EFO datasets, due mostly to its bigger size. However, even if the versions sizes
of FMA are much smaller than DBpedia (Table 1), there are cases in which
the number of changes between two FMA versions are of the same order of
magnitude compared to the number of changes between two DBpedia versions
(e.g., Add Property Instance). This is explained by the fact that FMA contains
experimental biological results and measurements that change over time, thus
new versions are vastly different from previous ones. Moreover, observe that the
majority of changes (in all datasets except EFO) are applied to the data level
(e.g., Add Property Instance), whereas in EFO, we have also changes which

7 http://www.ebi.ac.uk/

http://www.ebi.ac.uk/
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Fig. 4. Detected Simple Changes

are applied to the schema (we notice a big number of Add Superclass changes,
expressing a modification on the hierarchy of the EFO schema).
Performance of Simple Change Detection. Table 3 reports on the perfor-
mance of the detection process for the employed datasets. We split the results
in two parts, namely triple creation and triple ingestion; the former includes
the execution of the SPARQL queries for detection and the identification of the
triples to be inserted in the ontology of changes, whereas the latter is the actual
enrichment of the ontology of changes. Our main conclusion is that the num-
ber of simple changes is a more crucial factor for performance than the sizes of
the compared versions. This observation is more clear in the DBpedia dataset,
where the evolution between v3.7 and v3.8 produces about twice the number of
changes than the evolution between v3.8 and v3.9; despite the fact that in the
second case, we compare larger dataset versions (Table 1), the execution time
in the former case is almost twice as large. Note that this conclusion holds for
both triple creation and ingestion. Overall, our approach is about 1 order of
magnitude faster compared to the most relevant approach, presented in [15]. To
show this, we performed an additional experiment with the largest dataset used
in [15], namely the GO8 dataset (versions v22-09-2009 and v20-04-2010) with
about 0.2M triples per version. In this experiment, our approach needs 1,52 sec,
while [15] requires 33,13 sec.
Detected Complex Changes. Figure 5 summarizes the number of complex
changes per type for the evaluated datasets. Clearly, the size of the datasets
determines the number of the complex changes occurred during the datasets
evolution; abstractly speaking, the bigger the dataset (see Table 1), the more
the changes. From Figure 5, we can identify the particular types of complex

8 http://geneontology.org

http://geneontology.org
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Table 3. Performance of Simple Change Detection

Versions Pairs # Simple Changes # Ingested Triples Triple Creation (sec) Triple Ingestion (sec) Duration (sec)

DBp1 20.7M 74.8M 412 143 555
DBp2 9.3M 32M 235 73 308
FMA1 2.7M 8.8M 113 12 125
FMA2 2.5M 9.7M 140 12 152
EFO1 0.1K 0.3K 0.33 0.11 0.44
EFO2 59K 180K 0.9 1.63 2.53
EFO3 0.3K 1K 0.22 0.79 1.01
EFO4 1.9K 6.4K 0.64 0.33 0.97
EFO5 0.6K 2K 0.57 0.2 0.77
EFO6 2.8K 8.9K 0.47 0.39 0.86

Fig. 5. Detected Complex Changes

changes that are the most popular ones. Specifically, in DBpedia, changes like
Add Subject, Add Thing and Add Person are very common (on average, there
are 2.7M, 1M and 0.5M changes, respectively). In FMA, we observe a big
number of Add Concept, Delete Concept, Add Observation, Delete Observation
and Add Synonym changes with about 140K, 140K, 140K, 140K, 46K changes,
respectively. EFO is the smallest dataset with the smaller number of changes; for
example, we count about 7K, 7K and 1.5K Add Synonym, Delete Synonym and
Add Definition changes. In overall, the majority of complex changes are applied
to the data level.
Performance of Complex Change Detection. Table 4 reports on the perfor-
mance of the complex change detection process for the employed RDF datasets.
Again, we provide execution times for both the triple creation, i.e., for the exe-
cution of the SPARQL queries for detecting the triples to be inserted in the
ontology of changes, and the triple ingestion, i.e., for the actual enrichment of
the ontology of changes. Moreover, we show the size, in number of triples, of the
ontology of changes per dataset; the ontology of changes, as produced after iden-
tifying the simple changes, is used for searching for complex changes, instead of
the actual datasets versions. The bigger the size of the ontology of changes, the
higher the execution time (for both triple creation and ingestion). Given that,
typically, the ontologies of changes contain much fewer triples than the datasets
versions, searching for complex changes needs much less time, compared to the
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Table 4. Performance of Complex Change Detection

Versions # Complex Ontology of # Ingested Triple Triple Duration
Pairs Changes Changes Size Triples Creation (sec) Ingestion (sec) (sec)

DBp1 5.79M 74.8M 100.2M 136.5 52.8 189.3
DBp2 5.67M 32M 53.6M 130.7 48 178.7
FMA1 616.4K 8.8M 13.6M 20.93 19.65 40.58
FMA2 627.8K 9.7M 13.1M 20.84 19.23 40.07
EFO1 36 0.3K 0.5K 0.79 0.04 0.83
EFO2 15.7M 180K 243.6K 1.17 0.93 2.1
EFO3 39 1K 1.2K 0.08 0.02 0.1
EFO4 1M 6.4K 11.1K 0.35 0.21 0.56
EFO5 287 2K 3.4K 0.57 0.06 0.63
EFO6 1M 8.9K 14.3K 0.44 0.07 0.51

time required for searching simple changes. The reported small execution times
are affected as well by the smaller number of complex changes identified, com-
pared to the number of the identified simple changes. Finally, note that here we
follow a multi-threaded implementation only for triple ingestion. Due to the fact
that unambiguity does not hold for complex changes, we cannot perform triple
creation in parallel.

7 Related Work

In general, approaches for change detection can be classified into low-level and
high-level ones, based on the types of changes they support. Low-level change
detection approaches report simple add/delete operations, which are not con-
cise or intuitive enough to human users, while focusing on machine readability.
[4] discusses a low-level detection approach for propositional Knowledge Bases
(KBs), which can be easily extended to apply to KBs represented under any
classical knowledge representation formalism. This work presents a number of
desirable formal properties for change detection languages, like delta uniqueness
and reversibility of changes. Similar properties appear in [24], where a low-level
change detection formalism for RDFS datasets is presented. [10] describes a low-
level change detection approach for the Description Logic EL; the focus is on
a concept-based description of changes, and the returned delta is a set of con-
cepts whose position in the class hierarchy changed. [11] presents a low-level
change detection approach for DL-Lite ontologies, which focuses on a semanti-
cal description of the changes. Recently, [8] introduces a scalable approach for
reasoning-aware low-level change detection that uses an RDBMS, while [12] sup-
ports change detection between RDF datasets containing blank nodes. All these
works result in non-concise, low-level deltas, which are difficult for a human to
understand.

High-level change detection approaches provide more human-readable deltas.
Although there is no agreed-upon list of changes necessary for any given con-
text, various high-level operations, along with the intuition behind them, have
been proposed. Specifically, [9,14] describes a fixed-point algorithm for detecting
changes, implemented in PromptDiff. The algorithm incorporates heuristic-based
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matchers to detect changes between two versions, thus introducing uncertainty
in the results. [17] proposes the Change Definition Language (CDL) as a means
to define high-level changes. A change is defined and detected using tempo-
ral queries over a version log that contains recordings of the applied low-level
changes. The version log must be updated whenever a change occurs; this over-
rules the use of this approach in non-curated or distributed environments. In
general, these approaches do not present formal semantics of high-level opera-
tions, or of the corresponding detection process; thus, no useful formal properties
can be guaranteed.

The most relevant work appears in [15], where an approach for detecting
high-level changes appears. In that work, unlike our approach, a fixed set of
high-level changes is proposed, without providing facilities related to representing
the detected changes and answering cross-snapshot queries, or queries accessing
both the changes and the data; as such, it only partly addresses the problem of
analyzing datasets’ dynamics. Interestingly, we experience significantly improved
performance and scalability (see Section 6). In [2] the authors focus on formally
defining high-level changes as sequences of triples, but do not describe a detection
process or a specific language of changes, while [6] proposes an interesting high-
level change detection algorithm that takes into account the semantics of OWL.
Using a layered approach designed for OWL as well, [7] focuses on representing
changes only at schema level.

The idea of using SPARQL query templates to identify evolution patterns
is also used in [19]; however, this paper aims to identify problems caused dur-
ing ontology evolution, rather than analyse the evolution and report or repre-
sent changes. A complementary to ours work is presented in [5]; it defines a
SPARQL-like language for expressing complex changes and querying the ontol-
ogy of changes in a user-friendly manner. On the contrary, our work provides
the semantics of the created complex changes, and the changes ontology, upon
which the evolution analysis will be made.

8 Conclusions

The dynamicity of LOD datasets makes the automatic identification of deltas
between versions increasingly important for several reasons, such as storing and
communication efficiency, visualization and documentation of deltas, efficient
synchronization and study of the dataset evolution history. In this paper, we
proposed an approach to cope with the dynamicity of Web datasets via the
management of changes between versions. We advocated in favour of a flexible,
extendible and triple-store independent approach, which prescribes (i) the defi-
nition of custom, application-specific changes, and their management (definition,
storage, detection) in a manner that ensures the satisfaction of formal proper-
ties, like completeness and unambiguity, (ii) the flexibility and customization of
the considered changes, via complex changes that can be defined at run-time,
and (iii) the easy configuration of a scalable detection mechanism, via a generic
algorithm that builds upon SPARQL queries easily generated from the changes’
definitions.
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An important feature of our work, in which we handle real datasets snapshots,
is the ability to perform sophisticated analysis on top of the detected changes,
via the representation of the detected changes in an ontology and their treatment
as first-class citizens. This allows queries spanning multiple versions of the data
(cross-snapshot), as well as queries involving both the evolution history and the
data.

Acknowledgments. This work was partially supported by the EU FP7 projects
DIACHRON (#601043) and IdeaGarden (#318552).
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Abstract. Many LOD datasets, such as DBpedia and LinkedGeoData,
are voluminous and process large amounts of requests from diverse appli-
cations. Many data products and services rely on full or partial local LOD
replications to ensure faster querying and processing. Given the evolving
nature of the original and authoritative datasets, to ensure consistent
and up-to-date replicas frequent replacements are required at a great
cost. In this paper, we introduce an approach for interest-based RDF
update propagation, which propagates only interesting parts of updates
from the source to the target dataset. Effectively, this enables remote
applications to ‘subscribe’ to relevant datasets and consistently reflect
the necessary changes locally without the need to frequently replace the
entire dataset (or a relevant subset). Our approach is based on a for-
mal definition for graph-pattern-based interest expressions that is used
to filter interesting parts of updates from the source. We implement the
approach in the iRap framework and perform a comprehensive evalua-
tion based on DBpedia Live updates, to confirm the validity and value
of our approach.

Keywords: Change propagation · Dataset dynamics · Linked data ·
Replication

1 Introduction

In recent years, there has been an increasing number of structured data published
on the Web as Linked Open Data (LOD). As of 2014, the size of the LOD
cloud consisted of more than 1.000 published datasets comprising almost 100
Billion triples1. Many of these datasets are huge and process large amount of
requests from diverse applications. Providing services on top of these datasets is
becoming a challenge due to the lack of service levels regarding the availability of
datasets [11] and restrictions imposed by the publisher on the type of query forms
and number of results2. Replication of Linked Data datasets enhances flexibility
of information sharing and integration infrastructures. Since hosting a replica of
large datasets is costly, organizations might want to host only a relevant subset

1 http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
2 https://lists.w3.org/Archives/Public/public-lod/2011Aug/0028.html
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Fig. 1. Changeset propagation approaches: left part (a) – Live mirror approach; right
part (b)– Interest-based approach

of the data, for example, using approaches such as RDFSlice [4]. However, due
to the evolving nature of these datasets, maintaining a consistent and up-to-date
replica of the relevant data is a major challenge. Resources in a dataset might
be added, updated, or removed. Applications consuming these datasets should
be capable of dealing with such updates to keep their local copies consistent.

Typically, dataset mirror applications propagate updates published by the
source dataset to a target dataset (replica). For instance, the DBpedia Live
mirror tool3 propagates all changes to a target dataset, so that at any point of
time the target dataset contains the same triples as the DBpedia Live dataset.
However, for example, an application interested in athletes uses only 268,773 out
of 4,584,616 instances of the English DBpedia 2014 dataset4. In this paper, we
present an approach for interest-based update propagation, which is based on
the specification of data interests by a target application. Based on such interest
expressions all updates are evaluated and only those changes satisfying target
applications’ interest are shipped to the target dataset. An interest-based update
propagation could significantly reduce the amount of data to be shipped and
managed at the application side and thus lower the barrier for the deployment of
Linked Data applications. We provide a thorough formalization of our approach.

Figure 1 shows the propagation of unfiltered data from a source to a target,
referred to as Live Replica (part (a) on the left). This approach propagates all
the updates irrespective of the relevance or usefulness of the data. Whereas,
using iRap (interest-based RDF update propagation) framework the source-to-
target data propagation (iRap-based Replica in Figure 1 part (b) on the right) is
filtered. With this interest-based approach only relevant data is being transfered.
Our evaluation shows, that the data required to be transfered and handled by
applications can be reduced by several orders of magnitude thus substantially
lowering the Linked Data re-use barrier.

3 https://github.com/dbpedia/dbpedia-live-mirror
4 http://wiki.dbpedia.org/services-resources/datasets/dataset-statistics

https://github.com/dbpedia/dbpedia-live-mirror
http://wiki.dbpedia.org/services-resources/datasets/dataset-statistics
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Fig. 2. Formalization overview of the interest-based RDF update propagation.

The article is structured as follows: section 2 extensively describes the formal-
ization for our framework. section 3 and section 4 discusses the implementation
and evaluation of the iRap framework in detail. section 5 describes the related
work. Finally, section 6 concludes and proposes directions for future work.

2 Formalization of Interest-Based RDF Updates

Figure 2 illustrates the overall interest-based RDF Update Propagation app-
roach; summarizing the concepts defined through the formalization. Interest
evaluation takes place over the input set of deleted (Dt1−t0) and added (At1 − t0)
triples from the source dataset (Vt1) in between time interval (t0, t1). Since
updates do not only contain interesting and uninteresting parts, but also triples
which can become interesting along with subsequent updates. We have to com-
pute and store these sets of potentially interesting triples (see Definition 8) and
take them in subsequent update assessments into account.

For our formalization we will use the standard notations I, B, L and Var
for the disjoint sets of all IRIs, blank nodes, literals (typed and untyped) and
variables respectively. An RDF graph V is a finite set of RDF triples, i.e, V ⊂
(I∪B) × I × (I∪B∪L). In this paper we use the terms RDF graph, RDF dataset,
and dataset interchangeably. An evolving dataset V g is a dataset identified using
the persistent IRI g whose content changes over time. V g

t denotes a specific
revision of V g at a particular time t. For simplicity, we will just refer to Vt

instead of V g
t .

Definition 1 (BGP). A SPARQL basic graph pattern (BGP) expression is
defined recursively as follows:
1. a triple pattern tp ∈ (I ∪ B ∪ Var) × (I ∪ Var) × (I ∪ B ∪ L ∪ Var) is a

BGP
2. the expression (P1 AND P2) is a BGP, where P1 and P2 are themselves

BGPs
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3. the expression (P FILTER E) is a BGP, where P is a BGP and E is a
SPARQL filter expression that evaluates to boolean value.

Definition 2 (Non-disjoint BGP). A non-disjoint BGP is a BGP that rep-
resents a connected graph.

An optional graph pattern (OGP) is syntactically specified with the OPTIONAL
keyword applied to a graph pattern. A set of triple patterns in a BGP must
match for there to be a solution whereas triple patterns in OGP may extend the
solution but their non-binding nature means that they cannot reject it [1].

Definition 3 (Partial Matches). Partial matches are a set of triples that does
not fully match the BGP but matches at least one triple pattern in BGP or OGP
of a query.

Triples added to, and removed from, an evolving dataset within a time-frame
are called changeset for a dataset within that time-frame.

Definition 4 (Changeset). Let Vt1 be an evolving dataset at time t1. A
changeset Δ(Vt1), between Vt0 and Vt1 , where t0 < t1, is defined as:

Δ(Vt1) = 〈Dt1−t0 , At1−t0〉
where: Dt1−t0 is a set of removed triples from Vt0 between time-points t0 and t1,
and At1−t0 is a set of added triples to Vt0 between time-points t0 and t1.

Changesets can be computed using the difference between two versions of the
RDF dataset. The result of this computation gives the removed triples, Dt1−t0 =
V0 \ V1, and added triples, At1−t0 = V1 \ V0, between given dataset revisions Vt0

and Vt1 . Datasets can be accompanied with a tool that publishes changesets at
real-time, so that users can download these changesets and synchronize their
local replicas. For instance, DBpedia publishes updates in a public changesets
folder (http://live.dbpedia.org/changesets/).

Example 1. Let us assume two files ( Listing 1.1 and Listing 1.2) are being
published by the DBpedia Live extractor for the changes made on Feb 06, 2015
between 05:00 PM (t0) and 05:02 PM (t1). A changeset Δ(Vt1) for the DBpedia
Live dataset between t0 and t1, contains D05:02−05:00 = 000001.removed.nt and
A05:02−05:00 = 000001.added.nt.

That is, Δ(V05:02) = 〈000001.removed.nt, 000001.added.nt〉.
Definition 5 (Changeset Propagation). A changeset propagation is a func-
tion υ that transforms a given dataset Vt0 to a new dataset Vt1 by applying a
changeset, Δ(Vt1). That is: υ(Vt0 ,Δ(Vt1)) = Vt0\Dt1−t0 ∪ At1−t0 = Vt1

The changeset propagation function υ, for example, deletes the triples in
000001.removed.nt from the target dataset and then inserts all triples from
000001.added.nt. This order of operation (deleted first) ensures that inserted
triples are not removed again immediately. If an organization maintaining a
replica wants to host only a subset of the original dataset, it needs to obtain

http://live.dbpedia.org/changesets/
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dbr:Marcel dbp:goals 1 .
dbr:Marcel dbo:team dbr:FNFT .
dbr:Tim%02 foaf:name

"Tim Berners-Lee" .
dbr:Cristiano_Ronaldo dbo:goals 96 .

Listing (1.1) File 000001.removed.nt

dbr:Cristiano_Ronaldo dbo:goals 216 .
dbr:Barack_Obama foaf:name "Barack Obama" .
dbr:Barack_Obama foaf:homepage

"http://www.barackobama.com/" .
dbr:Rio_Ferdinand a foaf:Person .
dbr:Rio_Ferdinand a dbo:Athlete .
dbr:Rio_Ferdinand dbp:goals 2 .
dbr:Arvid_Smit a dbo:Athlete .

Listing (1.2) File 000001.added.nt

Fig. 3. Changeset files published by DBpedia Live extractor

only relevant updates for this subset. For that purpose, we specify interests to
subscribe to ‘interesting’ changes only. During interest registration, an orga-
nization provides information about the source dataset to synchronize with, a
target dataset endpoint that supports SPARQL Update to propagate interesting
changes, and an interest query to select relevant parts of a changeset.

Definition 6 (Interest Expression). An interest expression over an evolving
dataset, Vt, is defined as: ig = 〈τ, b, op〉 where g is an IRI identifying an evolving
RDF dataset Vt, τ is an IRI identifying the target dataset endpoint, b is a non-
disjoint BGP, and op is an optional graph pattern (OGP) connected to b.

Example 2. An interest expression for a list of an athlete with information about
goals scored, and optionally their homepage, is expressed as follows:

– g = http://live.dbpedia.org/changesets
– τ = http://localhost:3030/target/sparql
– b = { ?a a dbo:Athlete . ?a dbp:goals ?goals . }
– op = { ?a foaf:homepage ?page . }

The equivalent interest expression SPARQL query will be:
SELECT * WHERE { ?a a dbo:Athlete . ?a dbp:goals ?goals . OPTIONAL { ?a foaf:homepage ?page . } }

In order to initialize a local data store, i.e., the target dataset, SPARQL CON-
STRUCT queries can be used by employing the interest expression’s BGPs to
extract and load a subset of the source dataset. Then interest expressions are
registered with our iRap framework to retrieve interesting updates from the
source dataset. iRap evaluates interest expressions over changesets being pub-
lished along with the source dataset. Without a restriction of generality, we
assume interest expressions here to be static for the lifetime of a target dataset,
since an evolution of interest expressions can be simulated by removal and addi-
tion. The result of executing an interest evaluation for an interest expression
against a changeset are three sets or triples: 1. interesting, 2. potentially inter-
esting, and 3. uninteresting triples.
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Definition 7 (Interesting Triples). Interesting triples are all triples com-
prised in full matches of the BGP and possibly OGP of an interest expression,
ig, against the sets of added or deleted triples of a changeset. Interesting triples
originating from the first element (i.e., removed triples (Dt1−t0)) of a change-
set, Δ(Vt1), are called interesting-removed triples. Interesting triples originating
from the second element (i.e., added triples (At1−t0)) of a changeset, Δ(Vt1), are
called interesting-added triples.

In addition to parts of an changeset for which the ‘interestingness’ can be
immediately decided, there might also be parts, which are potentially interesting
since, i) the missing parts to render them as interesting are already contained in
the target knowledge base or ii) they will be propagated in subsequent updates.

Definition 8 (Potentially Interesting Triples). Potentially interesting
triples are triples comprised in partial matches of the BGP or in OGP of interest
expression, ig:
– Potentially interesting triples originating from the first element (i.e.,

removed triples (Dt1−t0)) of a changeset Δ(Vt1), are called potentially
interesting-removed triples.

– Potentially interesting triples originating from the second element (i.e.,
added triples (At1−t0)) of a changeset, Δ(Vt1), are called potentially
interesting-added triples.

Potentially interesting triples can become interesting if triples missing in the
changeset, but required for a full BGP match, are found in the target dataset
or in subsequent changesets. Finally, there are triples in the changeset that are
neither interesting nor potentially interesting.

Definition 9 (Uninteresting Triples). Uninteresting triples are triples that
do not match any triple pattern in a BGP or OGP of any interest expression,
ig, against the sets of added or deleted triples of a changeset.

Uninteresting triples are not interesting at the moment and can never become
interesting with subsequent changesets. iRap uses an interest query to select
candidate triples from a changeset and to assert from a target dataset. These
candidates are retrieved in decreasing order of number of matching BGP triple
patterns of interest expressions and triples that match any part of optional graph
patterns.

Definition 10 (Interest Candidate Generation). An interest candidate
generation is the extraction of matching triples from a changeset for a non-
disjoint combination of triple patterns in BGP of an interest expression, ig. The
result of this extraction is an (n + 1)-tuple with decreasing order of matching:

π(ig,M) = 〈c0, c1, ..., cn−1, cop〉
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where:
– M is a set of removed (respectively added) triples in a changeset,
– n is the number of triple patterns in the BGP of interest expression, ig,
– ck is a set of candidate triples in M that match n − k (0 ≤ k < n) triple

patterns of the BGP of the interest expression, ig, and
– cop is a set of candidate triples in M that match at least one triple pattern

in the OGP of interest expression, ig, but none of the triple patterns in the
BGP.

Example 3. An interest candidate generation for the interest expression ig
from Example 2 over the changeset from Example 1 gives the following result:
1. π(ig,D05:02−05:00) = 〈c0, c1, cop〉 where:

c0 = ∅
c1 = dbr:Marcel dbp:goals 1. dbr:Cristiano Ronaldo dbo:goals 96.
cop = ∅

2. π(ig, A05:02−05:00) = 〈c0, c1, cop〉 where:
c0 = dbr:Rio Ferdinand a dbo:Athlete . dbr:Rio Ferdinand dbp:goals 10.
c1 = dbr:Cristiano Ronaldo dbp:goals 216 . dbr:Arvid Smit a dbo:Athlete.
cop = dbr:Barack Obama foaf:homepage "http://www.barackobama.com".

Now an interest candidate assertion verifies candidate triples with respect to all
triple patterns in the BGP of an interest expression.

Definition 11 (Interest Candidate Assertion). The candidate assertion
function extracts missing triples for the candidate, ci of π(ig,M) of an inter-
est expression ig from the target dataset, τt0 :

π′(ig,M) =
〈
c′
op, c

′
n−1, ..., c

′
1, c

′
0

〉

where:

– M is a set of removed (respectively added) triples in a changeset,
– n is the number of triple patterns in the BGP of interest expression, ig,
– c′

op is a set of triples from target dataset, τ , that matches the missing optional
graph patterns for candidate c0, of π(ig,M),

– c′
k is a set of triples from target dataset, τ , that matches the missing triple
patterns for candidate cn−k, where 0 < k < n, of π(ig,M), and

– c′
0 is a set of triples from target dataset, τ , that matches all triple patterns
in BGP of interest expression for candidate cop, of π(ig,M).

Example 4. Let the target dataset, τt0 , at time t0 contains the following triples:

#Target dataset at time t0 = 05:00 PM Feb 06, 2015
dbr:Marcel a dbo:Athlete .
dbr:Marcel dbp:goals 1 .
dbr:Cristiano_Ronaldo a dbo:Athlete .
dbr:Cristiano_Ronaldo dbo:goals 96 .
dbr:Cristiano_Ronaldo foaf:homepage "http://cristianoronaldo.com" .

An interest candidate assertion for interest candidates generated in Example 3
yields the following result:
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1. π′(ig, D05:02−05:00) =
〈
c′
op, c

′
1, c

′
0

〉
where:

c′
op = ∅

c′
1 = dbr:Marcel a dbo:Athlete .

dbr:Cristiano Ronaldo a dbo:Athlete .
dbr:Cristiano Ronaldo foaf:homepage "http://cristianoronaldo.com" .

c′
0 = ∅

2. π′(ig, A05:02−05:00) =
〈
c′
op, c

′
1, c

′
0

〉
where:

c′
op = ∅

c′
1 = dbr:Cristiano Ronaldo a dbo:Athlete .

dbr:Cristiano Ronaldo foaf:homepage "http://cristianoronaldo.com" .
c′
0 = ∅

The interest evaluation over a changeset Δ(Vt1) is performed in two steps.
First, interest expressions are evaluated against removed triples of a change-
set as d(ig,Dt1−t0), see Definition 12. Second, interest expressions are evaluated
against added triples of a changeset as α(ig, At1−t0), see Definition 13. Dur-
ing interest evaluation, added triples are combined with potentially interesting
triples from previous changesets (i.e., It1−t0 = At1−t0 ∪ρt0) to check their poten-
tial promotion to interesting triples.

Definition 12 (Interest Evaluation over Deleted Triples). Interest eval-
uation over deleted triples is a function, d(ig,Dt1−t0), that returns a 3-element
tuple5:

d(ig,Dt1−t0) = π(ig,Dt1−t0) ∪∗ π′(ig,Dt1−t0) =
〈
rt1−t0 , ri(t1−t0), r

′
t1−t0

〉

where:
– π(ig,Dt1−t0) is an interest candidate generation against deleted triples,
– π′(ig,Dt1−t0) is an interest candidate assertion against deleted triples,
– rt1−t0 = {c0 ∪ ck ∪ cop| c0, ck, cop ∈ π(ig,Dt1−t0) and ∃c′

n−k, c
′
0 ∈

π′(ig,Dt1−t0)} is the set of interesting removed triples, i.e., no longer inter-
esting,

– ri(t1−t0) = {ck ∪ cop|ck, cop ∈ π(ig,Dt1−t0) and �c′
n−k, c

′
0 ∈ π′(ig,Dt1−t0)}

is the set of potentially interesting removed triples (existing only in removed
triples of a changeset) and

– r′
t1−t0 = {c′

0 ∪ c′
k ∪ c′

op|c′
0, c

′
k, c

′
op ∈ π′(ig,Dt1−t0) and ∃cop, cn−k, c0 ∈

π(ig,Dt1−t0)} is the set of triples that become potentially interesting after
removing rt1−t0 .

Example 5. An interest evaluation over deleted triples in our running example
(using the results of Example 3 and Example 4, respectively) is as follows:

d(ig,D05:02−05:00) = π(ig,D05:02−05:00) ∪∗ π′(ig,D05:02−05:00)

=
〈
r05:02−05:00, ri(05:02−05:00), r

′
05:02−05:00

〉

5 Note: ∪∗ indicates that after the component-wise union of the two sets the results are
combined to three categories of the resulting 3-tuple, namely, (i) elements from left
that have matching right elements, (ii) elements from left that do not have matching
right elements, and (iii) element from right that have a match left.
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1. r05:02−05:00 = c1 (in Example 3)
dbr:Marcel dbp:goals 1 .
dbr:Cristiano_Ronaldo dbo:goals 96 .

2. ri(05:02−05:00) = ∅ (Since all the potentially interesting removed triples of c1
in Example 3 becomes interesting and no other triples in cop)

3. r′
05:02−05:00 = c′

1

dbr:Marcel a dbo:Athlete .
dbr:Cristiano_Ronaldo a dbo:Athlete .
dbr:Cristiano_Ronaldo foaf:homepage "http://cristianoronaldo.com" .

Definition 13 (Interest Evaluation over Added Triples). Interest evalu-
ation over added triples is a function, α(ig, At1−t0), that returns 3 element tuple
as:

α(ig, At1−t0) = π(ig, It1−t0) ∪∗ π′(ig, It1−t0) =
〈
at1−t0 , ai(t1−t0), a

′
t1−t0

〉

where:
– It1−t0 = At1−t0 ∪ ρt0 is a set of added triples and potentially interesting

triples dataset,
– π(ig, It1−t0) is an interest candidate generation over It1−t0 ,
– π′(ig, It1−t0) is an interest candidate assertion over It1−t0 ,
– at1−t0 = {c0∪ck∪cop|c0, ck, cop ∈ π(ig, It1−t0) and ∃c′

n−k, c
′
0 ∈ π′(ig, It1−t0)}

is the set of interesting added triples,
– ai(t1−t0) = {ck ∪ cop|ck, cop ∈ π(ig, It1−t0) and �c′

n−k, c
′
0 ∈ π′(ig, It1−t0)} is

the set of potentially interesting added triples that do not have related triples
in target dataset, and

– a′
t1−t0 = {c′

0 ∪ c′
k ∪ c′

op|c′
0, c

′
k, c

′
op ∈ π′(ig, It1−t0) and ∃cop, cn−k, c0 ∈

π(ig, It1−t0) respectively} is the set of triples from target dataset that are
related to ai(t1−t0).

Example 6. An interest evaluation over added triples in our running example
(using the results of Example 3 and Example 4, respectively) is as follows:

α(ig, A05:02−05:00) = π(ig, I05:02−05:00) ∪∗ π′(ig, I05:02−05:00)

=
〈
a05:02−05:00, ai(05:02−05:00), a

′
05:02−05:00

〉

1. a05:02−05:00 = c1 ∪ c′
1 ∪ c0

dbr:Cristiano_Ronaldo dbo:goals 216 .
dbr:Cristiano_Ronaldo a dbo:Athlete .
dbr:Cristiano_Ronaldo foaf:homepage "http://cristianoronaldo.com" .
dbr:Rio_Ferdinand a dbo:Athlete .
dbr:Rio_Ferdinand dbp:goals 10 .

2. ai(05:02−05:00) =

dbr:Arvid_Smit a dbo:Athlete .
dbr:Barack_Obama foaf:homepage "http://www.barackobama.com" .

3. a′
05:02−05:00 = ∅
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Now, we will use the results from Definition 12 and Definition 13 to compute
interesting and potentially interesting changesets.

Definition 14 (Interest Evaluation). An interest evaluation over a change-
set Δ(Vt1) at time t1 is a function e(ig,Δ(Vt1)) that combines the results from
an interest evaluation over deleted triples, d(ig,Dt1−t0), and an interest eval-
uation over added triples, α(ig, It1−t0), to return an interesting changeset and
potentially interesting changeset as follows:

e(ig,Δ(Vt1)) = d(ig,Dt1−t0) χ α(ig, It1−t0) = 〈Δ(τt1),Δ(ρt1)〉

where ig is an interest expression over an evolving dataset, Δ(τt1) is an interest-
ing changeset (see Definition 15), and Δ(ρt1) is potentially interesting changeset
(see Definition 16).

Definition 15 (Interesting Changeset). Let τt0 be a target dataset at time
t0. An interesting changeset, Δ(τt1), for τt0 at time t1 is defined as:

Δ(τt1) =
〈

rt1−t0 ∪ r′
t1−t0 , at1−t0

〉

where:
– rt1−t0 is the set of interesting removed triples, interesting removed optional

triples and potentially interesting removed triples with match found in target
dataset during candidate generation, π(ig,Dt1−t0),

– r′
t1−t0 is the set of triples from target dataset that are related to potentially
interesting removed triples computed by π′(ig,Dt1−t0), and

– at1−t0 is the set of interesting added triples, interesting optional triples and
potentially interesting added triples with match found in target dataset during
candidate generation, π(ig, At1−t0).

Example 7. An interesting changeset for our running example is as follows:
Δ(τ05:02) =

〈
r05:02−05:00 ∪ r′

05:02−05:00 , a05:02−05:00

〉

1. interesting removed triples – r05:02−05:00 ∪ r′
05:02−05:00 :

dbr:Marcel a dbo:Athlete .
dbr:Marcel dbp:goals 1 .
dbr:Cristiano_Ronaldo dbo:goals 96 .
dbr:Cristiano_Ronaldo a dbo:Athlete .
dbr:Cristiano_Ronaldo foaf:homepage "http://cristianoronaldo.com" .

2. interesting added triples – a05:02−05:00 :

dbr:Cristiano_Ronaldo dbo:goals 216 .
dbr:Cristiano_Ronaldo a dbo:Athlete .
dbr:Cristiano_Ronaldo foaf:homepage "http://cristianoronaldo.com" .
dbr:Rio_Ferdinand a dbo:Athlete .
dbr:Rio_Ferdinand dbp:goals 10 .

Triples that were interesting will be downgraded to potentially interesting and
stored in ρt1 , if deletion involves triples matching at least one triple pattern from
interest expression BGP.
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Definition 16 (Potentially Interesting Changeset). Let ρt0 be a potentially
interesting dataset for interest expression ig at time t0. A changeset, Δ(ρt1), for
ρt0 at time t1 is defined as:

Δ(ρt1) =
〈
ri(t1−t0), ai(t1−t0) ∪ r′

t1−t0

〉

where:
– ri(t1−t0) is a set of potentially interesting removed triples,
– ai(t1−t0) is a set of potentially interesting added triples computed on added

triples of a changeset and related triples extracted from target while removing
potentially interesting removed triples, and

– r′
t1−t0 is the set of triples from target dataset that are related to potentially
interesting removed triples computed by π′(ig,Dt1−t0).

Example 8. Potentially interesting changeset for our running example is as fol-
lows: Δ(ρ05:02) =

〈
ri(05:02−05:00), ai(05:02−05:00) ∪ r′

05:02−05:00

〉

1. Potentially interesting removed triples – ri(05:02−05:00) = ∅
2. Potentially interesting added triples – ai(05:02−05:00) ∪ r′

05:02−05:00

dbr:Arvid_Smit a dbo:Athlete .
dbr:Barack_Obama foaf:homepage "http://www.barackobama.com" .
dbr:Marcel a dbo:Athlete .

Note: since all triples in r′
05:02−05:00 are added back to target dataset, they are

no longer stored in the potentially interesting dataset.

Definition 17 (Interesting Update Propagation). An interesting change-
set propagation is an update operation that transforms the target dataset τt0 to
the new dataset τt1 and ρt0 to new dataset ρt1 by applying the result of interest
evaluation, e(ig,Δ(Vt1)). That is:

Υ (ig,Δ(Vt1)) = υ(τt0 ,Δ(τt1)) ∧ υ(ρt0 ,Δ(ρt1)) = τt1 ∧ ρt1

– Δ(Vt1) is a changeset at time t1,
– υ(τt0 ,Δ(τt1)) = τt0\[rt1−t0 ∪ r′

t1−t0 ] ∪ at1−t0 is changeset propagation of
interesting changeset, and

– υ(ρt0 ,Δ(ρt1)) = ρt0\ri(t1−t0) ∪ ai(t1−t0) ∪ r′
t1−t0 is changeset propagation

of potentially interesting changeset.

Example 9. Propagation of an interesting changeset of Example 7 to the target
dataset, τt0 and potentially interesting changeset of Example 8 to the potentially
interesting datasetρt0 transforms the datasets to:

More details on the formalization and implementation of the approach can be
found here: http://eis.iai.uni-bonn.de/Projects/iRap.html.

3 iRap RDF Update Propagation Framework

In this section we describe the architecture of our interest-based update propa-
gation framework, iRap, and its implementation. iRap was implemented in Java

http://eis.iai.uni-bonn.de/Projects/iRap.html
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dbr:Cristiano_Ronaldo dbo:goals 216 .
dbr:Cristiano_Ronaldo a dbo:Athlete .
dbr:Cristiano_Ronaldo foaf:homepage

"http://cristianoronaldo.com" .
dbr:Rio_Ferdinand a dbo:Athlete .
dbr:Rio_Ferdinand dbp:goals 10 .

Listing (1.3) Resulting target dataset
(τt1)

dbr:Arvid_Smit a dbo:Athlete .
dbr:Barack_Obama foaf:homepage

"http://www.barackobama.com" .
dbr:Marcel a dbo:Athlete .

Listing (1.4) Potentially interesting
dataset after change propagation (ρt1)

Fig. 4. State of τt1 and ρt1 after propagation

Fig. 5. Architecture of the iRap interest-based RDF update propagation framework.

using Jena-ARQ. It is available as open-source and consists of three modules:
(1) Interest Manager (IM), (2) Changeset Manager (CM) and (3) Interest Eval-
uator (IE), each of which can be extended to accommodate new or improved
functionality.

Changeset evaluation starts after a user registers an interest expression using
the IM service, as shown in Figure 5. The CM module fetches a list of change-
set folders from interest expressions and regularly (configurable) checks for new
changesets. After downloading and decompressing new changesets, the CM noti-
fies the IE, which then imports a list of interest expressions registered for this
particular changeset through the IM and initiates the evaluation. Resulting inter-
esting triples are propagated to the target dataset whereas potentially interest-
ing triples are stored in the potentially interesting dataset (ρ). After all interest
expressions have been evaluated over the changeset, the IE notifies the CM to
clean the downloaded files.

4 Evaluation

To evaluate the proposed approach, we performed experiments on the iRap
framework using changesets published by DBpedia and compared the results
with the DBpedia Live Mirror tool. The comparison considers two cases: using
iRap to update a previously-established local replica of i) an entire remote
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Table 1. Distribution of DBpedia Live changesets published October 01-15, 2014.

Date Oct 01 Oct 02 Oct 03 Oct 04-12 Oct 13 Oct 14 Oct 15

Total Changesets 0 1,621 1,755 0 5,352 751 2,578

CONSTRUCT WHERE {
?footballer a dbo:SoccerPlayer .
?footballer foaf:name ?name.
?footballer dbo:team ?team .
?team rdfs:label ?teamName.

}

Listing (1.5) I1 – Football interest
query

CONSTRUCT WHERE {
?location a ?type .
?location wgs:long ?long .
?location wgs:lat ?lat .
?location rdfs:label ?label .
?location dbo:abstract ?abstract .
OPTIONAL { ?location dcterms:subject ?subject }

}

Listing (1.6) I2 – Location interest
query

dataset ii) a subset of a remote dataset. These two cases simulate two ways
in which iRap can be used: i) using interest-based changeset propagation for
future updates of a local copy of a large dataset or ii) starting with a new subset
of the large dataset.

Experimental Setting. In order to test our approach we used the DBpedia
dump6 of September 30, 2014 for the initial setup of the target datasets for two
different application domains, namely, Location and Football datasets. Change-
sets published between October 01 and October 15, 2014 were used for evaluation
(see Table 1). Changesets are not sequential with modified date but with extrac-
tion from DBpedia Live, as discussed in the DBpedia mailing list. Initially we set
up two Jena TDB datasets for each target dataset from the DBpedia dump. We
loaded all triples from the dump to the Location dataset, whereas for the Foot-
ball dataset we only loaded a slice corresponding to interesting triples matching
Listing 1.5.

Initially, the Location dataset contains all triples from DBpedia yielding a
total of 3 billion triples, whereas the Football dataset contains only 265,622
triples. A total of 12,057 changesets (pairs of removed and added .nt.gz files)
have been published in the evaluation timeframe.

The evaluation comprises two interest expressions, I1 and I2. I1 comprises a
non-disjoint BGP containing 4 triple patterns with a maximum of two variables
per triple pattern (object-subject join), Listing 1.5. I2 comprises a non-disjoint
BGP containing 5 triple patterns with a maximum of two variables per triple
pattern (subject-subject joins) and one an OGP containing one triple pattern,
Listing 1.6.

