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Preface

We are pleased to present the first book entitled ‘Fungal metabolites’ under the new
book series of Springer “Reference series in Phytochemistry”. This book series
provides the platform with the aim of attracting researchers involved in all aspects
of natural metabolites useful for human welfare.

Fungi are present all over the planet earth in different habitat from aquatic to
terrestrial ecosystems. We know since long back, fungi as harmful entity spoiling our
foods and food grains, cultivated plants and causing health hazards till we did not
discover antibiotics, which saved thousands of life. Other beneficial effects of fungi
known since ancient times includes bread, cheese and fermentation products but
colorant, drugs, enzymes, metabolic inhibitors are of relatively recent origin. This
book is a timely compilation of state of information about this rapidly developing
field composed by highly renowned scientists of the field.

The book aims to present comprehensive, up-to-date and well established infor-
mation about complex and astonishing structure, properties and biotechnological
applications of fungal metabolites and their upcoming industrial applications. The
book comprises of 30 chapters and is divided in to three sections viz: Part I –General
Biology, Part II – Methods and Biotechnology, and Part III – Biological activity;
besides an introductory chapter describing gamut of fungal metabolites including a
brief history of their developments. The book will be a valuable source on fungal
metabolites to those working in the field of human wellness, industrial production
and biotechnology development.

This comprehensive and thoroughly up-to-date reference book presents the
sources, biology of pathogens, methods of analysis, biosynthesis, biotechnology
and applications of fungal metabolites. Fungal metabolites have received much
attention recently because of the emergence of different biological activities, such
as anticancer, anti-oxidative, cholesterol inhibitor, in biological control of nematodes
and other ones in human health. New industrial applications in pharmaceutical and
medical sciences are being developed. Due to these properties and benefits, a vast
body of data is being generated.

The book is intended to serve the needs of graduate students, scholars, researchers
in the field of botany, agriculture, pharmacy, biotechnology and phytochemistry,
industrial scientists and those involved in marketing phytochemicals and their
extracts.
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This work could not be completed without active support of Springer team who
took pains in streamlining the production process. We are particularly indebt to Drs.
Tobias Wassermann, Elizabeth Hawkins, Sylvia Blago and Sylvia Jakuscheit for
their continuous professional support throughout the project.

August 2016 Jean-Michel Mérillon
Kishan Gopal Ramawat

Editors
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Abstract
Fungi can be found in almost all types of habitats. Its several thousand species are
very diverse in morphological characters with plethora of secondary metabolites.
These secondary metabolites make some of the fungi our friend as well as foe.
Many of these secondary metabolites exhibit harmful effect being mycotoxins.
Fungi are notoriously known as food spoiler, causing damage to cooked food and
grains, and as plant pathogen, causing various severe diseases. However, fungi
are beneficial to mankind as producer of antibiotics, food colorant, enzymes, and
as a nutritious food. Today many industries are based on fungi or fungal products.
Fungi are believed to be the future microbial cell factories for the production of
food grade pigments, enzymes, and pharmaceuticals. Owing to the increasing
demand of these products, the large-scale production can be achieved by using
modern tools of biotechnology and appropriate use of fermentation physiology.
Heterologous expression of secondary metabolite production or even manipula-
tion of physical and chemical growth factors can enhance the desired product
yield with improved functionality. But still, there is a vast scope for improved
production and search for novel fungal metabolites which will render our safe
future against resistance-developing bacteria and other dreaded diseases. In this
brief review, we present a global scenario of fungal metabolites.

Keywords
Fungal classification • Antibiotics • Mycotoxins • Fungal bioactive molecules •
Enzymes • Fungal pigments

1 Introduction

Today we all are familiar with the importance of secondary metabolites in pharma-
ceuticals, agrochemicals, food additives, and as ingredients in cosmetics. Secondary
metabolites are believed to have no function in the life cycle of producer cells, unlike
primary metabolites. They are chemically heterogeneous group with molecular
weight less than 3000 Da [Dalton is the standard unit that is used for indicating
mass on an atomic or molecular scale (atomic mass)]. In the search of new bioactive
secondary metabolites, most of the scientists’ intense interest surrounds the plants.
But the fact is that until 2014 about 170,000 natural products have been described
[1, 2], out of which more than 22,500 bioactive metabolites are produced by
microorganisms, with about 45 % as products of actinomycetes fermentation and
about 38 % of fungal origin [3, 4].

Fungi can be found in almost all types of habitats. In their need to live and
reproduce, they compete with other organisms. They grow fast on the surface of
plant/nutrition to prevent other competitors from reaching their nutrient source.
Some live in symbiosis with the host and some off the dead organisms. In order to
survive, fungi have developed a number of strategies for protection and
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communication, one of which is production of different types of secondary metab-
olites. These fungal or fungal-induced compounds in plants increase the ability of
plant to resist invasion of predators, parasites, and diseases and may be used for
competition between species or to facilitate reproductive processes [5].

Fungi are notoriously known as food spoiler, causing damage to cooked food and
grains, as plant pathogen, causing various severe diseases such as Potato late blight,
caused by Phytophthora infestans responsible for potato famine of Ireland
(1845–1849), and rice blast, which leads to infamous Bengal famine of 1943;
however, fungi are beneficial to humankind as producer of antibiotics (penicillin,
cephalosporin, cyclosporine etc) and statins. Poisoning of cattle by ergot (a fungal
body formed by mycelium of Claviceps species, especially C. purpurea) and
mycotoxins [produced by several species of Aspergillus in stored grains (aflatoxins,
ochratoxin A)] is common in several countries. Beneficial effects of fungi are of
relatively of recent origin (except applications in cheese making) such as producer of
several enzymes (cellulase, lipase, ligninolytic enzymes), alkaloids (ergot alkaloids
from Claviceps), pigments (anthraquinone, betalains), aroma and flavors, and in
biological control of nematodes, health benefits by edible fungi (source of selenium,
potassium, riboflavin, niacin, vitamin D, proteins) and in prevention of or treatment
for Parkinson, Alzheimer, hypertension, cancers, and high risk of stroke [6–11]. All
these drastically different activities of fungi (Fig. 1) are attributed to the plethora of
metabolites they have. These metabolites represent a large source of compounds
endowed with ingenious structures and potent biological activities. They comprises
of aliphatic and aromatic hydrocarbons, organic acids, esters, ketones, aldehydes,
alcohols, and mono-, sesqui-, and diterpenes [12]. The present article provides an

Microbial enzymes
Fungi

Beneficial
Harmful 
effects

Fig. 1 Beneficial and harmful effects of fungi
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overview of the current knowledge on fungal metabolites and gives prospects for the
future developments.

2 Brief Classification

About 1.5 million species of the fungi have been raised to a separate kingdom of
organisms, as complex and diverse as plants and animals, of which only about 10 %
have been named and described. Originally there were only two kingdoms – plants
and animals. If an organism did not move, it was usually placed in the plant
kingdom. In 1969, a scientist named Robert Whittaker published the first major
revision to Linnaeus’s proposed two kingdom classification – animals and plants
(which included fungi). In the revised version, Whittaker suggested that fungi should
be classified as a separate kingdom, and this has been accepted by scientists [13].
Fungi are placed in a separate kingdom because they have many characteristics
which are different from plants and animals. Their cell walls are made of chitin and
mode of nutrition is absorption, contrasting to plants which have cell walls made of
cellulose and use photosynthesis to synthesize carbohydrates. Thus, bacteria includ-
ing actinobacteria (previously called as actinomyces), fungi, plants, protozoa, and
animals are recognized as separate kingdoms. Major characteristic and examples of
various subdivisions of fungal kingdom are given in Table 1. A comprehensive
phylogenetic classification of the kingdom Fungi has been developed in light of
recent molecular phylogenetic analyses and with input from diverse groups of the
fungal taxonomic. The readers primarily interested in classification can consult
reviews on this aspect [14, 15].

Table 1 Characteristics of various subdivisions of fungal kingdom

Sub-division Characteristics and remarks

Basidiomycota This division contains the mushrooms and toadstools. Divided into
3 subphyla: Agaricomycotina, Ustilaginomycotina, Pucciniomycotina
such as puffballs and stinkhorns, rusts and smuts, and gilled and pored
fungi. Spores are produced on a characteristic cell called a basidium
(plural basidia)

Ascomycota Three subphyla : Taphrinomycotina, Saccharomycotina,
Pezizomycotina. The largest number of species occurs in this group such
as the cup fungi and flask fungi. Spores are produced in a sack like
structure called an ascus (plural asci)

Zygomycota Mostly microscopic species, the pin molds with coenocytic hyphae

Oomycota The Oomycota includes the water molds and some important pathogens
such as potato blight. Many produce motile spores during their life cycle
which can swim. This group is now classified along with brown algae

Deuteromycota=
Fungi imperfecti

Species for which sexual reproduction is not known such as molds
(Alternaria, Aspergillus, Penicillium). Mainly basidiomycotina or
ascomycotina anamorph

Microsporidiomycota Spore forming unicellular parasites

4 S. Goyal et al.



3 Fungal Metabolites Biosynthesis

Fungi produce diversified extent of metabolites ranging from antibiotics to myco-
toxins. The biosynthetic pathways involve in the synthesis of these molecules are also
diverse. However, it is surprising that these complex structures are synthesized by
relatively few building blocks. The pathways are usually named after enzymes or
intermediates involved and are also commonly used to classify secondary metabolites.
Three most common pathways studied are (1) the mevalonic acid pathway (synthesize
terpenoids, steroids, etc), (2) the shikimic acid pathway (synthesize aromatic amino
acids, alkaloids, etc), and (3) the acetate pathway (synthesize polyketides, fatty acids,
etc). The enzymes associated with these pathways are nonribosomal peptide synthe-
tases (NRPSs), polyketide synthases (PKSs), terpene cyclases (TCs), dimethylallyl
tryptophan synthetases (DMATs), and geranylgeranyl diphosphate synthases
(GGPPs), etc. These enzymes utilize building blocks like acetyl-coA, amino acids,
mevalonate, and their different counterparts for the production of different fungal
metabolites as shown in Fig. 2. In case of terpenes, steroids, gibberellins, the actual
fundamental building block is dimethylallyl diphosphate (DMAPP). DMAPP are
biosynthesized via the mevalonic acid (MVA) which is formed by combining three
acetyl-coenzyme A (acetyl-CoA) [16, 17]. In microorganisms, an alternative pathway
for terpenes biosynthesis was described where glyceraldehyde 3-phosphate

Building blocks

Acetyl co enzyme

Alkaloids

Polyketides

Polypeptide hormonesEnzymes

Fatty acids

Structural proteins

Siderophores

Polypeptide hormones

Cyclopeptides

ß lactams

Aflatoxin

Sesquiterpenes

Diterpenes

Steroids

Sterols

Gibberellins

Patulin
Zearalenone

Griseofulvin

Fig. 2 Biosynthesis of different metabolites by fungi using building blocks. Building blocks are
photosynthates; green fonts-primary metabolites, blue fonts-secondary metabolites
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(or ultimately glyceraldehyde) and a C2 unit derived from pyruvate decarboxylation
were the only precursors of the C5 skeleton of isoprenic units in this nonmevalonate
pathway for isoprenoid biosynthesis [18]. Thus, many hybrid secondary metabolites
are derived from the tandem action of these enzymes, building blocks, and cofactors.

4 Metabolic Engineering

Metabolic engineering is an emerging field where using the modern biotechnological
tools and techniques, cell factories are generated. Now-a-days many genetically
well-characterized fungi are modified for the production of industrially relevant
enzymes, pharmaceuticals, and biofuels and are widely used by the research com-
munity to produce proteins that cannot be actively expressed in Escherichia coli or
require glycosylation for proper folding and biological activity. Most of the heterol-
ogous expressions are mainly performed in baker’s yeast Saccharomyces cerevisiae
[19]. There are over hundred proof-of-concept chemicals that have been made in
yeast [20]. One of the most important biopharmaceuticals produced by yeast is
insulin and insulin analogs. It is a continuous growing market as the global insulin
sale is expected to grow from USD 12 billion in 2011 to more than USD 32 billion
by 2018. Other important biopharmaceuticals produced by yeast are human serum
albumin, hepatitis vaccines, and human papilloma virus vaccine [21]. Besides yeast,
filamentous fungi that dominate the heterologous expression of useful metabolites
are Aspergillus niger, A. oryzae, Trichoderma reesei, and A. nidulans. Another
fungus with great potential is Chrysosporium lucknowense [22]. So far, the genome
has only been sequenced for a few species of filamentous fungi, and there is no
detailed metabolic reconstruction of any filamentous fungi.

5 Fungi as Functional Food and Health

Fungi, particularly mushrooms such as Cordyceps sinensis (Fig. 3), Ganoderma
lucidum, Hericium erinaceus, Lentinus edodes (Fig. 4), Sclerotinia sclerotiorum,
Tremella mesenterica, Trametes versicolor, are increasingly consumed as food for
their health benefits as nutraceuticals and functional foods [9, 23–27]. Besides
nutritional benefits, many fungi are associated with medicinal properties and
myths. These mushrooms are rich in some physiologically important components,
especially β-glucan polysaccharides, which are responsible for anticancer, immuno-
modulating, hypolipidemic, antioxidant, and neuro-protective activities. Shiitake
mushrooms have been used medicinally by the Chinese for more than 6,000 years.
Another fungus Ganoderma lucidum is a potent immune system regulator, promis-
ing anticancer agent, and stress reducer. This mushroom is frequently used in
traditional Chinese medicine [28]. All Cordyceps species (about 400 species
known) are endoparasitoids, parasitic mainly on insects and other arthropods.
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Gordon Wasson believed that the Soma plant used in religious ceremonies, over
4000 years ago by Aryans, was a mushroom (the other plants considered are
Amanita, Ephedra sinica, Cannabis sativa, etc). The Vedic juice called “soma
rasa” is said to bestow divine qualities on the soul of the consumer, even immortality
[24, 25]. The fungus Cordyceps sinensis is also found in Tibetan medicine. Tradi-
tional healers in Sikkim recommend the fungus/mushroom Cordyceps sinensis to
improve energy, appetite, stamina, libido, endurance, and sleeping patterns
[25]. Main constituent of the extract derived from this fungus comprises a novel
biometabolite called as Cordycepin (3’deoxyadenosine), which has a very potent
anticancer, antioxidant, and anti-inflammatory activities [26] (see ▶Chap. 23,
“Cordycepin: A Cordyceps Metabolite with Promising Therapeutic Potential” in
this book).

Fig. 3 Cordyceps sinensis –
The caterpillar fungi emerging
from larvae

Fig. 4 Cultivation of Shiitake
mushroom (Lentinus edodes),
Courtesy of Sophie Mérillon
(Loches, France)
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6 Fungi in Pharmaceuticals

The word antibiotic was used for the first time by Selman Waksman in 1941 to
describe any small molecule made by a microbe that antagonizes the growth of other
microbes [29]. On the morning of September 3, 1928, when Professor Alexander
Fleming was in process of cleaning up plates loaded with Staphyloccocus, he
observed a clean zone around the mold (Penicillium notatum) grown as contamina-
tion. Fleming concluded that the bacteria on the plate around the mold had been
killed off by some substance that had come from the mold. It was 10 years later that
Howard Florey and Ernst Chain, working at Oxford University, isolated the bacteria-
killing substance found in the mold – penicillin. (http://www.historylearningsite.co.
uk/a-history-of-medicine/antibiotics/).

This discovery and medicinal use of antibiotics in the 1950s revolutionized the
treatment and suffering and increased the life span. Antibiotics are useful in the
treatment of bacterial, fungal, and protozoal infections and some physiological
diseases (e.g., lowering cholesterol) [30]. Landmark discoveries of fungal metabo-
lites are shown in Fig. 5. With the increasing use of antibiotics, resistance to
antibiotics started developing, which leads to search for new antibiotics. The number
of new antibiotics, mainly analogs, increased almost exponentially. To eliminate
antibiotic resistance, the pharmaceutical industry developed thousands of new semi-
synthetic antibiotics, opening up a new area of antibiotic discovery [4].

More than 90 % of the studies performed by large pharmaceutical companies
between 1980 and 2003 resulted in decreasing profits due to increased research
expenses, the small number of new leads, and regulatory obstacles [31–33]. It is
difficult to assess the number of metabolites produced by fungi but currently total
entries for fungal metabolites on Google scholar is 466,000. Some of the selected
recently discovered (2013–2015) bioactive molecules with medicinal properties are
presented in Table 2. Some of these molecules can potentially be future medicines.
Antibiotics are major contribution of fungi towards human health and alleviating
suffering, for example, genus Streptomyces (in historical perspectives) being prin-
cipal producer (~80 % of total known) of large number of antibiotics and secondary

1900   1918   1928     1939    1941     1948         1962       1971    1974     1976           1995   2004

Ergot alkaloids

Mycophenolic
acid

Penicillins

Grieseofulvin

Coumarins

Cephalosporins

Fusidic acid

Cyclosporins

Echinocandins

Statins

Fingolimod

Designed
statins

Fig. 5 Historical developments showing discovery of fungal metabolites
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Table 2 Recent examples of bioactive molecules of fungi and their biological activities

Metabolites Source Bioactivity References

Ascomycone B and
6-deoxyfusarubin

Biatriospora sp. CCF
4378

Cytotoxicity [37]

Asperterpenoid A;
asperlones A and B,
mitorubrin

Aspergillus sp. 16-5c Inhibitor of Mycobacterium
tuberculosis protein
tyrosine phosphatase B

[38, 39]

Aspiketolactonol,
aspyronol,
epiaspinonediol

Aspergillus sp. 6-02-1 Cytotoxic: human cancer
cell lines K562, HL-60,
HeLa, and BGC-823

[40]

Apicidin F Fusarium fujikuroi Antimalarial [41]

Beauvericin Fusarium sp. Trypanocidal activity [42]

Citrinin Sponge associated
Penicillium sp.

Antibacterial and cytotoxic [43]

Cladosin C Cladosporium
sphaerospermum
2005-01-E3

Antiviral activity: influenza
A H1N1 virus

[44]

Cercosporenes F Cercospora sp. Cytotoxic: human cancer
cell lines HeLa, A549,
MCF-7, HCT116, T24 and
induces autophagy in
HCT116 cells

[45]

1-(2,6-dihydroxyphenyl)
pentan-1-one

Cryptosporiopsis sp. Antibacterial [46]

6,8-di-O-methylaverufin Aspergillus versicolor Antibacterial [47]

Dihydronaphthalenone 2 Nodulisporium sp. Antimycobacterial activity [48]

Dinapinone AB2 Talaromyces
pinophilus FKI-3864

Inhibition of triacylglycerol
synthesis in mammalian
cells

[49]

Fumiquinazoline Q and
Protuboxepin E

Penicillium expansum
Y32

Mitigative effect on
bradycardia and
vasculogenetic activity

[50]

Gliotoxin Aspergillus sp. YL-06 Cytotoxic: human cancer
cell lines HeLa

[51]

Ganoleucoins A and C Ganoderma
leucocontextum

Inhibitory activity against
HMG-CoA reductase

[52]

4-Hydroxymellein Phoma sp. Inhibitory activity against
P388 murine leukemia cells

[53]

Herqueidiketal Penicillium sp. Significant activity against
Staphylococcus aureus
sortase A.

[54]

Hispidin Phaeolus schweinitzii Antioxidant activity [55]

Isosclerone Aspergillus fumigatus Antiproliferative:MCF-7
human breast cancer cells

[56]

Nodulisporiviridin G Nodulisporium
sp. (No. 65-17-2-1)

Amyloid β42 aggregation
inhibitory activities

[57]

Neoechinulin A Eurotium sp. SF-5989 Anti-inflammatory effect [58]

Pestalotiopsone A Pestalotiopsis sp. Antibacterial [59]

(continued)
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metabolites [34–36]. Besides antibiotics, cholesterol synthesis inhibitor statin, ergot
alkaloids, and lipase are important pharmaceutical products of fungal origin.

7 Fungal Mycotoxins

Mycotoxins are low molecular weight (MW ~ 700) toxic secondary metabolites of
certain fungi. They are often very stable molecules and produced by several genera,
in particular Penicillium, Aspergillus, and Fusarium spp. [68, 69]. Besides these,
other genera exhibiting mycotoxin production includes Alternaria, Chaetomium,
Cladosporium, Claviceps, Diplodia, Myrothecium, Monascus, Phoma, Phomopsis,
Pithomyces, Trichoderma, and Stachybotrys spp. [70]. Mycotoxin contamination is a
global problem and occurs both in temperate and tropical regions of the world, based
on the species of fungi. Major food crops infected by fungi are cereals, cocoa, coffee,
oil seeds, spices, nuts, dried fruit, dried peas, beans, and fruits. The cereals are
usually invaded by fungi both in the field and after harvest, and as a consequence
they carry multitoxins. Generally, crops that are stored for more than a few days
become vulnerable to mold growth and mycotoxin formation. The production of
mycotoxins is often inevitable and depends on environmental conditions during the
plant growth and the subsequent food storage.

These toxins have caused major epidemics in humans and animals during ancient
times. Ergotism [71] and Alimentary Toxic Alexia (ATA) [72] were some of
the dreaded mycotoxicosis instances which killed hundreds and thousands of
people in Europe and Russia, respectively. Mycotoxins cause four basic kinds

Table 2 (continued)

Metabolites Source Bioactivity References

Polyporusterone B Polyporus umbellatus Antitumor activity: HepG2
cells

[60]

Phenylpyropenes
E and F

Penicillium
concentricum
ZLQ-69

Cytotoxic: MGC-803 cell
line

[61]

Pinazaphilones B and
(�)-penifupyrone

Penicillium
sp. HN29-3B

Inhibits α-glucosidase [62]

Reduced gliotoxin ,
6-acetylbis(methylthio)
gliotoxin

Neosartorya
pseudofischeri

Cytotoxic and antibacterial [63]

Solaninaphthoquione Fusarium solani
PSU-RSPG227

Cytotoxic: MCF-7 human
breast cancer cells

[64]

Sorbicatechols A and B Penicillium
chrysogenum PJX-17

Antiviral:influenza virus A
(H1N1)

[65]

Stemphyperylenol Botryosphaeria
dothidea KJ-1

Antifungal and cytotoxicity
against HCT116 cancer cell
line

[66]

Verrucosidin Penicillium
sp. TPU1271

Antimycobacterial activity. [67]
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of toxicity: acute, chronic, mutagenic, and teratogenic. Different mycotoxins have
different modes of action in the body, while some deteriorate the liver or kidney
function to the extreme that may cause death or interfere with protein synthesis
which produces series of other problems including extreme immunodeficiency, some
are neurotoxic responsible for brain damage or death in higher doses. Due to the
variety of structures of these toxins, it is impossible to use one standard technique for
analysis and/or detection. The most studied mycotoxins are aflatoxins (AF), citrinin,
trichothecenes such as deoxynivalenol (DON), patulin, ochratoxin A (OTA),
fumonisins (FB), and zearalenone (ZEA) and some major toxins of endophytic
fungi (ergot toxins and ergotamine) (Fig. 6).

7.1 Aflatoxins

Aflatoxins (AF) are mycotoxins that are produced by fungi Aspergillus flavus and
Aspergillus parasiticus. Among them, A. flavus has been reported to be a common
contaminant of agricultural produce. However, A. bombycis, A. ochraceoroseus,
A. nomius, and A. pseudotamari are also less common, AF-producing species
[73–75]. Aflatoxins were discovered because of their devastating effect on turkey
poults (Turkey-X-disease) and other chicks in 1960 in England, when more than
100,000 turkey poults died [76]. Aflatoxin contamination is most common in
African, Asian, and South American countries with warm and humid climates, but
also occurs in temperate areas of North America and Europe. The habitat of
Aspergillus is in soil, decaying vegetation, hay, and grains, which are undergoing
microbiological deterioration. It can invade all types of organic substrates with
inadequate drying or improper storage conditions. They have a particular affinity
for nuts and oil seeds. Peanuts, maize, and cotton seed are the three most important
crops affected by Aspergillus.

AF are difuranocoumarin derivatives produced by a polyketide pathway. The
naturally occurring aflatoxins are AFB1, AFB2, AFG1, and AFG2, here “B” and
“G” refer to the blue and green fluorescent colors produced by these compounds
under UV light and relative chromatographic mobility during thin-layer chromatog-
raphy (TLC) [75] and the subscript numbers 1 and 2 indicate major and minor
compounds, respectively. Among these, AFB1 is the most abundant, toxic, and
carcinogenic [77]. Other aflatoxins AFM1 and AFM2 are the hydroxylation products
of AFB1 and AFB2, respectively, and are found in milk and milk products
[78]. After entering the body, aflatoxins may be metabolized by the liver to a reactive
epoxide intermediate or hydroxylated to become AFM1 and AFM2. AFM1 and
AFM2 are in lower toxicity than the parent molecules, but significant because of the
widespread consumption of cows’ milk by infants.

Aflatoxins are hepatocarcinogenic in humans, particularly in conjunction with
chronic hepatitis B virus infection; thus, the probability of people developing cancer
of the liver is much higher in areas where both aflatoxins and hepatitis B are
prevalent [79]. Aflatoxins are not only hepatocarcinogen, but they are also
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genotoxins and immunotoxins, which can suppress both cellular and humoral
responses and also be responsible for growth retardation in animals [80, 81].

7.2 Ochratoxin

Ochratoxin A (OTA) was first discovered as a fungal metabolite that showed toxic
behavior towards animals, from a strain of Aspergillus ochraceus in 1965 [82].
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Ochratoxin A ismainly produced byAspergillus ochraceus, Aspergillus carbonarius,
and Penicillium verrucosum [83]. The natural occurrence of these fungi is wide-
spread, since all these species grow in a wide range of conditions (substrate, pH,
moisture, and temperature). A. ochraceus dominates in tropical regions, while the
P. verrucosum predominates in temperate regions such as eastern and north eastern
Europe, Canada, and parts of South America [84]. OTA commonly contaminates
grains such as corn, barley, oats, rye, and wheat and has also been reported in other
plant products including coffee beans, spices, nuts, olives, grapes, beans, and figs [85,
86]. Mostly dried vine fruits, wines, and probably coffee are contaminated with
A. carbonarius [87] which can survive sun drying. Biosynthetically, it is a pentaketide
derived from the dihydrocoumarins family coupled with β-phenylalanine. The bio-
chemistry and molecular biology of ochratoxin A biosynthesis have been compre-
hensively reviewed [88].OTA is a potential risk to human health not only as a result of
the intake of contaminated foods of vegetable origin, but also through foods of animal
origin. It is important to know that ochratoxin A is fat soluble and stable molecule and
is not readily excreted, which means that the intake of OTA leads to its buildup in the
circulatory system, liver, and other tissues of the animals. This is due to the feeding of
mold-contaminated fodder by animals.

7.3 Fumonisins

Fumonisins are a group of polyketide mycotoxins that are produced by Fusarium
verticillioides and Fusarium proliferatum, main pathogens of maize and sorghum
[89]. Fumonisins were discovered in the late 1980s as the result of many years of
study of the disease known as equine leucoencephalomalacia (LEM). Fumonisin B1
and fumonisin B2 were isolated for the first time by Gelderblom and coworkers [90]
from cultures of F. verticillioides MRC 826 by means of a bioassay based on the
cancer-promoting activity in rat liver. Fumonisins consist of a 20-carbon aliphatic
chain with two ester-linked hydrophilic side chains, resembling sphingosine, an
essential phospholipid in cell membranes. The toxic action of fumonisins appears
to be a result from competition with sphingosine in sphingolipid metabolism [91]. It
is also important to mention that the main concern for human health in regard to
aflatoxins, ochratoxin A [92], and fumonisins in developed countries appeared to be
their carcinogenic or genotoxic and teratogenic effects rather than their acute
effects [93].

7.4 Zearalenone

Zearalenone (ZEA) is produced by different species of Fusarium fungi, for example,
F. graminearum, F. culmorum, F. cerealis, F. equiseti, F. crookwellense, and
F. semitectum. These common soil fungi are pathogenic to cereal crops worldwide
[75]. Zearalenone is heat-stable and is found in a number of cereal crops, such as
maize, barley, wheat, oats, rice, and sorghum [94]. Fusarium spp. infect cereals in
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the field. Toxin production mainly takes place before harvesting, but may also occur
during or post harvest if the crop is not handled and dried properly [95]. Zearalenone
is a nonsteroidal mycotoxin biosynthesized through a polyketide pathway. ZEA is a
resorcylic acid lactone. Historically, Christensen and coworkers [96] isolated this
metabolite and called it F-2. Its isolation resulted from the observation of the disease
syndrome in two swine herds in Minnesota. Prior to the discovery and implemen-
tation of modern milling practices, Fusarium species have been implicated in several
human outbreaks of mycotoxicoses [97]. Unlike Ochratoxin, ZEA is rapidly
biotransformed and excreted after consumption; therefore, the dietary intake of
ZEA from meat is probably of less significance [98]. However, ZEA can be excreted
into milk after lactating cows are fed it in high doses. ZEA and its metabolites are
often referred to as a mycoestrogen because of its potent estrogenic activity. ZEA is
implicated in reproductive disorders of farm animals and occasionally in
hypoestrogenic syndromes in humans [99]. Studies have demonstrated the potential
for ZEA to stimulate growth of human breast cancer cells containing estrogen
response receptors [100]. Another recent study also established a potential role of
α-ZEA in the risk of developing breast cancer [101].

7.5 Patulin

Patulin (PAT) is a toxic metabolite produced by several species of Penicillium,
Aspergillus, and Byssochlamys [102, 103]. It is the most common mycotoxin in
apples and apple-derived products including juice, compotes, cider, and baby foods.
It also contaminates other fruits such as grapes, oranges, pears, and peaches [102,
104]. Patulin (4-hydroxy-4H-furo [3,2c] pyran-2[6H]-one) is a water-soluble lactone
isolated in 1940s. Initially PAT was isolated as a broad spectrum antifungal antibi-
otic. Due to co-discovery of the compound by various groups, it has historically been
known by names such as clavacin [105], expansine [106], claviformin [107],
clavatin [108], gigantic acid [109]. Patulin poses several biological activities and
induces toxicity in vitro and in vivo. It is considered as genotoxic, immunotoxic,
neurotoxic to rodents, and teratogenic to chicken [110]. Cellular effects of patulin
include the formation of reactive oxygen species (ROS), cell cycle arrest, cyto-
chrome C release from mitochondria, caspase-3 activation, PARP cleavage, ATF3
expression, and subsequent apoptosis. Patulin causes DNA damage and is muta-
genic, carcinogenic, and teratogenic [102, 104, 111, 112]. On the other hand, a recent
study suggests that PAT induces cytotoxicity through a ROS-dependent mechanism
involving endoplasmic reticulum stress and activation of mitochondrial apoptotic
pathway in human intestinal and kidney cells [113].

7.6 Trichothecene Toxin: Deoxynivalenol

Mycotoxin deoxynivalenol (DON; also known as vomitoxin) is an epoxy-
sesquiterpenoid produced by fungi, Fusarium graminearum and F. culmorum.

14 S. Goyal et al.



They are the most potent eukaryotic protein-synthesis inhibitors known
[114]. Vomitoxin has been naturally occurring in cereal grains throughout the
world. It occurs mostly in grains such as wheat, barley, oats, rye, and maize, and
less often in rice, sorghum, and triticale [115]. Its capacity to induce vomiting
episodes in various species including humans explains its commonly used nickname
“vomitoxin.”

8 Fungi as Producer of Colorants

There is an increasing demand for pigments from natural sources which can be used
in foodstuff, cosmetics, and pharmaceuticals. Currently, the major sources of natural
colorants are of either plant or animal origin. The production of many currently
authorized natural food colorants has numerous disadvantages, like nonavailability
throughout the year, variations in pigment extraction, instability against light, heat or
adverse pH, and low water solubility. Even the present commercial natural food
colorants have several drawbacks, for instance the violet and purple colors of
anthocyanins (flavonoids) are sensitive to oxidation, bleaching by sulfur dioxide,
and vary with pH, limiting their application to acidic foods and beverages. Betanins,
carotenoids, and chlorophyll pigments are easily decolorized by oxidation, making
them sensitive to light, heat, and oxygen. Furthermore, there are also some weird
source of natural colorants like red colorant carmine; to produce 100 g carmine
colorant, approximately 14,000 female cochineal insects are required [116]. To
overcome these problems, alternative ways to produce natural colorants are highly
desired. In this regard, fungi have attracted special attention. Fungi-derived food
colorants are natural, which shows high chemical and light stability [117, 118], high
yield, and variety of colors. The authorization of fungal food colorant has expedited
research to explore the fungi for the biotechnological production of pigments.
However, these studies require a comprehensive knowledge of already recognized
fungal metabolites, pathogenic strains, and toxin producers.

Filamentous fungi produce an extraordinary range of pigments that include
several chemical classes such as carotenoids, melanins, flavins, phenazines, qui-
nones, and more specifically monascins, violacein, or indigo. These pigments show
diversity of chemical structures and a spectrum of colors (Figs. 7 and 8). In nature,
these pigments help fungi to serve different ecological functions, for example,
melanins protect them against environmental stress, caroteniods against lethal
photo-oxidations, and flavins act as cofactors in enzyme catalysis [119, 120].

Fungi are looked upon as future microbial cell factories for the production of food
grade pigments. However, there are discrepancies and controversial views over the
safety of these pigments. This is due to the co-production of mycotoxin along with
the target compound. For instance, Monascus spp. are often used for rice fermenta-
tion to produce red yeast rice, a special product used either for food coloring or as a
food supplement in the South East Asia for more than thousands of years [121] (see
▶Chaps. 16, “Pigments and Colorants from Filamentous Fungi,” ▶ 26, “Monascus
Secondary Metabolites,” and ▶ 8, “Melanin Pigments of Fungi” in this book).
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The colored appearance (red, orange, or yellow) ofMonascus fermented substrates is
produced by a mixture of oligoketide pigments that are synthesized by a combination
of polyketide and fatty acid synthases. The major pigments consist of pairs of yellow
(ankaflavin and monascin), orange (rubropunctatin and monascorubrin) [122], and
red (rubropunctamine and monascorubramine) compounds. Although these polyke-
tide pigments from the Monascus sp. have been commercially produced and legally
used as food colorants in the form of pigment extracts, European Union (EU) and
USA have not approved them as food colorant due to the risk of the possible
contamination by the nephrotoxic and hepatotoxic metabolite citrinin and a group
of monacolin substances [123]. Other examples of mycotoxin co-production are
fungal hydroxyanthraquinoid (HAQN) pigments like emodin (yellow), physcion
(yellow), questin (yellow to orange-brown), erythroglaucin (red), catenarin (red),
and rubrocristin (red), produced from some strains of Aspergillus sp. (A. glaucus,
A. cristatus, and A. repens) [124] and are contaminated with secalonic acid D,
oxaline, citrinin, tanzawaic acid A, cyclochlorotine, islanditoxin, luteoskyrin,
erythroskyrin rugulosin, or aspergiolide A. All these fungal secondary metabolites,
the yellow and the red HAQN pigments that show substitution on both aromatic
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rings and the naphthoquinone type mycotoxins, are biosynthetically synthesized by
polyketide pathway. Likewise, species of Eurotium co-produce the mycotoxin
echinulin and two benzaldehyde coloring compounds: flavoglaucin (yellow) and
auroglaucin (red) along with the yellow pigment physcion and the red pigment
erythroglaucin [125]. This infers that these fungal strains are not safe, and there is
an urge to continue to explore new strains of fungi which do not produce myco-
toxins. Many of such strains are now known; for example, a strain of Dermocybe
sanguinea (Cortinarius sanguineus) produces red HAQN glycoside dermocybin-1-
b-D-glycopyranoside, together with the pigments emodin and physcion without
co-production of mycotoxins [126]. Another polyketide pigment orevactaene is
shown to be produced by nonmycotoxigenic fungi Epicoccum nigrum [127]. Another
useful discovery is the production of Monascus like polyketide azaphilone (MPA)
pigments without co-production of citrinin or any other known mycotoxins, by some
strains of Talaromyces species (formerly Penicillium sp.) viz. Talaromyces
aculeatus, T. funiculosus, T. pinophilus, and T. purpurogenus [127, 128]. Moreover,
even a patent has been granted for a submerged cultivation method, for some of the
nonmycotoxigenic strains of Talaromyces sp. [129].

Owing to the increasing demand of food colorant, an alternative route for the
large-scale production of natural food colorants can be achieved by using modern
tools of biotechnology and appropriate use of fermentation physiology. Heterolo-
gous expression of secondary metabolite production or even manipulation of culture
medium or precursor/inhibitor feeding can enhance the desired product yield with
improved functionality [130, 131]. Presently, we can find some fermentative food
grade pigments in the market. Arpink redTM (now Natural RedTM) manufactured by
the Czech company (Ascolor Biotech followed by Natural Red) has been claimed to
be produced by fermentation and bioprocess engineering using the fungal strain
Penicillium oxalicum. Furthermore, riboflavin from Ashbya gossypii, lycopene and
b-carotene from Blakeslea trispora, and bikaverin from Fusarium sp. are obtained
from fermentation process [132–134].

9 Fungal Enzymes

Enzymes are biological macromolecules (primary metabolites) used to catalyze the
chemical reactions. Human beings are using the enzymes since long back for the
processes like cheese making, brewing, baking, and the production of antibiotics. In
nature, fungi play a main role in degradation of plant biomass. They secrete a wide
range of active enzymes and then absorb these “predigested” foodstuffs back into their
cells. This natural phenomenon of fungi has lead researchers to identify and utilize
various enzymes and proteases that fungi produce for industrial use [135]. Historically,
Taka-diastase was the first enzyme preparation to be patented for industrial use by
Dr. Jokichi Takamine in 1884. It was produced by the filamentous fungus Aspergillus
oryzae. Since then, there are continuous advancements in exploration and extraction
technology of fungal enzymes. Fungal enzymes are always preferred over plant and
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animal enzymes owing to their wide varieties and exceptional properties. They are
active under mild conditions related to temperature and pH. There production is
cheaper and faster and the yield is higher. Moreover, fungal systems are easily
susceptible to genetic manipulation. According to a report, till now about 200 fungal
enzymes have been purified from fungal cultures with biochemical and catalytic
properties characterized [136, 137]. These enzymes have significant uses in pharma-
ceutical, agricultural, food, paper, detergent, and textile-based industries (Table 3).
Some of the main enzymes that dominate the industrial enzyme market are amylase,
cellulase, chitinase, invertase, laccase, lipase, protease, tyrosinase, and xylase.

Amylases are possibly the most important enzymes in present day biotechnology
because of their wide ranging application in food, fermentation, textiles, and paper
industries. These enzymes have even successfully replaced the chemical hydrolysis
of starch in starch-processing industries. Research on cellulases and related
polysaccharidases actively began in the early 1950s. These enzymes convert
lignocellulose to glucose and soluble sugars [138, 139]. Currently, cellulases are
widely used in pharmaceutical, baking, detergent, wine, and textile industries
[140]. Another enzyme of varied importance is chitinases. It hydrolyzes the linear
polymer chitin. Though bacteria are one of the major sources of chitinase, filamen-
tous fungi too have many different chitinases belonging to GH family
18 [141]. Over the past few years, chitin and chitin derivatives have been used in
cosmetics, food, nutrition, and biotechnology. Chitinase gene from mycoparasitic

Table 3 Functions and applications of fungal enzymes in diverse fields

Enzymes Functions Applications

Cellulases
Cellulases, Beta-
glucosidase

Improve paper quality and smooth fibers
Ethanol production

Paper production
Biofuels

Laccases Soften paper and improving bleaching as
biotransformers to remove nonionic surfactants

Paper
Bioremediation

Lactase
Pectinases

Part of β-glucosidase family of enzymes and can
break down lactose to glucose and galactose in
the manufacture of yogurt

Dairy industry

Lignocellulolytic
enzymes

Breakdown of agrowaste in to ethanol Biofuels

Lipase Fat removal, esterification, hydrolysis Dairy, detergent, pulp,
pharmaceuticals,
leather

Pectinases,
cellulases –

To clarify fruit juices and form jams Fruit and jam
manufacturing

Peroxidases Removal of pollutants by precipitation Waste water treatment

Proteases Protein to amino acids Baking, brewing,
detergent, leather

Yeast enzymes Beer production and malting Brewing industry

Tyrosinases Convert monophenols into diphenols Food additives,
pharmaceutical drugs
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Trichoderma spp. when expressed in several agriculturally important plants, e.g.,
lemon, cotton, apple, and carrot, rendered in them defense response against various
fungal pathogens [142, 143]. Unlike chitinase production, fungi are the best pro-
ducers of industrial invertases. Yeast Saccharomyces cerevisiae is most extensively
used for the purpose. This enzyme is widely used in the processed food and
confectionery industry. Other uses of the enzyme include lactic acid production,
fermentation of cane sugar molasses, etc [144]. Another enzyme of immense
industrial potential is laccases. Laccases are copper-containing enzymes that cata-
lyze the oxidation of a wide variety of organic and inorganic substrates including
mono-, di-, and polyphenols, amino phenols, methoxy phenols, aromatic amines,
and ascorbate [145]. Laccases have been found in Ascomycetes, Deuteromycetes,
and Basidiomycetes; being particularly abundant in many white-rot fungi such as
Coriolus versicolor and Pycnoporus sanguineus [146]. Most potential industrial
applications of laccase are the delignification and pulp bleaching and the bioreme-
diation of contaminating environmental pollutants [147, 148]. Laccase production
is an expensive process. In order to find the affordable and higher yielding sources
of laccase, cloning of laccase gene followed by heterologous expression is gaining
impetus [149]. Similarly, lipase, an essential catalyst that digests water-insoluble
lipids, also has costly purification procedures. In addition, it also exhibits extracel-
lular instability. Therefore, in order to avoid enzyme purification step, direct use of
cells or biomass with endoactivity of lipases within a porous biomass support could
represent a very attractive process for lipase production and applied to several
processes as in case of bulk biodiesel production. The fungi Penicillium sp. F2 and
Rhizomucor sp. F18 showed great potential for extra and intracellular lipase
production, aiming at its future use in processes of hydrolysis and transesterification
of residual oils and greases of environmental sanitation [150]. Lipases are also
beneficial in different industries such as food, pharmaceuticals, oleo chemicals,
cosmetics, fuel, and detergents [151].

Among all these enzymes, one of the most important enzymes is proteases. It is
estimated that proteases account for about 60 % of the total global industrial
enzyme sales (>3 billion USD) [152]. Proteases hydrolyse the peptide bond
(CO-NH) in a protein molecule. Proteolytic enzymes occur naturally in all living
organisms. However, fungal proteases are active over a wide pH range (pH 4 to 11)
and exhibit broad substrate specificity [153, 154]. Filamentous fungal strains such
as Aspergillus have been widely used for industrial production of protease. Indus-
trially they have applications in food, leather, detergent, pharmaceutical, diagnos-
tics, and waste management. Tyrosinase and xylanases are enzymes gaining
importance due to their industrial and environmental applications. Tyrosinase can
convert monophenols into diphenols and thus helps in production of antioxidant
ortho-diphenols with beneficial properties as food additives or pharmaceutical
drugs [155], while xylanases have many commercial uses, such as in paper
manufacturing, animal feed, bread-making, juice and wine industries, xylitol pro-
duction. Among xylanases sources, filamentous fungi are especially preferred due
to their ability to secret enzyme into the medium and high xylanases production
[156, 157].
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10 Conclusions

The enormous biodiversity within the Mycota and the eminent role played by the
fungi in the production of pharmaceuticals, chemicals, biofuels, enzymes, and food
colorants is fascinating more and more people to the fungal research. Nonetheless,
their studies also help in preventing the food and feed spoilage and pathogenicity
caused by mycotoxins in plants, animals, and humans of different levels and
intensity. Fungi as a group of microorganisms cause the most economical damage
on crops [158]. Besides these notorious activities, some fungi are the great source of
healthy food such as basidiomycetes. They are packed with useful vitamins, min-
erals, and secondary metabolites that have been found to inhibit the growth of
different kinds of tumors [9, 159] and have many other beneficial effects.

Today people are more intended towards natural sources. In this regard, various
fungal usage and high yields have always attracted the attention. For example, in
case of food colorant, in many countries still plants are the main source of natural
food colorant and fungi are feared of their co-mycotoxin production along with
desired product. Thus, more imperative measures are required to carry out the
necessary toxicology testing. In these ways, fungal pigments could be accepted by
the current consumer round the world. Similarly, another thing in high demand is
renewable sources of energy like biofuels. This can be met from agriculture waste or
underutilized agriculture products if we can breakdown the cell wall polysaccharide,
cellulose, hemicelluloses, and lignin into simple monomer molecules like glucose/
cellobiose. However, these polysaccharides are hard nut to crack, and microbial/
fungal enzymes are used to break the complex molecules in to glucose/cellobiose for
biofuel generation (see chapter on Lignocellulose Degrading Enzymes from Fungi
and Fungal Metabolism in this book). Production of biofuels/chemicals by microbial
fermentation can have several advantages like lower costs of production than
through traditional routes, use of renewable feed stocks, and production of chemicals
with properties that allow for synthesis of new advanced polymers. In the past few
years, rapid developments have occurred in the enzyme supply market. Present
evolution in protein engineering and heterologous expression has revolutionized
enzyme production and commercialization by extending the list of enzymes now
available. This increasing demand and production of enzymes also increased the
incidence of occupational exposure to high-molecular-weight allergens. Workers
that are in direct contact with fungal enzymes are at a great risk of IgE-mediated
disease and occupational asthma. Some of the majors which can be helpful in
alleviation of enzyme exposure are like use of safety equipments; protein encapsu-
lation and setting the threshold limit values [160].

Today fungi are one of the major parts of pharmaceutical industries, but still there
is a need to continue to explore new bioactive molecules from fungi. As we know
that now-a-days development of resistance in microbes and tumor cells has become a
major problem. This resistance increasingly limits the effectiveness of current
antibiotics. According to a report by Katz [161] in 2004, more than 70 % of
pathogenic bacteria were estimated to be resistant to at least one of the currently
available antibiotics. We believe that novel antibiotics and other bioactive secondary
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metabolites can still be discovered from microbial sources knowing the fact that in
fully sequenced fungi, numbers of genes and gene clusters that potentially may lead
to production of secondary metabolites are very higher in accordance with the
number of secondary metabolites known [130, 162]. Fungi are easy to cultivate
and scale up as compared to plant cells and are grown at relatively very high
volumes. Genome, transcriptome, proteome, and metabolome analyses help us in
understanding fungal science as a whole. Now tools with advanced version for
metabolome analysis, such as mass spectroscopy, single crystal x-ray diffraction,
and nuclear magnetic resonance spectrometry with increasingly sophisticated
methods of chromatography, have made possible continuing discovery of novel
fungal metabolites and future wonder drugs.
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Abstract
The biocontrol of plant pathogenic fungi includes two complementary
approaches depending on whether the aim is to control soil-borne or air-borne
pathogenic fungi. In the first case, natural biotic interactions within the indige-
nous microflora should be stimulated to regulate inoculum density and the
infectious activity of pathogen populations. This strategy can be enhanced by
inoculating one or more previously selected biocontrol agents. In the second case,
one or more previously selected biocontrol agents can be sprayed on plant foliage
to interfere with the development of the targeted pathogen through different
mechanisms involving particular enzymes or metabolites. Selecting the most
effective biological control agents implies (i) knowing the mechanisms of their
interactions with the pathogens and (ii) checking that the environment in which
the biocontrol agent is introduced will permit the expression of these mecha-
nisms. The common thread of this chapter is the impressive diversity of metab-
olites and proteins produced by fungi and involved in interactions between
pathogenic and nonpathogenic fungi. Many metabolites and proteins were dis-
covered empirically or by chance a few decades ago, and what we knew about
them was they inhibited the growth of pathogenic models on agar medium. Fungi
producing these metabolites were not well-known fungal species and were not
used as biocontrol agents. However, the demonstration of their intense meta-
bolic activity paved the way for more investigations in this area and led to
deciphering the mechanisms of interactions between fungal strains. Thus, in
recent years a large number of enzymes, signal molecules, secondary metabo-
lites, large-size proteins, as well as new metabolic pathways have been revealed
by genomics, and it is now possible to understand why some strains can control
a given pathogen more than others or stimulate plant defense reactions. To date,
the most studied fungi include many strains of the genus Trichoderma but
also the species Chlonostachys rosea, Coniothyrium minitans, Verticillium
biguttatum, and the oomycete Pythium oligandrum. All of them are successfully
used as biocontrol agents. This chapter does not aim to provide a comprehensive
catalog, but rather to associate these metabolites and proteins to the modes of
action involved in pathogen control. The state of the art presented in this review
suggests promising prospects for rational, appropriate, and effective use of the
biocontrol potential offered by the huge diversity of fungal metabolites and
proteins.
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1 Introduction

Soil-borne diseases are a permanent acute issue in agriculture because means for pest
and disease control in complex environments are limited. The traditional approach of
soil-borne disease control consists in trying to eradicate the pathogens from the soil.
This has led to the use of very dangerous biocides whose side effects often result in
increased phytosanitary risks related to the acquisition of resistance by pathogens or
the emergence of new pest populations. These biocides also affect the entire soil-
borne biota and destroy the natural regulation mechanisms among populations, as in
disease-suppressive soils [1–3]. Microorganisms, and also the soil microfauna,
directly or indirectly interact through parasitism or antibiosis, amensalism or com-
petition for the exploitation of common resources. They also interact via plants by
priming plant defense reactions and via rhizodeposits that in turn may select
microbial populations in the rhizosphere [2, 4]. The soil interferes with the relation-
ships between and among microorganisms, pathogens, and plants in several ways,
and it can modify the interactions among microorganisms themselves [5, 6]. Differ-
ent situations in which such biotic and abiotic interactions may play a role in plant
health have been described all around the world. They correspond to soils in which
disease caused by a type of pathogen to a host plant type is weakly or not at all
expressed, as if disease suppression was a constitutive feature of the biota in these
soils. In other situations, disease suppression is acquired gradually thanks to the use
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of farming practices including organic amendments and specific green fertilizers,
appropriate crop rotation schemes, or on the contrary extended monocultures.
However, the outcomes of disease suppression management are frequently variable
and not sustainable yet. Disease suppression has been demonstrated for a wide range
of soil-borne plant pathogens including bacteria, nematodes, oomycetes, and fungi
[7–11].

All these situations fall within the concept of soil suppressiveness proposed by
Cook and Baker [12], namely, a suppressive soil is a soil in which the pathogen does
not establish, or establishes but causes little or no damage, or establishes and causes
disease for a while but thereafter the disease becomes less severe although the
pathogen may persist in the soil. However, even if all these situations pertain to
the same concept, each of them is very specific and involves different mechanisms,
with (i) different unevenly distributed soil microorganisms, or (ii) different functions
encoded by genes of various taxonomic origins but expressed according to environ-
mental conditions, or (iii) both. Apart from some cases of acquired soil suppressive-
ness, such as take-all disease for which 2,4-diacetylphloroglucinol produced by
Pseudomonas populations is involved in the suppression of Gaeumannomyces
graminis var. tritici [9], so far attempts at deciphering the mechanisms involved in
soil suppressiveness have revealed a limited number of genes or proteins, enzymes
or secondary metabolites [13].

Conversely, studies of the modes of action of biocontrol agents and research
efforts devoted to plant–pathogen interactions at the cellular and molecular levels
have helped to highlight enzymes, secondary metabolites, and signal molecules that
may act alone or in interaction in pathogen suppression [14]. A large number of
metabolites belonging to different biochemical families have been described for their
ability to inhibit the growth of plant pathogenic fungi. Much work on the genetics of
biological control using fungal antagonists has been done, mainly with the genus
Trichoderma [15–18]. Previous reviews had focused on this genus [19, 20], but they
also described expressed genes involved in the modes of action of many other
biocontrol fungi such as Chlonostachys rosea, Coniothyrium minitans, Pseudozyma
sp., Stachybotrys elegans, Verticillium biguttatum, and the oomycete Pythium
oligandrum [21–26]. All these studies make up a complex database that should be
used to better understand the successes but also the failures encountered in biological
control and in integrated pest management. The presence or absence of a given set of
these metabolites in a complex environment could indeed be an indicator of biolog-
ical activity capable of controlling or not the infectious activity of targeted or
nontargeted pathogenic agents. For example, this could be a way to assess the risk
of growing a given crop sensitive to the pathogen(s) or to evaluate the phytosanitary
impact of innovative agricultural practices. However, all these data are particularly
scattered in the literature, which is very abundant but should be used cautiously.
Some metabolites were described more than 30 years ago but have never been
exploited since. Others have been detected by chemists mainly interested in their
physico-chemical structure, not by plant pathologists interested in the biological
control of pathogens. Therefore, the biological significance of many of these metab-
olites remains to be validated because in most cases only in vitro activity has been
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demonstrated. We do not claim to be exhaustive in this chapter. However, we went
through an abundant literature and tried to list metabolites, enzymes, and other
proteins described to have a potential role in the control of soil-borne fungal
pathogens or post-harvest pathogens. Depending on studies, metabolites/proteins
and/or their encoding genes have been identified. Biochemical characterization of
proteins usually makes it possible to determine the genes encoding them, and on the
other hand, knowing the gene leads to the protein. We do not aim to provide a
descriptive catalog, but rather to associate these metabolites to the modes of action
involved in the control of pathogens. These modes of action are antibiosis, microbial
competition for nutrients and root colonization, mycoparasitism, host recognition,
and induction of plant defense reactions (Fig. 1). They are successively discussed
below. For each of them, we rank the various metabolites and proteins according to

Mycoparasitism

ChitinasesProteases

Glucanases

Root colonization
competition

Antibiosis

TasSwo

TasHyd1

Chit42
Chi46Prb1

Ss1 0

Bgn1 3.1A1 3gluc

Sa76 Nag1

Gliotoxins

Strobilurins

Peptaibols

ThPg1

Nutrient
competition

Rhodotorulic acid

Harzianic acid

Induced systemic
resistance

Pod1 6 PAP

Chit42
Healthy plant

Pulcherrimin

B1 6gluc

Fig. 1 Schematic representation of the five main modes of action by which biocontrol agents
antagonize pathogenic fungi and promote the growth of healthy plants. Chit42 Chitinase 42KDa,
Chi46 Chitinase 46KDa. Nag1 N-acetyl-beta-d-glucosaminidase, Ss10 subtilisin-like serine prote-
ase 10, Prb1 basic proteinase 1, Sa76 Secreted aspartic protease 76, Pod1 Pythium oligandrum
D-type cell wall protein 1, 6PAP 6-pentyl-α-pyrone, ThPg1 Trichoderma harzianum Endopolyga-
lacturonase 1, TasHyd1 Trichoderma asperellum Hydrophobin 1, TasSwo Trichoderma asperellum
Swollenin
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their biochemical families. They are presented in Tables. In parallel, we explain the
mechanisms whereby some of these metabolites directly or indirectly affect the
metabolism of pathogens by picking a few examples from the many cases presented
in the Tables.

2 Antibiosis

Fungal antibiosis is related to the production of secondary metabolites by fungi (e.g.,
Trichoderma spp., Gliocladium spp.). It results in microbial antagonism. Many
different molecules involved in the suppression of several soil-borne plant pathogens
have been described (Table 1, Fig. 2). They include pyrones, polyketides, peptaibols,
gliotoxins, fatty acids, and glycolipids or strobilurins. They are toxic to pathogenic
fungi at concentrations that depend on the compound and on the target [2]. Many
fungi are known to produce secondary metabolites but these molecules are not
always tested against pathogenic fungi. Table 1 groups the main fungal metabolites
for which deleterious effects on pathogenic fungi or oomycetes have been demon-
strated. Growth inhibition is generally observed, but the molecules are rarely tested
in vivo for decreased symptoms on plants. In addition, the related mechanism is not
always well understood. Different proteins and genes involved in the synthesis of
secondary metabolites are also presented in Table 2.

2.1 Pyrones

One of the major pyrones produced by Trichoderma spp. is 6-pentyl-alpha-pyrone
(6PAP) (Table 1). It was first isolated from Trichoderma viride [135], and it is
produced by several Trichoderma species, among which Trichoderma harzianum
and Trichoderma atroviride [30, 136]. 6PAP displays strong antifungal activity
against several phytopathogenic fungi such as Rhizoctonia solani, Botrytis cinerea,
and Fusarium species [27–30]. Although 6PAP is the best studied pyrone in
Trichoderma spp., pyrone-like metabolites may explain why different Trichoderma
harzianum strains more or less successfully antagonize Gaeumannomyces graminis
var. tritici [137]. 6PAP is derived from the oxidation of the fatty acid linoleic acid.
Although the main steps of 6PAP synthesis in Trichoderma harzianum have been
elucidated, the enzymes involved in its biosynthesis pathway still need to be
identified. A lipoxygenase gene found in Trichoderma atroviride may be involved,
but no functional characterization has yet been performed [104] (Table 2). 6PAP is
weakly toxic, biodegradable, and used as a food additive, so it is a good candidate for
the development of new agricultural fungicides. To date, the major limitation to its
field use is related to the cost of its synthesis. Only nontargeted pre- or post-harvest
applications are economically conceivable. That is why several cheaper analogs
have been synthesized and tested in vitro and/or in vivo for their antifungal activity
[138, 139]. For example, (R)-5,6-dihydro-6-pentyl-2H-pyran-2-one displayed prom-
ising antifungal activity in vitro against Penicillium species, whereas 6-butyl-,
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6-pentyl-, 6-hexyl-, and 6-heptyl-substituted 4-methyl pyrones were active against
Macrophomina phaseolina, Pythium aphanidermatum, Pythium debaryanum, Rhi-
zoctonia bataticola, Rhizoctonia solani, and Sclerotium rolfsii. Among them, only
4-methyl-6-hexyl-alpha-pyrone has been tested in vivo. The percentage of healthy
tomato plants was higher in treated Sclerotium rolfsii-infected soil than in the
untreated control [139].

The biological effects of 6PAP are contrasted. Despite classical decreased fungal
growth, it may reduce the production of fusaric acid and deoxynivalenol by Fusar-
ium moniliforme and Fusarium graminearum, respectively [140, 141]. Moreover,
Vinale et al. [142] reported auxin-like activity of 6PAP on pea, tomato, and canola,
with a plant-growth-promoting effect at low concentrations (10�6 M) and a plant-
growth-inhibiting effect at higher concentrations.

Pyrones with antifungal activity were also identified from the endophytic fungi
Nigrospora sp. YB-141 and Botryosphaeria dothidea KJ-1 [32, 33] (Table 1).
Solanopyrones C, N, and O are active against Botrytis cinerea and Penicillium
islandicum, whereas pycnophorin is active against Alternaria solani.

2.2 Polyketides

Polyketides represent a highly diverse group of molecules that have carbon skele-
tons, including polyphenols, macrolides, polyenes, enediynes, and polyethers.
Although they are structurally and functionally diverse, their synthesis results from
the controlled assembly of acetate and propionate. Numerous polyketides have an
antagonistic effect on various pathogens (Table 1), but little is known about their role
in antagonism. Studies on mammal cells suggest that hypothemycin and monorden
inhibit a subset of protein kinases and the Hsp90 molecular chaperone, respectively
[143, 144]. However, full demonstrations in targeted fungi are still lacking.
According to the studies conducted on mammal cells and fungal human pathogens,
griseofulvin inhibits mitosis by interfering with microtubule dynamics
[145]. Among polyketides, chaetoviridin and chaetoglobosin from Chaetomium
globosum are particularly well represented. In vivo assays showed that both
chaetoviridin A and B can reduce rice blast severity by at least 88 % at 62.5 μg/
mL [36]. Similarly, griseofulvin from Xylaria sp. decreased rice sheath blight, wheat
leaf rust, and barley powdery mildew symptoms by at least 87 % at 50 μg/mL [40].

Polyketide synthases (PKSs) are poorly studied among biocontrol agents
(Table 2). The functional characterization of the biosynthetic pathway of
chaetoviridin A in Chaetomium globosum is recent [36]. Among others, a gene
cluster encodes a highly reducing PKS (HR-PKS) and a nonreducing PKS
(NR-PKS). HR-PKS partners with NR-PKS (in sequential and convergent fashions)
to produce structurally distinct fragments incorporated into chaetoviridin A
[107]. Genomes of Trichoderma spp. are rich in polyketide synthase genes,
suggesting a predominant role of polyketides in the biology of the fungus. The
genomes of Trichoderma virens and Trichoderma atroviride encode 18 PKSs, and
the genome of Trichoderma reesei encodes 11 [146]. Two Trichoderma atroviride
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PKS genes were expressed under Rhizoctonia solani challenge, indicating a possible
role in mycoparasitism [15, 147]. Moreover, deletion of the Trichoderma reesei pks4
gene reduced antagonistic activity and conidial cell wall stability and influenced the
regulation of other PKS-encoding genes [105].

2.3 Peptaibols

Peptaibols are short-chain linear amphipathic polypeptides containing a high pro-
portion of non-proteinogenic amino acids such as alpha-aminoisobutyrate (Aib) and
isovaline (Iva). They are classified into three groups depending on their chain
lengths: 6- to 10-residue lipopeptaibols, 11- to 16-residue peptaibols, and 18- to
20-residue peptaibols. The N-terminal end of the peptide is usually acetylated or
acylated according to the group, whereas the C-terminal end is an amino alcohol
[148]. Peptaibols are produced by the genera Trichoderma and Gliocladium, as well
as Acremonium, Emericellopsis, and Paecilomyces. They are usually secreted as a
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Table 2 Fungal and oomycete proteins associated with antagonism and involved in the synthesis
of secondary metabolites deleterious to soil-borne pathogens

Protein
Encoding
gene

Source fungus
or oomycete Target pathogen References

Pyrone biosynthesis pathway

Lipoxygenase N.A. Trichoderma
atroviride

Rhizoctonia solani [104]

Polyketide biosynthesis pathway

Polyketide synthases
(PKS)

pks4 Trichoderma
atroviride,
T. reesei,
T. virens

Alternaria alternata,
R. solani, Sclerotinia
sclerotiorum

[105]

N.A. Chaetomium
cupreum

R. solani [106]

Highly reducing PKS N.A. Chaetomium
globosum

N.A. [107]

Nonreducing PKS N.A. Chaetomium
globosum

N.A. [107]

Peptaibol biosynthesis pathway

Non-ribosomal peptide
synthetases (NRPS)

tex1 Trichoderma
virens

N.A. [108, 109]

tex2, tex3 Trichoderma
virens

N.A. [110]

pes Trichoderma
asperellum

N.A. [111]

salps2 Trichoderma
harzianum

N.A. [112]

Gliotoxin and gliovirin biosynthesis pathway

Aminotransferase gliI Coniothyrium
minitans,
Trichoderma
virens

Pythium oligandrum,
Rhizoctonia solani,
Sclerotinia
sclerotiorum

[25, 113,
114]

GliC Cytochrome P450 gliC Coniothyrium
minitans,
Trichoderma
virens

Pythium oligandrum,
Rhizoctonia solani,
Sclerotinia
sclerotiorum

[25, 113,
114]

gliF Trichoderma
virens

Pythium oligandrum,
Rhizoctonia solani

[113, 114]

ɣ-glutamyl
cyclotransferase-like
protein

gliK Coniothyrium
minitans,
Trichoderma
virens

Pythium oligandrum,
Rhizoctonia solani,
Sclerotinia
sclerotiorum

[25, 113,
114]

Glutathione
S-transferase

gliG Coniothyrium
minitans,
Trichoderma
virens

Pythium oligandrum,
Rhizoctonia solani,
Sclerotinia
sclerotiorum

[25, 113,
114]

Membrane dipeptidase gliJ Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

(continued)
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Table 2 (continued)

Protein
Encoding
gene

Source fungus
or oomycete Target pathogen References

Methyltransferase gliN Coniothyrium
minitans,
Trichoderma
virens

Pythium oligandrum,
Rhizoctonia solani,
Sclerotinia
sclerotiorum

[25, 113,
114]

NRPS modules gliP Coniothyrium
minitans,
Trichoderma
virens

Pythium oligandrum,
Rhizoctonia solani,
Sclerotinia
sclerotiorum

[25, 113,
114]

O-methyltransferase gliM Trichoderma
virens

Pythium oligandrum,
Rhizoctonia solani

[113, 114]

Flocculosin biosynthesis pathway

Acetyl-transferases fat2, fat3 Pseudozyma
flocculosa

Powdery mildew
pathogens

[26]

ABC multidrug
transporter

atr1 Pseudozyma
flocculosa

Powdery mildew
pathogens

[26]

BAHD family
acyltransferase

fat1 Pseudozyma
flocculosa

Powdery mildew
pathogens

[26]

C2H2 zinc finger protein rfl1 Pseudozyma
flocculosa

Powdery mildew
pathogens

[26]

Cytochrome P450
monooxygenases

cyp1,
cyp2

Pseudozyma
flocculosa

Powdery mildew
pathogens

[26]

Fatty acid synthase fas2 Pseudozyma
flocculosa

Powdery mildew
pathogens

[26]

Hydrolase fhd1 Pseudozyma
flocculosa

Powdery mildew
pathogens

[26]

Hypothetical protein orf1 Pseudozyma
flocculosa

Powdery mildew
pathogens

[26]

UDP-
glycosyltransferase

fgt1 Pseudozyma
flocculosa

Powdery mildew
pathogens

[26]

Terpenoid/steroid synthesis pathway

Adh oxidoreductase
short chain
dehydrogenase

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

C-8 sterol isomerase N.A. Chaetomium
cupreum

Rhizoctonia solani [106, 115]

Cytochrome P450
monooxygenases

tri4 Trichoderma
arundinaceum

Botrytis cinerea,
Rhizoctonia solani

[68]

tri11 Trichoderma
arundinaceum

Kluyveromyces
marxianus

[116]

Delta (24)-sterol
C-methyltransferase

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

Hydroxy-
methylglutaryl-CoA
reductase

hmgR Trichoderma
harzianum

Fusarium oxysporum,
Rhizoctonia solani

[117]

(continued)
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Table 2 (continued)

Protein
Encoding
gene

Source fungus
or oomycete Target pathogen References

Major facilitator
superfamily transporter

Thmfs1 Trichoderma
harzianum

Aspergillus niger,
Botrytis cinerea,
Fusarium
oxysporium,
Gibberella saubinetii,
Rhizoctonia solani

[118]

O-methylsterigmatocystin
oxidoreductase,
cytochrome P450

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

Oxidosqualene
lanosterol-cyclase

erg7 Trichoderma
harzianum

N.A. [117]

Oxysterol-binding
protein, ergosterol
synthesis

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

Regulatory proteins tri6, tri10 Trichoderma
arundinaceum

Kluyveromyces
marxianus

[116]

Squalene epoxidase erg1 Trichoderma
harzianum

N.A. [119]

Sterol-C5-desaturase N.A. Chaetomium
cupreum

Rhizoctonia solani [106, 115]

Sterol C-22 desaturase N.A. Chaetomium
cupreum

Rhizoctonia solani,
Sclerotinia
sclerotiorum

[25, 106,
115]

Trichothecene 15-O-
acetyltransferase

tri3 Trichoderma
arundinaceum

Kluyveromyces
marxianus

[116]

Trichothecene efflux
pump

tri12 Trichoderma
arundinaceum

Kluyveromyces
marxianus

[116]

TRI14 protein tri14 Trichoderma
arundinaceum

Kluyveromyces
marxianus

[116]

Trichodiene synthase tri5 Trichoderma
arundinaceum

Botrytis cinerea,
Rhizoctonia solani

[120]

Thtri5 Trichoderma
harzianum

N.A. [121]

Oxidases

Glucose oxidase Gox Talaromyces
flavus

Verticillium dahliae [122]

N.A. Aspergillus
tubingensis

Fusarium solani [123]

L-amino acid oxidase Th-LAAO Trichoderma
harzianum

Rhizoctonia solani [400]

NADPH oxidase nox1 Trichoderma
harzianum

Pythium ultimum [124]

Other proteins involved in secondary metabolites biosynthesis

Gluconate
dehydrogenase

N.A. Trichoderma
harzianum

Sclerotinia
sclerotiorum

(continued)
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Table 2 (continued)

Protein
Encoding
gene

Source fungus
or oomycete Target pathogen References

Monooxygenases G3 Trichoderma
harzianum

Sclerotium
cepivorum,
Sclerotinia minor,
Sclerotinia
sclerotiorum

[125]

Oxaloacetate
acetylhydrolase

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

Peroxisome biogenesis
factor 6

CmPEX6 Coniothyrium
minitans

Sclerotinia
sclerotiorum

[126]

4-phosphopantetheinyl
transferase

ppt1 Trichoderma
virens

Alternaria solani,
Botrytis cinerea,
Fusarium oxysporum,
Fusarium spp.,
Phytophthora
capsici, Rhizoctonia
solani, Sclerotium
cepivorum, S. rolfsii

[127]

Protection of antagonistic fungus against toxins

Transporters

ABC transporters CrabcG5 Clonostachys
rosea

Fusarium
graminearum

[128]

Taabc2 Trichoderma
atroviride

Beauveria bassiana,
Botrytis cinerea,
Fusarium spp.,
Pythium ultimum,
Rhizoctonia solani

[129]

N.A. Chaetomium
cupreum

Rhizoctonia solani [106, 115]

ABC-type multidrug
transport system

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

Leptomycin B resistance
protein, ABC transporter

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

Multidrug resistance
protein

N.A. Pythium
oligandrum

Phytophthora
infestans

[21]

Na + �transporting
ATPase ENA-1

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

Inhibitors

Cystatin-like protease
inhibitor

N.A. Pythium
oligandrum

Pythium infestans [21]

Four domain protease
inhibitor

N.A. Pythium
oligandrum

Pythium infestans [21]

Protease inhibitor, agrin-
like protein

N.A. Pythium
oligandrum

Pythium infestans [21]

Protease inhibitor, mini-
agrin

N.A. Pythium
oligandrum

Pythium infestans [21]

(continued)
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mixture of isoforms, and more than 300 sequences have already been identified
[20]. Their antifungal activity is mainly studied in Trichoderma and has been
demonstrated for atroviridins and neoatroviridins (Trichoderma atroviride),
trichorzins and trichorzianin TA (Trichoderma harzianum), trichokonins
(Trichoderma pseudokoningii) [53, 58, 149] (Table 1). The biological activity of
peptaibols generally derives from their membrane-modifying properties, their ability

Table 2 (continued)

Protein
Encoding
gene

Source fungus
or oomycete Target pathogen References

Detoxification

Beta-lactamases N.A. Coniothyrium
minitans,
Pythium
oligandrum

Pythium infestans,
Sclerotinia
sclerotiorum

[21, 25]

Copper amine oxidase N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

Flavin-containing amine
oxidase

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

Hydroperoxide
glutathione peroxidase

N.A. Pythium
oligandrum

Pythium infestans [21]

Oxalate decarboxylase Cmoxdc1 Coniothyrium
minitans

Sclerotinia
sclerotiorum

[130]

Pisatin demethylase,
Cytochrome P450

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

Pyridine nucleotide-
disulphide
oxidoreductase

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

Thioredoxin peroxidase N.A. Pythium
oligandrum

Pythium infestans [21]

Zearalenone
lactonohydrolases

zhd Chlonostachys
catenulatum,
C. rosea,
Trichoderma
aggressivum

Fusarium culmorum,
F. graminearum

[131]

zhd101 Chlonostachys
rosea

Fusarium
graminearum

[132, 133]

DNA repair

8-oxoguanine DNA
glycosylase

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

Parp-like, Poly
(ADP-ribose)
polymerase

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

PIF1 DNA helicase PIF1 Coniothyrium
minitans

Sclerotinia
sclerotiorum

[134]

N.A. not available
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to form pores in lipid membranes [150, 151], and their ability to induce systemic
resistance in plants against microbial invasion [110]. However, in 1996, Lorito and
collaborators demonstrated that the peptaibol trichorzianin TA produced by
Trichoderma harzianum inhibited Botrytis cinerea beta-1,3-glucan synthase activity
in vitro [59]. In addition, this inhibition seemed to be synergistic with the action of
beta-1,3-glucanase from Trichoderma harzianum on Botrytis cinerea cell walls. The
authors suggest that membrane leakage is a nonspecific effect of trichorzianin TA at
high concentrations, whereas beta-1,3-glucan synthase inhibition is a specific effect
at low concentrations. Whether other fungal cell wall synthesis enzymes are affected
and other peptaibols have similar inhibitory activity still remains to be determined.
Peptaibols are synthesized by non-ribosomal peptide synthetases (NRPSs), large
multifunctional enzyme domains that assemble different compounds from a vast
range of precursors, e.g., non-proteinogenic amino acids and hydroxy or carboxyl
acids [110, 152]. Several NRPSs involved in the production of peptaibols in
Trichoderma spp. have been identified (Table 2). However, characterization of
NRPSs from other biological control agents is still lacking.

2.4 Gliotoxins

Gliotoxins are sulfur-containing mycotoxins produced by several fungal species, e.
g., Gliocladium fimbriatum (hence their name), Trichoderma virens (Gliocladium
virens), Aspergillus fumigatus, Penicillium obscurum, and Acremonium sp. [61, 75,
153–155]. They have antifungal, antimicrobial, antiviral, and immunomodulating
properties [151]. In particular, their antifungal activity has been demonstrated in
Trichoderma virens and Acremonium sp. (Table 1). It is synergistically enhanced by
the cell-wall-degrading enzymes of the biocontrol agents Trichoderma harzianum
and Trichoderma virens [156]. Little is known regarding the modes of action of
gliotoxins in fungal cells during antagonistic interactions. However, studies on
mammal cells suggest that the dilsulfide bridge of gliotoxins reacts with the thiol
groups of a number of enzymes, resulting in the inhibition of several activities
including the activity of the proteasome and apoptosis induction [157]. The genes
involved in gliotoxin biosynthesis were identified in both Trichoderma reesei and
Trichoderma virens [25, 60, 113, 114] (Table 2). They encode a major facilitator-
type transporter (gliA), a glutathione S-transferase (gliG), a hypothetical protein
(gliK), a 1-aminocyclopropane-1-carboxylic acid synthase (gliI), a dipeptidase
(gliJ), a two-module non-ribosomal peptide synthetase (gliP), two cytochrome
P450 monooxygenases (gliC and gliF), two methyl transferases (gliM and gliN), a
thioredoxin reductase (gliT), and a zinc finger transcription factor (GliZ). Some
of them, in particular gliK, gliN, gliC, and gliP, are upregulated during
mycoparasitism of Rhizoctonia solani by Trichoderma virens [114]. The organiza-
tion and expression of the gliotoxin biosynthesis genes during sclerotial
mycoparasitism by Coniothyrium minitans has also been studied. Despite a limited

2 Fungal Genes and Metabolites Associated with the Biocontrol of Soil-borne. . . 53



degree of synteny, a number of these genes are upregulated during antagonistic
interactions too [25].

2.5 Fatty acids and Glycolipids

The biocontrol fungus Pseudozyma flocculosa is well known for its ability to secrete
fatty acids and glycolipids with antifungal activity. Several fatty acids like
6-methyl-9-heptadecenoic acid [63], 4-methyl-7,11-heptadecadienal and 4-methyl-
7,11-heptadecadienoic acid [64], or cis-9-heptadecenoic acid [65, 158] have been
purified and tested against several plant pathogens such as Botrytis cinerea,
Cladosporium cucumerinum, Fusarium oxysporum f. sp. lycopersici, and
Phytophthora infestans (Table 1). The current model suggests that antifungal fatty
acids are uniformly distributed within target fungal membranes, which increases
membrane fluidity and alters membrane integrity [65, 158]. High fatty acid con-
centrations may result in changes in membrane permeability and cytoplasmic
disintegration [159, 160]. Fungi with high sterol contents are less impacted than
fungi with low sterol contents because sterols stabilize the fatty acyl chain of
phospholipids in the presence of antifungal fatty acids and thus maintain membrane
integrity [65]. The glycolipid flocculosin produced by Pseudozyma flocculosa is
active against Botrytis cinerea, Phomopsis sp., Phytophthora infestans, and
Pythium aphanidermatum [62]. It causes rapid leakage of intracellular potassium
and inhibits acidification of the medium by plasma membrane ATPases, which
disrupts the surface of the fungal pathogen membrane [161]. The identification of
the flocculosin biosynthesis pathway in Pseudozyma flocculosa is recent [26]
(Table 2). A gene cluster encodes two cytochrome P450 monooxygenases (cyp1
and cyp2), a single-chain fatty acid synthase (fas2), a glycosyl transferase (fgt1), a
hydroxylase (fhd1), an acyltransferase (fat1), two putative acetyl-transferases (fat2
and fat3), and orf1 that exhibits no homology to known proteins and is probably
involved in glycolipid synthesis. Genes encoding the ATP-binding cassette (ABC)
transporter (atr1) and the C2H2 zinc finger transcription factor (rfl1) may be
involved in flocculosin export and gene cluster regulation, respectively. To date,
only two other Pseudozyma species, i.e., Pseudozyma fusiformata [67] and
Pseudozyma graminicola [162], along with Sympodiomycopsis paphiopedili
[163], Cryptococcus humicola [66], and the plant pathogen Ustilago maydis [164]
are known to produce similar antibiotic glycolipids. For example, ustilagic acid
produced by Pseudozyma fusiformata is active against Sclerotinia sclerotiorum and
Phomopsis helianthi [66, 67] (Table 1).

2.6 Terpenes

Terpenes include a wide range of molecules that consist of multiples of the formula
C5H8. Depending on the number of carbon atoms, they are classified as hemiterpenes
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(C5), monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), sesterpenes (C25),
triterpenes (C30), tetraterpenes (C40), or polyterpenes. Each class includes linear and
cyclic molecules; cyclization is generated by terpene cyclases. Some terpenes have
antifungal activity, such as the three trichothecenes (sesquiterpenes) trichodermin
from Stachybotrys cylindrospora, trichotecin from Trichothecium roseum and
Stachybotrys elegans, and harzianum A from Trichoderma arundinaceum, as well
as the triterpene viridin from Trichoderma viride. Others are essential for cell
membrane fluidity, like the triterpene ergosterol (Table 1).

The mode of action of trichothecenes is generally associated with inhibition of
cytosolic protein synthesis in yeast and mammalian cells [165–167]. However,
multiple other detrimental effects, including inhibition of DNA synthesis, RNA
synthesis, cell division, and disruption of membrane structure and integrity and
mitochondrial functions have been recorded in eukaryotic cells [168]. Therefore it is
hard to tell whether they are primary or secondary consequences of translation arrest
in the cytosol. In addition, McLaughlin and colleagues [169] showed that
trichothecin inhibited mitochondrial translation in a dose-dependent manner and
altered mitochondrial membrane morphology in Saccharomyces cerevisiae. Trans-
lation arrest in mitochondria is not due to the inhibition of cytosolic protein
synthesis or alteration of mitochondrial membranes [170]. In addition, higher
concentrations of trichothecin have an effect on both the inhibition and alteration
above mentioned, whereas 1 μM trichothecin already impacts translation in mito-
chondria. All these data suggest that in yeast, trichothecin first targets mitochondrial
translation before cytosolic translation. Whether this mechanism can be generalized
to other fungi remains to be proved.

In Trichoderma, biosynthesis of terpene compounds depends primarily on
hmgR, a gene encoding a hydroxy-methylglutaryl-Coenzyme A reductase
(HMGR) that converts hydroxy-methylglutaryl-CoA into mevalonate (Table 2).
Hemiterpenes, monoterpenes, diterpenes, triterpenes, sesquiterpenes, and trichothe-
cenes are subsequently synthesized depending on different cluster genes and ter-
pene cyclases. In Trichoderma harzianum, partial silencing of hmgR resulted in
lower antifungal activity against Fusarium oxysporum and Rhizoctonia solani
[117], suggesting that terpenoid compounds play a crucial role in antagonism.
Baker et al. [146] inventoried 3 terpene cyclases in Trichoderma atroviride, 3 in
Trichoderma virens, and 6 in Trichoderma reesei. Little is presently known about
which terpene cyclase is involved in the biosynthesis of which compound. In 2006,
Mukherjee et al. [171] identified a gene cluster in Trichoderma virens named vir,
whose gene expression was null in a mutant that lacked viridin production. There-
fore they hypothesized a possible role in viridin biosynthesis. However, subsequent
experiments showed that it is rather involved in the synthesis of three categories of
volatile compounds: 24 sesquiterpenes, 5 monoterpenes, and 5 C8 alkanes
[172]. The role of most of them remains to be determined. They have no effect
on the ability of Trichoderma virens to colonize maize roots, but they slightly
promote fungal growth. Antifungal activity cannot be ruled out, but experimental
evidence is lacking.
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Harzianum A is a non-phytotoxic trichothecene that antagonizes fungal plant
pathogens and induces genes involved in plant defense (Table 1). The tri gene
cluster involved in harzianum A synthesis was recently characterized in
Trichoderma arundinaceum [68, 116, 120] (Table 2). Disruption of the tri4 and
tri5 genes stopped harzianum A production and resulted in drastically reduced
biocontrol activity of the transformants against Rhizoctonia solani and Botrytis
cinerea. Moreover, the tri4 null mutant displayed reduced ability to induce
the expression of tomato plant defense-related genes against Botrytis cinerea.
The triterpene biosynthesis pathway is initiated by enzymes encoded by the erg1,
erg7, and erg9 genes that are also involved in the synthesis of viridin, a well-
known antifungal molecule. Overexpression of erg1 in Trichoderma harzianum
increased its antifungal activity against Botrytis cinerea and reduced lesion size.
Nevertheless, the ability of Trichoderma harzianum to induce salicylate-related
plant defense genes and to colonize roots is low [173]. Hence antifungal activity
and plant-Trichoderma interactions are highly regulated by the triterpene bio-
synthesis pathway and depend on intermediate or final metabolites of the
pathway.

2.7 Strobilurins/Oudemansins

Strobilurins and the structurally close oudemansins were purified for the first time in
1969 and 1979 from the basidiomycete fungus Oudemansiella mucida [85,
174]. Since then, they have been discovered in other genera such as Strobilurus,
Bolinea, Crepidotus, Mycena, and Xerula [77–81]. Strobilurins exhibit antifungal
activity against a wide variety of ascomycete, basidiomycete, and oomycete plant
pathogens, including Alternaria porri, Botrytis cinerea, Fusarium fujikuroi, Rhizoc-
tonia solani, and Pythium debaryanum (Table 1). Their mode of action is particularly
well known [175, 176]. They inhibit the electron transfer at the quinol oxidation site
in the cytochrome bc1 complex of the mitochondrial respiratory chain. Thereby they
prevent ATP synthesis and in turn energy production. They belong to the Quinone
outside Inhibitors (QoI) family of fungicides. Since their discovery, natural
strobilurins have been modified to identify analogous compounds with improved
antifungal activity, stability, and dissemination in field. They are considered as
low-risk molecules for human health and the environment [177]. The chemical
industries Syngenta and BASF commercialized strobilurin fungicides for the first
time in 1996, followed by Shionogi and Bayer [177]. Nevertheless, pathogens such
as Alternaria solani, Blumeria graminis, Magnaporthe grisea, or Plasmopara
viticola quickly revealed existing resistance [178–182]. The chemical industry is
then constantly developing new molecules and formulas to improve the control of
plant pathogens. Chemical synthesis of strobilurin and analogs is well described in
the literature [183–185]. However, little is known about the strobilurin biosynthesis
pathway. Some studies suggest that the aromatic part of strobilurin A is derived from
the shikimate pathway, whereas the aliphatic portion could originate from the
polyketide pathway [186, 187].
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2.8 Small Antifungal Proteins

Some yeasts are able to secrete killer toxins (proteins or glycoproteins) with delete-
rious effects on sensitive yeasts and fungi [95, 188]. Although they were first
discovered in Saccharomyces cerevisiae [189], these are not restricted to Saccharo-
myces but found in other yeast genera such as Candida, Cryptococcus, Hansenula,
Kluyveromyces, or Pichia. Interestingly, the producers of these toxins are able to kill
one another but are not sensitive to killer toxins they produce. Killer toxins are
thought to kill sensitive cells in a two-step manner. First, they bind to a receptor site
on the target cell wall. Then, they are supposed to interact with receptors on the cell
membrane and induce cell death via different mechanisms. Antifungal activity on
plant pathogens has been demonstrated for some of them (Table 1). A good example
is Pichia membranifaciens. Strains CYC 1106 and CYC 1086 can antagonize
Botrytis cinerea and Brettanomyces bruxellensis by secreting killer toxins PMKT
and PMKT2, respectively. These toxins have different physicochemical properties
and modes of action in sensitive yeasts [95, 190]. PMKT, an 18-kDa protein, first
interacts with β-1,6-D-glucans [191], and then with the GPI-anchored protein
CWP2p [192]. Toxins mediate cell death by forming ion-permeable channels that
disrupt the plasma membrane electrochemical gradient. This is characterized by a
potassium efflux, a sodium influx, and acidification of intracellular pH
[95]. PMTK2, a 30-kDa protein, first interacts with mannoproteins, but the second
cell membrane receptor is still unknown [97]. Unlike PMTK, PMTK2 cannot form
ion-permeable channels in liposome membranes. High doses of PMTK2 result in
cell cycle arrest followed by death, whereas low doses induce programmed cell death
[190]. The molecular mechanism affected by PMTK2 during the cell cycle is still
under investigation.

Similarly, Aspergillus giganteus and Penicillium chrysogenum secrete AFP and
PAF, respectively, two small basic cysteine-rich antifungal proteins. Antifungal
(or anti-oomycete) activity of AFP has been demonstrated against Erysiphe
graminis, Fusarium moniliforme, Fusarium oxysporum, Magnaporthe grisea, and
Phytophthora infestans [100], whereas antifungal activity of PAF has been shown
against Aspergillus niger, Blumeria graminis f. sp. hordei, Botrytis cinerea,
Cochliobolus carbonum, Fusarium oxysporum, and Puccinia recondita f. sp. tritici
[98, 99]. AFP specifically localizes to the cell wall compartment of the target
pathogen and inhibits chitin synthase activity [101, 193]. In vivo, AFP treatment
protects tomato plants from infection by Fusarium oxysporum f. sp. lycopersici
[101]. As for PAF, it localizes to the cytoplasm of sensitive pathogens and causes
plasma membrane hyperpolarization, ion channel activation, an increase in reactive
oxygen species in the cell, and finally programmed cell death [194, 195].

2.9 Reactive Oxygen Species

Reactive oxygen species (ROS) are highly oxidant molecules that contain oxygen. In
the absence of stress, local bursts of ROS play key roles as second messengers in
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fungal cell signaling, cell differentiation, or virulence [196–198]. However, ROS
production is also the first event following pathogenic interactions in eukaryotic
cells, as a defense reaction [199, 200]. High concentrations of ROS react
nonspecifically and rapidly with macromolecules and cause molecular damage
such as DNA mutation, lipid peroxidation, and protein oxidation, which can result
in cell death [201]. Some antagonistic fungi use this property to kill target pathogens.
For example, Talaromyces flavus secretes a glucose oxidase to antagonize
Verticillium dahliae [122, 202] (Table 2). Its antifungal properties are probably
due to the production of hydrogen peroxide during the catalytic oxidation of glucose
by the enzyme. Microsclerotium germination and subsequent hyphal growth of
Verticillium dahliae are inhibited in the presence of glucose [122]. A glucose oxidase
from Aspergillus tubingensis was recently isolated [123]. It displayed antifungal
activity against Fusarium solani in vitro and in vivo. In in vivo assays, preventive
application of glucose oxidase on tomato plants decreased symptom severity by
55 % as compared to the control, whereas curative applications totally inhibited the
incidence of the disease.

NADPH oxidases (Nox) are also well-known producers of ROS during patho-
genic interactions. Montero-Barrientos and collaborators [124] studied the nox1
gene of Trichoderma harzianum and tested its role in antagonism against plant
pathogens using overexpression mutants. They showed that nox1 is slightly
upregulated during direct challenge by Pythium ultimum. In addition, overexpression
of the nox1 gene was accompanied by increased ROS production in the presence of
Pythium ultimum. Transformants exhibited higher hydrolytic patterns of protease,
cellulase, and chitinase activity than the wild type.

2.10 Proteins Protecting Antagonistic Fungi Against Toxins

The efficiency of fungal antagonism towards soil-borne pathogens relies not only on
the production and secretion of antimicrobial compounds but also on the capacity of
antagonistic fungi to protect themselves against toxins. Several genes that encode
ABC transporters and detoxify enzymes are expressed by biocontrol agents to
protect them against toxins produced by pathogens or by themselves (Table 2). For
example, Trichoderma atroviride Taabc2 deletion mutants displayed reduced toler-
ance to fungal inhibitory compounds, including their own, and were impaired in their
ability to protect tomato plants from Pythium ultimum and Rhizoctonia solani attacks
[129]. Similarly, null mutation of Clonostachys rosea CrabcG5 resulted in reduced
antagonism towards Fusarium graminearum and failed to protect barley seedlings
from foot rot diseases [128].

Cmoxdc1, an oxalate decarboxylase gene from Coniothyrium minitans, was
recently cloned and found involved in sclerotia mycoparasitism and antibiosis
[130]. The enzyme degrades oxalic acid, a multifunctional virulence factor of
Sclerotinia sclerotiorum, toxic to plants and to Coniothyrium minitans
[203–207]. In the presence of oxalic acid, a deletion mutant of Cmoxdc1 displayed
reduced ability to infect Sclerotinia sclerotiorum. Transcript levels of the
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mycoparasitism-related genes Cmch1 and Cmg1 were lower, and protease secretion
was abolished. Nevertheless, the antifungal activity of culture filtrates increased,
probably because of the acidic pH condition generated by oxalic acid in the absence
of its degradation by oxalate decarboxylase. DNA repair is also essential during
sclerotial mycoparasitism by Coniothyrium minitans. Disruption of the
Coniothyrium minitans PIF1 DNA helicase gene altered morphology, reduced
growth rates, and cut down the ability to mycoparasitize sclerotia of Sclerotinia
sclerotiorum [134]. The authors suggest that PIF1 may ensure mitochondrial stabil-
ity in the presence of endogenous or exogenous reactive oxygen species produced
during the antagonistic interaction.

Zearalenone (ZEA) is one of the most dangerous mycotoxins produced by
Fusarium species, notably Fusarium graminearum and Fusarium culmorum. ZEA
degradation is a useful self-protecting strategy. Genes encoding zearalenone
lactonohydrolase have been isolated from the two biocontrol fungi Clonostachys
rosea and Trichoderma aggressivum (Table 2). In Clonostachys rosea, zhd101 is
directly linked to the antagonistic activity of the fungus. A zhd101-deletion mutant
was unable to detoxify ZEA; it displayed lower inhibition of a ZEA-producing
Fusarium graminearum strain and failed to protect wheat seedlings against foot
rot [132]. Transcriptomic studies performed on Coniothyrium minitans and Pythium
oligandrum during the antagonistic interaction also suggest that ROS may be
detoxified by hydroperoxide glutathione peroxidases and thioredoxin peroxidases,
and proteases may be inhibited by protein inhibitors [21, 25].

3 Microbial Competition

3.1 Competition for Nutrients

In soils, trophic competition takes place for nutrients and for colonization of the plant
tissues. When resources are limited, competition for nutrients regulates the popula-
tion dynamics of microorganisms that share the same ecological niche and have the
same physiological requirements [208]. Competition for nutrients, especially for
carbon, is an important mode of action of some biological control agents, such as
Trichoderma spp. [209]. Competition for carbon between pathogenic and nonpatho-
genic strains of Fusarium oxysporum is one of the main mechanisms resulting in the
suppression of Fusarium wilt [210].

Biomass components, including cellulose, hemicelluloses, and lignins, are con-
sidered as important determinants of the antagonistic capacity of biocontrol fungi.
They are supposed to be inherent in the saprophytic lifestyle and in competition with
plant pathogens [211, 212]. Many of the presently identified genes encoding
biomass-degrading enzymes are genes from the fungal decomposers of forest litter.
But many are also and surprisingly from species of the Trichoderma genus, probably
the most studied fungal biocontrol agent [213]. These saprophytic fungi secrete
various hydrolytic enzymes such as proteases, amylases, cellulases, and
hemicellulases that degrade biological substrates. The resulting nutrients can then
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be the target of intense competition among microorganisms, especially between
plant pathogenic fungi and potential biological control agents. For instance, the
competitive ability of Trichoderma isolates and pathogenic Rhizoctonia solani was
assessed for cellulose exploitation on wheat straw [211]. Cellulolytic activity levels
were estimated as a possible mechanism involved in the competition to ensure straw
possession, since the major components of wheat straw are cellulose and hemi-
celluloses. The rapid assimilation of carbon and nitrogen compounds, whether
released or naturally present in the soil, actually plays a determining role in the
competition between two fungi. Transcriptomic analyses revealed that genes
encoding sugar and amino acid transporters involved in the assimilation of nutrients
released from the degradation of plant cell walls were overexpressed, leading to
direct competition between pathogenic and nonpathogenic fungi for soil nutrients
[214, 215]. The uptake of these low-molecular-weight organics occurs via more or
less specialized transporters. Some of them, such as Botrytis cinerea BcFRT, trans-
port one sugar, while others like Colletotrichum graminicola MTBas can transport
several carbohydrates [212, 216]. Despite the thousands of transmembrane molec-
ular transport systems listed in the Transporter Classification Database (TCDB;
http://www.tcdb.org; [217]), the sugar and amino acid transportome of soil fungal
species is still poorly known. This is particularly true in the case of mycoparasitic
interactions, although genes encoding sugar and amino acid transporters are
overexpressed during mycoparasitism [46, 218]. Gtt1, a high-affinity glucose trans-
porter of the mycoparasitic fungus Trichoderma harzianum, has been characterized
[219] (Table 3). The authors showed that gtt1 mRNA levels increased under
Rhizoctonia solani challenge. Similarly, a di/tri-peptide transporter (PTR2) is
involved in the mycoparasitic process of Trichoderma harzianum against Botrytis
cinerea [220].

The best-known example of competition for micronutrients is competition for
iron, which is necessary for the growth and pathogenicity of fungal pathogens. The
different siderophores produced by Trichoderma harzianum, Metschnikowia
pulcherrima, and Rhodotorula glutinis can inhibit the growth of many plant patho-
genic fungi and oomycetes (Table 3). For example, the biocontrol yeast Rhodotorula
glutinis produces a siderophore called rhodotorulic acid to compete with the post-
harvest pathogen Penicillium expansum [225]. Siderophores are low-molecular-
weight, ferric ion-specific chelating agents produced under iron-limiting conditions.
In vitro, rhodotorulic acid production is higher, and the fungal pathogen is controlled
more effectively when the iron concentration is low. Moreover, in vivo assays on
apple wounds showed that a combination of the biocontol agent and the siderophore
was more effective than the biocontrol agent alone. Similar results were observed
against a Botrytis cinerea strain resistant to the conventional fungicide iprodione
[226]. Another biocontrol yeast, Metschnikowia pulcherrima, which antagonizes
Botrytis cinerea, Penicillium expansum, and Monilia sp. among others, produces a
pigment called pulcherrimin [224]. Pulcherrimin is a large complex formed
nonenzymatically from pulcherriminic acid and ferric ions. Unlike diffusible
water-soluble siderophores whose function is to solubilize iron, pulcherrimin is
water-insoluble and cannot diffuse in agar medium [223]. In addition, it is produced
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constitutively at both low and high ferric ion concentrations. Therefore pulcherrimin
may play a role in the immobilization of iron inhibiting fungal pathogen growth.
Competition for iron is also determining in the control of Fusarium wilt by non-
pathogenic Fusarium and Trichoderma species [209, 240–242]. Several
Trichoderma species, among which Trichoderma viride, Trichoderma harzianum,
and Trichoderma lignorum, are better siderophore producers than Fusarium solani
and Fusarium oxysporum and access more efficiently to low quantities of available
iron [243]. Trichoderma species secrete a wide range of siderophores [244]. In an
optimal medium for siderophore production in in vitro conditions, 18 different iron
chelators were detected from one Trichoderma species. In addition, Trichoderma
harzianum, known to have strong antagonistic activity, was the largest siderophore
producer with 15 molecules. One of them, harzianic acid, promotes plant growth and
has antifungal activity towards phytopathogens like Pythium irregulare, Rhizoctonia
solani, and Sclerotinia sclerotiorum [17, 221]. Mycorrhizal and endophytic fungi
known for their plant-growth-promoting effect also synthesize siderophores such as
ferricrocin, and linear and cyclic fusigen [245–247]. Competition for iron could
explain the suppressive effect of Laccaria laccata on pathogenic Fusarium
oxysporum [248].

3.2 Competition for Root Colonization

Colonization of the root tissues is usually limited to penetration of the first or second
layers of cells, and restricted to the intercellular spaces [223]. Attachment of the
fungus to the root by appressorium-like structures is facilitated by several proteins
localized on the outer surfaces of the hyphal and conidial cell walls [229, 235]. Then,
root penetration takes place via the secretion of cellulolytic, hemicellulolytic, and
proteolytic enzymes [232].

The proteins presently known to facilitate fungal root attachment are mostly
hydrophobins (Table 3). Hydrophobins are small secreted proteins that have a
characteristic domain of eight cysteine residues at conserved positions. They were
initially divided into class I and class II hydrophobins based on their hydropathy
patterns and solubility [249, 250]. However, recent bioinformatics analyses revealed
an intermediate class in Trichoderma and Aspergillus species [251, 252]. In phyto-
pathogenic fungi, hydrophobins are necessary to anchor fungal cells to the surface of
the host plant [253, 254]. They could play a similar role in biocontrol agents such as
Trichoderma asperellum and Chlonostachys rosea. Viterbo and Chet [229] isolated
and characterized the TasHyd1 hydrophobin gene from Trichoderma asperellum.
They showed that attachment of germinating spores to root surfaces and intercellular
root colonization were reduced in the TasHyd1-deletion mutants. In addition, normal
spore attachment and root colonization were recovered by complementation,
supporting a role for TasHyd1 in the plant root colonization process, but none for
direct mycoparasitic activity towards Rhizoctonia solani. However, the role of all
hydrophobin genes is not fully understood yet. In the case of Clonostachys rosea,
among the three Hyd1, Hyd2, and Hyd3 hydrophobin genes recently identified in the
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Table 3 Fungal proteins or molecules associated with antagonism and involved in competition

Protein/molecule
Encoding
gene Source fungus Target pathogen References

Competition for nutrients

Di/tri-peptide
transporter PTR2

Ptr2 Chaetomium
cupreum,
Trichoderma
harzianum

Botrytis cinerea,
Rhizoctonia solani

[106, 115,
220]

High-affinity glucose
transporter Gtt1

Gtt1 Trichoderma
harzianum

Rhizoctonia solani [218, 219]

Siderophores

Harzianic acid N.A. Trichoderma
harzianum

Pythium irregulare,
Rhizoctonia solani,
Sclerotinia
sclerotiorum

[17, 221]

Pulcherrimin N.A. Metschnikowia
pulcherrima

Alternaria spp.,
Aspergillus niger,
Botryotinia
fuckeliana, Botrytis
cinerea, Gilbertella
persicaria,
Monilinia laxa,
Mucor
circinelloides,
Mucor piriformis,
Penicillium
expansum, Rhizopus
stolonifer var.
stolonifer

[222–224]

Rhodotorulic acid N.A. Rhodotorula
glutinis

Botrytis cinerea,
Penicillium
expansum

[225, 226]

Competition for root colonization

1-aminocyclopropane-
1-carboxylate
deaminase

acdS Trichoderma
asperellum

N.A. [18]

Endopolygalacturonase
Thpg1

Thpg1 Trichoderma
harzianum

Botrytis cinerea,
Pythium ultimum,
Rhizoctonia solani

[227]

Hydrophobins Hyd3 Clonostachys
rosea

Botrytis cinerea,
Fusarium
graminearum,
Rhizoctonia solani

[228]

TasHyd1 Trichoderma
asperellum

N.A. [229]

HFB2-6 Trichoderma
asperellum

N.A. [230]

N.A. Phlebiopsis
gigantea

Heterobasidion
parviporum

[231]

(continued)
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fungus, only Hyd3 is involved in plant root colonization by Clonostachys rosea
[228]. In addition to hydrophobins, proteins such as Trichoderma harzianumQID74,
an atypical cysteine-rich cell wall protein, also play a role in hyphal resistance to
lytic enzymes and adherence to hydrophobic surfaces [236] or in root architecture
and plant biofertilization [237]. QID74 promotes lateral root elongation and hair
formation and elongation, and this increases the root absorptive surface and plant
shoot biomass [237]. More recently, Crutcher and collaborators [238] highlighted
the involvement of SM2, a paralog of the elicitor protein SM1, in the colonization of
maize roots by Trichoderma virens. However, the role of SM2 in the colonization
process is still unclear.

After attachment of the fungus to the plant root, lytic enzymes are secreted to
facilitate root penetration. One of these enzymes is swollenin, a protein first isolated
and characterized from Trichoderma reesei [234]. Swollenin contains an N-terminal
fungal-type carbohydrate-binding module family 1 domain (CBD) with a cellulose-
binding function, connected by a linker region to an expansin-like domain with
homology to group 1 grass pollen allergens. Expansin proteins disrupt hydrogen
bonding between cellulose and hemicellulose and thus loosen plant cell walls [234,
255]. Overexpression and silencing experiments showed that the Trichoderma
asperellum swollenin gene TasSwo was essential for cucumber root colonization
[233]. The swollenin CBD domain is indispensable for full activity of the enzyme
in vivo and stimulates local defense responses of the plant that in turn protect
it. Xylanases Abf1 and Abf2 as well as proteases PapA and PapB are also secreted
by Trichoderma asperellum in response to cucumber root attachment [232]. The role
of xylanases in colonization is not directly demonstrated, but they are upregulated
during Trichoderma-plant interactions. Moreover, xylan is a major component of

Table 3 (continued)

Protein/molecule
Encoding
gene Source fungus Target pathogen References

Proteases PapA,
PapB

Trichoderma
asperellum

N.A. [232]

Swollenin TasSwo Trichoderma
asperellum

N.A. [233]

swo1 Trichoderma
reesei

N.A. [234]

QID3 protein qid3 Trichoderma
harzianum

N.A. [235]

QID74 protein qid74 Trichoderma
harzianum

Fusarium solani [218, 236,
237]

SM2 sm2 Trichoderma.
virens

N.A. [238]

β-1,3-glucanase N.A. Ulocladium
atrum

Botrytis cinerea [239]

N.A. not available
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hemicelluloses, and the second most important polysaccharide in plant cell walls.
The role of proteases in colonization is not understood well enough yet. For some
authors, they may be involved in the production of elicitors and the induction of
plant defense reactions [232]. In Trichoderma harzianum, endogalacturonase Thpg1
is required for a beneficial Trichoderma-plant interaction (Table 3). A Thpg1-
silenced line displayed lower galacturonase activity and a reduced ability to colonize
tomato roots [227]. In other biocontrol fungi, root attachment and colonization are
still poorly studied.

4 Mycoparasitism

Inhibition of fungal plant pathogen development in suppressive soils includes
hyperparasitism by antagonistic fungi. Mycoparasitism consists in the secretion of
a wide range of fungal cell-wall-degrading enzymes (CWDE) and proteases that
enable the parasite to penetrate the pathogen’s hyphae [256]. As chitin and glucan
are the main fungal cell wall polysaccharides, CWDE are mostly chitinases and
glucanases. Such processes are mainly described for Trichoderma spp. and for
Gliocladium spp. that infect pathogens like Botrytis cinerea, Rhizoctonia solani
and Sclerotinia sclerotiorum, or Phytophthora sp. and Pythium sp. [257–262]
(Table 4). However, more data about the modes of action of other mycoparasitic
fungi such as Coniothyrium minitans [25, 340] or Sporidesmium sclerotivorum [341]
are becoming available.

4.1 Endochitinases GH 18

Chitinases belong to the glycosyl hydrolase (GH) group. Based on their amino acid
sequence similarities, they are classified into three families: GH 18, GH 19, and GH
20 [262, 278, 294]. They include endo- and exochitinases. Endochitinases cleave
chitin at internal sites into chitotetraose, chitotriose, and diacetylchitobiose.
Exochitinases are further subdivided into chitobiosidases and N-acetyl-β-D-
glucosaminidases. Chitobiosidases catalyze the progressive release of diacetyl-
chitobiose in a stepwise fashion. N-acetyl-β-D-glucosaminidases split diacetyl-
chitobiose into N-acetyl-glucosamine monomers [291].

Many endochitinase-encoding genes have been cloned and characterized, and
their antagonistic activity has been tested against different plant pathogens (Table 4).
The most studied chitinolytic system is the Trichoderma spp. system, especially in
Trichoderma harzianum and Trichoderma atroviride. In particular, antifungal activ-
ity of Chit42 against Botrytis cinerea, Rhizoctonia solani, or Fusarium solani is well
documented [218, 256, 266, 288]. Apart from Trichoderma spp., other fungi such as
Verticillium biguttatum, Talaromyces flavus, Clonostachys rosea, Chaetomium
globosum, and Fusarium chlamydosporum secrete chitin-degrading enzymes during
mycoparasitism, as shown in Table 4. In the peculiar case of Verticillium biguttatum,
chitinase is produced bound to the cell wall, suggesting a putative role in dissolving
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and penetrating Rhizoctonia solani cell walls [23]. Chaetomium globosum chi46
expression is triggered by Rhizoctonia solani, Sclerotinia sclerotiorum, and
Phytophthora sojae cell wall fragments [297]. In addition, a 40-kDa chitinase
from Fusarium chlamydosporum displayed biocontrol activity against Puccinia
arachidis and inhibited its uredospore germination in a concentration-dependent
manner [270].

4.2 Glucosaminidases GH 20

N-acetyl-β-D-glucosaminidases (NAGases) have mainly been isolated from
Trichoderma spp., but other fungi such as Chlonostachys rosea, Chaetomium
cupreum, or Stachybotrys elegans can also secrete these enzymes (Table 4). Dubey
et al. [303] showed that disruption of the eng18B NAGase from Trichoderma
atroviride affected the biocontrol activity of the fungus on the pathogens Botrytis
cinerea and Rhizoctonia solani. The NAGase from Stachybotrys elegans (NAG-68)
and Chlonostachys rosea (Cr-NAG1) also displayed antagonistic activity against
Rhizoctonia solani and Fusarium culmorum [22, 308]. Synthesis of NAG-68 by
Stachybotrys elegans was induced in the presence of purified Rhizoctonia solani cell
walls, as well as during antagonistic interaction with this pathogenic fungus. In
addition, the Cr-nag1 gene was highly upregulated when Chlonostachys rosea was
challenged by Fusarium culmorum.

4.3 Glucanases

Glucans are the glucose polysaccharides that cross-link chitin or chitosan polymers.
There are two types of glucans according to the chemical bonding between glucose
subunits. β-glucans are defined by β-(1, 3)- or β-(1, 6)- bonds and provide rigidity to
the cell wall. α-glucans are characterized by α-(1, 3)- and/or α-(1, 4)- bonds and
function as a part of the matrix. Various glucanases with putative mycoparasitic
activity have been characterized. They are mainly β-1,3-glucanases (Table 4). For
example, expression of cmg1, an exo-β-1,3-glucanase gene from Coniothyrium
minitans, was induced during parasitic interaction with Sclerotinia sclerotiorum,
and purified recombinant CMG1 strongly inhibited mycelial growth of the patho-
genic fungus [312]. Gluc78 from Trichoderma atroviride P1 exhibited strong anti-
fungal activity against Botrytis cinerea and acted synergistically with other fungal
CWDEs [257]. In the post-harvest biocontrol agent Pichia anomala, disruption of
the PAEXG1 and PAEXG2 exo-β-1,3-glucanase genes significantly reduced the
efficiency of the biocontrol of Botrytis cinerea on apple [323].

The role of α-1,3-glucanases, α-1,4-glucanases, and β-1,6-glucanases during
mycoparasitism is not so well documented. The best examples come from Trichoderma
sp. studies. For instance, Trichoderma harzianum α-1,3-glucanase A13GLUC and
β-1,6-glucanase B16GLUC were highly upregulated under Sclerotinia sclerotiorum
challenge [277]. However, transcriptomic studies performed during antagonistic
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Table 4 Fungal and oomycete enzymes associated with mycoparasitism and involved in degra-
dation of fungal cell wall

Enzyme
Encoding
gene

Source fungus or
oomycete Target pathogen References

Endochitinases (GH 18)

32-KDa chitinase chit32 Talaromyces flavus Alternaria alternata,
Fusarium
moniliforme,
Magnaporthe grisea,
Rhizoctonia solani,
Sclerotinia
sclerotiorum,
Verticillium dahliae

[263]

39-KDa chitinase chi1 Aphanocladium
album

Rust fungi [264]

41-KDa chitinase chit41 Talaromyces flavus Alternaria alternata,
Fusarium
moniliforme,
Magnaporthe grisea,
Rhizoctonia solani,
Sclerotinia
sclerotiorum,
Verticillium dahliae

[263]

Chitinase 1 N.A. Talaromyces flavus Rhizoctonia solani [265]

Chitinase chit42 Trichoderma
atroviride

Alternaria
brassicola, Botrytis
cinerea, Fusarium
graminearum,
F. oxysporum,
Rhizoctonia solani,
Sclerotinia
sclerotiorum,
Verticillium dahliae

[266]

chiA5, chiA6 Clonostachys
rosea

Botrytis cinerea,
Rhizoctonia solani

[267]

40-kDa chitinase N.A. Coniothyrium
minitans,
Fusarium
chlamydosporum

Puccinia arachidis,
Sclerotinia
sclerotiorum

[268–270]

N.A. Candida
melibiosica

Botrytis cinerea [271]

N.A. Metschnikowia
pulcherrima

Botrytis cinerea [272]

30-KDa
endochitinase

ech30 Trichoderma
atroviride

Botrytis cinerea [273]

33-KDa
endochitinases

chit33
(ech33)

Trichoderma
atroviride,
Trichoderma
harzianum

Rhizoctonia solani,
Fusarium solani,
Sclerotinia
Sclerotiorum

[274–277]

(continued)
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Table 4 (continued)

Enzyme
Encoding
gene

Source fungus or
oomycete Target pathogen References

Tv-cht1,
Tv-cht2

Trichoderma
virens

Rhizoctonia solani [278]

36-KDa
endochitinases

chit36 Trichoderma
harzianum

Botrytis cinerea,
Fusarium oxysporum
f. sp. melonis,
Sclerotium rolfsii

[279]

chit36Y Trichoderma
asperellum

Alternaria alternata,
Botrytis cinerea,
Fusarium oxysporum
f. sp. melonis,
Rhizoctonia solani

[280]

chit36P1 Trichoderma
atroviride

N.A. [280]

37-KDa
endochitinases

cr-ech37,
cr-ech42

Clonostachys
rosea

Alternaria radicina,
Botrytis cinerea,
Fusarium culmorum

[281, 282]

chit37 Trichoderma
harzianum

N.A. [275]

42-KDa
endochitinases

chit42 Trichoderma
atroviride,
Trichoderma
hamatum,

Botrytis cinerea,
Penicillium
digitatum,
Rhizoctonia solani,
Sclerotinia
sclerotiorum

[283–287]

chit42
(ech42)

Trichoderma
harzianum

Botrytis cinerea,
Gibberella fujikuroi,
Fusarium solani,
Rhizoctonia solani

[218, 256,
275,
288–290]

echi42 Trichoderma
asperellum

Rhizoctonia solani,
Sclerotinia
sclerotiorum

[265]

Tv-ech1,
Tv-ech2

Trichoderma
virens

Rhizoctonia solani [278, 291]

43-KDa
endochitinase

N.A Trichoderma
harzianum

Sclerotium rolfsii [292]

44-KDa
endochitinase

sechi44 Stachybotrys
elegans

Rhizoctonia solani [24, 293]

46-KDa
endochitinase

chi46 Chaetomium
cupreum,
C. globosum,
Trichoderma
asperellum,
T. reesei

Fusarium
oxysporum,
Phytophthora sojae,
Sclerotinia rolfsii,
S. sclerotiorum,
S. tritici, Rhizoctonia
solani, Valsa sordida

[106, 115,
294–297]

58-KDa
endochitinase

cr-ech58 Clonostachys
rosea

Alternaria radicina,
Fusarium culmorum

[281]

(continued)

2 Fungal Genes and Metabolites Associated with the Biocontrol of Soil-borne. . . 67



Table 4 (continued)

Enzyme
Encoding
gene

Source fungus or
oomycete Target pathogen References

Endochitinases crchi1 Clonostachys
rosea,
Trichoderma
harzianum

Botrytis cinerea,
Rhizoctonia solani

[298, 299]

trchi1 Trichothecium
roseum

Alternaria alternata,
Cercospora
nicotianae

[300]

N.A. Trichooderma
asperellum

Phymatotrichopsis
omnivora

[301]

N.A. Verticillium
biguttatum

Rhizoctonia solani [23]

Glucosaminidases (GH 20)

N-acetyl-β-D-
glucosaminidases

cr-nag1 Clonostachys
rosea (G. roseum)

Botrytis cinerea,
Fusarium culmorum

[22, 302]

eng18B Trichoderma
atroviride

Botrytis cinerea,
Rhizoctonia solani

[303]

exc1, exc2 Trichoderma
harzianum

N.A. [304]

exc1Y Trichoderma
asperellum

Alternaria alternata,
Botrytis cinerea,
Fusarium oxysporum
f. sp. melonis,
Rhizoctonia solani

[280]

exc2Y Trichoderma
asperellum

N.A. [305]

nag1 Trichoderma
atroviride,
Trichoderma
harzianum

Botrytis cinerea,
Rhizoctonia solani,
Sclerotinia
sclerotiorum

[256, 285,
306, 307]

nag68 Stachybotrys
elegans

Rhizoctonia solani [308]

Tvnag1,
Tvnag2

Trichoderma
virens

Rhizoctonia solani [278]

N.A. Trichoderma
asperellum

Phymatotrichopsis
omnivora

[301]

N.A. Trichoderma
harzianum

Crinipellis perniciosa [309]

N.A. Chaetomium
cupreum

Rhizoctonia solani [106]

Glucanases

α-1,3-glucanase agn13.1 Trichoderma
harzianum

Aspergillus niger,
Botrytis cinerea,
Colletotrichum
acutatum, Fusarium
oxysporum,
Penicillium
aurantiogriseum

[310]

(continued)
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Table 4 (continued)

Enzyme
Encoding
gene

Source fungus or
oomycete Target pathogen References

agn13.2 Trichoderma
asperellum

Botrytis cinerea [311]

a13gluc Trichoderma
harzianum

Sclerotinia
sclerotiorum

[277]

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

β-1,3-glucanases cmg1 Coniothyrium
minitans

Sclerotinia
sclerotiorum

[312]

exgA Ampelomyces
quisqualis

Sphaerotheca fusca [313]

glu1 Clonostachys
rosea f. catenulate

Fusarium oxysporum
f. sp. radicis-
cucumerinum

[261]

gluc78 Trichoderma
atrovide

Phytophthora sp.,
Pythium sp.

[257]

lam1.3 Trichoderma
harzianum

Rhizoctonia solani,
Sclerotium rolfsii

[314]

tag83 Trichoderma
asperellum

Rhizoctonia solani [315, 316]

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[268, 269]

N.A. Chaetomium
cupreum

Rhizoctonia solani [106, 115]

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

N.A. Pythium
oligandrum

Phytophthora
infestans

[21]

N.A. Stachybotrys
elegans

Rhizoctonia solani [317]

29-KDa
β-1,3-glucanase

N.A. Trichoderma
harzianum

Pythium sp.,
Rhizoctonia solani,
Sclerotium rolfsii

[318, 319]

36-KDa
β-1,3-glucanase

N.A. Trichoderma
harzianum

Pythium sp.,
Rhizoctonia solani,
Sclerotium rolfsii

[318, 319]

74-KDa
β-1,3-glucanase

N.A. Trichoderma
harzianum

Sclerotium rolfsii [292]

78-KDa
β-1,3-glucanase

bgn13.1 Trichoderma
harzianum

Botrytis cinerea,
Gibberella fujikuroi,
Phytophthora
citrophthora,
Rhizoctonia solani

[401]

β-1,3-glucanase Tvbgn1,
Tvbgn2

Trichoderma
virens

Pythium oligandrum,
Rhizoctonia oryzae,
R. solani

[278, 320]

N.A. Trichoderma
koningii

Rhizoctonia solani [321]

(continued)
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Table 4 (continued)

Enzyme
Encoding
gene

Source fungus or
oomycete Target pathogen References

N.A. Verticillium
biguttatum

Rhizoctonia solani [23]

N.A. Trichoderma
harzianum

Fusarium solani [218]

N.A. Aureobasidium
pullulans,
Wickerhamomyces
anomalus

Botrytis cinerea [322]

β-glucanase N.A. Candida
melibiosica

Botrytis cinerea [271]

Endoglucanases cel12B,
cel12D

Clonostachys
rosea

Botrytis cinerea [282]

β-(1,4)
endoglucanase

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

Endo-1,3
(4)-β-glucanase

N.A. Trichoderma
asperellum

Rhizoctonia solani,
Sclerotinia
sclerotiorum

[265]

Cell 5A endo-
1,4-β-glucanase

N.A. Pythium
oligandrum

Phytophthora
infestans

[21]

Exo-β-1,3-Glucanase PAEXG1,
PAEXG2

Pichia anomala Botrytis cinerea [323]

N.A. Trichoderma
asperellum

Phymatotrichopsis
omnivora

[301]

Mixed-linked
glucanase,
1,3-1,4-β-glucanase/
1,3-β-glucanase

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

β-1,6-glucanase bgn16.1,
bgn16.3

Trichoderma
harzianum

N.A. [260, 324]

bgn16.2 Trichoderma
harzianum

Botrytis cinerea,
Rhizoctonia solani

[325]

b16gluc Trichoderma
harzianum

Sclerotinia
sclerotiorum

[277]

Tvbgn3 Trichoderma
virens

Pythium oligandrum,
Rhizoctonia oryzae,
R. solani

[278, 320,
326]

Other glycoside hydrolases and polysaccharide lyases

Exo-
rhamnogalacturonase

N.A. Trichoderma
harzianum

Fusarium solani [218]

Glycosyl hydrolase N.A. Trichoderma
harzianum

Fusarium solani [218]

1,4-α glucosidase N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

α-glucosidase N.A. Chaetomium
cupreum

Rhizoctonia solani [106, 115]

(continued)
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Table 4 (continued)

Enzyme
Encoding
gene

Source fungus or
oomycete Target pathogen References

β -glucosidase N.A. Chaetomium
cupreum

Rhizoctonia solani [106, 115]

N.A. Coniothyrium
minitans

Sclerotinia
sclerotiorum

[25]

N.A. Pythium
oligandrum

Phytophthora
infestans

[21]

Pectate lyase N.A. Pythium
oligandrum

Phytophthora
infestans

[21]

TonB-like (glycoside
hydrolase 1)

N.A. Pythium
oligandrum

Phytophthora
infestans

[21]

Proteases

Aspartic proteases P6281 Trichoderma
harzianum

Botrytis cinerea,
Pythium ultimum,
Rhizoctonia solani

[327]

Sa76 Trichoderma
harzianum

Fusarium
oxysporum,
Phytophthora sojae,
Rhizoctonia solani,
Sclerotinia
sclerotiorum, Valsa
sordida

[328]

TaAsp Trichoderma
asperellum

Alternaria alternata,
Cytospora
chrysosperma,
Fusarium
oxysporum,
Rhizoctonia solani,
Sclerotinia
sclerotiorum

[329]

ASP55 Trichoderma
asperellum

Alternaria alternata [330]

PAPA Trichoderma
asperellum

Rhizoctonia solani [232]

PAPA Trichoderma
harzianum

N.A. [331]

N.A. Chaetomium
cupreum

Rhizoctonia solani [106]

N.A. Pythium
oligandrum

Phytophthora
infestans

[21]

N.A. Trichoderma
asperellum

Rhizoctonia solani [265]

Metalloendopeptidase N.A. Trichoderma
hamatum

Sclerotinia
sclerotiorum

[332]

Protease N.A. Trichoderma
harzianum

Botrytis fabae [333]

N.A. Verticillium
biguttatum

Rhizoctonia solani [23]
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Table 4 (continued)

Enzyme
Encoding
gene

Source fungus or
oomycete Target pathogen References

N.A. Talaromyces flavus Botrytis fabae [333]

N.A. Aureobasidium
pullulans

Botrytis cinerea [322]

Serine proteases prb1 Trichoderma
harzianum

Rhizoctonia solani,
Sclerotium rolfsii,
Sclerotinia
sclerotiorum

[287, 334,
335]

Spm1 Trichoderma
asperellum

Rhizoctonia solani,
Sclerotinia
sclerotiorum

[265]

SL41 Trichoderma
harzianum

Fusarium
oxysporum,
Phytophthora sojae,
Rhizoctonia solani,
Sclerotinia
sclerotiorum, Valsa
sordida

[336]

SS10 Trichoderma
harzianum

Alternbaria
alternata, Cytospora
chrysosperma,
Fusarium
oxysporum,
Rhizoctonia solani,
Sclerotinia
sclerotiorum

[337]

ThSS45 Trichoderma
harzianum

Alternaria alternata [338]

tvsp1 Trichoderma
virens

Rhizoctonia solani [339]

N.A. Trichoderma
harzianum

Fusarium solani [218]

N.A. Chaetomium
cupreum

Rhizoctonia solani [106, 115]

Trypsin-like protease pra1 Trichoderma
harzianum

Sclerotinia
sclerotiorum

[277]

Trypsin protease
GIP-like

N.A. Pythium
oligandrum

Phytophthora
infestans

[21]

Zinc
metalloproteinase

N.A. Pythium
oligandrum

Phytophthora
infestans

[21]

Nucleases

Endonuclease N.A. Trichoderma
hamatum

Sclerotinia
sclerotiorum

[332]

N.A. not available
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interactions between Coniothyrium minitans and Sclerotinia sclerotiorum suggest that
such enzymes are also necessary for biocontrol by other antagonistic fungi [25]. Other
glycoside hydrolases have been revealed by transcriptomic analyses, but their
corresponding genes are not yet characterized (Table 4).

4.4 Proteases

Fungal proteases also play a significant role in cell wall lysis [333, 342]. They
catalyze the cleavage of peptides that link amino acids to one another in proteins.
Several studies evidence a role of extracellular proteases in enhanced fungal bio-
control by Trichoderma virens, Trichoderma harzianum, Trichoderma asperellum,
Trichoderma flavus, or Verticillium biguttatum on pathogenic fungi and oomycetes
such as Rhizoctonia solani, Fusarium oxysporum, Botrytis cinerea, Sclerotinia
sclerotiorum, or Pythium ultimum (Table 4). Apart from breaking down the host
cell wall, fungal proteases may act as proteolytic inactivators of pathogen enzymes
involved in the plant infection process [343, 344]. The majority of mycoparasitic
protease genes cloned so far are Trichoderma spp. genes. They encode several
aspartic proteases and serine proteases. For example, Trichoderma harzianum
P6281 and Trichoderma asperellum ASP55 are aspartic proteases [327, 330],
whereas Trichoderma harzianum SL41 and Trichoderma asperellum Spm1 are
serine proteases [265, 336].

5 Host Recognition and Genetic Reprogramming of Gene
Expression

An antagonistic interaction starts with specific recognition of the target pathogen by
the antagonistic fungus, followed by genetic reprogramming of its gene expression
and subsequent control or destruction of the pathogenic fungus. These two steps are
critical because they define the nature and the intensity of the antagonistic activities
implemented by the biocontrol agent.

5.1 Host Recognition and Signaling Pathways

The ability of biocontrol fungi to sense and respond to different environmental
conditions, including the presence of a potential host, is essential for them to
successfully colonize soil, organic material, and developing plant roots. However,
the host recognition and signaling pathways that lead to the effective antagonistic
response are still poorly understood. Generally, heterotrimeric G-proteins composed
of α, β, and ɣ subunits are involved in transducing signals from transmembrane G
protein-coupled receptors to a variety of intracellular targets. Depending on the
system, Gα or Gβɣ transduces the signal by stimulating effectors such as adenylate
cyclase or the Mitogen-Activated Protein Kinase (MAPK) cascade [345]. In
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Trichoderma species, as in pathogenic fungi, some G-proteins, G-protein-coupled
receptors, and adenylate cyclase are critical for the production of extracellular cell
wall lytic enzymes, secretion of antifungal metabolites, and formation of infection
structures. Following the silencing of the gene encoding the Trichoderma atroviride
seven-transmembrane receptor Gpr1, adhesion of Trichoderma hyphae to the surface
of Rhizoctonia solani was prevented, and two chitinase genes (nag1 and ech42) and
the protease gene prb1 were not induced. These genes are known to be involved in
mycoparasitism, therefore their downregulation in Trichoderma atroviride resulted
in pathogen survival [346] (Table 5).

Tga1 and Tga3 are two G protein α subunits from Trichoderma atroviride. The
Δtga1 mutant thoroughly lost mycoparasitic activity against Botrytis cinerea, Rhi-
zoctonia solani, and Sclerotinia sclerotiorum during direct challenge [347]. Yet the
formation of infection structures was unaffected. Although secretion of
6-pentyl-α-pyrone and sesquiterpene-derived antifungal metabolites was reduced,
low-molecular-weight antifungal metabolites were overproduced, suggesting oppo-
site roles of Tga1 in the regulation of the biosynthesis of different antifungal
substances in Trichoderma atroviride [348]. The Δtga3 mutant was unable to form
infection structures or mycoparasitize Rhizoctonia solani and Botrytis cinerea under
direct challenge [349]. Moreover, chitinase activity was null despite a higher tran-
scription rate of the chitinase-encoding genes ech42 and nag1 than in the wild-type
strain. Addition of cAMP restored the formation of infection structures but not
virulence [349]. In Trichoderma virens, the ΔtgaA mutant exhibited reduced ability
to antagonize Sclerotium rolfsii but not Rhizoctonia solani, suggesting host-specific
signaling pathways [351].

MAPK pathways transduce a large variety of signals, including those associated
with pathogenesis. Several MAPKs involved in fungal mycoparasitism have been
identified in Trichoderma species (Table 5). Trichoderma virens Δtvk1 mutants
displayed increased lytic enzyme secretion and were considerably more effective
in disease control than the wild-type strain [356]. In addition, the Trichoderma
virens ΔtmkA mutant fully antagonized Rhizoctonia solani, but it only partially
antagonized Sclerotium rolfsii and failed to parasitize it [353]. Contrary to the wild
type, Trichoderma atroviride Δtmk1 mutants had reduced mycoparasitism activity
against Rhizoctonia solani and Botrytis cinerea in the stage prior to direct
mycoparasite–host interactions, but a specific regulation of ech42 gene transcription
is observed upon direct contact with Rhizoctonia solani. However, the authors
report increased synthesis of antifungal metabolites and a higher ability to protect
bean plants in Rhizoctonia solani-infected soils [354]. In Trichoderma harzianum,
hog1 overexpressing and silenced mutants were strongly affected in their antago-
nistic activity against Phoma betae and Colletotrichum acutatum, whereas no
difference with the wild-type strain was noted against Botrytis cinerea, Rhizoctonia
solani, and Sclerotinia sclerotiorum [355]. Therefore MAPKs and G proteins play a
crucial role in fungus–fungus interactions. However, overlapping roles and host
specificities are obvious, so more characterizations are necessary to fully under-
stand the complexity of the signaling pathway related to biocontrol of specific
fungal pathogens.
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Cyclic adenosine monophosphate (cAMP) is an important regulator of growth,
development, and pathogenicity in filamentous fungi [370–374]. cAMP is synthe-
sized from ATP by a membrane-associated adenylate cyclase. The activity of
adenylate cyclase is regulated by the α-subunits of heterotrimeric G-proteins in
most fungi. cAMP generally stimulates a cAMP-dependent protein kinase made of
two regulatory and two catalytic subunits [375] and regulates gene expression via
phosphorylation of proteins such as transcription factors. In Trichoderma atroviride
and Trichoderma reesei, G-protein α-subunits Tga3 and Gna3 positively stimulated
the activity of adenylate cyclase and consequently mycoparasitism [349, 350, 376].
Moreover, in Trichoderma virens, deletion of tac1, an adenylate cyclase gene,
abolished biocontrol activity against Sclerotium rolfsii, Rhizoctonia solani, and
Pythium sp., because of reduced secondary metabolite production [358]. This was
the first demonstration that cAMP signaling positively regulates secondary metab-
olism and mycoparasitism in biocontrol fungi.

5.2 Transcription Factors Involved in Biocontrol

At the cellular level, the transcription factors (TFs) that regulate gene transcription
during antagonism are still poorly investigated. TFs such as AreA/Nit2, Msn2/Msn4,
or AceI, respectively involved in nitrogen repression, stress responses, and regula-
tion of plant CWDE, may bind to specific motifs in the promoter of biocontrol genes
from Trichoderma spp. However, there is no demonstration of their role in antifungal
activity [287, 306]. The carbon catabolite repressor Cre1 is the first protein for which
a role in mycoparasitic interactions was proved (Table 5). Interaction of Trichoderma
harzianum with Botrytis cinerea revealed binding of Cre1 to the promoter sequences
of the endochitinase-encoding gene ech42 [359]. Later, Moreno-Mateos et al. [364]
and Trushina et al. [363] showed that the pH-responsive transcription factors Pac1
(from Trichoderma harzianum) and PacC (from Trichoderma virens) were essential
for their antifungal activity. Rubio et al. [366] pointed to the significant role of
ThCtf1 in the production of secondary metabolites and in the antifungal activity of
Trichoderma harzianum. The xylanase transcriptional regulator Xyr1 from
Trichoderma atroviride is involved in mycoparasitism and is required to induce
plant defense reactions [16]. Deletion of xyr1 resulted in enhanced competition with
the plant pathogens Botrytis cinerea, Phytophthora capsici, and Rhizoctonia solani.
Moreover, induction of plant defense responses during the Trichoderma atroviride/
Arabidopsis thaliana interaction was delayed.

Vel1 is a key regulator of morphogenesis and secondary metabolism in several
filamentous fungi [377–383]. In Trichoderma virens, Vel1 is involved in conidium
and chlamydospore formation, but also in antagonism [367]. Deletion mutants are
defective in secondary metabolism, mycoparasitism, and biocontrol efficacy on
Rhizoctonia solani. Moreover, Aspergillus nidulans VeA physically interacts with
VelB and the regulator of secondary metabolism LaeA to form a complex that
regulates secondary metabolism and sexual reproduction [380]. In Trichoderma
atroviride, deletion and overexpression mutants were used to evidence that Lae1 is
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Table 5 Fungal and oomycetes proteins associated with antagonism and involved in host recog-
nition, signal transduction and genetic reprogramming of gene expression

Protein
Encoding
gene Source fungus Target pathogen References

Receptor proteins

Integral membrane
protein PTH11

N.A. Coniothyrium
minitans

Sclerotinia sclerotiorum [25]

Seven-transmembrane
receptor Gpr1

gpr1 Trichoderma
atroviride

Botrytis cinerea,
Rhizoctonia solani,
Sclerotinia sclerotiorum

[346]

Seven-transmembrane
receptor (secretin family)

N.A. Coniothyrium
minitans

Sclerotinia sclerotiorum [25]

WSC yeast cell wall
integrity and stress
response component
proteins

N.A. Coniothyrium
minitans

Sclerotinia sclerotiorum [25]

G proteins

G-protein beta WD-40
repeat

N.A. Coniothyrium
minitans

Sclerotinia sclerotiorum [25]

G-protein one N.A. Trichoderma
asperellum

Rhizoctonia solani,
Sclerotinia sclerotiorum

[265]

G-protein ypt3 N.A. Trichoderma
asperellum

Rhizoctonia solani,
Sclerotinia sclerotiorum

[265]

G-protein rab2 N.A. Trichoderma
asperellum

Rhizoctonia solani,
Sclerotinia sclerotiorum

[265]

α-subunit of G protein 1 tga1 Trichoderma
atroviride

Botrytis cinerea,
Rhizoctonia solani,
Sclerotinia sclerotiorum

[347, 348]

α-subunit of G protein 3 tga3 Trichoderma
atroviride

Botrytis cinerea,
Rhizoctonia solani

[349]

gna3 Trichoderma
reesei

Pythium ultimum [350]

α-subunit of G protein A tgaA Trichoderma
virens

Sclerotium rolfsii [351]

Mitogen-activated protein kinases

Mitogen-activated
protein kinases (MAPK)
A

smkA Stachybotrys
elegans

Rhizoctonia solani [352]

tmkA Trichoderma
virens

Rhizoctonia solani,
Sclerotium rolfsii

[353]

N.A. Chaetomium
cupreum

Rhizoctonia solani [106, 115]

MAPK 1 tmk1 Trichoderma
atroviride

Botrytis cinerea,
Rhizoctonia solani

[354]

MAPK hog1 Trichoderma
hazianum

Colletotrichum acutatum,
Phoma betae

[355]

tvk1 Trichoderma
virens

Pythium ultimum,
Rhizoctonia solani

[356]

(continued)
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Table 5 (continued)

Protein
Encoding
gene Source fungus Target pathogen References

MAPK kinase kinase
(MAPKKK)

bck1 Coniothyrium
minitans

Sclerotinia sclerotiorum [357]

Cell wall integrity-
related MAPK

slt2 Coniothyrium
minitans

Sclerotinia sclerotiorum [357]

Similar to Wak1 protein
(MAPKKK)

N.A. Coniothyrium
minitans

Sclerotinia sclerotiorum [25]

Other proteins

Adenylate cyclase Tac1 tac1 Trichoderma
virens

Sclerotium rolfsii,
Rhizoctonia solani,
Pythium sp.