We set up two target datasets and potentially interesting dataset using Jena
TDB and jena-fuseki for each dataset. The potentially interesting dataset stores
potentially interesting triples for each interest expression within a named graph.
All experiments were carried out on a 64-bit machine with Windows 7, Intel(R)
Core i7-4770 CPU, 16GB RAM and 1TB HD.
6 http://live.dbpedia.org/dumps/dbpedia 2014 09 30 00 00.fixed.ttl.gz

http://live.dbpedia.org/dumps/dbpedia_2014_09_30_00_00.fixed.ttl.gz
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Table 2. Comparison of results for Football App

Day Total Interesting Total Interesting Potentially Elapsed
Removed Removed Added Added Interesting (in minutes)

1 1,895,179 9,065 2,051,976 184 169,554 15.18
2 1,748,511 4,865 2,384,232 155 168,856 20.85
3 1,716 0 10,728,855 45,429 684,491 69.86
4 449 0 1,522,939 7,970 97,300 10.17
5 1,677 0 5,234,788 19,598 333,232 60.06

Table 3. Comparison of results for Location App

Day Total Interesting Total Interesting Potentially Elapsed
Removed Removed Added Added Interesting (in minutes)

1 1,895,179 77,377 2,051,976 7,093 430376 166.59
2 1,748,511 82,461 2,384,232 7,301 509,972 242.62
3 1,716 0 10,728,855 259,587 2,002,271 417.87
4 449 0 1,522,939 27,292 280,718 64.41
5 1,677 0 5,234,788 100,073 972,284 176.78

Evaluation Results and Discussion. Figure 7 summarizes our experimental
results for two target datasets shows the growth of the potentially interesting
dataset. Results of the interest evaluation for the Football dataset are presented
in Table 2. From the overall changesets considered for this evaluation, in Table 1,
only 0.38% of the removed and 0.335% of the added triples were identified as
interesting for the Football dataset. The average changeset publication interval
was 18.81s and average time required for a changeset evaluation is 0.87s. This
shows that iRap efficiently performs changeset propagations way before the next
changeset is published.

Results of the interest evaluation for the Location dataset are shown
in Table 3. From the overall changesets considered for this evaluation, in Table 1,
only 4.38% of the removed and 1.81% of the added triples were interesting for the
Location dataset. The average time spent for a changeset evaluation is 5.31s. The
interest evaluation for the Location dataset takes longer than Football dataset,
because of the number of triples in the target dataset was the full DBpedia.
Figure 7a shows the number of triples published per day and the number of inter-
esting triples and potentially interesting triples found from interest evaluation
for Football dataset. Figure 7b shows the dataset growth comparison between
iRap and a full mirror approach. As the figure clearly shows, iRap managed
datasets are almost two orders of magnitude smaller and grow much slower than
with a mirror approach. Note that the growth for each datasets is calculated
by subtracting the number of removed triples from and adding the number of
added triples to the total number of triples in the dataset.

We observed a logarithmic growth of the potentially interesting dataset for
Location and Football datasets. This is due to the number of variables used in
triple patterns, and the number and type of triple patterns in interest expression.
For example, the Football dataset interest query contains the common predicates
foaf:name and rdfs:label which are used in almost all resources and thus result
in many potentially interesting triples. Again, the average processing time per
changeset is always way below the average time between two changesets. The
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(a) Football dataset changes per day (b) Football dataset growth

(c) Location dataset changes per day (d) Location dataset growth

Fig. 7. Evaluation results

correctness of the resulting triples from the first changesets, for Football dataset
interest expression, was checked by manual inspection.

5 Related Work

Most related work on dataset change detection and propagation focuses on dis-
tributed publish/subscribe systems [3,7], resource link maintenance [8,10], tar-
get synchronization [5], partial replicas [9], data-shipping [12], lazy updates [2],
and real-time update notification [6,10]. In [7], the authors propose a peer-to-
peer publish/subscribe system for events described in RDF. By avoiding the
use of multiple indexes for the same publication they manage to reduce storage
space. Similarly, [3] provide an implementation with publish/subscribe capabil-
ities in an RDF-based peer-to-peer system to manage digital resources. As for
resource link maintenance, DSNotify [8] offers a change-detection framework to
detect and fix broken links between resources in two datasets while, Seman-
tic Pingback [10] proposes a notification system for the creation of new links
between Web resources. To note that this approach is suitable for relatively
static resources, i.e. RDF documents or RDFa annotated Web pages. In contrast,
SparqlPuSH [6] offers a real-time notification framework for data updates in a
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RDF store using a semantic PubSubHubbub-based protocol (PuSH). SparqlPuSH
allows users to subscribe for changes updates of a subset of content in a RDF
store using SPARQL. However, notification and broadcasting are only available
as RSS and Atom feeds. As regards target synchronization, RDFSync [5] per-
forms update synchronization by merging source and target graphs to get the
updated target RDF graph. Alternatively, [9] has designed an approach to repli-
cate, modify, and write-back parts of an RDF graph on devices with low comput-
ing power. In distributed databases, where data is replicated on different sites,
Lazy update protocols [2] disseminate updates to replicas to ensure consistency.
These protocols guarantee serializable execution as well as high performance.

6 Conclusion and Future Work

In this paper we presented a novel approach for interest-based RDF update prop-
agation that can consistently maintain a full or partial replication of large LOD
datasets. We have demonstrated the validity of the approach through detailed
formalizations and their application in a reference implementation of the iRap
Framework. A thorough evaluation of the approach indicates that our method
can significantly cut down on both the size of the data updates required to con-
sistently maintain a localized dataset replication up-to-date, as well as the speed
by which such updates can take place. Future work will focus on extending the
iRap Framework with a publish/subscribe distributed architecture. The frame-
work will be improved also from the usability point of view, including a user
interface and making the initial generation of RDF slices easier and more effi-
cient. An extensive evaluation of scalability and performance of the framework
will be performed and a benchmark dataset for future reference will be made
available to the research community.
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Abstract. Automated acquisition, or learning, of ontologies has
attracted research attention because it can help ontology engineers build
ontologies and give domain experts new insights into their data. How-
ever, existing approaches to ontology learning are considerably limited,
e.g. focus on learning descriptions for given classes, require intense super-
vision and human involvement, make assumptions about data, do not
fully respect background knowledge. We investigate the problem of gen-
eral terminology induction, i.e. learning sets of general class inclusions,
GCIs, from data and background knowledge. We introduce measures that
evaluate logical and statistical quality of a set of GCIs. We present meth-
ods to compute these measures and an anytime algorithm that induces
sets of GCIs. Our experiments show that we can acquire interesting sets
of GCIs and provide insights into the structure of the search space.

1 Introduction

An ontology is a machine-processable representation of knowledge about a
domain of interest. Ontologies are encoded in formal languages, such as the Web
Ontology Language [8], OWL, underpinned by expressive Description Logics,
DLs [1]. OWL ontologies are widely-used to represent and share knowledge in
application areas such as medicine, biology, astronomy, defence and others.1 An
ontology can contain data and background knowledge (terminology) where both
may be incomplete. One might benefit from finding informative correlations in
their data taking background knowledge into account. Those correlations may
suggest new axioms for the background knowledge or start new inquiries about
the data.

However, the problem of terminology induction is generally hard. Firstly, an
ideal solution should represent a coherent, self-contained, expert-level modelling.
Due to high expressivity of OWL and its Open World Assumption (OWA), the
search space can be vast or even infinite depending on the language chosen. Sec-
ondly, as usual, the quality of the result depends on the quality of the data which
can be incorrect, noisy or insufficient. Ideally, new knowledge should respect the
existing knowledge along with the data in order to be maximally informative
and avoid contradictions.

Thus, some restrictions and assumptions that simplify the problem are nec-
essary. Another consequence is that any induced knowledge is hypothetical only
1 http://bioportal.bioontology.org/

c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 533–550, 2015.
DOI: 10.1007/978-3-319-25007-6 31

http://bioportal.bioontology.org/


534 V. Sazonau et al.

and requires a domain expert judgement. The contributions of this paper are as
follows.

– We state the problem of general terminology induction, i.e. learning sets,
called hypotheses, of general class inclusions, GCIs, from data (ABox) and
background knowledge (TBox).

– We view the problem as multi-objective and define quality criteria for a
hypothesis: readability, logical quality, and statistical quality. We define qual-
ity measures for a hypothesis that respect the OWA, interactions between
axioms in the hypothesis, and interaction of the hypothesis with the back-
ground knowledge.

– We have designed and implemented methods to compute the quality measures.
– We have designed, implemented and evaluated an anytime algorithm for

general terminology induction. We have gained insights into the structure of
the search space and developed heuristics to find out promising hypotheses.
The experiments show that we can indeed learn interesting hypotheses.

2 Preliminaries

We assume the reader to be familiar with DLs [1] and OWL [8]. The following
nomenclature is used throughout this paper. O = T ∪ A is an ontology where
T , A are TBox and ABox, respectively. NC , NR, NI are disjoint and countably
infinite sets of class, property, and individual names, respectively. Σ is a sig-
nature, T̃ , Ã, Õ are signatures of T ,A,O, respectively. ind(O) = NI ∩ Õ is
a set of individual names occurring in O. α is a general class inclusion, GCI,
also called axiom. A,B,X, Y are atomic classes (class names), C,D are complex
classes (class expressions), R is a property, a, b, c, d are individuals. mod(O, Σ)
is a module [5] of an ontology O given a signature Σ. C is a set of (possibly
complex) classes. H is a hypothesis, H is a set of hypotheses. In the following,
ABox and TBox are called data and background knowledge, respectively.

3 Related Work

Ontology learning approaches can be characterised along several dimensions. The
first one is a type of the data source, e.g. texts, RDF(S), an oracle (a domain
expert), positive and negative examples for a class along with the ABox. The sec-
ond one is a type of the output knowledge, e.g. class descriptions, class inclusions,
and its expressivity. The third dimension is methods used: natural language
processing, machine learning, association rules mining, oracle queries, Formal
Concept Analysis (FCA), least common subsumer (LCS) computation, etc. The
fourth dimension is semantics used that can differ from the OWL semantics, e.g.
the Closed World Assumption (CWA). One more characteristic is appreciation
of available background knowledge. Finally, the degree of domain expert involve-
ment into the learning process greatly varies across approaches. A survey can be
found in [12].
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We concentrate on learning from instance-level data, i.e. both class and prop-
erty assertions. Among the approaches aimed at this type of input data are class
description learning, CDL [3,6,11], knowledge base completion, KBC [2], asso-
ciation rules mining, ARM [17].

The main method of CDL is machine learning, in particular, Inductive Logic
Programming, ILP [13]. The goal is to find a “good” description (class expres-
sion) of a given class name from a set of positive and negative examples [11] for
it, i.e. learning is supervised. The class description must cover all positive and
none of the negative examples. Learning is essentially a search in the space of
class expressions guided by refinement operators and heuristics. The background
knowledge can be used to optimize the search by exploiting the classification hier-
archy. To supervise learning, a domain expert has to provide additional infor-
mation in form of positive and negative examples for a given class, which can
be difficult. As a consequence, there are techniques to sample examples from
data. In particular, instances of the class are taken as its positive examples and
the CWA is made to obtain its negative examples. However, this way can cause
problems [10]. Another method of CDL is finding the least common subsumer
(LCS) [3]. LCS is computed from the most specific class (MSC) of each instance
of a target class. The method, however, is only applicable to weakly expressive
languages.

KBC is based on Formal Concept Analysis (FCA) [7]. It is aimed at acquiring
(in some sense) complete knowledge bases, in contrast to CDL. KBC requires
to define a set of class expressions in advance which can be hard. The degree
of domain expert involvement is high as the expert judges axioms and has to
supply a counterexample in the case of rejection. One more limitation is that
standard FCA can only be applied under the CWA and the OWA of OWL
requires modifications of FCA [2].

ARM is yet another approach to ontology learning [17]. Association rules are
mined from transaction tables where columns are predefined class expressions
which, similarly to the case of KBC, can be difficult to define in advance. In con-
trast to KBC, ARM, however, permits acquiring axioms that have counterex-
amples. In contrast to CDL, ARM induces class inclusions and demands neither
positive nor negative examples. The approach focuses on weakly expressive lan-
guages. Among other restrictions are its CWA and little appreciation of interac-
tion between induced axioms and the background knowledge, as well as mutual
interactions between induced axioms, since they are acquired independently.

Thus, ontology learning approaches simplify the problem in different aspects.
As a result, there is no approach that has all following capabilities: learns sets of
GCIs, appreciates interactions between axioms within the set and interactions of
the set with the background knowledge, uses standard OWL semantics, requires
no supervision, does not demand frequent human interventions.

4 Settings and Assumptions

This paper is aimed at addressing the problem of inducing general terminological
knowledge from data and background knowledge which together constitute the
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input ontology. New knowledge is acquired in form of hypotheses. A hypothesis
is a set of axioms which does not contradict the input ontology, i.e. consistent
with it, and carries new information, i.e. informative for it.

Definition 1. (Hypothesis) An axiom α is informative for an ontology O if
O � α. A set H of axioms (GCIs) is called a hypothesis for an ontology O if H
is consistent with O, i.e. O ∪H � � � ⊥, and each α ∈ H is informative for O.

A hypothesis is evaluated by quality criteria: readability, statistical quality,
and logical quality. Clearly, a hypothesis can be better on one criterion and worse
on another. Therefore, we view terminology induction as a multi-objective prob-
lem where objectives are quality measures corresponding to the quality criteria.
Hypotheses are presented to a domain expert who accepts some of them and
rejects others. In order to suggest, or recommend, good hypotheses first, a pref-
erence relation based on quality measures is imposed on the set of hypotheses.
In this paper, we apply the following settings.

(i) We use OWL and its standard semantics.
(a) We allow for the usual OWA, i.e. for an instance a and a class C it is

possible that O � C(a) and O � (¬C)(a). As a consequence, data can
be regarded as just “incomplete”.

(b) Data normally consists of both class and property assertions, e.g. people
with family relations, proteins with interactions between them.

(c) We consider any logic for which subsumption, O |= C � D, and instance
checking, O |= C(a), are decidable. We use OWL ontologies and reason-
ers.

(ii) Any input ontology O is consistent, i.e. data contains no noise which causes
inconsistency.

(iii) Learning is unsupervised, i.e. no additional information is required in form
of positive or negative examples.

(iv) A set C of target (possibly complex) classes is fixed and finite.

The goal of induction is finding good hypotheses over classes C, or C-
hypotheses. In the following, we only consider C-hypotheses and omit C from
the name. We also define C

− := C ∪ {¬C | C ∈ C}.

Definition 2. (C-Hypothesis) Given an ontology O, a hypothesis H for O is
called a C-hypothesis if α ∈ H implies α = C � D, where C,D ∈ C

−.

It makes sense to establish a correspondence, sufficient for the task at hand,
between an ontology O and classes C, which we call projection.

Definition 3. (Projection) A projection π of an ontology O to C is

π(O, C) := {D(a) | O |= D(a) ∧ D ∈ C
− ∧ a ∈ ind(O)}.



General Terminology Induction in OWL 537

Thus, a projection is a set of positive and negative class assertions over classes
C entailed by O. A projection can be viewed as a table where rows are labelled
with individuals ind(O) and columns are labelled with classes C. Each cell with
indices a,C can contain one of three possible values: “1” if O |= C(a), “0” if
O |= ¬C(a), “?” if O � C(a) and O � ¬C(a). Although there are similarities
with a transaction table of ARM, our table view is imaginary only and it permits
question marks. We will use the table view for better presentation of examples,
see Example 1 and Table 1.

Example 1. Given C = {A,B,∃R.B}, T = ∅,

A = {A(a1), A(a2), A(a3), A(a4), (¬A)(b), (¬A)(c), B(c)
R(a1, b), R(a2, b), R(a3, b), R(a4, c)}.

Table 1

A B ∃R.B
a1 1 ? ?
a2 1 ? ?
a3 1 ? ?
a4 1 ? 1
b 0 ? ?
c 0 1 ?

We use the projection to evaluate how well a hypothesis fits
the known data assuming it is correct on the unknown data.
Indeed, due to the OWA, a hypothesis can make assumptions
on the unknown data by turning question marks into ones or
zeros. If a hypothesis makes too many assumptions, it may
be too “strong”, e.g. H = {� � �C∈CC}. Therefore, it is
necessary to evaluate how “brave” a hypothesis is.

Definition 4. (Assumption) An assumption of a hypothesis
H in an ontology O given C is

ψ(H,O, C) := {D(a) | O � D(a) ∧ O ∪ H |= D(a) ∧ D ∈ C
− ∧ a ∈ ind(O)}.

As a consequence, ψ(H,O, C)∩π(O, C) = ∅ for any hypothesis H. Requiring
O � (¬D)(a) in Definition 4 is not necessary because if O |= (¬D)(a) then
H is not a hypothesis due its inconsistency with O. Hypotheses making fewer
assumptions are preferred according to Occam’s razor.

One can think of suggesting hypotheses as single axioms. However, this app-
roach ignores interactions between axioms that can influence the quality of the
hypothesis. Two axioms, which are logically “good” individually, do not necessar-
ily create a logically “good” hypothesis. For example, a hypothesis can become
redundant, e.g. H = {A � B,¬B � ¬A}, see Section 5.2. In fact, a set of two
logically “good” axioms is not necessarily a hypothesis. For example, given that
{A � B} and {B � C} are hypotheses for O, a set {A � B,B � C} is not
a hypothesis for O if O |= (A � ¬C)(a). Similar to logical quality, two axioms
which are statistically “good” individually may not create a “good” hypothesis
which is discussed below, see Section 5.3.

5 Quality Criteria and Measures for a Hypothesis

5.1 Syntactic Length as a Readability Measure

Readability is the ease with which a hypothesis can be read and understood by
a human. One of possible measures of readability is the usual syntactic length of
a hypothesis.
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Definition 5. (Syntactic Length) Let A,C,D be (possibly complex) classes, A ∈
NC a class name, R ∈ NR a property name, a ∈ NI an individual name. The
syntactic length of a GCI is defined as follows: |C � D| := |C| + |D|, where
|�| = |⊥| = |A| := 1, |¬C| := 1 + |C|, |C � D| = |C � D| := 1 + |C| + |D|,
|∃R.C| = |∀R.C| := 1 + |C|, | ≥ nR.C| = | ≤ nR.C| := 1 + n + |C|. The
syntactic length of a hypothesis H is |H| :=

∑
α∈H |α|.

5.2 Logical Quality

Logical quality evaluates logical properties of a hypothesis: logical strength and
redundancy. Logical strength is commonly called generality in machine learning.

Definition 6. (Logical Strength) A hypothesis H is weaker (more general) than
another hypothesis H ′ if H ′ |= H and H � H ′.

A hypothesis can contain axioms which are superfluous, or redundant, within
the hypothesis, even if those axioms are informative. For example, axiom A � C
is redundant in hypothesis {A � B,B � C,A � C} and axiom ¬B � ¬A is
redundant in hypothesis {A � B,¬B � ¬A}. Axioms can also have redundant
parts. For example, D is a redundant part of axiom A � C � D in hypothesis
{A � B � D,A � C � D}.

Definition 7. (Redundancy) A hypothesis H is redundant if there exists a
hypothesis H ′ such that H ′ ≡ H and |H ′| < |H|. Otherwise, H is non-redundant.

Lemma 1. If a hypothesis H is non-redundant, then |H| = min{|H ′| | H ′ ≡ H}.
We define the logical strength and redundancy of a hypothesis H regardless

of O. The reason is that an axiom α ∈ H, which is informative for O and non-
redundant in H, can be interesting, even if it is not informative for O ∪ H\{α}.
Such axiom reveals yet only implicit (and possibly unknown) relation between
classes. Additionally, the search for good hypotheses would require entailment
checking O ∪ H |= H ′ which could make it infeasible for hard ontologies.

5.3 Statistical Quality

Statistical quality criteria are aimed at selecting hypotheses that best represent
data given background knowledge. In order to comply with the standard OWL
semantics and its OWA, we consider the statistical quality of a hypothesis as
two-fold. Firstly, hypotheses differently fit data along with background knowl-
edge. Secondly, hypotheses make different number of assumptions in data given
background knowledge, i.e. some hypotheses are more cautious than others. Sta-
tistically better hypotheses have greater fitness and lower braveness.
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Fitness and Braveness. In order to evaluate the statistical quality of a hypoth-
esis, we exploit the idea that axioms can encode regularities in the data. Those
regularities can be used to “compress” the data, i.e. to present it in a shorter
way. This is the fundamental principle of the minimum description length induc-
tion [4,16]. According to it, the better a hypothesis fits the data, the shorter
description of the data it provides.

A standard way of measuring the description length is using syntactic mea-
sures. However, syntactic measures do not respect logical interactions of a
hypothesis with data and background knowledge. Therefore, we introduce a
semantic measure of the description length. We define fitness and braveness
of a hypothesis as follows.

Definition 8. (Description Length, Fitness, Braveness) The description length
of an ABox B given an ontology O = T ∪ A is

minSize(B,O) := min{|B′| | B′ ∪ O ≡ B ∪ O}.

Given an ontology O, a set C of classes, and a hypothesis H, let π := π(O, C)
and ψ := ψ(H,O, C). Then

(i) fitness of H is fit(H,O, C) := |π| − minSize(π, T ∪ H),
(ii) braveness of H is bra(H,O, C) := minSize(ψ,O).

As a consequence of Definition 8, all semantically equivalent hypotheses have
the same fitness and the same braveness which is stated by Lemma 2.

Lemma 2. Given an ontology O, a set C of classes, and two hypotheses
H1,H2, if H1 ≡ H2 then fit(H1,O, C) = fit(H2,O, C) and bra(H1,O, C) =
bra(H2,O, C).

Table 2

A B
a 1 1
b 1 ?

Fitness of a hypothesis indicates how well the projection
can be shrunk using the hypothesis and background knowl-
edge, i.e. a better shrinkage corresponds to a better fitness.
Braveness of a hypothesis measures how many assumptions it
makes in the data given the background knowledge. Respect-
ing Occam’s razor, hypotheses of lower braveness (or more cautious) are pre-
ferred, see Example 2.

Example 2. The projection π is given by Table 2, T = ∅. For H1 = {A � B}
fit(H1,O, C) = |B(a)| = 1, bra(H1,O, C) = |B(b)| = 1. For H2 = {B � A}
fit(H2,O, C) = |B(a)| = 1, bra(H2,O, C) = 0. Hence, H2 is statistically better
than H1.

Table 3

A B C
a ? ? 1
b 1 1 1
c 1 1 1

Two axioms which are statistically “good” individually
may or may not create a “good” hypothesis, see Example 3.

Example 3. The projection is given by Table 3, T = ∅.
Hypotheses H1 = {A � B}, H2 = {B � C}, H3 = {A �
C} are individually statistically confident: fit(H1,O, C) =
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fit(H2,O, C) = fit(H3,O, C) = 2. However, hypothesis H23 = H2 ∪ H3 has
the same fitness as H2,H3: fit(H23,O, C) = 2. On the other hand, hypothesis
H12 = H1 ∪H2 has the fitness twice as big as one of H1,H2: fit(H12,O, C) = 4.

In addition, axioms in the hypothesis can enforce each other, see Example 4.

Example 4. The projection is given by Table 4, T = {B � C}. Hypotheses
H1 = {A � B}, H2 = {C � D} individually have zero fitness. So, the fitness of
collective hypothesis H12 = H1 ∪ H2 is greater than the total fitness of H1 and
H2: fit(H12,O, C) = 3.

Table 4

A B C D
a 1 ? ? 1
b 1 ? ? 1
c 1 ? ? 1

Although projection simplifies induction, we may lose some
information, in particular, relations between individuals. The
latter can result in the overestimation of hypothesis’s assump-
tion. In Example 1 let hypothesis H = {¬A � B}, then
ψ(H,O, C) = {B(b), (∃R.B)(a1), (∃R.B)(a2), (∃R.B)(a3)}.
However, (∃R.B)(a1), (∃R.B)(a2), (∃R.B)(a3) are, in fact, the
consequences of B(b) and should not be counted. Braveness correctly handles
this: bra(H,O, C) = |{B(b)}| = 1. Illusive assumptions can also be forced by
background knowledge and braveness handles this as well, see Example 5.

Example 5. The projection π is given by Table 5, T = {B � C � D}
and H = {A � B,B � D}. The assumption of H is ψ(H,O, C) =
{B(a), B(b),D(a),D(b)} and the braveness is bra(H,O, C) = |{B(a), B(b)}| = 2.

Table 5

A B C D
a 1 ? 1 ?
b 1 ? 1 ?

As a consequence of Definition 8, fitness and braveness are
semantically sound and syntax independent measures of the
statistical quality of a hypothesis. They take into account both
the interaction of a hypothesis with the background knowledge
and interactions between axioms within the hypothesis. The
measures respect the standard OWL semantics, in particular, they deal with
its OWA and, consequently, with incomplete data. Finally, they demand no
supervision, such as positive or negative examples, and no additional information
besides the input ontology.

Computing Fitness and Braveness. Computing fitness and braveness
requires finding the size of the minimal projection and assumption, respectively.
These may not be unique. All minimal subsets can be found using a hitting set
tree algorithm [14]. However, this may require an exponential number of reasoner
updates which is computationally expensive given that the fitness and braveness
are computed for each hypothesis.

Fortunately, there is a more efficient way to compute the fitness and braveness
of a hypothesis avoiding reasoner updates. The idea is to introduce into O fresh
names for classes from C

−, i.e. OX = O ∪ {XC ≡ C | C ∈ C
−}, and exploit

the inferred class hierarchy of OX . The function minSizeUp(B,OX) computes
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an upper bound of the description length minSize(B,O), which is used for
calculating fitness and braveness (see Definition 8):

minSizeUp(B,OX) := |B| − |redun(B,OX)|, where

redun(B,OX) := {D(a) ∈ B | there is C ∈ ÕX s.t. either
(i) OX |= C � D ∧ OX � D � C ∧ (OX |= C(a) ∨ C(a) ∈ B) or
(ii) OX |= C ≡ D ∧ D �= unique(D,OX)}, where

unique is a function s.t. unique(D,OX)=D′ implies OX |=D′ ≡ D.

minSizeUp(B,OX) is based on detecting redundancy of B given OX ,
redun(B,OX), which is the set of those class assertions that can be “easily”
inferred from B ∪ OX after full classification of OX . This avoids costly rea-
soner updates: a reasoner can be executed just once for each hypothesis to
classify classes and individuals. However, minSizeUp(B,OX) can overestimate
minSize(B,O) if some redundancy is missed by it. Hence, fitness can be under-
estimated and braveness can be overestimated, i.e. we may label a hypothesis
worse than it is.

6 General Terminology Induction

According to Definition 1, we only consider hypotheses which are logically sound,
i.e. informative and consistent with the background knowledge and data. The
goal of the induction is finding among those hypotheses ones which have maximal
fitness and minimal braveness, or better represent the data.

We impose a readability constraint on a hypothesis: it must not exceed a
given syntactic length. The logical weakness of a hypothesis is reflected by its
braveness: weaker hypotheses have a lower braveness and are preferred (respect-
ing their fitness) according to Occam’s razor. A redundant hypothesis has the
same fitness and braveness as its non-redundant counterpart but a greater length
that might be occupied by better axioms. We state the problem of general ter-
minology induction in OWL as follows.

Definition 9. (General Terminology Induction) Given an ontology O and a set
C of classes, the problem of general terminology induction is to find all best
hypotheses which do not exceed length �.

Thus, as in ILP, we view induction as search in the space of hypotheses
restricted by a language bias, determined by C and � in our case. We regard
the process of constructing hypotheses as being equivalent to ranking them in a
justified way which is based on fitness and braveness.

6.1 Dominance and Anytime Algorithm

So far, the comparison of hypotheses and terms “better”, “best” have not been
fully defined. We now define an order on hypotheses via dominance.
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Definition 10. (Dominance) Given an ontology O and a set C of classes, a
hypothesis H dominates a hypothesis H ′, written H ′ ≺ H, if H̃ = H̃ ′ and either

(i) fit(H,O, C) > fit(H ′,O, C) ∧ bra(H,O, C) ≤ bra(H ′,O, C), or
(ii) fit(H,O, C) ≥ fit(H ′,O, C) ∧ bra(H,O, C) < bra(H ′,O, C).

By Definition 10 dominance ≺ is a strict partial order, i.e. two different
hypotheses may be incomparable. Best hypotheses are those which are dom-
inated by no other hypotheses. Definition 10 considers only two competitive
objectives: fitness and braveness. In addition, we compare hypotheses only if
they have the same signature because otherwise interesting hypotheses could be
discarded.

The size of the search space depends on C and �. It varies from 2 · |C|2
(if a hypothesis is restricted to be a single axiom) to 2|C|2 (if a hypothesis is
permitted to include all possible axioms). Consequently, the explicit enumeration
can be infeasible. We employ an anytime algorithm, Algorithm 1, that attempts
to explore promising regions of the search space first.

Algorithm 1. induceHypotheses(O, C, �, stop)
1: inputs
2: O: an ontology
3: C: a set of concepts
4: �: maximal syntactic length of a hypothesis
5: stop: termination criteria
6: outputs
7: Hbest: best hypotheses
8: do
9: OX = O ∪ {XC ≡ C | C ∈ C}
10: classify OX and compute the projection
11: Hinit ← {{C � D} | {C � D} is a hypothesis ∧ C, D ∈ C

−}
12: H ← Hinit, Hbest ← ∅
13: while H 	= ∅ and stop is not satisfied do
14: H ← choose(H, OX)
15: H ← H\{H}
16: classify OX ∪ H and compute the assumption of H
17: compute fitness and braveness of H using minSizeUp
18: Hbest ← Hbest ∪ {H}
19: if H is not complete then % extensions are possible
20: Hext ← {H ∪ H ′ | H ′ ∈ Hinit ∧ |H ∪ H ′| ≤ � ∧ H ∪ H ′ /∈ H ∪ Hbest}
21: H ← H ∪ Hext % add all direct extensions of H
22: end if
23: end while
24: remove dominated hypotheses from Hbest

25: return Hbest

The longer Algorithm 1 runs, the better hypotheses it returns. It can be
interrupted at any point which is specified by the termination criteria stop, e.g.
a timeout, maximal number of iterations, quality threshold, etc. The algorithm
processes the whole search space if stop does not prevent it from doing so.
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The function choose(H,O) determines which regions of the search space are
explored first. Various heuristics can be applied to guide the search. We use the
following heuristic for choose(H,O): select H ∈ H with maximal

q(H,O) :=
1

|H̃| · ∑
α:=C�D ∈ H(sup(α,O) − ρ · [cov(α,O) − sup(α,O)]),

where sup(α,O) := |ins(C � D,O)| is support of α,

cov(α,O) := |ins(C,O)| is coverage of α,

ins(C,O) := {a ∈ ind(O) | O |= C(a)} are instances of C,

ρ ∈ (0,∞) is a predefined penalty of “unsupported” coverage.

The heuristic chooses hypotheses that have smaller signatures and consist of
axioms with larger support and smaller unsupported coverage. More importantly,
it forces Algorithm 1 to firstly explore hypotheses with connected axioms (due
to 1/|H̃|) of higher independent statistical quality. The higher the penalty ρ is,
the more likely it is for cautious hypotheses to be evaluated first. If Algorithm 1
enumerates the full search space, then the heuristic does not affect the outcome.
Only in this case Algorithm 1 is guaranteed to be complete.

Although a reasoner is updated just once per hypothesis, computing the
fitness and braveness can still be expensive if the ontology is computationally
hard. This can result in a small number of evaluated hypotheses once the termi-
nation criteria stop are satisfied. Incremental reasoners, such as FaCT++ [15],
can improve the performance if a hypothesis is not big. Hence, besides read-
ability and size of the search space, the length of a hypothesis may affect the
performance of computing its fitness and braveness.

6.2 Choice of Classes

So far, we have assumed that a set C of interesting classes is known. For example,
it can be defined by a domain expert. Unfortunately, this can be a difficult prob-
lem on its own. There are several possibilities to automate the choice of target
classes. First, one can extract all subclasses, including complex ones, occurring
in the ontology O. These are suitable candidates because they are explicitly
asserted in the ontology which implies that a domain expert is more likely to
find them sensible and interesting.

However, an ontology can have poor terminological knowledge, in particular,
it can contain mostly atomic classes. In this case, classes C can be generated
from some signature Σ ⊆ Õ using a target class language, see Example 6.

Example 6. The signature is Σ = {A1, A2, R1, R2} and target class language is
G = {X | X ∈ Σ} ∪ {X � Y | X,Y ∈ Σ} ∪ {∃R.X | X ∈ Σ} (OWL’s structural
equivalence is employed to avoid duplicates). Then, the set of classes is generated
as follows: C := {A1, A2, A1 � A2,∃R1.A1,∃R1.A2,∃R2.A1,∃R2.A2}.

If the ontology signature is large and our class language is expressive, the
produced set of class expressions can be vast. One way to deal with the problem
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is to determine unpromising classes in C and discard them. Another way is to
select a signature of interest Σ ⊂ O of manageable size and construct classes C

from it using a language G. Σ can be specified by a domain expert which may be
hard due to the lack of knowledge, large ontology signature, etc. Alternatively,
Σ can be selected automatically.

Since we run our experiments on OWL ontologies which we are not familiar
with and do not have access to domain experts, we select a signature Σ of an
ontology O with respect to A using the modular structure of the ontology as
follows: Σ := M̃ , where M = module(T , Ã) (we use �⊥-modules [5]).

This approach yields class and property names that are logically connected
with A and discards logically disconnected ones (those can be numerous). We
construct classes C from Σ using a language G. Finally, we discard classes from
C that have no instances.

7 Implementation and Evaluation

7.1 Implementation

Tools and Hardware. All algorithms are implemented in Java 7 using OWL
API (3.5.0). We use the OWL 2 DL reasoner FaCT++ (1.6.3) [15] which supports
incremental reasoning. The experiments are executed on the following machine:
Linux Ubuntu 14.04.2 LTS (64 bit), Intel Core i5-3470 3.20 GHz, 8 GB RAM.

7.2 Evaluation

Evaluation Goals. By Definition 9, the solution of the general terminology
induction problem is a set of hypotheses. It depends on the following parameters:
an ontology O, a set C of classes, and a maximal length �. The evaluation aim
is to empirically assess the influence of these parameters on the solution. More
specifically, the experiments are aimed at answering the following questions.

Q1 Where are we likely to find good hypotheses: in more expressive languages
for C or bigger values of �?

Q2 How does expressivity of the language and maximal length of a hypothesis
influence the performance of computing the fitness and braveness?

Q3 Can we acquire hypotheses that seem plausible, so that we can use them
to enrich our background knowledge, or that tell us interesting information
about our data?

Choice of Ontologies. We conduct the empirical evaluation on a corpus of
ontologies selected from related work [6,10] including DL-Learner datasets,2

Protégé OWL,3 and TONES4 repositories. The Kinship ontology is obtained
2 https://github.com/AKSW/DL-Learner
3 http://protegewiki.stanford.edu/index.php/Protege Ontology Library
4 http://owl.cs.manchester.ac.uk/repository/

https://github.com/AKSW/DL-Learner
http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library
http://owl.cs.manchester.ac.uk/repository/
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from UCI Machine Learning Repository.5 We have selected the ontologies based
on the following criteria. Firstly, data contains both class and property asser-
tions, at least 15 individuals. Secondly, ontology classification takes less 10 min-
utes. Thirdly, we are sufficiently confident that we understand the topic of the
ontology. The corpus is available online.6

Table 6 describes the corpus where we use the following metrics. |ind(A)|,
CA, RA are numbers of individuals, concept and property assertions in the
ABox, respectively. degree(A), conn(A) are the average degree and average num-
ber of individuals in a connected component, respectively. |Ã|, |T̃ | are sizes of the
ABox and TBox signature. Jac(Ã, T̃ ) is the Jaccard index of ABox and TBox
signatures, open(A, T ) is the average number of question marks per individual-
class name pair.

Table 6. Ontologies and their metrics
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Ã,
T̃)

op
en

(A
,T

)

Alzheimer AL 150 106 854 5.7 150 40 0 0 0.96
Arch ALC 19 26 26 1.4 3.8 10 13 0.77 0.53

BasicFamily ALI 31 50 95 3.1 10.3 6 6 1 0.67
Carcinogenesis ALC(D) 22372 22372 40666 1.8 65.8 113 146 0.77 0.65

Cinema ALCOF 45 45 76 1.7 45 7 37 0.19 0.88
Earthrealm SHOIN (D) 171 179 203 1.2 7.4 23 2482 0.01 0.89

Economy ALCH(D) 482 649 555 1.2 5.3 29 380 0.04 0.94
Financial ALCOIF 17941 17941 47248 2.6 8970.5 52 76 0.68 0.54
GeoSkills ALCHOIN (D) 2592 4681 3896 1.5 13.9 569 618 0.90 0.69

Heart AL(D) 280 275 1080 3.9 280 9 11 0.82 0.90
Kinship ALI 24 116 40 1.7 12 18 4 0.16 0.81

KRK SHI 420 525 1508 3.6 4 25 40 0.55 0.65
Mammographic AL(D) 975 975 2883 3.0 975 18 22 0.82 0.97

MDM073 ALCHOF(D) 112 130 169 1.5 2.0 82 215 0.38 0.51
Mutagenesis AL(D) 14145 14145 26533 1.9 61.5 60 91 0.66 0.99

NTN SHOIN (D) 724 724 1636 2.3 2.8 64 78 0.82 0.96
Suramin AL(D) 2979 2979 6008 2.0 175.2 20 49 0.41 0.97

Evaluation Setup. To answer the raised questions, we set up the following
experimental pipeline. Given an ontology O, for each combination of a class
language G and maximal length � we run Algorithm 1 with the timeout stop set
to 10 minutes. Once Algorithm 1 terminates, we record the fitness and braveness
of each hypothesis in the output set. We also record the average hypothesis
evaluation time which comprises computing the fitness and braveness. Finally,
we store all hypotheses if their number is less than 100 and only 100 hypotheses
of maximal q(H,O) otherwise.
5 https://archive.ics.uci.edu/ml/datasets/Kinship
6 http://www.cs.man.ac.uk/∼sazonauv/tbox induction/corpus/

https://archive.ics.uci.edu/ml/datasets/Kinship
http://www.cs.man.ac.uk/~sazonauv/tbox_induction/corpus/
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We choose maximal length � from {2, 4, 6, 8, 10}. In order to generate classes
C, we use the process described in Section 6.2. The signature is Σ := M̃ , where
M = module(T , Ã). We investigate 5 class languages Gi, such that Gi ⊆ Gi+1

(duplicates are avoided by the means of OWL’s structural equivalence):

G1 := {X | X ∈ Σ};
G2 := G1 ∪ {XM | XM is a possibly complex subclass in M};
G3 := G2 ∪ {X � Y | X,Y ∈ Σ};
G4 := G3 ∪ {∃R.X | X,R ∈ Σ};
G5 := G4 ∪ {X � ∃R.Y | X,Y,R ∈ Σ}.

7.3 Results

Dependence of fitness and braveness on language and length is shown on Figure 1.
For each ontology the experiment is executed as described above. The values
obtained are normalised, i.e. divided by the maximal value. Then, the values are
aggregated across the corpus and the average value is reported per cell.

G1

G2

G3

G4

G5

2 4 6 8 10

(a) Fitness

G1

G2

G3

G4

G5

2 4 6 8 10

(b) Braveness

Fig. 1. Dependence of fitness (a) and braveness (b) on language expressivity and max-
imal length: darker colours reflect greater numbers

Our first observation is that some languages and lengths result in no hypothe-
ses induced which happens if a class language is not expressive enough or hypoth-
esis length is too low. We aggregate and average only over non-empty values.
An expected observation is that increasing expressivity is useless if an ontology
is poor, e.g. contains few relations in the data and axioms in the background
knowledge. On the other hand, if an ontology is rich, increasing expressivity may
or may not be fruitful.

Figure 1 shows that increasing length always results in hypotheses of higher
fitness and mostly, but not always, of higher braveness since added axioms may
make no assumptions or repeat the assumptions already made. Increasing expres-
sivity also generally leads to higher fitness and higher braveness. However, the
changes are not as gradual as for length, in particular, braveness seems irregular.
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Interestingly, we observe that G2 consistently outperforms G3 in fitness, despite
G2 ⊆ G3, which can be explained as follows. On the one hand, the search space
considerably increases from G2 to G3. On the other hand, G3 appears to be
less fruitful than G2 (compare to G4 and G5). As a result, it becomes harder to
find equally good hypotheses in the same time. Thus, the answer to Q2 is that
increasing expressivity and length promises better fitness but commonly worse
braveness.

We also observe that the average hypothesis evaluation time does not vary
widely. Thus, the answer to Q2 is that performance does not degrade significantly
for higher expressivity and length. The performance of evaluating a hypothesis
is as follows: less than 0.1 second for 8 ontologies, from 0.1 to 1 second for 4
ontologies, from 1 to 10 seconds for 4 ontologies, and around 15 seconds for 1
ontology. The results can be found online.7

Table 7. Examples of hypotheses induced within 10 minutes

Ontology Examples of hypotheses

Alzheimer
Drug � ∃getsReplacedBy.Substituent

Substituent � ∃hasPolatisation.Polar

∃hasPolatisation.Polar � ∃isHAcceptor.HAcceptor

Arch
construction � ∃hasPillar.pillar

∃hasParallelpipe.wedge � ∃hasPillar.freeStandingPillar

∃touches.pillar � ∃leftof.pillar

BasicFamily
∃hasChild.Person � Person

∃hasParent.Person � Person

∃hasParent.Female � ∃hasParent.Male

Cinema

Movie � ∃hasForActor.Actor

Movie � ∃hasForGenre.Genre

∃hasForActor.{Eastwood} � ∃hasForGenre.{Western}
∃hasForDirector.{Burton} � ∃hasForActor.{Depp}

Earthrealm
∃hasDefaultUnit.BaseUnit � ∃hasDefaultUnit.ComplexUnit

∃hasDefaultUnit.{second} � TimeRelatedQuantity

∃hasDefaultUnit.{meterPerSecond} � DrySeasonDuration

Economy
Nation ≡ IndependentState

∃economyType.EconomicDevelopmentLevel

� ∃economyType.IMFDevelopmentLevel

Financial
Account � ∃hasStatementIssuanceFrequency.Monthly

∃isOwnerOf.Account � Client

Mammographic
∃hasMargin.spiculated � ∃hasShape.irregular

∃hasShape.irregular � ∃hasDensity.low

Mutagenesis
Compound � ∃hasBond.Bond1

∃inBond.Hydrogen3 � Bond1

∃inBond.Oxygen40 � ∃inBond.Nitrogen38

NTN
Man ≡ ∀spouseOf.Woman

∃knows.Man � Man

∃relativeOf.Man � Man

In order to answer Q3, we act as domain experts and eyeball the induced
hypotheses. We aim at finding plausible and interesting hypotheses. Some results

7 http://www.cs.man.ac.uk/∼sazonauv/tbox induction/results/

http://www.cs.man.ac.uk/~sazonauv/tbox_induction/results/
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are shown in Table 7. Firstly, we observe that induced hypotheses can, in fact,
enrich the background knowledge, see Table 7. If the background knowledge is
poor, as in BasicFamily and Cinema, or even absent, as in Alzheimer, hypotheses
seem to be a good starting point for modellers. If the background knowledge is
incomplete, hypotheses appear to be interesting missing bits, e.g. for Economy,
Financial, NTN, and Mutagenesis.

Secondly, we observe that hypotheses can reveal interesting relations in our
data. This can expose new knowledge about the domain and help to understand
the data. For example, hypotheses discover relations between particular actors,
directors, and movie genres from Cinema. Another example is Mammographic
where we can learn relations between diagnostic observations, e.g. having irreg-
ular shape implies having lower density. Such hypotheses can potentially inform
doctors of yet unknown relations in their data, facilitate future research in the
domain, and lead to data improvements, e.g. a supplement of images of tumours
that have irregular shape and high density.

Thirdly, hypotheses can contain “strange” axioms which may help us high-
light, on the one hand, odd or erroneous modelling and, on the other hand, inac-
curate or abnormal data. We observe this for Arch inducing ∃touches.pillar �
∃leftof.pillar (why is there nothing to the right?) and for Earthrealm inducing
∃hasDefaultUnit. {meterPerSecond} � DrySeasonDuration (wrong unit?).
Thus, we can answer Q3 positively.

Although we use different settings and the goal of induction is different,
we make some comparison of our results with related work. In particular, we
consider the supervised CDL and its implementation DL-Learner [11]. Given a
set of positive and negative examples for a target class construction in Arch,
it searches for definition construction ≡ ∃hasP illar.(freeStandingP illar �
∃leftof.∃supports.�). As Table 7 shows, our approach induces a weaker defini-
tion of construction along with some related knowledge. For Cinema we observe
that descriptions of different movie types are induced, e.g. EastwoodMovie
� ∃hasForActor.{Eastwood}, EastwoodMovie � ∃hasForGenre.{Western}.
For NTN the definition Man ≡ ∀spouseOf.Woman is induced. Thus, although
our approach is unsupervised, it shows the potential to learn class definitions.

8 Discussion and Future Work

The evaluation shows that our approach is able to induce interesting hypotheses.
On the one hand, they can potentially be helpful to build and improve the
background knowledge. On the other hand, hypotheses seemingly discover new
knowledge about the domain and help us understand the data. Interestingly,
they may help us identify modelling errors and data flaws.

Although the search space is vast, general terminology induction is feasible.
It is encouraging given that statistically and logically sound measures are used
to evaluate a hypothesis and this requires reasoning. We observe that larger and
more expressive hypotheses are generally better and still feasible.

As for future work, we will investigate more informed ways of constructing a
set of promising initial classes, e.g. using techniques from CDL, along with new
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algorithms and heuristics for search space exploration. We will also attempt to
extend the methodology to deal with noisy data that causes inconsistency, e.g.
using techniques from [9]. We plan to investigate learning property hierarchies.

We intend to go beyond the corpus and carry out case studies with domain
experts to evaluate our approach in more detail. We also consider other scenar-
ios, e.g. how acceptance or rejection of a hypothesis affects other hypotheses,
how hypotheses can be used for predicting class memberships of individuals,
terminology abduction and “what if” analysis of data under the OWA.
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Abstract. Ontologies are complex intellectual artifacts and creating
them requires significant expertise and effort. While existing ontology-
editing tools and methodologies propose ways of building ontologies in
a normative way, empirical investigations of how experts actually con-
struct ontologies “in the wild” are rare. Yet, understanding actual user
behavior can play an important role in the design of effective tool sup-
port. Although previous empirical investigations have produced a series
of interesting insights, they were exploratory in nature and aimed at
gauging the problem space only. In this work, we aim to advance the
state of knowledge in this domain by systematically defining and com-
paring a set of hypotheses about how users edit ontologies. Towards
that end, we study the user editing trails of four real-world ontology-
engineering projects. Using a coherent research framework, called Hyp-
Trails, we derive formal definitions of hypotheses from the literature, and
systematically compare them with each other. Our findings suggest that
the hierarchical structure of an ontology exercises the strongest influ-
ence on user editing behavior, followed by the entity similarity, and the
semantic distance of classes in the ontology. Moreover, these findings
are strikingly consistent across all ontology-engineering projects in our
study, with only minor exceptions for one of the smaller datasets. We
believe that our results are important for ontology tools builders and for
project managers, who can potentially leverage this information to cre-
ate user interfaces and processes that better support the observed editing
patterns of users.

1 Introduction

Large real-world ontologies are intellectual artifacts that are inherently complex
and hard to build. Most such ontologies are found in the biomedical domain. For
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 551–568, 2015.
DOI: 10.1007/978-3-319-25007-6 32
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example, SNOMED-CT,1 a comprehensive clinical health terminology, has over
300, 000 classes, the National Cancer Institute Thesaurus (NCIT)2 has more
than 100, 000 classes, and the 11th revision of the International Classification
of Diseases (ICD-11)3 has over 50, 000 classes. The development of such large
ontologies usually takes place in distributed teams, and requires a significant
effort both in the ontological modeling and coordination of the entire process.

One of the biggest challenges in developing large real-world ontologies is
proper tool support. While existing ontology-editing tools and methodologies
prescribe certain ways of building ontologies, there is very little research on how
users actually use these tools. Empirical analyses of how users develop ontologies
“in the wild” are very rare. We address this gap with this paper, by aiming to
broaden our understanding of editing behaviors in large ontology-engineering
projects. It is the ultimate vision of our work to lay a more solid foundation
for creating tools that better support ontology authors based on their actual
authoring behavior.

We define a sequential edit trail as a chronologically sorted list of all actions a
user takes while editing an ontology. We derive such editing trails from the change
logs recorded by the ontology-editing tools. In previous work, we have conducted
exploratory empirical analyses of various types of edit trails in several ontology-
engineering projects [21,22], and we have discussed our findings and potential
implications [23]. In these works, we have been able to explore different edit-
ing patterns and potential explanations via manual inspection and qualitative
interpretation. For example, we have speculated that users edit ontologies in a
top-down fashion or that users navigate along similar concepts. However, it is
still unclear how such hypotheses can best be expressed formally, or how they can
be systematically compared with each other in order to explain the production
of edit trails, and hence an ontology, at hand.

Thus, in this paper, we systematically investigate previous, mostly
exploratory, results using HypTrails [11]—a generic methodology for comparing
hypotheses about human trails in ontology-engineering projects. This allows us
to (i) formally define, (ii) systematically study, and (iii) rank different hypothe-
ses about ontology-editing behavior within a coherent research framework. By
using HypTrails, we approach this problem by modeling edit trails as first-order
Markov chains (see Section 3.2) and hypotheses as priors. From our analyses, we
find that the hierarchical structure of an ontology exercises the strongest influ-
ence on observed user behaviors, followed by the similarity of entities, and the
distance of classes in the ontology. These findings are strikingly consistent across
the four real-world ontology-engineering projects used in our study, with only
minor exceptions for one of the smaller datasets. We believe that our results
are important for ontology tools builders and for project managers, who can
potentially leverage this information to create user interfaces and processes that
better support the observed editing patterns of users.

1 http://www.ihtsdo.org/snomed-ct
2 http://ncit.nci.nih.gov
3 http://who.int/classifications/icd/revision/en/

http://www.ihtsdo.org/snomed-ct
http://ncit.nci.nih.gov
http://who.int/classifications/icd/revision/en/
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The main research contributions of this work are:

– A formal way to define hypotheses about how users edit an ontology (e.g.,
top-down vs. bottom-up editing strategies).

– A detailed systematic comparison of such hypotheses across four real-world
ontology-engineering projects.

– A ranking of all investigated hypotheses according to their relative plausi-
bility for each dataset by adopting a coherent research approach.

The remainder of the paper is structured as follows: In Section 2, we discuss
the related work. The methodology and datasets are described in Section 3, fol-
lowed by a detailed formal description of all investigated hypotheses in Section 4.
We present the results of our analysis in Section 5, discuss implications and lim-
itations of our findings in Section 6 and conclude our work and discuss oppor-
tunities for future work in Section 7.

2 Related Work

The related work relevant for this paper is covered by two different research
fields: Human Trails on the Web and Analysis of Ontology Editing Behavior.

2.1 Human Trails on the Web

Previous research has studied human trails on the Web in various settings.
Modeling trails has received a lot of attention [3,12], as well as the detection
of regularities, patterns and strategies in trails of interest [6,25]. Most promi-
nently, researchers have focused on studying human navigational trails on the
Web—capturing the subsequent websites that humans navigate to [6,12,25]. This
research on navigational trails has inspired other works in the effort to improve
the Web, e.g., better website design (usability) [4], identifying related links [18]
or constructing an e-learning Semantic Web [2]. Researchers have also investi-
gated other kinds of human trails, e.g., search trails [13,26], diffusion trails [1]
or song listening trails [11]. Our work directly connects to these studies as we
are interested in shedding more light on the production of human trails on the
Web; however, in our case, we look at human edit trails in ontology-engineering
projects by using the approach presented in [11].

2.2 Analysis of Ontology Editing Behavior

In this line of research, a large part of the literature has focused on analyzing
the editing behavior or identifying editing patterns in collaborative ontology-
engineering. To perform these types of analyses, researchers have used the change
logs recorded by the different ontology-editing environments, similar to our app-
roach.

Strohmaier et al. [14] conducted an empirical analysis to investigate the
hidden social dynamics that take place when editors develop an ontology, and
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provided new metrics to quantify various aspects of the engineering processes.
Falconer et al. [5] did a change-log analysis of different ontology-engineering
projects, showing that contributors exhibit specific roles, which can be used to
group and classify these users. Pesquita and Couto [9] analyzed the influence of
the location and specific structural features to determine if and where the next
change will be conducted in the Gene Ontology4. The work by Wang et al. [24]
presents an analysis of user editing patterns derived from change logs of several
real-world ontology-engineering projects utilizing association-rule mining. The
results suggest that users tend to edit in a vertical way, i.e., users edit the same
properties for different classes in a sequential way. Rospocher et al [10] analyzed
the change logs for two different Web-based collaborative ontology-editing tools
and found similar collaboration and editing patterns. For example, they found
that users tend to edit in the local neighborhood of an entity. Van Laere et al.
[19] analyzed behavior-based user profiles in collaborative ontology-engineering
projects using K-means clustering to group similar users.

In contrast to our previous research [21–23], this work represents a system-
atic and comparative study of different hypotheses in a coherent mathematical
research framework, whereas our previous analyses have mostly been exploratory.
We can thereby—for the first time—make relative, empirically grounded state-
ments about the plausibility of different hypotheses given data.

3 Materials and Methodology

We present the four datasets used in our research (Section 3.1), and the Hyp-
Trails framework (Section 3.2) that forms the basis of the methodology used in
this work.

3.1 Datasets

We used the change logs of four real-world ontology-engineering projects to con-
duct the analyses presented in this work. These projects use WebProtégé [17] as
the editing platform, a Web-based generic ontology-editing tool, which records
a log of all changes performed by each user. Each change record stores meta-
data about the change, such as the user who performed the change, a textual
description of the change, the timestamp, and the entity on which the change
occurred.

To extract the editing trails from the change logs, we performed a pre-
processing step in which we merged consecutive changes on the same entity
by the same user (i.e., self-loops) into one change. Such changes occurred when
users would edit different properties of the same entity. For the purpose of this
work, we have not been interested in such changes, but rather in the ones which
occurred on different entities. Further, we have limited all our analyses on isA
relationships and removed equivalence links. However, multiple isA inheritances
have been kept “as-is”. We provide a brief description of the four datasets used
in our research below.
4 http://www.geneontology.org

http://www.geneontology.org
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The International Classification of Diseases (ICD),5 developed by the
World Health Organization (WHO), is the international standard for diagnos-
tic classification used to encode information relevant to epidemiology, health
management, and clinical use in over one hundred United Nations countries.
WHO regularly publishes new revisions of the classifications. The 11th revision
of the classification, ICD-11,6 is currently in progress, and is planned to be
finalized in 2017. In contrast to previous revisions, ICD-11 is developed as a rich
OWL ontology [16]. Over 100 domain experts are using a customized version of
WebProtégé to author the ontology collaboratively.

The International Classification of Traditional Medicine (ICTM)7 is a
WHO-led project that aimed to produce an international standard terminology
and classification for diagnoses and interventions in Traditional Medicine. ICTM
was developed collaboratively as an OWL ontology with the goal to unify the
knowledge from the traditional medicine practices from China, Japan and Korea.
Its content is authored in 4 languages: English, Chinese, Japanese and Korean.
More than 20 domain experts from the three countries developed ICTM using a
customized version of WebProtégé. The development of ICTM ended in 2012.

The Biomedical Resource Ontology (BRO) [15] was developed as part
of the Biositemaps project. Biositemaps is a mechanism for researchers working
in biomedicine to publish metadata about biomedical data, tools, and services.
Applications can then aggregate this information for tasks such as semantic
search. BRO is the enabling technology used in Biositemaps; a controlled ter-
minology for describing the resource types, areas of research, and activity of
a biomedical related resource. A small group of editors authored BRO using
WebProtégé to modify the ontology and to carry out discussions.

The Ontology for Parasite Lifecycle (OPL) models the life cycle of the
T.cruzi, a protozoan parasite, which is responsible for a number of human dis-
eases [8]. OPL uses expressive OWL (SHOIF) to represent its knowledge base,
and extends several other OWL ontologies. Several users from different insti-
tutions collaborate on OPL development using WebProtégé as a collaborative
platform.

Table 1 provides some characteristics about each of the datasets used in our
analysis. The average trail length ranges from 1, 637.13 transitions for ICD-11
to 136.60 transitions for BRO. Trails refer to the number of different human edit
trails per dataset, where each trail represents a chronologically ordered list of all
the classes a user has edited. Users with less than 2 distinct changes have been
removed from our analysis.

5 http://who.int/classifications/icd/en/
6 http://who.int/classifications/icd/ICDRevision/
7 http://who.int/mediacentre/news/notes/2010/trad medicine 20101207/en/

http://who.int/classifications/icd/en/
http://who.int/classifications/icd/ICDRevision/
http://who.int/mediacentre/news/notes/2010/trad_medicine_20101207/en/
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Table 1. Characteristics of the four datasets.

ICD-11 ICTM BRO OPL

Classes 48, 771 1, 506 528 393
Changes 439, 229 67, 522 2, 507 1, 993
Users 109 27 5 3

Trails 102 26 5 3
Avrg. trail length 1, 637.13 673.54 136.60 152.00
Transitions 361, 491 66, 708 2, 388 2, 668
Self-Loops 194, 504 49, 196 1, 705 2, 212

First change 18.11.2009 02.02.2011 12.02.2010 09.06.2011
Last change 29.08.2013 17.7.2013 06.03.2010 23.09.2011
Period (ca.) 4 years 2.5 years 1 month 3 months

3.2 Methodology

By and large, HypTrails [11] is an approach that allows us to compare hypothe-
ses about human trails. In our case, we are interested in studying: (i) the human
edit trails in ontology-engineering projects, and (ii) the relative plausibility of
hypotheses about the production of these trails that have been manifested in
previous studies. In Section 1, we used the hypothesis that users edit ontologies
in a top-down manner as an example. Using HypTrails, we are able to compare
this hypothesis to other such hypotheses, and determine which one is more plau-
sible to describe the production of the corresponding editing trails, and hence the
ontology at hand. Section 4 provides a formal description of all hypotheses that
we have compared as part of this research. Figure 1 shows a graphical representa-
tion of the editing patterns represented by each hypothesis. Next, we introduce
the core concepts of HypTrails; for a more thorough introduction please refer
to [11].

Technically, HypTrails models trails with first-order Markov chain models,
and compares hypotheses using Bayesian inference, and more specifically, the
marginal likelihood which can also be referred to as the evidence (we use both
terms throughout this work synonymously). The marginal likelihood P (H|D)
describes the probability of a hypothesis H (e.g., uniform hypothesis) given
the data (trails). For expressing generic hypotheses and being able to compare
them, HypTrails uses the sensitivity of the marginal likelihood on the prior.
Thus, hypotheses are expresses as different priors—in case of a Markov chain
model the conjugate prior is the Dirichlet distribution. The hyperparameters of
Dirichlet distributions can be interpreted as pseudo counts. Thus, simply put,
higher pseudo counts refer to higher beliefs in corresponding transition for a
given hypothesis.

Consequently, we have to provide HypTrails with matrices that capture our
generic hypotheses and corresponding beliefs in transitions (see Section 4). Based
on these matrices, HypTrails internally elicits proper Dirichlet priors for given
hypotheses by setting the pseudo counts accordingly, based on a parameter k
which steers the total number of pseudo counts assigned. Basically, the higher we
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set k, the stronger we believe in a given hypothesis. Analogously, this means that
with higher k, we expect to see less transitions contradicting the corresponding
hypothesis (e.g., only transitions from higher level classes to lower level classes in
the top-down hypothesis). For fairness, we always want to compare hypotheses
with each other for the same values of k.

Finally, by using different priors for different hypotheses, we get different
marginal likelihoods when combined with empirical trail data. Based on these
evidences, we can compare the relative plausibility of hypotheses—higher evi-
dences indicate higher plausibility. In theory, we need to further calculate Bayes
factors [7] between the marginal likelihoods of two hypotheses, so that we would
be able to judge the strength of the evidence for one hypothesis over the other.
However, as all Bayes factors are decisive, we resort from presenting them indi-
vidually throughout this paper. Thus, we can produce a partial ordering of
hypotheses based on their relative plausibility by ranking their marginal like-
lihoods from largest to smallest for single values of k.

4 Hypotheses

HypTrails allows us to compare hypotheses about the production of human
edit trails in ontology-engineering projects, and helps us to understand how
an ontology is produced in an ontology-development tool. Hypotheses are beliefs
about transitions (see Figures 1(a)–1(h)) opposed to actual empirical transitional
observations (see Figure 1(i)). With HypTrails, we express these transitional
beliefs as our assumptions about Markov chain transitions. In detail, we specify
hypotheses as matrices that reflect our assumptions about transitions between
states where higher values correspond to higher beliefs.

Thus, for each hypothesis, we need to specify the hypothesis matrix Q with
elements qi,j that represent the belief in the transition between states si and sj .
A state corresponds to a class in the ontology that users are editing. A transition
between states si and sj corresponds to a two sequential user edit: first of the
class represented by si, and then of the class represented by sj . In order to
express our hypotheses as beliefs in Markov transitions, and to have a better
interpretation capability, we directly set qi,j as row probabilities P (sj |si). Thus,
for each row i of Q it holds that

∑
j qi,j = 1.

For example, Figure 1(e) depicts the hierarchy-based hypothesis, which pos-
tulates the belief that users are likelier to edit classes along the hierarchical
(isA) structure of the ontology and the shortest distance. In this example, if a
user has just previously changed class C, this hypothesis believes that the user
is most likely to change class A (the parent) or G (the child) next. Classes B
and D are both siblings (and two steps away) of C, which is why this hypothe-
sis expresses a smaller belief in these transitions. Other hierarchical transitions,
ancestors, descendants and cousins, follow analogously with less belief (i.e., lower
proabability; not depicted in Figure 1(e)).

Figure 2 shows an exemplary illustration of the transition graph and the
corresponding matrix for the top-down hypothesis, which believes that users
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Fig. 1. Sample-Hypotheses. This figure depicts eight hypotheses about how humans
consecutively edit classes in ontology-engineering projects derived from our previous
research (a-h), as well as empirical observations (i). The curved arrows represent tran-
sitions we believe in for a given hypothesis (a-h), or observed transition probabilities
from data (i). The thicker an arrow, the higher our belief in the corresponding transi-
tion for a given hypothesis (a-h), or the higher the number of transitions we observed
in the data (i). For simplicity, we always only visualize the transitions for class C; all
other classes follow analogously.
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Fig. 2. Top-down hypothesis. This figure depicts (a) the top-down hypothesis and
(b) its corresponding hypothesis matrix Q that is generated from its formal definition.
Darker transitions between classes represent a strong belief in these transitions, while
white transitions represent a disbelief in a transition. Note that the matrix is normalized
per row, hence the sum of all beliefs for each row is 1.

consecutively edit classes at deeper levels in the hierarchy. In this example, our
state space consists of seven classes S = {A,B,C,D,E, F,G}. The beliefs in
the transitions between states are shown in Figure 2(a). As this hypothesis has
stronger beliefs in top-down transitions, the graph and matrix will only contain
beliefs in transitions from higher-level classes to lower-level classes, such as, from
C to E, F and G. Figure 2(b) shows the corresponding representation of the
beliefs in the hypothesis matrix. For example, for the row corresponding to the
transitions from class C, we may set qC,E = 1/3, qC,F = 1/3 and qC,G = 1/3.
For all other classes, we can proceed analogously.

In the remainder of this section, we thoroughly describe the hypotheses used
in this research, and provide formal descriptions of how we built the correspond-
ing hypothesis matrices Q. Note that for each hypothesis and equation, we always
calculate qi,j , for all i and j. We set the diagonal of each hypothesis matrix Q
to 0 as we do not consider self-loops in our data. As it is not always possible to
express our beliefs with direct probabilities, we additionally normalize each row
of Q using the �1-norm.

Figure 1 shows a graphical representation of the hypotheses investigated in
our research. The top-down, bottom-up, breadth-first and hierarchy hypotheses
resulted as part of our prior research from a manual inspection of Markov chains
of different orders [21–23]. Additionally, we are also considering the shortest path,
connectivity, and similarity hypotheses to also investigate further “strategies”
of how users edit an ontology that could provide plausible explanations for the
underlying data.
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Uniform Hypothesis. This hypothesis believes that each transition from one
state to any other state is equally likely (cf. Figure 1(a)). Thus, it assumes that
humans edit ontologies at random. We can see this hypothesis as a baseline. If
other hypotheses are not more plausible than this uniform one, we cannot expect
them to provide good explanations about the production of the trails (and the
ontology) at hand. The elements of matrix Q for this hypothesis are defined as
follows:

qi,j =
1

|S − 1| (1)

Top-down Hypothesis. For the top-down hypothesis, we express the belief
that classes that are deeper in the hierarchy (further away from the root class)
than the previously edited class, are likelier to be changed next. For expressing
this hypothesis, we measure the depth level of each class (the distance to the
root); classes deeper in the hierarchy have larger depth levels. In this hypothesis,
we have stronger beliefs in transitions to classes that have a larger depth level
than the current class (cf. Figure 1(b)). We express this hypothesis according to
the following definition with depthi and depthj representing the depth-levels of
the corresponding classes si and sj .

qi,j =

{
1, if depthi < depthj ,

0, otherwise.
(2)

Bottom-up Hypothesis. Analogously to the top-down hypothesis, this
hypothesis believes that classes that are closer to the root class (i.e., they have
lower depth levels) than the previously edited class, are likelier to be changed
next (cf. Figure 1(c)).

qi,j =

{
1, if depthi > depthj ,

0, otherwise.
(3)

Breadth-first Hypothesis. Similar to the top-down and bottom-up hypothe-
ses, we express the belief that classes are likelier to be changed next, if they are
on the same depth levels (cf. Figure 1(d)).

qi,j =

{
1, if depthi = depthj ,

0, otherwise.
(4)

Shortest Path Hypothesis. With this hypothesis, we express the belief that
users consecutively edit classes in an ontology that are close to each other in the
class hierarchy (cf. Figure 1(f)). In detail, we look at the shortest path distances
d(i, j) between pairs of classes—the shorter the distance, the stronger we believe
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in the corresponding transition. To invert the shortest path length, we subtract
it from the diameter maxx,y(d(x, y)) of the whole hierarchy.

qi,j = max
x,y

(d(x, y)) − d(i, j) (5)

Hierarchy Hypothesis. The hierarchy hypothesis represents our belief that
users edit classes along the hierarchical structure of the ontology (i.e., isA links).
In particular, the next edit operation is likelier to occur on close relatives than
on relatives that are further away (cf. Figure 1(e)). This hypothesis has the
following weight initialization of our belief matrix:

qi,j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

4, if d(i, j) = 1 and depthi �= depthj ,

3, if d(i, j) = 2 and depthi = depthj and check siblings(i, j) > 0,

2, if d(i, j) = 4 and depthi = depthj and check cousins(i, j) > 0,

1, if sp(i, j) = |depthi − depthj |,
0, otherwise.

(6)
Where sp(i, j) is the shortest path between pairs (i, j). It holds that
check siblings(i, j) = |parents(i) ∩ parents(j)| and check cousins(i, j) =
|grandparents(i)∩grandparents(j)|. Hence, both functions are larger than zero,
if classes i and j share at least one parent or grandparent, respectively.

Connectivity Hypothesis. In this hypothesis, we believe that the next edit
operation will likelier occur on a class that is better connected in the class hierar-
chy. We define the connectivity level of a class as the number of isA relationships
a class has to and from other classes. We represent the connectivity level of class
j as kj . The higher the connectivity level of a class, the higher our belief in
a given transition (cf. Figure 1(g)). Note that for this hypothesis, each row of
Q is the same—it can be seen as a zero-order Markov chain hypothesis that is
weighted by the connectivity of nodes.

qi,j = kj (7)

Similarity Hypothesis. In this hypothesis, we believe that transitions between
similar classes are likelier to occur than between less similar classes (cf.
Figure 1(h)). To calculate the similarity between classes i and j, we first gener-
ate tf-idf vectors, vi and vj , consisting of the values of the annotation properties
corresponding to the label of a class, and the textual definition. Using these tf-idf
vectors, we compute the cosine similarity between classes.

qi,j = cos sim(vi, vj) (8)

cos sim(vi, vj) is the cosine similarity between the tf-idf vectors of the property
values corresponding to the labels and textual definitions of classes i and j.
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Fig. 3. Hypotheses ranking. Results for comparing hypotheses for the four datasets
using HypTrails. The x-axes represent the hypothesis weighting factor k representing
the “strength” of our belief in a hypothesis. In general, the stronger we believe in a
hypothesis (i.e., the higher we set k), the less we expect to see transitions opposing
the parametric beliefs of the corresponding hypothesis. The y-axes depict the Bayesian
evidences. The higher the evidence for a given hypothesis, the better it is suited for
describing the production of the extracted human edit trails (see Section 3).

5 Results

By applying HypTrails, we are able to gain insights into the relative plausibility of
the hypotheses of interest based on the empirical data at hand. We illustrate the
results in Figure 3. As mentioned in Section 3, we can compare the plausibility
of hypotheses by comparing their marginal likelihoods—the higher, the more
plausible. The hypothesis weighting factor k describes the “strength” of our belief
in a given hypothesis; for fairness, we compare the plausibility of hypotheses by
comparing their Bayesian evidences for the same values of k. For tractability,
we report and interpret results for 0 <= k <= 4; for higher values of k the
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results might slightly vary. Next, we highlight the main results for each ontology-
engineering project (see Table 2 for a comparison of all hypotheses and datasets).
We thoroughly discuss the results in Section 6.

International Classification of Diseases (ICD-11). The results for ICD-11,
our biggest dataset, are depicted in the top-left part of Figure 3. The top-down
and bottom-up hypotheses indicate lower evidences than the uniform hypothesis,
suggesting that users are likelier to randomly change classes in the ontology than
strictly follow a top-down or bottom-up approach. The connectivity hypothesis
starts out to be nearly as plausible as the uniform hypothesis, but looses in
Bayesian evidence faster with increasing k. The breadth-first and shortest-path
hypotheses indicate higher evidences than the uniform hypothesis for our k > 0
at interest and thus, seem to be plausible explanations for the creation of the
given human edit trails. Clearly, for ICD-11, the hierarchy hypothesis represents
the most plausible explanation for the production of the trails, and thus the
ontology at hand, followed by the similarity hypothesis.

International Classification of Traditional Medicine (ICTM). Similarly
to ICD-11, the top-down, bottom-up and connectivity hypotheses exhibit lower
evidences than the uniform hypothesis for all analyzed values of k > 0 (see
top-right part of Figure 3). According to our experiments, the most plausible
hypothesis for explaining the production of the edit trails of ICTM is the hier-
archy hypothesis as it exhibits the highest Bayesian evidences for all k > 0.
Further, the similarity hypothesis, as well as the breadth-first and shortest path
hypotheses, are also better suited for describing the production of the human edit
trails in ontology-engineering projects than the uniform hypothesis. For k > 2,
we can also observe that the shortest-path hypothesis is increasing in plausibility
and takes over the breadth-first hypothesis at k = 4.

Table 2. Results. The table depicts the relative ranking of each hypothesis for the
corresponding datasets at k = 4. The best performing hypotheses are highlighted bold-
face. If a hypothesis is less likely to explain the production of the corresponding edit
trails than the uniform hypothesis, we have marked them with “-” for the corresponding
dataset.

ICD-11 ICTM BRO OPL

Hierarchy Hypothesis 1 1 1 1

Similarity Hypothesis 2 2 3 2

Shortest Path Hypothesis 3 3 2 3

Breadth-First Hypothesis 4 4 - 4

Uniform Hypothesis 5 5 4 5

Connectivity Hypothesis - - - -

Bottom-Up Hypothesis - - - -

Top-Down Hypothesis - - - -
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Biomedical Resource Ontology (BRO). For BRO, the hypothesis with
the highest Bayesian evidences for k > 0 is, again, the hierarchy hypothesis.
Similarly to ICTM, the connectivity, top-down and bottom-up hypotheses are
less plausible for explaining the production of the human edit trails in ontology-
engineering projects than the uniform hypothesis. In contrast to ICD-11 and
ICTM, the similarity hypothesis is less likely to be a plausible explanation for the
trails than the shortest path hypotheses. Further, the shortest path hypothesis
gains evidence with growing k, while the breadth-first hypothesis drops below
the uniform hypothesis at k = 4.

Ontology for Parasite Lifecycle (OPL). Similarly to all other projects, the
most plausible hypothesis for explaining the production of the trails at hand for
OPL is the hierarchy hypothesis, followed by the similarity hypothesis (especially
for higher k). The top-down, bottom-up and connectivity hypotheses are again,
less plausible than the uniform hypothesis at k > 0. Analogously to ICTM, the
breadth-first and shortest path hypotheses are more plausible for explaining the
creation of the human edit trails than the uniform hypothesis, and switch ranks
with growing k.

6 Discussions

The results of comparing the different hypotheses for the four datasets with
HypTrails are surprisingly consistent. In all of the four ontology-engineering
projects, the hierarchy hypothesis represents the most plausible hypothesis to
explain the production of the human edit trails in ontology-engineering projects,
and therefore the corresponding ontology at hand. The similarity hypothesis is
the second most plausible hypothesis for explaining the production of the human
edit trails in ontology-engineering projects for ICD-11, ICTM and OPL (at k =
4). The reason for the high Bayesian evidences of the similarity hypothesis is most
probably due to the fact that (semantically) similar classes are usually grouped
into the same parts of an ontology, hence the similarity calculations are likely
to reflect our beliefs of the hierarchy hypothesis. For example, in a biomedical
ontology, similar classes are grouped together as siblings or cousins, sharing
at least one common parent or grandparent among them. Hence, additional
adaptions to further distinguish the similarity hypothesis from the hierarchy
hypothesis are warranted. In particular, we plan on investigating correlation
between the similarity of classes and existing hierarchical links in future work.

In Walk et al. [23], we have been arguing that users are editing the ontology
in a combined top-down and breadth-first fashion. The results of our analysis
confirm the results from our exploratory analysis. In particular, the hierarchy
hypothesis emphasizes transitions along top-down and breadth-first hierarchical
relations (i.e., children, siblings and cousins opposed to uncles and aunts). This
finding is also supported by the empirical research conducted by Vigo et al. [20],
which shows that the class hierarchy is the central focus of user activity in an
ontology-editing session. Users spend more than 45% of their time navigating
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or editing the class hierarchy, which serves as an index and external memory
of the ontology. The authors have identified the class hierarchy as the central
component of the user interface, which also explains very well our findings.

Thus, these observations reinforce our initial belief that the ontological hier-
archy influences the selection of which class to edit next. Among other potential
scenarios, this information can be leveraged by ontology-engineering tools cre-
ators to minimize the efforts required by users to create new, or edit existing con-
tent in an ontology. For example, ontology-editing tools may visually highlight
the corresponding classes in the user interface, and provide keyboard shortcuts
that allow for quicker and more productive editing sessions. Vigo et al. [20] also
make the recommendation to place editing features close to the class hierarchy
to better support the users in their editing patterns.

In our investigations, we have also identified hypotheses that were weak, and
potentially not useful for the purpose of improving the user interface or editing
process: the top-down, bottom-up and connectivity hypotheses are less plausible
than the uniform hypothesis, meaning that randomly selecting classes to work
on is likelier to produce the corresponding edit trails than specifically editing
highly connected classes, or editing classes in a top-down or bottom-up fashion.

Our study also has limitations, for example, all investigated ontologies are
authored with the same tool, WebProtégé (or its customizations), which may
biases some of our findings. However, we believe that the bias is attenuated by the
fact that the projects are completely different efforts by different teams, and they
also use different customizations of the user interface. Furthermore, Rospocher
et al. [10], who have analyzed the change logs of two different ontology-editing
platforms (WebProtégé and a Wiki system), have come to the conclusion that
users tend to edit around the hierarchy, indifferent of the tool that they used.
One difficulty in overcoming this limitation is the fact that obtaining change logs
for real-world projects from different platforms is almost impossible. Another
limitation is the fact that HypTrails focuses on comparing the relative plausibility
of hypotheses. Hence, we can say that the hierarchy hypothesis is the most
plausible one for explaining the production of the edit trails at hand. However,
we do not know if another hypothesis, other than the ones compared, is more
plausible than the hierarchy hypothesis. For example, calculating the actual
transition probabilities directly from the trails yields highest Bayesian evidences.
However, understanding and interpreting this empirical “hypothesis” is very
hard. Also, to be able to conduct an analysis using HypTrails, we need to have
detailed change-tracking information, which WebProtégé provides, but might
not be as easily obtained for other projects and tools.

7 Conclusions

In this paper, we have formally defined several hypotheses of how users edit an
ontology, and systematically investigated, analyzed, and ranked these hypotheses
according to their relative plausibility for describing edit trails of four real-world
ontology-engineering projects using HypTrails, a coherent research approach.
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We have found that the hierarchical structure of an ontology exercises the
strongest influence on the observed user behavior, followed by the similarity
of concepts. These findings are remarkably consistent across four different real-
world projects, with some minor exception for the BRO dataset. We have also
discussed how these findings may be used to improve ontology-editing tools. We
think that our findings represent an advancement of the empirical research on
how ontologies are created, which is a field that has been chronically lacking in
our community.

We believe that the insights, uncovered in this paper, into how users actu-
ally edit real-world ontologies, represent a great opportunity for ontology-tools
builders and for project managers, who can potentially leverage this information
to create user interfaces and processes that better support the editing patterns
of the users.

For future work, we plan to extend our set of formally defined hypotheses
by including theories on how users edit properties (current work only consid-
ers class-based trails) and include different types of relationships for the anal-
yses presented in this paper. In particular, studying individual (clustered) user
behavior to automatically detect subsets of users that behave differently to other
subsets of users represents a very promising opportunity for future work. On the
longer term, we would like to create a recommendation module for ontology-
editing tools, which would be informed by the editing patterns that we identify
through our empirical research. We believe that the recommendation module
and an adapted user interface will vastly improve the editing experience of the
users.
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Abstract. The Protégé plug-in NoHR allows the user to combine an
OWL 2 EL ontology with a set of non-monotonic (logic programming)
rules – suitable, e.g., to express defaults and exceptions – and query the
combined knowledge base (KB). The formal approach realized in NoHR
is polynomial (w.r.t. data complexity) and it has been shown that even
very large health care ontologies, such as SNOMED CT, can be han-
dled. As each of the tractable OWL profiles is motivated by different
application cases, extending the tool to the other profiles is of particular
interest, also because these preserve the polynomial data complexity of
the combined formalism. Yet, a straightforward adaptation of the exist-
ing approach to OWL 2 QL turns out to not be viable. In this paper, we
provide the non-trivial solution for the extension of NoHR to OWL 2 QL
by directly translating the ontology into rules without any prior classi-
fication. We have implemented our approach and our evaluation shows
encouraging results.

1 Introduction

NoHR1 is a plug-in for the ontology editor Protégé2 that allows its users to query
combinations of EL+

⊥ ontologies and non-monotonic rules in a top-down manner.
Its motivation stems from the fact that many ontologies, such as the very

large health care ontologies widely used in the area of medicine, e.g., SNOMED
CT,3 are expressed in OWL 2 EL, one of the OWL 2 profiles [24], and its under-
lying description logic (DL) EL++ [4]. Yet, due to their monotonic semantics,
i.e., previously drawn conclusions persist when new additional information is
adopted, DL-based ontology languages [3] are not suitable to model defaults
and exceptions with a closed-world view, a frequently requested feature, e.g.,
when matching patient records to clinical trial criteria [26].

Among the plethora of approaches for extending DLs with non-monotonic
features and deal with this problem (c.f. related work in [9,25]), NoHR builds on
(Hybrid) MKNF KBs [25], which are based on the logic of minimal knowledge
and negation as failure (MKNF) [23], under their well-founded semantics [18],

1 http://centria.di.fct.unl.pt/nohr/
2 http://protege.stanford.edu
3 http://www.ihtsdo.org/snomed-ct/
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a formalism that combines DLs and non-monotonic rules as known from Logic
Programming.

This choice is motivated, on the one hand, by the fact that non-monotonic
logic programming rules are one of the most well-studied formalisms that admit
expressing defaults, exceptions, and also integrity constraints in a declarative
way, and are part of RIF [17], the other expressive language for the Semantic Web
whose standardization is driven by the W3C.4 On the other hand, MKNF KBs
provide a very general and flexible framework for combining DL ontologies and
non-monotonic rules (see [25]). In addition, [18], which is a variant of [25] based
on the well-founded semantics [10] for logic programs, has a (lower) polynomial
data complexity and is amenable for applying top-down query procedures, such
as SLG(O) [1], to answer queries based only on the information relevant for the
query, i.e., without computing the entire model.

NoHR is thus applicable to combinations of non-monotonic rules and OWL
2 EL ontologies. However, other applications (see, e.g., [6,27]) require ontologies
using DL constructors which are not covered by OWL 2 EL, such as concept
and role negation or role inverses – adding these to OWL 2 EL would raise its
polynomial complexity [4].

OWL 2 QL and the DL-Lite family [2,5] to which the DL underneath OWL
2 QL belongs, DL-LiteR, is suitable in these cases and has recently drawn a lot
of attention in research and in applications. Even though a simple language at
first glance, it is expressive enough to capture basic ontology languages, concep-
tual data models, e.g., Entity-Relationship, and object-oriented formalisms, e.g.,
basic UML class diagrams. Reasoning focuses on answering queries by rewriting
the initial query, with the help of the ontology, into a set of queries that can
be answered using an industry-strength SQL engine over the data. This yields
that query answering in OWL 2 QL is in LOGSPACE (more precisely AC0), but
also links directly to applications in ontology-based data access (OBDA) [6,20].
Altogether, OWL 2 QL is naturally tailored towards huge datasets.

To also provide such OWL 2 QL based applications with the additional expres-
sive power obtained from combining DL ontologies with non-monotonic rules, in
this paper, we extend NoHR to deal with the OWL 2 QL profile. Whereas, at
first sight, this could seem like a routine exercise, to the best of our knowledge,
there is currently no dedicated open-source OWL 2 QL classifier with OWL API
available that also classifies negative concepts (similar to the NI-closure in [5],
but whose direct adaptation would potentially introduce a huge number of addi-
tional axioms). Thus, since we cannot simply replace the reasoner ELK [16], used
currently in NoHR for EL, with a correspondent for DL-LiteR, we translate the
ontology directly into rules. This introduces some non-trivial problems such as the
need to capture unsatisfiable concepts and roles, and irreflexive roles (covered in
[5] also by the NI-closure). We solve this problem by introducing an extension of
the graph, used e.g., for classification in OWL QL [22], to negative axioms, which
is already a contribution in its own right. The resulting translation is implemented
as a module of NoHR, and its performance evaluated. Our main contributions are:
4 http://www.w3.org

http://www.w3.org
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– A procedure for translating DL-LiteR ontologies into rules which allows
answering queries over MKNF KBs combining such ontologies and non-
monotonic rules;

– A substantial extension of the Protégé plug-in NoHR to include OWL 2 QL
ontologies, beyond DL-LiteR via normalizations, including optimizations on
the number of created rules and the use of tabling in the top-down query
engine XSB;5

– An evaluation of our extension that shows that NoHR for OWL 2 QL main-
tains all positive evaluation results of the OWL 2 EL version [13], and is even
faster during pre-processing, as no classification is necessary, in exchange for
a slightly longer average response time during querying.