[358]

Microsomal signal
peptidase

N.A. Coniothyrium
minitans

Sclerotinia sclerotiorum [25]

Myo-inositol-1-
phosphate synthase

N.A. Coniothyrium
minitans

Sclerotinia sclerotiorum [25]

Protein phosphotase 2a
65kd regulatory sububit

N.A. Coniothyrium
minitans

Sclerotinia sclerotiorum [25]

Serine/Threonine protein
kinases

N.A. Coniothyrium
minitans

Sclerotinia sclerotiorum [25]

TGF-beta receptor
associated protein 1

N.A. Coniothyrium
minitans

Sclerotinia sclerotiorum [25]

Transcription factors

Carbon catabolite
repressor Cre1

cre1 Trichoderma
harzianum

Botrytis cinerea [359]

Heat shock factor 1 hsf1 Coniothyrium
minitans

Sclerotinia sclerotiorum [360]

Methyltransferase Lae1 lae1 Trichoderma
atroviride

Alternaria alternata,
Alternaria solani, Botrytis
cinerea

[361]

pH regulator PacC pacC Trichoderma
virens

Rhizoctonia solani,
Sclerotium rolfsii,
Sclerotinia sclerotiorum

[130, 362,
363]

pH regulator Pac1 pac1 Trichoderma
harzianum

Phytophthora
citrophthora, Rhizoctonia
solani, R. meloni

[364]

pH regulator CmPacC CmpacC Coniothyrium
minitans

Sclerotinia sclerotiorum [365]

Transcription factor
ThCtf1

ctf1 Trichoderma
harzianum

Botrytis cinerea, Fusarium
oxysporum f. sp.
lycopersici, Rhizoctonia
solani

[366]

VELVET protein Vel1 vel1 Trichoderma
virens

Pythium ultimum,
Rhizoctonia solani

[367]

VibA vibA Epichloë
festucae

Drechslera erythrospila [368]

(continued)
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essential for asexual development but also for antagonism toward Alternaria
alternata, Alternaria solani, and Botrytis cinerea [361]. This, and the fact that
Vel1 is very highly conserved across Trichoderma species [367], suggests that
Vel1 and Lae1 may be master regulators of the antagonistic properties of
Trichoderma and could be found in other biocontrol fungi.

Despite a few steps forward, our knowledge is still piecemeal and restricted to
Trichoderma spp. To date, only Coniothyrium minitans PacC and heat shock factor
1 have been associated to antagonism [360, 365]. In addition, VibA transcription
factor from the plant symbiotic fungus Epichloë festucae is required for antibiosis
[368]. Mutants deleted for the vibA gene are affected in their antifungal activity
against the grass pathogen Drechslera erythrospila. Conversely, overexpression
transformants exhibit enhanced antifungal activity. Mutants are able to antagonize
fungal pathogens that the wild type does not. Therefore more investigations are
needed to fully understand the genetic reprogramming that underlies biocontrol.

6 Fungal Induction of Plant Defense Reactions

Two types of induced resistance are distinguished in plants. Systemic acquired
resistance (SAR) is triggered by previous infections by avirulent pathogens, whereas
induced systemic resistance (ISR) is triggered by previous colonization of the
rhizosphere by beneficial microbes. Nonpathogenic plant-growth-promoting
rhizobacteria (PGPR) and fungi (PGPF) influence soil and plant health; they induce
a wide array of plant responses that result in enhanced defensive capacity of the
whole plant against a broad spectrum of plant pathogens. The role of hyperparasitic
fungi such as Trichoderma sp. in priming plant defenses has been extensively
studied. Several secondary metabolites and proteins involved in mycoparasitism
and antibiosis have been identified as ISR elicitors (Table 6). Expression of the
Trichoderma harzianum chitinase gene chit42 in tobacco and potato plants enhanced
resistance to the foliar pathogens Alternaria alternata, Alternaria solani, Botrytis
cinerea, and to the soil-borne pathogen Rhizoctonia solani [384]. Similarly, expres-
sion of the Trichoderma atroviride endochitinase gene ech42 in barley resulted in
increased resistance to Fusarium sp. infection [273]. Trichoderma longibrachiatum

Table 5 (continued)

Protein
Encoding
gene Source fungus Target pathogen References

Ste12 ste12 Trichoderma
atroviride

Botrytis cinerea,
Rhizoctonia solani

[369]

Xylanase transcriptional
regulator Xyr1

xyr1 Trichoderma
atroviride

Botrytis cinerea,
Phytophthora capsici,
Rhizoctonia solani

[16]

N. A. not available
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Table 6 Fungal and oomycete proteins/molecules associated with antagonism and involved in the
induction of plant resistance

Protein/molecule
Encoding
gene

Source fungus
or oomycete Target pathogen References

Proteins

Chit42 chit42 Trichoderma
harzianum

Alternaria
alternata,
Alternaria solani,
Botrytis cinerea,
Rhizoctonia solani

[384]

Epl1 Epl1 Trichoderma
asperellum

Rhizoctonia solani,
Sclerotinia
sclerotiorum

[265]

Ech42 ech42 Trichoderma
atroviride

Fusarium sp. [273]

Elicitin-like protein
1 precursor

N.A. Pythium
oligandrum

Phytophthora
infestans

[21]

Elicitin-like protein
SOL13A

N.A. Pythium
oligandrum

Phytophthora
infestans

[21]

Elicitin-like protein1,
putative elicitin

N.A. Pythium
oligandrum

Phytophthora
infestans

[21]

Elicitin-like protein
RAL13D, Elicitin-like
protein 1

N.A. Pythium
oligandrum

Phytophthora
infestans

[21]

Endopolygalacturonase
ThPG1

Thpg1 Trichoderma
harzianum

Botrytis cinerea,
Pythium ultimum,
Rhizoctonia solani

[227]

Epl1 Epl1 Trichoderma
atroviride

Rhizoctonia solani [385]

Epl2 Epl2 Trichoderma
atroviride

Cochliobolus
heterostrophus

[386]

EplT4 EplT4 Trichoderma
asperellum

Cercosporidium
sofinum

[387]

FK506-binding protein
2 precursor
transglutaminase elcitor
family M81B

N.A. Pythium
oligandrum

Phytophthora
infestans

[21]

Hydrophobin Hytlo1 Hytlo1 Trichoderma
longibrachiatum

Botrytis cinerea [115]

Methylisocitrate lyase mlc Trichoderma
atroviride

Botrytis cinerea [303]

Mitogen-activated
protein kinase

tmkA Trichoderma
virens

Sclerotium rolfsii [388]

NPP1-containing
protein, Elicitin-like
protein RAL13D

N.A. Pythium
oligandrum

Phytophthora
infestans

[21]

Oligandrin oli-d1,
oli-d2

Pythium
oligandrum

Botrytis cinerea [389, 390]

oli-s1 Pythium
oligandrum

N.A. [389]

(continued)
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Table 6 (continued)

Protein/molecule
Encoding
gene

Source fungus
or oomycete Target pathogen References

PKS/NRPS hybrid
enzyme

tex13 Trichoderma
virens

N.A. [147]

4-Phosphopantetheinyl
Transferase

ppt1 Trichoderma
virens

Alternaria solani,
Fusarium
oxysporum,
Fusarium spp.,
Phytophthora
capsici, Rhizoctonia
solani, Sclerotium
cepivorum, S. rolfsii

[127]

Pod-1, Pod-2 pod-1,
pod-2

Pythium
oligandrum

Botrytis cinerea,
Fusarium
oxysporum f. sp.
radicis-lycopersici,
Phytophthora
parasitica

[391–393]

Pos-1 pos-1 Pythium
oligandrum

N.A. [389]

Sm1 (Small Protein 1) sm1 Trichoderma
virens

Colletotrichum sp. [394]

Sm2 (Small Protein 2) sm2 Trichoderma
virens

Cochliobolus
heterostrophus

[386]

Swollenin TasSwo TasSwo Trichoderma
asperellum

Botrytis cinerea [233]

Thc6 protein Thc6 Trichoderma
harzianum

Curvularia lunata [395]

Transglutaminase
elicitor family
M81BCBEL

N.A. Pythium
oligandrum

Phytophthora
infestans

[21]

Xylanase Xyn2/Eix Xyn2/Eix Trichoderma
viride

N.A. [396]

Secondary metabolites

Alamethicin (20mer
peptaibol)

N.A. Trichoderma
viride

N.A. [397]

Harzianolide N.A. Trichoderma
harzianum

S. sclerotiorum [398]

6-Pentyl-a-pyrone,
harzianolide and
harzianopyridone

N.A. Trichoderma
spp.

N.A. [142]

Trichokonin (20mer
peptaibol)

N.A. Trichoderma
pseudokoningii

N.A. [265]

N.A. not available
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cellulases, Trichoderma viride xylanase Xyn2/Eix, Trichoderma harzianum
endopolygalacturonase ThPG1, or Trichoderma asperellum swollenin (expansin-
like protein) TasSwo can also elicit systemic resistance [227, 233, 396, 399].
Nonenzymatic proteins such as Trichoderma virens and Trichoderma atroviride
cerato-platanins Sm1/Epl1 also trigger plant systemic resistance. Secondary metab-
olites like 20-mer peptaibol (alamethicin and trichokinin), 18-mer peptaibol,
6-pentyl-a-pyrone, harzianolide, and harzianopyridone have antimicrobial effects
at high doses but are ISR inducers at low concentrations (Table 6).

ISR triggering by other antagonistic fungi is well described. However, the nature
of the elicitor is not always clearly established. The PGPF Penicillium
simplicissimum enhanced resistance of barley to Colletotrichum orbiculare by
inducing reactive oxygen species formation, lignification, salicylic acid accumula-
tion, and activation of defense genes [402]. A number of Pythium oligandrum genes
encoding elicitor-like proteins, functionally characterized or identified using
transcriptomic data, are listed in Table 6. Mycorrhizal fungi are also powerful ISR
elicitors [403]: colonization of Oryza sativa roots by Glomus intraradices (now
named Rhizophagus irregulare) promoted systemic induction of defense-related
genes and conferred resistance to Magnaporthe oryzae [404].

7 Conclusion

The diversity of metabolites produced by microorganisms, including fungi specifi-
cally mentioned in this chapter, is simply impressive. In the case of metabolites, it is
not always possible to know if they are produced to affect other microorganisms,
including pathogens, or whether they are metabolic by-products whose side effects
are by chance useful for biocontrol. This is one of the criticisms that can be objected
to all in vitro tests: they only show inhibition of pathogen growth in Petri dishes but
do not allow investigators to know if the mechanism is reliable, durable, or only
transient. A few studies use mutants to validate the genetic basis of the mechanism
under focus and consider a role in the biological control of a pathogen. Knowledge of
genes encoding these molecules and transcriptomic studies are actually much more
informative and allow for a more efficient use of this potential. The microorganisms
that harbor these genes become candidates that can be selected based on this criterion.
Then it is also possible to determine the favorable conditions for the expression of
these genes, and thus ensure that the environment where the selected agent should be
introduced is favorable for the expected biocontrol activity. Some of the molecules
identified so far are candidates for new fungicides. As fungi naturally produce them,
the general public better perceives them. However, systematic phytotoxicity tests and
environmental studies are needed if field use at high doses is envisaged. In this
context, the direct use of biocontrol agents seems to be the most effective long-term
solution, as these agents usually combine antibiosis, mycoparasitism, and induction
of plant defense reactions to control pathogens without harming the environment or
human health. Moreover, the diversity of the mechanisms of action prevents the
development of new resistance. That is why it is important to keep studying and
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deciphering the molecular mechanisms associated with antagonism to better under-
stand how they are induced and possibly improve the biocontrol capacity of
the currently available agents. However, the implementation of these mechanisms
by microorganisms should be understood in natural situations. This is why these
studies generally fall within the knowledge of the ecological requirements and
ecological fitness of soil fungi, both plant pathogenic fungi and saprophytes.
The control of the infectious activity of pathogenic agents can be achieved either
by bioaugmentation (inoculation) of biocontrol agents selected on the basis of the
metabolites they produce or by biostimulation of indigenous populations producing
these metabolites of interest in situ. The two strategies can of course be combined, but
in all cases, it is necessary to offer these biocontrol agents environmental conditions
promoting their activity at the expense of deleterious pathogens.

Thus, knowing about the genes and metabolites involved in microbial interactions
to control pathogens will be a major key to select the most interesting candidates and
ensure their expression in the future environment of the biocontrol agent. This
knowledge will also stimulate a preventive action to manage pathogen control
more efficiently by providing indicators of the health status of soils and other
growing substrates. Microarrays already exist to detect the presence of pathogens
in soils. Complementary microarrays could be created, not based on the presence or
absence of taxa but rather on the presence or absence of metabolites and proteins
involved in pathogen control. This will help to assess the risk of cultivating a
susceptible but high-value crop or to test the impact of an innovative agricultural
practice on the resulting soil suppressiveness towards soil-borne diseases.
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Abstract
Fungi are simple organisms yet complex in their morphology. They have evolved
in several ways to cope with diverse environmental conditions which they
encounter. Some produce dormant structures which help them to survive unfa-
vorable conditions, while others, especially pathogens, have adopted dimorphic
form to adapt to new conditions. In many pathogenic fungi, the hyphae are
responsible for penetration either through natural openings or via invasion of
tissue. Once inside the host, morphogenesis, which is many a times under
quorum-sensing regulation, is triggered that enables the mycelium to switch to
yeast phase that can now spread in the host with higher efficiency as well as evade
host immune responses. Although very few fungi are known to regulate both
morphogenesis and pathogenesis via quorum sensing (QS), it is believed that
quorum-sensing regulation of at least morphogenesis is a universal phenomenon
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across all fungi. However, a systematic evidence for this is lacking. Awide array
of inducer molecules, such as Butyrolactone I, phenylethanol, tyrosol, farnesol,
oxylipin, and farnesoic acid among many others, have been identified in fungi till
date. In addition to these chemical compounds, a calcium-binding protein (CBP)
is also involved in quorum-sensing regulation of morphogenesis and pathogen-
esis in the genus Histoplasma. Quorum sensing has well-established applications
in controlling the spread of diseases as an alternative strategy to the use of
antibiotics and overcoming multidrug-resistant strains. While there are numerous
potential inhibitors of quorum-sensing inducers, not even a single effective
molecule, which is also economically viable, has been commercialized till date.
The research in this field therefore demands a more systematic and coordinated
effort to investigate quorum sensing and quenching molecules across the diverse
taxa within fungi.

Keywords
Morphogenesis • Pathogenesis • Quorum sensing • Farnesol • Oxylipin •
Butyrolactone I • Quorum-sensing inhibitor

List of Abbreviations
CDA Czapek dextrose agar
MEA Malt extract agar
MYA Million years ago
PCA Potato carrot agar
PDA Potato dextrose agar
QS Quorum sensing

1 Introduction

Fungi are among the oldest microbes known to have diverged from other life-forms
at around 1.5 million years ago (MYA) [1]. They are eukaryotic and require an
external supply of carbon for their nutrition. Of the more than 97,330 fungi known
till date, majority are strictly saprophytic and remaining are parasitic [2]. Some fungi
are also pathogenic to plants, animals, or humans and are able to evade the host
defense mechanisms upon penetration, thereby causing symptomatic infection. In
agriculture, fungi are important pathogens of crops causing heavier losses as com-
pared to bacteria and viruses [3]. In humans, leaving aside superficial skin infection
and dermatitis, most fungi cause infections in immunocompromised patients only.
However, relatively recently there has been an increase in the human diseases caused
by fungi, especially in the tropical habitats due to favorable conditions for the growth
of fungal pathogen. It is the pathogenic fungi that have yielded most information
about the mechanisms and modifications in structures that have evolved throughout
their history. Interestingly, some fungi have evolved to move from saprophytic way
of life to a pathogenic lifestyle even during the same life cycle or on a different host.
Hence, it has become increasingly difficult to distinguish a pathogenic fungal strain
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from a nonpathogenic one. Research has shown that at times a pathogenic fungus
may lack virulence genes, whereas sometimes even though the gene is present, the
fungus will not cause disease due to physiological adaptation of the host. Addition-
ally, the fungal pathogen must complete its life cycle or part of it inside the host, such
as plant tissue, skin, or lung alveoli, in order to produce symptomatic disease as well
as to reproduce. Overall, during the course of their evolution, fungi have developed
mechanisms to survive not only in harsh environmental conditions but also inside
nutritionally rich host tissues.

Some fungi are known to have phenotypic plasticity which allows them to switch
between morphologically different growth forms to achieve survival, dispersal, and
reproduction. These pleomorphic fungi include Aureobasidium, Ustilago, Puccinia,
etc., as well as some dimorphic yeasts, such as Candida, Blastomyces, Saccharo-
myces, Cryptococcus, etc. (Fig. 1). However, plant pathogenic fungi do not com-
monly have a dimorphic switch and are typically filamentous. Instead, additional
structures are produced during infection of the host plant that help the fungi in
penetration and infestation. These morphological changes are dependant upon
various signals and thereafter secretion of various enzymes or local turgor pressure
helps in the initial stages of infection. In contrast, dimorphism is common in animal
or human pathogenic fungi, wherein yeast form is more pathogenic than the fila-
mentous form. Most of these animal pathogens belong to Ascomycota but some are
also reported from Zygomycota and Basidiomycota. For instance, Histoplasma
capsulatum, Paracoccidioides brasiliensis, and Blastomyces dermatitidis grow in
yeast form inside the host, whereas some species of Aspergillus, Trichophyton,
Microsporum, Arthroderma, Pyronema, and Microdiplodia grow as filaments.
While most of these filamentous forms lose their ability to sporulate inside host
tissue possibly because of high-nutrient conditions and easy spread through the body
fluids, Candida albicans grows in both forms inside the host. Various environmental
factors are known to trigger the shift from filamentous to yeast form. At 25 �C,
the conidia of Penicillium marneffei germinate into filamentous form (which are
nonpathogenic) and at 37 �C into the yeast form (which are pathogenic) [4].

Fig. 1 Dimorphic fungi which form yeast and mycelial phases in their life cycle. Various fungi
look morphologically different in different conditions (pH, temperature, inoculum density, etc.).
Their nonpathogenic saprobic state is mycelial (upper lane), and pathogenic one is yeast (lower
lane) (Adapted from Boyce and Andrianopoulos [95])
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Similarly, Myceliophthora verrucosa grows with cottony morphology forming
conidia on malt extract agar (MEA) and Czapek dextrose agar (CDA), whereas it
grows as flat and floccose on potato dextrose agar (PDA) (Fig. 2). Beside temperature
and media, other factors which regulate the dimorphic behavior include pH, atmo-
sphere, inoculum concentration, carbon, nitrogen, MAP kinase pathways, histidine
kinases, and G-protein. Dimorphism in fungi has not only offered new opportunities
to study their pathogenesis in various diseased conditions but also yielded significant
information on the involvement of various molecular mechanisms.

Cell-to-cell communication is known to play a major role in morphogenesis in
fungi. First discovered in prokaryotes and lower eukaryotes, it is typically achieved
by the mechanism of quorum sensing in which extracellular concentration of a small
signaling molecule, the autoinducer, mimics the cell density in the medium (Fig. 3).
Upon achieving the “threshold” concentration, the molecule is transported back into
the cell either actively or passively and activates transcription factors, which in turn
trigger the signal transduction cascades to regulate the expression of genes involved
in morphological differentiation, biofilm formation, virulence, etc. [5]. Different
microbes employ different machineries for the transport and detection of molecules
and reciprocal action through gene expression/transcription. In bacteria, quorum-
sensing-regulated phenotypes include bioluminescence, exopolysaccharide produc-
tion, virulence, antibiotic and exoenzyme production, biofilm formation, and growth
inhibition [6]. However, in fungi it is only known to regulate morphogenesis of
yeasts cells which in turn is associated with virulence capacity or pathogenesis
(sporulation, pseudohyphae, biofilm formation). While some autoinducers (small
molecules) are secreted and recognized by strains or population of same species
(species-specific autoinducers), others are used to detect other species (interspecies).
Moreover, there are reports about autoinducer detection between distantly related
taxa, such as bacteria and fungi. In essence, quorum sensing helps the microbe to act
in coordinated manner to adapt various environment conditions.

Compared to bacteria, cell-to-cell communication in fungi was only recently
discovered. The role of quorum sensing in morphogenesis in dimorphic fungi was

Fig. 2 Effect of nutrition on colony morphology of Myceliophthora verrucosa
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established only in the last decade [7]. Most fungal studies on quorum sensing have
focused on yeasts as a model system. Earlier, yeasts were thought to change the
dimorphic behavior due to environmental changes especially physical, i.e., temper-
ature, pH, etc. However, research on quorum sensing in fungi has shown its
involvement in regulating many other phenotypes as well. In Candida albicans,
the autoinducer farnesol blocks hyphal development and biofilm formation, while in
stationary phase, tyrosol autoinducers (small numbers) stimulate formation of
hyphae. In Uromyces (a mycelial fungus), methyl 3,4-dimethoxycinnamate inhibits
the germination of uredospores [6]. Although very few fungi (both yeast and
filamentous forms) have been experimentally studied for quorum-sensing system,
new genomic data suggests that many fungi harbor quorum-sensing gene homologs.
Hence, the possibility of discovering novel systems and phenotypes regulated by
them is very high in fungi.

2 Morphological Changes During Pathogenesis

Fungi occupy various habitats and form diverse morphological structures to survive
in environment. As discussed below, pathogenic fungi either make morphological
changes (appressorium, peg formation) at the time of infection or show the phenom-
enon of dimorphism (yeast form, hyphal form, or pseudohyphae). Changes in
environment generate some signals which are perceived by the fungi and trigger
morphological changes (Table 1). These signals may be temperature, pH, nutrient, or

Fig. 3 General mechanism of quorum sensing in fungi. Similar to bacteria, signal-producing
proteins are involved in the synthesis of signal molecules which are then detected by the signal
receptor proteins which later on regulate the expression of various genes (Adapted from Sharma and
Jangid [83])
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some chemical molecule released by the fungus itself. In general, anaerobic envi-
ronment supports yeast growth [8]. Many fungal pathogens especially those of
animals and humans live in mycelial form outside (25 �C) and remain as yeast
form inside host (37 �C) [9]. For clarity, we have discussed below two categories of
fungal pathogens based on the host type, the mechanisms of invasion, morphogen-
esis, and pathogenesis.

2.1 Plant Pathogenic Fungi

The invasion of plant host by fungal pathogens is a complex multi-step process and
is accompanied by several morphological changes during the process of pathogen-
esis. Our aim is not to discuss the steps in detail for which the reader may refer earlier
work [10–13]. Briefly, the initial step involves the attachment of fungal spores to the
host surface (Fig. 4). Recognition of the host surface is crucial for this attachment
and is facilitated by certain signals on the host surface that may include the long-
chain aliphatic fatty alcohols present in wax (hydrophobic) on the plant surface.
After recognition of host, the spore germinates, and penetration begins via various
modifications in the structure of fungal hyphae. Further, while some fungi like
Magnaporthe grisea (rice blast fungus) directly penetrate the host surface
(Fig. 4a), others, such as Uromyces appendiculatus (bean rust fungus), enter either
through stomata or wound openings (Fig. 4b). After germination, the germ tube
differentiates into an appressorium and forms a penetration peg that pierces into the
cuticle and epidermal cell wall [14, 15]. In Magnaporthe grisea, penetration is the
result of a coordinated effort of physical force as well as genetic regulation by the
fungus [16]. Whereas the MPG1 gene is responsible for attachment, the cyclic
adenosine monophosphate (cAMP) plays a role in signaling pathways enabling it
to penetrate [17, 18]. Mutants for both fail to penetrate rice leaf [19, 20]. In addition,
melanin and turgor pressure within the appressorium/penetration peg which are
under genetic regulation also help in penetration [21]. While most plant pathogens
enter through formation of appressoria, root pathogens like Fusarium oxysporum
f. sp. vasinfectum produce netlike mycelia on root surface. Alternatively, fungi also
secrete extracellular hydrolytic enzymes such as cutinase to enable mechanical
penetration, such as in Botrytis cinerea and M. grisea. Although dimorphic
switching occurs in basidiomycetous corn pathogen Ustilago maydis, it is not a
general phenomenon in plant pathogenic fungi. It grows as yeast in vitro and its
hyphal forms infect plants [22]. Hence, morphogenesis in plant pathogenic fungi
plays an essential role in its pathogenesis.

2.2 Animal and Insect Pathogenic Fungi

Fungi cause a wide range of diseases in humans and animals: from superficial skin
diseases caused by dermatophytes to invasive life-threatening infections. Most
fungal pathogens are opportunistic, and their pathogenicity is dependent upon
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numerous factors, such as the health status of the host (healthy or immunocompro-
mised), type of strain, and/or other environmental conditions (Fig. 5). Some com-
mon fungal pathogens of humans include Candida albicans, Cryptococcus
neoformans, Mucor circinelloides, Aspergillus flavus, Histoplasma capsulatum,
Blastomyces dermatitidis, Malassezia furfur, etc. Like plant pathogenic fungi, the
morphogenetic switch from hyphal to yeast form helps the fungus to overcome the
structural, thermal, and immunological barrier. The outside or epithelial barrier is
overcome by the hypha; the conidia then pass the lung and enter the respiratory tract.
Once inside the lung, conidia bind to inner wall and transform to yeasts. During this
transition, the genes responsible for immune evasion, intracellular survival, and
dissemination are upregulated, and the hyphae help the fungal pathogen to survive
the environment, allow transmission to new host, and add genetic variability. For
most fungi, upon dissemination, the sexual reproduction occurs outside the host
when hyphae of opposite mating types come together and fuse implying that the
pathogen must exit the host in order to complete its life cycle. In case of noninvasive

Fig. 4 Invasion of plant host by fungal pathogens. (a) Direct penetration and invasion. During this
process, fungus first adheres to the surface of plant. It germinates by forming a germ tube and
swollen structure (appressoria). With the help of turgor pressure and local extracellular enzyme, it
penetrates the plant surface (After Agrios [101]). (b) Penetration and invasion through natural
opening. Fungal mycelium enters the host by natural openings like stomata or wounds (After Meng
et al. [102])
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pathogens, such as dermatophytes, the pathogen grows on the skin superficially in
mycelial form, and the conidia formed by them must be shed from the host upon
degradation of the infected skin surface.

Likewise, morphogenesis plays an essential role during fungal pathogenesis in
insect hosts. Host detection and adhesion, penetration of the cuticle, and non-self-
recognition by host defense mechanism are crucial factors involved in the establish-
ment of infections by entomopathogenic fungi, which mostly belong to the phylum
Ascomycota and includes genera such as Metarhizium, Beauveria, Nomuraea,
Cordyceps, etc. These fungi are not truly dimorphic but exhibit different morpho-
logical structures inside and outside the insect host. The penetration is by the hyphal
form which then switches to the yeastlike form called blastospores inside the insect
or at times remains mycelial (Fig. 6). The blastospores replicate by budding to
promote dissemination, evading the immune system of insect [23]. Some fungi
form ascomata outside the insect host.

In most cases, morphogenesis is associated with the virulence capacity of the
fungal pathogen. For instance, Metarhizium anisopliae is a potent insect pathogen
and a well-known biocontrol agent. It is cosmopolitan in nature and has metabolic
and ecological variability and adaptability allowing it to establish itself as an
entomopathogen or saprophyte or an endophyte as well. While inside insect

Fig. 5 An opportunistic fungus behaves differently in environment and host. A fungus can behave
as saprophyte in the environment, and same fungus may behave as pathogen when it infects a host
(mammal, plant, insect). Same fungal strain contains virulent factors which are only expressed
inside the host
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hemolymph and on plant root surfaces, the fungus produced two differentially
induced proteins MAD1 and MAD2 which are involved in the recognition of surface
structures by the fungal conidia [24]. MAD1 is involved in cytoskeletal organization
and cell division. Increased production of MAD1 helps in insect surface recognition
and blastospore formation thereby increasing the virulence. MAD1 deletion mutants
have shown up to 90 % reduction in their capacity to adhere to a surface by affecting
conidial germination. Other fungi like Beauveria bassiana and Ophiocordyceps
unilateralis also alter their morphology for host infection [25, 26]. In B. bassiana,
carbohydrate epitomes attached on the walls of various morphological structures
help in avoiding host immune responses and enhancing subsequent infection
[26]. Importance of surface carbohydrate in fungal-insect infection has also been
demonstrated in Paecilomyces farinosus and Nomuraea rileyi [27, 28]. Thus, fungal
pathogenesis in insect hosts is a complex process involving an array of genes and

Fig. 6 Penetration and invasion of insect by fungi. Just like mammalian invasion, after landing on
the surface of an insect, fungal conidia germinate and form penetration peg which in turn leads
mycelia to the hemolymph
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signaling pathways that regulate phenotypic as well as structural changes within the
pathogen.

3 Role of Quorum Sensing in Morphogenesis
and Pathogenesis

Dimorphism, especially in fungal pathogens, is a unique adaptation for effective
infestation and infection of the host. In most cases, this dimorphism is mediated by
quorum sensing. However, interest in quorum-sensing system comes from the
occurrence of dimorphism and other morphological changes among those fungi
exhibiting pathogenicity toward plants and animals (Fig. 7). Several chemical and
environmental factors have been reported to shift the yeast-mycelium dimorphism.
Among these have been temperature, pH, glucose levels, nitrogen source, carbon
dioxide levels, transition metals and chelating agents, and inoculum size or density
[29]. Moreover, as compared to the total number of genera known, the number of
genera studied for or showing quorum-sensing system is very few (Fig. 8). For
instance, there are many plant pathogenic dimorphic fungi where quorum sensing is
not known, such as in Taphrina deformans, Mycosphaerella graminicola, Holleya
sinecauda, Verticillium dahliae, and Verticillium albo-atrum, all of which exhibit
yeast-to-mycelial switching; no cell density-dependent regulation has been identified

Fig. 7 Effect of quorum-sensing molecules on morphogenesis and pathogenesis
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so far [30]. Fungi in which the morphological change is mediated by quorum sensing
are discussed below based on the phylum it belongs.

3.1 Basidiomycota

3.1.1 Cryptococcus
Cryptococcus has more than 37 species, majority of which grow in soil and are not
harmful to humans. Cryptococcal fungi grow as yeast form in culture and its sexual
morph grows as filamentous form. However, Cr. neoformans is an animal and human
pathogen of environmental origin causing life-threatening meningoencephalitis in

Fig. 8 Phylogenetic tree of pathogenic fungi (infecting plant, mammal, or insect) which show
dimorphism. The fungi highlighted in bold are those for which quorum sensing is reported as one of
the mechanisms for dimorphism
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immunocompromised hosts [31]. Similarly, Cr. laurentii and Cr. albidus occasion-
ally cause meningitis in immunocompromised human patients. Research has shown
the involvement of short signaling peptides acting as quorum-sensing molecules in
this fungus. The deletion of a global repressor TUP1 encoded by CQS1 gene resulted
in less growth at both 25 �C and 30 �C but not at 37 �C. Further experimentation
revealed that penetration by the TUP1 mutant was cell density dependant and was
regulated by an 11-amino acid peptide (QSP1) which had effect on the morphology
of the fungus [32]. Although small peptides are known inducers in many bacteria,
such as Streptococcus pneumoniae, Bacillus subtilis, and Staphylococcus aureus,
they have not been reported in any other fungi as a quorum-sensing molecule. It is
possible that the oligopeptide may help the fungus to grow slow and survive the
harsh environmental conditions by repressing the TUP1. However, once it enters
animal or human body, the TUP1 is derepressed at the higher host body temperature
and becomes fully functional, and hence full rate of cell multiplication may occur.
Lee et al. [33] also found the patho-biological effect of TUP1 which helps in fast
colonization of host, thus helping the fungus in pathogenesis. Although it has not
been experimentally proven, it is very likely that this oligopeptide may regulate
quorum-sensing system of other organisms.

The investigation of cell density-dependent behavior of Cr. neoformans in con-
ditioned medium (medium in which Cr. neoformans has already grown) and medium
containing pantothenic acid showed dose-dependent increase in the growth both as
isolated cells and biofilm cells. The addition of conditioned medium also increased
capsular synthesis (glucuronoxylomannan) and melanin synthesis which are consid-
ered as important pathogenesis factors [34]. All these mechanisms help the fungus in
establishing itself in the host thereby causing severe infection. The same conditioned
medium in which Cr. neoformans was grown stimulated the growth of Candida
albicans and Saccharomyces cerevisiae. Conversely, conditioned medium from
other fungal species, viz., Candida albicans, Saccharomyces cerevisiae, Cryptococ-
cus albidus, and Saccharomyces schenkii, enhanced the growth of Cr. neoformans
suggesting that the quorum-sensing system exists in the genus Cryptococcus. Fur-
ther research on its social interactions, both inside and outside its host, will reveal
more about the pathogenesis.

3.2 Ascomycota

3.2.1 Aspergillus
Aspergillus is one of the largest genera of phylum Ascomycota and Eumycota. They
are one of the most cosmopolitan fungi colonizing almost all niches. Just like other
filamentous fungi, species of Aspergillus (A. terreus, A. flavus, A. nidulans, etc.) also
undergo morphological changes like sporulation (sexual, asexual morphs), as a
result of nutrient and environment change. Species of genus Aspergillus are also
known to harbor quorum-sensing system for regulating population-based functions
like morphogenesis and production of secondary metabolite [35, 36].
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A. terreus is one of the most important pathogens of both animal and plant
causing invasive aspergillosis in humans, infective endocarditis, pulmonary myce-
toma, and allergic bronchopulmonary aspergillosis. In plants, it causes infection and
losses in rice, wheat, potato, maize and soybean. Under sufficient nutrition supply, it
shows more of filamentous growth and sporulation by asexual means. However,
once the nutrient is limiting, it forms sexual morph if both mating types are present.
A. terreus produces Butyrolactone I (α-oxo-β-( p-hydroxyphenyl)-γ-( p-hydroxy-m-
3, 3-dimethylallylbenzyl)-γ-methoxycarbonyl-γ-butyro-lactone) as the quorum-
sensing signaling molecule (Fig. 9) that is known to increase its own production as
well as lovastatin when externally added, thus confirming that quorum sensing is
involved in increased production of secondary metabolite in A. terreus
[37]. Butyrolactone I inhibits cyclin-dependent kinases which are protein kinases
controlling cell cycle progress. In A. terreus morphogenesis also, it increases hyphal
branching, extension, and sporulation [36]. While hyphal branching is important for
fast and rapid colonization of a host or substrate, increased sporulation enhances
rapid dispersal of the pathogenic fungi.

A. flavus is another common fungus which is responsible for huge losses in
postharvest vegetables or fruits. In groundnut, it produces aflatoxins which are
carcinogenic. In humans, it causes invasive aspergillosis when the conidial forms
enter the lungs through inhalation. In A. flavus the fungus forms asexual spores
(conidia) or resting structures (sclerotia), and their switching is population dependent
wherein an increase in cell density (from 101 to 107 cells/plate) results in the
decreasing numbers of sclerotia [38]. Extracts from low-cell density growth cultures
induced a high-sclerotium-number phenotype, whereas high-cell density extract
increased conidiation. While the involvement of quorum sensing is highly likely,
the chemical nature of the compound is still not determined.

In addition to other compounds, lipids have also been identified as regulators of
fungal growth and reproductive development. In A. nidulans, the cleistothecium-
conidium switch is regulated by the lipid, oxylipin, which acts as the quorum-
sensing molecule in this fungus [38–40].

3.2.2 Aureobasidium
Species of the genus Aureobasidium are black and yeast-like and occupy a wide
diversity of environments, from soil to water, and exist as epiphytes as well as
endophytes. Many species are also used as biological control agents. Two species,
Au. pullulans and Au. melanogenum cause severe human infections like pneumonitis
which are primarily allergic in nature. Although Au. pullulans shows phenotypic
plasticity in response to temperature, pH, and nutrition status, the likelihood of this
morphogenesis being under quorum-sensing regulation is high and needs further
investigation.

3.2.3 Candida
Candida spp. are among the most common and medically important fungi, at times
responsible for 70–80 % of fungal infections in humans. Species in this genus cause
many invasive andnoninvasive infections in healthy and immunocompromised patients.
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Fig. 9 Structures of some known quorum-sensing molecules in fungi
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While Candida albicans is the most commonly encountered species in nosocomial
infections, others include C. glabrata, C. parapsilosis, and C. tropicalis [41].
C. albicans is a polymorphic fungus which is a normal inhabitant of oral, gut, and
vaginal microbiota of a healthy human being. However, in immunocompromised
individuals, it is responsible for oral mycoses, skin and lung infections, etc. The
increased pathogenicity is attributable to the changes in fungal morphology that allows
the fungus to better adhere to medical devices and/or host cells, biofilm formation, and
secretion of hydrolytic enzymes. Several genes are known to regulate these factors and
are consequently involved in virulence [42].

Candida has been the most extensively studied fungi for quorum-sensing-depen-
dent morphogenesis [6, 7, 43]. There are at least four quorum-sensing-related
molecules identified so far, farnesol, farnesoic acid, tyrosol, and morphogenic
autoregulatory substance (MARS) [44]. The switch from yeast to mycelial form in
C. albicans occurs at cell densities lower than 106 cells/ml and is typically regulated
by farnesol which is an isoprenoid molecule [45]. In the same year, farnesoic acid
was identified from another strain of C. albicans that was farnesol negative [46, 47].
Farnesol blocks yeast-to-mycelium formation but does not stop elongation of
preexisting hyphae [48, 49] and is also known to affect the formation of chlamydo-
spore [50]. Expectedly, the strains also have the ability to form biofilms which is
under the regulation of farnesol [6]. Candida biofilm plays an important role during
infection; it inhibits lesion formation in oral candidiasis, inhibits murine macrophage
activity, and causes apoptosis of human spermatozoa [51–53]. In contrast, Candida
also produces tyrosol which enhances mycelial growth by initiating the germ tube
formation [54, 55]. Hence, both farnesol (inhibits yeast-to-mycelium phase) and
tyrosol (induces yeast-to-mycelium phase) act in opposite manner. Two other mol-
ecules, phenylethyl alcohol and tryptophol, have been reported in Candida, but their
role in quorum-sensing regulation is yet to be confirmed [44].

Although the switch from yeast to hyphae is governed by environmental factors,
it is largely dependent on transcriptional regulation of several signaling pathways,
viz., the CEK1 mitogen-activated protein kinase pathway, the Ras/cyclic
AMP-dependent pathway, the calcium signaling pathway, the Rim101-independent
pathway, and the two-component signal transduction pathways which collectively
transduce the environmental factors to dimorphism. Farnesol acts by blocking all or
some of the signaling pathways. In response, the immune system of the host is also
known to act against Candida invasion through the epithelial layers of the host, and
this interaction is critical for the host as well as fungus [56–58]. Thus, Candida spp.
are dependant on the dimorphic phase switch for its increased virulence with the
hyphal phase, and its conidia required to enter the host either by penetration or
through inhalation and later the yeast phase to colonize and spread within host.

3.2.4 Ceratocystis (Ophiostoma)
Ceratocystis (Ophiostoma) is an important plant pathogenic fungus belonging to the
family Ceratocystidaceae. It is responsible for major diseases in trees, such as oak
wilt and pineapple black rot. Unlike other fungi, nitrogen status in the surrounding
environment is known to regulate dimorphism. For instance, in Ce. ulmi which
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causes Dutch elm disease, the yeast form is induced in the presence of 10 mM
proline with cell densities of �106 cells/ml, whereas mycelial growth is induced at
10 mM ammonium or asparagines or arginine at cell densities between 103 and 108

cells/ml [59]. The quorum-sensing activity in Ce. ulmi is mediated by a lipophilic
molecule which is species specific and does not cross-react with other fungi.
Moreover, in the presence of this molecule, the fungus does not require the threshold
cell density to switch between different dimorphic phases suggesting that dimor-
phism in Ce. ulmi is mediated by quorum sensing [29]. The regulation of germ tube
formation in Ce. ulmi is also under quorum-sensing regulation and is mediated by
2-methyl-1-butanol, methylvaleric acid, and 4-hydroxyphenylacetic acid (also called
as fusel alcohol and fusel oil) [60]. Fusel alcohols, viz., 3-methyl-1-butanol (isoamyl
alcohol), 2-methyl-1-propanol (isobutyl alcohol), 2-methyl-1-butanol (active amyl
alcohol), 2-phenylethanol, and 3-(2-hydroxyethyl)indole (tryptophol), are also
known to control cell morphology in other fungi [61, 62].

There are several cyclic and noncyclic isoprenoid molecules, similar to farnesol,
that are produced by various species of Ceratocystis, but their exact role is still
unknown. At least in Ceratocystis floccosum, three cyclic sesquiterpenes are
involved in quorum-sensing-mediated regulation of yeast-mycelium dimorphism
[63]. Further, oxylipins could also be involved in yeast-to-mycelium transition as
the strains grown on oxylipin showed decreased mycelium production [64]. It is
likely that oxylipins act in a cell density-dependent manner to regulate morphogen-
esis and thereby in pathogenesis.

Members of Ceratocystis are less studied for quorum sensing with only partial
characterization of the inducers. However, it is presumed that the actual molecular
mechanism should be similar to other isoprenoid molecules as shown in C.albicans
for farnesol. However, an extensive study involving the screening of all species of
the genus Ceratocystis is required to understand their role in morphogenesis and
pathogenesis.

3.2.5 Debaryomyces
Debaryomyces spp. are yeasts affiliated with the family Saccharomycetaceae. Its
most common species, Debaryomyces hansenii, is characterized by its ability to
grow in low pH and temperature but high NaCl concentrations [65]. These properties
have enabled its use in cheese and food industry. Although earlier thought to lack
dimorphism, the species was shown to exhibit this phenomenon during continuous
fermentation of acid-hydrolyzed barley bran in 2000 by Cruz et al. [66]. Since then,
research has shown ammonia-mediated quorum-sensing regulation of growth on
agar plates in D. hansenii [67]. Later on, the authors showed N-dependent produc-
tion of phenylethanol and tyrosol [68]. Also, high-cell density cultures produced
more phenylethanol and tyrosol as compared to low-cell density cultures. These two
alcohols are also responsible for biofilm formation suggesting a possible role of
quorum sensing. AlthoughD. hansenii is not yet reported as a pathogen, the quorum-
sensing-dependent morphogenesis will help in fermentation of these cultures in food
industry.
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3.2.6 Histoplasma
Histoplasma capsulatum is one of the most studied pathogens of human. The fungus
causes histoplasmosis, also called as cave disease, as the fungus is commonly found
associated with bat guano and nowadays with poultry. H. capsulatum is a dimorphic
fungus that lives as a saprophyte while in mycelial form and as an intracellular
human pathogen in yeast form. It undergoes reversible morphogenesis from mycelia
to yeast and vice-versa which is associated with increased virulence and successful
pathogenesis. Although it is a common inhabitant of soil, its conidia and hyphal
fragments are inhaled by humans. Inside the body, the fungus transforms into yeast
form possibly triggered by the host body temperature. They survive inside the
phagosome by changing to yeast form multiplying inside the phagosome. Studies
on the genes expressed exclusively in yeast form have helped to understand its
pathogenesis. H. capsulatum has two yeast phase factors, cell wall-bound α-(1,3)-
glucan and a secreted calcium-binding protein, both of which are cell density
dependent and involved in the morphogenesis and subsequent pathogenesis [69,
70]. While α-(1,3)-glucan is continuously produced by the fungus inside macro-
phages, the calcium-binding protein (CBP) is associated with the mycelia-yeast
interchange. The protein is encoded by CBP1 at the level of transcription and
secreted only at the time of infection of mammalian hosts. Moreover, Kugler
et al. [69] showed that CBP1 is downregulated as the morphology shifts to mycelia
form. Thus, morphogenesis in the fungus helps in the establishment of the infection
and its subsequent spread.

3.2.7 Neurospora
Neurospora is one of the important genera of Ascomycota, and Neurospora crassa
has been a model organism for fungal genetic studies. It is a saprophytic and a
nonpathogenic fungus. At times, it has been reported to damage postharvest fruit
crops. Hyphal fusions (anastomosis) are commonly observed between spore germ
tubes and/ or between vegetative hyphae and are important for proliferation of the
fungus. The anastomosis is reported to improve mycelial communication by
transporting nutrients and water within the colony. Specialized hyphal cells pro-
duced by the conidia and conidial germ tube are called conidial anastomosis tubes
(CATs). These are morphologically and physiologically distinct from germ tube.
These CATs forming anastomosis structures show positive tropism. Although
chemoattractant is unknown, the closeness of hyphae increases the frequency of
formation of anastomosis [71, 72]. However, Roca et al. [72] have demonstrated that
CATs in N. crassa are cell density dependent and induced by an extracellular
molecule. Based on mutant analysis that lacked cyclic AMP (cAMP) synthesis, it
was shown that it was not cAMP dependent; instead, it was regulated by putative
transmembrane protein (HAM-2) and the MAK-2 and NRC-1 proteins of a mitogen-
activated protein kinase signaling pathway. Mutation in the gene coding HAM-2,
MAK-2, and NRC-1 did not form CATs. Since CAT formation was dependent on
conidial concentration (at least 105 macroconidia/ml), it was hypothesized that it is
under quorum-sensing regulation.
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3.2.8 Penicillium
The genus Penicillium is the second most important genus of Ascomycota. It
includes large number of species, some of which are pathogenic and some are
industrially important, especially for the pharmaceutical industry. Species of Peni-
cillium, viz., P. expansum, P. digitatum, and P. allii, are pathogenic to plants, and
P. fellutanum, P. implicatum, and P. marneffei are pathogenic to humans and animals.
P. sclerotiorum produces azaphilones, isochromophilone, polyketide, and
γ-Butyrolactones containing multicolanic, multicolosic, and multicolic acid. In
addition, it produces sclerotiorin, a yellow-colored secondary metabolite with phos-
pholipase A2 inhibitor activity [73, 74]. Azaphilones and sclerotiorin help in binding
to human epithelial layer. While Raina et al. [74] studied the possible mechanism of
quorum sensing in controlling the production of sclerotiorin, its involvement in
regulating morphogenesis and pathogenesis is not clear.

3.2.9 Saccharomyces
Saccharomyces is a dimorphic yeast commonly used in wine, brewing, and baking
since ancient times. Although there is no direct relation of quorum-sensing activity
in Saccharomyces cerevisiae morphogenesis related to pathogenesis, apoptosis is
quorum-sensing dependent [75]. Apoptosis helps to remove unwanted old cells,
keeps the colony healthy, and maintains the genetic stability of the colony, i.e.,
apoptosis is proportional to the degree of genetic damage. Pheromones and ammonia
were reported as the signaling molecules along with some role of phenylethanol.
During apoptosis, high concentration of α-mating factor was found along with
ammonia [76, 77].

The nonpathogenic S. cerevisiae also undergoes morphological transition which
is cell density dependent. Chen and Fink [78] demonstrated that cells of S. cerevisiae
undergo morphogenesis by secreting aromatic alcohols by inducing the expression
of FLO11 through a Tpk2p-dependent mechanism. The mutants defective in syn-
thesis of these alcohols showed reduced filamentous growth. Like in many other
fungi discussed above, this quorum-sensing activity was nitrogen dependent, and the
aromatic alcohols would be released during N starvation. These alcohols were
identified to be phenylethanol and tryptophol as the quorum-sensing molecules
stimulating pseudohyphal growth in S. cerevisiae.

4 Application of Quorum Sensing in Disease Control/
Management

Ever since agriculture began, fungi have been a nuisance causing multiple patho-
genic conditions in plants. In humans too, fungal infections have emerged as a major
problem with the advent of immunocompromised diseases such as AIDS, H1N1, etc.
Regardless of the host, morphogenesis in fungi is critical for pathogenesis. Because
this shift is cell density dependent, blocking quorum-sensing-mediated regulation of
morphogenesis in such pathogenic fungi is the most sought-after target nowadays. It
becomes more important in the present day situation where more and more strains
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are becoming resistant to treatment (whether plant or animal). Knowledge of these
quorum-sensing molecules and the mechanism by which they stimulate growth may
lead to improved measures for controlling fungal infection and provide important
insights into potential antimicrobial treatments [79, 80]. Inhibiting morphogenesis,
thereby decreasing the virulence capacity, is likely to become the most effective in
disease management and control. Compounds capable of inhibiting the quorum-
sensing signals could therefore establish a new generation of antimicrobial agents
that would be useful in medicine, veterinary science, and agriculture [81]. Interfer-
ence of quorum sensing can be achieved in several ways, by preventing signal
production or release of quorum-sensing molecules, by signal degradation, or by
preventing the accumulation of the quorum-sensing molecules [82]. Numerous fungi
are known to produce such quorum-quenching compounds, and these have been
discussed in detail very recently [83]. Abraham [84] discussed that certain com-
pounds which control biofilm can be combined with established or novel antibiotics,
and it may improve the treatment of biofilm infections.

5 Conclusion

Fungi exhibit several cell density-dependent behaviors. Many fungal spores inhibit
their own germination in high cell density via regulation through phenolic mole-
cules, viz., cis-ferulic acid methyl ester [85, 86]. Similarly, unsaturated fatty acids are
known to affect fungal development in several genera. For example, in Ustilago
maydis fatty acid signals trigger the initiation of filamentous growth to invade plant
tissue; in Neurospora crassa linoleic acid induces perithecia; in Cladosporium
caryigenum and Aspergillus spp., fatty acids inhibit sporulation and/or cleistothecial
production [87–90]. These quorum-sensing molecules affect not only the growth of
the fungi which are producing it but also that of other microbes [91–94]. More
focused studies on the screening of all known fungal quorum-sensing molecules
across fungal taxa will help to understand the scope of action of these quorum-
sensing molecules.

Quorum sensing is a strategy used by pathogenic fungi to coordinate their
activities (change in morphology and other virulence factors) for maximum damage
to the host and protect themselves (Fig. 10). However, there are some dimorphic
fungi in which the involvement of quorum sensing is not proven. So far, the
involvement of quorum sensing in regulating both morphogenesis and pathogenesis
has only been reported from the phylum Ascomycota. In Zygomycota and
Basidiomycota, dimorphism and fungal morphogenesis are reported but not proved
to be dependent on quorum sensing. For instance, in Coccidioides species
(C. immitis and C. posadasii), Paracoccidioides species (P. brasiliensis and
P. lutzii), and Blastomyces dermatitidis (teleomorph Ajellomyces dermatitidis), the
dimorphic behavior is dependent on nutrition or physical factors [95]. Similarly, in
Mucor (M. circinelloides), member of Zygomycota, and Ustilago (U. maydis), a
member of Basidiomycota, dimorphism is reportedly due to anaerobic condition and
pheromones, plant lipids, pH, and nitrogen [96–98]. Moreover, in Uromyces
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phaseoli and Glomerella cingulata, certain molecules autoregulate inhibition of
spore germination and increase conidia formation, respectively [83, 99, 100]. How-
ever, they have not been studied further in the past four decades, and, hence, no
further conclusion could be made about the presence of quorum sensing in these
fungi.

Fig. 10 Virulence potential of various morphological structures formed by yeasts. Experiments
have shown expression of various genes in different morphological structures of yeast

Fig. 11 Discovery of quorum sensing in fungi is relatively recent phenomenon
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Compared to bacteria, quorum sensing in fungi was discovered nearly 40 years
later (Fig. 11). Since it is comparatively more recent, quorum-sensing system has
been discovered in only few fungal genera. It thus requires a more systematic and
coordinated effort. All further studies on discovering novel quorum-sensing system
should follow a fixed criteria, similar to that established for bacteria. In order for any
molecule to be regarded as regulator of quorum sensing, it must exhibit four
properties: (1) accumulation during the fungal growth in a density-dependent man-
ner; (2) upon achieving a threshold concentration, it should trigger a coordinated
behavior in whole population; (3) the response should be restricted to a growth
phase; and (4) exogenous addition of the molecule should reproduce the quorum-
sensing behavior [34, 47]. If future studies use these criteria, the involvement of
quorum sensing in fungi will be proved beyond doubt.
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Abstract
Our environment is pervaded by a plethora of small exotic molecules, which are
released without intermission by almost all organisms, like plants, microbes, or
even animals. Plants and fungi are especially rich sources of these low-molecular-
weight compounds, which are called secondary metabolites, and whose physio-
logical functions are still mysterious in many cases. The number of the described
compounds exceeds 100,000, and these molecules do not possess apparent
importance in the producer’s life but regulate, modulate, induce, hinder, or even
kill organisms other than the producer. Of course, these often unexpected sub-
stantial biological effects make these molecules so interesting and valuable. In
this chapter, secondary metabolites from a plant and fungal interactions are
surveyed considering hormones, antifungal metabolites, as well as the metabo-
lites of mutualistic interactions observed between plants. Special secondary
metabolites from biotrophic, necrotrophic, and specific interactions are also
presented here, and their physiological and ecological roles and significances
are discussed.

Keywords
Host-pathogen interaction • Phytotoxin • Phytoalexin • Secondary metabolite •
Mycotoxin

List of Abbreviations
ABA Abscisic acid
AF Aflatoxin
AF B1 Aflatoxin B1
AF B2 Aflatoxin B2
AF G1 Aflatoxin G1
AM Arbuscular mycorrhiza
DMATS Dimethylallyl tryptophan synthetase
DON Deoxynivalenol
ET Ethylene
FB1 Fumonisin B1
FB2 Fumonisin B2
JA Jasmonic acid
IAA Indole-3-acetic acid
ISR Induced systemic resistance
HST Host-selective toxin
MAPK Mitogen-activated protein kinase
NHST Non-host-selective toxin
NRPS Nonribosomal protein synthase
PCD Programmed cell death
PKS Polyketide synthase
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PR Pathogenesis related
ROS Reactive oxygen species
SA Salicylic acid
SAR Systemic acquired resistance
SM Secondary metabolite
TS Tryptophan synthetase
VOC Volatile organic compound
ZEA Zearalenone

1 Introduction

Diverse and multilevel interactions do exist between plants and fungi, which are
transmitted, in many cases, by the versatile products of the secondary metabolism of
these organisms. Plant secondary metabolites (SMs) may function as defense mol-
ecules against microbes, viruses, or other competing plants or as signal molecules
like hormones and even attractant compounds for pollinators or seed dispersal
animals. Based on their biosynthetic origins, plant SMs can be divided into three
broad groups, (i) flavonoids and allied phenolic and polyphenolic compounds,
(ii) terpenoids, and (iii) nitrogen-containing alkaloids and sulfur-containing com-
pounds, while other researchers classified plant SMs into more specific groups [1]
(Table 1).

Nonpathogenic, plant growth-promoting microorganisms like rhizobacteria and
mycorrhiza-forming fungi are with beneficial effects on plant performance in the
rhizosphere. Microorganisms can stimulate plant growth in various ways including
increasing tolerance to abiotic stress or by suppressing plant diseases [2]. In a close
mutualistic association with plants, phyllosphere and rhizosphere microorganisms
can even colonize plant tissues (endophytes). Symptomless endophytic fungi (e.g.,
black Aspergillus spp., Penicillium spp.) associated with plants have the capacity to
develop as either pathogens or saprophytes. In any states, endophytic fungi can
become producers of SMs like mycotoxins [3], and hence, they are rich sources of
effector molecules. Phytopathogenic fungi classified as necrotrophic,
hemibiotrophic, and biotrophic constitute one of the primary infectious agents in
plants, causing alterations during developmental stages including the postharvest,
gaining nutrients from the plants they invade, and resulting in enormous economic
losses. In necrotrophic, hemibiotrophic, and obligate biotrophic fungi, the initial
phases of pathogenesis do not differ fundamentally, but different strategies are used
to acquire nutrients. Necrotrophic fungi have broader host ranges than biotrophs and
often use cell-wall-degrading enzymes and small peptides or SM toxins [4]. In
contrast to necrotrophic and hemibiotrophic fungal pathogens, obligate biotrophs
are entirely dependent on living plant tissue and characterized by many sophisticated
infection structures including appressoria, penetration hyphae, and infection hyphae.
These are allowing the invader to suppress plant defense responses and to gain
access to host nutrients (reviewed by [5,6]).
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Table 1 Classification of plant secondary metabolites

Groups
Chemical
structures Examples

Phenolics with one
aromatic ring

C6 Phenol, hydroquinone, pyrogallol acid

C6-C1 Gallic acid, salicylic acid, methyl syringate,
vanillic acid

C6-C2 Acetophenones, apocynin

C6-C3 Hydroxycinnamic acid, ferulic acid, sinapic
acid, coumaric acid, eugenol, zosteric acid

Phenolics with two
aromatic rings

C6-C1-C6
Xanthones

Mangosteen

C6-C2-C6
Stilbenes

Resveratrol, chlorophorin

C6-C3-C6
Flavonoids

Quercetin, glyceollin, sakuranetin

Quinones Naphthoquinones
Anthraquinones
Benzoquinones

Alizarin, emodin

Flavonoid polymers and
nonflavonoid polymers

Tannins

Terpenoids C5 Hemiterpene Isoprene, prenol, isovaleric acid

C10
Monoterpene

Limonene, cineol, pinene, thymol, camphor,
turpentine, carvacrol, citral, γ-terpinene,
myrcene

C15
Sesquiterpene

Abscisic acid, humulanes, culmorin, gossypol,
zealexin

C20 Diterpene Gibberellin, taxol, oryzalexins, phytocassanes,
momilactone, kauralexin

C30 Triterpene Brassinosteroids, squalene, lanosterol, avenacin

C40 Tetraterpene Carotenoids, lycopene

C > 40
Polyterpenes

Rubber, glisoprenin

Mixed origin
(meroterpenes)

Cytokines, vitamin E

Nitrogen-containing Alkaloids Tomatin, solanin, nicotine

Glucosinolates Sinigrin, glucobrassicin

Non protein
amino acids

L-Canavanine

Amines Phenylethylamine, tyramine, morphine

Cyanogenic
glycosides

Amygdalin, sambunigrin, linamarin
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2 Plant Secondary Metabolites

2.1 Hormone Production and Plant Resistance

In the regulation of plant development and resistance against necrotrophic or
biotrophic pathogens and pests, hormone biosynthetic pathways are typically
involved. Endogenous signaling molecules, e.g., salicylic acid (SA) [7], ethylene
(ET) [8], jasmonic acid (JA) [2,9], abscisic acid (ABA) [10], or auxin indole-acetic
acid (IAA) [11] (Fig. 1), have been associated with plant defense signaling against
biotic stress.

N
H

HO

HO OH

HO

OH

OH

OH

H
H

H

H

OH
OH

O

O

O

O

O

O
gibberellic acid

abscisic acid (ABA)jasmonic acid (JA)

salicylic acid (SA) indole-3-acetic acid (IAA)

O

O

O

H

H

H

H

Fig. 1 Chemical structures of the main plant hormones (Source: National Center for Biotechnol-
ogy Information. PubChem Compound Database (accessed June 6, 2015))
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Generally, SA synthesis is a crucial way in which a plant responds to a biological
attack and is involved in both induced systemic resistance (ISR) and systemic
acquired resistance (SAR) [7], whereas JA induces defense against insect herbivores
and necrotrophic pathogens [12]. SAR induced after a local infection and conferred
immunity throughout the plant to a broad spectrum of pathogens [13]. Increased SA
production in the fungal pathogen-infected plant, e.g., cocoa tree invaded by
Moniliophthora perniciosa [14], results in downregulated JA signaling pathway
and vice versa [15]. During the onset of SAR [16], besides the increased levels of
SA, additional small metabolites like methyl salicylate, abietane diterpenoid
dehydroabietinal, pipecolic acid from lysine catabolism, dicarboxylic acid, azelaic
acid (Fig. 2), and a glycerol-3-phosphate-dependent factor also appear as effectors.
In response to subsequent exposure to the pathogen, some of these metabolites have
been implicated in priming, a rapid activation of defenses in SAR [13].

The ISR pathway was not only stimulated by the necrotrophic bacterial attack but
also was shown to protect plants against the necrotrophic fungal pathogens. For
example, ISR was stimulated against Alternaria brassicicola [8], Botrytis cinerea
[17], and Plectosphaerella cucumerina [18], where SAR was ineffective [2]. Further
investigations revealed that JA and ET also had a role in the regulation of ISR
[8,19,20]. ISR, similarly to SAR, was characterized by the coordinated activation of
pathogenesis-related (PR) genes, many of which encode PR proteins [21].
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Fig. 2 Small metabolites as effectors in SAR signaling in addition to SA (Source: National Center
for Biotechnology Information. PubChem Compound Database (accessed June 6, 2015))
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ISR-related effect of methyl JA and SA also activated the reinforcement and
lignification of the cell wall. Moreover, the increased production of some defense
enzymes [22], which play a role in saving the plant cell wall and also raising the
antioxidant capacity of plant cells [23], was detected. In ISR, the production of
reactive oxygen species (ROS) and reactive nitrogen species increased the capability
for the defense of plants. Soluble chitin fragments that originated from the cell wall
of either pathogenic or symbiotic fungi and released by the action of plant PR or
constitutively produced chitinases were identified as biotic elicitors of defense-
related responses like phytoalexin synthesis in plants [24,25].

The main auxin in higher plants is IAA, which has main effects on plant growth
and development [26]. It is considered that only the free form of IAA and related
compounds are active; however, the majority of produced IAA is inactive because
they are conjugated mainly to amino acids and sugars. IAA induces, e.g., the
production of expansins, the proteins whose function is to loosen the cell wall.
However, the loose cell wall is more vulnerable to the invasion of different types of
pathogens. Hemibiotrophic or necrotrophic fungi produced IAA, similarly, to bac-
terial pathogens and also manipulated plant growth and subverted plant defense
responses such as programmed cell death (PCD) to provide nutrients for fungal
growth and colonization [27]. Magnaporthe oryzae secreted IAA actively in its
biotrophic phase mainly in the area of the infection hyphae [28] and, in turn,
provoked rice to synthesize its own IAA at the infection sites [29]. However, it is
unclear whether IAA production is the manipulation of the host plant or also for the
fungus’s benefit. It is known that the host plant responds transcriptionally to the
secreted auxin as the activation of an auxin-inducible promoter by fungal IAA
indicated. The in vitro and in vivo effects of IAA were different because the IAA
treatment of Fusarium culmorum-infected barley resulted in a reduction of symp-
toms and yield losses while IAA did not inhibit the growth of the fungus in vitro. The
results also indicated that IAA increased gene regulation of defense-associated
bacterium-primed genes [30].

Other important phytohormones are gibberellins (Fig. 1) that promote plant
growth. Together with other several important terpenes, fungi can also synthesize
gibberellins [31,32]. Fungal gibberellins involved in plant infection, e.g., as growth
modulators similar to IAA, cytokinins, and ABA as it was demonstrated in Asper-
gillus fumigatus under salinity stress condition [32]. Gibberellic acids produced in
the rice-infecting Fusarium fujikuroi, which is the causal agent of bakanae disease of
rice (Oryza spp.), were good examples of phytohormone mimics [33]. Surveys of
other members of the F. fujikuroi species complex identified the complete gibberellin
gene cluster in nearly every species, but gibberellins were detected only in
F. fujikuroi, F. sacchari, and F. konzum. Interestingly, other Fusarium species
could have lost the ability to synthesize gibberellic, which is an advantage over
other pathogens [34,35]. Interestingly, amino acid sequence homology analysis of
the proteins in the gibberellic acid biosynthetic pathways [36] revealed that the
higher plants and fungi have evolved their complex biosynthetic pathways
convergently.
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2.2 Antifungal Compounds from Plants

The antifungal-plant metabolites can be produced constitutively in healthy plants,
and then they are called phytoanticipins, or they may be synthesized de novo in
response to pathogen attack or various nonbiological stress factors (e.g., short-
wavelength UV light, exposures to heavy metal ions), and in that case they are
called phytoalexins. The classification is not so strict as the same compound may be
a preformed antifungal substance in one species and can be phytoalexin in another.
For example, the flavanone sakuranetin was a phytoanticipin in Ribes nigrum [37]
and Hebe cupressoides [38] but was induced in the leaves of rice Oryza sativa
[39]. These SMs can be constitutively present in one organ and can be induced in
another. Since some plant SMs are even toxic to the producer, therefore, the
accumulation of these compounds is regulated in a highly sophisticated manner in
appropriate compartments. These compounds usually accumulate in smaller quanti-
ties than the primary metabolites (e.g., [40]); however, in particular tissues, they can
build up to a higher concentration (e.g., [41]). Both primary and secondary trans-
porters and many transporter genes are involved in the compartmentation and
translocation processes. Especially genes belonging to transporter family of the
multidrug and toxin extrusion types have been identified as responsible for the
membrane transport of SMs [42,43].

Effective detoxification of plant SMs was detected in fungi in some studies
in vitro (e.g., [44]). Some ABC transporters from phytopathogenic fungi, e.g.,
BcatrB from B. cinerea, were regarded as virulence factors, which increase the
tolerance of the pathogen by controlling of the active transport of phytoalexins
such as camalexin [45]. The three ABC transporters of M. oryzae, which were
required for virulence, were also considered as factors to increase the susceptibility
of rice plants to the fungus [46,47]. The rapid phytoalexin production is possibly one
of the many tools, which confer resistance in concert with other defense mechanisms
in resistant plants. Furthermore, all the rice phytoalexins may have a combined effect
on fungitoxicity, which may even be synergistic.

The first identified phytoalexins (reviewed by [48]) were the momilactones A and
B [49] in rice (Fig. 3), and momilactones exhibit antifungal activity againstM. grisea
[50]. These compounds were originally isolated and identified as plant growth
inhibitors from rice seed [51]. Another group of diterpenoid phytoalexins is called
oryzalexins (A–F) (Fig. 3), which were also isolated from rice [52–54].
Oryzalexins B, C, and D are ent-pimarane diterpenoids of M. grisea and are found
in fungal-infected but also in healthy rice leaves [52]. Oryzalexin S [55] and
phytocassanes A to E [56,57] are also labdane-related diterpenoid phytoalexins in
rice. Overexpression of another rice flavonon phytoalexin sakuranetin resulted in an
increased resistance to M. grisea [39,58] (Fig. 3).

In the last decade, against the phytopathogenic fungus Rhizoctonia solani, new
chemical structures have been reported to have significant antifungal activity, e.g.,
isalexin, brassicanate A, and rutalexin from Brassica napus ssp. rapifera [59] as well
as arvelexin isolated from Thlaspi arvense (stinkweed) [60]. Cauliflower (Brassica
oleracea var. botrytis) produced other phytoalexins, caulilexins A, B, and C (Fig. 4),
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which were also active against the economically important plant-pathogen fungi like
Leptosphaeria maculans and Sclerotinia sclerotiorum [61]. Indole-3-acetaldoxime
is an intermediate in the biosynthesis of diverse plant SMs such as indole-3-aceto-
nitrile and brassilexin, brassinin, as well as the indole glucosinolate (glucobrassicin)
and the plant hormone IAA in Cruciferae. In the detoxification processes of phyto-
alexins by phytopathogenic fungi, the metabolism of indole-3-acetaldoxime to IAA
via indole-3-acetonitrile by fungi supported the development of plant diseases in
crucifers [60,62].

In grapevine and berries, leaves produced phytoalexins such as resveratrol (trans-
3,5,4’-trihydroxystilbene) [63] (Fig. 4) and related compounds after a fungal attack.
These compounds have antifungal activity toward B. cinerea and also some other
fungal pathogens including Rhizopus stolonifer and Plasmopara viticola [64]. The
antifungal activity of carvacrol and thymol (Fig. 4) was also confirmed against
R. solani, B. cinerea, Fusarium moniliforme, and S. sclerotiorum [65–67].

Terpenes are linear or cyclic and even saturated or unsaturated chains of isoprene
units. These volatile organic compound (VOC) antimicrobials contribute to ISR, e.
g., under invasion by Cochliobolus sativus and F. culmorum [68]. The resistance
against F. graminearum (teleomorph: Gibberella zeae) in wheat was elicited by
green plant volatile Z-3-hexenyl acetate (Z-3-HAC) priming; however, the myco-
toxin deoxynivalenol (DON) production of the fungus also increased concomitantly
[69]. The best-known terpenes are the odoriferous plant metabolites like turpentine
and camphor. The industrially and medically important plant terpenes, e.g., the
anticancer drug paclitaxel of Taxus brevifolia (taxol), are reviewed by [70].

Fig. 3 Phytoalexins isolated from rice (Oryza sativa) (Source: National Center for Biotechnology
Information. PubChem Compound Database (accessed June 6, 2015))
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The monoterpene γ-terpinene [71] and monoterpene citral showed high inhibitory
activity against B. cinerea [66] and Penicillium italicum [72]. Essential plant oil
components (e.g., camphor, D-limonene, cineole, β-myrcene, α-pinene, and
β-pinene), which are well-known antimicrobials, showed significantly high antifun-
gal activity against B. cinerea [73]. Vicia faba tissues also produced low-molecular-
mass phytoalexins such as wyerone acid (Fig. 4) and wyerone furanoacetylenic acid
as part of the postinfection defense response against the fungal pathogen. Wyerone
acid accumulated in B. cinerea caused lesions, whereas in lesions caused by Botrytis
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Fig. 4 Antimicrobial secondary metabolites of plants (Source: National Center for Biotechnology
Information. PubChem Compound Database (accessed June 6, 2015))
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fabae, it started to accumulate but later tended to decrease. The enhanced ability of
B. fabae to colonize broad bean tissues was therefore related to its capacity to
detoxify broad bean phytoalexins [74].

Saponins are glycosylated triterpenoid (triterpenoids with sugar groups) antimi-
crobial compounds that are present in the cell membranes of many plant species and
restrict the growth of pathogens in the apoplast. These compounds have detergent
properties and disrupt the cell membranes, and, therefore, they have potent antifun-
gal activities. The tomato saponin α-tomatine activated phosphotyrosine kinase and
monomeric G-protein signaling pathways leading to Ca2+ concentration elevation
and also ROS burst by binding to cell membranes followed by leakage of cell
components in Fusarium oxysporum cells [75]. Different plant species produce a
range of saponins, which are effective against a broad spectrum of pathogenic fungi
[76]. For example, oats that contain avenacin were prevented from the infections by
the wheat pathogen Gaeumannomyces graminis. However, some fungal pathogens,
e.g., B. cinerea, F. oxysporum, and Septoria lycopersici, degrade saponins and as a
consequence can cause disease in susceptible saponin-producing plants.

The flavonoids and allied phenolics, e.g., lignans, coumarins (Fig. 4), and poly-
phenolic compounds, including tannins and derived polyphenols, compose one
major group of phytochemicals (reviewed by [77]). Flavonoids, allied phenolics,
or their precursors are present in high concentrations in leaves and the skin of fruits.
These molecules are involved in critical defense processes such as UV resistance,
pigmentation, disease resistance, and stimulation of nitrogen-fixing nodules
[78]. For the fungal phytopathogens, both positive and adverse effects have been
described [79]. Phenolic compounds (reviewed by [80]) are derivatives of the
pentose phosphate, shikimate, and phenylpropanoid pathways in plants. These
compounds alter microbial cell permeability through interacting with membrane
proteins, which cause deformation in the structure and functionality of these pro-
teins. These adverse changes may lead to dysfunction and subsequent disruption of
the membranes, including the following events: (i) dissipation of the pH gradient and
electrical potential components of the proton motive force, (ii) interference with the
energy (ATP) generating and conservation system of the cell, (iii) inhibition of
membrane-bound enzymes, and (iv) prevention of substrate utilization for energy
production [81,82]. Consequently, spore germination and hyphal growth were
inhibited in a range of root pathogens [83]. Meanwhile, some flavonoids, e.g.,
from the exudates of pea and bean had a stimulatory activity on the associated
pathogen, Fusarium solani formae specialis = f.sp. In this flavonoid-stimulated
spore germination, cAMP-dependent protein kinase (PKA) signaling was involved
[84], and the excreted flavonoids even had the potential to initiate interactions with
pathogens which had developed an ability to cope with their inhibitory actions. For
example, the isoflavonoid pisatin of pea induced pda1 (pisatin demethylase protein)
expression of F. solani f. sp. pisi, which, consequently, detoxified pisatin, and,
therefore, this enzyme is a virulence factor of this fungus [85]. Similarly, the
germination of the F. oxysporum spores was stimulated by tomato root exudates,
and the fungus showed chemotropic growth toward the roots [86]. It is also well
documented that in chemotropic sensing in F. oxysporum, tomato roots secreted class
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III peroxidases (POX) functioned via the interaction with a pheromone receptor
homologue and provoked mitogen-activated protein kinase (MAPK) signaling [87].

In maize, sesquiterpenoid phytoalexins called zealexins (Fig. 4) were discovered
through characterization of physiological responses to the mycotoxin producer
fungus F. graminearum. Importantly, zealexins exhibited antifungal activity against
different phytopathogenic fungi (A. flavus, F. graminearum, Rhizopus microsporus)
at physiologically relevant concentrations [88].

The high number of SMs is well characterized in cereals (reviewed by [89]) and in
the families Fabaceae, Labiaceae, and Solanaceae [1]. Phytoalexins identified in
Fabaceae and Rosaceae families and rice were evaluated by Grayer and Kokubun
[90]. SMs in a range of crop plants from families Fabaceae, Cruciferae, Solanaceae
[62], Brassicaceae, Vitaceae, and Poaceae (reviewed by [91]) have also been
described recently.

In the infection site of A. alternata, high concentrations of alkaloid phytoalexin
camalexin [92] have been detected [93] and also in the proximity of the lesions
caused Botrytis species [94]. Camalexin biosynthesis was elicited by both biotrophic
and necrotrophic plant pathogens in Arabidopsis thaliana leaves [95]. It is remark-
able that A. brassicicola was able to detoxify camalexin but at a much slower rate
than the phytoalexin brassinin from Brassicaceae [96].

Inhibition of toxinogenesis in Fusaria has also been studied. The efficacy of
cinnamon, clove, lemongrass, oregano, and palmarosa essential oils (VOCs) was
tested to prevent the accumulation of the myco-oestrogenic zearalenone (ZEA) and
DON (Fig. 5) in F. graminearum infections [97]; however, it is notable that the assay
was based on naturally contaminated maize grain. Dambolena et al. [98] studied the
capacity of ten natural phenolic compounds to inhibit fumonisin B1 (FB1) (Fig. 5)
synthesis by F. verticillioides and found that carvacrol, thymol (Fig. 4), isoeugenol,
and eugenol were the most active. Plant phenols with antifungal activity are specif-
ically induced upon attack by the soilborne pathogen F. graminearum in barley
[99]. The phenol chlorophorin was the most efficient in reducing FB1 toxin produc-
tion (94 % reduction), followed by caffeic acid (hydroxycinnamic acid), vanillic
acid, ferulic acid, and iroko [100]. Aqueous extracts of host plants inhibited the
fungal growth of F. proliferatum in a dose-dependent manner; however, the same
extracts caused growth induction at low extract doses. Pea extract inhibited the FB
production in most of the tested Fusarium strains [101].

The growth of another important mycotoxigenic fungus, Aspergillus parasiticus,
and its aflatoxin (AF) B1 (Fig. 6) production were inhibited by methanolic extracts
of Ephedra major roots, whereas the essential oil gained from the aerial parts of the
plant did not cause any effect on AF B1 biosynthesis. The inhibition of the growth
and AF B1 production of A. parasiticus were attributed to the presence of flavonoid
compounds such as quercetin and p-coumaric acid in the extracts [102]. Methanolic
extracts of banana pulp and peel, orange, eggplant, and potato pulp inhibited the
AF B1 production in A. flavus; however, in case of the concomitant presence of
banana and potato pulp extracts, the fungus produced AF B2, which was not
detected in the control [103]. The crude essential oil of Betula alba inhibited both
AF production and fungal growth simultaneously in A. flavus and A. parasiticus.
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Jermnak et al. [104] obtained an active fraction after roughly purifying the oil by
silica gel column chromatography, which was identified as methyl syringate. This
compound strongly inhibited norsolorinic acid production, an early step in the AF
biosynthetic pathway, and, consequently, it inhibited the AF B1 and also AF G1
(Fig. 6) production in a dose-dependent manner in submerged cultures of
A. parasiticus, and it also inhibited AF B1 production by A. flavus on raw peanuts.

2.3 Metabolites in Mutualistic Interactions

Plants actively shape microbial communities either inhabiting their outer surface or
colonizing the interior [105]. Growing plants secrete a broad range of chemicals, e.
g., in root exudates, and they communicate with the rhizosphere microbes such as
arbuscular mycorrhiza (AM) via the exudates [106–108]. In the root-microbe

Fig. 5 Main mycotoxic secondary metabolites of Fusarium spp. (Source: National Center for
Biotechnology Information. PubChem Compound Database (accessed June 6, 2015))
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communications, organic acids, amino acids, and phenolic compounds present in
root exudates play an active role [29,109–111]. Moreover, stimuli such as microbial
elicitors trigger compositional changes in the composition of root exudates
[108]. For example, root exudates of Arabidopsis thaliana elicited by SA, JA, and
chitosan as well as by two fungal cell-wall elicitors were studied. Among the several
identified compounds, butanoic acid, trans-cinnamic acid, o-coumaric acid, p-
coumaric acid, ferulic acid, p-hydroxybenzamide, 3-indolepropanoic acid, methyl
p-hydroxybenzoate, gallic acid, and vanillic acid were detected. These SMs inhibited
the growth of F. oxysporum, Phytophthora drechsleri, and Rhizoctonia solani
phytopathogenic fungi successfully [25].

The plant-derived sesquiterpene lactone hormone strigolactones, which are in the
exudates of plants from diverse taxa, stimulate AM fungi by activating mitochondria
and are regarded as natural essential signaling compounds for the establishment of
symbiosis with AM [79,112,113]. Strigolactones acted as hyphal branching factors
for AM fungi and stimulated root colonization [114] in the presymbiotic stage and
not in the intracellular stage of fungal development [115]. Analyses of the effects of a
strigolactone analog compound on fungi other than AM-forming species, including
endomycorrhizal and biocontrol species in the genus Trichoderma, as well as the
plant pathogens B. cinerea and Cladosporium sp., revealed consistent hyphal
branching patterns and suggested strigolactones as distinct signals in the onset of
AM symbioses [79].

AM-forming fungi change the mycorrhizosphere by altering exudation patterns
of plants, changing the root size and architecture as well as altering physiology, and
contributing to quantitative and qualitative microbial community changes by puta-
tive direct effects [116]. AM fungi are reducing damages caused by soilborne plant
pathogens [117], meanwhile increasing the yields of the cultivar and decreasing
needs for N and P fertilizers [118]. The activity of mycorrhizal fungi can even be
increased by combining them with other beneficial microbes such as growth-
promoting rhizobacteria or fungal biocontrol agents such as Trichoderma
sp. [119]. Flavonoids have also been reported to stimulate the hyphal growth of
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Fig. 6 Aspergillus aflatoxins (Source: National Center for Biotechnology Information. PubChem
Compound Database (accessed June 6, 2015))
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AM fungi in the presymbiotic stage [79]. However, their role as natural signaling
compounds is questionable because different flavonoids can be found in various
plant taxa.

3 Phytopathogenic Fungi

Plant-fungal pathogen interactions are complex processes that trigger molecular
responses. Resistant plants can elicit responses in incompatible interactions. Mean-
while, susceptible plants can also launch a series of defense responses in compatible
interactions. These interactions were characterized with similar gene expression
profiles, and the only differences were found in the timing of transcriptome changes
in the compatible interactions, where the defense gene induction occurred later than
that in incompatible interactions [120].

3.1 Biotrophic Fungi

Biotrophic fungi and their metabolisms have been studied mainly on nonobligate
biotrophs, for example, Cladosporium fulvum [121], Mycosphaerella graminicola
[122,123], andMagnaporthe grisea [124]. Biotrophs establish haustoria for nutrient
uptake [125], suppress the induction of host defense, and reprogram the host’s
metabolism [126]. Much less information is available about the obligate biotrophs,
e.g., powdery mildews or rust fungi [127].

The biotrophic Blumeria graminis f. sp. hordei synthesizes only one iron-
siderophore and one polyketide pigment of the cleistothecia [128]. Similar trends
were observed in other biotrophs, e.g., in the basidiomycete corn smut fungus
Ustilago maydis and the plant symbiotic fungus Tuber melanosporum. The loss of
SM biosynthetic pathways is usually considered to be associated with biotrophy
[128]. However, in C. fulvum (Passalora fulva), which infects tomato by growing
extracellularly in close contact with host mesophyll cells, a twice higher number of
key SM genes were identified in comparison to the closely related hemibiotroph
Dothistroma septosporum (teleomorphMycosphaerella pini). Moreover, these genes
were organized into gene clusters along with other SM-related genes (Fig. 7)
[129,130]. The number of the SM enzyme-encoding genes was comparable to
those of M. graminicola but was lower than those in most other sequenced
Dothideomycete [130]. In C. fulvum, the only known SM was cladofulvin
[129,130]. Cladofulvin is an anthraquinone pigment, which did not cause necrosis
on Solanaceae plants or showed any antimicrobial activity [130]. C. fulvum also has
the potential to produce elsinochrome and cercosporin toxins; however, the
corresponding core genes were not expressed in tomato infection, and they do not
have any role in the pathogenic processes [130].

The M. grisea species complex includes many species [131], which cause
diseases to at least 50 grass and sedge species, including important plants such as
maize, rice, rye, wheat, barley, oats, finger millet, perennial ryegrass, weed, and

4 Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic. . . 147



ornamental grasses. Within the species complex, M. oryzae (previously known as
M. grisea) isolates form the pathotype Oryza, which causes rice blast disease.
Approximately 10–30 % of the annual rice harvest is usually lost due to the
M. oryzae infections. The fungus infects all aerial parts in rice, leading to leaf
blast, collar rot, neck and panicle rot, and node blast (reviewed by [132]).

When the transcripts of rice (Oryza sativa) –M. oryzae interaction – were studied
(Fig. 8), major rice phytoalexins were found to be produced intensively in response
to the pathogen attack. The construction of the differential responsive expression
patterns of compatible and incompatible fungal strains revealed more drastic reac-
tions in the incompatible interaction, which were common at the initial infection
stage, where many genes that are involved in the diterpene phytoalexin biosynthesis
were upregulated at the initial infection phase. The expression levels of the genes
OsCPS2 and OsKSL7, taking part in phytocassane A–E biosynthesis, and OsCPS4
and OsKSL4, in the biosynthetic pathway of momilactone A and B, showed
incompatible-specific upregulation. Moreover, OsKSL10 and OsKSL8, in the

Fig. 7 Synteny and rearrangements of conserved secondary metabolism gene clusters in
Cladosporium fulvum. The organization of gene clusters conserved in C. fulvum was compared to
the previously described clusters involved in the biosynthesis of (a) elsinochrome, (b)
monodictyphenone, (c) cercosporin, (d) ferricrocin, and (e) ferrichrome in other fungi. Genes are
represented as arrows, indicating their orientation. Representation of genes is not to scale [130]
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biosynthetic pathway of oryzalexin A–F and S, showed induction in both the
compatible and incompatible interactions. However, in the incompatible interaction,
the fold changes of OsKSL10 and OsKSL8 gene expressions surpassed those calcu-
lated in the compatible interaction [133]. Furthermore, more abundant and more
rapid phytoalexin accumulations have been reported in the resistant plants compared
with the susceptible plants at 2 days after inoculation [44]. Nevertheless, intensive
phytoalexin gene induction was observed in the incompatible interaction when
compared it with the gene expressions in the compatible interaction in the same
rice cultivar at the initial infection stage [133].

Claviceps purpurea is also a biotrophic fungus, which specialized in attacking the
ovaries of young grasses exclusively, and produces the pharmaceutically important
ergot alkaloids. During pollination of the host, the fungus forms huge black sclerotia
[134], and, typically, ergot alkaloids are produced only in the sclerotia. Ergot
alkaloids are nitrogen-containing SMs originating from L-tryptophane: the three
broad structural groups are clavines, lysergic acid amides, and peptides (designated
as ergopeptides or ergopeptines). The ergot alkaloid synthesis cluster consists of
14 genes spanning over approximately 68.5 kb of the genome [135].

Biotrophy is considered to be associated with a convergent loss of SM enzymes
and also with a reduction in some genes encoding specific transporters of toxins and
extrusion of host defense compounds, which is usual in necrotrophic fungi. More-
over, the downregulation of a high number of SM biosynthetic pathways may
represent another mechanism associated with a biotrophic lifestyle [130].

3.2 Special Metabolites of Biotrophic Phytopathogens

Chemical signals are essential for appressorium formation in M. grisea. The
appressorial glue ofM. grisea contains glycoproteins, neutral lipids, and glycolipids
[136]. The nontoxic plant metabolite zosteric acid (Fig. 9) [137] binds water and
enhances the hydrophilicity of the surface, and, therefore, the binding capacity of the
appressorial glue weakens. Zosteric acid inhibited spore adhesion and infection
capability of M. grisea and Colletotrichum lindemuthianum on artificial hydropho-
bic surfaces and plant leaves [138]. In M. grisea, the two most efficient inducers of
the germination and appressorium formation were 1,16-hexadecanedial and 1,16-
hexadecanediol from cutin monomers [139].

Besides cutin monomers, surface waxes also activated developmental processes
of fungi [140]. ET in ripened fruits [141] and fatty alcohols from cuticular waxes
[142,143] induced conidia germination. Appressorium formation was induced by
leaf wax or synthetic n-C22 fatty acid, fatty alcohol, or alkane [144].

In the appressorium, several important biochemical and morphogenetic events
took place under the generation of the highest turgor pressure recorded in M. grisea
(up to 8 MPa) to penetrate the tough rice cuticle [145]. This exceptionally high
pressure and the mechanical penetration questioned the role of the secreted fungal
cell-wall-degrading enzymes in the first steps of invasion of the natural host [146]. A
thick melanin layer was deposited outside the cell wall of M. grisea to generate the
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Fig. 8 Schematic representation of RNA-seq analysis of mixed transcriptome obtained from blast
fungus-infected rice leaves. First, mRNA was extracted from the Oryza sativa ssp. japonica
cv. Nipponbare (Pia) rice leaf blades 24 h after water treatment (rice, control) and inoculation
(rice + blast fungus, infected, 24 h after inoculation) and also from conidial suspensions of the
compatible and incompatible blast strains (blast fungus, control). RNA-Seq was conducted for each
sample using the illumine GAIIx sequencer. In the preprocessing of reads, low-quality bases,
adapter sequences, rRNA sequences, and too short reads (<20 bp) were removed. For the rice
analysis, all of the preprocessed reads were mapped to the fungal genome to filter out contaminated
fungal reads. For the fungal analysis, contaminated rice reads were removed by mapping all of the
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high turgor pressure. Several natural compounds inhibited melanin biosynthesis in a
secure manner, presumably hitting the same targets [147], for example, coumarin
(Fig. 4), a standard plant SM [148], scytalol D of Scytalidium sp. [149], as well as the
lipid biosynthesis inhibitor cerulenin [150]. The latter compound was first obtained
from an isolate called Cephalosporium caerulens, conspecific to the phytopatho-
genic fungus of rice Sarocladium oryzae [151].

Colletotrichum shares similar lifestyles and infection strategies with M. grisea,
particularly during the early stages of pathogenesis. However, unlike in the case of
M. grisea, in the hemibiotrophic C. gloeosporioides, and in other Colletotrichum
species, spore germination and appressoria development were not prevented by
blocking the cell cycle [152]. The differentiation of fungal infection structures
including appressoria preceded the mitosis and could proceed without nuclear
division. Moreover, spore cell death did not occur during plant infection, and
throughout the infection cycle, the primary infection structures of the fungus
remained viable [152].

Potent autoinhibitory molecules of spore germination of many phytopathogenic
fungi were isolated, and these compounds prevented the germination until they have
been diluted out of the spore. Colletotrichum spp. is a rich source of these type of
molecules. The first self-inhibitor isolated from conidia of C. gloeosporioides was
gloeosporone (Fig. 10) [153] followed by (Z)-(E)-ethylidene-1,3-dihydroindole-2-
one, which were active at much lower concentrations than gloeosporone [154]. At
higher concentrations, both compounds inhibited the germination of conidia of other
Colletotrichum sp. and F. oxysporum as well [154]. Mycosporine alanine is also a
potent autoinhibitory molecule of conidial germination in C. graminicola, which
was synthesized during the development of conidia in the fruiting body pycnidium,
and it was quite effective in hindering germination of the spores until they have
become dispersed [155]. Interestingly, the biosynthesis of mycosporines and
mycosporine-like amino acids occurs in a broad range of bacteria, cyanobacteria,

zosteric acid
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Fig. 9 Schematic presentation of the nontoxic plant metabolite zosteric acid, which inhibits spore
germination (Source: National Center for Biotechnology Information. PubChem Compound Data-
base (accessed June 6, 2015))

�

Fig. 8 (continued) reads against the rice genome. Finally, all of the filtered reads were mapped
to the reference genomes by TopHat software, and transcript structures are predicted by Cufflinks.
For each rice and fungal transcript, expression levels were estimated using the numbers of uniquely
mapped reads to the transcript structures [133]
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phytoplankton, and macroalgae and fungi, but not in animals because it needs the
shikimate pathway [156].M. grisea also produced self-inhibitors of the germination,
which were related to the phytotoxin pyriculol (Fig. 10) [157]. Moreover, other fungi
could also produce specific, nontoxic inhibitors of conidial germination and appres-
sorium formation of M. grisea like flaviolin, tenuazonic acid, and glisoprenins
[158]. M. grisea also produces the mycotoxin tenuazonic acid besides A. tenuis
and Phoma sorghina (a pathogen of sorghum) [159].

3.3 Necrotrophic and Hemibiotrophic Fungal Interactions

The infection strategy of necrotrophic fungi is much simpler than that of obligate
biotrophs. Typical necrotrophs, e.g., Botrytis, Helminthosporium, Cercospora,
Ramularia, Rhynchosporium, Alternaria, Fusarium, Sclerotinia, or Verticillium
species, form appressoria, which are inconspicuous, and infection hyphae formed
within the host are quite uniform (reviewed by [160]). In several fungal patho-
gens, virulence correlates with the capability to synthesize a phytotoxin.
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Fig. 10 Fungal self-inhibitor
molecules of the germination
(Source: National Center for
Biotechnology Information.
PubChem Compound
Database (accessed June
6, 2015))
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Fungal phytotoxins are classified as host-selective toxins (HSTs) and non-host-
selective (NHSTs) toxins. Necrotrophs and hemibiotrophs are considered to
employ fundamentally different mechanisms of promoting disease; however, the
tools they utilize, e.g., host-selective toxins (HSTs), and protein effectors are quite
similar or even identical [161].

The hemibiotrophic Fusarium graminearum, the causative pathogen of Fusarium
head blight in wheat, causes a considerable economic loss. The defense against
Fusarium head blight is sequentially regulated by SA and JA during the early and
later stages of the infection, respectively [69,162]. In the first phase, a JA-mediated
and ET-mediated defense mechanism is directed against fungal growth and sporu-
lation and thus induces the transcription of a standard set of genes encoding
antimicrobial peptides; PR proteins, e.g., lipid transfer proteins; defensins; and
thionins in the resistant lines. Meanwhile, proteases and mycotoxins were induced
in an alternative mechanism [163]. On the contrary, in maize cultivars, a total RNA-
Seq-based transcriptome study elucidated that the induction of the SA-related genes
in resistant and susceptible maize genotypes was insignificant at 3 days after
inoculation with F. verticillioides. Interestingly, the activation of common JA- and
ET-responsive PR genes and transcription factors, such as LOXs, PR10, and ACC
oxidase (which regulate ET levels �1-aminocyclopropane-1-carboxylic acid oxi-
dase) and chitinases, was observed with an enhanced induction in a resistant line
(Fig. 11) [164].

F. verticillioides (teleomorph, Gibberella moniliformis) attacks stalks, kernels,
and seedlings of maize. Maize maturation is a dynamic process, where distinct stages
of the development can be observed, and the pathogen sensing a different environ-
ment (moisture, nutrients, fatty acids, flavonoid content of the seeds) shows a
different gene regulation and transcription pattern.

Considering the maize developmental stages, silking (R1), blister (R2), milk
(R3), dough (R4), dent (R5), and physiological maturity (R6) [165] can be differ-
entiated. Infection at maturity stages R2–R5 with F. verticillioides revealed that the
pathogen colonized the kernels equally well [166]. Nevertheless, significant
sphingoid-derived FB1 production [166–168] occurred only in the R5-stage kernels
where the normal acidic state also induced more FB1 toxin production [168]. Expres-
sion of the fumonisin biosynthetic genes FUM8 and FUM12, as well as moderate
amounts of FB1, was detected in the R3 and R4 stages. In contrast, no FB1 or FUM
gene expression was detectable in the R2 stage. Different maize genotypes were able
to react differently to fungal attack when the infection rate was low, whereas the
hybrid-related response ability decreased when more conducive conditions for
fumonisin production occurred. Studies highlighted the importance and correlation
of fatty acid composition with the contamination data, more linoleic acid (C18:2)
correlated with higher fumonisin content [169].

In cotton-Verticillium dahliae interaction, an increased level of expression of
lignin synthesis-related genes and increased phenylalanine ammonia-lyase and per-
oxidase enzyme activities as well as lignin accumulation were detected in the
resistant plant line [170]. Similarly, microarray analysis demonstrated that in both
sensitive and tolerant interactions between tomato and V. dahliae, increased gene
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Fig. 11 Distribution of differentially expressed genes specific to resistant and susceptible geno-
types related to biotic stress processes, visualized by MapMan. The abundance of each transcript
was expressed as fragments per kilobase of exon model per million mapped reads (FPKM). Each
square represented the FPKM expression value for one gene in control (heatmap on the left within
each category) and inoculated (heatmap on the right within each category) resistant CO441 (a) and
susceptible CO354 (b) genotypes of maize [164]
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expressions of PR proteins were observable, but the genes that are associated with
foliar necrosis and PCD in the susceptible interaction were suppressed in the tolerant
interaction [171]. Plants infected by the pathogen not only expressed a series of
essential defense-related genes but also activated phytohormone signal transduction
and SM such as phenylpropanoid production [172].

In lettuce (Lactuca sativa)-B. cinerea interaction, global expression profiling by
total RNA-Seq technology pronounced inductions of the host’s phenylpropanoid
pathway again, and terpenoid biosynthesis was detected, whereas the photosynthesis
was globally downregulated at 48 h postinoculation. Both general and species-
specific responses to the infection were identified; however, significant systemic
transcriptional alterations could not be detected in the lettuce leaves at a distance
from the inoculation site. Interestingly, the investigation of lettuce-Bremia lactucae
(biotrophic pathogen fungus) interaction revealed the induction of the similar
pathways [173].

In the chocolate tree (Theobroma cacao), the basidiomycete hemibiotrophic
fungus Moniliophthora perniciosa causes witches’ broom disease. M. perniciosa
possesses a long-lasting and symptomatic biotrophic phase, which can endure for
more than 60 days in the living cacao tissues. The biotrophic mycelia develop as
long-term parasites that change plant metabolism to increase the availability of
soluble nutrients before the death of the host plant. Several genes related to the
biosynthesis of lignin, flavonols, anthocyanins, terpenoids, and alkaloids are
strongly upregulated in green brooms. Meanwhile, M. perniciosa expressed an
arsenal of genes encoding enzymes involved in detoxification and stress tolerance,
e.g., ROS degrading enzymes. After this interplay between biotrophic hyphae and
cacao plant cells, the infected tissues collapsed, and a senescence-like process was
installed. Plant cells’ death seemed to favor M. perniciosa and precede the fungal
necrotrophic phase. The onset of cell death was considered as a physiological
process of cacao caused by the metabolic disarrangement rather than a direct action
of the pathogen. However, as a consequence, soluble nutrients from dead host cells
became available to the pathogen, which later produced basidiomata and completed
the disease cycle [174].

The genus Colletotrichum (Glomerella) comprises ~600 species attacking over
3,200 species of monocot and dicot plants. Biotrophy was confined in
C. higginsianum to the first invaded host cell and was followed by a complete
switch to necrotrophy. In contrast, in C. graminicola, which primarily infects
maize, biotrophy extended into many neighboring host cells and persisted at the
advancing colony margin while the center of the fungal colony became necrotrophic
[175]. Five gene categories, which are relevant to pathogenicity (transcription
factors, SM enzymes, secreted extracellular proteins, carbohydrate-active enzymes,
and transporters) had significantly different expression patterns during infection.
However, during early infection, 12 different SM gene clusters were induced in
C. higginsianum before penetration and during biotrophy. The high number of
activated gene clusters indicated a significant role for appressoria and biotrophic
hyphae in synthesizing an array of small molecules and delivering them to the first
infected plant cells. Because these cells initially remained alive, such molecules
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cannot be phytotoxins and might function in host manipulation, similar to protein
effectors [175]. Remarkably, the SM gene cluster with the strongest activation at this
phase in C. higginsianum was induced in C. graminicola at any of the infection
stages. Therefore, it can be concluded that a strict transcriptional regulation could
also generate the diverse metabolite spectrum. Moreover, no evidence for specific
transcriptional reprogramming of nutrient transporters was detected during
biotrophy in C. higginsianum, suggesting that the biotrophic hyphae here function
primarily to deliver protein effectors and SMs to the plant cell [175] (Table 2).

3.4 Saprophytic Aspergilli

Aspergillus species can be present as saprophytic or symptomless endophytes or
weak and opportunistic phytopathogens. Black aspergilli are common soil organ-
isms decomposing dead plant residues, but some of them are of a biotrophic
endophytic existence in maize and onion. A. niger var. niger and A. carbonarius
black aspergilli are the two primary producers of ochratoxin A (Fig. 12), which is
carcinogenic, nephrotoxic, teratogenic, and immunosuppressive in animals, and they
also synthesize FB1 mycotoxins (Fig. 5) [3].

A. flavus from the yellow aspergilli lacks any host specificity [176] as this fungus
can attack successfully the seeds of both monocots and dicots (e.g., cotton, maize,
groundnuts, and also other nuts like tree nuts such as Brazil nuts, pecans, pistachio
nuts, and walnuts). It can cause ear rot on corn, and A. flavus together with
A. parasiticus and A. nidulans is proposed to derive acetyl-CoA from fatty acids
of the kernel for the biosynthesis of SM toxins (i.e., sterigmatocystin and AF)
[4]. Preharvest contamination of these crops with SM aflatoxins (AFs) is common,
but these fungi also caused spoilage postharvest resulting in significant economic
losses to farmers. The fungus can attack maize kernels during all their six stages of
their development in experimental circumstances. However, in the field, the infec-
tion of the non-injured kernels takes place during the R5 developmental stage just
before physiological maturity (R6) [177]. Concomitantly with the increased expres-
sion of mycotoxin (sterigmatocystin and AF) biosynthetic genes in hyphae, A. flavus
colonized the embryo and aleurone layer of the kernels as early as 4 days after
inoculation [178]. The embryo and aleurone layer are the sites where most seed
lipids are stored and induce SM production. In vitro supplemented oleic acid also
induced the biogenesis of fungal peroxisomes, as well as catalase activity and
β-oxidation. Meanwhile, AF precursor norsolorinic acid is accumulated in the
peroxisomes [179].

A special task is to eliminate fungal toxinogenesis in crops by biological control
tools, e.g., spreading endemic atoxinogenic isolates of a species or isolates of other
fungal species that commonly contaminate the crops. Moreover, correlations of the
mycotoxin production in pathogens, which infect concomitantly the same host plant,
were also investigated. In a study, although a negative correlation between infections
by Aspergillus spp. and Fusarium spp. was suggested in corn infections, a positive
relationship between aflatoxin and fumonisin levels was observed although it was
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not statistically significant. Thus, natural infections with Fusarium spp. did not
appear to protect against Aspergillus contamination and the production of
aflatoxin [180].

In maize, transcriptional analysis revealed downregulated starch biosynthesis and
upregulated starch hydrolytic enzymes like β-amylase of the plant together with
downstream invertases and fructokinase after colonization of kernels by A. flavus.
The hexoses produced by the hydrolytic activity flow through the upregulated
shikimate pathway and the methylerythritol pathway and toward upregulated JA
and oxylipin biosyntheses and feed the protein synthesis, e.g., production of PR
proteins, including chitinases, peroxidases, and glutathione S-transferase (GST),
which were also upregulated during the infection. Oxylipins, a diverse group of
oxygenated polyunsaturated fatty acids, upregulate AF biosynthesis and sexual
reproduction in A. flavus and downregulate fungal growth. Induction of the SM
pathway leads to the production of the antifungal compounds flavonoids,
phenylpropanoids, and phytoalexins and upregulated lignin production in maize.
The upregulation of the plant hormones JA and ABA is crucial in these defense
mechanisms [178]. A microscopy study of maize kernel tissue showed that cellular
components such as cell walls were broken down in advance of A. flavus mycelia
[181], which clearly indicated necrotrophic pathogenicity [182]. However, the
colonization of kernel tissue from resistant maize lines exhibited increased levels
of SA and unchanged levels of JA productions [183], and such patterns are typical of
various plant species in resistance to biotrophic pathogens [12]. It was demonstrated
that this facultative parasite might possess a unique pathogenicity mechanism, which
did not fit clearly into the traditional biotrophic-necrotrophic classification
scheme [184].

3.5 Genetic Background of Fungal SM Production

Based on their chemical structure, fungal SMs can be divided into four main classes:
polyketides (e.g., AF and FBs), terpenoids, the shikimic acid-derived compounds,
and nonribosomal peptides (e.g., sirodesmin, peramine, and metal-chelating

H3C
Cl

O

O

ochratoxin A

O

NOH

OH

OH

H

H

Fig. 12 Ochratoxin A
produced by Aspergillus spp.
(Source: National Center for
Biotechnology Information.
PubChem Compound
Database (accessed June
6, 2015))
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siderophores such as ferricrocin). Moreover, hybrid metabolites composed of moi-
eties from different classes are also common, e.g., the meroterpenoids, which are
formed by fusions between polyketides and terpenes [185]. Their metabolic diversity
significantly contributes to the ability of fungi to colonize and penetrate plants. The
metabolites required for the interaction are essential to access the cellular contents of
the plants and, therefore, are considered to be essential for both growth and devel-
opment of the fungus [31].

Comparative genome analyses shed light on Ascomycetes (Table 2) which have
more genes putatively involved in secondary metabolism than Archeo-Ascomycetes,
Chytridiomycetes, and Basidiomycetes, whereas Hemiascomycetes and Zygomycetes
have none [185]. The majority of fungal SMs are products of nonribosomal peptide
synthetases (NRPSs), polyketide synthases (PKSs), or terpene synthases (TSs).
Ascomycete genomes code for an average 16 PKSs, 10 NRPSs, 2 TSs, and
2 dimethylallyl tryptophan synthetases (DMATS) with vital importance in SM
synthesis (Table 2). These key genes of the SM syntheses code for signature
enzymes usually enriched in secondary metabolism gene clusters and responsible
for main synthesis steps of metabolites. Hybrid PKS-NRPS genes have been iden-
tified only in Ascomycetes, with an average of three genes per species. Many fungal
species have more than 40 genes encoding PKS, NRPS, hybrids, TS, and DMATS
biosynthetic enzymes in their genome, including Magnaporthe grisea (45 genes)
[185]. Neurospora crassa and the human pathogens Coccidioides spp. and
Histoplasma capsulatum have considerably less PKSs (1–9 genes), NRPSs (3–6
genes), and PKS-NRPSs (0–2 genes) than other Ascomycetes.

The synthesis of chelate-forming siderophores, a class of SMs specifically
involved in iron uptake, is also based on NRPSs. The iron chelators are also crucial
for the virulence of several fungi (e.g., Cochliobolus heterostrophus, C. miyabeanus,
F. graminearum, and A. brassicicola) [186].

Comparative genome studies indicated that Fusarium and other filamentous fungi
have the genetic potential to produce much more SMs than previously thought.
Hansen et al. performed comparative analyses of PKSs and NRPSs from ten
different Fusarium species including F. acuminatum, F. avenaceum, F. culmorum,
F. equiseti, F. graminearum, F. verticillioides, F. solani, F. pseudograminearum,
F. fujikuroi, and F. oxysporum [187]. This study led to the identification of 52 NRPS
and 52 PKSs orthology groups, respectively. A core collection of eight NRPSs
(NRPS2–4, 6, 10–13) and two PKSs (PKS3 and PKS7), which were conserved in
all investigated strains, was detected and analyzed. Meanwhile, whole-genomic
analysis has identified 12–15 PKS genes in F. graminearum [188–191], where six
of them were only found in this species. Most of the PKSs have no assigned products
yet even though they are expressed under certain experimental conditions. In
F. graminearum, the genes with known functions (13 SM genes) cover a minor
fraction of the 51 predicted SM genes, among which 15 PKSs, 19 NPSs, and 17 TSs
have been identified [191]. Besides the typical SM genes (TS, NPS, and PKS),
114 predicted genes encoding cytochrome P450 enzymes were also suitable

160 T. Pusztahelyi et al.



candidates for searching SM gene clusters. Cytochrome P450s play an essential role
in many known biosynthetic pathways of fungal SMs, for instance, in the biosyn-
thesis of gibberellins [36] and trichothecene mycotoxins [192].

From the ascomycetous fungal family Botryosphaeriaceae, Macrophomina
phaseolina anamorphic fungus [193] possessed an exceptionally high number,
altogether 75, of putative SM genes in comparison to 37 genes found in
B. cinerea, 32 in M. grisea, 37 in F. graminearum, and 29 genes in S. sclerotiorum
(Table 2). Numerous NRPSs, which catalyze the production of cyclic peptides
including various toxins, were also found. In M. phaseolina, an NRPS, which is a
homologue to Cochliobolus carbonum HST1, is the key enzyme responsible for the
biosynthesis of the maize HST HC-toxin [194,195]. In comparison, analysis of the
genome of the saprophytic model organism A. nidulans revealed 56 putative SM
core genes, namely, 27 PKSs, two PKS-like genes, 11 NRPSs, 15 NRPS-like genes,
and one hybrid NRPS-PKS gene [196].

The genomes of B. cinerea and S. sclerotiorum were sequenced and analyzed first
by Amselem et al. [197]. The B. cinerea genome showed high sequence identity and
a similar arrangement of genes to those of S. sclerotiorum. Moreover, both genomes
contained a significant number of genes encoding key SM enzymes (Table 2).
Nevertheless, taking into account that SM pathways usually have more than one
key enzyme, these fungi have the potential to produce approximately 37 and 29 main
SMs, respectively [193]. Therefore, despite the similarities of the genomes, the two
fungi differed significantly in the number and diversity of SM gene clusters, which
make them able to adapt to different ecological niches.

Alternaria species have different lifestyles ranging from saprophytes to endo-
phytes and pathogens. Phylogenetic relations of the Alternaria complex were delin-
eated, and these fungi were able to synthesize more than 60 SMs from which at least
10 PKS products were identified (Table 2) [198]. In melanin biosynthesis, a PKS was
also characterized and named ALM (albino) [199]. For the production of SM
siderophores and significance in virulence, a polypeptide analogous to fungal
NRPS was demonstrated in A. alternata (AaNPS6) [200]. In the biosynthesis of
the mycotoxin tenuazonic acid, which is produced by A. tenuis as well as M. grisea
and Phoma sorghina, a gene for NRPS/PKS hybrid enzyme was identified [185].

The genus Cochliobolus (anamorph Bipolaris/Curvularia) [201] includes more
than 40 closely related pathogenic species highly specific to their host plants
[161]. Phylogenomic studies revealed that the highly virulent C. lunatus, which
was evolved from C. heterostrophus, was capable of producing several SMs such as
NHSTs and melanin, which can aid the fungus in niche exploitation and pathoge-
nicity [202].

The ability of C. heterostrophus to produce HST T-toxin is based on three genes
encoded at two unlinked loci [203]. However, further, six genes including two PKSs,
one decarboxylase, five dehydrogenases, and one unknown protein, which were
involved in the T-toxin production and high virulence to maize, were also reported
[204]. In the biosynthesis of the cyclic tetrapeptide HC-toxin by C. carbonum [195],
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one NPRS encoded by HST1 played a crucial role. HC-toxin was also released by
Alternaria jesenskae [205] and was also encoded in maize pathogen Setosphaeria
turcica [161]. Six other known PKSs were also involved in the biosyntheses of
various toxins, e.g., A. alternata ACT-toxin, A. ochraceus OTA, F. graminearum
ZEA, F. verticillioides fumonisin, and the C. heterostrophus T-toxin. Genome level
phylogenetic and modular analyses resulted in differences in the protein structures of
C. lunatus CX-3 NRPSs, when compared to other known NRPSs, which are
involved in the biosyntheses of mycotoxins such as HC-toxin of C. carbonum,
similarly to the AM-toxin of A. alternata, the gliotoxin of A. fumigatus, and the
enniatin of F. equiseti (Fig. 13) [202].

For some SM genetic elements, the horizontal gene transfer events [206]
supported their spreading, e.g., homologues of the fumonisin and gibberellin bio-
synthetic gene clusters, which once were thought to be unique to Fusarium spp.
[33,35] were found on a small scale of distantly related to Ascomycetes fungi, e.g., in
Aspergillus spp. (Eurotiomycetes) [206] as well as in Sphaceloma manihoticola
[207], and in Phaeosphaeria spp. (Dothideomycetes) [208].

Fig. 13 Gliotoxin of A. fumigatus, enniatin of F. equiseti, HC-toxin of C. carbonum, and AM-toxin
of A. alternata (Source: National Center for Biotechnology Information. PubChem Compound
Database (accessed June 6, 2015))

162 T. Pusztahelyi et al.



3.6 Stimuli in Fungal SM Production

For both the plant host and its fungal parasite, abiotic environmental stress such as
drought or heat stress affects their interactions (e.g., [184]). Fungal genes that are
having a role in stress-related responses, especially in oxidative stress, are overrep-
resented in phytopathogenic fungi [209]. Fungal SM toxins often play a role in
triggering stress responses. Moreover, some nontoxic fungal SMs, such as
mycosporines, polyols, and pigments, can take part in pathogenicity and/or fungal
tolerance to several environmental effects, including temperature and UV light
[156]. Hence, environmental factors (e.g., light, temperature, pH, calcium, and
nutrients) regulate SM production concomitantly.

The plants need light for ROS production during the oxidative burst [4] elicited
against the pathogens. However, light is also a requirement for the manifestation of
the effect of the DON toxin similarly to the induction of PCD during Botrytis
infections [210]. Meanwhile, light regulates fungi through a major regulatory protein
complex, the velvet complex [211], which, in Fusarium, comprises, at least, FgVe1
(VeA homologue in A. nidulans) and FgVeB, while corresponding homologous
components also have been identified in other fungi [212,213]. FgVe1 regulates
trichothecene production at the level of the Tri4 and Tri5 of biosynthetic genes and
the transcriptional regulator genes Tri6 and Tri10 [214,215]. The disruption of the
FgVeB gene affected the regulation of Tri5 and Tri6 and led to different phenotypic
defects, including defected aerial hyphae formation, reduced hyphal hydrophobicity,
highly increased conidiation, and reduced DON biosynthesis [216]. Deletion of
Lae1, a nuclear regulator from the velvet complex in F. verticillioides, decreased
the expression of gene clusters responsible for the synthesis of the SMs bikaverin,
fumonisins, fusaric acid, and fusarins. Analysis of SMs in the F. verticillioides and
F. fujikuroi Lae1 mutants revealed differences in the regulation of SM production
[217]. For example, bikaverin production was found to be reduced, but the amount
of FB1 remained unchanged in F. verticillioides [218].

In the activation of the virulence functions in phytopathogenic fungi, nitrogen
limitation is an essential stimulus. Their genetically encoded capability to metabolize
different nitrogen sources makes fungi able to colonize various environmental niches
and survive nutrient limitations [219]. Amino acids are required for SM biosynthe-
sis, in particular for the NRPSs. Amino acid limitation in fungi resulted in the
induction of a genetic network, which induced genes encoding the enzymes of
multiple amino acid biosynthetic pathways as well as for aminoacyl-tRNA
synthases. Meanwhile, inorganic N-sources also affected SM production. For exam-
ple, ammonium ions activated the expression of AF genes [220], while nitrate
inhibited AF biosynthesis in A. parasiticus [102]. In all fungal species studied, the
major GATA transcription factor AreA and its co-repressor NmrA were central key
players in the nitrogen regulatory network [219]. The importance of global nitrogen
regulators in the development of pathogenicity was demonstrated inM. grisea [221]
and also in many other fungal-plant pathogens, e.g., C. lindemuthianum,
C. acutatum, and F. oxysporum [222]. In F. graminearum, which causes crop
disease, nitrogen starvation activated the trichothecene pathway and induced the
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biosynthesis of the DON toxin. DON was identified as a virulence factor [223,224],
similar to the host-selective T-toxin from C. heterostrophus [225] and the cyclic
peptide AM-toxin from A. alternata [226]. Low-nitrogen conditions also induce
high levels of expression of fumonisin biosynthetic genes through AreA in both
F. fujikuroi and F. verticillioides [227].

As it was mentioned above, SM production in fungi is also regulated by signals or
even substrates from the plant. Plant lipoxygenase (LOX)-derived oxylipins regulate
defense against pathogens. In plants, oxylipins such as the plant hormone JA and its
immediate precursor 12-oxo-phytodienoic acid are formed enzymatically and accu-
mulate in response to various stresses like wounding and pathogen infection
[9]. These compounds are also formed nonenzymatically via the action of ROS
[228], which accumulate in response to pathogen infection, heavy metal uptake, or
other stresses.

Fungal oxylipins can mimic plant oxylipins, and, therefore, a reciprocal cross talk
was proposed and has been shown between the plant and the pathogenic fungus
[229]. The tomato-infecting F. oxysporum produced JAs using a lipoxygenase
enzyme via a pathway similar to that present in plants suggesting that JA biosyn-
thesis in pathogenic fungi also occurred [230]. The resistance of maize against
F. verticillioides also depended on the overexpression of LOX pathway genes and
the central regulatory role of JA [231].

In A. flavus, oxylipins are the molecules of quorum sensing, which means
biomass density sensing of the fungus. At low extracellular oxylipin concentrations,
increased sclerotia production, reduced conidiation, and concomitant increases in
AF biosynthesis were detected [213,232,233]. Moreover, the pathogenicity of
A. flavus decreased with deletion of the oxylipin-encoding dioxygenase genes (ppo
genes) of the fungus. Exogenous plant oxylipins 9(S)-hydroperoxy-octadecadienoic
(9(S)-HpODE) acid and 13(S)-hydroperoxy-octadecadienoic (13(S)-HpODE) acid
affected the sporulation positively and also modulated the precursor sterigmatocystin
and AF synthesis in A. flavus, A. nidulans, and A. parasiticus [234]. In a lipidomic
approach, an important role of the maize oxylipins in the regulation of driving SM
production in A. flavus has been demonstrated [235]; however, the mechanism of the
plant oxylipin action has remained yet unsolved.

In addition to oxylipins, ROS, phytohormones, and other host-derived com-
pounds also influence the onset of oxidative stress within fungal cells. Host-derived
ET resulted in the reduction of ROS accumulation in A. flavus mycelia and reduced
AF biosynthesis. The metabolic precursor of ET, 2-chloroethyl phosphoric acid, was
capable of reducing the expression of aflR and aflD, which are key genes of the
aflatoxin biosynthetic pathway. The repression decreased the accumulation of oxi-
dative compounds and regulated the glutathione redox status in A. flavus mycelia
[236]. Comparing a resistant and a susceptible maize cultivar after A. flavus inocu-
lation, the expression of the ethylene-responsive factor 1 (ZmERF1) was found to be
higher in the immature kernel tissues of the resistant maize inbred [184]. ZmERF1 is
a key transcription factor involved in ET and JA signaling in maize.
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3.7 Killing of the Host Plant Cells

Killing of the host plant cells by the secretion of low-molecular-mass compounds
like peptide toxins or ROS [160,237] represents different fungal strategies. Toxin
effectors of the necrotrophic fungi target one of the host’s central signaling/regula-
tory pathways and trigger gene-mediated resistance (R) or downregulate defense
enzymes, which increases thereby the host susceptibility to fungal attack
[238]. From the host’s side, free radical production in chloroplasts has a critical
role in plant defense because these organelles are not only sites for the biosyntheses
of the signaling compounds (SA, JA, and nitric oxide) but also ROS production.
Therefore, chloroplasts are regarded as important players in the induction and
regulation of PCD in response to both abiotic stresses and pathogen attack (e.g.,
[239]).

In the H2O2 detoxification machinery, plant ascorbate has an enormous role
[240]. Of course, in fungi, different evolutionary ways were established to cope
with and reduce ascorbate levels and, as a consequence, the deleterious effects of
ROS generated by plant cells. For example, the SMs fusarenon, nivalenol, DON,
T-2, HT-2, deacetoxyscirpenol, beauvericine, and neosolaniol from Fusarium spp.
caused an alteration in the ascorbate metabolism in addition to the complete inhibi-
tion of seed germination and the induction of PCD, e.g., in tomato protoplasts
[241]. The T-2 trichothecene toxin, which is produced by, e.g., F. sporotrichioides
also induced H2O2 generation, PCD, callose deposition, and the accumulation of SA
in the nonhost plant A. thaliana [242].

Light-dependent plant-damaging toxins also facilitate the progression of fungal
infections and the development of disease symptoms. The production of NHST
perylenequinone photosensitizers called cercosporins [243–245] by Cercospora
zeae-maydis causes one of the most destructive foliar diseases of maize. Cercosporin
belongs to a group of compounds, which are activated by light and generate ROS, i.
e., singlet oxygen, H2O2, and the devastating hydroxyl radicals. ROS exert destruc-
tive effects on plant cells, primarily through oxidative lipid decomposition, DNA
damage, nutrient leakage, and induction of PCD [243,245].

Another light-dependent plant-damaging toxin has been identified in Ramularia
collo-cygni, the causal agent of Ramularia leaf spot disease on barley. Rubellin D, an
anthraquinone derivative, induced peroxidation of α-linoleic acid in a light-
dependent manner through singlet oxygen formation and, finally, chlorophyll bleach
[246,247].

Besides SM toxins, ROS also play an important role in the cytotoxic effects of
B. cinerea, as the fungus actively contributes to the elevated levels of ROS detected
at the infection sites, which caused an oxidative burst during cuticle penetration and
lesion formation [248,249]. SM toxins may also have an importance in ROS
accumulation. For example, Aspergillus mycotoxin ochratoxin A induced necrotic
lesions through oxidative burst induction by increased ROS levels and the concom-
itant downregulation of the expression of plant antioxidant defense enzymes
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[250]. Rice leaf sheaths infiltrated with R. solani-toxin significantly expressed five
new superoxide dismutase activities, which eliminated the antifungal oxidative burst
in the plant tissues [251].

The ascomycete Cochliobolus victoriae is a necrotrophic fungal pathogen of
Arabidopsis and oats and produces the HST victorine. Accumulation of victorine
induced defense-related responses such as extracellular alkalization, phytoalexin
synthesis, and PCD causing Victoria blight [252]. It was proposed that both JA
and ET promote the A. alternata AAL-toxin-induced PCD [253] in detached leaves
of Solanum lycopersicum via the disruption of sphingolipid metabolism [254]. Free
sphingoid bases were shown to be involved in the control of PCD in Arabidopsis as
well, presumably through the modulation of the ROS levels upon receiving different
developmental or environmental cues [255]. In the response to changes in the
oxidative environment, a crucial role of fungal SOD in H2O2 production was
shown again in Botrytis-Arabidopsis as well as Botrytis-tomato plant interactions,
where increased callose and oxylipin 12-oxo-phytodienoic acid productions [256]
were detected in the response to changing the oxidative environment.

3.8 Toxic Effects of Phytotoxin SMs

As it was presented above, the release of phytotoxins and/or ROS leads to immediate
membrane destruction in the plant cells, supplies the phytopathogens with nutrients,
and also significantly hinders the activation of plant defense responses.

HSTs are typically active only against host plants and have unique modes of
action and toxicity on the host [257]. Therefore, the production of the HSTs is vital
for the virulence of these fungi [160,258,259]. Most of the known HSTs are
produced by necrotrophic pathogens of the order of Pleosporales within the class
of Dothideomycetes and especially in the genera Alternaria and Cochliobolus
species [260,261]. These HSTs have diverse chemical structures ranging from
low-molecular-weight compounds to cyclic peptides. For the biosynthesis of the
HSTs, genes encoding polypeptides reside on a conditionally dispensable chromo-
some that controls host-specific pathogenicity [262]. The mechanism of host-
selective pathogenesis caused by the HSTs is well understood, and about 20 HSTs
have been documented [257,258]. Among them, at least, seven are from A. alternata
pathotypes that were also characterized [257]. In some cases, gene-for-gene inter-
actions mediated host sensitivity, and the sensitivity toward toxins was mandatory
for disease development [263]. Contrarily, NHSTs are not crucial determinants of the
host range and are not essential for pathogenicity either, although they sometimes
contribute to virulence. These toxins have a wider range of activity, causing symp-
toms not only on the hosts of the pathogenic fungus but also on other plant
species [258].

Several phytotoxic SM compounds either inhibited an aminotransferase or
appeared to have such a mode of action, like cornexistin from Paecilomyces variotii
[264], which was patented as an herbicide, or tentoxin, a cyclic tetrapeptide from

166 T. Pusztahelyi et al.



A. alternata, which indirectly inhibited the chloroplast development in cucumber
and cabbage [265].

Alternaria species have been reported to cause diseases in nearly 400 plant
species such as a broad range of economically important crops and caused severe
economic problems. A. alternata alone can infect more than 100 plant species
[266]. The production of several phytotoxins and HSTs is regarded as a key reason
for the success of these pathogens [267]. The PKS gene ACRTS2 was found to be
essential for ACR-toxin production and pathogenicity of the rough lemon pathotype
of A. alternata [268]. The phytotoxin zinniol (Fig. 14), which is produced by
Alternaria species and one Phoma species, bound plant protoplasts and stimulated
Ca2+ entry into cells [269]. Some of these HSTs are outstandingly toxic even at low
doses, e.g., 10�12 g of the HSTAK-toxin from the pear pathogen A. kikuchiana was
sufficient to disintegrating approximately 100 host cells [267]. Alternaria sp. also
produced several NHSTs such as brefeldin A, altertoxin, and tentoxin and also other
mycotoxins. Alternariol (Fig. 14) and alternariol-9-methyl ether (from Nimbya and
Alternaria spp.) are also major NHSTs, which are common contaminants in food like
fruits and fruit juices and cereals [270] and inhibit the electron transport chain of the
host plants [271].

Tentoxin, which was mentioned above, is another NHST produced by Alternaria
spp. and blocks ATP hydrolysis by certain chloroplast F1-ATPases through binding

Fig. 14 Schematic presentation of selected Alternaria toxins (Source: National Center for Bio-
technology Information. PubChem Compound Database (accessed June 6, 2015))
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to the protein surface between the α and β subunits of ATPase. The blockage leads to
complete energy breakdown in the plant cells and, consequently, causes chlorosis in
sensitive plants [272]. Further, the detailed experimental analysis revealed that a
single molecule of the toxin can affect ADP release in a noncompetitive manner
[273]. Fusicoccin from Fusicoccum amygdali (=Phomopsis amygdali) also acti-
vated irreversibly the plant plasma membrane H+-ATPase [274]. Moreover, several
analogs of the AAL-toxin of A. alternata and a series of structurally related fungal
metabolites, e.g., FB1 of Fusarium spp., specifically inhibited ceramide synthase
(sphinganine-N-acyltransferase) in plants [167]. Importantly, FB1 toxin also trig-
gered the depletion of extracellular ATP reserves. Extracellular ATP functions as an
endogenous external metabolite and affects plant cell viability. The deprivation of
extracellular ATP altered the abundance of particular cytosolic, mitochondrial,
chloroplast, and endoplasmic reticulum proteins and elicited a stress response,
which ended in cell death. However, the process could be reverted by exogenous
ATP in Arabidopsis [275].

Despite the metabolic diversity found within the Fusarium genus, relatively few
metabolites have been reported in the individual species and isolates.
F. graminearum is a worldwide pathogen of maize and grains such as wheat, barley,
and oats. However, several reports indicated that this filamentous fungus produced
only 7 out of 15 PKS (including fusarubins, zearalenone, aurofusarin, fusarielins,
fusarins, aurofusarin, orcinol) and the NPRS-PKS hybrid fusaristatins only 3 out of
19 NRPS SM families (malonichrome, ferricrocin, fusarinin) [187].

Currently, more than 150 trichothecenes and trichothecene derivatives are known
[276], which are all nonvolatile, low-molecular-weight sesquiterpene epoxides.
Trichothecenes are divided into four groups (types A–D) according to their chemical
properties and their origin [277]. In plants, trichothecenes cause necrosis, chlorosis,
and mortality in plants, enabling the fungal pathogen to mediate a wide variety of
plant diseases, including wilts, stalk rot, root rot, and leaf rot in many crops and
ornamental plants [278] reducing crop yield and quality. However, only a few of the
known trichothecenes (all of them are from types A or B) have importance in crops.
Diacetoxyscirpenol (DAS) and T-2 toxin from type A and DON and nivalenol (NIV)
from type B are the major products of the trichothecene biosynthetic pathway [277].

Fusarium species differ considerably in their trichothecene productions. Several
phytopathogenic Fusarium spp. including F. graminearum and F. culmorum produce
DON, which is one of the primary trichothecene metabolites found in wheat. Pro-
ducers of type B trichothecenes can be separated further into two chemotypes by
whether they produce DON (or its acetylated derivatives) or nivalenol
[279,280]. Besides Fusarium spp., Myrothecium verrucaria and some other species
also synthesize type C and D trichothecenes. The type C trichothecenes such as
crotocin, e.g., in Trichothecium roseum and Cephalosporium crotocinigerum, are
characterized by a second epoxide function at the C-7,8 or C-9,10 positions of the
pentane ring, which is common to all trichothecenes [277]. Type D trichothecenes
contain a macrocyclic ring between the C-4 and C-5 position of the pentane ring with
two ester linkages. Type D trichothecenes include verrucarin (Myrothecium
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verrucaria), satratoxin (Stachybotrys atra), and roridin (e.g., Myrothecium roridum,
Cylindrocarpon) [277]. Verrucarin A is a known phytotoxin, and there is evidence
that some unidentified metabolites of M. verrucaria also are involved in the
observed bioherbicidal activity [281].

Isolates of the F. graminearum species complex exhibited wide strain-specific
variability in both aggressiveness and trichothecene production on cultivars [282],
and trichothecenes, especially DON, were inherently linked to the pathogenicity of
F. graminearum [189,283]. The toxin inhibited translation without induction of the
elicitor-like signaling pathway in the nonhost plant A. thaliana [242].

Although AAL-toxin (A. alternata) and fumonisins (Fusarium spp.) share com-
mon structural features and thus exhibit similar disrupting effects on the sphingolipid
metabolism in plants and also in animals, fumonisins produced by F. verticillioides
was shown to be dispensable for maize infection [284]. Meanwhile, as we mentioned
before, at least in F. graminearum, DON is considered to have a critical role as a
virulence factor. The spread of the fungus in the spikes and the production of DON
correlated well with the presence of several polyamine compounds (e.g., putrescine)
that are accumulated when the infection progressed through the spike and preceded
the fungal production of DON [285]. The phytotoxic effect of six trichothecenes
such as DON, 3-acetyldeoxynivalenol (3-ADON), NIV, DAS, T-2, and HT-2 were
assessed and compared studying four wheat cultivars. DON and its chemotype
3-ADONwere more cytotoxic than a T-2, HT-2, and DAS, and those toxins inhibited
wheat coleoptile elongation [286].

F. culmorum, F. graminearum, and F. venenatum can produce SM culmorins,
which are tricyclic sesquiterpene diols [287]. Culmorin showed weak phytotoxicity
to wheat coleoptile tissue [288], but there are no reports on its role in the wheat head
scab. There are no threshold limits for these SMs; therefore, Fusarium-contaminated
grain stocks are usually not screened for culmorins. However, in naturally contam-
inated Norwegian wheat, barley, and oat samples, culmorin and hydroxyculmorins
were detected at relatively high levels besides the high DON concentrations [289].

Several Fusarium species produce enniatins, which are cyclic hexadepsipeptides
with phytotoxic properties and promote fungal virulence. Disruption of the enniatin
synthase gene in F. avenaceum isolates caused defects in enniatin biosynthesis, and
these isolates were less efficient in the colonization of potato tubers than the wild
type [290]. Enniatins and the structurally related beauvericin function as cation
chelators and transporters of divalent cations exerted across cell membranes [291].

Further phytotoxins can also cause significant economic loss. For example,
diplodiatoxin produced as major SM by Stenocarpella maydis (Diplodia maydis)
caused increased lesion lengths [292] and fungal dry rot of maize ears and was
associated with diplodiosis, a neuro-mycotoxicosis in cattle grazing harvested maize
fields mainly in Africa and South America [293]. The host-selective T-toxin, a
family of C35 to C49 polyketides, from C. heterostrophus [204,294] inhibited
mitochondrial respiration by binding to an inner mitochondrial membrane protein
in sensitive plants. The binding caused pore formation, leakage of NAD+ and and
other ions, as well as subsequent mitochondrial swelling (reviewed by [295]).
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The soilborne fungus R. solani (teleomorph Thanatephorus cucumeris) belongs
to the phylum Basidiomycota and has economic importance. R. solani is a
nonobligate necrotrophic pathogen, which causes diseases in many crops including
species in the families Asteraceae, Brassicaceae, Fabaceae, and Poaceae, Solanaceae
and ornamental plants and forest trees throughout the world [296]. The anamorph
R. solani is a species complex including at least 14 different, genetically isolated
populations (=anastomosis groups (AG)) that differ in their ecology and host range
[297,298].

Interestingly, in genome analysis of the R. solani AG1-IA, only ten genes coding
for SM biosynthetic enzymes were identified (a PKS, 4 NRPSs, and 5 DMATSs)
(Table 2). The penta-functional AROM protein of the shikimate pathway, which
takes part in the synthesis of phytotoxic phenylacetic acid, was also detected in the
genome. Some genes in the biosynthesis of a putative phytotoxin enniatin and also
DNA sequences featuring homology to putative trichothecene toxin citrinin, AF, and
terpene biosynthesis genes (e.g., genes encoding sesquiterpene synthases) were also
found. However, no other genes that are homologous to the mycotoxin biosynthesis
genes in other R. solani AGs were identified [299]. Furthermore, three volvatoxin
genes that are homologous to volvatoxin from Volvariella volvacea (Basidiomycota)
were detected in R. solani AG1-IB [300]. In proteome analysis, a trichothecene 3-O-
acetyltransferase, which is required for trichothecene biosynthesis and involved in
the reduction the toxicity of DON in Fusarium spp. [224], was differentially
expressed during the developmental stages in R. solani AG1 [301]. R. solani syn-
thesizes both HSTs and NHSTs [302]. HSTs from R. solani strains increased the
virulence of the pathogen (e.g., the HC-toxin on maize) [303]. Other R. solani AGs
also produce various phytotoxic compounds like the phenylacetic acid, mentioned
above, and its derivatives, a phenolic compound, and a carbohydrate [304], which
support the broad host range and diversity observed within the R. solani species.
From the fermentation broth of R. solani AG1 IA, Xu et al. identified eight
compounds, from which m-hydroxymethyl phenyl pentanoate, (Z)-3-methylpent-
2-en-1,5-dioic acid and 3-methoxyfuran-2-carboxylic acid also showed phytotoxic-
ity in vitro [305].

The gray mold fungus B. cinerea is a typical necrotrophic phytopathogen with a
very broad host range. It causes vast pre- and postharvest economic damages
[197]. Two groups of its phytotoxic metabolites such as the sesquiterpene botrydial
and related compounds [306] and botcinic acid and its derivatives [307] have been
characterized. The sesquiterpene-derived phytotoxin botrydial has been implicated
in virulence in planta because its addition facilitated fungal penetration and coloni-
zation of plants [308].

Some SMs and mycotoxin, including territrem A, citreoviridin, citrinin, gliotoxin,
patulin, terrein, terreic acid, and terretonin, are produced by A. terreus [309], and in
infected crops such as wheat, ryegrass, and potatoes, they were linked to the disease.
The phytotoxic SM terrein found in A. terreus possessed ecological, antimicrobial,
antiproliferative, and antioxidative activities and was highly induced in plant-
derived media and elicited lesions on fruit surfaces [310].
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4 Conclusions and Future Aspects

SMs play important roles in the development and lifestyles of the fungal-plant
pathogens, but only approximately 25 % of the fungal SM gene clusters have been
characterized thus far, and even fewer SMs have been identified on the host side.
Fungal SM genes reflect remarkable diversity among species, and the differences in
the SM spectrums may explain the differences observable in the lifestyles of the
pathogens. Furthermore, horizontal gene and chromosome transfers may also
broaden the host ranges of the pathogenic fungi.

Because a plethora of fungal genome sequences are publicly available by now,
comparative genomics and transcriptomics tools can provide us with an array of
genetic features characteristic of the fungal pathogens and, hence, can increase our
knowledge on the regulation and adaptation mechanisms typical of the various
pathogenic lifestyles (Fig. 15) [312].