The remainder of the paper is structured as follows. In Sect. 2, we briefly
recall DL-LiteR and MKNF KBs as a tight combination of the former DL and
non-monotonic rules, followed, in Sect. 3, by the translation of DL-LiteR ontolo-
gies into rules. In Sect. 4, we discuss the changes made in the implementation
for OWL 2 QL including optimizations, and evaluate it in Sect. 5, before we
conclude in Sect. 6.

2 Preliminaries

2.1 DL-LiteR

The description logic underlying OWL QL is DL-LiteR, one language of the
DL-Lite family [2,5], which we recall following the presentation in [19].

The syntax of DL-LiteR is based on three disjoint sets of individual names
NI, concept names NC, and role names NR. Complex concepts and roles can be
formed according to the following grammar

B → A | ∃Q C → B | ¬B Q → P | P− R → Q | ¬Q

where A ∈ NC is a concept name, P ∈ NR a role name, and P− its inverse.
We also call B a basic concept, Q a basic relation, C a general concept and R a
general role.

A DL-LiteR knowledge base O = (T ,A) consists of a TBox T and an ABox
A. The TBox contains general inclusion axioms (GCI) of the form B � C and
role inclusion axioms (RI) of the form Q � R, with B, C, Q, and R defined
as above. We term positive inclusion axioms all GCIs and RIs in O such that
C is a basic concept and R is a basic relation, respectively, and all other GCIs
and RIs negative inclusion axioms. We also assume that Q− denotes the role P
if Q = P−, and P− if Q = P . The ABox contains assertions of the form A(a)
and P (a, b) where A ∈ NC, P ∈ NR, and a, b ∈ NI. Assertions C(a) for general
concepts C can be included by A � C and A(a) for a new concept name A.

5 http://xsb.sourceforge.net

http://xsb.sourceforge.net
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The semantics of DL-LiteR is based on interpretations I = (ΔI , ·I) consist-
ing of a nonempty interpretation domain ΔI and an interpretation function ·I
that assigns to each individual a a distinct6 element aI of ΔI , to each concept
name A a subset AI , and to each role name P a binary relation P I over I. This
can be extended as usual:

(P−)I = {(i2, i1) | (i1, i2) ∈ P I} (¬B)I = ΔI \ BI

(∃Q)I = {i | (i, i′) ∈ QI} (¬Q)I = ΔI × ΔI \ QI

An interpretation I is a model of GCI B � C and of RI Q � R if BI ⊆ CI

and QI ⊆ RI respectively. I is also a model of an assertion A(a) (P (a, b)) if
aI ∈ AI ((aI , bI) ∈ P I). Given an axiom/assertion α we denote by I |= α that
I is a model of α. A model of a DL-LiteR KB O = (T ,A) is an interpretation
I such that I |= α holds for all α ∈ T ∪ A, and O is satisfiable if it has at least
one model, and unsatifiable otherwise. Also, O entails axiom α, written O |= α,
if every model of O satisfies α.

2.2 MKNF Knowledge Bases

MKNF knowledge bases (KBs) build on the logic of minimal knowledge and
negation as failure (MKNF) [23]. Two main different semantics have been defined
[18,25], and we focus on the well-founded version [18], due to its lower compu-
tational complexity and amenability to top-down querying without computing
the entire model. Here, we only point out important notions following [13], and
refer to [18] and [1] for the details.

We start by recalling MKNF knowledge bases as presented in [1] to combine
an ontology and a set of non-monotonic rules (similar to a normal logic program).

Definition 1. LetO be an ontology.A function-free first-order atom P (t1, . . . , tn)
s.t.P occurs inO is called DL-atom; otherwise non-DL-atom. A rule r is of the form

H ← A1, . . . , An,not B1, . . . ,not Bm. (1)

where the head of r, H, and all Ai with 1 ≤ i ≤ n and Bj with 1 ≤ j ≤ m in
the body of r are atoms. A program P is a finite set of rules, and an MKNF
knowledge base K is a pair (O,P). A rule r is DL-safe if all its variables occur
in at least one non-DL-atom Ai with 1 ≤ i ≤ n, and K is DL-safe if all its rules
are DL-safe.

DL-safety ensures decidability of reasoning with MKNF knowledge bases and can
be achieved by introducing a new predicate o, adding o(i) to P for all constants
i appearing in K and, for each rule r ∈ P, adding o(X) for each variable X
appearing in r to the body of r. Therefore, we only consider DL-safe MKNF
knowledge bases.
6 Hence, the unique name assumption is applied and, as shown in [2], dropping it

would increase significantly the computational complexity of DL-LiteR.
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Example 2. Consider the following MKNF knowledge base K for recommending
CDs, adapted from [18] (with some modifications). We denote DL-atoms and
constants with upper-case names and non-DL-atoms and variables with lower-
case names.7

∃HasArtist− � Artist Piece � ∃HasArtist

∃HasComposed− � Piece Artist � ¬Piece

HasComposed− � HasArtist

recommend(x ) ←Piece(x ),not owns(x ),not lowEval(x ), interesting(x ).
interesting(x ) ←Piece(x ),not owns(x ),Piece(y), owns(y),

Artist(z ),HasArtist(y , z ),HasArtist(x , z ).
owns(Summertime). HasArtist(Summertime,Gershwin).
Piece(Summertime). HasComposed(Gershwin,RhapsodyInBlue).

This example shows that we can seamlessly express defaults and exceptions,
such as recommending pieces as long as they are not owned or having a low
evaluation, and at the same time taxonomic/ontological knowledge including
information over unknown individuals, such as every piece having at least one
artist without having to specify whom, but also features of DL-LiteR, such as
domain and range restrictions (of roles).

The semantics of MKNF knowledge bases K is usually given by a translation
π into an MKNF formula π(K), i.e., a formula over first-order logic extended with
two modal operators K and not. Namely, every rule of the form (1) is translated
into a rule of the form KH ← KA1, . . . ,KAn,not B1, . . . ,not Bm, and π(P)
is the conjunction of the translations of its rules, and π(K) = Kπ(O) ∧ π(P)
where π(O) is the first-order translation of O. Reasoning with such MKNF
formulas is then commonly achieved using a partition of modal atoms, i.e., all
expressions of the form Kϕ for each Kϕ or not ϕ occurring in π(K). For [18],
such a partition assigns true, false, or undefined to (modal) atoms, and can be
effectively computed in polynomial time. If K is MKNF-consistent, then this
partition does correspond to the unique model of K [18], and, like in [1], we call
the partition the well-founded MKNF model Mwf(K). Here, K may indeed not be
MKNF-consistent if the ontology alone is unsatisfiable, or by the combination
of appropriate axioms in O and rules in P, e.g., axiom A � ¬B in O, and facts
A(a) and B(a) in P. Strictly speaking, unlike [13], we do not have to make
assumptions on the satisfiability of O as we are not going to use a classifier
when processing DL-LiteR ontologies. Still, for the technical results established
in Sec. 3, we will rely on satisfiability since we are able to entail everything from
an unsatisfiable O, whereas the translation into rules defined in Sec. 3 would
7 To ease readability, we omit the auxiliary atoms that ensure DL-safety and leave

them implicit. Also, whenever the body of a rule is empty, we dub it a fact and omit
the ← occasionally.
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not permit that. This is why, in the following, we assume that O occurring in
K is satisfiable, which does not truly constitute a restriction as we can always
turn the ABox into rules without any effect on Mwf(K). An alternative approach
would be to use one of the paraconsistent semantics for MKNF knowledge bases
[15], but this is outside the scope of this paper, and an issue for future work, as
no paraconsistent correspondence to the querying procedure SLG(O) used here
currently exists.

2.3 Querying in MKNF Knowledge Bases

In [1], a procedure, called SLG(O), is defined for querying MKNF knowledge
bases under the well-founded MKNF semantics. This procedure extends SLG
resolution with tabling [7] with an oracle to O that handles ground queries to
the DL-part of K by returning (possibly empty) sets of atoms that, together with
O and information already proven true, allows us to derive the queried atom.
We refer to [1] for the full account of SLG(O), and only recall a few crucial
notions necessary in the following.

SLG(O) is based on creating top-down derivation trees with the aim of
answering (DL-safe) conjunctive queries Q = q(X) ← A1, . . . , An,not B1, . . . ,
not Bm, where each variable in Q occurs in at least one non-DL atom in Q,
and where X is the (possibly empty) set of requested variables appearing in the
body.

In general, the computation of Mwf(K) uses two different versions of K in
parallel to guarantee that a) coherence is ensured, i.e., if ¬P (a) is derivable,
then not P (a) has to be true as well (cf. also [18]), and b) MKNF-consistency
of K can be verified. For a top-down approach this is impractical, so, instead,
a doubled MKNF knowledge base Kd = (O,Od,Pd) is defined in which a copy
of O with new doubled predicates is added, and two rules occur in Pd for each
rule in P, intertwining original and doubled predicates (see Def. 3.1 in [1]). It is
shown that an atom A is true in Mwf(K) iff A is true in Mwf(Kd) and A is false
in Mwf(K) iff Ad is false in Mwf(Kd). Note that Kd is necessary in general, but
we can use K here if it contains no negative inclusion axioms.

In [1], the notion of oracle is defined to handle ground queries to the ontology,
but before we recall that notion, we use an example to illustrate the idea.

Example 3. Recall K in Ex. 2. As this suffices for our purposes, we omit Kd

and restrict ourselves to K here. Consider query q = recommend(Summertime).
There is a matching rule head in K, and, by instantiating the rule body with x =
Summertime, we obtain a new set of queries. The first one, Piece(Summertime),
can be answered by means of the rule with matching head. The second,
not owns(Summertime), is handled by querying for owns(Summertime), for
which also exists a corresponding rule, which means that not owns(Summertime)
fails, so q is false.

Consider q1 = recommend(RhapsodyInBlue). We can use the same rule
with matching rule head and, again, obtain four new instantiated queries
from the rule body. Now, Piece(RhapsodyInBlue) cannot be derived from the
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rules, but we can query the ontology and the oracle will return, e.g., a query
HasComposed(x1 ,RhapsodyInBlue) that if proven true can be added to O,
which would allow us to derive the queried goal. Because of the fact
HasComposed(Gershwin,RhapsodyInBlue), this query succeeds, and so does
Piece(RhapsodyInBlue). Subsequently, neither owns(RhapsodyInBlue) nor
lowEval(RhapsodyInBlue) can be proven, so both fail, and their (default) negated
queries succeed. For the remaining new query interesting(RhapsodyInBlue), the
second rule head matches, which creates a further set of subgoals. The first two
have just been answered, so have the next two with y = Summertime for q, and
it can be verified that the remaining also follow from the interplay of O and P
in K. Thus, q1 succeeds.

We recall the notions of a complete and a (correct) partial oracle from [1].

Definition 4. Let Kd = (O,Od,Pd) be a doubled MKNF KB, I a set of ground
atoms (already proven to be true), S a ground query, and L a set of ground
atoms such that each L ∈ L is unifiable with at least one rule head in Pd. The
complete oracle for O, denoted compTO, is defined by compTO(I, S,L) iff O ∪
I ∪L |= S or Od ∪I ∪L |= S. A partial oracle for O, denoted pTO, is a relation
pTO(I, S,L) such that if pTO(I, S,L), then O ∪ I ∪ L |= S or Od ∪ I ∪ L |= S
for consistent O ∪ I ∪ L and Od ∪ I ∪ L, respectively.

A partial oracle pTO is correct w.r.t. compTO iff, for all MKNF-consistent
Kd, replacing compTO in SLG(O) with pTO succeeds for exactly the same set
of queries.

Partial oracles may avoid returning unnecessary answers L, such as non-minimal
answers or those that try to derive an MKNF-inconsistency even though Kd

is MKNF-consistent. Also, correctness of partial oracles is only defined w.r.t
MKNF-consistent K. The rationale is that, when querying top-down, we want
to avoid checking whether the entire KB Kd is MKNF-consistent. This leads to
para-consistent derivations if Kd is not MKNF-consistent, e.g., some atom P is
true, yet P d is false, while other independent atoms are evaluated as if Kd was
MKNF-consistent (see [1]).

3 Translating the Ontology into Rules

As argued for the case of EL+
⊥ [13], axioms with ∃ on the right-hand side, e.g.,

Piece � ∃HasArtist , cannot be translated straightforwardly into rules, nor do
they directly contribute to the result when querying for ground instances, e.g., of
HasArtist(x , y). Still, such axioms may contribute to derivations within O, which
is why, in [13], classification using the dedicated and highly efficient EL reasoner
ELK [16] is first applied to derive implicit consequences. These, together with
all axioms in O, are then translated into rules, now discarding certain axioms
with ∃ on the right-hand side.

Since, to the best of our knowledge, no dedicated and open-source OWL 2
QL classifier with OWL API that also classifies negative concepts is currently
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available, we translate the ontology directly into rules. This also simplifies and
shortens the preprocessing phase and avoids a priori-classification, but requires
some non-trivial considerations to ensure that no derivations are lost in the
process, which we now explain.

Essentially, axioms, such as Piece � ∃HasArtist , cannot be translated into a
rule HasArtist(x , y) ← Piece(x ) using a universal variable y, as this would allow us
toderiveHasArtist(x , y) for anyPiece(x ) andy,which is clearlynotwhat theaxiom
expresses. Using a new constant c instead of y would not be correct either, as query-
ing for HasArtist(x , y) would return HasArtist(x , c) for any Piece(x ) for the same
c. Therefore, we proceed differently by introducing new auxiliary predicates that
intuitively represent the domain and range of roles. For our example, this will yield
the rule DHasArtist(x ) ← Piece(x ) where DHasArtist stands for the domain of
HasArtist (and RHasArtist its range). Using such auxiliary predicates also means
that we have to make sure that, e.g., HasArtist(Summertime,Gershwin) allows us
to derive DHasArtist(Summertime), which can be achieved via an additional rule
DHasArtist(x ) ← HasArtist(x , y). Moreover, for HasComposed− � HasArtist , it
does not suffice to translate the axiom to HasArtist(x , y) ← HasComposed(y , x ),
but also link the new auxiliary predicates for both roles, through the
addition of the rules DHasArtist(x ) ← RHasComposed(x ) and RHasArtist(x ) ←
DHasComposed(x ).

We now formalize this translation, and start by introducing notation on how
to translate general concepts and roles. For that purpose, we formally introduce
for each role P ∈ NR auxiliary predicates DP and RP with the intuition of
representing the domain and range of P . Also, similar to previous work in [1,13],
we use special atoms NH(ti) in SLG(O) that represent a query ¬H(ti) to the
oracle. These are, of course, only relevant if O contains negative inclusion axioms.

Definition 5. Let C be a concept, R a role, x and y variables, and v a new
(anonymous) variable (disjoint from x and y). We define tr(C, x) and tr(R, x, y)
as follows:

tr(C, x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A(x) if C = A

DP (x) if C = ∃P

RP (x) if C = ∃P−

NA(x) if C = ¬A

tr(¬Q,x, v) if C = ¬∃Q

tr(R, x, y)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P (x, y) if R = P

P (y, x) if R = P−

NP (x, y) if C = ¬P

NP (y, x) if C = ¬P−

We obtain trd(C, x) and trd(Q,x, y) from tr(C, x) and tr(Q,x, y) by substituting
all predicates P in tr(C, x) and tr(Q,x, y) with P d, respectively.

This way, tr(C, x) and tr(R, x, y) handle both positive and negative inclusions
and no additional case distinction is necessary.

Before we present the actual translation, we need to introduce one central
notion, namely a graph to represent the axioms in a given TBox T as well as the
implicitly derivable axioms, which will be necessary for defining the translation
itself, but also turn out useful when establishing the correctness of the transla-
tion. Graphs have been used for classification in OWL QL (of positive inclusion
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Fig. 1. The digraph GT for Example 2

axioms) [22], and we extend the notion here to also take negative inclusion
axioms into account. We thus introduce the digraph (directed graph) of T as
follows.

Definition 6. Let T be a DL-LiteR TBox. The digraph of T , GT = 〈V, E〉, is
constructively defined as follows.

1. If A ∈ NC , then A and ¬A are in V;
2. If R ∈ NR, then P , ∃P , ∃P−, ¬P , ¬∃P , and ¬P− are in V;
3. If B1 � B2 ∈ T , then the edges (B1, B2) and (¬B2,¬B1) are in E;
4. If Q1 � Q2 ∈ T , then the edges (Q1, Q2), (Q−

1 , Q−
2 ), (∃Q1,∃Q2), (∃Q−

1 ,∃Q−
2 ),

(¬Q2,¬Q1),(¬Q−
2 ,¬Q−

1 ), (¬∃Q2,¬∃Q1) e (¬∃Q−
2 ,¬∃Q−

1 ) are in E;
5. If B1 � ¬B2 ∈ T , then the edges (B1,¬B2) and (B2,¬B1) are in E;
6. If Q1 � ¬Q2 ∈ T , then the edges (Q1,¬Q2), (Q−

2 ,¬Q−
1 ), (∃Q1,¬∃Q2),

(∃Q2,¬∃Q1), (∃Q−
1 ,¬∃Q−

2 ) and (∃Q−
2 ,¬∃Q−

1 ) are in E.

Basically, each possible general concept and general role over NC and NR is
a node in GT , and the directed edges represent logical implications that follow
from the axioms. Namely, for items 3. and 5., the subset inclusion itself and its
contrapositive are in E , and this is similar for items 4. and 6., only that the
additional combinations due to inverses, ∃, and ¬ have to be taken into account.
In this sense, the graph can be understood as capturing all subset inclusions
(explicit and implicit) in O, i.e., whenever there is a path from concept C1 to
concept C2 and from role R1 to role R2, then C1 � C2 and R1 � R2 hold
respectively. An Example of such a digraph is given in Fig. 1 for the TBox T
from Example 2.

One observation w.r.t. Fig. 1, is that ∃HasComposed � ¬∃HasComposed−,
i.e., HasComposed is irreflexive. Even though this does not entail any asser-
tion, knowing that ∀x.¬HasComposed(x , x ) does hold should be captured in the
translation. We introduce Ψ(T ), the set of irreflexive roles in T , to be able to
ensure exactly that.

Definition 7. Let T be a DL-LiteR TBox and GT its digraph. We define Ψ(T )
as the smallest set of all P ∈ NR that satisfy at least one of the following condi-
tions:
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1. For some B1 � ¬B2 ∈ T , there exist paths from ∃P to B1 and from ∃P− to B2;
2. For some B1 � ¬B2 ∈ T , there exist paths from ∃P− to B1 and from ∃P to B2;
3. For some Q1 � ¬Q2 ∈ T , there exist paths from P to Q1 and from P− to Q2;
4. For some Q1 � ¬Q2 ∈ T , there exist paths from P− to Q1 and from P to Q2.

This notion builds on GT , which is also required for detecting a further set of
derivations. Imagine we would (wrongfully) add Artist � ∃HasComposed− to
O in Example 2. Then there would be a path from Artist to both Piece and
¬Piece, i.e., the concept Artist would be unsatisfiable. Note that independently
of whether the MKNF KB is MKNF-inconsistent or not, we need to make sure
that all unsatisfiable concepts and roles are determined, so we introduce Ω(T ),
quite similar in spirit to Ψ(T ).

Definition 8. Let T be a DL-LiteR TBox and GT its digraph. We define Ω(T )
as the smallest set of all A ∈ NC such that, for some B1 � ¬B2 ∈ T , there exist
paths from A to both B1 and B2, and all P ∈ NR that satisfy at least one of the
following conditions:

1. For some B1 � ¬B2 ∈ T , there exist paths from ∃P to both B1 and B2;
2. For some B1 � ¬B2 ∈ T , there exist paths from ∃P− to both B1 and B2;
3. For some Q1 � ¬Q2 ∈ T , there exist paths from P to both Q1 and Q2;
4. For some Q1 � ¬Q2 ∈ T , there exist paths from P− to both Q1 and Q2.

With all pieces in place, we can introduce the translation of a DL-LiteR
ontology.

Definition 9. Let O be a DL-LiteR ontology. We define Pd
O from O, where B1,

B2 are basic concepts, Q1, Q2 basic roles, x, y variables, and a, b individuals,
as the smallest set containing:
(e) for every P ∈ NR:

DP (x) ← P (x, y). DP d(x) ← P d(x, y).
RP (y) ← P (x, y). RP d(y) ← P d(x, y).

(a1) for every A(a) ∈ O:
A(a) ← . Ad(a) ← not NA(a).

(a2) for every P (a, b) ∈ O:
P (a, b) ← . P d(a, b) ← not NP (a, b).

(s1) for every B1 � B2 ∈ O:
tr(B2, x) ← tr(B1, x). trd(B2, x) ← trd(B1, x),not tr(¬B2, x).
tr(¬B1, x) ← tr(¬B2, x).

(s2) for every Q1 � Q2 ∈ O:
tr(Q2, x, y) ← tr(Q1, x, y). trd(Q2, x, y) ← trd(Q1, x, y),not tr(¬Q2, x, y).
tr(∃Q2, x) ← tr(∃Q1, x). trd(∃Q2, x) ← trd(∃Q1, x),not tr(¬∃Q2, x).
tr(∃Q−

2 , x) ← tr(∃Q−
1 , x). trd(∃Q−

2 , x) ← trd(∃Q−
1 , x),not tr(¬∃Q−

2 , x).
tr(¬Q1, x, y) ← tr(¬Q2, x, y).

(n1) for every B1 � ¬B2 ∈ O:
tr(¬B1, x) ← tr(B2, x). tr(¬B2, x) ← tr(B1, x).

(n2) for every Q1 � ¬Q2 ∈ O:
tr(¬Q2, x, y) ← tr(Q1, x, y). tr(¬Q1, x, y) ← tr(Q2, x, y).
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(i1) for every A ∈ Ω(T ): NA(x) ← .
(i2) for every P ∈ Ω(T ): NP (x, y) ← .
(ir) for every P ∈ Ψ(T ): NP (x, x) ← .

Item (e) ensures that the domain and range of roles is correctly encoded, items
(a1) and (a2) translate the ABox, items (s1) and (s2) the positive inclusions,
items (n1) and (n2) the negative inclusions, and items (i1), (i2), and (ir) intro-
duce the rules representing unsatisfiable concepts and unsatisfiable and irreflex-
ive roles. Note, that Pd

O contains the rule representation for both O and Od,
which is why items (e)–(s2) contain doubled rules. Of course, if O does not
contain negative inclusion axioms, then we can skip all these, as well as items
(n1)–(ir) which will not contribute anything anyway in this case. The addi-
tional default atoms are added to the doubled rules to be in line with the idea
of the doubling of rules in [1]: whenever, e.g., A(x) is “classically false” for some
x, i.e., NA(x) holds, then we make sure that Ad(x) is derivable as false for that
same x from the rules, but not necessarily A(x), thus allowing to detect potential
MKNF-inconsistencies. That is also the reason why neither (n1)–(ir) nor the
contrapositives in (s1) and (s2) do produce the doubled counterparts: atoms
based on predicates of the forms NCd or NRd are not used anywhere. Finally,
the doubled rules in (e) do not contain the default negated atom as this case
does really just associate domain and range to a role assertion, either present in
the ABox or derived elsewhere. Additionally, predicates NDP or NRP are not
used anywhere, so such default negated atoms would be of no impact anyway.

We can establish three correspondences between entailment from satisfiable
O and the program resulting from the translation Pd

O. First, we consider positive
atoms.

Lemma 10. Let O be a DL-LiteR ontology, A a unary and R a binary predi-
cate:

– O |= A(a) iff Pd
O |= A(a) and O |= R(a, b) iff Pd

O |= R(a, b).

A similar property holds for (classically) negated atoms.

Lemma 11. Let O be a DL-LiteR ontology, A a unary and R a binary predi-
cate:

– O |= ¬A(a) iff Pd
O |= NA(a) and O |= ¬R(a, b) iff Pd

O |= NR(a, b).

We can also show the correspondent to Lemma 10 for the doubled predicates.

Lemma 12. Let O be a DL-LiteR ontology, A a unary and R a binary predi-
cate:

– Od |= Ad(a) iff Pd
O |= Ad(a) and Od |= Rd(a, b) iff Pd

O |= Rd(a, b).

Thus, we can define a correct partial oracle based on Pd
O.

Theorem 13. Let Kd = (O,Od,Pd) be a doubled MKNF KB and pTQL
O a par-

tial QL oracle such that pTQL
O (I, S,L) iff Pd

O ∪ I ∪ L |= S. Then pTQL
O is a

correct partial oracle w.r.t. compTO.
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Instead of coupling two rule reasoners that interact with each other using an
oracle, we can integrate both into one rule reasoner. The resulting approach is
polynomial w.r.t. data complexity (as in [1,13], but not in AC0 any longer as for
OWL 2 QL alone).

Theorem 14. Let K = (O,P) be an MKNF KB with O in DL-LiteR. An
SLG(O) evaluation of a query in KQL = (∅, (Pd ∪ Pd

O)) is decidable with data
complexity in PTIME.

4 System Description

In this section, we briefly describe the changes to the architecture of our plug-in
and discuss some optimizations implemented w.r.t. the translation described in
Sec. 3.

To allow the usage of OWL QL ontologies, changes were essentially made
in the translator. Since NoHR now supports two OWL profiles a switch was
introduced that checks the profile of the loaded/edited ontology. Whenever it
belongs to OWL EL, NoHR behaves as described in [13], i.e., the reasoner ELK
is used to classify the ontology and return the inferred axioms to translator,
which are then translated. Otherwise, we treat O of the hybrid KB based on the
translation described in Sec. 3 for OWL QL.

Notably, in Sec. 3, we only considered DL-LiteR, while OWL QL includes a
number of additional constructs which often can be expressed in DL-LiteR. To
account for that, we first normalize such expressions to axioms in DL-LiteR. This
includes ignoring certain expressions, most of which do not contribute to deriva-
tions, e.g., SubClassOf(B owl:Thing), while others make the ontology unsatisfi-
able, such as ClassAssertion(owl:Nothing a), although, as mentioned before,
with no effect when querying the translated rules.

Subsequently, the graph is constructed, for determining unsatisfiable concepts
and unsatisfiable and irreflexive roles, after which the translation is performed,
which includes a number of optimizations. First, whenever there are no negative
inclusions, the doubled rules are omitted in the cases (e)–(s2) of Def. 9. Addi-
tionally, case (e) is limited to those rules whose heads appear in the body of
another rule. Both steps reduce the overall number of rules created during the
translation.

The second group of optimizations is related to tabling in XSB, which con-
tributes to help answering queries very efficiently in a top-down manner, and
avoid infinite loops while querying. However, simply declaring all predicates to
be tabled is very memory-consuming, so we reduced the number of tabled predi-
cates without affecting loop detection. For example, only predicates that appear
in any rule head and under negation in any rule body need to be tabled. In addi-
tion, rules with an empty body (facts) can be ignored in the previous criterion,
as these will never cause infinite loops.
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Fig. 2. Query response times for NoHR and Pellet

5 Evaluation

In this section, we evaluate our system and show that a) our system scales reason-
ably well for OWL query answering (only being considerably slower for memory-
intensive cases), b) preprocessing is even faster when compared to NoHR’s previ-
ous version using a classifier (for EL), which was already capable of preprocessing
large ontologies in a short period of time, c) querying scales well, even for over
a million facts/assertions in the ABox, despite being slightly slower on average
in comparison to EL, and d) adding rules scales linearly for pre-processing and
querying, even for an ontology with many negative inclusions.

All tests were performed on a MacBook Pro (Retina, 13-inch, Early 2015)
under OS X Yosemite 10.10.4 with 2.9 GHz Intel Core i5 processor and 16 GB
of 1867 MHz DDR 3 memory. We ran all tests with a terminal version of NoHR
with max. 8 GB of RAM allocated to Java 8 and we used XSB 3.6.0 for querying
with the remaining RAM. Test results are averages over 5 runs.

We considered LUBM8 [12], a standard benchmark for evaluating queries
over a large data set. The benchmark’s ontology contains 43 classes, 25 object
and 7 data properties and 243 axioms, and it comes with a data generator and 14
queries q1–q14. First, to test general scalability, we utilized the material9 in [21],
that provides data instances of LUBMn for n = 1, 9, 20, where n specifies the
number of universities and where LUBM is slightly simplified to fall completely
into the QL profile. For our test, we focused on the provided material for Pellet,10

as it worked correctly right away. Regarding pre-processing we observe that
NoHR is slightly slower than Pellet (with the factor varying between 1.6 and
6.2), mainly due to the time of additionally loading the file in XSB, a step not
necessary for Pellet. The results of answering queries q2–q10, q13, and q14 can be
found in Fig. 2.11 We observe that NoHR is faster for some queries (q3, q10, q13
– up to factor 16), and slower for others, either below factor 15 (q2, q4, q7), or
with a significant difference (the remainder). The latter occurs due to the huge
amount of data being stored in XSB’s tables in the query process, ultimately
8 http://swat.cse.lehigh.edu/projects/lubm/
9 https://github.com/ontop/iswc2014-benchmark

10 https://github.com/complexible/pellet
11 q1 is flawed for Pellet and the other two queries have been omitted here, as the restric-

tion to QL cancels the OWL reasoning capability intended to be tested (transitivity
and realization).

http://swat.cse.lehigh.edu/projects/lubm/
https://github.com/ontop/iswc2014-benchmark
https://github.com/complexible/pellet
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Fig. 3. Preprocessing time for LUBM for the two translation modes

Fig. 4. Query time for three LUBM queries

intended for handling non-monotonic rules that are not even part of Pellet. Yet,
at the same time, tabling enables NoHR to be faster, namely, when an already
computed result can simply be looked up (see the test below on LIPID for further
details).

Next, with the aim of comparing our new approach, based on a direct trans-
lation, with the one using a classifier (for OWL EL), we created instances of
LUBMn with n = 1, 5, 10, 15, 20 using the provided generator, and a restricted
version of LUBM which fits both OWL EL and QL (thus rendering q13 meaning-
less, but now permitting q1 in exchange), with the number of assertions ranging
from roughly 100,000 to over 2,700,000. We performed pre-processing and the
results for both kinds of translators (EL and QL) can be found in Fig. 3. Note
that “Initialization” includes loading the ontology and for EL also classifying it,
“Ontology Processing” includes the actual translation, and “XSB Processing”
the writing of the rule file and loading it in XSB. We observe that QL is con-
siderably faster, indeed up to 80s for LUBM20, which is to a considerable extent
due to avoiding classification and a smaller rule file being created. Besides that,
the preprocessing time increases linearly, and the overall time for preprocessing
is acceptable in our opinion as this is only done once before querying.
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We also queried in XSB for both versions, EL and QL. Some representative
results are shown in Fig. 4. Basically, for queries q1–q5, q7 and q10 the response
time is below 18s, often strictly below 1s, in general slightly in favor of the EL
version (up to factor 8). For the other queries, response time increases more
significantly with huge amounts of data, divided into those slightly in favor of
QL (q6, q8, q14, with a factor below 2, but up to 20s in absolute value), and those
in favor of EL (q9, up to factor 4 and 150s in absolute value). In all cases, the
response time grows linearly w.r.t. the increasing size of data, and querying in QL
is slightly slower on average. Here, EL compensates for the longer preprocessing,
and it thus seems that deciding which of the two forms of translations performs
better depends on the kind (and number) of queries we pose.

Finally, with the aim of also testing a more expressive OWL 2 QL ontology,
we used the LIPID ontology,12 which has, besides 749 subclass axioms, 1, 486
class disjointness axioms and 20 inverse object properties in combination with
non-monotonic rules. The latter were created by means of the rule generator
previously used in [13], containing a fixed number of 100 rules and a number of
facts increasing in steps of 1k, also introducing some new predicates not present
in the ontology itself. We performed the preprocessing step and observed only
small effects due to the increasing amount of rules. The time for processing
the ontology was naturally stable for all steps, and overall processing time was
between 1.4 and 3.3s. Notably, the considerable amount of negative inclusions
had no significant impact on time, e.g., when constructing the graph. Then, we
posed four simple queries (Query1–4), namely Acyl Ester Chain(X), Lipid(X),
Organic Group(X), and Entity(X) to the resulting rule sets in XSB, with the
position in the concept hierarchy varying from the lowest level (Query 1) to the
topmost below � (Query 4) with 715 subclasses. The results are shown in Fig. 5.
As we can see, the response time is very reasonable, from well below 1s to at
most 2.2s. We also posed Query 4 without posing the three previous queries
beforehand. The result is also included in Fig. 5 as Query 4’, and it shows the
speed-up that tabling of prior query results for subclasses has on the response
12 http://bioonto.dcs.aber.ac.uk/ql-ont/

http://bioonto.dcs.aber.ac.uk/ql-ont/
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time of Query 4 (up to factor 11.5). Overall, the results somehow also show
the effect of the arbitrary rules in raising the time for query answering, since
they introduce additional non-hierarchical (positive and negative) links within
the ontology. We conclude with noting that performance tests of querying (non-
monotonic) rules and ontologies would considerably benefit from real datasets,
but, unfortunately, to the best of our knowledge, none are currently available.

6 Conclusions

We have extended NoHR, the Protégé plug-in that allows to query non-monotonic
rules and ontologies in OWL 2 EL, to also admit ontologies in OWL 2 QL. While
the principal architecture of the tool remains the same, the crucial module that
translates the ontology into rules with the help of a classifier simply cannot be re-
used, which is why we introduced a novel direct translation for OWL 2 QL ontolo-
gies to cover this profile. We have implemented this translation and discussed opti-
mizations. The evaluation shows that it maintains all positive evaluation results
of the OWL 2 EL version [13], and is even faster during pre-processing, as no clas-
sification is necessary, in exchange for an on average slightly longer response time
during querying.

Besides the OWL 2 EL profile supported by NoHR, and compared to in
Sect. 5, also [11,19] both build on the well-founded MKNF semantics [18]. While
[11] uses the non-standard CDF framework integrated in XSB, which complicates
compatibility to standard OWL tools based on the OWL API, [19] presents
an OWL 2 QL oracle based on common rewritings in the underlying DL DL-
LiteR [2], but would require constant interaction between a rule reasoner and
a DL reasoner, which is why we believe it is ultimately less efficient than our
approach. Two related tools are DReW [29] and HD Rules [8], but both are
based on different base formalisms to combine ontologies and non-monotonic
rules w.r.t. the way information can flow between its two components and how
flexible the language is [9,25], which considerably complicates comparison.

For future work, the extension to OWL 2 RL seems an obvious next step, but
developing an alternative for OWL 2 QL using the classifier integrated in ontop
[21] or even the general reasoner Konclude [28], could shed more light on whether
classification or direct translation fares better for proper OWL 2 QL ontologies.
The efficiency of the latter reasoner also motivates looking into non-polynomial
DLs, with possible influences from recent work on rewriting disjunctive datalog
programs [14]. Using a relational database for the data as in OBDA would also
be interesting, yet this would require non-trivial theoretical work on rewriting
queries including non-monotonic rules. Finally, we may extend NoHR for OWL
2 QL (and EL) to the paraconsistent semantics [15] that would provide true
support to the paraconsistent behavior already observed .
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Abstract. We present a method for forgetting concept symbols in
ontologies specified in the description logic ALCOI. The method is an
adaptation and improvement of a second-order quantifier elimination
method developed for modal logics and used for computing correspon-
dence properties for modal axioms. It follows an approach exploiting a
result of Ackermann adapted to description logics. An important feature
inherited from the modal approach is that the inference rules are guided
by an ordering compatible with the elimination order of the concept sym-
bols. This provides more control over the inference process and reduces
non-determinism, resulting in a smaller search space. The method is
extended with a new case splitting inference rule, and several simplifi-
cation rules. Compared to related forgetting and uniform interpolation
methods for description logics, the method can handle inverse roles, nom-
inals and ABoxes. Compared to the modal approach on which it is based,
it is more efficient in time and improves the success rates. The method
has been implemented in Java using the OWL API. Experimental results
show that the order in which the concept symbols are eliminated signif-
icantly affects the success rate and efficiency.

1 Introduction

Ontology-based technologies provide novel ways of building knowledge process-
ing systems and play an important role in many different areas, both in research
projects but also in industry applications. Big ontologies contain large numbers
of symbols and knowledge modelled in them is rich and inevitably heterogeneous.
There are thus situations, where it is useful to be able to restrict the ontology
to a subset of the signature and forget those symbols that do not belong to
the subset, for example, when an ontology needs to be analysed by an ontology
engineer to gain an understanding of the information represented in it. Other
examples are scenarios where ontologies are located at separate remote sites
and information is exchanged via agents. Since the vocabularies known to the
agents at the different sites will vary, communication between the agents needs
to be limited to using the common language to avoid ambiguity and confusion
caused by mismatches between the vocabularies of the different agents. At this
point, it would be beneficial if the signature symbols in one ontology that are
not known to the other agents can be eliminated without losing information
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 587–602, 2015.
DOI: 10.1007/978-3-319-25007-6 34
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required for the communication. In other words, signature symbols belonging
to only one of the ontologies are forgotten, and communication is confined to
information expressed in the shared language of the agents’ ontologies. Another
use of forgetting is restricting the vocabulary of an ontology to more general
concept symbols, and forgetting those that are more specific, to create a sum-
mary of the ontology [29]. Situations where ontologies are published, shared, or
disseminated, but some sensitive parts described in terms of particular signature
symbols need to be kept confidential or unseen to the receiver, are some other
potential applications of forgetting [4]. This is relevant for medical and military
uses, and uses in industry to ensure proprietary information can be kept hidden.

The contribution of this paper is the presentation of a method for forgetting
concept symbols in ontologies specified in the description logic ALCOI. ALCOI
extends the description logic ALC with nominals and inverse roles. Forgetting
concept symbols for ALCOI is a topic where no method is available yet, but a
number of related methods exist. Forgetting can be viewed as the problem that is
dual to uniform interpolation. A lot of recent work has been focussed on uniform
interpolation of mainly TBoxes represented in several description logics, ranging
from ones with more limited expressivity, such as DL-Lite [31] and EL [20,22]
and EL-extensions [11], to more expressive ones, such as ALC [13,14,19,21,30],
ALCH [12], SIF [17] and SHQ [15].

Forgetting can also be viewed as a second-order quantification problem, which
is the view we take in this paper. In second-order quantifier elimination, the aim
is to eliminate existentially quantified predicate symbols in order to translate
second-order formulae into equivalent formulae in first-order logic [3,5–8,23,24,
26,28]. In uniform interpolation the aim is to eliminate symbols too, though it is
not required that the result is logically equivalent to the corresponding formula
in second-order logic, only that all important consequences are preserved.

Our method is adapted from a method, called Msqel, designed for modal
logic to compute first-order frame correspondence properties for modal axioms
and rules [26]. The adaptation exploits the close relationship between descrip-
tion logics and modal logics [25]. Our method contributes three novel aspects.
It is the first method for forgetting concept symbols from ontologies specified
in the description logic ALCOI. It inherits from Msqel the consideration of
elimination orders, which has been shown to improve the success rate and make
it succeed on a wider range for problems in the modal logic corresponding to
ALCOI [26]. The success rate and its scope is further improved by the incorpo-
ration of a new case splitting rule and generalised simplification rules. Results
of an empirical evaluation show better success rates and performance for these
techniques.

The rest of the paper is organised as follows. Section 2 defines basic notions of
the problem of concept forgetting, including the syntax and semantics of ALCOI-
ontologies, the language that our proposed method is aimed for. A formal defini-
tion of concept forgetting for ALCOI-ontologies follows in Section 3. Section 4
sketches the general method to forget selected concept symbols, and correct-
ness and termination results are stated. The forgetting calculus is introduced in
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Section 5, where all the inference rules and two important simplification rules are
presented. Section 6 describes a heuristic method for calculating good forgetting
orders of the concept symbols that need to be eliminated. Results of an empirical
evaluation of the method are presented in Section 7. A brief chronological overview
of the most related work on forgetting and second-order quantifier elimination is
given in Section 8. We conclude in Section 9 with a summary of the work and an
outline of directions of future work.

2 Definition of ALCOI and Other Basic Notions

The basic syntactic elements in the language of ALCOI are the atomic concepts,
atomic roles, and nominals. Together they form the signature of the language of
ALCOI. Let NC and NR be the set of atomic concepts and the set of atomic
roles, respectively, and let NO be the set of nominals. ALCOI-concepts have one
of these forms:

a | ⊥ | � | A | ¬C | C � D | C � D | ∃R.C | ∃R−.C | ∀R.C | ∀R−.C,

where a ∈ NO, A ∈ NC , R ∈ NR, and C and D are arbitrary ALCOI-concepts.
R− denotes the inverse of the role R. By definition, R−− := R.