The spread and availability of next-generation DNA sequencing tools also allows
us to survey the SM gene clusters in a given fungus. Furthermore, next-generation
RNA-Seq technologies are used routinely to screen the expression patterns of SM
gene clusters at various stages of infection. RNA-Seq technologies are also suited
perfectly for studying plant-pathogen interactions at the level of global transcrip-
tional changes. Moreover, genetic manipulations of species- and strain-specific SM
genes and gene clusters, which are associated with host-specific virulence, may
provide us with the possibility to investigate further the roles of SMs in fungal-
plant interactions. A deeper knowledge of fungus-plant interactions may also help us
in resistance breeding in order to obtain new plant cultivars/hybrids with increased
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Fig. 15 An integrated chemical ecogenomic approach for understanding the functions of second-
ary metabolites (SMs) and bioactive molecule discovery. The strategy incorporates the common
tools in ecological genomics, genome mining, and chemical ecology [312]
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tolerance against various types of stress such as abiotic stress or invasion by fungal
pathogens. Furthermore, well-characterized plant SMs could be used against various
plant-pathogen fungi, e.g., in natural plant extracts in sprayable forms. Such tech-
nologies would have a great importance especially in organic agriculture, where no
other chemicals are preferred.

Deciphering the biosyntheses of both plant and fungal SMs and especially those
of mycotoxins and real phytotoxins together with current and future improvements
in gene disruption techniques hopefully will allow us to develop new and effective
molecular genetic tools to elucidate the roles of SMs in the progression of important
plant diseases. The deeper our knowledge is, the clearer we can see the common
features of plant-fungal interactions although these interactions can be very special
or even unique. When all common and special features of plant-fungus interactions
have been reveled successfully and the effects of various ecological parameters, e.g.,
changing environmental conditions or alterations in the rhizosphere biome, have also
been assessed and analyzed in depth, we will be able to work out novel, effective,
and reliable pretreatment and treatment strategies to prevent and cure plant diseases
caused by fungi.

Acknowledgements This work was supported by the Hungarian Scientific Research Fund (OTKA
K100464 and OTKA K108333).

References

1. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular
phylogenetic perspective. Phytochemistry 64:3–19

2. Van der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions
with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588. doi:10.1016/j.
phytochem.2009.06.009

3. Palencia ER, Hinton DM, Bacon CW (2010) The black Aspergillus species of maize and
peanuts and their potential for mycotoxin production. Toxins (Basel) 2:399–416. doi:10.3390/
toxins2040399

4. Howlett BJ (2006) Secondary metabolite toxins and nutrition of plant pathogenic fungi. Curr
Opin Plant Biol 9:371–375. doi:10.1016/j.pbi.2006.05.004

5. Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends
Plant Sci 7:352–356. doi:10.1016/S1360-1385(02)02297-5

6. Schulze-Lefert P, Panstruga R (2003) Establishment of biotrophy by parasitic fungi and
reprogramming of host cells for disease resistance. Annu Rev Phytopathol 41:641–667.
doi:10.1146/annurev.phyto.41.061002.083300

7. Janda M, Ruelland E (2014) Magical mystery tour: salicylic acid signalling. Environ Exp Bot
114:117–128. doi:10.1016/j.envexpbot.2014.07.003

8. Ton J, Van Pelt JA, Van Loon LC, Pieterse CMJ (2002) Differential effectiveness of salicylate-
dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant
Microbe Interact 15:27–34. doi:10.1094/MPMI.2002.15.1.27

9. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in
plant stress response, growth and development. Ann Bot 100:681–697. doi:10.1093/aob/
mcm079

172 T. Pusztahelyi et al.

http://dx.doi.org/10.1016/j.phytochem.2009.06.009
http://dx.doi.org/10.1016/j.phytochem.2009.06.009
http://dx.doi.org/10.3390/toxins2040399
http://dx.doi.org/10.3390/toxins2040399
http://dx.doi.org/10.1016/j.pbi.2006.05.004
http://dx.doi.org/10.1016/S1360-1385(02)02297-5
http://dx.doi.org/10.1146/annurev.phyto.41.061002.083300
http://dx.doi.org/10.1016/j.envexpbot.2014.07.003
http://dx.doi.org/10.1094/MPMI.2002.15.1.27
http://dx.doi.org/10.1093/aob/mcm079
http://dx.doi.org/10.1093/aob/mcm079


10. Hauser F, Waadt R, Schroeder JI (2011) Evolution of abscisic acid synthesis and signaling
mechanisms. Curr Biol 21:R346–R355. doi:10.1016/j.cub.2011.03.015

11. Ludwig-M€uller J (2011) Auxin conjugates: their role for plant development and in the
evolution of land plants. J Exp Bot 62:1757–1773. doi:10.1093/jxb/erq412

12. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic
pathogens. Annu Rev Phytopathol 43:205–227. doi:10.1146/annurev.phyto.43.040204.135923

13. Shah J, Chaturvedi R, Chowdhury Z, Venables B, Petros RA (2014) Signaling by small
metabolites in systemic acquired resistance. Plant J 79:645–658. doi:10.1111/tpj.12464

14. Kilaru A, Bailey BA, Hasenstein KH (2007) Moniliophthora perniciosa produces hormones
and alters endogenous auxin and salicylic acid in infected cocoa leaves. FEMS Microbiol Lett
274:238–244. doi:10.1111/j.1574-6968.2007.00837.x

15. Tamaoki D, Seo S, Yamada S, Kano A, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S,
Akimitsu K, Gomi K (2013) Jasmonic acid and salicylic acid activate a common defense
system in rice. Plant Signal Behav 8, e24260. doi:10.4161/psb.24260

16. Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol
42:185–209. doi:10.1146/annurev.phyto.42.040803.140421

17. Van der Ent S, Verhagen BWM, Van Doorn R, Bakker D, Verlaan MG, Pel MJC, Joosten RG,
Proveniers MCG, Van Loon LC, Ton J, Pieterse CMJ (2008) MYB72 is required in early
signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol
146:1293–1304. doi:10.1104/pp.107.113829

18. Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in
induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol
(Stuttg) 11:90–96. doi:10.1111/j.1438-8677.2008.00162.x

19. Yan Z, Reddy MS, Ryu C-M, McInroy JA, Wilson M, Kloepper JW (2002) Induced systemic
protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phyto-
pathology 92:1329–1333. doi:10.1094/PHYTO.2002.92.12.1329

20. Kazan K, Lyons R (2014) Intervention of phytohormone pathways by pathogen effectors.
Plant Cell 26:2285–2309. doi:10.1105/tpc.114.125419

21. van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins
in infected plants. Annu Rev Phytopathol 44:135–162. doi:10.1146/annurev.
phyto.44.070505.143425

22. Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in plant disease resistance. Plant
Sci 207:79–87. doi:10.1016/j.plantsci.2013.03.004

23. Yao H, Tian S (2005) Effects of pre- and post-harvest application of salicylic acid or methyl
jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biol
Technol 35:253–262. doi:10.1016/j.postharvbio.2004.09.001

24. Ren YY, West CA (1992) Elicitation of diterpene biosynthesis in rice (Oryza sativa L.) by
chitin. Plant Physiol 99:1169–1178

25. Walker TS, Bais HP, Halligan KM, Stermitz FR, Vivanco JM (2003) Metabolic profiling of
root exudates of Arabidopsis thaliana. J Agric Food Chem 51:2548–2554. doi:10.1021/
jf021166h

26. Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol
61:49–64. doi:10.1146/annurev-arplant-042809-112308

27. Ludwig-M€uller J (2015) Bacteria and fungi controlling plant growth by manipulating auxin:
balance between development and defense. J Plant Physiol 172:4–12. doi:10.1016/j.
jplph.2014.01.002

28. Tanaka E, Koga H, Mori MM (2011) Auxin production by the rice blast fungus and its
localization in host tissue. J Phytopathol 159:522–530. doi:10.1111/j.1439-
0434.2011.01799.x

29. Li Y, Huang F, Lu Y, Shi Y, Zhang M, Fan J, Wang W (2013) Mechanism of plant–microbe
interaction and its utilization in disease-resistance breeding for modern agriculture. Physiol
Mol Plant Pathol 83:51–58. doi:10.1016/j.pmpp.2013.05.001

4 Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic. . . 173

http://dx.doi.org/10.1016/j.cub.2011.03.015
http://dx.doi.org/10.1093/jxb/erq412
http://dx.doi.org/10.1146/annurev.phyto.43.040204.135923
http://dx.doi.org/10.1111/tpj.12464
http://dx.doi.org/10.1111/j.1574-6968.2007.00837.x
http://dx.doi.org/10.4161/psb.24260
http://dx.doi.org/10.1146/annurev.phyto.42.040803.140421
http://dx.doi.org/10.1104/pp.107.113829
http://dx.doi.org/10.1111/j.1438-8677.2008.00162.x
http://dx.doi.org/10.1094/PHYTO.2002.92.12.1329
http://dx.doi.org/10.1105/tpc.114.125419
http://dx.doi.org/10.1146/annurev.phyto.44.070505.143425
http://dx.doi.org/10.1146/annurev.phyto.44.070505.143425
http://dx.doi.org/10.1016/j.plantsci.2013.03.004
http://dx.doi.org/10.1016/j.postharvbio.2004.09.001
http://dx.doi.org/10.1021/jf021166h
http://dx.doi.org/10.1021/jf021166h
http://dx.doi.org/10.1146/annurev-arplant-042809-112308
http://dx.doi.org/10.1016/j.jplph.2014.01.002
http://dx.doi.org/10.1016/j.jplph.2014.01.002
http://dx.doi.org/10.1111/j.1439-0434.2011.01799.x
http://dx.doi.org/10.1111/j.1439-0434.2011.01799.x
http://dx.doi.org/10.1016/j.pmpp.2013.05.001


30. Petti C, Reiber K, Ali SS, Berney M, Doohan FM (2012) Auxin as a player in the biocontrol of
Fusarium head blight disease of barley and its potential as a disease control agent. BMC Plant
Biol 12:224. doi:10.1186/1471-2229-12-224

31. Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism – from biochemistry to
genomics. Nat Rev Microbiol 3:937–947. doi:10.1038/nrmicro1286

32. Khan AL, Hamayun M, Kim Y-H, Kang S-M, Lee J-H, Lee I-J (2011) Gibberellins producing
endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels,
isoflavonoids production and plant growth in salinity stress. Process Biochem 46:440–447.
doi:10.1016/j.procbio.2010.09.013

33. Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosyn-
thetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893.
doi:10.1016/j.phytochem.2009.05.020

34. Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus E-M, Espino JJ, Huß K,
Michielse CB, Albermann S, Wagner D, Bergner SV, Connolly LR, Fischer A, Reuter G,
Kleigrewe K, Bald T, Wingfield BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW,
Proctor RH, M€unsterkötter M, Freitag M, Humpf H-U, G€uldener U, Tudzynski B (2013)
Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium
fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS
Pathog 9, e1003475

35. Bömke C, Rojas MC, Hedden P, Tudzynski B (2008) Loss of gibberellin production in
Fusarium verticillioides (Gibberella fujikuroi MP-A) is due to a deletion in the gibberellic
acid gene cluster. Appl Environ Microbiol 74:7790–7801. doi:10.1128/AEM.01819-08

36. Hedden P, Phillips AL, Rojas MC, Carrera E, Tudzynski B (2001) Gibberellin biosynthesis in
plants and fungi: a case of convergent evolution? J Plant Growth Regul 20:319–331.
doi:10.1007/s003440010037

37. Atkinson P, Blakeman JP (1982) Seasonal occurrence of an antimicrobial flavanone,
sakuranetin, associated with glands on leaves of Ribes nigrum. New Phytol 92:63–74.
doi:10.1111/j.1469-8137.1982.tb03363.x

38. Perry NB, Foster LM (1994) Antiviral and antifungal flavonoids, plus a triterpene from Hebe
cupressoides. Plant Med 60:491–492

39. Kodama O, Miyakawa J, Akatsuka T, Kiyosawa S (1992) Sakuranetin, a flavanone phyto-
alexin from ultraviolet-irradiated rice leaves. Phytochemistry 31:3807–3809. doi:10.1016/
S0031-9422(00)97532-0

40. Dewick PM (2002) The biosynthesis of C5-C25 terpenoid compounds. Nat Prod Rep
19:181–222

41. Takanashi K, Takahashi H, Sakurai N, Sugiyama A, Suzuki H, Shibata D, Nakazono M,
Yazaki K (2012) Tissue-specific transcriptome analysis in nodules of Lotus japonicus. Mol
Plant Microbe Interact 25:869–876. doi:10.1094/MPMI-01-12-0011-R

42. Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites.
FEBS Lett 580:1183–1191. doi:10.1016/j.febslet.2005.12.009

43. Yazaki K, Sugiyama A, Morita M, Shitan N (2008) Secondary transport as an efficient
membrane transport mechanism for plant secondary metabolites. Phytochem Rev 7:513–524

44. Hasegawa M, Mitsuhara I, Seo S, Imai T, Koga J, Okada K, Yamane H, Ohashi Y (2010)
Phytoalexin accumulation in the interaction between rice and the blast fungus. Mol Plant
Microbe Interact 23:1000–1011. doi:10.1094/MPMI-23-8-1000

45. Stefanato FL, Abou-Mansour E, Buchala A, Kretschmer M, Mosbach A, Hahn M, Bochet CG,
Métraux J-P, Schoonbeek H (2009) The ABC transporter BcatrB from Botrytis cinerea exports
camalexin and is a virulence factor on Arabidopsis thaliana. Plant J 58:499–510. doi:10.1111/
j.1365-313X.2009.03794.x

46. Gupta A, Chattoo BB (2008) Functional analysis of a novel ABC transporter ABC4
from Magnaporthe grisea. FEMS Microbiol Lett 278:22–28. doi:10.1111/j.1574-6968.2007.
00937.x

174 T. Pusztahelyi et al.

http://dx.doi.org/10.1186/1471-2229-12-224
http://dx.doi.org/10.1038/nrmicro1286
http://dx.doi.org/10.1016/j.procbio.2010.09.013
http://dx.doi.org/10.1016/j.phytochem.2009.05.020
http://dx.doi.org/10.1128/AEM.01819-08
http://dx.doi.org/10.1007/s003440010037
http://dx.doi.org/10.1111/j.1469-8137.1982.tb03363.x
http://dx.doi.org/10.1016/S0031-9422(00)97532-0
http://dx.doi.org/10.1016/S0031-9422(00)97532-0
http://dx.doi.org/10.1094/MPMI-01-12-0011-R
http://dx.doi.org/10.1016/j.febslet.2005.12.009
http://dx.doi.org/10.1094/MPMI-23-8-1000
http://dx.doi.org/10.1111/j.1365-313X.2009.03794.x
http://dx.doi.org/10.1111/j.1365-313X.2009.03794.x
http://dx.doi.org/10.1111/j.1574-6968.2007.00937.x
http://dx.doi.org/10.1111/j.1574-6968.2007.00937.x


47. Sun CB, Suresh A, Deng YZ, Naqvi NI (2006) A multidrug resistance transporter in
Magnaporthe is required for host penetration and for survival during oxidative stress. Plant
Cell 18:3686–3705. doi:10.1105/tpc.105.037861

48. Peters RJ (2006) Uncovering the complex metabolic network underlying diterpenoid phyto-
alexin biosynthesis in rice and other cereal crop plants. Phytochemistry 67:2307–2317.
doi:10.1016/j.phytochem.2006.08.009

49. Cartwright DW, Langcake P, Pryce RJ, Leworthy DP, Ride JP (1981) Isolation and character-
ization of two phytoalexins from rice as momilactones A and B. Phytochemistry 20:535–537.
doi:10.1016/S0031-9422(00)84189-8

50. Kodama O, Suzuki T, Miyakawa J, Akatsuka T (1988) Ultraviolet-induced accumulation of
phytoalexins in rice leaves. Agric Biol Chem 52:2469–2473

51. Kato-Noguchi H, Ino T, Sata N, Yamamura S (2002) Isolation and identification of a potent
allelopathic substance in rice root exudates. Physiol Plant 115:401–405. doi:10.1034/j.1399-
3054.2002.1150310.x

52. Akatsuka T, Kodama O, Sekido H, Kono Y, Takeuchi S (1985) Novel phytoalexins
(Oryzalexins A, B and C) isolated from rice blast leaves infected with Pyricularia oryzae.
Agric Biol Chem 49:1689–1701. doi:10.1080/00021369.1985.10866951

53. Kato H, Kodama O, Akatsuka T (1993) Oryzalexin E, A diterpene phytoalexin from
UV-irradiated rice leaves. Phytochemistry 33:79–81. doi:10.1016/0031-9422(93)85399-C

54. Kato H, Kodama O, Akatsuka T (1994) Oryzalexin F, a diterpene phytoalexin from
UV-irradiated rice leaves. Phytochemistry 36:299–301. doi:10.1016/S0031-9422(00)97064-X

55. Tamogani S, Mitani M, Kodama O, Akatsuka T (1993) Oryzalexin S structure: a new
stemarane-type rice plant phytoalexin and its biogenesis. Tetrahedron 49:2025–2032.
doi:10.1016/S0040-4020(01)86302-X

56. Koga J, Shimura M, Oshima K, Ogawa N, Yamauchi T, Ogasawara N (1995)
Phytocassanes A, B, C and D, novel diterpene phytoalexins from rice, Oryza sativa
L. Tetrahedron 51:7907–7918. doi:10.1016/0040-4020(95)00423-6

57. Koga J, Ogawa N, Yamauchi T, Kikuchi M, Ogasawara N, Shimura M (1997) Functional
moiety for the antifungal activity of phytocassane E, a diterpene phytoalexin from rice.
Phytochemistry 44:249–253. doi:10.1016/S0031-9422(96)00534-1

58. Kim J-A, Cho K, Singh R, Jung Y-H, Jeong S-H, Kim S-H, Lee J-E, Cho Y-S, Agrawal GK,
Rakwal R, Tamogami S, Kersten B, Jeon J-S, An G, Jwa N-S (2009) Rice OsACDR1 (Oryza
sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease
resistance. Mol Cells 28:431–439. doi:10.1007/s10059-009-0161-5

59. Pedras MSC, Montaut S, Suchy M (2004) Phytoalexins from the crucifer rutabaga: structures,
syntheses, biosyntheses, and antifungal activity. J Org Chem 69:4471–4476. doi:10.1021/
jo049648a

60. Pedras MSC, Montaut S (2003) Probing crucial metabolic pathways in fungal pathogens of
crucifers: biotransformation of indole-3-acetaldoxime, 4-hydroxyphenylacetaldoxime, and
their metabolites. Bioorg Med Chem 11:3115–3120

61. Pedras MSC, Sarwar MG, Suchy M, Adio AM (2006) The phytoalexins from cauliflower,
caulilexins A, B and C: isolation, structure determination, syntheses and antifungal activity.
Phytochemistry 67:1503–1509. doi:10.1016/j.phytochem.2006.05.020

62. Pedras MSC, Ahiahonu PWK (2005) Metabolism and detoxification of phytoalexins and
analogs by phytopathogenic fungi. Phytochemistry 66:391–411. doi:10.1016/j.
phytochem.2004.12.032

63. Langcake P, Pryce RJ (1976) The production of resveratrol by Vitis vinifera and other members
of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 9:77–86. doi:10.1016/
0048-4059(76)90077-1

64. Jeandet P, Douillet-Breuil A-C, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins
from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal
activity, and metabolism. J Agric Food Chem 50:2731–2741. doi:10.1021/jf011429s

4 Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic. . . 175

http://dx.doi.org/10.1105/tpc.105.037861
http://dx.doi.org/10.1016/j.phytochem.2006.08.009
http://dx.doi.org/10.1016/S0031-9422(00)84189-8
http://dx.doi.org/10.1034/j.1399-3054.2002.1150310.x
http://dx.doi.org/10.1034/j.1399-3054.2002.1150310.x
http://dx.doi.org/10.1080/00021369.1985.10866951
http://dx.doi.org/10.1016/0031-9422(93)85399-C
http://dx.doi.org/10.1016/S0031-9422(00)97064-X
http://dx.doi.org/10.1016/S0040-4020(01)86302-X
http://dx.doi.org/10.1016/0040-4020(95)00423-6
http://dx.doi.org/10.1016/S0031-9422(96)00534-1
http://dx.doi.org/10.1007/s10059-009-0161-5
http://dx.doi.org/10.1021/jo049648a
http://dx.doi.org/10.1021/jo049648a
http://dx.doi.org/10.1016/j.phytochem.2006.05.020
http://dx.doi.org/10.1016/j.phytochem.2004.12.032
http://dx.doi.org/10.1016/j.phytochem.2004.12.032
http://dx.doi.org/10.1016/0048-4059(76)90077-1
http://dx.doi.org/10.1016/0048-4059(76)90077-1
http://dx.doi.org/10.1021/jf011429s


65. Mueller-Riebau F, Berger B, Yegen O (1995) Chemical composition and fungitoxic properties
to phytopathogenic fungi of essential oils of selected aromatic plants growing wild in Turkey. J
Agric Food Chem 43:2262–2266. doi:10.1021/jf00056a055

66. Tsao R, Zhou T (2000) Antifungal activity of monoterpenoids against postharvest pathogens
Botrytis cinerea and Monilinia fructicola. J Essent Oil Res 12:113–121. doi:10.1080/
10412905.2000.9712057

67. Camele I, Altieri L, De Martino L, De Feo V, Mancini E, Rana GL (2012) In vitro control of
post-harvest fruit rot fungi by some plant essential oil components. Int J Mol Sci
13:2290–2300. doi:10.3390/ijms13022290

68. Fiers M, Lognay G, Fauconnier M-L, Jijakli MH (2013) Volatile compound-mediated inter-
actions between barley and pathogenic fungi in the soil. PLoS One 8, e66805. doi:10.1371/
journal.pone.0066805

69. Ameye M, Audenaert K, De Zutter N, Steppe K, Van Meulebroek L, Vanhaecke L, De
Vleesschauwer D, Haesaert G, Smagghe G (2015) Priming of wheat with the green leaf
volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts
deoxynivalenol production. Plant Physiol 167:1671–1684. doi:10.1104/pp.15.00107

70. Bohlmann J, Keeling CI (2008) Terpenoid biomaterials. Plant J 54:656–669. doi:10.1111/
j.1365-313X.2008.03449.x

71. Espinosa-García FJ, Langenheim JH (1991) Effects of sabinene and γ-terpinene from coastal
redwood leaves acting singly or in mixtures on the growth of some of their fungus endophytes.
Biochem Syst Ecol 19:643–650. doi:10.1016/0305-1978(91)90080-J

72. Saddiq AA, Khayyat SA (2010) Chemical and antimicrobial studies of monoterpene: citral.
Pestic Biochem Physiol 98:89–93. doi:10.1016/j.pestbp.2010.05.004

73. Wilson CL, Solar JM, El Ghaouth A, Wisniewski ME (1997) Rapid evaluation of
plant extracts and essential oils for antifungal activity against Botrytis cinerea. Plant Dis
81:204–210

74. Buzi A, Chilosi G, Timperio AM, Zolla L, Rossall S, Magro P (2003) Polygalacturonase
produced by Botrytis fabae as elicitor of two furanoacetylenic phytoalexins in Vicia faba pods.
J Plant Pathol 85:111–116

75. Ito S-I, Ihara T, Tamura H, Tanaka S, Ikeda T, Kajihara H, Dissanayake C, Abdel-Motaal FF,
El-Sayed MA (2007) alpha-Tomatine, the major saponin in tomato, induces programmed cell
death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum. FEBS
Lett 581:3217–3222. doi:10.1016/j.febslet.2007.06.010

76. Osbourn A (1996) Saponins and plant defence – a soap story. Trends Plant Sci 1:4–9.
doi:10.1016/S1360-1385(96)80016-1

77. Crozier A, Jaganath IB, Clifford MN (2008) Phenols, polyphenols and tannins: an overview.
In: Crozier A, Clifford MN, Ashihara A (eds) Plant secondary metabolites: occurrence,
structure and role in the human diet. Blackwell, Oxford, UK, pp 1–24

78. Pierpoint WS (2000) Why should plants make medicine – don’t they do enough for mankind
already? Biochem (Lond) 22:37–40

79. Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint J-P, Vierheilig H
(2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic
plant-fungus interactions. Molecules 12:1290–1306

80. Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-
industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem
99:191–203. doi:10.1016/j.foodchem.2005.07.042

81. de Oliveira TLC, de Araújo SR, Ramos EM, das Graças Cardoso M, Alves E, Piccoli RH
(2011) Antimicrobial activity of Satureja montana L. essential oil against Clostridium
perfringens type A inoculated in mortadella-type sausages formulated with different levels
of sodium nitrite. Int J Food Microbiol 144:546–555. doi:10.1016/j.ijfoodmicro.2010.11.022

82. El-Mogy MM, Alsanius BW (2012) Cassia oil for controlling plant and human pathogens on
fresh strawberries. Food Control 28:157–162. doi:10.1016/j.foodcont.2012.04.036

176 T. Pusztahelyi et al.

http://dx.doi.org/10.1021/jf00056a055
http://dx.doi.org/10.1080/10412905.2000.9712057
http://dx.doi.org/10.1080/10412905.2000.9712057
http://dx.doi.org/10.3390/ijms13022290
http://dx.doi.org/10.1371/journal.pone.0066805
http://dx.doi.org/10.1371/journal.pone.0066805
http://dx.doi.org/10.1104/pp.15.00107
http://dx.doi.org/10.1111/j.1365-313X.2008.03449.x
http://dx.doi.org/10.1111/j.1365-313X.2008.03449.x
http://dx.doi.org/10.1016/0305-1978(91)90080-J
http://dx.doi.org/10.1016/j.pestbp.2010.05.004
http://dx.doi.org/10.1016/j.febslet.2007.06.010
http://dx.doi.org/10.1016/S1360-1385(96)80016-1
http://dx.doi.org/10.1016/j.foodchem.2005.07.042
http://dx.doi.org/10.1016/j.ijfoodmicro.2010.11.022
http://dx.doi.org/10.1016/j.foodcont.2012.04.036


83. Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: oppor-
tunities and challenges for improving plant-microbe interactions. J Exp Bot 63:3429–3444.
doi:10.1093/jxb/err430

84. Ruan Y, Kotraiah V, Straney DC (1995) Flavonoids stimulate spore germination in Fusarium
solani pathogenic on legumes in a manner sensitive to inhibitors of cAMP-dependent protein
kinase. MPMI 8:929–938

85. Khan R, Tan R, Mariscal AG, Straney D (2003) A binuclear zinc transcription factor binds the
host isoflavonoid-responsive element in a fungal cytochrome p450 gene responsible for
detoxification. Mol Microbiol 49:117–130

86. Turrà D, Di Pietro A (2015) Chemotropic sensing in fungus-plant interactions. Curr Opin Plant
Biol 26:135–140. doi:10.1016/j.pbi.2015.07.004

87. Turrà D, El Ghalid M, Rossi F, Di Pietro A (2015) Fungal pathogen uses sex pheromone
receptor for chemotropic sensing of host plant signals. Nature 527:521–524. doi:10.1038/
nature15516

88. Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni X, Rocca JR, Alborn HT, Teal PEA,
Schmelz EA (2011) Novel acidic sesquiterpenoids constitute a dominant class of pathogen-
induced phytoalexins in maize. Plant Physiol 156:2082–2097. doi:10.1104/pp.111.179457

89. Du Fall LA, Solomon PS (2011) Role of cereal secondary metabolites involved in mediating
the outcome of plant-pathogen interactions. Metabolites 1:64–78. doi:10.3390/
metabo1010064

90. Grayer RJ, Kokubun T (2001) Plant–fungal interactions: the search for phytoalexins and other
antifungal compounds from higher plants. Phytochemistry 56:253–263. doi:10.1016/S0031-
9422(00)00450-7

91. Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant
Sci 17:73–90. doi:10.1016/j.tplants.2011.11.002

92. Tsuji J, Jackson EP, Gage DA, Hammerschmidt R, Somerville SC (1992) Phytoalexin accu-
mulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae
pv syringae. Plant Physiol 98:1304–1309

93. Schuhegger R, Rauhut T, Glawischnig E (2007) Regulatory variability of camalexin biosyn-
thesis. J Plant Physiol 164:636–644. doi:10.1016/j.jplph.2006.04.012

94. Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence Arabidopsis/
Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44:25–36.
doi:10.1111/j.1365-313X.2005.02508.x

95. Thomma BPHJ, Nelissen I, Eggermont K, Broekaert WF (1999) Deficiency in phytoalexin
production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria
brassicicola. Plant J 19:163–171. doi:10.1046/j.1365-313X.1999.00513.x

96. Pedras MSC, Minic Z, Abdoli A (2014) The phytoalexin camalexin induces fundamental
changes in the proteome of Alternaria brassicicola different from those caused by brassinin.
Fungal Biol 118:83–93. doi:10.1016/j.funbio.2013.11.005

97. Velluti A, Marı́n S, Gonzalez P, Ramos AJ, Sanchis V (2004) Initial screening for inhibitory
activity of essential oils on growth of Fusarium verticillioides, F. proliferatum and
F. graminearum on maize-based agar media. Food Microbiol 21:649–656. doi:10.1016/j.
fm.2004.03.009

98. Dambolena JS, Zygadlo JA, Rubinstein HR (2011) Antifumonisin activity of natural phenolic
compounds. A structure-property-activity relationship study. Int J Food Microbiol
145:140–146. doi:10.1016/j.ijfoodmicro.2010.12.001

99. Boddu J, Cho S, Kruger WM, Muehlbauer GJ (2006) Transcriptome analysis of the barley-
Fusarium graminearum interaction. Mol Plant Microbe Interact 19:407–417. doi:10.1094/
MPMI-19-0407

100. Beekrum S, Govinden R, Padayachee T, Odhav B (2003) Naturally occurring phenols: a
detoxification strategy for fumonisin B1. Food Addit Contam 20:490–493. doi:10.1080/
0265203031000098678

4 Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic. . . 177

http://dx.doi.org/10.1093/jxb/err430
http://dx.doi.org/10.1016/j.pbi.2015.07.004
http://dx.doi.org/10.1038/nature15516
http://dx.doi.org/10.1038/nature15516
http://dx.doi.org/10.1104/pp.111.179457
http://dx.doi.org/10.3390/metabo1010064
http://dx.doi.org/10.3390/metabo1010064
http://dx.doi.org/10.1016/S0031-9422(00)00450-7
http://dx.doi.org/10.1016/S0031-9422(00)00450-7
http://dx.doi.org/10.1016/j.tplants.2011.11.002
http://dx.doi.org/10.1016/j.jplph.2006.04.012
http://dx.doi.org/10.1111/j.1365-313X.2005.02508.x
http://dx.doi.org/10.1046/j.1365-313X.1999.00513.x
http://dx.doi.org/10.1016/j.funbio.2013.11.005
http://dx.doi.org/10.1016/j.fm.2004.03.009
http://dx.doi.org/10.1016/j.fm.2004.03.009
http://dx.doi.org/10.1016/j.ijfoodmicro.2010.12.001
http://dx.doi.org/10.1094/MPMI-19-0407
http://dx.doi.org/10.1094/MPMI-19-0407
http://dx.doi.org/10.1080/0265203031000098678
http://dx.doi.org/10.1080/0265203031000098678


101. Stępień L, Waśkiewicz A, Wilman K (2015) Host extract modulates metabolism and
fumonisin biosynthesis by the plant-pathogenic fungus Fusarium proliferatum. Int J Food
Microbiol 193:74–81. doi:10.1016/j.ijfoodmicro.2014.10.020

102. Bagheri-Gavkosh S, Bigdeli M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2009) Inhib-
itory effects of Ephedra major host on Aspergillus parasiticus growth and aflatoxin produc-
tion. Mycopathologia 168:249–255. doi:10.1007/s11046-009-9220-x

103. dos Santos MO, Furlong EB (2008) Screening of antifungal and antimycotoxigenic activity of
plant phenolic extracts. World Mycotoxin J 1:139–146

104. Jermnak U, Yoshinari T, Sugiyama Y, Tsuyuki R, Nagasawa H, Sakuda S (2012) Isolation of
methyl syringate as a specific aflatoxin production inhibitor from the essential oil of Betula
alba and aflatoxin production inhibitory activities of its related compounds. Int J Food
Microbiol 153:339–344. doi:10.1016/j.ijfoodmicro.2011.11.023

105. Bednarek P, Kwon C, Schulze-Lefert P (2010) Not a peripheral issue: secretion in plant-
microbe interactions. Curr Opin Plant Biol 13:378–387. doi:10.1016/j.pbi.2010.05.002

106. Kolattukudy PE, Rogers LM, Li D, Hwang CS, Flaishman MA (1995) Surface signaling in
pathogenesis. Proc Natl Acad Sci U S A 92:4080–4087

107. Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS
(2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19. doi:10.1016/j.
fbr.2009.07.001

108. Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci
19:90–98. doi:10.1016/j.tplants.2013.11.006

109. Dakora F, Phillips D (2002) Root exudates as mediators of mineral acquisition in low-nutrient
environments. Plant Soil 245:35–47

110. Tanimoto E (2005) Regulation of root growth by plant hormones – roles for auxin and
gibberellins. Crit Rev Plant Sci 24:249–265. doi:10.1080/07352680500196108

111. Crowley DE, Kraemer SM (2007) Function of siderophores in the plant rhizosphere. In:
Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere, biochemistry and organic substances
at the soil–plant interface, 2nd edn. CRC Press, Boca Raton, pp 173–200

112. Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and
parasitic weeds in plant roots. Ann Bot 97:925–931. doi:10.1093/aob/mcl063

113. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in
mycorrhizal symbiosis. Nat Commun 1:48. doi:10.1038/ncomms1046

114. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in
arbuscular mycorrhizal fungi. Nature 435:824–827. doi:10.1038/nature03608

115. Koltai H (2014) Implications of non-specific strigolactone signaling in the rhizosphere. Plant
Sci 225:9–14. doi:10.1016/j.plantsci.2014.04.019

116. Wehner J, Antunes PM, Powell JR, Mazukatow J, Rillig MC (2010) Plant pathogen protection
by arbuscular mycorrhizas: a role for fungal diversity? Pedobiologia (Jena) 53:197–201.
doi:10.1016/j.pedobi.2009.10.002

117. Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-
borne plant pathogens. An overview of the mechanisms involved. Mycorrhiza 6:457–464

118. Nakagawa T, Imaizumi-Anraku H (2015) Rice arbuscular mycorrhiza as a tool to study the
molecular mechanisms of fungal symbiosis and a potential target to increase productivity. Rice
(N Y) 8:32. doi:10.1186/s12284-015-0067-0

119. Colla G, Rouphael Y, Di Mattia E, El-Nakhel C, Cardarelli M (2015) Co-inoculation of
Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth,
yield and nutrient uptake of vegetable crops. J Sci Food Agric 95:1706–1715. doi:10.1002/
jsfa.6875

120. Li C, Bai Y, Jacobsen E, Visser R, Lindhout P, Bonnema G (2006) Tomato defense to the
powdery mildew fungus: differences in expression of genes in susceptible, monogenic- and
polygenic resistance responses are mainly in timing. Plant Mol Biol 62:127–140. doi:10.1007/
s11103-006-9008-z

178 T. Pusztahelyi et al.

http://dx.doi.org/10.1016/j.ijfoodmicro.2014.10.020
http://dx.doi.org/10.1007/s11046-009-9220-x
http://dx.doi.org/10.1016/j.ijfoodmicro.2011.11.023
http://dx.doi.org/10.1016/j.pbi.2010.05.002
http://dx.doi.org/10.1016/j.fbr.2009.07.001
http://dx.doi.org/10.1016/j.fbr.2009.07.001
http://dx.doi.org/10.1016/j.tplants.2013.11.006
http://dx.doi.org/10.1080/07352680500196108
http://dx.doi.org/10.1093/aob/mcl063
http://dx.doi.org/10.1038/ncomms1046
http://dx.doi.org/10.1038/nature03608
http://dx.doi.org/10.1016/j.plantsci.2014.04.019
http://dx.doi.org/10.1016/j.pedobi.2009.10.002
http://dx.doi.org/10.1186/s12284-015-0067-0
http://dx.doi.org/10.1002/jsfa.6875
http://dx.doi.org/10.1002/jsfa.6875
http://dx.doi.org/10.1007/s11103-006-9008-z
http://dx.doi.org/10.1007/s11103-006-9008-z


121. Thomma BPHJ, Van Esse HP, Crous PW, de Wit PJGM (2005) Cladosporium fulvum (syn.
Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant
pathogenic Mycosphaerellaceae. Mol Plant Pathol 6:379–393. doi:10.1111/j.1364-
3703.2005.00292.x

122. Palmer C-L, Skinner W (2002)Mycosphaerella graminicola: latent infection, crop devastation
and genomics. Mol Plant Pathol 3:63–70. doi:10.1046/j.1464-6722.2002.00100.x

123. Deller S, Hammond-Kosack KE, Rudd JJ (2011) The complex interactions between host
immunity and non-biotrophic fungal pathogens of wheat leaves. J Plant Physiol 168:63–71.
doi:10.1016/j.jplph.2010.05.024

124. Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea.
Annu Rev Microbiol 57:177–202. doi:10.1146/annurev.micro.57.030502.090957

125. Panstruga R (2003) Establishing compatibility between plants and obligate biotrophic patho-
gens. Curr Opin Plant Biol 6:320–326

126. Biemelt S, Sonnewald U (2006) Plant-microbe interactions to probe regulation of plant carbon
metabolism. J Plant Physiol 163:307–318. doi:10.1016/j.jplph.2005.10.011

127. Duplessis S, Cuomo CA, Lin Y-C, Aerts A, Tisserant E, Veneault-Fourrey C, Joly DL,
Hacquard S, Amselem J, Cantarel BL, Chiu R, Coutinho PM, Feau N, Field M, Frey P,
Gelhaye E, Goldberg J, Grabherr MG, Kodira CD, Kohler A, K€ues U, Lindquist EA, Lucas
SM,Mago R, Mauceli E, Morin E, Murat C, Pangilinan JL, Park R, Pearson M, Quesneville H,
Rouhier N, Sakthikumar S, Salamov AA, Schmutz J, Selles B, Shapiro H, Tanguay P, Tuskan
GA, Henrissat B, Van de Peer Y, Rouzé P, Ellis JG, Dodds PN, Schein JE, Zhong S, Hamelin
RC, Grigoriev IV, Szabo LJ, Martin F (2011) Obligate biotrophy features unraveled by the
genomic analysis of rust fungi. Proc Natl Acad Sci U S A 108:9166–9171. doi:10.1073/
pnas.1019315108

128. Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, St€uber K, Ver Loren van
Themaat E, Brown JKM, Butcher SA, Gurr SJ, Lebrun M-H, Ridout CJ, Schulze-Lefert P,
Talbot NJ, Ahmadinejad N, Ametz C, Barton GR, Benjdia M, Bidzinski P, Bindschedler LV,
Both M, Brewer MT, Cadle-Davidson L, Cadle-Davidson MM, Collemare J, Cramer R,
Frenkel O, Godfrey D, Harriman J, Hoede C, King BC, Klages S, Kleemann J, Knoll D,
Koti PS, Kreplak J, López-Ruiz FJ, Lu X, Maekawa T, Mahanil S, Micali C, Milgroom MG,
Montana G, Noir S, O’Connell RJ, Oberhaensli S, Parlange F, Pedersen C, Quesneville H,
Reinhardt R, Rott M, Sacristán S, Schmidt SM, Schön M, Skamnioti P, Sommer H,
Stephens A, Takahara H, Thordal-Christensen H, Vigouroux M, Wessling R, Wicker T,
Panstruga R (2010) Genome expansion and gene loss in powdery mildew fungi reveal
tradeoffs in extreme parasitism. Science 330:1543–1546. doi:10.1126/science.1194573

129. de Wit PJGM, van der Burgt A, Ökmen B, Stergiopoulos I, Abd-Elsalam KA, Aerts AL,
Bahkali AH, Beenen HG, Chettri P, Cox MP, Datema E, de Vries RP, Dhillon B, Ganley AR,
Griffiths SA, Guo Y, Hamelin RC, Henrissat B, Kabir MS, Jashni MK, Kema G, Klaubauf S,
Lapidus A, Levasseur A, Lindquist E, Mehrabi R, Ohm RA, Owen TJ, Salamov A,
Schwelm A, Schijlen E, Sun H, van den Burg HA, van Ham RCHJ, Zhang S, Goodwin SB,
Grigoriev IV, Collemare J, Bradshaw RE (2012) The genomes of the fungal plant pathogens
Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and
lifestyles but also signatures of common ancestry. PLoS Genet 8, e1003088. doi:10.1371/
journal.pgen.1003088

130. Collemare J, Griffiths S, Iida Y, Karimi Jashni M, Battaglia E, Cox RJ, de Wit PJGM (2014)
Secondary metabolism and biotrophic lifestyle in the tomato pathogen Cladosporium fulvum.
PLoS One 9, e85877. doi:10.1371/journal.pone.0085877

131. Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference
indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia
94:683–693

132. Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease.
Trends Biotechnol 27:141–150. doi:10.1016/j.tibtech.2008.12.002

4 Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic. . . 179

http://dx.doi.org/10.1111/j.1364-3703.2005.00292.x
http://dx.doi.org/10.1111/j.1364-3703.2005.00292.x
http://dx.doi.org/10.1046/j.1464-6722.2002.00100.x
http://dx.doi.org/10.1016/j.jplph.2010.05.024
http://dx.doi.org/10.1146/annurev.micro.57.030502.090957
http://dx.doi.org/10.1016/j.jplph.2005.10.011
http://dx.doi.org/10.1073/pnas.1019315108
http://dx.doi.org/10.1073/pnas.1019315108
http://dx.doi.org/10.1126/science.1194573
http://dx.doi.org/10.1371/journal.pgen.1003088
http://dx.doi.org/10.1371/journal.pgen.1003088
http://dx.doi.org/10.1371/journal.pone.0085877
http://dx.doi.org/10.1016/j.tibtech.2008.12.002


133. Kawahara Y, Oono Y, Kanamori H, Matsumoto T, Itoh T, Minami E (2012) Simultaneous
RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. PLoS One
7, e49423. doi:10.1371/journal.pone.0049423

134. Tudzynski P, Hölter K, Correia T, Arntz C, Grammel N, Keller U (1999) Evidence for an ergot
alkaloid gene cluster in Claviceps purpurea. Mol Gen Genet MGG 261:133–141. doi:10.1007/
s004380050950

135. Haarmann T, Machado C, L€ubbe Y, Correia T, Schardl CL, Panaccione DG, Tudzynski P
(2005) The ergot alkaloid gene cluster in Claviceps purpurea: extension of the cluster
sequence and intra species evolution. Phytochemistry 66:1312–1320. doi:10.1016/j.
phytochem.2005.04.011

136. Ebata Y, Yamamoto H, Uchiyama T (1998) Chemical composition of the glue from appres-
soria of Magnaporthe grisea. Biosci Biotechnol Biochem 62:672–674

137. Todd JS, Zimmerman RC, Crews P, Alberte RS (1993) The antifouling activity of natural and
synthetic phenol acid sulphate esters. Phytochemistry 34:401–404. doi:10.1016/0031-9422
(93)80017-M

138. Stanley MS, Callow ME, Perry R, Alberte RS, Smith R, Callow JA (2002) Inhibition of fungal
spore adhesion by zosteric acid as the basis for a novel, nontoxic crop protection technology.
Phytopathology 92:378–383. doi:10.1094/PHYTO.2002.92.4.378

139. Gilbert RD, Johnson AM, Dean RA (1996) Chemical signals responsible for appressorium
formation in the rice blast fungusMagnaporthe grisea. Physiol Mol Plant Pathol 48:335–346.
doi:10.1006/pmpp.1996.0027

140. Liu W, Zhou X, Li G, Li L, Kong L, Wang C, Zhang H, Xu J-R (2011) Multiple plant surface
signals are sensed by different mechanisms in the rice blast fungus for appressorium formation.
PLoS Pathog 7, e1001261. doi:10.1371/journal.ppat.1001261

141. Flaishman MA, Kolattukudy PE (1994) Timing of fungal invasion using host’s ripening
hormone as a signal. Proc Natl Acad Sci U S A 91:6579–6583

142. Podila GK, Rogers LM, Kolattukudy PE (1993) Chemical signals from avocado surface wax
trigger germination and appressorium formation in Colletotrichum gloeosporioides. Plant
Physiol 103:267–272

143. Hwang CS, Kolattukudy PE (1995) Isolation and characterization of genes expressed uniquely
during appressorium formation by Colletotrichum gloeosporioides conidia induced by the host
surface wax. Mol Gen Genet 247:282–294

144. Hegde Y, Kolattukudy P (1997) Cuticular waxes relieve self-inhibition of germination and
appressorium formation by the conidia of Magnaporthe grisea. Physiol Mol Plant Pathol
51:75–84. doi:10.1006/pmpp.1997.0105

145. Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a
fungus employing enormous turgor pressures. Proc Natl Acad Sci 88:11281–11284.
doi:10.1073/pnas.88.24.11281

146. Howard RJ, Valent B (1996) Breaking and entering: host penetration by the fungal rice blast
pathogen Magnaporthe grisea. Annu Rev Microbiol 50:491–512. doi:10.1146/annurev.
micro.50.1.491

147. Thines E, Daußmann T, Semar M, Sterner O, Anke A (1995) Fungal melanin biosynthesis
inhibitors: introduction of a test system based on the production of dihydroxynaphthalene
(DHN) melanin in agar cultures. Z Naturforsch 50:813–819

148. Wheeler MH, Bell AA (1988) Melanins and their importance in pathogenic fungi. In: M.R.
McGinnis (ed) Current topics in medical mycology. Springer-Verlag New York, pp
338–387

149. Thines E, Anke H, Sterner O (1998) Scytalols A, B, C, and D and other modulators of melanin
biosynthesis from Scytalidium sp. 36–93. J Antibiot (Tokyo, Japan Antibiotics Research
Assn.) 51:387–393

150. Laskay G, Farkas T, Lehoczki E (1985) Cerulenin-induced changes in lipid and fatty acid
content of chloroplasts in detached greening barley leaves. J Plant Physiol 118:267–275.
doi:10.1016/S0176-1617(85)80228-5

180 T. Pusztahelyi et al.

http://dx.doi.org/10.1371/journal.pone.0049423
http://dx.doi.org/10.1007/s004380050950
http://dx.doi.org/10.1007/s004380050950
http://dx.doi.org/10.1016/j.phytochem.2005.04.011
http://dx.doi.org/10.1016/j.phytochem.2005.04.011
http://dx.doi.org/10.1016/0031-9422(93)80017-M
http://dx.doi.org/10.1016/0031-9422(93)80017-M
http://dx.doi.org/10.1094/PHYTO.2002.92.4.378
http://dx.doi.org/10.1006/pmpp.1996.0027
http://dx.doi.org/10.1371/journal.ppat.1001261
http://dx.doi.org/10.1006/pmpp.1997.0105
http://dx.doi.org/10.1073/pnas.88.24.11281
http://dx.doi.org/10.1146/annurev.micro.50.1.491
http://dx.doi.org/10.1146/annurev.micro.50.1.491
http://dx.doi.org/10.1016/S0176-1617(85)80228-5


151. Bills GF, Platas G, GamsW (2004) Conspecificity of the cerulenin and helvolic acid producing
“Cephalosporium caerulens”, and the hypocrealean fungus Sarocladium oryzae. Mycol Res
108:1291–1300. doi:10.1017/S0953756204001297

152. Nesher I, Barhoom S, Sharon A (2008) Cell cycle and cell death are not necessary for
appressorium formation and plant infection in the fungal plant pathogen Colletotrichum
gloeosporioides. BMC Biol 6:9. doi:10.1186/1741-7007-6-9

153. Meyer W, Lax A, Templeton G, Brannon M (1983) The structure of gloeosporone, a novel
germination self-inhibitor from conidia of Colletotrichum gloeosporioides. Tetrahedron Lett
24:5059–5062

154. Tsurushima T, Ueno T, Fukami H, Irie H, Inoue M (1995) Germination self-inhibitors from
Colletotrichum gloeosporioides f. sp. jussiaea. MPMI 8:652–657

155. Leite B, Nicholson RL (1992) Mycosporine-alanine: a self-inhibitor of germination from the
conidial mucilage of Colletotrichum graminicola. Exp Mycol 16:76–86. doi:10.1016/0147-
5975(92)90043-Q

156. Sinha RP, Singh SP, Häder D-P (2007) Database on mycosporines and mycosporine-like
amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. J
Photochem Photobiol B 89:29–35. doi:10.1016/j.jphotobiol.2007.07.006

157. Kono Y, Sekido S, Yamaguchi I, Kondo H, Suzuki Y, Neto GC, Sakurai A, Yaegashi H (1991)
Structures of two novel pyriculol-related compounds and identification of naturally produced
epipyriculol from Pyricularia oryzae. Agric Biol Chem 55:2785–2791

158. Thines E, Anke H, Weber RWS (2004) Fungal secondary metabolites as inhibitors of
infection-related morphogenesis in phytopathogenic fungi. Mycol Res 108:14–25.
doi:10.1017/S0953756203008943

159. Yun C-S, Motoyama T, Osada H (2015) Biosynthesis of the mycotoxin tenuazonic acid by a
fungal NRPS-PKS hybrid enzyme. Nat Commun 6:8758. doi:10.1038/ncomms9758

160. Horbach R, Navarro-Quesada AR, Knogge W, Deising HB (2011) When and how to kill a
plant cell: infection strategies of plant pathogenic fungi. J Plant Physiol 168:51–62.
doi:10.1016/j.jplph.2010.06.014

161. Condon BJ, Leng Y, Wu D, Bushley KE, Ohm RA, Otillar R, Martin J, Schackwitz W,
Grimwood J, MohdZainudin N, Xue C, Wang R, Manning VA, Dhillon B, Tu ZJ, Steffenson
BJ, Salamov A, Sun H, Lowry S, LaButti K, Han J, Copeland A, Lindquist E, Barry K,
Schmutz J, Baker SE, Ciuffetti LM, Grigoriev IV, Zhong S, Turgeon BG (2013) Comparative
genome structure, secondary metabolite, and effector coding capacity across Cochliobolus
pathogens. PLoS Genet 9, e1003233. doi:10.1371/journal.pgen.1003233

162. Ding L, Xu H, Yi H, Yang L, Kong Z, Zhang L, Xue S, Jia H, Ma Z (2011) Resistance to hemi-
biotrophic F. graminearum infection is associated with coordinated and ordered expression of
diverse defense signaling pathways. PLoS One 6:e19008. doi: 10.1371/journal.pone.0019008

163. Gottwald S, Samans B, L€uck S, Friedt W (2012) Jasmonate and ethylene dependent defence
gene expression and suppression of fungal virulence factors: two essential mechanisms of
Fusarium head blight resistance in wheat? BMC Genomics 13:369. doi:10.1186/1471-2164-
13-369

164. Lanubile A, Ferrarini A, Maschietto V, Delledonne M, Marocco A, Bellin D (2014) Functional
genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides
infection in maize genotypes with contrasting ear rot resistance. BMC Genomics 15:710.
doi:10.1186/1471-2164-15-710

165. Abendroth LJ, Elmore RW, Boyer MJ, Marlay SK (2011) Corn growth and development. PMR
1009. Iowa State University Extension, Ames, Iowa.

166. Bluhm BH, Woloshuk CP (2005) Amylopectin induces fumonisin B1 production by Fusarium
verticillioides during colonization of maize kernels. Mol Plant Microbe Interact
18:1333–1339. doi:10.1094/MPMI-18-1333

167. Abbas HK, Tanaka T, Duke SO, Porter JK, Wray EM, Hodges L, Sessions AE, Wang E,
Merrill AH, Riley RT (1994) Fumonisin- and AAL-toxin-induced disruption of sphingolipid
metabolism with accumulation of free sphingoid bases. Plant Physiol 106:1085–1093

4 Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic. . . 181

http://dx.doi.org/10.1017/S0953756204001297
http://dx.doi.org/10.1186/1741-7007-6-9
http://dx.doi.org/10.1016/0147-5975(92)90043-Q
http://dx.doi.org/10.1016/0147-5975(92)90043-Q
http://dx.doi.org/10.1016/j.jphotobiol.2007.07.006
http://dx.doi.org/10.1017/S0953756203008943
http://dx.doi.org/10.1038/ncomms9758
http://dx.doi.org/10.1016/j.jplph.2010.06.014
http://dx.doi.org/10.1371/journal.pgen.1003233
http://dx.doi.org/10.1371/journal.pone.0019008
http://dx.doi.org/10.1186/1471-2164-13-369
http://dx.doi.org/10.1186/1471-2164-13-369
http://dx.doi.org/10.1186/1471-2164-15-710
http://dx.doi.org/10.1094/MPMI-18-1333


168. Picot A, Barreau C, Pinson-Gadais L, Piraux F, Caron D, Lannou C, Richard-Forget F (2011)
The dent stage of maize kernels is the most conducive for fumonisin biosynthesis under field
conditions. Appl Environ Microbiol 77:8382–8390. doi:10.1128/AEM.05216-11

169. Dall’Asta C, Falavigna C, Galaverna G, Battilani P (2012) Role of maize hybrids and their
chemical composition in Fusarium infection and fumonisin production. J Agric Food Chem
60:3800–3808. doi:10.1021/jf300250z

170. Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Long L, Zhang X (2011) Lignin metabolism has a
central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by
RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot 62:5607–5621.
doi:10.1093/jxb/err245

171. Robb J, Lee B, Nazar RN (2007) Gene suppression in a tolerant tomato-vascular pathogen
interaction. Planta 226:299–309. doi:10.1007/s00425-007-0482-6

172. Tan G, Liu K, Kang J, Xu K, Zhang Y, Hu L, Zhang J, Li C (2015) Transcriptome analysis of
the compatible interaction of tomato with Verticillium dahliae using RNA-sequencing. Front
Plant Sci 6:428. doi:10.3389/fpls.2015.00428

173. De Cremer K, Mathys J, Vos C, Froenicke L, Michelmore RW, Cammue BPA, De Coninck B
(2013) RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal
necrotroph Botrytis cinerea. Plant Cell Environ 36:1992–2007. doi:10.1111/pce.12106

174. Teixeira PJPL, Thomazella DP de T, Reis O, do Prado PFV, do Rio MCS, Fiorin GL, José J,
Costa GGL, Negri VA, Mondego JMC, Mieczkowski P, Pereira GAG (2014) High-resolution
transcript profiling of the atypical biotrophic interaction between Theobroma cacao and the
fungal pathogen Moniliophthora perniciosa. Plant Cell 26:4245–4269. doi: 10.1105/
tpc.114.130807

175. O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, Damm U, Buiate
EA, Epstein L, Alkan N, Altm€uller J, Alvarado-Balderrama L, Bauser CA, Becker C, Birren
BW, Chen Z, Choi J, Crouch JA, Duvick JP, Farman MA, Gan P, Heiman D, Henrissat B,
Howard RJ, Kabbage M, Koch C, Kracher B, Kubo Y, Law AD, Lebrun M-H, Lee Y-H,
Miyara I, Moore N, Neumann U, Nordström K, Panaccione DG, Panstruga R, Place M,
Proctor RH, Prusky D, Rech G, Reinhardt R, Rollins JA, Rounsley S, Schardl CL, Schwartz
DC, Shenoy N, Shirasu K, Sikhakolli UR, St€uber K, Sukno SA, Sweigard JA, Takano Y,
Takahara H, Trail F, van der Does HC, Voll LM, Will I, Young S, Zeng Q, Zhang J, Zhou S,
Dickman MB, Schulze-Lefert P, Ver Loren van Themaat E, Ma L-J, Vaillancourt LJ (2012)
Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and
transcriptome analyses. Nat Genet 44:1060–1065. doi:10.1038/ng.2372

176. St Leger RJ, Screen SE, Shams-Pirzadeh B (2000) Lack of host specialization in Aspergillus
flavus. Appl Environ Microbiol 66:320–324. doi:10.1128/AEM.66.1.320-324.2000

177. Marsh SF, Payne GA (1984) Preharvest infection of corn silks and kernels by Aspergillus
flavus. Phytopathology 74:1284–1289

178. Dolezal AL, Shu X, OBrian GR, Nielsen DM, Woloshuk CP, Boston RS, Payne GA (2014)
Aspergillus flavus infection induces transcriptional and physical changes in developing maize
kernels. Front Microbiol 5:384. doi:10.3389/fmicb.2014.00384

179. Maggio-Hall LA,Wilson RA, Keller NP (2005) Fundamental contribution of beta-oxidation to
polyketide mycotoxin production in planta. Mol Plant Microbe Interact 18:783–793.
doi:10.1094/MPMI-18-0783

180. Marín S, Sanchis V, Rull F, Ramos AJ, Magan N (1998) Colonization of maize grain by
Fusarium moniliforme and Fusarium proliferatum in the presence of competing fungi and
their impact on fumonisin production. J Food Prot 61:1489–1496

181. Smart MG, Wicklow DT, Caldwell RW (1990) Pathogenesis in Aspergillus ear rot of maize –
light microscopy of fungal spread from wounds. Phytopathology 80:1287–1294. doi:10.1094/
Phyto-80-1287

182. Mideros SX, Windham GL, Williams WP, Nelson RJ (2009) Aspergillus flavus biomass in
maize estimated by quantitative real-time polymerase chain reaction is strongly correlated with
aflatoxin concentration. Plant Dis 93:1163–1170. doi:10.1094/PDIS-93-11-1163

182 T. Pusztahelyi et al.

http://dx.doi.org/10.1128/AEM.05216-11
http://dx.doi.org/10.1021/jf300250z
http://dx.doi.org/10.1093/jxb/err245
http://dx.doi.org/10.1007/s00425-007-0482-6
http://dx.doi.org/10.3389/fpls.2015.00428
http://dx.doi.org/10.1111/pce.12106
http://dx.doi.org/10.1105/tpc.114.130807
http://dx.doi.org/10.1105/tpc.114.130807
http://dx.doi.org/10.1038/ng.2372
http://dx.doi.org/10.1128/AEM.66.1.320-324.2000
http://dx.doi.org/10.3389/fmicb.2014.00384
http://dx.doi.org/10.1094/MPMI-18-0783
http://dx.doi.org/10.1094/Phyto-80-1287
http://dx.doi.org/10.1094/Phyto-80-1287
http://dx.doi.org/10.1094/PDIS-93-11-1163


183. Magbanua ZV, DeMoraes CM, Brooks TD,Williams WP, Luthe DS (2007) Is catalase activity
one of the factors associated with maize resistance to Aspergillus flavus? Mol Plant Microbe
Interact 20:697–706. doi:10.1094/MPMI-20-6-0697

184. Fountain JC, Scully BT, Ni X, Kemerait RC, Lee RD, Chen Z-Y, Guo B (2014) Environmental
influences on maize-Aspergillus flavus interactions and aflatoxin production. Front Microbiol
5:40. doi:10.3389/fmicb.2014.00040

185. Collemare J, Billard A, Böhnert HU, Lebrun M-H (2008) Biosynthesis of secondary metab-
olites in the rice blast fungus Magnaporthe grisea: the role of hybrid PKS-NRPS in pathoge-
nicity. Mycol Res 112:207–215. doi:10.1016/j.mycres.2007.08.003

186. Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG (2006) NPS6,
encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabo-
lism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell
18:2836–2853. doi:10.1105/tpc.106.045633

187. Hansen FT, Gardiner DM, Lysøe E, Fuertes PR, Tudzynski B, Wiemann P, Sondergaard TE,
Giese H, Brodersen DE, Sørensen JL (2015) An update to polyketide synthase and
non-ribosomal synthetase genes and nomenclature in Fusarium. Fungal Genet Biol
75:20–29. doi:10.1016/j.fgb.2014.12.004

188. Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG (2003) Phylogenomic analysis of
type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci
USA 100:15670–15675. doi:10.1073/pnas.2532165100

189. Gaffoor I, Trail F (2006) Characterization of two polyketide synthase genes involved in
zearalenone biosynthesis in Gibberella zeae. Appl Environ Microbiol 72:1793–1799.
doi:10.1128/AEM.72.3.1793-1799.2006

190. Ma L-J, Geiser DM, Proctor RH, Rooney AP, O’Donnell K, Trail F, Gardiner DM, Manners
JM, Kazan K (2013) Fusarium pathogenomics. Annu Rev Microbiol 67:399–416.
doi:10.1146/annurev-micro-092412-155650

191. Sieber CMK, Lee W, Wong P, M€unsterkötter M, Mewes H-W, Schmeitzl C, Varga E,
Berthiller F, Adam G, G€uldener U (2014) The Fusarium graminearum genome reveals more
secondary metabolite gene clusters and hints of horizontal gene transfer. PLoS One
9, e110311. doi:10.1371/journal.pone.0110311

192. Tokai T, Koshino H, Takahashi-Ando N, Sato M, Fujimura M, Kimura M (2007) Fusarium
Tri4 encodes a key multifunctional cytochrome P450 monooxygenase for four consecutive
oxygenation steps in trichothecene biosynthesis. Biochem Biophys Res Commun
353:412–417. doi:10.1016/j.bbrc.2006.12.033

193. Islam MS, Haque MS, Islam MM, Emdad EM, Halim A, Hossen QMM, Hossain MZ,
Ahmed B, Rahim S, Rahman MS, Alam MM, Hou S, Wan X, Saito JA, Alam M (2012)
Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina
phaseolina. BMC Genomics 13:493. doi:10.1186/1471-2164-13-493

194. Panaccione DG (1993) The fungal genus Cochliobolus and toxin-mediated plant disease.
Trends Microbiol 1:14–20

195. Walton JD (2006) HC-toxin. Phytochemistry 67:1406–1413. doi:10.1016/j.
phytochem.2006.05.033

196. Yaegashi J, Oakley BR, Wang CCC (2014) Recent advances in genome mining of secondary
metabolite biosynthetic gene clusters and the development of heterologous expression systems
in Aspergillus nidulans. J Ind Microbiol Biotechnol 41:433–442. doi:10.1007/s10295-013-
1386-z

197. Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, Coutinho PM, de
Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, HahnM, Kohn L, Lapalu N, Plummer KM,
Pradier J-M, Quévillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P,
Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B,
Chen Z, Choquer M, Collémare J, Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C,
Giraud T, Gonzalez C, Grossetete S, G€uldener U, Henrissat B, Howlett BJ, Kodira C,
Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuvéglise C, Oeser B,

4 Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic. . . 183

http://dx.doi.org/10.1094/MPMI-20-6-0697
http://dx.doi.org/10.3389/fmicb.2014.00040
http://dx.doi.org/10.1016/j.mycres.2007.08.003
http://dx.doi.org/10.1105/tpc.106.045633
http://dx.doi.org/10.1016/j.fgb.2014.12.004
http://dx.doi.org/10.1073/pnas.2532165100
http://dx.doi.org/10.1128/AEM.72.3.1793-1799.2006
http://dx.doi.org/10.1146/annurev-micro-092412-155650
http://dx.doi.org/10.1371/journal.pone.0110311
http://dx.doi.org/10.1016/j.bbrc.2006.12.033
http://dx.doi.org/10.1186/1471-2164-13-493
http://dx.doi.org/10.1016/j.phytochem.2006.05.033
http://dx.doi.org/10.1016/j.phytochem.2006.05.033
http://dx.doi.org/10.1007/s10295-013-1386-z
http://dx.doi.org/10.1007/s10295-013-1386-z


Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Ségurens B,
Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O,
Zeng Q, Rollins JA, Lebrun M-H, Dickman M (2011) Genomic analysis of the necrotrophic
fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7, e1002230.
doi:10.1371/journal.pgen.1002230

198. Saha D, Fetzner R, Burkhardt B, Podlech J, Metzler M, Dang H, Lawrence C, Fischer R (2012)
Identification of a polyketide synthase required for alternariol (AOH) and alternariol-9-methyl
ether (AME) formation in Alternaria alternata. PLoS One 7, e40564. doi:10.1371/journal.
pone.0040564

199. Kimura N, Tsuge T (1993) Gene cluster involved in melanin biosynthesis of the filamentous
fungus Alternaria alternata. J Bacteriol 175:4427–4435

200. Chen L-H, Lin C-H, Chung K-R (2013) A nonribosomal peptide synthetase mediates
siderophore production and virulence in the citrus fungal pathogen Alternaria alternata.
Mol Plant Pathol 14:497–505. doi:10.1111/mpp.12021

201. Manamgoda DS, Rossman AY, Castlebury LA, Crous PW, Madrid H, Chukeatirote E, Hyde
KD (2014) The genus Bipolaris. Stud Mycol 79:221–288. doi:10.1016/j.simyco.2014.10.002

202. Gao S, Li Y, Gao J, Suo Y, Fu K, Li Y, Chen J (2014) Genome sequence and virulence
variation-related transcriptome profiles of Curvularia lunata, an important maize pathogenic
fungus. BMC Genomics 15:627. doi:10.1186/1471-2164-15-627

203. Baker SE, Kroken S, Inderbitzin P, Asvarak T, Li B-Y, Shi L, Yoder OC, Turgeon BG (2006)
Two polyketide synthase-encoding genes are required for biosynthesis of the polyketide
virulence factor, T-toxin, by Cochliobolus heterostrophus. Mol Plant Microbe Interact
19:139–149. doi:10.1094/MPMI-19-0139

204. Inderbitzin P, Asvarak T, Turgeon BG (2010) Six new genes required for production of
T-toxin, a polyketide determinant of high virulence of Cochliobolus heterostrophus to
maize. Mol Plant Microbe Interact 23:458–472. doi:10.1094/MPMI-23-4-0458

205. Wight WD, Labuda R, Walton JD (2013) Conservation of the genes for HC-toxin biosynthesis
in Alternaria jesenskae. BMC Microbiol 13:165. doi:10.1186/1471-2180-13-165

206. Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND (2010)
SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol
47:736–741. doi:10.1016/j.fgb.2010.06.003

207. Bömke C, Rojas MC, Gong F, Hedden P, Tudzynski B (2008) Isolation and functional
characterization of the gibberellin biosynthetic gene cluster in Sphaceloma manihoticola.
Appl Environ Microbiol 74:5325–5339

208. Kawaide H (2006) Biochemical and molecular analyses of gibberellin biosynthesis in fungi.
Biosci Biotechnol Biochem 70:583–590. doi:10.1271/bbb.70.583

209. Karányi Z, Holb I, Hornok L, Pócsi I, Miskei M (2013) FSRD: fungal stress response database.
Database (Oxford) 2013:bat037. doi: 10.1093/database/bat037

210. Govrin EM, Levine A (2002) Infection of Arabidopsis with a necrotrophic pathogen, Botrytis
cinerea, elicits various defense responses but does not induce systemic acquired resistance
(SAR). Plant Mol Biol 48:267–276

211. Avalos J, Estrada AF (2010) Regulation by light in Fusarium. Fungal Genet Biol 47:930–938.
doi:10.1016/j.fgb.2010.05.001

212. Amare MG, Keller NP (2014) Molecular mechanisms of Aspergillus flavus secondary metab-
olism and development. Fungal Genet Biol 66:11–18. doi:10.1016/j.fgb.2014.02.008

213. Yang Q, Chen Y, Ma Z (2013) Involvement of BcVeA and BcVelB in regulating conidiation,
pigmentation and virulence in Botrytis cinerea. Fungal Genet Biol 50:63–71. doi:10.1016/j.
fgb.2012.10.003

214. Jiang J, Liu X, Yin Y, Ma Z (2011) Involvement of a velvet protein FgVeA in the regulation of
asexual development, lipid and secondary metabolisms and virulence in Fusarium
graminearum. PLoS One 6, e28291. doi:10.1371/journal.pone.0028291

184 T. Pusztahelyi et al.

http://dx.doi.org/10.1371/journal.pgen.1002230
http://dx.doi.org/10.1371/journal.pone.0040564
http://dx.doi.org/10.1371/journal.pone.0040564
http://dx.doi.org/10.1111/mpp.12021
http://dx.doi.org/10.1016/j.simyco.2014.10.002
http://dx.doi.org/10.1186/1471-2164-15-627
http://dx.doi.org/10.1094/MPMI-19-0139
http://dx.doi.org/10.1094/MPMI-23-4-0458
http://dx.doi.org/10.1186/1471-2180-13-165
http://dx.doi.org/10.1016/j.fgb.2010.06.003
http://dx.doi.org/10.1271/bbb.70.583
http://dx.doi.org/10.1093/database/bat037
http://dx.doi.org/10.1016/j.fgb.2010.05.001
http://dx.doi.org/10.1016/j.fgb.2014.02.008
http://dx.doi.org/10.1016/j.fgb.2012.10.003
http://dx.doi.org/10.1016/j.fgb.2012.10.003
http://dx.doi.org/10.1371/journal.pone.0028291


215. Merhej J, Urban M, Dufresne M, Hammond-Kosack KE, Richard-Forget F, Barreau C (2012)
The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene
biosynthesis and pathogenicity in Fusarium graminearum. Mol Plant Pathol 13:363–374.
doi:10.1111/j.1364-3703.2011.00755.x

216. Jiang J, Yun Y, Liu Y, Ma Z (2012) FgVELB is associated with vegetative differentiation,
secondary metabolism and virulence in Fusarium graminearum. Fungal Genet Biol
49:653–662. doi:10.1016/j.fgb.2012.06.005

217. Wiemann P, Brown DW, Kleigrewe K, Bok JW, Keller NP, Humpf H-U, Tudzynski B (2010)
FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect
differentiation, secondary metabolism and virulence. Mol Microbiol 77:972–994.
doi:10.1111/j.1365-2958.2010.07263

218. Butchko RAE, Brown DW, Busman M, Tudzynski B, Wiemann P (2012) Lae1 regulates
expression of multiple secondary metabolite gene clusters in Fusarium verticillioides. Fungal
Genet Biol 49:602–612. doi:10.1016/j.fgb.2012.06.003

219. Tudzynski B (2014) Nitrogen regulation of fungal secondary metabolism in fungi. Front
Microbiol 5:656. doi:10.3389/fmicb.2014.00656

220. Feng GH, Leonard TJ (1998) Culture conditions control expression of the genes for aflatoxin
and sterigmatocystin biosynthesis in Aspergillus parasiticus and A. nidulans. Appl Environ
Microbiol 64:2275–2277

221. Talbot NJ, McCafferty HRK, Ma M, Moore K, Hamer JE (1997) Nitrogen starvation of the
rice blast fungus Magnaporthe grisea may act as an environmental cue for disease symptom
expression. Physiol Mol Plant Pathol 50:179–195. doi:10.1006/pmpp.1997.0081

222. Kroll K, Pähtz V, Kniemeyer O (2014) Elucidating the fungal stress response by proteomics. J
Proteomics 97:151–163. doi:10.1016/j.jprot.2013.06.001

223. Desjardins AE, Hohn TM, McCormick SP (1993) Trichothecene biosynthesis in Fusarium
species: chemistry, genetics, and significance. Microbiol Rev 57:595–604

224. Audenaert K, Vanheule A, Höfte M, Haesaert G (2014) Deoxynivalenol: a major player in the
multifaceted response of Fusarium to its environment. Toxins (Basel) 6:1–19. doi:10.3390/
toxins6010001

225. Turgeon BG, Baker SE (2007) Genetic and genomic dissection of the Cochliobolus
heterostrophus Tox1 locus controlling biosynthesis of the polyketide virulence factor
T-toxin. Adv Genet 57:219–261. doi:10.1016/S0065-2660(06)57006-3

226. Markham JE, Hille J (2001) Host-selective toxins as agents of cell death in plant-fungus
interactions. Mol Plant Pathol 2:229–239. doi:10.1046/j.1464-6722.2001.00066.x

227. Kim H, Woloshuk CP (2008) Role of AREA, a regulator of nitrogen metabolism, during
colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides. Fungal
Genet Biol 45:947–953. doi:10.1016/j.fgb.2008.03.007

228. Wu J, Ge X (2004) Oxidative burst, jasmonic acid biosynthesis, and taxol production induced
by low-energy ultrasound in Taxus chinensis cell suspension cultures. Biotechnol Bioeng
85:714–721. doi:10.1002/bit.10911

229. Brodhagen M, Tsitsigiannis DI, Hornung E, Goebel C, Feussner I, Keller NP (2008) Recip-
rocal oxylipin-mediated cross-talk in the Aspergillus-seed pathosystem. Mol Microbiol
67:378–391. doi:10.1111/j.1365-2958.2007.06045.x

230. Brodhun F, Cristobal-Sarramian A, Zabel S, Newie J, Hamberg M, Feussner I (2013) An iron
13S-lipoxygenase with an α-linolenic acid specific hydroperoxidase activity from Fusarium
oxysporum. PLoS One 8, e64919. doi:10.1371/journal.pone.0064919

231. Maschietto V, Marocco A, Malachova A, Lanubile A (2015) Resistance to Fusarium
verticillioides and fumonisin accumulation in maize inbred lines involves an earlier and
enhanced expression of lipoxygenase (LOX) genes. J Plant Physiol 188:9–18. doi:10.1016/j.
jplph.2015.09.003

4 Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic. . . 185

http://dx.doi.org/10.1111/j.1364-3703.2011.00755.x
http://dx.doi.org/10.1016/j.fgb.2012.06.005
http://dx.doi.org/10.1111/j.1365-2958.2010.07263
http://dx.doi.org/10.1016/j.fgb.2012.06.003
http://dx.doi.org/10.3389/fmicb.2014.00656
http://dx.doi.org/10.1006/pmpp.1997.0081
http://dx.doi.org/10.1016/j.jprot.2013.06.001
http://dx.doi.org/10.3390/toxins6010001
http://dx.doi.org/10.3390/toxins6010001
http://dx.doi.org/10.1016/S0065-2660(06)57006-3
http://dx.doi.org/10.1046/j.1464-6722.2001.00066.x
http://dx.doi.org/10.1016/j.fgb.2008.03.007
http://dx.doi.org/10.1002/bit.10911
http://dx.doi.org/10.1111/j.1365-2958.2007.06045.x
http://dx.doi.org/10.1371/journal.pone.0064919
http://dx.doi.org/10.1016/j.jplph.2015.09.003
http://dx.doi.org/10.1016/j.jplph.2015.09.003


232. Horowitz Brown S, Zarnowski R, Sharpee WC, Keller NP (2008) Morphological transitions
governed by density dependence and lipoxygenase activity in Aspergillus flavus. Appl Environ
Microbiol 74:5674–5685. doi:10.1128/AEM.00565-08

233. Affeldt KJ, Brodhagen M, Keller NP (2012) Aspergillus oxylipin signaling and quorum
sensing pathways depend on G protein-coupled receptors. Toxins (Basel) 4:695–717.
doi:10.3390/toxins4090695

234. Calvo AM, Hinze LL, Gardner HW, Keller NP (1999) Sporogenic effect of polyunsaturated
fatty acids on development of Aspergillus spp. Appl Environ Microbiol 65:3668–3673

235. Scarpari M, Punelli M, Scala V, Zaccaria M, Nobili C, Ludovici M, Camera E, Fabbri AA,
Reverberi M, Fanelli C (2014) Lipids in Aspergillus flavus-maize interaction. Front Microbiol
5:74. doi:10.3389/fmicb.2014.00074

236. Huang J-Q, Jiang H-F, Zhou Y-Q, Lei Y, Wang S-Y, Liao B-S (2009) Ethylene inhibited
aflatoxin biosynthesis is due to oxidative stress alleviation and related to glutathione redox
state changes in Aspergillus flavus. Int J Food Microbiol 130:17–21. doi:10.1016/j.
ijfoodmicro.2008.12.027

237. Barna B, Fodor J, Harrach BD, Pogány M, Király Z (2012) The Janus face of reactive oxygen
species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens.
Plant Physiol Biochem 59:37–43. doi:10.1016/j.plaphy.2012.01.014

238. Wang X, Jiang N, Liu J, Liu W, Wang G-L (2014) The role of effectors and host immunity in
plant-necrotrophic fungal interactions. Virulence 5:722–732. doi:10.4161/viru.29798

239. Lee Y, Min K, Son H, Park AR, Kim J-C, Choi GJ, Lee Y-W (2014) ELP3 is involved in sexual
and asexual development, virulence, and the oxidative stress response in Fusarium
graminearum. Mol Plant Microbe Interact 27:1344–1355. doi:10.1094/MPMI-05-14-0145-R

240. Hausladen A, Kunert KJ (1990) Effects of artificially enhanced levels of ascorbate and
glutathione on the enzymes monodehydroascorbate reductase, dehydroascorbate reductase,
and glutathione reductase in spinach (Spinacia oleracea). Physiol Plant 79:384–388.
doi:10.1111/j.1399-3054.1990.tb06757.x

241. Paciolla C, Dipierro N, Mulè G, Logrieco A, Dipierro S (2004) The mycotoxins beauvericin
and T-2 induce cell death and alteration to the ascorbate metabolism in tomato protoplasts.
Physiol Mol Plant Pathol 65:49–56. doi:10.1016/j.pmpp.2004.07.006

242. Nishiuchi T, Masuda D, Nakashita H, Ichimura K, Shinozaki K, Yoshida S, Kimura M,
Yamaguchi I, Yamaguchi K (2006) Fusarium phytotoxin trichothecenes have an elicitor-like
activity in Arabidopsis thaliana, but the activity differed significantly among their molecular
species. Mol Plant Microbe Interact 19:512–520. doi:10.1094/MPMI-19-0512

243. Daub ME, Ehrenshaft M (2000) The photoactivated Cercospora toxin cercosporin: contribu-
tions to plant disease and fundamental biology. Ann Rev Phytopathol 38:461–490

244. Shim WB, Dunkle LD (2003) CZK3, a MAP kinase homolog in Cercospora zeae-maydis,
regulates cercosporin biosynthesis, fungal development, and pathogenesis. Mol Plant-Microbe
Interact 16:760–768

245. Daub ME, Chung K-R (2009) Photoactivated perylenequinone toxins in plant pathogenesis.
In: Deising HB (ed) Plant relationships V. Springer, Berlin/Heidelberg, pp 201–219

246. Heiser I, Heß M, Schmidtke K-U, Vogler U, Miethbauer S, Liebermann B (2004) Fatty acid
peroxidation by rubellin B, C and D, phytotoxins produced by Ramularia collo-cygni (Sutton
and Waller). Physiol Mol Plant Pathol 64:135–143

247. Möbius N, Hertweck C (2009) Fungal phytotoxins as mediators of virulence. Curr Opin Plant
Biol 12:390–398

248. Tiedemann AV (1997) Evidence for a primary role of active oxygen species in induction of
host cell death during infection of bean leaves with Botrytis cinerea. Physiol Mol Plant Pathol
50:151–166. doi:10.1006/pmpp.1996.0076

249. Tudzynski P, Kokkelink L (2009) Botrytis cinerea: molecular aspects of a necrotrophic life
style. In: Deising HB (ed) Plant relationships, 2nd edn. Springer, Berlin/Heidelberg, pp 29–50

186 T. Pusztahelyi et al.

http://dx.doi.org/10.1128/AEM.00565-08
http://dx.doi.org/10.3390/toxins4090695
http://dx.doi.org/10.3389/fmicb.2014.00074
http://dx.doi.org/10.1016/j.ijfoodmicro.2008.12.027
http://dx.doi.org/10.1016/j.ijfoodmicro.2008.12.027
http://dx.doi.org/10.1016/j.plaphy.2012.01.014
http://dx.doi.org/10.4161/viru.29798
http://dx.doi.org/10.1094/MPMI-05-14-0145-R
http://dx.doi.org/10.1111/j.1399-3054.1990.tb06757.x
http://dx.doi.org/10.1016/j.pmpp.2004.07.006
http://dx.doi.org/10.1094/MPMI-19-0512
http://dx.doi.org/10.1006/pmpp.1996.0076


250. Peng X-L, Xu W-T, Wang Y, Huang K-L, Liang Z-H, Zhao W-W, Luo Y-B (2010) Mycotoxin
Ochratoxin A-induced cell death and changes in oxidative metabolism of Arabidopsis
thaliana. Plant Cell Rep 29:153–161. doi:10.1007/s00299-009-0808-x

251. Paranidharan V, Palaniswami A, Vidhyasekaran P, Velazhahan R (2005) A host-specific toxin
of Rhizoctonia solani triggers superoxide dismutase (SOD) activity in rice. Arch Phytopathol
Plant Prot 38:151–157. doi:10.1080/03235400500094159

252. Tada Y, Kusaka K, Betsuyaku S, Shinogi T, Sakamoto M, Ohura Y, Hata S, Mori T, Tosa Y,
Mayama S (2005) Victorin triggers programmed cell death and the defense response via
interaction with a cell surface mediator. Plant Cell Physiol 46:1787–1798. doi:10.1093/pcp/
pci193

253. Zhang L, Jia C, Liu L, Zhang Z, Li C, Wang Q (2011) The involvement of jasmonates and
ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death. J Exp Bot
62:5405–5418. doi:10.1093/jxb/err217

254. Spassieva SD, Markham JE, Hille J (2002) The plant disease resistance gene Asc-1 prevents
disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death.
Plant J 32:561–572

255. Raffaele S, Leger A, Roby D (2009) Very long chain fatty acid and lipid signaling in the
response of plants to pathogens. Plant Signal Behav 4:94–99

256. López-Cruz J, Crespo-Salvador Ó, Fernández-Crespo E, García-Agustín P, González-Bosch C
(2016) Absence of Cu-Zn-superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence
in Arabidopsis and in tomato plants, which reveals interplay among ROS, callose and
signaling pathways. Mol Plant Pathol. doi:10.1111/mpp.12370

257. Otani H, Kohmoto K, KodamaM (1995) Alternaria toxins and their effects on host plants. Can
J Bot 73:453–458. doi:10.1139/b95-282

258. Walton JD (1996) Host-selective toxins: agents of compatibility. Plant Cell 8:1723–1733.
doi:10.1105/tpc.8.10.1723

259. Tsuge T, Harimoto Y, Akimitsu K, Ohtani K, Kodama M, Akagi Y, Egusa M, Yamamoto M,
Otani H (2013) Host-selective toxins produced by the plant pathogenic fungus Alternaria
alternata. FEMS Microbiol Rev 37:44–66. doi:10.1111/j.1574-6976.2012.00350.x

260. Friesen TL, Faris JD, Solomon PS, Oliver RP (2008) Host-specific toxins: effectors of
necrotrophic pathogenicity. Cell Microbiol 10:1421–1428. doi:10.1111/j.1462-
5822.2008.01153.x

261. Stergiopoulos I, Collemare J, Mehrabi R, De Wit PJGM (2013) Phytotoxic secondary metab-
olites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiol
Rev 37:67–93. doi:10.1111/j.1574-6976.2012.00349.x

262. Hatta R, Ito K, Hosaki Y, Tanaka T, Tanaka A, Yamamoto M, Akimitsu K, Tsuge T (2002) A
conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant
pathogen Alternaria alternata. Genetics 161:59–70

263. Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determi-
nants: what’s in a name? Annu Rev Phytopathol 40:251–285. doi:10.1146/annurev.
phyto.40.011402.114210

264. Amagasa T, Paul RN, Heitholt JJ, Duke SO (1994) Physiological effects of cornexistin on
Lemna paucicostata. Pestic Biochem Physiol 49:37–52. doi:10.1006/pest.1994.1032

265. Halloin JM, De Zoeten GA, Walker JC (1970) The effects of tentoxin on chlorophyll synthesis
and plastid structure in cucumber and cabbage. Plant Physiol 45:310–314

266. Thomma BPHJ (2003) Alternaria spp.: from general saprophyte to specific parasite. Mol Plant
Pathol 4:225–236. doi:10.1046/j.1364-3703.2003.00173.x

267. Nishimura S, Kohmoto K (1983) Host-specific toxins and chemical structures from Alternaria
species. Annu Rev Phytopathol 21:87–116. doi:10.1146/annurev.py.21.090183.000511

268. Izumi Y, Ohtani K, Miyamoto Y, Masunaka A, Fukumoto T, Gomi K, Tada Y, Ichimura K,
Peever TL, Akimitsu K (2012) A polyketide synthase gene, ACRTS2, is responsible for

4 Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic. . . 187

http://dx.doi.org/10.1007/s00299-009-0808-x
http://dx.doi.org/10.1080/03235400500094159
http://dx.doi.org/10.1093/pcp/pci193
http://dx.doi.org/10.1093/pcp/pci193
http://dx.doi.org/10.1093/jxb/err217
http://dx.doi.org/10.1111/mpp.12370
http://dx.doi.org/10.1139/b95-282
http://dx.doi.org/10.1105/tpc.8.10.1723
http://dx.doi.org/10.1111/j.1574-6976.2012.00350.x
http://dx.doi.org/10.1111/j.1462-5822.2008.01153.x
http://dx.doi.org/10.1111/j.1462-5822.2008.01153.x
http://dx.doi.org/10.1111/j.1574-6976.2012.00349.x
http://dx.doi.org/10.1146/annurev.phyto.40.011402.114210
http://dx.doi.org/10.1146/annurev.phyto.40.011402.114210
http://dx.doi.org/10.1006/pest.1994.1032
http://dx.doi.org/10.1046/j.1364-3703.2003.00173.x
http://dx.doi.org/10.1146/annurev.py.21.090183.000511


biosynthesis of host-selective ACR-toxin in the rough lemon pathotype of Alternaria
alternata. Mol Plant Microbe Interact 25:1419–1429. doi:10.1094/MPMI-06-12-0155-R

269. Thuleau P, Graziana A, Rossignol M, Kauss H, Auriol P, Ranjeva R (1988) Binding of the
phytotoxin zinniol stimulates the entry of calcium into plant protoplasts. Proc Natl Acad Sci
U S A 85:5932–5935

270. Scott PM (2001) Analysis of agricultural commodities and foods for Alternaria mycotoxins. J
AOAC Int 84:1809–1817

271. Demuner AJ, Barbosa LCA, Miranda ACM, Geraldo GC, da Silva CM, Giberti S,
Bertazzini M, Forlani G (2013) The fungal phytotoxin alternariol 9-methyl ether and some
of its synthetic analogues inhibit the photosynthetic electron transport chain. J Nat Prod
76:2234–2245. doi:10.1021/np4005882

272. Groth G (2002) Structure of spinach chloroplast F1-ATPase complexed with the phytopath-
ogenic inhibitor tentoxin. Proc Natl Acad Sci USA 99:3464–3468. doi:10.1073/
pnas.052546099

273. Meiss E, Konno H, Groth G, Hisabori T (2008) Molecular processes of inhibition and
stimulation of ATP synthase caused by the phytotoxin tentoxin. J Biol Chem
283:24594–24599. doi:10.1074/jbc.M802574200

274. Paiardini A, Aducci P, Cervoni L, Cutruzzolà F, Di Lucente C, Janson G, Pascarella S,
Rinaldo S, Visconti S, Camoni L (2014) The phytotoxin fusicoccin differently regulates
14-3-3 proteins association to mode III targets. IUBMB Life 66:52–62. doi:10.1002/iub.1239

275. Chivasa S, Ndimba BK, SimonWJ, Lindsey K, Slabas AR (2005) Extracellular ATP functions
as an endogenous external metabolite regulating plant cell viability. Plant Cell 17:3019–3034.
doi:10.1105/tpc.105.036806

276. Gutleb AC, Morrison E, Murk AJ (2002) Cytotoxicity assays for mycotoxins produced by
Fusarium strains: a review. Environ Toxicol Pharmacol 11:309–320

277. Ueno Y (1985) The toxicology of mycotoxins. Crit Rev Toxicol 14:99–133
278. Abbas HK, Yoshizawa T, Shier WT (2013) Cytotoxicity and phytotoxicity of trichothecene

mycotoxins produced by Fusarium spp. Toxicon 74:68–75. doi:10.1016/j.
toxicon.2013.07.026

279. Lee T, Oh DW, Kim HS, Lee J, Kim YH, Yun SH, Lee YW (2001) Identification of
deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR.
Appl Environ Microbiol 67:2966–2972. doi:10.1128/AEM.67.7.2966-2972.2001

280. Chandler EA, Simpson DR, Thomsett MA, Nicholson P (2003) Development of PCR assays
to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisation of chemotypes of
Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiol Mol Plant
Pathol 62:355–367. doi:10.1016/S0885-5765(03)00092-4

281. Weaver MA, Jin X, Hoagland RE, Boyette CD (2009) Improved bioherbicidal efficacy by
Myrothecium verrucaria via spray adjuvants or herbicide mixtures. Biol Control 50:150–156.
doi:10.1016/j.biocontrol.2009.03.007

282. Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal
crops. Mol Plant Pathol 5:515–525. doi:10.1111/J.1364-3703.2004.00252.X

283. Foroud NA, Eudes F (2009) Trichothecenes in cereal grains. Int J Mol Sci 10:147–173
284. Desjardins AE, Munkvold GP, Plattner RD, Proctor RH (2002) FUM1 – a gene required for

fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis
in field tests. Mol Plant Microbe Interact 15:1157–1164. doi:10.1094/MPMI.2002.15.11.1157

285. Gardiner DM, Kazan K, Praud S, Torney FJ, Rusu A, Manners JM (2010) Early activation of
wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an
inducer of trichothecene mycotoxin production. BMC Plant Biol 10:289. doi:10.1186/1471-
2229-10-289

286. Shimada T, Otani M (1990) Effects of Fusariummycotoxins on the growth of shoots and roots
at germination in some Japanese wheat cultivars. Cereal Res Commun 18:229–232

188 T. Pusztahelyi et al.

http://dx.doi.org/10.1094/MPMI-06-12-0155-R
http://dx.doi.org/10.1021/np4005882
http://dx.doi.org/10.1073/pnas.052546099
http://dx.doi.org/10.1073/pnas.052546099
http://dx.doi.org/10.1074/jbc.M802574200
http://dx.doi.org/10.1002/iub.1239
http://dx.doi.org/10.1105/tpc.105.036806
http://dx.doi.org/10.1016/j.toxicon.2013.07.026
http://dx.doi.org/10.1016/j.toxicon.2013.07.026
http://dx.doi.org/10.1128/AEM.67.7.2966-2972.2001
http://dx.doi.org/10.1016/S0885-5765(03)00092-4
http://dx.doi.org/10.1016/j.biocontrol.2009.03.007
http://dx.doi.org/10.1111/J.1364-3703.2004.00252.X
http://dx.doi.org/10.1094/MPMI.2002.15.11.1157
http://dx.doi.org/10.1186/1471-2229-10-289
http://dx.doi.org/10.1186/1471-2229-10-289


287. Langseth W, Ghebremeskel M, Kosiak B, Kolsaker P, Miller D (2001) Production of culmorin
compounds and other secondary metabolites by Fusarium culmorum and F. graminearum
strains isolated from Norwegian cereals. Mycopathologia 152:23–34

288. Wang YZ, Miller JD (1988) Effects of Fusarium graminearum metabolites on wheat tissue in
relation to fusarium head blight resistance. J Phytopathol 122:118–125. doi:10.1111/j.1439-
0434.1988.tb00998.x

289. Ghebremeskel M, Langseth W (2001) The occurrence of culmorin and hydroxy-culmorins in
cereals. Mycopathologia 152:103–108

290. HerrmannM, Zocher R, Haese A (1996) Effect of disruption of the enniatin synthetase gene on
the virulence of Fusarium avenaceum. Mol Plant Microbe Interact 9:226–232

291. Vellejos RH, Andreo CS, Ravizzini RA (1975) Divalent-cation ionophores and Ca2+ transport
in spinach chloroplasts. FEBS Lett 50:245–249

292. Wicklow DT, Rogers KD, Dowd PF, Gloer JB (2011) Bioactive metabolites from
Stenocarpella maydis, a stalk and ear rot pathogen of maize. Fungal Biol 115:133–142.
doi:10.1016/j.funbio.2010.11.003

293. Rogers KD, Cannistra JC, Gloer JB, Wicklow DT (2014) Diplodiatoxin, chaetoglobosins, and
diplonine associated with a field outbreak of Stenocarpella ear rot in Illinois. Mycotoxin Res
30:61–70. doi:10.1007/s12550-014-0188-0

294. Levings CS III, Rhoads DM, Siedow JN (1995) Molecular interactions of Bipolaris maydis
T-toxin and maize. Can J Bot 73:483–489. doi:10.1139/b95-286

295. Rocha O, Ansari K, Doohan FM (2005) Effects of trichothecene mycotoxins on eukaryotic
cells: a review. Food Addit Contam 22:369–378. doi:10.1080/02652030500058403

296. Gonzalez Garcia V, Portal Onco MA, Rubio Susan V (2006) Review. Biology and systematics
of the form genus Rhizoctonia. Spanish. J Agric Res 4:55. doi:10.5424/sjar/2006041-178

297. Carling DE, Baird RE, Gitaitis RD, Brainard KA, Kuninaga S (2002) Characterization of
AG-13, a newly reported anastomosis group of Rhizoctonia solani. Phytopathology
92:893–899. doi:10.1094/PHYTO.2002.92.8.893

298. Stodart BJ, Harvey PR, Neate SM, Melanson DL, Scott ES (2007) Genetic variation and
pathogenicity of anastomosis group 2 isolates of Rhizoctonia solani in Australia. Mycol Res
111:891–900. doi:10.1016/j.mycres.2007.05.008

299. Zheng A, Lin R, Zhang D, Qin P, Xu L, Ai P, Ding L, Wang Y, Chen Y, Liu Y, Sun Z, Feng H,
Liang X, Fu R, Tang C, Li Q, Zhang J, Xie Z, Deng Q, Li S, Wang S, Zhu J, Wang L, Liu H, Li
P (2013) The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat
Commun 4:1424. doi:10.1038/ncomms2427

300. Wibberg D, Jelonek L, Rupp O, Kröber M, Goesmann A, Grosch R, P€uhler A, Schl€uter A
(2014) Transcriptome analysis of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/
14 applying high-throughput sequencing of expressed sequence tags (ESTs). Fungal Biol
118:800–813. doi:10.1016/j.funbio.2014.06.007

301. Kwon YS, Kim SG, Chung WS, Bae H, Jeong SW, Shin SC, Jeong M-J, Park S-C, Kwak Y-S,
Bae D-W, Lee YB (2014) Proteomic analysis of Rhizoctonia solaniAG-1 sclerotia maturation.
Fungal Biol 118:433–443. doi:10.1016/j.funbio.2014.02.001

302. Vidhyasekaran P, Ponmalar TR, Samiyappan R, Velazhahan R, Vimala R, Ramanathan A,
Paranidharan V, Muthukrishnan S (1997) Host-specific toxin production by Rhizoctonia
solani, the rice sheath blight pathogen. Phytopathology 87:1258–1263. doi:10.1094/
PHYTO.1997.87.12.1258

303. Brooks SA (2007) Sensitivity to a phytotoxin from Rhizoctonia solani correlates with
sheath blight susceptibility in rice. Phytopathology 97:1207–1212. doi:10.1094/PHYTO-97-
10-1207

304. Bartz FE, Glassbrook NJ, Danehower DA, Cubeta MA (2013) Modulation of the phenylacetic
acid metabolic complex by quinic acid alters the disease-causing activity of Rhizoctonia solani
on tomato. Phytochemistry 89:47–52. doi:10.1016/j.phytochem.2012.09.018

4 Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic. . . 189

http://dx.doi.org/10.1111/j.1439-0434.1988.tb00998.x
http://dx.doi.org/10.1111/j.1439-0434.1988.tb00998.x
http://dx.doi.org/10.1016/j.funbio.2010.11.003
http://dx.doi.org/10.1007/s12550-014-0188-0
http://dx.doi.org/10.1139/b95-286
http://dx.doi.org/10.1080/02652030500058403
http://dx.doi.org/10.5424/sjar/2006041-178
http://dx.doi.org/10.1094/PHYTO.2002.92.8.893
http://dx.doi.org/10.1016/j.mycres.2007.05.008
http://dx.doi.org/10.1038/ncomms2427
http://dx.doi.org/10.1016/j.funbio.2014.06.007
http://dx.doi.org/10.1016/j.funbio.2014.02.001
http://dx.doi.org/10.1094/PHYTO.1997.87.12.1258
http://dx.doi.org/10.1094/PHYTO.1997.87.12.1258
http://dx.doi.org/10.1094/PHYTO-97-10-1207
http://dx.doi.org/10.1094/PHYTO-97-10-1207
http://dx.doi.org/10.1016/j.phytochem.2012.09.018


305. Xu L, Wang X, Luo R, Lu S, Guo Z, Wang M, Liu Y, Zhou L (2015) Secondary metabolites of
rice sheath blight pathogen Rhizoctonia solani K€uhn and their biological activities. J Integr
Agric 14:80–87. doi:10.1016/S2095-3119(14)60905-9

306. Colmenares A, Aleu J, Durán-Patrón R, Collado IG, Hernández-Galán R (2002) The putative
role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. J
Chem Ecol 28:997–1005

307. Tani H, Koshino H, Sakuno E, Cutler HG, Nakajima H (2006) Botcinins E and F and
Botcinolide from Botrytis cinerea and structural revision of botcinolides. J Nat Prod
69:722–725. doi:10.1021/np060071x

308. Deighton N, Muckenschnabel I, Colmenares AJ, Collado IG, Williamson B (2001) Botrydial
is produced in plant tissues infected by Botrytis cinerea. Phytochemistry 57:689–692

309. Guo M, Huang K, Chen S, Qi X, He X, Cheng W-H, Luo Y, Xia K, XuW (2014) Combination
of metagenomics and culture-based methods to study the interaction between ochratoxin A and
gut microbiota. Toxicol Sci 141:314–323. doi:10.1093/toxsci/kfu128

310. Zaehle C, Gressler M, Shelest E, Geib E, Hertweck C, Brock M (2014) Terrein biosynthesis in
Aspergillus terreus and its impact on phytotoxicity. Chem Biol 21:719–731. doi:10.1016/j.
chembiol.2014.03.010

311. Hu J, Chen C, Peever T, Dang H, Lawrence C, Mitchell T (2012) Genomic characterization of
the conditionally dispensable chromosome in Alternaria arborescens provides evidence for
horizontal gene transfer. BMC Genomics 13:171. doi:10.1186/1471-2164-13-171

312. Chooi Y-H, Solomon PS (2014) A chemical ecogenomics approach to understand the roles of
secondary metabolites in fungal cereal pathogens. Front Microbiol 5:640. doi:10.3389/
fmicb.2014.00640

190 T. Pusztahelyi et al.

http://dx.doi.org/10.1016/S2095-3119(14)60905-9
http://dx.doi.org/10.1021/np060071x
http://dx.doi.org/10.1093/toxsci/kfu128
http://dx.doi.org/10.1016/j.chembiol.2014.03.010
http://dx.doi.org/10.1016/j.chembiol.2014.03.010
http://dx.doi.org/10.1186/1471-2164-13-171
http://dx.doi.org/10.3389/fmicb.2014.00640
http://dx.doi.org/10.3389/fmicb.2014.00640


Host and Guest: Vanilla Inhabited by
Endophytes 5
Shahnoo Khoyratty, Young Hae Choi, Joëlle Dupont,
Robert Verpoorte, and Hippolyte Kodja

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
2 Finding if Fungal Endophytes Are Present in Vanilla and Their Abundance . . . . . . . . . . . . . 195
3 Finding Distribution of Endophytes: Within Plant, Post-scalding, Across Region . . . . . . . . 196

3.1 Determining the Mode of Fungal Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
3.2 Endophyte Distribution Across Organs and Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
3.3 Endophyte Diversity After Scalding Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

4 Finding Which Species of Endophyte Affect Vanilla Aroma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
4.1 Identifying Flavor-Related Metabolites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
4.2 Comparing the Biotransformation Reactions Across Fungi . . . . . . . . . . . . . . . . . . . . . . . . . . 205
4.3 Amounts of Biotransformed Flavor Metabolites by Fungi

Grown on the Same Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
4.4 Ratios of Quality Marker Metabolites After Biotransformation . . . . . . . . . . . . . . . . . . . . . 213

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

S. Khoyratty (*) • H. Kodja
Université de La Réunion, UMR PVBMT, Saint Denis, La Réunion, France
e-mail: shahnookhoyratty@gmail.com; hippolyte.kodja@univ-reunion.fr

Y.H. Choi • R. Verpoorte
Natural Products Laboratory, Institute of Biology, Leiden University, Leiden, The Netherlands
e-mail: y.choi@chem.leidenuniv.nl; verpoort@chem.leidenuniv.nl

J. Dupont
Département Systématique et Evolution, Muséum National d’Histoire Naturelle, UMR OSEB
7205, Paris, France
e-mail: jdupont@mnhn.fr

# Springer International Publishing Switzerland 2017
J.-M. Mérillon, K.G. Ramawat (eds.), Fungal Metabolites, Reference Series in
Phytochemistry, DOI 10.1007/978-3-319-25001-4_36

191

mailto:shahnookhoyratty@gmail.com
mailto:hippolyte.kodja@univ-reunion.fr
mailto:y.choi@chem.leidenuniv.nl
mailto:verpoort@chem.leidenuniv.nl
mailto:jdupont@mnhn.fr


Abstract
Fungal endophytes are known to produce secondary metabolites. The synthesis of
vanillin and its precursors have never been clearly elucidated. Given fungi can
produce such metabolites, it is speculated that fungal endophytes in vanilla could
be contributing to vanillin and its precursors. An investigation was thus carried to
find whether fungal endophytes are present in Vanilla planifolia. Additionally,
vanilla flavor varies across cultivation regions; hence, the distribution of endo-
phytes across regions was also assessed and found to differ. The metabolic
changes brought by the fungi on vanillin and its precursors in vanilla pods were
also evaluated. Out of 434 isolated fungal endophytes, two candidates emerged:
Pestalotiopsis microspora and Diaporthe phaseolorum. However, P. microspora
increased the most the absolute amounts (quantified by 1H NMR in μmol/g DW
green pods) of vanillin (37.0 � 10�3), vanillyl alcohol (100.0 � 10�3), vanillic
acid (9.2 � 10�3), and p-hydroxybenzoic acid (87.9 � 10�3) when cultured on
green pod-based media. Given the physical proximity of fungi inside pods,
endophytic biotransformation may contribute to the complexity of vanilla flavors.

Keywords
Endophytes • Distribution • Flavor • Biotransformation • Vanilla • Interaction

List of Abbreviations
DNA Deoxyribonucleic acid
GC-O Gas chromatography-olfactometry
H NMR Proton nuclear magnetic resonance
HPLC High-performance liquid chromatography
HPLC-DAD High-performance liquid chromatography-diode array detector
ITS Internal transcribed spacer
MOTU Molecular operational taxonomic unit
NMR Nuclear magnetic resonance
PCA Principal component analysis
PDA Potato dextrose agar
p-HB acid p-Hydroxybenzoic acid
p-HBAld p-Hydroxybenzaldehyde
rDNA Ribosomal deoxyribonucleic acid

1 Introduction

The genus Vanilla is a member of the Orchidaceae family and comprises of approx-
imately 100 species [1]. Only two species, Vanilla planifolia Andrews and Vanilla
tahitensisMoore, are allowed to be used in foods [2]. However, Vanilla planifolia is
the most important source of natural vanilla flavor [1], a species which originates
from Mesoamerica [2]. The plant requires 3–4 years to set the flower and afterward
flowers once a year. The podlike fruit (vanilla bean) is allowed to develop for 8–10
months before harvesting (Fig. 1).
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Vanilla beans are harvested green and are initially flavorless. The green beans are
subjected to a curing process for 3–6 months or longer, depending on various curing
protocols in different production regions [2]. The product of the curing process is the
dark pod which is then sold in the commerce. The objective of the curing process is
to develop the prized vanilla flavor and to dry the cured beans to prevent microbial
growth during transport and storage [2]. As mentioned before, the exact method for
postharvest processing and curing of vanilla pods varies across regions of theworld [3].
In Reunion Island, the traditional Bourbon curingmethod is used, and the process starts
with the immersion of the pods in hot water at 65 �C for 3 min, a process known as
scalding. The pods are then transferred to a wooden box lined with blanket, for
sweating, and kept for 24 h at a temperature of 50 �C. Afterward, the pods are sun
dried, under a temperature of about 50 �C for 1 week. The pods are then dried slowly
for 2–3 months in racks placed in well-ventilated rooms maintained at 35 �C. The last
step is known as conditioning and consists of storing graded and bundled pods
wrapped in wax paper in closed boxes for a period of 8 months.

Natural vanilla flavor is the number one flavor tonality in the world as it is subtle
but complex [4]. Vanilla is actually a versatile and dynamic flavoring substance, the
potential of which has still not been fully realized. When vanilla is used in different
foods, it renders different flavor profiles [2]. Natural vanilla flavor faces fierce
competition from artificial vanillin, a replacement, on the international market
given the lower price of the latter. However, companies such as Symrise, Firmenich,
Takasago, and Givaudan still have active sustainability programs with local vanilla

Fig. 1 Mature vanilla pod
(Photo by H. Kodja)

5 Host and Guest: Vanilla Inhabited by Endophytes 193



bean farmers to improve both agricultural practices and wages in key producing
areas because vanillin does not totally replicate the characteristic flavor profiles of
high-quality vanilla extracts [5]. One of the factors that contribute to the higher price
of natural vanilla compared to artificial vanillin is the labor cost and infrastructure
required in the long curing process. One process that eliminates the curing process
consists of a patent application from Givaudan. The process is a fermentation in
which green ripe uncured vanilla beans are incubated with Bacillus subtilis in
isolated form to convert glucovanillin to vanillin while consistently forming a
fully developed well-balanced vanilla aroma without off-notes [6]. This is but one
example that shows a connection between vanilla aroma and microorganisms.

Over 200 compounds which are associated to vanilla flavor have already been
isolated and identified from vanilla beans. The contents of these compounds vary in
the dark pods of the same vanilla plant species depending on the region of the world
where the beans are harvested [7]. Four major flavor-related components ( p-
hydroxybenzoic acid, p-hydroxybenzaldehyde, vanillic acid, and vanillin) are used
as marker compounds to determine quality and authenticity of vanilla products. For
authentic unadulterated vanilla extracts, the ratios between the four components are
fixed within a certain range [8]. In Réunion Island, vanilla plants are either cultivated
in the undergrowth or in shade houses. Vanilla pods grown in the undergrowth
appeared to display substantial qualitative differences of vanillin and vanillic acid
contents in comparison to those grown under shade-house conditions. Additionally,
cured vanilla pods from different regions of Réunion Island have different flavor
qualities (Bertrand Come 2012, personal communication, 6 June). Parameters
responsible for such a differences have not been identified yet [5] but could be due
to climatic, edaphic factors or due to the endophytic microbial composition in the
plant. One such candidate is endophytic fungi hence the investigation in this work.

Endophytic fungi are defined functionally by their occurrence within asymptom-
atic tissues of plants [7]. In spite of the ubiquitous features, the scale of their
diversity, their host range, and geographic distributions much about endophytes is
still unknown for many plants including vanilla. Hence, this work aimed at isolating
fungal endophytes from vanilla. Endophytic fungi can either be transmitted verti-
cally or horizontally. Vertical transmission occurs when fungi are transferred from
the host to the offspring via host tissues. Horizontal transmission occurs when fungi
are transferred to the host via spores, e.g., through aerial means. Endophytes can be
involved in biomass production and nutrient cycling in the plant [7]. Previously,
Porras-Alfaro and Bayman [9] isolated nonpathogenic fungi from inside asymptom-
atic roots of vanilla plants. Mycorrhizal fungi interact symbiotically with roots
through an association of the mycelium (typically basidiomycete), while the hyphae
form a mass around the rootlets or penetrate root cells. They are absent from the
outer root cortex and hence differ from endophytes that are present deeper inside
plant tissues. The mycorrhizal fungi Ceratobasidium spp., Thanatephorus spp., and
Tulasnella spp. were found to be associated to different species of vanilla by Porras-
Alfaro and Bayman [9]. Morphological identification followed by elongation factor
gene sequence analysis showed that several Fusarium spp. are present in vanilla
plants in Indonesia [10]. Roling et al. [11] have assessed the microbial diversity in
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vanilla pods at different stages of postharvest processing in Indonesia. Microbial
communities changed the most after the scalding of pods in hot water (65–70 �C for
2 min). Hence, an investigation was performed in this work to find microorganisms
that survive post-scalding for pods from Reunion Island. Roling et al. [11] found a
decrease in microbial diversity and of fungal growth.

In this chapter, we describe work in connection to vanilla and fungal endophytes:
(1) finding if fungal endophytes are present in vanilla and their abundance; (2)
finding distribution of endophytes, within plant, post-scalding, and across region;
and (3) finding which species of endophyte affect vanilla aroma in green pod
material.

2 Finding if Fungal Endophytes Are Present in Vanilla
and Their Abundance

Fungal endophytes were isolated from green 8-month-old pods post-pollination and
leaves ranks 1 (the youngest in the sample set), 3, 5, 10, and 15 (the oldest in the
sample set) across seven regions in Reunion Island (St. André, St. Anne, St. Rose,
Bois Blanc, Takamaka, Mare Longue, and Basse Vallée – Fig. 2) and under two
culture conditions (shade house, in the field).

Fungal identification was carried out through morphological and DNA/RNA-
sequencing methods. In this way, 23 MOTUs were identified (Table 1).

The total number of isolates recovered from all tissues was 434 isolates. The
23 different isolated MOTUs represent six classes (Sordariomycetes,
Dothideomycetes, Eurotiomycetes, Pezizomycetes, Agaricomycetes, Zygomycetes).
Fusarium proliferatum (MOTU1) was, by far, the most abundant fungus accounting
for 37.6 % of the isolates (Table 2). Botryosphaeria ribis (MOTU16) and Aspergil-
lus fumigatus (MOTU20) were the second most abundant taxa, each accounting for
5.8 % of the isolates. Sixteen fungal genera were isolated from Holcoglossum plants
which, like vanilla, are also members of the family Orchidaceae, and the fungi
belonged to three classes, Sordariomycetes, Dothideomycetes, and Agaricomycetes
[13]. In comparison, a high number of 21 fungal genera were isolated from vanilla
plants in this study representing six classes (Sordariomycetes, Dothideomycetes,
Eurotiomycetes, Pezizomycetes, Agaricomycetes, Zygomycetes; Table 2) with
Sordariomycetes being the dominant class (60 %, 14/23 MOTUs). This is in line
with the fact that endophytic Sordariomycetes have a high frequency of occurrence
within tropical plants [14].

The majority of the isolated endophytes belonged to the class Sordariomycetes
(60 %, 14 out of 23 isolated MOTUs) which consist of members of the orders
Hypocreales (consisting of 199 isolates making 5 MOTUs), Xylariales
(consisting of 33 isolates making 3 MOTUs), Diaporthales (consisting of 25 iso-
lates making 2 MOTUs), and Glomerellaceae (consisting of 23 isolates making
2 MOTUs). Dothideomycetes and Eurotiomycetes were the next most common
classes both representing 11.8 and 9 % of all isolated MOTUs, respectively.
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Classes Pezizomycetes, Zygomycetes, and Agaricomycetes were rare, with only
one MOTU representative of each.

3 Finding Distribution of Endophytes: Within Plant,
Post-scalding, Across Region

The ecology and distribution of fungal endophytes are known to vary based on the
organ considered and the location of the host plant. Different fungal distribution in
plant organs would cause specific metabolic changes in those organs. One important
organ for vanilla commerce is the pod. In order to appreciate the distribution of
fungal endophyte in pods, it is essential to understand fungal distribution in other

Fig. 2 The seven regions in Reunion Island from which vanilla organs were collected for fungal
endophyte isolation
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Table 1 Identification of endophyte MOTUs based on NCBI BLAST of 28S, ITS rDNA, EF-1a,
or b-tubulin sequences (Source, Khoyratty et al. [12])

MOTU
number

Isolate
number

DNA
region

BLast best match: GenBank
accession number and ID

Class
order

MOTU 1 9B
(LCP5974)

EF-1α >gi|149798252|gb|EF453149.1|
Gibberella intermedia strain
NRRL 43666 (Fusarium
proliferatum)

Sordariomycetes
Hyprocreales

MOTU 2 82D1 ITS >gi|262476602|gb|GQ505743.1|
Fusarium scirpi strain NRRL
36478

Sordariomycetes
Hypocreales

MOTU 3 28 EF-1α >gi|306412978|gb|HM347120.1|
Fusarium oxysporum strain NRRL
26360

Sordariomycetes
Hypocreales

MOTU 4 29A
(LCP5979)

ITS >gi|316980277|emb|FN706553.1|
Acremonium implicatum MUCL
1412

Sordariomycetes
Hypocreales

MOTU 5 3C1B
(LCP5984)

28S >gi|523713894|gb|KC157757.1|
Purpureocillium lilacinum strain
M4076

Sordariomycetes
Hypocreales

MOTU 6 55E
(LCP5980)

ITS >gi|215490348|gb|FJ441623.1|
Phomopsis phyllanthicola strain
msy55

Sordariomycetes
Diaporthales

MOTU 7 5
(LCP5978)

ITS >gi|283856804|gb|GU066686.1|
Diaporthe phaseolorum isolate
123 AC/T (Phomopsis sp.)

Sordariomycetes
Diaporthales

MOTU 8 61B
(LCP5982)

ITS >gi|44893890|gb|AY541610.1|
Nemania bipapillata strain CL8

Sordariomycetes
Xylariales

MOTU 9 9B ITS >gi|387773616|gb|JQ846066.1|
Xylaria sp. 5485

Sordariomycetes
Xylariales

MOTU 10 61 F
(LCP5983)
55A
(LCP6051)

ITS >gi|21310048|gb|AF377292.1|
Pestalotiopsis microspora strain
CBS364.54

Sordariomycetes
Xylariales

MOTU 11 69D
(LCP5988)

ITS >gi|169135011|gb|EU482214.1|
Colletotrichum gloeosporioides
ICMP 17323

Sordariomycetes
Glomerellaceae

MOTU 12 39 ITS >gi|82799468|gb|DQ286216.1|
Colletotrichum sp.

Sordariomycetes
Glomerellaceae

MOTU 13 S101Z1
(LCP5987)
42a,b,c

ITS >gi|317383391|gb|HQ631070.1|
Nigrospora sp. TMS-2011 voucher
SC9d1p7-1

Sordariomycetes
Trichosphaeriales

MOTU 14 69H
(LCP5985)
S104Z1

ITS >gi|383842765|gb|JQ316443.1|
Fungal endophyte isolate EL-10
Australia

Sordariomycetes
Trichosphaeriales

MOTU 15 S104Z1
Bis

28S >gi|290889519|gb|GU390656.1|
Delitschia chaetomioides strain
SMH 3253.2

Dothideomycetes
Pleosporales

(continued)
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organs in comparison to pods. With regard to endophyte distribution across the host
plant location, the distribution is significantly affected for horizontally transmitted
endophytes. As a consequence, it was first necessary to find whether endophytes
which were recovered in this work were horizontally transmitted to vanilla plants
through aerial means.

3.1 Determining the Mode of Fungal Transmission

Symbiont transmission perpetuates symbioses through host generations. Horizon-
tally transmitted symbionts are acquired through the environment, while vertically
transmitted symbionts are often transferred through the female germ line, but mixed
modes of transmission also exist. In order to establish the method of endophyte
transmission in the plant, ovaries which have petals that are closed as well as those
with petals that are open were collected under shade-house conditions at St. André.
Five MOTUs were isolated (MOTU2 F. scirpi, MOTU13 Nigrospora sp1, MOTU15
D. chaetomioides, MOTU16 B. ribis, and MOTU20 A. fumigatus) from ovaries with
opened petals only. Hence, fungi were recovered from ovaries with opened petals

Table 1 (continued)

MOTU
number

Isolate
number

DNA
region

BLast best match: GenBank
accession number and ID

Class
order

MOTU 16 25
(LCP6048)
61d,e,g,
S104Z1ter

ITS >gi|34328662|gb|AY236935.1|
Botryosphaeria ribis isolate
CMW7772

Dothideomycetes
Botryosphaeriales

MOTU 17 51B
(LCP5998)

ITS >gi|330369659|gb|JF261465.1|
Guignardia mangiferae strain
CPC18848 (CBS128856 T)

Dothideomycetes
Botryosphaeriales

MOTU 18 33B
(LCP5989)

ITS >gi|262386897|gb|GQ852747.1|
Mycosphaerella marksii strain
CPC:13273

Dothideomycetes
Capnodiales

MOTU 19 8B2
(LCP6049)

ITS >gi|310769695|gb|GU944569.1|
Penicillium citrinum strain CBS
13945

Eurotiomycetes
Eurotiales

MOTU 20 S102Z1
(LCP6050)

β-tub >gi|110743536|dbj|AB248059.1|
Aspergillus fumigatus strain: IAM
13869

Eurotiomycetes
Eurotiales

MOTU 21 74A
(LCP5981)

ITS >gi|22023786|gb|AF485074.1|
Sarcosomataceous endophyte
E99297 strain E99297

Pezizomycetes
Pezizales

MOTU 22 51A
(LCP5976)

28S >gi|353703687|gb|HQ848487.1|
Perenniporia nanlingensis voucher
Cui 7589

Agaricomycetes
Polyporales

MOTU 23 3C1A
(LCP5977)

ITS >gi|15147895|gb|AF254932.1|
Cunninghamella blakesleana strain
CBS 133.27

Zygomycetes
Mucorales
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Table 2 List and abundance of molecular operational taxonomic units (MOTUs) from endophytes
identified in this study (Source, Khoyratty et al. [12])

MOTU
number Fungal species Class/Order

Abundance
(number of isolates)

MOTU1 Fusarium proliferatum Sordariomycetes/
Hypocreales

163

MOTU2 Fusarium scirpi Sordariomycetes/
Hypocreales

6

MOTU3 Fusarium oxysporum Sordariomycetes/
Hypocreales

9

MOTU4 Acremonium
implicatum

Sordariomycetes/
Hypocreales

12

MOTU5 Purpureocillium
lilacinum

Sordariomycetes/
Hypocreales

9

MOTU6 Phomopsis
phyllanthicola

Sordariomycetes/
Diaporthales

11

MOTU7 Diaporthe
phaseolorum

Sordariomycetes/
Diaporthales

14

MOTU8 Nemania bipapillata Sordariomycetes/
Xylariales

13

MOTU9 Xylaria sp. Sordariomycetes/
Xylariales

7

MOTU10 Pestalotiopsis
microspora

Sordariomycetes/
Xylariales

13

MOTU11 Colletotrichum
gloeosporioides

Sordariomycetes/
Glomerellaceae

12

MOTU12 Colletotrichum sp.2 Sordariomycetes/
Glomerellaceae

11

MOTU13 Nigrospora sp.1 Sordariomycetes/
Trichosphaeriales

20

MOTU14 Nigrospora sp. 2 Sordariomycetes/
Trichosphaeriales

13

MOTU15 Delitschia
chaetomioides

Dothideomycetes/
Pleosporales

1

MOTU16 Botryosphaeria ribis Dothideomycetes/
Botryosphaeriales

25

MOTU17 Guignardia mangiferae Dothideomycetes/
Botryosphaeriales

14

MOTU18 Mycosphaerella
marksii

Dothideomycetes/
Capnodiales

11

MOTU19 Penicillium citrinum Eurotiomycetes/Eurotiales 14

MOTU20 Aspergillus fumigatus Eurotiomycetes/Eurotiales 25

MOTU21 Sarcosomataceae spp. Pezizomycetes/Pezizales 13

MOTU22 Perenniporia
nanlingensis

Agaricomycetes/
Polyporales

8

MOTU23 Cunninghamella
blakesleana

Zygomycetes/Mucorales 10

Total 434
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only and not from ovaries with closed petals. Ovaries with opened petals are exposed
to air, whereas those with closed petals are not.

Hence, fungal endophytes only entered the ovaries through aerial means when
the petals are opened. Ovaries of V. planifolia seemed endophyte free at emergence.
Thus, the five isolated fungal MOTUs from ovaries with opened flowers were most
likely transmitted horizontally; however, endophytes may colonize fruits later in
development. The discovery that MOTU1 F. proliferatum occurs in pods and
leaves opens the way to the idea that some endophytes may issue from other
vegetative tissues. Thus, further research is required to confirm which event
occurred. The possibility for a horizontal transmission of endophytes in vanilla
pods would be similar to the case of cacao where fruits are endophyte free at
emergence but then accumulate diverse endophytes from spore rain in the envi-
ronment [15]. With ovary maturation, endophyte populations in cranberries vary
[16]. Similarly, the fungal MOTUs isolated from V. planifolia ovaries with opened
petals in the shade house at St. André differed from those identified from 8-month
post-pollination pods (MOTU1 F. proliferatum and MOTU7 D. phaseolorum) at
the same location.

3.2 Endophyte Distribution Across Organs and Region

Fungal endophytes were not all equally distributed in all the sampled vanilla tissues.
Over all 450 sampled tissues, 220 yielded endophytes. Hence, at least 48.9 % of
sampled tissues were infected, given that some fungal endophytes may not be
cultivable. This low percentage is due to young leaves (1 and 3 weeks old) that
were free of endophyte, or a low infection level might have hampered isolation of
fungi. The organ which was the most infected was the pods with 76 % of endophyte
recovery. Pods from St. Rose had the highest endophyte recovery (100 %). Both
Fusarium proliferatum and Aspergillus fumigatus (the two most recovered fungal
species) occurred at all the nine sites sampled. Both were distributed over two sites,
Saint André and Sainte Rose for MOTU16 and Saint André and Sainte Anne for
MOTU20 (Table 3).

Other endophytes were rarely isolated, each occurring only in one site and one
organ with MOTU15 D. chaetomioides, being the less abundant at 0.2 % of all
isolates. The three mycorrhizal fungi isolated from roots of different species of
vanilla by Porras-Alfaro and Bayman [9] are members of the class Agaricomycetes.
Only one isolated fungus in this work belongs to the class Agaricomycetes
although that fungus is an endophyte and not a mycorrhiza (MOTU22
P. nanlingensis). Furthermore, the fungus originated from inside the organ, and
hence not through superficial contamination from the root of the plant, for instance,
given that after surface sterilization, the organ surface was touched onto potato
dextrose agar (PDA) media with no fungal growth obtained. Fungal growth was
obtained only when the organ was split open and when the interior of the organ
exposed to PDA.
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3.3 Endophyte Diversity After Scalding Treatment

Microbial diversity and fungal growth changed drastically after pod scalding
[11]. As a consequence, in this work, fungal endophyte isolation was performed
on pod post-scalding. Only the fungal endophyte Hypoxylon investiens was recov-
ered post-scalding from pods originating from St. Rose at 47 % (isolated from
7 pods on a total of 15 collected pods).

4 Finding Which Species of Endophyte Affect Vanilla Aroma

In order to find metabolic changes in the pod due to fungal endophytes,
metabolomics analysis techniques were applied. Metabolomics is defined as both
the qualitative and quantitative analysis of all primary and secondary metabolites of
an organism [17]. Two chemical analysis techniques used in metabolic profiling
include proton nuclear magnetic resonance (1H NMR) spectroscopy and high-
performance liquid chromatography (HPLC). Both methods are well adapted for
works on plant-fungal endophyte interactions. For instance, high-performance liquid
chromatography-diode array detector (HPLC-DAD) analysis showed that the inoc-
ulation of in vitro plantlets of Hyptis marrubioides Epling with bacterial and fungal
endophytic isolates induced the production of metabolites 3,4-O-(Z)-
dicaffeoylquinic acid and quercetin-7-O-glucoside in the plant [18]. Hence, similar
metabolomics methods can be effective to decipher the potential involvement of
endophytic fungi in the production of secondary metabolites in this work. Despite
being a simple molecule, natural vanillin biosynthesis from V. planifolia plants
remains controversial. In fact, there is still some disagreement over the exact cell
types that produce vanillin. A possible reason for such controversy stems from the
fact that vanillin is a simple structure that lends itself to multiple possible theoretical
biosynthetic pathways and due to the general promiscuity of many enzymes of plant
phenolic metabolism; it is possible to find evidence to support any of these pathways
from in vitro biochemical approaches [19].

Vanillin can also be produced from natural sources other than from vanilla pods.
For instance, vanillin can either be produced through the biotransformation of an
existing precursor compound or by de novo synthesis of a precursor where the
organism produces an intermediate in vanillin biosynthesis. Biotransformation of
vanillin precursor can also be achieved with microorganisms (Fig. 3), e.g., fungi.

Indeed, the involvement of fungi in the production of metabolites related to
vanilla aroma is observed for several compounds such as p-hydroxybenzaldehyde,
vanillic acid, and vanillyl alcohol. In this way, the fungus Paecilomyces variotii
cultured on minimal medium converts p-coumaric acid to p-hydroxybenzaldehyde
[20]. Vanillic acid is formed from vanillin by Hormodendrum sp. grown on basal
medium [21]. Vanillyl alcohol is made by Pestalotia palmarum from ferulic acid
grown on synthetic medium supplied with glucose [22]. The aforementioned com-
pounds are all involved with vanilla aroma.
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Additionally, the simplicity of the vanillin structure has led to the use of various
precursors in the microbial/fungal or enzymatic process of vanillin production:
lignin, curcumin, siam benzoin resin, phenolic stilbenes, isoeugenol, eugenol, ferulic
acid, aromatic amino acids, and glucose via de novo biosynthesis. Hence, compara-
ble biotransformation reactions with regard to compounds related to vanilla aroma
occur in fungi when compared to vanilla plants. Given such similarities in the
biosynthetic pathways of polyphenols in vanilla plants and fungi, it is not surprising
that a possible role of microorganisms in vanilla has been investigated before. Roling
et al. [11] and Dunphy and Bala [4, 23], for example, studied a possible involvement
of microorganisms during the curing of the pods all pointing principally to the
occurrence of bacteria and actinomycetes. The current study concerns another aspect
though: the possible role of fungal endophytes in the vanilla plant and the green pods
in the formation of vanilla flavor-related compounds.

4.1 Identifying Flavor-Related Metabolites

After isolating and characterizing the fungal endophytes from vanilla, a series of
experiments were conducted to elucidate their biotransformation abilities. The
cultural conditions in which fungi are placed affect their biotransformation reactions,
e.g., the amount of the bioactive secondary metabolite arundifungin produced by the
endophytic fungus Arthrinium isolated from plant roots of Apiospora montagnei
Sacc. changes depending on the time of incubation, temperature, and pH of the
culture medium [24]. As a consequence, the media on which the fungi were cultured

Fig. 3 Different microbial routes to vanillin (Source, Khoyratty et al. [12])
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in the laboratory was made to be the closest to that of the conditions in the green pod
where they were isolated. Thus, to investigate the potential changes that fungal
endophytes produce on flavor-related metabolites in green vanilla pods, experiments
were conducted where fungi isolated from mature green pods (8 months after
pollination) that were cultured on a medium composed of lyophilized and autoclaved
green pod material. The lyophilized green pod material was the only source of
available nutrients for fungi to grow in the experiments. Consequently, any fungal
growth is due to the ingredients of the green pods, which includes various primary
metabolites, including sugars and amino acids, as well as the various phenolics
including vanillin glycoside.

Endophytic fungi D. phaseolorum (MOTU7), P. microspora (MOTU10),
F. oxysporum (MOTU24), Nigrospora sp. (MOTU13), N. bipapillata (MOTU8),
M. marksii (MOTU18), A. implicatum (MOTU4), B. ribis (MOTU16 – 61G1
isolated at St. Rose, Reunion Island), C. gloeosporioides (MOTU11), F. proliferatum
(MOTU1), B. ribis (MOTU16 – 25 isolated at St. Anne, Reunion Island),
P. phyllanthicola (MOTU6), and a vanilla pathogen F. oxysporum (MOTU24)
were used for such experiments. Preliminary experiments were carried out to find
the growth rate on 8-month-old pod-based media of the fungi selected for this work.
It was found that on average, the fungi covered a 90 mm petri dish in 30 days. Hence,
30 days of culture was the time retained for the experiments. After 30 days of culture,
the medium was analyzed through 1H NMR. In all the experiments conducted, the
same biotransformation medium containing grind green pod material was used.
However, different fungi were cultured on this common media. Before any further
investigations can be pursued into the biotransformation abilities of the fungi with
respect to flavor compounds, it is essential to confirm the identity of the metabolites
that had been biotransformed and the new products that are formed. In order to
identify the products in the medium after 30 days of fungal growth, two approaches
were adopted. The first approach consisted in identifying flavor-related metabolites
and sugars present in green pods by comparison of the NMR spectra of medium
extracts against the NMR spectra of reference compounds. In this way in the control
medium made of green pods as well as in the spent medium, eight molecules of
interest were identified (vanillyl alcohol, p-hydroxybenzoic acid, p-hydroxyben-
zaldehyde, vanillic acid, vanillin, glucovanillin, glucose, and sucrose) (Fig. 4 a, b,
c, and d show an identification example of the 1H NMR spectra of the medium on
which P. microspora was cultured compared to the control).

The second approach was to perform an HPLC analysis on the same samples so as
to confirm the identity of the compounds found in the 1H NMR analysis (Fig. 5 a, b).
Additionally, p-coumaric acid was identified by HPLC but not by 1H NMR due to
the higher sensitivity of HPLC to detect compounds present at a lower concentration
of detection than NMR can detect ( p-coumaric acid concentration, 0.214 mmol/L of
medium in the control and 0.156 mmol/L of medium in the spent medium on which
P. microspora was cultured). Based on the signal intensity in the 1H NMR spectra,
sucrose disappeared completely from the medium, while the level of glucose
increased (Fig. 4 (c, d)).
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4.2 Comparing the Biotransformation Reactions Across Fungi

The scatter score plot of the principal component analysis (PCA) of the 1H NMR
spectral data of the pod-based media shows that metabolites present from the control
medium (green pod media only without any fungal culture initiated) place it alone in
quadrant 1 relative to the experimental samples. This implies that there were
significant differences between metabolites present in the control compared to the
experiments where 12 fungi were cultured individually on the same media made of
green pod material (Fig. 6).

1H NMR spectral data from the media on which D. phaseolorum (MOTU7), P.
microspora (MOTU10), and F. oxysporum (MOTU24) were cultured shows that
they cluster together in quadrant 2, whereas the spectral data for the media on
which Nigrospora sp. (MOTU13), N. bipapillata (MOTU8), and M. marksii
(MOTU18) were cultured shows that they cluster together in quadrant 3. Finally,
the spectral data for the media on which A. implicatum (MOTU4), B. ribis
(MOTU16 – 61G1), C. gloeosporioides (MOTU11), F. proliferatum (MOTU1),
B. ribis (MOTU16 – 25), and P. phyllanthicola (MOTU6) were cultured shows that
they cluster together in quadrant 4. The different fungi did not cluster based on their
order or genus, for instance, despite belonging to the same genus and based on
metabolite composition, medium on which F. oxysporum (MOTU24) was cultured
occurs in quadrant 2, whereas medium on which F. proliferatum (MOTU1) was
cultured occurs in quadrant 4. This is so despite quadrants 2 and 4 being antago-
nistic in terms of metabolites, i.e., metabolites which are present in a higher
concentration in quadrant 2 would be in a lower concentration in quadrant 4 and
vice versa. The results thus show that it is not possible to predict the biotransfor-
mation abilities of the fungus based on the order and genus that they belonged to
and that such empirical data from experiments are important to decipher the
connection between specific endophytes and flavor development in vanilla pods.
This thus renders building a hypothesis from literature for potential fungal endo-
phytes with specific effects on flavor compounds difficult. Furthermore,
F. oxysporum (MOTU24) is a pathogen [25] which was introduced in this work
so as to compare the differences in biotransformation abilities of a pathogen from
vanilla compared to endophytes from the same plant and on the same green
pod-based medium.

It is essential to know which metabolites contribute significantly to separate the
fungi in the PCA score plots as well as finding the relationship between such
metabolites. This would then form an indirect method of assessing the differences
in biotransformation abilities of the fungi, in terms of metabolites converted and
products formed. Particularly, it is necessary to find whether such metabolites that
demarcate the fungi on the PCA score plot in Fig. 7 are flavor-related molecules in
vanilla. In order to elucidate the identity of such molecules, a scatter loading plot was
constructed based on the PCA score plot results from the 1H NMR analysis of
medium on which endophytic fungi as well as a pathogen (MOTU24 F. oxysporum)
was cultured (Fig. 7).
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In terms of events, the fungal endophytes isolated from mature green pods are
present before the time of pod curing. The very presence of such endophytes in green
pods imply that the fungi are all able to feed onto pod material while being
unaffected by the antimicrobial properties of V. planifolia [26]. The metabolites
vanillin, p-hydroxybenzaldehyde, and vanillyl alcohol contribute to the final dark
pod vanilla flavor. The scatter loading plot in Fig. 7 shows that all three metabolites
occur in quadrant 2 only. Hence, media on which fungi D. phaseolorum (MOTU7),
P. microspora (MOTU10), and F. oxysporum (MOTU24) were cultured also clus-
tered in quadrant 2 on the PCA (Fig. 6). The three aforementioned fungi are thus
associated with a higher concentration of vanillin, p-hydroxybenzaldehyde, and
vanillyl alcohol essential to vanilla flavor compared to the control and to all other
fungi tested in this part of the work. Although within the green pod, the three
aforementioned molecules do not occur freely and rather occur in glycosylated
form; it is possible to imagine a situation where the fungi would affect the relative
ratios at which the three flavor-related molecules would occur in the pod prior to
curing. However, flavor-related phenolics occur in glycosylated form in the mature
green pods in order to render them less toxic. Despite the results here do not show
this, it is possible that the biotransformed molecules would be again glycosylated by
the green pod living plant material, but this time, the ratio at which such molecules
occur in the green pod would differ due to the biotransformation intervention of the
fungi.

However, this later hypothesis can be checked with further research. If quadrant
2 harbors those fungi that could potentially have an effect on vanilla flavor (Fig. 6),
the antagonistic fungi to those in quadrant 2 (based on the final metabolites present in
the medium after the experiment) are those in quadrant 4, i.e., A. implicatum
(MOTU4), B. ribis (MOTU16 – 61G1), C. gloeosporioides (MOTU11), F.
proliferatum (MOTU1), B. ribis (MOTU16 – 25), and P. phyllanthicola
(MOTU6). Given that the aforementioned fungi are antagonistic to those
(D. phaseolorum (MOTU7), P. microspora (MOTU10), and F. oxysporum
(MOTU24)) that influence the quality of the green pods with regard to vanilla flavor,
it is possible that controlling fungi present in quadrant 4 (Fig. 6) through the
application of targeted fungicides might improve the quality of the green pods.
Further research in this direction may be conducted. In extreme cases of infection,
the pathogenic fungus F. oxysporum (MOTU24) kills vanilla plants. However, the
results in the PCA score plot (Fig. 6) show that the medium on which this fungus was
grown occurs in quadrant 2 in Fig. 6, which is the quadrant associated with a major

�

Fig. 4 1H NMR spectra (methanol-d4-KH2PO4 in D2O, pH 6.0 extract) of medium on which
P. microsporawas cultured (Medium 1) and of the control. (a) Spectrum of Medium 1 in the range δ
3.7–9.9. (b) Spectrum of the control media in the range δ 3.7–9.9. (c) Spectrum of Medium 1 in the
range δ 4.1–5.5 (carbohydrates range). (d) Spectrum of the control medium in the range δ 4.1–5.5
(carbohydrates). The assigned peaks are as follows: 1, vanillyl alcohol; 2, p-hydroxybenzoic acid; 3,
p-hydroxybenzaldehyde; 4, vanillic acid; 5, vanillin; 6, glucovanillin; 7, glucose; and 8, sucrose
(Source, Khoyratty et al. [12])
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amount of three vanilla flavor-related compounds in the experimental medium
(Fig. 7). This implies that F. oxysporum (MOTU24) has the ability to influence the
amount of flavor present in green pods. This would then affect the amount of flavor
metabolites in the mature green pods that would be available for postharvest curing.
It is to be noted that the fungal endophytes used in this work were isolated from such
mature green pods.

Fungi need a carbon source to grow and develop and can use various sources.
However, they vary in their ability to utilize different carbon sources and thus show
some form of adaptation to their environment. For instance, different fungal taxa
target different carbon sources [27]. However, not all fungi tested consume the same
type and amount of carbon sources. For instance, quadrant 3 on the scatter loading
plot (Fig. 7) consists of those fungi that consume sucrose and glucose as carbon
sources. Such fungi include Nigrospora sp. (MOTU13 N. bipapillata (MOTU8), and
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M. marksii (MOTU18) according to the scatter score plot in Fig. 6. Additionally,
quadrant 4 on the scatter loading plot (Fig. 7) is characterized by those fungi that
consumed vanillin as a carbon source and, according to the scatter score plot (Fig. 6),
include fungi A. implicatum (MOTU4), B. ribis (MOTU16 – 61G1),
C. gloeosporioides (MOTU11), F. proliferatum (MOTU1), B. ribis (MOTU16 –
25), and P. phyllanthicola (MOTU6).

Le Comité d’experts FAO/OMS sur les additifs alimentaires [28] states that the
organoleptic property of vanillyl alcohol is defined as balsamic, vanilla-like flavor.
Although vanillyl alcohol is not the only molecule in vanilla to have an organoleptic
balsamic flavor, an increase in its amount would certainly contribute to this flavor.
Furthermore, gas chromatography-olfactometry (GC-O) analysis shows that
although vanillyl alcohol is present in pods at a much lower concentration than
vanillin, its contribution to aroma is as intense [29]. According to Ranadive [8], the
Bourbon-type vanilla, which includes pods from Réunion Island, is characterized by
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Fig. 6 Scatter score plot of principal components (PC) 1 and 2 of the principal component analysis
(PCA) results obtained from 1H NMR spectral data of the pod-based media on which fungi were
cultured and scaled to Pareto distribution. Twelve fungi were used for culture; additionally, a control
was included: MOTU1, Fusarium proliferatum; MOTU4, Acremonium implicatum; MOTU6,
Phomopsis phyllanthicola; MOTU7, Diaporthe phaseolorum; MOTU8, Nemania bipapillata;
MOTU10, Pestalotiopsis microspora; MOTU11, Colletotrichum gloeosporioides; MOTU13,
Nigrospora sp.; MOTU16–25, Botryosphaeria ribis; MOTU16-61G1, Botryosphaeria ribis;
MOTU18, Mycosphaerella marksii; and MOTU24, Fusarium oxysporum.) (Source, Khoyratty
et al. [12])
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an intense balsamic flavor. The presence of high amounts of vanillyl alcohol in the
media (Figs. 6 and 7) on which D. phaseolorum (MOTU7), P. microspora
(MOTU10), and F. oxysporum (MOTU24) were cultured is hence of interest with
regard to vanilla flavor. This may then contribute to the intense balsamic flavor
which is characteristic of Bourbon-type vanilla.

4.3 Amounts of Biotransformed Flavor Metabolites by Fungi
Grown on the Same Media

Catabolism of the compounds present in the same green pod-based media by each
fungus alters the amounts of flavor-related metabolites present in the medium, in
which the mature green pod material was the only nutrient for the fungus. In order to
quantify the bioconversion by a selection of the tested fungi, calculations on the 1H
NMR analysis of metabolites from the media (Table 4) were performed.

The quadrant in which each medium occur in the principal component analysis
(PCA) (Figs. 6 and 7) is also indicated below. The quantification was performed

Vanillin
p-hydroxybenzaldehyde
Vanillyl alcohol

p-hydroxybenzaldehyde
glucoside

Glucoside A
Glucoside B

Quadrant 2

Quadrant 1Quadrant 4

Quadrant 3

7 (3.9)

3 (3.94)

Sucrose
Glucovanillin

0.250.20.150.10.050-0.05-0.1-0.15

-0.2

-0.1

0

0.1

0.2

0.3

2 (4.58)
3 (7.06)
3 (7.54)

2 (5.18)

4 (7.58)

4 (7.34)

5 (7.86)

5 (7.02)

7 (6.9)

7 (4.54)
7 (6.86)

1 (4.18)
1 (5.42)

PC1(49.0%)

P
C

2(
19

.0
%

)

4 (9.86)

4 (7.62)

9 (1.34)

9 (0.82)
6 (5.06)

9 (0.78)8 (0.86)

8 (0.94)

9 (1.90)
6 (7.90)
6 (7.30)8 (2.22)

3 (9.74)

Glucose

Fig. 7 Scatter loading plot of principal component (PC), one and two of the principal component
analysis (PCA) results obtained from 1H NMR spectral data of the pod-based media on which fungi
were cultured and scaled to Pareto distribution. Chemical shifts identified for each metabolite are
shown in bracket in the figure; the chemical shifts from literature (all from [17]) are shown in
brackets in this figure legend, as follows, next to the numbers (one to nine) that identify the
metabolites in the above figure: 1, sucrose (chemical shifts, δ 5.4, δ 4.17); 2, glucose (chemical
shifts, δ 5.18, δ 4.57); 3, vanillin (chemical shifts, δ 9.73, δ 7.52, δ 7.49, δ 7.04, δ 3.93);
4, glucovanillin (chemical shifts, δ 9.82, δ 7.62, δ 7.57, δ 7.34, δ 5.19, δ 3.95); 5, p-hydroxyben-
zaldehyde (chemical shifts, δ 9.75, δ 7.85, δ 7.04); 6, p-hydroxybenzaldehyde glucoside (chemical
shifts, δ 9.84, δ 7.94, δ 7.29, δ 5.01); 7, vanillyl alcohol (chemical shifts, δ 3.75, δ 4.38, δ 5.02, δ
6.71, δ 6.72. δ 6.89, δ 8.79); 8, bis[4-(β-D-glucopyranosyloxy)-benzyl]-2-isopropyltartrate (gluco-
side A) (chemical shifts, δ 2.20, δ 0.92, δ 0.86); and 9, bis[4-(β-D-glucopyranosyloxy)-benzyl]-2-
(2-butyl)tartrate (glucoside B) (chemical shifts, δ 1.90, δ 1.35, δ 1.10, δ 0.84, δ 0.77). Quadrants
were labeled with metabolite(s) that predominate in amount in each (Source, Khoyratty et al. [12])
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through 1H NMR (micromoles per gram DW green pods, n = 3 biological
replicates).

Six media, including the control, were chosen on which the fungi MOTU10
P. microspora, MOTU7 D. phaseolorum, MOTU24 F. oxysporum, MOTU8
N. bipapillata, and MOTU1 F. proliferatum were cultured. The choice was made
based on the PCA score plot results (Fig. 6) where at least one representative media
from each quadrant was chosen, in order to have a quantitative overview of metab-
olites that characterize each quadrant. However, all media in quadrant 2 (Fig. 6) were
selected given that media in this quadrant were clustered together based on the
presence of high amounts of vanilla flavor-related metabolites according to the
scatter loading plot (Fig. 7). The quadrant from which the chosen media belongs
to on the PCA score plot is indicated in Table 4 (quadrant in PCA in which media
occurs, 1, 2, 3, and 4).

The amounts of nine metabolites in the samples was calculated from 1H NMR
data: six compounds related to vanilla flavor that were identified by 1H NMR
(vanillin, glucovanillin, p-hydroxybenzaldehyde, vanillyl alcohol, vanillic acid, p-
hydroxybenzoic acid) as well as three carbohydrates (sucrose, glucose, and fruc-
tose), all of which separate the samples onto the different quadrants on the PCA
score plot (Fig. 6).

The amounts of the selected nine metabolites present in the medium differed
depending on the fungus that was grown on that medium (Table 4). There was no
fructose in the spent media on which F. oxysporum (Medium MOTU24) and
F. proliferatum (Medium MOTU1) were cultured. It is possible that the fructose
was consumed by the fungi given that Fusarium spp., such as F. oxysporum f.sp.
cubense, consume fructose [30]. However, the amount of fructose in the spent
Medium MOTU7 on which D. phaseolorum was cultured is almost that of the
amount of sucrose in the control medium. Given that sucrose was completely
consumed, the fructose may thus have come from the hydrolysis of sucrose.
Depending on the length of time of culture, the fungi would deplete the media
completely of sugars as was the case in this work. The amounts of the flavor-related
metabolites vanillin, vanillyl alcohol, vanillic acid, and p-hydroxybenzoic acid
increased in the medium on which P. microspora (Medium MOTU10) was cultured
compared to the control. Whereas in Medium MOTU7 (cultured with
D. phaseolorum), the amounts of vanillin, vanillic acid, and p-hydroxybenzoic
acid, but not vanillyl alcohol, were higher than in the control medium. The amounts
of vanillin in Medium MOTU24 (on which the vanilla pathogen F. oxysporum was
cultured) as well as that in Medium MOTU8 (on which N. bipapillata was cultured)
were lower than that of the control. Both Media MOTU8 and MOTU1
(on which F. proliferatum was cultured) had lower amounts of flavor-related metab-
olites compared to the control with the exception of vanillic acid and p-
hydroxybenzoic acid which were higher. Overall, the quantity of flavor-related
metabolites in the medium tends to decrease from medium that are placed in
quadrant 2 (highest quantity, Table 4), moving to lower amounts in quadrant 3 and
quadrant 4 (lowest quantity, Table 4). Medium MOTU7 shows the highest vanillin
amount, whereas Medium MOTU10 shows the highest vanillyl alcohol amount.
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Hence, in Medium MOTU10, most of the vanillin glucoside was converted into
vanillyl alcohol, by P. microspora, which increased more than sixfold relative to
the control. Vanillin increased more than twofold. But the overall picture is that in
the mass balance, only a small amount of about 10 % vanillin is lost through the
bioconversion by P. microspora, whereas with F. proliferatum (Medium MOTU1),
a 100 % loss of vanillin was observed. Sucrose was completely consumed by all
fungi tested, whereas glucose amount increased in Medium MOTU10. Overall,
from the 1H NMR analysis, it was observed that all fungi tested catabolized either
all or almost all (as in the medium MOTU24) glucovanillin present in the media
without an increase in vanillin content, i.e., the amount of vanillin in the exper-
iments were lower than that in the control except in the case of MOTU10 P.
microspora and of MOTU7 D. phaseolorum, where the medium showed an
increase in vanillin amount in the experimental medium compared to the amount
present in the control.

As a consequence, not all fungi contribute equally to a change in vanilla flavor
in tests conducted under laboratory conditions. It is thus conceivable that some
fungi would improve the aromatic quality of the pods, while others would decrease.
Moreover, the different fungi tested would interact together in a concerted manner
in the pod. However, the latter situation is beyond the scope of the experiments
carried out in this work but could prove as a potential future work conducted
on aseptic living green pods and thus possibly bypass the time-consuming
curing process. The experiments conducted here concern dead aseptic green pod
material.

4.4 Ratios of Quality Marker Metabolites After Biotransformation

In view of evaluating the quality of the material obtained after P. microspora
(Medium MOTU10), D. phaseolorum (Medium MOTU7), F. oxysporum (Medium
MOTU24), N. bipapillata (Medium MOTU8), and MOTU1 F. proliferatum
(Medium MOTU1) cultures, a comparison is necessary to reference parameters
that define quality in cured vanilla pods, the final product of vanilla production.

A method of evaluating quality involves a calculation based on the ratios in which
the four quality markers ( p-hydroxybenzoic acid (p-HB acid), p-hydroxyben-
zaldehyde (p-HBAld), vanillic acid, and vanillin) occur in cured pods [8]. Relative
to the ratios in the control medium, not all fungal biotransformations produced the
same ratios R1 (vanillin/p-HBAld), R2 (vanillic acid/p-HBAld), R3 (p-HB acid/p-
HBAld), R4 (vanillin/vanillic acid), and R5 (vanillin/ p-HB acid) (Table 5) where
p-HBAld is p-hydroxybenzaldehyde and p-HB acid is p-hydroxybenzoic acid.

The ratios associated to quality in dark pods that are indicated were
p-hydroxybenzaldehyde (p-HBAld) and p-hydroxybenzoic acid (p-HB acid). The
values from Medium MOTU10, MOTU7, MOTU24, MOTU8, and MOTU1 which
are either within the range of closest to the range of the references are underlined and
in bold.

5 Host and Guest: Vanilla Inhabited by Endophytes 213



Ta
b
le

5
R
at
io
s
of

va
ri
ou

s
va
ni
lla

co
m
po

un
ds

re
la
te
d
to
qu

al
ity

in
th
e
co
nt
ro
la
nd

in
th
e
sp
en
tm

ed
iu
m
on

w
hi
ch

M
O
T
U
10

P
es
ta
lo
tio

ps
is
m
ic
ro
sp
or
a,
M
O
T
U
7

D
ia
po

rt
he

ph
as
eo
lo
ru
m
,
M
O
T
U
24

F
us
ar
iu
m

ox
ys
po

ru
m
,
M
O
T
U
8
N
em

an
ia

bi
pa

pi
lla

ta
,
an
d
M
O
T
U
1
F
us
ar
iu
m

pr
ol
ife
ra
tu
m

w
er
e
cu
ltu

re
d
fo
r
30

da
ys

(S
ou

rc
e,
K
ho

yr
at
ty

et
al
.[
12
])

S
am

pl
e

R
1
=

va
ni
lli
n/
p-

H
B
A
ld

R
2
=

va
ni
lli
c
ac
id
/p
-

H
B
A
ld

R
3
=

p-
H
B
ac
id
/p
-

H
B
A
ld

R
4
=

va
ni
lli
n/
va
ni
lli
c

ac
id

R
5
=

va
ni
lli
n/
p-
H
B

ac
id

C
on

tr
ol

2.
73

–
1.
19

–
2.
30

M
ed
iu
m

M
O
T
U
10

9.
54

2.
37

22
.8
2

4.
02

0.
42

M
ed
iu
m

M
O
T
U
7

6.
24

0.
78

1.
83

7.
98

3.
42

M
ed
iu
m

M
O
T
U
24

1.
57

0.
83

11
.0
7

1.
89

0.
14

M
ed
iu
m

M
O
T
U
8

–
–

–
0.
74

0.
08

M
ed
iu
m

M
O
T
U
1

–
–

–
–

–

R
ef
er
en
ce

ra
tio

s
(c
ur
ed

po
ds
,[
8]
)

10
–2
0

0.
53
–1

.5
0.
15
–0

.3
5

12
–2

9
40
–1
10

214 S. Khoyratty et al.



Medium MOTU10 had the closest ratio R1 to the reference, Medium MOTU7
and 3 to that of R2, and Medium MOTU7 to that of R4. However, the ratios R3 and
R5 for Medium MOTU10, MOTU7, MOTU24, MOTU8, and MOTU1 are well
outside the acceptable reference range for good quality cured beans.

5 Conclusions

Out of 434 isolated fungi, 23 species were identified. Eleven fungi were tested for
their abilities to biotransform green pod material into compounds related to vanilla
aroma. Two were retained for having such abilities (Fig. 8).

In this case, only 0.4 % of isolated fungi were related to the biotransformation
reaction function of interest. This is so given that endophytic fungi present inside a
plant do not all interact with the same metabolic pathways of the plant. As a
consequence, it is always necessary in such type of work, to search from a large
set of fungi for the few fungi of interest. The two fungi that were retained
(P. microspora, D. phaseolorum) are promising toward influencing vanilla aroma.
It is thus possible to infect plants with both fungi to improve vanilla aroma in pods.
The latter possibility is subject to further research.

Furthermore, as with the patent application from Givaudan [6], the two fungi
could aid to skip the laborious and costly curing process, i.e., the harvested green
pods may be transformed by fungal culture into a material comparable to dark pods
within a short lapse of time. This process can decrease costs and the time for the final
product to be ready by bypassing the curing process.

Additionally, the fungus recovered post-scalding was different from those recov-
ered pre-scalding. This is important given the different events that occur during the
curing process of vanilla pods. Hence, it might be possible that a difference in
endophytic composition at different stages in curing is correlated to different
aroma development. The latter can form part of further research work.

fungi isolated

different species identified

tested for biotransformations (green pods)
- St Rose/St Andre (Best
vanillla)

retained
- biotransformed products
- quality ratio

-1 fungus recovered

1434

23

11

2

Scalded pods
(isolation)

Fig. 8 Number of fungi isolated in relation to the number of fungi found to affect content of vanilla
aroma-related compounds
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Abstract
Aflatoxin B1 is one of the most hepatocarcinogenic naturally occurring com-
pounds known, produced by toxic species of fungi in different types of food
including rice. The contamination of food with this toxin could lead to a series of
health problems and huge economic losses. Rice is the second largest quantity
staple food and internationally traded cereal. Aflatoxin is produced in areas where
climatic conditions are favorable to fungal growth and the production of aflatoxin
affects plant growth and rice yield. The aim of this review article is to show and
explain the levels of aflatoxin contamination of rice worldwide during the period
2004–2014. In general, aflatoxin levels in rice are low and vary from country to
country. However, the high daily intake of rice makes even these lower levels of
concern, as aflatoxin B1 (AFB1) is carcinogenic and has been correlated with
hepatocellular carcinoma (HCC) incidence in some countries. In addition to the
increased distribution of aflatoxins in rice being addressed, the analytical pro-
cedures and the local and global permissible limits for aflatoxins are presented
and discussed.

Keywords
Aflatoxin • Rice • Worldwide contamination • Health • Economy

1 Introduction

1.1 The Toxicity Aflatoxin

The aflatoxins (AFs) are natural carcinogenic secondary metabolites produced by
several Aspergillus species including A. flavus and A. parasiticus (Rasooli and
Abyaneh 2004) and rarely by A. nomius ([56, 57, Ok et al. 2014; [1]). AF has been
discovered in 1961 after epizootic of “turkey X” disease in England that resulted
from feeding peanut meal contaminated by this metabolite’s molds. Investigations
on these outbreaks showed the presence of the four main aflatoxins, named
aflatoxin B1, B2, G1, and G2, the letters standing for the fluorescence color of
blue and green and the numbers of the sequences of Rf values on thin layer
chromatography plates [52]. Since that time, the occurrence and toxicity of AFs
have been investigated in detail. AFB1 was classified by the International Agency
for Research on Cancer (IARC) as a class 1A human carcinogen, because it has
been found to be the most potent naturally occurring carcinogen to animals with a
very strong association with hepatitis cellular carcinoma (HCC) [43, 45, 48, 59].
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The order of potency for both acute and chronic toxicity of AFs is aflatoxin B1

(AFB1)>G1 (AFG1)> B2 (AFB2)>G2 (AFG2) [58]. It is known now that AFB1
is the most hepatocarcinogenic substance known to man [62, 55]. What is far more
worrying is that death may result from the consumption of food that is heavily
contaminated with this mycotoxin. Outbreaks of acute aflatoxicosis with high
mortalities have been documented among humans and animals. Several reports
indicate that the largest reported outbreak of aflatoxicosis in humans occurred in
eastern Kenya in 2004 with 317 cases identified with a very high mortality rate of
68 % (215 deaths) [60, 61].

1.2 The Importance of Aflatoxin in Rice

Aflatoxin in many crops and food commodities, e.g., peanut, corn, nuts, and milk,
has been widely investigated, but there are a limited number of reports on the
incidence and levels of aflatoxins in rice worldwide. According to the Global
Environmental Monitoring System of the World Health Organization [2], rice
(Oryza sativa or Oryza glaberrima) is the second level of cereal staple consumed
food worldwide after wheat and consists of the major part of the diets for half of the
world. It is also reported that the rice forms 27 % of the global diet and 20 % of
dietary protein intake in the developing countries (Ok et al. 2014). Further, the Food
and Agriculture Organization (FAO) of the United Nations (UN) has reported in
2004 that rice is the major staple food for 17 countries in Asia, 9 countries in North
and South America, and 8 countries in Africa [3].

The FAO in 2012 reported that there are 156 million cultivated hectares of rice,
producing 721 million tons globally in 2011 [4]. China was the highest producer
with 202.3 million tons followed by India with 154.5, whereas Latin America, the
Caribbean, and Brazil produced the larger amount of rice of �12 million tons in
2009/2010 [3]. In Africa, rice is mainly produced in Egypt and Nigeria [5],
whereas in Europe it is mainly produced in France and Spain [4]. In some countries
like the Philippines, rice formed 35 % of total food intake with the provisional
tolerable daily intake (PTDI) of up to 280 g per adult person [2] and in Vietnam of
up to 500 g per adult [6]. Rice is usually produced in climatic conditions favorable
for fungal infection and growth, and hence potential mycotoxin contamination can
occur before and after harvest [2]. However, the contamination reported for rice
with fungi is lower than that for many other cereals [1]. Even so, that does not
mean that fungal infection and mycotoxin contamination do not pose a real
problem, as chronic intoxication can occur due to the exposure of low levels of
AFB1 over a long period of time. An example of this was reported by Almeida
et al. [3] who recorded approximate levels of 13.13 μg/kg of ABB1 with
co-occurrence with other mycotoxins during outbreak of beriberi disease in 2006
in Brazil. This was attributed to the consumption of contaminated rice stored in
inappropriate conditions.
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2 Analytical Procedures for Determining of Aflatoxin in Rice
Samples

2.1 Sampling

The sampling of materials, especially large bulk cereals, for contaminants is not
easy and, if done correctly in a statistical manner, can be expensive. To take a
sample(s) representing a ship’s cargo or a bulk load being off-loaded from a train
or trucks or from large storage silos, particular tools and equipment are required
such as grain sampling spears, and these can be used for sampling different parts
of the lot [7]. Moreover, the collected samples must be mixed well, which can
include grinding before subsampling to give an appropriate sample size. The final
samples are ground to small particle size and kept in appropriate condition for
subsequent extraction and analysis. The bulk of rice sometimes needs to be stored
in the field or retail stores before exporting and marketing. Researchers examining
rice crops in countries of production are more likely to do sampling of the crop in
the field after harvesting or in the retail stores rather than to collect them from the
markets or homes. Even so, mycotoxin levels can increase during all these storage
stages and/or transportation after initial sampling. Another important factor to
consider is seasonal sampling, particularly in the regions affected by humid and
hot seasons. Furthermore, the results can be improved by the care of following
factors:

1. Specific geographical area in large countries such as China and India, as some-
times the environmental conditions may be completely different even if the crop
produced in the same region

2. Number and distribution of collected samples, as it is well known that mycotoxins
do not occur evenly distributed in seeds, individual plants, or plant populations

3. The size of the collected samples should, before subsampling, be at least 0.5 kg,
also to decrease the error of mycotoxin distribution in the subsample.

An examination of the literature shows that Ok et al. [51] collected their 80 sam-
ples of rice from the farms in different areas, while Park et al. [21] in Korea took
88 samples from supermarkets and kept them at –20 �C before subsampling. Nguyen
et al. [6] collected 100 field samples in two seasons (rainy and dry seasons) from five
provinces of Vietnam. These were also kept at�20 �C before subsampling. In
Vienna, 81 samples were purchased from different markets; 71 out of them were
long grain rice, 5 were short grain rice, and 5 were puffed rice (Reiter et al. [16]). In
China, 29 samples from households were collected [8], whereas Wang and Liu [9],
collected 74 samples from eight regions, packed in dry and sealed containers. Reddy
et al. [10] purchased 13 rice samples from different supermarkets in Penang (Malay-
sia), while Ghali collected 11samples from local markets of Tunisia and stored them
in plastic bags at 4 �C until grinding and analysis [11]. In the Ivory Coast, Sangare-
Tigori et al. [12] followed a statistically planned protocol for subsampling; ten rice
samples from markets were collected, and from a 50 kg batch, a 5 kg subsample was
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taken, ground, and mixed from which a final subsample was used for analysis, after
storage at �20 �C.

In Canada, 200 samples were collected from markets (imported from the United
States and Asian countries) over 2 years. The samples (1 kg) were ground and
(400 g) were frozen at �20 �C before analysis [13]. In Brazil, 230 samples of rice
(bran, rice husk, and broken) were collected from different regions in 2007–2009
[3]. In Spain and Mexico, a total of 67 rice samples (1 kg) were collected from local
stores and supermarkets in 2008–2009. They were kept after drying at 60 �C in
plastic bags before analysis [4]. Seventy-eight polished and nine brown rice samples
(1 kg/t) were obtained in June 2003 in Southern and Central Mindanao, the highest
rice-producing regions of the Philippines, using a good protocol of quarterly
subsampling. In fact, they mixed the sample in an electric mixer, quartered it, took
the two opposite quarters, and repeated this step until, approximately, a 250 g sample
was obtained [2]. Makun et al. [5] collected 21 rice samples (about 0.5 kg each) from
the fields during December 2008 from 21 villages in the traditional rice growing area
of Niger and stored them in the deep freezer at�20 �C before analysis. Rice samples
(99) from retail outlets in the south and central parts of Sweden were collected and
then pooled, mixed, ground to a fine powder, and stored at room temperature before
analysis [14].

2.2 Extraction

Aflatoxins are moderately polar compounds and, therefore, are likely to be soluble in
and extracted in solvents of medium polarity. In term of polarity, AFG2 is the more
polar followed by AFG1, AFB2, and then AFB1. Chloroform is the ideal extraction
solvent; however, its use is banned due to its toxicity and it also tends to extract other
oils such as vegetable oils [38, 39, 41]. Consequently, aqueous methanol or aceto-
nitrile is the choice for extracting aflatoxin from rice as indicated by the literature.
Methanol is the more commonly used solvent as it is also cheaper than the others; for
example, a solvent mixture of methanol/water with the ratio rate of 80:20 v/v is
widely used. Several studies have used different volumes of this mixture with respect
to the sample weight to extract the AFs. Ok et al. used 100 ml to extract the toxins
from 25 g of milled rice (Ok et al. 2014), whereas 20 ml for 10 g was used by Villa
and Markaki [15], 200 ml for 50 g [32], 100 ml for 50 g [16], 40 for 10 g [11], 250 ml
for 50 g [13], 120 ml for 25 g [4], 300 ml for 50 g [3], and 60 ml for 20 g [10]. Only
in one study, a different ratio was used and this was 125 ml methanol/water with a
ratio of (50:50, v/v) to extract 25 g of milled rice [8].

The other useful extraction solvent for AFs is aqueous acetonitrile where 100 ml
of acetonitrile – 4 % aqueous solution of potassium chloride (9:1) was used to extract
both AFB1 and ochratoxin A from 20 g of sample [6]. A 80 mL acetonitrile/water
solution (84/16) for 20 g sample was used [9], 200 ml of 84 % acetonitrile for 50 g
[14], and Chloroform (150 ml) was used in one study to extract 50 g of sample in the
presence of water (25 ml) and diatomaceous earth [17].
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2.3 Cleanup and Derivatization

In general, for precise and accurate monitoring of AFs in food commodities, the
extraction step must be followed by a cleanup process. This step is very important in
order to remove interfering substances and enhance the performance of detection,
and to this effect, several techniques has been used. Immuno-affinity column
chromatography [3, 4, 11–13, 16, 18, 49] and solid-phase extraction (SPE) chroma-
tography ([14, 15, 17, 19, 20, 40, 51]) were employed by various workers. Although
the immune-affinity column chromatography is relatively costly, it is the more
predominant technique. Followed by SPE and more rarely used is classical liquid-
liquid chromatography [42].

In case of use of HPLC, the derivatization of AFB1 and AFG1 to the more
fluorescent AFB2a and AFG2a is required (Fig. 1). As AFB1 and AFG1 have less
fluorescence properties than that of AFB2 and AFG2, they can reduce the efficiency
of the detection. The modern technique of the Kobra cell has been used widely in
several investigations [3, 5, 6, 11, 14, 16]. This technique of derivatization is based
on brominating the aflatoxin type of interest using an electrochemical cell. The
derivatization occurred during the run of samples, so it is a time-saving technique.
However the cheaper and classical derivatization using trifluoroacetic acid (TFA) is
still the predominant derivatization method used ([2, 4, 15, 18, 19]; [9, 51]). TFA
works by hydroxylating the 8,9 alkene group in aflatoxin.

2.4 High-Performance Liquid Chromatography (HPLC)

High-performance liquid chromatography (HPLC) is the most predominant tech-
nique used for separation, detection, and quantitation of aflatoxins in rice crop ([2–6,
11, 13–16, 18–20]; [9, 51]). Aflatoxins are fluorescent compounds and occur
naturally in very small amounts of μg/kg. Therefore, the analysts adopt the fluores-
cence detector which is more sensitive than UV absorption, as the detector with the
HPLC system. In general, the fluorescence detector is approximately 1,000 times
more sensitive than the UV-Vis detector. Recently, the HPLC coupling with mass
spectrometry is also becoming common but not in developing countries, as the
technique is extremely expensive. A reverse phase column is normally used (C18),
the main advantage being the use of water as a mobile phase constituent. This
decreases the cost of separation and enhances the aflatoxin detection, as water is
an important solvent for water-soluble fluorescent compounds. However, AFB1 and
AFG1 have less fluorescence properties.

The retention time (RT) of aflatoxins in HPLC chromatography is dependent on
the eluent and column used, temperature, pumping pressure, and rate of eluent
passage. In reverse phase RP-HPLC, the derivatized AFG1 is eluted first, followed
by the AFB1 derivative, then AFG2, and AGB2 last. The presence of one more
oxygen in AFG2 and AFG1 makes them into more polar compounds, and the

224 A.O. Elzupir et al.



presence of an alkene group in AFG1 makes it less polar than AFG2, whereas in the
derivatized toxin, a polar group is replaced by the alkene group. So the normal
elution sequence of the four aflatoxins is AFG2, AFG1, AFB2, and AFB1 in reverse
phase column chromatography.
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trifluoroacetic acid (TFA) and Kobra cell
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2.5 Enzyme-Linked Immunosorbent Assays

Other methods used for aflatoxin monitoring and survey include the technique of
enzyme-linked immunosorbent assays (ELISAs) [8, 10, 12, 21, 22]. ELISA is a
simple and easy technique and is being rapidly developed for aflatoxin detection. It
used for general screening as well as quantification. The disadvantage of ELISA is
that it is temperature sensitive and therefore considered as a semiquantitative
technique [23].

3 Occurrence of Aflatoxins in Rice

3.1 Aflatoxin B1

AFB1 is the most harmful mycotoxin found in rice samples in several investigations.
Park et al. [21] reported that 5 out of 88 rice samples had an average contamination
level of 4.8 μg/kg AFB1; a higher frequency of contamination of 51 out of 100 sam-
ples with an average of 3.31 μg/kg was reported by Nguyen et al. [6]; 29 samples
analyzed by Sun et al. had levels with a mean concentration of approximately
0.57 μg/kg [8]. In another study, 16 out of 84 rice samples were contaminated
with range of 0.15–3.22 μg/kg [9], and 9 of 13 rice samples analyzed by Reddy
et al. had a mean value of 1.75 μg/kg [10], whereas Reddy et al. [22] found that
814 out of 1,200 rice samples had detectable levels and 50 % of 199 rice samples
were found to be contaminated with average range of 0.34–0.39 μg/kg [13]. AFB1
were recorded in 23 out of 81 Austrian samples with an average of 1.97 μg/kg
[16]. AFB1 was also detected in ten out of ten rice samples with an average
concentration of 4.5 μg/kg [12]. AFB1 was detected in ten field samples with an
average concentration of 60.3 � 28.2 μg/kg and range of 4.0–304.4 μg/kg, in six
stored samples with an average 12.2� 1.9 μg/kg and range of 5.6–17.6 μg/kg, and in
five samples from markets with an average of 21.0 � 4.7 μg/kg and mean level of
9.9–34.1 μg/kg [5].

These results indicate occurrence of AFB1 in rice samples with varied concen-
tration but generally less than 5 μg/kg. However, it was observed in some samples
that the AFB1 levels were extremely high as reported by Makun and coworkers
above the EC regulation of 2 μg/kg, which is considered the highest permitted level
for aflatoxin in any food worldwide. The intake of rice in Europe is very small
compared to that of Asian, some Latin American, and African countries, where rice
is the main dietary food with the consumption of at least one meal per day. Hence,
the toxic and carcinogenic effects of AFB1 on humans in such countries are expected
to be high due to long and repeated chronic exposure. The highest reported value for
AFB1 in rice was 308 μg/kg [22], 153 times higher than the EC’s permitted level,
followed by 30 μg/kg [6], 10 μg/kg [12], and 8 μg/kg [21] in other samples. These
levels of AFB1 are high with the highest likely to cause acute symptoms in humans.
The presence of these levels in the rice is alarming and hence is of importance to
specialists, governmental bodies, producers, and consumers. They would constitute
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a leading role of AFB1 in rice in the spread of hepatocellular carcinoma (HCC) in
countries with a high intake of rice. Thus the outcome of these investigations
imposes a responsibility on member states of such populations, toward food safety
for this staple food commodity.

3.2 Total Aflatoxin

The total aflatoxin content (AFB1+ AFG1 + AFB2 + AFG2) is no less important
than the reporting on AFB1. The majority of regulations throughout the world cover
the presence of total aflatoxin, but there are a few countries that also consider AFB1
individually such as EC laws. The carcinogenicity of AFG1, although not as
commonly found as AFB1, should also be considered as it has been showed to
form DNA adduct similar to that of AFB1 [24]. In addition, recent experimental
work shows that AFG1 induces oxidative DNA damage [25]. The occurrence of
several aflatoxins together was detected in rice samples, as indicated in the literature.
However, the estimated total contamination levels are less with regard to other
commodities, such as peanut and peanut products. The highest value of contamina-
tion with several aflatoxins in recent data (during 2004–2014) was reported by
Makun et al. [5]. Aflatoxins were found in all 21 samples analyzed with contami-
nation range of 27.7–371.9 μg/kg and average concentration of 82.5 � 16.9 μg/kg.
Similarly, 135 rice samples out of 230 were contaminated with an average concen-
tration of 13.13 μg/kg [3]. Iqbal et al. [19] reported 185 out of 413 rice samples
contaminated with mean concentration of 11.2 � 3.91 μg/kg. Further, in limited
survey, one sample out of 3 rice samples was contaminated with 14.7 μg/kg [20];
aflatoxins were detected in 24 out of 81 rice samples with an average contamination
of 1.97 μg/kg [16]. Also 74 out of 78 and 23 out of 84 were found contaminated with
mean concentration of 1.53 μg/kg [2] and 0.79 μg/kg [9], respectively. It is clear that
the majority of rice samples were heavily contaminated with these mycotoxins. The
reported higher value of 371.9 μg/kg was 92 times greater than 4 μg/kg legal limit of
aflatoxin in rice prescribed by EC legislation. Other workers also reported very high
incidence of aflatoxin in rice such as 68 μg/kg [19], 9.9 μg/kg [16], and 8.7 μg/kg
[2]. Although 9.9 and 8.7 μg/kg is less than the US FDA limit of 20 μg/kg, these
concentrations are expected to pose serious problems particularly in the region of
high intake of rice, such as Asian countries.

3.3 Other Aflatoxins (AFG1, AFG2, and AFB2)

Special focus to these aflatoxins (AFG1, AFG2, and AFB2) is very rare as there are
no regulations for these aflatoxins individually. The toxicity of AFG2 and AFB2 gets
less attention; hence little is known about these aflatoxins. Moreover, the toxicity of
AFG1 becomes known recently [25], which is considered within the total aflatoxins.
The international regulatory bodies consider the total aflatoxins as harmful sub-
stances, including all the four aflatoxins: AFB1, AFG1, AFG2, and AFB2.
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Some studies were focused on these individual aflatoxins (AFG1, AFB2, and
AFG2) and their levels were demonstrated. Of the 78 analyzed rice samples,
74 were found to be contaminated with AFG1 which ranged from “not detected” to
“0.93 μg/kg” with an average value of 0.08 μg/kg. In these samples, AFB2 ranged
from “not detected” to 0.33 μg/kg with the average value of 0.08 μg/kg [2]. Wang and
Liu [9] have reported AFG1 in 7 out of 84 samples with contamination range of
0.36–1.59 μg/kg. AFB2 was found in three samples with contamination range of
0.06–0.24 μg/kg, while AFG2 was not detected in all the samples. Another investi-
gation carried out using 32 rice samples detected AFB2 in 1 sample (0.7 μg/kg),
AFG1 in 20 samples (1.6–16.3 μg/kg), and AFG2 in 31 samples (1.6–25.9 μg/kg)
[4]. Further, of the 24 analyzed samples, AFG1 was not detected in all the samples,
while AFG2 was recorded in only one sample. The concentration was less than the
limit of quantification. Though AFB2 was found in 14 samples, the concentration was
less than the limit of quantification, and only one sample had detectable concentration
of 1.53 μg/kg. However, these results could be improved by increasing the concen-
tration of extract residue as well as increasing the volume of injected sample
[16]. Another study had considered only AFB2 in the investigated samples. AFB2
was detected in 23 out of 100 rice samples with contamination value ranging from
0.002–0.63 μg/kg and average value of 0.08 μg/kg [13].

These studies have clearly demonstrated the occurrence of all types of natural
aflatoxins in rice crops. However, as expected, the level is less than the reported
levels of aflatoxin B1. This is in consistence with the literature showing the pre-
dominance of AFB1 over other aflatoxins. Hence, the rice crop is contaminated with
all the four types of aflatoxins.

4 Levels and Exposure to Aflatoxins Globally

4.1 Asia

Rice crop is a favorable food diet in the majority of Asian countries. According to
report published by FAO, the average daily intake of rice in selected Asian countries
is 269 g per day per person. The average contamination ranged from 0.5 μg/kg in
China [8] to 45 μg/kg in India [17].

AFB1 was investigated in rice samples in several countries of the Western Pacific
Region. The higher value of contamination was reported in samples from South
Korea, followed by Malaysia, and then China. In Korea, two investigations were
conducted. [21] reported the presence of AFB1 in 5 out of 88 samples with the
average concentration of 4.8 μg/kg. Recently, aflatoxin was detected in six rice
samples in range between 0.7 and 2.7 μg/kg which was lower than the previously
published values (Ok et al. 2014). In Malaysia, AFB1 was detected in 9 out of 13 rice
samples with an average contamination of 1.75 μg/kg [10]. These levels were higher
than that reported from China. AFB1 was detected in all the 29 rice samples analyzed
from different locations of China (Huantai, Huaian, and Fusui). The average con-
tamination range recorded was from 0.5 to 0.6 μg/kg [8]. This reported value of
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contamination was slightly lower than the results obtained before which showed an
average concentration of 0.79 μg/kg [9].

The daily intake reported for these three countries is 285 g/day/person in China,
268 g in Korea, and 230 g in Malaysia. According to this intake value, the provisional
tolerable daily intakes (PTDIs) for these countries are 2.6, 7.6, and 6.7 ng/kg
bodyweight, respectively. These are higher than the reported PTDI for aflatoxins in
vegetable oils and comparable or slightly less than reported for aflatoxins in peanut
[26]. The calculation of PTDI is based on speculation of 60 kg weight per person.

In South Asia, aflatoxin levels in rice have been reported from India, Pakistan,
Vietnam, and the Philippines [2, 6, 19, 22]. In Japan, 83 analyzed rice samples were
reported to be aflatoxin-free samples [27] similar to analyzed samples reported
previously [28].

India represents one of the most important producers and exporters of rice,
particularly to the Middle East. Aflatoxin levels in rice in India were considered in
three separate research investigations, out of which two studies showed high value of
contamination. In more than 1,500 rice samples collected and analyzed in India,
aflatoxins were found in higher value of contamination. The samples representing the
rice of 12 states had shown that the aflatoxins were greater than 5 μg/kg in 930 sam-
ples with a median concentration of 45 μg/kg. This value exceeds the Indian permis-
sible limit of 30 μg/kg for total aflatoxin in 256 analyzed samples [17]. Recently, a
survey covering 20 states has been conducted. In this research work, 1,200 rice
samples were analyzed, and AFB1 was found in contamination range of
0.1–308 μg/kg with the frequency of contamination being up to 67.8 % [22]. In a
more recent investigation, less aflatoxin contamination was reported in rice from
Punjab in India [18]. These values of contamination may pose a health risk problem,
considering the high daily intake of 186 g rice and aflatoxin value ng/kg bodyweight.
This justifies more investigations for aflatoxin in rice in India. The professional and/or
regional bodies in India recommended to reconsider these results once again.

The level of contamination in rice in Pakistan is lower than that recorded in Indian
rice. Of the 314 samples analyzed, aflatoxins were recorded in 185 samples with an
average concentration of 11.2 � 3.91 μg/kg. This value of contamination was
observed in several types of rice including the paddy, parboiled, brown, white, and
broken rice. The value has ranged from 7.10 to 16.35 μg/kg [19]. The daily intake of
rice in Pakistan is not clearly known. Considering the lowest value of 107 g/day/
person in selected rice-eating countries by FAO, the calculated PTDI of aflatoxin is
23.2. This value of exposure is very alarming and very high.

The distribution of aflatoxins in the Philippines and Vietnam are comparable with
that reported in theWestern Pacific Region. In the Philippines, the total aflatoxins were
investigated and were recorded in 74 out of 78 samples with a mean level of 1.53 μg/
kg [2]. This was less than that reported in rice from Vietnam, where aflatoxins were
detected in 51 out of 100 samples, with a mean level of 3.31 μg/kg [6]. The daily
intake of rice in these countries is 252 and 403 g/day/person in the Philippines and
Vietnam, respectively. The recent estimation of daily intake of rice in Vietnam is
500 g/day/person according to [6]. The calculated PTDI of aflatoxin in rice is 6.4 and
22.2, respectively. The estimated PTDI of aflatoxin in rice in the Philippines is high
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and comparable with that estimated for Korea and Malaysia, whereas in Vietnam, it is
very high and alarming as that estimated for India and Pakistan.

The last region in Asia that we will discuss here is West Asia. Herein the aflatoxin
in rice samples was investigated in Turkey and Iran. The contamination level in
Turkey ranged between 0.05 and 21.4 μg/kg, which is 32 % above the legal limit of
the EC regulation of 4 μg/kg. AFB1 was also considered in this investigation and it
was found in 58 out of 100 samples analyzed with 14 % samples containing values
higher than the EC regulation of 2 μg/kg for AFB1 intended for direct human
consumption [29]. In Iran, the aflatoxin B1 in rice was found in 59 out of 71 samples
with an average contamination level of 1.89 μg/kg [32]. In another investigation in
Kashkineh in Iran, aflatoxin was detected in one out of 41 rice samples with a
contamination level of 0.64 μg/kg [53].

The estimated risk for these levels in West Asia depends on the food habit in these
countries. The data of the daily intake of rice for Turkey and Iran are not available.
However, the general overview of these levels of contamination suggests posing
mycotoxicosis as a health problem to the rice consumers in these countries.

4.2 Africa

The FAO report has shown selection of nine rice-eating countries in the African
continent. The highest daily intake of rice is in Guinea-Bissau (318 g/day/person),
followed by Madagascar (304), Liberia (301), Gambia (268), Sierra Leone (244),
Comoros (214), Mauritius (195), Ivory Coast (173), and Guinea (162). This report
did not cover all the rice-eating countries.

Aflatoxin data in rice samples from Africa and especially in these countries is
very limited. In the Ivory Coast (West Africa), aflatoxin was detected in all the ten
samples analyzed with an average levels of 4.5 μg/kg of AFB1 [12]. Similar results
were reported from Nigeria with aflatoxin detected in 21 samples of rice with mean
level of 82.5 μg/kg [5], while in Tunisia, there was no aflatoxin detected in any of the
10 rice samples [11].

The update data of daily intake of rice in the Ivory Coast has increased up to
429 g/day/person [12]. Therefore, the PTDI is 32.2 ng/kg/bodyweight/person. The
level of PTDI reported here is very alarming and may pose a series of health risks to
the consumers. Nigeria is a producer as well as a consumer country. The reported
aflatoxin level is higher or comparable with that reported in India. So we expect
comparable risk associated to the exposure to aflatoxin in rice. We recommend more
comprehensive investigation for aflatoxin in rice in Africa, particularly in these rice-
consuming countries.

4.3 Latin America

The order of rice-consuming countries in Latin America as shown in the FAO report
is as follows: Guyana has the highest value with daily consumption rate of
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236 g/day/person, followed by Dominican Republic (121), Brazil (112), Colombia
(99), and Belize (68) at Central America. The update of these values was reported for
the daily intake in Brazil with slight decrease of 100 g/day/person [3].

The aflatoxin in rice in Latin America is limited to one reported investigation
carried out in Brazil. The total aflatoxin detected was in 135 out of 230 samples
(59 %) with a mean contamination of 13.13 μg/kg [3]. The PTDI of aflatoxin in rice
belonged to this value of contamination and is estimated to be 22 ng/kg/bodyweight/
person based on daily intake of 100 g/day/person. This value is similar to the
reported values in South Asia in Pakistan and Vietnam.

4.4 Europe and North America

Aflatoxins (AFB1 and/or AFB1 + AfB2) in rice in Canada (imported from the
United States and Asian countries) were found in 99 out of 200 samples with an
average level of 0.34–0.39 μg/kg for AFB1 and 0.08 μg/kg for AfB2 [13].

Only four papers represented the aflatoxin in rice (locally or imported) in
Europe in four countries including Scotland, Austria, Spain, and Sweden.
Aflatoxin was found to be reported in all samples from these countries. In
Scotland, the brown rice (Asian origin sourced) had a contamination with an
average value of 14.7 μg/kg of total aflatoxin [20]. The results in Austria in
central Europe showed that 15 out of 81 samples (imported mainly from Asian
countries, only one sample from Spain and one from Egypt) were contaminated
with an average level of 1.97 μg/kg of total aflatoxin [16]. Similar results were
found in Sweden (imported rice) with the contamination level ranging between
0.1 and 50.7 μg/kg of total aflatoxins [14]. However, the level of contamination
was higher in both imported and locally sampled rice in Spain and Mexico; the
aflatoxin was detected in 66 out of 67 samples with a mean concentration of
37.3 μg/kg [4].

Generally, the levels of aflatoxins in rice are varied throughout the world even
within some countries in the same region. For example, Japan did not suffer from
any high values of contamination, but in nearby India and Pakistan, the cases are
completely different. This is due to good strategies followed by the Japanese to avoid
fungal growth and aflatoxin production [1]. On the other hand, the rice in such
countries like the Philippines, India, Nigeria, and Spain contains high levels of
contamination, which may lead to aflatoxicosis and/or contribute to HCC in these
countries. The effect of these levels may be extended to other countries importing
this rice without serious import controls.

Specifically, the highest reported contamination was found in India [17], followed
by Spain (locally and imported rice) in Europe [4], and Nigeria in West Africa
[5]. The reported levels have exceeded the US FDA legal permissible limit of total
AFs in food of 20 μg/kg. Significant levels higher than the EC regulation of 10 μg/kg
for total aflatoxin in food were found in Scotland (rice imported from Asia) [20],
Brazil [3], and Pakistan [19]. The remaining countries have reported the lowest value
of contamination.
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5 The Provisional Tolerable Daily Intake (PTDI)

The term provisional tolerable daily intake (PTDI) was developed by the Joint
FAO/WHO Expert Committee on Food Additives (JECFA). The term expresses
the possible accumulation of contaminants in the body. The PTDI gave a precise
description and accurate measurement of the suspected risk, based on the daily
intake of selected food. The PTDI is the result of multiplying the aflatoxin level
and the average of the consumption per day per bodyweight [30].

The data about rice consumption by humans is mentioned in eight works listed in
Table 1. Rice is the principal staple cereal in Asia, parts of Africa, and South
America. The provisional tolerable daily intake is calculated by assuming that
60 kg is the average of bodyweight of persons in these areas. To determine the
hepatocarcinogenic effect of aflatoxin in rice, we have to consider the PTDI and the
HCC cases in selected countries. The data concerning HCC in these countries was
for global occurrence and taken from the Globocan database [31]. The coefficient of
correlation (linear regression) between the occurrence of HCC and the PTDI is weak
(R2 = 0.0002) but becomes more significant when data from Asian countries was
plotted alone (R2 = 0.6189). When data from Spain, Brazil, and Ivory Coast are
included, as they are thought to have high PTDI values, the curve is diffused again,
suggesting that there are special local nutritional habits skewing the results and/or
other factors are involved, such as hepatitis B virus and aflatoxin in other consumed
commodities such as peanut.

Even though this correlation is low, the reported and calculated value of the PTDI
of aflatoxins in rice highlights its importance. Sometimes the PTDI even at a low
level showed the risk factor of cancer, due to its high consumption. The reporting of

Table 1 The provisional tolerable daily intake (PTDI) of aflatoxin in rice/ng/60 kg bodyweight/
person in various countries [50]

Region Country
AF in rice
(μg/kg)

Rice daily
intake/g PTDI

HCC
casesa Reference

West Africa Ivory
Coast

4.5 429 32.18 2,237 [12]

South America Brazil 13.13 100 21.88 9,678 [3]

Southeast Asia Philippines 0.37 280 1.73 7,734 [2]

Vietnam 3.31 500 27.58 21,997 [6]

Western
Pacific (Asia)

Korea 3.25 181 9.8 16,900 [51]

China 0.6 210 2.1 394,770 [8]

Central Europe Austria 1.97 10 0.33 955 [16]

Southwestern
Europe

Spain 37.3 16 9.95 5,522 [4]

Northern
Europe

Sweden 2.2 9 0.33 490 [14]

AF total aflatoxin, PTDI provisional tolerable daily intake of AF in rice, HCC hepatocellular
carcinoma
aHCC cases reported in 2012 by the international agency for research on cancer (IARC)
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aflatoxin in rice without considering the daily intake will not provide a clear
understanding to the real aflatoxin exposure.

6 Legal Limit

The conclusion of the selected works indicates that there is no common regulation
related to aflatoxin in rice. The data are prepared and compared with local permis-
sible levels designed by regulatory authorities of the area of investigation and/or with
the European Commission, which is 2 μg/kg for AFB1 or 4 μg/kg for total aflatoxins
in food [2, 4, 5, 11, 14, 20].

The WHO has set 30 μg/kg as the permissible limit for AFs in food, and this high
limit has been used in several countries for aflatoxin in rice without any regard to the
daily intake of rice [6]. A comparable regulation has been reported in Malaysia
(35 μg/kg) [10] and in India (30 μg/kg) [22]. These limits have been set for food in
general but it may not be suitable for a global staple food like rice.

The lowest legal limit for AFB1 has been set in Tunisia (2 μg/kg) in line with that of
the EU [11], then in Iran (5 μg/kg), and followed by South Korea (10 μg/kg) [21, 32].

7 Conclusion

Aflatoxin has a high impact on human and animal health. Therefore, a large
economic loss in the international trade of cereal and crops could be attributed to
legislation controlling the permissible levels in these commodities related to the
safety of their consumption by humans and animals [37, 42, 44, 46, 47]. Herein, all
the presented studies have shown the widespread occurrence of aflatoxin AFB1
and total AFs in rice everywhere in the world, except in Tunisia and Japan. In
Tunisia, it may be due to a small number of samples (11) analyzed, whereas in
Japan, it may be due to special care to control and counter the fungal growth and
aflatoxin production.

The determined levels of aflatoxin in rice are not high as in peanut or other cereal
commodities; for example, the average of total aflatoxin in peanut butter in Sudan is
up to 200 μg/kg [33], and the average of AFB1 in groundnut in DR Congo is 229.07
[34]. However, that does not mean the aflatoxin in rice has no contribution in general
health, because of high daily intake of rice in certain regions of the world (Table 1).
The values of PTDI have shown significant correlation with HCC incidence in Asian
countries, which includes the Philippines, Vietnam, Korea, and China. The most
important point here is that the average contamination in these countries does not
exceed the EC limit of 10 μg/kg for total aflatoxin in food according to the updated
regulation of 2006 in 2010. That is indicating that the PTDI of AFs in rice as shown
in Table 1 could be a major factor for the chronic disease causative role of aflatoxin.
This observation suggested the importance for the particular regulation of aflatoxin
in rice with respect to the PTDI and/or with health risk assessment. Of these factors
in reulation means: the care of aflatoxin levels, the data of daily intake, the average

6 Aflatoxin in Rice Crop: Prevalence and Assessment of Daily Exposure 233



data of bodyweight of consumers in the area of interest, and the health status of the
people if they are HBV carries or not. This fact has been based on the carcinogenic
potency of aflatoxin B1 as estimated to be 0.01 and 0.3 HCC cases per year per 105

people per ng per kilogram of bodyweight per day for hepatitis B surface antigen-
negative (HBsAg-) and surface antigen-positive (HBsAg+) individuals, respectively
[35, 36].

In terms of consumption, rice is consumed widely in Vietnam as shown in Table 1
[6], then Ivory Coast [12], the Philippines [2], China [8], Korea (Ok et al. 2014), and
Brazil [3]. Rice consumption in Europe is rare, and this may explain the lesser
attention in European countries to manage and control AFs in rice, as the high value
of contamination has been reported.

The aflatoxin contamination in rice worldwide varies from countries to countries.
In some regions of the world, it has shown lowest values of contamination, but in the
others, it has become significantly alarming. An example of the latter countries is
Nigeria where levels of AFs are higher and consequently may pose a series of health
problems. Further, the effect attributed to AFs in rice in other regions of the world is
still unclear, as the lower levels do not absolutely mean safer rice without consider-
ing all factors involved in their toxicity.

Lastly, in spite of lower levels of aflatoxins permitted by regulations in particular
countries, further investigations are required to find out the effects of long-time
exposure and estimates of daily intake of contamination, especially with respect to
rice as the data about aflatoxin in rice is lacking in several rice-consuming countries
worldwide.
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Abstract
Mycotoxins are secondary metabolites produced by filamentous fungi which
contaminate a large fraction of the world’s food, mainly staple foods such as
corn, cereals, groundnuts, and tree nuts, besides meat, milk, and eggs. This
worldwide contamination of foods is an enormous problem to human
populations, principally in less industrialized countries and in the rural areas of
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some developed countries. The adverse effects of mycotoxins on human health
can be both acute and chronic, provoking problems such as liver cancer, reduction
of immunity, alterations in the protein metabolism, gangrene, convulsions, and
respiratory problems, among others. The economic impact of mycotoxins in
foods includes increased health care costs and premature deaths. Some factors
which influence the presence of mycotoxins in foods are related to environmental
conditions, such as storage, that can be controlled without too much expense. The
cleaning of contaminated foods, on the hand, is economically costly and rarely
implemented, so it tends to be carried out mainly in developing countries.
Aflatoxins, ergot alkaloids, ochratoxins, 3-nitropropionic acid, fumonisins,
trichothecenes, and zearelenone, are the most important economically, although
dozens of other mycotoxins can also be associated with human health risks.
Despite international attempts to improve and implement legislation to control
the presence of mycotoxins in foods, its implementation has been ineffective.

Keywords
Fungi • Secondary metabolites • Human health risks • Mycotoxicoses •
Developing countries

List of Abbreviations
AF Aflatoxins
BEN Balkan endemic nephropathy
CTN Citrinin
DAS Diacetoxyscirpenol
DON Deoxynivalenol
F Fumonisins
FUS-X Fusarenon X
HBV Hepatitis B virus
HT-2 Toxin HT-2
IPH Idiopathic pulmonary hemosiderosis
LEM Equine leucoencephalomalacia
LSD Lysergic acid diethyl amide
NIV Nivalenol
OTA Ochratoxin A
T-2 Toxin T-2
TCT Trichothecene
ZEN Zearalenone

1 Introduction

Despite the difficulty defining and classifying them, all mycotoxins represent natural
secondary metabolites of low molecular weight products produced by filamentous
fungi. Although the term mycotoxin was only coined in 1962, after the sudden death
of 100,000 young turkeys in England, who had ingested peanut meal contaminated
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with aflatoxins from Aspergillus flavus, their occurrence can be traced back at least
two millennia, when the development of settled agricultural communities relied on
the storage of grains [1]. The writings of the Dead Sea Scrolls contain references to
them, as to and in the Middle Ages, when ergot alkaloids were prepared and used by
Asian and European people over 500 years ago; there were descriptions of “St.
Anthony’s Fire,” caused most probably by the ingestion of ergot alkaloids from
Claviceps purpurea, a fungus which contaminates staple food grains of wheat and
rye [2, 3]. More recently, the deaths during the Second World War, the deaths of
thousands in the former Soviet Union from the haemorrhagic syndrome known as
alimentary toxic aleukia, caused primarily by T-2 toxin produced by Fusarium
sporotrichioides and F. poae which had contaminated cereal overwintered in fields,
have also drawn attention to this important human health problem [3].

As secondary metabolites, mycotoxins have no apparent significance in fungal
development and growth, but represent a wide range of compounds, and are mainly
produced, although not exclusively, when the fungus reaches maturity. Many have
bizarre molecules with structures ranging from single heterocyclic rings with molec-
ular weights of scarcely 50 Da to groups of 6–8 irregularly arranged heterocyclic
rings with a total molecular weights greater than 500 Da, as a simple C4
moniliformin (produced by Fusarium spp.) and structurally complex substances,
such as phomopsins (produce by Phomopsis spp.) [4]. Probably because they are so
small, such small molecules induce no response in the human immune system, and
until recently mycotoxins were considered metabolites produced only by filamen-
tous fungi. However, agaric acid (hydroxylated tribasic acid), produced by the
macrofungus Fomes officinalis, has been included among the mycotoxins under
regulation in some countries of Asia and Oceania [5]. Nowadays, approximately
400 mycotoxins have been recognized, although attention has been given mainly to
those proven to be carcinogenic and/or toxic to people [6]. Reliable calculations
indicate that approximately 25–50 % of world crops, in particular staple crops, are
contaminated with mycotoxins [7]. Human food can be contaminated with myco-
toxins at various stages in the food chain, with mycotoxins occurring as a result of
consumption of contaminated plant-derived foods as well as from the consumption
of meat, eggs, milk, and other animal products and air and dust containing toxigenic
fungi or their toxins (sick buildings) [8–11]. Adverse effects on human health from
the consumption of agricultural products contaminated with mycotoxins occur
everywhere, although they are far more common in developing countries. Indeed,
in developed countries, the heavy economic costs ensure low concentrations of
mycotoxins, and legislation on food processing and the marketing system help to
significantly reduce the exposure of the population to mycotoxins [12]. In nonindus-
trialized countries, however, substandard nuts, maize, and other products may be
consumed without any form of sorting or inspection, and this means that mycotoxins
ingestion remains far too high, especially in rural areas. In addition, such contam-
inations have more serious consequences, affecting agricultural economics and
reducing annual production. While good quality products are exported, the substan-
dard produce, unacceptable to foreign buyers (because they exceed regulatory limits
for mycotoxin contents) are sold on the domestic market [13, 14].
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However, the occurrence of mycotoxins in food and derivatives is not only a
problem in developing countries. Data from the World Health Organization show
that the presence of mycotoxins produced by molds in food for human consumption
is not on the decrease. Due to the clear increase in the number of diseases caused by
mycotoxins, which have been implicated as potential etiological factors, a great
effort is made to identify mycotoxins present in food and thereon to eliminate them.
The presence of mycotoxins in food is a problem which has been faced by mankind,
since ancient times. Regardless of the fact that there is a big difference between
developed and underdeveloped countries, this problem affects all people, as every-
body is constantly exposed to acute or chronic mycotoxicosis. However, due to the
ongoing difficulties in obtaining enough food to eat in some of these underdeveloped
regions, it would be unrealistic to expect a solution to the problem of mycotoxicosis
in a short time. People in developed or highly developed areas of the world are less
exposed to mycotoxins, primarily due to geographic and climatic conditions. In
addition, there are considerable food resources, modern processing, the storage of
food is constantly monitored, strict legislation is introduced, and there is therefore a
very strict control of the presence of mycotoxins in food [15]. In developing
countries, despite the existence of good legislation with regard to food safety
which aims to control the presence of mycotoxins in food and feed, there is a great
problem which is less evident in developed countries. There is less emphasis on
legislating maximum tolerated levels and even when such legislation exists, the
capacity to enforce it is frequently lacking due to corruption, namely, the bribery of
governmental personnel who allow foods recognizably contaminated by high levels
of mycotoxins to be sold and traded as good ones. Then, in less industrialized
countries (Africa, Asia, Central, and South America), the problem of mycotoxicosis
is basically educational, as in such low-income countries mycotoxins have not been
widely prioritized from a public health perspective. Where attention has been paid, it
has been largely driven by the need to meet the stringent import regulations on
mycotoxin contamination in place in the richer nations of the world, rather than by
the desire to protect the local population from producing and consuming the
contaminated crops [16].

In this chapter, we discuss the problems of mycotoxins in food, the main producer
fungi, the possible effects of mycotoxins on human health as well as the recent
advances in our understanding of the approaches to improve the food safety, in order
to minimize consequences of human exposure and to manage the problem.

2 Mycotoxigenic Fungi and Toxins They Produce

According to Frisvad et al. [17], the modern literature is full of examples of fungi
species supposedly responsible for producing particular mycotoxins, although many
of these associations are clearly incorrect. The same authors exclude Basidiomycete
toxins, because these are ingested by eating fruiting bodies, a problem different from
the ingestion of toxins produced by microfungi. However, it is worth mentioning that
agaric acid (hydroxylated tribasic acid), produced by the macrofungus Fomes
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officinalis (Basidiomycete), has been included among the mycotoxins under regula-
tion in some countries of Asia and Oceania [5]. Undoubtedly, the main genera
producing mycotoxins in food in the world are: Aspergillus, Fusarium, and Penicil-
lium. Other genera also considered important mycotoxins producers are Alternaria,
Claviceps, and Stachybotrys (Table 1). Attention should be drawn to the fact that
some mycotoxins are common to both the Aspergillus and Penicillium species
[18]. Lower fungi belong to the genera Rhizopus and Mucor (Mucorales) are not
excluded, but compounds of sufficient toxicity to be termed mycotoxins have not
been found in these genera, except perhaps for rhizonin A and B from Rhizopus
microspores [19].

2.1 Main Mycotoxins and Their Possible Effects on Human Health

The impact of ingestion of mycotoxins on human health depends on several factors
such as: the concentration of mycotoxins in food and the period during which the
person was exposed to the toxin; it depends on whether the compound is causing an
acute or chronic infection in the human body; it also depends on the weight of the

Table 1 Species of fungi that are known as mycotoxin producers

Fungi Mycotoxins References

Alternaria alternata Alternariol [20]

Aspergillus carbonaris Ochratoxin [21]

Aspergillus clavatus Patulin [22]

Aspergillus flavus Aflatoxins [13]

Aspergillus fumigatus Gliotoxin [23]

Aspergillus niger Fumonisins [24]

Aspergillus parasiticus Aflatoxins [14]

Aspergillus tamarii Aflatoxins B1 and B2 and cyclopiazonic acid [25]

Aspergillus oryzae Aflatoxin and cyclopiazonic acid [26]

Aspergillus versicolor Sterigmatocystins [27]

Claviceps purpurea Ergot alkaloids [28]

Fusarium moniliforme Fumonisins [29]

Fusarium oxysporum Fusaric acid [30]

Fusarium graminearum Trichothecenes [31]

Penicillium citrinum Citrinin [32]

Penicillium
brevicompactum

Mycophenolic acid [33]

Penicillium expansun Patulin [34]

Penicillium nordicum Ochratoxin A [35]

Penicillium verrucosum Ochratoxin and citrinin [36]

Penicillium viridicatum Citrinin [37]

Stachybotrys chartarum Roridin E, satratoxin H, sporidesmin G, trichoverrins,
verrucarol

[38]
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person, the presence of other mycotoxins (synergistic effect), and environmental
factors (mainly the storage conditions of commodities). Although about 300 myco-
toxins are presently known, the attention of scientists has been directed to those
which can have been proved to be toxic or which cause cancer in humans. People are
exposed to mycotoxins after consuming plant foods contaminated with mycotoxins
or through the ingestion of food of animal origin (eggs, meat, dairy products), as well
as by the inhalation of dust containing mycotoxigenic fungal spores [9, 11] which
can cause a reduction of immunity, bronchitis, asthma, and fatigue [39]. This is the
case in sick buildings syndrome, in which Stachybotrys chartarum fungus has been
blamed for the development of idiopathic pulmonary hemosiderosis (IPH) in chil-
dren, although the manner in which the infection occurs has not yet been elucidated
[40]. The main mycotoxins are aflatoxins, ergot akaloids, citrinin, fumonisins,
ochratoxins, 3-nitropropionic acid, trichothecenes and zearalenone. A wide variety
of commodities may be contaminated with mycotoxins, such as cereals, oilseeds,
almonds, dried fruits, wine, spices, beans, roasted coffee and cocoa, malt and beer,
bread and bakery products, wines and grape juices, as well as animal products
(poultry meat and kidneys, pig kidneys, and pork sausages). A complicating aspect
in the case of food contaminated with mycotoxins is the fact that several mycotoxins
can occur simultaneously on the same food. In addition, the vast majority of
mycotoxins are thermostable, i.e., they are not destroyed during the industrial
processing and only a small, partial destruction occurs when food is boiled, fried,
or even pasteurized.

2.2 Aflatoxins

Aflatoxins are the most significant worldwide mycotoxins because of the widespread
human exposure to high levels and their carcinogenic properties. They are produced
by Aspergillus flavus, A. parasiticus, and, apparently, A. nomius [41] and contam-
inate a variety of staple foods, particularly maize and groundnuts, in low-income
countries. It has been estimated that approximately 4.5 billion people of the world’s
population are exposed to aflatoxins [42]. These dangerous mycotoxins occur
mainly in tropical countries, where there are high temperatures and humidity, and
where poor postharvest conditions of stored commodities increase fungal growth.
Aflatoxins were first identified and characterized chemically in 1960 and since then
have been linked to liver cancer in humans. The aflatoxins B1, B2, G1, G2, and
naturally occurring AFB1 are considered the most abundant, the most toxic, and
highly carcinogenic [43]. The aflatoxins M1 and M2 correspond to the hydroxylation
product of B1 and B2, respectively, and are found in milk and its derivatives. AFB1 is
the most toxic in both acute and chronic aflatoxicoses whereas AFM1 is as acutely
hepatotoxic as AFB1 but not as carcinogenic [44].

Various types of symptoms are observed when people eat food contaminated with
aflatoxins. The intensity of the symptoms observed depends on the amount of
aflatoxin in food, the time period during which the person has ingested the contam-
inated food, the general state of health of the person, and the person’s age (children
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and the elderly are more susceptible). One of the main problems caused by AFB1 is
liver cancer, as AFB1 is recognized as one of the most efficient inducers of this
cancer. In areas where contamination of food with AFB1 is high, the occurrence of
liver cancer is coincidentally also higher [45]. For these reasons, the International
Agency for Research on Cancer [46] included AFB1 in group 1 of carcinogens,
considering the high degree of risk of this toxin to human health. Another serious
risk to human health, from the consumption of food contaminated with AFB1, is
acute toxic hepatitis, mycotoxicose. Consumption of food contaminated with afla-
toxins can also induce a protein deficiency in the human body, known as kwashior-
kor, whose main feature is a hypoalbuminemia, enlarged fatty liver, dermatosis, and
generalized edema, which can lead people to death, as happened with several
children [47, 48]. Ingesting aflatoxin is suspected of being associated with impair-
ment of T4 lymphocytes [49]. Aflatoxins have been found in breast milk in Brazil
and other countries [50].

According to calculations conducted by some researchers, the carcinogenic
effects of aflatoxin B1 is much higher in populations of less industrialized countries
compared to the population of developed countries. Indeed, the poorest people have
a less varied diet, are weaker, and are more subject to the synergistic action of AFB1

with other diseases, such as hepatitis B virus (HBV), which has widespread occur-
rence in developing countries [51]. Aflatoxicosis can induce the development of
hepatitis and may, in severe cases, lead to death. Recent cases of hepatitis have
occurred in Kenya, where about 125 deaths were confirmed among people who
consumed corn contaminated with AFB1 [52, 53].

2.3 Citrinin

Citrinin (CTN) is considered a nephrotoxic mycotoxin and was isolated initially
from Penicillium citrinum, but it can also be produced by other species of Penicil-
lium (P. camemberti as used in cheese production) Aspergillus (A. terreus, A. niveus,
and A. oryzae, used in the production of Asian ethnic foods (miso, sake, and soy
sauce)) and Monoascus (M. ruber and M. purpureus, industrial species used to
produce red pigments). CTN presents as yellow crystals, being a compound derived
from phenol. This can contaminate various commodities, especially cereals, such as
barley, corn, rice, oats, and wheat. Citrinin has been detected in certain vegetarian
foods colored with Monascus pigments and in naturally fermented sausages from
Italy [54]. It is usually found in association with another nephrotoxic mycotoxin,
ochratoxin A (OTA). Besides its nephrotoxicity, CTN is also embryocidal and
fetotoxic and, together with OTA, is believed to be responsible for the etiology of
nephropathy. It is highly likely that when citrinin and ochtratoxin A occur in
combination in grains their effects may be exacerbated due to the similarity of the
effects of both toxins. CTN was associated with “yellow rice” syndrome in Japan, in
1971, due to the frequent presence of P. citrinum in this food [55]. Fortunately, field
contamination with CTN is a rare event. However, it is reasonable to believe that
humans are much more frequently exposed to CTN than generally accepted, because
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this mycotoxin is produced by the same fungi as OTA, which is a common
contaminant of human food all over the world. As for with almost all other
mycotoxins, CTN contamination in grains occurs during storage. By maintaining
moisture content below 14 % and avoiding insect damage, grains can be kept free
from mycotoxin formation during storage [56].

2.4 Ergot Alkaloids

The genus Claviceps is a group of phytopathogenic ascomycetes which is composed
of approximately 36 different species of filamentous fungi, capable of parasitizing
over 600 monocotyledonous plants of the families Poaceae, Juncaceae, and
Cyperaceae, including forage grasses, corn, wheat, barley, oats, millet, sorghum,
rice, and rye. The term ergot derives from the French word argot (a spur) and
represents the dark brown, horn-shaped pegs (sclerotia) that replace the seed or
kernel of a plant after infestation [57]. Other fungi, although to a lesser extent, can
also produce ergot alkaloids, such as some species of Penicillium, Aspergillus, and
Rhizopus spp. [58]. The ergot alkaloids isolated from Claviceps sclerotia are struc-
turally related to the hallucinogenic drug known as lysergic acid diethyl amide (LSD)
are usually divided into three groups: derivatives of lysergic acid (e.g., ergotamine
and ergocristine); derivatives of isolysergic acid (e.g., ergotaminine), and derivatives
of dimethylergoline (clavines, e.g., agroclavine) [59]. The species which produce
these alkaloids, in addition to C. purpurea (rye and other cereals) include C. paspali
(forage grass), C. fusiformis (Pennisetum typhoides), C. gigantea, and Sphacelia
sorghi (anamorphic form of Claviceps), are responsible for the form of ergotism
known as gangrenous, which is caused by the ergotamine-ergo-cristine alkaloids.
These mycotoxins have a strong vasoconstrictive activity. The symptoms range from
edema of the legs, with severe pains, to paraesthesias, which can cause gangrene,
often leading to amputation of legs and sometimes to death [60]. The other type of
ergotism, a convulsive form, which is caused by clavine alkaloids from C. fusiformis,
has gastrointestinal symptoms (nausea, vomiting, and giddiness), followed by effects
on the central nervous system (drowsiness, prolonged sleepiness, twitching, convul-
sions, blindness, and paralysis) [61, 62]. Because of the techniques used in food
industries, such as grain cleaning and milling processes, most of the ergot is removed
so that ergotism is extremely rare today, especially in developed countries. Besides,
the ergot alkaloids are relatively labile and are usually destroyed during baking and
cooking [63].

2.5 Fumonisins

Fumonisins had their structure elucidated in the late 1980 after many years of study
of the disease known as equine leucoencephalomalacia (LEM) [64–66]. Fumonisins
consist of a 20-carbon aliphatic chain with two ester-linked hydrophilic side chains.
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This structure resembles sphingosine, an essential phospholipid in cell membranes.
The most dangerous is FB1, which is a diester of propane 1,2,3-tricarballylic acid
and 2-amino-12, 16 dimethyl-3,5,10,14,15-pentahydroxycosane [64]. Because of
this similarity, investigators suggest that the toxic action of fumonisins appears to
result from competition with sphingosine in sphingolipid metabolism [67, 68]. The
inhibition of sphingolipid biosynthesis may cause serious problems related to cell
activity, as these substances are essential for membrane composition, for cell-to-cell
communication, for intracellular and cell-matrix interactions, and for growth factors
[69]. These mycotoxins are mainly produced by several species of Fusarium, such as
F. verticillioides (F. moniliforme), F. proliferatum, and F. nygamai, besides
Alternaria alternata f.sp. lycopersici [10]. F. anthophillum, F. dlamini,
F. napiforme, F. subglutinans, F. oxysporum, and F. polyphialidicum have also
been implicated as producers of fumonisins [70]. Fumonisins constitute a group of
distinct substances, as follows: B1 (FB1, FB2, FB3, and FB4), A1, A2, A3, AK1, C1,
C2, C3, C4, P1, P2, P3, PH1a, and PH1b [71, 72]. The occurrence of corn grains
with elevated levels of fumonisins has been correlated with cases of esophageal
cancer in inhabitants of Transkei (southern region of South Africa), in China, and in
Northeastern Italy [63]. Besides having been associated with leucoencephalomalacia
in equines and rabbits [65, 73, 74], fumonisins have also been associated with
pulmonary edema and hydrothorax in pigs [75] and hepatotoxic, carcinogenic, and
apoptosis effects in the liver of rats [76–78]. From corn sold in a supermarket in
Charleston (South Carolina), high levels of these mycotoxins were detected; coin-
cidentally, Charleston is the American city with highest incidence of esophageal
cancer among Afro-Americans [79]. While the other mycotoxins are soluble in
organic solvents, fumonisins are hydrosoluble. Such characteristic makes them
more dangerous to human health, as they can remain undetectable most of the time.

2.6 Moniliformin

Chemically, the mycotoxin moniliformin is a salt of 1-hydroxycyclobut-1-ene-3,4-
dione, and was first described by Cole [80] and colleagues in 1973, while screening
for toxic products of a North American isolate of Fusarium moniliforme (now
F. verticillioides) cultured on corn. The same investigators characterized its structure
in the following year. The occurrence of moniliformin in cereals and cereal products
has been described for different regions worldwide, such as Argentina, Austria,
Canada, Germany, Italy, Poland, New Zealand, Peru, South Africa, USA, and
parts of Africa and Asia. Analyses of 22 samples of corn from the Brazilian state
of Sao Paulo did not confirm the presence of this mycotoxin in Brazil. Moliformin
has since been shown to be produced also by F. moniliforme var. subglutinans,
F. sacchari var. subglutinans, F. avenaceum, F. acuminatum, F. anthophyllum,
F. concolor, F. denticulatum, F. equiseti, F. fujikuroi, F. fusarioides, F. oxysporum,
F. proliferatum, F. ramigenum, F. sambucinum, F.semitectum. F. succisae,
F tricinctum, and F. thapsinum [81].
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2.7 Ochratoxin A

Ochratoxin (OTA) has a chemical structure similar to that of aflatoxins, with an
isocoumarin substitute bound to an L-phenylalanine group. OTA was discovered in
1965, during a study to detect new mycotoxins, as a secondary metabolite of
Aspergillus ochraceous, a fungus usually present in drying or decaying vegetation,
seeds, nuts, and fruits [82]. Other fungal species capable of producing this toxin are
A. alliaceus, A auricomus, A.carbonarius, A. glaucus, A. meleus, and A. niger,
besides Penicillium nordicum and P. verrucosum. The A. niger is an efficient
producer of enzymes and citric acid for human consumption, so the isolates used
in industry must be checked as far as their capability of producing OTA is concerned
[83, 84].

Besides being recognized as an acute nephrotoxin, OTA also shows hepatotoxic,
immunosuppressive, teratogenic, and carcinogenic behavior [85–88]. OTA has a
significant relationship with Balkan endemic nephropathy (BEN) which is a chronic
kidney disorder, with lethal results. BEN has an endemic character, and it has been
recorded in rural regions of the Balkan countries [89, 90]. OTA has been found in
barley, coffee grains, oats, and wheat. There is some indication that OTA may occur
in wines in which the fruits have been infected by A. carbonarius [41, 91, 92]. In
humans, OTA has been found in serum and in milk [93]. The International Agency
for Research on Cancer [46] classified OTA as a potential carcinogenic for the
human population (group B). In Brazil, approximately 50 % of samples of bean,
corn, rice, and wheat contained significant levels of OTA [94]. This mycotoxin was
also confirmed in roasted, soluble, and ground coffee, in Belo Horizonte city
(Brazil) [95].

2.8 Patulin

Chemically, patulin is known as 4-hydroxy-4H-furo[3,2c]pyran-2(6H)-one, and was
first isolated as an antimicrobial active principle during the 1940s from Penicillium
patulum (later called P. urticae, now P. griseofulvum). This compound is a myco-
toxin that forms the smallest group of toxic metabolites referred to as polyketides
and is reported to be produced by other fungi such as Aspergillus clavatus,
A. giganteus, A. terreus, Paecilomyces sp., Byssochlamys nivea, and B. fulva. Patulin
was also isolated from other species and given the names clavacin, claviformin,
expansin, mycoine c, and penicidin [96]. This metabolite was used as a spray for
treatment of nose and throat common cold, as well as an ointment for the treatment
of skin infections [96, 97]. However, during the 1950s and the 1960s, it became clear
that, despite the action of patulin as antimicrobial, antiviral, and antiprotozoan, it was
also toxic to both plant and animal cells, and it was then reclassified as a true
mycotoxin [10]. Nowadays, patulin plays an important role as a method for moni-
toring the quality of apple juices and concentrates in apple processors. Its presence in
high amounts indicates that moldy apples were used in the production of the juices.
Patulin is considered to be the most dangerous mycotoxin in fruits, particularly
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apples, pears, and their products [38]. The most efficient producer of patulin, the
fungus P. expansum, is the causative agent of the disease known as “blue mold,”
which is extremely common on apple, cherry, pears, and other fruits. This mycotoxin
is frequently detected in nonfermented apple juices, although fortunately it does not
survive fermentation in cider derived products, since it is efficiently metabolized by
yeasts [98]. Despite the fact that its effects on human health have not been conclu-
sively proven, the Joint Food and Agriculture Organization–World Health Organi-
zation Expert Committee on Food Additives has established a provisional maximum
tolerable daily intake for patulin of 0.4 mg/kg of body weight [99].

2.9 Trichothecenes

Trichothecene mycotoxins (TCT) comprise a vast group of over 150 metabolites
produced by more than 350 species of fungi, although the main producer genera are
Fusarium, Myrothecium, Phomopsis, Stachybotrys, Trichoderma, Trichotecium, and
Verticimonosporium [100–102]. Trichothecenes have low molecular weight
(250–500 Da), are nonvolatile, and share a common tetracyclic12,13 -epoxy skeleton,
which is responsible for their toxicological activity. The term trichothecene stems
from trichothecin, the first member of the family identified. According to their
characteristic functional groups, the TCT are divided into four groups: Type A and
B trichothecenes are the most common. Type A is represented by HT-2 toxin and T-2
toxin, and type B is most frequently represented by DON, 3-acetyl-DON
(3-Ac-DON), 15-acetyl- DON (15-Ac-DON), nivalenol (NIV), and fusarenon X
(FUS-X). Type C and D trichothecenes are characterized by a second epoxide
(C-7,8 or C-9,10) or an ester-linked macrocycle (C-4,16), respectively [103]. The
trichothecenes as a group are immunosuppressive. Despite the high number of
trichothecenes chemically characterized, only some of them occur in nature. The
main trichothecenes are deoxynivalenol (DON), nivalenol (NIV), toxin T-2, toxin
HT-2, and diacetoxyscirpenol (DAS). These mycotoxins show a strong capability to
inhibit protein synthesis in eukaryotic cells, hampering the initiation, the elongation,
and the termination steps of protein synthesis. TCTwere the first compounds proven
to be involved in the inhibition of peptidyl transferase activity [104, 105]. TCT
mycotoxins occur worldwide in grains (barley, corn, oats, rice, rye, wheat), vegeta-
bles, and other crops [41].

DON (12, 13-epoxy-3, 4, 15-trihydroxytrichothec-9-en-8-one) or RD-toxin, is
also known as vomitoxin, although less toxic than many other major trichothecenes,
DON is the most prevalent and is commonly found in barley, corn, rye, safflower
seeds, and wheat [106]. This mycotoxin is considered to be extremely stable,
surviving most of the processing methods such as powdering and milling. However,
the effects of DON on human health are not yet well understood [107]. Studies
conducted by Minervini [108] suggest that human blood cells are sensitive to
mycotoxin exposure, that NIV is more toxic than DON which is more toxic than
FB1, and that DNA damage and apoptosis rather than plasma membrane damage and
necrosis may be responsible for the observed cytotoxicity.
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T-2 toxin was first isolated from the mold Fusarium sporotrichioides [109]. It
belongs to nonmacrocyclic type A trichothecenes. F. sporotrichioides, the major
producer of T-2 toxin, occurs mainly in temperate to cold areas and is associated with
cereals. A large-scale human toxicosis which occurred in India in 1988, and in
China, Japan, and Korea, was imputed to T-2 toxin [110]. T-2 toxin poisoning
occurred in Kashmir, India, in 1987 and was attributed to the consumption of
bread made from moldy flour. Symptoms commonly observed were anorexia,
nausea, vomiting, headache, abdominal pain, diarrhea, chills, giddiness, and con-
vulsions [107]. This mycotoxin is so far the only one known to have been used as a
biological weapon [111]. T-2 toxin is well absorbed by topical, oral, and inhalational
routes. Its toxic action is thought to disrupt DNA polymerase, terminal
deoxynucleotidyl transferase, monoamine oxidase, and several proteins involved
in the coagulation pathway [112]. HT-2 toxin is also an A type trichothecene, which
occurs mainly on small cereal grains and corn, and is produced by Fusarium
sporotrichoides, F. poae, and F. langsethiae. Analyses conducted in corn-based
products, commercialized in the city of Sao Paulo (Brazil), indicate a low occurrence
of trichothecene mycotoxins. However, despite the high levels of T-2 and HT-2
found in one sample the investigators suggested that there is no immediate cause of
concern as far as the public health is concerned [113].

The trichothecenes produced by Stachybotrys chartarum are the ones which have
recently received the most attention of public health authorities. Macrocyclic tricho-
thecenes and related trichoverroids: roridin E and L-2; satratoxins F, G, and H;
isosatratoxins F, G, and H; verrucarins B and J; and the trichoverroids, trichoverrols
A and B and trichoverrins A and B are highly toxic compounds with a potent ability
to inhibit protein synthesis [114]. Numerous studies have demonstrated the toxicity
of toxins from S. chartarum on animals and animal and human cells [115]. Yang
[116] reported that satratoxin G was the most cytotoxic of eight trichothecenes tested
on mammalian cells. These authors concluded that this toxin is far more toxic than
the T-2 toxin associated with alimentary toxic aleukia. The presence of S. chartarum
has been associated with pulmonary bleeding in children [38]. Stachybotryotoxicosis
was first described as an equine disease of high mortality associated with moldy
straw and hay. Until recently, human Stachybotryotoxicosis was considered a rare
occupational disease, limited to farm workers who handle moldy hay. On the
contrary, it has become evident that S. chartarum grows well on almost all wet
building material, such as water-damaged gypsum boards, wood fiber boards,
ceiling, wall paints, and even dust-lined air conditioning ducts [117].

2.10 Zearalenone

The classification of this secondary metabolite as a mycotoxin is actually considered
inadequate since, despite being biologically potent, it is barely toxic. In fact, its
structure resembles 7β–estradiol, the principal hormone produced in the human
female ovaries. This secondary metabolite is an estrogenic (US spelling) toxin,
produced mainly by Fusarium graminearum, although other species of the same
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genus can also produce this substance (F. culmorum, F. equisetii, F. crookwellense,
and F. sporothichioides). Zearelenone is better classified as a nonsteroidal estrogen
or mycoestrogen. Sometimes it is called a phytoestrogen compound, known as
6-(�10-hydroxy-6-oxo-trans-1-undecenyl)-β-resorcylic acid μ-lactone [118].

Among the human population, children are the most affected due to the con-
sumption of ZEN-contaminated cereal-based food products (corn, barley, and wheat
grains). Due to its estrogenic structure, it is considered that zearalenone and/or its
derivatives, especially zearalanol, have been implicated in several incidents of
precocious puberty in children at the age of 7–8 [119]. There is, however, inadequate
evidence in humans for the carcinogenicity of zearalenone.

3 Mycotoxins Legislation in Different Countries

Laws have been adopted in many countries in order to protect consumers from the
harmful effects of mycotoxins in fresh and processed food. The best known are those
laws that regulate the levels of aflatoxins, despite the fact that legislation for other
mycotoxins is also being implemented. There are several factors leading to the
preparation of legislation. For example, there are scientific aspects such as the
availability of toxicological information, knowledge about the distribution of myco-
toxins in foods, in addition to analytical methodology. The political and economic
aspects should also be taken into consideration, particularly with respect to com-
mercial interests and the impacts on the availability of food supply [120–122].

Information gathered by the year 2003 showed that about 100 countries now have
legislation to regulate the limits of mycotoxins in food, feed, and commodities,
representing a 30 % increase compared to 1995 [123]. The countries covered by
these laws include approximately 90 % of the world population [124]. This survey
confirms that the increase in the population now protected by mycotoxin legislation
occurred thanks to a slight increase observed in Latin America and Europe and a
significant increase in population coverage in Africa and Asia/Oceania. Moreover,
all countries which had legislation for mycotoxins before 2003 have at least regu-
latory limits for the presence of aflatoxin B1 or the sum B1 + B2 + G1 + G2.
However, several other mycotoxins have also fallen under legislation. Among
them stand out aflatoxin M1; deoxynivalenol trichothecenes; diacetoxyscirpenol;
toxins T-2 and HT-2; fumonisin B1, B2, and B3; ochratoxin A; patulin; sterigma-
tocystin; zearalenone; ergot alkaloids; and even the agaric acid and phomopsins. In
2003, it was observed that a greater number of mycotoxins were controlled by law,
and there were also a high number of analyzed products and commodities. The
tolerance limits have remained at the same levels or have shown a tendency to be
reduced, while sampling and analysis methods have become more diversified and
more detailed. An extremely interesting trend is the harmonization of the laws in the
countries belonging to different economic blocks such as Australia/New Zealand,
the European Union, and Mercosul [122].

In most African countries, where there is no legislation in place, the population is
exposed to mycotoxin contamination, particularly with respect to subsistence
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farming, where crops are consumed in their own areas of production or in their
vicinity. African countries have some legislation but it only covers aflatoxins.
Among the countries of that continent, Morocco has the most advanced legislation.
Regarding Asia/Oceania, about 26 countries have legislation for mycotoxins,
representing 88 % of the population of that region. New Zealand, however, has its
own legislation, with some differences in relation to Asia and northern Australia.
Currently, Australia and New Zealand are harmonizing their laws which include
limits on exotic mycotoxins, such as agaric acid and phomopsins. In this extensive
continent, the laws of China and the Islamic Republic of Iran are the most complete
and detailed.

On the European continent, 39 countries, representing 99 % of the European
population, have legislation for the regulation of mycotoxins in food and feed.
Compared to other world regions, Europe has the most complete and detailed
legislation on mycotoxins in food. In the European Union, legislation has been
harmonized for aflatoxins in various foods, for aflatoxin M1 in milk, ochratoxin A
in cereals and dried fruit, for patulin in apple juice and products derived from apples,
and aflatoxin B1 in various rations. Preliminary actions have been initiated regarding
deoxynivalenol in cereals and products derived from cereals [122, 124].

In North America, the United States and Canada have had legislation for myco-
toxins for many years and continue perfecting the methods of sampling and analysis.
In both countries the limits for aflatoxins are established for the sum B1 + B2 + G1

and G2. In Canada, beyond the limits imposed for fusarium toxins, there are also
tolerance percentages for damaged grains of wheat spikelets, both the soft type and
the hard type, in addition to other grain boundaries. In this country, there are also
limits to the presence of sclerotia of Claviceps purpurea in various cultures (it is in
the sclerotia where the ergot alkaloids accumulate). In the United States, there are
detailed tolerance limits for the sum of fumonisins B1, B2, and B3 in a wide variety of
corn products. This is the only country in the world where there are limits to the sum
of these three fumonisins.

In Latin America, 19 countries have legislation for mycotoxins, representing
almost 91 % of the continental population. Legislation to aflatoxins is harmonized
in Mercosur, which includes Argentina, Brazil, Paraguay, and Uruguay. Uruguay has
the most comprehensive legislation in Latin America with ergot alkaloids limits in
feed, which is unprecedented in any legislation in the world. In South America the
legislation is available for the following mycotoxins: aflatoxin B1, B1/G1 aflatoxin
total aflatoxins (B1 + B2 + G1 + G2), fumonisin B1, deoxynivalenol, ochratoxin A,
patulin, and zearalenone (Table 2).

4 Conclusions and Perspectives

Mycotoxicoses due to the ingestion of mycotoxin contaminated foods will remain a
huge public health problem worldwide, mainly in less industrialized countries.
Acute and chronic contaminations and their effects have been well documented.
For instance, AFB1 is synergistic with hepatitis B virus (HBV) infection, which has a
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Table 2 Legislation for mycotoxins in food and feed in different continents (Adapted from Refs.
[5, 125])

Region Mycotoxin Substrate/limit

Africa Afl. B1
c

Afl. G1
a

Afl. B1+G1
b

Afl. M1
a

Afl.
B1 + B2 + G1 + G2

c

Ochratoxin Ac

Patulina

Zearalenonec

For all foods: B1: 5 ppb; B1 + B2 + G1 + G2: 10 ppb
Peanuts for export: B1: 5 ppb
Peanut and its products, vegetable oils:
B1 + B2 + G1 + G2: 20 ppb
Baby food: B1: 0 ppb
Fluid milk: M1: 1 ppb
Feed: B1: 50 ppb
Peanut products as feed: B1: 50 ppb
Peanut products as ingredients for animal feed: B1:
300 ppb
Peanuts, corn, and sorghum: B1: 5 ppb; G1: 4 ppb
Poultry feed: B1: B + G1: 10 ppb
Rice flour: B1: 5 ppb ; G1: 4 ppb

Asia/
Oceania

Agaric acida

Afl. B1
c

Afl. M1
a

Afl.
B1 + B2 + G1 + G2

c

Diacetoxyscirpenola

Deoxynivalenolb

Phomopsinsa

Fumonisin B1
a

Fumonisin B1 + B2
a

Ochratoxin Ac

Patulina

T-2c

Zearalenonec

All foods: B1 + B2 + G1 + G2: 5 ppb ;
Phomopsins: 5 ppb
Peanut butter, nuts in general: B1 + B2 + G1 + G2:
15 ppb
Nuts and their products: B1 + B2 + G1 + G2: 20 ppb
Brazil Nut: B1 + B2 + G1 + G2: 15 ppb
Rice, edible oils: B1: 10 ppb
Oats, barley, beans, sorghum, wheat, other grains, and
fermented foods: B1: 20 ppb
Fluid milk and milk products: B1: 0.5 ppb
Peanuts and products: B1 + B2 + G1 + G2 + M1 + M2:
20 ppb
All foods: 30 ppb
Peanut meal for export: B1: 120 ppb, Feeds: B1: 10 ppb
Peanut butter, beans peanuts, tree nuts:
B1 + B2 + G1 + G2: 15 ppb
Food for children up to 3 years old B1 + B2 + G1 + G2:
1 ppb
Feeds: B1: 1000 ppb
Dried coconut kernel in feed for cows, pigs, ducks,
sheep: B1 + B2 + G1 + G2: 1000 ppb
Peanut bran, sesame, rapeseed, cassava in feed for
chickens: B1 + B2 + G1 + G2: 200 ppb

Latin
America

Ergot alkaloidsb

Afl. B1
c

Afl. B1 + G1
a

Afl. M1
a

Afl.
B1 + B2 + G1 + G2

c

Deoxynivalenolc

Fumonisin B1
a

Ochratoxin Aa

Patulina

Zearalenonec

Foods: B1 + B2 + G1 + G2: 20 ppb
Peanuts shelled or unshelled, raw or toasted, and peanut
butter paste or butter: B1 + B2 + G1 + G2: 2 ppb
Corn grain, corn meal, flour, and semolina:
B1 + B2 + G1 + G2: 20 ppb
Fluid milk: M1: 0.5 ppb
Powdered milk: M1: 5 ppb
Baby food: B1:0 ppb
Fluid milk and powder: M1: 0.05 ppb
Milk products: M1: 0.5 ppb
Foods and spices: B1 + B2 + G1 + G2: 20 ppb
Soy products, peanuts, dried fruit: B1 + B2 + G1 + G2:
30 ppb

(continued)
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Table 2 (continued)

Region Mycotoxin Substrate/limit

Cocoa beans: B1 + B2 + G1 + G2: 10 ppb
Infant foods: B1 + B2 + G1 + G2: 3 ppb
Corn and barley: Zearalenone: 200 ppb
Fruit juices: Patulin: 50 ppb
Rice, coffee, barley, and corn: Ochratoxin A: 50 ppb
Feeds: B1: 20 ppb; B1 + B2 + G1 + G2: 50 ppb
Rice flour: B1 + B2 + G1 + G2: 5 ppb

North
America

Ergot alkaloidsb

Afl. M1
a

Afl.
B1 + B2 + G1 + G2

c

Diacetoxiscirpenolb

Deoxynivalenolc

Fumonisin
B1 + B2 + B3

c

HT-2b

Ochratoxin Ab

Patulina

T-2b

Zearalenoneb

Foods: B1 + B2 + G1 + G2: 20 ppb
Nuts and products: B1 + B2 + G1 + G2: 15 ppb
Prepared food wheat: Deoxynivalenol: 1000 ppb
Wheat: Deoxynivalenol: 2000 ppb
Dairy: M1: 0,5 ppb
Feeds: B1 + B2 + G1 + G2: 20 ppb
Grains, livestock, and poultry: Deoxynivalenol:
5000 ppb;
Toxin HT-2: 100 ppb
Feed for pigs, sheep, and lactating animals:
Deoxynivalenol: 1000 ppb; Toxin HT-2: 25 ppb

Europe Afl. B1
c

Afl. B1 + G1
c

Afl. M1
a

Afl.
B1 + B2 + G1 + G2

c

Diacetoxyscirpenolb

Deoxynivalenolc

Fumonisin B1
a

FumonisinB1 + B2
a

Ochratoxin Ac

Patulina

Sterigmatocytina

T-2
c

Zearalenonec

All foods: B1: 10 ppb
All foods: B1 + B2 + G1 + G2: 5 ppb; Patulin: 50 ppb
Food for children and adolescents: B1 + B2 + G1 + G2:
0.05 ppb; M1: 0.05 ppb
Milk: M1: 0,05 ppb
Peanuts, nuts, and dried fruit for direct consumption or
as food ingredients: B1: 2 ppb; B1 + B2 + G1 + G2:
4 ppb
Nuts and dried fruit subjected to selection or physical
treatment: B1: 5 ppb; B1 + B2 + G1 + G2: 10 ppb
Cereals and processed products for direct consumption
or as food ingredient: B1: 2 ppb; B1 + B2 + G1 + G2:
4 ppb
Cereal products for direct consumption: Ochratoxin A:
3 ppb; Zearalenone: 100 ppb
Raw cereals: Ochratoxin A: 5 ppb; Dry fruits:
Ochratoxin A: 10 ppb
Brazil Nuts: B1 + B2 + G1 + G2: 4 ppb
Spices and seasonings: B1: 5 ppb; B1 + B2 + G1 + G2:
10 ppb
Beer: Ochratoxin A: 0.2 ppb
Herbs for teas: B1: 5 ppb; B1 + B2 + G1 + G2: 10 ppb
Fresh milk or for the production of dairy products and
heat-treated milk: M1: 0.05 ppb
Apple juice and other fruit: Patulin: 50 ppb
Kidneys of pigs: Ochratoxin A: 25 ppb
Raw material for feed: B1: 50 ppb
Ready feed: B1: 10 ppb
Complete feeds for poultry and pigs, except for young
animals: B1: 20 ppb

(continued)
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greater prevalence in the developing world, besides being linked to liver cancer and
immune suppression. At the same time, richer countries have a wealth of information
that could significantly reduce the exposure of poor people to mycotoxins. We agree
with many researchers when they say that mycotoxin contamination in foods is not
decreasing. Actually, the problem tends to become exacerbated as the global popu-
lation increases. The Food and Agriculture Organization (FAO) has estimated that by
2050 the world will have to feed nine billion people. Increased production of foods
will be needed in the future to satisfy growing food demand in developing countries
and feed demand in the newly industrializing countries. This situation is further
aggravated if we remember the climate changes, droughts, the water scarcity, the
wars, the great fluxes of migration, and the growing poverty in Africa and in other
parts of the tropical world. In such situations, nobody will pay attention if the food is
moldy or not or if the level of mycotoxins (when they are aware of this problem) is
exceeding the limit of legislation. The main purpose of these people will just be to
have something to eat and survive until the next day. Therefore, the strict control of
food quality in both industrialized and developing countries would be desirable to
avoid mycotoxicoses outbreaks. Under such circumstances, occurrence of myco-
toxins in agricultural commodities in the poorest areas of the world will continue to
remain, unfortunately, a largely ignored health and economic issue.
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Abstract
Fungi possess all kinds of melanins found in nature. These pigments are products
of polymerization of phenolic compounds. Phenolic precursors determine
the polymerization products. Though formed via different precursors, polymer-
ized melanins possess common properties. Melanin multifunctionality is well
documented in fungi. Such functions of melanins as creating a tolerance
to harsh environments are fulfilled in both saprophytes and parasites.
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But pathogenic fungi face double impact – hostile environment plus defenses of
their hosts. Fungal melanin affords remarkable protection from many such factors
and thus favors pathogenicity. Besides, pathogen melanins may act as an arm of
aggression through involvement in parasite’s penetration and suppression of
host’s responses. In outline, natural polymers of this group have irregular struc-
ture and perform effectively many biologically important functions related to high
adaptive flexibility of their carriers.

Keywords
Melanins • Biosynthesis • Localization • Properties • Extremophylic fungi •
Pathogenesis

List of Abbreviations
Bq/kg Becquerel/kg
DHI 5,6-Dihydroxyindole
DHICA 5,6-Dihydroxyindole-2-carboxylic acid
DHN Dihydroxynaphthalene
DOPA L-Dihydroxyphenylalanine
ESR Electron spin resonance
eV Electron volt
GHB Glutaminyl-4-hydroxybenzene
GDHB Glutaminyl-3,4-dihydroxybenzene
1O2 Singlet oxygen
OH Hydroxyl free radical
PKS Polyketide synthase
ROS Reactive oxygen species
1,3,6,8-THN 1,3,6,8-tetrahydroxynaphthalene
UV Ultraviolet
W/m2 Watt/m2

1 Introduction

In order to survive extremes of pH, temperature, salinity, radioactivity, and host
defenses, microorganisms have been found to develop unique protective mecha-
nisms. Melanization occurs in the environment and is important for adaptation to
unfavorable life conditions. The term “melanin” originates from melanos – a Greek
word for black.Мelanin is a class of compounds found in plants, animals, fungi, and
protists. The presence of various kinds of melanins in representatives of almost every
large taxon suggests an evolutionary importance of melaninogenesis [1]. In general,
melanins are hydrophobic pigment biopolymers formed by oxidative polymerization
of phenolic or indolic compounds. Exact structures of melanins are unidentified.

Fungi show successful examples of adaptation to extreme conditions, especially
toward two or more extreme factors. They demonstrate all the variety of melanins
found in nature: eumelanins (black or dark brown), pheomelanins (yellow or red),
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and the most heterogeneous group of allomelanins, including soluble piomelanins
and melanins formed from dihydroxynaphthalene compounds (DHN) [1, 2]. Though
formed via different precursors, polymerized melanins possess common properties
[3]. The melanin is produced after cessation of active growth and is therefore a likely
secondary metabolite.

Melanin in fungi has been postulated to be involved in a range of virulence-
associated properties, including interactions with hosts, oxidative stresses, UV light,
and hydrolytic enzymes; resistance to antifungal agents; iron-binding activities; and
even the harnessing of ionizing radiation in contaminated soils [4–7]. The photo-
chemical properties of melanin make it an excellent photoprotectant. It absorbs
harmful UV radiation and transforms the energy into harmless amounts of heat.
These properties eventuate adaptations of fungi to stressful environments: high
insolation, low temperature, low water content, starvation, elevated ROS, and
increased radioactivity. Melanin protects fungi from presence of toxins [8–10]. Mel-
anin as an element of pathogenic mechanisms includes sequestration of host defen-
sive proteins, redox buffering, trapping of single electrons, dismutation of
superoxide anion radical, an osmotic role in penetration of the (plant) cell wall by
the appressorium, and protection against hydrolytic enzymes [4–6, 11]. Additionally,
melanin provides defense from environmental predation by microorganisms such as
the nematode, Caenorhabditis elegans, and the amoeba, Acanthamoeba castellani
[12, 13]. Thus, melanin has a protective role in fungi both in the host and in the
environment. Melanized fungi have been discovered in extreme cold, dry, salty,
acidic climate; deep-sea habitats; zones depleted of nutrients; etc. Moreover, quite a
wide taxonomic range of yeast-like and mycelial fungi have evolved potent radiation
resistance [14, 15].

This chapter highlights the properties of melanins allowing extremophilic fungi to
expand widely, in detrimental to the majority of other species habitats, even under
significantly different extreme conditions imposed as a consequence of human insult
of the environment. We have also touched on melanin types in fungi, their biosyn-
thesis and localization, melanin precursors in fungal cells, and role of melanin in
parasitic fungi, mainly the plant pathogens.

2 Melanin Biosynthesis in Fungi

Fungal melanin diversity is achieved through two biosynthetic pathways: acetate-
malonate pathway and shikimic acid one (scheme). High molecular weight melanins
are formed by oxidative polymerization of phenolic compounds (scheme). These
reactions are catalyzed by copper-based enzymes. Copper is important for the
production of melanin by both the DHN and L-dihydroxyphenylalanine (DOPA)
pathways [16, 17] (Scheme 1).

Depending on the precursors, the resulting products of polymerization are the
brown-black eumelanin, the yellow-red pheomelanin, and a heterogeneous group of
allomelanins, including piomelanins and, a very common in fungi, DHN-melanin
formed via the polyketide pathway. Eumelanins are dark brown to black pigments
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with 6–9 % nitrogen and 0–1 % sulfur. They are the oxidation products of
5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA)
[5, 18]. In contrast, pheomelanins are reddish-brown pigments with 8–11 % nitrogen
and 9–12 % sulfur, composed of benzothiazine monomer units [18,
19]. Allomelanins show a heterogeneous group of pigments derived from metabo-
lites of homogentisic or p-hydroxyphenylpyruvic acid (piomelanins), γ-glutamyl-4-
hydroxybenzene, and catechols [4, 20–24]. Melanins formed from DHN also belong
to allomelanins. They are very common in fungi and typically do not contain
nitrogen.

2.1 The DHN-Melanin Biosynthesis

Most fungal melanins are derived from the precursor molecule 1,8- DHN and are
known as DHN-melanins. The way which furnishes DHN has been termed the
polyketide pathway and resides primarily in ascomycetes and related
deuteromycetes [23]. Recognized human pathogens which form melanin precur-
sors by the polyketide pathway include Aspergillus nidulans, A. niger, Alternaria
alternata, Cladosporium carionii, Exophiala jeanselmei, Fonsecaea compacta,
F. pedrosoi, Hendersonula toruloidii, Phaeoannellomyces wernickii, Phialophora
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richardsiae, P. verrucosa, Wangiella dermatitidis, and Xylohypha bantiana
[25–27].

Malonyl-CoA serves as the starter and extender units for the polyketide synthase
(PKS1) catalyzing the first step in the biosynthesis pathway. PKS converts malonyl-
CoA to the first detectable intermediate of the pathway, 1,3,6,8-
tetrahydroxynaphthalene (1,3,6,8-THN). Following this, 1,3,6,8-THN is reduced
by a specific reductase enzyme to scytalone. It was discovered that a specific
reductase inhibitor, tricyclazole, produced the same defect as a mutation in the
reductase gene, namely the accumulation of flaviolin, a shunt product of 1,3,6,8-
THN [5]. Scytalone is dehydrated enzymatically to 1,3,8-trihydoxynaphthalene [27],
which is in turn reduced, possibly by a second reductase, to vermelone [27, 28]. This
reductase can also be inhibited by tricyclazole. A further dehydration step [24],
possibly also catalyzed by scytalone dehydratase, leads to the intermediate
1,8-DHN, for which this pathway was named. Subsequent steps are thought to
involve a dimerization of the 1,8-DHN molecules, followed by polymerization,
possibly catalyzed by laccases, phenol oxidases, peroxidases, and catalases
[29–32]. This is a general model for DHN-melanin biosynthesis, but the pathway
(and the resulting color) may vary in different fungi. Interestingly, several
by-products of the fungal DHN-melanin pathway have been shown to have
antibacterial or immunosuppressive properties [33].

In fungi, the melanin biosynthesis could begin through metabolites of shikimic
acid pathway.

2.2 L-3,4-Dihydroxyphenylalanine-Melanin Biosynthesis

DOPA melanin-synthesizing fungi include many model organisms such as Neuros-
pora crassa, Podospora anserina, A. nidulans, A. oryzae and also pathogenic fungi
such as Cryptococcus neoformans. A biosynthesis pathway for fungal DOPA-
melanin strongly resembles the pathway found in mammalian cells, though details
may differ [5].

Eumelanins are formed from tyrosine or phenylalanine oxidized by tyrosinase
(EC 1.14.18.1) or laccase (EC 1.10.3.2) into DOPA. Tyrosinase (monophenol:
diphenol oxygen oxidoreductase) catalyzes the formation of DOPA from tyrosin; it
was found in Agaricus bisporus, N. crassa, Tuber melanosporum, T. manatum, and
many other fungi [1, 29, 34]. The expression of this enzyme is closely related to the
developmental stages and pathogenesis of fungi [4, 35]. DOPA can also be converted
into melanin with the participation of laccases, for example, in Lentinula edodes and
C. neoformans [36].

The second DOPA oxidation step is manifested in DOPA quinone formation,
followed by the cyclization and building up DHI or DHICA with their following
oxidation to indole-5,6-quinone or indole-5,6-quinone carboxylic acid (scheme) [5, 37].
The latter compounds polymerize to form brown and black pigment eumelanins.
This pathway of melanin synthesis was found inCandida albicans, Paracoccidioides
brasiliensis,C.neoformans,andSporothrichum(syn.Sporotrix)schenckii.
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The pheomelanin synthesis pathway involves sulfur compounds, the amino acid
cystein or glutathion, that liberate cysteins through the action of a glutamyl-
transpeptidase. In presence of cysteins, DOPA-quinones connect with cysteins to
form 5-S-cysteinyl-DOPA and 2-S-cysteinyl-DOPA which give benzothiazin inter-
mediates that polymerize to produce pheomelanins – brown, red, or yellow pigments
(scheme) [19, 38, 39]. The pathway shows biosynthesis of sulfur-containing mela-
nins in the truffle T. melanosporum [34].

One more DOPA pathway of melanin biosynthesis in fungi includes tyrosine
transaminase (EC 2.6.1.5.), providing formation of 4-hydroxyphenylpyruvate,
which is subsequently converted into homogentisic acid by dioxygenase
(EC 1.13.11.2) and is then spontaneously oxidized to benzoquinone acetate and
polymerized resulting in the formation of soluble brown piomelanins (scheme)
[1]. The formation of soluble piomelanins from tyrosine via hydroxyphenylpyruvate
and homogentisic acid was found in A. fumigatus, A. kawachii, Madurella
mycetomatis, and Yarrowia lipolytica [2, 39]. In fungal parasite Ustilago maydis,
polymerization of catechol dimers with the formation of melanin fibrils was
found [40].

2.3 Glutaminyl-4-Hydroxybenzene Melanin

There is good evidence that the basidiospore wall melanin of A. bisporus is gener-
ated from the precursor glutaminyl-4-hydroxybenzene (GHB), synthesized via the
shikimate pathway [41]. GHB is apparently converted to glutaminyl-3,4-dihydrox-
ybenzene (GDHB). Peroxidase and/or phenolase oxidize this compound to form
γ-glutaminyl-3,4-benzoquinone, which is polymerized later [20, 21]. It is the imme-
diate precursor to the spore wall melanin. GDHB is found only in reproductive
hyphae that form the melanized spores. Thus products of polymerization of
γ-glutaminyl-3,4-benzoquinone, benzoquinone acetate, and 1,8-DHN form a hetero-
geneous group of allomelanins (scheme).

Other basidiomycetous mushrooms contain GHB and GDHB [42], which leads to
the proposal that DHN melanins may be exclusively produced by ascomycetous
fungi, while GDHB melanins may be restricted to the basidiomycetous fungi
[43]. However, the black yeast Phaeococcomyces spp. shows all of the physiological
and ultrastructural factors for designation as being of basidiomycetous affinity, but it
produces DHN melanin [44] which enhances pathogenesis of fungi [4, 36].

2.4 Two Pathways of Melanin Biosynthesis in One Fungus

Some fungi have more than one biosynthetic pathway of melanins. For example, in
A. fumigatus, piomelanins, synthesized from homogentisic acid (L-DOPA pathway),
protect the hyphae cell wall from ROS, and gray-green DHN-melanins establish the
structural integrity of the cell wall of conidia and their adhesive properties [45, 46].
In A. bisporus, melanins are formed from DOPA by tyrosinase and from
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γ-glutaminyl-4-hydroxybenzene by peroxidase and phenolase [47]. In Hormoconis
resinae and Aureobasidium pullulans, melanins were found in the cell wall, and
exogenous melanins were found in culture fluids [48]. The genus Aspergillus com-
prises many species, which possess pigmented conidia of various colors. Effects of
inhibitors on DHN-melanin synthesis (tricyclazole and phthalide) and DOPA-
melanin synthesis (kojic acid and tropolone) in a range of Aspergillus species
demonstrate differences in the amounts and types of melanins synthesized by related
species [49, 50].

Talaromyces marneffei (Basionym: Penicillium marneffei) is capable of synthe-
sizing DHN-melanins in conidia and DOPA-melanin in yeast cells and mycelia
depending on growth conditions and supply of precursors [51]. There are also
numerous enzymes, such as laccase, polyphenoloxidases, and perhaps peroxidases
and catalases that are found in the cell walls and environs of normally nonmelanized
fungi that will form black polymers from applied solutions of DOPA. This may lead
to erroneous assumptions about the nature of the monomer of fungal melanins. The
native melanin of the black yeast Phaeococcomyces, for instance, is known to be of
DHN origin [44, 52], but albino mutant colonies on agar will blacken when overlaid
with drops of L-DOPA solution. Numerous fungi now known to produce DHN
melanin were previously reported to produce DOPA melanins [24].

In C. neoformans,melanins are synthesized from various exogenous substrates, e.
g., D- and L-dopamine [53], homogentisic acid [54], catecholamines, and other
phenolic compounds [55]. Polymerization of exogenous substrates in
C. neoformans occurs as a result of laccase action. High concentrations of exogenous
substrates (above 1 mM) inhibited the growth of the fungus and the formation of
melanins, probably due to the toxicity of the substrates themselves [56].

Genes of melanin synthesis often assembled into clusters, thereby coordinating
their expression at different stages of development of fungi [32, 45, 50, 57].

3 Localization of Melanins in Fungi

Early works on melanin localization have shown that these pigments in fungi may be
detected in the cell wall or secreted into the environment [29]. Fungal cell wall
incorporates a mix of cross-linked fibers (the polysaccharides glucan and chitin) and
matrix components (primarily proteins and mannans). The outer layer contains high
levels of different types of mannoproteins. The inner layer is made mainly of
polysaccharides (beta-glucans and chitin) and small amounts of proteins [58]. Mel-
anin can be found in the inner or outer layers of the cell wall depending on the fungal
species [6]. In pathogenic fungi, melanins are often reported to be associated with or
“in” the cell wall [30, 35, 59–61]. However, there is variation between species: the
melanin may be located external to the wall, e.g., in P. brasiliensis [5, 62]; within
the wall itself; or as a layer internal to the wall and external to the cell membrane,
e.g., in C. neoformans [21, 56, 63].

In the halophilic fungus Hortaea werneckii at an optimal concentration of NaCl
(0.86M), the melanized dark layer is on the outer part of the cell wall, but the whole cell
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wall is melanized upon the increased salt concentration [64]. Dark melanin granules
were found in the fibrillar matrix on the surface of the cell wall in A. pullulans,
Verticillium dahliae, and Phomopsis spр. [65]. In the presence of a melanin precursor
DOPA, melanin granules are formed on the surface of conidia and yeast cells of the
dimorphic pathogenic fungi Histoplasma capsulatum and Blastomyces dermatitidis
and the cell surface becomes rilled [62, 66]. According to electron microscopy of the
soil fungus Gaeumannomyces graminis, the melanin layer composes almost half of the
thickness of the cell wall and is located between the cell wall and the inner chitinous
layer [65]. In fungi, melanin is deposited in the cell wall and cytoplasm, and melanin
particles (“ghosts”) can be isolated from these fungi that have the same size and shape
as particles in the original cells [63].

A combination of SEM and TEM microscopy shows that melanin has an overall
granular structure. In various fungi, the granules are localized to the cell wall where
they are likely cross-linked to polysaccharides [6, 63, 67]. In C. albicans the melanin
clumps appeared as variably sized extracellular granules loosely adherent to the
pseudohyphae and yeasts, and chitin synthase enzymes are directly involved in the
synthesis of melanin. Thus melanin externalization in C. albicans depends on cell
wall chitin structures [68].

There are exogenous soluble melanins, for example, piomelanins of
Ophiocordyceps sinensis which parasitizes on insects [69]. The soluble melanins
are characteristic of A. bisporus and a number of basidiomycetes [70]. Exogenous
melanins are also found in culture fluids of Cladosporium resinae and A. pullulans
[48]. Soluble melanins are a significant part of the extracellular matrix of Botrytis
cinerea [71]. In Sclerotinia sclerotiorum, melanins are localized in the outer layer of
sclerotia, forming a solid protective cover [72]. In the multicellular conidia
A. alternata [73], melanin was localized in the outer layer of the cell wall and in
septa [74].

Evidence exists that fungal melanin precursors occur inside the cells in lipid
vesicles, analogues of melanosomes of animal tissues [6]. They are subsequently
transported to the cell wall. The existence of fungal melanosomes has been
suggested for Fonsecaea pedrosoi, where electron microscopy has shown electron-
dense cytoplasmic structures in melanized cells [74]. Studies in C. neoformans
suggest that melanin may also be synthesized in vesicles in this fungus. Laccase
activity is associated with extracellular vesicles secreted from C. neoformans [75].

It was shown that melanized cell walls are considerably less porous than
nonmelanized ones. Hence, melanin incorporation into the cell wall determines the
size of the cell wall pores [76]. In some plant pathogens, melanin accumulated in
appressoria again works as a diffusion barrier. It is located between fungal plasma
membrane and cell wall except for the pore where the penetration peg emerges.
Appressoria accumulate glycerol; its diffusion is restrained by the pigment to create
conditions necessary for host penetration (see the Sect. 6.2).

Therefore, melanin localization on the cell surface and its participation in cell
wall porosity makes these secondary metabolites an excellent defense system against
detrimental environments and antifungal drugs, as well as a factor of host-parasite
interactions.
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4 Properties of Melanins

Melanins represent a group of related pigments similar in physical and chemical
traits that allow them fulfilling their protective functions. Melanins are among the
most stable and resistant of biochemical materials [77]. Melanins have been exten-
sively studied and characterized as negatively charged amorphous compounds with
quinone groups, hydrophobic and insoluble in organic solvents [4, 5].

The polymer net structure of melanins formed by the enzymatic and autoxidative
polycondensation of various hydroaromatic precursors may additionally include
other organic molecules. Usually, melanins are associated with proteins
(melanoproteins) or with glycoproteins (melanoglycoproteins) [29]. The presence
of carbohydrates and fatty acids, covalently and noncovalently bound to melanin,
was confirmed by NMR methods [6, 67, 78–80]. It was demonstrated that in cells of
C. neoformans, the polysaccharides and/or chitin that are associated proximally with
lipid membrane constituents form a chemically resistant framework that could serve
as the scaffold for melanin synthesis. The pyrrole aromatic carbons of the pigments
bind covalently to the aliphatic framework via glycoside or glyceride functional
groups [67]. The results of X-ray analysis of four different fungi melanins suggested
that they are composed of planar structures that can differ in stacking distances. The
distance between monomers might be an important feature of melanin pigments
[6]. As melanins contain unpaired electrons, they can be detected by electron spin
resonance (ESR) [81]. A comparison of the ESR spectra of melanin in various fungi
showed that the g-factor of the signal was in the range 2.0036–2.0042 with a
halfwidth of 4–7 eV. Melanin pigments retain the ability to deactivate free radicals
and peroxides and absorb heavy metals and toxic electrophilic metabolites. Seques-
tration of iron ions has been identified as a major mechanism for the inhibitory
effects of melanin on lipid peroxidation [82]. Thus these pigments exhibit profound
antioxidant activity [83–85]. The gene expression of melanin synthesis enzymes
increases the resistance of fungi to oxidants [50, 86].

Melanins exhibit unusual electronic properties due to the presence of mobile
π-electrons [87]. It was proposed that due to melanin’s numerous aromatic oligomers
containing multiple π-electron systems, a generated Compton recoil electron grad-
ually loses energy while passing through the pigment, until its energy is sufficiently
low that it can be trapped by stable free radicals present in the pigment. Controlled
dissipation of high-energy recoil electrons by melanin prevents secondary ioniza-
tions and the generation of damaging free radical species [88].

According to Blois experiments in the 1960s, it was postulated that melanins were
electrical conductors showing photoconductivity in the solid state [89, 90]. Later, the
possibility of tunneling electrons between photoinduced paramagnetic centers was
shown [91]. Melanin chemistry is largely defined by its many ionizable moieties –
carboxylic acids, amines, and catechols in various states of oxidation within the
macromolecular structure [4]. One may therefore anticipate that melanin (like many
other functional biomacromolecules) will exhibit generic polyelectrolyte behavior in
which its weakly acidic nature plays an important role. Recent studies have demon-
strated that melanin’s ionic conductivity is facilitated by binding of water to the
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pigment [92]. Melanins are supposed to be electronic-ionic hybrid conductor. The
presence of these unique properties makes melanin a promising material in
bioelectronics, especially when one takes into account its strength, resistance to
high temperatures, and biocompatibility [92].

Melanin pigments absorb light in a wide spectrum range enclosing
UV. Absorption intensity decreases slowly with increasing wavelengths [93,
94]. Melanins absorb light with the conversion of photon energy into heat [93,
95]. The mechanism of photoprotective action of melanins is of great interest. The
possible transfer of protons inside a monomer as a result of energy dissipation during
the photoexcitation of a pigment was confirmed in a set of experiments [96]. The
polymerization of monomers resulted in an increase in the lifetime of the excited
state of the oligomer from 100 ps to 3 ns [97]. Upon interaction with hard UV
radiation (240–300 nm), photoionization and subsequent partial destruction of
melanins can be observed [93]. Experiments on synthetic melanins showed that
their electron emission was far less than 1 % [94, 98]. This suggests that fast thermal
relaxation of absorbed radiation energy occurs in melanins, and the risk of dangerous
photochemical reactions decreases [93]. These properties allow melanins to be
effective protectors against UV- and solar radiation. However, the formation of
cytotoxic products during hard UV radiation cannot be excluded [98, 99].

Although the structure of melanins was unaffected by X-ray, γ, or UV radiation,
some signal changes were detected by the ESR, indicating an increase in
semiquinone radical number [88, 93].

Thus, the presence of unpaired electrons in the highly polarized structure of
melanin pigments and their ionic conductivity determines a wide range of properties:
the ability to convert all types of heat radiation, adsorb electrophilic compounds,
exhibit antioxidant properties, and, probably, to use the energy of radiation in the
redox reactions of living cells. These properties provide for survival of fungi under
extreme conditions, such as high insolation, low temperature, a low content of water
and organic substrates, high concentrations of reactive oxygen species, and
enhanced radiation doses.

5 Melanins in Extremophilic Fungi

Melanized fungi inhabit some remarkably extreme environments such as excessive
heat or cold, extreme pH or osmotic conditions, polychromatic radiation, simulated
outer space, desiccation, and it also seems to mediate tolerance toward metals,
hypersaline environments, radionuclides [100, 101]. Dominance of melanin-
containing fungal species has been observed around Chernobyl lately [101]. Mela-
nins ensure fungal survival in desert soils, uplands, and on plant surface [14, 101]. In
aerial environment, melanized spores prevail over soil ones [14, 101]. Melanins
provide high spore survival under hard UV radiation while nonpigmented forms
entirely die within a few minutes. Microcolonial yeast-like fungi are highly mela-
nized. They keep ability to grow on the surface of stones under marked temperature
differences, hypersaline environments, drought, low concentrations of organic
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compouds [14, 101–103]. Viable cells of these fungi were found in the extreme
climate of the Antarctic [104, 105]. Inhabiting rock cavities and fossils under harsh
environment of Antarctic, the microscopic fungi Cryomyces antarcticus and
Cryomyces minteri showed high resistance to UV radiation (280–360 nm, 3 W/
m2), which they were able to sustain for few hours, whereas nonpigmented Saccha-
romyces pastorianus cells died after 30 min of exposure [102].

In the hypersaline waters, a surprisingly rich diversity of fungi was discovered.
Such waters in salterns offered natural ecological niches for halophilic black yeasts.
H. werneckii, Phaeotheca triangularis, Trimmatostroma salinum, A. pullulans, and
Cladosporium spp. were detected with the highest frequency in hypersaline water
(3–30 % NaCl) [64, 106, 107]. Among various adaptation mechanisms to
hypersaline environments is melanization of the cell wall as has been shown for
H. werneckii. The outer part of its melanized cell wall has a continuous layer of
melanin granules that minimizes glycerol loss from the cells, as this layer creates a
mechanical permeability barrier for glycerol by reducing the size of the pores in the
cell wall [76]. In terrestrial environments, extremophilic fungi form facultative
lichen-like associations with algae or cyanobacteria [100, 103]. 58 % of fungal
endophytes associated with leaves of Colobanthus quitensis, a dicotyledonous
plant that lives in Antarctica, were able to produce melanin in their hyphae [108].

Melanized microscopic fungi have an advantage to survive in regions of
technogenic pollution. In industrial and roadside areas, melanin-containing fungi
were the most abundant. In these habitats, they showed highest resistance to contam-
ination by heavy metals and unsaturated hydrocarbons [109, 110]. Cladosporium and
Alternaria spp. predominate in air and snow samples of the city settlement areas [111].

Fungi appear to be highly resistant to radionuclides in the environment. Many
(25 %) fungal species from the Nevada Test Site contained melanin or other
pigments [101], and up to 40 % of all fungi isolated from the Chernobyl 4th block
reactor contained melanin or other pigments [112]. These noticeably exceeded the
ratio of melanin-containing fungi, found in environments with background radioac-
tivity. The most frequently occurring pigmented species were C. sphaerospermum,
C. herbarum, H. resinae, A. alternata, and A. pullulans. Despite differences in the
habitat between sampling sites, there was a trend of change in dominance of fungal
species with radiation level [112–116]. Both Chaetomium aureum and
Purpureocillium lilacinum (Paecilomyces lilacinus) were indicators of high levels
of radionuclide contamination (3.7 � 106–3.7 � 108 Bq/kg) of soil in woodland
ecosystems. Though they were among the light-colored fungi, P. lilacinum strains
from radionuclide-contaminated soils had melanin content about 2–2.5 times higher
than its content in related strains isolated from the areas with background radioac-
tivity [117, 118].

Melanin has been shown to account for between 45 % and 60 % of 60Co and
137Cs incorporation into fungal hyphae [119]. Thus melanized fungi are proposed to
be good candidates in bioremediation, since the organisms can potentially bind
radionuclides and many other toxic substances. The occurrence of melanized fungi
in areas with high levels of radiation undoubtedly reflects their advantage relative to
nonmelanized species. Fungal melanin subjected to ionizing radiation showed
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changes in its ESR signal, which consists with changes in electronic structure.
Irradiated melanin showed an increase by four in capacity to reduce NADH rela-
tively to nonirradiated one [120]. Gamma radiation-induced oxidation of melanin
resulted in electric current production, especially in the presence of a reducing agent
[121]. These properties apparently explain the increased metabolic activity and
enhanced growth of fungal hyphae under different types of radiation, found in
melanin-containing fungi [122, 123]. Observations of enhanced growth of mela-
nized fungi under low-dose ionizing radiation in the laboratory and in the damaged
Chernobyl nuclear reactor suggest they have adapted the ability to survive or even
benefit from exposure to ionizing radiation [123]. Thus the possibility of participa-
tion of melanin in active electron transport in living cells leads to a hypothetical
mechanism of radiation energy utilization for the increase in metabolic activity.
Further research in this area can provide a better understanding of the nature of the
radio- and UV-protective effect of melanin [14, 15].

6 Fungal Melanin as a Factor of Pathogenesis

Indeed, melanin is not sufficient condition of fungal pathogenicity since saprophytes
contain it as well. However, for melanized parasites the pigment plays roles,
sometimes indispensible, in colonization of either plant or animal hosts.
Pathogenesis-related properties of melanins are well reviewed [4, 5, 24, 80, 124].

6.1 Evidence That Fungal Pathogenicity Depends on Melanin

Importance of melanin for pathogenicity is evidenced by complete or partial loss of
this ability when its biosynthesis is disturbed on several occasions.

6.1.1 Genetically Impaired Melanin Biosynthesis Attenuates
Pathogenicity

The role of melanin for blast fungus Magnaporthe oryzae (synonyms are
Magnaporthe grisea and Pyricularia oryzae) that affects rice leaves and panicles
is being studied rather thoroughly. The fungus accumulates DHN melanin in spores
(conidia), mycelia, and appressoria. Unlike the parental strain, its melanin-deficient
mutants are not virulent under natural conditions. Three such mutants were recov-
ered by Chumley and Valent [125], namely, albino (Alb�), rosy (Rsy�), and buff
(Buf�). Similar nonpathogenic mutants albino (alb-1) and rose (ros-1) were derived
from the wild-type strain H5-3 by Dzhavakhiya et al. [126].

The hemibiotrophic fungus Mycosphaerella fijiensis causes a very harmful black
Sigatoka disease of banana leaves. Its mycelium contains deep green DHN melanin,
whose amount in infected leaves correlates positively with the disease stage. The
melanin content is very low in pink-pigmented isogenic mutants. They penetrate
leaves, but the infection is blocked soon probably due to hypersensitive response of
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the host [127]. The fungus G. graminis producing DHN melanin causes take-all
disease of wheat and barley; its albino mutant is nonpathogenic [29].

Among human pathogens, yeast-like C. neoformans in the presence of DOPA
synthesizes the corresponding melanin detectable by ESR. Its mutant Mel� does not
show ESR signal and is less virulent for mice than the wild type. C. neoformans
strains deficient in melanin survive poorly in infected animals [124]. In this fungus,
the genes of melanization contribute to dissemination of the pathogen over the host
and death of the latter [4, 128]. The similar genes of C. gattii are greater expressed
(in concert with the higher melanin production) in more virulent than in less virulent
strains. Melanized cells of P. brasiliensis affect animals more severely than
nonmelanized cells, and the infection is accompanied with the increased expression
of melanin synthesis genes [80]. The reduced virulence toward mice was reported for
Mel� mutants of W. dermatitidis and A. fumigatus. Melanizing, but not
nonmelanizing, strains of Basidiobolus sp. are associated with human disease [4].

Opposite examples are known, namely, rise in (or appearance of) pathogenicity in
nonpigmented parasite after transfer of melanin biosynthesis genes to its genome.
Entomopathogenic fungus Metarhizium anisopliae is amelanotic. Genes of polyke-
tide synthase, scytalone dehydratase, and 1,3,8-trihydroxynaphthalene reductase
were transformed to it from A. alternata. The transformant was more virulent than
the wild type in killing diamondback moth (Plutella xylostella) larvae [129]. Transfer
of A. alternata genes ALM, BRM1, and BRM2 to melanin-deficient nonpathogenic
albino (Alb�) and buff (Buf�) mutants of M. oryzae restores their mycelial and
appressorial pigmentation along with pathogenicity [130].

Melanoprotein complexes isolated from Venturia inequalis (causing apple scab)
and applied to apple leaves inoculated with this fungus increased the numbers and
size of lesions [131]. In general, there are few examples of increased virulence
achieved by exogenous melanin addition to inocula. Obviously, it follows (taking
melanin multifunctionality into account) that pigment involvement in pathogenesis
requires not merely its presence in the host-parasite system but depends on its
localization, stage of disease, etc.

6.1.2 Chemical or Physical Agents Altering Melanization Affect
Pathogenicity

The necessity of melanin for rice blast pathogenicity is witnessed convincingly by
usage of inhibitors of its biosynthesis tricyclazole, ftalide, pyroquilon, carpropamid,
etc. as effective commercial antiblast fungicides [132]. Strictly speaking, they are not
fungicides because they do not kill the fungus. It, despite the abnormal pigmentation,
develops normally in artificial culture like pigment mutants. But it is no more
infective [24]. Interestingly that sodium diethyldithiocarbamate, the known inhibitor
of Cu-Zn superoxide dismutase, when added to the nutrient medium ofM. oryzae not
only suppresses the enzyme but also alters the pigmentation. The color of colonies
and conidia shifts from deep gray to thin gray. The compound does not affect growth
of mycelium and germination of conidia harvested from it but deprives them of
pathogenicity. Such lightened conidia can infect wounded leaves but give rise to
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lesions about 2–3 times smaller in size than in the untreated control. Spray of rice
plants with diethyldithiocarbamate expectedly controls the disease [133].

In the zoopathogen W. dermatitidis, tricyclazole decreases pigmentation and
virulence. The capacities of albino mutants of this fungus are restored by exogenous
scytalone, the intermediate in DHN melanin synthesis. Glyphosate inhibits melani-
zation in C. neoformans and improves survival of inoculated mice [4].

The consequences of pigment mutations and chemical inhibition are not always
the same as to pathogenicity. For example, an albino mutant of G. graminis is
nonpathogenic for plants. However, its wild type does not lose the virulence upon
inoculation in the presence of melanogenesis inhibitors [29]. Presumably, the inhib-
itor does not have enough time for the full effect.

In wild type fungi, the environment may shift, although less dramatically, melanin
content with significant consequences for the pathogenic competence. As known,
long maintenance of facultative phytopathogens on artificial media weakens the
spore aggressiveness. The latter, however, is regained after inoculation of the host
plant and re-isolation of the parasite. This was confirmed for M. oryzae, and its
aggressiveness changed in parallel with mycelium and spore melanization
[134]. The fungus grown on a carrot broth produced more aggressive and more
melanized spores than that from a potato broth. On the latter medium, both properties
of spores were stronger in illuminated than in blackout culture [133]. So, pigmen-
tation changes might be among reasons of aggressiveness changes under these
conditions.

6.2 Mechanisms of Melanin Involvement in Fungal Pathogenicity

Modes of melanin action in fungal pathogenesis are diverse as well as general
biological roles of the pigment. Such functions of melanins as creating a tolerance
to harsh environment are fulfilled both in saprophytes and parasites similarly. But
some activities are specific to the second group, for instance, involvement in
pathogen’s entry into tissues of the host or impeding defense responses of the latter.

6.2.1 Intrusion into Host
Appressorium is an anchoring organ, and melanin present here may be implicated in
the parasite’s adherence to the plant surface. This capacity necessary for penetration
was evaluated for M. oryzae by count appressoria remained on inoculated barley
leaves after shaking with water. Appressoria began to adhere at the onset of their
melanization, and both features were reduced by leaf treatment with
tricyclazole [135].