An ontology usually consists of two parts, namely a TBox and an ABox. A
TBox contains a set of axioms of the form C 	 D or C ≡ D, where C and D are
concepts. A concept definition C ≡ D can be expressed by two general inclusion
axioms C 	 D and D 	 C. In ALCOI, ABox axioms can be expressed as
inclusions in the TBox: a concept assertion C(a) can be expressed as a 	 C, and
a role assertion R(a, b) as a 	 ∃R.b. In our considerations ALCOI-ontologies
are therefore assumed to contain TBox axioms only.

We define an interpretation I for ALCOI over the signature (NC , NR, NO)
as a pair 〈ΔI ,.I 〉, where ΔI is a non-empty set that represents the interpretation
domain, and .I is the interpretation function that assigns to every nominal a ∈
NO a singleton set aI ⊆ ΔI ; to every concept symbol A ∈ NC a subset AI

of ΔI ; and to every role symbol R ∈ NR a subset RI of ΔI × ΔI . We specify
the semantics of ALCOI-concepts by extending the interpretation function to
the following:

�I = ΔI (¬C)I = ΔI\CI (C � D)I = CI ∪ DI

(∀R.C)I = {x ∈ ΔI | ∀y.(x, y) ∈ RI → y ∈ CI}
(∃R.C)I = {x ∈ ΔI | ∃y.(x, y) ∈ RI ∧ y ∈ CI}

(R−)I = {(y, x) ∈ ΔI × ΔI | (x, y) ∈ RI}

The semantics of the TBox-axioms is defined as follows: an interpretation I
satisfies C 	 D iff CI ⊆ DI , and I satisfies C ≡ D iff CI ≡ DI . If O is a
set of TBox axioms, I is a model of O iff it satisfies every axiom in O, denoted
by I |= O.
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In the rest of the paper, we also need the following notions. A clause is
a disjunction of ALCOI-concepts. Clauses in our calculus are interpreted as
globally true, i.e., an interpretation I satisfies a clause C iff CI = ΔI .

By definition ∼C = D, if C = ¬D, else ∼C = ¬D. The ∼ operator helps
avoid sequences of negations.

By Rσ, we denote the composition of a sequence of roles and by Rσ,− we
denote the composition of the sequence of inverses of the roles in Rσ with the
order in the sequence reversed.

Let A be a concept symbol and let I and I ′ be interpretations. We say I
and I ′ are equivalent up to A, or A-equivalent, if I and I ′ coincide but differ
possibly in the valuation assigned to A. This means their domains coincide, i.e.,
ΔI = ΔI′

, and for each symbol s in the signature, except for A, sI = sI′
. More

generally, suppose Σ = {A1, . . . , Am} ⊆ NC , I and I ′ are equivalent up to Σ,
or Σ-equivalent, if I and I ′ are the same but differ possibly in the valuations
assigned to the concept symbols in Σ.

3 Forgetting as Second-Order Quantifier Elimination

We are interested in forgetting concept symbols in axioms of an ontology O of
TBox axioms. Let sig(O) denote the signature of O.

Definition 1. Let O and O′ be ALCOI-ontologies and let Σ = {A1, . . . , Am} be
a set of concept symbols. O′ is the result of forgetting the symbols in Σ from O,
if (i) sig(O′) ⊆ sig(O)\Σ and (ii) for any interpretation I,

I |= O iff I ′ |= O′ for some interpretation I ′ Σ-equivalent to I.

The symbols in Σ are the symbols to be forgotten. We refer to them as the
non-base symbols and the symbols in sig(O)\Σ as the base symbols. The result
of forgetting a concept symbol A from O is the result of forgetting {A} from O.

Intuitively, the definition says that the forgetting result O′ is equivalent to the
given ontology up to the symbols in Σ, for which the truth assignments can
be arbitrary. The result of forgetting a symbol A from an ontology O can be
represented as ∃X OA

X in the extension of the language with existentially quan-
tified concept variables. OA

X is our notation for substituting every occurrence
of A is O by X. In general, in the target language which extends the (source)
language of the logic under consideration with existential quantification of pred-
icate symbols, the result of forgetting always exists. The challenge of forgetting,
as a computational problem, is to find an ontology O′ in the source language
(without second-order quantification) that is equivalent to ∃X OA

X (where O is
expressed in the source language). Finding such an ontology O′ that is equiva-
lent to ∃X OA

X is an instance of the second-order quantifier elimination problem.
Forgetting a concept symbol A is thus the problem of eliminating the existential
quantifier ∃X from ∃X OA

X . In the following, we slightly informally say the aim
is to eliminate the symbol A from O. For this we apply second-order quantifier
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1. Transform ontology O to clausal representation, N := clause(O).
2. Process every concept symbol A in Σ and check the frequency of the different

polarities of A to generate the ordering �.
3. Guided by �, apply the Dsqel to produce the ontology O′ (with clauses

interpreted in the obvious way as inclusions).
4. Apply simplification rules to O′, if needed, and return the resultant ontology.

If it contains only the symbols in sig(O′)\Σ the method was successful.

Fig. 1. The phases in the basic Dsqel routine

elimination techniques [8] to the axioms of O in order to forget A (the non-
base symbol). In particular, we are going to exploit an adaptation of a result of
Ackermann [1], which is known as Ackermann’s Lemma in the literature.

Theorem 1 (Ackermann’s Lemma for ALCOI). Let O be an ALCOI-
ontology, let C be a concept expression and suppose the concept symbol A does
not occur in C. Let I be an arbitrary ALCOI-interpretation. (i) If A occurs
only positively in O, then I |= OA

C iff for some interpretation I ′ A-equivalent
to I, I ′ |= A 	 C, O. (ii) If A occurs only negatively in O then I |= OA

C iff for
some interpretation I ′ A-equivalent to I, I ′ |= C 	 A, O.

4 The DSQEL Forgetting Method

Our forgetting method is called Dsqel, which is short for Description logics
Second-order Quantifier ELimination.

Figure 1 outlines the basic routine of the Dsqel method to forget concept
symbols in ALCOI-ontologies. Once receiving the input ontology O and a set Σ
of concept symbols to forget, the method proceeds as follows. In Phase 1, a
preprocessing step is performed to transform the axioms into a set N of clauses.
This is done by replacing all inclusions C 	 D by ¬C � D, and all equivalences
C ≡ D by ¬C � D and ¬D � C. Inexpensive equivalence-preserving syntactic
simplification rules are also applied in this phase to simplify clauses. For example,
C�(C�D) is simplified to C. Phase 2 counts the number of positive and negative
occurrences of each concept symbol in Σ. Using these counts a forgetting order
� is defined on the symbols in Σ. This ordering determines the order in which
the symbols in Σ are eliminated in the next phase. Phase 3 applies the Dsqel
calculus described in the next section to the non-base symbols in Σ one by one,
starting with the symbol A largest in the forgetting order �. To forget A the
inference rules of the Dsqel calculus are applied to the axioms containing A.
Then the next largest non-base symbol is eliminated, and so on.

Forgetting a concept symbol may lead to a change of the polarities of the
occurrences of the remaining Σ-symbols, and a new elimination order may have
to be computed based on the refreshed polarity counts, before the forgetting
method continues. This means Phase 2 and Phase 3 will be executed alternately
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and repeatedly with recomputed forgetting orders. If the largest current con-
cept symbol to be eliminated could not be completely eliminated by Dsqel,
then a different ordering not attempted before will be used. In the case that all
possible orderings have been tried and every attempt to eliminate all non-base
symbols using Dsqel is not successful, the method returns failure, because it
was unable to solve the problem. On the other hand, when after a call of Dsqel
the set returned does not contain any non-base symbols, then this is the result
of forgetting Σ from O.

Phase 4 subsequently applies further simplification rules and transforms the
resulting axioms to simpler representations.

Different forgetting orders of concept symbols applied may lead to different
but equivalent results. The intermediary results as well as the final result can
be viewed (when the remaining non-base symbols are existentially quantified) as
equivalent representations of ∃Σ O.

What is returned by the algorithm, if it terminates successfully, is a (possibly
empty) ontology with all occurrences of the non-base symbols eliminated, i.e.,
the ontology returned is specified in terms of only the symbols in sig(O)\Σ.

There are situations where our method does not succeed, for instance, when
no forgetting result finitely expressible in ALCOI exists. This means the method
is not complete, but since no complete method can exist for forgetting, as consid-
ered in this paper with the target language being ALCOI, this is to be expected.
Concept forgetting is already not always computable for the description logic
EL [10]. We also note that when concept symbols cannot be eliminated by our
method this does not necessarily mean that they are ineliminable. It might be
the case that they are eliminable, but simply our method is unable to find a
solution.

We can show Dsqel algorithm is correct and is guaranteed to terminate.
This follows as an adaptation of the correctness and termination results for the
Msqel procedure proved in [26], since the calculus given in the next section is
correct and terminates, and all adaptations of Msqel to Dsqel preserve logical
equivalence.

5 The DSQEL Forgetting Calculus

The order in which the non-base symbols are eliminated is determined by the
forgetting order � computed in Phase 2 of the Dsqel algorithm. (Formally,
� may be any irreflexive, transitive relation on the non-base symbols to be
eliminated; no additional conditions need to be imposed.) We say a concept
symbol A is strictly maximal with respect to a concept C if for any concept
symbol B (�= A) in C, A � B.

A concept C is positive (negative) wrt. a concept symbol A iff all occurrences
of A in C are positive (negative). A set N of concepts is positive (negative) with
respect to a concept symbol A iff all occurrences of A in N are positive (negative).

The Ackermann rule and the Purify rule, given in Figure 2, are the forgetting
rules in the Dsqel calculus, which will lead to the elimination of a non-base
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Ackermann:
N, C1 � A, . . . , Cn � A

(NA
∼C1�...�∼Cn

)¬¬C1,...,¬¬Cn
C1,...,Cn

provided: (i) A is a non-base symbol,
(ii) A does not occur in any of the Ci,
(iii) A is strictly maximal wrt. each Ci, and
(iv) N is negative wrt. A.

Purify:
N

(NA
¬�)¬¬�

�

provided: (i) A is a non-base symbol in N , and
(ii) N is negative wrt. A.

Fig. 2. The forgetting rules

concept symbol. Both of them have to meet particular requirements on the form
of the concepts to which they apply. N is a set of ALCOI-clauses, and by ND

C ,
we mean the set obtained from N by substituting the expression C for all occur-
rences of D in N , where C and D are both ALCOI-concepts. Like all other
inference rules in the Dsqel calculus, the Ackermann rule is restricted by a
set of side-conditions. The side-conditions of the Ackermann rule require that
A must be a non-base symbol and does not occur in C1, . . . , Cn, no non-base
symbol occurring in Ci (1 ≤ i ≤ n) is larger than A under the ordering �, and
every occurrence of A in N must be negative. The Purify rule can be seen as
a special case of the Ackermann rule, since it eliminates the non-base symbols
that occur only negatively, that is, when there are no positive occurrences of A.

The rules in Figures 3 and 4 are used to rewrite the clauses so they can be
transformed into a form where either the Ackermann rule or the Purify rule is
applicable. To apply the Ackermann or Purify rule, the clauses need to be in
A-reduced form, where A is the largest non-base symbol. We say a clause is in
A-reduced form if it is either negative in A or it has the form A � C, where C
does not include any occurrences of A. A set of clauses is in A-reduced form if
every clause is in A reduced form.

A set of clauses is transformed into A-reduced form, by repeatedly applying
the Surfacing rule, the Skolemization rule, the Clausify rule and the Case Split-
ting rule to clauses containing positive occurrences of A that are not already in
A-reduced form.

The Surfacing rule equivalently transforms a clause where the largest non-
base symbol occurs positively below a universal restriction operator so that these
occurrences pass up to levels closer to the top level of the clause. The Skolemiza-
tion rule rewrites the existential expression in a clause of the form ¬a � ¬∀Rσ.C,
where a is a nominal. The implicit existential quantifier in ¬∀Rσ.C is Skolemized
by introducing a new Skolem constant (nominal) b. The Clausify rule transforms
a concept of the form C �¬(D1� . . .�Dn) into a set of clauses. The Sign Switch-
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Surfacing:
N, C � ∀Rσ.D

N, (∀Rσ,−.C) � D

provided: (i) A is the largest non-base symbol in C � ∀Rσ.D,
(ii) A does not occur in C, and
(iii) A occurs positively in ∀Rσ.D.

Skolemization:
N, ¬a � ¬∀Rσ.C

N, ¬a � ¬∀Rσ.¬b, ¬b � ∼C

provided: (i) A is the largest non-base symbol in ¬a � ¬∀Rσ.C,
(ii) A occurs positively in ¬∀Rσ.C, and
(iii) b is a new nominal.

Clausify:
N, C � ¬(D1 � . . . � Dn)

N, C � ∼D1, . . . , C � ∼Dn

provided: (i) A is the largest non-base symbol in C � ¬(D1 � . . . � Dn), and
(ii) A occurs positively in D1 � . . . � Dn.

Sign Switching:
N

(NA
¬A)¬¬A

A

provided: (i) N is closed wrt. the other rules,
(ii) A is the largest non-base symbol in N , and
(iii) Sign switching wrt. A has not been performed before.

Fig. 3. The rewriting rules

ing rule is used to switch the polarity of a non-base symbol. It is applicable only
when no other rules in the calculus are applicable wrt. this non-base symbol and
the Sign Switching rule has not been performed for this non-base symbol before.

A novel aspect of the Dsqel calculus is the Case Splitting rule given in
Figure 4. It splits a clause of the form ¬a�C1 � . . .�Cn into smaller subclauses
¬a � C1, . . . , ¬a � Cn. A single clause ¬a � Ci, together with N , forms a case.
The original clause means that a belongs to at least one of the disjuncts Ci (1 ≤
i ≤ n). The benefits of the Case Splitting rule are twofold. On the one hand, it
makes up for a limitation of the Skolemization rule, because it splits a disjunction
with more than two disjuncts into several smaller cases, which the Skolemization
rule is then able to handle. On the other hand, our tests show that it reduces
the search space and increases the success rate, because the transformation to
A-reduced form is easier in the cases, in which the clauses are smaller.

As the purpose of the rewriting rules is finding A-reduced forms and letting
the two forgetting rules become applicable, it is not difficult to see that the
rewriting rules, excluding the Sign Switching rule, should be performed before
the forgetting rules. The Sign Switching rule is the exception because, as men-
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Case Splitting:
N, ¬a � C1 � . . . � Cn

N, ¬a � C1 | . . . | N, ¬a � Cn

provided: (i) A is the largest non-base symbol in ¬a � C1 � . . . � Cn, and
(ii) A occurs positively in C1 � . . . � Cn.

Fig. 4. The Case Splitting rule

Condensing I:
N
[
C � ∀Rσ1 .∀Rσ1,−. . . . ∀Rσn .∀Rσn,−.(C � D)

]

N
[
C � D � ∀Rσ1 .⊥]

provided: (i) C and D are arbitrary concepts, and
(ii) σi ≤ σ1 for 1 ≤ i ≤ n.

N
[
C � ∀Rσ1 .∀Rσ1,−. . . . ∀Rσn .∀Rσn,−.(C � D)

]

N
[
C � D � ∀Rσn .⊥]

provided: (i) C and D are arbitrary concepts, and
(ii) σi ≤ σn for 1 ≤ i ≤ n.

Fig. 5. Sample simplification rule

tioned earlier in this section, it is performed only when no other inference rules
are applicable. Reruns of the rewriting rules, except for Sign Switching, are
required since once a rule is applied, another rule that was previously unable
to be applied may become applicable now. The rerun will continue until the
clauses are not changed by any of the Clausify rule, the Surfacing rule, or the
Skolemization rule. If either of the two forgetting rules becomes applicable, they
are immediately applied.

We also introduced several simplification rules to transform more expressions
so that inference rules become applicable, and in order to keep expressions in
simpler forms for efficiency. Most importantly, they lead to success of forgetting
in more cases. Figure 5 displays two cases of the simplification rules, called Con-
densing I, with which clauses of a particular pattern can be simplified, which
other forgetting and second-order quantifier elimination methods cannot han-
dle. The rules have the form N [C]/N [D] and have the effect of replacing an
occurrence of a subexpression C in some clause in N by the expression D.

6 Calculating the Forgetting Order

In a forgetting problem, the forgetting order is the order in which the non-base
symbols are forgotten. Given n non-base symbols, in the worst case there are
n! possible orderings for the forgetting procedure to follow. Selecting a good
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forgetting order is important for the efficiency of the forgetting method and the
success rate (when a timeout is used). This is best illustrated with an example.

We first show that the forgetting order matters. Consider the following ontol-
ogy in clause form and suppose the forgetting order is A � B.

� 1. (∀R−.¬a) � (¬∀R.A) � B

2. (∀R−.∀R−.¬a) � (∀R.A) � ¬B

3. (∀R−.¬a) � ¬∀R.∀R.¬A

Since A is the largest non-base symbol the initial aim is to bring the clauses
into A-reduced form and then eliminate A with one of the forgetting rules. The
starred clause (Clause 1) is negative wrt. the current non-base symbol A; all
others contain positive occurrences of A. At this point, no rules in the Dsqel
calculus (excluding the Sign Switching rule) can be applied to transform Clause
3 to reduced form wrt. A. The Sign Switching rule is unable to change the
situation either in this case. However, changing the forgetting order to B � A
opens a survival window for the problem.

Assume now the forgetting order is B � A,

1. (∀R−.¬a) � (¬∀R.A) � B

� 2. (∀R−.∀R−.¬a) � (∀R.A) � ¬B

3. (∀R−.¬a) � ¬∀R.∀R.¬A

The aim is to eliminate B first. Clause 2 is negative wrt. B and Clause 1 has a
positive occurrence of B. Applying the Ackermann rule to Clauses 1 and 2 leads
to Clause 4, which proves to be a tautology and thus can be deleted.

4. (∀R−.∀R−.¬a) � (∀R.A) � (∀R−.¬a) � (¬∀R.A) 1 into 2, Acker.

5. (∀R−.¬a) � ¬∀R.∀R.⊥ 3, Sign Sw. & Purify

What remains is Clause 3, from which A can be forgotten by applying the Sign
Switching and Purify rules, which produces Clause 5. The method terminates
successfully, returning ¬a � ∀R.¬∀R.∀R.⊥ after simplifying Clause 5.

A good forgetting order allows non-base symbols to be forgotten as quickly
as possible, however it does not generally guarantee success of the procedure.
In this case, another ordering will be used, and the success of forgetting will be
pursued until all possible orderings have been attempted.

Our implementation of the Dsqel calculus involves a heuristic method to
calculate forgetting orders with increased chances of quick and successful elim-
ination of the non-base symbols. The method exploits polarity counts of the
non-base symbols. Given n non-base symbols, we first count the number of pos-
itive and negative occurrences of each symbol and represent the results as pairs.
We then choose the smaller value of each pair as their actual counts. These
actual counts are sorted into ascending order, which is then taken as the for-
getting order to be used. If the actual counts of some of the non-base symbols



Concept Forgetting in ALCOI-Ontologies Using an Ackermann Approach 597

Table 1. Results of polarity counting for each non-base symbol

Non-Base Symbol A1 A2 A3 A4 A5 A6

No. of Positive Occurrences 6 3 2 0 2 1

No. of Negative Occurrences 1 2 3 8 4 1

are identical, we compare the counts for their opposite polarity. If these are the
same, the positive counts have higher priority than the negative ones. Gener-
ally, symbols with lower counts are selected to be forgotten before symbols with
higher counts. Note that if we fail to forget a symbol in an ordering, we simply
go to the next symbol. Once a symbol has been forgotten, the forgetting order
will be recomputed since the forgetting of a non-base symbol might affect the
occurrences of the remaining non-base symbols. The reason why counting is not
conducted wrt. a particular polarity (either positive or negative) of the non-base
symbols, is the Sign Switching rule, with which we can change the polarity of
the occurrences of a particular non-base symbol.

We use an example to illustrate the operation of this heuristic method. Sup-
pose the frequency analysis of the polarity counting reveals the pairs as listed in
Table 1. The numbers in bold indicate the smaller values of each pair, i.e., the
actual counts. Thus the forgetting order � calculated is A4 � A6 � A1 � A3 �
A2 � A5.

In the previous example the frequency analysis computes the order B � A,
which immediately leads to success, without requiring another round.

7 Empirical Results

We implemented our forgetting method in Java using the OWL API, fully realis-
ing every aspect of the inference rules and the simplification rules in Dsqel. An
important part of the implementation is the calculation of the forgetting order
of the non-base symbols based on a frequency analysis as described in the pre-
vious section. In order to evaluate how the Dsqel method behaves on real-life
ontologies, we tested the system on a set of ontologies from the NCBO BioPor-
tal,1 a large repository of biomedical ontologies. The experiments were run on a
machine with an Intel� Coretm i7-4790 processor, and four cores running at up
to 3.60 GHz and 8 GB of DDR3-1600 MHz RAM.

Since Dsqel handles expressivity as far as ALCOI, the ontologies for our
evaluation were restricted to their ALCOI-fragments, and axioms outside of the
scope of ALCOI were dropped from the ontologies. Consequently, we used 292
ontologies from the repository for our evaluation. We ran the experiments on
each ontology 100 times and averaged the results to explore how forgetting was
influenced by the number of the concept symbols in an ontology. A timeout of
1000 seconds was used.

To fit with possible needs in applications, we conducted experiments where
10%, 30%, and 50% of the concept symbols in the ontologies were forgotten.
1 http://bioportal.bioontology.org/
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Table 2. Forgetting 10%, 30%, and 50% of the concept symbols in ontologies

Input Experiment Results

Axioms Avg. Symbols Avg. % Analysis Timeouts Duration Avg. Success Rate

✗ 3.8% 4.509 sec. 90.1%
10%

✓ 1.7% 2.404 sec. 97.6%
✗ 7.5% 8.562 sec. 88.4%

1407 876 30%
✓ 2.2% 2.753 sec. 95.5%
✗ 13.4% 15.068 sec. 85.3%

50%
✓ 3.1% 3.004 sec. 94.9%

✗ 8.2% 9.380 sec. 87.9%
1407 876 Average

✓ 2.3% 2.720 sec. 96.0%

The Dsqel algorithm processed each non-base symbol and counted the number
of their positive and negative occurrences. Based on these counts, a forgetting
order was generated by the heuristic algorithm. In order to see how the forgetting
order affected the performance of the method, we ran two sets of experiments,
where we omitted the frequency analysis for determining the forgetting order
for one set, and applied the analysis to the other set. Without the frequency
analysis, the symbols were forgotten in the order as returned by an OWL API
function that gets all concept symbols in the ontology.

The evaluation results obtained from 10%, 30%, 50% of the concept symbols
in the ontologies, without and with the frequency analysis for determining the
forgetting order, are shown in Table 2. It can be seen that, the frequency analysis
led to a decrease in the average duration of the runs of every experiment, which
means that it took less time to complete the same task than when the frequency
analysis was not performed. It is evident from the last two rows in the table
that basing the forgetting order to the frequency analysis has brought a positive
effect on the overall success rate (increase by 8.1%) and the number of timeouts
(decrease by 5.9%).

To show the difficulty of the forgetting problem, and how well our method
behaves, we considered the extreme scenario of forgetting all concept symbols
from each ontology. In this case, the selected ontologies (which were the same as
used in the previous experiment) were divided first into three groups and each
of them contained the ontologies with the numbers of concept symbols ranging
from 1 to 1000, from 1001 to 4000, and more than 4000, respectively, in order
to explore how forgetting was influenced by the number of the concept symbols
that the ontologies contained. The other specifications remained the same, unless
otherwise stated.

The results of the evaluation with and without the frequency analysis are
shown in Tables 3 and 4, respectively. As with the results of the previous eval-
uation, the analysis of the forgetting order made a significant difference to the
overall success rate (increase by 13.7%) and the number of timeouts (decrease by
14%). What can also be observed is that for smaller ontologies with fewer concept
symbols, there were fewer timeouts and the success rate of the method was higher.
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Table 3. Forgetting all concept symbols with frequency analysis

Input Results

Corpora Axioms Avg. Concept Symbols Timeouts Duration Avg. Success Rate

1 – 1000 652 258 1.3% 0.869 sec. 96.4%

1001 – 4000 3091 2021 3.8% 9.148 sec. 92.5%

≥ 4001 6506 6048 13.3% 29.898 sec. 86.7%

Total 1407 876 2.4% 4.352 sec. 95.2%

Table 4. Forgetting all concept symbols without frequency analysis

Input Results

Corpora Axioms Avg. Concept Symbols Timeouts Duration Avg. Success Rate

1 – 1000 652 258 9.8% 4.589 sec. 87.9%

1001 – 4000 3091 2021 28.3% 51.400 sec. 67.9%

≥ 4001 6506 6048 60.0% 224.133 sec. 40.0%

Total 1407 876 16.4% 24.363 sec. 81.5%

Evaluations of more aspects are being conducted at the moment. These eval-
uations are focussed on measuring the difference that case splitting and sim-
plification make to the behaviour of the Dsqel calculus, and how our method
compares to the related methods of Scan [7], Dls [5], Dls∗ [6], Sqema [3],
Msqel [26], and Lethe [16] in terms of success rate and efficiency (duration
and number of timeouts).

8 Related Work

Probably the most important early work on the elimination of second-order
quantifiers is that of Ackermann [1] in the nineteen-thirties and forties. Only
in 1992, the first practical algorithm, called Scan, was developed by Gabbay
and Ohlbach [7]. Scan is a resolution-based second-order quantifier elimina-
tion algorithm and can be used to forget predicate symbols from first-order logic
formulae [24]. It has been shown that the Scan algorithm is complete and termi-
nates for modal axioms belonging to the famous Sahlqvist class [9]. In 1994, the
hierarchical theorem proving method was developed by Bachmair et al. [2] and
it has been shown that it can be used to solve second-order quantification prob-
lems. Around the same time, in 1995, Sza�las [27] described a different algorithm
for the second-order quantifier elimination problem, which exploits Ackermann’s
Lemma. The method was further extended to the Dls algorithm by Doherty et
al. [5]. Dls uses a generalised version of Ackermann’s Lemma and allows the elim-
ination of existential second-order quantifiers from second-order formulae, for
obtaining corresponding first-order equivalents. Nonnengart and Sza�las [23] gen-
eralised the main result underlying the Dls algorithm to include fixpoints. Based
on this work, Doherty et al. [6] proposed the Dls∗ algorithm, which attempts the
derivation of either an equivalent first-order formula or a fixpoint formula from



600 Y. Zhao and R.A. Schmidt

the original formula. Dls and Dls∗ are Ackermann-based second-order quanti-
fier elimination methods. Ackermann-based second-order quantifier elimination
was first applied to description logics in [28] by Sza�las, where description log-
ics were extended by a form of second-order quantification over concepts. More
recently, Conradie et al. [3] introduced the Sqema algorithm, which is also an
Ackermann-based method but for modal logic formulae. It is specialised to find
correspondences between modal formulae and hybrid modal logic formulae (and
first-order formulae). Schmidt [26] has extended Sqema and developed Msqel
as a refinement, with the use of elimination orders, and the presentation of
second-order quantifier elimination as an abstract calculus, as key novelties.

Investigation of forgetting as uniform interpolation in more expressive
description logics was started in [29] and [21]. The first approach to compute uni-
form interpolations for ALC-TBoxes was presented in [29]. It is a tableau-based
approach, where a disjunctive normal form is required for the representation of
the TBox-axioms and the uniform interpolants are incrementally approximated.
It was shown in [21] that deciding the existence of uniform interpolants that
can be finitely represented in ALC without fixpoints is 2ExpTime-complete and
in the worst case, the size of uniform interpolants is triple exponential wrt. the
size of the original TBox. The first goal-oriented method based on resolution
was presented in [19] for computing uniform interpolants of ALC-TBoxes, where
experimental results show the practicality for real-life ontologies. Koopmann and
Schmidt presented another resolution-based method exploiting structural trans-
formation to compute uniform interpolants of ALC-TBoxes, which uses fixpoint
operators to make uniform interpolants finitely representable [14]. The method
has been further extended to handle ALCH [12], SIF [17], SHQ [15], and ALC
with ABoxes [18].

9 Conclusion and Future Work

We have presented a second-order quantifier elimination method, called Dsqel,
for forgetting concept symbols in ontologies specified in the description logic
ALCOI. It is adapted from Msqel, an Ackermann-based second-order quantifier
elimination method for a multi-modal tense logic with second-order quantifica-
tion. The method is enhanced with new inference and simplification rules. The
adaptation was motivated for the purpose of applying second-order quantifier
elimination techniques to the area of knowledge representation, where descrip-
tion logics provide important logical formalisms.

We have implemented a prototype system of our forgetting method, fully
realising the Dsqel calculus. The evaluation results have confirmed that the
success of a forgetting problem is highly dependent on, apart from the calculus
itself, the non-base symbols Σ to be forgotten, and the forgetting order which
the method follows. Overall, the results showed promising and very good success
rates for concept symbol forgetting for our method.

Optimisations to both the calculus and the implementation are underway.
One optimisation being investigated is the incorporation of more simplification
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rules in order to increase the efficiency and success rate further. We are also
currently working on finding better heuristics for computing better forgetting
orders of the non-base symbols.

Extending the method to handle ontologies going expressively further than
ALCOI is a direction of ongoing research. To explore how forgetting of role
symbols can be incorporated into our method is also of interest.
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Abstract. The Web of Data has been introduced as a novel scheme for
imposing structured data on the Web. This renders data easily under-
standable by human beings and seamlessly processable by machines at
the same time. The recent boom in Linked Data facilitates a new stream
of data-intensive applications that leverage the knowledge available in
semantic datasets such as DBpedia and Freebase. These latter are well
known encyclopedic collections of data that can be used to feed a content-
based recommender system. In this paper we investigate how the choice
of one of the two datasets may influence the performance of a recom-
mendation engine not only in terms of precision of the results but also in
terms of their diversity and novelty. We tested four different recommen-
dation approaches exploiting both DBpedia and Freebase in the music
domain.

Keywords: Linked open data · Quality assessment · Semantic similar-
ity · Content-based recommender systems

1 Introduction

The Linked Open Data cloud has been launched in an effort to transform struc-
tured data into first class citizens in the Web thus moving it towards the so
called Web of Data. The data published as Linked Data (LD) by means of RDF
covers a wide range of knowledge, including life science, environment, indus-
try, entertainment, to name a few. The new data platform paves the way for
several fresh applications but the proliferation of LD is overshadowed by the
fact that the quality of the newly uploaded data is yet to be thoroughly ver-
ified [22] and that the selection of the dataset may heavily influence the per-
formance of an LD-based tool. Among all possible data intensive applications,
recommender systems are gaining momentum to potentially profiting from the
knowledge encoded in LD datasets. As background data is of crucial importance
to recommender systems, one should consider the suitability of a dataset when
designing a recommender system since it may depend on the type of tasks as well
as the recommendation algorithm. A reasonable combination of the underlying
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 605–621, 2015.
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data and recommendation approach might contribute towards a great difference
in performance. This motivates us to perform an investigation on the adequacy
of a dataset when adopting a recommendation strategy. In this paper we evalu-
ate the fitness for use of LD sources to feed a pure content-based recommender
system [7] and in particular we examine the suitability of two encyclopedic data
sources namely DBpedia1 and Freebase2 for musical artists recommendation
tasks. As the input for the calculation we exploit similarity values computed by
four different feature-based semantic similarity metrics. The values are used to
find similarities between items and eventually to produce the final recommenda-
tion list. Our experimental evaluations are conducted by using the well-known
dataset Last.fm for musical artists recommendation3. To study the fitness for
use of the data sources to recommendation tasks, we conducted an offline eval-
uation and we analyzed three different dimensions: Accuracy, Sales Diversity,
and Novelty. Various indicators are employed to analyze the recommendations
pertaining to these characteristics.

The main contributions of the paper can be summarized as follows:
– evaluating the fitness for use of DBpedia and Freebase as input for content-
based recommendation tasks in the music domain by means of various quality
dimensions and quality indicators;
– providing an evaluation of the performance for four semantic similarity met-
rics, with regard to recommendation tasks, on the aforementioned encyclopedic
datasets.

The remainder of the paper is organized as follows. In Section 2 we summarize
the main characteristics of the semantic similarity metrics used in the evaluation
while in Section 3 our evaluation methodology is presented. The experimental
settings and their outcomes are elaborated in Section 4. Section 5 brings in an
overview of related work on recommender systems adopting LD. Finally, Section 6
sketches out future work and concludes the paper.

2 Feature-Based Semantic Similarity Measurement

Information resources in the Web of Data are semantically represented using
RDF graphs. To evaluate the similarity between two resources, characteristics
like nodes, links, and the mutual relationships are incorporated into calcula-
tion. Among others, feature-based semantic similarity metrics quantify similarity
between resources in an RDF graph as a measure of commonality and distinction
of their hallmarks. The work by Tversky in [1] sheds light on feature-based sim-
ilarity. It aims at overcoming the major disadvantages of the approaches that
compute similarity by measuring distance between points in a space. The work
suggests representing objects as a set of common and distinctive features and the
similarity of two objects is performed by matching their corresponding collections

1 http://dbpedia.org
2 http://www.freebase.com/
3 http://ir.ii.uam.es/hetrec2011/datasets.html

http://dbpedia.org
 http://www.freebase.com/
http://ir.ii.uam.es/hetrec2011/datasets.html
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of features. The features of an object can be represented in one of the following
forms: binary values, nominal values, ordinal values, and cardinal values. Mea-
suring similarity using features is based on the premise that the more common
features two objects hold, the more similar they are. Bearing on this principle,
feature-based semantic similarity metrics first attempt to characterize resources
in an RDF graph as feature sets and then perform similarity calculation on them.
In the following sub-sections we briefly recall the feature-based metrics for com-
puting similarity being exploited in our evaluation. The four metrics have been
chosen as representative of the feature-based similarity class since they consider
different aspects of the underlying semantic graph for characterizing resources
and computing similarity.

GbkSim. The authors in [3] propose a solution to compute similarity by means of
a graph-based kernel. By GbkSim4 an abstract walker is sent to explore the RDF
graph to a specific depth d, en route it collects nodes and edges. The features of
a resource α are represented as a vector: −→a = (wr1 , wr2 , .., wrn

). Each element of
the vector corresponds to the weight of a resource in the feature set. The weight
for resource ri is calculated as wri

=
∑d

m=1 γm.cP̂m(α),ri
; in which the coefficient

γm is experimentally selected upon calculation; cP̂m(α),ri
is the number of edges

that connect α to node ri and it is calculated as: cP̂m(α),ri
= |{(ri, rj)|(ri, rj) ∈

P̂m(α)}|; P̂m(α) is the set of edges collected at depth m. The similarity between
two resources α and β is computed as the product of their corresponding feature
vectors −→a = {ai}i=1,..,n and

−→
b = {bi}i=1,..,n:

GbkSim(α, β) =
∑n

i=1 ai × bi
√∑n

i=1(ai)2 × √∑n
i=1(bi)2

(1)

VsmSim. In [2] an approach to characterize entities and compute similarity is
introduced and evaluated. By VsmSim, two entities are supposed to be similar
if: (i) There exist direct links between them; (ii) They point to the same object
with the same property; (iii) They are pointed by the same subject with the
same property. The features of a movie α corresponding to property p are the
nodes connected to α through p and represented using the Vector Space Model:−→ap = (wr1,p, wr2,p, .., wrn,p); in which wri,p is the weight of movie ri wrt. property
p, it is computed as the tf-idf value of the movie: wri,p = fri,p∗log( M

ari,p
); where

fri,p is the number of occurrence of movie ri; M is the number of movies in the
collection; ari,p is the number of movies pointing to ari

via p. The similarity
related to p is obtained by calculating the cosine similarity of the vectors −→ap =
{ai,p}i=1,..,n and

−→
bp = {bi,p}i=1,..,n:

V smSimp(α, β) =
∑n

i=1 ai,p × bi,p
√∑n

i=1(ai,p)2 × √∑n
i=1(bi,p)2

4 For a clear presentation, in the scope of this paper we assign a name for the metrics
that have not been named originally.
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Given a set P of properties, the final similarity value can be computed as the
(weighted) mean of the values computed for each property p

V smSim(α, β) =

∑
p∈P ωpV smSimp(α, β)

|P | (2)

with ωp being weights computed via a genetic algorithm.

FuzzySim. In an attempt to incorporate the human judgment of similarity, a
similarity metric, FuzzySim is presented in [4]. Properties are considered as fea-
tures and intuitively classified into groups in descending order according to their
level of importance (g1, g2, .., gn). The similarity value between two resources α

and β on group gi is defined as: Si(α, β) = fi(α,β)
fi(α) ; where fi(α, β) is the set of fea-

tures pertaining to property group gi that α and β have in common; fi(α) is the
set of features of α wrt. gi. The membership degree of the similarity value corre-
sponding to gi is: μ(Si) = (Si)i−r(gi,c); where r(gi, c) is the ratio of the number
of properties for set gi wrt. the total number of properties. The weight ϕj(m) for

the jth element of the property set is given by: ϕj(m) =

√
∑j

k=1 mk∑n
k=1 mk

−
√
∑j−1

k=1 mk∑n
k=1 mk

in which m = (μ(b1), μ(b1), .., μ(bn)) is the ascending sorted membership vector
of (S1, S2, .., Sn). The similarity between α and β is computed by means of a
fuzzy function:

FuzzySim(α, β) = aggr(S1, S2, ..., Sn) =
n∑

j=1

bj .ϕj(m) (3)

Jaccard. For comparison, we use the Jaccard’s index to compute similarity
between feature sets. The features of a resource are modeled as a set of nodes in
its surroundings. For two resources α and β, two abstract walkers are deployed
to traverse the graph at a specific depth to acquire features. At each depth, a
walker collects nodes, after visiting depth d, the walkers return the set of nodes
Nd(α) and Nd(β). The metric calculates the similarity between two resources
using the Jaccard’s index:

Jaccard(α, β) =
|Nd(α)

⋂
Nd(β)|

|Nd(α)
⋃

Nd(β)| (4)

3 Assessment Methodology

Data extracted from LD might be suitable for certain purposes but not for every
purpose [22]. The quality of a piece of data is heavily dependent on the usage
as well as the tasks performed on it [23]. For measuring the fitness for use of a
dataset, a set of quality dimensions needs to be identified [23]. Scoring functions
can be used to calculate an assessment score from the related quality indicators
as a gauge of how well suitable the data for a particular purpose is. In the scope
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Table 1. Formulas used to evaluate the quality of recommendations. relk is 1 if the
k-th item in the list is relevant for the user u, otherwise it is 0. test(u) represents the
set of relevant items in the test set for the user u. Since the rating scale in the Last.fm
dataset is from 1 to 5, we consider the ratings 4 and 5 as relevant. I is the whole item
set; TopN(u) is the set of the N items recommended to u; rec(i) represents the number
of users who received the recommendation of the item i; total is the overall number
of recommendations across all users. To compute the Gini coefficient, set I must be
indexed in ascending order wrt. the number of recommendations (rec(i)).

Accuracy Sales Diversity Novelty

P@N(u) =

∑N
k=1 relk

N

R@N(u) =

∑N
k=1 relk

|test(u)|

coverage =
|⋃u∈U TopN(u)|

|I|

entropy = −∑i∈I

(
rec(i)
total

)

ln

(
rec(i)
total

)

gini = 2
∑

i∈I

[( |I|+1−i
|I|+1

)(
rec(i)
total

)]

%Long-tail =

∑
i∈Long-tail rec(i)

total

of this paper, we work with a specific use case, LD for the music domain used
as input for recommendation tasks. Recommender systems are built to suggest
things that are of interest to a user, e.g. books, movies, songs [2]. To be able
to provide users with meaningful recommendations, recommender systems may
enrich their background data by exploiting external sources. In this sense, the
quality of the input data plays a key role in producing adequate recommenda-
tions. As seen in Section 5, most of the approaches to recommendation built
on top of LD datasets exploits DBpedia. To our knowledge, an analysis on the
influence of the underlying dataset for the quality of recommendation results
has not been performed yet. Having this observation in mind, we compared
recommendation results by using two of the richest encyclopedic LD sources.
Data retrieved from both DBpedia and Freebase5 is then used for computing
similarity between resources employing the aforementioned similarity metrics.
Afterwards, the computed similarity values are fed into a content-based recom-
mender system to produce the final recommendations. For judging data quality,
we take into account the quality dimensions of Accuracy, Sales Diversity, and
Novelty in a top-N recommendation task. Recently, accuracy has been recog-
nized to be not sufficient to evaluate a recommender system. Sales Diversity
represents an important quality dimension for both business and user perspec-
tive, since improving the coverage of the items catalog and of the distributions
of the items across the users may increase the sales and the user satisfaction [21].
Novelty measures the ability of the system to foster discovery in the recommen-
dation workflow [25]. The formulas used to evaluate the quality dimensions are
formally described in Table 1 and more discursively below.

(i) Considering only the top N results, for measuring Accuracy we use precision
P@N (the fraction of the top-N recommended items being relevant to the
user u) and recall R@N (the fraction of relevant items from the test set
appearing in the N predicted items).

5 We used the RDF version Freebase released as baseKB available at http://basekb.
com/.

http://basekb.com/
http://basekb.com/
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(ii) To measure Sales Diversity, we consider catalog coverage [19] (the percent-
age of items in the catalog that have ever been recommended to users),
and Entropy and Gini coefficient [20,21] (for the distribution of recom-
mended items). The latter are useful to analyze the concentration degree of
items across the recommendations. The scale for Gini coefficient is reversed,
thereby forcing small values to represent low distributional equity and large
values to represent higher equity.

(iii) One metric is chosen to measure the Novelty of the recommendations: the
percentage of long-tail items among the recommendations across all users
[20], considering the 80 percent of less rated items in the training set as
Long-tail items.

For our experiments, we re-used the setup adopted in [6]. Specifically, we have
implemented a content-based recommender system using a k-nearest neighbors
algorithm. It selects the k most similar entities β, called neighbors, to a given
item α using a similarity function sim(α, β). The score P for a given user-
item pair (u, α) is computed using a weighted sum, where the weights are the
similarities between the items. The formula takes into account the neighbors of
α belonging to the user profile profile(u) and the relative scores r(u, β) assigned
by the user u.

P (u, α) =

∑
β∈neighbors(α)∩profile(u) sim(α, β) · r(u, β)

∑
β∈neighbors(α)∩profile(u) sim(α, β)

The function sim(α, β) was computed using the similarity metrics shown in
the previous section and k was fixed at 20. We selected the well-known dataset
Last.fm hetrec-2011. In order to compare the two LD datasets in an ordinary
situation, we downsized the number of artists and bands to the 1000 most pop-
ular ones and, after that reduction, we removed the cold users, i.e. those having
the number of ratings below the average of all users. The reason behind this
choice was to reduce as much as possible the well known negative effect on the
computation of the recommendation list due to users with a low number of rat-
ings. After that, we used the holdout method to split the dataset into training
set and test set. We built the training set by using, for each user, the first 80%
of the her ratings and the remaining 20% to build the test set. Therefore, the
first 80% of the ratings of each user represents her profile. One of our mapping
datasets6 was utilized to associate each item with its counterpart in DBpedia [24].
By using owl:sameAs links we were then able to retrieve Freebase mappings
from the DBpedia ones.

4 Experimental Results

Feature sets are a prerequisite in similarity calculation for feature-based similar-
ity metrics. It is, therefore, necessary to build a set of features for each resource.
6 http://sisinflab.poliba.it/semanticweb/lod/recsys/datasets/

http://sisinflab.poliba.it/semanticweb/lod/recsys/datasets/
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Table 2. The set of properties used for collecting feature sets from DBpedia.

Outbound
rdf:type dbo:associatedAct
owl:sameAs dbo:influenced
dbo:instrument dbo:influencedBy
dbo:writer dbo:bandMember
dcterms:subject dbo:formerBandMember
dbo:associatedBand dbo:currentMember
dbo:associatedMusicalArtist dbo:pastMember
dbo:background dbo:occupation
dbo:genre dbo:birthPlace

Inbound
dbo:previousWork dbo:producer
dbo:subsequentWork dbo:artist
dbo:knownFor dbo:writer
dbo:award dbo:associatedBand
dbo:album dbo:associatedMusicalArtist
dbo:notableWork dbo:musicalArtist
dbo:lastAppearance dbo:musicalBand
dbo:basedOn dbo:musicComposer
dbo:starring dbo:bandMember
dbo:series dbo:formerBandMember
dbo:openingFilm dbo:starring
dbo:related dbo:composer

In an LD setting, building the the set of features goes through the selection of
a set of RDF properties considered as relevant for the domain. For DBpedia, the
top 20% most popular properties of the DBpedia ontology used in the musical
domain apart from dbo:wikiPageWikiLink have been chosen, plus owl:sameAs,
rdf:type and the dcterms:subject property that connects resources to cate-
gories. Table 2 shows the selected list of properties. Similarly, for Freebase we
selected the set of 20% most popular properties connecting to resources whose
type is either basekb:music.musical group7 or basekb:music.artist8. This
results in 288 outgoing and 220 incoming properties. The set of properties is not
listed here due to space limitations. An RDF graph consists of a huge number of
edges and nodes, spreading out on numerous layers of predicates. It is certainly
impractical to address all nodes and edges in it. Therefore, we collected a set
of features by expanding the graph using the selected set of properties up to a
limited depth. Considering a pair of resources that are involved in the similarity
calculation, a neighborhood graph was built by expanding from each resource
using the selected set of properties. For each resource, depending on the type of
experiments, features can be collected in one or two levels of edges. Furthermore,
also depending on the purpose of measurement, an extension can either be done
using only outbound edges or using both inbound and outbound edges.

In order to investigate the effect of the selection of feature sets on the outcome,
we carried out experiments using independent settings. First, we considered differ-
ent levels of depth and then in each setting, the selection of properties for collecting
a set of features. Two independent similarity calculations have been performed:
similarity computed with one-hop features and similarity computed with two-hop
features. The experimental results are clarified in the following sub-sections.

One-hop Features. Experiments were conducted in accordance with two sep-
arate configurations:

Configuration 1. Both inbound and outbound properties are used to build the
set of features of a resource.

7 http://rdf.basekb.com/ns/music.musical group
8 http://rdf.basekb.com/ns/music.artist

http://rdf.basekb.com/ns/music.musical_group
http://rdf.basekb.com/ns/music.artist
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Table 3. Comparison of results for the four algorithms with Top-10, Top-20, Top-
30 between DBpedia and Freebase using both inbound and outbound properties. The
name in a cell indicates the dataset that obtains the best result. With largest Top-N the
differences between DBpedia and Freebase are similar to the Top-30 results, therefore
they are omitted due to space limitations.

Precision Recall Coverage Entropy Gini %Long-tail

GbkSim
Top-10 Freebase Freebase Freebase DBpedia DBpedia DBpedia

Top-20 Freebase Freebase Freebase DBpedia DBpedia DBpedia

Top-30 Freebase Freebase Freebase DBpedia DBpedia DBpedia

VsmSim
Top-10 Freebase Freebase Freebase DBpedia DBpedia DBpedia

Top-20 Freebase DBpedia DBpedia DBpedia DBpedia DBpedia

Top-30 Freebase DBpedia DBpedia DBpedia DBpedia DBpedia

FuzzySim
Top-10 Freebase Freebase Freebase DBpedia DBpedia DBpedia

Top-20 Freebase Freebase Freebase DBpedia DBpedia DBpedia

Top-30 Freebase Freebase Freebase DBpedia DBpedia DBpedia

Jaccard
Top-10 Freebase Freebase Freebase Freebase Freebase DBpedia

Top-20 Freebase Freebase Freebase Freebase DBpedia DBpedia

Top-30 Freebase Freebase Freebase Freebase Freebase DBpedia

(a)

(b)

Fig. 1. Recommedation using similarity values computed on one-hop fea-
tures: Precision - Recall curves obtained by varying the length of the recommenda-
tions list from 1 to 50, with 20 neighbors. Inbound and outbound links are used in
combination.

Accuracy. Figure 1 shows the precision and recall values for all metrics. Gen-
erally, recommendations computed using data extracted from Freebase have a
better precision-recall balance and higher recall values. This holds for all simi-
larity metrics except for VsmSim. Using the latter, generally there is an overlap
among the values, but still Freebase helps achieve the highest recall values.
Table 3 displays the quality indicators for all the metrics on both datasets
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(a)

(b)

Fig. 2. Recommedation using similarity values computed on one-hop fea-
tures: Precision - Recall curves obtained by varying the length of the recommendations
list from 1 to 50, with 20 neighbors. Only outbound links are used.

considering Top-10, Top-20 and Top-30. Those results demonstrate that
Freebase dataset brings the highest accuracy for all the similarity metrics,
except for VsmSim as mentioned before. However, the differences between the
two datasets often have a marginal significance, whereas the charts in Figure 1
show a more complete and general view in term of accuracy.

Sales Diversity. As shown in Table 3, using Freebase data always produces
better coverage. In terms of distribution (Entropy and Gini), generally using
data from DBpedia obtains better values compared to Freebase. However, those
results are not easily comparable because the DBpedia coverage values are too
low. By recommending very few items, it is much more likely to obtain a good
distribution; whereas, by recommending more items, many of these may be sug-
gested few times (even just once). This is confirmed by the fact that the entropy
values are closer than the Gini values between DBpedia and Freebase, con-
sidering that Gini index is more sensible to the inequality and Entropy to the
distribution among the recommendations.

Novelty. In terms of percentage of long-tail items, DBpedia contributes to a
better novelty compared to Freebase in almost every configuration. This means
that using DBpedia tends to suggest a smaller subset of items, but these do not
necessarily belong to the most popular ones. In contrast, Freebase can help
cover more items but generally with a slightly larger popularity bias.
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Configuration 2. Only outbound properties are used to build the set of features
of a resource.
Figure 2 shows the accuracy obtained by the recommendations computed using
similarity results in this setting. A noteworthy observation is that, for all similar-
ity metrics, the accuracy of the recommendations calculated by using data from
DBpedia is analogous to the accuracy obtained by using data from Freebase.
We also observed the same trend for all metrics by other quality dimensions
(Sales Diversity and Novelty). Thus, the corresponding quality indicators are
not depicted due to space limitations. Compared with Configuration 1, we come
to the conclusion that the utilization of both inbound and outbound properties
for computing semantic similarity contributes towards an improvement in the
recommendation results.

Table 4. Comparison of results for the four algorithms with Top-10, Top-20, Top-30
between DBpedia and Freebase with exploration up to two hops using both inbound
and outbound properties. The name in a cell indicates the dataset that obtains the
best result.

Precision Recall Coverage Entropy Gini %Long-tail

GbkSim
Top-10 Freebase Freebase Freebase Freebase DBpedia DBpedia

Top-20 Freebase Freebase Freebase DBpedia DBpedia DBpedia

Top-30 Freebase Freebase Freebase DBpedia DBpedia DBpedia

VsmSim
Top-10 DBpedia DBpedia Freebase Freebase Freebase DBpedia

Top-20 DBpedia DBpedia Freebase DBpedia DBpedia DBpedia

Top-30 DBpedia DBpedia Freebase Freebase DBpedia DBpedia

FuzzySim
Top-10 Freebase Freebase Freebase Freebase DBpedia DBpedia

Top-20 Freebase Freebase Freebase DBpedia DBpedia DBpedia

Top-30 Freebase Freebase Freebase Freebase DBpedia DBpedia

Jaccard
Top-10 Freebase Freebase Freebase DBpedia DBpedia Freebase

Top-20 Freebase Freebase Freebase DBpedia DBpedia DBpedia

Top-30 Freebase Freebase Freebase DBpedia DBpedia DBpedia

Two-hop Features. We studied the influence of exploration depth for collecting
features over the recommendation outcomes. Hence, the same experimental pro-
cedures were replicated with depth d = 2 and the results obtained are as follows:

Configuration 1.Both inbound and outbound properties are used
The accuracy values for all metrics using 2 hops are depicted in Figure 3.

Similar to the experiments performed using one-hop features, we witnessed the
same pattern of the quality indicators for this experimental setting. Using the
Freebase dataset to produce recommendations yields a better precision-recall
balance as well as higher recall values. For both VsmSim and Jaccard, similarity
values on the DBpedia dataset help produce the best recommendations in terms
of accuracy; meanwhile similarity values computed by Jaccard on the Freebase
dataset contribute to a better precision-recall balance. Considering Top-10, Top-
20 and Top-30, the corresponding quality indicators for all the metrics are shown
in Table 4. Once again, apart from VsmSim, recommendation with the Freebase
dataset using other similarity metrics still brings the highest accuracy.

Configuration 2.Only outbound properties are used
For this experimental setting, by all metrics we also obtained comparable

results using similarity values calculated from Configuration 2 for one-hop fea-
tures. Figure 4 depicts the precision-recall balance for all similarity metrics. The
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(a)

(b)

Fig. 3. Recommedation using similarity values computed on two-hop fea-
tures: Precision - Recall curves obtained by varying the length of the recommenda-
tions list from 1 to 50, with 20 neighbors. Inbound and outbound links are used in
combination.

results obtained using DBpedia show no substantial difference compared to the
results with considering also inbound properties. While the results for Freebase
show an overall strong decrease both in terms of precision-recall balance and
recall values, demonstrating that the inbound properties in Freebase dataset
play an important role, as already seen for one-hop configuration. This decrease
is particularly evident using GbkSim and Jaccard.

It can be seen that, the outcomes of the recommendations on two-hop features
confirm the experimental results for recommendation using one-hop features.
Comparison between using One-hop and Two-hop Features. We car-
ried out a comparative analysis between using one-hop and two-hop features.
As a matter of fact, the exploration of the graph comes at a price and sometime
it might not be necessary. Using DBpedia with inbound and outbound proper-
ties, there are no relevant differences expanding the features up to two hops.
Considering Figures 1 and 3, with respect to Freebase with inbound and out-
bound properties, GbkSim metric with two-hop features obtains better results in
terms of precision with respect to one-hop configuration. In terms of recall, using
the Jaccard metric with two-hop features obtains better results with respect
to one-hop configuration. Conversely, the recall values using VsmSim decrease
with two-hop instead one-hop features. There are no substantial differences in
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(a)

(b)

Fig. 4. Recommedation using similarity values computed on two-hop fea-
tures: Precision - Recall curves obtained by varying the length of the recommendations
list from 1 to 50, with 20 neighbors. Only outbound links are used.

the case of FuzzySim. Table 5 shows the gains and losses obtained expanding
the features up to two hops with Top-10, Top-20 and Top-30, confirming what
has been said so far. Considering the Sales Diversity measure, using DBpedia
we obtain better results with two-hop features using all the similarity metrics.
Using Freebase gains better results with two-hop features using Jaccard and
VsmSim. However, Freebase always overcomes DBpedia. It is worth noticing
that the recommendation distribution (Entropy and Gini measures) achieves
substantial improvements with two-hop features for each configuration. Instead,
when only outbound properties are used, the performances by utilizing DBpedia
are slightly lower expanding the features up to two hops, especially in terms
of precision with VsmSim and FuzzySim. With respect to Freebase, the recall
decreases especially with GbkSim and FuzzySim. The adoption of Freebase
instead of DBpedia shows its benefits when used in conjunction with GbkSim,
when two-hop features are considered. The other similarity metrics – even though
they are relatively simple – do not exhibit that considerable improvements to
justify the increased computational effort needed to further explore the semantic
graph of one more hop.
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Table 5. Gains and losses obtained using two-hop features respect to one-hop ones
using both inbound and outbound properties. The symbol + indicates a gain, − a loss
while ∼ a negligible variation.

Precision Recall Coverage Entropy Gini %Long-tail

GbkSim

Top-10 Freebase + + − + + −
DBpedia − − + − − −

Top-20 Freebase + + − + + +
DBpedia + + + + + ∼

Top-30 Freebase + + − + + ∼
DBpedia + + + ∼ + −

VsmSim

Top-10 Freebase − − + + + −
DBpedia − − + + + −

Top-20 Freebase − − + + + −
DBpedia − − + + + −

Top-30 Freebase − − + + + −
DBpedia − − + + − −

FuzzySim

Top-10 Freebase − − − + + −
DBpedia + + + − ∼ ∼

Top-20 Freebase + + ∼ + + −
DBpedia + + + ∼ + +

Top-30 Freebase + + − + + −
DBpedia + + + + + ∼

Jaccard

Top-10 Freebase − − + + ∼ +
DBpedia − − + + + −

Top-20 Freebase − − + − − −
DBpedia − − + + + −

Top-30 Freebase ∼ ∼ + − − −
DBpedia − − + + + ∼

4.1 Discussion

In this section we discuss the general trends emerging from Table 3, 4 and 5.
By looking at Table 3 and Table 4, an interesting question arises: why

Freebase seems to facilitate better accuracy and catalog coverage while DBpedia

helps obtain superior novelty and aggregate diversity9?
As for accuracy, we assume that in Freebase, at least for our target domain,

items considered as similar by users are actually connected by relevant proper-
ties with each other. This reflects the strong crowd-sourced nature of Freebase
and also means that, in this case, Freebase is richer than DBpedia in terms
of encoded knowledge. Both data sources are derived from Wikipedia, how-
ever Freebase can be flexibly edited by user communities who utilize numerous
sources for encoding metadata. Thus, each Freebase topic consists of an expan-
sion of the original Wikipedia topic, which is not the case in DBpedia. Especially
for domains being managed by Google, Freebase has a higher topic coverage
than DBpedia [26]. Moreover, the social nature of Freebase also implies that
items resulting popular among the users are also “popular” in the underlying
graph. This means that they are richer in terms of related data and are more
connected to other entities. This also explains both the higher value of precision
and recall and the lower values of novelty when using Freebase. Indeed, on the
one side we know that computing recommendations based on items popular-
ity results in good predictions for the end users [5]; on the other side, as with
Freebase we concentrate more on popular items we have lower results when
evaluating novelty (long-tail) compared to DBpedia. Regarding the differences
between Coverage and aggregate diversity (Entropy and Gini index) a possi-
ble explanation is due to the very low values of catalog coverage when using

9 A further and more detailed investigation is needed for VsmSim.
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DBpedia. Since there are less recommended items from the catalog, they have a
higher probability to be better distributed across the users.

The results summarized in Table 5 show other interesting trends when explor-
ing the underlying graph to compute recommendation. We see that values for
novelty tend to decrease when we move from a one-hop to a two-hop exploration
while this is not the case for catalog coverage and aggregate diversity. Possible
explanations for these behaviors are: (i) popular items get more connected when
exploring the graph thus obtaining better similarity results. This justifies the
novelty decrease; (ii) the increasing in the number of connections also reflects in
the selection of more items (better coverage) even if the new items are selected
mostly among the popular ones; (iii) finally, as we have better similarity values
due to better overlaps among items descriptions, we gain in aggregate diversity
as a better similarity values means a better chance to be recommended.

5 Related Work

To the best of our knowledge, none of the existing work has conducted a com-
prehensive evaluation on the fitness for use of datasets in combination with
different recommendation strategies. Some studies partly address the issue in
different settings. In this section we review the most notable work on this topic.

Leveraging LD sources like DBpedia for recommendation tasks appears to be
highly beneficial as demonstrated by numerous applications. One of the first
approaches that exploits Linked Data for building recommender systems is [9].
The authors of [8] present a knowledge-based framework leveraging DBpedia
for computing cross-domain recommendations. A graph-based recommendation
approach utilizing model- and memory-based link prediction methods is pre-
sented in [10]. LD datasets are exploited in [11] for personalized exploratory search
using a spreading activation method for finding semantic relatedness between
items belonging to different domains. For recommending movies, a content-based
system exploiting data extracted from DBpedia has been proposed in [2] based
on the adaptation of Vector Space Model to semantic networks. In [24] a hybrid
algorithm - named Sprank - is proposed to compute top-N item recommenda-
tions from implicit feedback. Path-based features are extracted from DBpedia to
detect subtle relationships among items in semantic graphs. Afterwards, recom-
mendations are produced by incorporating ontological knowledge with collabo-
rative user preferences. The proposed algorithm gains good accuracy, especially
in conditions of higher data sparseness. A work that can be considered as a base
for our paper is [6]. Two semantic similarity metrics, SimRank and Personal-
ized PageRank are used to compute similarity between resources in RDF graphs.
There, exploiting semantic similarity in producing input for a content-based
recommender system has proven to bring benefits. A full SPARQL-based recom-
mendation engine named RecSPARQL is presented in [12]. The proposed tool
extends the syntax and semantics of SPARQL to enable a generic and flexible way
for collaborative filtering and content-based recommendations over arbitrary RDF
graphs. The authors of [13] propose an approach for topic suggestions based on
some proximity measures defined on the top of the DBpedia graph.
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In [14] the authors present an event recommendation system based on LD
and user diversity. A semantic-aware extension of the SVD++ model, named
SemanticSVD++, is presented in [15]. It incorporates semantic categories of
items into the model. The model is able also to consider the evolution over time
of user’s preferences. In [16] the authors improve their previous work for dealing
with cold-start items by introducing a vertex kernel for getting knowledge about
the unrated semantic categories starting from those categories which are known.
Another interesting direction about the usage of LD for content-based RSs is
explored in [17] where the authors present Contextual eVSM, a content-based
context-aware recommendation framework that adopts a semantic representation
based on distributional models and entity linking techniques. In particular entity
linking is used to detect entities in free text and map them to LD.

Finally, in [18] the authors propose the usage of recommendation techniques
for providing personalized access to LD. The proposed method is a user-user col-
laborative filtering recommender wherein the similarity between the users takes
into account the commonalities and informativeness of the resources instead of
treating resources as plain identifiers.

6 Conclusion

In this paper we analyze the fitness for use of two LD encyclopedic datasets,
namely DBpedia and Freebase, to cope with recommendation tasks in the
music domain. Similarity values computed on data retrieved from DBpedia and
Freebase were used to feed a content-based recommender system to produce rec-
ommendation lists. To further study the influence of the selection of features on
the recommendations, we performed experiments using (i) four different feature-
based similarity values, (ii) two levels of depth in the graph exploration and (iii)
different property sets for gathering features from RDF graphs. We executed a
series of experiments on the Last.fm dataset thus comparing the recommenda-
tion results measuring their performances in terms of accuracy, catalog cover-
age, distribution and novelty. For most of the experimental settings, we saw that
exploiting Freebase obtains better accuracy and catalog coverage. Whereas, the
dataset from DBpedia generally fosters the novelty of recommendations. Regard-
ing the distribution, at first glance using the DBpedia dataset appears to perform
better, but a careful analysis shows that the results are somehow comparable.
For all settings, the selection of both inbound and outbound links for comput-
ing similarity makes a difference to the overall performance. Indeed, it is worth
noticing that considering links as undirected has a positive impact in the per-
formance of the recommendation engine. We also saw that Freebase obtains
improvements using GbkSim expanding the features up to two hops. Although
Freebase will be retired at the end of June 2015 as a standalone project, all its
data will flow into the Wikidata project thus becoming its stable nucleus. Hence,
we are confident that the results presented in this paper will be useful also in the
light of a comparison with the upcoming edition of Wikidata. In conclusion, we
confirm that encyclopedic LD datasets are an interesting source of data to build
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content-based recommender systems, but the choice of the right dataset might
affect the performance of the system with regards to some evaluation dimensions
such as accuracy, novelty and diversity of results.
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Abstract. Knowledge graphs (KGs) are a key ingredient for searching,
browsing and knowledge discovery activities. Motivated by the need to
harness knowledge available in a variety of KGs, we face the following
two problems. First, given a pair of entities defined in some KG, find an
explanation of their relatedness. We formalize the notion of relatedness
explanation and introduce different criteria to build explanations based
on information-theory, diversity and their combinations. Second, given a
pair of entities, find other (pairs of) entities sharing a similar relatedness
perspective. We describe an implementation of our ideas in a tool, called
RECAP, which is based on RDF and SPARQL. We provide an evaluation
of RECAP and a comparison with related systems on real-world data.

1 Introduction

Knowledge Graphs (KGs) maintaining structured data about entities are becom-
ing a common support for browsing, searching and knowledge discovery activ-
ities. Search engines like Google, Yahoo! and Bing complement search results
with facts about entities in their KGs. An even large number and variety of
KGs, based on the Resource Description Framework (RDF) data format, stem
from the Linked Open Data project [8]. Fig. 1 (a) shows information provided
by the Google KG when giving the entity F. Lang as input; it reports some facts
about the director along with relationships with other entities. Fig. 1 (b) and
Fig. 1 (c) show information, encoded in RDF, about F. Lang taken from DBpedia
and LinkedMDB, respectively. Note that the Google KG suggests entities like T.
von Harbou as related to F. Lang with a short comment saying that T. von Har-
bou was F. Lang’s former spouse. However, what is the mechanism behind this
suggestion? What is the relationship between F. Lang and other entities like H.
Hitchcock? KGs like DBpedia and LinkedMDB fail short when it comes to both
explain the relatedness between an arbitrary pair of entities and suggest related
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EU Framework Programme for Research and Innovation under grant agreement no.
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Fig. 1. F. Lang in the Google KG (a), DBpedia (b), and LinkedMDB (c).

entities. We contend that the usage of a standard data format (i.e., RDF) and
the availability of a standard querying infrastructure (i.e., SPARQL endpoints)
open new perspectives toward explaining relatedness and querying KGs by using
pairs of entities as input.

The first problem that we face concerns how to build relatedness expla-
nations. This has applications in several areas including: terrorist networks,
to uncover the connections between two suspected terrorists [20]; co-author
networks, to discover interlinks between researchers [5,6]; generic exploratory
search. The need for relatedness explanations also emerged in the context of
the SENSE4US FP7 project1, which aims at creating a toolkit to support infor-
mation gathering, analysis and policy modeling. Here, relatedness explanations
are useful to investigate and show topic connectivity2, thus enabling to find out
previously unknown information that is of relevance, understand how it is of
relevance, and navigate it.

Although the problem of finding connectivity structures between entities has
been studied (e.g., [3,19]), existing approaches do not offer comprehensive mech-
anisms for building different types of relatedness explanations and controlling
the amount of information to be included. Moreover, these approaches miss the
possibility to query KGs.

The second problem that we tackle concerns querying KGs. KGs behind
search engines (e.g., Google) provide limited querying capabilities, typically
accepting one entity as input. KGs based on RDF (e.g., DBpedia) provide rich
querying capabilities but require familiarity with languages like SPARQL [7]

1 http://www.sense4us.eu
2 A module of the SENSE4US toolkit extracts topics from policy documents.

http://www.sense4us.eu
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and the underlying data/schema [10]. Our strategy recalls the query by example
approach; given a pair of entities as input, we leverage their relatedness expla-
nation to learn a query pattern, which is used to identify other (pairs of) related
entities. Our approach goes beyond existing entity suggestion mechanisms mainly
based on the syntactic analysis of query logs and pages [13]. We now provide an
example about the two main challenges faced in this paper, that is, how to build
relatedness explanations and how to query KGs by giving entities as input.

1.1 Overview of the Approach

Syd is fond of science-fiction films; he has heard about two German directors
named Fritz Lang and Thea von Harbou and is interested in their relatedness.

By giving F. Lang and T. von Harbou as input to RECAP, the tool imple-
menting our framework, Syd gets the explanation in Fig. 2 (a). This explanation
is more informative than the short comment (i.e., former spouse) provided by
the Google KG and combines information from Freebase and DBpedia. The
explanation includes the top-20 most informative paths (out of 240) at max.
distance 2; informativeness is defined in terms of edge labels occurrences. RECAP
allows to generate different types of explanations (Fig. 2 (b)) and also provides
information about nodes/edges (Fig. 2 (c)).

RECAP goes beyond related approaches (e.g., REX [4], Explass [2]) that pro-
vide visual information about connectivity as it allows to build different types of
explanations (e.g., graphs, sets of paths), thus controlling the amount of infor-
mation visualized. RECAP has the advantage of not requiring any data preprocess-
ing; information is obtained by querying (remote) SPARQL endpoints. Moreover,

(b)

(c)

(a)

(c)

owl:sameAs

owl:sameAs

Freebase

DBpedia

Die Nibelungen

Thea von Harbou

Fig. 2. The explanation perspective of the RECAP tool.
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Fig. 3. The querying perspective of RECAP. Path patterns (a), explanation (b), query
pattern (c), SPARQL query (d), and suggested entities (e) ranked by popularity
(PageRank [17] in this case).

RECAP can combine information from multiple KGs. In the previous example, the
combination of Freebase and DBpedia allowed to discover an additional episode
of Die Nibelungen series (missing in DBpedia), that is, Kriemhild’s Revenge,
co-written by F. Lang and T. von Harbou. Last but not least, RECAP also allows
to query KGs by using pairs of entities as input.

Given a pair of entities, RECAP finds other (pairs of) related entities by learn-
ing a SPARQL query from their relatedness explanation. By continuing our
example, suppose that Syd gives the pair (F. Lang, T. von Harbou) as input
to RECAP with the aim to discover other entities. Fig 3 (b) shows one possible
explanation that RECAP uses to learn a SPARQL query. The explanation merges
paths conforming to the pattern in Fig 3 (a). Fig 3 (c) abstracts the explanation
by replacing nodes with variables.

The SPARQL query generated (shown in Fig 3 (d)) allows to find pairs of
related entities that can be locally ranked. The top-5 pairs of entities found by
RECAP, and ranked by their popularity, are show in Fig. 3 (e). As an example, for
the pair (Gale Ann Hurd, James Cameron) we can reconstruct a similar pattern
as that shown in Fig. 3 (b): J. Cameron was married with G. A. Hurd, he wrote
the movie The Terminator where L. Hamilton (also married to J. Cameron)
starred.

1.2 Related Work

There is solid body of work about (i) finding structures (e.g., paths, subgraphs)
connecting entities [3,9,12,12,15,19]; (ii) learning relationships between enti-
ties; (iii) discovering and/or visualizing connectivity information between enti-
ties [2,4,9]. Differently from (i), RECAP focuses on the problem of providing
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concise explanations by leveraging path informativeness and/or a diversity cri-
terion. As for (ii), systems like PATTY [16] mainly focus on learning semantic
relationships. RECAP has a different departure point; it explains relatedness in
the form of graphs that can be dynamically configured to include the desired
amount of information. As for (iii), Table 1 compares RECAP with related systems
in terms of: KG supported (KG), output (O), filtering capabilities (F), query-
ing capabilities (Q), requirement of local data (L). RECAP differs from related
systems in the following main respects: as for KG, RECAP is KG-independent ;
it only requires the availability of a (remote) query endpoint. Moreover, RECAP
can combine information from multiple KGs. As for O and F, RECAP focuses on
building different types of explanations in the form of graphs or (sets of) paths
by leveraging informativeness (to estimate the relative importance of edges),
diversity (to include rare edges) and their combinations. Moreover, RECAP is the
only approach that can be used to query KGs (Q). As for L, neither does RECAP
assume local availability of data nor any data preprocessing. A more detailed
comparison between RECAP and related systems on real data is discussed in
Section 4.

Table 1. Comparison of RECAP with closely related systems.

System KG O F Q L

REX [4] Yahoo! Graph No No Yes

RelFinder [9] DBpedia Graph No No Yes

Explass [2] DBpedia Paths Yes (only paths) No Yes

RECAP Any Graph/Paths Yes (paths and graphs) Yes No

1.3 Contributions and Outline

The framework that we are going to introduce poses several challenges, among
which: (i) how to capture the notion of relatedness explanation between enti-
ties? we leverage informativeness of paths and a diversity criterion to construct
different types of explanations; (ii) how to query KGs? we isolate the structure
of an explanation to learn a SPARQL query; (iii) how to make RECAP readily
available? We use RDF, the SPARQL query language, and SPARQL endpoints.
The contributions of this paper are as follows: (i) a framework for building relat-
edness explanations; (ii) different path ranking strategies; (iii) a mechanism to
query KGs by giving entity pairs as input; (iv) a KG-agnostic implementation
of our framework; (v) an extensive experimental evaluation.

The remainder of the paper is organized as follows. Section 2 introduces
the problem and gives some background. Section 3 presents the explanation
framework. Section 4 discusses an evaluation of the performance of RECAP and
a comparison with related work. We draw some conclusions and sketch future
work in Section 5.
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2 Problem Formalization

Motivation. The goal of this paper is to facilitate the discovery and explanation
of knowledge in knowledge graphs. Part of this research was motivated by the
SENSE4US project where explanations are a useful support to discover connec-
tivity between topics emerging from policy documents.
Input. We consider as input a pair (ws, wt) of entities defined in some knowl-
edge graph G. We focus on RDF knowledge bases K=〈G,O,A〉 where G is a
knowledge graph (KG), O is an ontology/schema, and A is a query endpoint.
Assumptions. The framework that we are going to introduce works on top exist-
ing knowledge bases. Our approach has to be flexible enough to be applied to
different KGs as dictated by the SENSE4US project, which considers a variety
of KGs in the LOD cloud. Hence, we consider the access to knowledge bases via
the query endpoint A. Neither this requires local availability of the data (e.g.,
local copies) nor any complex data processing infrastructure from the user side.
The computations are reduced to the evaluation of a set of queries against A
plus some local refinement.
Desired Output. Given K=〈G,O,A〉 and a pair of entities (ws, wt) ∈ G, the
output can be of two different types. It can be an explanation Ge(ws, wt) ⊆ G.
To produce the graph Ge, our explanation algorithm only considers nodes/edges
in the set of paths between ws and wt. Given a set of paths, we define different
mechanisms to rank/select paths to be included in Ge.

When focusing on querying KGs, the output is a set of (pairs of) entities.
We isolate the structure of an explanation into an explanation pattern. Given
a graph Ge, representing an explanation, an explanation pattern considers a
graph Gv

e where nodes in Ge are replaced with variables. Gv
e is used to generate

a SPARQL query that is evaluated against A. Results of such query can be
locally ranked (e.g., via PageRank [17]).

Basic Definitions and Background. We now define what a knowledge graph (KG)
is and outline the fragment of the query language supporting the implementation
of our framework. Although there are several KGs today available (e.g., Yahoo!,
Google) we will focus on those encoded in RDF3. The choice of RDF is merely
practical; data in RDF is widely and openly accessible on the Web for querying
via SPARQL [7]. Let U (URIs) and L (literals) be countably disjoint infinite
sets. An RDF triple is a tuple of the form U × U × (U ∪ L) whose elements are
referred to as subject, predicate and object, respectively. As we are interested in
discovering explanations in terms of nodes and edges carrying semantic meaning
for the user, we do not consider blank nodes.

Definition 1 (Knowledge Graph). Given a set T of RDF triples, a KG is
a multigraph G=〈V, E〉 where V ={s | (s, p, o) ∈ T} ∪ {o | (s, p, o) ∈ T} and
E = {(s, p, o) ∈ T}.

3 A list is available at http://lod-cloud.net

http://lod-cloud.net
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For the purposes of this paper, we will consider the most basic form of
SPARQL queries, that is, Basic Graph Patterns (BGPs). We shall also make
usage of the COUNT aggregate operator. Let V be a set of SPARQL variables,
that is, strings starting with the ? symbol, U a set of URIs and L a set of liter-
als. A triple pattern is a triple of the form (U ∪ L ∪ V) × (U ∪ V) × (U ∪ L ∪ V).
BGPs are sets of triple patterns that can be combined via algebraic operators;
we will make usage of the join operator (represented by the symbol . in the
SPARQL syntax).

3 The RECAP Approach

We see an explanation as a concise representation of the relatedness between
entities in terms of edges (carrying a semantic meaning via RDF predicates) and
other entities. As graphs are a natural and flexible way to represent and visualize
information about interlinked entities in a variety of scenarios, we represent
explanations as graphs.

Definition 2 (Explanation). Given a knowledge base K=〈G,O,A〉 and a pair
of entities (ws, wt) where ws, wt∈ G, an explanation is a tuple of the form
E=(ws, wt, Ge), where ws, wt ∈ Ge, Ge ⊆ G, and Ge is connected.

The above definition is very general; it only states that two entities are con-
nected via nodes and edges in a graph Ge, which is a subgraph of the knowledge
graph G and has an arbitrary structure. The challenging aspect is how to uncover
the structure of Ge by accessing G only via queries against the endpoint A. To
tackle this challenge we shall characterize the desired properties of Ge. Consider
the explanation shown in Fig. 4 (a); Ge contains two types of nodes: nodes such
as n1, n3, n4 that do belong to some path between ws and wt and other nodes
such as n2 that do not.

Fig. 4. An explanation (a) and a pattern graph (b).

Although the edge (n2, p1, n3) can contribute to better characterize n3, it is
in a sense non-necessary as it does not directly contribute to explain how ws and
wt are related. Hence, we introduce the notion of necessary edge.

Definition 3 (Necessary Edge). An edge (ni, pk, nj)∈G is necessary for an
explanation E=(ws, wt, Ge) if it is in a simple path (no node repetitions) between
ws and wt.
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The necessary edge property enables to refine the notion of explanation into that
of minimal explanation.

Definition 4 (Minimal Explanation). Given K=〈G,O,A〉 and a pair of
entities (ws,wt) where ws, wt∈ G, a minimal explanation is an explanation
E=(ws, wt, Ge) where Ge is obtained as the merge of all simple paths between
ws and wt.

Minimal explanations enable to focus only on nodes and edges that are in some
path between ws and wt thus preserving connectivity information only. The
challenge is now how to retrieve minimal explanations.

Consider the explanation shown in Fig. 4 (a) (ignoring the dashed node and
edge). Ge could be retrieved by matching the pattern graph Gp in Fig. 4 (b)
(nodes and edges are query variables) against G. If the structure of Gp were
available, one could find Ge. Unfortunately such structure, that is, the right way
of joining query variables representing nodes and edges in Gp is unknown before
knowing Ge. As the building blocks of minimal explanations are paths between
ws and wt, finding these paths is crucial.

Generally speaking, paths between entities can have an arbitrary length; in
practice it has been shown that for KGs like Facebook the average distance
between entities is bound by a value k ≤ 5 [21]. Considering paths of length k is
also in line with the goal of providing explanations of manageable size that can
be visualized/interpreted by users. Finally, related approaches like Explass [2]
and REX [4] also considered bounded-length paths. Fig. 5 summarizes the expla-
nation algorithm.

Algorithm 1: Building Relatedness Explanations

Input: A pair (ws,wt) of entities, an integer k, the address of a query endpoint A
Output: A graph Ge representing an explanation

(1) Find paths: we describe in Section 3.1 an approach based on SPARQL queries
against A to retrieve paths between ws and wt of length k.

(2) Rank paths: We describe in Section 3.2 different mechanisms to rank paths by
considering informativeness and diversity.

(3) Select and merge top-m paths: we discuss in Section 3.3 different ways of selecting
ranked paths to build an explanation.

Fig. 5. An overview of the relatedness explanation algorithm.

3.1 Finding Paths Between Entities

We now describe the structure of queries used to retrieve paths via the
endpoint A.
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Definition 5 (k-connectivity Pattern). Given K=〈G,O,A〉, a pair of enti-
ties (ws,wt) where ws, wt∈ G and an integer k, a k -connectivity pattern is a tuple
Π=〈ws, wt,Q, k〉 where Q is a set of SPARQL queries composed by joining k
triple patterns.

Note that SPARQL 1.1 supports property paths (PPs) [7], that is, a way
for discovering routes between nodes in an RDF graph. However, since variables
cannot be used as part of the path specification itself, PPs are not suitable for
our purpose; we need information about all path elements (i.e., nodes and edges)
to build explanations.

Example 6 (Example of k-connectivity Pattern). The 2-connectivity pat-
tern between F. Lang (:FL) and T. von Harbou (:TvH) contains the following
set of queries Q:
SELECT DISTINCT * WHERE{:FL ?p1 ?n1. ?n1 ?p2 :TvH}
SELECT DISTINCT * WHERE{:FL ?p1 ?n1. :TvH ?p2 ?n1}
SELECT DISTINCT * WHERE{?n1 ?p1 :FL. :TvH ?p2 ?n1}
SELECT DISTINCT * WHERE{?n1 ?p1 :FL. ?n1 ?p2 :TvH}

Definition 7 (Path). Given K=〈G,O,A〉 and a k -connectivity pattern

Π=〈ws, wt,Q, k〉, a path π is a set of edges: π(ws, wt)=ws

p1−n1

p2−n2

p3−n3..nq

pk−wt,
ni ∈ G ∀i ∈ [1, q], pj ∈ G ∀j ∈ [1, k] and − ∈ {←,→}.

3.2 Ranking Paths

The number of paths connecting two entities ws and wt can be large. Considering
the merge of all paths, as done in minimal explanations (see Definition 4), can
be an obstacle toward concise explanations. Therefore, we introduce different
criteria to rank paths, a subset of which (e.g., top-m) can be merged to form an
explanation.

Ranking By Path Informativeness
The first approach to estimate the informativeness of a path connecting a pair of
entities (ws,wt)∈ G leverages the informativeness of its constituent RDF predi-
cates [18].

Definition 8 (Predicate Frequency Inverse Triple Frequency). Given a
knowledge graph G=〈V, E〉, an entity w ∈ G and a predicate p appearing in
some triple involving w, the incoming pfw

i (p) and outgoing pfw
o (p) predicate

frequency are shown in equation (1) and equation (2), respectively. The Inverse
Triple Frequency of p (itf(p)) and the pfitf are shown in equation (3) and
equation (4), respectively.

pf
w
i (p, G) =

|Ei(w)|π(p)

|Ei(w)| (1) pf
w
o (p, G) =

|Eo(w)|π(p)

|Eo(w)| (2)

itf(p, G) = log
|E|

|E|π(p)

(3) pfitfx(p, G) = pfx × itf (4)

where |Ei(w)|π(p) (resp., |Eo(w)|π(p)) is the number of triples in G where the
predicate p is incoming (resp., outgoing) in w, |Ei(w)| (resp., |Eo(w)| ) is the
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Fig. 6. Ranking: (a) most informative paths; (b) most informative patterns; (c) most
diverse paths.

total number of incoming (resp., outgoing) triples including w. |E|π(p) is the
number of triples including p. In equation (4), pfitfx(p,G) can use pfw

i (p,G)
or pfw

o (p,G).