At early stages of plant diseases caused by pathogens M. oryzae, Colletotrichum
lagenrium, C. lindemuthianum [24], and C. kahawae [80] melanin present in
appressoria plays a special role. Namely, it enables local accumulation of glycerol
resulting in high osmotic pressure inside appressorium. This allows the penetration
peg to prick mechanically epidermal cuticle and cell wall. The significance of this
mechanism is evidenced by the facts that pigmentless appressoria of M. oryzae
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melanin-deficient mutants form penetration pegs, which grow poorly through either
plant epidermis or artificial membranes. Accordingly, the mutants are able to infect
mechanically damaged leaves. Wild type of M. oryzae treated with tricyclazole or
other inhibitors resembles the mutants: it loses both appressorium pigmentation and
capacity to penetrate plant cells or artificial membranes. Expectedly, such conidia are
pathogenic for wounded leaves [24].

Although zoopathogenic fungi do not seem to form appressoria, their melanin
might play the penetrative role. In fact, hyphae of W. dermatitidis wild type grow
through dense agar faster than those of Mel� mutants. Moreover, tricyclazole slows
the wild type whereas scytalone accelerates the growth of the mutant [4].

Some phytopathogens are melanized and penetrate their hosts via appressoria but
without help of melanin. As mentioned above, pigment biosynthesis genes trans-
ferred from A. alternata to melanin-deficient mutants of M. oryzae restored their
appressorial pigmentation and pathogenicity. But appressoria of Alternaria itself are
colorless! Furthermore, its melanin-deficient mutants are as virulent as the wild type.
Melanin of this fungus is present only in mycelium and conidia. It is assumed to
contribute to pathogenicity as a factor of the parasite survival in nature [130].

6.2.2 Resistance to Host Defense
Melanin multifunctionality in fungal pathogenesis is illustrated, in particular, by
M. oryzae melanin-deficient mutants alb-1 and ros-1. In fact, they are still nonpatho-
genic upon inoculation by injection, which should bypass mechanical barriers
[126]. Correspondingly, the wild type depigmented by tricyclazole does not neces-
sarily infect damaged leaves. Actually, tricyclazole or ftalide still protect wounded
leaves of cv. Sha-tiao-tsao from the virulent strain H5-3 [136]. Therefore, the fungus
recruits melanin not only as an arm for penetration. In many cases, the pigment
protects the pathogen from adverse abiotic environment and antifungal responses of
the host.

The development of blast fungus is suppressed before its penetration on rice
leaves of certain cultivars. Here spore germination and appressorium formation of
melanin-deficient mutants alb-1 and ros-1 are affected stronger than those of the
parent H5-3 [126]. The suppression is driven by fungitoxic exo-metabolites of leaves
since leaf diffusates show the same effect on spores in vitro. Diffusates of infected
leaves are more toxic than those of healthy ones; the toxicity is higher in incompat-
ible than in compatible combinations [137]. The agents causing acquired disease
resistance increase the toxicity [138]. Therefore, this antifungal effect acts as one of
defense responses. Spores of the wild type H5-3 are the most tolerant to a diffusate of
rice healthy leaves of the susceptible cultivar while the albino spores alb-1 are the
most sensitive; the defectively pigmented ros-1 is intermediate. Inoculation with any
strain increases the leaf diffusate toxicity, to which the mutants are again more
sensitive than the wild type [139]. Therefore, the plant hinders ectophytic develop-
ment of the pathogen; melanin-deficient mutants are more liable to this impact that
may contribute to their nonpathogenicity.

Like the mutations, spoiling pigmentation of the wild type fungus by tricyclazole,
fthalide [136], or diethyldithiocarbamate also sensitize spores to leaf diffusates. On
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the contrary, spores with melanization enhanced by maintenance on carrot medium
(as against potato medium), under light (as opposed to darkness) [133], or by
reisolation (in comparison with an old culture) [134] are more tolerant.

The antidotal action of endogenous melanin of blast fungus is confirmed by the
same activity of the exogenous pigment. Melanin extracted from the wild type H5-3
mycelium and added to albino spores alb-1 restores their germination in leaf
diffusates. The specimen isolated the same way from ros-1 protects weaker while
the stuff from alb-1 does not protect at all [139]. The aforementioned rice leaf
diffusate toxicity to blast spores is abolished or strongly diminished by antioxidants
destroying hydrogen peroxide, superoxide, or hydroxyl radicals; so it is mediated by
the reactive oxygen species [137]. Consistently, leaf diffusates generate chemically
assayed superoxide, and its level increases after inoculation, especially on the
resistant cultivars [140]. Since the defense is prooxidative in nature, the melanin-
mediated tolerance to it is apparently based on the well-documented (see the Sect. 4)
antioxidant action of the pigment.

The responsibility of this action for M. oryzae spore resistance to leaf diffusate
agrees with the higher (than that of H5-3) sensitivity of ros-1 and, notably, alb-1 to
hydrogen peroxide and model chemical sources of superoxide or hydroxyl radicals
[141] or singlet oxygen [142]. Any artificial ROS are detoxified by exogenous
melanin from H5-3, the preparation from ros-1 protects from .OH and 1O2 weaker
while that from alb-1 does not protect. In the experiments, singlet oxygen was
generated by illuminated photodynamic dies. The revealed difference in sensitivity
of the strains was not due to different amounts of dyes absorbed by cells. Melanin
added to spores after switching off the light did not protect them; hence, the pigment
prevented rather than repaired an oxidative damage. The protective ability of
exogenous pigment was not a result of light shielding by it [142]. These observations
are in line with singlet oxygen quenching by melanins [143, 144].

Antioxidant properties of M. oryzae melanin are shown not only by protection of
cells from oxidative damage but also chemically. The isolated melanin exhibits
superoxide dismutase and catalase activities, although their specific values are lower
than those of the corresponding enzymes. It also decreases yield of hydroxyl radical in
Fenton system (Fe2+ + H2O2). The latter effect, as well as cell protection in this
system, might be caused by scavenging of both hydroxyl radical and iron ions [141].

The intermediate position of the strain ros-1 poses a question of the nature of its
pigment. As stable free radicals, melanins possess paramagnetic properties assayed
by ESR (see the Sect. 4). Expectedly, the corresponding signal is found in spores,
mycelium, and isolated pigment from the wild type but not in the albinos. However,
the samples from rose mutant ros-1 also give a signal although weaker than that of
H5-3 [145]. In ros-1, the polykedide pathway of melanin synthesis is blocked at the
stage of 1,3,8-trihydroxyphthalen. This may lead to accumulation of scytalone or
3,4-dihydro-3,4,8-trihydoroxy-1(2H)-napthalenone. But both products are not para-
magnetically active. Presumably, ros-1 cells contain a polymer of earlier or side
intermediates of melanin biosynthesis or certain melanin with changed color like
animal feomelanin. Such product appears to have some paramagnetic but, all the
same, too weak antioxidant properties that leads to the infection failure.
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Apparently, the lack of pathogenicity joined with a normal, at first sight, pigmen-
tation may also be related to the inadequate antioxidant activity of melanin. In
particular, the nonpathogenic strain H-9 is normally pigmented as H5-3 [139] and,
furthermore, shows the same ESR signal [145]. However, its spore germination and,
notably, appressorium formation on rice leaves are suppressed approximately at the
same rate as those of the strain ros-1. The pigment isolated from H-9 mycelium and
in excess added to leaf diffusates or Fenton system protects spores just weakly, at the
level of ros-1 [139].

Like the mutants, wild type blast spores demelanized by tricyclazole, fthalide, or
diethyldithiocarbamate are more sensitive than untreated ones to artificially gener-
ated ROS. Similar differences are also found in spores from cultures grown under
different conditions [133, 134].

Other fungi, for example, C. neoformans, W. dermatitidis, and A. alternata also
demonstrate increased sensitivities of their albino mutants to ROS and other strong
oxidants, and protection from these agents by the wild-type exogenous melanins
[29]. White mutants of A. fumigatus are about one order more sensitive to exogenous
oxidants than the wild type is [4]. C. neoformans resists the toxicity of artificial
oxygen- and nitrogen-derived radicals better, if it is supplied with DOPA enabling
melanin synthesis [128]. Chemical inhibition of pigmentation sensitizes the fungus
to oxidative damage. Another human pathogen, F. pedrosoi constitutively produces
DHN-melanin. The suppression of colony growth by H2O2 or S-nitroso-N-acetylpe-
nicillamine (a donor of NO) is stronger in a tricyclazole-treated culture [85].

Endogenous melanin renders zoopathogenic fungi tolerant not only to
phagocytosis-mimicking model ROS but also to phagocytosis itself. It is reported
for C. neoformans, P. brasiliensis, S. schenkii, and F. pedrosoi [85, 124, 128]. Mel-
anized strains of W. dermatitidis better than nonmelanized ones resist killing by
human neutraphils. Acidic growth medium, which inhibits melanization of the wild
type, diminishes its survival down to the level of albino strain. But the latter acquires
resistance if supplied with scytalone [4]. Nonpigmented mutant conidia of
A. fumigatus are more susceptible to killing by human monocytes and exhibit
more severe structural injury compared to wild-type conidia [124].

Conidial melanin of A. fumigatus inhibits apoptosis in phagocyting macrophages
[80]. Besides, the pigment damps the phagocytic oxidative burst. In the course of the
latter, macrophages produce chemically assayed superoxide radical in contact with,
for example, Saccharomyces cerevisiae. This is also valid for F. pedrosoi conidia
but only for the fungus demelanized by tricycazole [85]. Upon incubation of
A. fumigatus conidia with phagocytes, pigmentless mutants bring about eightfold
more ROS than the wild type. Pigment revertants regain resistance to oxidants and
suppression of oxidant production of phagocytes as well as virulence [4]. Thus, the
pigment can reduce both the yield of toxic products from the host’s immune system
and the parasite’s sensitivity to the intoxication.

The counteraction of microbial melanins to induction of phagocytic oxidative
burst may rest on fungal pigment-elicitor relations. Macrophages contain receptors
sensing glucans of fungal cell wall to promote the synthesis and release of NO and
ROS. Melanin is suggested to mask antigens/glucans, but this function is disturbed
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in tricyclazole-treated F. pedrosoi, which elicits the macrophages’ oxidative
response [85]. In zoopathogenic A. fumigatus, deletion mutant conidia, unlike
those of wild type, activate human dendritic cells and the subsequent cytokine
production [146]. It is not excluded (but perhaps not yet tested) that melanin layers
could hide elicitors in fungal cell wall to prevent recognition by defense systems of
plants [29]. However, in animals, melanin itself is immunologically active: crypto-
coccal pigment elicits generation of specific antibodies in mice [124].

It is also possible that melanins detoxify not only ROS but also plant organic
defensive compounds, for example, phytoalexins [29]. The negatively charged
pigment of zoopathogenic C. neoformans neutralizes neutrophil defensin and other
cationic antimicrobial peptides [124]. The similar activity of melanin against anti-
fungal therapy is reported. The knockout of PKS1 gene of W. dermatidis inhibits
melanin synthesis and sensitizes the fungus to voriconazole and amphotericin
B. Melanized cells ofHistoplasma capsulatum and C. neoformans are more resistant
to amphotericin B and caspofungin. This resistance can be accounted for by drug
binding and deactivation by melanins [80]. However, Mel+ and Mel� strains of
W. dermatidis do not differ in their sensitivity to antifungals [4].

Melanin as a structural element of fungal cell wall plays different roles essential
for pathogencity. Pigmentless mutants of A. fumigatus have abnormally smooth
conidial surface [4]. It is suggested that the pigment is required for correct assembly
of the cell wall layers and the expression at the conidial surface of adhesins and other
virulence factors [46]. In this fungus, the melanin renders conidia immunologically
inert because of proper surface charge and hydrophobicity [146].

6.2.3 Resistance to Hostile Environment
In addition to host’s defenses, abiotic extreme environment impacts parasites so that
the fate of infection depends on survival of the causal agent. For example, diurnal
light is natural for plant shoot microflora. But the excessive insolation represses both
fungal pathogens and, in many cases, disease development [147]. The vulnerability
of pathogenic fungi to intense UV and visible light in consequence of altered
melanization is well known [4]. In many cases, photodamage is oxidative. For
example, photoinhibition of M. oryzae spore germination and appressoria formation
is rescued by exogenous superoxide dismutase or catalase pointing to involvement
of O2

� and H2O2. So, melanin may photo-protect cells not only as a light shield but
also as an antioxidant. Photosensitivity of the wild type strain H5-3 and its melanin-
deficient mutants ros-1 and alb-1 are ranged in the same sequence [148] as sensitivity
to leaf diffusates or model ROS (see above). Similar differences in light sensitivity
are revealed for wild type fungus treated with tricyclazole or diethyldithiocarbamate
or grown under different conditions [133, 134]. Addition of melanin biosynthesis
genes from A. alternata to melanin-less entomopathogenic fungus M. anisopliae
increases its tolerance to UV-B together with its virulence [129].

Melanin protects pathogenic fungi also from other abiotic stressors, sometimes
complex. One example is water deficit. Microsclerotia of albino strain of Verticillium
spp. badly suffer from desiccation in comparison with wild type or albinos whose
pigmentation was restored by exogenous scytalone. The resistance of the wild type
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may be essential for its overwinter survival. Tolerance of Phyllosticta sp. to desic-
cation is related with creation of turgor necessary for fungus penetration into host
tissues. Conidia of albino Monilinia fructicola perish faster than wild type under
desiccation as well as at high (40 �C) temperature or under UV [29]. Exogenous
DOPA added to a wild type C. neoformans increases its heat tolerance [4].

Melanin of pathogenic fungi helps their withstanding unfavorable biotic chal-
lenges from not only hosts but also other microbes. Many examples are given in the
review of Butler and Day [29]. Scletotia of Botrytis cinerea depigmented by
tricyclazole acquire sensitivity to attack of mold and mycophilic fungi. After the
same treatment, scletotia of Sclerotinia germinate while untreated ones remain
dormant. The antilysis tolerance is another way of protection by melanins from
biotic damages occurring, in particular, in soil. It is reported for such phytopatho-
genic fungi as Rhizoctonia sp., Sclerotinia sp., Verticillium sp., and Cochliobolus
sativus. Presumably there are no microbes capable of damage the heavily melanized
sclerotia of Sclerotinia rolfsii. High resistance of Rhizoctonia solani to bacterial lysis
is probably due to melanin resistance to lytic enzymes. In agreement with this,
synthetic melanin protects casein from proteases. Rise in melanin content in
Alternaria kikuchiana treated with polyoxin accompanies the rise in the fungus
resistance to lytic enzymes. Albino chlamidospores of Thielaviopsis basicola are
more sensitive to enzymatic lysis than normally pigmented ones. In contact with litic
enzymes or soil, death of nonmelanized isolates of Cochliobolus sativa occurs
earlier than that of normally melanized. In preparing M. oryzae protoplasts, the
tolerance to hydrolytic enzymes correlates positively with melanin content
[126]. Albino conidia of Monilinia fructicola are several times more sensitive to
lysis than the wild type. Enzyme binding and inactivation by melanins may be
responsible for the cell protection from lysis [4].

6.2.4 Other Functions
Melanin seems to participate in pathogenesis by somewhat unusual way, namely, as
a source of oxidative damage rather than protector from it. There was a recommen-
dation in the 1940s to grow bananas under partial shade. That was because light
favors the disease of this and other crops caused by Cercospora species. The light
effect belongs to the fungal toxin cercosporin, which is a photosensitizer yielding
singlet oxygen and other ROS [149]. Black Sigatoka disease of banana is also
promoted by light but the causal agent M. fijiensis does not produce cercosporin.
Beltrán-García and coworkers [127] hypothesized that melanin of M. fijiensis
behaves as a light-activated toxin. They assayed singlet oxygen by IR emission
(at 1270 nm) in laser-excited (at 532 nm) samples. This ability was actually found in
whole mycelium as well as in melanin isolated from it; mycelia of albino mutants
were less productive. Photogeneration of 1O2 also occurred in the secreted fraction of
melanin and in the mixture of intermediates of melanin biosynthesis releasing into
medium amended with tricyclazole, tropolone, or pyroquilon. The authors suggest
the mycelial melanin protects the fungus by deactivating singlet oxygen and oxygen
radicals. At the same time, the pigment and its soluble intermediates may play the
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opposite, i.e., pro-oxidative role producing ROS that injure host tissues and resulting
in the destructive disease symptoms.

The idea of double faced melanins is not contradictory. ROS generation by
melanins in their autoxidation [82] or upon UV irradiation along with accompanying
cytotoxic effects [99, 150] are known. However, prooxidative role of melanin in
pathogenesis deserves detailed consideration. Because the IR spectrometry is rather
sensitive, one would wonder if naturally illuminated melanin produces 1O2 in
amounts sufficient for biological effects. It would be interesting to find out whether
melanin intermediates posses light-depended phytotoxicity; inhibitor-based studies
with appropriate antioxidants would also be desirable.

Another disruptive role of fungal melanins against host plant is related with a lytic
activity of the fungus. Cell wall melanin of the apple scab pathogen V. inequalis was
found to bind fungal extracellular hydrolytic enzymes RNAase, DNAase, acid
phosphatase, and phenoloxidase. The enzymes are released from melanin afterwards
and retain high activity that allows concentrating their action at particular sites
[29]. By the way, shunt products from DHN melanins may also be phytotoxic and
involved in pathogenicity. This is, for example, alteichin, a phytotoxin of Alternaria
eichhorniae: its synthesis is blocked by tricyclazole [24].

Properties of melanins are really unique, but they should not be overrated because
the pigments share certain functions (antioxidative, for instance) with other metab-
olites. It follows that once pigmentation is altered, this is not necessarily the sole
cause of accompanying effects. The inhibitors of melanin biosynthesis may have
auxiliary modes of action. For example, the antiblast fungicide carpropomide stim-
ulates host defense responses including lignification [151]; tricyclazole and fthalide
promote oxidative burst in rice leaves [136]. In general, fungal melanins act as
universal protectors from numerous antimicrobial factors, but the harm resulted from
melanized pathogens is not controlled universally by inhibitors of melanin
biosynthesis.

7 Conclusions

New fungal extreme ecosystems continue to be discovered and investigated includ-
ing the deep biosphere, new regions of technogenic pollution, and latest human and
plant parasites. Thus physiological characteristics of extremophilic organisms stated
in the twentieth century must be updated. Melanin pigments represent an important
point in this field. Achievements in melanin research, based on organic chemistry,
advanced spectroscopic and imaging techniques, theoretical calculations, and
methods of solid-state physics, unraveled unique structural and optoelectronic prop-
erties of melanins, their localization in the cells, intracellular transport of melanin
precursors and reactions of their polymerization. The ever-growing knowledge not
only gains insight into multifunctionality of melanins in extremophilic fungi but may
also be used in effective strategies for exploiting their properties to create a new class
of biologically provided high technological materials and new antifungal drugs.
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Abstract
Several filamentous fungi grow on the surface or inside different types of cheese,
produce secondary metabolites, and contribute to the organoleptic characteristics
of mature cheese. Particularly relevant is the contribution of Penicillium
roqueforti to the maturation of blue-veined cheeses (Roquefort, Danablu,
Cabrales, etc.). P. roqueforti is inoculated into these cheeses as a secondary
starter. This fungus is closely related taxonomically to Penicillium carneum and
Penicillium paneum, but these two species are not used as starters because they
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produce the potent toxin patulin. P. roqueforti Thom has the capability to produce
about 20 secondary metabolites of at least seven different families, but it seems
that only some of them are produced in microaerobic conditions and accumulate
inside the cheese (e.g., andrastins). This article focuses on the biosynthetic
pathways, gene clusters, and relevance of the known metabolites of
P. roqueforti including roquefortines, PR-toxin and eremofortins, andrastins,
mycophenolic acid, clavines (agroclavine and festuclavine), citreoisocoumarin,
and orsellinic acid. In addition the biosynthesis of patulin (a P. paneum and
P. carneum product) is discussed. Penicillium camemberti grows on the surface
of Camembert, Brie, and related white rind cheeses, and the penetration of
secondary metabolites inside the cheese is relevant. One of the P. camemberti
metabolites, cyclopiazonic acid, is important because of its neurotoxicity and its
biosynthesis is reviewed. The removal of toxic metabolites gene clusters by
precise gene excision while preserving all other characteristics of the improved
starter strains, including enzymes involved in cheese ripening and aroma forma-
tion, is now open. A possible strain improvement application to the cheese
industry is of great interest.

Keywords
Cheese fungi • Blue-veined cheeses • Penicillium roqueforti • Penicillium
camemberti • Secondary metabolites biosynthesis • Roquefortines • PR-toxin •
Eremofortins • Andrastins • Mycophenolic acid • Clavine alkaloids •
Cyclopiazonic acid
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DMA-PP Dimethylallyl diphosphate
DMAT Dimethylallyltryptophan
DMOA 3,5-Dimethylorsellinic acid
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KS Ketosynthase
MFS Major facilitator superfamily
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6-MSAS 6-Methyl salicylic acid synthase
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nr-PKS Non-reductive polyketide synthase
NOX N1 hydroxylase
RAPD Random amplified polymorphic DNA
RDH Roquefortine D dehydrogenase
RPT Roquefortine prenyltransferase
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1 Introduction

Many Penicillium roqueforti strains are used in different countries in the world as
secondary starters for the production of blue-veined cheese. More than one hundred
of these strains have been characterized morphologically [1], and all of them are
closely related to the original type strain described by Charles Thom [2] as
P. roqueforti Thom ATCC10110. Taxonomically, this strain is referred as
P. roqueforti subspecies roqueforti. Some strains of the P. roqueforti cluster (initially
identified as P. roqueforti) differ in the metabolites that are separated by thin layer
chromatography [3] and in the pigmentation of the reverse of the colonies [4]. These
authors found a group of P. roqueforti strains that are less pigmented and produce
patulin instead of PR-toxin and named this group P. roqueforti subspecies carneum
because they are found associated with spoiled meat products.

Later Boysen et al. [5] using rRNA sequences and RAPD (random amplified
polymorphic DNA) techniques divided the “P. roqueforti” strains into three species,
namely, P. roqueforti sensu stricto, Penicillium carneum, and Penicillium paneum.
The last one was associated with molded bread, flour, and cereal grains.

Recently Houbraken et al. [6] discovered a new member of the P. roqueforti series
in cold-preserved apples. This strain, which grows and forms sexual cleistothecia at
low temperature, has been classified as Penicillium psychrosexualis. It produces
patulin as P. carneum and P. paneum at difference of P. roqueforti (Table 1). So far,
P. psychrosexualis has not been found in cheeses and appears to be mainly associated
with fruits such as apples and pears, in which it may produce pigmented spots.
Therefore, the relevance of the secondary metabolites of this species in cheese is
lower than that of P. roqueforti, P. carneum, and P. paneum.

1.1 Fungal Secondary Metabolites

Frequently filamentous fungi produce a few dozens of molecules belonging to
different classes of secondary metabolites (polyketides, terpenes, nonribosomal
peptides, aromatic compounds, heterocyclic metabolites, etc.) [7]. Usually they are
produced as mixtures of chemically related molecules (e.g., roquefortines C, D, L, M
or andrastins A to D). Each family of these compounds derives from a set of enzymes
encoded by a gene cluster. Genetic information, in the form of gene clusters, for
about 15 to 30 secondary metabolites have been found in the sequenced genome of
ascomycetes [8, 9]. In some fungi, several gene clusters have been characterized by
genetic and biochemical analysis (e.g., A. nidulans, A. fumigatus), whereas in others
only a small number of secondary metabolite gene clusters has been identified so far
(e.g., P. chrysogenum or P. roqueforti) and many other gene clusters remain cryptic,
i.e., encoding unknown products [7, 10]. In addition, a number of gene clusters
remain fully silent or nearly silent, although in some cases their expression may be
activated by specific methods [10, 11]. In this article, we focus on the study of the
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secondary metabolites produced by the cheese fungus P. roqueforti (Table 1). The
metabolites produced by the related fungi P. paneum and P. carneum, which are only
rarely found in blue cheeses, and P. psychrosexualis are listed in Table 1, but they are
reviewed succinctly at the end of the chapter (e.g., patulin produced by P. paneum
and P. carneum) [12]. Also the biosynthesis of the neurotoxin cyclopiazonic acid by
Penicillium camemberti is included in this article.

2 Secondary Metabolites Produced by P. roqueforti

In the last decades, increasing evidence has been reported on the ability of
P. roqueforti to produce secondary metabolites in different culture media and inside
the blue cheeses [13, 14]. The biosynthetic pathway of some of these metabolites and
the gene clusters encoding their pathways have been located in the genome of the
producer fungi [15–18], although the pathways for some of the rare secondary
metabolites remain unknown. The full genome sequence of P. roqueforti FM164
has been made available [19], and this information will contribute to a better
understanding of the ability of this fungus to express the genes encoding secondary
metabolites under different growth conditions. So far the information available about

Table 1 Secondary metabolites produced by P. roqueforti and the closely related P. carneum,
P. paneum, and P. psychrosexualis

Metabolites in
P. roqueforti

Metabolites of
P. carneum Metabolites of P. paneum

Metabolites of
P. psychrosexualis

Agroclavine Agroclavine Agroclavine

Andrastins A, B Andrastins A, B Andrastins A, B Andrastin A

Citreoisocoumarin Citreoisocoumarin Citreoisocoumarin

Eremofortins A, B

Festuclavine Festuclavine Festuclavine

16-Hydroxyroquefortine 16-Hydroxyroquefortine 16-Hydroxyroquefortine

Marcfortins A, B, C

Mycophenolic acid Mycophenolic acid Mycophenolic acid Mycophenolic
acid

Orsellinic acid Orsellinic acid Orsellinic acid

PR-toxin

Roquefortines C, D, L Roquefortines C, D, L Roquefortines C, D, L Roquefortine C

Patulin Patulin Patulin

Penitrem A Penitrem A

VM55599

“Fumu”,
uncharacterized

(1) P. carneum and P. paneum may produce variable amounts of all other P. roqueforti secondary
metabolites with the exception of eremofortins and PR-toxin (see text). An early description of
penicillic acid production in a P. roqueforti strain is now explained due to a misclassification of the
producer strain
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the expression of the genes encoding enzymes for secondary metabolites biosynthe-
sis inside the blue-veined cheeses is very scarce.

2.1 Roquefortines

Roquefortines were discovered many decades ago [20, 21] and are among the best
known P. roqueforti secondary metabolites [22, 23]. The roquefortine family includes
roquefortine C and the related roquefortines D (3, 12-dihydroroquefortine C),
16-hydroxyroquefortine C, roquefortine L, and some other minoritary roquefortines
[24]. These compounds are members of the prenylated indole alkaloid class of
compounds (Fig. 1) (reviewed in reference [25]). Roquefortine C is produced by
P. roqueforti growing in a variety of solid substrates, but its formation in blue cheeses
does not occur in significant amounts, and there is a consensus that roquefortines in
cheese do not pose a health problem for humans [12, 14, 22, 26].

The compounds of the roquefortine family derive from L-tryptophan, L-histidine,
and mevalonate [25]. Roquefortines are produced by several Penicillium species
including P. roqueforti, P. chrysogenum [15, 16], and other plant-associated or
saprophytic fungi [27, 28]. However, it was unknown if the biosynthetic pathway
of roquefortine alkaloids is identical in all these fungi. Recent evidence [18] dem-
onstrated that the roquefortine pathway in P. roqueforti is shorter than that for
roquefortine/meleagrin in P. chrysogenum (see below).

2.1.1 Biosynthesis of Roquefortine and Meleagrin
One of the common early intermediates of prenylated indole alkaloids is a molecule
of dimethylallyl-tryptophan (DMAT) that is formed by a prenyltransferase that uses
L-tryptophan (or a L-tryptophan-containing cyclopiperazine dipeptide) and
dimethylallyl diphosphate (DMA-PP) as substrates [15, 16, 25]. In roquefortine
alkaloids, precursor condensation of these substrates occurs at C-3 of L-tryptophan
with the 30carbon atom of DMA-PP (named “reverse condensation”) [29].

PR Toxin Eremofortin A

Andrastin A

O

O
OH

HOOC

CH3O

CH3

Mycophenolic acid                                                     Citreoisocoumarin                 Orsellinic  Acid
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Fig. 1 Structure of the major secondary metabolites produced by P. roqueforti. The metabolites
produced by P. carneum, P. paneum, and P. camemberti are not included in the figure
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Following initial precursor studies in P. roqueforti [30, 31], it was established that
the tryptophan-histidine cyclopiperazine nucleus of roquefortine C and the related
compounds glandicolines A and B, meleagrin, and neoxaline derive from the
precursor compounds L-tryptophan and L-histidine. These two amino acids are
condensed by a dimodular nonribosomal peptide synthetase, named RDS
(roquefortine dipeptide synthetase) consisting of two similar modules with the
domain sequence ATCATC, where A indicates adenylation domain (amino acid
activation), T thiolation (peptidyl carrier) domain, and C condensation domain.
The amino acid specificity of each domain has been elucidated [15, 25]. The
cyclodipeptide (cyclo-trp-his) is then prenylated by the roquefortine
prenyltransferase (RPT) that introduces an isopentenyl group at C-3 of tryptophan
(Fig. 2b). The resulting prenylated compound is roquefortine D
(3, 12-dihydroroquefortine C). In the last step of the roquefortine pathway,
roquefortine D is oxidized by the roquefortine D dehydrogenase (RDH), losing
two H atoms with the formation of a double bond between carbons 3 and 12 resulting
in roquefortine C (Fig. 2b). The order of the second and third biosynthetic reactions
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neoxaline, and oxaline in P. chrysogenum (Modified from Ref. [28])
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(prenylation and roquefortine dehydrogenation) is indifferent [16], and therefore, a
metabolic grid occurs in these early steps of the pathway [25].

In some fungi (e.g., P. chrysogenum and P. oxalicum), roquefortine C is later
converted to roquefortine L (or in other fungi to glandicoline A) and then to
glandicoline B and meleagrin (see structure in Fig. 1) [31]. The conversion of
roquefortine C (or roquefortine L in P. chrysogenum) to the late pathway products
involves (i) a carbon scaffold reorganizing oxygenase (SRO), similar to the FtmG
oxygenase of Aspergillus fumigatus involved in fumitremorgin biosynthesis, and
(ii) a N1 hydroxylase (NOX) and a N-OH methyltransferase (Fig. 2b). The role of
each of these enzymes in the roquefortine and meleagrin pathways has been
reviewed elsewhere [25, 28].

2.1.2 The Roquefortine/Meleagrin Gene Cluster
Molecular genetic studies on the roquefortine/meleagrin gene cluster (roq/mel) were
performed first in P. chrysogenum Wis54-1255 leading to the characterization of the
gene cluster and the proposal of a roquefortine/meleagrin biosynthetic pathway
[15]. The roquefortine/meleagrin gene cluster was later confirmed by Ali
et al. [16] and Ries et al. [24], who reported the formation in P. chrysogenum of
roquefortine L (instead of glandicoline A) as an intermediate in the pathway, in
addition to other minoritary roquefortines derived from late branches of the pathway.
The entire pathway in P. chrysogenum is encoded by a seven-gene cluster
(Pc21g15420 to Pc21g15480) (Fig. 2a).

An important question is if the many natural isolates (strains) of P. roqueforti
obtained from different geographical areas [1] have genetic differences in their
capability to synthesize roquefortine and the related indole alkaloids [14, 26] and
whether these differences are due to changes in the roquefortine gene cluster.

The roquefortine gene cluster of P. roqueforti has recently been investigated
[18]. The initial steps of roquefortine biosynthesis in P. roqueforti are identical to
those of P. chrysogenum, but we found that P. roqueforti lacks the genes that encode
the enzymes for the “late” conversion of roquefortine C to roquefortine L,
glandicoline B, and meleagrin [18]. A natural short pathway was found in
P. roqueforti that is dedicated to the production of roquefortine C but is unable to
form derivatives containing the meleagrin scaffold [18, 28].

A comparative analysis of the roq cluster of P. roqueforti and the roq/mel cluster
of P. chrysogenum revealed that two key genes located in the central region of the
roq/mel cluster in P. chrysogenum (sro and nox) have been lost in P. roqueforti
during evolution and the order of two of the conserved genes has changed during
gene reorganization. Furthermore, the roqT gene, encoding a transmembrane trans-
port protein in P. chrysogenum, has been rearranged into a pseudogene (Fig. 2a) that
encodes only residual peptides [18, 28]. As a result of the roq/mel cluster reorgani-
zation, P. roqueforti is unable to convert the roquefortine-type carbon skeleton into a
meleagrin-type scaffold and is incapable to produce glandicolines. The cluster
reorganization is not a recent event derived from “industrial” strain selection. Rather,
it seems to be an ancient phenomenon that occurred probably millions of years ago
during adaptation of a progenitor Penicillium to cheese environments [28].
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PR-Toxin and Eremofortins PR-toxin and eremofortins are isoprenoid secondary
metabolites. PR-toxin is probably the most potent mycotoxin produced by
P. roqueforti [12, 23]. This isoprenoid mycotoxin is clearly toxic for mice, rats,
hamsters, and some domestic animals in vivo. Furthermore, PR-toxin has mutagenic
action in vitro, as shown in studies using the Ames test. Actually, PR-toxin is
considered to be the causative agent of cow toxicosis produced by poorly conserved
moldy silages [12]. Fortunately, PR-toxin is modified to less toxic derivatives by
P. roqueforti cells, and its toxic form does not seem to be accumulated in large
amounts in blue cheese [22].

Recently, we have studied the biosynthesis of PR-toxin and its intermediates the
eremofortins [17]. PR-toxin derives from the sesquiterpene (15 carbon atoms)
aristolochene; this first intermediate is formed by aristolochene synthase (encoded
by the gene ari1). Hidalgo et al. [17] cloned and sequenced a partial PR-toxin cluster
containing four genes that include the ari1 (prx2) gene reported previously in
P. roqueforti (Fig. 3a). Gene silencing of each of the four genes, named prx1 to
prx4 (prx, abbreviation for PR-toxin), caused a reduction of 65–75 % in the pro-
duction of PR-toxin indicating that these four genes encode enzymes involved in
PR-toxin biosynthesis. An eleven gene cluster (Pc12g06260 to Pc12g06370) that
includes the above‐mentioned four prx genes and a 14-TMS (transmembrane span-
ner domain) drug/H+ antiporter of the MFS family was found in the genome of
P. chrysogenum (Fig. 3a). A detailed analysis of the published genome sequence of
P. roqueforti FM164 [19] revealed that this strain contains in two subclusters 10 of
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the 11 prx genes described in P. chrysogenum. The exception is prx10 that was
reported as encoding a protein of unknown function [17]. As shown in Fig. 3a, seven
of the 10 prx genes (prx 1 to 4, prx 8, 9, and 11) are clustered together in contig
Proq02g of P. roqueforti, whereas the three remaining genes (namely, prx5, 6, and 7)
are located elsewhere (contig Proq06g) in the genome.

PR-toxin biosynthesis pathway from farnesyl diphosphate was proposed based on
all available evidence [17]. It proceeds to PR-toxin through aristolochene and the
eremofortins (Fig. 3b). The PR-toxin pathway is divided in two parts. The first part
corresponds to the conversion by oxidative enzymes of the 15-carbon atom
aristolochene to 3-hydroxy, 8-oxo, 12-dehydroaristolochene, eremofortin B, and
deacetyl-eremofortin A (DAC-EreA), all containing 15 carbon atoms. In the second
half, DAC-eremofortin A is acetylated to the 17-carbon eremofortin A by an
acetyltransferase encoded by prx11, and then eremofortin A is converted to
eremofortin C and finally to PR-toxin.

Both eremofortins and PR-toxin are probably secreted by the MFS transporter
encoded by the prx5 gene in the prx cluster, as proposed for several antibiotics and
other secondary metabolites [32].

The PR-toxin is converted in vitro and probably also in vivo to PR-amide and
PR-imine by reaction of the PR-toxin carboxylic group with ammonium ions or
primary amines in the culture medium or in the cells [33, 34], and these derivatives
appear to be less toxic than the PR-toxin itself.

2.2 Andrastins

Another important family of P. roqueforti secondary metabolites is the andrastins
that belong to the polyketide-isoprenoid class. They are inhibitors of the farnesyl-
transferase of the ras-encoded oncogenic protein [35, 36]. Prenylation
(farnesylation) of the human Ras protein is essential for its biological activity that
may cause tumor formation. Therefore, inhibitors of the Ras prenyltransferase
activity are interesting for their use as potential antitumor agents [37].

The andrastins belong to the meroterpenoid class of secondary metabolites that
include compounds with interesting pharmacological activities [38]. Andrastins A,
B, C, and D were discovered by S. Omura (Nobel Prize 2015) and coworkers at the
Kitasato Institute in Japan in a screening of antitumoral agents. These compounds
were first identified in the culture broth of Penicillium sp. FO4259 [36, 39, 40], and
they are produced by several other Penicillium species [41].

Nielsen et al. [13] and Fernández-Bodega et al. [14] found that P. roqueforti
produces andrastins and that andrastin A (the final product of the biosynthetic
pathway) is accumulated inside blue cheeses inoculated with P. roqueforti as a
secondary starter. Andrastin A concentrations in different blue cheeses such as
Roquefort, Danablu, Cabrales, Bejes-Tresviso, and Valdeón vary depending on the
particular P. roqueforti strain used as starter and ripening conditions [14]. Andrastins
are considered to be beneficial for human health because of their ras
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prenyltransferase inhibitory activity, but there are no studies that support its lack of
toxicity when accumulated in high concentrations in cheese.

2.2.1 Biosynthesis of Andrastins
Initial precursor incorporation studies showed that the andrastins derive from
3, 5-dimethylorsellinic acid (DMOA) and the terpene precursor farnesyl diphosphate
(FPP) [39]. In fungi, orsellinic acid is formed by the condensation of one unit of
acetyl-CoA (starter unit) and three units of malonyl-CoA (elongation unit) followed
by cyclization of the tetraketide to form the aromatic ring of orsellinic acid. These
reactions are catalyzed by a specific nonreducing polyketide synthase (nr-PKS). The
precursor incorporation studies suggested that the two methyl groups of DMOA
derive from methionine [39] although it is not entirely clear if the incorporation of
the methyl groups occurs during polyketide elongation or after orsellinic acid is
formed. Based on the information available on the molecular genetics of the bio-
synthesis of other farnesylated-DMOA-derived fungal metabolites (e.g., austinol or
terretonin), Matsuda et al. [42] identified a gene cluster encoding enzymes for
andrastin biosynthesis in P. chrysogenum. The biosynthetic pathway of farnesyl-
DMOA containing meroterpenoids [38] indicates that DMOA is converted to
farnesyl-DMOA by a specific farnesyltransferase and then the farnesyl-DMOA is
converted into farnesyl-DMOA methyl ester by the action of methyltransferase.
A FAD-dependent monooxygenase converts the terminal double bond of farnesyl-
DMOA methyl ester into its epoxy derivative (Fig. 4b).

The epoxy farnesyl-DMOA methylester is later cyclized to a polycyclic
meroterpenoid by a characteristic terpene cyclase. The cyclases of each
meroterpenoid gene cluster may yield a (slightly) different cyclic structure [43]

Acetyl-CoA  +

DMOA

AdrGAdrD AdrK

AdrH

AdrIAdrFAdrE

AdrJ

AdrA AdrA

OH

O

OH OH OH

OH

COOH COOH COOCH3

COOCH3

3 Malonyl-CoA  +

2 S-adenosylmethionine

O O

O

O

OH

CH3OOC
COOCH3

O

OH

CH3OOC
COOCH3

HO O

O

OH

CH3OOC
COOCH3

O

OH

HO
COOCH3

O

OH

HO
COOCH3

Farnesyl-DMOA Farneyl-DMOA  methyl ester

epoxy-farnesyl-DMOA-methyl esterandrastin E 

O

OH

   O
COOCH3

andrastin D andrastin F

andrastin C andrastin B andrastin A

adrA adrB adrC adrD adrE adrF adrG adrH adrI adrJ adrK
a

b
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that are converted to different final meroterpenoid molecules by “late” modification
enzymes (so-called tailoring enzymes) (Fig. 4b).

2.2.2 Andrastins Gene Cluster
The andrastin A gene cluster of P. chrysogenum (Fig. 4b) comprises eleven genes
(Pc22g22820 to Pc22g22920) of which nine correspond to enzymes that are directly
involved in andrastin A (the most modified final product) biosynthesis. These nine
enzymes include (i) an iterative type I, nonreductive polyketide synthase that forms
DMOA (named AdrD); (ii) a prenyltransferase that attaches the farnesyl group of
FPP to the DMOA moiety (AdrG); (iii) a methyltransferase that methylates the
carboxyl group of farnesyl-DMOA forming farnesyl-DMOA methyl ester (AdrK);
(iv) a FAD-dependent monooxygenase that converts farnesyl-DMOAmethyl ester to
epoxy-farnesyl-DMOA methyl ester (AdrH); (v) a terpene cyclase (AdrI) that
cyclizes the epoxyfarnesyl-DMOA methyl ester intermediate to form andrastin E,
the first member of the andrastin family; and (vi) four additional tailoring enzymes
that convert andrastin E to andrastins D, F, C, B, and A (final product) (Fig. 4b).
These tailoring enzymes include a short-chain dehydrogenase (AdrF), a
ketoreductase (AdrE), an acetyltransferase (AdrJ) forming andrastin C, and finally
a P450 monooxygenase (AdrA) involved in the consecutive oxidations of the C-23
methyl group of andrastin C to form andrastin B and then andrastin A that contain an
alcohol and an aldehyde group at the C-23 position, respectively (Fig. 4b). The
involvement of these 9 genes in andrastin A biosynthesis was confirmed by heter-
ologous expression of a reconstructed gene cluster in Aspergillus oryzae that resulted
in the production of andrastin A [42]. The andrastin gene cluster of P. roqueforti has
not been characterized so far, although is likely to be similar to that of
P. chrysogenum.

2.3 Mycophenolic Acid

Another important secondary metabolite of P. roqueforti is mycophenolic acid
(MPA). This compound was already known at the beginning of the twentieth
century, before the discovery of penicillin, as an antibiotic active against Bacillus
anthracis, produced by a Penicillium sp. strain. Production of MPA in liquid cultures
has been studied in Penicillium brevicompactum [44], the fungus which is used for
MPA industrial production and in P. roqueforti [17]. Mycophenolic acid, discovered
initially as antibacterial agent, was later found to have other important biological
activities [45]. Particularly relevant is its activity as immunosuppressant used suc-
cessfully to prevent organ rejection in transplants [46]. In addition, MPA has
antitumor, antiviral, and antifungal activities and is used in the treatment of psoriasis
[47–51].

2.3.1 Mycophenolic Acid Biosynthesis and Resistance Genes
Initial precursor incorporation studies [52] suggested that MPA is a compound
synthesized through the hybrid polyketide-terpene pathway. Recently, the mpa
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gene cluster was cloned from a P. brevicompactum strain [53] and later confirmed in
the sequenced genome of a different P. brevicompactum strain [54]. In both strains,
the mpa cluster comprises seven genes (Fig. 5), namely, mpaA (encoding a
prenyltransferase), mpaB (encoding a protein of unknown function), mpaC
(encoding a polyketide synthase), mpaDE (encoding a bifunctional fused protein
with two domains corresponding to a P450 monooxygenase and a hydrolase), mpaF
(encoding an inosine-50-phosphate dehydrogenase), mpaG (encoding an
O-methyltransferase), and mpaH (encoding an oxidative cleavage enzyme).

A key enzyme in MPA biosynthesis is the non-reductive iterative PKS encoded
by mpaC. This protein contains the following domains: a starter unit acyltransferase
(SAT), a ketosynthase (KS), an acyl-carrier protein (ACP), a methyltransferase
(MT), and a standard acyltransferase (AT). These activities are required for the
synthesis of the MPA intermediate 5-methylorsellinic acid from one starter acetyl-
CoA, three malonyl-CoA extender units, and a methyl group.

Involvement of the mpaC gene encoding the non-reductive PKS and mpaDE
encoding the bifunctional P450 monooxygenase-hydrolase in MPA biosynthesis has
been confirmed by disruption of these genes in P. brevicompactum and by their
expression in the heterologous host Aspergillus nidulans, a nonproducer of MPA
that lacks the orthologous genes [53, 55]. More recently Zhang et al. [54] proved that
mpaG encodes a S-adenosylmethionine (SAM)-dependent O-methyltransferase that
converts in vitro demethylmycophenolic acid to MPA, the last step in the pathway
(Fig. 5). This methyltransferase was purified after expression of the mpaG gene in
E. coli. The enzyme showed similar substrate kinetics to O-methyltransferase
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Fig. 5 (a) Gene cluster of mycophenolic acid in P. brevicompactum. (b) Proposed biosynthetic
pathway for mycophenolic acid (Modified from Ref. [53])
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obtained from P. stoloniferum (gene not yet cloned), another mycophenolic acid-
producing fungus.

The MPA-producing fungi have to protect themselves against the antifungal
activity of MPA. This resistance to MPA appears to be exerted by an
IMP-dehydrogenase encoded by mpaF [56], although other mechanisms such as
active MPA secretion and lack of uptake of the secreted extracellular MPA may also
contribute to the resistance as occurs with other secreted metabolites [32].

Mycophenolic acid is active against fungi and human lymphocytes (involved in
immune response) because it exerts a strong inhibition of the inosine-50-phosphate
(IMP) dehydrogenase, a key enzyme in de novo purine biosynthesis in those cells
that lack the purine recycling pathway (as it is the case in lymphocytes).
Overexpression of the mpaF gene in A. nidulans drastically increases the resistance
to MPA in this fungus [55, 56]. Indeed, these authors reported that six different
fungi, including those that produce MPA and also some putative nonproducers,
contain two IMP dehydrogenase genes, one of them presumably located within the
mpa gene cluster [56].

While this manuscript was in the proof stage, a recent report described the
mycophenolic acid gene cluster in P. roqueforti (see note added in proof).

2.4 Agroclavine and Festuclavine

There are two subgroups of alkaloids produced by fungi: (i) the clavine alkaloids
represented by fumigaclavine, synthesized by A. fumigatus [57], and agroclavine
and festuclavine produced by P. roqueforti, and (ii) the lysergic acid-containing ergot
peptide alkaloids produced by species of Claviceps [58]. Several P. roqueforti strains
of different origins produce the clavine-type alkaloids agroclavine and festuclavine
(Fig. 1). Festuclavine is also produced by P. carneum [12].

The clavine alkaloids have a tricyclic or tetracyclic structure with small structural
differences between them. There are no detailed studies on the biosynthesis of
agroclavine and festuclavine in P. roqueforti, but the biosynthesis of fumigaclavines
in A. fumigatus [57] and ergot alkaloids in Claviceps purpurea [58] has been
extensively studied.

2.4.1 Biosynthesis of Agroclavine and Festuclavine
All these compounds derive from the precursors L-tryptophan, dimethylallyl diphos-
phate, and the methyl group of methionine. The first step in the biosynthesis of these
clavine alkaloids is prenylation of L-tryptophan at C-4 to form
4-dimethylallyltryptophan (DMAT) by the enzyme DMAT synthase, a
prenyltranferase encoded by the gene named fgaPT2 in A. fumigatus (or dmaW in
Claviceps). In the second step, the primary amino group of DMAT is methylated
using S-adenosylmethionine as methyl donor. The N-methyltransferase is encoded
by the fgaMT gene located in an 11-gene cluster that comprises all genes involved in
the pathway [59, 60]. The N-methyl-DMAT is then cyclized and oxidized to
chanoclavin-1 by a FAD-containing oxidoreductase named chanoclavine synthase,
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encoded by the casA gene (also named case by other authors) [61]. This conversion
also requires the product of a cluster-located gene, casC, encoding a catalase-like
protein that is involved in oxidation of the 30-methyl group of the dimethylallyl
moiety (derived from DMA-PP) to a CH2OH [62]. Disruption of this catalase-like
gene results in the interruption of the clavine or ergot alkaloids biosynthetic path-
ways in the producer organisms with accumulation of the N-methyl-DMAT inter-
mediate. The exocyclic alcohol group of chanoclavine-I is then oxidized to form
chanoclavine-1-aldehyde by the enzyme chanoclavine-1 dehydrogenase encoded by
the fgaDH gen (also named casD) [58, 63]. The chanoclavine-1-aldehyde is the
branching point intermediate in the biosynthesis of the different clavines and lysergic
acid-containing alkaloids in different fungi. P. roqueforti produces the tetracyclic
compound festuclavine that in A. fumigatus (but apparently not in most P. roqueforti
strains) is later converted to fumigaclavine. The conversion of the tricyclic interme-
diate chanoclavine-1-aldehyde to festuclavine requires two enzymes encoded by the
genes fgaFS and fgaOx3 [64]. The exact mechanism by which these two enzymes
convert chanoclavine-1-aldehyde to festuclavine is still a matter of debate [64, 65]

The second tetracyclic clavine alkaloid produced by P. roqueforti is agroclavine.
Agroclavine differs from festuclavine in that the former has a double bond between
carbons 8 and 9 that is already present in the previous intermediate chanoclavine-1-
aldehyde but is saturated (reduced) in festuclavine (Fig. 1), suggesting that there is
an enzyme activity involved in the reduction of the double bond. At difference of
P. roqueforti, A. fumigatus does not seem to accumulate agroclavine, probably
because the pathway continues to fumigaclavine.

Formation of agroclavine from chanoclavine-1-aldehyde (the branching point
intermediate) has been reported in Claviceps [66]. The agroclavine synthase EasG
of Claviceps is a homologous enzyme to festuclavine synthase of A. fumigatus.
Indeed, Cheng et al. [65] reported that the festuclavine synthase of A. fumigatus
(about 65 % similarity to the agroclavine synthase of Claviceps) is able to produce
agroclavine when incubated with the substrate chanoclavine-1-aldehyde in the
presence of a FgaOx3 enzyme from Neotyphodium lolii. The difference between
both homologous enzymes may explain the lack of the hydrogenase (reductase)
activity characteristic of A. fumigatus (a festuclavine producer) in the agroclavine
producers, such as Claviceps purpurea. Interestingly, P. roqueforti produces both
agroclavine and festuclavine [12]. In summary, it seems likely that P. roqueforti
synthesizes agroclavine by the action of a FgaFS-homologous enzyme as a less
reduced product of the pathway.

Other P. roqueforti Metabolites Several strains of P. roqueforti are also known to
produce citreoisocoumarin and small amounts of orsellinic acid. Very little is known
about the biosynthesis of these compounds.

Orsellinic Acid. The biosynthesis of orsellinic acid is related to that of methylor-
sellinic acid and dimethylorsellinic acid described above. In the absence of exper-
imental information in P. roqueforti, it is unclear if there is a separate polyketide
synthase without the methylation domain, specific for orsellinic acid biosynthesis or
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whether this compound is formed by the 5-methylorsellinic acid PKS of the
mycophenolic acid pathway (encoded bympaC) when the methyltransferase domain
is bypassed by the “domain skipping” mechanism occurring in some of these
synthases. In support of this last possibility is the fact that orsellinic acid is produced
in very small amounts in the tested strains of P. roqueforti [12]. A similar nr-PKS is
the DMOA synthase involved in andrastins biosynthesis (see above).

Citreoisocoumarin. Another metabolite produced by R. roqueforti is citreoiso-
coumarin. There is no information on the biosynthesis of this compound in
P. roqueforti, but in Fusarium species, citreoisocoumarin is known to be a byproduct
of the biosynthesis of aurofusarin. Both compounds derive from a precursor poly-
ketide that may be cyclized by (i) a carbon-to-carbon (C-C) Claysen-type conden-
sation giving aurofusarin or (ii) by formation of an internal lactone resulting in
citreoisocoumarin [67]. This last type of cyclization (lactone formation) appears to
predominate in P. roqueforti, but the enzyme(s) and molecular basis underlying
citreoisocoumarin biosynthesis are still unknown.

3 Metabolites of Penicillium carneum and Penicillium
paneum

P. carneum and P. paneum are closely related to P. roqueforti Thom, although as
indicated in the Introduction section, they are classified as separate species [5, 12].
Indeed, P. carneum and P. paneum differ from P. roqueforti and among themselves
in their ability to produce some secondary metabolites (Table 1). P. carneum pre-
dominates in some spoiled meat products, whereas P. paneum is associated with
molded bread or grains and grass silages. Both fungi may occur in the surface of
some cheeses, but they are not used as secondary starters in blue-veined cheese [1,
23, 26], although they may be present in homemade artisanal blue cheeses,
particularly in those produced in some developing countries. P. carneum and
P. paneum may be included in the group of cheese contaminant fungi [22], and
their absence in most blue cheeses makes their secondary metabolites less relevant
for human health.

The main mycotoxins produced by these fungi are patulin, marcfortins, penitrem,
and botryodiplodin (Table 1). P. paneum is more different from P. roqueforti; it lacks
the ability to produce PR-toxin but synthesizes patulin that is not found in
P. roqueforti. P. carneum produces most of the described metabolites of
P. roqueforti and also patulin. Penitrem A is produced by P. carneum but not by
P. roqueforti or P. paneum. The marcfortins A, B, C are produced only by P. paneum.
On the other hand, PR-toxin and the intermediates eremofortins A, B, and C are
produced exclusively by P. roqueforti [12]. In summary, P. paneum is different from
the other two related species in its set of secondary metabolites, whereas P. carneum
is more similar to P. roqueforti. The biosynthesis of these metabolites is poorly
known with exception of that of patulin.
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3.1 Patulin

Patulin is a potent mycotoxin that causes neurological and immunological disorders
and gastrointestinal alterations in humans [68]. Patulin is a common mycotoxin
produced by many species of Penicillium (including P. paneum and P. carneum),
Aspergillus, Paecilomyces, and Byssochlamys nivea [69, 70]. Patulin is frequent in
fungi-spoiled apples, and the levels of patulin allowed in apple-derived products,
such as cider, apple jellies, or apple-derived infant foods, are strictly limited by the
food safety agencies of many western countries. Among the producer fungi, Peni-
cillium expansum is known to cause the soft rot of apples and pears and appears to be
the major producer of patulin in fruits [71].

Fragmented evidence reported over the last three decades has shown that the first
intermediate, 6-methylsalicylic acid (6-MSA), is converted to patulin through the
intermediates m-cresol, m-hydroxybenzyl alcohol, and isoepoxydon. Biochemical
and genetic studies in different producer fungi, including P. paneum, identified two
enzymes, namely, 6-methyl salicylic acid synthase (6-MSAS) and isoepoxydon
dehydrogenase (IDH) involved in patulin biosynthesis [72–74]. More recently
two P450 monooxygenases have been found to be involved in the conversion of
6-MSA to m-cresol and m-hydroxybenzyl alcohol [75]. When the genome of the
patulin producer Aspergillus clavatus was sequenced (TIGR http://www.aspergil
lus.org.uk/indexhome.htm?secure/sequence_info/index.php � main), a 15-gene
cluster putatively encoding the entire patulin pathway was identified. This cluster
includes the msas gene (encoding 6-MSA synthase), the idh (encoding the IDH),
and the two P450 monooxygenase encoding genes. The patulin gene cluster of
P. paneum or P. carneum has not been reported yet but is likely to be similar to that
of A. clavatus.

4 Penicillium camemberti: Cyclopiazonic Acid

Several filamentous fungi may grow on the surface of cheeses during the ripening
process. Most of them are strictly external, but some of them, e.g., P. camemberti
and P. nalgiovense, may contribute to the organoleptic characteristics of mature
cheeses.

P. camemberti is associated with ripening of white rind soft cheeses such as
Camembert and Brie cheeses [76]. Selected strains are routinely used in production
of soft cheeses. Although many of the P. camemberti secondary metabolites remain
unexplored, one of them, cyclopiazonic acid, acquired relevance because of its well-
known neurotoxicity. Cyclopiazonic acid (CPA) is a highly active inhibitor of Ca2+-
dependent ATPases of animal cells and is a potent neurotoxin for humans and other
mammals [77].

Cyclopiazonic acid is a prenylated indole alkaloid containing a tetramic acid ring
produced by several Aspergillus and Penicillium species, including P. camemberti.
The biosynthesis of CPA has been studied in Aspergillus flavus and A. oryzae but not
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in detail in P. camemberti, although the biosynthetic pathway is likely to be con-
served in all fungi.

CPA derives from L-tryptophan, a four-carbon unit, and a dimethylallyl diphos-
phate units [77]. The four-carbon unit is formed by condensation of an acetyl-CoA
and a malonyl-CoA. The first step in the CPA biosynthetic pathway is catalyzed by a
hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) that acti-
vates L-tryptophan and condenses this amino acid with acetyl-CoA and malonyl-
CoA units forming the acetoacetyl-L-tryptophan (AA-L-trp) intermediate. This key
enzyme is encoded by the cpaA (also named cpaS) gene. The NRPS component of
the hybrid PKS-NRPS has four domains C-A-T-R* with activities for condensation,
L-tryptophan activation and thiolation (peptidyl/acyl carrier), and peptide product
release. The R* domain is a reductase that lacks the catalytic triad of NADH-
dependent reductases and is proposed to release the N-acetoacetyl-tryptophan inter-
mediate by cyclization via a Dieckmann condensation to form the cyclo-acetoacetyl-
L-tryptophan intermediate that is released from the phosphopantetheinyl arm of the
T domain of the enzyme [78].

In the second step of the CPA biosynthetic pathway, the cyclo-acetoacetyl-L-
tryptophan intermediate is prenylated at C-4 of the indole nucleus by the enzyme
cyclo-AA-trp prenyltransferase that introduces an isopentenyl group from
the DMA-PP donor. The enzyme encoded by the cpaD gene is a member of the
well-known family of prenyltransferases [79]. In A. clavatus and A. oryzae, there
is a third step of the pathway catalyzed by a FADH-dependent oxidoreductase
cpaO that converts β-cyclo-acetoacetyl-tryptophan into the final product, CPA
[77, 80, 81]. The cpa gene cluster of A. flavus includes in addition to cpaA-epaD-
cpaO structural genes two additional genes, epaM that encodes a transmembrane
protein of the MFS family and cpaR that encodes a regulatory protein of the C6
Zn2+ finger type [82]. The CpaM transporter presumably is involved in CPA
secretion [32].

CPA is the final product of the biosynthetic pathway in A. flavus and probably
also in P. camemberti since CPA is secreted and accumulated in these two fungi.
However, A. oryzae that is considered to be a “domesticated” variant of A. flavus
widely used in Japanese food industries contains an additional gene in the cluster,
cpaH, that encodes a P450 monooxygenase which converts CPA to 2-oxo-CPA. This
compound is much less toxic than CPA [83], and the authors proposed that this P450
monooxygenase is a toxicity-reducing “safeguard” enzyme evolved in A. oryzae
during its adaptation to grow in fermented foods [83]. The mechanism of adaptive
safeguard appears to be more complex since some A. oryzae strains have lost
completely the ability to produce CPA and 2-oxo-CPA due to a mutation in the
N-terminal region of the CpaA hybrid PKS-NRPS. It will be interesting to confirm
that P. camemberti lacks the “safeguard” cpaH gene and therefore maintains the high
toxicity characteristic of CPA.

Other secondary metabolites have been reported to be produced by
P. camemberti, e.g., asperenone, asperrubrol-like compounds, methyl-isoborneol,
and hadacidin [27], but it is unknown if these compounds pose a health problem for
humans.
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5 Conclusions and Future Perspectives

Blue-veined cheese is a gourmet food consumed all over the world. These cheeses
are maturated in different countries with P. roqueforti as a secondary starter that
grows inside the cheese in microaerobic conditions. As described in this article,
P. roqueforti is able to produce about 20 different secondary metabolites belonging
to at least seven different families. Some of these compounds are highly toxic, e.g.,
PR-toxin, whereas others, e.g., andrastins, are considered to be beneficial for human
health. Selection of fungal strains over centuries has favored the use of P. roqueforti
Thom that lacks production of patulin, over the closely related P. carneum and
P. paneum that produce this mycotoxin. Most P. roqueforti secondary metabolites are
produced in rich solid (agar plates) and liquid cultures, but there is very limited
information on the production and accumulation of secondary metabolites inside the
cheese, under the microaerobic conditions. Andrastin A is known to be formed and
accumulated in the blue-veined cheeses [13, 14]. Humans and other animals con-
sume a variety of plants and fungal secondary metabolites; many of them are
probably nontoxic, but in other cases, animals reject certain plants or mushrooms
because they contain toxic secondary metabolites known as feeding deterrents. It is
possible now to construct strains lacking certain secondary metabolite gene clusters.
The possible removal of toxic metabolites gene clusters by precise gene excision,
while preserving all other characteristics, including enzymes involved in cheese
ripening and aroma formation, is now a possible application of the molecular
genetics of P. roqueforti to the cheese industry. This “domestication” process
would be equivalent to the “natural domestication” process that has evolved in
A. oryzae for removal of CPA.

6 Authors’ Note

When this article was in press Del Cid and coworkers reported the mycophenolic
acid gene cluster of P. roqueforti (Del-Cid A, Gil-Durán C, Vaca I, Rojas-Aedo JF,
García-Rico RO, Levicán G, Chávez R. (2016) Identification and Functional
Analysis of the Mycophenolic Acid Gene Cluster of Penicillium roqueforti. PLoS
One. 1(1):e0147047.

The P. roqueforti mpa cluster is almost identical to that known for
P. brevicompactum (Fig. 5) and the conclusion obtained by these authors are similar
for both fungi.
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Abstract
The evolution of higher fungi and actinomycetes took place on solid growth sub-
strates, so these microorganisms are perfectly adapted to grow in a solid environment.
This implies that their cultivation in liquid culture may impair their metabolic
efficiencies. However, conventional technology for the production of valuable fungal
products is liquid submerged fermentation. In recent times, solid-state fermentation
has become an alternative industrial production system to produce enzymes, primary
and secondary metabolites. There are several advantages in employing many solid-
state fermentation processes over the conventional submerged fermentation ones, like
higher yields of secondary metabolites or enzymes. Moreover, certain enzymes and
secondary metabolites can only be produced in solid-state fermentation. The main
advantages of this culture system are related to the special physiology displayed by
fungi when growing in solid culture. This chapter describes and analyzes recent
advances in our understanding of this special physiology (the physiology of solid
medium) and the underlying molecular mechanisms. It is also discussed how this
knowledge can be applied to create novel technological advances.

Keywords
Physiology of solid medium • Advantages • Gene expression differences •
Regulation • Applications

List of Abbreviations
Aw Water availability
cDNA Complementary DNA
CM Cellulase carboxymethyl cellulose
dsDNA Double-stranded DNA
GFP Green fluorescent protein
glaA Glucoamylase A
glaB Glucoamylase B
GSH/GSSG Redox balance
HSE Heat shock element
MSLC Membrane-surface liquid culture
PSM Physiology of solid medium
ROS Reactive oxygen species
SmF Submerged fermentation
SMs Secondary metabolites
SSF Solid-state fermentation

1 Introduction

Fungi are relatively simple eukaryotic organisms that perform biological processes
that are essentially based on the same principles as biological processes in higher
eukaryotes. These are interesting and useful microorganisms that show high levels of
protein secretion, metabolite production, and metabolic versatility.
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For these reasons, they are being increasingly used for the large-scale production
of enzymes and a wide range of (semi)bulk chemicals and pharmaceuticals, as well
as other products like high-value nutraceuticals (health and medical benefits).
Conventional technology for the production of these fungal products is liquid
submerged fermentation. However, the evolution of higher fungi and actinomycetes
took place on solid growth substrates, i.e., spent their evolutionary history as
terrestrial. In other words, they were designed by evolution to grow on moist solids,
so they are perfectly adapted to grow in a solid environment. This implies that their
cultivation in liquid culture may impair metabolic efficiencies and bring about
certain shortcomings.

Solid-state fermentation (SSF) is an ancient culture method that has been mod-
ernized to become an alternative industrial production system. SSF has been used to
produce enzymes, primary and secondary metabolites.

There are several advantages in employing many SSF processes over the con-
ventional submerged fermentation (SmF) ones, like higher yields of secondary
metabolites or enzymes. Moreover, certain enzymes and secondary metabolites
can only be produced in SSF. The main advantages of SSF are related to the special
or different physiology displayed by fungi and other microorganisms when growing
in solid culture. This physiology (i.e., a behavior that deviates from the one
displayed by the fungus in liquid medium) is sometimes referred to as “physiology
of solid medium.”

This physiology is just beginning to be understood, but recent advances show a
very wide and interesting scientific panorama with great technological potential.

In this chapter, general aspects of SSF are described, and how this different
physiology became apparent, by reviewing examples of proteins, enzymes, and
metabolites production. The last sections review recent advances in our understand-
ing of the molecular mechanisms underlying the physiology of solid medium, and
how this knowledge can be applied to create novel technological advances.

2 Solid-State Fermentation: Definition and Background

SSF is an alternative microbial culture system that has been used since antiquity, but
that has been modernized by research carried out in the last 25 years. By applying
modern concepts of microbiology, biochemistry, and biochemical engineering these
are more controlled processes that can be applied to more sophisticated ends.

Solid-state culture or solid-state fermentation (SSF) is defined as a microbial
culture that develops on the surface and at the interior of a solid matrix and in the
absence of free water [1].

At this point, it is important to clarify the use of the term fermentation, which in the
field of biochemistry is described as an anaerobic process: an energy production
process where the final acceptor of the electrons is not the oxygen but an organic
compound, pyruvate or a derivative. These compounds when reduced by the electrons
form useful products like ethanol or lactic acid. However, the term fermentation, in
industrial environments, is used as any type of microbial culture (aerobic or not).
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The origins of SSF are related to the koji process in the Far East. The use of koji in
China was reported in the year 1000 BP but was probably used since 3000 BP [2],
and Buddhist priests took this tradition to Japan in the seventh century. Koji process
can be considered as a prototype of SSF. It consists of the cultivation of Aspergillus
oryzae on soybeans and other grains to produce proteases and amylases, which
degrade proteins and transform starch in sugars. In this way, the fermented material
is used for the production of soy sauce or, in a second stage, rice wine or saké.

In the West, the types of SSF had been used for the production of vinegar, gallic
acid for the tanning process. Even in the beginning of the twentieth century there was
production of primary metabolites such as enzymes and organic acids by microor-
ganisms in SSF.

Takamine [3] adapted the koji process, using wheat bran for the production of
taka-koji or “moyashi” obtained by drying the spent moldy bran. He later patented
the making of an alcoholic precipitate of a water extract of taka-koji [4] called
“distasic enzyme.” This precipitate was sold as a digestive aid called “taka-distase”
by Sakyo Co and was the pioneer of crude amylolytic extracts produced by SSF [5].

Underkofler [6] patented the use of rotating drums in order to produce amylase by
“moldy brans” or wheat bran fermented by A. oryzae. Underkofler et al. [7]
commented the advantage of koji moldy bran over malting or acid hydrolysis, to
improve the conversion of starch into ethanol. Later, Underkofler et al. [7] reported
the successful industrial scale-up of the moldy bran process, but using trays instead
of rotating drums because of the slow damage problems of fungal biomass by
mechanical stirring. The process was used to produce a crude amylolytic preparation
blended with cooked cereal grains that was the input for ethanol production. The
final ethanol yields were around 80 % of the theoretical yield. Hence, Takamine and
Underkofler planted the seeds of present bioethanol industries.

Although the earliest commercial production of enzymes depended on SSF
technology, the advent of sterile submerged culture techniques or liquid submerged
fermentation (SmF) in the 1940s displaced the solid-state methods in the western
countries. The discovery of penicillin in the 1930s, followed by streptomycin,
chloranphenicol, and tetracycline in the early 1950s, overshadowed the emerging
SSF process and emphasized on SmF.

In the 1970s, work performed by Hesseltine et al. [8–10] studied and described the
traditional SSF processes of the East, and informed the West about the great techno-
logical importance of these culture systems. These reports are probably responsible,
in great part, for the renewed interest in SSF observed during the last 30 years, with
important research woks that have transformed and modernized SSF.

3 Modern SSF Systems

As a consequence, solid-state fermentation (SSF) is being transformed for new
purposes, using new approaches. This has resulted in new SSF systems that often
present several advantages over submerged fermentation (SmF).

322 J. Barrios-González and M.R. Tarragó-Castellanos



3.1 SSF Modern Applications

Recent years have witnessed a boom in the development of bioprocesses such as
production of feed (biotransformation of crops and crop residues for nutritional
enrichment), fuel, food, and industrial chemicals and biopesticides, as well as in
bioremediation, biobleaching, and biopulping [11].

Importantly, also the development of SSF production processes for high value,
low volume, high cost products like biopharmaceuticals or compounds of use in food
industry or agriculture, such as biologically active secondary metabolites including
antibiotics, cholesterol lowering drugs, alkaloids, plant growth factors, aroma com-
pounds, etc. Also, developments of applications for the production of proteins:
recombinant proteins as well as enzymes.

Lately, some problems of SmF, such as high-energy consumption and serious
pollution problems, are becoming increasingly notorious, significantly limiting the
sustainable development of fermentations.

Academic or industrial researchers are again taking notice of advantages of SSF
such as water saving, energy saving, and low costs. SSF has begun to play a role in the
chemical, pharmaceutical, and environmental fields, which points out a clear direction
for the sustainable development of the entire biological and chemistry industry [12].

As mentioned before, typical advantages of SSF process include lower capital
investment, low energy requirements, less water output, and very superior
productivity.

Nevertheless, large-scale applications are less abundant than expected due to
relative difficulty to control process parameters (pH, heat, nutrient conditions,
etc.), as well as less knowledge of the SSF process by western scientists.

Commercial operations using SSF processes have been developed in countries
such as Japan, India, U.S.A., and France. The successful operation of the companies
utilizing the SSF process ensured that the process gets its due attention.

Research on SSF is in great part devoted to search for substrates and optimization
of the production of different products, as well as potential new applications. The
deeper and more basic research is generally engineering oriented and studies fungal
physiology mainly from the standpoint of the effect of the main fermentation
parameters (T, moisture content, aeration, etc.) on growth. This has been the basis
for mathematical models that have been very useful for scale-up as well as for reactor
design and control.

However, much less attention has been paid to the special physiology shown by
fungi in SSF, i.e., a behavior that deviates from the one displayed by the fungus in
liquid medium and that includes the major advantages of this culture system, and
sometimes it is referred to as “physiology of solid medium.”

3.2 Bioreactors for SSF

The delay in SSF being the major mode of fermentation can be partially attributed to
the bioreactors initially available. During the initial phases mostly tray-type
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fermenters were used with poor instrumentation support. Heat generated during the
culture was poorly dissipated.

However, research in this area has made important advances in fermenter design
and in developing sensors and measurements in SSF processes [13, 14].

Different bioreactor configurations include periodic pressure solid-state fermen-
ter, immersion, expanded bed and tray-type reactor, intermittent agitation rotating
drum type, and “Plafractor” [15], developed for production of enzymes, biocontrol
agents, and pharmaceuticals at industrial level.

3.3 Types of SSF

Besides the koji-type systems, SSF cultures are now performed on other amylasic
substrates like roots (cassava or potato flour), bananas, etc. Generally, agroresidues
including lignocellulosic materials, but also wastes of industries such as potato
chips, spent brewing grain, paper, and wood processing industries. This type of
SSF can be seen as a technique to utilize organic wastes as raw materials to produce
value-added products [16]. SSF on natural solid substrates has the advantage of
reducing process costs by using agricultural wastes, additionally contributing to
solve the environmental problems caused by their disposal.

Another type of SSF uses an inert support with absorbed liquid medium. The
support can be of natural origin like sugarcane bagasse, or artificial like polyure-
thane, amberlite or vermiculite, etc.

Hence, today, two types of SSF systems can be distinguished, depending on the
nature of the solid phase used: (a) SSF on natural solid substrates and (b) SSF on
impregnated inert supports [17].

This last SSF system was initially used for basic studies of SSF, since the
composition of the absorbed medium could be designed, and its constitution deter-
mined at any time of the culture. In addition, biomass concentration was more easily
quantified. Remarkably, production yields at least as high as the ones obtained in the
more common SSF on solid natural substrates are also reported in these systems
[17–20]. Moreover, its advantages for basic studies, as well as for industrial produc-
tion of high-value products such as metabolites, enzymes, and biocontrol agents,
have been assessed, as well as its economic feasibility [21].

In this way, in the SSF on inert support product recovery is less complicated
because the extracellular product can be easily extracted from the inert support and
products are obtained with fewer impurities [11], but medium costs are higher than in
the previous case.

3.4 Other Systems with Certain SSF-Type Behavior

Some culture systems have been developed as models to study basic aspects of SSF
or other biological phenomena, but also for applied purposes. These are systems

324 J. Barrios-González and M.R. Tarragó-Castellanos



where the fungi display a physiology different from the one shown in SmF, although
not exactly the one in SSF; probably a midway physiology.

Interestingly, A. oryzae and other fungi, grown on a nylon membrane, placed over
an agar plate medium, show a SSF-type physiology. This has been very useful for
certain experiments and also because mycelia can be recovered and much more
easily prepared than from native SSF.

However, it has been shown that the presence of the membrane filter reduces
maximum respiration rate and biomass and α-amylase production [22]. This is
further supported by our observations that, although lovastatin specific production
increases in membrane cultures (in relation to normal petri dish cultures), this value
is still very far from the one displayed in real SSF [23] (see Sect. 8.4).

On the other hand, in what could be seen as applications of the physiology of
solid medium (PSM), some novel types of culture systems have been developed, for
applied purposes. Two interesting examples are the membrane-surface liquid culture,
and the so-called biofilm (liquid) reactors, both with potential industrial applications,
and are described in a later section.

4 Production of Primary Metabolites

Primary metabolites are those which have identifiable functions and play specific
roles in normal physiological processes, like amino acids and nucleic acids. These
include intermediates and end products of anabolic metabolism. Other primary
metabolites (e.g., citric acid, acetic acid, and ethanol) result from catabolic metab-
olism and their production is related to energy production [24].

Organic acids (like citric acid) are widely used in the food and beverage indus-
tries, but also find application as additive in detergents, pharmaceuticals, cosmetics,
and toiletries.

Recently, the importance of citric acid and fermentation (in the biochemical
sense) products, like ethanol, lactic acid, and others, is increasing due to the concepts
of white biotechnology and biorefineries. The idea of replacing oil and gas with
(renewable) biomass, mainly lignocellulosic agricultural residues, for biofuel pro-
duction and replacement of chemical synthesis by fermentation or biocatalysis
products, is very attractive. Functional groups that must be introduced by costly
oxidative process steps into naphtha are already present in organic acids, so these
compounds can be produced by fermentation and can then be used as building
blocks to obtain polymers, bioplastics, etc. Consequently, the field that investigates
microbial organic acid production is currently moving fast [25].

Examples are citric acid that has been on the market for some time, lactic acid,
which came to market in large scale only recently, and succinic acid, which (despite
the fact that a feasible industrial bioprocess has not yet been developed) has huge
potential.

The use of SSF is being reconsidered in this field. In fact, citric acid has been
produced under SSF conditions for many years, so this would facilitate the technol-
ogy transition needed to produce other organic acids by SSF. An important
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advantage of SSF over SmF for citric acid production is that the presence of trace
elements does not affect the yield, as it does in SmF. Therefore, substrate
pretreatment is not required, saving time and energy [26].

Lactic acid and its derivatives are widely used in food, medicine, feed, chemicals,
and environmental protection. Recently, there has been increased interest because of
its applications in the production of polylactic acid that can be used to synthetize
biodegradable, biocompatible plastics and coatings. There have been reports of SSF
processes, using lactic acid bacteria or fungal strains (Rhizopus) by SSF, that claim
that the use of agroresidues in SSF could be significant in reducing production costs
[27, 28].

Itaconic acid is another promising building block for the polymer industries that
has also been produced by SSF on sugarcane bagasse with strains of Aspergillus
terreus [29].

5 Production of Enzymes and Proteins

Besides other applications, modern SSF systems have a record of successful appli-
cations for the production of microbial enzymes and secondary metabolites or
bioactive compounds [30].

There has been growing interest in SSF because the amounts of enzymes
(or heterologous proteins) secreted by filamentous fungi in this system are large
and very frequently exceed those secreted in submerged fermentation (SmF) [19, 20,
31, 32]. For example, it has been reported that in SSF on wheat bran Aspergillus
oryzae produced 500-fold higher yield of heterologous protein (chymosin) than in
SmF [33].

The enzymes produced by SSF include cellulases, hemicellulases, pectinases,
amylases, α- and β- galactosidases, caffeinase, tannase, proteases, etc. The major
support matrices used include brans (wheat, rice, barley), oil cakes (sesame, soy
olive, coconut, mustard), bagasse (sugarcane, cassava, orange) [34].

Regarding enzymes production, several evident differences between SSF and
SmF have been reported (Table 1). These include higher productivities and somehow
less regulated (probably higher regulation thresholds). In many cases, enzymes
produced in SSF have different characteristics in relation to the ones produced in
SmF: like higher optimal temperature or pH stability, different kinetic parameters, or

Table 1 Enzymes production. Special physiology shown by fungi in SSF that contrasts with the
one shown in SmF, in this table, characteristics related to enzymes production

1 Enzymes are generally produced in much higher concentrations in SSF

2 Some enzymes from SSF show different characteristics (molecular weight, kinetic
parameters, optimal conditions) in relation to the ones obtained in SmF

3 Some enzymes that are intracellular in SmF are extracellular in SSF

4 Strains that are good producers in SmF are not so good in SSF and vice versa

Modified from Ref. [23]
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even enzymes that were intracellular in SmF that are secreted to the medium in SSF
[19, 35].

Moreover, in recent years SSF-specific enzymes like glucoamylase B or the
protease PepA have been identified (see Sect. 8.4).

6 Microbial Secondary Metabolites

6.1 General Aspects

Secondary metabolites are compounds with varied and sophisticated chemical
structures, produced mainly by actinomycetes and fungi, usually late in the growth
cycle. These compounds do not play a physiological role during exponential phase
of growth, so they have been described as SMs in opposition to primary metab-
olites that are essential for growth. Although antibiotics are the best-known
secondary metabolites (SMs), there are other such metabolites with an enormous
range of biological activities, hence acquiring actual or potential industrial
importance.

SMs are usually not produced during the phase of rapid growth (trophophase), but
are synthesized during a subsequent (production) stage: idiophase. From studies in
liquid medium, it is now known that production of SMs starts when growth is limited
by the exhaustion of one key nutrient: carbon, nitrogen, or phosphate source. For
example, penicillin biosynthesis by Penicillium chrysogenum starts when glucose is
exhausted from the culture medium and the fungus starts consuming lactose, a less
readily utilized sugar.

6.2 New Biological Activities

The last 25 years have been a phase of rapid discovery of new activities and
development of major compounds of use in different industrial fields. This new
stage has been driven by modern strategies to find microbial SM. Earlier whole cell
assay methods, like bioassays, are being replaced by new and sophisticated, target-
directed, mode-of-action screens. In this way, culture broths of new isolates are
tested in key enzymatic reactions or as antagonistic or agonistic of particular
receptors. This new approach relies on the knowledge of the biochemical and
molecular details of different diseases or physiological processes [36, 37].

This has allowed the development of major compounds of use in different
industrial fields, mainly pharmaceutical and cosmetics, food, agriculture, and farm-
ing. Some examples are anti-inflammatory, hypotensive, antitumor, anticholes-
trolemic, but also insecticides, plant growth regulators, and environmental-friendly
herbicides and pesticides. This growing wealth of bioactive compounds is usually
produced by SmF but many of these metabolites could be advantageously produced
by SSF.
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7 Secondary Metabolites Production by SSF

In the production of SMs, SSF presents advantages like higher product yield, often in
shorter times and higher product stability, while some disadvantages are related to
more complicated scale-ups [38–40]. Perhaps an additional disadvantage or weak-
ness is the limited knowledge of PSM, so its full potential is still to be developed.

In any case, industrial SMs production is now a reality. Several years ago an
Indian company started industrial production of several SMs, and the Food and Drug
Administration approved this technology (SSF) for the production of metabolites for
human application [15].

In relation to production of SMs by SSF, the last years have witnessed not only an
increase in the number of publications but also by the increase in the proportion of
SMs with biological activities different from antibiotics. Another interesting feature
of this stage is the surprisingly high productivity of SMs obtained in the processes
designed in these studies, i.e., relatively high yields are quite common in recent
works. Interestingly, also the production of SMs from actinomycets, and even from
Bacillus species, have also been produced by SSF [17].

Other fungal SMs that have been produced in this culture system include the
cyclodepsipeptides dextruxins A and B, compounds that display insecticidal and
antiviral activity [41]. Also, the novel tetramic acid antibiotic conoicetin, which
shows a pronounced antibacterial and antifungal action, inhibiting even multidrug-
resistant strains of Staphylococcus aureus, has been produced by SSF. Interestingly,
the producing fungus, C. ellipsoida, synthesizes this antibiotic only in SSF, although
it grows well in SmF [42]. Another interesting case where new antibiotics were only
produced under SSF-type conditions was reported by Bigelis et al. [43].
Pyrrocidienes A, B and acremonidins A–E were only detected when the
corresponding fungal strains were grown on agar bearing moist polyester-cellulose
paper. Differences were also apparent in bioassays of the extracts against antibiotic-
resistant Gram-positive bacteria. These antibiotics that are produced only in SSF
remind the SSF-specific enzymes described in Sect. 8.4.

7.1 Secondary Metabolism in SSF: Physiological Studies

The physiological responses of fungi to growth in a solid environment could be
divided into responses that are similar to the ones displayed by the microbe in liquid
medium, and responses that are particular of growth in SSF. Although the use of the
concept PSM generally refers to the latter, the former are also integral part of this
physiology and have implications in the control of secondary metabolism in SSF.

7.1.1 Similarities with SmF
It has been observed that physiology of idiophase or secondary metabolism in solid
culture shares several basic characteristics with the well-known physiology studied
in liquid environment (SmF).
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Using SSF on inert support, i.e., sugarcane bagasse impregnated with liquid
medium, our group performed basic studies on secondary metabolism in SSF. This
research showed that the same culture medium used for penicillin production by
Penicillium chrysogenum in SmF can be used to impregnate this kind of inert
support SSF, although using a higher medium concentration. The use of 2X concen-
trated medium caused a fivefold penicillin production increase in SSF, while it was
detrimental in SmF [44].

Moreover, respirometric studies together with glucose concentration kinetics in
this system showed that idiophase (in the case of penicillin and several other SMs) in
SSF also started exactly when growth was limited by exhaustion of one key nutrient,
as is the case in SmF. Results also suggested that the same mechanisms that regulate
penicillin biosynthesis in SmF (e.g., catabolite repression) regulated its production in
solid culture. In this way, C, N, or P regulation mechanisms are also operating
in SSF.

Moreover, experiments on cephalosporin C production have shown that pH
regulation of cephalosporin C is also active in SSF, and works in a similar way as
in SmF.

Studies in SmF have shown that cephalosporin C biosynthesis is regulated by pH,
and that it occurs in a relatively narrow pH range. Cuadra et al. [45] reported that in
SSF using sugarcane bagasse as inert support, biosynthesis of cephalosporin C only
took place in a defined range of pH. In a subsequent work, comparative experiments
SmF versus SSF showed that the antibiotic synthesis occurred at fairly the same pH
range (6.4–7.8) in both culture systems [46].

This basic knowledge has practical implications for SM production in SSF: the
same strategies of medium design, considering limiting nutrient, avoiding repressing
components, while including inducers and precursors, should be used in SSF [47, 48].

7.1.2 Particularities of Secondary Metabolism in SSF
Besides the nutritional and environmental factors that bring about metabolic reac-
tions similar to the ones observed in SmF, there are other factors in SSF conditions
that induce higher SMs production, or even biosynthesis of metabolites that are not
produced in SmF. These characteristics are part of the special physiology shown by
fungi in SSF, i.e., a behavior that deviates from the one displayed by the fungus in
liquid medium. Table 2 summarizes the main characteristics of this physiology in
relation to secondary metabolism. As can be seen, another apparent difference is the
effect of using concentrated media, which strongly stimulates the metabolite pro-
duction in SSF on impregnated support, while causing the opposite effect when used
in SmF.

A further confirmation that physiology required in solid medium is different from
the one in SmF came from the finding that enzymes or secondary metabolites
overproducing strains, generated for SmF, generally do not perform well in SSF
[49], and vice versa. In fact, this has dictated the need for methods to generate
overproducing strains particularly suited for SSF [17, 18, 39] particularly since
continuous improvement of the production strain(s) is a condition to make and
keep a fermentation industry competitive.
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8 Physiology of Solid Medium

The abovementioned cases, of different physiological responses to solid culture
conditions, raises questions the study of PSM strives to answer:

• Why are enzymes and secondary metabolites generally produced in much higher
concentrations in SSF?

• Why do some enzymes from SSF show different characteristics (molecular
weight, kinetic parameters, optimal conditions) in relation to the ones from
SmF; also, why many are enzymes that are intracellular in SmF extracellular in
SSF?

• Why are strains that are good producers of enzymes or metabolites in SmF not so
good in SSF and vice versa?

8.1 Growth Model

A current model of the microscopic events taking place during fungal growth in SSF
helps visualize some characteristics of growth in SSF. After germination, filamen-
tous fungi form hyphae that elongate at the tips and periodically form new branches.
Their morphology allows filamentous fungi to colonize the surface of the substrate
and penetrate into the substrate matrix in search of nutrients. The microbial biomass
inside and on the surface of the substrate secretes metabolites and enzymes and
consumes the liberated nutrients. Concentration gradients are needed to supply the
substrates and remove the products. Likewise, gradients in the concentration of
inducers and repressors may affect enzyme production [23, 50]. In this way, these
gradients are one of the noticeable differences between SSF and SmF and therefore
might be contributing to the observed differences in physiology [50].

It is considered that in SSF fungal hyphae form a layer of biomass on the substrate
particle, i.e., a three-dimensional net of hyphae with pores in between: (1) an upper
layer with aerial hyphae and air-filled pores and (2) a lower layer with densely
packed hyphae and liquid-filled pores; (3) underneath, hyphal tips penetrate the
substrate forming the third layer: penetrative mycelia [51] (Fig. 1). It has been

Table 2 Physiology of solid medium. Special physiology shown by fungi in SSF that contrasts
with the one shown in SmF, in this table, characteristics related to secondary metabolites production

1 Higher production, often in shorter times

2 Some secondary metabolites are only produced in SSF, like coniosetin, pyrrocidienes A, B
and acremonidins A-E

3 Concentrated medium increase production in SSF

4 Strains developed for SmF don’t perform well in SSF, indicating different functions are
needed to produce in SSF

5 Molecular differences in biosynthetic genes expression

Modified from Ref. [23]
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proposed that A. oryzaemight overcome oxygen limitation, in the deeper parts of the
wet mycelia layer, by forming abundant aerial mycelia, so rapid diffusion of oxygen
is expected there, but diffusion of nutrients and enzymes in the cytoplasm of the
hyphae is likely to be comparatively slow [50]. Recently, Viniegra-González
et al. [19] compared the productivity of three fungal enzymes using SSF and SmF
techniques. Thus, they proposed that the higher titers found in SSF than in SmF were
due to SSF cultivation works as a fed batch culture with fast oxygenation but slow
sugar supply.

8.2 General Physiology

A few works have studied deeper physiological differences that arise during the
growth of microbial cells in the two types of culture systems. In A. oryzae, low water
activity and osmotic stress are important environmental conditions particular of SSF
that bring about physiological differences. This is apparent from the accumulation of
polyols (glycerol, erythritol, and arabitol) in the cells under SSF conditions, while
only mannitol was accumulated under SmF conditions [52]. It is important to note
that glycerol and these other polyols are synthesized as a defense against osmotic
stress, suggesting that growth in SSF proceeds with this kind of stress. Moreover, we
have observed a strong expression of the osmotic stress defense gene gldB during
lovastatin SSF, indicating that Aspergillus terreus senses osmotic stress during the
course of SSF, but not in SmF [53].

Recently, we found that mycelium, growing in SSF, had a more reducing intra-
cellular environment than mycelium from SmF. Redox balance (GSH/GSSG) kinet-
ics were performed during lovastatin SmF and SSF. A high redox balance was

Air liquid interface

Substrate

Aerial hyphae

Aerobic wet
hyphae layer

Anaerobic wet 
hyphae layer

Penetrative
hyphae 

Fig. 1 Model or schematic drawing of fungal growth in SSF, showing the different mycelial layers
(From Barrios-González [23])
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observed, in both culture systems, during the growth phase that dropped to a low
value during idiophase (around sixfold) [54]. It was later seen that this acute
reduction was related to regulation of lovastatin biosynthesis (see Sect. 7.1.2).

However, there was a difference between the culture systems, a fourfold higher
redox balance (in both phases) was observed in the mycelium cultured in SSF. The
meaning and consequences of this in the PSM remains to be unveiled.

8.3 Secondary Metabolism in SSF: Molecular Studies

Molecular studies related to secondary metabolism in SSF are very scarce. Our
group performed a series of studies at this level with the intention of obtaining a
deeper understanding of PSM, using lovastatin production as a model.

Lovastatin is a valuable SM produced industrially by Aspergillus terreus that
holds medical and industrial importance since it decreases cholesterol levels in
blood. In more recent research we developed a novel SSF production process on
polyurethane foam (artificial inert support). This system not only facilitates basic
studies but also induces very high lovastatin productivity. A 30-fold higher produc-
tion was obtained in SSF as compared with SmF conditions under analogous
conditions (Fig. 2). Specific production calculations revealed that each milligram
of (dry) biomass produced 815 μg of lovastatin in SSF vs 54.7 mg�1 in SmF. In this
way, physiology of solid medium is clearly manifested in this system [55, 56].

Since higher SMs production is a clear characteristic of PSM, in these studies we
used this parameter to identify PSM, particularly specific production, to avoid
divergences only due to differences in growth between the culture systems.
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Fig. 2 Comparison of lovastatin production kinetics by Aspergillus terreus in SSF (a), and in SmF
(b), using the same culture medium. Lovastatin production in SmF (b) is shown again in the left,
using a much smaller scale of lovastatin concentration. Both cultures showed similar pH kinetics
(not show) (From Barrios-González [23])
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8.3.1 Higher SMs Production and Higher Expression Levels
of the Biosynthetic Genes

A subsequent study was performed to establish the causes of the superior lovastatin
productivity in SSF. Results showed that the higher production in SSF was related to
a higher expression of the lovastatin biosynthetic genes and, most importantly, that
these higher transcription levels were the result of higher (4.6-fold) expression of the
regulatory gene lovE. This gene encodes the specific transcription factor for the
lovastatin biosynthetic genes cluster (Fig. 3). Moreover, it is very probable that this
higher expression of biosynthetic genes is an important underlying cause of the
higher production reported for other secondary metabolites [55].

These experiments showed that higher expression of the biosynthetic genes is an
important cause underlying higher SMs production.

In a later work we compared the cephalosporin C biosynthesis-related genes
expression in the SmF versus SSF. Results showed the existence of higher expres-
sion levels of the genes encoding for epimerase, expandase/hydroxylase, and metab-
olites exporting activities in SSF, probably explaining the increased antibiotic
production in this system [46].

SSF SmF
a

b

lovE
Time (days)

lovF

1 3

4.7 2.6 2.85 0.1 1 0.980.98

1.4 2.1 1.1 0 1 0.490

5 1 3 5 7

18S

18S

Densitometry

Densitometry

Fig. 3 Northern blot analysis comparing the expression of genes lovE and lovF during the course
of lovastatin solid-state and submerged fermentations. Intensity of the bands was quantified by
densitometry and normalized values were expressed as a fraction of the highest expression value in
SmF, to which a value of one was assigned (From Barrios-Gonzalez [23])
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These and other works indicate that there are certain environmental cues that
notify the fungus it is a solid medium. These stimuli must be sensed and then
transduced, triggering a number of events at a molecular level. These reactions
upregulate certain transcription factors, which in turn upregulate different groups
of genes. That is, groups of genes must be upregulated and others downregulated,
giving rise to physiology of solid medium [23].

8.3.2 Environmental Stimuli that Trigger PSM
In search for the solid culture environmental stimuli inducing PSM, Avila & Barrios-
González [57] showed that (1) direct contact with air, (2) the stimuli of the support,
and (3) water availability (Aw) are important environmental signals. This work
studied the effect of these stimuli on lovastatin specific production, which was
taken as the parameter indicative of either PSM or normal liquid environment
physiology. Results showed that direct contact with air is a major environmental
cue that induces the PSM, at least in relation to secondary metabolism.

It was also observed that the contact with a support (or with the “stimuli of the
support”) also induced a higher lovastatin specific production, although increases
were smaller than the ones observed with direct contact with air. It was concluded
that the added effects of stimuli of direct contact with air, the support, and in smaller
proportion low water availability, contribute to generate the PSM, i.e., the very high
lovastatin specific production obtained in SSF.

In relation to direct contact with air (identified as a major environmental cue), it
was considered that its effect on fungal physiology could be mediated by reactive
oxygen species (ROS).

This was an interesting idea since, although high ROS concentrations in the cell
are harmful, lower levels can function as signaling molecules in the cell. In recent
years, many authors have found evidence of a close association between ROS and
development and differentiation in fungi, for example, increased ROS levels have
also been detected during cell differentiation in A. nidulans [58, 59].

Regarding lovastatin biosynthesis, we recently showed a link between ROS and
lovastatin biosynthesis. It was shown that sod1 gene (oxidative stress-defense
enzyme) was intensely expressed during rapid growth phase (or trophophase), but
it was downregulated in production phase (idiophase). In that moment ROS levels
increased to high levels that remained during all production phase [54]. In a
subsequent work it was shown that ROS regulate lovastatin biosynthesis at a
transcriptional level, in both culture systems [60]. It is considered that transcription
factors, associated to signal transduction pathways related to oxidative stress, could
be the link between ROS and lovastatin biosynthetic genes.

Although ROS accumulation in idiophase happens in both culture systems, there
are differences that could explain higher lovastatin production in SSF: Surprisingly,
ROS concentration in idiophase was ten times higher in SmF in relation to SSF.
Probably equally important, ROS kept a much more steady level in SSF.

This agrees with the relatively lower sod1 expression level in SSF, as well as the
higher redox balance found in this culture system (see above).
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Evidently, signal transduction pathways play a central role in sensing these
stimuli and triggering a chain of events resulting in the massive change in gene
expression observed in fungi growing in SSF. Our group has carried out studies in
this area (SAPK/MAPKinase and cAMP-PKA) and identified a different behavior of
some components of cAMP-PKA pathway (manuscript in preparation). LaeA is a
global regulator of secondary metabolism in fungi that is associated to this signaling
pathway. In a very recent work we overexpressed this gene in A. terreus and
increased lovastatin production was obtained. Lovastatin overproducing mutants
for SSF were much more abundant in the transformant population. In SSF, the
constitutive promoter-containing transformant T2laeAcons reached 30.6 mg of
lovastatin g dry culture�1 [61].

We have performed research exploring the relation between ROS profiles and
lovastatin biosynthesis. Manipulation of ROS accumulation profile by genetic or
environmental means greatly impacted the metabolites production level. Silencing
genes encoding transcription factors involved in these signaling pathways generated
transformants displaying lovastatin production increases of 60 % in SmF and 70 %
in SSF (Pérez-Sanchez et al. Manuscript in preparation). The role of ROS in the
induction of the physiology of solid medium caused by direct contact with air is a
subject still under investigation.

8.4 Enzyme and Protein Production in SSF: Molecular Studies

Filamentous fungi are eukaryotic microorganisms commonly used for the produc-
tion of enzymes and metabolites. They are also considered as suitable hosts for
extracellular recombinant protein production, due to their high secretion potential
and their ability to perform posttranslational modifications [62].

As described in a previous section, Aspergillus oryzae is widely used in Japan and
other oriental countries to produce traditional fermented foods. Since it is known that
under SSF conditions it produces greater amounts of hydrolases (like amylases and
proteases) than in SmF, it is also used in commercial enzyme production in Koji-type
cultures.

Because of its industrial importance, it has been subjected to many molecular
biology studies that have significantly contributed to understand PSM. These studies
have contributed or helped to identify SSF-specific genes and given a deeper insight
in the genetic expression and regulation mechanisms involved, determining impor-
tant differences with SmF [23].

A series of studies on the glucoamylase glaB gene of A. oryzae became an
emblematic case, not only because it was the first SSF-specific enzyme identified
but because subsequent studies gave a deep and exciting view of its genetic
regulation, identifying environmental factors that induced its expression.

In SSF, this fungus produces great quantities of amylases and proteases [63], but
in SmF glucoamylase productivity is much lower. Although it was originally thought
that it was the same enzyme, Hata et al. [64] found that the enzyme produced in SSF
had a different amino acid sequence, and that this organism has two glucoamylase-
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encoding genes: glaA and glaB. However, the expression of glaB is very high in SSF
but repressed in SmF, while glaA is mainly expressed in SmF. This meant that glaB is
a SSF-specific gene.

Ishida et al. [65] measured individual transcriptional efficiency of glaA and glaB
promoters under various culture conditions, by means of reporter genes (the glaB or
glaA promoter fused to the coding sequence of an easily detected gene product). As
expected both genes were induced by starch, but other physical factors were required
for maximal expression of glaB. They showed that this SSF-specific gene was also
induced by three environmental factors: (1) low water availability (Aw), (2) high
temperature, and (3) physical barriers to hyphal extension, that is, SSF-specific
conditions. In addition, it was shown that glucoamylase production in SSF was
regulated at a transcriptional level. It is important to note that during the koji
traditional process more amylase is generated at high temperature (40 �C) than at
low temperature (30 �C).

In relation to the third environmental factor, the authors observed that A. oryzae
grown on a nylon membrane, placed over an agar plate medium (physical barriers to
hyphal extension), showed significant induction of the SSF-specific glucoamylase
gene (glaB). Small pore size (0.2 mm) of the membrane (not letting the hyphaes pass
through) and high concentration of maltose (high Aw) in the medium were important
for strong induction.

This method has been useful because of the SSF-like conditions it simulates and
because mycelia can be recovered and more easily prepared than in a real SSF.
However, it is important to note that it has been shown that these model systems
present certain differences in metabolism and kinetics, in relation with SSF [23].

Interestingly, what these authors called “physical barriers to hyphal extension”
corresponds to the environmental cue that was called “support stimuli” in the work
on secondary metabolism (lovastatin production) described before. Moreover, in that
work, Aw was also identified as one of the environmental stimuli inducing PSM,
although its effect was smaller in the case of lovastatin.

It is worth remembering that a cis-acting factor is a short DNA sequence in the
promoter region of a gene, shown to be a binding site for a transcription factor
(regulatory protein), to control this gene’s expression.

In a later work of this group [66] cis-acting factors in the glaB promoter necessary
for high-level expression in SSF were identified. A deletion analysis indicated that
removal of a short region of the promoter (�350 to�324) (Region A) produced fatal
loss of the promoter activity in SSF, but only loss of regulation in SmF. This region
contains two heat shock element motifs (HSE) (50 -AGAAN-30) and a GC box
(�335 to�324). Substitution of the first HSE brought about lower promoter activity
although regulation was conserved, but substitution of the GC box caused lower
expression in SSF and induction by starch, Aw, and T was lost.

This region, together with the neighboring B Region, was used to construct
improved promoters for SSF. When eight copies of this 97-bp fragment (�350 to
�254) were tandemly fused to the glaB promoter, a 4.6-fold increase in promoter
activity was observed. This improved promoter showed a 4.1-fold increase in
recombinant glucoamylase production (glaA) in SSF, reaching 1,524 mg/kg-koji.
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After that, other SSF-specific genes have been found. The pepA gene, which
encodes an acid protease, is also specifically expressed in SSF [67]; but unlike glaB
gene, pepA was not found to contain a GC box; but its promoter contains a HSE.
Hence, the molecular mechanisms for regulation of gene expression in SSF were not
as simple as originally thought (Table 3).

8.4.1 SSF-Specific Genes and Genes Expressed Differentially
Several years later (between 2002 and 2007), in the search for SSF-specific genes,
Japanese groups performed subtractive cloning on A. oryzae grown in SSF and SmF.
This method compares mRNAs from two conditions. cDNAs are generated and it
allows for PCR-based amplification of only cDNA fragments that differ between
both populations. The technique relies on the removal of dsDNA formed, by

Table 3 Chronology of important events related to molecular basis of physiology of solid medium.

Secondary metabolites productionYear

1990–2008 Classical regulatory mechanisms of secondary metabolites, like carbon or nitrogen
regulation, are also active in SSF. So, like in SmF, these mechanisms should be
by-passed (or taken advantage of) by manipulating the culture medium. However,
a higher medium concentration (at least 2X) is needed for high production of
secondary metabolites in SSF

2008 Lovastatin high production system: SSF on inert artificial support: 14-fold higher
specific production in SSF

2008 Higher lovastatin production in SSF is related to a fourfold higher expression of
pathway-specific transcription factor (lovE), and lovastatin biosynthetic genes

2011 Environmental stimuli for high lovastatin production in SSF include contact with
air, water activity (Aw) and physical barriers against hyphal extension

Enzymes and protein production

1997 Discovery of first SSF-specific enzyme: glucoamylase, and corresponding gene:
glaB

1998 Regulation of glaB gene: environmental stimuli that induce its production: low
water activity (Aw), physical barriers against hyphal extension and/or high
temperature (42 �C)

2000 Identification of cis-acting factors (functional elements) in glaB promoter,
necessary for high-level expression in SSF: GC box and two heat shock elements
(f-HSE)

2002 Discovery of other SSF-specific enzymes like pepA gene. Its promoter does not
have a GC box, but it contains a HSE

2002–2010 Subtractive cloning, cDNA microarrays and proteomic analysis: This special
physiology is supported by a major change at a molecular level 4,628 genes are
differentially expressed between SSF and SmF. About half of the genes, expressed
only in SSF, are annotated as functionally unknown

2006 Protein production in SSF is regulated in a complex form, with different regulatory
circuits for different gene groups; one of which is similar to SmF. Other genes
groups respond exclusively to SSF- or SmF-environmental conditions, at
transcriptional and/or posttranscriptional levels

Modified from Ref. [23]
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hybridization between cDNAs common to both conditions, leaving only the cDNAs
that are differentially expressed.

Several SSF-specific genes were detected, but about half of them were annotated
as encoding functionally unknown proteins. This has been also found in other
studies and is indicative of the lack of knowledge in this field and also of the great
difference between these two physiologies.

On the other hand, about one half of genes expressed specifically in SSF encoded
for secreted or internal enzymes and for transport proteins. These transporters might
be necessary for the growth in vast amounts of the limited variety of raw materials,
with slower diffusion processes.

In 2005, a Dutch group [68] performed similar experiments with A. oryzae,
focusing on genes related to the different mycelial growth phenotype required in
SSF (polarized growth for colonization of the solid substrate). They identified
29 genes, strongly upregulated in SSF: Six encoded proteins were functionally
related to polarized growth, four encoded products involved in morphogenesis,
and three coded for cell wall composition proteins. The rest were unknown proteins.
The authors interpreted these findings as suggestive of important differences in the
organization of the cytoskeleton during growth in SSF, with potential impact on
intracellular distribution of several organelles and in polarized secretion of proteins.
Genes encoding proteins related to formation of aerial hyphae and attachment to
surfaces were also differentially expressed in solid culture.

These findings substantiate the idea that mycelium from solid culture is physio-
logically different from the one from SmF, and relate to the concept that support-
related stimuli are important environmental cues inducing PSM. In addition, these
advances have been the basis for genetic improvement methods described in
Sect. 8.5.

After this, and well into the omics era, many genes that are differentially
expressed in SSF have been identified by cDNA microarrays [69, 70] and proteomic
analysis [71]. More recently Wang et al. [72] applied a high-throughput
RNA-sequencing methodology (RNA-Seq) to a full-scale transcriptome analysis.
In this way, it was revealed that this special physiology is supported by a major
change at a molecular level: 4,628 genes are differentially expressed between SSF
and SmF.

These include 2,355 upregulated and 2,273 genes downregulated on SSF.
Upregulated genes were specifically located in the pathways of ribosome, DNA
replication, oxidative phosphorylation, and the TCA cycle. The authors interpreted
this as the capacities for protein translation/modification and energy production were
much more powerful in the fungus grown on SSF compared to SmF. They suggested
this could be due to hyphal differentiation and the faster growth observed in
SSF [23].

Again, about half of the genes that were expressed only in SSF are annotated as
functionally unknown.

Upregulated genes in SSF also suggested that protein folding is more efficient
under SSF conditions. In addition, results also indicated that the capacity for protein
glycosylation was greater under SSF conditions. These are all valuable
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characteristics that could make SSF a competitive system for homologous and
heterologous protein production.

These findings can explain the results of Maruyama et al. [73] in an application of
SSF for the production of antigens for use in humans. They found that a better
glycosylation pattern in the pre-S2 antigen (hepatitis B virus) produced in SSF. In
SmF, A. oryzae secreted a heterogeneously glycosylated form of the fusion protein
that was partially degraded. Contrasting, wheat bran SSF resulted in the secretion of
a homogeneously glycosylated form of the whole fusion protein.

8.4.2 SSF: Proteomic Studies
Transcriptomic studies are of key importance to understand differences in gene
expression due to different cultural conditions. However, RNAs do not always
correlates with protein content. It is now known that mRNA is not always translated
into protein, and the amount of protein produced for a given amount of mRNA also
depends on other factors Proteomics confirms the presence of the protein and pro-
vides a direct measure of the quantity present. In addition, many proteins can
undergo a wide range of post-translational modifications. Many of these post-
translational modifications are critical to the protein's function. Hence, proteomics
provides a good complement to transcriptional analysis, since it reveals additional
information on posttranscriptional and secretion regulation.

Oda et al. [71] carried out a proteomic analysis comparing extracellular proteins
in SSF and in SmF. Although this work only focused on the secreted proteins
(secretome), it improved the global view of the complex way in which A. oryzae
controls protein production in response to solid-culture conditions. The authors were
able to identify 29 proteins. Taking into account the conditions under which they
were synthesized or produced, the authors divided these proteins into four groups:
Group 1 consisted of enzymes specifically produced in SSF, such as glucoamylase B
(glaB). Group 2 is formed by extracellular proteins specifically produced in SmF,
such as glucoamylase A (glaA). Group 3 consisted of proteins produced in both
culture conditions, such as xylanase G1. Group 4 consisted of proteins that were
secreted to the medium in the SSF, but trapped in the cell wall in the liquid culture,
such as amylase (TAA).

It was also observed that secretion of GlaB was regulated at transcriptional level,
while GlaAwas regulated at the posttranscriptional level in SSF. This work revealed
that not only transcriptional regulation but also posttranscriptional regulation plays
important roles in protein production in SSF.

On the other hand, the regulation of Group 3 proteins substantiates the notion,
described before (Sect. 7.1.1), that one part of physiology of fungi in solid culture
shares a number of basic characteristics with the physiology displayed in liquid
environment (SmF).

Since then, different groups have reported several proteomic studies on this and
other fungal species. However, these studies have mainly been driven by the
“biorefinery” idea, and have focused on lignocellulosic degrading enzymes in the
secretome. Others have performed intra- and exaproteomics. Unfortunately, these
studies have been carried out either in SSF or in SmF, but very few have performed
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comparative studies. In this way the panorama of this area has not changed substan-
tially. Comparisons of the whole proteome (intra- and exa-) in SSF vs SmF are badly
needed to complement the transcriptomic data available.

In a recent study Li et al. [74] compared cellulase activities and the secretomes of
Neurospora sitophila cultured in SSF and SmF using steam exploded wheat straw as
carbon source and enzyme inducer. The very high capacity of proteins secretion in
SSF was again seen. The total amounts of protein and biomass in SSF were
respectively 30 and 2.8 times of those in SmF. A great difference in these enzymes’
production was also confirmed. The CMCellulase, FPA, and β-glucoside activities in
SSF were 53–181 times of those in SmF. Many of the critical enzymes were
produced in both culture systems, although a β-xylosidase was exclusively identified
in SSF.

Interestingly, the nonenzyme proteins in SSF were involved in fungal mycelia
growth and conidiation while those in SmF were more related to glycosemetabolism
and stress tolerance. The authors discuss that SSF more likely serves as a natural
habitat for filamentous fungi to facilitate the enzyme secretion.

The fact that an important part of nonenzyme proteins, more actively produced in
SmF, were related to stress tolerance suggests that, against what has been thought in
the past, fungal life in SmF is more stressful that in SSF. This agrees with very recent
results of our group indicating that mycelium was subjected to cell wall stress in
SmF, but not in SSF (Bibián et al. manuscript in preparation).

8.5 Applications

Advancement in the understanding of PSM could be applied to better control
metabolism and direct product formation in SSF processes. In fact, some of these
basic findings are starting to be applied to the construction of strains, particularly
suited for SSF.

Based on the model of fungal growth in SSF, where there can be an oxygen
limitation, in the deeper parts of the wet mycelia layer, described in Sect. 8.1; Te
Biesebeke et al. [68] identified a hemoglobin domain of gene fhbA, encoding a
flavohemoglobin, i.e., a protein that can attract and bind O2. The authors cloned and
overexpressed this protein domain in A. oryzae. The transformants displayed slightly
higher growth on SSF, as well as higher amylase, protease, and particularly
glucoamylase activities. This indicated that this strategy could be used as a molec-
ular genetics strain improvement method for protein production under SSF.

Findings related to SSF-specific enzymes in A. oryzae have also been used in the
construction of improved promoters for SSF that can be used in the production of
enzymes or recombinant proteins.

Examples of applications, derived from the advances in the PSM in A. terreus,
include the overexpression of a component of a signal transduction pathway (cAMP-
PKA) apparently involved in transducing stimuli of solid medium. Transformants
overproducing lovastatin in SSF were very abundant and displayed important
lovastatin production increases (described in Sect. 7.1.2). In another work, the

340 J. Barrios-González and M.R. Tarragó-Castellanos



silencing of a gene, encoding a transcription factor associated to the SAPK/
MAPKinase signaling pathway, changed the ROS accumulation profile during the
course of the culture, inducing 70 % higher lovastatin production in the transformant
(described in the same section).

A deeper understanding of the PSM can also be applied to the development of
new types of SSFs, hybrid SSF–SmF systems, or even novel SmF systems that will
include some solid culture stimuli. One example of the latter is the one developed by
Shoji et al. [75]. The authors found that higher enzyme productions were obtained
when whole barley grains were used in SmF, instead of milled whole barley
glucoamylase and α-amylase very probably involving support stimuli.

The group of Nakanishi has reported that fungi cultivated by membrane-surface
liquid culture (MSLC) show cultivation behaviors that are similar to those cultivated
on agar-plate culture [76–78]. They showed that neutral protease, α-glucosidase, and
kojic acid are produced at much higher levels by MSLC than by SmF, in a manner
similar to SSF. The authors claim that MSLC could be an efficient production
system [78].

Recently the term biofilm has been extended to the surface-associated growth of
filamentous fungi. In opposition to immobilized-cell reactors, in a fungal biofilm
reactor, biomass naturally adheres and colonizes the surface of an inert support in
contact with a liquid medium [79, 80]. In other words the cells will sense what was
called here the “support stimuli.”

In a very recent study, Zune et al. [81] tried to apply concepts of PSM to the
production of recombinant proteins by A. oryzae. Considering that BfR conditions
were at least partially similar to SSF the authors studied the production of a GlaA::
GFP (Green Fluorescent Protein) fusion protein, under the control of the glaB
promoter, that is, an SSF-specific promoter. In addition, they compared this system
with a typical SmF (stirred tank bioreactor). Although this work represents an
advance in the right direction, results were unpredicted. Unexpectedly, the fusion
protein was also produced in SmF, despite the use of the glaB promoter. Moreover,
the best yield was obtained in the classical stirred tank reactor, but involved
alteration of the recombinant product. On the other hand, production in the BfR
enhanced stability of the recombinant product. Expression of the glaB promoter in
SmF appears to be related to the shear rate, since when this reactor was operated at
200 rpm (instead of 800 rpm) no excretion of the fusion protein was observed.

In addition, it has become apparent that basic aspects of the PSM, found in studies
with A. oryzae, can be applied to other fungal species, even phylogenetically distant
fungi like Rhizopus. Xu et al. [82] found that R. chinensis produced a wide range of
lipases that were able to synthesize useful flavor esters from free fatty acids and
alcohols. Particularly, this fungus produced lipase Lip1 with high synthetic activity
and that turned out to be a solid-state specific enzyme, so it was produced in large
amounts in SSF [83]. As in the case of GlaB, low water activity played a significant
role in the induction of Lip1, and they were able to increase the expression level of
this lipase in SmF (20–46 mg g dm�1) when decreasing water activity of the liquid
medium. Again, physical barriers against hyphal extension were found to be another
required factor. Expression of Lip1 was significantly enhanced (in agar plates) by
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threefold, so enzyme production reached 388.4 mg g dm�1. When this growth
barrier effect was combined with low water activity (in petri dish), specific produc-
tion increased to 921.5 mg g dm�1 [84].

This study on enzymes production, together with others, and our own work on
SMs, indicate that the knowledge of physiology of solid medium, generated in
studies with A. oryzae or A. terreus, is of general nature and can be applied to
processes with other fungi.

9 Conclusions

Many primary metabolites show advantages when produced by SSF. However, the
most impressive results are seen in the area of SMs and enzymes production by SSF.
These compounds are often produced at much higher yields in SSF, and certain SMs
and certain enzymes are only produced under SSF conditions. This is considered to
be part of the special physiology displayed by fungi (and other microorganisms) in
SSF and that has been called physiology of solid medium [23].

These capacities have called the attention of researchers and made that recently
PSM has acquired importance in hot research topics like lignocellulosic residues
biotransformation (to biofuels or bulk chemicals), or the search for conditions to
awake SM biosynthetic gene clusters, which have been found by genomic mining.

Studies on the biosynthesis of secondary metabolites in solid culture, mainly
using the model of lovastatin production, have shown that the solid culture environ-
ment induces higher transcription of the specific transcription factor (LovE) as well
as the biosynthetic genes, and hence higher production. These studies showed that
important environmental factors, inducing this different physiology, are (1) direct
contact with air, (2) support stimuli (physical barriers to growth), and with a lower
impact, (3) low Aw.

The last two stimuli have also been identified in the field of enzymes (and
proteins) production. Research using SSF-specific enzyme glucoamylase GlaB as
a model identified physical barriers to growth and low Aw as inducing environmen-
tal cues. Moreover, the study of cis-regulatory elements, identified in the promoter of
this and other SSF-specific genes, together with research described below, have
given a deeper insight in the genetic expression and regulation in SSF.

Transcriptomic and proteomic studies have revealed that this special physiology
is supported by a major change in gene expression. An impressive figure of 4,628
genes was found to be expressed differentially between SSF and SmF. Also, that
protein production is controlled in response to solid-culture (or liquid) conditions.
Genetic expression is regulated in a complex form, with at least four different
regulatory circuits, one of which is similar to SmF, i.e., does not respond to culture
system, but only to medium components. Other gene groups respond exclusively to
SSF- or SmF-environmental conditions, at transcriptional and/or posttranscriptional
levels.

A great proportion of molecular studies were performed on A. oryzae, but this
knowledge has been found to explain the behavior of other fungi in SSF. These basic
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findings have already found applications in technologies like genetic improvement
methods to generate overproducing strains for SSF. Moreover, it is also starting to be
applied to design novel culture systems, and other technological advances. Eventu-
ally, this understanding will surely start having an impact in other applications of
SSF like production of feed, fuel, food, and industrial chemicals.
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Abstract
Fungi produce extensive set of enzymes to degrade lignocellulosic plant biomass.
Fungal (hemi)cellulases are among the most widely exploited microbial enzymes
for many industrial and environmental applications. However, in biofuel
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industries and few other sectors, the cost of the enzymes is a big hurdle in the
development of successful technology. So far industrial production of (hemi)
cellulases is mainly achieved by submerged fermentation technique. But solid
state fermentation (SSF) is an alternative low-cost and less energy-intensive
technology which can lead to reduction in the cost of these enzymes. The chapter
initially describes structure and occurrence of plant cellulose and hemicellulose
and their degradation by fungal enzymes. Extracellular multienzyme systems of
wood-rotting fungi, plant-pathogenic fungi, and thermophilic fungi are also
reviewed. Production of (hemi)cellulases by SSF is explained with discussion
on critical factors affecting the process and their optimization. Additionally,
attempts to develop large-scale SSF processes using bioreactors are also
described. Improvements of fungal (hemi)cellulases by genetic approaches and
the current applications of (hemi)cellulases along with bioconversions of ligno-
cellulosic waste into valuable products for use as energy source or food additives
are briefly narrated.

Keywords
Cellulase • Hemicellulase • Ascomycete • Basidiomycete • Trichoderma reesei •
Aspergillus niger • Bioconversion • Lignocellulosic biomass

List of Abbreviations
aw Water activity
BBD Box-Behnken design
CBH Cellobiohydrolase
CBM Carbohydrate-binding module
CCD Central composite design
CCFD Central composite face-centered design
CFC Cellophane film culture
CMCase Carboxymethyl cellulase
g Gram
GH Glycosyl hydrolase
LCM Lignocellulosic Material
LPMO Lytic polysaccharide monooxygenases
PBD Plackett-Burman design
SmF Submerged fermentation
SSF Solid state fermentation
U/g Unit per gram of substrate

1 Introduction

With the ever-increasing world population, human beings are facing extreme pressure
on conservation of environment, energy, and resources for present and future genera-
tions. One of the saferways to handle such issues is tominimize the use of chemicals and
more energy-intensive processes by replacing them with enzyme-driven processes.
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Enzymes can play crucial role in enhancing the quality of life as well as maintaining
sustainable environment by having a wide array of catalytic activity. Majority of the
enzymes used for various technical and nontechnical applications are hydrolytic
enzymes, viz., proteases, carbohydrases, and lipases. Microorganisms are the most
powerful and convenient sources of industrial enzymes wherein fungi being the source
of a wide range of extracellular enzymes including cellulases and hemicellulases. In
spite of having very good efficiency and functionality, economic feasibility of enzyme-
based processes is often prohibitive for their applications. Hence, research and devel-
opments in this field are focused on production of efficient enzyme formulations by cost-
effective processes.

Cellulose and hemicellulose of plant biomass are the most abundant renewable
bioresources on the earth. Huge quantities of plant biomass are being wasted or
underutilized in various countries. To enable efficient utilization of plant biomass,
fungi produce an extensive set of carbohydrate-active enzymes to degrade cellulose
and hemicellulose. Fungi are the most important and widespread group of organisms
responsible for the recycling of plant material back into the ecosystem and are
therefore essential components of the global carbon cycle. One of the reasons for
this seems to be the “side-by-side” evolution of plants and fungi. The variety of the
enzymes produced by each fungus differs and often corresponds to the requirements
of its habitat.

Cellulolytic and hemicellulolytic enzymes from fungi are currently being pro-
duced on large scale for various applications like textile processing, food processing,
detergents and laundry, animal feeds improvement, and biofuel production. The
development of second-generation biofuels derived from lignocellulosic raw mate-
rials is now expected to drive the demand of industrial (hemi)cellulases. Enzyme-
based bioconversion of lignocellulosic biomass into variety of valuable products can
be the most efficient and environmentally friendly approach. However, high cost of
cellulases is one of the largest obstacles for commercialization of biomass
biorefineries [1, 2]. Cellulase production can be made more economical by increas-
ing volumetric productivity, producing enzyme preparations with greater stability for
specific processes, producing cellulases with higher specific activity, and using
cheaper solid substrates. Considering these aspects, solid state fermentation (SSF),
although an old concept, is now being reconsidered by scientists for production of
such enzymes at least for biofuels and biorefinery. Because of some inherent
technological problems of solid state fermentation, submerged or liquid state fer-
mentation is still the dominating technology for (hemi)cellulase production at
industrial level. So commercialization of SSF processes is a challenging task, and
transition from an “ancient art” to a modern technology is necessary.

2 Occurrence and Structure of Cellulose and Hemicellulose

Major polysaccharide in plant lignocelluloses is cellulose – typically in the range of
35–50 %. Cellulose makes up 15–30 % of the dry biomass of primary and up to 40 %
of the secondary wall. Cellulose fibers are embedded in a matrix of other structural
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biopolymers, primarily hemicellulose and lignin. Hemicellulose comprises 20–35 %
and lignin 5–30 % of plant dry weight. Hemicellulose is found in the spaces between
cellulose microfibrils in primary and secondary cell walls, as well as in the middle
lamellae [3]. Lignocellulosic material (LCM) consisting of these carbohydrate poly-
mers (cellulose and hemicellulose) and lignin is a highly recalcitrant structure and
difficult to deconstruct. Table 1 shows typical composition of various plant biomass.

Plant cellulose is a linear homopolysaccharide synthesized from D-glucose
residues linked by β-(1,4) glycosidic linkage. The degree of polymerization
(DP) in a single chain can be as high as 14,000 in secondary cell wall and 6000
in primary cell wall. The linear chains undergo self-assembly by inter- and
intrachain hydrogen bonds leading to the formation of a microfibril. Microfibrils
(diameter 2–4 nm) are reported to be made up of around ~36 cellulose chains coated
with other noncellulosic polysaccharides. Such microfibrils are cross-linked by
hemicelluloses/pectin matrix covered by lignin to form macrofibrils of varying
diameters that mediate structural stability in the plant cell wall. This special crystal-
line structure makes cellulose resistant to both biological and chemical treatments
[10, 11] as well as impermeable to water. In this polymeric structure, there are both
crystalline and amorphous regions in addition to several types of surface irregular-
ities. The relative amount of crystalline and amorphous regions is varied in different
sources of cellulose. In native cellulose two crystalline forms 1α and 1β exist. The 1α
form is more susceptible to hydrolysis, but plant cellulose mainly contains 1β
form [12].

Hemicelluloses are heteropolysaccharides with more complex, branched structure
formed from various monomeric pentose and hexose sugars attached through dif-
ferent linkages. Carbohydrate substituents and noncarbohydrate components occur
in hemicelluloses either on the main chain or on the carbohydrate branches. Such a
complex structure of the hemicellulose is believed to confer a wide range of
biophysical and biomechanical properties to the plant tissues in which they occur.
Classification of hemicelluloses is based on the main residues of sugars present in the
backbone of the structural polymer. Various types of hemicelluloses and their main

Table 1 Composition of lignocellulosic biomass

Substrate % Cellulose % Hemicellulose % Lignin References

Corn stover 39 19.1 15.1 [4]

Corn cobs 45 35 15 [5]

Wheat straw 41.3 30.8 7.7 [6]

Rice straw 39 15 10 [7]

Rice hulls 24–29 12–14 11–13 [8]

Sugarcane bagasse 43 25 24 [7]

Sawdust 45 15.1 25.3 [9]

Coconut fiber 17.7 2.2 34 [9]

Switch grasses 31 22 18 [7]

Grasses 25–40 25–50 10–30 [5]
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chain and backbone residues are shown in Table 2, and monomeric sugar composi-
tion of various agroresidues is given in Table 3.

Xylan is the most abundant hemicellulose polymer in cereals and hard woods. In
land-based plants, it constitutes up to 30 % to 35 % of total dry weight. These
complex heteropolysaccharides consist of β-1,4-linked D-xylopyranosyl backbone

Table 2 Occurrence of various hemicelluloses in plant biomass and their chemical composition [13]

Polysaccharides/form of
xylan Plants Backbone Side chains

Arabinoxylan Cereals β-D-Xylp α-L-ArafFeruloy
Arabinogalactan Softwood β-D-Galap β-D-Galp

α-L-Araf
β-L-Arap

Arabinoglucuronoxylan Grasses, cereals,
softwood

β-D-Xylp 4-O-Me-α-D-GlcpAβ-L-
Araf

Glucuronoxylan Hardwood β-D-Xylp 4-O-Me-α-D-GlcpA
Acetyl

Glucuronoarabinoxylan Grasses and cereals β-D-Xylp α-L-Araf
4-O-Me-α-D-GlcpA
Acetyl

Glucomannan Softwood and
hardwood

β-D-Manp
β-D-Glcp

Galactoglucomannan Softwood β-D-Manp
β-D-Glcp

β-D-Galp
Acetyl

Xyloglucan Hardwood, grasses β-D-Glcp
β-D-Xylp

β-D-Xylp
β-D-Galp
α-L-Araf
α-L-Fucp
Acetyl

Homoxylan Algae β-D-Xylp

Table 3 Monomeric sugar composition (g/100 g of dry materials) of xylan from some
agroresidues

Lignocellulosic
substrate Xylose Arabinose Mannose Galactose

Acetyl
group Reference

Wheat straw 19.2–21.0 2.4–3.8 0–0.8 1.7–2.4 – [4, 14]

Wheat bran 16 9 0 1 0.4 [15]

Rice straw 14.8–23 2.7–4.5 1.8 0.4 – [4, 16]

Rice husks 17.7 1.9 – – 1.62 [17]

Corn stover 14.8–25.2 2–3.6 0.3–0.4 0.8–2.2 1.7–1.9 [4, 18, 19]

Corn stalks 25.7 4.1 <3.0 <2.5 – [20]

Corn cobs 28–35.3 3.2–5.0 – 1–1.2 1.9–3.8 [15, 18,
21, 22]

Sugarcane
bagasse

20.5–25.6 2.3–6.3 0.5–0.6 1.6 – [23, 24]
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and can be substituted with different side groups, such as L-arabinosyl, D-galactosyl,
acetyl, feruloyl, p-coumaryl, and glucuronosyl residues. The frequency and compo-
sition of the branches are dependent on the xylan source [25].

Another two major hemicelluloses in plant cell wall are galacto(gluco)mannans
and xyloglucans. Galacto(gluco)mannans consist of a backbone of ß-1,4-linked D-
mannose (mannans) and D-glucose (glucomannans) residues with D-galactose side
chains. Homo- and heteromannans are based on variations of β-mannan backbone,
which might be interrupted with D-glucose (glucomannan) and/or branched with
α-1,6-linked D-galactose (galactomannan/galactoglucomannan). The mannose and
glucose residues in the backbone are sometimes acetylated at C-2 or C-3. Linear
mannan and glucomannan chains containing more than 5 % (w/w) D-galactose are
called galactomannans and galactoglucomannans. Xyloglucans that consist of a
ß-1,4-linked D-glucose backbone substituted by D-xylose [26]. In xyloglucan,
L-arabinose and D-galactose residues can be attached to the xylose residues, and
L-fucose can be attached to galactose residues. The diversity of side groups that can
be attached to the main backbone of xyloglucans confers to high structural com-
plexity and variability [27].

3 (Hemi)cellulolytic Enzymes of Fungi

3.1 Cellulases

Cellulases are known to be produced not only by fungi but also by bacteria, pro-
tozoa, plants, and some members of animal kingdom. The insoluble and recalcitrant
nature of plant cellulose poses great challenge for biochemical degradation of
cellulose into monomeric sugars. For microorganisms to hydrolyze and metabolize
insoluble cellulose, extracellular cellulases must be produced that are either free or
cell associated. A cellulase system from aerobic and anaerobic bacteria and fungi has
been extensively studied during the past two decades. Cellulolytic enzyme system
can be complexed or noncomplexed. Noncomplexed cellulases are found in aerobic
fungi, bacteria, and actinomycetes. These organisms secrete cellulases as free
enzymes in the exterior, while in anaerobic bacteria and fungi, these enzymes are
organized as high-molecular weight complexes called cellulosomes. Structure and
organization of such cell wall associated cellulosome is well elucidated in Clostrid-
ium thermocellum. However, anaerobic fungi, viz., Neocallimastix, Orpinomyces,
and Piromyces cellulosomes, are known, but molecular arrangements are not clearly
established [28].

Components of cellulase systems have been classified based on their mode of
catalytic action and structural properties [29]. Three major types of enzymatic
activities are found:(i) Endoglucanase or β-1,4-D-glucan-4-glucanohydrolases
(EC 3.2.1.4) cut the internal glycosidic linkages in amorphous cellulose randomly
and generate oligosaccharides of various chain lengths and consequently open new
chain ends.(ii) Exoglucanases including β-1,4-D-glucan glucanohydrolases (also
known as cellodextrinases) (EC 3.2.1.74) and β-1,4-D-glucan cellobiohydrolases
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(EC 3.2.1.91) act in a processive manner (successive cleavage of products) on the
reducing or nonreducing ends of cellulose polysaccharide chains, liberating either
glucose (glucanohydrolases) or cellobiose (cellobiohydrolase) as major products.
(iii) β-D-Glucosidases or β-D-glucoside glucohydrolases (EC 3.2.1.21) act on cello-
biose and cellodextrins and release D-glucose units. T. reesei produces at least two
exoglucanases (CBHI and CBHII). Both CBHs, CEL6A and CEL7A, have been
shown to act processively, whereby CEL6A cleaves the cellobiose dimers from the
nonreducing end of the cellulose chain and CEL7A from the reducing end [30], five
endoglucanases (EGI, EGII, EGIII, EGIV, and EGV), and two β-D-glucosidases
(BGLI and BGLII) [31, 32]. A. niger has 5 EGLs within GH families 5 and
12, 4 CBHs in families 6 and 7, and 13 BGLs in families 1 and 3 [33].

Analyses of the genome sequences of more than 40 ascomycete and basidiomy-
cete species show that these enzymes are confined to a relatively low number of GH
families [34]. Strictly processive exocellulases (cellobiohydrolases) are found in GH
families 6 and 7, while endoglucanases are distributed in large number of GH
families (GH families 5, 7, 12, and 45). β-Glucosidases are predominantly found
in the GH1 and GH3 families.

In addition to glycoside hydrolases, oxidative enzymes called lytic polysaccha-
ride monooxygenases (LPMOs) are also shown to play important role in cellulose
degradation. Recently some of the members of GH61 family now included in
auxiliary activity, families 9 and 11 (AA9 and AA11) which encode a novel class
of copper-dependent enzymes, are now referred to as lytic polysaccharide
monooxygenases (LPMOs) [35, 36]. LPMOs catalyze an oxidative cleavage of
cellulose in the presence of an external electron donor, thus exhibiting synergy
with hydrolytic biomass depolymerization.

Cellulose hydrolysis is also facilitated by “non-hydrolytic” accessory proteins.
The expansin (plant protein produced during growth)-like protein swollenin, iden-
tified in Trichoderma reesei, synergistically raises the activity of the cellulases but
does not exhibit any enzymatic activity on cellulose themselves [37]. They presum-
ably act through their ability to disrupt hydrogen bonds and thereby reduce cellulose
crystallinity and increase cellulase accessibility. Additionally, swollenin has also
been reported to synergize with xylanases in the release of xylose from steam-
pretreated corn stover [38]. However, high amount of protein is required along
with hydrolytic enzymes. Fungal swollenin has successfully achieved recombinant
expression in several eukaryotic and prokaryotic hosts [39].

Most of the aerobic fungi have cellulases having two domains: catalytic domain
and carbohydrate-binding domain (CBM). The CBM affects binding to the cellulose
surface, to facilitate cellulose hydrolysis by bringing the catalytic domain in close
proximity to the insoluble cellulose. The presence of CBMs is particularly important
for the initiation and processivity of exoglucanases [40]. In aerobic fungi, the CBM
is invariably from family 1, which is very small (~30–35 amino acid residues). All
types of CBMs exhibit a planar array of highly conserved aromatic side chains
located on its relatively flat surface which are believed to align with the hydrophobic
faces on the cellulose surface and facilitate substrate binding of the CBM. According
to Bayer et al. [41], the crystalline form of cellulose requires CBM for its hydrolysis,
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but on the other hand, it has been observed that CBM may lead to unproductive
binding to cellulose and lignin and thereby reduce the rate of cellulose hydrolysis.
The CBMs are divided into 59 families on the CAZy database. Figure 1 shows a
schematic presentation of action of cellulases and role of swollenin and CBM in
hydrolysis of cellulose to glucose.

3.1.1 Induction of Cellulase Production
Cellulase production by fungi is mainly regulated at the transcriptional level. Sub-
strates such as cellulose, lactose, and sophorose act as inducers, while glucose
normally acts as gene repressor. The presence of a low-level constitutive enzyme
is required to initiate cellulose degradation, which generates soluble inducers that
can enter the cell and activate cellulase gene transcription [42, 43]. The cellulolytic
system of T. reesei is coregulated which means that they are expressed under all
conditions at the same relative amounts [44, 45]. The mechanism by which filamen-
tous fungi sense the substrate and initiate the enzyme production is still not resolved.
Some scientists also studied the role of carbon starvation, in activation of cellulase/
hemicellulase expression [46]. The most powerful inducer of cellulases in T. reesei is
sophorose, a disaccharide composed of β-1,2-linked glucose units. Sophorose
appears to be formed from cellobiose through transglycosylation activity of

Fig. 1 Schematic presentation of action of cellulases and role of swollenin and CBM in hydrolysis
of cellulose to glucose
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β-glucosidase [47, 48]. In addition to T. reesei, sophorose is known to induce
cellulase expression in A. terreus and P. purpurogenum [49, 50]. Cellobiose appears
to induce cellulase expression in many species of fungi. Another inducer cellobiose
is formed as the end product of cellobiohydrolases activity, and it has been shown to
induce cellulase expression in T. reesei, Volvariella volvacea, P. janthinellum, and
A. nidulans [45, 51]. However, according to Aro et al. [27], the inducing effect of
cellobiose on cellulase expression is controversial, because cellobiose can be
transglycosylated by β-glucosidases, producing sophorose. Besides, β-glucosidases
can cleave the cellobiose into glucose, which may cause catabolite repression.

Lactose (1,4-O-β-D-galactopyranosyl-D-glucose) is another most widely used
inducer of cellulose expression in T. reesei. In filamentous fungi, lactose is cleaved
by extracellular β-galactosidase into glucose and galactose. However, the mecha-
nism of induction is not clear. In addition, induction of cellulase genes could also be
achieved by laminaribiose, gentiobiose, xylobiose, L-sorbose, and δ-cellobiono-1,5-
lactone. L-Arabitol and different xylans have been shown to induce expression of
cellobiohydrolase 1 (cbh1) in T. reesei [27].

3.2 Hemicellulases

Due to the heterogeneity and complex chemical nature of hemicelluloses as
described earlier, hydrolysis of hemicelluloses into simple constituents like mono-
meric and dimeric sugars or oligosaccharides requires the action of a wide spectrum
of enzymes with diverse catalytic specificity and modes of action (Table 4). The
enzymes can be categorized as main-chain-degrading enzymes (xylanase,
β-xylosidase, mannanase, β-mannosidase, arabinase) and side-chain-cleaving
enzymes (α-L-arabinofuranosidase, esterases). Cooperative action of both types of
enzymes is required for complete and biodegradation of hemicelluloses.

Endo-xylanases (EC 3.2.1.8) are extracellular enzymes produced by various
fungi. They cleave internal β-(1–4) linkages in xylan backbone and release short-
chain xylooligosaccharides of varying lengths including xylose [25]. Xylanases have
been classified in GH families 5, 7, 8, 10, 11, and 43 on the basis of their amino acid
sequences, structural folds, and mechanisms for catalysis [52, 53]. GH10 and GH11
family xylanases represent the best studied xylanase families. GH10 family
xylanases have four or five subsites, and GH11 family xylanases have at least
seven subsites [54]. Moreover, generally family 10 xylanases are characterized by
high molecular weight (usually >30 kDa) and acidic pI, while the members of
family 11 have low molecular weight and basic pI [55, 56]. Xylanases from families
10 and 11 can be differentiated on the basis of lower or higher substrate specificities,
respectively. Family 10 xylanases are able to catalyze the hydrolysis of
pNP-cellobioside at a gluconic linkage, while the members of family 11 xylanase
failed to recognize this as substrate [52, 57]. Another feature that distinguishes
GH10 and GH11 xylanases is the nature of the reaction products released from
decorated xylans. GH11 xylanases produce substituted xylooligosaccharides both at
the aglycone and glycone subsites [58]. Aspergillus niger reported to have five
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xylanase genes. One of them belongs to GH10 family and other four genes belong to
GH11family [59]. In T. reesei two forms of GH11 xylanases, Xyl-I and Xyl-II, have
been reported [60].

β-Xylosidases (1,4-β-D-xylanohydrolase, EC 3.2.1.37) are exo-type glycosidases
which hydrolyze xylobiose and short-chain xylooligosaccharides from the
nonreducing end to xylose. β-Xylosidases play a crucial role in alleviating end
product inhibition of endo-xylanases caused by xylooligomers and increase the
efficiency of xylan hydrolysis [61]. In filamentous fungi this enzyme remain asso-
ciated with the mycelia during early stages of growth and can be released later into
the medium either by secretion or as a result of cell lysis, while in some fungi, they
remain associated with cell surface through their growth cycle [62]. Although xylose
is the end product inhibitor of β-xylosidases, it can act as inducer of xylanolytic gene
expression. High yields of β-xylosidase on xylose were observed with T. reesei [63]
and A. versicolor [64]. β-Xylosidases from fungi are often monomeric glycoproteins,
but some have been reported to possess two or three subunits [65, 66]. They are
grouped into five different families (GH3, GH39, GH43, GH52, and GH54); how-
ever, the best characterized β-xylosidases are from GH3 and GH43 [54].

Table 4 Various hemicellulases and their mode of action

Enzymes EC No Mode of action

Endo-xylanase EC 3.2.1.8 Hydrolyzes mainly interior β-1,4-xylose linkages
of the xylan backbone

Exo-xylanase Hydrolyzes β-1,4-xylose linkages releasing
xylobiose

β-Xylosidase EC 3.2.1.37 Releases xylose from xylobiose and short chain
xylooligosaccharides

α-Arabinofuranosidase EC 3.2.1.55 Hydrolyzes terminal nonreducing
α-arbinofuranose from arabinoxylans

α-Glucuronidase EC 3.2.1.139 Releases glucoronic acid from glucuronoxylans

Acetylxylan esterase EC 3.1.1.72 Hydrolyzes acetyl ester bonds in acetyl xylans

Ferulic acid esterase EC 3.1.1.73 Hydrolyzes feruloyl ester bonds in xylans

p-Couramic acid
esterase

EC 3.1.1.74 Hydrolyzes p-coumaroyl ester bonds in xylans

β-Mannanase EC 3.2.178 Attacking the internal glycosidic bonds of the
mannan backbone chain, releasing short
β-1,4-manno-oligosaccharides

β-Mannosidase EC 3.2.1.25 Hydrolysis of mannose units from the nonreducing
end of manno-oligosaccharides

α-Galactosidase EC 3.2.1.22 Hydrolyze galactosyl side groups from oligomeric
and polymeric mannan

β-Glucosidase EC 3.2.1.21 Hydrolyze nonreducing end glucose from
oligosaccharides released by β-mannanase

Acetyl mannan
esterase

EC 3.1.1.6 Hydrolyze galactosyl side groups from oligomeric
and polymeric mannan
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α-L-Arabinofuranosidases (EC 3.2.1.55) are accessory exo-type enzymes which
release arabinose through the cleavage of the α(1–2), α(1–3), and α(1–5) bonds that
link L-arabinosyl side-chain decorations to the main chain of polysaccharides such as
arabinoxylan, arabinogalactan, and arabinan. These enzymes can hydrolyze
arabinosyl linkage of arabinan. The α-L-arabinofuranosidases are essential part of
microbial xylanolytic systems necessary for complete breakdown of arabinoxylans.
α-L-Arabinofuranosidases act synergistically with other hemicellulases and pectic
enzymes for the complete hydrolysis of hemicelluloses and pectins [67]. The
arabinan-degrading enzymes that act in an endo fashion are called endo-1,5-α-L-
arabinanases (EC 3.2.1.99). Bifunctional α-L-arabinofuranosidases possessing
β-xylosidase activity or xylanase activity have also been described [68]. These
enzymes expedite the hydrolysis of the glycosidic bonds by more than 1017-fold,
making them one of the most efficient catalysts. α-L-Arabinofuranosidases exist in
monomeric, dimeric, and multimeric forms [69]. They are classified into five GH
families, viz., GH3, GH43, GH51, GH54, and GH62 [70]. α-L-Arabinofuranosidases
belonging to GH51 and GH62 families release O-2- and O-3-linked
arabinofuranosyl units from monosubstituted xylose while α-L-arabinofuranosidases
of GH43 family arabinose from disubstituted xylose also [71].

Acetylxylan esterases (EC 3.1.1.6) remove O-acetyl group from the C-2 and C-3
positions of xylose and xylooligosaccharides. Biely et al. [57] first reported the
presence of acetylxylan esterases in various fungal cellulolytic and hemicellulolytic
systems, such as Trichoderma reesei, Aspergillus niger, Schizophyllum commune,
and Aureobasidium pullulans. Acetylxylan esterases are enzymes that are able to
hydrolyze the ester linkage between acetyl and xylose residues in xylans. As the
acetyl side groups can interfere with the approach of enzymes that cleave the
backbone by steric hindrance, their elimination facilitates the action of endo-
xylanases [72]. The degradation of acetylxylan with endo-xylanases proceeds faster
and to a higher degree in the presence of acetylxylan esterases. They also deacetylate
the partially acetylated xylooligosaccharides which makes the oligosaccharides fully
susceptible to the action of β-xylosidases [71]. These enzymes may contribute to
lignin solubilization by cleaving the ester linkages between lignin and
hemicelluloses [73].

Ferulic acid and p-coumaric acid are common constituents of animal feed and
may represent up to 2.5 % by weight of the cell walls in temperate grasses. Many of
the arabinose residues in various arabinoxylans are esterified with ferulic acid and p-
coumaric acid residue. Barley straw arabinoxylan contains approximately one p-
cupric acid per 31 arabinose residues and one ferulic acid per 15 arabinose residue.
Ferulic acid esterases cleave ester linkages between ferulic acid and arabinose in
xylan. Most of the feruloyl esterases are extracellular and are active against
xylan and xylan-derived oligosaccharides, from which they are able to release ferulic
acid. Ferulic/coumaric acid esterases belong to the carbohydrate esterase
(CE) family 1 [74].

α-Glucuronidase (α-D-glucuronidase, EC 3.2.1.131) is an important accessory
enzyme which cleaves the α-1,2-glycosidic linkage between xylose and glucuronic
acid or its 4-O-methyl ether. Hardwood xylans possess an average of one
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α-1,2-linked uronic acid side group per ten xylose units, and softwood xylans
contain one per five xylose units. α-Glucuronidases (EC 3.2.1.131) have been
grouped in family GH67, and it removes only the glucuronosyl group that is attached
to the terminal residue at the nonreducing end of xylo-oligosaccharides [75].

β-Mannanase (EC 3.2.178) is an enzyme responsible for the conversion of
heteromannans to mannooligosaccharides and small amount of mannose, glucose,
and galactose. The β-mannanases are endo-acting hydrolases, attacking the internal
glycosidic bonds of the mannan backbone chain, releasing short
β-1,4-mannooligosaccharides. β-Mannanase is the key enzyme that catalyzes the
random hydrolysis of β-mannosidic linkages in mannan and heteromannans. Multi-
ple extracellular mannanases have been reported among many fungi like T. reesei,
T. harzianum, and Aspergillus sp. [76].

β-Mannosidases (β-1,4-D-mannoside mannohydrolase, EC3.2.1.25) catalyze the
hydrolysis of mannose units from the nonreducing end of mannosides. However,
some β-mannosidases are also active on glucosides [77]. β-Mannosidases are
described in GH families 1, 2, and 5 [78]. β-Mannosidases from T. reesei belong
to family 5 [60]. α-Galactosidase (EC 3.2.1.22) cleaves α-(1 ! 6)-linked
nonreducing galactose residues. α-Galactosidase releases galactosyl side groups
from oligomeric and polymeric mannan substrates. Some of the α-galactosidases
in family 27 can release galactose from polymeric substrates [79].

3.2.1 Induction of Hemicellulase Production
Since long it has been observed that the presence of the hemicelluloses like xylan,
xyloglucan, arabinan, and mannan usually induces a high production of
hemicellulases, but the mechanism of sensing is not clear. Usually, small
hemicellulose-derived molecules are able to induce the expression of a wide range
of hemicellulases. The monosaccharide D-xylose is a well-known inducer of
xylanolytic enzymes in Aspergillus species. In A. niger, D-xylose appears to induce
the accessory enzymes also like α-glucuronidase (aguA), acetylxylan esterase
(axeA), and feruloyl esterase ( faeA) [80, 81]. On the contrary it was also demon-
strated that xylose can act as a repressor of hemicellulase production at high
concentrations [82]. In addition to xylose, xylobiose and D-glucose-β-1,2-D-xylose
have been demonstrated to induce expression of xylanolytic genes in A. terreus
[50]. In A. niger, arabinoxylan-degrading enzymes were found to be induced by
arabinose and L-arabitol [27]. The arabinolytic system of A. niger was found to be
independent from xylanolytic system [83].

3.3 Multiplicity of (Hemi)cellulases

Culture supernatants of many cellulolytic fungi generally show multiple forms of
cellulases and hemicellulases. Perhaps the structural complexity and variability of
lignocelluloses have resulted in the need for these multiple forms. Multiplicity is
considered to be due to mRNA heterogeneity which may be the result of differential
splicing of primary mRNA and due to multiple initiations of transcription.
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Another reason for multiplicity is differences in posttranslational modifications of
the same protein either by protease cleavage or at the secretory level due to
differential glycosylation [84]. Schizophyllum commune is reported to produce all
the three principal cellulases in multiple forms. There are two distinct types of
cellulases expressed from each mRNA with different molecular weights
(exoglucanases 59.3 and 58.2, endoglucanases 40.6 and 39.4, and β-glucosidases
95.7 and 93.8 KDa). In the case of xylan, since the pattern of cleavage of xylosidic
bonds is different in xylanases, to carry out efficient hydrolysis of xylan fungi needs
a multienzyme system of xylanases, in which each enzyme has a special function.
Production of multiple xylanases from thermophilic fungus Myceliophthora sp. was
observed in response to the type of carbon source as well as culture condition. Rice
straw induced expression of three xylanase isoforms under shake flask cultivation,
while five xylanase isoforms produced solid state fermentation [85].

Multiplicity has also been observed in β-xylosidases, α-L-arabinofuranosidases,
and acetylxylan esterases and feruloyl esterases [26]. Two β-xylosidases liberated
from the cell surface of P. herquei were purified and identified as GH43 enzymes
[86]. Multiplicity of β-xylosidases originates from the differences in efficiency to
hydrolyze different heterogenous xylooligomers released by the action of different
endo-xylanases [56, 62]. Three different forms of α-L-arabinofuranosidases from
P. purpurogenum were separated by isoelectrofocusing and detected using the
zymogram technique. Some of the thermophilic fungi like H. insolens, Chaetomium
thermophilum, and Melanocarpus sp. were found to produce high titers of multiple
esterases that were putatively classified as xylan acetyl esterase and feruloyl
esterase [87].

3.4 Synergism Between (Hemi)cellulolytic Enzymes

Efficient degradation of plant cell wall polysaccharides requires cooperative or
synergistic actions between the enzymes responsible for cleaving different linkages.
A highly balanced cocktail of cellulolytic and hemicellulolytic enzymes is required
for rapid and efficient degradation. Cellulase systems often exhibit higher collective
activity than the sum of the activities of individual enzymes, a phenomenon known
as synergism [88]. Four forms of synergism have been reported: (i) endo-exo
synergy between endoglucanases and exoglucanases, (ii) exo-exo synergy between
exoglucanases processing from the reducing and nonreducing ends of cellulose
chains, (iii) synergy between exoglucanases and β-glucosidases that remove cello-
biose (and cellodextrins) as end products of the first two enzymes, and
(iv) intramolecular synergy between catalytic domains and CBMs. Very high
degrees of synergy were observed between endoglucanase and cellobiohydrolases
of Trichoderma sp. on highly crystalline cellulose such as bacterial cellulose (5–10)
and cotton (3.9–7.6), while more amorphous celluloses generally display lower
degrees of synergy (0.7–1.8) [89, 90]. In contrast, Andersen et al. [91] reported
opposite observations where synergy was displayed by cellulases on phosphoric
acid-swollen cellulose (3.1), and no synergy was displayed on Avicel. The degrees of

11 Bioproduction of Fungal Cellulases and Hemicellulases Through Solid State. . . 361



synergy therefore appear to vary depending on the nature of the substrate, the
specific nature of the enzymes, the ratios of enzymes involved, and the assay
conditions [92, 93].

With respect to hemicellulases, three types of synergies have been identified,
namely, homosynergy, heterosynergy, and anti-synergy [94, 95]. Homosynergy
occurs between main-chain cleaving enzymes (e.g., β-mannanase and
β-mannosidase), while heterosynergy occurs between main-chain cleaving and
debranching enzymes (e.g., β-mannanase and α-galactosidase). Anti-synergy
means inhibition of one enzyme by another enzyme. This may be possible when a
main-chain cleaving enzyme requires a substituent for its activity and a debranching
enzyme removes that substituent [95]. During xylan hydrolysis, synergism has been
observed between enzyme action on the 1,4-β-D-xylan backbone (β-1,4-endo-
xylanase) and side-chain cleaving enzymes (α-L-arabinofuranosidase, acetyl xylan
esterase, and β-glucuronidase). The synergistic action between acetyl xylan esterase
and endo-xylanases results in the efficient degradation of acetylated xylan [96]. The
release of acetic acid by acetyl xylan esterase increases the accessibility of the xylan
backbone for endo-xylanase attack, and on the other hand, the endo-xylanase creates
shorter acetylated polymers, which are preferred substrates for esterase activity
[97]. It was argued that a main-chain cleaving enzyme will have enhanced activity
if substituents are first removed through debranching enzymes [98] because the
substituent poses a steric hindrance to the main-chain cleaving enzyme. However,
there are variations among xylanases from different families with respect to their
active sites. Family 11 xylanases have a large active site and prefer cleaving main
chains in unsubstituted regions, while family 10 xylanases have a smaller active site
and are able to cleave main chains closer to the substituent [98]. Many such
synergistic interactions have been identified between feruloyl esterases and endo-
xylanase [98, 99], endo-xylanase, β-xylosidase, and α-L-arabinofuranosidase syn-
ergy on arabinoxylan [100, 101]. Synergistic activities are also found in mannan-
degrading enzymes [94].

4 (Hemi)cellulolytic Fungi

Filamentous fungi of class Ascomycetes are well-known and well-established
sources of cellulases and hemicellulases. Trichoderma reesei was one of the first
cellulolytic organisms isolated in the 1950s, and by 1976, more than 14,000 fungi
active against cellulose and other insoluble fibers were collected throughout the
world [102]. However, industrial cellulases are almost all produced from aerobic
cellulolytic fungi, such as Hypocrea jecorina (T. reesei) or Humicola insolens and
Aspergillus niger [103]. This is because engineered strains of these organisms
produce extremely large amounts of crude cellulase (over 100 g per liter) with a
relatively high-specific activity on crystalline cellulose. Several other mesophilic
strains producing cellulases like Fusarium oxysporum, Piptoporus betulinus, Peni-
cillium echinulatum, P. purpurogenum, A. fumigatus, etc. have also shown high
potential [104–106]. The cellulases from Aspergillus usually have high
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β-glucosidase activity but lower endoglucanase levels, whereas Trichoderma has
high endo- and exoglucanase components with lower β-glucosidase levels, which
restricts their efficiency in cellulose hydrolysis. Hemicellulase expression has been
studied mostly in Aspergilli and T. reesei. However, a comparison of the genome
sequences of T. reesei [107] and Aspergillus niger [59] demonstrated that A. niger is
more versatile in the range of hemicellulases, and therefore this species has been
used extensively for basic research in recent years. Penicillium species are also found
interesting as they have the ability to produce both cellulase and hemicellulase in
higher amounts, and specifically they have higher beta-glucosidase activity than
Trichoderma sp. [108]. The enzyme from Penicillium sp. ECU0913 was found very
efficient in hydrolysis of pretreated corn stover without any accessory
enzymes [109].

In the past few decades, increased interests have been found in phytopathogenic
fungi. These fungi are naturally capable of expressing highly effective cellulases/
hemicellulases for invasion through the plant cell wall and helping them in patho-
genesis. Such enzymes are also required in the later stages of invasion as they
provide monosaccharides and oligosaccharides for growth and reproduction.
Recently, hydrolytic profile of plant pathogens was found to be more active than
Trichoderma sp. [110]. As these plant cell wall-degrading enzymes (CWDEs) of
pathogen have to face and overcome the inhibitors produced by plants as a defense
mechanism, their enzymes are more potent, robust, and unique [111]. A number of
plant pathogenic fungi (Fusarium oxysporum, Phoma betae, Colletotrichum
gloeosporioides, etc.) have been reported to elaborate high levels of cellulases
[112]. Production of cellulases and hemicellulases by Chrysoporthe cubensis, a
well-documented pathogen of various tree species, was examined in solid state
fermentation using different carbon sources. C. cubensis was able to produce high
titers of endoglucanase, β-glucosidase, FPase, and xylanase activities under SSF
using wheat bran as substrate. The (hemi)cellulolytic extract from C. cubensis
showed great potential to be applied in biomass saccharification processes [113].

Wood-rotting fungi, viz., white rot fungi (WRF) and brown rot fungi (BRF), are
another important groups of fungi as a source of (hemi)cellulolytic enzymes. Some
of the wood-rotting fungi, viz., Phaenerochaete chrysosporium and Gloeophyllum
trabeum, are very competent cellulase producers. Most of the WRF are categorized
as Basidiomycetes, while only a few as Ascomycetes [114]. On the other hand, all the
BRF belong to class Basidiomycetes [114]. Both of them degrade cellulose and
hemicelluloses [115]. But the decay pattern of BRF and WRF is different. The WRF
in addition to cellulose and hemicelluloses also degrade lignin [116], whereas BRF
can only modify the lignin [114, 115]. The BRF have a more superior performance in
cellulase production because of different enzyme system. According to Tewalt and
Schilling [117], BRF degrade lignocellulosic substrate in two steps. In the initial
stage, the cell wall of lignocellulosic substrate is modified in the absence of enzymes
by hydrogen peroxide (H2O2). Thereafter, cellulase enzyme is secreted by BRF to
break down the cellulose into glucose [118]. The production of hydrogen peroxide
by BRF was induced by cellulose, preferably the crystalline cellulose [119]. These
low molecular weight agents penetrate through the cell wall of the lignocellulosic
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substrate and react with endogenous iron or other transition metals to produce
hydroxyl radical via Fenton reaction [119, 120]. The hydroxyl radical produced
degrades the lignocelluloses in the substrate by oxidative degradation. Generally
cellulase system of BRF has sufficient level of endoglucanase and β-glucosidase, but
it is deficient in exoglucanase. Hence, the oxidative mechanism plays a crucial role
in improving bioconversion of cellulose.

For commercial applications, industrial enzymes must be more stable, robust, and
efficient. In search of such enzymes, researchers have also focused on thermophilic
fungi and their cellulolytic enzymes. These fungi grow at a much faster rate and
show high productivity of hydrolytic enzymes. The enzymes produced by such fungi
show significantly high thermostability which is highly advantageous in biocatalytic
processes in biorefineries and in industrial processes like textile industry. Several
thermophilic fungi and their biomass-degrading cellulases and hemicellulases have
been reported by scientists. Some of the potential thermophilic fungi include
Humicola grisea var. thermoidea, Humicola insolens, Aureobasidium pullulans,
Candida peltata, Chaetomium thermophilum, Coprinopsis cinerea, Ganoderma
colossum, Melanocarpus albomyces, Myceliophthora thermophila, Myriococcum
thermophilum, Penicillium duponti, Sporotrichum thermophile, Stilbella
thermophila, Talaromyces emersonii, Thermoascus aurantiacus, Thermomyces
lanuginosus, and Thielavia terrestris. Hydrolytic enzyme profile of H. grisea was
shown to catalyze complete saccharification of lignocellulose from different kinds of
substrates, including sugarcane bagasse, ball-milled straw [121, 122], brewers’ spent
grain, and wheat bran [123]. H. grisea thermostable enzymes have already been
employed as bleaching agents in the paper and pulp industry [124,
125]. Melanocarpus albomyces an ascomycete fungus is also a promising candidate
to provide industrial cellulases. These fungus culture supernatants presenting two
endoglucanases (20 and 50 KDa) and one cellobiohydrolase (50 kDa) activities were
employed for denim fabrics indigo dye release (biostoning) [126]. This fungus also
produces seven thermostable xylanases active at temperature from 55

�
C to 70

�
C

[127] and was reported to produce high titer of xylanases under solid state fermen-
tation [128]. Penicillium duponti (Talaromyces thermophilus) was first isolated from
compost in Japan [129]. P. duponti produces β-hydrolases with interesting features
for industrial use. The organism also produces thermostable xylanase, α-L-
arabinofuranosidase, and β-xylosidase.

5 Production of (Hemi)cellulases by Solid State
Fermentation

Solid state fermentation refers to a fermentation process using moist solid substrates
in the absence or near absence of free water. The growth of filamentous fungi during
solid state fermentation very much resembles its natural way of life in terrestrial
environments. Solid state fermentation is an important technology for solving energy
crisis and environmental pollution [130]. Awide variety of low-cost or no-cost solid
residues of agro-industrial origin can be used to cultivate fungi under appropriate
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conditions for production of plant cell wall-degrading enzymes like cellulases and
hemicellulases. So far submerged fermentation (SmF) has been a dominating tech-
nology for industrial production of many hydrolytic enzymes along with (hemi)
cellulases. However, solid state fermentation has many superior and attractive fea-
tures over submerged or liquid fermentation. SSF is strongly recommended for
(hemi)cellulase production as higher titer and higher volumetric productivity are
achieved as compared to submerged fermentation [131–133]. Recent studies have
shown that better product formation in SSF as compared to SmF is considered to be
part of the different physiology displayed by fungi [134]. Enzyme production by SSF
is less prone to substrate inhibition and catabolite repression. Also the fermentation
time may be shorter, and degradation of enzymes by proteases is minimized during
SSF [131]. There are reports on better temperature and pH stability of enzymes also
as compared to the enzymes produced by SmF. A distinctive advantage of SSF in
cellulase production is the possibility of using mixed cultures, thereby exploiting
metabolic synergisms among various fungi which ultimately leads to better compo-
sition of enzymes. It has been observed that the microbial behavior (growth and
metabolic profile) in SSF and SmF changes significantly. Li et al. [135] compared the
cellulase production by Neurospora sitophila in SSF and SmF using steam-exploded
wheat straw as carbon source. Compared to SmF, not only the CMCase, FPA and
β-glucosidase activities in SSF were higher (53–181 times), but the culture also
produced β-xylosidase exclusively in SSF. The authors concluded that SSF provides
near natural growth conditions for the fungus and facilitates more enzyme secretion.

Studies have also proven that cost of enzymes can be greatly reduced when SSF
was used [136]. Cost reduction is achieved as a result of cheaper substrates, lesser
requirements for sterility, lesser cost of downstream processing (because crude
enzyme solution is concentrated), and lesser energy expenditure as compared to
submerged fermentation. The process also generates lower volumes of effluents as
compared to submerged fermentation. SSF proves to be an efficient technology for
(hemi)cellulases to be used for bioconversion/biorefinery of lignocellulosic biomass
or other technical applications where concentrated crude product can be directly
used without purification.

In spite of many attractive features of SSF, there are some critical problems
associated with the use of SSF at commercial scale. The major constraints faced
are poor heat and mass transfer, heterogeneity of substrate, difficulties in control of
the process parameters, and problems in the scale-up of SSF processes. As a result of
these constraints, reproducibility of the process is very less which leads to significant
risk of batch variations [132].

At laboratory scale, many studies have been conducted to produce cellulases and
hemicellulases using filamentous fungi. Tables 5 and 6 show, respectively, the
cellulase and hemicellulase yields under SSF on suitable substrates by various fungi.

Enzyme production by solid state fermentation is strongly governed by various
physicochemical parameters which include substrate, inducers, nitrogen sources,
moisture content, aeration, mixing, temperature, and pH. It is very much necessary
to understand the impact of each factor on growth and enzyme production in order to
develop an optimized process for maximum production of desired enzymes.
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5.1 Physicochemical Parameters Influencing Solid State
Fermentation

5.1.1 Choice of Substrate
Choice of suitable substrate is a very crucial aspect in SSF. The solid substrate is not
only the source of nutrients and inducers, but it also serves as an anchorage for the
microbial growth. The fungi grow in mycelial form where both aerial and substrate
penetrating hyphae are produced. Cellulase production by SSF has been attempted
over a wide range of solid substrates which include various agroresidues, animal
wastes, food processing wastes, and even nutrient-impregnated inert support mate-
rials such as vermiculite. The composition of enzyme complex produced by the
fungus depends on the chemical composition and complexity of substrates. Gener-
ally for (hemi)cellulase production, substrate containing accessible inducer along
with low level of free monomeric sugars is preferred [160]. Generally herbaceous
and woody substrates are the two major categories of substrates used for large-scale
fungal solid state fermentation. Herbaceous substrates like wheat straw, rice straw,
corn stalks, etc. are many times more preferred as they are abundantly available as
well as cheaper. Woody substrates like eucalyptus wood chips may change with age
and hence reproducibility may be a problem. Moreover, woody biomass generally
has higher content of lignin, and hence accessibility of cellulose and hemicellulose is
lesser which may have negative impact on growth and enzyme production by
fungi [161].

Wheat bran is considered as the universal substrate because it acts as a complete
nutritious feed for microorganisms having all the ingredients and remains loose even

Table 6 Production of hemicellulolytic enzymes under solid state fermentation by fungi

Enzymes Cultures Substrate Enzyme yield References

Xylanase Aspergillus foetidus
MTCC 4898

Wheat bran 8000 U g�1 [151]

Xylanase Trichoderma reesei QM
9414

Wheat bran 1000 U g�1 [152]

β-Xylosidase Aspergillus tamarii Wheat bran 600 U g�1 [153]

α-L-
Arabinofuranosidase

Aspergillus niger
ADH-11

Wheat bran 22 U g�1 [154]

α-L-
Arabinofuranosidase

Thermoascus
aurantiacus

Sugar beet
pulp

1083.3 nkatg�1 [155]

Feruloyl/p-
coumaroyl esterase

Aspergillus niger
I-1472

Sugar beet
pulp

19.5 nkatg�1 [156]

Feruloyl/p-
coumaroyl esterase

Sclerotium rolfsii Locust
bean
Guar gum
Copra

2591 nkat g�1

2236 nkat g�1

1921 nkat g�1

[157]

β-Mannosidase Aspergillus oryzae Copra 19.4 U mg�1 [158]

β-Mannosidase Aspergillus niger FTCC
5003

Palm
kernel cake

2117.89 U g�1 [159]
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under moist conditions providing a large surface area [162]. Biochemical character-
ization of wheat bran indicates that it contains predominantly non-starch carbohy-
drate polymers (~58 %), starch (~19 %), and crude protein (~18 %), the non-starch
carbohydrate polymers being arabinoxylans (~70 %), cellulose (~24 %), and β-(1,3)
(1,4)-glucan (~6 %) [163].

Apart from chemical composition, physical properties of substrate like crystal-
linity, particle size, surface area, porosity, water absorption, and tendency to agglom-
erate when moistened are also important aspects to be considered in selection of
substrates for solid state fermentation. Xylanase production was significantly
affected by variations in size (0.125–0.8 mm) of oil palm trunk by Aspergillus
fumigatus [164].

Owing to the recalcitrant and crystalline structure of lignocellulosic substrate
which might impede the accessibility of microorganisms to the cellulose and hemi-
cellulose portion of the substrate, pretreatment is often viewed as a means to alter the
originally complex and recalcitrant chemical structure of lignocellulosic substrate.
However, it is not found to be a prerequisite for cellulase production as well as
xylanase production, and many times rather better yield of enzymes have been
reported on untreated substrates [165]. High accessibility of the substrate may lead
to quick degradation of polysaccharides, and concurrent release of monomeric
sugars would lead to a repression of enzyme synthesis in some microorganisms.

5.1.2 Inoculum
(Hemi)cellulase production by filamentous fungi is strongly influenced by inoculum
size. At low dose of inoculum, colonization of fungi on solid lignocellulosic
substrate may require a longer time and thereby increase the risk of contamination.
Hence, normally high ratio of inoculum is desirable especially to prevent contami-
nants which may allow SSF process at low standards of sterility. On the other hand,
at higher inoculum size, rate of nutrient depletion is very high which may adversely
affect growth and enzyme production. Therefore, optimization of inoculum size is a
crucial step in developing SSF process. Various methods of inoculation have been
adopted for filamentous fungi. Generally for sporulating fungi, the use of spore
suspension as inoculum was commonly employed. However, mycelial suspension,
mycelia disk, and pre-inoculated substrates as inoculum are found beneficial for
different fungi. For preparation of spore suspension, fungal biomass/growth on the
solid media is macerated using suitable sterile liquid. A high inoculum density (�106

spore/ml) can be adjusted to achieve the desired spore count. One of the drawbacks
of spore inoculums is that fungal growth may be delayed due to longer lag phase. For
basidiomycete and ascomycete fungi, mycelia disk is prepared by cutting agar plug
from the periphery of actively growing fungi. This is a more convenient method but
might not be advisable for comparing enzyme production by different fungi. Mycelia
suspension is often preferred for sporeless white rot and brown rot fungi in SSF. Lag
phase can be reduced, but method is tedious and time-consuming.

Pre-inoculated substrate as the inoculum has also been preferred by some
researchers [166]. In this method, inoculum size is difficult to determine, and
comparison of the performance of the different fungi for cellulase production is
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not reliable. On the other hand, it is advantageous that substrate after SSF can be
blended with fresh inoculum and can be used to inoculate fresh batch of the
substrate. In recent years a novel method was developed specially for SSF called
cellophane film culture (CFC) [164]. In this technique agar medium is overlaid with
cellophane film for easy separation of fungal biomass. It has been claimed that
colonization of fungi occurs quickly when CFC is inoculated into solid substrate.
Moreover, this method has lower risk of contamination during inoculum preparation
as compared to the spore and mycelial suspension.

5.1.3 Moisture Content
Moisture content of the solid medium influences the vegetative growth, sporulation,
spore germination, as well as enzyme production and enzyme activity. Filamentous
fungi can generally grow at lower water activity levels than bacteria or yeasts. They
optimally grow in the range of 0.87–0.80 aw. The lowest water activity at which
molds are capable of growing is about 0.6. In terms of moisture content, it is
10–20 %. Hence, it was concluded that SSF can be possible in the range of 10–20
to 80 % moisture content [167]. It has been reported that water activity levels
required for growth are lower than those required for metabolite formation. The
moisture level at which free moisture occurs varies considerably among substrates. It
depends on water-binding characteristics of substrates. The porosity and specific
area of the solid particle govern the water holding capacity of the substrate. So the
amount of liquid required is directly related to the moisture (water activity, aw)
requirement of the organism and structure of the lignocellulosic substrate. If mois-
ture content is too low, the solubility of nutrient is limited which hinders the nutrient
uptake by the fungi, and if moisture content is too high, the particles may get
agglomerated which limits the air diffusion. Several studies have been conducted
to find out optimum initial moisture content of SSF processes for cellulase and
xylanase production. Generally optimum moisture levels are found in the range of
35 % to 90 % for (hemi)cellulase production [168]. However, according to the type
of solid substrate and the organism, it may vary. Singhania et al. [169] reported
maximum cellulase (FPase) production by T. reesei Rut-C30 at initial moisture
content of between 37 % and 38 % on wheat bran as a substrate. However, Latifian
et al. [170] reported 55–70 % moisture content optimum for cellulase (FPase)
production by T reesei QM9414 and MCG77.

Looking at various studies, it can be understood that the optimal moisture content
used for SSF depends not only on the solid substrate and the microorganism but also
on the other process conditions like temperature and provision for aeration, air flow
rate, relative humidity of the atmosphere, and type of bioreactor system. Therefore,
optimization of the optimum operational conditions for (hemi)cellulolytic enzyme
production using SSF requires an integrated study of the abovementioned variables.

5.1.4 Moistening Agents
The amounts of nitrogen and/or essential nutrients are often too low in lignocellu-
losic substrates to support good growth and enzyme production. Hence, liquid media
formulation for fermentation is of significant concern for optimum growth and
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cellulase production. Also the media used are mostly specific for the organism
concerned. In T. reesei, a basal medium like Mandels and Reese [171] or Mandel
and Weber [172] or Mandels and Sternberg (MS) [102] has been most frequently
used with or without modifications. Fermentation media used by most of the
researchers for cellulase production by SSF consist of suitable nitrogen source,
phosphorus source, and other minerals. Cellulose in lignocellulosic substrate acts
as essential carbon source with a role of inducer for cellulase production. In addition
to that, suitable nitrogen source can stimulate the production of all the components in
a complete cellulase system. Peptone was most commonly used to enhance cellulase
production in different lignocellulosic substrates. Type of suitable nitrogen source
may differ with different lignocellulosic substrates because of the interactive effects
with the lignocellulosic substrate. Therefore, it is essential to have proper combina-
tion of nitrogen source, lignocellulosic substrate, and fungal strain for maximum
production of cellulase via SSF. In case of nutritionally rich substrates like wheat
bran, only distilled water may also be used as moistening agent [173]. Furthermore,
enzyme production can be enhanced by adding surfactant such as Tween 80 of Triton
X-100 in the fermentation media. These nonionic surfactants allow faster secretion
of (hemi)cellulases by increasing permeability of fungal cell membrane [174].

The cost of cellulase production can be reduced by replacing fermentation media
with liquid waste or by-products of industry. Some attempts have been made to use
diluted anaerobically treated distillery spent wash, and very high xylanase yield was
achieved using Aspergillus foetidus MTCC 4898 [151]. Similarly, cellulase produc-
tion was also reported using Aspergillus ellipticus strain [175]. Haapala et al. [176]
reported the use of industrial by-product-based medium containing spent grains and
whey for xylanase and endoglucanase production. Shah et al. [133] also attempted
xylanase production using cheese whey as moistening agent by A. foetidus
MTCC 4898.

5.1.5 Temperature and pH
Like any biological process, temperature is one of the strong factors affecting
enzyme production by SSF. Because of the aerobic and exothermic fungal growth
on moist substrates, control of temperature is a critical aspect in this technology. As
SSF is normally carried out in the absence of free water and in static conditions, it is
difficult to remove heat generated by metabolism due to poor thermal conductivity of
the solid substrate and the low thermal capacity of air [177]. This problem can be
even more serious during scale-up of SSF processes. Temperature also has great
influence on time of incubation during solid state fermentation. Many studies have
shown influence of temperature on cellulase production. Jecu [178] studied the effect
of temperature on endoglucanase production by an A. niger strain, using wheat bran
and wheat straw as substrates. It was noticed that variations in temperature between
25 �C and 37 �C did not strongly affect enzyme production. Optimum
endoglucanase production was achieved between 28 �C and 34 �C. (Hemi)cellulase
production has been largely carried out using mesophilic fungi of the class ascomy-
cetes and basidiomycetes in the temperature range of 25–40 �C [168]. However,
many laboratory-scale SSF processes using thermotolerant and thermophilic fungi
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are reported at higher temperature. A thermotolerant strain of A. terreuswas reported
to produce cellulases and hemicellulases at 45 �C using rice straw as a substrate
under solid state fermentation [143]. Another thermotolerant strain A. fumigatus
gave maximum exoglucanase production at 55 �C [179].

Initial pH during fermentation is another important parameter which regulates the
growth and metabolism of fungi. Generally, initial pH of fermentation medium is
adjusted, but variations are likely to occur during the course of SSF. A decrease in
pH has been observed in some processes because of the excessive production of
organic acids and consumption of ammonium salt in the fermentation medium.
Similarly increase in pH may also be observed due to utilization of organic acids.
Normally, changes in pH are resisted by the buffering properties of the lignocellu-
losic biomass, and pH is normally not a controlled parameter during SSF. In addition
to fungal growth and metabolism, enzyme activity is also very sensitive to pH. For
ascomycetes and basidiomycetes fungi, initial pH of 5.0 is preferable [168]. Several
studies have shown the importance of pH on cellulase and xylanase production. It
was observed that in the range of 3.66–5.34, only a small effect on cellulase activity
occurred during SSF using coculture of T. reesei and A. oryzae [180]. But Zhang
et al. [181] reported that pH had a significant effect on cellulose production by
A. niger with an optimum initial culture pH of around 4.6. Such studies show the
need for instrumentation to monitor and control the pH.

5.1.6 Aeration and Mixing
Since cellulase- and hemicellulase-producing fungi are mostly aerobic in nature,
aeration is a very critical factor. In addition to provide sufficient oxygen, aeration rate
also influences other physicochemical parameters of the process. Aeration has many
functions: maintaining aerobic conditions, removing CO2, dissipating heat (regulat-
ing the temperature of the medium), distributing water vapor (regulating humidity),
and distributing volatile compound produced during metabolism. The aeration rate
depends on the porosity of the medium, and pO2 and pCO2 should be optimized for
each type of medium, microorganism, and process [182]. Since thermal conductivity
of solid medium is poor, there is a severe problem of heat removal and buildup of
thermal gradient in the substrate which may adversely affect fungal growth and
activity. One of the limitations of SSF is the ability to remove excess heat generated
by metabolism by microorganism due to low thermal conductivity of the solid
medium. In practice, SSF requires more aeration for heat dissipation than as a source
of oxygen [183]. Therefore, the rate of aeration has been integrated with the control
of temperature and moisture content by evaporative cooling water [184]. Mo
et al. [145] found that forced aeration had a positive effect on cellulase production
by P. decumbens cultivated under SSF. Cellulase production increased with increas-
ing air flow rate up to a certain point and then decreased with further increase in air
flow rate. At higher air flow rates, loss of moisture from the substrate adversely
affected the growth of the microorganisms. Farinas et al. [185] found that
endoglucanase production could be increased by using forced aeration, instead of
static conditions, when A. niger was cultivated under SSF using a column-type
instrumented lab-scale bioreactor. Pirota et al. [186] studied xylanase production by
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a strain of A. oryzae P6B2 cultivated under SSF using an instrumented lab-scale
bioreactor and found a substantial positive effect of controlled forced aeration,
compared to static conditions.

Mixing is an additional control parameter used in connection with aeration.
Mixing of the fermenting mass has beneficial effects like provision of new surface
to aeration, distribution of inoculum, promotion of homogeneity and growth on
individual particles of the substrate, and prevention of aggregate formation and of
localized change [187]. However, mixing may disrupt shear-sensitive mycelial
morphology of filamentous fungi and also the contact of mycelia to solid substrates
which may eventually lead to decrease in product yields.

5.2 Optimization of (Hemi)cellulase Production Under SSF

Optimization can be carried out by changing one variable in a particular range and
keeping other parameters constant. But in view of the large number of factors
affecting SSF, it is quite laborious. Moreover, strong interactive effects may also
be possible which may not be revealed. Hence, statistical optimization method like
response surface methodology (RSM) is widely used for optimizing physicochem-
ical parameters affecting SSF for (hemi)cellulase production. By employing such
optimization methods, significant improvement in the yield of enzymes can be
obtained. Table 7 shows some of the attempts for optimization of (hemi)cellulase
production using statistical methods and the fold increase in the enzyme yield.

5.3 Coculturing of Fungal Strains

Improvement in cellulase production can be achieved via coculture of suitable and
compatible fungi. In nature also multiple fungi coexist in various habitats and
symbiotically degrade and utilize such polymers of solid substrates [131]. During
cocultivation of different fungi, some of the individual enzyme activities may show
synergistic increase. It also offers many advantages such as higher specific activity,
increased adaptability to changing conditions, better substrate utilization, greater
overall growth, and increased resistance to contamination by unwanted microbes as
compared to pure monoculture [192]. It has been proven by many studies that the
enzyme system produced by coculturing different fungi could complement each
other and form a complete cellulase system that is favorable for hydrolysis of
cellulosic substrate. However, when the fungi are cocultured for cellulase produc-
tion, care should be taken in selection of fungi. The strains used should not compete
with each other and should not cause any significant negative effect on growth of
each other. Additionally timings of inoculation should also be determined for
successful cocultivation [193].

Coculturing has been successfully employed for production of cellulases.
Improved titers of β-glucosidase were reported by the cultivation of Aspergillus
ellipticus and Aspergillus fumigatus [194]. The coculture of Trichoderma viride and
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Ganoderma lucidum has shown positive results in exoglucanase and β-glucosidase
production [195]. Hu et al. [194] reported that β-glucosidase and cellobiohydrolase
activities were enhanced when Phanerochaete chrysosporium was cocultured with
Aspergillus sp. on wheat bran. In another study by Kalyani et al. [196], it was shown
that the deficiency of β-glucosidase in the cellulase system of Sistotema brinkmannii
caused the accumulation of cellobiose, and this accumulated cellobiose served as a
strong inducer for β-glucosidase production by the cocultured strain, Agaricus
arvensis. As a result of cocultivation, 2.3–3.0-fold rise in filter paper activity was
observed.

5.4 Bioreactors for Production of (Hemi)cellulases

Cellulase production by SSF has mainly been confined to laboratory scale. However,
limited attempts have been done using bioreactors for large-scale production. The
most commonly used bioreactors at lab scale are tray-type bioreactor, packed bed
bioreactor or column-type bioreactor, horizontal rotary drum bioreactor, and fluid-
ized bed reactor [197, 198]. Selection of an appropriate type of bioreactor is a very
crucial aspect of any fermentation.

5.4.1 Tray-Type Bioreactor
Tray fermentation is one of the simplest approaches for SSF. Multiple trays
containing substrate are incubated in a temperature-controlled humidity chambers
with a circulation of moist air. The height of the substrate is a very important factor in
tray fermentation to overcome heat and mass transfer problems. Since mixing is not
required, the energy requirement becomes low (Fig. 2a). The tray-type bioreactors
have been widely employed at both laboratory and commercial scale for the pro-
duction of β-glucosidase, FPase, and xylanase by SSF with mono- and cocultivation
of fungal cultures [199–201]. M/s. Alltech uses tray fermentation for the production
of cellulases and xylanases for application in improvement of chicken broiler feed.
The tray fermentation has some disadvantages also. The process needs large number
of trays and large room for installation of multiple trays. Moreover, it is labor
intensive. Double dynamic system air pressure pulsation and internal circulation of
air can effectively control temperature and remove excess heat [168].

5.4.2 Packed Bed-Type Reactor
Another most commonly employed SSF bioreactor configuration is the packed bed
bioreactor (Fig. 2b). It is also known as column-type bioreactor. Typically, the
packed bed-type reactor consists of long and thin columns where the solid substrate
is placed over a perforated plate and air is blown from the bottom and is discharged
from the top. This kind of reactor is commonly used where mixing is not desirable.
Temperature during fermentation can be controlled by providing water jackets or
heat transfer plates. Many researchers have tried packed bed reactor for the produc-
tion of endoglucanase and xylanase by SSF [185, 202, 203]. Scale-up of packed bed
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reactor is still not feasible because of the problem of heat removal, nonuniform
growth of microorganism, pressure drop, etc.

5.4.3 Rotating Drum-Type Bioreactor
The reactor consists of a horizontal or inclined drum with or without baffles, which
rotates along its axis slowly to mix the contents inside the reactor (Fig. 2c). During
the rotation process, small particles form groups of knots, which affect the heat and
mass transfer in the entire fermentation process. This kind of problem can
be overcome by employing rotating drum bioreactor with baffles or paddles.

Air

Air

Tray

Substrate

Insulated
jacket

a c

b d

Air

Air

Shaft, bush
and bearing
with pulley

Insulated
jacket

Perforated
reactor

Substrate

Insulated
jacket

Closure
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Air

Substrate

Air outlet
valve

Computer

Media
trays

Circulation
blower

Pressure
gauge

Quick
opening
mechanism

Air flow
circulation

Air inlet
valve

Controlling line

Aseptic air system

Gas double dynamic solid state fermentation bioreactor vessel

Fig. 2 Schematic of different types of bioreactors for SSF. (a) Tray-type of bioreactor. (b) Packed
bed-type reactor. (c) Rotating drum-type bioreactor. (d) Gas double dynamic solid state
fermentation
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Diaz et al. [204] tried 10 L capacity horizontal bioreactor for cellulase and
hemicellulase production by the thermophilic fungus Thermoascus aurantiacus
under SSF. Alam et al. [205] evaluated the production of cellulases by Trichoderma
harzianum T2008 from palm oil biomass as the main substrate and reported higher
cellulase activities by employing horizontal rotary bioreactor (50 L capacity).
Panagiotou et al. [147] also reported higher (hemi)cellulolytic enzyme activities
from corn stover by Fusarium oxysporum. Commercial enzyme-producing compa-
nies, namely, Biocon and Lyven, use agitated solid state systems based on the
rotating drum-type reactor with temperature and humidity controllers [206].

5.4.4 Gas Double Dynamic Solid State Fermenter
New gas double dynamic solid state fermenter was developed and reported by Zeng
and Chen [207] (Fig. 2d). It is characterized by internal air circulation and periodic
pulsation of air pressure. Its main purpose is to strengthen internal heat transfer. At
different fermentation stages, the rate of air circulation in the bioreactor changes
according to the speed of metabolic heat production. Thus, this reactor not only takes
care of oxygen transfer but also improves heat transfer. The shortcomings of
traditional solid state fermentation such as heat and mass transfer problems can be
easily overcome by employing gas double dynamic solid state fermentation. Gas
double dynamic solid state fermentation process was used for the production of
cellulases by Penicillium decumbens JUA 10 in a 50 L fermenter and observed that
the yield of cellulases was almost doubled than the static SSF [208]. Similar
observation was made by Zeng and Chen [207], where feruloyl esterase production
was higher in 25 L capacity fermenter. In both studies time was also reduced.

In addition to the above mentioned reactors, fluidized bed bioreactor and
gas-solid fluidized bed bioreactors have also been developed for enzyme production.
However, these reactors have not been used for extensive research in the aspect of
cellulase production. A bioreactor named “Fermostat” has been developed for
cellulase and xylanase production by Aspergillus niger USMAI 1 under SSF by
controlling the temperature and agitation as well as by controlling the inlet and outlet
of inoculum and substrate [206]. It can be seen from the published reports that, the
production of cellulases and hemicellulases using different types of SSF bioreactors
is quite encouraging, but at the same time, all types of reactors suffer from some kind
of engineering limitation. However, studies concerning the novel bioreactor designs
for large-scale production of cellulase and hemicellulases with advanced control
mechanism remain a great challenge in order to achieve significant advancement in
the application of this technology.

6 Improvement of (Hemi)cellulases by Genetic Approaches

Cellulases have been successfully used since long in cotton processing, in paper
recycling, in detergent formulations, and in food as well as in animal feed
processing. However, their use in bioconversion of cellulosic biomass to bioethanol
and other value-added chemicals is limited by problems of their lesser efficiency on

11 Bioproduction of Fungal Cellulases and Hemicellulases Through Solid State. . . 377



many feed stocks and higher costs. Although extensive work has been done on the
improvement of cost and enzyme yield by modifications of fermentation technology,
some of the improvements related to synthesis of robust (hemi)cellulases and novel
mixtures of cellulases and hemicellulases are possible only through genetic modifi-
cations of fungal strains and enzyme engineering by rational designs and directed
evolution.

Various genetic tools have been used to improve cellulases and their production
by fungi. The most common approach is random mutagenesis by chemical agents or
ultraviolet light. Random mutagenesis is often limited by genetic makeup of
microbes. With respect to Trichoderma reesei, it is now believed that this technique
has reached its limit, and now for further improvements, precise genetic engineering
approaches are needed [103]. Site-directed mutagenesis has been successful to add
desirable characteristics to enzymes. Recently Novozymes has developed a versatile
enzyme cocktail with increased catalytic activity and thermostability by introducing
improved CBH II and β-glucosidase to Trichoderma enzyme mixture [209].

Attempts have been made to clone potent cellulase genes from different fungi and
expressed in Trichoderma and Aspergillus to get efficient synergistic mixtures. CBH
1 promoter of Trichoderma reesei is a highly efficient promoter with unusually high
rate of expression under cellulase induction condition. This promoter has been used
to express BGL and EG [210, 211]. Cellulase system of many fungi including
Trichoderma reesei is deficient in BGL and sensitive to feedback inhibition by
glucose. Considering this aspect, attempts were made to increase the copy number
of BGL gene and introduction of glucose tolerant BGL gene in Trichoderma reesei
[210, 212]. Glucose repression was also addressed by using truncated CBH I
promoter lacking binding sites for the carbon catabolite repressor CRE 1
[213]. Another strategy employed for improvement in cellulase production is by
using promoters that are insensitive to glucose repression [214].

One of the major bottlenecks in enzymatic hydrolysis of biomass is inactivation
of cellulases by lignin. To overcome this problem, six amino acids were replaced in
Trichoderma reesei Cel6A, and its resistance was improved by 15 % (Lys-129 to
Glu-129, Ser-186 to Thr-186, Ala-322 to Asp-3, Gln-363 to Glu-363, Ser-413 to
Pro-413, and Arg-410 to Gln-410) [215]. The same enzyme was altered by a single
change in amino acid (Ser-413-Pro) which increased optimal temperature by +5.6oC,
alkalophilicity by +1.25 pH units, and thermostability by 11.25 times as compared to
original cellulase [216]. Similarly endoglucanase 5 from Humicola insolens was
engineered to resist surfactants at alkaline pH for application in detergent [217]. Two
single (Ala-162-Pro; Lys-166-Glu) and one double mutant (Ala-162-ProLys-166-
Glu) were generated. These protein variants on an average showed 3.7 times higher
activities when compared to the original cellulase [217].

Like cellulases extensive efforts have been carried out to improve xylanases also in
order to meet the industrial requirements of titer, substrate specificity, thermostability,
alkalophilicity, enantioselectivity, stereospecificity, and tolerance to toxic reagents.
Improved expression of Trichoderma reesei M2C38 endo-xylanase was done by
creating a new N-glycosylation site in the coding sequence by amino acid replace-
ments. Introducing Asn at position 131 in association with Thr/Ser at position
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133, a conserved feature for family 11 xylanases created an N-glycosylation site
Asn-Xaa-Thr/Ser. The Asn 131 variant showed 40 % enhanced protein expression in
comparison with wild type [218]. In another attempt, Trichoderma reesei endo-
xylanase II was engineered to improve its alkaliphilicity and thermostability for
applications in paper and pulp industries by three strategies, viz., (1) the native
amino acids at positions 10, 27, and 89 were replaced with histidine, methionine, and
leucine, respectively; (2) the N-terminal amino acid sequence was replaced by the
N-terminal sequence of Thermomonospora fusca; and (3) the N-terminal amino acid
sequence was added a tripeptide of glycine–arginine–arginine or ten extra amino acids
from N-terminus of Clostridium acetobutylicum xynB. All the three strategies
increased the thermophilicity of the enzyme from 55 �C to 75 �C and the alkalophilicity
from pH 7.5 to 9.0 [219].

Above-cited studies clearly show the potential of genetic approaches for improve-
ments in cellulase and xylanases which can improve their suitability and perfor-
mance in various applications,

7 Current Industrial Applications of Cellulases
and Hemicellulases

Applications of enzymes in industrial processes and synthesis of high value com-
pounds started since long. Technical enzymes are in great demand especially for
detergents, starch, textile, leather, pulp and paper, and personal care industries. Next
important group of enzymes are food enzymes which are used in dairy, brewing,
juice, fats and oils, and baking industries. In animal feed industry, microbial
enzymes are also in significant demand. In 2012, the latest estimation of the global
market for industrial enzymes grew by 7 % to reach 3.75 billions in US dollars [220].

Commercial cellulases and xylanases are industrially produced by mainly
Trichoderma sp., Aspergillus niger, and Humicola insolens [221]. Cellulases are
the third largest group of industrial enzymes. Cellulases and hemicellulases have
been used for number of technical applications as well as for food and animal feed
processing industries. Textile industry is one of the first sectors to benefit from
cellulases. Cellulases can catalyze selective removal of impurities and modifications
of physicochemical properties of textile fibers. Commercial enzymes, namely,
Cellusoft AP, and Cellusoft CR from Novozyme are available in the market for
bioblasting in textile mills, whereas Denimax 6011 for bio-stoning. Many enzyme
manufacturers like Ab enzymes, Finland (Rohament CL/CEP); Yakult Co. Ltd.,
Japan (Onozuka series); Amano enzymes, Japan (Cellulase T/AP); and Quest Int.
USA (Biocellulase TRI) have developed commercial cellulase products for food
industries like baking and brewing. Novozyme, a leading manufacturer in cellulase
market, is supplying Carezyme and Celluclean for laundry detergent. In the pulp and
paper industry, microbial enzymes have to be efficient under various operating
conditions since it is emerging as one of the potential large markets for enzyme
application. Cellulases and hemicellulases have been employed for biochemical
pulping, de-inking of recycled fibers, and improving drainage and run ability of
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paper mills. Cellulase-free xylanases are also required for pre-bleaching of kraft
pulps [222]. Apart from all these applications, the use of cellulases and
hemicellulases in bioconversion of plant biomass into valuable products especially
as bioenergy sources, food additives, some pharmaceuticals, and nutraceutical
products is of immense interest. The overview of various current applications of
cellulases and hemicellulases is shown in Fig. 3. Detailed chart of bioconversion of
lignocellulosic biomass into valuable products is given in Fig. 4.

Bioconversion of lignocellulosic biomass into bioethanol is being extensively
studied, and so far the technology has not gained commercial status. The major

Fig. 3 An overview of various current applications of cellulases and hemicellulases
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bottleneck in the technology is the cost and effectiveness of available commercial
enzymes. Moreover, each biomass needs tailor-made enzyme cocktail because of
differences in physicochemical structure [88]. Enzymes for biomass conversion
could be a blend or enzyme cocktail containing endo- and exo-cellulase, xylanase,
β-glucosidase, pectinase, etc. which could vary for different biomass on the basis of
their composition. Enzyme cocktails can also be developed by mixing commercial
cellulases with indigenously produced auxiliary enzymes including xylanases,
β-xylosidase, α-L-arabinofuranosidases, pectinases, β-glucosidases, etc. for efficient
and cost-effective hydrolysis of various feedstocks [223]. The use of hemicellulases
and other auxiliary enzymes, in conjunction with cellulolytic enzymes, can improve
cellulose conversion by removing hemicellulose and increasing the access of cellu-
lases to the substrate. Bioethanol technology from plant biomass can be economi-
cally feasible if monomeric sugars from cellulose as well as hemicelluloses are
utilized. Hence, highly balanced cocktails of cellulases and hemicellulases are in
great demand [142].

Fig. 4 Detailed chart of bioconversion for lignocellulosic biomass into valuable products
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Currently, there are number of programs in many countries which focus on
production of biofuels such as biogas, bioethanol, biodiesel, and fuel cells from
renewable sources [224]. It has been estimated that the global fuel ethanol demand
could grow to exceed 125 billion liters by 2020 [225]. At present, companies such as
Danisco-Genencor, Novozymes, and Dyadic are producing and marketing cellulase
and hemicellulase preparations for biomass conversion.

8 Conclusion

Cellulases and hemicellulases are widely distributed among saprophytic, wood-
rotting, and plant-pathogenic terrestrial fungi. Compared to bacteria, fungi are rich
sources of multiple plant cell wall-degrading enzymes including several accessory
debranching enzymes, and as a result, they are more efficient in complete degrada-
tion of celluloses and hemicelluloses. Fungal (hemi)cellulases can replace many
pollution-prone industrial processes and thereby help in generating sustainable
environment. The demand of (hemi)cellulases is increasing especially in the emerg-
ing biofuel industry, which has accelerated research and development for effective
and economical methods to produce cellulases on large scale. Looking at the large
number of laboratory-scale (hemi)cellulase production attempts and comparison
with submerged processes, it seems that solid state fermentation holds the key to
production of these enzymes in high titer, in high volumetric productivity, and still at
lower production cost. However, production of (hemi)cellulases by SSF at commer-
cial scale is highly challenging because of inherent problems in scale-up and poor
reproducibility of the system. Still much more attention is required to be paid in
searching for more potent (hemi)cellulolytic fungal strains producing balanced ratio
of cellulases and hemicellulases, optimum process conditions, and suitable bioreac-
tors with advanced control mechanisms.
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Abstract
Nanoparticles are structures in nanoscale with a wide range of applications
across various fields of technology, industry, environment, medicine, and
science. Increasing demands for NPs caused to develop their production
based on chemical and physical approaches, recently. These approaches
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carry health and environmental disadvantages with themselves. Need for safer
alternatives in large-scale production of NPs ended up with development of
eco-friendly methods. Industrial nanobiotechnology takes advantage of
biological-based approaches to produce nanomaterial using biological renew-
able resources. Decreasing energy intake, greenhouse gas (GHG), and haz-
ardous waste production are the main advantages of nanomaterial
biosynthesis. In contrast, the other synthesis methods bring environmental
drawbacks. Among the nanomaterials, nanoparticles have attracted the atten-
tion because of their wide spectrum of application. Microorganisms and in
particular bacteria and fungi are used as the biological agents and showed a
promising potential for biosynthesis of nanoparticles. Here we highlight
different aspects of industrial production of NPs by fungi including advan-
tages and disadvantages. Also, we discuss the application of different tech-
nologies in development of high-scale production of NPs by fungi-like
protein engineering, metabolic engineering, synthetic biology, systems biol-
ogy, and downstream processing.

Keywords
Nanoparticles • Fungi • Nanotechnology • Nanobiotechnology • Biotechnology •
High-scale production

List of Abbreviations
CNS diseases Central nervous system disease
GHG Greenhouse gas
NP Nanoparticle

1 Introduction

Nowadays, high-scale production of nanomaterial is an unavoidable requirement of
our society. The chemical methods of nanoparticle production have their own
intrinsic drawbacks for human health and environment. This is a consequence of
using industrial process by means of toxic substances and high amount of energy.
The requirement of high energy has been fulfilled by fossil fuels burning. Its direct
consequents are GHGs that are dramatically increasing from the beginning of
industrial revolution. Therefore, new approaches are needed to produce the
nanomaterials in high scale while reducing the health risk issues and environmental
downsides. The sustainable growth of industrial production requires methods effi-
cient in market and economy. There are promising alternatives to avoid these
challenges in large-scale production of nanomaterials. Industrial nanobiotechnology
uses biotechnology and biological-based process for high-scale production of
nanomaterials.
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2 Nanotechnology

The term nanotechnology refers to production and study of material in the 1–100 nm
scale [1, 2]. Because of variation in physical characteristics, material with the
nanometric scale exhibits different properties from their original properties [3, 4].
The possibility to have various size- and shape-dependent properties for different
materials provides a unique opportunity for scientists to develop new form of
material with activity in wide-spectrum fields of science and technology.
Nanoparticles are a wide sector of nanomaterials owning new structure and proper-
ties (Fig. 1) with extensive application in different aspects of our life such as science,
technology, medicine, industry, and environment [5, 6]. Diversity of different

Fig. 1 Nanoparticle biosynthesis by Trichoderma reesei [23], Fusarium oxysporum [24], and
Trichoderma viride [25]
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physical and chemical properties has attracted the attention toward nanoparticle
production more than other sectors of nanomaterial [7]. At the moment, some
nanomaterial productions have reached to the industrial scale and their number is
growing with their developing applications. Nanoparticles are a promising sector of
nanomaterial that have been forwarded to industrial production because of their
significance and efficiency in various aspects of our life [8]. Growing interest in
different nanoparticles highlights the requirement of safe and efficient procedures for
their high-scale production.

3 Nanoparticles

NPs’ physical and chemical properties are different from their bulk material due to
their nanoscale structure. Various types of NPs can be differentiated by their material
content.

Organic NPs (liposomes, polymeric, micelles, and solid lipids) mostly are biode-
gradable and compatible with biologic systems with low toxicity rate [9, 10]. Lipo-
some NPs (20–100 nm) are made of two phospholipid layers [11]. A polymeric
structure is the main body of polymeric NPs [12]. Organic NPs are suitable for
delivery of hydrophilic and hydrophobic molecules such as drugs. Liposome NPs
have been mainly used as antimicrobials such as Ambisome® [10]. Polymeric NPs
such as polylactic-co-glycolic acid have been approved by FDA as drug delivery
systems [13].

Inorganic NPs (1–100 nm) are based on different inorganic oxides and exhibit
variation in morphology and chemical properties like solubility [14]. Synthesis of
inorganic NPs such as metallic NPs performs via reduction of the salt mediated by
reducing molecules such as biopolymers [15]. Control of NPs’ chemical and phys-
ical properties is possible via modification of their synthesis condition like temper-
ature, pH, reaction duration, and reducing molecules [16]. Higher loading capacity
and smaller size of metal NPs make them better option for distributing drugs in
human body [14]. But they have weaknesses like aggregation and accumulation over
the time and heterogeneity of the size and shape [17, 18]. Also, their excretion from
human body is a time consuming process [18].

NPs based on biopolymers such alginate, albumin, or chitosan are more compat-
ible with human body as drug delivery system because of their low immunogenicity
in comparison with synthetic polymers [19]. Biological-based synthesis of NPs is
not only important from economy and environmental point of view; also it affects the
NPs’ biocompatibility in pharmacy and medical application. It is critical for drug
delivery purposes to use a biocompatible reducing molecule because it plays a
binding role between drug and NPs [20]. Also, some biomolecules have synergistic
effects on other important properties of NPs like cytotoxicity and antimicrobial and
controlled release of drugs [21].

Nevertheless, some NPs like heavy metal NPs exhibit toxic properties for human
body. The level of metal NP toxicity is different based on the metal ion composition;
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in some cases, they can be absorbed and excreted through normal physiological
process [22].

3.1 NP Applications

Nowadays, by advancement in nanotechnology it is possible to detect and cure
infections and diseases more precisely, rapidly, and with lower side effects. This is
feasible via development of complicated techniques that assemble drug and diag-
nostic packages on nanostructures and target specific tissue and cells. Application of
polymeric NPs and nanocapsules results in higher availability of different therapeu-
tic molecules [26]. Infections resistance against traditional antibiotics is conquered
by antmicrobial nanoparticles that newly developed [10]. Nanotech-based drugs
can fulfill the human requirements not only for more powerful and unbreakable
antimicrobial agents but also for cell- and tissue-directed drug packages in very low
doses. This provides new opportunity for the healthcare system to control the growth
of multidrug-resistant pathogens and parasites. It also gives us the unique opportu-
nity to cure cancer cells with very toxic medicines without severe side effects on
patients.

Silver NPs (AgNPs) are famous for their antimicrobial properties and have been
extensively used in this area [27]. These NPS are applied in medical devices, dental
implements, bone cement, cancer treatment, and imaging as well. In addition to
silver NPs, most drug molecules, DNA, and iRNA can bind to the gold NPs (AuNPs)
because of its highly specific surface [28].

There are other inorganic NPs like Pt, Al, Zn, Ti, Pa, Fe, Cd, Si, and Cu, which
have been used as delivery agents to target specific tissue. Inorganic NP ceramics
(porous Si, Al, and Ti NPs) have been widely used in drug delivery because of their
high capacity as drugs carrier. Also, silica nanoceramics are very good candidates for
medical and therapeutic applications because of their biocompatible nature [29]. Cu
NPs are a good option to reduce agglomeration and oxidation in the presence of
stabilizer. Also, Cu NPs are cheap in price, easy to prepare, and exhibit antimicrobial
activity. The homeostasis challenges with this NP are less because of human Cu
transporters [30]. Fe NPs with magnetic activity showed good ability for rapid and
precise diagnosis of microbial infection [20]. Zn and Cd are normally used in the
production of quantum dots to be used in optic-related products [31].

Besides the medical, food, and pharmaceutical applications, noble metal NPs like
Au and Ag are applied in different areas of science in recent years such as electron
microscopy, analysis, biosensors, electronics, dyes, conductive coatings, optic, elec-
tronic catalysis, and basic research [32].

Seventy-six percent of nanotechnology researches have been invested in NP
application in life science and pharmacy that reach to billions of dollars [29]. Unlike
traditional drugs, NP-based drugs have benefits like higher treatment efficacy and
less health drawbacks. It has been documented that NPs are effective in therapy of
different diseases such as oncology, infections, CNS diseases, cardiovascular,
Alzheimer, and ocular pathologies [27].
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3.2 Metal NP Synthesis

Nanoparticles can be produced by two general top-down (etching, milling,
sputtering, laser ablation, lithography, thermal decomposition) and bottom-up
(green synthesis, spinning, pyrolysis, sol–gel processes, supercritical fluid synthe-
sis, chemical vapor deposition) approaches (Fig. 5). Bottom-up approaches have
proven the higher efficiency and precision [23]. Among different bottom-up pro-
cedures, chemical- and physical-based methods like lithography, laser ablation,
aerosol, radiolysis, and photochemical reduction have been known as expensive,
high energy consuming, and hazardous for health and ecosystem [33, 34]. Chemical
methods have high efficiency relative to physical ones but involve some toxic
substances like dispersants, surfactants, or chelating agents for stabilizing
nanoparticles. These substances are mainly toxic and pollutants; therefore, the
chemical methods are not good for high-scale production [35]. Our critical situa-
tion forces us to design environmental-friendly production methods that are effi-
cient in expenses, energy, GHG emission, and pollutant waste production
[36]. This has been a challenging step for sustainable production of nanomaterials
in large scales without high costs and toxic waste production [7, 33]. Recently,
biology-based synthesis of NPs has attracted attentions because of their efficiency,
low health, and environmental drawbacks plus high output. In this approach,
an organism or a biomolecule plays a main role in the synthesis of NPs. Biosyn-
thesis of NPs is a promising alternative for chemical methods, which carry
ecological consequences [37], because it uses biocompatible and nontoxic sol-
vents, agents, and stabilizers [38, 39]. Although biosynthesis of NPs is environ-
mentally safer than chemical methods, it has not industrially ideally developed [40,
41].

4 Industrial Nanobiotechnology

In recent decades, industrial biotechnology could show a significant potential in
reduction of CO2 and other GHG emissions using renewable resources. Its outcomes
are compatible with environment and do not result in accumulation of pollutions in
ecosystem. Furthermore, it has the potential of remediation of other pollution in long
term. In industrial biotechnology, biomass input is used under the process of
biological agents like microbes and biomolecules to create a wide spectrum of
products. [42]. There is a global interest to push the production of different
nanomaterials on biotechnological lines because of its powerful tools for modifica-
tion, improvement, and development of feedstock, biological agents, and products.
Industrial nanobiotechnology is the application of different biological-based pro-
cedures in large-scale production of nanomaterials. It takes advantage of different
biotechnology and bioinformatics tools to facilitate and improve production of
interested materials.
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4.1 Biotechnology Manipulation Platform

Protein engineering plays an important role in modification and adaptation of natural
form of proteins using rational design and directed evolution. This optimization is
possible via engineering of protein performance, selectivity, thermal and solvent
stability, enantioselectivity, and substrate/product inhibition [43]. Metabolic engi-
neering is another powerful tool to control and modify the cellular transportation of
enzymes and their expression level, readdressing metabolic flux and gene regulation
[44]. It is normally effective for overproduction of valuable metabolites that are hard
to extract like anticancer metabolite, taxol, with US$1 billion market. A simple
manipulation in the taxol competitive regulation pathways leads to enhancement of
the metabolite yield up to 40-fold in Taxus brevifolia [45]. Likewise, synthetic
biology can end up in production of new metabolites by redesigning of regulatory
networks [46]. Synthetic biology creates artificial organisms by assembly of de novo
created genome into a biological frame like genome-free cell [47]. It is also able to
take advantage of unnatural amino acids in combination with expanded genetic code
to form new molecular properties such as catalytic and binding activities with unique
properties. This provides us a powerful method to create and design new regulatory
networks in different levels of genome, transcriptome, proteome, and transductome
[48]. Its combination with metabolic and protein engineering opens new pathways
with novel products in higher level of outcomes [49, 50] as it has been done by
introducing synthetic artemisinic acid (a precursor of antimalarial drug) pathway into
the Escherichia coli [51]. Systems biology integrates the genomics, transcriptomics,
proteomics, and metabolomics data to draw comprehensive picture of complex
cellular process and regulatory networks. This helps to understand, monitor, and
simulate cellular and molecular regulatory networks during biotechnology projects
[52]. For instance, a systems biology approach enabled scientists to increase lysine
production up to 40 % in Corynebacterium glutamicum [53].

Combination of different biotechnology tools such as genome sequencing;
genetic, protein, and metabolite engineering; synthetic biology; and systems biology
has suitably served to increase total performance of different microbes in industrial
biotechnology [54, 55]. More investment on this area helps to overcome on the
critical challenges like global warming. Since CO2 emission has been the main threat
among GHG increase, it is possible to imagine that industrial biotechnology will be
able to reduce atmospheric CO2 in long term because it has low energy consumption
unlike other industrial methods [56]. Microbes are main agents of industrial bio-
technology that facilitate the conversion of different feedstock to desired products as
part of their growth process. Microbial-based high-scale production of compounds
gives us almost endless choices with ecological and economic advantages. Various
microorganisms exhibit different abilities in industrial biotechnology. Fungi have
shown great potential in this area. Bacteria normally need complicated and expen-
sive media for optimal high-scale production [57]. Unlike bacteria, fungi are easy to
use and require simple and cheap media for high-scale cultivation (Chap. 19,
“▶Aspergillus Lipases: Biotechnological and Industrial Application”). Also fungi
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surface and submerse cultures in large scale are possible with simple and large
bioreactors [58]. Normally, agricultural wastes and biomasses from different sources
can be used directly as fungi feedstock to get valuable proteins and metabolites as
their products.

4.2 Fungal Biotechnology

Fungi are easy, flexible, tolerant, and economic biologic system for industrial
biotechnology and have been used extensively in high-scale production of different
metabolites (primary and secondary (see more)). Their tremendous ability in secre-
tion of proteins up to100g/L, metabolic diversity, and high production capacity have
made them unique option for industrial biotechnology for decades [59, 60]. More-
over, the ability of running posttranslational modification implemented in fungi by
genetic and protein engineering turns them in cell factories of overproduction of
engineered proteins. Some species like Trichoderma reesei and Aspergillus niger
have extensively been used in different industrial and medical and food sectors
[60–62]. Fungi also have proved that they are the trustable candidates to produce
succinic acid (SA), alternative molecule to replace petroleum, from cheap and
renewable row materials. SA plays a main role as the building block in biodegrad-
able polymers. It has been shown that some fungi like Fusarium, Aspergillus, and
Penicillium species can produce SA in high scale [57].

Aspergillus spp. is very useful in industrial biotechnology for its valuable proteins
and organic acids such as citric and itaconic acid. Extraction of citric acid from other
sources like citrus fruits and bacteria is more expensive in comparison with A. niger-
based production. Also diversity of metabolites can be controlled over variation of
Aspergillus strains [63, 64].

1600 different antibiotics along with various medical drugs are synthesized by
fungi at present (see more). Anticholesterol statins are another famous example of
drug production by fungi such as pravastatin (Nocardia autotrophica), lovastatin
(Aspergillus terreus), and mevastatin (Hypomyces, Paecilomyces, Trichoderma,
Penicillium citrinum) (see more). Other fungal species are involved in biosynthesis
of steroids (Rhizopus nigricans) and immunosuppressant cyclosporins used in organ
transplanting (Trichoderma, Tolypocladium and Cylindrocarpon) (see more).
Ashbya gossypii fungus naturally carries the ability of high-scale production of the
vitamin riboflavin, which along with its small haploid genome turns this plant
pathogenic fungi to an important industrial biotechnology option [65] (see more).

Fungi abilities for the enzymatic cellulose alteration in plant cell walls make their
industrial cultivation economically efficient (see more). Also, same enzyme activity
has other applications like fiber treatment and modification like cotton alteration by
fungi catalases. In addition, enzymes like cellulases and xylanases from
Trichoderma are used in fabric and leather industries. Biological bleaching of
xylemn in pulp and paper industry by peroxidase and xylanase enzymes from
Trametes and Phanerochaete fungi is safe and economic alternative for chemical
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bleaching. Fungal-based synthesis of vitamin B2 has taken over its chemical syn-
thesis process over 25 years ago [66].

The extensive application of fungi in industrial biotechnology has made them best
options for large-scale bioprocessing and production of organic products such as
protein, polysaccharides, lipids, metabolites, pigments, and organic acids. Since the
biosynthesis of nanomaterial is the safest economic approach for high-scale nano-
technology, it is convenient to use fungi as the most efficient industrial biotechnol-
ogy agents, to meet competent industrial nanobiotechnology. In this case, the natural
potential of fungi and the enormous diversity of their outcomes will be ideally
effective by having the possibility of fungi manipulation. This provides us a binary
tool to shift the fungi toward the desired biological platform on the one hand and on
the other hand to adapt and simplify the industrial complicated process upon the
fungi growth condition. This brings highest efficiency of industrial production of
nanoparticles in parallel to lowest health and environmental drawbacks.

5 Biosynthesis of Metal NPs

During biosynthesis of NPs, reduction of precursor (mainly metal salts ion) by
reducing agents (a biomolecule or a biological process) normally results in accumu-
lation of reduced ions and formation of NPs. Therefore, the condition of ion
reduction strongly affects the size, shape, and stability of NPs. This is the main
key factor to control different properties of NPs. Because of the biotechnology
abilities, modification in precursor and reducing agent or their interaction condition
provides almost unlimited toolbox for control of NP characteristics, production rats,
and also waste minimization [67–69]. Ions reduction occurring by transfer of
electrons from biomass which contain polysaccharides, proteins (such as reductive
enzymes), natural polymers that carry enormous hydroxyl and other functional
groups [5, 70]. This material and functional groups are frequently available in raw
material of fungi, bacteria, or plant cultivations.

Fungi are commonly used in the biosynthesis of inorganic NPs in comparison to
bacteria because of higher output and their easy handling [40, 41]. Besides nontoxic
feedstock like agricultural row material, the wastes of NP biosynthesis are media and
biomass of the fungi that are biodegradable and simply can be used as organic
fertilizers. Recovery of NPs from fungi media is very simple by pure water washing
[23, 71]. In contrast, the chemical methods use toxic solvents like 1,2 hexadecanediol,
oleylamine, phenyl ether [72], 1-hexadecene, octyl ether, 1-octadecene, 1-eicosene,
and trioctylamine [73] to recover NPs. This produces NPs with hydrophobic surfaces
that should be converted to hydrophilic by applying extra steps [37].

5.1 Biosynthesis of Nanoparticles by Fungi

70000 of fungi species have been identified among a potential number of fungi
species that have been estimated up to 1.5 million. This population contains
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enormous diversity of biological, physiological, and molecular properties [74]. They
mainly feed on small molecules resulted from biodegradation of complicated organic
resources by enzymatic activities [74]. Fungi have been well known for biosynthesis
of NPs and more specifically for metal NPs [75]. They are able to grow in a thin layer
of material and produce a huge amount of extracellular enzymes. This makes them
best candidates as industrial agents for enzyme and metabolite production [76]. High
atom economy, simplicity of biomass applications, considerable wall-binding, intra-
cellular metal absorption, and easy propagation along with their fast growth rate are
other advantages of fungi as green choice for NP large-scale production [77]. High
atom economy refers to maximum yield relative to initial raw material used in the
reaction.

In the fungal-based NP biosynthesis, a biomineralization process is done via
reducing different metal ions by intracellular and extracellular enzymes and
biomolecules [78].

Among different metals, silver has been more used for production and study of
NPs. Also, Au, Ti, and Zn have been reported as the next more considerable metal
ions used in biosynthesis of NPs by fungi (Fig. 2).

Fusarium, Aspergillus, Trichoderma, Verticillium, Rhizopus, and Penicillium
species are the fungi with more studies in NP biosynthesis (Fig. 3). Most of the
studied fungal species for NP production have been reported as pathogens of plants
or human. This has been the main obstacle in large-scale biosynthesis of NPs by
fungi [79]. In contrast to pathogenic fungi, Trichoderma species such as T. reesei
have been more attractive for high-scale production of AgNPs. T. reesei is industri-
ally adapted species with no report as a harmful fungus [23, 71, 79].

Fig. 2 Application of different metals in biosynthesis of NPs by fungi
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Fungi produce NPs in a wide variation of shape and size ranging from >1 nm
[79, 80]. Morphology of NPs has great effect on their properties and accordingly it
can be reflected in the applications like antimicrobial, therapeutic, and drug delivery
uses. This wide range of size and shape plays the role of useful toolbox to select the
right species for high-scale production. Morphology of NPs produced by fungi can
be very limited in the size and shape [81, 82] or it can be very diverse like AuNPs
produced by Verticillium luteoalbum [83] and AgNPs produced by Penicillium
strain [84].

Nanoparticles produced by fungi have been used for different purposes (Fig. 4)
such as medicine, anticancer drug, antibiotic, antifungal, antimicrobial, antiviral
against HIV, diagnostic, engineering, bioimaging, biosensor, agricultural, and indus-
trial applications [79, 80]. The main applications of NPs have been referred to
agricultural and medical applications, subsequently (Fig. 4).

5.2 Mechanism of NPs Biosynthesis

Fungi produce NPs as part of their defense response against environmental pollu-
tions. They reduce different ion toxicities by precipitating, immobilization, ion form
modification, co-precipitation, and coupling them to biological molecules [85, 86].
Reduction of ions results in precipitation of metals as nanomaterial in the intra- or
extracellular spaces [87]. Human takes advantage of microbial response system
against toxic environment to produce nanomaterial and to clean wastes and ecosys-
tem via bioremediation process [88]. The key step in the biosynthesis of NPs by

Fig. 3 Frequency of different fungi used for biosynthesis of NPs
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fungi is exchanging electron from a donor molecule to the ion that results in ion
precipitation as nanoparticle. The electron exchange can be done via biological
process by fungi enzymatic system or by fungal-originated molecules. Different
biological molecules have the potential of electron exchanging, for instance, poly-
saccharides, peptides, amino acids, vitamins, enzymes, alkaloids, flavonoids, sapo-
nins, steroids, tannins, carboxylic acids, quinones, and other secondary metabolites
[80, 89]. Also, some enzymes like α-NADPH-dependent nitrate reductase,
phytochelatin, and glutathione reductase FAD-dependent are able to reduce ions of
toxic metal and produce nanoparticles from this reduced ions [90]. The biosynthesis
is possible by direct contact of ions with fungi biomass [23, 75] or interaction of
metal ion with biomass-free extracts [91] such as enzymes and other biomolecules
secreted from fungi [92]. Important factors in controlling size and shape of NPs have
been mentioned as fungi species, reducing biomolecules, reaction conditions, con-
centration of precursors, incubation time, and PH [83, 93]. As presented in Fig. 5, the
application of fungi in biosynthesis of NPs is not only limited to their direct role in
synthesis of NPs but also it includes all biological-based synthesis methods that use
different fungi biomolecules such as peptides, organic acids, enzymes, and poly-
saccharides with high atom economy [94].

5.3 Advantages and Disadvantages

Important advantages for biosynthesis of nanoparticles are high output, biodegrad-
able feedstock, low costs, simple procedure without hazardous wastes,

Fig. 4 Application of fungal-based NPs in different aspects of our life
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morphological reproducibility, application of safe material, low energy consump-
tion, simple control in large-scale process, and easy recovery of NPs [37]. Unlike
chemical process that needs high temperatures more than 250 �C [95, 96], biosyn-
thesis of NPs is performed in biological reaction temperature <60 �C [37]. Biosyn-
thesis of NPs is an unavoidable prerequisite specifically for their application in
medical and pharmacy [97]. The general advantages in all biological-based sustain-
able processes are low waste generation, high atom economy [94], using safe process
and substances [98], low energy consumption [99], using renewable feedstock [100,
101], using enzymes as powerful catalysts [102], no derivatives, and no need for
postproduction treatment [103]. Furthermore, in biosynthesis of NPs, scaling up the
process considerably reduces the price of product because feedstock and raw
material are cheap, biodegradable, and safe. These advantages are somehow fitted
to the major green chemistry principles [67].

Besides the general advantages of green synthesis of NPs (Fig. 5), specific
advantages of fungal-based synthesis in high-scale production of NPs are dependent

Fig. 5 An overview of different approaches for synthesis of NPs
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on the NP composition, fungi strains, feedstock, and reaction condition. In biosyn-
thesis of NPs by fungi or fungal-based material, there is no need for toxic agents
during NP recovery and purification process [103–105]. Finally, industrial
nanobiotechnology takes advantage of all-powerful tools in biotechnology to manip-
ulate the protein structure, gene regulation, and metabolic pathway for enhancing
and improving NP production by fungi.

6 Conclusions

Application of NPs in different aspects creates a growing need for NP high-scale
production. The sustainable production of NPs requires procedure with minimum
pollution production and high efficiency in large-scale synthesis. Conventional
methods of NP production inherit disadvantages like using toxic solvent and haz-
ardous inputs, high energy consumption, producing toxic wastes, and pollution.
Biological-based methods for synthesis of NPs offered new perspective in high-
scale production with safer feedstock, less energy usage, and without harmful
solvents and wastes. In industrial nanobiotechnology, different biological agents
are involved in the production of nanoparticles like bacteria, fungi, and algae or their
originated material in order to facilitate production of nanomaterial in high scale. It
owns advantages like less energy consumption, using safe material and feedstock,
plus biodegradable and safe outputs. Among different biological agents, fungi have
emerged as favorable and flexible organisms to be used in high-scale production.
Easy procedure, no expensive media and material, enormous production of biomass,
high amount of output, and secretion of protein and metabolites are some advantages
of fungal-based industrial nanobiotechnology over other methods. Fungi have been
extensively used in the production of different NPs. The diversity of metabolites,
ease of harvest, and flexibility of fungi growth condition in combination with
different biotechnology tolls to improve and manage enzymes and metabolites
provided almost a limitless platform for researchers. Fungal-originated NPs demon-
strate the unique diversity of physical and chemical properties that in combination to
their compatibility with human body makes them one of the best options for medical
and therapeutic applications. Also, they have shown promising results for their
antimicrobial and delivery activity. We have described the growing needs for high-
scale production of NP and we discussed the abilities of fungi as one of the best
agents for high-scale production of NPs. Finally, the success of fungi in large-scale
production of NPs is correlated with other determining factors such as demand rate,
feedstock prices, final price, global warming, international policies, company’s
competition, consumer choices, governmental investments, technology advance-
ment, application developments, and our knowledge about NP consequences. As
final remarks, it is important to mention that our knowledge about NP toxicity,
metabolism, bioremediation, and their drawbacks in human body and environment is
limited to a short period since NPs have been used. It has been documented that
some NPs under certain circumstances exhibit problems like cytotoxicity, pollution,
high surface charge, and reactive oxygen radical formation [106]. Increasing and
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exchanging the paraclinical studies at the international scale will result in tracking
NP consequences and control subsequent problems. This along with increasing
financial investments and adjusting governmental policies for biological-based NP
synthesis will help in sustainable development in NP large-scale biosynthesis.

7 Cross-References

▶Aspergillus Lipases: Biotechnological and Industrial Application
▶Cordycepin: A Cordyceps Metabolite With Promising Therapeutic Potential
▶Lanostanoids From Fungi as Potential Medicinal Agents
▶ Solid-State Fermentation: Special Physiology of Fungi

References

1. Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of
nanoparticles. Green Chem 8:417

2. Masciangioli T, Zhang W-X (2003) Peer reviewed: environmental technologies at the nano-
scale. Environ Sci Technol 37:102A–108A

3. Shameli K, Mansor Bin A, Wan Md, Zin Wan Y, Nor Azowa I, Azizah Abdul H, Mohsen, Z,
Majid D, Yadollah A, Abdolhossein R (2010) Green synthesis of silver/montmorillonite/
chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial
activity. Int J Nanomed 5:875–887

4. Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, Farahani F (2011)
Green synthesis and antibacterial effect of silver nanoparticles using vitex negundo
L. Molecules 16:6667–6676

5. Shameli K, Bin Ahmad M, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H,
Mahdavi M, Abdollahi Y (2012) Synthesis and characterization of polyethylene glycol
mediated silver nanoparticles by the green method. IJMS 13:6639–6650

6. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev
107:2228–2269

7. Saxena A, Tripathi RM, Zafar F, Singh P (2012) Green synthesis of silver nanoparticles using
aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial
activity. Mater Lett 67:91–94

8. Donaldson K, Stone V (2004) Nanoscience fact versus fiction. Commun ACM 47:113
9. Forier K, Raemdonck K, De Smedt SC, Demeester J, Coenye T, Braeckmans K (2014) Lipid

and polymer nanoparticles for drug delivery to bacterial biofilms. J Control Release
190:607–623

10. Xie S, Tao Y, Pan Y, Qu W, Cheng G, Huang L, Chen D, Wang X, Liu Z, Yuan Z (2014)
Biodegradable nanoparticles for intracellular delivery of antimicrobial agents. J Control
Release 187:101–117

11. Ghaffar K, Giddam A, Zaman M, Skwarczynski M, Toth I (2014) Liposomes as nanovaccine
delivery systems. CTMC 14:1194–1208

12. Gonçalves IC, Henriques PC, Seabra CL, Martins MCL (2014) The potential utility of chitosan
micro/nanoparticles in the treatment of gastric infection. Expert Rev Anti-Infect Ther
12:981–992

13. Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly
(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–2490

12 Biosynthesis of Nanoparticles by Fungi: Large-Scale Production 409

http://dx.doi.org/10.1007/978-3-319-25001-4_17
http://dx.doi.org/10.1007/978-3-319-25001-4_2
http://dx.doi.org/10.1007/978-3-319-25001-4_19
http://dx.doi.org/10.1007/978-3-319-25001-4_6


14. Mahajan S, Law A, Reynolds N, Sykes Y, Roy P, Schwartz S (2012) Anti-HIV-1 nanother-
apeutics: promises and challenges for the future. Int J Nanomedicine 7:5301–5314

15. Turkevich J (1985) Colloidal gold. Part I. Gold Bull 18:86–91
16. Ghosh P, Han G, De M, Kim C, Rotello V (2008) Gold nanoparticles in delivery applications.

Adv Drug Deliv Rev 60:1307–1315
17. Zhao Y, Jiang X (2013) Multiple strategies to activate gold nanoparticles as antibiotics.

Nanoscale 5:8340
18. Bertrand N, Leroux J-C (2012) The journey of a drug-carrier in the body: an anatomo-

physiological perspective. J Control Release 161:152–163
19. Mishra D, Jain N, Rajoriya V, Jain AK (2014) Glycyrrhizin conjugated chitosan nanoparticles

for hepatocyte-targeted delivery of lamivudine. J Pharm Pharmacol 66(8):1082–1093
20. Mody V, Siwale R, Singh A, Mody H (2010) Introduction to metallic nanoparticles. J Pharm

Bioall Sci 2:282
21. Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P (2012)

Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future.
Chem Soc Rev 41:2943

22. Sengupta J, Ghosh S, Datta P, Gomes A, Gomes A (2014) Physiologically important metal
nanoparticles and their toxicity. J Nanosci Nanotechnol 14:990–1006

23. Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus
Trichoderma reesei (A route for large-scale production of AgNPs). Insci J 1(1):65–79

24. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003)
Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum.
Colloids Surf B Biointerfaces 28:313–318

25. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010)
Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a
study against gram-positive and gram-negative bacteria. Nanomedicine Nanotechnol Biol
Med 6:103–109

26. Fonte P, Reis S, Sarmento B (2016) Facts and evidences on the lyophilization of polymeric
nanoparticles for drug delivery. J Control Release 225:75–86

27. Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G (2015) Silver nanoparticles: synthesis,
properties, and therapeutic applications. Drug Discov Today 20:595–601

28. Furno F (2004) Silver nanoparticles and polymeric medical devices: a new approach to
prevention of infection? J Antimicrob Chemother 54:1019–1024

29. Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu T, Tan W (2012) Nanotechnology in
therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine 7:1253–1271

30. El Zowalaty M, Ibrahim NA, Salama M, Shameli K, UsmanM, Zainuddin N (2013) Synthesis,
characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomed
8:4467–4479

31. Kingsley JD, Dou H, Morehead J, Rabinow B, Gendelman HE, Destache CJ (2006) Nano-
technology: a focus on nanoparticles as a drug delivery system. J Neuroimmune Pharmacol
1:340–350

32. Hiramatsu H, Osterloh FE (2004) A simple large-scale synthesis of nearly monodisperse gold
and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Mater
16:2509–2511

33. Aromal SA, Vidhu VK, Philip D (2012) Green synthesis of well-dispersed gold nanoparticles
using Macrotyloma uniflorum. Spectrochim Acta A Mol Biomol Spectrosc 85:99–104

34. Ahamed M, Majeed Khan MA, Siddiqui MKJ, AlSalhi MS, Alrokayan SA (2011) Green
synthesis, characterization and evaluation of biocompatibility of silver nanoparticles. Physica
E: Low-Dimension Syst Nanostruct 43:1266–1271

35. Mohan Kumar K, Mandal BK, Siva Kumar K, Sreedhara Reddy P, Sreedhar B (2013)
Biobased green method to synthesise palladium and iron nanoparticles using Terminalia
chebula aqueous extract. Spectrochim Acta A Mol Biomol Spectrosc 102:128–133

410 S. Karimi Dorcheh and K. Vahabi



36. Chen J, Wang J, Zhang X, Jin Y (2008) Microwave-assisted green synthesis of silver
nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater Chem Phys
108:421–424

37. Moon J-W, Rawn CJ, Rondinone AJ, Love LJ, Roh Y, Everett SM, Lauf RJ, Phelps TJ (2010)
Large-scale production of magnetic nanoparticles using bacterial fermentation. J Ind Microbiol
Biotechnol 37:1023–1031

38. Bensebaa F, Durand C, Aouadou A, Scoles L, Du X, Wang D, Le Page Y (2009) A new green
synthesis method of CuInS2 and CuInSe2 nanoparticles and their integration into thin films. J
Nanopart Res 12:1897–1903

39. Darroudi M, Mansor Bin Ahmad M, Abdullah AH, Ibrahim NA, Shameli K (2011) Green
synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles. Int J
Nanomed 6:569–574

40. Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int
Scholar Res Notice 2014:1–18

41. Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes – a review.
Colloids Surf B Biointerfaces 121:474–483

42. Gartland KMA, Bruschi F, Dundar M, Gahan PB, Viola Magni MP, Akbarova Y (2013)
Progress towards the ‘Golden Age’ of biotechnology. Curr Opin Biotechnol 24:S6–S13

43. Luetz S, Giver L, Lalonde J (2008) Engineered enzymes for chemical production. Biotechnol
Bioeng 101:647–653

44. Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol
Mol Biol Rev 72:379–412

45. Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications: an overview.
Appl Biochem Biotechnol 118:155–170

46. Leitão AL, Enguita FJ (2014) Fungal extrolites as a new source for therapeutic compounds and
as building blocks for applications in synthetic biology. Microbiol Res 169:652–665

47. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J,
Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN,
Glass JI, Venter JC, Hutchison CA, Smith HO (2008) Complete chemical synthesis, assembly,
and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220

48. Liu CC, Mack AV, Tsao ML, Mills JH, Lee HS, Choe H, Farzan M, Schultz PG, Smider VV
(2008) Protein evolution with an expanded genetic code. Proc Natl Acad Sci
105:17688–17693

49. Picataggio S (2009) Potential impact of synthetic biology on the development of microbial
systems for the production of renewable fuels and chemicals. Curr Opin Biotechnol
20:325–329

50. Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76
51. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a

mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol
21:796–802

52. Liu Y, Shin H-D, Li J, Liu L (2014) Toward metabolic engineering in the context of system
biology and synthetic biology: advances and prospects. Appl Microbiol Biotechnol
99:1109–1118

53. Sindelar G, Wendisch VF (2007) Improving lysine production by Corynebacterium
glutamicum through DNA microarray-based identification of novel target genes. Appl
Microbiol Biotechnol 76:677–689

54. Becker J, Reinefeld J, Stellmacher R, Schäfer R, Lange A, Meyer H, Lalk M, Zelder O, von
Abendroth G, Schröder H, Haefner S, Wittmann C (2013) Systems-wide analysis and engi-
neering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens.
Biotechnol Bioeng 110:3013–3023

55. Cheng KK, Zhao X-B, Zeng J, Zhang JA (2012) Biotechnological production of succinic acid:
current state and perspectives. Biofuels Bioprod Bioref 6:17

12 Biosynthesis of Nanoparticles by Fungi: Large-Scale Production 411



56. Sakurai H, Masukawa H, Kitashima M, Inoue K (2015) How close We Are to achieving
commercially viable large-scale photobiological hydrogen production by cyanobacteria: a
review of the biological aspects. Life 5:997–1018

57. Beauprez JJ, De Mey M, Soetaert WK (2010) Microbial succinic acid production: natural
versus metabolic engineered producers. Process Biochem 45:1103–1114

58. Driouch H, Roth A, Dersch P, Wittmann C (2011) Filamentous fungi in good shape: micro-
particles for tailor-made fungal morphology and enhanced enzyme production. Bioeng Bugs
2:100–104

59. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr
Opin Biotechnol 14:438–443

60. Barry DJ, Williams GA (2011) Microscopic characterisation of filamentous microbes: towards
fully automated morphological quantification through image analysis. J Microsc 244:1–20

61. Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expres-
sion. Biotechnol Adv 27:53–75

62. Wucherpfennig T, Kiep KA, Driouch H, Wittmann C, Krull R (2010) Morphology and
rheology in filamentous cultivations. Adv Appl Microbiol 72:89–136

63. Papagianni M (2007) Advances in citric acid fermentation by Aspergillus niger: biochemical
aspects, membrane transport and modeling. Biotechnol Adv 25:244–263

64. Driouch H, Hänsch R, Wucherpfennig T, Krull R, Wittmann C (2011) Improved enzyme
production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate
microparticles. Biotechnol Bioeng 109:462–471

65. Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya
gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production.
Appl Microbiol Biotechnol 53:509–516

66. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial
applications: a review. Appl Microbiol Biotechnol 56:326–338

67. Naghdi M, Taheran M, Brar SK, Verma M, Surampalli RY, Valero JR (2015) Green and
energy-efficient methods for the production of metallic nanoparticles. Beilstein J Nanotechnol
6:2354–2376

68. Lai Y, Yin W, Liu J, Xi R, Zhan J (2009) One-Pot green synthesis and bioapplication of L-
arginine-capped superparamagnetic Fe3O4 nanoparticles. Nanoscale Res Lett 5:302–307

69. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their
antimicrobial activities. Adv Colloid Interf Sci 145:83–96

70. Shukla R, Nune SK, Chanda N, Katti K, Mekapothula S, Kulkarni RR, Welshons WV,
Kannan R, Katti KV (2008) Soybeans as a phytochemical reservoir for the production and
stabilization of biocompatible gold nanoparticles. Small 4:1425–1436

71. Mansoori GA (2010) Synthesis of nanoparticle by fungi. US Patent Application 20100055199
72. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse

MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:273–279
73. Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004)

Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895
74. Blackwell M (2011) The Fungi: 1, 2, 3 . . . 5.1 million species? Am J Bot 98:426–438
75. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme

mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J
Am Chem Soc 124:12108–12109

76. Castro-Longoria E (2012) Production of platinum nanoparticles and nanoaggregates using
Neurospora crassa. J Microbiol Biotechnol 22:1000–1004

77. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold
and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B
Biointerfaces 83:42–48

78. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of
monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora
sp. Langmuir 19:3550–3553

412 S. Karimi Dorcheh and K. Vahabi



79. Vahabi K, Karimi Dorcheh S (2014) Biosynthesis of silver nano-particles by Trichoderma and
its medical applications. In: Biotechnology and biology of Trichoderma. Elsevier, Amsterdam,
393–404

80. Moghaddam A, Namvar F, Moniri M, Tahir P, Azizi S, Mohamad R (2015) Nanoparticles
biosynthesized by fungi and yeast: a review of their preparation, properties, and medical
applications. Molecules 20:16540–16565

81. Tarafdar JC, Raliya R, Rathore I (2012) Microbial synthesis of phosphorous nanoparticle from
Tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6:84–89

82. Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in
water hygiene management. Langmuir 25:8192–8199

83. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy
83:132–140

84. Maliszewska I, Szewczyk K, Waszak K (2009) Biological synthesis of silver nanoparticles. J
Phys Conf Ser 146:012025

85. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment.
Ecotoxicol Environ Saf 45:198–207

86. Beveridge TJ, Hughes MN, Lee H, Leung KT, Poole RK, Savvaidis I, Silver S, Trevors JT
(1997) Metal-microbe interactions: contemporary approaches. In: Advances in microbial
physiology. Adv Microb Physiol 38:177–243

87. Das SK, Liang J, Schmidt M, Laffir F, Marsili E (2012) Biomineralization mechanism of gold
by zygomycete fungi Rhizopous oryzae. ACS Nano 6:6165–6173

88. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes.
Adv Colloid Interf Sci 156:1–13

89. Keat CL, Aziz A, Eid AM, Elmarzugi NA (2015) Biosynthesis of nanoparticles and silver
nanoparticles. Bioresour Bioprocess 2

90. Scott D, Toney M, Muzikár M (2008) Harnessing the mechanism of glutathione reductase for
synthesis of active site bound metallic nanoparticles and electrical connection to electrodes. J
Am Chem Soc 130:865–874

91. Shankar SS, Ahmad A, Pasricha R, Khan MI, Kumar R, Sastry M (2004) Immobilization of
biogenic gold nanoparticles in thermally evaporated fatty acid and amine thin films. J Colloid
Interface Sci 274:69–75

92. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R,
Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver
nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to
nanoparticle synthesis. Nano Lett 1:515–519

93. Das SK, Das AR, Guha AK (2010) Microbial synthesis of multishaped gold nanostructures.
Small 6:1012–1021

94. Kalidindi SB, Sanyal U, Jagirdar BR (2010) Metal nanoparticles via the atom-economy green
approach. Inorg Chem 49:3965–3967

95. Ide E, Angata S, Hirose A, Kobayashi K (2005) Metal–metal bonding process using Ag
metallo-organic nanoparticles. Acta Mater 53:2385–2393

96. Zhou Y (2008) Microjoining and nanojoining., Elsevier BV
97. Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV (2006) A novel one-pot

‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohydr Res
341:2012–2018

98. Nadagouda MN, Varma RS (2008) Green synthesis of silver and palladium nanoparticles at
room temperature using coffee and tea extract. Green Chem 10:859

99. Xia B, He F, Li L (2013) Preparation of bimetallic nanoparticles using a facile green synthesis
method and their application. Langmuir 29:4901–4907

100. Gandini A (2008) Polymers from renewable resources: a challenge for the future of macro-
molecular materials. Macromolecules 41:9491–9504

101. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and
fiber formation. Prog Polym Sci 34:641–678

12 Biosynthesis of Nanoparticles by Fungi: Large-Scale Production 413



102. Troupis A, Hiskia A, Papaconstantinou E (2002) Synthesis of metal nanoparticles by using
polyoxometalates as photocatalysts and stabilizers. We thank the ministry of development,
general secretariat of research and technology of Greece, for supporting part of this work. We
also thank Dr. A. Travlos for help with the TEM images. Angew Chem Int Ed 41:1911

103. Wei D, Qian W (2008) Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a
mediator agent. Colloids Surf B Biointerfaces 62:136–142

104. Potara M, Maniu D, Astilean S (2009) The synthesis of biocompatible and SERS-active gold
nanoparticles using chitosan. Nanotechnology 20:315602

105. Wei D, Sun W, Qian W, Ye Y, Ma X (2009) The synthesis of chitosan-based silver
nanoparticles and their antibacterial activity. Carbohydr Res 344:2375–2382

106. Khalili Fard J, Jafari S, Eghbal MA (2015) A review of molecular mechanisms involved in
toxicity of nanoparticles. Adv Pharm Bull 5:447–454

414 S. Karimi Dorcheh and K. Vahabi



Analytical Techniques for Discovery
of Bioactive Compounds from Marine Fungi 13
Ana R. Gomes, Armando C. Duarte, and Teresa A. P. Rocha-Santos

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
2 Prospection, Collection, and Preservation of Marine Fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

2.1 Bioprospecting in Marine Fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
2.2 Collection of Marine Fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
2.3 Preservation of Marine Fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

3 Preparation, Extraction, and Fractionation of Marine Fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
3.1 Preparation of Bioactive Compounds from Fungi Samples . . . . . . . . . . . . . . . . . . . . . . . . . . 419
3.2 Extraction of Bioactive Compounds from Fungi Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
3.3 Fraction of Bioactive Compounds from Fungi Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

4 Bioassays for Bioactivity Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
5 Tools for Structural Characterization and Determination of Bioactive Compounds . . . . . . 427
6 Online Combination of Bioassays for Detection of Bioactive Compounds . . . . . . . . . . . . . . . 428
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Conflict of Interest: The authors report no declarations of interest.

A.R. Gomes (*)
Department of Chemistry, CESAM, University of Aveiro, Aveiro, Portugal

Department of Biochemistry, University of Coimbra, Coimbra, Portugal
e-mail: aaritagomes@gmail.com

A.C. Duarte
Department of Chemistry, CESAM, University of Aveiro, Aveiro, Portugal
e-mail: aduarte@ua.pt

T.A.P. Rocha-Santos
Department of Chemistry, CESAM, University of Aveiro, Aveiro, Portugal

Instituto Piaget, ISEIT/Viseu, Lordosa, Viseu, Portugal
e-mail: ter.alex@ua.pt

# Springer International Publishing Switzerland 2017
J.-M. Mérillon, K.G. Ramawat (eds.), Fungal Metabolites, Reference Series in
Phytochemistry, DOI 10.1007/978-3-319-25001-4_9

415

mailto:aaritagomes@gmail.com
mailto:aduarte@ua.pt
mailto:ter.alex@ua.pt


Abstract
Marine fungi have been a rich source of bioactive natural products with interest-
ing pharmaceutical activities and potential therapeutic applications. This chapter
reviews the recent analytical techniques for discovery and the characterization of
bioactive compounds derived from marine fungi, which are highly diversified and
are less explored. An overview about bioprospecting, collection, preparation, and
preservation of fungi samples are also presented, as well as different methods and
strategies used for extraction, fractionation, and structural characterization of the
bioactive compounds are discussed, including their advantages and the disadvan-
tages. Possible roles of these natural compounds in several interesting biological
activities are also covered in this chapter.

Keywords
Analytical methodologies • Fungus • Bioprospection • Preservation • Collection •
Extraction • Fractionation • Chromatography • Bioactivity • Bioassay • Structural
characterization • Online combination

1 Introduction

The oceans dominate the surface of the Earth and contain the greatest known
biodiversity of life [1]. With the increase of oceans exploration, a growing number
of bioactive natural products are being isolated from several marine organisms
[2, 3]. The marine environment represents a rich source of both biological and
chemical diversity [1]. Recent reports estimate hundreds of millions of marine
species depicting over 90 % of total marine biomass containing unique molecules.
For marine fungi, only about 465 species are referenced; however, it is estimated that
there are 1.5 million species [4, 5]. Marine fungi provide a diverse and remarkable
supply of promising bioactive molecules, often with interesting applications in
medicine, such as penicillin, caspofungin, mevinolin, and fingolimod [6–8]. These
compounds showed several biological properties, including antibacterial, antifungal,
and immunomodulatory activities, as well as cholesterol synthesis inhibition
[9–11]. Furthermore, in the health care area, studies revealed promising bioactive
compounds (BC) isolated from marine fungi sources, with proven anticancer activ-
ity: penicisteroid A (1) is a new polyoxygenated steroid isolated from the Penicillium
chrysogenum QEN-24S, obtained from a marine red algae. It showed a distinctive
chemical structure with tetrahydroxy and C-16-acetoxy groups and exhibited potent
cytotoxic activity against the tumor cell lines HeLa, SW1990, and NCI-H460
[12]. From fungus strain KT29 isolated from the red seaweed Kappaphycus
alvarezii, one compound, named 2-carboxy-8-methoxy-naphthalene-1-ol (2), was
obtained and showed in vitro cytotoxicity against the human bladder carcinoma cell
line 5637 [13]. Two other new alkaloids, 2-(3,3-dimethylprop-1-ene)-costaclavine
(3) and 2-(3,3-dimethylprop-1-ene)-epicostaclavine (4), were isolated from the
marine-derived fungus Aspergillus fumigatus. Both compounds showed cytotoxicity
against a mouse leukemia cell line (P388) [14].
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The BCs are considered chemical compounds derived and isolated from biolog-
ical sources. Lately, the characterization of the compositional, structural, and sequen-
tial features of BC has been the main focus. Structural information can be used to
organize these compounds according to Schmitz’s chemical classification into six
major chemical classes, namely, alkaloids, peptides, polyketides, shikimates, sugars,
and terpenes [1]. However, marine fungi have not been given the attention they
deserve, and a very limited insight into the capabilities and bioactive potential of
marine microorganisms is yet available in the scientific literature. There is still scope
for more research to explore the potential of marine microorganisms as producers of
novel drugs, which are naturally accepted by consumers unlike chemically synthe-
sized drugs [15].

This chapter summarizes different methodologies used to isolate pure bioactive
compounds. Different approaches for the collection and preservation of marine fungi
samples are presented, as well as some possible techniques for extraction, fraction-
ation, and structural characterization of bioactive compounds.

2 Prospection, Collection, and Preservation of Marine Fungi

2.1 Bioprospecting in Marine Fungi

Bioprospecting is the process of discovery and commercialization of new products
based on biological resources [16]. It is the systematic search for and development of
new sources of chemical compounds, genes, microorganisms, macroorganisms, and
other valuable products from nature. Bioprospecting involves the incessant research
for biochemical and genetic sources with high commercial value from nature
resource and that have never been used in traditional medicine before
[17, 18]. Thus, bioprospecting means looking for ways to commercialize biodiver-
sity. Currently, the development on indigenous knowledge associated to the exploi-
tation and administration of biological resources has also been incorporated into the
concept of bioprospecting. Consequently, bioprospecting comprises the conserva-
tion and sustainable use of biological resources and the rights of indigenous and
local populations [19, 20]. Bioprospecting, when well-managed, can be beneficial,
leading to the development of new BC. In contrast, bioprospecting also can lead to
environmental problems relating to unauthorized overexploration, as well as social
and economic complications [20, 21]. Bioprospecting generates environmental
disruption problems during the extraction procedure. Special attention must be
given to ethical questions and conservation policies, i.e., research must honor host
organizations regarding new discoveries, including new habitats of rare and endan-
gered species [21, 22].

Marine bioprospecting has mainly focused on macroorganisms because of their
easy availability, ease of capture, rich biodiversity, and a variety of unique molecules
that they developed in response to hostile habitats and environmental conditions.
However, a growing effort has increased the research and exploitation of the deep
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ocean, mostly around hydrothermal vents, due to unexplored biodiversity developed
in extreme conditions [23, 24].

Extreme environments such as Antarctica or the high seas, particularly the deep
seabed, provide locales for “extremophiles,” which are organisms with unique
metabolic properties, which makes them promising and interesting sources of
bioactive compounds [25–27]. The biological circumstances which enable these
extremophiles to survive in extreme pressures, temperatures, pH, light, salinity,
and other exceptional conditions are sources of new prospective for scientific
exploration and commercial utilization [28–30]. However, tropical environments
and shallow temperate have been the most explored and studied so far [24, 31].
Another challenge to bioprospecting in these habitats, as in all marine ecosystems, is
to have access to a sufficient quantity of biological substances in order to get pure
bioactive compounds [32, 33]. Bioprospecting of marine compounds commonly
depends on collecting wild specimens [34]. Novel and less troublesome solutions
can be found through bioprospecting the oceans, especially in mostly unexplored
microscopic marine organisms. The combination of modern advances in DNA
technologies and increased consciousness of environmental problems, such as global
warming, have stimulated the science of marine microbiology [23, 35].

2.2 Collection of Marine Fungi

In order to have a full and undisputable natural compound assessment and to assure
the properties discovered, different sampling strategies, depending on the type of
habitat and the species ecology, have to be taken into account to ensure the
appropriate collection of the mixed cultures from natural environments. Since the
collection of microorganisms from the marine environment is not always easy, it is
often necessary to also harvest the supporting materials in order to keep the fungi
viable until arriving to the laboratory [36].

The biodiversity preservation should be taken into account, reducing the impacts
as much as possible, in order to protect marine species from environment disorders
during collection. Harvesting of organisms must be restricted to minimum quantities
and attention with rare or endangered species must also be taken into account [37].

Distinct microorganisms can be found in different areas of the marine environ-
ment, such as (1) in free suspension in the water column; (2) in flocculated partic-
ulates in the water column; (3) in the sediment; (4) on surfaces of both living and
nonliving bodies; and (5) in endophytic/symbiotic associations [36, 38]. The biggest
risks concerning the collection of these organisms are contamination and cross-
contamination. Thus, the most appropriate techniques rely on sampling the material
together with supporting materials, which include water, sediment, portions of plants
and other macroorganisms, or other subtracts [36]. In the case of water samples, in
order to avoid contamination and proliferation of cultures, they must be collected
with sterilized glass containers. For sediments from intertidal areas, sampling can be
performed by removing core samples, while in subtidal regions, sediment grabs,
such as Ponar and Van Veen grabs, can be used. Nevertheless, in more hostile
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environments such as the deep sea, more refined procedures are essential, such as the
system developed by Parkes et al. [39]. DeepIsoBUG system was developed for
high-pressure systems, allowing the collection of cores and slices of the sediment,
with each slice being moved to a low pressure container, thus minimizing the chance
of contamination and keeping temperature and pressure [37, 39]. After the collec-
tion, preservation must be performed as quickly as possible to avoid genetic and
phenotypic modifications of the cultures [36, 37]. It is also important to consider that
wild harvest only partially satisfies the demand and is an unsuitable production way
[34]. Using big quantities of biomass may have an impact on the number of
specimens, and for rare species, it can be impossible to collect enough organisms
for the research. A solution to these problems can be the aquaculture of target
species, allowing the continuous production of biomass using standardized condi-
tions [40]. When it comes to microorganisms and if the compounds are needed on a
commercial scale, the fermentation also is a suitable process for bioactive com-
pounds production [41]. Thus, bioactive compounds can only be obtained by
collecting from natural sources, aquaculture, or synthesis [42].

2.3 Preservation of Marine Fungi

Conservation of marine specimens is a prerequisite for field studies in faraway zones
or when there are restrictions to return the samples to the lab in due time. The
harvesting of marine organisms for the study of BCs is frequently performed in open
sea, where assays are often difficult or even impossible [43]. In the case of micro-
organisms, such as fungi, there often is a macro-host which must also be collected
during sampling, avoiding sample degradation until arrival at the laboratory [44]. As
most marine organisms are quite vulnerable to fast degradation, the samples should
be quickly frozen with dry ice and stored at�20 �C as soon as possible until the next
step in processing [45]. Once in the lab, the collected fungi need to be preserved pure
and viable for additional studies. Usually, they are brought into pure culture and
stored in liquid nitrogen in order to maintain the viability of these cultures,
preventing genetic and phenotypic changes induced by repeated passages of the
cultures [36, 38].

3 Preparation, Extraction, and Fractionation of Marine Fungi

3.1 Preparation of Bioactive Compounds from Fungi Samples

The bioactive compounds isolated from marine fungi samples must follow a
multistep process. One of the first steps to be considered is the culture conditions,
since marine fungi samples collected will be cultured in nutritional media at the
laboratory. Therefore, special attention must be taken into account for the tempera-
ture, incubation time, aeration, media composition, and pH, since less favorable
conditions can affect the output and yield of the wanted bioactive compound [46].
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The next step includes the biological activity screening. The bioactivity assay is an
essential parameter in the development of new drugs, usually conducted to measure
the effects of a biopharmaceutical drug on a living organism. Extraction of active
samples is the next step, followed by the fractionation, separation, and purification of
pure compounds. Finally, it follows the structural characterization of the bioactive
compounds [47].

Due to the existence of symbiotic relationships between organisms, some marine
fungi may be isolated from other marine organisms, such as algae. In order to get
BC, including 1-O-(α -D-mannopyranosyl)chlorogentisyl alcohol (5), Yun et al. [48]
isolated the fungi Chrysosporium synchronum from a brown algae Sargassum
ringgoldium, which showed a radical scavenging activity against 1,1-diphenyl-2-
picrylhydrazyl radical (DPPH) [48].

Before delineating the steps of the isolation methodology, the characteristics of
the target compound, i.e., molecular size, charge, stability, solubility, and acid–base
properties, should be regarded, since the selection of the best procedure for addi-
tional separation allows a faster isolation protocol [47, 49].

3.2 Extraction of Bioactive Compounds from Fungi Samples

The bioactive metabolites extracted from marine fungi can be divided into alkaloids,
amino acids, polyketides, sugars, sterols, saponins, peptides, terpenoids, hydrocar-
bons, and fatty acids [50]. Since the chemical nature of bioactive substances in a
mixture is unknown, it is not possible to delineate any specific technique for the
separation of these components from the complex mixture. However, a wide sepa-
ration of the mixture can be obtained by extraction with organic solvents. Other
methodologies have also been developed to improve the isolation of BCs which
include several extraction techniques. The most common extraction methodologies
and the main BCs isolated reported in recent literature are discussed in the ensuing
sections.

3.2.1 Extraction by Solvents
Bioactive compounds are generally extracted from mycelium and/or culture medium
using a variety of aqueous or organic solvents. After sampling from marine habitat,
fungi cultures are submitted to extraction using solvents with different polarities
[36]. Examples of bioactive molecules and related solvents usually used for extrac-
tion are shown in Table 1.

The extracts of marine fungi showing biological activities could be a mixture of
different molecules. Most marine fungi yield hydrophobic compounds, when
extracted with organic solvent, such as ethanol (EtOH), methanol (MeOH), chloro-
form (CHCl3), acetone, and ethyl acetate (EtOAc) [2, 51]. However, bioactive
hydrophilic compounds can also be extracted from marine fungi using solvents,
such as hexane and carbon tetrachloride [52]. New marine-derived compounds,
named hypochromins A and B, were obtained from the Hypocrea vinosa, showing
great tyrosine kinase inhibitory activity, when isolated from the ethanol extract [53].
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Fractions of different polarities are then submitted to biological assays. Sometimes,
biological activity is spread across multiple fractions. However, if the isolation is
good, the biological activity may be condensed on a single fraction, thus maximizing
time and resources. In contrast, when ideal conditions are not respected and bio-
chemical characteristics not investigated, low recoveries are obtained and additional
extraction must be made in order to obtain the best association of extraction solvents
to obtain better extraction purity [54]. Low processing cost and ease of operation are
some of the advantages of using solvent extraction. In turn, the disadvantages
are low extraction efficiency, low selectivity, and production of solvent residues
[47, 54].

3.2.2 Extraction by Other Modern Methodologies
Due to the limitations presented by extraction with organic solvents, other methods
are also applied in the separation of BC. Among them stand out microwave-assisted
extraction (MAE); ultrasound-assisted extraction (UAE); supercritical fluid extrac-
tion (SFE); subcritical water extraction (SWE); and pressurized liquid extraction
(PLE) which are fast and efficient unconventional extraction methods developed for
extracting bioactive compounds from microorganisms [55].

MAE is based on the direct effect of microwaves on molecules of the extracted
system caused by two mechanisms: ionic conduction and dipole rotation [56]. MAE
heats the extracted system directly by friction between polar molecules, leading to
very short extraction times. Intracellular heating of the matrix induces pressurized
effects that damage cell walls and membranes, as well as cause electroporation
effects. Consequently, a quicker transfer of the molecules from the cells into the
extracting solvent is observed [56–58]. Polar solvents are better MAE extracts than
nonpolar in the following order: water > methanol > ethanol > acetone > ethyl
acetate > hexane [57].

UAE notably decreases isolation time and increases extraction efficiency of
several natural compounds, due to the formation of cavitation bubbles in the solvent
[55, 59]. This ability is influenced by the properties of ultrasound wave, the solvent

Table 1 Bioactive compounds and some solvents usually used for their extraction

Class of bioactive compounds Bioactive compounds Solvents

Polar organic compounds Alkaloids
Amino acids
Shikimates
Polyhydroxysteroids
Polyketides
Saponins
Sugars

Acetone
Chloroform
Ethanol
Ethyl acetate
Methanol
N-butanol
Water

Medium-polarity compounds Peptides Carbon tetrachloride
Dichloromethane
Methanol

Low-polarity compounds Fatty acids
Hydrocarbons
Terpenes

Carbon tetrachloride
Hexane
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characteristics, and the ambient conditions. After a cavitation bubble is formed, it
collapses throughout the compression cycle, which pushes the liquid molecules
together, and a high-speed micro-jet is created towards the matrix particle, promot-
ing the mixture of the solvent with the matrix. Temperature and high pressure
involved in this procedure breaks membranes and cell walls. After cell damage,
the solvent can easily penetrate into cells, releasing the intracellular contents [55].

SFE is another extraction method that yields extracts with none or less polar
impurities than the traditional organic liquid extracts [60]. It is based on the use of a
gas compressed at a pressure and temperature above a critical point, comprises a
dense gas state in which the fluid combines hybrid properties of liquid and gas. The
supercritical CO2 has properties, such as high diffusivity to extract organic com-
pounds, low viscosity, nonflammable, low cost, easily accessible, critical point
conditions, decompression directly to the atmosphere, and harmless to the environ-
ment. In order to overcome limitations in the extraction of polar compounds, the
addition of an organic modifier, such as ethanol, is recommended [61]. The greatest
limitation of supercritical CO2 is to not be adequate to extract polar compounds.
Nevertheless, the addition of an organic solvent, such as EtOH or MeOH, can largely
improve extraction yield [55].

SWE, also known as pressurized hot water extraction, besides using an environ-
mentally friendly solvent also allows the adjustment of the dielectric constant of the
water, and thus the solubility of organic substances, which allows the extraction of polar
and medium-polar compounds [62]. Polar molecules with high solubility in water are
extracted with more efficiency at lower temperatures, while medium-polar and nonpo-
lar compounds need a less polar medium induced by higher temperature [63]. Based on
the scientific results published in the last years, it has been demonstrated that the SWE is
quicker, cheaper, and cleaner than the traditional extraction techniques [64].

PLE, also named accelerated solvent extraction, is a developing technology that
uses very low volumes of liquid solvents such as acetone, ethanol, and hexane to
retrieve target analytes in a short extraction time. This emerging technology com-
bines both high pressures and temperatures to improve the solubility in the pressur-
ized liquids and increase the desorption kinetics of compounds from the
matrices [65].

3.3 Fraction of Bioactive Compounds from Fungi Samples

In order to obtain fractions of increasingly pure bioactive substances from a mixture
of extract, the fractionation technique is used. The two main approaches to screening
BCs from the extracts are the bioassay-guided fractionation and pure compound
screening [66]. In the bioassay-guided fractionation procedure, it is possible to
exclude the extracts and fractions that do not show bioactivity. In turn, pure
compound screening is used less frequently than bioassay-guided fractionation,
and it is necessary to select extracts containing compounds, which are not present
in the available libraries of pure compounds, since bioactivity is only checked after
isolation and structural elucidation [36, 66]. Table 2 shows the extraction and
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fractionation methods used for the isolation of bioactive compounds from fungi
organisms.

3.3.1 Fractionation by Solvent Partition
The fractionation by solvent partition of active extracts is currently performed using
the bioassay-guided fractionation procedure [12, 67–69]. This type of approach
is the most used standard procedure and is characterized by several steps: (1) assess-
ment of the potential bioactivity of the sample using a bioassay; (2) extraction using
different solvents followed by assessment of bioactivity; (3) repeated fractionation of
bioactive extracts and fractions in order to obtain the successful isolation of the
bioactive compounds; and (4) structural characterization of the bioactive compounds
by spectroscopic techniques, followed by pharmacological and toxicological assays
[36, 47, 66].

Selected marine extracts contain compounds of different polarities, thus the
fractionation by solvent partition separates the active compound from the inactive
according to the different partition coefficients of analytes, resulting in full recovery
of target compounds [70]. Compounds, such as alkaloid, shikimates, polyketides,
sugars, amino acids, polyhydroxysteroids, and saponins are generally obtained in
water soluble fractions; peptides are extracted in medium-polarity fractions, and
substances like terpenes, hydrocarbons, and fatty acids are found in low-polarity
fractions [36]. Each of the obtained fractions is then subjected to purification.

3.3.2 Separation and Purification by Chromatography
After fractionation by solvent partition, the active fractions are separated and
purified by chromatography, in order to find pure bioactive molecules. The active
fractions can be subjected to fractionation by column chromatography of several
types, such as adsorption on silica gel and gel permeation, applying a range of
solvents suitable to the polarity of the active fraction [54]. Silica gel column is the
most common stationary phase used in the chromatography technique, and gel
permeation chromatography (GPC) is a type of size exclusion chromatography
(SEC), which separates compounds on the basis of size. In both techniques, for
the successful separation, large amounts of organic solvents are needed [71]. In the
final step of separation of pure compounds, other methods, such as thin-layer
chromatography (TLC) and high-performance liquid chromatography (HPLC),
should be used. Thin-layer chromatography (TLC) is a simple, fast, and cheap
procedure, capable of processing large amounts of samples in one chromatography
run. TLC has the advantage that it can be used after the column chromatography and
before the HPLC technique usually for obtaining phenolic compounds and steroids
[13, 72, 73]. Smetanina et al. [72] used the thin-layer chromatography to fractionate
two new secondary metabolites (isoacremine D (6) and acremine A (7)) from
fungus Myceliophthora lutea [72]. Reversed-phase high-performance liquid chro-
matography (RT-HPLC) is a technique, also commonly used to separate molecules
according to their hydrophobicity. The analytes in a mixture are eluted with a
pressurized liquid solvent through a column filled with an adsorbent stationary
phase containing hydrophobic groups. As reported in many studies, the HPLC
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technique has been used as a final purification step to obtain pure bioactive
compounds (Table 2) [69, 73, 74].

4 Bioassays for Bioactivity Screening

Bioactivity is the ultimate goal desired throughout the extraction, separation, and
purification process of marine fungi organisms. Thus, the designed bioassay is
crucial for the detection of potential therapeutic applications. Throughout the isola-
tion process, extracts, fractions, and end products are subjected to bioactivity assays
in vitro and/or in vivo. Therefore, screening systems must include a broad range of
biological assays in order to unravel potential substance-related activities [75].

Commonly, the bioactivity assays can be categorized into primary and secondary
bioassay screens. The primary bioassay screens can be applied to a large number of
samples in order to evaluate their bioactivities. The general requirements of these
bioassays comprise high capacity, providing quick results, being cheap and not
quantitative. During the selection of bioactivity assay, other basic qualities, such as
validity, reproducibility, sensitivity, accuracy, cost effectiveness, simplicity, lack of
ambiguity, and selectivity (in order to narrow the number of substances for second-
ary bioassay and reject false positives), should be taken into consideration. If a
positive result is detected in the primary screening, a secondary screen, which is
more accurate and precise, is executed. However, the secondary screening, having
low capacity, is time consuming and expensive. In this bioassay, the pure compounds
are assessed in various models and test circumstances in order to choose potential
candidates for clinical trials [75, 76]. Whenever possible, available information on
the target marine organism should be consulted in order to help in selection of the
bioactivity screening assay.

The bioactivity screening of extracts of marine sources is an important and
indispensable part of any pharmaceutical agent discovery platform.

5 Tools for Structural Characterization and Determination
of Bioactive Compounds

Structural elucidation of active molecules from marine fungi sample is not an easy
task, especially when considered the diversity of chemical structures comprised in
each mixture. Thus, the chemical characterization of a molecule can be easier using
literature reports.

Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy
are among the most promising methods for thoroughly characterizing the structure
and composition of marine bioactive compounds, such as amino acids, fatty acids,
phenols, sterols, or sugars [77, 78]. However, the inherent complexity of these
mixtures hinders the structural determination by means of those high-resolution
techniques. Therefore, it is very useful to perform any separation steps before
structure analysis in order to decrease the complexity of the marine extracts and in
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turn provide additional information about the existing active components in the
extract [79].

MS has been demonstrated its power and utility to elucidate unknown molecules
in several marine organisms, as well as in marine fungi samples. Shushni et al. [73]
identified a new 12-membered macrolide, named balticolid (8), using MS spectra.
Diverse methods based on high-resolution 1D and 2D NMR spectroscopy are used
for the structural characterization of the bioactive compounds [68, 80].

In search of better characterization of BCs, multidimensional separation systems
have become visibly interesting techniques for the analysis of complex mixtures
[81, 82]. Multidimensional chromatography combines two or more separation
techniques that fractionate complex mixtures based on different and independent
properties. The major advantage of combining two separation techniques with
different selectivity is the reduction of analytes overlap. Two-dimensional
(2D) chromatography is the simplest example of a multidimensional separation
scheme. Two-dimensional nuclear magnetic resonance spectroscopy (2D NMR)
provides more information about a molecule than one-dimensional NMR spectra
and is particularly useful in determining their chemical structure, particularly for
analytes that are too complex using one-dimensional NMR. Types of 2D proton
NMR include correlation spectroscopy (COSY), total correlation spectroscopy
(TOCSY), exchange spectroscopy (EXSY), and nuclear overhauser effect spectros-
copy (NOESY), which allows the determination of the conformation of the mole-
cule or the relative location of the protons [83].

The complexity of the samples often exceeds the separation capacity of chro-
matographic systems. This challenge drives researchers all over the world to develop
more sophisticated chromatographic methods that enable a greater resolution and
peak capacity [79]. The progresses in the improvement of analytical methods linked
to fast access and reliable data bases can be used as tools for rapid discovery of
known bioactive molecules, thus needing less amounts of sample and simplifying
sample preparation [84–86].

6 Online Combination of Bioassays for Detection
of Bioactive Compounds

The analysis and isolation of bioactive molecules from complex mixtures without
requiring cumbersome purification steps is hard and demanding [87]. The traditional
analytical procedure consists in research with laborious bioassay-guided fraction-
ation to isolate an individual bioactive analyte. On the other hand, the online
combination or concurrent surveying of bioassays with chemical and structural
characterization enables quick analysis and identification of single bioactive agents
with various biological activities without needing previous purification
procedures [88].

A number of approaches have been tried in analyzing bioactive molecules in
marine extracts, containing total or partial online screening. These procedures
combine separation techniques, chemical detection techniques, such as mass
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spectrometry, nuclear magnetic resonance, and biochemical assays [4]. Two pre-
dominant approaches, high-throughput screening (HTS) and high-resolution screen-
ing (HRS), have been employed by researchers, both with advantages and
disadvantages. The strategies used for HTS can normally be classified into
precolumn and postcolumn methods. Precolumn techniques have been undertaken
based on the fact that a bioactive analyte in a complex mixture is required to interact
first with a target protein prior to separation, followed by chemical detection and
identification [89, 90]. HTS postcolumn approaches consist of fractionating complex
mixtures, recovering the fractions and their evaporation, and detecting bioactive
fractions with parallel chemical detection and identification by microplate-based
bioassays. HRS usually includes the online coupling of a bioassay of the chromato-
graphic separation [91]. The high resolution achieved with the chromatographic
separation stages in HTS postcolumn screening is frequently lost in lower resolution
fraction obtained for the bioactivity screen [88]. Obtaining high resolution and
sensitivity in HRS requires the integration of fast and simple online biochemical
detection assays (BCD), such as enzymes, antioxidant screening assays, and
receptor-based assays. The basis of BCD assays is the detection of bioactive
molecules in simulated and nonsimulated biochemical reactions [91, 92]. This
analysis approach is a mean to overcome preisolation limitations since it directly
evaluates the effects of bioactive molecules after separation (postcolumn) and
reduces in vitro assays, since only fractions with specific activities need to be
isolated and tested. Some development time and effort in order to improve and
implement more sensitive and faster novel methodologies is required to reduce the
amounts of solvents used.

7 Conclusion

Obtaining a pure compound is a difficult process, requiring long periods of time,
significant amounts of work, and large numbers of solvent-consuming steps. The
isolation of marine fungi compounds depends on the quality and quantity of the
sample, collection, preservation of samples, preparation of fungal cultures, extrac-
tion, fractionation, separation, purification, and bioactivity assays screening. There is
no specific methodology that can be followed for the separation of BCs in a mixture
of marine fungi. However, the marine bioactive compounds are mainly obtained by
solvent extraction with different polarities. Fraction of bioactive compounds from
fungi samples can be achieved by solvent partition or combining chromatographic
techniques. If the purification was effective, the biological activity may be concen-
trated in a particular fraction; however, sometimes, the compounds may be already
known or not show activity. Therefore, the bioactivity assays screening is an
important step along the entire separation process. The structural characterization
of BCs is also an important step in which MS and NMR play an important role in
their determination. An effort to apply quicker and more sensitive techniques in
structural analysis will accelerate the discovery of new bioactive compounds. The
use of online screening approaches can rapidly provide a great deal of information
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about the nature of compounds, which is very useful when large numbers of samples
need to be processed avoiding unnecessary isolation of certain compounds. The
successful investigation reports using marine organisms as potential sources of
bioactive compounds encourage the incessant research of new molecules with
interesting pharmaceutical applications. However, there is still much to research
and explore the potential of marine fungi as source of novel agents, as well as
develop strategies based on green analytical chemistry in order to reduce the quantity
of solvents used.
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Abstract
Over the past 10 years, we have intensively investigated the potential of the
white-rot fungus Physisporinus vitreus for engineering value-added wood prod-
ucts. Because of its exceptional wood degradation pattern, i.e., selective lignifi-
cation without significant wood strength losses and a preferential degradation of
bordered pit membranes, it is possible to use this fungus under controlled
conditions to improve the acoustic properties of resonance wood (i.e.,
“mycowood”) as well as to enhance the uptake of preservatives and wood
modification substances in refractory wood species (e.g., Norway spruce), a
process known as “bioincising.” This chapter summarizes the research that we
have performed with P. vitreus and critically discusses the challenges encountered
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during the development of two distinct processes for engineering value-added
wood products. Finally, we peep into the future potential of the bioincising and
mycowood processes for additional applications in the forest and wood industry.