Definition 9 (Path Informativeness). Let π(ws, wt)=ws
p−→ wt be a path

between ws and wt in G of length k=1. The informativeness of π is defined as:

I(π,G) = [pfitfws
o (p,G) + pfitfwt

i (p,G)]/2 (5)

The informativeness of the path π(ws, wt)=ws
p←− wt can be obtained by con-

sidering p as an incoming edge to ws. For paths having length k > 1, we have:

I(π,G) =
I(π(ws, w1), G) + ... + I(π(wk, wt), G)

k
(6)

Ranking by Pattern Informativeness
We now introduce informativeness based on path patterns. A path pattern gen-
eralizes a path by replacing nodes with variables.

Definition 10 (Path Pattern). Given a path π(ws, wt)=ws

p1−n1

p2−n2..nq

pq−wt,

a path pattern is an expression of the form π(ws, wt)=ws

p1−?v1
p2−?v2..?vq

pq− wt,
where ?vi i ∈ {1, 2, ...q} are variables and q ≤ k.

As an example, the path in the bottom-part of Fig. 6 (a) is abstracted in the pat-
tern in the top-part of Fig. 6 (b). The usage of variables in place of intermediate
entities enables to represent in a more concise way information about a set of
paths. The pattern in the top-part of Fig. 6 (b) enables to capture the fact that
F. Lang and T. von Harbou have co-written 11 movies (bindings of the variable
?v) according to DBpedia. Information in the ontology O (when available) can
help to more precisely characterize the nature of intermediate entities by con-
sidering their rdf:type (Fig. 6 (b)). RECAP includes a pattern-based exploration
of the connectivity between ws and wt along with the possibility to generate
explanations including all paths matching a pattern (see Fig. 3 (a)).

Definition 11 (Path pattern informativeness). Let Pπ be the set of pat-
terns obtained from a set of paths Pπ. The informativeness of a path pattern
π ∈ Pπ is:

I(π, G) = log
|Pπ|

|(π, G)| (7)
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where | Pπ | is the number of patterns and | (π,G) | is the number of paths
sharing π in G.

Ranking By Path Diversity
The most informative paths of length k=2 between F. Lang and T. von Har-
bour often include predicates related to the fact that they have co-written movies
(e.g., The Indian Tomb and Metropolis); this will potentially discard other pred-
icates appearing in paths with low informativeness. To cope with this aspect, we
introduce path diversity.

Definition 12 (Path Diversity). Given a source entity ws ∈ G, a target entity
wt ∈ G and two paths π1(ws, wt) and π2(ws, wt) we define path diversity as:

δ(π1, π2) =
|Labels(π1) ∩ Labels(π2)|
|Labels(π1) ∪ Labels(π2)| (8)

where Labels(π) denotes the set of labels (RDF predicates) in a path. Fig. 6
(c) shows the two most diverse paths at distance 2 between F. Lang and T. von
Harbou. As it can be observed, the predicate dbpo:screenplay is included; such
predicate is never present in the top-10 most informative paths.

3.3 Selecting and Merging Paths

The last step of the explanation algorithm concerns path selection. Table 2
describes different strategies that given a value m, select a subset (but E∪)
of paths (patterns) according to one of the three approaches described in
Section 3.2. Moreover, two strategies combine path (pattern) informativeness
and diversity. The strategy in the last line of Table 2 does not merge paths and
is used by RECAP to enable pattern-based explorations of the relatedness between
ws and wt. We discuss an evaluation of the different strategies in Section 4.

Table 2. Path selection/merging strategies.

Symbol Meaning

E∪ Merge all of paths

Eπ
m Merge the top-m most informative paths

Eπ
m Merge paths belonging to the top-m most informative path

patterns

Eδ Merge paths whose value of diversity falls in [(max−r),max]
where max is the max diversity and r is a % value.

Eπ,δ Merge the results of Eπ
m and Eδ

Eπ,δ Merge the results of Eπ
m and Eδ

P Set of all paths (no merge)
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3.4 Querying KGs by Example

We now describe the second building block of our framework, that is, an algo-
rithm (shown in Fig.7) to query KGs by giving a pair of entities as input. In
what follows we outline the steps, but (1), of Algorithm 2 after introducing
explanation patterns.

Algorithm 2: Knowledge Graph Querying

Input: A pair (ws,wt) of entities, an integer k, the address of a query endpoint A
Output: A set of ranked (pairs of) entities

(1) Find an explanation E=(ws, wt, Ge) between ws and wt by using Algorithm 1.

(2) Build the entity query pattern Qe.

(3) Query the KG with Qe (via A) and get a set of (pairs of) entities.

(4) Rank the answers to Qe.

Fig. 7. An overview of the query answering algorithm.

Definition 13 (Explanation Pattern). Given an explanation E=
〈ws, wt, Ge〉, an explanation pattern is a tuple E=〈?ws, ?wt, G

v
e〉 where

Gv
e={TP1,TP2,...,TPk} is a query graph and TPi=(U ∪L∪V)×U ×(U ∪L∪V), 1 <

i < k, is a triple pattern not containing variables in predicate position. Moreover,
for i > 1 |var(TPi)∩var(TPi−1)| = 1.

In the above definition, Gv
e is the query graph obtained from Ge by replacing

all nodes into an explanation with query variables. Basically, an explanation
pattern generalizes the structure of an explanation by keeping edge labels only.
Explanation patterns are used to generate entity query patterns.

Definition 14 (Entity Query Pattern). An entity query pattern is a
SPARQL query of the form: SELECT DISTINCT ?ws ?wt WHERE{TP1. TP2. TPk.}

In the above definition, TPi, i ∈ [1, k] are triple patterns in Gv
e and ?ws

and ?wt are variables used in lieu of the entities in input. Query patterns are
automatically derived ; our algorithm neither requires familiarity with SPARQL
nor with the underlying data/schema. The evaluation of a query pattern returns
a set of pairs of entities.

Ranking of Results
Our approach for querying KG learns an entity query pattern Qe from a relat-
edness explanation. Since the evaluation of Qe can return a large number of
results, our algorithm includes a ranking component. The problem of ranking
results of SPARQL queries has been already studied (e.g., [1,14]) and is not the
main purpose of the present paper.
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Inspired by the Google KG, we consider a simple result ranking mecha-
nism based on the popularity of entities; specifically, we leverage the PageR-
ank [17] algorithm. Given a pair of entities (w1, w2) returned when evaluating Qe

(obtained from step (3) Algorithm 2), we estimate their popularity as (PR(w1)
+PR(w2)) /2, where PR(wi) is the PageRank value of the entity i. We leave as a
future work the investigation of more sophisticated result-ranking mechanisms.

4 Implementation and Evaluation

We have implemented our ideas in the RECAP tool, which uses JavaFX4 for the
GUI and the Jena5 framework to handle RDF data and SPARQL queries.

4.1 Evaluating the Explanation Generation Component

We start by discussing the evaluation of the explanation component of RECAP.
Experimental setting. We considered two KGs: DBpedia (DB)6 and Freebase7

(FB). We adopt the dataset of 26 pairs used to evaluate Explass [2] and set k≤4
as done in Explass. We use as reference graph for the computation of informa-
tiveness scores (see Def. 8 and Def. 11) the graph obtained by merging all paths.
Experiments have been performed on a MacBook Pro with a 2.8 GHz i7 CPU
and 16GBs RAM.

Experiment 1: Performance Evaluation: we investigate the performance of
RECAP for increasing values of k8 in terms of: (i) obtaining paths; (ii) computing
explanations. Results that follow are the average of 5 runs. Fig. 8 (a) and (b)
show the running times. Clearly, the higher k the higher the running time for
path retrieval. The multi-thread implementation of RECAP allows to keep the
time for finding paths on average around 6.4 secs for DB and 12 secs for FB when
k≤4. When executing the queries sequentially (results are not reported for sake
of space) the running times can be up to 30 times higher. We observed in another
experiment on DB (not reported for sake of space) that local data reduces the
running times by ∼60% on average. However, this has the disadvantage that
both a local processing infrastructure and local data are required.

Running times on DB for generating the different types of explanations
described in lines 1-4 of Table 2 are shown in Figs. 9 (a). We report results
on DB as this KG has been used in the (qualitative) comparison of RECAP with
related approaches (see Section 4.1). Nevertheless, we report results on the com-
bination DB-FB in Fig. 9 (b).

Generally speaking, E∪ explanations can be generated very fast; here, no
path ranking/filtering is performed. However, E∪ can be very big, which makes
4 http://docs.oracle.com/javafx/
5 https://jena.apache.org/
6 http://dbpedia.org/snorql
7 http://lod.openlinksw.com/sparql
8 In particular, for each k, all paths of length ≤k are generated

http://docs.oracle.com/javafx/
https://jena.apache.org/
http://dbpedia.org/snorql
http://lod.openlinksw.com/sparql
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Fig. 8. Path retrieval in DB (a) and FB (b). Y-axis: time(ms) in log-scale; X-axis: entity
pair.

Fig. 9. Explanations in DB (a) and DB/FB (b). Y-axis: time(ms) in log-scale; X-axis:
entity pair.

the interpretation by users difficult, as we will discuss in Experiment 2. Eδ expla-
nations that use diversity (we considered r=25%) are more expensive as they
require the computation of distances between paths, for which RECAP leverages
a multi-thread approach. Explanations based on path informativeness Eπ

m (we
considered m=5) require to compute pfitf scores; RECAP computes these scores
in parallel and using the merge of all paths as reference graph thus not perform-
ing any remote query. Explanations based on pattern informativeness Eπ

m (we
considered m=5) are less expensive since they do not analyze the informativeness
of all edges in a path. The most expensive explanations (not reported here for
sake of space) are those combining path/pattern informativeness and diversity
requiring ∼6 secs for k≤4. When compared to related system (see Section 4.1),
RECAP has been judged the fastest system in the overall task of generating dif-
ferent types of relatedness explanation. In terms of size (results not reported for
sake of space), E∪ are the biggest one; their size can include up to 4000 paths
(k≤4) for pair 12 (C. Bale, C. Nolan) in FB.

Explanations of type Eπ
5 are smaller; the typical size is ∼8 nodes and ∼7

edges. Eπ
5 have variable size as it depends on the number of paths for each

of the top-5 most informative patterns. In general these are bigger than Eπ
5

explanations (∼15 nodes and ∼12 edges). Note that Eπ
5 explanations enable to

focus on specific aspects as they include all the instantiations of each of the
top-5 most informative path patterns. The sizes of Eδ are in the same order
of magnitude as Eπ

5 ; however Eδ explanations guarantee to also include rare
edges potentially discarded by path or pattern informativeness. The typical size
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of an explanation combining (top-5) path/pattern informativeness and diversity
(r=25%) is ∼20 nodes and ∼15 edges. The possibility, featured by RECAP, to
decide the amount of information to be included into an explanation is crucial
toward understanding relatedness.

Experiment 2: Interpreting Explanations: This experiment aims at: (i)
investigating whether RECAP provides useful explanations to the user ; (ii) com-
paring RECAP against two related systems online available9, that is, Explass [2]10

and RelFinder [9]11. We used DB for the comparison as Explass and RelFinder
only work on this KG.
Setting. Twenty participants were assigned each six random pairs among the 26
entity pairs. They were shown how the three systems work and asked to use each
system (with no other support) in order to understand the relatedness between
entities in a pair. Following the methodology in [2] participants were given a
set of six questions; the response to each question was given with an agreement
value from 1 (min) to 5 (max). Q6 was not considered in [2]; we included it
to understand how users perceive the performance of the systems in terms of
running time. Results are reported in Table 3.

Table 3. Questions/responses: means (standard deviation).

Question RECAP RelFinder Explass

Q1: Information overview 4.55(0.65) 3.05(0.77) 3.82(0.75)

Q2: Easiness in finding information 4.45(0.55) 4.05(0.63) 3.85(0.67)

Q3: Easiness in comparing/synthesizing info 4.62(0.62) 3.10(0.82) 4.06(0.61)

Q4: Comprehensive support 4.81(0.73) 3.42(0.77) 4.15(0.79)

Q5: Sufficient support to the task 4.67(0.81) 3.28(0.86) 4.23(0.83

Q6: Running time 4.82(0.48) 4.12(0.72) 3.18(0.52)

According to questions Q1-Q5, users perceived RECAP and Explass as better
supports to the explanation task. Users reported that RelFinder does not allow
the flexible creation of explanation (e.g., by grouping paths into patterns), which
makes it hard to control the amount of information shown. In general, RECAP
was judged to be a more comprehensive solution; it provides both a graph-
based and pattern-based exploration of results and several ways of controlling
the amount of information to be shown. While RECAP and RelFinder quickly
provide information immediately after retrieving paths, Explass requires a much
longer time. On Q6 Explass was judged to be the less compelling system. RECAP
was judged higher than the other two systems in all questions via LSD post-hoc
tests (p < 0.05). The inter-annotator agreement was of 0.85.
Combining multiple KGs. We tested RECAP on the combination of DB and FB
(see Fig. 9 (d)). Starting from DB, for the source/target entities we looked at

9 REX [4] is not available for public usage
10 http://ws.nju.edu.cn/explass/
11 http://www.visualdataweb.org/relfinder/relfinder.php

http://ws.nju.edu.cn/explass/
http://www.visualdataweb.org/relfinder/relfinder.php


Explaining and Suggesting Relatedness in Knowledge Graphs 637

owl:sameAs links to the corresponding FB entities. We then merged the set of
paths from each KG by using owl:sameAs links. Users (∼75%) perceived the
combination of multiple KGs as very useful toward more comprehensive expla-
nations. This is especially true when KGs cover the same domain with different
levels of detail (FB was judged more comprehensive than DB). The combination
also produces graphs of bigger size. Indeed, the functionality of RECAP allowing
to filter information to be included into an explanation was judged very useful
(participants thought E∪ were too big when k≥ 3).

4.2 Evaluating the Querying Component

We now discuss the evaluation of the querying component of RECAP.
Experimental setting. We used the dataset of 18 pairs defined by Jayaram et
al. [11] and considered DBpedia as KG. In order to rank query results, we com-
pute PageRank values for the latest version of DBpedia and stored them in a
local Lucene12 index.

Table 4. Accuracy of RECAP (m=10).

Pair P@m nDCG Pair P@m nDCG

P1 0.91 0.94 P10 0.87 0.91
P2 0.82 0.92 P11 0.75 0.78
P3 0.73 0.87 P12 0.72 0.78
P4 0.67 0.72 P13 0.81 0.89
P5 0.74 0.83 P14 0.82 0.85
P6 0.82 0.85 P15 0.84 0.86
P7 0.72 0.81 P16 0.78 0.84
P8 0.69 0.77 P17 0.62 0.72
P9 0.81 0.85 P18 0.79 0.82

Table 5. Accuracy of RECAP (m=15).

Pair P@m nDCG Pair P@m nDCG

P1 0.78 0.82 P10 0.81 0.83
P2 0.78 0.79 P11 0.72 0.74
P3 0.71 0.72 P12 0.65 0.71
P4 0.62 0.68 P13 0.71 0.74
P5 0.68 0.73 P14 0.68 0.71
P6 0.64 0.72 P15 0.70 0.71
P7 0.62 0.71 P16 0.68 0.72
P8 0.61 0.68 P17 0.62 0.67
P9 0.78 0.81 P18 0.67 0.74

Evaluation Metrics. The aim of this experiment is to measure how precise are the
results returned by RECAP as compared to a gold-standard. We measure the accu-
racy on a query by considering: (i) Precision-at-m (P@m): the percentage of the
top-m results in the ground truth; (ii) Normalized Discounted Cumulative Gain
(nDCG): the cumulative gain of the top-m results is DCGm=rel1+

∑m
1=2

reli
log2(i)

;
it penalizes the results if the ground truth result is ranked low. DCGm is normal-
ized by IDCGm, the cumulative gain for an ideal ranking of the top-m results.
Thus nDCGm= DCGm

IDCGm
.

We report results for m=10 (in Table 4) and m=15 (in Table 5) that consider
top-10 and top-15 entity pairs, respectively. We use Eπ

10 (top-10 most informative
paths) explanations, at step (1) of Algorithm 2, to generate entity query patterns.

As it can be observed, the usage of PageRank scores, as a mechanism to
weight the importance of query results, brings acceptable performance. In the
12 https://lucene.apache.org/

https://lucene.apache.org/


638 G. Pirrò

majority of the 18 pairs, the P@10 score is above 0.75. In some cases like P1 (i.e.,
Nike, Tiger Woods) RECAP was able to identify almost all the other entities (in
the gold standard), among which M. Jordan, and K. Bryant (also sponsored by
Nike). When the value of m increases performance decreases. However, usually
providing top-10 results13 is an acceptable compromise. Note that the nDCG is
in most of the cases above 0.7; in this measure, the DCG emphasizes pairs of
entities that appear early in the set of results. We leave as a future work the
investigation of more sophisticated ranking mechanisms.

In terms of running time, the overhead introduced (besides explanation gen-
eration) by Algorithm 2 consists in the access to the Lucene index to retrieve
PageRank scores and the computation of their average value. Typically, the over-
all running time for path finding, explanation generation and result ranking is
∼10 secs.

5 Concluding Remarks and Future Work

We have introduced a framework to generate different types of relatedness expla-
nations, possibly including information from multiple KGs. Our work is motived
by the SENSE4US FP7 project, where there is the need to find topic connectivity
information.

We have faced another important problem: querying KGs by using entities
as input. As of today, either KGs provide limited querying capabilities (e.g.,
by accepting one entity as input) or require familiarity with languages such as
SPARQL besides the underlying schema/data. We have shown how the usage
of the relatedness explanation between a pair of entities can help in learning
SPARQL queries to find other pairs of related entities. We plan to investigate
optimization mechanisms to reduce the running time for path finding. One app-
roach could be to leverage the ontology O to generate candidate queries according
to paths between entities at the schema level, rank these queries, and check the
most promising.
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Abstract. Large knowledge graphs increasingly add value to various
applications that require machines to recognize and understand queries
and their semantics, as in search or question answering systems. Latent
variable models have increasingly gained attention for the statistical
modeling of knowledge graphs, showing promising results in tasks related
to knowledge graph completion and cleaning. Besides storing facts about
the world, schema-based knowledge graphs are backed by rich semantic
descriptions of entities and relation-types that allow machines to under-
stand the notion of things and their semantic relationships. In this work,
we study how type-constraints can generally support the statistical mod-
eling with latent variable models. More precisely, we integrated prior
knowledge in form of type-constraints in various state of the art latent
variable approaches. Our experimental results show that prior knowledge
on relation-types significantly improves these models up to 77% in link-
prediction tasks. The achieved improvements are especially prominent
when a low model complexity is enforced, a crucial requirement when
these models are applied to very large datasets. Unfortunately, type-
constraints are neither always available nor always complete e.g., they
can become fuzzy when entities lack proper typing. We show that in
these cases, it can be beneficial to apply a local closed-world assumption
that approximates the semantics of relation-types based on observations
made in the data.

Keywords: Knowledge graph · Representation learning · Latent vari-
able models · Type-constraints · Local closed-world assumption · Link-
prediction

1 Introduction

Knowledge graphs (KGs), i.e., graph-based knowledge-bases, have proven to be
sources of valuable information that have become important for various applica-
tions like web-search or question answering. Whereas, KGs were initially driven
by academic efforts which resulted in KGs like Freebase [4], DBpedia [3], Nell [6]
or YAGO [9], more recently commercial applications have evolved; a significant
c© Springer International Publishing Switzerland 2015
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commercial application is the Freebase powered Google Knowledge Graph that
supports Google’s web search and the smart assistant Google Now, or Microsoft’s
Satori that supports Bing and Cortana. A related activity is the linked open
data initiative which interlinks data sources using the W3C Resource Descrip-
tion Framework (RDF) [13] and thus also generates a huge KG accessible via
querying [2].

Even though these graphs have reached an impressive size, containing billions
of facts about the world, they are not error-free and far from complete. In Free-
base and DBpedia for example a vast amount of persons (71% in Freebase [8] and
66% in DBpedia) are missing a place of birth. In DBpedia 58% of the scientists do
not have a fact that describes what they are known for. Supporting KG cleaning,
completion and construction via machine learning is one of the core challenges.
In this context, Representation Learning in form of latent variable methods has
successfully been applied to KG data [5,7,10,19,20]. These models learn latent
embeddings for entities and relation-types from the data that can then be used
as representations of their semantics. It is highly desirable that these embeddings
are meaningful in low dimensional latent spaces, because a higher dimensional-
ity leads to a higher model complexities which can cause unacceptable runtime
performances and high memory loads. Latent variable models have recently been
exploited for generating priors for facts in the context of automatic graph-based
knowledge-base construction [8]. It has also been shown that these models can be
interpreted as a compressed probabilistic knowledge representation, which allows
complex querying over all possible triples and their uncertainties, resulting in a
probabilistically ranked list of query answers [11].

In addition to the stored facts, schema-based KGs also provide rich descriptions
of the semantics of entities and relation-types such as class hierarchies of entities
and type-constraints for relation-types which define the semantic role of relations.
This curated prior knowledge on relation-types provides valuable information to
machines, e.g. that the marriedTo relation-type should relate only instances of
the class Person. In recent work [7,10], it has been shown that RESCAL, a much
studied latent variable approach, benefits greatly from prior knowledge about the
semantics of relation-types. In this work we will study the impact of prior knowl-
edge about the semantics of relation-types in the state of the art representative
latent variable models TransE [5], RESCAL [18] and the multiway neural network
approach used in the Google Knowledge Vault project [8]. These models are very
different in the way they model KGs, and therefore they are especially well suited
for drawing conclusions on the general value of prior knowledge about relation-
types for the statistical modeling of KGs with latent variable models.

Additionally, we address the issue that type-constraints can also suffer from
incompleteness, e.g. rdfs:domain or rdfs:range concepts are absent in the
schema or the entities miss proper typing even after materialization. Here, we
study the local closed-world assumption as proposed in prior work [10] that
approximates the semantics of relation-types based on observed triples. We
provide empirical proof that this prior assumption on relation-types generally
improves link-prediction quality in case proper type-constraints are absent.
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This paper is structured as follows: In the next section we motivate our model
selection and briefly review RESCAL, TransE and the multiway neural net-
work approach of [8]. The integration of type-constraints and local closed-world
assumptions into these models will be covered in Section 3. In Section 4, we will
motivate and describe our experimental setup before we discuss our results in
Section 5. We provide related work in Section 6 and conclude in Section 7.

2 Latent Variable Models for Knowledge Graph Modeling

In this work, we want to study the general value of prior knowledge about the
semantics of relation-types for the statistical modeling of KGs with latent vari-
able models. For this reason, we have to consider a representative set of latent
variable models that covers the currently most promising research activities in
this field. We selected RESCAL [18], TransE [5] and the multiway neural net-
work approach pursued in the Google?s Knowledge Vault project [8] (denoted
as mwNN) for a number of reasons:

– To the best of our knowledge, these latent variable models are the only ones
which have been applied to large KGs with more than 1 million entities,
thereby proving their scalability [5,7,8,10,19].

– All of these models have been published at well respected conferences and
are the basis for the most recent research activities in the field of statistical
modeling of KGs (see Section 6).

– These models are very diverse, meaning they are very different in the way
they model KGs, thereby covering a wide range of possible ways a KG can be
statistically modeled; the RESCAL tensor-factorization is a bilinear model,
where the distance-based TransE models triples as linear translations and
the mwNN exploits non-linear interactions of latent embeddings in its neural
network layers.

2.1 Notation

In this work, X will denote a three-way tensor, where Xk represents the
k-th frontal slice of the tensor X. Further X̂k will denote the frontal-slice Xk

where only subject entities (rows) and object entities (columns) are included
that agree with the domain and range constraints of relation-type k. X or A
denote matrices and xi is the i-th column vector of X. A single entry of X
will be denoted as xi,j,k. Additionally we use X[z,:] to illustrate the indexing
of multiple rows from the matrix X, where z is a vector of indices and “:” the
colon operator, generally used when indexing arrays. Further (s,p,o) will denote
a triple with subject entity s, object entity o and predicate relation-type p, where
the entities s and o represent nodes in the KG that are linked by the predicate
relation-type p. The entities belong to the set of all observed entities E in the
data.
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2.2 RESCAL

RESCAL [18] is a three-way tensor factorization method that has been shown
to lead to very good results in various canonical relational learning tasks like
link-prediction, entity resolution and collective classification [19]. In RESCAL,
triples are represented in an adjacency tensor X of shape n × n × m, where n
is the amount of observed entities in the data and m is the amount of relation-
types. Each of the m frontal slices Xk of X represents an adjacency matrix
for all entities in the dataset with respect to the k-th relation-type. Given an
adjacency tensor X, RESCAL computes a rank d factorization, where each entity
is represented via a d-dimensional vector that is stored in the factor matrix
A ∈ R

n×d and each relation-type is represented via a frontal slice Rk ∈ R
d×d of

the core tensor R which encodes the asymmetric interactions between subject
and object entities. The embeddings are learned by minimizing the regularized
least-squares function

LRESCAL =
m∑

k

‖Xk − ARkAT ‖2F + λA‖A‖2F + λR

m∑

k

‖Rk‖2F , (1)

where λA ≥ 0 and λR ≥ 0 are hyper-parameters and ‖·‖F is the Frobenius norm.
The cost function can be minimized via very efficient Alternating Least-Squares
(ALS) that effectively exploits data sparsity [18] and closed-form solutions. Dur-
ing factorization, RESCAL finds a unique latent representation for each entity
that is shared between all relation-types in the dataset.

RESCAL’s confidence θs,p,o for a triple (s, p, o) is computed through recon-
struction by the vector-matrix-vector product

θs,p,o = aTs Rpao (2)

from the latent representations of the subject and object entities as and ao,
respectively and the latent representation of the predicate relation-type Rp.

2.3 Translational Embeddings Model

TransE [5] is a distance-based model that models relationships of entities as
translations in the embedding space. The approach assumes for a true fact that
a relation-type specific translation function exists that is able to map (or trans-
late) the latent vector representation of the subject entity to the latent repre-
sentation the object entity. The fact confidence is expressed by the similarity of
the translation of the subject embedding to the object embedding.

In case of TransE, the translation function is defined by a simple addition
of the latent vector representations of the subject entity as and the predicate
relation-type rp. The similarity of the translation and the object embedding is
measured by the L1 or L2 distance. TransE’s confidence θs,p,o in a triple (s, p, o)
is derived by

θs,p,o = −δ(as + rp,ao), (3)
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where δ is the L1 or the L2 distance and ao the latent embedding for the object
entity. The embeddings are learned by minimizing the max-margin-based ranking
cost function

LTransE =
∑

(s,p,o)∈T

max{0, γ + θs′,p,o − θs,p,o} + max{0, γ + θs,p,o′ − θs,p,o}

with {s′, o′} ∈ E (4)

on a set of observed training triples T through Stochastic Gradient Descent
(SGD), where γ > 0. The “corrupted” entities s′ and o′ are drawn from the
set of all observed entities E where the ranking loss function enforces that the
confidence in the corrupted triples (θs′,p,o or θs,p,o′) is lower than in the true triple
by a certain margin. During training, it is enforced that the latent embeddings
of entities have an L2 norm of one after each SGD iteration.

2.4 Knowledge Vault Neural Network

In the Google Knowledge Vault project [8] a multiway neural network (mwNN)
for predicting prior probabilities for triples from existing KG data was proposed
to support triple extraction from unstructured web documents. The confidence
value θs,p,o for a target triple (s, p, o) is predicted by

θs,p,o = σ(βTφ (W [as, rp,ao])), (5)

where φ() is a nonlinear function like e.g. tanh, as and ao describe the latent
embeddings for the subject and object entities and rp is the latent embedding
vector for the predicate relation-type p. [as, rp,ao] ∈ R

3d×1 is a column vector
that stacks the three embeddings on top of each other. W and β are neural
network weights and σ() denotes the logistic function. The model is trained by
minimizing the Bernoulli cost-function

LmwNN = −
∑

(s,p,o)∈T

log θs,p,o −
c∑

o′∈E
log(1 − θs,p,o′) (6)

through SGD, where c denotes the number of object-corrupted triples sampled
under a local closed-world assumption as defined by [8]. Note that corrupted are
treated as negative evidence in this model.

3 Prior Knowledge on Relation-Type Semantics

Generally, entities in KGs like DBpedia, Freebase or YAGO are assigned to one
or multiple predefined classes (or types) that are organized in an often hierarchi-
cal ontology. These assignments represent for example the knowledge that the
entity Albert Einstein is a person and therefore allow a semantic description
of the entities contained in the KG. This organization of entities in semantically
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meaningful classes permits a semantic definition of relation-types. The RDF-
Schema, which provides schema information for RDF, offers among others the
concepts rdfs:domain and rdfs:range for this purpose. These concepts are
used to represent type-constraints on relation-types by defining the classes or
types of entities which they should relate, where the domain covers the subject
entity classes and the range the object entity classes in a RDF-Triple. This can
be interpreted as an explicit definition of the semantics of a relation, for example
by defining that the relation-type marriedTo should only relate instances of the
class Person with each other. Recently [7] and [10] showed independently that
including knowledge about these domain and range constraints into RESCAL’s
ALS optimization scheme resulted in better latent representations of entities and
relation-types that lead to a significantly improved link-prediction quality at a
much lower model complexity (lower rank) when applied to KGs like DBpedia
or Nell. The need of a less complex model significantly decreases model training-
time especially for larger datasets.

In the following, we denote domaink as the ordered indices of all entities
that agree with the domain constraints of relation-type k. Accordingly, rangek
denotes these indices for the range constraints of relation-type k.

3.1 Type-Constrained Alternating Least-Squares

In RESCAL, the integration of typed relations in the ALS optimization proce-
dure is achieved by indexing only those latent embeddings of entities for each
relation-type that agree with the rdfs:domain and rdfs:range constraints. In
addition, only the subgraph (encoded by the sparse adjacency matrix X̂k) that
is defined with respect to the constraints is considered in the equation

LT C
RESCAL =

∑

k

‖X̂k − A[domaink,:]RkAT
[rangek,:]

‖2F

+λA‖A‖2F + λR

∑

k

‖Rk‖2F , (7)

where A contains the latent embeddings for the entities and Rk the embedding
for the relation-type k. For each relation-type k the latent embeddings matrix A
is indexed by the corresponding domain and range constraints, thereby excluding
all entities that disagree with the type-constraints. Note that if the adjacency
matrix X̂k of the subgraph defined by relation-type k and its type-constraints
has the shape nk × mk, then A[domaink,:] is of shape nk × d, and A[rangek,:] of
shape mk × d where d is the dimension of the latent embeddings (or rank of the
factorization).

3.2 Type-Constrained Stochastic Gradient Descent

In contrast to RESCAL, TransE and mwNN are both optimized through mini-
batch Stochastic Gradient Descent (SGD), where a small batch of randomly
sampled triples is used in each iteration of the optimization to drive the model
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parameters to a local minimum. Generally, KG data does not explicitly contain
negative evidence, i.e. false triples 1, and is generated in this algorithms through
corruption of observed triples (see Section 2.3 and 2.4). In the original algorithms
of TransE and mwNN the corruption of triples is not restricted and can therefore
lead to the generation of triples that violate the semantics of relation-types. For
integrating knowledge about type-constraints into the SGD optimization scheme
of these models, we have to make sure that none of the corrupted triples violates
the type-constraints of the corresponding relation-types. For TransE we update
Equation 4 and get

LT C
TransE =

∑

(s,p,o)∈T

∑

(s′,p,o′)∈T ′
[γ + θs′,p,o − θs,p,o]+ + [γ + θs,p,o′ − θs,p,o]+

with s′ ∈ E[domainp] ⊆ E , o′ ∈ E[rangep]
⊆ E , (8)

where, in difference to Equation 4, we enforce by s′ ∈ E[domainp] ⊆ E that the
subject entities are only corrupted through the subset of entities that belong
to the domain and by o′ ∈ E[rangep]

⊆ E that the corrupted object entities are
sampled from the subset of entities that belong to the range of predicate relation-
type p. For mwNN we corrupt only the object entities through sampling from
the subset of entities o′ ∈ E[rangep]

⊆ E that belong to the range of the predicate
relation-type p and get accordingly

LT C
mwNN = −

∑

(s,p,o)∈T

log θs,p,o −
c∑

o′∈E[rangep]⊆E
log(1 − θs,p,o′). (9)

3.3 Local Closed-World Assumptions

Type-constraints as given by KGs tremendously reduce the possible worlds of the
statistically modeled KGs, but like the rest of the data represented by the KG,
they can also suffer from incompleteness and inconsistency of the data. Even after
materialization, entities and relation-types might miss complete typing leading
to fuzzy type-constraints. Increased fuzziness of proper typing can in turn lead to
disagreements of true facts and present type-constraints in the KG. For relation-
types where these kind of inconsistencies are quite frequent we cannot simply
apply the given type-constraints without the risk of loosing true triples. On the
other hand, if the domain and range constraints themselves are missing (e.g. in
schema-less KGs) we might consider many triples that do not have any semantic
meaning.

We argue that in these cases a local closed-world assumption (LCWA) can
be applied which approximates the domain and range constraints of the targeted
relation-type not on class level, but on instance level based solely on observed
triples. Given all observed triples, under this LCWA the domain of a relation-
type k consists of all entities that are related by the relation-type k as subject.
1 There are of course undetected false triples included in graph which are assumed to

be true.
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The range is accordingly defined, but contains all the entities related as object
by relation-type k. Of course, this approach can exclude entities from the domain
or range constraints that agree with the type-constraints given by the RDFS-
Schema concepts rdfs:domain and rdfs:range, thereby ignoring them during
model training when exploiting the LCWA (only for the target relation-type). On
the other hand, nothing is known about these entities (in object or subject role)
with respect to the target relation-type and therefore treating them as missing
can be a valid assumption. In case of the ALS optimized RESCAL we reduce
the size and sparsity of the data by this approach, which has a positive effect
on model training compared to the alternative, a closed-world assumption that
considers all entities to be part of the domain and range of the target relation-
type [10]. For the SGD optimized TransE and mwNN models also a positive
effect on the learned factors is expected since the corruption of triples will be
based on entities from which we can expect that they do not disagree to the
semantics of the corresponding relation-type.

4 Experimental Setup

2As stated before, we explore in our experiments the importance of prior knowl-
edge about the semantics of relation-types for latent variable models. We con-
sider two settings. In the first setting, we assume that curated type-constraints
extracted from the KG’s schema are available. In the second setting, we explore
the local closed-world assumption (see Section 3.3). Our experimental setup
covers three important aspects which will enable us to make generalizing con-
clusions about the importance of such prior knowledge when applying latent
variable models to KGs:

– We test various representative latent variable models that cover the diversity
of these models in the domain. As motivated in the introduction of Section 2,
we belief that RESCAL, TransE and mwNN are especially well suited for
this task.

– We test these models at reasonable low complexity levels, meaning that we
enforce low dimensional latent embeddings, which simulates their application
to very large datasets where high dimensional embeddings are intractable.
In [8] for example, a latent embedding length d = 60 (see Section 2.4) was
used.

– We extracted diverse datasets from instances of the Linked-Open Data
Cloud, namely Freebase, YAGO and DBpedia, because it is expected that
the value of prior knowledge about relation-type semantics is also dependent
on the particular dataset the models are applied to. From these KGs we
constructed datasets that will be used as representatives for general purpose
KGs that cover a wide range of relation-types from a diverse set of domains,
domain focused KGs with a small amount of entity classes and relation-types
and high quality KGs.

2 Code and datasets will be available from http://www.dbs.ifi.lmu.de/∼krompass/

http://www.dbs.ifi.lmu.de/~krompass/
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Table 1. Datasets used in the experiments.

Dataset Source Entities Relation-Types Triples

DBpedia-Music DBpedia 2014 321,950 15 981,383
Freebase-150k Freebase RDF-Dump 151,146 285 1,047,844
YAGOc-195k YAGO2-Core 195,639 32 1,343,684

In the remainder of this section we will give details on the extracted datasets and
the evaluation, implementation and training of RESCAL, TransE and mwNN.

4.1 Datasets

Below, we describe how we extracted the different datasets from Freebase, DBpe-
dia and YAGO. In Table 1 some details about the size of these datasets are given.
In our experiments, the Freebase-150k dataset will simulate a general purpose
KG, the DBpedia-Music dataset a domain specific KG and the YAGOc-195k
dataset a high quality KG.

Freebase-150k. The Freebase KG includes triples extracted from Wikipedia
Infoboxes, MusicBrainz [21], WordNet [15] and many more. From the current
materialized Freebase RDF-dump3, we extracted entity-types, type-constraints
and all triples that involved entities (Topics) with more than 100 relations to
other topics. Subsequently, we discarded the triples of relation-types with incom-
plete type-constraints or which occurred in less than 100 triples. Additionally,
we discarded all triples that involved entities that are not an instance of any
class covered by the remaining type-constraints. The entities involved in type-
constraint violating triples were added to the subset of entities that agree with
the type-constraints since we assumed that they only miss proper typing.

DBpedia-Music. For the DBpedia-Music datasets, we extracted triples
and types from 15 pre-selected object-properties regarding the music domain
of DBpedia 4; musicalBand, musicalArtist, musicBy, musicSubgenre,
derivative, stylisticOrigin, associatedBand, associatedMusicalArtist,
recordedIn, musicFusionGenre, musicComposer, artist, bandMember, for-
merBandMember, genre, where genre has been extracted to include only those
entities that were covered by the other object-properties to restrict it to musical
genres. We extracted the type-constraints from the DBpedia OWL-Ontology and
for entities that occurred less than two times we discarded all triples. In case
types for entities or type-constraints were absent we assigned them to owl#Thing.
Remaining disagreements between triples and type-constraints were resolved as
in case of the Freebase-150k dataset.

3 https://developers.google.com/freebase/data
4 http://wiki.dbpedia.org/Downloads2014, canonicalized datasets: mapping-based-

properties(cleaned), mapping-based-types and heuristics.

https://developers.google.com/freebase/data
http://wiki.dbpedia.org/Downloads2014
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YAGOc-195k. YAGO (Yet Another Great Ontology) is an automatically gen-
erated high quality KG that combines the information richness of Wikipedia
Infoboxes and its category system with the clean taxonomy of WordNet. We
extracted entitiy types, type-constraints5 and all triples that involved entities
with more than 5 and relation-types that were involved in more than 100 rela-
tions from the YAGO-core dataset6. We only included entities that share the
types used in the rdfs:domain and rdfs:range triples.

4.2 Evaluation Procedure

We evaluate RESCAL, TransE and mwNN on link prediction tasks, where we
delete triples from the datasets and try to re-predict them without considering
them during model training. For model training and evaluation we split the
triples of the datasets into three sets, where 20% of the triples were taken as
holdout set, 10% as validation set for hyper-parameter tuning and the remaining
70% served as training set7. In case of the validation and holdout set, we sampled
10 times as many negative triples for evaluation, where the negative triples were
drawn such that they did not violate the given domain and range constraints of
the KG. Also, the negative evidence of the holdout and validation set are not
overlapping. In KG data, we are generally dealing with a strongly skewed ratio
of observed and unobserved triples, through this sampling we try to mimic this
effect to some extend since it is intractable to sample all unobserved triples.
In case of the LCWA, the domain and range constraints are always derived
from the training set. After deriving the best hyper-parameter settings for all
models, we trained all models with these settings using both, the training and
the validation set to predict the holdout set (20% of triples). We report the Area
Under Precision Recall Curve (AUPRC) for all models. In addition, we provide
the Area Under Receiver Operating Characteristic Curve (AUROC), because it
is widely used in this problem even though it is not well suited for evaluation
in these tasks due to the imbalance of (assumed) false and true triples.8 The
discussions and conclusions will be primarily based on the AUPRC results.

4.3 Implementation and Model Training Details

All models were implemented in Python using in part Theano [1]. For TransE
we exploited the code provided by the authors 9 as a basis to implement a type-
constraints supporting version of TransE, but we replaced large parts of the
original code to allow a significantly faster training.10 We made sure that our
5 yagoSchema and yagoTransitiveType.
6 http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/

research/yago-naga/yago/downloads/
7 Additional 5% of the training set were used for early stopping.
8 AUROC considers the false-positive rate which relies on the amount of true-negatives

that is generally high in these kind of datasets resulting in misleadingly high scores.
9 https://github.com/glorotxa/SME

10 Mainly caused by the ranking function used for calculating the validation error but
also the consideration of trivial zero gradients during the SGD-updates.

http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/
https://github.com/glorotxa/SME
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implementation achieved very similar results to the original model on a smaller
dataset11 (results not shown).

The mwNN was also implemented in Theano. Since there are not many details
on model training in the corresponding work [8], we added elastic-net regular-
ization combined with DropConnect [22] on the network weights and optimized
the cost function using mini-batch adaptive gradient descent. We randomly ini-
tialized the weights by drawing from a zero mean normal distribution where we
treat the standard deviation as an additional hyper-parameter. The corrupted
triples were sampled with respect to the local closed-world assumption discussed
in [8]. We fixed the amount of corrupted triples per training example to five.12

For RESCAL, we used the ALS implementation provided by the author13

and our own implementation used in [10], but modified them such that they
support a more scalable early stopping criteria based on a small validation set.

For hyper-parameter tuning, all models were trained for a maximum of 50
epochs and for the final evaluation on the holdout set for a maximum of 200
epochs. For all models, we sampled 5% of the training data and used the change
in AUPRC on this subsample as early stopping criteria.