Keywords
Bioincising •Mycowood •Wood permeability • Acoustic properties • Resonance
wood • Value-added wood products

1 Introduction

Using wood decay fungi for biotechnological applications in the forest products
industry has been studied for several decades because the specificity of their
enzymes and the mild conditions under which degradation proceeds make them
potentially suitable agents for wood modification [1–3]. For example, fungi are
successfully used in the biopulping or biobleaching of kraft pulp [4] or in bioreme-
diation and detoxification of preservative-treated waste wood because of their
tolerance and ability to degrade creosote, toxic polyaromatic hydrocarbon com-
pounds, and pentachlorophenol [5–8]. The alterations in the woody cell wall struc-
ture reflect the plasticity of the degradation modes of wood decay fungi and can be
used for the purpose of wood engineering [3, 9, 10]. During the early 1960s,
industrially cultivated white-rot fungus (Trametes versicolor L.) was used in the
German Democratic Republic, mainly on beech wood for pencil or ruler production
(i.e., “mykoholz”) [4, 11]. More recently, we have investigated the potential of a
range of wood decay fungi for biotechnological applications in the forest product
industry. In Switzerland, 65 % of the forest stand consists of Norway spruce [Picea
abies (L.) Karst.] and European silver fir (Abies alba Mill.). The wood of either of
these species to be used outdoors requires preservative treatment, which involves
impregnating the wood cells with chemical preservatives or wood modification
substances to suppress colonization by wood decay fungi. In most cases, the
substance is infused into the wood cells using vacuum pressure impregnation, but
the wood of difficult-to-treat (refractory) species such as P. abies and A. albamust be
incised to enhance the uptake and distribution of the chemicals in the wood. Incising
is a pretreatment process in which small incisions, or slits, are made in the wood
surface to increase the exposed end and side grain surface area [12]. “Bioincising” is
a biotechnological process that has been developed to improve the permeability of
refractory wood species by incubation under controlled conditions for short periods
with a white-rot fungus, Physisporinus vitreus. Our studies show that isolates of
P. vitreus have an extraordinary capacity to induce substantial permeability changes
in the heartwood of P. abies without causing significant loss of impact bending
strength [10, 13–15]. In fact, wood durability of P. abies and A. alba is enhanced by
the bioincising process, which is a promising technology for efficiently distributing
wood modification substances, promoting desired improvements in wood properties,
as well as leaving the wood surface aesthetically pleasing and the mechanical wood
properties unaltered [16]. Another application of the controlled use of the
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degradation pattern of P. vitreus is the production of mycowood with improved
acoustic properties to overcome the shortages of natural wood with the superior tonal
qualities desired by traditional musical instrument makers. The objective of this
chapter is to summarize the work that has been conducted to implement the ambi-
tious goal of transferring a standardized biotechnology process using P. vitreus from
“science to market.”

2 Wood Anatomy

2.1 Anatomy of Gymnospermous Wood

Gymnospermous wood is relatively homogeneous in structure and consists primarily
of tracheids, uniseriate xylem rays, and, in some genera, axial parenchyma and
epithelial cells surrounding resin canals (Fig. 1a–e). Tracheids are dual-purpose
cells, combining properties of both structural support and water conduction. By
comparison, angiospermous wood is more heterogeneous and its water-conducting
functions are served by vessels, whereas fibers or fiber tracheids mainly supply
strength and support [3]. Parenchyma is a more prominent feature in angiospermous
than in gymnospermous wood, with most genera having multiseriate xylem rays and
varying amounts of axial parenchyma. At the microscopic level, the woody cell wall
is organized in layers with different thicknesses and different ratios of cellulose, the
matrix material lignin, and hemicellulose [17–19]. The structure of woody cell walls
is shown in Fig. 1. The cell wall proper consists of a thin primary wall, to which a
much thicker secondary wall, consisting of three layers (S1, S2, and S3), is added
after initial formation of the cell. As in plant cells generally, a layer, termed the
middle lamella (Fig. 1a), bonds the walls of adjacent cells together. It consists of
calcium and pectic substances, which are polymers of galacturonic acid and its
derivatives, acting like glue between adjacent walls. These compounds are amor-
phous and are therefore non-birefringent.

The main structural component of the walls of young wood cells is cellulose, a
polysaccharide made up of long thread-like glucose molecules joined end to end by
hydroxyl linkages without any side branching. This forms a largely crystalline
structure, which has the optical property of birefringence and so appears bright
when viewed between crossed Nicols (Fig. 1b). Within the different cell wall layers,
cellulose exists as a system of fibrils with diameters of 3–4 nm aggregated in larger
structural units [20–22].

The cellulose microfibrils are helically wound at different angles in the various
layers of the cell wall. In a supporting cell (i.e., a fiber or tracheid), the first layer of
the secondary wall (S1) forms a thin outer shell of cross-laminated cellulose micro-
fibrils aligned at a low angle to the cell axis. The second, or middle, layer (S2) is thick
and its microfibrils are aligned at a steep angle, while the third layer (S3), bordering
the lumen, has its microfibrils at a relatively low angle (Fig. 1c). These different
helical windings are thought to contribute to the mechanical resilience of the wood.
The degree of polymerization is also structurally important because it is highly
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correlated with tensile strength. The cellulose molecules are surrounded by the
polymers lignin and hemicellulose. The major hemicelluloses in coniferous wood
are galactoglucomannan, glucomannan, and arabinoglucuronxylan (Fig. 1d). Other
softwood hemicelluloses are arabinogalactan, xyloglucan, and other glucans. Other
polysaccharides are pectins, which are composed mainly of linearly connected
β-1,4-d-galacturonase acid units and their methyl esters, interrupted in places by
1,2-linked l-rhamnose units [23]. In woody cells, a major part of the pectic sub-
stances occurs as polygalacturonic acid in the middle lamella, usually together with

Fig. 1 (a–e) (a) Transverse section (T.S.) of early wood tracheids. ML middle lamella, S1, S2, S3
outer, middle, and inner layers of secondary wall, L lumen. Bar, 10 μm. (b) T.S. of early wood
viewed between crossed Nicols. Note secondary walls appear bright, whereas the amorphous
compounds in the middle lamella are non-birefringent (arrows). (c) Conventional cell-wall
model, which distinguishes five cell-wall layers: middle lamella (ML), the primary wall (PW),
and the three-layer secondary wall (S) of outer (S1), middle (S2), and inner layer (S3). Bar, 10 μm.
(d) Diagram of the relative distribution of the main cell wall constituents within the different layers
of the cell wall. (e) Schematic of conifer wood showing cell types within the xylem and phloem
(Reproduced from Schwarze [3])
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Ca2+ ions in the form of calcium pectate. The term pectin or pectic compounds is
used either strictly for the component rhamnogalacturonan or more generally for the
group of components comprising the rhamnogalacturonans, galactans, and arbinans
[24]. The wood of conifers is more primitive than that of angiosperm trees. In
coniferous or softwood species, the wood cells are mostly of one type, tracheids,
and as a result the material is much more uniform in structure than that of most
angiosperms [3].

2.1.1 Tracheids
There are no vessels in coniferous wood, such as are seen so prominently in oak and
common ash, for example [3]. Tracheids are dual-purpose cells combining the
properties of both strength and support and water conduction (Fig. 1e). They
constitute the greater part of the structure of softwoods (90–95 %), whereas the
xylem rays, axial parenchyma, and resin ducts make up only 5–10 %. The presence
of resin ducts that are surrounded by epithelial cells, which synthesize and secrete
resin into the ducts, is a unique feature of most conifers. In some conifers, resin ducts
are absent (e.g., white fir: Abies alba) and yew (Taxus baccata) are only formed in
the xylem after damage (i.e., traumatic resin ducts). There is generally less axial and
ray parenchyma in conifer wood than in the wood of angiosperms and the latter cells
are mostly uniseriate. Tracheids are considered to be the most ancient woody cell
type from which all other wood cells have derived [3]. They are dead, elongated,
lignified cells with pointed ends and are a few millimeters in length. In transverse
section, tracheids appear in homogeneous radial cell rows. The diameter of the cell
lumen decreases from the early to the late wood, as the cell wall becomes thicker.
The latter differences are responsible for the conspicuous appearance of the annual
rings in the wood of conifers, as the dense late wood is darker than the less dense
early wood. In most native conifers, the transition between early and late wood is
gradual, but in other species, such as Larix and Pseudotsuga, it is abrupt. The most
striking feature of conifer tracheids is the bordered pits, which predominantly occur
in the radial cell walls.

2.1.2 Pit Types

Bordered Pits
The pits between tracheids typically have overarching walls that form a bowl-shaped
chamber, giving them the name “bordered pits” (Fig. 2). The construction is more
variable and complicated than that of simple pits. The pit cavity consists of a canal
and a chamber [3]. The canal expands from the inside (porus) to the outside where
the membrane is located (torus). When viewed in longitudinal sections the pits are
often surrounded by a halo, hence the name bordered pits. Their structure can be
discerned best in a transverse section through adjacent cells. In tree species of the
genera Abies, Larix, Picea, and Pinus, the center of the membrane is made of a
thickened disc of primary cell wall material called torus. No secondary walls exist in
the pit’s structure. The area between the torus and wall (the former middle lamella) is
called margo and is very porous, allowing the movement of water and ions from
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Fig. 2 (a–i) Pit types: Schematic of a simple pit between adjacent parenchyma cells (a), bordered
pit between two tracheids (b), and a half-bordered pit between a tracheid and a parenchyma cell
(c) (Reproduced from Grosser [25]). Transverse section (T.S.) of Picea abies stained with safranine
and astra blue showing non-lignified simple (d, arrows), bordered (e, arrows) and half-bordered pits
(f, arrows). Note that within the sapwood non-lignified pit membranes are stained blue. T.S. of
Picea abies showing heartwood with aspirated and lignified tori that are stained red with safranine
(g, pointers) within the bordered pits. FE-REM showing longitudinal radial sections of bordered pits
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tracheid to tracheid. The torus acts as a valve, closing tightly against one side or the
other of the bordered pit in response to small pressure changes in the xylem [3].

Early-wood tracheids have larger bordered pits and a round pit aperture (porus).
In late-wood tracheids, they are smaller, with slit-like apertures. Pits are mostly
arranged singly in the cell wall of tracheids. Based on the shape of the chamber, two
different types of pits can be distinguished: simple pits and bordered pits [3]. Two
supplementary pits are termed the complementary pits and make a pit-pair. The most
important types of pit pairs (simple pit pair, bordered pit pair, and a half-bordered pit
pair) are illustrated in Fig. 2a–f.

Half-Bordered Pits
Between dead tracheids and living parenchyma cells, the half-bordered pits exist
with only one pit chamber towards the side of the tracheid (Fig. 2f). Species of Pinus
have very large and conspicuous pit membranes, also termed window pits. These pits
can be observed in radial longitudinal sections within the cross fields of xylem ray
parenchyma [3].

2.2 Wood Decay

Despite the inherent resistance of wood, fungi will degrade woody tissues and decay
types fall into three categories according to their mode of degradation of the woody
cell walls. Traditionally, wood decomposition by fungi was separated into two
categories based on the micro-morphological and chemical characteristics of
decay, which result in different patterns of degradation of the compound middle
lamella, S1, S2, and S3 layers: brown rot and white rot, the latter subdivided into
simultaneous rot and selective delignification. The ability to oxidize phenolic com-
pounds extracellularly was used to differentiate white-rot fungi from brown-rot
species. Several enzymes, including tyrosinase (oxidation of monophenols) and
laccase, show polyphenol oxidase activity, which oxidizes mono- and diphenols.
For this purpose, a rapid screening test for white-rot fungi based on polyphenol
activity, the Bavendamm test, which monitors the development of a brown colora-
tion on agar plates containing guaiacol or gallic acid, has been used to distinguish
white- from brown-rot fungi [26]. Today there are many reagents used to identify the
phenoloxidases of wood-decay fungi in pure culture [27–31].

The work of Savory [32] marked an important further step in the understanding of
decomposition processes by lignolytic fungi. His description of decay by ascomy-
cete and deuteromycete fungi in wood from industrial cooling towers revealed a
particular pattern that had been formerly observed by Bailey and Vestal [33],

�

Fig. 2 (continued) in sap (h) and heartwood (i) of Abies alba. Note that in the sapwood the structure
of the margo (arrow) in the bordered pits is discernible, whereas in the heartwood it is strongly
encrusted (arrow) and hardly visible (Reproduced from Schwarze [3])
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Tambyln [34] and Barghoorn and Linder [35] in wood from other sources. This type
of decay was termed “soft rot” because of the spongy texture of the wood surface.
Soft rots differ from both brown and white rots in its pattern of development, which
involves a process of hyphal tunnelling inside the lignified cell walls. Soft rot was
therefore described as distinct from brown- and white-rot forms of wood decay
normally attributed to ligninolytic basidiomycetes and some of the larger ascomy-
cetes. On the basis of polyphenol activity, certain fungi, including members of the
genera Daldinia, Hypoxylon, Kretzschmaria, and Xylaria, were previously consid-
ered to be white-rot fungi, but light microscopy studies show that their mode of
degradation is more correctly classified a Type 1 or Type 2 form of soft rot
[36–39]. Increasing evidence also indicates that a range of brown- or white-rot
fungi cause a soft rot in addition or alternatively to their more typical mode of
degradation Thus the boundaries between these three types of fungal decay are less
clear cut and recent studies suggest that there is a much greater diversity in the way
different decay fungi challenge their hosts and substrates. There is evidence that the
terms brown rot, white rot, and soft rot may not be obsolete, but rigid definitions of
fungi that are placed into these categories may be less appropriate than thought
previously [40].

2.2.1 White Rot
White rots are caused by basidiomycetes and certain ascomycetes. The common
feature of all these fungi is that they can degrade lignin as well as cellulose and
hemicellulose. However, the relative rates of degradation of lignin and cellulose vary
greatly according to the species of fungi and the conditions within the wood. As with
brown rots, there is additional variation related to the preferential decay of different
zones within the annual ring. The adaptation of white-rot fungi to the more hetero-
geneous structure of the wood of angiosperms, plus their ability to degrade all the
cell wall constituents extensively, leads to a multiplicity of patterns of wood decay.
Within this range of variation, two broad divisions are widely accepted: selective
delignification and simultaneous rot. White-rot fungi degrade lignin by oxidative
processes, which involve phenoloxidases such as laccase, tyrosinase, and peroxi-
dase. They degrade cellulose in a less drastic way than brown-rot fungi because their
cellulolytic enzymes attack the molecules only from the ends, splitting off glucose or
cellobiose units.

Selective Delignification
In selective delignification, lignin is degraded earlier in the decay process than
cellulose or hemicellulose. The hyphae grow in the cell lumina in some cases, so
that the lignin is dissolved out of the adjacent cell wall. In other cases, hyphae
penetrate the cell wall and initially delignify the middle lamella so that the cells tend
to separate. Cellulose is left relatively unaltered during selective delignification, at
least in the early stages of decay [39]. Some white-rot fungi (e.g., Meriplus
giganteus) have an extraordinary capacity to hydrolyze the pectin in the middle
lamella of xylem during the incipient stages of selective delignification [41]. Sections
stained with ruthenium red and hydroxylamine-ferric chloride reveal that
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M. giganteus preferentially degrades the pectin-rich regions of the middle lamellae
in xylem ray cells of beech [42]. In the wood of large-leaved lime, such regions are
uniformly located in the middle lamellae of axial and ray parenchyma. In beech wood,
degradation of pectin-rich middle lamellae commences after the delignification of
secondary walls and results in a conspicuous hollowing of multiseriate xylem rays
[42]. The effects of treating conifer wood with commercial pectinases or bacteria to
improve penetration of preservatives have been studied in detail [4, 43–46].

Commercial pectinase treatment improves preservative penetration of the sap-
wood of Douglas fir by opening pit apertures, as long as the treatment is combined
with either a low pH or a calcium chelator, such as ammonium oxalate or sodium
hexametaphosphate [47]. The most effective tested on finely ground wood of
Norway spruce are hydrolases with a broad spectrum of cellulolytic and
hemicellulolytic activity [48, 49]. The application of these enzymes, however, has
failed to enhance the permeability of solid wood to any useful extent because of the
slowness of their diffusion into wood and to the effect of extractives, adhering to
aspirated pits, making them resistant to decomposition [48, 49].

2.2.2 Enzymatic Activity of Physisporinus vitreus
Elucidation of the enzymatic processes behind this heterogeneous degradation
pattern of P. vitreus is still in progress. Under lignolytic conditions, laccase was
the predominant phenoloxidase secreted by P. vitreus and neither mangan peroxidase
nor lignin peroxidase were produced [50]. These findings indicate that the enzyme
laccase plays an essential role in the selective delignification process. Laccase belongs
to the copper oxidase family and as with other extracellular enzymes, the laccase is
glycosylated. Laccases catalyze the one-electron oxidation of substrates at the T1
Cu-site, coupled to the reduction of oxygen to water at the trinuclear Cu-site [51].

Interestingly, P. vitreus produces a particular laccase system with only one
isoform. After purification, SDS-PAGE revealed that the laccase has a mass of
about 53 kDa, which is similar to a bacterial laccase (40–60 kDa, [52]) than to a
fungal laccase (60–80 kDa, [53]). The ability to oxidize lignin model compounds
according to the method of Kudanga et al. [54] showed reduced reactivity of the
laccase of P. vitreus in comparison with the commercially available laccase of
T. versicolor (Sigma Aldrich) or that of Myceliophthora thermophila (Novozymes).
Because of the low redox potential, the action of the enzyme laccase is restricted to
the oxidation of the phenolic lignin moiety, whereas non-phenolic substrates with a
redox potential above 1.3 V cannot be oxidized by laccases directly [55]. Our results
are in good agreement with previous studies [55] and revealed that P. vitreus
degrades phenolic lignin much faster than non-phenolic lignin. However degrada-
tion of non-phenolic lignin substructures is definitely involved in the selective
delignification process of P. vitreus. Whether the degradation of non-phenolic lignin
substructures is caused by other enzymatic or non-enzymatic reactions or laccase-
mediator systems warrants further investigation [56]. Mediators are substrates for
laccases, and after oxidation, they can oxidize a secondary substrate in a distance
from the active site of the enzyme. The presence of such small molecular weight
compounds expands the substrate range of laccase towards more recalcitrant

14 Bioengineering of Value-Added Wood Using the White Rot Fungus Physisporinu. . . 443



compounds such as non-phenolic lignin units [57]. Camarero et al. [58] demon-
strated that lignin-derived compounds can function as natural mediators. We hypoth-
esize that P. vitreus uses liberated phenolic lignin fragments as mediators. However,
further studies are needed to reveal the detailed mechanisms of laccases (and
potential mediators) in the selective delignification process of P. vitreus.

During incipient stages of degradation, P. vitreus apparently excretes small
amounts of polygalacturonase beside the phenoloxidase laccase. Polygalacturonase
might be involved in the degradation of the tori of bordered pit membranes, which
consist predominantly of α-1,4-linked galacturonic acid units [24]. Only at a later
stage of degradation, cellulases were detectable.

Supposedly because of its specific enzyme composition, P. vitreus is a relatively
weak lignolytic fungus that causes only small losses of mass during the incipient period
of substrate colonization and it selectively delignifies the secondary walls without
affecting the middle lamellae, even at advanced stages of degradation (Fig. 3b).

Genetic engineering could be a powerful approach to increasing productivity,
minimizing unwanted effects, and optimizing the biotechnological use of filamen-
tous fungi, but the challenge is establishing a suitable transformation method
[59]. Genetic manipulation of a fungus of interest requires the development of a
plasmid-mediated transformation system that includes: (1) infusion of exogenous
DNA into recipient cells, (2) expression of genes present on the incoming DNA, and
(3) stable maintenance and replication of the inserted DNA, leading to expression of
the desired phenotypic trait [60]. Thus, to design an optimal engineering strategy, it
is necessary to first identify the target property or negative side effect that should be
increased or decreased, respectively. In the case of P. vitreus, identifying such a
target property or side effect is very complicated because of the complex
wood–fungus system. Therefore, in a project 205321-121701 funded by the Swiss
National Science Foundation, we developed a transformation protocol for P. vitreus
[60], several visualization techniques [61, 62], and a fungal growth model for
P. vitreus [63, 64]. By comparing the macro- and microscopic system properties
obtained from computer simulations with results of laboratory experiments, we
could improve our understanding on how a complex and difficult to observe system,
such as fungus-wood, interacts under defined conditions [109].

3 Bioincising: Improving the Permeability of Refractory
Wood Species

P. vitreus is a basidomycete (Polyporales, Meripilaceae) that belongs to the large and
puzzling Polyporus lignosus complex. It can be very easily confused with Poria
nigrescens and Physisporinus sanguinolenta but is most easily distinguished by its
characteristic decay, a conspicuous white pocket rot. When fresh, the basidiocarp
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Fig. 3 (a–f) (a) Heartwood specimens of Norway spruce (top) and white fir (bottom) impregnated
with the bluish dye Neolan Glaucin E-A after 6 weeks’ incubation with Physisporinus vitreus.
Numbers refer to radial and tangential uptake of water in kg/m3. (Arrows) Direction of hyphal
colonization. (b) Transverse section (T.S.) of Norway spruce showing selective degradation of
bordered pits (arrowheads). Bar, 20 μm. (c) Scanning electron micrographs (5 kV) showing
bordered pits in Norway spruce and white fir after 6 weeks’ incubation with Physisporinus vitreus.
(d) Note degraded tori (arrows) within bordered pits. (e) Hyphae enter the bordered pits via the
aperture and degrade the torus; lysis of the warty layer and calcium oxalate crystals in close
proximity to hyphae within bordered pit chambers (arrowheads). (f) After 12 weeks, most bordered
pits showed partial to complete dissolution of pit membranes, such that both apertures of pit of pit
pairs are occasionally exposed (arrow) (Reproduced from Schwarze et al. [15])
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appears much like P. sanguinolenta, which differs in usually turning reddish where
bruised and on drying and in having somewhat larger pores. P. sanguinolenta var.
expallescens, however, is so similar that in the absence of decayed wood, a clear
distinction is difficult. P. vitreus occurs on angiosperms and more rarely on gymno-
sperms, in the USA apparently more abundant southward but known from Ontario
southward in eastern North America to Missouri, in Alaska, Idaho, British Colum-
bia, Washington, Puerto Rico, Europe, and New Zealand. Interestingly, P. vitreus
decomposes water-saturated timber in cooling towers by a fibrous, white pocket rot
[65–68]. In the laboratory, the fungus reveals a remarkable pattern of colonization. In
crosswise piled water-saturated pine wood, the fungus decomposes only those parts
of the substrate not surrounded by air [66, 67].

Some isolates of this fungus have an extraordinary capacity to induce significant
permeability changes in the heartwood of Norway spruce and silver fir after hydro-
lysis of bordered pit membranes without causing significant loss of wood
strength [15].

The P. vitreus strain (Empa No. 642) used in all of our studies was assigned by
PCR amplification and sequencing of the ITS1-5.8S-ITS2 region of the rDNA
followed by alignment with published sequences using nucleotide BLAST
[69]. The ITS1-5.8S-ITS2 sequence of the P. vitreus (Empa strain No. 642) was
submitted to the EMBL databank under the following accession number:
FM202494.

Even after 6 weeks incubation, when the mass loss induced by P. vitreus was
slight (>1 %), wood permeability increased to approximately 300–400 kg/m�3 in
Norway spruce and 400–680 kg/m�3 in silver fir (Fig. 3a; [15]). Conspicuous,
qualitative changes in permeability were also apparent from the uptake of the bluish
dye Neolan Glaucin E-A. Uptake of the dye within test blocks of silver fir incubated
with P. vitreus was visually homogeneous but less so in Norway spruce (Fig. 3a;
[15]). FE-REM studies revealed that uptake of Neolan Glaucin E-Awas attributable
to degradation of pit membranes (Fig. 3b–f). The hyphae entered the pit chamber via
the apertures, and the membranes were subsequently degraded (Fig. 3d–f). Degra-
dation commenced from the thickened, central part of the membrane (the torus).
Calcium oxalate crystals were regularly observed on the hyphae (Fig. 3d), and in the
wood of A. alba, they often accumulated within bordered pits in close proximity to
the hyphae.

4 Mycowood: Improving the Acoustic Properties of Wood
for Violins

An interesting field in which wood modification by P. vitreus can be used is the
improvement of the acoustic properties of wood for contemporary violin making.
Musical instruments produced by Antonio Stradivari during the late seventeenth and
early eighteenth centuries are reputed to have superior tonal qualities than more
recent instruments. Dendrochronological studies show that during his later decades,
Stradivari used Norway spruce wood that had grown mostly during the Maunder
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Minimum [70, 71], a period of reduced solar activity when relatively low tempera-
tures caused trees to lay down wood with narrow annual rings, creating a high
modulus of elasticity and low density [72]. Traditionally, wood used in the manu-
facture of musical instruments is treated with primers, varnishes, or minerals to
stiffen it. Such treatments can strengthen the adhesion between cell layers but
increase the density and vibrating mass because the cells’ lumina become occluded
by the substance [73–76], which ultimately reduces the speed of sound. The increase
in density has an adverse effect on the radiation ratio [R = speed of sound (c)/
density (ρ)], reducing the speed of sound and its resonance frequencies [73, 77,
78]. Tests of other chemical treatments have shown that they increase the dynamic
modulus of elasticity (EL and ER) and decrease the damping factor (δL and δR,
[79–81], but although these treatments do not alter wood density, they increase the
crystallinity of the cell wall, which is considered disadvantageous for wood processing
[80]. Other authors have suggested that the wood used by Guarneri and Stradivari to
make the violins was chemically treated to kill woodworm and fungi [82].

An alternative approach to improving the acoustic properties of wood is to reduce
its density by fungal or bacterial degradation. During the seventeenth and eighteenth
centuries, some degradation probably resulted from the practice of floating tree
trunks in water [83], but there is no evidence that this caused any noticeable
reduction in wood density. According to Nagyvary [84], the microbial degradation
of pit membranes that occurred during this treatment would have resulted in an
increase in wood permeability such that subsequent penetration of varnish would be
enhanced. Recently, Wagenf€uhr et al. [85, 86] used a new thermal treatment to
improve the acoustic properties of resonance wood. Treatment at high temperatures
results in a reduction in density because of decomposition of hemicellulose and
cellulose, but E is reduced. A negative side effect of heat treatment is that the
material becomes brittle, causing problems during the manufacture of the instru-
ments. Most of the described treatments alter the woody cell wall and adversely
affect the properties of the compound middle lamellae, both of which have a pivotal
role in determining the overall stiffness of wood. In a homogeneous bulk material,
ignoring surface effects, the speed of sound, c, is governed by two mechanical
properties: E and the density. In wood, which is strongly anisotropic, c varies
directionally and is decreased by any discontinuities in the compound middle
lamella, such as those resulting from microbial degradation. Using the formulae
shown in Table 1, it can be deduced that such degradation, even if very slight, results
in an abrupt reduction in both E and c and has a negative impact on the acoustic
properties of the wood [87].

The compound middle lamella is penetrated or otherwise altered by most species
of wood decay fungi, except for members of the Xylariaceae (e.g., Kretzschmaria
deusta and Xylaria longipes), which have little ability to degrade guaiacyl, found in
very high concentrations in the compound middle lamella. As a result, this layer
remains as an intact skeleton, even at a quite advanced stage of decay [10, 36, 87],
which explains why the speed of sound through the wood is little affected until that
stage [10, 87] and is the reason why decay caused by K. deusta is hard to detect in
trees by means of acoustic devices [10, 39, 87].
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Incubation of Norway spruce wood with P. vitreus causes marked density loss and
cell wall thinning (Fig. 4); that is, the partly degraded wood resembled superior
resonance wood grown under cold climate conditions. By assessing the incubated
specimens microscopically and measuring five physical properties (Table 1), we
found alterations in the wood structure that resulted in a reduction in density,
accompanied by relatively little change in the speed of sound. After 20 weeks
incubation, the wood had reduced in density by more than 10 % and showed a
concurrent increase in sound radiation, without any weakening of the structure
[88]. This finding is in good agreement with other research that shows that the
gradual decomposition and loss of hemicellulose with time decreases wood density
without affecting its Young's modulus, subsequently increasing the radiation ratio
[89]. In Fig. 5, the density differences in the top plate of the Opus 58 before and after
9 month fungal treatment are apparent.

The increase in the radiation ratio of mycowood from “poor” to “good” puts it on
a par with “superior” resonance wood grown in a cold climate [88]. Moreover,
differences in wood density between early and late growth were reduced, improving
the vibrational efficacy and the production of sound similar to that of ancient violins.
Norway spruce wood treated with wood decay fungi also damps sound more
efficiently, giving it a more mellow timbre. The significant increase in the damping
factor (340 % in the radial direction) that was recorded after 20 weeks incubation can
be attributed partly to selective degradation of pit membranes.

5 Process Optimization by Characterization of Fungal
Activity and Assessment of Fungally Modified Wood

Despite initially promising results on small wood samples, the biotechnological use
of wood decay fungi for modification of larger wood profiles and the transfer to
industrial application displays particular challenges because of the variable

Table 1 Principal acoustic properties used for the assessment of resonance wood quality of axial
(L) and radial (R) samples

Property Assessment

Density ρ (kg/m3) ρ for the specimens in L and R directions

Young’s modulus of elasticity
E (MPa)

E for L and R directions

Speed of sound c (m/s) c ¼
ffiffiffi

E
ρ

q

for L and R directions

Radiation ratio R (m4/kg s) R ¼ c
ρ ¼

ffiffiffiffi

E
ρ3

q

for L and R directions

Damping factor δL for L direction
and δR for R direction

δ ¼ K Δf
f r

where fr is the resonance frequency, Δf the associated
damping, and K is a coefficient which varies between 1

x and
π
ffiffi

3
p

448 F.W.M.R. Schwarze and M. Schubert



Fig. 4 (a–f) Transverse sections of untreated controls and Norway spruce wood incubated with
Physisporinus vitreus. (a) Late- and (b) early-wood tracheids of control specimens. L cell lumen,
S secondary wall, Cml compound middle lamella. (c) After 12 weeks’ incubation, delignification of
secondary walls (arrowheads) commenced from hyphae (arrows) growing within the cell lumen of
late- and early-wood (d) tracheids. (e) After 20 weeks’ incubation, secondary walls are strongly
delignified (arrowheads) and cell wall thinning is apparent in late- and early-wood tracheids (f)
(Reproduced from Schwarze et al. [88])
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performance of the fungus and the heterogeneity of the substrate. Highly efficient
modification of wood by P. vitreus is based on optimal development of the myce-
lium, including the lag phase, hyphal elongation, and branching [91]. Mycelial
growth is greatly influenced by environmental conditions [31], and the effect of
the fungus is inextricably linked to the underlying substrate, wood, which is a
complex anisotropic material with several hierarchical levels of organization from
the macroscopic (e.g., growth rings), the mesoscopic (e.g., the set of wood cells)
down to the microscopic, and nanoscopic scales (e.g., wood cells and fibrils). The
interplay among the chemical composition of the substrate, its geometric structure,
and the enzymatic activity influence the performance of P. vitreus and thus the
outcome of the wood modification process. Successful upscaling of biotechnological
processes in which P. vitreus is used to improve the substrate's properties requires a
set of investigations to identify and quantify the important physical, chemical, and
biological parameters and their sensitive control during fungal incubation. In addi-
tion to characterizing the fungal activity, the fungally modified wood has to be
assessed, so an industry cooperation project was launched with the objective of
scaling up the bioincising process using P. vitreus (CTI No. 8593.1). Improving the
effectiveness of wood modification by ensuring variable performance is minimized

Fig. 5 Density distribution in top plates made of Norway spruce wood for the Opus 58, before and
after 12 months incubation with P. vitreus, (a) density map before and (b) density map after fungal
treatment in kg/m3. Note: lower densities (darker areas) in the center of the fungal treatment were
apparent after X-ray radiography analysis. The images were reconstructed with a Toshiba medical
scanner at Leiden University Medical Center/Netherlands (Image analysis was performed based on
an algorithm in Matlab as explained in Stoel et al. [90])
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and development of the fungus is optimized requires identification of the principal
parameters and understanding how these factors influence wood colonization by
P. vitreus. Therefore, we determined the lag phase and the specific growth rate of
P. vitreus under combined effects of a range of parameters (i.e., temperature, water
activity (aw), and pH) [91, 92].

Our results show that temperature and aw, in particular, are key determinants of
the development of P. vitreus, and pH plays a secondary role [92]. The results are in
good agreement with those of Griffin [93] and Anagnost [94], who maintain that
most wood decay fungi are hydrophilic organisms (aw > 0.90) and require aw to be
at least 0.97. Furthermore, Schmidt et al. [66, 67] observed an extraordinarily strong
dependence of P. vitreus on high moisture levels. They reported preferential coloni-
zation and degradation of water-saturated wood [wood moisture content (WMC)
>100 %] of Pinus sylvestris, P. abies, and Fagus sylvatica, with low air content. At
WMC > 90 %, fungal growth within wood is normally impeded by a lack of
oxygen, which highlights the remarkable biological capacity of P. vitreus to degrade
timber in the special habitat of cooling towers. Taken together, these findings
indicate that the amount of water available in the substrate (wood) is a very important
factor for ensuring colonization and fungal growth by P. vitreus. Until the fiber
saturation point (FSP) is reached, moisture in wood exists as bound or hygroscopic
water within the cell wall because of hydrogen bonding of the hydroxyl groups
mainly in the cellulose and hemicellulose [68]. At about the FSP, which ranges
between 25 % and 30 % depending on the wood species, the content of bound water
is maximal and free capillary water in liquid form is available in the cell lumen, as
well in other voids in the woody tissue [68, 94]. To enable a short lag phase and high
growth rate, superficial drying of wood must be avoided by setting low air flow
around the wood and maintaining a high relative humidity. In addition to abiotic
parameters, biotic stress caused by other microorganisms influences the performance
of P. vitreus. Therefore, the competitiveness and growth mode of P. vitreus against a
range of blue stain fungi and Trichoderma species (challenge species) was investi-
gated in dual culture tests and a spatially heterogeneous system of tessellation agar
on different media. In addition, the robustness of wood colonization by P. vitreus
against biotic influences was determined by controlled interaction tests with different
inocula of a range of ascomycetes on Norway spruce heartwood [95]. The selection
of the challenge fungi was based on the fact that in pre-tests of wood incubation with
P. vitreus, the selected fungi occurred as contaminants, or they are known to be
wood-inhabiting pioneer colonizers [31] or, in the case of Trichoderma spp., to have
high antagonistic potential against basidiomycetes [96–98]. A comparison of the lag
phase and growth rate of Trichoderma sp. and P. vitreus revealed that even under
optimal growth conditions, Trichoderma sp. showed a significantly shorter lag phase
and higher growth rate [91, 92, 99, 100]. Apart from their ability to overgrow and
parasitize the mycelium, their high spatial and nutrient competitive abilities make
Trichoderma spp. a decisive competitor of P. vitreus. Schubert and Schwarze [95]
also showed that Trichoderma spp. have by far the most significant negative effect
on the performance of P. vitreus, even with a low inoculum potential. Synthesis of
the results of the influence of abiotic and biotic parameters provides the basis for
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successful scaling up of the technologies and indicates that efficient heartwood
modification by P. vitreus depends on optimal growth conditions as well as inhibiting
contaminants, particularly competition by Trichoderma spp. during the lag phase of
P. vitreus.

Intensive investigations to characterize fungally modified wood as well as to
evaluate bioincised wood as an improved substrate for subsequent treatment with
property-improving substances have been conducted [13, 16, 101–103]. Despite the
higher uptake of wood modification agents after brushing or dipping and particularly
after impregnation, a negative effect of bioincising on the target properties of the
agents, regardless of the application method, has been found [13, 102]. Only the
performance of biocides is enhanced in bioincised wood [103]. Lehringer et al. [101]
showed that under incubation conditions using a malt agar nutrient medium (narrow
C/N ratio of approximately 50/1), the colonization of the wood was very inhomo-
geneous and degradation of bordered pits was accompanied by cell wall degradation
(selective delignification and hotspots of soft rot types I and II). These alterations in
cell wall structure, particularly both types of soft rot, may be responsible for the
enhanced flammability of bioincised wood. As Lehringer et al. [101] discussed in
detail, a high nitrogen concentration (e.g., malt agar) seems to reduce the selective
lignin degradation rate [104] and additionally stimulates polysaccharide breakdown
[105–107]. The occurrence of selective delignification and simultaneous degradation
of lignin, cellulose, and hemicellulose were furthermore demonstrated by ultramicros-
pectrophotometry, Fourier transform infrared spectroscopy [16], and wet chemical
analysis [102]. Vermiculite (wide C/N ratio of approximately 400/1) has been used in
other studies [14, 88], and degradation of pit membranes only coincided with selective
delignification of the tracheids without further cell wall damage.

Taking all important parameters (e.g., water activity, biotic stress, C/N ratio) into
consideration, we developed a controlled wood incubation system for P. vitreus in
which all important parameters can be adjusted accordingly. The required wood
incubation time could be significantly reduced with this incubation system. How-
ever, the larger the wood specimens, the higher the costs and the more difficult it is to
obtain a homogeneous wood colonization and to improve the wood properties. Thus,
according to the current state of knowledge, the developed wood modification
process appears to be most promising for specialized high end products (e.g.,
resonance wood or “mycowood”).

6 Conclusions

6.1 Benefits of Technology Transfer of the “Bioincising”
and “Mycowood” Technology for the Forest and Wood
Industry

Technology transfer does not mean simply movement or delivery; transfer can only
happen if a technology is used. In other words, it is the application of knowledge and
considered a process by which a technology developed for one purpose can be used
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in either a different application or by a new user. One vision of high-technology
wood preservation is the chemical modification of wood to render it impervious to
natural degradation processes. Successful chemical modification of refractory wood
species can only be accomplished if wood permeability is enhanced, which is the
reason bioincising was developed. The estimated costs for the production of
bioincised wood are currently approximately US $5,750 per m3. The technology
breakthrough in this area might not be the meeting of the economic criteria that
would make it applicable to traditional markets for treated wood but rather the
opening up of new markets for value added decorative products. Low maintenance,
durable wood products have been clearly identified as having considerable market
potential. The best added value is derived from products that customers buy because
they want them, not because they have to. More is paid for beauty than for
practicality. In this context, musical instruments such as the violin are high-end
products and a unique investment. Facing volatile equity markets, investors often
look to gold and silver, but an updated study of classical instrument valuations by
Graddy and Margolis [108] shows that violins may be among the most stable of
investments. Their data indicate that between 1850 and April 2009, the value of
professional-quality instruments rose in real terms (i.e., after inflation) approxi-
mately 3 % annually. High-end violins have appreciated at much higher rates,
particularly the rare instruments made by Italian masters such as Stradivari, Amati,
and Guarneri del Gesù. Since the beginning of the nineteenth century, Stradivarius
violins have been compared with contemporary instruments made by other violin
makers in so-called blind tests, the most serious of all probably being that organized
by the BBC in 1974. In that test, the world famous violinists Isaac Stern and Pinchas
Zukerman, together with the English violin dealer Charles Beare, were challenged to
identify blind the “Chaconne” Stradivarius made in 1725, a “Guarneri del Gesu” of
1739, a “Vuillaume” of 1846, and a modern instrument made by the English master
violin maker Roland Praill. The result was rather sobering; none of the experts were
able to correctly identify more than two of the four instruments, and in fact, two of
the jurors thought that the modern instrument was actually the “Chaconne”
Stradivarius.

In a blind test at the Osnabr€ucker Baumpflegetage in 2009, the British star
violinist Matthew Trusler played five different instruments behind a curtain so that
the audience did not know which was being played. One of the violins Trusler played
was his own “Strad,” worth US $2 million. The other four were all made by Michael
Rhonheimer: two from mycowood and the other two from untreated wood. A jury of
experts, together with the conference participants, judged the tonal quality of the
violins. Of the more than 180 attendees, an overwhelming number (90 persons)
considered that the tone of the fungally treated violin “Opus 58” to be the best.
Trusler’s Stradivarius reached second place with 39 votes, but, amazingly, 113 mem-
bers of the audience thought that “Opus 58” was actually the Strad! “Opus 58” was
made from wood that had been treated with fungus for the longest time, 9 months. In
comparison with the untreated wood instruments, the violins made of mycowood
had a warmer, rounded mellow sound. Many participants at the Osnabr€ucker
Baumpflegetage stressed that the high notes of the untreated violins are irritating
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on the ear, unpleasant, and shrill, whereas these high notes of the treated wood
violins were dampened and the violins sounded more mellow and warmer. The
quality of the resonance wood is very important for the acoustic quality of the violin.
The method described here for modifying wood is intended primarily to allow better
solo instruments to be made. A solo violinist prefers an instrument that is suitable for
playing “against” the orchestra. Its tonal properties include high projection ability,
high volume, and dynamic range, together with a sensitive modulation of tonal
colors. These properties directly depend on the material quality of the resonance
plates of the violin. This quality correlates positively with the velocity of the
longitudinal sound waves (both across and along the grain) and negatively with
wood density. A material with a high ratio of sound velocity to density increases the
sound emission of the instrument, which means that the plate amplitudes are high in
relation to the force that excites the strings. This enhancement of resonance makes
the difference between a violin of average quality and one that is suitable for a top
soloist. Future acoustic instruments, made from wood modified by the described
procedure, are desirable because of the enormous size of today’s concert halls and
the needs of soloists. Instead of seeing the forest as a mass source of low-grade pulp
wood that yields only a few US dollars per cubic meter, the trees can be nurtured to
their highest potential, where a single violin top (a piece of wood 2.5 cm thick, 6 cm
wide, and 35 cm long) can command a price of hundreds of US dollars. That same
piece of wood, after leaving the hands of a skilled violin maker, may then be priced
in the many thousands of US dollars. Admittedly, not all trees will measure up to
these standards, and a large forest industry cannot rely on the demand from violin
makers alone. But the point is that it is the highest possible potential of the forest that
should be kept in mind as the guiding principle of forest stewardship, not necessarily
the most immediate short-term liquidation of the resource, which seems to have been
the objective of much of the forest policy of the past. The mycowood method
described here allows improvement in the acoustic properties of resonance wood
at a time when it is becoming increasingly difficult to find naturally grown, superior-
quality resonance wood because of the impact of global warming. For the profes-
sional musician, a violin or cello made in northern Italy’s Cremona is the ultimate
status symbol. Prices can run as high as US $27,000 for a violin, double for a cello.
As with other crafts in Europe, lutherie is coming under threat from inexpensively
made Chinese products. Xiqiao in southeast China has more than 40 companies
turning out a violin, bow and case for US $25. The Taixing Fengling Musical
Instrument Co., one of the largest, made 300,000 violins, violas, cellos, and basses
in 2009. To compete, Cremona and other European violin makers must compete on
quality. The estimated costs for the production of mycowood (i.e., for a top and
bottom plate) are currently approximately US $2,500. Thus the mycowood technol-
ogy meets the economic criteria and enables acoustically superior instruments with
same tonal quality to be available to talented young musicians who would never be
able to afford their own Stradivarius. These studies have sparked the worldwide
interest of the media, music lovers, and violin makers. A number of companies that
produce acoustic panels and resonance wood suppliers are interested in using wood
decay fungi to improve the acoustic properties of wood, which will revolutionize the
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use of wood in traditional musical instrument making of guitars, violas, hammered
dulcimers, acoustic panels, and/or wood cones for loud speakers. The appreciation of
wood in the world of acoustics and sounds will continue to increase. Thus, wood can
improve its competitive edge over synthetic materials such as carbon fibers that are
increasingly being used in musical instrument making. Further studies are currently
in progress with the objective of developing a quality assurance program to maxi-
mize the probability that minimum standards of quality are being attained by the
mycowood process.
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Abstract
Lactones are important secondary metabolites for fungi. In this chapter
are presented some lactones that are important in biotechnology such as flavoring
lactones or fragrance macrocyclic musk compounds, whereas others are impor-
tant for quorum sensing and health (mycotoxins). Different pathways or enzymes
can give rise to lactones, and the pathways going through β-oxidation
and ω-oxidation and the fungal polyketide pathway (relatively similar to the
fatty acid synthesis pathway) are presented as well as the activity of
Baeyer–Villiger monooxygenases and lactonases and their potential use in
biotechnology.

Keywords
Lactones • Macrocyclic musk fragrances • Butyrolactone • Quorum sensing •
Mycotoxins • Patulin • Aflatoxins • β-Oxidation • ω-Oxidation • Polyketide
synthase • Baeyer–Villiger monooxygenase • Lactonase
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DALs Dihydroxyphenylacetic acid lactones
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FAS Synthesis of fatty acids
HSP Heat shock protein 7
IC50 Half maximal inhibitory concentration
MAP, MAPK, MAPKKK Mitogen-activated protein kinase (MAP), kinase (K)
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PKS Polyketide synthase
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RALs Resorcylic acid lactones
TAK Transforming growth factor-activated kinase
ZAL Zearalanol
ZAN Zearalanone
ZEN Zearalenone
ZEL Zearalenol
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1 Introduction

The lactone function is characterized by the presence of an ester in a cycle. A lactone
is thus an oxygenated heterocycle resulting from the cyclization (or lactonization) of
hydroxy acids. γ-Lactones and δ-lactones, also corresponding to 4- and 5-olides,
represent the two structures most frequently identified in the composition of aroma
compounds. They result from the cyclization of acids hydroxylated in 4 or 5. But
there are several other groups of lactones exhibiting various important properties.
Among them are volatile lactones exhibiting flavoring and perfuming properties as
well as lactones involved in cell-to-cell communication, but lactones can exhibit
other bioactivities such as antimicrobial, anti-inflammatory, and anticancer ones.
Fungi are able to produce several types of lactones. Yeast is the reference organism
for the biotechnological production of musk macrocyclic lactones and of the
flavoring γ-decalactone. Besides, communication homoserine lactones, although
having been more studied in bacteria, exist also in fungi. Less-known lactones
exhibiting antimicrobial effects have also been identified in fungi. Eventually, fungal
polyketide synthases are versatile tools to produce lactones.

This chapter aims to introduce pathways for lactone formation in yeast and other
fungi, and, after giving a short introduction on the principles of lactone formation, it
will present the pathways for the production of the various lactones cited above.

2 General Ways of Lactone Formation

Lactone can result from different enzymatic pathways, and three main biosynthetic
pathways are presented in this part. Some of these ways (β- or ω-oxidation) can be
related to the main metabolic pathways of oxidation of lipids in fungi (Fig. 1). Main
pathways for catabolism of hydrophobic compounds give potentially rise to lac-
tones, while another is specific for the synthesis of polyketides. Besides, some
enzymes involved in various pathways (Baeyer–Villiger monooxygenases,
lactonases) can also catalyze the synthesis or hydrolysis of lactones.

2.1 Lactone Resulting from Intra-esterification of Hydroxy Acids

This pathway is a very common way to get lactones [1]. When the hydroxyl group of
a fatty alcohol can be in contact with the hydroxyl from the acid group, esterification
can occur readily, especially in acidic conditions.

Different types of enzymes can be involved in this reaction. First, fatty acids have
to be hydroxylated which is catalyzed by oxygenases, hydratases, or hydroxylases.
Monooxygenases are available in the ω-oxidation pathway. They can oxidize
alkanes at one end of the molecule or fatty acids in the ω-end of the molecule.
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Their role in metabolism and in biotechnology will be given in the part on macrocy-
clic lactones, and some fundamental or applied aspects have already been given in
[2, 3]. Beside these α- and ω-regiospecific enzymes, there is a great deal of cyto-
chrome P450 enzymes catalyzing oxidation of various substances [4]. However, in
the case of fatty acid hydroxylation, most enzymes are not specific, giving rise to
several different hydroxy acids with low yields. For instance, Mortierella sp. were
used to transform caprylic acid into octalactone but gave rise to several different
lactones [5].

If the hydroxyl group is not well located to react with the acid group, β-oxidation
can occur first, resulting in a shortening of the distance between the two groups. This
oxidation system involves a set of four reactions occurring in a cyclic way on
energized fatty acids, acyl-CoA (Fig. 2). At each cycle, the length of the fatty acyl
decreases of two carbons and an acetyl-CoA is created. Through this mechanism, a
10-hydroxylated fatty acid like ricinoleic acid 1 on Fig. 2 can be shortened of 6 or
8 carbons (3 or 4 β-oxidation cycles), giving rise to an ε- or γ-lactone, respectively.
In the set of β-oxidation enzymes, there is an enoyl-CoA hydratase catalyzing the
3-hydroxylation of the acyl-CoA which is later dehydrogenated into its ketone.
When lactonization occurs during this β-oxidation cycle, it can thus give rise to
functionalized lactones. The catabolism of ricinoleic acid 1 on Fig. 2 giving rise to
various lactones has been discussed in [6], and more information on biotechnolog-
ical applications of β-oxidation will be given below, in the part on flavoring lactones.

In many cases, intra-esterification occurs readily, but some esterases have also
been shown to exert a lactonase activity catalyzing cyclization or the opening of the
lactone cycle. Actually, hydrolysis has been more investigated as it is involved in the
catabolism of active compounds, whereas for esterification it is often difficult to state
whether it has occurred readily or through an enzymatic catalysis. Readers interested
in microbial lactonase activities can find information in a review on this subject [7].

Fatty acid

Acyl-CoA

β-oxidation

triacylglycerol
Fatty alcohol

Fatty aldehyde

Alkane

Fatty alcohol

Fatty acid

Fatty aldehyde

ω-hydroxy fatty acid

ω-keto fatty acid

Dicarboxylic
Acetyl-CoA
Acetyl-CoA
Acetyl-CoA

Acetyl-CoA

acids

γ-, δ-, ε- ω-lactones

From 
γ-, δ-, ε-,ω-hydroxy-acyl-CoA 

ω-oxidation

Fig. 1 Main pathways for catabolism of hydrophobic compounds giving potentially rise to
lactones
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2.2 The Polyketone Pathway

Beside the hydroxyl fatty acid pathway, a very common pathway in the synthesis of
lactones is through the polyketide synthase pathway [8]. Polyketides are a family of
complex secondary metabolites built from carboxylic acid building blocks. In
microorganisms, they are produced by large, multifunctional proteins termed poly-
ketide synthases (PKS). This pathway involves a set of basic reactions that are often

O

ricinoleic acid 1

lactonization

β-oxidation
(3 cycles)

β-oxidation

ε-dodecalactoneHO

HO
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O
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dehydrogenase 
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3

a

b

OH OH

Fig. 2 β-Oxidation and synthesis of lactones (a) and synthesis of lactones from intermediates of
β-oxidation cycle (b)
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compared to the synthesis of fatty acids (FAS) as there is a start with a keto-synthase
with an acyl group which condensates with acyltransferase-catalyzed loaded
malonyl units onto an acyl carrier protein. Ketoreductase, dehydratase, and enoyl-
reductase catalyze the processing of the compounds which is eventually terminated
by a thioesterase. In fungi, this pathway has first been observed in the synthesis of
patulin (see below) but is also at the origin of aflatoxins and many compounds. The
better understanding of the PKS pathway in fungi enabled evolutionists to investi-
gate the relationship between the various PKS and FAS systems [9]. This confirmed
that the iterative fungal PKS-I system is directly related to the animal FAS-I system
and far from the fungal FAS-I system.

2.3 Baeyer–Villiger Monooxygenases

Baeyer–Villiger (BV) oxidation consists in the transformation of a linear or cyclic
ketone into its corresponding ester or lactone by insertion of an oxygen atom next to
the carbonyl group (Scheme 1). It is catalyzed by Baeyer–Villiger monooxygenases
(BVMOs, EC 1.14.13.x), which were first isolated in the 1960s, and their encoding
genes, identified in the 1990s. There are different types of BVMO but the majority is
sequence related (type I BMVOs), and they belong to the subclass B flavoprotein
monooxygenases; the FAD cofactor is the prosthetic group, and they depend on
NADPH as electron donor. An exhaustive review on the subject has been published
some years ago [10].

The role of this enzyme is not fully elucidated, but it is remarkable that it has been
only described in microorganisms where BMVO-specific protein sequence motifs
have been found in each microbial genome investigated. However, some specific

Hydrolysis followed by β-oxidation

limonene

FAD-

monooxygenase

epoxyde

hydrolase

de-

hydrogenase

BVMO

BVMO

Scheme 1 Degradation of limonene by the mountain pine beetle-associated pathogenGrosmannia
clavigera (Adapted from Wang et al. [13])
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filamentous fungi possess families of BMVO-encoding genes. These enzymes can
fulfill a variety of functions, such as catabolic properties enabling microorganisms to
grow on and degrade various ketones (shown for Candida sp. in [11]), cyclic
alkanes, alcohol, or terpene into dicarboxylic acids (shown for bacteria in [12] and
for Grosmannia clavigera in [13] (Scheme 1)), and, as shown below, they are
involved in the synthesis of secondary metabolites.

3 Lactones as Flavors and Perfumes

3.1 Lactones as Flavors

3.1.1 Historic of Production
Short- and medium-sized length lactones resulting from the esterification of
hydroxy fatty acids are an important family of aroma compounds. From
butyrolactone (butyrolactone corresponds to two different molecules depending
on the field, flavors, or quorum sensing; here it stands for molecule 3 in Fig. 2
with R = 0, while in the field of quorum sensing, butyrolactones correspond to
lactones with a 4-carbon ring (or γ-lactones or 4-olides) like butyrolactone-I 10)
to C12 γ- or δ-lactones that can be functionalized or desaturated, there are several
lactones possessing flavoring properties especially with fruity, fatty, and oily
notes (Fig. 3). These lactones are present in many fruits where they are likely to
result from the 1.1 pathway shown above. Yeasts are also able to synthesize these
compounds that can be encountered in fermented food such as bread, beer, or
whisky [14]. During fermentation, the pathway of synthesis involves first a
hydroxylation step which can be fulfilled by lactobacilli before the β-oxidation
step carried out by yeast [15]. With similar ways of synthesis from plants and

6-pentyl-α-pyrone: coconut

δ -jasminolactone: oily, fruity, floral, jasmin, peach

γ -octalactone: coconut, caramel

γ -dodecalactone: peach, butter, fatty, musk

δ -decalactone: peach, oily, creamy

γ -decalactone: peach, fatty, fruity

γ -nonalactone: coconut, fatty, fruity, aniseed

4

5

6

7

Fig. 3 Some lactones possessing flavoring properties and their characteristic notes
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from yeasts, these latter catalysts have been employed to produce lactones with
the natural label from the first observation of their capability to produce lactones
which occurred from investigation of the metabolism of hydroxy fatty acids.
When using Candida sp., γ-decalactone 2 accumulated during the catabolism of
ricinoleic acid (hydroxylated in C10) [16]. In this study, ricinoleic acid 1 had
been chosen because it was the only hydroxy acid available at low cost and in
high amount. Indeed, due to a specific evolution in castor beans, castor oil
possesses about 90 % ricinoleyl moieties. From ricinoleic acid, γ-decalactone
will be produced. This lactone benefited from technology developments becom-
ing the aroma compounds the most produced through biotechnology. Its cost
followed the trend from a fine chemical price (around $12000/kg in 1986) to a
low cost of natural aroma compounds ($500/kg in 1998) [17]. The development
of research to produce lactones through biotechnology has also to be related to
the consumers’ trend toward natural compounds. There has been a first period of
interest in the 1980s–1990s which followed the demand of European consumers
(mainly in German-speaking countries in the beginning). During this period,
most pathways of synthesis of aroma compounds had been investigated, and
only some had been selected as potential sources of realistic price compounds [3].
Other lactones produced at this time were 6-pentyl-α-pyrone 4, δ-jasminolactone
5, γ-octalactone 6, γ-dodecalactone 7, δ-dodecalactone, etc. (Fig. 3). Finally,
after a time of decrease in the interest, activities in lactone production began to
rise again with the world interest for natural flavors in the 2000s. In the meantime,
the price decreased again, making it more difficult for new companies aiming at
beginning production. Moreover, despite some rare new biotechnological strat-
egies or the identification of some efficient catalysts, most of the strategies
published in the present period cannot address the real issues in the field which
are described in the next part. Instead of this, most of the works published
recently concern the optimization of production with a specific medium or the
repetition of previous studies on the effect of aeration or on the performances of
POX-mutants from Yarrowia lipolytica.

3.1.2 Limiting Steps of Lactone Production

Hydroxylation
As shown above, from fatty acids hydroxylated at various carbons, it would be
possible to produce several lactones. However, production is limited to natural
precursors that are already available at a low cost, such as ricinoleic acid 1, and to
precursors that can be specifically hydroxylated, such as unsaturated fatty acids that
can be hydroxylated by some fungal activities. The ability to hydroxylate a fatty acid
at a specific level and with good yields could have a high impact on lactone
production (see [1] for review), but this step, which has been a real challenge in
the first period of development of lactones, does not receive much attention now.
Fungi able to hydroxylate before carrying out β-oxidation could be particularly
interesting as the two steps of biotransformation could be carried out in one reactor.
Some examples are shown in Fig. 4. Another strategy to overcome this problem is to
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modify plant substrates to make them produce hydroxylated fatty acids. Indeed, in
the case of castor beans, it is remarkable that it is only a 4-amino acid evolution
which changed the desaturase activity into a hydroxylase one [18]. From these facts,
it seems promising to modify further enzymes of the fatty acid synthetic pathways to
get a higher diversity of plant fatty acids.

β-Oxidation Control
The other crucial point is to control the flux of β-oxidation in yeast cells. Indeed,
β-oxidation can go on after the stage of lactone formation, or the synthesized lactone
can be further degraded by the producing cells. The fluxes of production have thus
been investigated with several models for the production of γ-decalactone. Some
interesting works have shown with Sporobolomyces sp. that several different models
of channeling were present in the different strains tested [19]. In the meantime,
works were carried out with mutant of the yeast Yarrowia lipolytica. This species is,
for many producers, the γ-decalactone-producing species. It is also a reference
species for the study of lipid metabolism as it possesses many multigene families,
and it can be genetically manipulated [2]. The role of the various enzymes has thus
been characterized [20–22], enabling to genetically engineer new strains [23] and to
study fluxes in this species [24].

A physicochemical approach was also used to decrease both the lactone toxicity
toward and the lactone degradation by the producing cells. Lactone was trapped
using various materials exhibiting affinity, and a reactor was designed [25–27].

Finally, these studies show a diversity of yeast behavior with some strains
exhibiting very efficient β-oxidation that requires non-favorable conditions to pro-
duce lactones [1, 3, 6, 28–30], whereas other strains exhibit a channeled production
with an increased production in better conditions (Alchihab, personal
communication).

Recently a strain of Waltomyces lipofer exhibiting no limitation of lactone
production has been reported and patented [31, 32]. Depending on the hydroxylated

caprylic acid

linoleic acid

linoleic acid

linolenic acid

oleic acid

γ-octalactone
R=4

γ -nonalactone
R=5

6-pentyl-α-pyrone
R=5

δ-jasminlactone

γ-dodecalactone
R=8

Fig. 4 Lactones produced
from non-hydroxylated fatty
acids (Adapted from
Romero-Guido et al. [1])
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substrate, this strain was able to produce γ-dodecalactone, γ-decalactone, and
γ-butyrolactone. This strain revolutionized the knowledge acquired on lactone
production as (i) it was not sensitive to lactone toxicity and could produce more
than 50 g/l of the highly toxic γ-dodecalactone; (ii) it could produce in a state of
permeabilization with a 70 % ethanol treatment and other drastic treatment which did
not seem to alter the β-oxidation pathway and all the cofactor regeneration required,
if this pathway was also the one involved in this strain; and (iii) in some cases,
accompanying the 100 % conversion of hydroxy acid into lactone, the cell produced
de novo about 20 % of the same lactone from glucose, reaching yields about 1.16 to
1.22. This latter point suggests the ability to produce C10 hydroxylated fatty acids by
this yeast.

3.2 Macrocyclic Musk Lactones

3.2.1 Macrocyclic Musk Fragrances
Musk-like fragrances have been used from the late antiquity and still have wide
applications in the world of perfumes as bottom notes exhibiting warm, sweet,
powdery, or animal notes that are long-lasting, tenacious, and substantive. They
are particularly interesting in cosmetics where musk is among the most popular
perfumes for shower gels and deodorants [33]. Three main categories of compounds
exhibit these musk notes: aromatic nitro-musks, polycyclic musk compounds (e.g.,
galaxolide, which, with its low cost and strong and sweet floral musk smell, has been
used in many perfumes), and macrocyclic musk compounds. The two first groups are
used in the cosmetics and detergent industries, but their detection in human tissues
and in the environment in addition to a suspicion of carcinogenic properties gave rise
in the 1990s to a public debate on safety concerns resulting in their progressive
replacement by compounds belonging to the 3rd group.

This latter group consists of macrocyclic ketones and lactones that are synthe-
sized from fatty acids (Fig. 1). The compounds responsible for these sensorial notes
were at the origin extracted from glands of animals such as the Asian musk deer
(Moschus moschiferus, Moschidae) for macrocyclic ketones and from plant sources
for macrocyclic lactones. From animal origin, the price was very high as about
30–50 animals had to be sacrificed to get one kg of musk grains (without the
possibility of eating the meat due to the strong musk odor). Despite the high price,
this source was common in many popular perfumes until the protection in 1979 of
musk deer as an endangered species (CITES). In plants, macrocyclic lactones
(or macrolides) were isolated from angelica root (e.g., 15-pentadecanolide), ambrette
seed oil, galbanum resin, orchids, etc. Although most of these ketones and lactones
were considerably more expensive than musk fragrances from the two other groups,
interest to them increased with the process of replacement of synthetic compounds
that begun in the 1990s. However, as the synthesis of precursors of macrocyclic
ketones and lactones was possible through a fungal metabolic pathway, yeast cells
were rapidly preferred to plant and animal extraction for production. A set of
compounds produced through yeast biotechnology was soon available with ketones
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such as muscone 8 and exaltone resulting from α,ω-dicarboxylic acids and macro-
cyclic lactones resulting from acid–alcohol. The pentadecanolide 9 isolated from
angelica root was thus proposed by several fragrance producers under different
commercial names (e.g., exaltolide, thibetolide, macrolide, pentalide, etc.) (Fig. 5).
The fragrance of the compounds depends on their structure as well as on their chain
length. With 14 carbons, a weak musk scent is exhibited, but the musk odor is strong
and nice with 15- and 16-carbon compounds [34].

3.2.2 Pathway of Synthesis
The complete pathway of synthesis of macrocyclic molecules goes through the
synthesis of a 15– 16-carbon-long fatty acid that is oxidized into ω-hydroxy fatty
acids or α,ω-dicarboxylic acids and then cyclized into ketone or lactone
macrocycles. The pathway of production is rather similar for the homologous cycles
exhibiting animallike fragrances and for the heterologous cycles exhibiting plantlike
fragrances, the first one going through the intra-esterification of ω-hydroxy fatty
acids and the second one through the one of α,ω-diacids (Scheme 2). From Baeyer’s
strain theory and entropy studies, it has long been thought that such molecules with
ring sizes over seven carbons were impossible to get [147]. However, they were not
only present in nature but also possible to synthesize with the help of fungi catalysis.
It must be stressed, however, that, contrary to the flavor lactones presented above,
macrocyclic compounds result from a minor metabolic pathway which gives only
rarely rise to macrocyclic ketones or lactones in the culture medium for wild-type
yeasts. This pathway, through ω-oxidation (Fig. 1 and Scheme 2), enables the cell to
oxidize alkanes and fatty alcohols into fatty acids that can enter the β-oxidation
pathway. However, beside β-oxidation, alkanes and fatty acids can undergo the
ω-oxidation pathway which is catalyzed by a cytochrome P450 oxygenase encoded
by an ALK gene. The third step of the pathway, cyclization, is based on the
esterification of the alcohol–acid or diacid molecule. This reaction occurs readily
in many conditions, but the intra-esterification giving rise to macrocyclic compounds
is competing with interesterification which results in polymers. The conditions and
concentrations of precursors must be carefully chosen to favor the first reaction. It is
also possible to favor lactonization with biocatalysis as several fungal lipases exhibit
lactonase activity.

A B C D

8 9

a b c d

Fig. 5 Some macrocyclic musk produced commercially with their commercial names. (a)
Civettone or civetone; (b) muscone; (c) ambrettolide; (d) exaltolide, muskalactone, pentalide,
thibetolide (Adapted from Sommer [34])
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3.2.3 Biotechnological Developments
Due to the growing interest in natural and safe macrocyclic musk fragrances and to
the limitation in the possibility of extraction from animal or plant tissues, biotech-
nologists have begun to imagine new ways to obtain these compounds in the
beginning of the 1990s. The starting materials were natural C15 and C16 fatty
acids available at a relatively low cost. The biocatalytic part began at this stage
with yeast ω-oxidation. As mentioned earlier, this pathway is rather a minor one, and
C15 or C16 fatty acids are likely to be oxidized in the β-oxidation loop in most yeast
possessing an efficient ω-oxidation biocatalytic potential. As a result, the pioneering
work by Picataggio [35, 36] consisted in engineering genetically a strain of Candida
tropicalis to block the β-oxidation pathway and, in the meantime, to amplify the
ω-oxidation monooxygenase enzyme. To block the β-oxidation pathway, the POX
gene encoding the enzyme catalyzing the first reaction, the acyl-CoA oxidase (Aox)
was deleted. As this strain possessed two copies of a family of two POX genes
(POX4 & POX5), the authors had to delete 4 genes. This first step was required to
avoid degradation of the macrocycle precursors in this pathway, but, to increase the
ω-oxidation pathway, the monooxygenase encoding gene (ALK1) and the CPR genes
coding for the NADPH–cytochrome P450 reductase had to be amplified. This
strategy was a success which limited the access to yeast macrocyclic musk to
competitors. A second group in Japan working with a related strain belonging to
Candida maltosa investigated another strategy based on repeated mutagenesis and
screening for higher dicarboxylic acid production. They selected strains
overproducing dicarboxylic acids, and, through analysis of the resulting strains
[37], it was shown that the overproducing strain of C. maltosa exhibited decreased
level of β-oxidation proteins and an increased induction of synthesis of Alk proteins
in the presence of alkanes.

Scheme 2 Pathway for the synthesis of macrocyclic lactone and other α,ω-cyclic fragrances from
a carboxylic acid
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4 Lactone for Quorum Sensing (QS) in Yeast and Fungi

4.1 Introduction to Lactones for Quorum Sensing

Quorum sensing (QS) is a phenomenon of the microbial communication whereby
the accumulation of certain chemical compounds (signal molecules) enables a single
cell to sense the population density. This phenomenon is widespread in microbial
communities and mostly studied in bacteria. QS enables bacteria to coordinate gene
expression according to the density of their local population and to coordinate
certain of their behaviors such as biofilm formation, virulence, and antibiotic resis-
tance. These responses include adaptation to availability of nutrients, defense against
other microorganisms which may compete for the same nutrients, and the avoidance
of toxic compounds potentially dangerous for bacteria. Quorum sensing is also
prevalent in the unicellular (yeast) and filamentous fungi. It has been observed
fifteen years ago with the discovery that farnesol controls filamentation in the
pathogenic polymorphic fungus Candida albicans [38] and that phenylethanol and
tryptophol stimulate morphogenesis and pseudohyphal growth formation in Saccha-
romyces cerevisiae [39]. Furthermore, quorum-sensing mechanisms are reported in
various filamentous fungi including Aspergillus nidulans, Aspergillus terreus, Pen-
icillium chrysogenum, and Penicillium sclerotiorum [40–42].

Lactone-containing compounds are widespread in nature and are involved in
acting as signaling molecules in bacteria and fungi. A large group of QS signals
including lactone-containing molecules such as acyl-homoserine lactones (AHLs),
butyrolactone-I 10, and γ-heptalactone 11 are found in several gram-positive and
gram-negative bacteria and filamentous fungi (e.g., A. nidulans) [43]. AHLs, com-
posed of a lactone ring and different-length and different-substituent acyl side chain,
are the major class of QS molecules in bacteria and are produced by more than
50 different bacterial species. Each AHL is catalyzed by a specific AHL synthase
enzyme belonging to the LuxI family and corresponds to a particular cytoplasmic
DNA-binding regulator LuxR-type protein in bacteria such as Pseudomonas
aeruginosa [44]. At high cell densities, the accumulated autoinducer AHLs bind to
regulatory proteins LuxR, and then this complex recognizes and binds specifically to
a QS-regulated promoter, thus activating the transcription of target genes (DNA
sequences) and inducing a particular QS response [45].

Other lactone-containing compounds such as γ-butyrolactone are found as sig-
naling molecules in filamentous bacteria Streptomyces sp. [46]. The high similarities
between the filamentous bacteria and filamentous fungi triggered researchers to
investigate the presence and role of γ-butyrolactone-containing molecules in fila-
mentous fungi [43]. It was later reported that several γ-butyrolactone-containing
molecules such as butyrolactone-I 10, γ-heptalactone 11, and multicolanic acid 12
act as putative QS molecules in filamentous fungi.

The study of quorum sensing belongs to microbial ecology and population
biology. It is still very little known about the mechanisms of synthesis and
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metabolism of signaling lactone-containing molecules involved in different bacterial
and fungal species. The understanding of the above phenomena could have great
potential for enhancing industrial production of commercially useful bacterial and
fungal products. The genetic manipulations of the genes involved in the lactone QS
and its metabolism processes could result in generation of engineered bacterial and
fungal strains having implication in medicine, agriculture, and biotechnology with
more specificity, i.e., antibiotic therapy, preventative therapy for plant disease,
biosynthesis of antibiotics, and luminescent biosensors.

4.2 Lactone-Containing Molecules for Quorum Sensing in Fungi

The lactone-containing molecules for QS phenomenon in filamentous fungi have
only recently been observed; however, the criteria for existence of this system in
fungi are based on proposals which are particularly verified in bacteria and yeast
[47]. One of the fundamental characteristics of quorum-sensing signaling molecules
is the increase in concentration as the microbial population grows and the subsequent
autoinduction when the population density threshold has been reached, which
ensures the correct timing of the physiological response [48]. For a molecule to
qualify as a quorum-sensing entity, it should satisfy some critical characteristics: the
molecule should be produced throughout the growth of the organism; however, the
quorum-sensing response is only initiated at a certain stage of the growth [49]. It is at
this stage of growth that the increase of the QS molecule reaching a specific
concentration alters a coordinated response in the entire population’s behavior, i.e.,
secondary metabolite production. In many fungi such as Aspergillus nidulans,
Aspergillus terreus, Penicillium chrysogenum, and Penicillium sclerotiorum,
oxylipins and lactone-containing molecules have been considered as signaling
molecules and are reported to induce physiological responses including morpholog-
ical changes, sporulation, and secondary metabolite production including myco-
toxins and antibiotics [40–42]. Table 1 provides further evidences of various
lactone-containing signaling molecules utilized by fungi and their biological
functions.

Table 1 Filamentous fungi and lactone-containing QS with their corresponding target functions

Filamentous
fungi

QS lactone-
containing
molecules Physiological response References

Aspergillus
terreus

Butyrolactone-I 10 Hyphal branching, submerged sporulation,
secondary metabolite production
(lovastatin and sulochrin)

[40]

Aspergillus
nidulans

γ-Heptalactone 11 Increases penicillin production [50]

Penicillium
sclerotiorum

Multicolanic acid
12 and derivatives

Sclerotiorin production (antibiotic) [51]
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4.2.1 Butyrolactone-I
Butyrolactone-I 10 is produced as a secondary metabolite by Aspergillus terreus.
Because small butyrolactone-containing molecules act as self-regulating factors in
some bacteria, the effects of butyrolactone-I addition on the producing organism,
specifically changes in morphology, sporulation, and secondary metabolism, were
recently studied [40, 52]. Threefold or greater increases in hyphal branching,
submerged sporulation, and secondary metabolism were observed when
butyrolactone-I was added to cultures of A. terreus. Schimmel and co-workers
observed that butyrolactone-I acts as a signaling molecule to enhance the production
of the secondary metabolite lovastatin (threefold increase) and sulochrin (twofold
increase) in similar growth conditions when compared to the control without
butyrolactone-I addition [40]. It was also found to have an auto-stimulatory function
as well as induction of lovastatin biosynthetic genes [51]. Lovastatin is known
therapeutically important for the prevention of cardiovascular disease [53, 54], and
sulochrin has weak antibacterial and antifungal properties [55]. Furthermore, these
findings indicate that butyrolactone-I induces morphological and sporulation
changes in A. terreus and enhances secondary metabolite production in a manner
similar to the changes that were observed with small γ-butyrolactone-containing
molecules in filamentous bacteria of the genus Streptomyces. This observation is in
accordance with the idea that butyrolactone-I may function as a QS molecule in
A. terreus. The practical application of these studies is the possibility that
butyrolactone-I could be used to increase or promote the production of desired
secondary metabolites in A. terreus, i.e., lovastatin and sulochrin production. More-
over, the mechanism by which butyrolactone-I is produced or diffused out of the
fungal cells during the growth process is not known.

Butyrolactone-I 10 γ -Heptalactone 11 Multicolanic acid 12

Besides, butyrolactone-I is known as an antitumor and anticancer molecule.
Indeed, it is a potent and selective inhibitor of the cellular roles of cyclin-
dependent kinase (CDK) enzymes, specifically inhibiting Cdk2 and Cdc2 kinase
[56]. CDKs are protein kinases that control cell cycle progression in all eukaryotes
and are regulated by phosphorylation and dephosphorylation of critical serine,
threonine, or tyrosine residues. The inhibitory effect of butyrolactone-I due to
competition with ATP binding at CDK is to block the phosphorylation of the
transcription factor E2F-1. Therefore, it inhibited Cdc2 of unsynchronized cultured
prostate cancer cells and interrupted the cell cycle progression toward cell
division [57].

15 Lactone Formation in Yeast and Fungi 475



4.2.2 g-Heptalactone
Another γ-butyrolactone-containing molecule, γ-heptalactone 11, is an endoge-
nously produced QS molecule regulating growth and secondary metabolite produc-
tion by Aspergillus nidulans [50] that is a filamentous fungus well known for its
ability to produce the secondary metabolite penicillin [58]. This fungus produces
γ-heptalactone at a high cell density, and it can alter the organism’s behavior at a low
cell density, i.e., altering the organism’s growth profile by shortening the lag phase. It
also induces the production of the secondary metabolite penicillin. Indeed, the
addition of this γ-butyrolactone-containing molecule to the wild-type A. nidulans
strain led to a 31.9 % increase in penicillin production [50]. Because fungi coexist
with bacteria in the environment, so they must rely on chemical defense mechanisms
due to their lack of an active immune system. It can be suggested that A. nidulans has
adapted a QS process and uses a range of regulatory circuits to adjust gene expres-
sion and coordinate cell-to-cell interactions.

The identification of γ-heptalactone as a QS molecule in A. nidulans can be
further explored and hence exploited by the biotechnology industry to enhance
yields of penicillin production. In flavor and fragrance industries as shown above,
this lactone is widely used in peach, nut, maple, almond, caramel, and cream flavors,
for a creamy finish in most vanilla, and in coconut and gardenia fragrances.

4.2.3 Multicolanic Acid 12 and Derivatives
Multicolanic, multicolosic, and multicolic acids were isolated by Gudgeon et al. [59]
from Penicillium sclerotiorum. These compounds belong to a small group of
chemicals called tetronic acid metabolites [60] which contain a γ-butyrolactone
molecule. These γ-butyrolactone-containing compounds are synthesized by oxida-
tive cleavage of an aromatic precursor 6-pentylresorcylate [61] and classified as
hexaketides because of their polyketide origin [62].

In order to test whether γ-butyrolactone molecules produced by P. sclerotiorum
exerted a physiological response in the cells, the effect of these potential quorum-
sensing molecules on sclerotiorin production in these fungus was investigated
[51]. This study suggests that addition of spent medium containing the putative
quorum-sensing molecules has the ability to initiate production of sclerotiorin in a
low-sclerotiorin-producing strain. The presence of γ-butyrolactone-containing mol-
ecules (multicolic acid, multicolosic acid, multicolanic acid, and related derivatives)
in the spent medium increased sclerotiorin yield (6.4-fold). These data suggest that
addition of γ-butyrolactone molecules had created an environment for the cells to
respond similarly to the conditions where the threshold cell concentration was
achieved, allowing for the expression of genes under quorum-sensing control
[51]. However, the chemical structure of the molecule(s) responsible for the regula-
tion of sclerotiorin was not precisely determined in this study.

The investigation in the effect of multicolanic acid and derivatives (i.e.,
dimethyl-O-methylmulticolosate, dimethyl dihydromulticolosate, and methyl-O-
methylmulticolate acetate) as QS molecules in P. sclerotiorum open up a possible
new way to enhance the ability of sclerotiorin production of this fungus. Thereon,
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sclerotiorin is known as an aldose reductase inhibitor as well as a potent reversible
lipoxygenase inhibitor [63, 64].

4.3 Perspectives

Few findings of lactone-containing compounds acting as quorum sensing on fungi have
opened up a new front in further investigating this question with the potential for further
basic and applied research. Once the importance of quorum sensing is established in
pathogenic fungi and the mechanistic details are uncovered, the value of QS pathways
as potential therapeutic targets can be assessed [65]. Hence, further elucidation of the
mechanisms of QS in these pathogens and its effects on various metabolic pathways
will lead to a better understanding of fungal pathogenesis facilitating the development
novel antifungal approaches to combat human diseases. The mechanism of signal
transduction in QS may be clarified by identification of the receptor proteins to
which the γ-lactone binds to on the cell surface to enable signal perception.

As said above, the role QS lactones have in the organisms was more studied in
bacteria than in fungi. For example, a mechanism involved in signal transduction from
the detection of γ-lactone substrates/N-acyl-homoserine lactones (NAHSL) signals to
the transcription of the qsdA operon in Rhodococcus erythropolis; an environmental
gram-positive bacterium was illustrated in the review of Latour et al. [66]. A similar
mechanism is presumed to control the qsdA operon with γ-lactone in the role of
tetracycline [66] (Fig. 6). In the absence of a γ-lactone source, the QsdR (quorum-
sensing signal degradation) regulator protein forms dimers that bind to the operator
region, switching off the biosynthesis of catabolic enzymes. But the presence of
γ-lactone binding to qsdR, a putative TetR family transcriptional regulator gene,
changes the conformation and causes TetR detachment from the operator region and
results in the expression of the gene encoding catabolic enzymes.

The industrial exploitation of QS lactone-containing molecules requires an opti-
mization of their production from producing strains. The possible medium condi-
tions were identified to maximize the production of butyrolactone-I from a
butyrolactone-overproducing strain (Bty345) that had been derived by mutagenesis
from Aspergillus terreus ATCC 20542 and selected for increased butyrolactone
production which was available in the Merck (Elkton, VA) culture collection
[67]. In this study, the yield of butyrolactone-I using optimized medium concerning
the source and concentration of carbon and nitrogen represents a tenfold increase
over the butyrolactone-I produced using the original, basic medium.

5 Lactone Mycotoxins and Other Bioactive Macrocyclic
Lactones

The large group of lactones, apart from compounds that are flavoring components of
food products (γ- and δ-lactones) [68, 69] or that reflect desirable aromas in the
fragrance industry (coumarin, exaltolide) [70, 71] and that have been described
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above, comprises lactones of diversified biological activity, including toxic (carci-
nogenic, teratogenic, mutagenic) and antitumor or anti-inflammatory effect.

Lactones having biological properties, isolated from natural sources, are currently
a subject of study of many research centers. Research laboratories conduct ongoing
works on the isolation and identification of active lactones, determine relationships
between the structure of compounds and their biological properties, and in many
cases synthesize analogs of these compounds characterized by a higher activity and
stronger effect or try to conduct their inactivation.

5.1 Lactone Mycotoxins

Some of naturally synthesized lactones exhibit strong toxic activity. They are mainly
compounds which are low-molecular-weight (M < 1.5 kDa) secondary metabolites
of filamentous fungi, or so-called mycotoxins, of different levels of toxicity both to
humans and to animals, plants, and microorganisms. Toxic lactones can be stored as
endotoxins in mycelium and conidia or can be excreted to the medium. These
compounds cause contamination of raw materials and products of the food industry,
fodders, and food of animal origin. The synthesis of lactones by molds is determined
both genetically (metabolism of amino acids or fatty acids) and phenotypically
(environmental factors).

Absence of γ -lactone source

Presence of γ -lactone source

mRNA
Legend:

Rho-independent terminator

QsdR (TetR-like transcriptional
regulator)
γ -Lactone molecules

QsdA lactonase

Fig. 6 The qsdA operon of R. erythropolis and its putative mechanism of regulation (Adapted from
Latour et al. [66])
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In the group of mycotoxins, most of the studies were devoted to aflatoxins,
comprising approximately 20 heterocyclic difuranocoumarin derivatives (coumarin
is a lactone ofO-hydroxycinnamic acid) produced by toxigenic strains of Aspergillus
fungi, especially A. flavus, A. parasiticus, and A. nominus [72]. The pathway of
biosynthesis of aflatoxins comprises at least 23 reactions catalyzed by enzymes. So
far it was possible to identify 15 intermediates of these reactions. Genetic studies on
the mechanism of the synthesis of aflatoxins by A. flavus and A. parasiticus allowed
for cloning 29 genes responsible for the formation of enzymes necessary for this
metabolic pathway [72, 73]. Aflatoxins are classified into two broad groups
according to their chemical structure, and they include the difurocoumarocyclo-
pentenone series (AFB1, AFB2, AFB2A, AFM1, AFM2, AFM2A, and aflatoxicol) and
the difurocoumarolactone series (AFG1, AFG2, AFG2A, AFGM1, AFGM2,
AFGM2A, and AFB3) (Table 2) [74, 75]. These compounds have closely related
structures (Scheme 4). Aflatoxin B1 is formed by, among others, a lactone ring,
which is adjacent to a benzene ring and forms the same system as in coumarin, and
two furan rings, including the extreme one with double bond. In aflatoxin G1 15 the
extreme ring with the ketone moiety is enriched with one atom of oxygen to form a
lactone ring. Aflatoxins B2 14 and G2 16 are hydroxyl derivatives of aflatoxins B1 13

Table 2 The most important aflatoxin produced by the Aspergillus species [10, 12, 77]

Difuranocoumarins Type of aflatoxin Aspergillus species

Difurocoumarocyclopentenone
series

Aflatoxin B1 13 (AFB1) A. flavus, A. arachidicola,
A. bombycis,
A. minisclerotigenes, A. nomius,
A. ochraceoroseus,
A. parasiticus,
A. pseudotamarii, A. rambellii

Aflatoxin B2 14 (AFB2) A. arachidicola, A. flavus,
A. minisclerotigenes, A. nomius,
A. parasiticus

Aflatoxin B2a (AFB2a) A. flavus

Aflatoxin M1 17 (AFM1) A. flavus, A. parasiticus

Aflatoxin M2 18 (AFM2) Metabolite of aflatoxin B2

Aflatoxin M2A (AFM2A) Metabolite of AFM2

Aflatoxicol (AFL) A. flavus, metabolite of AFB1

Difurocoumarolactone series Aflatoxin G1 (AFG1) A. arachidicola, A. flavus,
A. minisclerotigenes, A. nomius,
A. parasiticus

Aflatoxin G2 (AFG2) A. arachidicola, A. flavus,
A. minisclerotigenes, A. nomius,
A. parasiticus

Aflatoxin G2A (AFG2A) Metabolite of AFG2

Aflatoxin GM1 (AFGM1) A. flavus

Aflatoxin GM2 (AFGM2) Metabolite of AFG2

AFGM2A Metabolite of AFGM2

Aflatoxin B3 (AFB3) Aspergillus species not defined
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and G1 15, respectively, while aflatoxins M1 17 and M2 18 are 4-hydroxyderivatives
of aflatoxins B1 and B2 [72]. Among the aforementioned mycotoxins, aflatoxin B1 is
the most toxic. It is classified by the WHO as a group 1 carcinogen. Based on the
toxicity, carcinogenicity, and mutagenicity of mycotoxic lactones of the aflatoxins
group, they are classified in the following order: AFB1> AFM1 > AFG1> AFB2>
AFG2 [74, 76, 77].
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The toxicity of these compounds is determined mainly by the lactone ring present
in the coumarin moiety [78] and the double bond at position 8 and 9 of the furan ring.
In the body, aflatoxins are transformed in the liver by cytochrome P450 enzymes into
various metabolites and in case of AFB1 into particularly toxic AFB1-exo-8,9-
epoxide (AFBO). These compounds interact with nucleic acids such as DNA or
RNA and interfere with protein synthesis and glycolysis pathway. The formation of
DNA adducts contributes to genetic mutations and cancer [77, 79].

The reduction of double bond in the extreme furan ring and the opening of the
lactone ring and decarboxylation of the resulting –COOH group are substantially
important to reduce the toxicity of aflatoxins. Inactivation of aflatoxins by ring
opening can be conducted using, among others, acid or base hydrolysis. Addition-
ally, the increase in temperature under these conditions to approx. 100 �C results in
the removal of the methoxy group from the aromatic ring. Other chemical factors
which cause a decomposition of aflatoxin structure are sodium hypochlorite, chlo-
rine, and oxidizing agents such as hydrogen peroxide, ozone, and sodium
metabisulfite [75].

The group of mycotoxic lactones comprises also patulin 19 produced by fungi
of the Penicillium and Byssochlamys species. This compound was first isolated in
1940 from the culture of Penicillium patulum. In terms of chemical structure,
patulin is a bicyclic lactone of the name 4-hydroxy-4H-furo[3,2c]pyran-2(6H)-
one, soluble in water [80, 81]. This compound is a polyketide metabolite, the
first for which the polyketide pathway has been characterized, synthesized in a
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10-step pathway, starting from 6-methylsalicylic acid (6MSA compound 20 in
Scheme 3) formed by the condensation of acetyl-CoA with three units of
malonyl-CoA (Scheme 3). The reaction is catalyzed by a multifunctional
enzyme, composed of four identical polypeptide chains of 176 kDa each, having
the activity of acetyl- and malonyltransferase, ketoacyl synthase, ketoreductase,
and dehydratase [82].

In the initial period of the study, patulin was tested for antibiotic properties, but
because of its strong neurotoxic and teratogenic activity discovered in a later period,
it was excluded from clinical use and in 1960 qualified as a mycotoxin [80]. In 1986,
this compound was recognized by the IARC (International Agency for Research on
Cancer) as a group 3 carcinogen. Patulin belongs to very reactive compounds that
interact with nucleic acids and proteins. It exhibits strong affinity especially to thiol
groups, which can result in severe damage to cells [82].

The process of detoxification of patulin employs chemical compounds based on
oxidation and reduction of this lactone or the formation of less toxic thiol adducts.
Detoxification of patulin using ammonia or potassium permanganate was performed
with almost 100 % efficiency [83]. Sulfur dioxide was also an effective inhibitor of
this toxin. At a concentration of 2000 ppm, a reaction of sulfur dioxide to the

acetyl-CoA
+

3 malonyl-CoA 

PatK

6-methylsalicylic acid m-cresol

toluquinol
PatI

m-hydroxybenzyl alcohol m-hydroxybenzoic acid 

gentisyl alcohol gentisyl aldehyde gentisic acid 

isoepoxydon phyllostine neopatulin ascladiol

patulin

PatH

PatI

PatN

20

Scheme 3 Pathway of synthesis of patulin in Penicillium and Aspergillus sp. (Adapted from Puel
et al. [82]). The Pat enzyme-encoding genes are organized in clusters in many fungi
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hemiacetal ring of patulin, forming a carbonyl hydroxysulfonate and opening of the
lactone ring structure at the double bond, was observed. Reduction of patulin toxicity
was also possible thanks to the use of organic acids and vitamins, including ascorbic
acid and vitamins of B group: thiamine hydrochloride, pyridoxine hydrochloride,
and calcium-d-pantothenate [84].

A lactone with proven toxic properties, including carcinogenic properties, is
penicillic acid 21 produced by fungi of the Penicillium and Aspergillus species.
This compound was first isolated in 1913 from Penicillium puberulum. The carci-
nogenicity of this compound is determined by an α,β-unsaturated ring with a
conjugated double bond at position 4 [81]. Penicillic acid, similarly to patulin, is a
carcinogenic factor of group 3 (IARC 1998) [85]. It has been proven that this
compound induces DNA strand breaks in HeLa cells [86].
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Mycotoxins produced by fungi of the Fusarium graminearum species
(teleomorph Gibberella zeae) include zearalenone 22 (ZEN) – a lactone of
resorcylic acid, chemically described as 6-(10-hydroxy-6-oxo-trans-1-
undecenyl)-β-resorcylic acid lactone [80]. This compound is synthesized in the
polyketide pathway involving polyketide synthases (PKSs), which catalyze
sequential condensation reactions of acetate units to polyketide [87]. Zearalenone
belongs to the compounds which disrupt a normal activity of the reproductive
system. Because of its estrogenic properties, it is referred to as a nonsteroidal
estrogen or mycoestrogen. The molecular structure of ZEN and its derivatives
(α-zearalenol 24 [α-ZEL], β-zearalenol 25 [β-ZEL], α-zearalanol 26 [zeranol,
α-ZAL], β-zearalanol 27 [teranol, β-ZAL], and zearalanone 23 [ZAN]) determines
their ability to bind to estrogen receptors. ZEN is absorbed from the gastrointes-
tinal tract and metabolized to ZEL or conjugated with glucuronic acid [88]. Estro-
genic activity of ZEN depends on metabolic processes occurring in the body and
on the immunologic status of the reproductive system of the contaminated organ-
isms. It was demonstrated that ZEN affects the maturation and degree of degener-
ation of oocytes depending on the dose and time of exposure. In vivo and in vitro
studies also show that ZEN reduces the activity of many enzymes, including those
that are involved in the process of steroidogenesis in animals and belong to
cytochrome P450scc and hydroxysteroid dehydrogenases of 3β- or 17β-type and
their isomers, which are involved in conversion process of pregnenolone to
progesterone or estrone to estradiol. In recent years, exposure to ZEN is associated
with the occurrence of hormone-dependent cancers, including breast, cervical, and
prostate cancer [89, 90].
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5.2 Other Bioactive Macrocyclic Lactones

The wide range of lactones includes a series of macrocyclic esters having a diver-
sified biological activity, including antitumor, antimicrobial, antimalarial, or immu-
nosuppressive activity [91]. They are a group of natural macrolides, synthesized in a
pathway of polyketide synthase (PKS). Macrolides form a group of homologous
compounds, which includes resorcylic acid lactones (RALs) (such as zearalenone
and its derivatives) and dihydroxyphenylacetic acid lactones (DALs). Structurally
RALs 28 and DALs 29 are formed by resorcinol fused to a lactone ring, at α- and β-
or β- and γ-position, respectively.
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Resorcinol macrolides were discovered in 1953, when radicicol 30, known
initially as monorden, was first isolated [92]. Radicicol was initially identified as
an antifungal antibiotic, and later studies assigned to it also several other biological
activities, including a mild sedative effect [93]. In 1992, a group of scientists from
Harvard University showed the inhibitory effect of radicicol in relation to the
oncogenic Src kinase [94, 95]. Subsequently it was demonstrated that radicicol is a
strong and selective inhibitor of heat shock protein HSP90, responsible for matura-
tion and stability of many other oncogenic cellular proteins. It was shown that it
contributes to the inhibition of tumor cell growth and their apoptosis by blocking
HSP90 (radicicol blocks the ATP bond in N-terminal pocket of HSP90, thus
preventing the conversion into a mature complex) [96].
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The family of resorcinol macrolides, which are conjugated cis-enones, com-
prises also other lactones of biological activity, including radicicol A 31,
LL-Z1640-2 32, and LL-783277 33. It was proved that these compounds inhibit
irreversibly mitogen-activated protein kinases – MAP kinases, which are
responsible for the regulation of many intracellular processes, including gene
transcription, protein biosynthesis, cell division, cell differentiation, and survival
or apoptosis [91]. Radicicol A inhibits the activity of cytokines IL-1β and
accelerates the degradation of specific mRNA sequences containing adenylate-
uridylate-rich elements [97]. LL-Z1640-2 exhibits the inhibitory effect in rela-
tion to TAK1 kinase (transforming growth factor-activated kinase 1) (IC50 =
8.1 nM) of the MAPK KK family [98] and ERK kinase (extracellular signal-
regulated kinase) (IC50 = 8 nM) of the MAPK family [99], while L-783277
isolated from fungi of the Phoma sp. genus is characterized by a specific, strong
inhibitory activity in relation to MEK1 kinase (4 nM) [100].
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RALs which inhibit the activity of protein kinases include also hypothemycin
34. This compound was first identified in 1980, after its isolation from the fungi
Hypomyces tricothecoides [101]. Hypothemycin exhibits antifungal [102] and
antimalarial activity, as well as cytotoxicity against various human cell lines
[103]. According to a study of Fukazawa et al. [104], this compound contributes
by binding cysteine, resulting to the inactivation of several protein kinases,
including MEK1 (mitogen-activated protein kinase, whose activity is regulated
by extracellular factors (IC50 15 nM)), ERK (extracellular signal-regulated
kinase), and platelet-derived growth factor receptor. Solit et al. [101] demon-
strated a strong activity of this lactone in the inhibition of protein BRAF
mutation (BRAF V600E mutation is a point mutation, affecting the change in
the protein activity, based on the replacement of valine 600 by glutamic acid).
An analog of hypothemycin, 4-.-demethylhypothemycin 35, isolated from
Hypomyces subiculosus showed an equally strong cytotoxicity against a number
of mutations of BRAF protein [105].
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The group of less active lactones comprises also pochonins A–E 36–40, isolated
in 2003 from Pochonia chlamydosporia var. catenulate fungi. These compounds
exhibit antiviral activity against, among others, herpes simplex virus 1 (the stron-
gest activity is exhibited by pochonin C 38) and are active against parasitic
intestinal protozoa Eimeria tenella [106]. From 2009, the group of pochonins
additionally comprises K–P analogs (K 41 L 42 N 43 O 44) inhibiting expression
of the WNT-5A protein and showing cytotoxicity against dermal papilla
cells [107].
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A diversified biological activity is also characteristic for aigialomycins A–E
(A 45, C 46, D 47), macrolides isolated in 2002 from a marine species of fungi –
Aigialus parvus. Aigialomycin D has antimalarial activity (IC50 6.6 μM) and exhibits
cytotoxic effects against the cells of the KB type and BC-1 protein (which inhibits
apoptosis) [108].

15 Lactone Formation in Yeast and Fungi 485



O

OOH

O
OH

OH

O

MeO

Aigialomycin A

O

OOH

O
H

OH

MeO

OH
Aigialomycin C

O

OOH

OH

OH

OH
Aigialomycin D

45 
47 46 

Another group of RALs comprises paecilomycins A 48, B 49, E 50, F 50 [109],
G-I 51–53 [110], and J–M [111] isolated from the solid medium of the fungus
Paecilomyces sp. SC0924 in the years 2010–2013. These compounds exhibit inhib-
itory activity against a protozoan of the Plasmodium genus – Plasmodium
falciparum – causing the most severe form of malaria in humans. Paecilomycin E
is a strong inhibitor of the 3D7 strain of Plasmodium falciparum (IC50 20 nM), while
paecilomycin F inhibits the proliferation of the Dd2 strain.
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Neocosmosins A–C 54–55 belong to another recently identified group of
resorcylic acid lactones synthesized by fungi of the Neocosmospora genus. These
compounds, especially neocosmosin C, exhibit activity of agonists of opioid and
cannabinoid receptors [112].
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In 2011, the group of Shao [113] managed to determine the structure of three
natural lactones – cochliomycins A–C 56–58 isolated from a broth culture of the
Cochliobolus lunatus fungus originated from a gorgonian Dichotella gemmacea
inhabiting the South China Sea. The studies involving cochliomycins showed,
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among others, antibacterial activity of these compounds. It was demonstrated that
these lactones exhibit inhibitory activity against bacteria Staphylococcus aureus and
a lichen organism Balanus amphitrite.
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The family of lactones also comprises compounds which influence, among
others, the regulation of plant growth. This activity was assigned to 12-membered
RALs – lasiodiplodin 59 and de-O-methyllasiodiplodin 60, first isolated in 1971
from the culture broth of fungi Lasiodiplodia theobromae [114, 115]. Later, both
these lactones were also identified in plants. Based on several studies, it was
demonstrated that lasiodiplodin exhibits an antileukemic activity, while de-O-
methyllasiodiplodin was recognized, among others, to be an inhibitor of prostaglan-
din synthesis [116], a potential inhibitor of pancreatic lipase (IC 4.5 μM), and an
antagonist of mineralocorticoid receptors, which may be effective in the treatment of
hypertension and other cardiovascular disorders [117]. In 2011 also, a cytotoxic
activity of de-O-methyllasiodiplodin against the KB (nasopharyngeal carcinoma cell
line), BC1, and NCI-H187 (retinoblastoma cell line) cell lines was demonstrated
[118]. According to the team of Buayairaks et al. [118], the group of lasiodiplodin
derivatives comprises also 6-oxo-de-O-methyllasiodiplodin 62, (3R),(5R)-5-
hydroxy-de-O-methyllasiodiplodin, and (3R),(5S)-5-hydroxy-de-O-methyllasio-
diplodin 61 isolated from fungi Syncephalastrum racemosum. To the latter lactone,
a toxic activity against several tumors cells is attributed, especially against
cholangiocarcinoma KKU-M139, KKU-M156, and KKU-M213.
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Further RALs are two isomers, trans- 63 and cis-resorcylide 64, isolated from
fungi of the Penicillium spp. [119], Pyrenophora teres [120], and Acremonium zeae
[121] genera, which also exhibit a broad biological activity. These lactones are
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regarded as inhibitors of plant growth (trans-resorcylide isomer exhibits about
tenfold stronger inhibitory activity than cis- isomer). Furthermore, trans-resorcylide
is cytotoxic against a wide range of cancer cell lines, is considered to be an inhibitor
of 15-hydroxyprostaglandin dehydrogenase (a key enzyme in the catabolism of
prostaglandins), and is characterized by antimicrobial activity against Pyricularia
oryzae [122]. Cis-isomer exhibits inhibitory activity against the coagulation factor
XIIIa, responsible for the stabilization of fibrin [123].
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Dihydroresorcylide 65 is a saturated analog of cis-resorcylide. It was identified by
the team of Polling et al. [121] in an endophyte Acremonium zeae. Previous studies
of this macrolide demonstrated its antifungal activity [124].

Lactones which are interesting in terms of their structure and biological activity
are (3R,5R)-sonnerlactone 66 and its diastereoisomer (3R,5S)-sonnerlactone 67
colonizing a plant Sonneratia apetala [125]. Sonnerlactones exhibit antiproliferative
activity against oral cavity cancer cell lines, resistant to numerous drugs.
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The group of DAL macrolides which are derivatives of dihydroxyphenylacetic
acid lactones comprises a number of compounds of various biological activities,
including curvularin 68, 10,11-dehydrocurvularin 69, and two epimers
11-α-methoxycurvularin 70 and 11-β- methoxycurvularin 71. These lactones were
identified in several fungal species, including Penicillium sp. such as Penicillium
citreoviride [126–128], Curvularia sp. [129], Chrysosporium lobatum [130],
Eupenicillium sp. [131], and Nectria galligena [132]. Curvularin is characterized
by an antibiotic activity against numerous fungal species. It is an inhibitor of nitric
oxide synthase [96] and an effective anti-inflammatory compound, inhibiting Janus
kinases, which allows for its use in the development of drugs against chronic
rheumatoid conditions [127]. Both curvularin and 10,11-dehydrocurvularin exhibit
similar levels of cytotoxicity against several cancer cell lines including breast
(MDA-MB-231 and MCF-7), cervical (HeLa), and lung (A549) cancer cell lines.
In addition, 10,11-dehydrocurvularin is active against colon cancer cell line COLO
205 [130]. The other two abovementioned compounds of the curvularin group are
also characterized by cytotoxic activity against, among others, lung NCI-H460,
breast MCF-7, and pancreatic MIA Pa Ca-2 cancer cell lines [96, 130, 131].
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A lactone of the DAL group, obtained in the polyketide synthase (PKS) pathway,
is also citreofuran 72. This compound is a metabolite of a hybrid strain Penicillium
citreoviride ME 0005, isolated by Nakada and Yamamura [133]. However, its
biological activity has not been reported yet.

Sporostatin 73 is another example of a mycotoxic lactone, isolated from the
fungus Sporormiella M5032. This compound exhibits strong inhibitory activity
against tyrosine kinase of epidermal growth factor receptor. In addition, it is an
inhibitor of a phosphodiesterase specific for cyclic adenosine-
30,50-monophosphate [134].
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The DAL family also comprises xestodecalactones A–C 74–76, isolated from the
fungus Penicillium cf. montanense originated from marine sponges Xestospongia
exigua [135], and D–F 77–79, identified in fungi Corynespora cassiicola
[136]. These compounds exhibit antifungal activity, and xestodecalactone B inhibits
the growth of, among others, fungi Candida albicans [135].
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This review of macrocyclic lactones indicates a diversified structure and broad
spectrum of biological activity. Valuable biological properties of lactones isolated
from natural sources are the inspiration for the research works related both to the
isolation of consecutive natural lactones occurring in nature and to the synthesis of
new compounds containing lactone moiety in their molecules. Given the increasing
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number of people suffering from cancer and continuous mutations of pathogenic
microorganisms, it is understandable that many research centers began the search for
natural and synthetic biologically active compounds, which in the future may
become approved drugs.

6 Fungal Biocatalysts

Some of the fungal systems described above are used out of fungal metabolism for
biotechnological applications. It is the case for Baeyer–Villiger monooxygenases,
lactonases, and the polyketide synthase pathways, although more applications have
been carried out from bacterial systems.

6.1 Baeyer–Villiger Monooxygenases

Baeyer–Villiger (BV) oxidation which consists in the transformation of a linear or
cyclic ketone into its corresponding ester or lactone by insertion of an oxygen
atom next to the carbonyl group is a precious reaction for oxidation of carbon
chains or cycles (Scheme 4). The chemical reaction has been first described in
1899 by Baeyer and Villiger. In its traditional chemical catalysis, this reaction is
not enantioselective, and catalysts are thus required that can result in enantiopure
lactones. This property is exhibited by enzymes that are called Baeyer–Villiger
monooxygenases (BVMOs – EC 1.14.13.x). First described in 1953 after studies
on the degradation of steroids [137, 138], most of the known enzymes are
bacterial, and the amount of studies resulted in a characterization of the enzyme

Scheme 4 Some lactone-related reactions catalyzed by Baeyer–Villiger monooxygenases. From
left to right: the much studied (in Acinetobacter sp.) cyclohexanone oxygenation and the oxygen-
ation of cyclopentadecanone, a macrocyclic ketone, in a way different from what described in (2), of
androstenedione (steroid), and of hydroxyversicolorone (aflatoxin precursor) (Inspired from Torres
Pazmiño et al. [144]
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with the identification of a sequence motif [139] and a better knowledge of the
role of BVMOs in metabolic pathways. All this aimed at developing biotechno-
logical applications especially toward the enzymatic properties of regioselectivity
and stereopecificity. Many important reactions can be catalyzed by BMVOs
(Scheme 4). Recent work aimed at using directed evolution techniques to modify
BVMOs and find new activities. It was thus found that a modification of only one
amino acid could turn the BVMO of Thermobifida fusca into a NADPH oxidase
[140], but some works have also been carried out to find new activities through
chemical screening, genome mining, or evolution studies [141]. Several reviews
on chemical and biotechnological applications of BVMO have been published
[10, 12, 142–144], but most of them concerned bacterial catalysis. Although
fungal BVMOs have been discovered in early research on the subject, the number
of characterized fungal BVMOs is still low, although new attention has been
devoted to these organisms with the possibility of genome mining
investigation [145].

6.2 Lactonases

Due to the important place that lactones have in microbial metabolism, enzymes
exhibiting the capability to catalyze their degradation through the opening of the
cycle are important. The opening of the ring takes place usually through the
hydrolysis of the ester bond, and enzymes able to open this belong to the esterase
family and are called also lactonases. Different lactone rings can be hydrolyzed with
lactonase catalysis, and an example is given Fig. 3 on the degradation of limonene
which is first oxidized into a lactone with a BMVO catalysis and then hydrolyzed by
a lactonase [13]. Like other esterases, lactonases may be highly enantiospecific
which results in biotechnological applications in the resolution of racemics. As an
example, lactonases are used for the resolution of racemics of pantoyl lactone
(Scheme 5) (this example is related in the review on lactonases by [7]). Lactonases
of Fusarium oxysporum or from Agrobacterium tumefaciens can be used, reaching
the different enantiomers with enantiomeric excess (ee) at about 90–95 %. However,
for the industrial reaction, it was easier to work with Fusarium lactonase and to
immobilize it to keep activity.

6.3 The Polyketide Synthase Pathway

This system has been developed as a modular enzyme system enabling technologists
to select the interesting activities to synthesize molecules. In terms of biocatalysis,
this system is probably one of the most complex system developed. Several reviews
have reported the advances in the field [9, 146, 148]. However, this part will not be
developed in the present review as those megasynthases concern the bacterial system
and not the fungal one.
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7 Conclusion

Lactones are important bioactive compounds for fungi. They play a significant role
in fungal ecology as communication and antimicrobial molecules, but they have also
a great impact on our lives through mycotoxins and can also be involved in positive
aspects of human health as some compounds are active against cancer cells and other
diseases. Beside health, many lactones are active on human senses such as flavor and
fragrance lactones that can be produced by fungi in a natural way. In addition,
pathways of production of lactones, β- and ω-oxidation, polyketide synthases,
Baeyer–Villiger monooxygenases, and lactonases have been studied to understand
and control the synthesis of fungal lactones, but they can also be used for industrial
synthesis of building blocks or fine chemicals as they exhibit interesting properties
for region-specific and region-selective oxidation.
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Abstract
With the impact of globalization on research trends; the search for healthier
lifestyles; the increasing public demand for natural, organic, and “clean
labelled” products; as well as the growing global market for natural colorants
in economically fast-growing countries all over the world, filamentous fungi
started to be investigated as readily available sources of chemically diverse
pigments and colorants. The formulation of recipes containing fungal
pigmented secondary metabolites has steadily increased over recent years. For
all of these reasons, this chapter highlights exciting findings, which may pave
the way for alternative and/or additional biotechnological processes for indus-
trial applications of fungal pigments and colorants. The fungal biodiversity
from terrestrial and marine origins is first discussed as potential sources of
well-known carotenoid pigments (e.g., β-carotene, lycopene) and other specific
pigmented polyketide molecules, such as Monascus and Monascus-like
azaphilones, which are yet not known to be biosynthesized by any other
organisms like higher plants. These polyketide pigments also represent prom-
ising and yet unexplored hydroxy-anthraquinoid colorants from Ascomycetous
species. The putative biosynthetic pathways of the carotenoids and polyketide-
derivative colored molecules (i.e., azaphilones, hydroxyanthraquinones, and
naphthoquinones) in pigment-producing fungal species are investigated herein.
As an additional aspect, this chapter describes biotechnological approaches for
improving fungal pigment production and identifying new clean opportunities
for the future. Alternative greener extraction processes of the fungal colored
compounds are also further explored. The current industrial applications along
with their limits and further opportunities for the use of fungal pigments in
beverage, food, pharmaceutical, cosmetic, textile, and painting areas are, then,
presented.
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List of Abbreviations
ADI Acceptable daily intake
ASE Accelerated solvent extraction
ATPS Aqueous two-phase system
BIK Bikaverin polyketide synthase
CoA Coenzyme A
CWD Cold-water-dispersible
DOE Design of Experiment
EAE Enzyme assisted extraction
EFSA European Food Safety Authority
EU European Union
FDA Food and Drug Agency
GMO Genetic Modified Organism
GMP Good Manufacturing Practices
GRAS Generally Recognized As Safe
HPLC High performance liquid chromatography
IL Ionic liquids
IPP IsoPentenyl-pyrophosphate
JECFA Joint FAO/WHO Expert Committee on Food Additives
MAE Microwave assisted extraction
PCR Polymerase chain reaction
PKS Polyketide synthase
PLE Pressurised fluid extraction
PUFAs Polyunsaturated fatty acids
SFE Subcritical fluid extraction
SWE Subcritical water extraction
TLC Thin layer chromatography
UAE Ultrasound assisted extraction
UV Ultraviolet

1 Introduction

Molecules and ingredients derived from microbial fermentation are steadily gaining
ground in industry. Thickening or gelling agents (e.g., polysaccharides such as
xanthan, curdlan, gellan), flavor enhancers (yeast hydrolysate, monosodium gluta-
mate), polyunsaturated fatty acids (PUFAs), flavor compounds (gamma-decalactone,
diacetyl, methyl-ketones), vitamins, essential amino acids, and acidulants (lactic
acid, citric acid) are some examples illustrating this trend. Efforts have been made
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and continue to be made in order to reduce the production costs of pigments
produced by fungal fermentation, since synthetic pigments or those extracted from
natural plant sources can often be produced more economically [1]. The successful
marketing of natural pigments such as β-carotene, lutein, and astaxanthin derived
from algae (i.e., nonconventional sources) or extracted from flowering plants (con-
ventional sources), both as food colorants and nutritional supplements, reflects the
presence and importance of niche markets in which consumers are willing to pay a
premium for “natural healthy ingredients.”

Among other nonconventional sources, filamentous fungi are known to produce
an extraordinary range of pigments that include several chemical classes such as
carotenoids, melanins, azaphilones, flavins, phenazines, quinones, and more specif-
ically, monascins, violacein, and indigo [2]. The success of any class of pigment
produced by fermentation depends on its acceptance by the consumers, regulatory
approval, and the capital investment required to bring the product onto the market.
Twenty years ago, influential representatives from industry expressed doubts about
the successful commercialization of algae-derived and fermented food grade pig-
ments due to the high investment required for open ponds, photobioreactors and
fermentation facilities, and the extensive and lengthy toxicity studies requested by
the regulatory authorities. Nonexistent or poor public perception of fungal-derived
products for food use had also to be taken into account. Nowadays, some food grade
pigments obtained by fermentation exist on the market worldwide. Among them,
fungal Monascus pigments, Arpink red™ (now Natural Red™) produced by Peni-
cillium oxalicum, microalgal phycocyanin from Arthrospira (Spirulina) platensis,
riboflavin from the mold fungus Ashbya gossypii, lycopene and β-carotene from the
tropical mold Blakeslea trispora, β-carotene from the microalgae Dunaliella salina,
and astaxanthin from the bacterium Paracoccus carotinifaciens and microalgae
Haematococcus pluvialis, respectively. As an example, the production yield of
β-carotene may be as high as 17 g/L of the Blakeslea trispora culture medium [3].

Thus, the present chapter emphasizes the crucial role that fungi are currently
playing and are likely to continue to play in the future as microbial cell factories for
the production of pigments for the industry. This is due to the versatility in their
pigment color and chemical profile, amenability for easy large-scale cultivation, and
a long history of production by well-investigated production strains.

2 Natural Polyketide Pigments Produced by Filamentous
Fungi

Among nonconventional sources, filamentous fungi are known to produce an
extraordinary range of fungal pigments that are often more stable and soluble than
plant-derived pigments [3, 4]. Fungal secondary metabolites like fungal pigments
can be grouped into four different classes depending on their structural properties:
terpenes, polyketides, nonribosomal peptides, and amino acid-derived compounds.
These fungal secondary metabolites, also known as exometabolites, are small
molecules produced during morphological and chemical differentiation that are
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outward directed, i.e., secreted or deposited in or on the cell wall, and accumulated in
contrast to endometabolites (primary metabolites) that are fluctuating in concentra-
tion, and either transformed into other endometabolites or feeding into
exometabolites, exoproteins, and exopolysaccharides. While endometabolites can
be found in almost all species of fungi, exometabolites are taxonomically restricted,
being produced in species-specific profiles [5].

Biosynthetically, many exometabolites produced by ascomycetous filamentous
fungi are polyketides. Polyketides are typically synthesized by multifunctional
polyketide synthases (PKS) from small carboxylic acid derivatives (acetyl-
coenzyme A (CoA) and malonyl-CoA) in a manner similar to the synthesis of
fatty acids. Nonreducing polyketide synthases synthesize polyketides in which
carbonyl groups are not reduced, and reducing polyketide synthases synthesize
polyketides in which the carbonyl groups are partially or fully reduced [6, 7].
Polyketides represent an array of often structurally complex natural products and
include such classes as anthraquinones, hydroxyanthraquinone pigments, naphtha-
lenes, naphthoquinone pigments, flavonoid pigments, macrolide antibiotics, poly-
enes antibiotics, tetracyclines, and tropolones. Azaphilone pigments, namely
pigments with pyrone-quinone structures and a chiral quaternary center, can also
be considered as polyketide derivatives. Polyketide-based pigments with different
shades (red, yellow, orange, brown) have been found abundantly in ascomycetous
filamentous fungi as exemplified in case of pigments produced by species belonging
to Monascaceae, Trichocomaceae, Pleosporaceae, and Nectriaceae families [3, 8].

2.1 Species of the Monascaceae Family Producing Pigments

Monascus has been used to produce natural colorants and food supplements for more
than one thousand years in Asia, and approximately more than one billion Asian
people consumeMonascus-fermented products with their daily diet. The first known
source reporting the use of these red colorants was a recipe for the preparation of red
pot-roast lamb, in which meat was simmered with hong qu (red rice koji, made with
Monascus purpureus), as handed down in the Qing Yilu in AD 965. Monascus
species are known to produce six major azaphilone pigments, namely the yellow
monascin and ankaflavin, the orange monascorubrin and rubropunctatin, and the red
monascorubramine and rubropunctamine. To date, more than 50 different chemical
structures have been identified as azaphilones easily combine with nitrogen-
containing compounds [9]. Using next-generation sequencing and optical mapping
approaches, a 24.1-Mb complete genome of a Monascus purpureus YY-1 industrial
strain has been described for the first time and this will allow huge improvements in
the process in the coming years [9]. It consists of 8 chromosomes and 7491 genes.
M. purpureus should belong to the Aspergillaceae, mainly comprising the genera
Monascus, Penicillium, and Aspergillus. Phylogenetic analysis at the genome level
provides the first comprehensive prediction of the biosynthetic pathway for
Monascus pigments. Comparative genomic analyses demonstrated that the genome
of M. purpureus is 13.6–40 % smaller than that of closely related filamentous fungi
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and has undergone significant gene losses, most of which likely occurred during its
specialized adaptation to starch-based foods. Some polyketide synthases (PKS) are
expressed at high levels under high pigment-yielding conditions. The citrinin PKS
C6.123 has also been found in the genome [9], paving the way for research aiming at
non-mycotoxin-producing strains, if suppression of the citrinin gene does not change
the ability of the strain to produce pigments, which seems to be feasible, as described
by Fu et al. [10]. The latter group has shown that monascorubrin and citrinin are
synthesized by two separate pathways, because, when the PKS gene responsible for
synthesis of citrinin was disrupted, red pigment production from the fungus was not
affected. Comparative transcriptome analysis revealed that carbon starvation stress,
resulting from the use of relatively low-quality carbon sources, contributed to the
high yield of pigments by suppressing central carbon metabolism and augmenting
the acetyl-CoA pool. As for other pigments produced by biotechnology, the problem
is to have enough carbon oriented in the correct pathway, i.e., the pigment pathway.

Woo et al. [11] investigated another filamentous fungus, Penicillium marneffei,
for the production of azaphilones exhibiting black, yellow, and red hues. The
polyketide gene cluster and biosynthetic pathway were reported for monascorubrin
in this red pigment-producing, thermal dimorphic fungus, taking advantage of
available genome sequence and faster growth rate compared to Monascus species
[11]. The red pigment of P. marneffei has been shown to consist of a mixture of more
than 16 chemical compounds, which are amino acid conjugates of monascorubrin
and rubropunctatin, as amino acids can be conjugated under specific conditions
without enzymatic catalysis, i.e., by Schiff base formation (Fig. 1) [11].

The aforementioned polyketide gene cluster and pathway have been shown to be
also responsible for the biosynthesis of ankaflavin and citrinin, the latter being a
mycotoxin exerting nephrotoxic activity in mammals [12]. Twenty-three putative
PKS genes and two putative PKS-nonribosomal peptide synthase hybrid genes were
identified in the P. marneffei genome [11]. Woo et al. [11] systematically knocked
out all 25 PKS genes of P. marneffei. They also knocked out genes located up and
downstream of the PKS gene responsible for red pigment production and character-
ized the pathway for biosynthesis of the red pigment. However, it is still questionable
whether it will be possible to produce mevinolin/lovastatin-free (a cholesterol-
lowering drug that is undesired in normal foods) and citrinin-free red pigments
from P. marneffei, as the latter, a mycotoxin, appears to be an early by-product of
the biosynthetic pathway.

2.2 Species of the Trichocomaceae Family Producing Pigments

2.2.1 Pigments from Penicillium and Talaromyces Species
Fungi belonging to the genera Penicillium and Talaromyces are cosmopolitan,
classified under the family Trichocomaceae and contain 354 and 88 species, respec-
tively. Species of the genera are commonly found in soil, decaying organic materials,
animal feed, stored grains, and other materials [13]. Species of Penicillium and
Talaromyces are extraordinarily productive concerning exometabolites. They are
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among the most chemically inventive of all fungi. A comparison with other genera
shows that most exometabolites have been reported from Aspergillus (1984
exometabolites), next-most from Penicillium (1338), and fifth-most by Talaromyces
(316), with only Fusarium (507) and Trichoderma (438) producing more
exometabolites [14]. These fungal genera produce various compounds, which are
beneficial to the society, but amongst all, they are potential producers of natural
pigments, thus they could be used for various industrial purposes. Many workers
have studied the pigment production of various species of Penicillium and
Talaromyces isolated from different environments. In addition, some researchers
have made experiments to optimize the pigment production from these fungal
species using different media by modifying the intrinsic and extrinsic factors. The
most common hues produced by both genera include yellow, red, orange, and
reddish-brown. According to Teixeira et al. [15], it was found that the yellow
pigment is predominant in most of the Penicillium species. Strains collected from
Amazon forest such as P. simplicissimum DPUA 1379, P. melinii DPUA-1391, and
P. atrovenetum yielded yellow pigment with antibiotic activity [15]. As a first
commercial fungal red colorant, the Arpink red™ pigment (now Natural red™)
has been claimed to be produced by fermentation and bioprocess engineering using
the strain Penicillium oxalicum var. armeniaca CCM 8242 obtained from soil. On the
second day of cultivation in liquid broth containing carbohydrates, zinc sulfate, and
magnesium sulfate, a hydroxyanthraquinone red colorant is released in the liquid
medium, and its concentration keeps increasing up to 1.5–2.0 g/L of broth after 3–4
days [2, 16, 17].
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In Penicillium and Talaromyces species, polyketide-based pigments are very com-
mon, and particularly the azaphilone (hexaketide) ones, like the derivatives of
monascorubrin and rubropunctatin from P. marneffei [11]. In similar lines, two
azaphilone pigments, monascorubramine homologues PP-V [(10Z)-12-carboxyl-
monascorubramine] and PP-R [(10Z)-7-(2-hydroxyethyl)-monascorubramine], are iso-
lated from a strain of Penicillium sp. AZ [18]. PP-Vand PP-R are slight modifications
of monascorubramine. Over the past 5 years, very few reports have been published on
the Monascus-like azaphilone pigments produced by non-mycotoxigenic strains of
Talaromyces species (formerly Penicillium sp.) [19–24] (Fig. 2). Penicillium
purpurogenum is an important species in biotechnology for its ability to produce
enzymes and pigments, which are used as natural colorants [24–27]. Recent revision
of the taxonomy of P. purpurogenum showed that this species is a complex consisting
of four taxa: T. purpurogenus, T. ruber (syn. P. rubrum), T. amestolkiae, and T. stollii
[28]. From a biotechnological point of view, it is recommended to use T. ruber for
enzyme production, because T. purpurogenus produces four types of mycotoxins and
T. amestolkiae and T. stollii are potentially pathogenic to immunocompromised indi-
viduals [23]. As reported by Méndez et al. [20], the strain P. purpurogenum GH2 can
produce Monascus-like pigments with no coproduction of toxic citrinin, which paves
the way for producing water-soluble red pigments at an industrial level to be used in
food industry [19–21]. N-glutarylmonascorubramine and N-glutarylrubropunctamine
were the water-soluble Monascus-like polyketide azaphilone pigments discovered in
the extracellular pigment extract obtained from the liquid medium of P. purpurogenum
[29] (Table 1). More recently, an European patent has been granted for a submerged
cultivation method for some of the non-mycotoxigenic strains of Talaromyces
sp. whereby the concentration of pigments was significantly enhanced, and the number
of pigmented constituents was significantly reduced with the polyketide azaphilone
purple pigment PP-V being the major compound [30].

Talaromyces is the telemorph genera, which comprise a monophyletic clade that
is distinct from Penicillium. Some species of Talaromyces produce red pigments
while a few other synthesize yellow pigments of azaphilone series [31]. Studies have
shown that Monascus-like azaphilone red pigments and/or their amino acid deriva-
tives are naturally produced by Talaromyces aculeatus, T. pinophilus,
T. purpurogenus, and T. funiculosus. Talaromyces amestolkiae, T. ruber, and
T. stollii also produce azaphilone pigments, as recently described by Yilmaz
et al. [23], but in those three species the pigments are not diffusing into the growth
medium. T. atroroseus can secrete large amounts of Monascus-like azaphilone red
pigments, without the production of any known mycotoxins. On the other hand,
T. purpurogenus produces mycotoxins such as rubratoxins A and B, rugulovasins,
and luteoskyrin [23]. These factors limit the use of these species for biotechnological
production of azaphilone pigments. However, some Talaromyces species can be
used to produce pigments at industrial scale if no coproduction of toxins has been
concluded. Red pigment producers, such as T. atroroseus, T. albobiverticillius, and
T. purpurogenus, produce rubropunctatin and other Monascus pigments while other
species such as T. cnidii and T. coalescens produce red soluble pigments in some
isolates (Table 1).
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Table 1 Polyketide pigments produced by Penicillium and Talaromyces species

Fungal species

Pigment composition (colour)

Major known mycotoxic uncolored
metabolites

(Toxic colored compounds in
bold)

P. atramentosum Uncharacterized dark brown Roquefortine C

Rugulovasine A and B

P. atrosanguineum Phoenicin (red) Unknown

Uncharacterized yellow and red

P. atrovenetum Atrovenetin (yellow) beta-nitropropionic acid

Norherqueinone (red)

P. aurantiogriseum Uncharacterized Nephrotoxic glycopeptides

Penicillic acid

Verrucosidin

P. brevicompactum Xanthoepocin (yellow) Botryodiploidin

Mycophenolic acid

P. chrysogenum Sorbicillins (yellow) Roquefortine C

Xanthocillins (yellow)

P. citrinum Anthraquinones (yellow) Unknown

Citrinin (yellow)

P. cyclopium Viomellein (reddish-brown) Penicillic acid

Xanthomegnin (orange)

P. discolor Uncharacterized Chaetoglobosin A, B, and C

P. echinulatum Uncharacterized (yellow) Territrems

P. flavigenum Xanthocillins Unknown

P. freii Viomellein (reddish-brown) Unknown

Vioxanthin

Xanthomegnin (orange)

P. herquei Atrovenetin (yellow) Unknown

Herqueinones (red and yellow)

P.oxalicum Arpink red™- anthraquinone
derivative (red)

Unknown

Secalonic acid D (yellow)

P. paneum Uncharacterized (red) Botryodiploidin

Patulin

Roquefortine C

P. persicinum Uncharacterized cherry red Roquefortine C

P. viridicatum Viomellein (reddish-brown) Penicillic acid

Vioxanthin Viridic acid

Xanthomegnin (orange)

T. macrosporus Mitorubrin (Yellow) Duclauxin

Islanditoxin

P. aculeatum Uncharacterized Unknown

P. crateriforme Uncharacterized Rubratoxin

Rugulovasine A and B

Spiculisporic acid

(continued)
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2.2.2 Pigments from Aspergillus and Emericella Species
Aspergillus and Emericella are two genera consisting of a few hundred mold species
found worldwide in various climates. They are well known to produce different
secondary metabolites such as polyketide-based pigments in solid and liquid cul-
tures. The most important colored metabolites produced by Aspergillus and
Emericella species are, respectively, hydroxyanthraquinone (octaketide) pigments
and azaphilone (hexaketide) ones (Fig. 3). From the genus Aspergillus, 18 different
hydroxyanthraquinone pigments, at least, were identified. Some strains of this genus,
such species as A. glaucus, A. cristatus, and A. repens, share many common
secondary metabolites and are found to produce hydroxyanthraquinone pigments
such as emodin (yellow), physcion (yellow), questin (yellow to orange-brown),
erythroglaucin (red), catenarin (red), and rubrocristin (red) (or dimer of emodin
and physcion) [17, 32]. Other hydroxyanthraquinone pigments, such compounds
as averufin, norsolorinic acid, versicolorin, variecolorquinone, ascoquinone A,
averantin, chrysophanol (orange), cynodontin (bronze), and tritisporin (brownish-
red), are rarer products revealed from this genus. Presently, A. glaucus (group) seems
to be the best producer according to the diversity of hydroxyanthraquinone com-
pounds produced (11 different) [17, 32]. In addition, other polyketide-based pig-
ments, e.g., viomellein (reddish-brown), viopurpurin (purple), xanthomegnin
(orange), and rubrosulfin (red), are produced by A. ochraceus, A. melleus,

Table 1 (continued)

Fungal species

Pigment composition (colour)

Major known mycotoxic uncolored
metabolites

(Toxic colored compounds in
bold)

P. funiculosum Uncharacterized Unknown

P. islandicum Emodin (yellow) Cyclochlorotine

Erythroskyrin (orange-red) Islanditoxin

Luteoskyrin (yellow) Rugovasin A and B

Skyrin (orange)

Rugulosin (yellow)

P. marneffei Monascorubrin (red) Unknown

Rubropunctatin (orange)

Mitorubrinol

Monascorubramine (purplered

Secalonic acid D (yellow)

P. pinophilum Uncharacterized Unknown

P. purpurogenum Mitorubrin (yellow) Unknown

Mitorubrinol (orange-red)

Purpurogenone (yellow-orange)

PP-R (purple red)

P. rugulosum Rugulosin (yellow) Unknown

P. variabile Rugulosin (yellow) Unknown
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A. sulphureus, and A. westerdijkiae [25]. The fungus Aspergillus nidulans is also
known to produce dark-brown melanin pigments. Melanin pigments appear to be
essential for the protection of the fungus against environmental stress [33]. The
conidial pigment of Aspergillus fumigatus contains the 1,8-dihydroxynaphthalene-
like melanin pigment (a complex aggregate of polyketides). This pigment plays a
major role in the protection of the fungus against immune effector cells; for example,
it is able to scavenge reactive oxygen species generated by alveolar macrophages
and neutrophiles [34]. From studies performed on A. niger, secondary metabolite
profiling of the color mutants revealed a close relationship between polyketide
synthesis and conidial pigmentation in the fungus [35]. The production of the
1,8-dihydroxynaphthalene, precursor of melanin pigment, and the naphtho–γpyrone
subclass of polyketides (commonly found in significant quantity in A. niger culture
extracts) were dependent on polyketide synthases [35, 36]. More recently, six novel
compounds belonging to the family of azaphilones, azanigerones A-F, were isolated
and characterized from culture of A. niger [37], which indicates the presence of an
azaphilone biosynthetic pathway in Aspergillus species.

The genus Emericella comprises 34 species and the name Emericella refers to
the sexual phase (teleomorph) of these fungal species. Some of these fungi are
well known to produce yellow azaphilone pigments. As example, eight
azaphilone-based pigments, named falconensins A-H (yellow), have been isolated
from the mycelium of both Emericella falconensis and Em. fructiculosa, along
with other yellow pigments, falconensones A1 and B2 (i.e., cyclopent-2-enone
derivatives), and hopane-type triterpene, zeorin (yellow) [25, 38]. Three
dicyanide derivatives, epurpurins A to C (yellow) were also isolated from
Emericella purpurea [39, 40]. The yellow pigment sterigmatocystin, a carcino-
genic polyketide compound, has been reported in several Emericella species (e.g.,
Em. rugulosa, Em. parvathecia, and Em. nidulans) and also in the fungus Asper-
gillus versicolor [25, 41] (Fig. 3). The effect of different wavelength of light
(daylight, darkness, blue 492–455 nm, green 577–492 nm, yellow 597–577 nm,
and red 780–622 nm) on growth, intracellular and extracellular pigment produc-
tion by the fungus Emericella nidulans has been reported by Velmurugan
et al. [42], and total darkness was concluded to favor biomass, extracellular and
intracellular pigment productions.

2.2.3 Pigments from Eurotium and Paecilomyces Species
The common genus Eurotium consists in teleomorphic often xerophilic species,
usually related to Aspergillus anamorphs, especially from A. glaucus group. The
genus Eurotium contains several species and is also an important polyketide
producer. Some species of Eurotium including E. amstelodami, E. chevalieri,
and E. herbariorum are found to produce hydroxyanthraquinone pigments. The
pigments most frequently identified are physcion (yellow) and erythroglaucin
(red); however, the strains produce in addition two benzaldehyde colored com-
pounds, e.g., flavoglaucin (yellow) and auroglaucin (orange-red), and the myco-
toxin echinulin (colorless) [17, 43]. Sixteen more species of Eurotium are able to
synthesize hydroxyanthraquinone pigments. Physcion and erythroglaucin are the
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most widespread pigments throughout the Eurotium studied strains [17, 32]. From
Anke study [44], within this genus, E. rubrum and E. cristatum produce the
highest diversity of compounds regarding hydroxyanthraquinones:
erythroglaucyn, physcion, catenarin (red), rubrocristin (red), and emodin (orange)
were identified in their cultures. E. umbrosum, E. spiculosum, E. glabrum,
E. echinulatum, and E. chevalieri synthesize the first four compounds out of the
five mentioned. E. tonophilum, E. acutum, E. herbariorum, E. intermedium, and
E. leucocarpum produce only either physcion or erythroglaucin (Fig. 4). The
study also demonstrated that within a same species there was a great variability
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toward hydroxyanthraquinones production, as some strains of E. rubrum,
E. niveoglaucum, E. leucocarpum, E. intermedium, E. herbariorum,
E. pseudoglaucum, E. appendiculatum, E. echinulatum, and E. acutum behaved
differently when grown under the same culture conditions [44]. Moreover, some
of the strains of E. amstellodami, E. heterocaryoticum, and E. montevidensis
included in this study did not produce any hydroxyanthraquinone pigments
under the conditions of the experiment [44]. Another E. rubrum strain
(QEN-0407-G2) isolated from the inner tissue of the stem of the marine mangrove
plant Hibiscus tiliaceus synthesized the pigment questin (orange), a glycosyled
derivative of questin [6, 3-O-(α-D-ribofuranosyl)- questin; orange], and three
other fungal metabolites (eurorubrin, and two seco-anthraquinone derivatives
[3, 2-O-methyl-9-dehydroxyeurotinone and 4, 2-O-methyl-4-O-(α-D-
ribofuranosyl)-9-dehydroxyeurotinone]) [45].

The genus Paecilomyces may be distinguished from the closely related genus
Penicillium by forming colonies that show various color shades. Colonies are fast
growing, powdery or suede-like, gold, yellow-brown, lilac, or tan, but never green or
blue-green as in Penicillium. A red uncharacterized pigment has been isolated from
the fungus Paecilomyces sinclairii and is certainly an amino group linked to a
hydroxyanthraquinone structure [46] (Fig. 4).

2.3 Species of the Nectriaceae Family Producing Pigments

Fusarium is a diverse group of fungi of the Nectriaceae family. The name Fusarium
refers to the asexual phase (anamorph) of the fungus. In accordance with their
genetic potential, Fusarium species have been found to produce a wide range of
fungal pigments that are diverse in structure and biological activity. However, among
the Fusarium secondary metabolites, numerous toxic compounds have been identi-
fied (e.g., fumonisins, zearalenone, fusaric acid, fusarins, and beauvericins) [25, 47, 48].
Numerous terpenes have been characterized from Fusarium species, and a representative
example is Fusarium fujikuroi, which is able to produce orange carotenoids (neurospor-
axanthin) [49, 50]. Among the Fusarium secondary metabolites, numerous polyketide
pigments have also been identified, such as the naphthoquinone pigments which form the
most abundant group [51–62] and the hydroxyanthraquinone ones [17, 63]. Previously,
Cajori et al. [64] have isolated the red naphthoquinone pigment, bostrycoidin, produced
by a F. oxysporum (formerly F. bostrycoides) strain. Tatum et al. [51] reported that
six napthtoquinone pigments of the naphthazarin structure were produced by
F. oxysporum. According to the authors, the major pigment isolated was the 9-O-
methylfusarubin (formerly 8-O-methylfusarubin), with 5-O-methyljavanicin (formerly
8-O-methyljavanicin), 8-O-methylbostrycoidin, 1,4-naphthalenedione-3,8-dihydroxy-
5,7-dimethoxy-2-(2-oxopropyl) (formerly 8-O-methyl-13-hydroxynorjavanicin), 5-O-
methylsolaniol (formerly 8-O-methylsolaniol), and 9-O-methylanhydrofusarubin
(formerly 8-O-methylanhydrofusarubin) in decreasing concentration. All of these pig-
ments are red, except 8-O-methylanhydrofusarubin, which is purple (Fig. 5). Then Baker
and Tatum [63] have isolated two yellow/orange hydroxyanthraquinone pigments among

16 Pigments and Colorants from Filamentous Fungi 513



the secondary metabolites produced by F. oxysporum. Nowadays, the most thoroughly
studied Fusarium polyketide pigments are the red dimeric naphthoquinone pigment,
aurofusarin, from F. graminearum, the red naphthoquinone pigment, bikaverin, and its
minor coproduct, nor-bikaverin, from F. fujikuroi [52–58]. Over the past decade, few
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reports have been published on the aurofusarin and bikaverin biosynthetic pathways.
Their polyketide nature was confirmed through identification of polyketide synthase
genes responsible for their biosynthesis. Aurofusarin was first described as a Fusarium
culmorum pigment by Ashley et al. [65]. The color of aurofusarin is dependent on the pH
value of the solvent, ranging from golden yellow in acidic solvents to red/purple in
alkaline solvents [65]. The pigment is produced in high quantities, continuously during
mycelium development, resulting in the increasing staining of both mycelium and
medium (the mycelium shifts from white to yellow and finally to a deep red color).
Known producers include Fusarium acuminatum, F. avenaceum, F. crookwellens,
F. culmorum, F. graminearum, F. poae, F. pseudograminearum, F. sambucinum,
F. sporotrichioides, and F. tricinctum [66]. Aurofusarin is produced under various
suboptimal conditions, such as high or low pH, high temperatures, and phosphate
starvation. The genes responsible for the production of aurofusarin could be regulated
by a global pH regulatory factor. The ambient pH is the most critical parameter, as many
naphthoquinones are cytostatic at neutral pH [67].