5 Experimental Results

In tables 2, 3 and 4 our experimental results for RESCAL, TransE and mwNN
are shown. All of these tables have the same structure and compare different
versions of exactly one of these methods on all three datasets. Table 2 for exam-
ple shows the results for RESCAL and Table 4 the results of mwNN. The first
column in these tables indicates the datasets the model was applied to (Freebase-
150k, Dbpedia-Music or YAGOc-195) and the second column which kind of prior
knowledge about the semantics of relation-types was exploited by the model.
None denotes in this case the original model that does not consider any prior
knowledge on relation-types, whereas Type-Constraints denotes that the model
has exploited the curated domain and range constraints extracted from the
KG’s schema and LCWA that the model has exploited the Local Closed-World
Assumption (Section 3.3) during model training. The last two columns show
the AUPRC and AUROC scores for the various model versions on the different
datasets. Each of these two columns contains three sub-columns that show the
AUPRC and AUROC scores at different enforced latent embedding lengths: 10,
50 or 100.

5.1 Type-Constraints are Essential

The experimental results shown in Table 2, 3 and 4 give strong evidence that
type-constraints as provided by the KG’s schema are generally of great value for
11 http://alchemy.cs.washington.edu/data/cora/
12 We tried different amounts of corrupted triples and five seemed to give the most

stable results across all datasets.
13 https://github.com/mnick/scikit-tensor

http://alchemy.cs.washington.edu/data/cora/
https://github.com/mnick/scikit-tensor
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Table 2. Comparison of AUPRC and AUROC result for RESCAL with and without
exploiting prior knowledge about relations types (type-constraints or local closed-world
assumption (LCWA)) on the Freebase, DBpedia and YAGO2 datasets. d is represen-
tative for the model complexity, denoting the enforced length of the latent embeddings
(rank of the factorization).

Prior Knowledge
on Semantics

AUPRC AUROC
RESCAL

d=10 d=50 d=100 d=10 d=50 d=100

Freebase-150k
None 0.327 0.453 0.514 0.616 0.700 0.753
Type-Constraints 0.521 0.630 0.654 0.804 0.863 0.877
LCWA 0.579 0.675 0.699 0.849 0.886 0.896

DBpedia-Music
None 0.307 0.362 0.416 0.583 0.617 0.653
Type-Constraints 0.413 0.490 0.545 0.656 0.732 0.755
LCWA 0.453 0.505 0.571 0.701 0.776 0.800

YAGOc-195k
None 0.507 0.694 0.721 0.621 0.787 0.800
Type-Constraints 0.626 0.721 0.739 0.785 0.820 0.833
LCWA 0.567 0.672 0.680 0.814 0.839 0.849

the statistical modeling of KGs with latent variable models. For all datasets, this
prior information lead to significant improvements in link-prediction quality for
all models and settings in both, AUPRC and AUROC. For example, RESCAL’s,
AUPRC score on the Freebase-150k dataset gets improved from 0.327 to 0.521
at the lowest model complexity (d = 10) (Table 2). With higher model complex-
ities the relative improvements decrease but stay significant (27% at d = 100
from 0.514 to 0.654). The benefit for RESCAL in considering type-constraints
was expected due to prior works [7,10], but also the other models improve sig-
nificantly when considering type-constraints.

For TransE, large improvements on the Freebase-150k and DBpedia-Music
datasets can be observed (Table 3), where the AUPRC score increases e.g. for
d = 10 from 0.548 to 0.699 in Freebase-150k and for d = 100 from 0.745 to
0.826 in DBpedia-Music. Also on the YAGOc-195k dataset the link-prediction
quality improves from 0.793 to 0.843 with d = 10. Especially the multiway
neural network approach (mwNN) seems to improve the most by considering
type-constraints during the model training (Table 4). In case of the Freebase-
150k dataset, it improves up to 77% in AUPRC for d = 10 from 0.437 to 0.775
and on the DBpedia-Music dataset from 0.436 to 0.509 with d = 10 and from
0.538 to 0.754 with d = 100 in AUPRC. In case of the YAGOc-195k dataset
the link-prediction quality of mwNN also benefits to a large extent from the
type-constraints.

Besides observing that the latent variable models are superior when exploit-
ing type-constraints at a fixed latent embedding length d, it is also worth noticing
that the biggest improvements are most often achieved at a very low model com-
plexity (d = 10), which is especially interesting for the application of these mod-
els to large datasets. At this low complexity level the type-constraints supported
models even outperform more complex counterparts that ignore type-constraints,
e.g. on Freebase-150k mwNN reaches 0.512 AUPRC with an embedding length
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Table 3. Comparison of AUPRC and AUROC result for TransE with and without
exploiting prior knowledge about relations types (type-constraints or local closed-world
assumption (LCWA)) on the Freebase, DBpedia and YAGO2 datasets. d is representa-
tive for the model complexity, denoting the enforced length of the latent embeddings.

Prior Knowledge
on Semantics

AUPRC AUROC
TransE

d=10 d=50 d=100 d=10 d=50 d=100

Freebase-150k
None 0.548 0.715 0.743 0.886 0.890 0.892
Type-Constraints 0.699 0.797 0.808 0.897 0.918 0.907
LCWA 0.671 0.806 0.831 0.894 0.932 0.931

DBpedia-Music
None 0.701 0.748 0.745 0.902 0.911 0.903
Type-Constraints 0.734 0.783 0.826 0.927 0.937 0.942
LCWA 0.719 0.839 0.848 0.910 0.943 0.953

YAGOc-195
None 0.793 0.849 0.816 0.904 0.960 0.910
Type-Constraints 0.843 0.896 0.896 0.962 0.972 0.974
LCWA 0.790 0.861 0.872 0.942 0.962 0.962

Table 4. Comparison of AUPRC and AUROC result for mwNN [8] with and without
exploiting prior knowledge about relations types (type-constraints or local closed-world
assumption (LCWA)) on the Freebase, DBpedia and YAGO2 datasets. d is representa-
tive for the model complexity, denoting the enforced length of the latent embeddings.

Prior Knowledge
on Semantics

AUPRC AUROC
mwNN

d=10 d=50 d=100 d=10 d=50 d=100

Freebase-150k
None 0.437 0.471 0.512 0.852 0.868 0.879
Type-Constraints 0.775 0.815 0.837 0.956 0.962 0.967
LCWA 0.610 0.765 0.776 0.918 0.954 0.956

DBpedia-Music
None 0.436 0.509 0.538 0.836 0.864 0.865
Type-Constraints 0.509 0.745 0.754 0.858 0.908 0.913
LCWA 0.673 0.707 0.723 0.876 0.900 0.884

YAGOc-195
None 0.600 0.684 0.655 0.949 0.949 0.957
Type-Constraints 0.836 0.840 0.837 0.953 0.954 0.960
LCWA 0.714 0.836 0.833 0.926 0.935 0.943

of 100 but by considering type-constraints this models achieves 0.775 AUPRC
with an embedding length of only 10.

In accordance to the AUPRC scores, the improvements of the less meaningful
and generally high AUROC scores support the conclusion that type-constraints
add value to the prediction quality of the models. It can be inferred from the
corresponding scores that the improvements have a smaller scale, but are still
significant.

5.2 Local Closed-World Assumption – Simple But Powerful

From Tables 2, 3 and 4, it can be observed that the LCWA leads to similar large
improvements in link-prediction quality than the real type-constraints, especially
at the lowest model complexities (d = 10). For example, by exploiting the LCWA
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TransE improves from 0.715 to 0.806 with d = 50 in the Freebase-150k dataset,
mwNN improves its initial AUPRC score of 0.600 (d = 10) on the YAGO dataset
to 0.714 and RESCAL’s AUPRC score jumps from 0.327 to 0.579 (d = 10). The
only exception to this observation is RESCAL when applied to the YAGOc-195k
dataset. For d = 50, the RESCAL AUPRC score decreases from 0.694 to 0.672
and for d = 100 from 0.721 to 0.680 AUPRC when considering the LCWA in the
model. The type-constraints of the YAGOc-195k relation-types are defined over
a large set of entities, covering 22% of all possible triples It seems that a closed-
world assumption is more beneficial for RESCAL in this case. As in case of the
type-cnstraints, the AUROC scores also support the trend observed through the
AUPRC scores.

Even though the LCWA has a similar beneficial impact on the link-prediction
quality than the type-constraints, there is no evidence in our experiments that
the LCWA can generally replace the extracted type-constraints provided by
the KG’s schema. For the YAGOc-195k dataset, the type-constraint supported
models are clearly superior to those that exploit the LCWA, but in case of the
Freebase-150k and DBpedia-Music datasets the message is not as clear. RESCAL
achieves on these two datasets its best results when exploiting LCWA where
mwNN achieves its best results when exploiting the type-constraints. For TransE
it seems to depend on the chosen embedding length, where longer embedding
lengths favor the LCWA.

6 Related Work

A number of other latent variable models have been proposed for the statisti-
cal modeling of KGs. [20] recently proposed a neural tensor network, which we
did not consider in our study, since it was observed that it does not scale to
larger datasets [7,8]. Instead we exploit a less complex and more scalable neu-
ral network model proposed in [8], which could achieve comparable results to
the neural tensor network of [20]. TransE [5] has been target of other recent
research activities. [24] proposed a framework for relationship modeling that
combines aspects of TransE and the neural tensor network proposed in [20]. [23]
proposed TransH which improves TransE’s capability to model reflexive one-to-
many, many-to-one and many-to-many relation-types by introducing a relation-
type specific hyperplane where the translation is performed. This work has been
further extended in [14] by introducing TransR which separates representations
of entities and relation-types in different spaces, where the translation is per-
formed in the relation-space. An extensive review on representation learning
with KGs can be found in [17].

Domain and range constraints as given by the KG’s schema or via a local
closed-world assumption have been exploited very recently in RESCAL [7,10],
but to the best of our knowledge have not yet been integrated into other latent
variable methods nor has their general value been recognized for these models.

Further, latent variable methods have been combined with graph-feature
models which lead to an increase of prediction quality [8] and a decrease of
model complexity [16].
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7 Conclusions and Future Work

In this work we have studied the general value of prior knowledge about the
semantics of relation-types, extracted from the schema of the knowledge graph
(type-constraints) or approximated through a local closed-world assumption, for
the statistical modeling of KGs with latent variable models. Our experiments give
clear empirical proof that the curated semantic information of type-constraints
significantly improves link-prediction quality of TransE, RESCAL and mwNN
(up to 77%) and can therefore be considered as essential for latent variable
models when applied to KGs. Thereby the value of type-constraints becomes
especially prominent when the model complexity, i.e. the dimensionality of the
embeddings has to be very low, an essential requirement when applying these
models to very large datasets.

Since type-constraints can be absent or fuzzy (due to e.g. insufficient typing
of entities), we further showed that an alternative, a local closed-world assump-
tion (LCWA), can be applied in these cases that approximates domain range
constraints for relation-types on instance level rather on class level solely based
on observed triples. This LCWA also leads to large improvements in the link-
prediction tasks, but especially at a very low model complexity the integration
of type-constraints seemed superior. In our experiments we used models that
either exploited type-constraints or the LCWA, but in a real setting we would
combine both, where we would use the type-constraints whenever possible, but
the LCWA on the relation-types where type-constraints are absent or fuzzy.

In future work we will further investigate on additional extensions for latent
variable models that can be combined with the type-constraints or LCWA. In the
related-work we gave some examples were the integration of graph-feature models
(e.g. the path ranking algorithm [12]) was shown to improve these models. In
addition we will look at the many aspects in which RESCAL, TransE and mwNN
differ. Identifying the aspects of these models that have the most beneficial
impact on link-prediction quality can give rise to a new generation of latent
variable approaches that could further drive knowledge graph modeling.
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Abstract. Making available and archiving scientific results is for the
most part still considered the task of classical publishing companies,
despite the fact that classical forms of publishing centered around printed
narrative articles no longer seem well-suited in the digital age. In partic-
ular, there exist currently no efficient, reliable, and agreed-upon methods
for publishing scientific datasets, which have become increasingly impor-
tant for science. Here we propose to design scientific data publishing
as a Web-based bottom-up process, without top-down control of central
authorities such as publishing companies. Based on a novel combina-
tion of existing concepts and technologies, we present a server network
to decentrally store and archive data in the form of nanopublications,
an RDF-based format to represent scientific data. We show how this
approach allows researchers to publish, retrieve, verify, and recombine
datasets of nanopublications in a reliable and trustworthy manner, and
we argue that this architecture could be used for the Semantic Web in
general. Evaluation of the current small network shows that this system
is efficient and reliable.

1 Introduction

Modern science increasingly depends on datasets, which however are left out in
the classical way of publishing, i.e. through narrative (printed or online) articles
in journals or conference proceedings. This means that the publications that
describe scientific findings get disconnected from the data they are based on,
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M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 656–672, 2015.
DOI: 10.1007/978-3-319-25007-6 38



Publishing Without Publishers: A Decentralized Approach 657

which can seriously impair the verifiability and reproducibility of their results.
Addressing this issue raises a number of practical problems: How should one
publish scientific datasets and how can one refer to them in the respective sci-
entific publications? How can we be sure that the data will remain available in
the future and how can we be sure that data we find on the Web have not been
corrupted or tampered with? Moreover, how can we refer to specific entries or
subsets from large datasets?

To address some of these problems, a number of scientific data repositories
have appeared, such as Figshare and Dryad.1 Furthermore, Digital Object Iden-
tifiers (DOI) have been advocated to be used not only for articles but also for
scientific data [22]. While these services certainly improve the situation of sci-
entific data, in particular when combined with Semantic Web techniques, they
have nevertheless a number of drawbacks: They have centralized architectures,
they give us no possibility to check whether the data have been (deliberately or
accidentally) modified, and they do not support access or referencing on a more
granular level than entire datasets (such as individual data entries).

Even if we put aside worst-case scenarios of organizations going bankrupt or
becoming uninterested in sustaining their services, their websites have typically
not a perfect uptime and might be down for a few minutes or even hours every
once in a while. This is certainly acceptable for most use cases involving a human
user accessing the data, but it can quickly become a problem in the case of
automated access embedded in a larger service. Furthermore, it is possible that
somebody gains access to their database and silently modifies part of the data,
or that the data get corrupted during the transfer from the server to the client.

Below we present an approach to tackle these problems, building upon exist-
ing Semantic Web technologies, in particular RDF and nanopublications, and
adhering to accepted Web principles, such as decentralization and REST APIs.
Specifically, our research question is: Can we create a decentralized, reliable,
trustworthy, and scalable system for publishing, retrieving, and archiving data-
sets in the form of sets of nanopublications based on existing Web standards and
infrastructure?

2 Background

Nanopublications [11] are a relatively recent proposal for improving the effi-
ciency of finding, connecting, and curating scientific findings in a manner that
takes attribution, quality levels, and provenance into account. While narrative
articles would still have their place in the academic landscape, small formal data
snippets in the form of nanopublications should take their central position in
scholarly communication [21]. Most importantly, nanopublications can be auto-
matically interpreted and aggregated and they allow for fine-grained citation
metrics on the level of individual claims. On the technical level, nanopublica-
tions use the RDF language with named graphs [4] to represent assertions, as
well as their provenance and metadata. Conceptually, the approach boils down
1 http://figshare.com, http://datadryad.org

http://figshare.com
http://datadryad.org
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to the ideas of subdividing scientific results into atomic assertions, representing
these assertions in RDF, attaching provenance information in RDF on the level
of individual assertions, and treating each of these tiny entities as an individ-
ual publication. Nanopublications have been applied to a number of domains,
so far mostly from the life sciences including pharmacology [28], genomics [23],
and proteomics [6]. An increasing number of datasets formatted as nanopublica-
tions are openly available, including neXtProt [5] and DisGeNET [25], and the
nanopublication concept has been combined with and integrated into existing
frameworks for data discovery and integration, such as CKAN [19].

Research Objects are a related proposal to establish “self-contained units of
knowledge” [1], and they constitute in a sense the antipode approach to nanopub-
lications. We could call them “megapublications,” as they contain much more
than a typical narrative publication, namely resources like input and output
data, workflow definitions, log files, and presentation slides. We demonstrate in
this paper, however, that bundling all resources of scientific studies in large pack-
ages is not a necessity to ensure reproducibility and trust, but we can achieve
these properties also with strong identifiers and a decentralized server network.

SPARQL endpoints, i.e. query APIs to RDF triple stores, are a widely used
technique for making linked data available on the Web in a flexible manner.
While off-the-shelf triple stores can nowadays handle billions of triples or more,
they require a significant amount of resources in the form of memory and proces-
sor time to do so, at least if the full expressive power of the SPARQL language
is supported. A recent study found that more than half of the publicly accessible
SPARQL endpoints are available less than 95% of the time [3], posing a major
problem to services depending on them, in particular to those that depend on sev-
eral endpoints at the same time. To solve these problems, alternative approaches
and platforms — such as Linked Data Fragments [27], the Linked Data Plat-
form [26], and CumulusRDF [17] — have been proposed, providing less powerful
query interfaces and thereby shifting the workload from the server to the client.

Fully reliable services, however, can only be achieved with distributed archi-
tectures, which have been proposed by a number of existing approaches related
to data publishing. For example, distributed file systems that are based on cryp-
tographic methods have been designed for data that are public [10] or private
[7]. In contrast to the design principles of the Semantic Web, these approaches
implement their own internet protocols and follow the hierarchical organization
of file systems. Other approaches build upon the existing BitTorrent protocol
and apply it to data publishing [8,18], and there is interesting work on repur-
posing the proof-of-work tasks of Bitcoin for data preservation [20]. There exist
furthermore a number of approaches to applying peer-to-peer networks for RDF
data [9], but they do not allow for the kind of permanent and provenance-aware
publishing that we propose below. Moreover, only for the centralized and closed-
world setting of database systems, approaches exist that allow for robust and
granular references to subsets of dynamic datasets [24].

Our approach is based on previous work, in which we proposed trusty URIs to
make nanopublications and their entire reference trees verifiable and immutable
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by the use of cryptographic hash values [15,16]. This is an example of such a
trusty URI:

http://example.org/r1.RA5AbXdpz5DcaYXCh9l3eI9ruBosiL5XDU3rxBbBaUO70

The last 45 characters of this URI (i.e. everything after “.”) is what we call the
artifact code. It contains a hash value that is calculated on the RDF content it
represents, such as the RDF graphs of a nanopublication. Because this hash is
part of the URI, any link to such an artifact comes with the possibility to verify
its content, including other trusty URI links it might contain. In this way, the
range of verifiability extends to the entire reference tree.

Furthermore, we argued in previous work that the assertion of a nanopublica-
tion need not be fully formalized, but we can allow for informal or underspecified
assertions [14]. We also sketched how “science bots” could autonomously pro-
duce and publish nanopublications, and how algorithms could thereby be tightly
linked to their generated data [13], which requires the existence of a reliable and
trustworthy publishing system, such as the one we present here.

3 Approach

Our approach builds upon the existing concept of nanopublications and our pre-
viously introduced method of trusty URIs. It is a proposal of a reliable implemen-
tation of accepted Semantic Web principles, in particular of what has become
known as the follow-your-nose principle: Looking up a URI should return rel-
evant data and links to other URIs, which allows one (i.e. humans as well as
machines) to discover things by navigating through this data space [2]. We argue
that approaches following this principle can only be reliable and efficient if we
have some sort of guarantee that the resolution and processing of any single iden-
tifier will succeed in one way or another and only takes up a small amount of time
and resources. This requires (1) that RDF representations are made available on
several distributed servers, so the chance that they all happen to be inaccessible
at the same time is negligible, and that (2) these representations are reasonably
small, so that downloading them is a matter of fractions of a second, and so
that one has to process only a reasonable amount of data to decide which links
to follow. We address the first requirement by proposing a distributed server
network and the second one by building upon the concept of nanopublications.
Below we explain the general architecture, the functioning and the interaction
of the nanopublication servers, and the concept of nanopublication indexes.

3.1 Architecture

There are currently at least three possible architectures for Semantic Web appli-
cations (and mixtures thereof), as shown in a simplified manner in Figure 1. The
first option is the use of plain HTTP GET requests. Applying the follow-your-
nose principle, resolvable URIs provide the data based on which the application
performs the tasks of finding relevant resources, running queries, analyzing and
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current solution with plain HTTP requests
and follow-your-nose principle:

applications (find/query/analyze/use data)

resolvable URIs (provide data)

current solution with SPARQL endpoints:
applications (analyze/use data)

SPARQL endpoints (provide/find/query/analyze data)

current solution with Linked Data Fragments:
applications (query/analyze/use data)

LDF servers (provide/find/query data)

proposed architecture:

applications (analyze/use data)

advanced services (query/analyze data)

core services (find data)

nanopublication server network (provide data)

Fig. 1. Illustration of current architectures of Semantic Web applications and our pro-
posed approach

aggregating the results, and using them for the purpose of the application. If
SPARQL endpoints are used, as a second option, most of the workload is shifted
from the application to the server via the expressive power of the SPARQL query
language. A more reasonable approach, in our view, is the third option of Linked
Data Fragments, where servers provide only limited query features and where the
tasks are distributed between servers and applications in more balanced fashion.
However, all these current solutions are based on two-layer architectures, and
have moreover no inherent replication mechanisms. A single point of failure can
cause applications to be unable to complete their tasks: A single URI that does
not resolve or a single server that does not respond can break the entire process.

We argue here that we need distributed and decentralized services to allow
for robust and reliable applications that consume linked data. At the same time,
the most low-level task of providing linked data is essential for all other tasks
at higher levels, and therefore needs to be the most stable and robust one. We
argue that this can be best achieved if we free this lowest layer from all tasks
except the provision and archiving of data entries (nanopublications in our case)
and decouple it from the tasks of providing services for finding, querying, or
analyzing the data. This makes us advocate a multi-layer architecture, a possible
realization of which is shown at the bottom of Figure 1.

Below we present a concrete proposal of such a low-level data provision infras-
tructure in the form of a nanopublication server network. Based on such an
infrastructure, one can then build different kinds of services operating on a sub-
set of the nanopublications they find in the underlying network. “Core services”
could involve things like resolving backwards references (i.e. “which nanopublica-
tions refer to the given one?”) and the retrieval of the nanopublications published
by a given person or containing a particular URI. Based on such core services
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for finding nanopublications, one could then provide “advanced services” that
allow us to run queries on subsets of the data and ask for aggregated output.
(These higher layers could of course make use of existing techniques such as
SPARQL endpoints and Linked Data Fragments.) While the lowest layer would
necessarily be accessible to everybody, some of the services on the higher level
could be private or limited to a small (possibly paying) user group. We have in
particular scientific data in mind, but we think that an architecture of this kind
could also be used for Semantic Web content in general.

3.2 Nanopublication Servers

As a concrete proposal of a low-level data provision layer, as explained above,
we present here a decentralized nanopublication server network with a REST
API to provide and propagate nanopublications identified by trusty URIs.2 The
nanopublication servers of such a network connect to each other to retrieve and
replicate their nanopublications, and they allow users to upload new nanopubli-
cations, which are then automatically distributed through the network.

Basing the content of this network on nanopublications with trusty URIs has
a number of positive consequences for its design: The first benefit is that the
fact that nanopublications are all similar in size and always small makes it easy
to estimate how much time is needed to process an entity (such as validating
its hash) and how much space to store it (e.g. as a serialized RDF string in
a database). Moreover it ensures that these processing times remain mostly
in the fraction-of-a-second range, guaranteeing quick responses, and that these
entities are never too large to be analyzed in memory. The second benefit is that
servers do not have to deal with identifier management, as the nanopublications
already come with trusty URIs, which are guaranteed to be unique and universal.
The third and possibly most important benefit is that nanopublications with
trusty URIs are immutable and verifiable. This means that servers only have to
deal with adding new entries but not with updating or correcting any of them,
which eliminates the hard problems of concurrency control and data integrity
in distributed systems. Together, these aspects significantly simplify the design
of such a network and its synchronization protocol, and make it reliable and
efficient even with limited resources.

Specifically, a nanopublication server of the current network has the following
components:

– A key-value store of its nanopublications (with the trusty URI as the key)
– A journal consisting of a journal identifier and a list of the identifiers of all

loaded nanopublications, subdivided into pages of a fixed size.
– Optionally, a cache of gzipped packages containing all nanopublications

for a given journal page (but they can also be generated on the fly)
– A list of known peers, i.e. the URLs of other nanopublication servers
– Information about each known peer, including the journal identifier

and the total number of nanopublications at the time it was last visited
2 https://github.com/tkuhn/nanopub-server

https://github.com/tkuhn/nanopub-server
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Based on these components, the servers respond to the following request (in the
form of HTTP GET):

– Each server needs to return general server information, including the jour-
nal identifier and the number of stored nanopublications

– Given an artifact code (i.e. the final part of a trusty URI) of a known nano-
publication, the server returns the given nanopublication in a format like
TriG, TriX, or N-Quads (depending on content negotiation).

– A journal page can be requested by page number as a list of trusty URIs.
– For every journal page (except for incomplete last pages), a gzipped package

can be requested containing the respective nanopublications.
– The list of known peers can be requested as a list of URLs.

In addition, a server can optionally support the following two actions (in the
form of HTTP POST requests):

– A server may accept requests to add a given individual nanopublication
to its database.

– A server may also accept requests to add the URL of a new nanopub-
lication server to its peer list.

Server administrators have the additional possibility to load nanopublications
from the local file system. Together, these server components and their possible
interactions allow for efficient decentralized distribution of published nanopub-
lications.

The current system can be seen as an unstructured peer-to-peer network,
where each node can freely decide which other nodes to connect to and which
nanopublications to replicate. As the network is still very small, the present five
nodes connect to all other nodes and replicate all nanopublications they can
find. The current implementation is furthermore designed to be run on normal
Web servers alongside with other applications, with economic use of the server’s
resources in terms of memory and processing time. In order to avoid overload of
the server or the network connection, we restrict outgoing connections to other
servers to one at a time. The current system and its protocol are not set in stone
but, if successful, will have to evolve in the future — in particular with respect
to network topology and partial replication — to accommodate a network of
possibly thousands of servers and billions of nanopublications.

3.3 Nanopublication Indexes

To make the infrastructure described above practically useful, we have to intro-
duce the concept of indexes. One of the core ideas behind nanopublications is
that each of them is a tiny atomic piece of data. This implies that analyses will
mostly involve more than just one nanopublication and typically a large number
of them. Similarly, most processes will generate more than just one nanopubli-
cation, possibly thousands or even millions of them. Therefore, we need to be
able to group nanopublications and to identify and use large collections of them.
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Fig. 2. Schematic example of nanopublication indexes

Given the versatility of the nanopublication standard, it seems straightfor-
ward to represent such collections as nanopublications themselves. However, if we
let such “collection nanopublications” contain other nanopublications, then the
former would become very large for large collections and would quickly lose their
property of being nano. We can solve part of that problem by applying a princi-
ple that we can call reference instead of containment : nanopublications cannot
contain but only refer to other nanopublications, and trusty URIs allow us to
make these reference links almost as strong as containment links. To emphasize
this principle, we call them indexes and not collections.

However, even by only containing references and not the complete nanopubli-
cations, these indexes can still become quite large. To ensure that all such index
nanopublications remain nano in size, we need to put some limit on the number
of references, and to support sets of arbitrary size, we can allow indexes to be
appended by other indexes. We set 1000 nanopublication references as the upper
limit any single index can directly contain. This limit is admittedly arbitrary,
but it seems to be a reasonable compromise between ensuring that nanopublica-
tions remain small on the one hand and limiting the number of nanopublications
needed to define large indexes on the other. A set of 100,000 nanopublications,
for example, can therefore be defined by a sequence of 100 indexes, where the
first one stands for the first 1000 nanopublications, the second one appends to
the first and adds another 1000 nanopublications (thereby representing 2000 of
them), and so on up to the last index, which appends to the second to last
and thereby stands for the entire set. In addition, to allow datasets to be orga-
nized in hierarchies, we define that the references of an index can also point to
sub-indexes. In this way we end up with three types of relations: an index can
append to another index, it can contain other indexes as sub-indexes, and it can
contain nanopublications as elements. These relations defining the structure of
nanopublication indexes are shown schematically in Figure 2. Index (a) in the
shown example contains five nanopublications, three of them via sub-index (c).
The latter is also part of index (b), which additionally contains eight nanopub-
lications via sub-index (f). Two of these eight nanopublications belong directly
to (f), whereas the remaining six come from appending to index (e). Index (e)
in turn gets half of its nanopublications by appending to index (d). We see that
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some nanopublications may not be referenced by any index at all, while others
may belong to several indexes at the same time.

Below we show how this general concept of indexes can be used to define sets
of new or existing nanopublications, and how such index nanopublications can
be published and their nanopublications retrieved.

3.4 Trusty Publishing

Let us consider two simple exemplary scenarios to illustrate and motivate the
general concepts, using the np command from the nanopub-java library3. Given,
for example, a file nanopubs.trig with three nanopublications, we have to assign
them trusty URIs before they can be published:

$ np mktrusty -v nanopubs.trig
Nanopub URI: http://example.org/np1#RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I
Nanopub URI: http://example.org/np2#RAT5swlSLyMbuD03KzJsYHVV2oM1wRhluRxMrvpkZCDUQ
Nanopub URI: http://example.org/np3#RAkvUpysi9Ql3itlc6-iIJMG7YSt3-PI8dAJXcmafU71s

This gives us the file trusty.nanopubs.trig, which contains transformed versions
of the three nanopublications, now having trusty URIs as identifiers. We can now
publish these nanopublications to the network:

$ np publish trusty.nanopubs.trig
3 nanopubs published at http://np.inn.ac/

We can check the publication status of the given nanopublications:
$ np status -a http://example.org/np1#RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I
URL: http://np.inn.ac/RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I
Found on 1 nanopub server.

This is what we see immediately after publication, but only a few minutes later
the given nanopublication is found on several servers:

$ np status -a http://example.org/np1#RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I
URL: http://np.inn.ac/RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I
URL: http://ristretto.med.yale.edu:8080/nanopub-server/RAQoZlp22LHIvtYqHCosPbUtX8yeGs...
URL: http://nanopub-server.ops.labs.vu.nl/RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I
URL: http://nanopubs.stanford.edu/nanopub-server/RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5Afq...
URL: http://nanopubs.semanticscience.org/RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I
Found on 5 nanopub servers.

Next, we can make an index pointing to these three nanopublications:
$ np mkindex -o index.nanopubs.trig trusty.nanopubs.trig
Index URI: http://np.inn.ac/RAXsXUhY8iDbfDdY6sm64hRFPr7eAwYXRlSsqQAz1LE14

This creates a local file index.nanopubs.trig containing the index, identified by
the URI shown above. As this index is itself a nanopublication, we can publish
it in the same way as described above, and then everybody can conveniently and
reliably retrieve the given set of nanopublications:

$ np get -c http://np.inn.ac/RAXsXUhY8iDbfDdY6sm64hRFPr7eAwYXRlSsqQAz1LE14

This command downloads the content of the given index, i.e. the three nano-
publications we just created and published.

3 https://github.com/Nanopublication/nanopub-java

https://github.com/Nanopublication/nanopub-java
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As another exemplary scenario, let us imagine a researcher in the biomedical
domain who is interested in the protein CDKN2A and who has derived some
conclusion based on the data found in existing nanopublications. Specifically, let
us suppose this researcher analyzed five nanopublications from different sources,
specified by the following artifact codes (they can be viewed online by appending
the artifact code to the URL http://np.inn.ac/):

RAEoxLTy4pEJYbZwA9FuBJ6ogSquJobFitoFMbUmkBJh0
RAoMW0xMemwKEjCNWLFt8CgRmg_TGjfVSsh15hGfEmcz4
RA3BH_GncwEK_UXFGTvHcMVZ1hW775eupAccDdho5Tiow
RA3HvJ69nO0mD5d4m4u-Oc4bpXlxIWYN6L3wvB9jntTXk
RASx-fnzWJzluqRDe6GVMWFEyWLok8S6nTNkyElwapwno

These nanopublications can be downloaded from the network with the np get

command and stored in a file, which we name here cdkn2a-nanopubs.trig. In
order to be able to refer to such a collection of nanopublications with a single
identifier, a new index is needed that refers to just these five nanopublications.
This time we give the index a title (which is optional):

$ np mkindex -t "Data about CDKN2A from BEL2nanopub & neXtProt" \
-o index.cdkn2a-nanopubs.trig cdkn2a-nanopubs.trig

Index URI: http://np.inn.ac/RA6jrrPL2NxxFWlo6HFWas1ufp0OdZzS_XKwQDXpJg3CY

The generated index is stored in the file index.cdkn2a-nanopubs.trig, and our
exemplary researcher can now publish this index to let others know about it:

$ np publish index.cdkn2a-nanopubs.trig
1 nanopub published at http://np.inn.ac/

There is no need to publish the five nanopublications this index is referring to,
because they are already public (this is how we got them in the first place). The
index URI can be used to refer to this new collection of existing nanopublications
in an unambiguous and reliable manner, for example as a reference in a paper,
as we do it for the datasets of this article [29–33].

4 Evaluation

To evaluate our approach, we want to find out whether a small server network
run on normal Web servers, without dedicated infrastructure, is able to handle
the amount of nanopublications we can expect to become publicly available
in the next few years. At the time the evaluation was performed, the server
network consisted of three servers in Zurich, New Haven, and Ottawa. Two
new servers in Amsterdam and Stanford have joined the network since. The
current network of five servers is shown in Figure 3, which is a screenshot of
a nanopublication monitor that we have implemented. Such monitors regularly
check the nanopublication server network, register changes (currently once per
minute), and test the response times and the correct operation of the servers by
requesting a random nanopublication and verifying the returned data.

http://np.inn.ac/
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Fig. 3. This screenshot of the nanopublication monitor interface (http://npmonitor.
inn.ac) showing the current server network.

Table 1. Existing datasets in the nanopublication format that were used for the first
part of the evaluation.

# nanopubs # triples initial location
dataset index content index content for evaluation

GeneRIF/AIDA [29] 157 156,026 157,909 2,340,390 New Haven
OpenBEL 1.0 [31] 53 50,707 51,448 1,502,574 New Haven
OpenBEL 20131211 [32] 76 74,173 75,236 2,186,874 New Haven
DisGeNET v2.1.0.0 [33] 941 940,034 951,325 31,961,156 Zurich
neXtProt [30] 4,026 4,025,981 4,078,318 156,263,513 Ottawa

total 5,253 5,246,921 5,314,236 194,254,507

4.1 Evaluation Design

Table 1 shows the existing datasets that we use for the first part of the evaluation.
This includes all datasets we are aware of that use trusty URIs, with a total of
more than 5 million nanopublications and close to 200 million RDF triples,
including nanopublication indexes that we generated for each dataset. The total
size of these datasets when stored as uncompressed TriG files amounts to 15.6
GB. Each of the datasets is assigned to one of the three servers, where it is
loaded from the local file systems. The first nanopublications start spreading
to the other servers, while others are still being loaded from the file system.
We therefore test the reliability and capacity of the network under constant
streams of new nanopublications coming from different servers, and we use two
nanopublication monitors (in Zurich and Ottawa) to evaluate the responsiveness
of the network.

http://npmonitor.inn.ac
http://npmonitor.inn.ac
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Zurich:

New Haven:

Ottawa:
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Fig. 4. The flow of nanopublications during the time of the evaluation. The colors
indicate the original location of the respective nanopublications, and the brightness
stands for the rate at which they are loaded (bright meaning high rate).

In the second part of the evaluation we expose a server to heavy load from
clients to test its retrieval capacity. For this we use a service called Load Impact4

to let up to 100 clients access a nanopublication server in parallel. We test
the server in Zurich over a time of five minutes under the load from a linearly
increasing number of clients (from 0 to 100) located in Dublin. These clients
are programmed to request a randomly chosen journal page, then to go though
the entries of that page one by one, requesting the respective nanopublication
with a probability of 10%, and starting over again with a different page. As
a comparison, we run a second session, for which we load the same data into
a Virtuoso SPARQL endpoint on the same server in Zurich (with 16 GB of
memory given to Virtuoso and two 2.40 GHz Intel Xeon processors). Then,
we perform exactly the same stress test on the SPARQL endpoint, requesting
the nanopublications in the form of SPARQL queries instead of requests to the
nanopublication server interface. This comparison is admittedly not a fair one,
as SPARQL endpoints are much more powerful and are not tailor-made for the
retrieval of nanopublications, but they provide nevertheless a valuable and well-
established reference point to evaluate the performance of our system.

4.2 Evaluation Results

The first part of the evaluation lasted 13 hours and 21 minutes, at which point
all nanopublications were replicated on all three servers, and therefore the nano-
publication traffic came to an end. Figure 4 shows the type and intensity of
the data flow (i.e. the transfer of nanopublications) between the three servers
over the time of the evaluation. The network was able to handle an average of
about 400,000 new nanopublications per hour, which corresponds to more than
100 new nanopublications per second. This includes the time needed for load-
ing each nanopublication once from the local file system (at the first server),
transferring it through the network two times (to the other two servers), and for

4 https://loadimpact.com

https://loadimpact.com
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Fig. 5. Server response times as recorded during and after the first evaluation, which
ended at 13 hours and 21 minutes, as indicated by the black vertical line.
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Fig. 6. Results of the evaluation of the retrieval capacity of a nanopublication server
as compared to a general SPARQL endpoint (note the logarithmic y-axis)

verifying it three times (once when loaded and twice when received by the other
two servers). Figure 5 shows the response times of the three servers as measured
by the two nanopublication monitors in Zurich (top) and Ottawa (bottom) from
the start of the evaluation until 24 hours later, therefore covering the entire eval-
uation plus an additional 10 hours and 39 minutes after its end. We see that the
observed latency is mostly due to the geographical distance between the servers
and the monitors. The response time was always less than 0.25 seconds when the
server was on the same continent as the measuring monitor. In 99.86% of all cases
(including those across continents) the response time was below 0.5 seconds, and
it was always below 1.1 seconds. Not a single one of the 8636 individual HTTP
requests timed out, led to an error, or received a nanopublication that could not
be successfully verified. We see that the load put onto the network did not have
much of an impact on the response times. Except for a handful of spikes, one
barely notices the difference between the heavy-load and zero-load situations.
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Figure 6 shows the result of the second part of the evaluation. The nano-
publication server was able to handle 113,178 requests in total (i.e. an average
of 377 requests per second) with an average response time of 0.12 seconds. In
contrast, the SPARQL endpoint answering the same kind of requests needed
100 times longer to process them (13 seconds on average), consequently handled
about 100 times fewer requests (1267), and started to hit the timeout of 60 sec-
onds for some requests when more than 40 client accessed it in parallel. In the
case of the nanopublication server, the majority of the requests were answered
within less than 0.1 seconds for up to around 50 parallel clients, and this value
remained below 0.17 seconds all the way up to 100 clients. As the round-trip
network latency alone between Ireland and Zurich amounts to around 0.03 to
0.04 seconds, further improvements can be achieved for a denser network due to
the reduced distance to the nearest server.

The first part of the evaluation shows that the overall replication capacity
of the current server network is around 9.4 million new nanopublications per
day or 3.4 billion per year. The results of the second part show that the load
on a server when measured as response times is barely noticeable for up to 50
parallel clients, and therefore the network can easily handle 50 · x parallel client
connections or more, where x is the number of servers in the network (currently
x = 5). The second part thereby also shows that the restriction of avoiding
parallel outgoing connections for the replication between servers is actually a
very conservative measure that could be relaxed, if needed, to allow for a higher
replication capacity.

5 Discussion and Conclusion

We have presented here a low-level infrastructure for data sharing, which is
just one piece of a bigger ecosystem to be established. The implementation of
components that rely on this low-level data sharing infrastructure is ongoing and
future work. This includes the development of “core services” (see Section 3.1) on
top of the server network to allow people to find nanopublications and “advanced
services” to query and analyze the content of nanopublications. In addition, we
need to establish standards and best practices of how to use existing ontologies
(and to define new ones where necessary) to describe properties and relations of
nanopublications, such as referring to earlier versions, marking nanopublications
as retracted, and reviewing of nanopublications.

Apart from that, we also have to scale up the current small network. As our
protocol only allows for simple key-based lookup, the time complexity for all
types of requests is sublinear and therefore scales up well. The main limiting
factor is disk space, which is relatively cheap and easy to add. Still, the serv-
ers will have to specialize, i.e. replicate only a part of all nanopublications, in
order to handle really large amounts of data, which can be done in a number of
ways: Servers can restrict themselves to nanopublications from a certain inter-
net domain, or to particular types of nanopublications, e.g. to specific topics
or authors, and communicate this to the network; inspired by the Bitcoin sys-
tem, certain servers could only accept nanopublications whose hash starts with
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a given number of zero bits, which makes it costly to publish; and some servers
could be specialized to new nanopublications, providing fast access but only for
a restricted time, while others could take care of archiving old nanopublications,
possibly on tape and with considerable delays between request and delivery.
Lastly, there could also emerge interesting synergies with novel approaches to
internet networking, such as Content-Centric Networking [12], with which —
consistent with our proposal — requests are based on content rather than hosts.

We argue that data publishing and archiving can and should be done in a
decentralized manner. We believe that the presented server network can serve
as a solid basis for semantic publishing, and possibly also for the Semantic Web
in general. It could contribute to improve the availability and reproducibility
of scientific results and put a reliable and trustworthy layer underneath the
Semantic Web.
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