Concerning the red naphthoquinone pigment, bikaverin, it has been shown that
its production is strongly dependent on culture conditions and its regulation has
been investigated in detail in F. fujikuroi. The bikaverin production is repressed in
culture media containing high nitrogen levels and under alkaline conditions;
aeration also stimulated its production [54–56]. Bikaverin was first discovered
as a pigment in cultures of F. lycopersici and F. vasinfectum [55, 68]. Limón
et al. [55] have reported no negative incidence of bikaverin-contaminated prod-
ucts on human health, even if bikaverin is often considered a mycotoxin today
[53]. Biological effects of bikaverin differ largely between different organisms,
and bikaverin was not genotoxic according to a DNA synthesis assay
[52]. Bikaverin is a fungal polyketide-based pigment with antibiotic activity
against fungi [69] and antitumor action [70]. Some reports on isolation of
aurofusarin and bikaverin have also been published for other Fusarium species
such as F. solani [51] and F. verticillioides [42, 61]. More recently, Sørensen
et al. [71] have discovered a medium with low nitrogen content that partially
redirects the aurofusarin and bikaverin biosynthetic pathways to produce the
lactones citreoisocoumarin and SMA93, respectively, in some aurofusarin and
bikaverin producing Fusarium species; the redirection seems to be regulated by
the same mechanism, which is triggered by some organic nitrogen source (gluta-
mine, arginine) and acidic conditions (with an optimum at pH 5–6). According to
Medentsev et al. [72], who have studied the biosynthesis of colored
naphthoquinone metabolites by Fusarium decemcellulare, F. graminearum, and
F. bulbigenum fungi, the biosynthesis of naphthoquinone pigments in Fusarium
species was shown to be the main response of the fungi to stress, observed under
conditions of growth inhibition or arrest. Depending on the conditions of culti-
vation, F. bulbigenum and F. graminearum synthesized bikaverin and aurofusarin,
respectively, whereas F. decemcellulare synthesized soluble extracellular
naphthoquinones of the naphthazarin structure (javanicin, anhydrojavanicin,
fusarubin, anhydrofusarubin, bostrycoidin, and novarubin) or extracellular
dimeric naphthoquinone aurofusarin [72] (Fig. 5).
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Concerning the Fusarium perithecial pigments, a violet pigment that accumulates
in the walls of sexual fruiting bodies (perithecia) has been isolated from both cultures
of F. verticillioides and F. graminearum [60, 73]. In contrast, the pigment that
accumulates in the perithecial walls of F. solani is red and results from the activity
of a different polyketide synthase [59]. The fungus F. fujikuroi has been reported to
produce particular naphthoquinone pigments, i.e., red fusarubins [62]. Five main red
fusarubin-like naphthoquinone pigments have been isolated: 8-O-methylfusarubin,
as the main product (interestingly, with the same structure of the major pigment
isolated by Tatum et al. [51] in culture of F. oxysporum), 8-O-methylnectriafurone,
8-O-methyl-13-hydroxynorjavanicin, 8-O-methylanhydrofusarubinlactol, and
13-hydroxynorjavanicin that are produced under specific culture conditions, which
are different from those for red bikaverin [62] (Fig. 5). Naphthoquinone pigment
related to fusarubin was initially isolated from the fungus F. solani [74]. Although
the functional characterization of most of the cluster in F. fujikuroi provides strong
evidence that fusarubins (red) are the precursors of the perithecial pigment (violet),
the structure of the violet perithecial pigment has yet to be determined [62, 75]. Thus,
studies are in progress to determine the relationship between fusarubin pigments and
the violet perithecial one.

2.4 Species of the Hypocreaceae Family Producing Pigments

Fungal strains of the genus Trichoderma from the Hypocreaceae family are well-
known producers of secondary metabolites with antibiotic activity [76] and are
important biocontrol agents successfully applied as biopesticides worldwide. Strains
of Trichoderma aureoviride, T. harzianum, T. polysporum, and T. viride all produce
the hydroxyanthaquinone pigments pachybasin (yellow) and chrysophanol (orange-
red). The fungus T. viride also synthesizes emodin (yellow), 1,3,6,8-
tetrahydroxyanthraquinone, and 2,4,5,7- tetrahydroxyanthraquinone. Only emodin
is known from culture of T. polysporum [17] (Fig. 6). In 2012, Lin et al. [77] reported
that the pachybasin and emodin compounds are secreted by T. harzianum. In the
genus Trichoderma, the increase of the concentration of excreted emodin or
pachybasin increases the concentration of cyclic AMP indicating that these
hydroxyanthraquinone pigments are key substances in the regulation of this second-
ary messenger and also suggest that pachybasin and emodin play roles in the
biocontrol mechanism of Trichoderma sp. [32, 77]. The major secondary metabo-
lites produced by Trichoderma harzianum T22 and T39, two commercial strains
successfully used as biopesticides and biofertilizers in greenhouse and open field
production, are hydroxyanthraquinones (e.g., 1-hydroxy-3-methyl-anthraquinone
and 1,8-dihydroxy-3-methyl-anthraquinone), azaphilone (T22azaphilone), and
three other metabolites (T39-butenolide, harzianolide, and harzianopyridone) [78].
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2.5 Species of the Pleosporaceae Family Producing Pigments

In the Pleosporaceae family (Alternaria, Curvularia, Drechslera. . .), both hyphae
and conidia are heavily pigmented. Hydroxyanthraquinone pigments are produced
by a broad range of Alternaria, Curvularia, and Drechslera species. As example, the
main hydroxyanthraquinone pigments characterized from the fungus Curvularia
lunata are chrysophanol (orange-red), cynodontin (bronze), helminthosporin
(maroon), erythroglaucin (red), and catenarin (red) [17, 25]. Cynodontin extracted
from the biomass of C. lunata has been converted successfully to two anthraquinone
biodyes (Disperse blue 7 and Acid Green 28). The properties of these biodyes
applied to knitten polyamides were compared with those of conventional dyes and
found to be identical to all-important aspects. Several species of Drechslera (e.g.,
D. teres, D. graminea, D. tritici-repentis, D. phlei, D. dictyoides, and D. avenae)
produced the following hydroxyanthraquinone pigments: catenarin (red),
cynodontin (bronze), helminthosporin (maroon), tritisporin (reddish-brown), and
erythroglaucin (red), without coproduction of known mycotoxins [17, 79]. In similar
lines, three species of Alternaria, e.g., Alt. solani, Alt. porri, and Alt. tomatophila,
can produce a yellow-orange polyketide pigment, altersolanol A, without myco-
toxin’s production [80] (Fig. 7). These fungal strains can be investigated as a
possible potentially safe source of pigments [25].
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Fig. 6 Main hydroxyanthraquinone pigments produced by Trichoderma species
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2.6 Species of the Cordycipitaceae Family Producing Pigments

Fungal strains belonging to the Cordydipitaceae family are often characterized as
insect pathogens, and some of them can be used as biological control against crop
pests, such as aphids [81]. From the 18 genera classified in this family, shades of
orange to deep-red pigments have been described, and mainly found in the 5 follow-
ing clades: Beauveria, Cordyceps (the sexual states (teleomorphs) of Beauveria
species), Hyperdermium, Isaria (formely Paecilomyces), and Lecanicillium (former
Verticillium). The fungus Cordyceps unilateralis can produce six extracellular red
naphthoquinone pigments, with erythrostominone as the major one, followed by
4-O-methyl erythrostominone, deoxyerythrostominol, deoxyerythrostominone,
epierythrostominol, and in a smaller proportion 3,5,8-trihydroxy-6-methoxy-2-
(5-oxohexa-1,3-dienyl)-1,4-naphthoquinone (shortened to 3,5,8-TMON) [25, 82]
(Fig. 8). Interestingly, the 3,5,8-TMON presents the most intense red hue and the
lowest cytotoxic properties among the six naphthoquinones mentioned, rendering
this latter promising for food and cosmetic applications. Moreover, it has been
shown that erythrostominone can be chemically converted to 3,5,8-TMON by
heating up the fermentation broth (100 �C) under acidic conditions (pH 4).
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A blood-red dibenzoquinone mycotoxin, oosporein, was isolated in Beauveria
bassiana [83] and Lecaniccilium aphanocladii [84]. This molecule has a wide range
of bioactivities from antifungal, antimicrobial, and phytotoxic effects to growth
inhibition in plants. Additionally, kidney damage and even death were noticed in
poultry exposed to oosporein. Yellow pigments 2-pyridone tenellin [85] and
bassianin [86] have been described in Beauveria sp. (Fig. 8). Little has been
investigated on these components. Tenellin have also been used as biocontrol
agent for agrochemical pests, such as thrips, bollworms, whiteflies, mealybugs,
and mites. Similarly, the known orange-red anthraquinone dimer, skyrin, was
found in Hyperdermium bertonii, and was demonstrated to have selective toxicity
toward insect cells, which suggests potentialities for agrochemical applications of
such pigments [87]. Other alkaloid-type yellow pigments, torrulbiellone A, as well
as brownish isocoumarine glucoside compounds, were described in Torrubiella sp.
[88, 89], and were concluded to have strong activity against human cancer cell lines,
in particular regarding breast cancer and epidermoid carcinoma.

A red pigment produced by a strain of Isaria farinosa (formerly Paecilomyces
farinosus) was elucidated as a chromophore of the hydroxyanthraquinone type
[17, 42]. This pigment was excreted in the fermentation broth and was relatively
easily extracted with a mixture of water and ethanol (1:1, v/v). The ready
availability of this pigment along with its heat, pH, and temperature resistance
offer new insights for food coloring applications.

Thus, the Cordycipitaceae family displays promising fungal strains producing
relatively high concentrations of reddish bioactive pigments. Most of them are also
mycotoxins, whose activities against insects have been widely demonstrated,
suggesting that further toxicity tests would be required to ensure they would remain
harmless to human health whatsoever their final industrial application and discard.

2.7 Species of the Xylariaceae Family Producing Pigments

The Xylariaceae is one of the largest families of filamentous fungi isolated from
plant material. This is due to the fact that many members, as Hypoxylon or Daldinia,
can develop an endophytic stage during their life cycle. Nowadays, around 1300
species are accepted in this family. They essentially grow under the form of mycelial
structure, as their fruiting bodies (stromata) seem to form only when their host is
stressed or unhealthy. Thereby, the elucidation of their life cycle and their phylogeny
have been recently achieved, thanks to molecular studies. They are known to
produce several novel and interesting secondary metabolites such as antiparasitic
agents, enzyme inhibitors, immunomodulators, antimicrobial substances, or pig-
ments, mainly extracted from their fruiting stages [90].

The subfamily Hypoxyloideae includes many genera whose stromata show bright
colors, depending on their cycle stage. The stromata of many Xylariaceae, above all
the genera Hypoxylon, Daldinia, and Annulohypoxylon, are rich in characteristic
pigments that also serve as chemotaxonomic marker molecules [91, 92]. Many of
them are azaphilones containing a highly oxidized pyrone–quinone bicyclic core
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with a chiral quaternary center. Hypoxylon lechatii, collected in French Guiana,
produced vermelhotin and three novel congeners hypoxyvermelhotins A–C. Like
vermelhotin, these compounds constitute orange-red pigments and a preliminary
biological characterization revealed rather strong cytotoxic and moderate to weak
antimicrobial effects [93–95]. High-performance liquid chromatography (HPLC)
profiling ofH. fragiforme (a common fungus associated with Fagus sp. in the Northern
hemisphere) by Stadler et al. [96] revealed changes in the pigment composition during
stromatal development. The white cytotoxic mycotoxin, cytochalasin H, and two new
cytochalasins (fragiformins A–B) were identified as major constituents of the young,
maturing stromata, whereas mature, ascogenous material yielded large amounts of
mitorubrin-type azaphilones. Indeed, the red color of mature H. fragiforme as well as
in H. howeanum is due to four mitorubrin azaphilones (mitorubrin, (+)-mitorubrinol,
mitorubrinol-acetate, and (+)-mitorubrinic acid) which are concentrated in orange-
brown granules located beneath the stromatal surface [97]. Mellein derivatives and
the green pigment hypoxyxylerone have also been isolated from cultures of this fungus
[98, 99]. Two apparently specific mitorubrinol derivatives were, moreover, identified
from the stromata of a strain of H. fulvo-sulphureum, belonging to the H. rubiginosum
complex [100]. Bodo et al. [101] identified a novel naphthyl-naphthoquinone:
5-hydroxy-2- (10,80-dihydroxy-40-naphthyl)-1,4-naphthoquinone, named hypoxylone
(orange), in H. sclerophaeum. From H. rickii, rickenyl B and D (red and brown)
were obtained. These compounds belong to the class of parasubstituted terphenyls,
which are widespread in the kingdom Fungi without any preferences for specific
taxonomic groups [94]. Seven new pigmented azaphilones: lenormandins A–G, were
also extracted from several strains of H. lenormandii, and H. jaklitschii sp. nov. They
seem specific for these species or closely related taxa [102].

In the comprehensive review from Stadler et al. [103], it is mentioned that
H. fuscum and its allies have greenish, olivaceaous or isabelline pigment colors
due to daldinins (H. fuscum chemotype). H. rubiginosum and allies are typically
orange, orange brown, or yellowish green from the presence of mitorubrin
(H. fragiforme chemotype), rubiginosin (H. rubiginosum chemotype), or hypomiltin
(H. hypomiltum/ perforatum chemotype). H. macrocarpum contains different oliva-
ceous to purplish brown pigments named macrocarpones.

Anyway many members of this genus show very diverse colors and hues:
vinaceous (strains of Hypoxylon rubiginosum), bright orange (H. petriniae), deep
orange or sienna (H. subticinense), orange–red (H. rutilum), amber, ochreous yellow
or greenish-yellow (H. perforatum), lilaceaous gray to purple (H. cf. vogesiacum)
[104]. These different colors clearly reflect the presence of several different metab-
olites bound to be identified through additional studies [105].

The diversity and complexity of secondary metabolites in this subfamily
(Xylariaceae: Hypoxyloideae) has been demonstrated through several studies. In
2010, Laessoe et al. [106] identified the yellowish lepraric acid, and derivatives from
Hypoxylon aeruginosum, but also from Chlorostroma subcubisporum and
C. cyaninum sp. nov. (species close to Thuemenella sp.). Similar substituted
chromones were also known from lichenized ascomycetes or plants (see review by
Ellis [107]).
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The production of specific azaphilones like cohaerin A, multiformin A, and
sassafrins D recently allowed to place some strains formerly identified as Hypoxylon
sp. in a new genus, namely Annulohypoxylon [108–110]. Additional studies of
A. cohaerens further established two subtypes, one of which contains cohaerin
variants A and B [109], while the other contains the cohaerins C-F [111]. Additional
cohaerins G-K in yellow hues were obtained from this strain showing evidence of
the coexistance of several cohaerin’s structural variations, produced by the fungus
A. cohaerens, through the combination of single minor changes [112]. Various
Entonaema spp. (Pyrenomycetes) as Entonaema splendens also contain mitorubrins
variants such as entonaemins, rubiginosins, or hypomiltin [113, 114]. Sassafrins
A–D, four new azaphilones, were also extracted from the stromata of Creosphaeria
sassafras. Their apparently unique occurrence in C. sassafras supports the status of
this fungus as a member of a distinct genus within the Xylariaceae, coinciding with
molecular and morphological traits [108].

Up to date the genus Daldinia includes about 20 angiosperm associated species.
Some of them have recently been clustered with the genera Xylaria and Hypoxylon
[115]. They develop a wide range of hues from yellow to purple, essentially due to
the pigments produced in their stromatal structures but also during the mycelial
growth. The main metabolites detected strongly differ according to the culture
conditions [116, 117]. However, all the experimented species (D. bambusicola,
D. caldariorum, D. childiae, D. clavata, D. concentrica, D. eschscholzii, D. fissa,
D. grandis, D. lloydi, D. loculata, D. cfr loculata, D. petriniae, D. singularis, D. sp.
“Scania”) produce the yellow BNT (1,10-Binaphthalene-4,40-5,50-tetrol) and
daldinol in their stromata (Fig. 9). The yellowish daldinal A, daldinal B, and daldinal
C were also produced by D. concentrica and D. eschscholzii. The colored
8-methoxy-1-napthol and 2-Hydroxy-5-methylchromone were found from the liquid
cultures of all strains. The yellow azaphilones and benzophenones found in
D. childiae were lacking in species with purple stromatal colors. Most cultures of
Daldinia spp. then produced naphthalene and chromane derivatives, differing from
allied genera by the absence of mellein. Stromata of Daldinia spp. did not produce
mitorubrin but generally contained binaphthyls.

2.8 Species of the Chaetomiaceae and Sordariaceae Families
Producing Pigments

Chaetomiaceae and especially the genus Chaetomium is a commoun fungal genus
from soil and environment. Chaetomium cupreum amongst other exhibit antagonis-
tic activities against many fungi. Ketomium®, a commercial product, has been
developed from this species, and is being widely used as broad spectrum
bio-fungicide for disease control in various crops [118]. C. cupreum abundantly
produces a red pigment identified as oosporein (6,60-tetrahydroxy-2,20 dimethyl-
5,50-bi-p-benzoquinone), known to have antifungal effects against Rhizoctonia
solani, Botrytis cinerea, Pytium ultimum and many pathogenic fungi. More recently
three new azaphilones named rotiorinols A � C (red), two new stereoisomers,
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(�)-rotiorin (red) and epi-isochromophilone II (yellow), and a known compound,
rubrorotiorin (red), were isolated from Chaetomium cupreum [119]. This
rubrorotiorin is also known from Penicillium hirayame [120]. Most of these com-
pounds are active mycotoxins. C. globosum (C. globosum var. flavo-viridae) is also
producing yellow azaphilones named chaetoviridins (A, B, C, D) [121].
Chaetoviridin A is clearly involved in the induction of chlamydospores-like cells
and also inhibits the growth of other fungi. Other strains of C. globosum, moreover,

Daldinin A (C15H18O5, 301,1) Daldinin B (C15H18O4, 285,1) Cohaerin A (C
26

H
28

O
6
, 436,5)

Daldinin C (C15H21O4, 265,1)

Vermelhotin (C12H11NO3, 217,2)

Mitorubrin (C21H18O7, 382,4)

Hypoxyxylerone (C22H14O7, 390,3) Daldinal C (C20H24O7, 376,2)

Daldinal B (C18H20O6, 332,3)

Daldinal A (C17H18O6, 318,3)

Hypoxylone (C20H12O5, 332,3)

H. lechatii; H. fragiforme D. bambusicola Ann. cohaerens

S
tr

ai
ns

A
za

ph
ilo

ne
s

N
ap

ht
oq

ui
no

ne

OH

OH O

O

OH

HO

OH O

O

CH2OH

OH

OH

O

Me

MeO

OMe
OMe

OMe

MeOHO

OH
O

O

O

O

O

O

O

O

OH
HO

HO

HN

O
HO

OHMe

MeO OMe

OMe O CHO

OH

OCH3H3CO

OH O CHO

O

O
O

HO

HO

O

O

O
O

O OH

O
O

O

HO

Fig. 9 Main azaphilone and naphthoquinone pigments produced by Hypoxylon, Daldania and
Annulohypoxylon species

16 Pigments and Colorants from Filamentous Fungi 523



produce the cytochalasan alkaloids chaetoglobosins A–G, J, Q, R, T, U arising from
a mixed polyketide-amino acid biosynthetic pathway, and with different hues (F is a
pale yellow compound also found in Chaetomium subaffine). Strains also produce
chaetoglobin A–B, chaetomugilins A–F, I, M, seco-chaetomugilins A–D, and three
new nitrogenous azaphilones; 40-epi-N-2-hydroxyethyl-azachaetoviridin A (dark
red), N-2-butyric-azochaetoviridin E (orange), and isochromophilone XIII (orange)
[122–124]. C. globosum additionally synthesizes a purple pigment called
cochliodinol [125].

In the same family, the thermophilic genus Thielavia zopf (Chaetomiaceae,
Sordariales) (anamorphic genus in the human pathogenic Myceliophthora sp.) is
also widespread as plant endophytes. Many species are characterized by darkly
pigmented ascospores containing melanin and/or by pigments exuded in the culture
media. T. intermedia or T. rapa-nuiensis sp. nov. f. i. excrete orange-yellow pig-
ments. T. terrestris colonies are yellow to orange in reverse and sometimes exude a
diffusible reddish brown pigment [126, 127]. Several nor-spiro-azaphilones
(thielavialides A � D), and a bis-spiroazaphilone (thielavialides E), have been
identified from the cultures, but they appear as unpigmented [128]. The human
pathogenic Achaetomium sp., is known to produce the orange hydroxyan-
thraquinone pigment, parietin [129]. Such agents, sometimes causing osteomyelitis
or fatal cerebral mycosis are generally difficult to isolate, identify, and also treat
effectively. The pigments production in this family is not the first skill to be studied
(Fig. 10).

Neurospora crassa is a well-known Sordariaceae originating from tropical or
subtropical countries. It produces several yellow-orange carotenoids identified as
phytoene, ß-carotens, γ-carotene, lycopene, neurosporen, neurosporaxanthin or
spirilloxanthin. Overaccumulation of carotenoids has extensively been studied in
this genus, and overexpression has frequently been generated by photoinduction
[130–132].

3 Natural Carotenoid Pigments Produced by Filamentous
Fungi

For several decades, carotenoids have been commercially produced by chemical
synthesis or sold as plant extracts or oleoresins, e.g., of tomato and red pepper. Some
unicellular green algae, under appropriate conditions, become red due to the accu-
mulation of high concentrations of “secondary” carotenoids. Two examples,
Dunaliella spp. and Haematococcus pluvialis, are cultured extensively as sources
of β-carotene and (3S,3‘S)-astaxanthin, respectively.

Nonphotosynthetic microorganisms – fungi, bacteria, yeasts – are also often
strongly pigmented by carotenoids, so commercial production by these organisms
is an attractive prospect. Fermentation processes for pigment production at commer-
cial scale are now in use in the food industry, such as the production of β-carotene
from the fungus Blakeslea trispora, in Europe. Efforts have been made to reduce the
production costs so that pigments produced by fermentation can be competitive with
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synthetic pigments or with those extracted from natural sources, i.e., plant or
microalgal. There is scope for innovations to improve the economics of carotenoid
production by isolating new microorganisms, creating better ones, or improving the
processes. The fungal carotenoid products may be used as color additives in many
industries, including food and feed, and are now under consideration for use as
health supplements.

3.1 b-Carotene

β-Carotene (Fig. 11) is produced on a large scale by chemical synthesis, and also
from plant sources such as red palm oil, as well as by fermentation and from
microalgae.

3.1.1 Blakeslea trispora
Blakeslea trispora is a commensal microorganism associated with tropical plants.
The fungus exists in (+) and (�) mating types; the (+) type synthesizes trisporic acid,
which is both a metabolite of β-carotene and a hormonal stimulator of its biosyn-
thesis. On mating the two types in a specific ratio, the (�) type is stimulated by
trisporic acid to synthesize large amounts of β-carotene [133, 134]. The production
process proceeds essentially in two stages. Glucose and corn steep liquor can be used
as carbon and nitrogen sources. Whey, a by-product of cheese manufacture, has also
been considered, with strains adapted to metabolize lactose. In the initial fermenta-
tion process, seed cultures are produced from the original strain cultures and
subsequently used in an aerobic submerged batch fermentation to produce a biomass
rich in β-carotene. In the second stage, the recovery process, the biomass is isolated
and transformed into a form suitable for isolating the β-carotene, which is then
extracted with ethyl acetate, suitably purified and concentrated, and crystallized. The
final product is either used as crystalline β-carotene (purity >96 %) or is formulated
as a 30 % suspension of micronized crystals in vegetable oil. The production process
is subject to Good Manufacturing Practices (GMP) procedures and adequate control

Fig. 11 Chemical structures of the carotenoids ß-carotene and lycopene
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of hygiene and raw materials. The biomass and the final crystalline product comply
with an adequate chemical and microbiological specification and the final crystalline
product also complies with the JECFA (Joint FAO/WHO Expert Committee on Food
Additives) and European Union (EU) specifications as set out in Directive 95/45/EC
for coloring materials in food.

The first β-carotene product from B. trispora was launched in 1995. The mold
has shown no pathogenicity or toxicity in standard pathogenicity tests in mice,
by analysis of extracts of several fermentation mashes for fungal toxins, and by
enzyme immunoassays of the final product, the β-carotene crystals, for four
mycotoxins. HPLC analysis, stability tests and microbiological tests showed
that the β-carotene obtained by co-fermentation of Blakeslea trispora complies
with the EU specification for β-carotene (E 160 aii), listed in Directive 95/45/EC,
including the proportions of cis and trans isomers, and is free of mycotoxins or
other toxic metabolites and free of genotoxic activity. In a 28-day feeding study
in rats with the β-carotene manufactured in the EU no adverse findings were
noted at a dose of 5 % in the diet, the highest dose level used. The EU Scientific
Committee considered that “β-carotene produced by co-fermentation of
Blakeslea trispora is equivalent to the chemically synthesized material used as
food colorant and is therefore acceptable for use as a coloring agent for
foodstuffs.”

There are now other industrial productions of β-carotene from B. trispora in
Russia, Ukraine, and Spain. The process has been developed to yield up to 170 mg of
β-carotene/g dry mass or about 17 g/L. Blakeslea trispora is now also used for the
production of lycopene (see Sect. 3.2.).

3.1.2 Phycomyces blakesleeanus
Another fungus, Phycomyces blakesleeanus, is also a potential source of various
chemicals including β-carotene [135]. The carotene content of the wild type grown
under standard conditions is modest, about 0.05 mg per g dry mass, but some
mutants accumulate up to 10 mg/g. As with Blakeslea trispora, sexual stimulation
of carotene biosynthesis is essential and can increase yields to 35 mg/g. The most
productive strains of Phycomyces achieve their full carotenogenic potential on solid
substrates or in liquid media without agitation. Blakeslea trispora is however more
appropriate for production in usual fermentors.

3.1.3 Mucor circinelloides
Mucor circinelloides wild type is yellow because it accumulates β-carotene as the
main carotenoid. The basic features of carotenoid biosynthesis, including photoin-
duction by blue light [136], are similar in Phycomyces and Mucor. M. circinelloides
is a dimorphic fungus that grows either as yeast cells or in a mycelium form, and
research is now focused on yeast-like mutants that could be useful in a biotechno-
logical production.
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3.2 Lycopene

Lycopene (Fig. 11) is produced on a large scale by chemical synthesis, and from
tomato extracts, in addition to production by fermentation. As with β-carotene, the
various preparations differ in the composition of geometric isomers (Table 2).
Lycopene is an intermediate in the biosynthesis of all dicyclic carotenoids, including
β-carotene. In principle, blocking the cyclization reaction and the cyclase enzyme by
mutation or inhibition should lead to the accumulation of lycopene. This strategy is
employed for the commercial production of lycopene.

3.2.1 Blakeslea trispora
A commercial process for lycopene production by Blakeslea trispora is now
established. Imidazole or pyridine is added to the culture broth to inhibit the enzyme
lycopene cyclase. The product, predominantly (all-trans)-lycopene, is formulated
into a 20 % or 5 % suspension in sunflower oil, together with α-tocopherol at 1 % of
the lycopene level. Also available is an α-tocopherol-containing 10 % or 20 %
lycopene cold-water-dispersible (CWD) product. Lycopene oil suspension is
intended for use as a food ingredient and in dietary supplements [137]. The proposed
level of use for lycopene in food supplements is 20 mg per day.

Approval for the use of lycopene from B. trispora was sought under regulation
No 258/97/EC of the European Parliament and the Council concerning novel foods
and novel food ingredients. The European Food Safety Authority (EFSA) was also
asked to evaluate this product for use as a food color. The conclusions were that the
lycopene from B. trispora is considered to be equivalent to natural dietary lycopene.
The toxicity data on lycopene from B. trispora and on lycopene from tomatoes do
not give indications for concern. In its opinion of January 30, 2008, the EFSA
derived a low numerical Acceptable Daily Intake (ADI) of 0.5 mg/kg body weight/
day for lycopene from all sources, and the risk assessor also concluded that with the
uses and actual use levels presented by the applicants from industry, the intake of
lycopene from natural sources and as a food coloring would be expected to remain
within this ADI. The main concern is that the proposed use levels of lycopene from
B. trispora as a food ingredient may result in a substantial increase in the daily intake
of lycopene compared to the intakes solely from natural dietary sources. Addition-
ally, the use of lycopene as a health supplement is also becoming very popular. Data
from the Framingham Offspring Study – an epidemiological analysis that indicates
correlation and not causation – recently reported that increased intakes of lycopene
are associated with a reduction in the incidence of cardiovascular disease and
coronary heart disease.

Table 2 Percentage of geometrical isomers in “lycopene” from various sources

Source (all-trans) (5-cis) (9-cis) (13-cis) Others

Chemical synthesis >70 <25 <1 <1 <3

Tomato 94–96 3–5 0–1 1 <1

Blakeslea trispora �90 (mixed cis isomers) 1–5
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3.2.2 Fusarium sporotrichioides
The fungus Fusarium sporotrichioides has been genetically modified to manufacture
lycopene from the cheap corn-fiber material, the “leftovers” of making ethanol. By
use of sequential, directional cloning of multiple DNA sequences, the isoprenoid
pathway of the fungus was redirected toward the synthesis of carotenoids via
carotenoid biosynthesis genes introduced from the bacterium Erwinia uredovora.
Cultures in laboratory flasks produced 0.5 mg lycopene per g dry mass within 6 days
and improvements are predicted.

4 Natural Pigments Produced by Marine-Derived
Filamentous Fungi

As their terrestrial counterparts, marine and marine-derived fungi are also able to
produce colored compounds. They are therefore able to exhibit bright colors, from
yellow to black, mainly belonging to polyketides. Indeed, several papers report that
polyketides seem to dominate marine natural products of fungal origin [138]. It is
also widespread that the colored molecules identified from terrestrial fungi can often
be isolated from the same species living in a marine environment. For instance,
catenarin, emodin, erythroglaucin, physcion, questin, and rubrocristin or physcion
anthrone are produced by marine derived Aspergillus and/or Eurotium species, as
well as by their terrestrial counterparts. Anyway, fungi from marine ecological
niches are today considered as promising novel sources of chemically diverse
pigments, and the literature abundantly reports the interest for marine organisms
with respect to the production of new molecules and, among them, new pigments
[139, 140]. Indeed, many marine ecological niches are still unexplored and it seems
plausible that unique features of marine environments can be the inducers of unique
substances synthesized by marine or marine-derived microorganisms [141]. The
potential of marine derived microorganisms to produce unique and original mole-
cules could therefore come from specific metabolic or genetic adaptation appearing
to meet very specific combinations of physico-chemical parameters (high salinity,
low O2 penetration, low temperature, limited light access, and high pressure). Two
status lead to particular behaviors and products: either, the challenge of facing
unusual living conditions (exogenous fungi), or, the use of specific procedures
naturally adapted to the marine niches (for instance marine organisms’ fungal
endophytes) (i.e., indigenous micromycetes, naturally selected by aquatic environ-
ments). For now, the highest diversity of marine fungi seems to be found in tropical
regions, mainly in tropical mangroves, which are extensively studied because of
their high richness in organic matters [142, 143]. These biotopes seem favorable to
the development of a high diversity of heterotrophic microorganisms. Many genera
producing pigments have then been isolated either from water, sediments, decaying
plants, or from living organisms as invertebrates, plants (endophytes) or algae.
Anyway, in unusual biotopes (sometimes extreme), the fungal species with
pigmented cell walls (in the spores and/or mycelium), are clearly able to tolerate
dehydration-hydration cycles or high solar radiations, better than the moniliaceous

16 Pigments and Colorants from Filamentous Fungi 529



fungi, whose cells are devoid of pigments. These aromatic compounds, as melanin,
sporopollenin (brown product of oxydative polymerization of β-carotene) or
cycloleucomelone (terphenylquinone), often show significant antioxidant activities,
and are bound to protect the biological structures, giving them an excellent durability
and a high potential for survival in hostile environments [144, 145].

5 The Coding Genes and Biosynthetic Pathways of Pigments
in Filamentous Fungi

Biosynthesis of polyketide secondary metabolites has been subjected to more
intensive studies among other classes of secondary metabolite pathways in fungi
[146]. The majority of genes required for the production of these metabolites are
mostly organized in gene clusters, which often are silent or barely expressed
under laboratory conditions, making discovery and analysis difficult. Fortunately,
the genome sequences of several filamentous fungi are now publicly available
and greatly facilitate the establishment of links between genes and metabolites. In
the last decade, whole genome sequencing of various fungi has revealed that
these microorganisms have immense biosynthetic potential surpassing by far the
chemical diversity observed in laboratory culture [147]. For example, the genome
of many Aspergilli are found to encode for a combined 30 to 80 PKS,
non-ribosomal peptide synthetases and polyketide non-ribosomal peptide synthe-
tases hybrids, which far exceed the total number of known polyketides and
non-ribosomal peptides [147]. From these, the fungal PKS are of considerable
interest due to their interesting enzymology and the polyketide structural diver-
sity [37]. One of the earlier major advances in identification of fungal polyketide
secondary metabolite gene clusters is the development of degenerate primed
Polymerase Chain Reaction (PCR), based on conserved ketosynthase domain of
PKS [148].

5.1 Biosynthesis of Fungal Azaphilone Pigments

Besides the fungal polyketide-derived secondary metabolites, azaphilones are a class
of fungal metabolites characterized by a highly oxygenated pyrano-quinone bicyclic
core [111, 149–154]. Azaphilone compounds exhibit a wide range of interesting
biological activities, such as antimicrobial, antifungal, antiviral, antioxidant, cyto-
toxic, nematicidal and anti-inflammatory activities [8]. Many of these effects may be
explained by the reactions of azaphilones with amino groups, such as those found in
amino acids, proteins and nucleic acids. According to Osmanova et al. [155], dif-
ferent azaphilone compounds occur in fungi belonging to 23 genera from 13 families:
these azaphilone compounds can be classified into ten different structural groups and
the largest group (azaphilones with a lactone ring) includes 68 substances, e.g., the
yellow pigment ankaflavin [155]. In total, over 370 fungal azaphilone metabolites
have been described in the literature [8]. Considering the variety of azaphilone
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compounds that occurs, one finds that some fungal species are able to produce a huge
variety of diverse types, whereas others are able to produce only one or two different
types of azaphilones. An example of the first kind is Penicillium spp. of the
Trichocomaceae family, which produces over 40 azaphilone compounds from five
types: azaphilones with a lactone ring; azaphilones with an aliphatic side chain;
azaphilones with o-orsellinic acid; azaphilones with an ergostane skeleton and
o-orsellinic acid; and bicyclic spiro-azaphilones. In contrast, Phomopsis euphorbiae
contains only one type of azaphilone, namely an azaphilone with an aliphatic side
chain. Some of these fungal azaphilone compounds absorb visible light and are
colored, namely azaphilone pigments, e.g., ankaflavin (yellow), monascin (yellow),
monascorubrin (orange), rubropunctatin (orange), monascorubramine (purple), and
rubropunctamine (purple), while others are colorless. Azaphilone pigments are
responsible for the bright yellow, red, or green colors of fruiting bodies or mycelia
of numerous species of ascomyceteous including genera Monascus, Penicillium,
Talaromyces and Aspergillus. The color of azaphilone pigments depends on their
chemical structure.

Biosynthetically, azaphilone pigments as well as most pigments produced by
fungi are polyketide based and involve complex pathways. It is known that the
biosynthesis of azaphilone pigments uses both the polyketide pathway and the fatty
acid synthesis pathway [8, 156]. In fact, the hexaketide chromophore of azaphilone
pigments is derived from the condensation of acetate and malonate by polyketide
synthases, while the side chain of these azaphilone pigments arises from a medium-
chain fatty acid synthesized via the fatty acid synthetic pathway. The polyketide
pathway assembles the main polyketide (hexaketide) chain of the azaphilone pig-
ments from acetic acid (the starter unit) and five malonic acid molecules (the chain
extender unit) in a conventional way to generate the hexaketide chromophore
structure. The fatty acid synthesis pathway produces a medium-chain fatty acid
(octanoic or hexanoic acid) that is then bound to the chromophore by a transester-
ification reaction in order to form the azaphilone pigment (Fig. 12) [156, 157]. In the
literature, biosynthetic pathways are suggested for the following azaphilones:
monascorubrin and monascoflavin; mitorubrin and rubropunctatin [149]; ascochitine
[150]; ochrephilone [150]; citrinin [150, 156]; monascusones A and B, monascin
[158] and sassafrin D [108, 109].

5.2 Biosynthesis of Fungal Hydroxyanthraquinone Pigments

Besides intensively investigated fungal azaphilone pigments, hydroxyanthraquinone
compounds have been considered among the most abundant fungal natural products
giving color to spores, sclerotia, sexual bodies and other developmental structures
[159] as exemplified in case of pigments produced by Curvularia lunata
[17]. Anthraquinones are a class of chemical compounds of the quinone family
that differ in the nature and positions of substituent groups [17]. Anthraquinoid
derivatives are derivatives of the basic structure 9,10-anthracenedione or also called
9,10-dioxoanthracene, i.e., a tricyclic aromatic organic compound with formula
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C14H8O2 and whose ketone groups are on the central ring. In general, for each
anthraquinoid derivative there are eight possible hydrogens that can be substituted.
The term “hydroxyanthraquinone” usually refers to derivatives of 9,10-
hydroxyanthraquinone, i.e., derivatives of 9,10-anthraquinone where any number n of
hydrogen atoms have been replaced by n hydroxyl groups. In this case the number n of
hydroxyl group is indicated by a multiplier prefix (mono-, di-, tri-, up to octa-). The
hydroxyanthraquinones absorb visible light and are colored, whereas strictly
9,10-anthraquinones are colorless. It appears that the color of the hydroxyanthraquinone
pigments depends on the position and number of the hydroxyl substituents on
the different rings. About 700 anthraquinone derivatives were identified from plants,
lichens and fungi; 43 have already been described from fungal cultures [17, 32]. These
molecules present a great interest in the field of dyeing molecules: they decline a
widerange of nuances in the shades of brown, purple, red, orange to yellow, highly
requested in cosmetics, clothes dyeing and foodstuff industries [3, 4, 17, 160].
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Fig. 12 Possible biosynthetic pathways to azaphilone metabolites, monascusone B and monascin,
produced from the fungus Monascus kaoliang via fatty acid synthesized pathway proposed by
Jongrungruangchok et al. 2004 (Adapted from Gao et al. [8])

532 Y. Caro et al.



From their structures, hydroxyanthraquinone pigments, are relatively stable (like the
well heat stable hydroxyanthraquinone, carminic acid from insects) and have a superior
brightness compared to azo-pigments [3, 4, 17]. Then, they possess good light-fastness
properties, which often makes metallization unnecessary, even if hydroxyanthraquinone
derivatives can easily form coordination complexes with several cations. In textile
industry, hydroxyanthraquinone are, for example, considered as « reactive dyes » as
they form a covalent bond with the fibers, usually cotton, although they are used to a
small extent on wool and nylon. Therefore, they made it possible to achieve extremely
high washfastness properties by relatively simple dyeing methods. A marked advantage
of reactive dyes over direct dyes is that, their chemical structures are often much simpler,
their absorption spectra show narrower absorption bands, and the dyeing are
brighter [161].

Hydroxyanthraquinone pigments are another interesting set of secondary fungal
metabolites and exhibit a wide range of interesting biological activities, such as
antioxidant, antimicrobial, antifungal, antiviral, and cytotoxic activities [3, 4, 17, 32,
160]. Numerous hydroxyanthraquinone structures have been described, particularly
from members of the Trichocomaceae (Aspergillus spp., Emericella spp.,
Paecilomyces spp., and Eurotium spp.), Pleosporaceae (Fusarium spp.), and
Nectriaceae (Alternaria spp., Curvularia spp., and Drechslera spp.) families.
Gessler et al. [32] and Hanson et al. [162] explained that anthraquinones are formed
via the polyketide pathway and regulated by non reducing polyketide synthases, i.e.,
multienzymes complexes including acyl carrier protein, transacylase, ketosyntase,
malonyl-CoA transacylase, methyltransferases and reductases, ensuring the conden-
sation of acetyl-CoA (starter unit) and malonyl-CoA (extender unit), and producing
a unstable β-polyketide chain (containing a free carboxyl group) precursor of
different aromatic structures like the hydroxyanthraquinone pigments (Fig. 13).

Fungal hydroxyanthraquinones that are synthesized following this acetate-
malonate pathway show a characteristic substitution pattern, i.e., they show substi-
tution on both aromatic rings, and more particularly, at least one hydroxyl group in
position R1 and one hydroxyl or methoxyl group in position R8, examples being
emodin (yellow), physcion (yellow), dermolutein (yellow), chrysophanol (red),
erythroglaucin (red), dermocybin (red), dermorubin (red), tritisporin (reddish
brown), cynodontin (bronze) and helminthosporin (maroon), which are produced
by Aspergillus spp., Eurotium spp., Fusarium spp., Trichoderma spp., Curvularia
lunata and Drechslera spp. According to a practical hydroxyanthraquinone classi-
fication [17] based on the position of the functional groups added on the 9,10-
anthraquinone backbone, the main hydroxyanthraquinone pigments of fungal origin
are classified in the “group A1” (compounds which show substitution on both
aromatic rings, and at least two hydroxyl groups in both R1 and R8 positions), or
into the “group A2” of hydroxyanthraquinone pigments (compounds which show
substitution on both aromatic rings and at least two hydroxyl groups in R1 and R6
positions and one methoxyl group in R8 position). According to this polyketide
pathway, the biosynthetic relationships show that the yellow hydroxyanthraquinone
pigments (e.g., emodin, physcion and dermolutein) exist in the beginning of the
synthesis pathway, whereas the red hydroxyanthraquinone ones, like dermorubin
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and dermocybin, are more complicated in structure, and occur in the latter part of the
biosynthesis pathway [17]. More recently, Bringmann et al. [163] revealed that the
pigment chrysophanol is shown to be formed, according to an organism-specific
route, by a third folding mode involving a remarkable cyclization of a bicyclic
diketo precursor, thus establishing the first example of multiple convergence in
polyketide biosynthesis. A complete knowledge about the biosynthetic pathway of
hydroxyanthraquinone pigments is not yet available. The genomic approaches of
selection of potential hydroxyanthraquinone pigment producers may not be useful at
this point, when none of the fungal hydroxyanthraquinone pigment producers are
fully genome sequenced yet. The problem of annoting correct gene sequences
should not to be overlooked, especially due to the variation in the domain of the
polyketide synthases involved in the biosynthesis of these fungal hydroxyan-
thraquinone pigments.

Fig. 13 Scheme of the cyclization of the ß-polyketide chain during the synthesis of anthraquinones
in fungi (Based on Gessler et al. [32]). I, acetyl-CoA; II, malonyl-Coa; III, ß-polyketide chain;
IV-anthraquinone (R1-R8 lateral substituents); and ACP, acyl carrier protein
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5.3 Biosynthesis of Fungal Naphthoquinone Pigments

Naphthoquinone pigments are produced, at least, by a broad range of Fusarium
species. Few reports have been published on the red naththoquinone, aurofusarin,
and bikaverin biosynthetic pathways. The recent sequencing of Fusarium genomes
has revealed the large number and diversity of secondary metabolic gene clusters
[164, 165]. For example, the genome of F. fujikuroi was recently sequenced and
partially elucidated, showing that less than half of the putative produced secondary
metabolites are known [166]. Examples of discovered secondary metabolites, which
could be already linked to the corresponding biosynthetic gene cluster, are the
putative carcinogen, fusarin C [167], the histone deacetylase inhibitor, apicidin F
[48], the PKS-derived fujikurins [168], the perithecial pigments fusarubins [62], as
well as the antiprotozoal mycelial pigment bikaverin [54]. Concerning the bikaverin
biosynthesis pathway, the responsible non-reducing PKS-encoding gene PKS4
(FFUJ_06742), later re-named to BIK1 (BIKaverin polyketide synthase), was first
described in F. fujikuroi by Linnemannstöns et al. [169]. Later, the complete
bikaverin gene cluster was characterized by Wiemann et al. [54]. In addition to the
PKS-encoding gene, five genes downstream of BIK1 were identified as part of the
bikaverin gene cluster. The five genes encode a putative FAD-dependent
monooxygenase (BIK2; FFUJ_06743), a putative O-methyltransferase (BIK3,
FFUJ_06744), a putative NmrA-like transcriptional regulator (BIK4,
FFUJ_06745), a putative Zn(II)2Cys6 fungal-type transcription factor (BIK5,
FFUJ_06746) and a putative major facilitator superfamily (MFS) transporter
(BIK6, FFUJ_06747) [54, 165, 170]. Except for BIK4, gene expression of all BIK
genes in F. fujikuroi is strictly regulated by nitrogen availability and pH [54–56,
169]. In F. verticillioides, the same conditions are conducive for BIK gene cluster
expression [171]. Pre-bikaverin (red) has been recognized as the first pathway
intermediate and product of the biosynthetic gene BIK1. This intermediate, first
described by Ma et al. [172], was identified in F. fujikuroi by constitutive
overexpression of BIK1 in a DDBIK2/BIK3 double mutant background [54]. The
condensation of 8 malonyl-CoA molecules and one acetyl-CoA molecule, catalyzed
by the biosynthetic gene BIK1, resulted in the formation of the pre-bikaverin in
F. fujikuroi (Fig. 14). More recently, the putative biosynthetic pathway for bikaverin
synthesis in F. fujikuroi was confirmed by Arndt et al. [170]. The structure of a new
bikaverin intermediate, oxo-pre-bikaverin (red), was identified by NMR and on the
basis of HPLC–HRMS and HPLC–UV measurements. The downregulation of
the involved cluster genes was identified by overexpression of BIK2 and BIK3 in
the DDBIK2/BIK3 + OE:BIK1 mutant [170]. Neither bikaverin nor the new inter-
mediate oxo-pre-bikaverin showed cytotoxic effects in Hep G2-Cells [170].

The aurofusarin biosynthetic pathway starts with the condensation of one acetyl-
CoA molecule with six malonyl-CoA molecules, which is catalyzed by the
aurofusarin polyketide synthase, AUR1 (= PKS12), resulting in the formation of
the naphthopyrone YWA1 in F. graminearum. The tailoring enzymes modify this
compound and the pathway ends with the formation of aurofusarin via the interme-
diate red compounds, nor-rubrofusarin and rubrofusarin (Fig. 15) [57, 58].
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Moreover, it has been shown that aurofusarin production was the lowest under acidic
conditions at pH 4 and 5, while better yields were obtained at pH 6-8 [71].

The recent study by Brown et al. [75] showed that the gene cluster associated with the
PKS gene, PGL1, required for the violet perithecial pigment, that accumulates in the
walls of sexual fruiting bodies in both F. verticillioides and F. graminearum [60, 73],
consists of the same 6 PKS genes (i.e., PGL1 and the adjacent genes PGL2–PGL6). In
contrast, the putative gene cluster includes only 3 PKS genes in F. solani, and interest-
ingly, the pigment accumulating in the perithecial walls ofF. solani is red and results from
the activity of a different PKS [59]. A homolog of the PGL cluster was also identified in
F. fujikuroi, and this fungus has been reported to produce particular red fusarubins
pigments like 8-O-methylfusarubin as the main product [62]. Naphthoquinone pigment
related to fusarubin was initially isolated from the fungus F. solani [74]. Functional
analysis of genes in the cluster demonstrated that the F. fujikuroi homologs of PGL1,
PGL2 and PGL3 are required for the production of fusarubin pigments, and that the
PGL1 homolog is required for perithecial pigmentation [62] (Fig. 16). Although the
functional characterization of most of the cluster in F. fujikuroi provides strong evidence
that fusarubins (red pigment) are precursors of the perithecial pigment (violet hue), the
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Fig. 15 The biosynthetic pathway for the dimeric naphthoquinone pigment, aurofusarin, in
Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones
(Based on Frandsen et al. [57])
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structure of the violet perithecial pigment has yet to be determined [62, 75]. Thus, studies
are in progress to determine the relationship between fusarubin pigments and the violet
perithecial one. A comparative genomic study of F. oxysporum, F. graminearum and
F. verticillioides identified 46 potential secondary metabolite biosynthesis gene clusters,
of which 87 % include a polyketide synthase gene [164].

The genomic studies by Brown et al. [75], Ma et al. [164], and Hansen et al. [165]
shown that the F. oxysporum genome contains the BIK gene cluster (i.e., PKS16
(BIK1), PKS17, 18, 19, 20 and 21) involved in the red mycelial bikaverin pigment
synthesis, which is consistent with the bikaverin production, reported previously in
this fungus [69, 70] and the PGL1 (= PKS3) gene involved in the synthesis of the
uncharacterized violet perithecial pigment, although no report on a violet perithecial
pigment production by F. oxysporum has yet been described in the literature.

5.4 Biosynthesis of Fungal Carotenoids

Carotenoids are themost diverse andwidespread pigments found in nature. They are a
wide group of isoprenoids synthesized by all photosynthetic organisms and also by
some non-photosynthetic bacteria, yeasts, and fungi. The central C40 backbone,
made up of eight isoprene units, forms a polyene chain of conjugated double bonds
and establishes an extended pi-electron system that accounts for its ability to absorb
both ultraviolet (UV) radiation and visible light. The number of conjugated double
bonds within this basic backbone, as well as cyclic and oxygenicmodifications, yields
a variety of carotenoids whose colors range from yellow to reddish brown. More than
800 carotenoid structures have been isolated from different natural sources [173].

The biosynthesis of carotenoids has been studied for many years in many
organisms including fungi. Hundred of genes involved in the pathway have now
been isolated from bacteria, plants, algae, and fungi; and some of these have recently
been used in biotechnological research. The productivity of carotenoid can be
improved by designing an efficient pathway by selecting genes from different
organisms, however neither industry nor consumers did observe a surge or even
the appearance of “engineered” carotenoids on the market, thus being a quite
disappointing situation after so many millions euros invested, and decades after
the beginning of research in this field (i.e., carotenogenic gene cluster from the
bacteria Erwinia herbicola was described in 1991). This situation seems to change
now with the appearance of carotenoids from Genetic Modified Organism (GMO)
yeasts such as Yarrowia lipolytica (developed by Microbia Inc., now DSM Nutri-

�

Fig. 16 Biosynthetic pathway of fusarubins in F. fujikuroi (Based on Studt et al. [62]). Structures
highlighted in gray were identified by NMR, mass spectrometry, and UV data in the liquid culture
of wild-type F. fujikuroi. The aldehyde identified as the first intermediate in this biosynthetic
pathway is boxed. The solid dark gray arrow indicates the main route of naphthoquinone formation.
6-O-demethylfusarubinaldehyde (compound 7); 8-O-methylfusarubin (compound 1); 8-O-
methylnectriafurone (compound 2); 8-O-methyl-13-hydroxynorjavanicin (compound 3); 8-O-
methylanhydrofusarubinlactol (compound 4)
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tional Products) or Kluyveromyces marxianus, with the incorporation of an algal
gene in the latter [174], new strains that try to compete with highly effective
production of β-carotene or lycopene using the fungus Blakeslea trispora.

Although not essential, carotenoids play significant roles in some groups of fungi,
particularly the zygomycetes. β-Carotene is the precursor of trisporoids, a group of
compounds involved in the sexual regulation of Mortierellales and Mucorales
[175]. Carotenoids are formed in fungi via the mevalonate pathway, which starts at
acetyl-CoA and proceeds through mevalonate to isopentenyl-pyrophosphate (IPP),
the general precursor of all isoprenoids. Eight molecules of IPP are subsequently
condensed to form colorless carotenoids via several dehydrogenation reactions
(Fig. 17). Additional modifications bringing color to the molecules then occur
through cyclization, hydroxylation, cleavage, etc.

6 Biotechnological Approaches to Improve Fungal Pigment
Production

The past decade was a period of great improvement for pigment productions and the
knowledge about the different ways to increase the yields have been greatly
extended.

The five major fronts currently ongoing are

• Overall analysis of gene expression i.e., genomics, proteomics, metabolomics.
This is to better understand the production pathways and general metabolisms as
well as the genes and the molecules involved. More than 100 fungal genomes
have already been sequenced, among them several Aspergillii, (A. fumigatus,
A. nidulans, A. oryzae, A. niger, A. terreus, A. clavatus), Penicillii
(P. chrysogenum, P. digitatum, Talaromyces marneiffei) and Saccharomycetes
(Saccharomyces cerevisiae, Debaromyces hansenii, Kluyveromyces lactis, Can-
dida albicans. . .). Many others are in progress, considering humans, animals or
plants pathogens, or strains useful in an industrial context.

• Development of alternative hosts that have already been given GRAS (Generally
Recognized as Safe) status by the Food and Drug Agency (FDA) in the USA to be
used in food industry (P. roquefortii, Aspergillus oryzae, A. sojae, A. japonicus,
Mortierella vinaceae, M. alpina, Fusarium monoliforme, F. veneratum. . .)
[176–178].

• Molecular techniques to improve expression and secretion of non-fungal proteins
for the biosynthesis of unusual metabolites in filamentous fungi

• Molecular techniques to carry out metabolic engineering to modify and improve
particular biosynthetic pathways. Further metabolic engineering to optimize
already existing or exogenous biosynthetic pathways.

• Extensive use of Design Of Experiment (DOE) to improve the conditions of
pigments production, combining the main physicochemical parameters: temper-
ature, oxygen, carbon, nitrogen and other nutrient sources, pH regulation, light
exposure and physiological stage of the fungi.
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Today the high productivity of petrochemical-based industry make it difficult for
the biotechnologies using microorganisms as platform cell factories to spread. The
most important reasons are the higher production costs for the process themselves as
well as some drastical changes in basic equipments of technical platforms. Some
long ago studied bacteria as Escherichia coli, Corynebacterium glutamicum, Bacil-
lus subtilis, or fungi as Aspergillus niger, Aspergillus oryzae, Penicillium
chrysogenum, Saccharomyces cerevisiae are already operated in industry for
enzymes, nutraceuticals or pharmaceuticals.

Indeed, the numerous years of research done on the selected strains led to high
robustness and remarkable tolerances against various stresses under industrial con-
ditions, which is the guarantee of stable and efficient productions.

6.1 Genetic Manipulation in the Future

Chen and Nielsen [179] published recently a highly interesting paper reviewing the
potential future developments for bio-based productions using whole-cell factories.
With concrete examples, they reviewed the main tools for metabolic pathways
control and strain engineering acceleration and then focused on the development of
powerful computational algorithms, omic-based techniques (metabolomic, proteo-
mic, fluxomic, transcriptomic, genomic) combined with modeling refinement, to
enable the reduction in development time and, thus, become attractive to industry
leaders. Specifically for metabolic optimization and control, a range of computa-
tional pathway prediction algorithms has already been generated. Some of them
provide a systematic framework for metabolic pathways (re)design by changing
existing pathways through introduction of gene knockouts or overexpressions
(OptKnock, OptGene, OptForce or FSEOF). Some others can aid in identifying
possible pathways from first principles, based on known enzyme reactions
(DESHARKY) or based on possible biotransformations of functional groups by
known chemistry (BNICE). As an example, their use allowed to identify more than
10,000 possible pathways for the synthesis of 1,4-butane-diol from common central
metabolites. Besides predicting a wide range of possible routes, a prioritization
scoring algorithm based on binding covalence, chemical similarity, hermos-
dynamic favourability and pathway distance, is actually developed to rank the
possibilities based on discriminative criteria [180]. Moreover, the recently
published web server RetroPath [181] offers a way to retrieve reactions varying
in number from the large numbers of reactions found using BNICE to the small
numbers of reactions that are presented in the KEGG database. This fully integra-
tive approach will furnish a fast and global analysis contributing to a rapid
optimization of the production.

In this field, Saccharomyces cerevisiae is one of the most studied strain and it can
be considered as an example for production improvement [182–184]. Many of them
come from genetic manipulations (insertions, deletions, mutations) directly
repressing or promoting the molecules involved in the producing pathways. Unfor-
tunately, the negative aspect of GMOs can be easily concealed, thinking about the
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actual progress that is changing industrial waste into useful compounds. The use of
renewable biomass and processing of industrial waste are becoming more important
due to the increasing pollution of the natural environment and growing concerns
about climate change. Many efforts have been exerted to extend the carbon substrate
range and to improve carbon utilization efficiency or to extend the physicochemical
conditions of production by microorganisms. This is clearly illustrated with the
example of xylose isomerase overexpression through the engineering of the pentose
phosphate pathway [183] or the improvement of succinate production in
S. cerevisiae [185].

Cost-effective production of dyestuffs could, for instance, come from complete
and fast utilization of lignocellulosic biomass. Xylose is the main pentose and
second most abundant sugar in lignocellulosic feedstocks. The engineering of the
pentose-phosphate pathway enables a rapid xylose utilization and ethanol produc-
tion. Based on the fact that succinic acid is an important precursor for the synthesis
of high-value-added products, S. cerevisiae, as many acidophile fungi, is a valuable
platform for acidic productions.

Through a regulation of biotin and urea levels and under optimal supplemental
CO2 conditions in a bioreactor, coupled with engineering strategy, the succinate titer
was successfully improved from 6.17 � 0.34 g/L to 12.97 � 0.42 g/L at low pH
value. Directed mutagenesis has also been developed in the study of Çakar
et al. [186], where different culture batches were submitted to oxidative,
freezing–thawing, high-temperature, and ethanol stresses before selecting the most
tolerant mutants to the environmental conditions generated.

6.2 Cost-Effective Process

As the medium components can represent up to 73 % of the total production cost,
by-products of agroindustrial origin have been proposed as low-cost alternative
substrates for microbial metabolite production [187]. A wide range of industrial
waste, such as fruit pulp, pea pod powder, whey, molasses, corn steep liquor, bran,
straw, stem, stalk, leaves, husk, peel, legumes, bagasse, spent grains, mainly com-
posed of cellulose, lignin and residual sugars, can be considered as potential carbon,
nitrogen and mineral sources for the microbial production of pigments [188]. One
goal is to supply low cost raw material, coupled with the objective of controlling
environment pollution. The environmental concern is due to the presence of phenolic
and other toxic compounds in these residues (refractory compounds), which may
cause deterioration (pollution, saturation) of the environment, when the waste is
discarded. These refractory compounds are very difficult to deteriorate in waters and
soils, even by microorganisms, and their nitrogen and carbon contents are considered
as immobilized. Fungi, as well as actinomycetes, belong to the class of microorgan-
ism having the widest enzymatic potential due to a great variety of constitutive and
adaptative enzymes, able to recycle the immobilized elements, as key factors of
depollution.
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6.3 Clean Opportunities for the Future

Clean label is a first response of insistent demand from the consumers for products
certified as “natural.” Indeed, their use in industrial processes adds more value to the
product. However, taking plant culture as an example, the genetic engineering of
producing strains does not seem to be the most suitable way to progress towards
natural products synthesized from sustainable process. Some European certification
organizations as Ecocert, QualiFrance, Certipaq-Aclave, SGS-ICS, and Agrocert
Certisud (for organic certifications), have now a strong impact on the market. This
gives the possibility to manufacturers to sell the dyes at a higher price compared to
their conventional counterparts. These labels provide a composition based on at least
95 % of natural or organic ingredients and they influence the production process that
should be more respectful towards the environment.

Thus, many studies deal with searching the paths to naturally foster the pro-
ductions of suitable compounds, acting on physicochemical parameters of the
growths with wild strains. This needs, in the following years, to increase knowledge
about the microbial and metabolic biodiversity naturally occurring in our environ-
ments. Reducing or suppressing heavy extraction process would also be a beneficial
way for several reasons: first, it alleviates the need to use large amount of solvents,
whilst from an economic point of view, it reduces production time and eliminates the
cost of an extraction process, thus making dye production more economically and
friendly viable.

7 Methods for Extraction and Purification of the Colored
Compounds

Filamentous fungi produce a mixture of various metabolites such as pigments, fatty
acids, proteins, and other cellular metabolites. Thus, the extraction and isolation of
the pigmented molecules of interest are necessary steps before proceeding to any
further utilization of these metabolites in commercial products. Pigments can be
store within the biomass, excreted in the fermentation broth or both, suggesting that
extraction methods need to be developed specifically regarding where the pigments
are located.

7.1 Pretreatments of Biomass Before Extraction

Fungal pigments can be extracted from both biomass and fermentative broth. Pro-
ceeding to pretreatments of the fungal material before applying the extraction protocol
itself can improve the overall extraction effectiveness. The biomass is generally
separated from the broth either by centrifugation or B€uchner filtration [42]. The
biomass and/or the broth are then frozen-dried. It renders the biomass easier to grind
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and allows longer conservation without losing bioactivity of the pigments. Grinding is
a common pre-treatment in extraction techniques and results in smaller biomass
particles. The smaller the size of every particles, the better the diffusion of the solvent.
Consequently, the overall extraction efficiency increases [189]. However, extended
pre-treatment of the biomass, could result in denaturation and/or degradation of the
pigmented molecules. Shearing forces, high temperatures and pressures when pro-
ceeding to grinding or drying processes, can drastically affect the final chemical profile
of the pigments. Oxidation and enzyme browning are the main risks encountered in
physical pre-treatment of biomass due to prolonged contact with oxygen, and the
release of hydrolases from the cells after crushing and grinding [190]. Moreover,
during physical treatment, coloured molecules can also react with other cell compo-
nents, resulting in reducing their final extractability and bioactivity. Thus, the condi-
tions of the pre-treatment of biomass are rather crucial and should remain relatively
quick and gentle to ensure the efficiency of the further chemical extraction, as well as
the maintenance of the bioactivity of the biomolecules.

7.2 Conventional Extraction Methods Using Organic Solvents

Despite progress done in extraction methods, fungal pigmented molecules are
generally extracted by extended contact with one or a mixture of organic solvents,
such as in maceration or Soxhlet techniques. The main organic solvents in use are
ethanol, methanol, acetone, ethyl acetate, and hexane [42, 191–193]. The efficiency
of such process relies on the polarity of the compound to extract. Velmurugan
et al. [42] have used a mixture of ethanol and water (1:1, v/v) on the unfiltered
fermentation broth of Isaria farinosa (formerly Paecilomyces farinosa) to extract
extracellular red pigments, before separating the filtrate and processing to further
analysis. Similarly, extracellular pigments from Trichoderma harzianium were
extracted with ethyl acetate [194]. These methods can be optimized by adapting
the side parameters, i.e., the extraction time, the pre-treatment applied, the pH, the
temperature or pressure used, as well as the presence of other salts (NaCl, etc). The
afore mentioned organic solvents are still widely used for pigments extraction due to
their relative efficiency, ease of use, and their easy application at industrial scale.
Only one industrial process using organic solvent extraction of fungal hydroxyan-
thraquinones has been reported and patented by the company, ASCOLOR BIO-
TECH (now NATURAL RED™), for the production of the pigment Arpink Red™.
The process involves a filtration and centrifugation pre-treatment for the removal of
the biomass. The pH of the supernatant is then dropped to 2.5–3.0 to precipitate the
hydroxyanthraquinones. The dissolution of the precipitate in ethanol is performed,
followed by the evaporation of the alcoholic solvent. The fungal pigments are then
recovered as a deep-red powder, ready to be used for further application [16]. How-
ever, the numerous extraction cycles, the relatively low extraction efficiencies and
selectivity, as well as the large volumes of solvent and water used, generally render
such methods unsustainable and costly for industrial scale up.
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7.3 Alternative Greener Extraction Processes

Over the last two decades and with the emergence of the concept of green chemistry,
tremendous progress has been made regarding extraction and separation technolo-
gies. The trend is to develop extraction techniques involving cheap and
environmental-friendly solvents that can be used under milder conditions with
good final efficiency in quicker processes (ideally automatized). Most of them
have been tested on fungal material for the extraction of all sorts of biomolecules,
such as fatty acids, polyphenols and carotenoids [185, 195–198].

7.3.1 Microwave-Assisted Extraction
Microwave-assisted extractions (MAE) rely on the use of microwave energy to
enhance the partitioning of compounds of interest from the biomass matrix into
the solvent. The applications of microwaves allow a synergetic effect of both heat
and mass transfers occurring in the same direction (from the inside to the outside),
while in conventional extraction systems, they are happening in opposite directions
[199]. The efficiency of MAE for extraction of molecules is directly linked to the
polarity of the solvent, its ionic conduction and its ability to absorb microwave
energy [200]. Thus, this method is more suitable for the extraction of compounds
showing medium to high polarity [201]. This explains why MAE has been success-
fully applied on polyphenolic compound extractions such as phenolic acids [202],
curcumin [203], and saffron polyphenols [204]. Hemwimol et al. [205] concluded
that coupling MAE with appropriate solvent increased the yield of anthraquinones
extracted fromMorinda citrifolia as well as reduced significantly the extraction time,
when compared to Soxhlet extraction or maceration [205]. In Hemwimol work,
MAE took 15 min to be completed, while 4 h and 3 days were needed with Soxhlet
and maceration techniques, respectively, to reach the same efficiency [205]. Thus,
MAE is a very promising technique that has been further optimized for limiting side
oxidations by applying nitrogen-controlled atmosphere instead of air, or using MAE
under vacuum conditions to protect heat sensitive molecules. The major advantages
of MAE are the significantly reduced extraction time, and solvent volumes require-
ments, as well as the improved extraction efficiency, making this technique interest-
ing for biotechnological applications. However, its possible usages at industrial
scales remain limited due to heterogeneous heat propagation at bigger scale, along
with cost and maintenance of the material.

7.3.2 Ultrasound-Assisted Extraction
Ultrasound-assisted extraction (UAE) is one of the more straightforward method to
use as it requires very limited apparatus and is low-cost [201]. UAE involves the
application of acoustic waves in the KHz range (>20 kHz) propagated in the heated
extraction solvent [189]. Propagation of the sound waves induces successive expan-
sion and compression cycles of air bubbles within the solvent, resulting in their
collapsing. This physical phenomenon disrupts cells membrane, facilitating both the
release of molecules of interest and diffusion of the solvent within the sample matrix.
UAE has been widely used for enhancing the extraction of bioactive pigmented
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phenolic molecules from various parts of plants, and was also showed to induce less
degradation on phenolic molecules compared to other more intrusive processes such
as solid-liquid solvent extraction or MAE. Barreara-Vasquez et al. [206] observed
better and quicker extraction of anthraquinones from plant material when performing
UAE compared to the conventional Soxhelt method. However, the recurrent issue
encountered in UAE is the nonuniformity of the propagation of both the soundwaves
and the heat [199]. This heterogeneity is due to the different phases present in the
system, which have different heat and mass transfer capacities as well as different
compressibilities. These variations can negatively impact on the overall effective-
ness of this extraction technique. Nevertheless, UAE has showed good potential for
extraction application and is widely used as paired step with MAE and solvent
extraction [205, 206].

7.3.3 Pressurized Fluid Extraction
Pressurized fluid extractions (PLE) involve the use of both high pressure and
elevated temperatures on the system sample/solvent, where the solvent is near to
its critical stage under the conditions of extraction. The high pressures (100–150
bars) allow the solvent to remain liquid despite the elevation of the temperatures
[201]. Additionally, higher temperatures (in the range of 100 �C) enhance the
extraction capacities and diffusion of the solvent. Thus, the main advantage of
PLE is a significant reduction of solvent volumes used and a shortening of
extraction cycles. A wide variety of techniques have been derived from PLE
and are still based on the same principles of reaching solvent near critical stage.
PLE, also going by its trade name, ASE (accelerated solvent extraction) patented
by DIONEX, is a relatively recent method and have promising potentialities.
Water becomes a very valuable solvent under high pressure and temperature, and
the technique is then called subcritical water extraction (SWE). The water is
heated up to 200 �C where it chemical properties change and become similar to
those characteristic of organic solvents. CO2 can also be used as an efficient
extraction solvent when compressed to its supercritical state, and is classified
amongst the super- and subcritical fluid extraction (SFE) techniques. The advan-
tages of this latter are the absence of light and oxygen during the extraction
cycles, which prevent any oxidation and other physical degradation due to the
elevated pressure and temperatures. Such process showed great potential regard-
ing preservation of bioactivities of oxygen sensitive chemicals like polyphenols
and other pigmented molecules. Borges et al. [207] have concluded that the use of
supercritical CO2 for the extraction of red carminic acid from cochineal insects
showed improved yields compared to conventional methods. Moreover, it was
said to increase the extraction selectivity for the pigmented hydroxyanthra-
quinones, and reduce the side extraction of proteins [207]. Such selectivity for
pigmented hydroxyanthraquinone is highly desirable as some proteins are of
concern regarding allergenic reactions in carminic acid containing products
[17]. Nevertheless, few studies have been done on using this technique on fungal
biomass for pigments extraction, despite the promising results observed on poly-
phenols from plants and microalgae [208], as well as hydroxyanthraquinones
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from insects. PLE allow working quicker, under milder extraction conditions,
using more environmental friendly solvent (water, ethanol, methanol or mixtures)
at relatively low volumes. However, the complexity of the apparatus needed, as
well as the utilisation of high pressure and temperature, remain difficult and costly
for any industrial applications yet.

7.3.4 Enzyme-Assisted Extraction
Enzyme-assisted extraction (EAE) is a relatively recent method that was shown as a
promising new extraction technique, using enzymatic specific catalytic activities in
aqueous solutions [209]. The main types of enzymes used are pectinases, cellulases
and hemicellulases, which when applied to the sample matrix, act on the cells
membranes components and hydrolyze them. This results in increasing the mem-
brane permeability to solvents and thus, in improving yields of extraction of
metabolites. Enzyme catalytic activity can also be used for improving solubility of
metabolites in the extraction solvent. Hynninen et al. [191] have used glucosidase for
the isolation of hydroxyanthraquinone aglycones from the fungus Dermocybe
sanguinea. Such enzyme hydrolizes O-glycosyl linkages of glucoside and aglycone
anthraquinones (mainly emodin- and dermocybin-1-β-D-glucopyranoside), enhanc-
ing their solubility in organic solvent (acetone). Indeed, after enzymatic treatment,
94 % of the total pigments were yielded in the organic fraction. The different
enzymes can be obtained from bacteria, fungi, yeasts or plants, and most of them
are commercially available. The major advantages of EAE are the reduction in
solvent volumes as well as the shortening of extraction times and a better preserva-
tion of the bioactivity of the product due to the usage of milder conditions. The next
trend regarding EAE is the engineering of the enzymes for developing tailor-made
extraction methods. However, the cost of the enzyme, the difficulty to recycle them,
and the loss of catalytic efficiency with larger raw material volumes currently limit
industrial application of such method.

7.3.5 Ionic Liquid–Assisted Extraction
Ionic liquids (IL) have been described as novel type of solvents with promising
potential for the development of new extraction methods offering milder, greener,
and more efficient processes. Over the last decade, they have been widely applied in
various fields of chemistry, and they showed great potential in separation technolo-
gies. IL are organic molten salts, showing boiling points below 100�C. They are
generally made of a bulky organic cation, such as alkyl- ammonium or phospho-
nium, dialkylimidazolium, N-alkyl-pyrrolidinium or pyridinium, paired with an
organic or inorganic anion, such as bromide, chloride, tetrafluoroborate or hexafluor-
ophosphate for the main in use [198, 210]. Low vapour pressure and non-volatile
nature, non-flammability, thermal and chemical stability, high solubility, as well as
recyclability are some of the unique properties of IL, which classify them as green
solvents. Moreover, their properties are tuneable and depend on the couple cation/
anion, and can be then optimized accordingly to the molecule to extract. Various
types of natural compounds were successfully extracted with IL such as polyphenols
[196] or dyes from chilli powder [211]. More recently, focus have been done on
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using IL coupled with other techniques such as aqueous two-phases system (ATPS),
microwave assisted extraction and ultrasound assisted extraction, which was shown
to improve the extraction capacities of the IL themselves. Yan et al. [133] concluded
that the extraction of hydroxyanthraquinone pigments (e.g., aloe-emodin, rhein,
emodin, chrysophanol and physcion) from plant materials yielded better results
when performing an ultrasound emulsification of IL for microextraction.
Indeed, the dispersion of water insoluble droplets within the sample mixture
increases the surface contact of the IL with the hydroxyanthraquinones, which are
trapped in the IL- droplets and, later on, separated from the aqueous phase by
centrifugation. Similarly, Tan et al. [212] have successfully isolated aloe anthraqui-
nones using microemulsion of IL. Recently, similar techniques coupling IL with
ultrasound, microemulsion or ATPS were performed with good results on filamen-
tous fungi biomass and/or culture broth. Ventura et al. [213] succeeded in isolated
anthraquinones from 14 days old fermentation broth of Penicillium purpurogenum.
Similarly, Shen et al. [214] obtained good results when using hydrophobic IL
microemulsion extraction of red Monascus-pigments from 7 days old fermentative
broth.

7.4 Purification Methods

The different extraction methods previously described present more or less selectiv-
ity for the pigmented molecules of interest. The desire to use these pigments for
cosmetic and food applications requires further purification steps in order for them to
be allowed by the different food and drugs regulation agencies, such as the FDA
(USA) or the EFSA (Europe). Some pigments – producing species are known to
have a paired biosynthesis pathways of pigments and mycotoxins, such as in
Monascus species where the hepato-nephrotoxic compounds, citrinin, is produced
along with the azaphilone pigments [215]. The more commonly used purification
techniques are based on solid phase extraction such as column chromatography,
cation exchange, and thin layer chromatography (TLC). Column chromatography
was used for the generation of sequential elution of pigments that were previously
extracted, and is usually followed by a TLC to separate the different compounds
present in the pigmented extract. Red pigments from the yeast Rhodotorula glutinis
were efficiently fractionated on a magnesium oxide-Hyflo Super cell using acetic
acid:ethyl ether (1:2, w/w) as elution solvent mixture [216]. The following TLC used
petroleum ether:acetone (80:20, v/v) as the mobile phase for the separation of the
different chemical species. Three types of β-carotenoid compounds, β-carotene,
torulene and torularhodin, respectively, were purified. A sequential silica gel column
chromatography using a gradient elution of methylene chloride:methanol (100:0 to
50:50, v/v), followed by TCL using petroleum ether:acetone (3:2, v/v) was
performed on pigmented fractions from the ascomycete fungus Shiraia bambusicola
and yielded 15.5 mg, 42.3 mg, 21.5 mg and 19.6 mg of perylenequinone derivatives
hypocrellin A, B, C and D respectively, which are toxic dark red pigments showing
interesting anti-cancer activity [217]. Adsorption column chromatography using
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neutral alumina washed with hexane allowed the elution of β-carotene from the
filamentous fungus, Mucor azygosporus [218]. The pigment was recovered at 94 %
in the first fraction. Silica column showed promising potential as it can perform high
purification but need to be paired with another separating steps such as TLC. The
main disadvantages of this method are the large volumes of solvents required and
the time it requires [219]. TLC show limitations as an effective technique due to the
large number of plates that are needed for obtaining enough purified pigment in the
end. Moreover, TLC imposes an additional step: scrapping the silica gel to recover
the purified pigment, which tend to reduce the overall pigment extraction yield.
Cation exchange column is another method, which showed good yields for the
purification of pigments from Fusarium graminearum, with methanol and methy-
lene chloride (50:50, v/v) used as the mobile phase. Styrene-based strong sulfonic
acid columns showed the best purification yields. Then, the main advantages of
resins chromatography are the use of reduced amounts of solvent, the quick purifi-
cation cycles (app. 30 min), and the general good efficiency of the process. However,
due to the nature of the resin, isomeric transformation of the pigments may occur.

Thus, there are several options available for developing efficient and selective
extraction and purification processes of fungal pigments. However, the limiting steps
remain linked to the scale-up to industrial applications, associated with the desire of
using greener methods. Although great efforts have been done to develop more
sustainable extraction protocols (PFE, MAE, UAE, etc), the purification steps still
involve chlorine-based solvent (methylene chloride) and other solvents (acetonitrile,
acetic acid, petroleum ether, ethyl ether and hexane), classified as “usable” or
“undesirable” according to the guide for solvent selection, produced by Ghandi
[210], for the design of green extraction method. Then, improvements of these
techniques are highly desirable to keep developing more environmental-friendly
processes with economic potentialities.

8 Industrial-Scale Applications of Fungal Pigments
and Perspectives

8.1 Applications as Natural Food Colorants and Dietary
Supplements

Since the food company DSMTM has gained the EU approval for food use of fungal
originated β-carotene, produced from the fermentation of Blakeslea trispora in 2000,
industrial interest on fungal metabolites has been revived, and new investigations have
been ongoing to develop cost effective fungal colorants ever since [3, 215]. Moreover,
the conclusions of the Southampton study, leading to the obligation for food compa-
nies to apply a label mentioning that “azo-dyes (i.e., synthetic dyes) may have an
advert effect on activity and attention in children” have driven all the interests towards
bacterial and fungal based pigments for food use. Moreover, the value of international
coloring market was estimated to $1.5 billion in 2007 according to Leatherhead Food
International (LFI), with the natural colorant (from all natural sources, plants and
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microbial origins) representing 31 % of the global market, and the synthetic and
nature-identical pigments (i. e. chemically similar to natural pigment but synthetically
produced) encountering for 40 % and 29 %, respectively [220]. The growth of the
natural pigment market has been blooming from 2007 to 2011, and is now overtaking
the synthetical color market for the first time, with 39 % of the global food color
market against 37 % for the synthetic food dyes [221]. Such market evolutions render
fungal pigments an economically valuable niche with great potentialities, where
further investigations are needed.

Nowadays, four fungal strains are used for the production of yellow to red
pigments at industrial scales: Blakeslea trispora, Penicillium oxalicum, Monascus
sp., and Ashbya gossypi (Table 3). The β-carotene from Blakeslea trispora has been
authorized in the food market and classified under the same E number that of plants
originated β-carotene, i.e., E160a(ii) [222]. Industries based in Russia, Ukraine and
Spain are now producing this pigment with a yield of up to 17 g per liter of culture
[223]. Similarly, lycopene from Blakeslea trispora, produced by the company
Vitatene S.A., has been approved as food colorant by the European Commission
in 2006, and labelled with the E-number 160d(iii) [224]. It is used to color

Table 3 Fungal production of pigments (already in use as natural food colorants or with high
potential in this field)

Molecule Colour Microorganism Statusa

Ankaflavin (azaphilone) Yellow Monascus sp. (fungus) IP

Anthraquinones Red and other
hues

Penicillium oxalicum (+ other
fungi)

IP

Azaphilones Red Talaromyces atroroseus (fungus) DS

Azaphilones Red Penicillium purpurogenum
(fungus)

DS

Azulenes Blue Lactarius sp. (fungus) RP

β-carotene Yellow-orange Blakeslea trispora (fungus) IP

β-carotene Yellow-orange Fusarium sporotrichioides
(fungus)

RP

β-carotene Yellow-orange Mucor circinelloides (fungus) DS

β-carotene Yellow-orange Neurospora crassa (fungus) RP

β-carotene Yellow-orange Phycomyces blakesleeanus
(fungus)

RP

Lycopene Red Blakeslea trispora (fungus) IP

Lycopene Red Fusarium sporotrichioides
(fungus)

RP

Monascorubramin
(azaphilone)

Red Monascus sp. (fungus) IP

Naphthoquinones Deep blood-red Cordyceps unilateralis (fungus) RP

Riboflavin Yellow Ashbya gossypi (fungus) IP

Rubropunctatin
(azaphilone)

Orange Monascus sp. (fungus) IP

Unknown Red Paecilomyces sinclairii (fungus) RP
aIndustrial production (IP), development stage (DS), research project (RP)
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non-alcoholic flavored drinks, fine bakeries, dairy-based product, mustards and
condiments, as well as soups and sauces. The recommended use level for lycopene
from B. trispora is 15 to 30 mg/kg depending on the food matrix. Additionally,
fungal lycopene has been recognized to be nutritionally equivalent to plant-based
lycopene (tomatoes, watermelons, etc) according to an EFSA reports in 2008 [225].
Interestingly, it also has been decided that both β-carotene and lycopene from the
fungus B. trispora should be only labelled as “β-carotene” and “lycopene,” respec-
tively, with no further details on the plant, fungal or synthetic origin.

Riboflavin (vitamin B2 – E101) is a water-soluble vitamin, also commonly used
as a yellow pigment, industrially produced by fermentation of a fungal strain,
Ashbya gossypi [215]. Another strain, Eremothecium ashbyii, showed industrial
potentialities regarding yields; however, its genetic instability renders it not suitable
for cost effective industrial production [226]. Riboflavin is commonly used in cereal-
based products, juices and yogurts; however the concentration to be used is limited
due to bitterness aftertaste [227]. In the course of the 51st meeting of the Joint
FAO/WHO Expert Committee on Food Additive (JECFA) in 1999 (Geneva), ribo-
flavin produced by genetically modified bacterial strain of Bacillus subtilis, built to
overexpress the riboflavin biosynthetic pathway, has been concluded as safe and
nutritionally equivalent as synthetic vitamin B2, and was included in the same ADI
group of 0–0.5 mg/kg of body weight for synthetic riboflavin.

Monascus-like pigments, in particular ankaflavin, have been used to color meat,
salami, sausages [228, 229], and fish (e.g., to enhance pink coloration in salmon), as
well as coloring sauces (ketchup). Food applications of Monascus-like pigments
have been widely ongoing for centuries in Asia, but are still not allowed in the EU
and the United States [215]. Numerous companies, such as Nestlé (Switzerland)
(Patent US4145254 A) and The Quaker Oats (USA) (Patent US4418080 and
US4418081) have already filled patents for the production and use of Monascus
red pigments in food applications, and they have been accepted in 1979 and 1983,
respectively.

Similarly, red anthraquinones produced by Penicillium oxalicum and sold by the
Czech company, ASCOLOR BIOTECH (now NATURAL RED™), have been used
in meat, dairy and confectionery products, as well as in alcoholic and non-alcoholic
drinks, with recommended dosage levels of 100 mg/kg, 150 mg/kg, 300 mg/kg,
200 mg and 100 mg/kg respectively.

Interestingly, the abovementioned fungal pigments do not only display coloring
properties, but demonstrate a wide palette of bioactivities from carcinogenesis-
preventing roles due to antioxidative, anti-free radical and apoptosis inducing
activities, especially regarding lycopene and β-carotene, to antimicrobial and anti-
fungal activities. Similarly, Monascus-like red pigments (monascorubramin and
rubropunctatin) were demonstrated to enhance the organoleptic properties of food
(taste and consistency), as well as lowering low density lipoproteins (LDL) choles-
terol and increasing high density lipoproteins (HDL) cholesterol due to the presence
of a statin-like molecule (monacoline K), reducing salt intake, and preventing gastric
and digestive disorder [227, 230]. Furthermore, food supplements of Red Yeast Rice,
i.e., Monascus sp. pigments, like “SuperSmart” food supplement are sold
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specifically for the benefits of monacoline K on cholesterol. Interestingly, EU
regulations forbid any usage of Monascus sp. pigments in food or textile industries,
however, these food supplements can be relatively easily found in parapharmacies.

In cheesemaking industries, Fusarium domesticum is used as the inoculating
strain for the production of Saint Nectaire and Reblochon cheeses. The organoleptic
enhancing abilities of this fungus have been known for a long time, as it was called
“Anticollanti” before its clear characterization, and was used for its ability to
favorize the drying of the cheese surface, and consequently reducing its stickiness
[231]. Thus, fungal pigments are unique by showing very interesting and complex
profiles: along with being used for their coloring properties, they also could be used
as organoleptic properties enhancer, as well as physiologically and health valuable
diet supplements.

Numerous other pigments from various fungal strains are currently under inves-
tigation: three other pigments (two red azaphilones from Talaromyces atroroseus and
Penicillium purpurogenum, and one β-carotene from Mucor circinelloides) are at
development stages (Table 3). The next trend now for research projects are focused
on developing mycotoxin-free deep red hues producers. Some species such as
Fusarium, Cordyceps and Paecilomyces sp. are more specifically considered as
promising strains (Table 3).

8.2 Applications in Pharmaceutical and Cosmetic Products

Natural bioactive molecules with clinical properties have been widely investigated
by pharmaceutical companies, and many microbial secondary metabolites have been
used over since as antibiotics, diuretic, anticancer, estrogenic or immune-modulatory
compounds. Some examples of pigmented metabolites from fungal strains are under
further clinical studies at laboratory scale, such as norsolorinic acid produced from
Aspergillus nidulans, which is characterised by its anti-proliferative activity in
human breast adenocarcinoma MCF-7 cells [232]. Similarly, red anthraquinones
molecules, shiraiarin and hypocrellin D, synthesized by the fungal strain Shriaia
bambusicola, were found to significantly inhibit the growth of tumor cell lines
[217, 233], and thus, are potential candidate for future antitumor and anticancer
drugs. However, further clinical and toxicity tests are required before considering
any commercialisation of these fungal pigments as drugs.

Cosmetic industries are highly interested in inserting biomolecules and natural
ingredients for their products. Indeed, the public demands of “green label,” and
organic cosmetic counts for a growing part of the global cosmetic market, and
companies are really looking for new type of natural ingredient to use as alternative
to conventional synthetic compounds. Some firms are already producing and selling
fungal pigments as natural colorant for cosmetic, such as NINGXIA R.D. (natural
pigment co. of ningxia light industry design institute), which is manufacturing red
pigments from Monascus sp. specifically for cosmetic purposes. Another Asian
company, KANEBO Ltd (Japan), has been granted a patent for using Monascus-
like pigments in lipsticks. LEVER HINDUSTAN Ltd (Indian branch of Unilever),
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UNILEVER and l’OREAL S.A had their patents accepted in 2001, 2002 and 2004
for using Monascus-like pigments in skin conditioning and in skincare products
giving tan coloration. It is worth noticing that many companies are selling those
pigments on the Asian market, as the spread of fungal pigments containing cosmetic
products is still limited in Europe and the United State. Despite the facts that
numerous patents have been filled and accepted, the actual launches on the market
remain highly restricted by allowances from Institutes for Public Health Surveillance
(leads by the ANSES in Europe). Indeed, before authorizing any products, clinical
tests looking at allergic, dermatologic and endocrine responses are required. More-
over, in the case of cosmetic products, both the ingredient to be added –even more if
used for specific bioactivity-, i.e., fungal pigment, and the final cosmetic product
would have to be authorized by the appropriate authority. These regulation elements
are one of the major points slowing down the use of fungal pigments. Thus, so far,
only Monascus-like pigments have found actual economic applications; however it
does pave the way of dyes and bioingredients market to new types of fungal strains
and pigments, such as colorants extracted from Penicillium, Fusarium, Emericella,
and Cordyceps for instance.

8.3 Applications in Textiles and Paint Industries

As regulations on textiles and material colorants are not as strict as in foodstuff,
many more microorganism-originated pigments are in use in textiles, clothing,
paints, and polymers. Bacterial pigments, prodigiosin (red) and violacein (purple)
from Serratia marcescens and Chromobacterium violaceum, respectively, were used
to dye various types of fabrics like acrylic fiber, silk, cotton, polyester, and polyester
microfiber [234]. Similarly, fungal colorants are promising, as these pigments
display high colorfastness as well as high staining capability, suggesting that a
minimal amount of pigment is required for proper standard staining results. Such
properties underpin interesting cost-effectiveness. Moreover, synthetic textile color-
ants are reported as potential carcinogen due to their content in dioxins, such as
polychlorinated dibenzo-p-dioxins (PCCD) and polychlorinated dibenzofurans
(PCDF) [235], which strengthen the trend to develop eco-friendly and non-toxic
colorant, especially regarding infant and children clothes and toys. Then, econom-
ically speaking, in 2008, Mapari et al. [19] have patented the used of Monascus-like
pigments from various strains of nonproducing mycotoxins Penicillium (19 Penicil-
lium strains) on textile, cotton, wool, silk, leather, paper, paint, polymer, plastic, inks,
and tablet. Additionally, red anthraquinones from Fusarium oxysporum and from
Dermocybe sanguinea, as well as yellow pigments from Trichoderma virens, bright
olive pigments from Alternaria alternate, and melanin pigments from Curvularia
lunatawere demonstrated as potential dye on cellulosic matrix, such as wool and silk
with good colorfastness and rub fastness [236–238]. Red dyeing capabilities of other
fungal strains, such as Isaria spp., Emericella spp., Penicillium spp.,Monascus spp.,
and Fusarium spp. were concluded as good natural alternate for leather dyeing, and
would be less polluting compared to conventional dyes [42]. Moreover, staining
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fabrics (silk) with yellow pigments from Thermocymes sp. and Trichoderma
sp. were shown to have antibacterial and/or antifungal activities, and were concluded
to be good candidates for producing valuable textiles for hospital/medical uses, such
as bed linens, bandages or suture threads [238, 239]. Thus, even when applied for
textile dyeing, fungal pigments can enrich the properties of the fabrics with biolog-
ical activities.

8.4 Limits and Further Opportunities for Industrial Use of Fungal
Pigments

The feasibility of developing a wide range of fungal pigments at industrial scale
should be considered through the six following main elements: the biological aspect
of the strains metabolite production, the health and safety concerns about the
putative mycotoxins coproduction, all the legislation and regulations process to do
before any actual launch on the market, the trends of the global colorant market
along with the cost-effectiveness of such fungal pigments production, and in the end,
all the technical and logistical hurdles when designing and running an industrial
plant.

Regarding the biological aspect, the main issues could come from the stability of
the strains and their pigment production over time, especially if the strains have been
previously genetically engineered. However, the use of microorganisms show sig-
nificant advantages such as fast growth compared to plants, with a complete inde-
pendency from seasons or weather. Indeed, even cochineal farms production is
climate-dependent due to the close interdependency between the cochineal insect
and the plants it lives on (Barbary fig), rendering final prices of plants and cochineal-
based pigments relatively versatile.

Fungal secondary metabolite commercialization is limited, yet due to health and
safety concerns about mycotoxins coproduction with the pigments, or the pigments
being toxic themselves. However, similar toxic worries on synthetic dyes and their
potential harm on human health are more and more arising. Recently, several
research studies, such as the one from Southampton University (2010), show that
azo-dyes in food and other synthetic dyes in fabrics should be avoided. Such
observations make the public more aware on what sort of additives are added to
their food, clothes and cosmetics and drive the demands for “organic” and greener
ingredients. To address the health concerns, pigments have to go through a long
allowance process in order to be attributed an European number (E number) with an
acceptable dietary intake (ADI) before being sold in Europe, for instance. Toxico-
logical and clinical tests are long and require different levels of tests depending on
the final application (food, textiles, cosmetics). However, it is worth noticing that
numerous patents for the use of fungal pigments (Monascus-like pigments) in food
and cosmetics have been filled by companies such as Nestlé, Unilever, The Quaker
Oat, and l’Oréal, and have all been accepted. Moreover, these pigments have been
used for centuries in Asia, which gives good hopes they will be allowed in Europe
and in the United States at some point. Then, fungal pigments of P. oxalicum
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(Natural RedTM) and β-carotene and lycopene from Blakesla trispora have been
authorized in Europe. So despites a long process, examples attest that positive
progresses are made towards the acceptance of fungal colorant on the EU and US
markets.

Concerning the global colorant market, all the last elements are encouraging
the development of natural dyes from fungal origins. Such market evolution is
coherent with the public demands of more eco-friendly products. Economically
speaking, the use of microorganisms has an enormous advantage, which is the
complete independence toward the variability of prices of petroleum-based raw
materials, rendering the price of the feedstock less variable, reducing signifi-
cantly its impact on the final pigment price. Moreover, the use of agroindustrial
wastes instead is a cheaper and more economically stable feedstocks. When
considering the development of biorefineries for fungal pigments biosynthesis,
two main hurdles arise: first, the initial investment to design and size the plant,
and secondly the impossibility, yet, to set up a continuous fermentation process
(the bioreactor would need to be drained, cleaned and refilled for every fermen-
tation batch). Additionally, time and carbon source need to be “wasted” to
initiate the strain growth and start the secondary metabolism. However, such
fermentation process are little energy demanding and, thus, represent a promising
alternative.

9 Conclusion

As an example within the whole industry, the trends in the food and beverage
markets as well as in the cosmetic and textile markets push for more natural, organic,
and clean label products, so the need for more and more natural ingredients is
increasing. The formulation of recipes containing natural colors has steadily
increased over recent years. Fungal colorants are constituents of commercial prod-
ucts available for the industry as a natural choice among many natural sources. They
are either based on alternative production techniques of well-known pigments (e.g.,
β-carotene, lycopene, riboflavin) or specific molecules so far not biosynthesized by
other organisms such as higher plants (e.g., Monascus and Monascus-like
azaphilones).

The use of natural colors in functional, pharmaceutical, cosmetic, textile, bever-
age, food, and crossover applications requires an understanding of a variety of
attributes and concepts, including heat stability, light stability, in addition to being
able to provide exciting color hues. Fungal colorants already proved to exert such
properties, and novel compounds from fungal biomass produced by applying bio-
technological processes should render possible applicable and optimized solutions to
the whole industry.

It can be concluded that despite some safety and regulation difficulties, fungal
pigmented secondary metabolites stand for promising colorant alternatives with real
cost-effective potentialities in the end. However, it would be advisable to bear in
mind that an industrial biorefinery cannot be built similarly to conventional chemical
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process-based plants. Indeed, new management techniques would have to be devel-
oped in order to render such industries competitive.

References

1. Dufossé L, Galaup P, Yaron A, Arad SH, Blanc P, Chidambara Murthy KN, Ravishankar GA
(2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity
or an industrial reality? Trends Food Sci Technol 16:389–406

2. Dufossé L (2006) Microbial production of food grade pigments. Food Technol Biotechnol
44:313–321

3. Dufossé L, Fouillaud M, Caro Y, Mapari SAS, Sutthiwong N (2014) Filamentous fungi are
large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol
26:56–61

4. Sutthiwong N, Caro Y, Laurent P, Fouillaud M, Valla A, Dufossé L (2013) Production of
biocolours (Chapter 12). In: Panesar PS, Marwaha SS (eds) Biotechnology in agriculture and
food processing: opportunities and challenges, 1st edn. Francis & Taylor, CRC Press, Boca
Raton

5. Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in fungal
taxonomy. Mycol Res 112:231–240

6. Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG (2003) Phylogenomic analysis of
type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci
U S A 100:15670–15675. doi:10.1073/pnas.2532165100

7. Brown DW, Butchko RA, Baker SE, Proctor RH (2012) Phylogenomic and functional domain
analysis of polyketide synthases in Fusarium. Fungal Biol 116:318–331

8. Gao J-M, Yang S-X, Qin J-C (2013) Azaphilones: chemistry and biology. Chem Rev
113:4755–4811

9. Yang Y, Liu B, Du X, Li P, Liang B, Cheng X, Du L, Huang D, Wang L, Wang S (2015)
Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and
regulatory mechanisms in an industrial strain, Monascus purpureus YY-1. Sci Rep 5:8331.
doi:10.1038/srep08331

10. Fu G, Xu Y, Li Y, Tan W (2007) Construction of a replacement vector to disrupt pksCT gene
for the mycotoxin citrinin biosynthesis in Monascus aurantiacus and maintain food red
pigment production. Asia Pac J Clin Nutr 16(Suppl 1):137–142

11. Woo PC, Lam CW, Tam EW, Lee KC, Yung KK, Leung CK, Sze KH, Lau SK, Yuen KY
(2014) The biosynthetic pathway for a thousand-year-old natural food colorant and citrinin in
Penicillium marneffei. Sci Rep 4:6728. doi:10.1038/srep06728

12. Kumar M, Dwivedi P, Sharma AK, Sankar M, Patil RD, Singh ND (2014) Apoptosis and lipid
peroxidation in ochratoxin A- and citrinin-induced nephrotoxicity in rabbits. Toxicol Ind
Health 30:90–98

13. Leite DP Jr, Yamamoto AC, Amadio JV, Martins ER, do Santos FA, Simões Sde A, Hahn RC
(2012) Trichocomaceae: biodiversity of Aspergillus spp and Penicillium spp residing in
libraries. J Infect Dev Ctries 6:734–742

14. Frisvad JC (2015) Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicil-
lium, and Talaromyces species. Front Microbiol 5:773. doi:10.3389/fmicb.2014.00773

15. Teixeira MFS, Martins MS, Da Silva JC, Kirsch LS, Fernandes OCC, Carneiro ALB, De
Conti R, Durán N (2012) Amazonian biodiversity: pigments from Aspergillus and Penicillium-
characterizations, antibacterial activities and their toxicities. Curr Trends Biotechnol
Pharmacol 6:300–311

16. Sardaryan E (2002) Strain of the microorganism Penicillium oxalicum var. armeniaca and its
application. Patent US 6340586 B1: 4

16 Pigments and Colorants from Filamentous Fungi 557



17. Caro Y, Anamale L, Fouillaud M, Laurent P, Petit T, Dufossé L (2012) Natural hydroxyan-
thraquinoid pigments as potent food grade colorants: an overview. Nat Prod Bioprospect
2:174–193

18. Ogihara J, Kato J, Oishi K, Fujimoto Y (2001) PP-R, 7-(2-Hydroxyethyl)-Monascorubramine,
a red pigment produced in the mycelia of Penicillium sp. AZ. J Biosci Bioeng 91:44–47

19. Mapari SAS, Hansen ME, Meyer AS, Thrane U (2008) Computerized screening for novel
producers of Monascus like food pigments in Penicillium species. J Agric Food Chem
56:9981–9989. doi:10.1021/jf801817q

20. Mendez A, Perez C, Montanez JC, Martinez G, Aguilar CN (2011) Red pigment production by
Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ-Sci B
(Biomed Biotechnol) 12:961–968

21. Hailei W, Zhifang R, Ping L, Yanchang G, Guosheng L, Jianming Y (2011) Improvement of
the production of a red pigment in Penicillium sp HSD07B synthesized during co-culture with
Candida tropicalis. Bioresour Technol 102:6082–6087

22. Santos-Ebinuma VC, Teixeira MFS, Pessoa A Jr (2013) Submerged culture conditions for the
production of alternative natural colorants by a new isolated Penicillium purpurogenum
DPUA 1275. J Microbiol Biotechnol 23:802–810

23. Yilmaz N, Houbraken J, Hoekstra ES, Frisvad JC, Visagie CM, Samson RA (2012) Delimi-
tation and characterisation of Talaromyces purpurogenus and related species. Persoonia
29:39–54. doi:10.3767/003158512X659500

24. Espinoza-Hernández TC, Rodríguez-Herrera R, Aguilar-González CN, Lara-Victoriano F,
Reyes-Valdés MH, Castillo-Reyes F (2013) Characterization of three novel pigment-
producing Penicillium strains isolated from the Mexican semidesert. Afr J Biotechnol
12:3405–3413

25. Mapari SAS, Meyer AS, Thrane U, Frisvad JC (2009) Identification of potentially safe
promising fungal cell factories for the production of polyketide natural food colorants using
chemotaxonomic rationale. Microb Cell Fact 8:24–28

26. Jeya M, Joo AR, Lee KM, Tiwari MK, Lee KM, Kim SH, Lee JK (2010) Characterization of
b-glucosidase from a strain of Penicillium purpurogenum KJS506. Appl Microbiol Biotechnol
86:1473–1484

27. Zou S, Xie L, Liu Y, Kaleem I, Zhang G, Li C (2012) N-linked glycosylation influences on the
catalytic and biochemical properties of Penicillium purpurogenum b-d-glucuronidase. J
Biotechnol 157:399–404

28. Houbraken J, de Vries RP, Samson RA (2014) Chapter four – modern taxonomy of
biotechnologically important Aspergillus and Penicillium species. Adv Appl Microbiol
86:199–249

29. Arai T, Koganei K, Umemura S, Kojima R, Kato J, Kasumi T, Ogihara J (2013) Importance of
the ammonia assimilation by Penicillium purpurogenum in amino derivative Monascus
pigment, PP-V, production. AMB Express 3:19, http://www.amb-express.com/content/3/1/19

30. Mapari SAS, Meyer AS, Thrane U, Frisvad JC (2012) Production ofMonascus-like pigments.
European patent EP 2010/2262862 A2; 2012

31. Frisvad JC, Yilmaz N, Thrane U, Rasmussen KB, Houbraken J, Samson RA (2013)
Talaromyces atroroseus, a new species efficiently producing industrially relevant red pig-
ments. PLoS One 8:e84102. doi: 10.1371/journal.pone.0084102

32. Gessler NN, Egorova AS, Belozerskaya TA (2013) Fungal anthraquinones. Appl Biochem
Micro + 49:85–99

33. Gonçalves RCR, Lisboa HCF, Pombeiro-Sponchiado SR (2012) Characterization of melanin
pigment produced by Aspergillus nidulans. World J Microbiol Biotechnol 28:1467–1474

34. Brakhage AA, Liebmann B (2005) Aspergillus fumigatus conidial pigment and cAMP signal
transduction: significance for virulence. Med Mycol 43:S75–S82

35. Chiang YM, Meyer KM, Praseuth M, Baker SE, Bruno KS, Wang CC (2011) Characterization
of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydrox-
ynaphthalene (DHN) melanin and naphtho-γ-pyrone. Fungal Genet Biol 48:430–437

558 Y. Caro et al.

http://www.amb-express.com/content/3/1/19


36. Jørgensen TR, Park J, Arentshorst M, van Welzen AM, Lamers G, Vankuyk PA, Damveld RA,
van den Hondel CA, Nielsen KF, Frisvad JC, Ram AF (2011) The molecular and genetic basis
of conidial pigmentation in Aspergillus niger. Fungal Genet Biol 48:544–553

37. Zabala AO, Xu W, Chooi YH, Tang Y (2012) Discovery and characterization of a silent gene
cluster that produces azaphilones from Aspergillus niger ATCC 1015 reveal a Hydroxylation-
Mediated Pyran-Ring Formation. Chem Biol 19:1049–1059

38. Ogasawara N, Mizuno R, Kawai KI (1997) Structures of a new type of yellow pigments,
falconensones A and B, from Emericella falconensis. J Chem Soc Perkin Trans 1:2527–2530

39. Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U (2005) Exploring
fungal biodiversity for the production of water-soluble pigments as potential natural food
colorants. Curr Opin Biotechnol 16:231–238

40. Hideyuki T, Koohei N, Ken-ichi K (1996) Isolation and structures of dicyanide derivatives,
epurpurins A to C, from Emericella purpurea. Chem Pharm Bull (Tokyo) 44:2227–2230

41. Rank C, Nielsen KF, Larsen TO, Varga J, Samson RA, Frisvad JC (2011) Distribution of
sterigmatocystin in filamentous fungi. Fungal Biol-UK 115:406–420

42. Velmurugan P, Kamala-Kannan S, Balachandar V, Lakshmanaperumalsamy P, Chae JC, Oh
BT (2010) Natural pigment extraction from five filamentous fungi for industrial applications
and dyeing of leather. Carbohydr Polym 79:262–268

43. Frisvad JC, Thrane U (2004) Mycotoxin production by common filamentous fungi. In:
Samson RA, Hoekstra ES, Frisvad JC (eds) Introduction to food- and airborne fungi.
Centraalbureau voor Schimmelcultures (CBS), Utrecht

44. Anke H, Kolthoum I, Zähner H, Laatsch H (1980) Metabolic products of microorganisms.
185. The anthraquinones of the Aspergillus glaucus group. I. Occurrence, isolation, identifi-
cation and antimicrobial activity. Arch Microbiol 126:223–230

45. Li DL, Li XM, Wang BG (2009) Natural anthraquinone derivatives from a marine mangrove
plant-derived endophytic fungus Eurotium rubrum: structural elucidation and DPPH radical
scavenging activity. J Microbiol Biotechnol 19:675–680

46. Cho YJ, Hwang HJ, Kim SW, Song CH, Yun JW (2002) Effect of carbon source and aeration
rate on broth rheology and fungal morphology during red pigment production by
Paecilomyces sinclairii in a batch bioreactor. J Biotechnol 95:13–23

47. Díaz-Sánchez V, Avalos J, Limón MC (2012) Identification and regulation of fusA, the
polyketide synthase gene responsible for fusarin production in Fusarium fujikuroi. Appl
Environ Microbiol 78:7258–7266

48. Niehaus EM, Janevska S, von Bargen KW, Sieber CMK, Harrer H, Humpf H-U, Tudzynski B
(2014) Apicidin F: characterization and genetic manipulation of nesecondary metabolite gene
cluster in the rice pathogen Fusarium fujikuroi. PLoS One 9:e103336. doi:10.1371/journal.
pone.0103336

49. Tudzynski B (2005) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact
on biotechnology. Appl Microbiol Biotechnol 66:597–611

50. Avalos J, Prado-Cabrero A, Estrada AF (2012) Neurosporaxanthin production by Neurospora
and Fusarium (Chapter 18). In: Barredo JL (ed) Microbial carotenoids from fungi: methods in
molecular biology, vol 898. Springer, New York

51. Tatum JH, Baker RA, Berry RE (1985) Naphthoquinones produced by Fusarium oxysporum
isolated from citrus. Phytochemistry 24:457–459

52. Norred WP, Plattner RD, Vesonder RF, Bacon CW, Voss KA (1992) Effects of selected
secondary metabolites of Fusarium moniliforme on unscheduled synthesis of DNA by rat
primary hepatocytes. Food Chem Toxicol 30:233–237

53. Kitagawa A, Sugihara Y, Okumura M, Kawai K, Hamasaki T (1997) Reexamination of
respiration-impairing effect of bikaverin on isolated mitochondria. Cereal Res Commun
25:451–452

54. Wiemann P, Willmann A, Straeten M, Kleigrewe K, Beyer M, Humpf H-U, Tudzynski B
(2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function
and regulation. Mol Microbiol 72:931–946

16 Pigments and Colorants from Filamentous Fungi 559



55. Limón MC, Rodríguez-Ortiz R, Avalos J (2010) Bikaverin production and applications. Appl
Microbiol Biotechnol 87:21–29

56. Rodríguez-Ortiz R, Mehta B, Avalos J, Limón M (2010) Stimulation of bikaverin production
by sucrose and by salt starvation in Fusarium fujikuroi. Appl Microbiol Biotechnol
85:1991–2000

57. Frandsen RJ, Nielsen NJ, Maolanon N, Sørensen JC, Olsson S, Nielsen J, Giese H (2006) The
biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between
the naphthoquinones and naphthopyrones. Mol Microbiol 61:1069–1080

58. Frandsen RJN, Schutt C, Lund BW, Staerk D, Nielsen J, Olsson S, Giese H (2011) Two novel
classes of enzymes are required for the biosynthesis of aurofusarin in Fusarium graminearum.
J Biol Chem 286:10419–10428

59. Graziani S, Vasnier C, Daboussi MJ (2004) Novel polyketide synthase from Nectria
haematococca. Appl Environ Microbiol 70:2984–2988

60. Proctor RH, Butchko RAE, Brown DW, Moretti A (2007) Functional characterization,
sequence comparisons and distribution of a polyketide synthase gene required for perithecial
pigmentation in some Fusarium species. Food Addit Contam 24:1076–1087

61. Boonyapranai K, Tungpradit R, Lhieochaiphant S, Phutrakul S (2008) Optimization of
submerged culture for the production of naphthoquinones pigment by Fusarium
verticillioides. Chiang Mai J Sci 35:457–466

62. Studt L, Wiemann P, Kleigrewe K, Humpf H-U, Tudzynski B (2012) Biosynthesis of
fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. Appl Environ
Microbiol 78:4468–4680

63. Baker RA, Tatum JH (1998) Novel anthraquinones from stationary cultures of Fusarium
oxysporum. J Ferment Bioeng 85:359–361

64. Cajori FA, Otani TT, Hamilton MA (1954) The isolation and some properties of an antibiotic
from Fusarium bostrycoides. J Biol Chem 208:107–114

65. Ashley JN, Hobbs BC, Raistrick H (1937) Studies in the biochemistry of microorganisms LIII.
The crystallinecolouring matters of Fusarium culmorum (W.G. Smith) Sacc. and related forms.
Biochem J 31:385–397

66. Samson RA, Hoekstra ES, Frisvad JC (2000) Introduction to food- and airborne fungi.
Centraalbureau voor Schimmelcultures (CBS), Utrecht

67. Medentsev AG, Akimenko VK (1998) Naphthoquinone metabolites of the fungi. Phytochem-
istry 47:935–959

68. Kreitman G, Nord FF (1949) Lycopersin, pigment of Fusarium lycopersici. Arch Biochem
21:457–458

69. Son SW, Kim HY, Choi GJ, Lim HK, Jang KS, Lee SO, Lee S, Sung ND, Kim J-C (2008)
Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against
Phytophthora infestans. J Appl Microbiol 104:692–698

70. Zhan J, Burns AM, Liu MX, Faeth SH, Gunatilaka AAL (2007) Search for cell motility and
angiogenesis inhibitors with potential anticancer activity: beauvericin and other constituents of
two endophytic strains of Fusarium oxysporum. J Nat Prod 70:227–232

71. Sørensen JL, Nielsen KF, Sondergaard TE (2012) Redirection of pigment biosynthesis to
isocoumarins in Fusarium. Fungal Genet Biol 49:613–618

72. Medentsev AG, Arinbasarova AY, Akimenko VK (2005) Biosynthesis of naphthoquinone
pigments by fungi of the genus Fusarium. Appl Biochem Micro + 41:503–507

73. Gaffoor I, Brown DW, Plattner R, Proctor RH, Qi W et al (2005) Functional analysis of the
polyketide synthase genes in the filamentous fungus Gibberella zeae (anamorph Fusarium
graminearum). Eukaryot Cell 4:1926–1933

74. Parisot D, Devys M, Barbier M (1990) Naphthoquinone pigments related to fusarubin from the
fungus Fusarium solani (Mart) Sacc. Microbios 64:31–47

75. Brown DW, Butchko RAE, Busman M, Proctor RH (2012) Identification of gene clusters
associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium
verticillioides. Fungal Genet Biol 49:521–532

560 Y. Caro et al.



76. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoder-
ma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

77. Lin YR, Lo CT, Li SY, Peng KC (2012) Involvement of pachybasin and emodin in self-
regulation of Trichoderma harzianum mycoparasitic coiling. J Agric Food Chem
60:2123–2128

78. Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito
M (2009) Factors affecting the production of Trichoderma harzianum secondary metabolites
during the interaction with different plant pathogens. Lett Appl Microbiol 48:705–711

79. Durán N, Teixeira MFS, de Conti R, Esposito E (2002) Ecological-friendly pigments from
fungi. Crit Rev Food Sci Nutr 42:53–66

80. Andersen B, Dongo A, Pryor BM (2008) Secondary metabolite profiling of Alternaria dauci,
A. porri, A. solani, and A. tomatophila. Mycol Res 112:241–250

81. Peciulyte R, Kacergius A (2012) Lecanicillium aphanocladii – a new specie to the mycoflora
of Lithuania and a new pathogen of tree leaves mining insects. Bot Lith 18:133–146

82. Unagul P, Wongsa P, Kittakoop P, Intamas S, Srikitikulchai P, Tanticharoen M (2005)
Production of red pigments by the insect pathogenic fungus Cordyceps unilateralis BOC
1869. J Ind Microbiol Biotechnol 32:135–140

83. Vining LC, Kelleher WJ, Schwarting AE (1962) Oosporein production by a strain of
Beauvaria bassiana originally identified as Amanita muscaria. Can J Microbiol 8:931–933

84. Souza PN, Grigoletto TL, de Moraes LA, Abreu LM, Guimarães LH, Santos CR, Galvão LR,
Cardoso PG (2015) Production and chemical characterization of pigments in filamentous
fungi. Microbiology. doi:10.1099/mic.0.000168

85. El Basyouni SH, Brewer D, Vining LC (1968) Pigments of the genus Beauvaria. Canad J Bot
46:441–448

86. Watt C-K, McInnes AG, Smith DG, Wright JLC, Vining LC (1977) The yellow pigments of
Beauvaria species. Structures of tenellin and bassianin. Canad J Chem 55:4090–4098

87. Goldberg I, Rokem JS (2009) Organic and fatty acid production. In: Schaechter M
(ed) Encyclopedia of microbiology, 3rd edn. Academic, Oxford

88. Kornsakulkarn J, Thongpanchang C, Lapanun S, Srichomthong K (2009) Isocoumarin gluco-
sides from the scale insect fungus Torrubiella tenuis BCC 12732. J Nat Prod 72:1341–1343

89. Isaka M, Chinthanom P, Supothina S, Tobwor P, Hywel-Jones NL (2010) Pyridone and
tetramic acid alkaloids from the spider pathogenic fungus Torrubiella sp. BCC 2165. J Nat
Prod 73:2057–2060

90. Stadler M, Hellwig V (2005) Chemotaxonomy of the Xylariaceae and remarkable bioactive
compounds from Xylariales and their associated asexual stages. Recent Res Dev Phytochem
9:41–93

91. Stadler M, Hellwig V (2004) PCR-based data and secondary metabolites as chemotaxonomic
markers in high throughput screening for bioactive compounds from fungi handbook of
industrial mycology. In: Zhiqiang A (ed) Marcel handbook of industrial mycology. Dekker,
New York

92. Stadler M, Fournier J (2006) Pigment chemistry, taxonomy and phylogeny of the
Hypoxyloideae (Xylariaceae). Rev Iberoam Micol 23:160–170

93. Kuhnert E, Heitkämper S, Fournier J, Surup F, Stadler M (2014) Hypoxyvermelhotins A–C,
new pigments from Hypoxylon lechatii sp. nov. Fungal Biol 118:242–252

94. Kuhnert E, Surup F, Herrmann J, Huch V, M€uller R, Stadler M (2015) Rickenyls A–E,
antioxidative terphenyls from the fungus Hypoxylon rickii (Xylariaceae, Ascomycota). Phy-
tochemistry 118:68–73

95. Kuhnert E, Surup F, Wiebach V, Bernecker S, Stadler M (2015) Botryane, noreudesmane and
abietane terpenoids from the ascomycete Hypoxylon rickii. Phytochemistry 117:116–122

96. Stadler M, Fournier J, Quang DN, Akulov AY (2007) Metabolomic studies on the chemical
ecology of the Xylariaceae (Ascomycota). Nat Prod Commun 2:287–304

97. Steglich W, Klaar M, Furtner W (1974) (+)-Mitorubrin derivatives from Hypoxylon
fragiforme. Phytochemistry 13:2874–2875

16 Pigments and Colorants from Filamentous Fungi 561



98. Anderson JR, Edwards RL, Whalley AJS (1983) Metabolites of the higher fungi. Part 21.
3-Methyl-3,4-dihydroisocoumarins and related compounds from the ascomycete family
Xylariaceae. J Chem Soc Perkin Trans 1:2185–2192

99. Edwards RL, Fawcett V, Maitland DJ, Nettleton R, Shields L, Whalley AJS (1991)
Hypoxyxylerone. A novel green pigment from the fungus Hypoxylon fragiforme (pers.:
Fries) Kickx. J Chem Soc Chem Commun 15:1009–1010

100. Sir E, Kuhnert E, Surup F, Hyde K, Stadler M (2015) Discovery of new mitorubrin derivatives
from Hypoxylon fulvo-sulphureum sp. nov. (Ascomycota, Xylariales). Mycol Progress 14:1–12

101. Bodo B, Tih RG, Davoust D, Jacquemin H (1983) Hypoxylone, a naphthyl-naphthoquinone
pigment from the fungus Hypoxylon sclerophaeum. Phytochemistry 22:2579–2581

102. Kuhnert E, Surup F, Sir E, Lambert C, Hyde K, Hladki A, Romero A, Stadler M (2015)
Lenormandins A-G, new azaphilones from Hypoxylon lenormandii and Hypoxylon jaklitschii
sp. nov., recognised by chemotaxonomic data. Fungal Biol 71:165–184

103. Stadler M, Fournier J, Granmo A, Beltrán-Tejera E (2008) The “red Hypoxylons” of the
temperate and subtropical Northern hemisphere. N Am Fungi 3:73–125

104. Anderson R (2008) Hypoxylon in Britain and Ireland. 2. Hypoxylon rubiginosum and its allies.
Field Mycol 9:41–48

105. Greenhalgh GN, Whalley AJS (1970) Stromal pigments of some species of Hypoxylon. T Brit
Mycol Soc 55:89–96

106. Læssøe T, Srikitikulchai P, Fournier J, Köpcke B, Stadler M (2010) Lepraric acid derivatives
as chemotaxonomic markers in Hypoxylon aeruginosum, Chlorostroma subcubisporum and
C. cyaninum sp. nov. Fungal Biol 114:481–489

107. Ellis GP (1977) Naturally occurring chromones (chapter VII). In: Ellis GP (ed) Chemistry of
heterocyclic compounds: chromenes, chromanones, and chromones, vol 31. Wiley, Hoboken

108. Quang DN, Hashimoto T, Fournier J, Stadler M, Radulovic N, Asakawa Y (2005) Sassafrins
A-D, new antimicrobial azaphilones from the fungus Creosphaeria sassafras. Tetrahedron
61:1743–1748

109. Quang DN, Hashimoto T, Nomura Y, Wollweber H, Hellwig V, Fournier J, Stadler M,
Asakawa Y (2005) Cohaerins A and B, azaphilones from the fungus Hypoxylon cohaerens,
and comparison of HPLC-based metabolite profiles in Hypoxylon sect. Annulata. Phytochem-
istry 66:797–809

110. Hsieh HM, Ju YM, Rogers JD (2005) Molecular phylogeny of Hypoxylon and closely related
genera. Mycologia 97:844–865

111. Quang DN, Stadler M, Fournier J, Tomita A, Hashimoto T (2006) Cohaerins C–F, four
azaphilones from the xylariaceous fungus Annulohypoxylon cohaerens. Tetrahedron
62:6349–6354

112. Surup F, Mohr KI, Jansen R, Stadler M (2013) Cohaerins G–K, azaphilone pigments from
Annulohypoxylon cohaerens and absolute stereochemistry of cohaerins C–K. Phytochemistry
95:252–258

113. Stadler M, Wollweber H, Fournier J (2004) A host-specific species of Hypoxylon from France,
and notes on the chemotaxonomy of the “Hypoxylon rubiginosum complex”. Mycotaxon
90:187–211

114. Hellwig V, Ju Y-M, Rogers JD, Fournier J, Stadler M (2005) Hypomiltin, a novel azaphilone
from Hypoxylon hypomiltum, and chemotypes in Hypoxylon sect. Hypoxylon as inferred from
analytical HPLC profiling. Mycol Prog 4:39–54

115. Spatafora JW, Blackwell M (1993) Molecular systematics of unitunicate perithecial ascomy-
cetes: the Clavicipitales-Hypocreales connection. Mycologia 85:912–922

116. Stadler M, Wollweber H, M€uhlbauer A, Asakawa Y, Hashimoto T, Rogers JD, Ju Y-M,
Wetzstein H-G, Tichy H-V (2001) Molecular chemotaxonomy of Daldinia and other
Xylariaceae. Mycol Res 105:1191–1205

117. Hashimoto T, Tahara S, Takaoka S, Tori M, Asakawa Y (1994) Structures of daldinins A-C,
three novel azaphilone derivatives from ascomycetous fungus Daldinia concentrica. Chem
Pharm Bull 42:2397–2399

562 Y. Caro et al.



118. Soytong K, Kanokmedhakul S, Kukongviriyapa V, Isobe M (2001) Application of
Chaetomium species (Ketomium) as a new broad spectrum biological fungicide for plant
disease control: a review article. Fungal Divers 7:1–15

119. Kanokmedhakul S, Kanokmedhakul K, Nasomjai P, Louangsysouphanh S, Soytong K,
Isobe M, Kongsaeree P, Prabpai S, Suksamrarn A (2006) Antifungal azaphilones from the
fungus Chaetomium cupreum CC3003. J Nat Prod 69:891–895

120. Gray RW, Whalley WB (1971) The chemistry of fungi. Part LXIII. Rubrorotiorin, a metabolite
of Penicillium hirayamae Udagawa. J Chem Soc 21:3575–3577

121. Takahashi M, Koyama K, Natori S (1990) Four new azaphilones from Chaetomium globosum
var. flavo-viridae. Chem Pharm Bull 38:625–628

122. Ge H-M, Zhang WY, Ding G, Saparpakorn P, Song YC, Hannongbua S, Tan RX (2008)
Chaetoglobins A and B, two unusual alkaloids from endophytic Chaetomium globosum
culture. Chem Commun 45:5978–5980. doi: 10.1039/B812144C

123. McMullin DR (2008) Structural characterization of secondary metabolites produced by fungi
obtained from damp Canadian buildings. PhD dissertation, Ottawa-Carleton Institute of
Chemistry, Carleton University, Ottawa

124. McMullin DR, Sumarah MW, Blackwell BA, Miller JD (2013) New azaphilones from
Chaetomium globosum isolated from the built environment. Tetrahedron Lett 54:568–572

125. Brewer D, Jerram W, Taylor A (1968) The production of cochliodinol and a related metabolite
by Chaetomium species. Can J Microbiol 14:861–866

126. Stchigel AM (2000) Estudio taxonómico de los ascomycetes del suelo. PhD Dissertation,
Facultat de Medicina i Ciències de La Salut, Departament de Ciències Mèdiques Bàsiques,
Unitat de Biologia i Microbiologia, Universitat Rovira i Virgili, Reus Espanya

127. Mouchacca J (1999) Thermophilic fungi: present taxonomic concepts. In: Johri BN,
Satyanarayana T, Olsen J (eds) Thermophilic moulds in biotechnology. Springer Science &
Business Media, Dordrecht

128. Wijeratne EMK, Espinosa-Artiles P, Gruener R et al (2014) Thielavialides A–E, nor-spiro-
azaphilones, and a bis-spiro-azaphilone from Thielavia sp. PA0001, an endophytic fungus
Isolated from aeroponically grown Physalis alkekengi. J Nat Prod 77:1467–1472

129. Wang S, Li X-M, Teuscher F, Li D, Diesel A, Ebel R (2006) Chaetopyranin, a benzalde-
hyde derivative, and other related metabolites from Chaetomium globosum, an endophytic
fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod
69:1622–1625

130. Zalokar M (1957) Variations in the production of carotenoids in Neurospora. Arch Biochem
Biophys 70:561–567

131. Kritsky MS, Sokolovsky VY, Belozerskaya TA, Chernysheva EK (1982) Relationship
between cyclic AMP level and accumulation of carotenoid pigments in Neurospora crassa.
Arch Microbiol 133:206–208

132. Priatni S (2014) Potential production of carotenoids from Neurospora. Bioscience 6:63–68
133. Yan ZW, Wang CG, Lin JG, Cai J (2013) Medium optimization using mathematical statistics

for production of beta-carotene by Blakeslea trispora and fermenting process regulation. Food
Sci Biotechnol 22:1667–1673

134. Wang JF, Liu XJ, Liu RS, Li HM, Tang YJ (2012) Optimization of the mated fermentation
process for the production of lycopene by Blakeslea trispora NRRL 2895 (+) and NRRL 2896
(-). Bioprocess Biosyst Eng 35:553–564

135. Pohl U, Dohrmann U, Raugei G, Russo VEA (1984) Influence of blue-light on the accumu-
lation of carotenoids in Phycomyces blakesleeanus. Ber Deutsch Bot Ges 97:327–333

136. Fraser PD, Ruiz Hidalgo MJ, Lopez Matas MA, Alvarez MI, Eslava AP, Bramley PM (1996)
Carotenoid biosynthesis in wild type and mutant strains of Mucor circinelloides. Biochim
Biophys Acta 1289:203–208

137. Wang Q, Feng LR, Luo W, Li HG, Zhou Y, Yu XB (2015) Effect of inoculation process on
lycopene production by Blakeslea trispora in a stirred-tank reactor. Appl Biochem Biotechnol
175:770–779

16 Pigments and Colorants from Filamentous Fungi 563



138. Ebel R (2010) Natural product diversity from marine fungi. In: Mander L, Liu HW (eds)
Comprehensive natural products II: chemistry and biology. Elsevier, Oxford

139. Kim SK (2013) Marine microbiology: bioactive compounds and biotechnological applica-
tions, 1st edn. Wiley-VCH, Weinheim

140. Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation of marine-derived
endophytic fungi and their bioactive secondary products. Nat Protoc 5:479–490

141. Saleem M, Nazir M (2015) Chapter 9 – Bioactive natural products from marine-derived fungi:
an update. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 45. Elsevier,
Amsterdam

142. Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. In:
Southward AJ, Tyler P, Young CM, Fuiman LA (eds) Advances in marine biology, vol 40.
Academic, London

143. Kohlmeyer J (1984) Tropical marine fungi. Mar Ecol 5:29–378
144. Pagano MC, Dhar PP (2015) Fungal pigments. In: Gupta VK, Mach RL, Sreenivasaprasad S

(eds) Fungal biomolecules: sources, applications and recent developments. Wiley, Chichester
145. Hiort J, Maksimenka K, Reichert M, Perović-Ottstadt S, Lin WH, Wray V, Steube K,

Schaumann K, Weber H, Proksch P, Ebel R et al (2004) New natural products from the
sponge-derived fungus Aspergillus niger. J Nat Prod 67:1532–1543

146. Chooi YH, Tang Y (2012) Navigating the fungal polyketide chemical space: from genes to
molecules. J Org Chem 77:9933–9953. doi:10.1021/jo301592k

147. Sanchez JF, Somoza AD, Keller NP, Wang CCC (2012) Advances in Aspergillus secondary
metabolite research in the post-genomic era. Nat Prod Rep 29:351–371

148. Cacho RA, Tang Y, Chooi YH (2015) Next-generation sequencing approach for connecting
secondary metabolites to biosynthetic gene clusters in fungi. Front Microbiol 5:article 774.
doi: 10.3389/fmicb.2014.00774

149. Turner WB (1971) Fungal metabolites. Academic, London
150. Turner WB, Aldridge DC (1983) Fungal metabolites, vol 2. Academic, London
151. Gill M, Steglich W (1987) Pigments of fungi (Macromycetes). Prog Chem Org Nat Prod

51:1–317
152. Sturdikova M, Slugen D, Lesova K, Rosenberg M (2000) Mikrobialna produkcia farbnych

azaphilonovych metabolitov. Chem Listy 94:105–110
153. Zhu J, Grigoriadis NP, Lee JP, Porco JA Jr (2005) Synthesis of the azaphilones using copper-

mediated enantioselective oxidative dearomatization. J Am Chem Soc 127:9342–9343
154. Dong J, Zhou Y, Li R, Zhou W, Li L, Zhu Y, Huang R, Zhang K (2006) New nematicidal

azaphilones from the aquatic fungus Pseudohalonectria adversaria YMF1.01019. FEMS
Microbiol Lett 264:65–69

155. Osmanova N, Schultze W, Ayoub N (2010) Azaphilones: a class of fungal metabolites with
diverse biological activities. Phytochem Rev 9:315–334

156. Hajjaj H, Klaebe A, Loret MO, Goma G, Blanc PJ, Francois J (1999) Biosynthetic pathway of
citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic
resonance. Appl Environ Microbiol 65:311–314

157. Velisek J, Davidek J, Cejpek K (2008) Biosynthesis of food constituents: natural pigments.
Part 2- a review. Czech J Food Sci 26:73–98

158. Jongrungruangchok S, Kittakoop P, Yongsmith B, Bavovada R, Tanasupawat S,
Lartpornmatulee N, Thebtaranonth Y (2004) Azaphilone pigments from a yellow mutant of
the fungus Monascus kaoliang. Phytochemistry 65:2569–2575

159. Yu JH, Keller N (2005) Regulation of secondary metabolism in filamentous fungi. Annu Rev
Phytopathol 43:437–458

160. Dufossé L (2014) Anthraquinones, the Dr Jekyll and Mr Hyde of the food pigment family.
Food Res Int 65:132–136

161. Hunger K (2003) Indusrial dyes. Chemistry, properties, applications. Wiley-VCH, Weinheim
162. Hanson JR (2003) Natural products: the secondary metabolites. The Royal Society of Chem-

istry, Cambridge

564 Y. Caro et al.



163. Bringmann G, Irmer A, Feineis D, Gulder TAM, Fiedler H-P (2009) Convergence in the
biosynthesis of acetogenic natural products from plants, fungi, and bacteria. Phytochemistry
70:1776–1786

164. Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ et al (2010) Comparative
genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

165. Hansen FT, Sørensen JL, Giese H, Sondergaard TE, Frandsen RJN (2012) Quick guide to
polyketide synthase and nonribosomal synthetase genes in Fusarium. Int J Food Microbiol
155:128–136

166. Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus E-M et al (2013) Deciphering the
cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal com-
plex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9:e1003475.
doi:10.1371/journal.ppat.1003475

167. Niehaus EM, Kleigrewe K, Wiemann P, Studt L, Sieber CM et al (2013) Genetic manipulation
of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and
fusarin biosynthetic pathway. Chem Biol 20:1055–1066

168. Von Bargen KW, Niehaus E-M, Krug I, Bergander K, W€urthwein E-U, Tudzynski B, Humpf
H-U (2015) Isolation and structure elucidation of fujikurins A–D: products of the PKS19 gene
cluster in Fusarium fujikuroi. J Nat Prod 78:1809–1815

169. Linnemannstöns P, Schulte J, del Mar PM, Proctor RH, Avalos J, Tudzynski B (2002) The
polyketide synthase gene pks4 from Gibberella fujikuroi encodes a key enzyme in the
biosynthesis of the red pigment bikaverin. Fungal Genet Biol 37:134–148

170. Arndt B, Studt L, Wiemann P, Osmanov H, Kleigrewe K, Köhler J, Krug I, Tudzynski B,
Hans-Ulrich Humpf H-U (2015) Genetic engineering, high resolution mass spectrometry and
nuclear magnetic resonance spectroscopy elucidate the bikaverin biosynthetic pathway in
Fusarium fujikuroi. Fungal Genet Biol 84:26–36

171. Brown DW, Butchko RAE, Proctor RH (2008) Genomic analysis of Fusarium verticillioides.
Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:1158–1165

172. Ma SM, Zhan J, Watanabe K, Xie X, Zhang W, Wang CC, Tang Y (2007) Enzymatic synthesis
of aromatic polyketides using PKS4 from Gibberella fujikuroi. J Am Chem Soc
129:10642–10643

173. Jin J-M, Lee J, Lee Y-W (2010) Characterization of carotenoid biosynthetic genes in the
ascomycete Gibberella zeae. FEMS Microbiol Lett 302:197–202

174. Chang JJ, Thia C, Lin HY, Liu HL, Ho FJ, Wu JT, Shih MC, Li WH, Huan CC (2015)
Integrating an algal β-carotene hydroxylase gene into a designed carotenoid-biosynthesis
pathway increases carotenoid production in yeast. Bioresour Technol 184:2–8

175. Velayos A, Fuentes-Vicente M, Aguilar-Elena R, Eslava AP, Iturriaga EA (2004) A novel
fungal prenyl diphosphate synthase in the dimorphic zygomycete Mucor circinelloides. Curr
Genet 45:371–377

176. Duran N, De Conti R, Teixeira MFS (2009) Pigments from fungi: industrial perspective. In:
Rai M (ed) Advances in fungal biotechnology. I.K. International Publishing House, New
Delhi

177. U.S. Food and Drug Administration (2015) Microorganisms & microbial-derived ingredients
used in food (partial list). http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/
MicroorganismsMicrobialDerivedIngredients/default.htm. Accessed 25 Sept 2015

178. U.S. Food and Drug Administration (2015) Part 184- direct food substances affirmed as
generally recognized as safe. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/
CFRSearch.cfm?CFRPart=184. Accessed 25 Sept 2015

179. Chen Y, Nielsen J (2013) Advances in metabolic pathway and strain engineering paving the way for
sustainable production of chemical building blocks. Curr Opin Biotechnol 24:965–972

180. Cho A, Yun H, Park J, Lee S, Park S (2010) Prediction of novel synthetic pathways for the
production of desired chemicals. BMC Syst Biol 28:4–35

181. Carbonell P, Parutto P, Baudier C, Junot C, Faulon JL (2014) Retropath: automated pipeline for
embedded metabolic circuits. ACS Synth Biol 3:565–577

16 Pigments and Colorants from Filamentous Fungi 565

http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/MicroorganismsMicrobialDerivedIngredients/default.htm
http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/MicroorganismsMicrobialDerivedIngredients/default.htm
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=184
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=184


182. Hanlon S, Rizzo J, Tatomer D, Lieb J, Buck M (2011) The stress response factors Yap6, Cin5,
Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1-Ssn6 in S. cerevisiae.
PLoS One 6:e19060. doi: 10.1371/journal.pone.0019060.

183. Zhou H, Cheng JS, Wang BL, Fink GR (2012) Xylose isomerase overexpression along with
engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose
utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14:611–622

184. Çakar ZP, Turanlı-Yıldız B, Alkım C, Yılmaz Ü (2012) Evolutionary engineering of Saccharo-
myces cerevisiae for improved industrially important properties. FEMS Yeast Res 12:171–182

185. Yan D, Wang C, Zhou J, Liu Y, Yang M, Xing J (2014) Construction of reductive pathway in
Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresour
Technol 156:232–239

186. Çakar Z, Seker U, Tamerler C, Sonderegger M, Sauer U (2005) Evolutionary engineering of
multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 5:569–578

187. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi.
Biotechnol Adv 27:185–194

188. Panesar R, Kaur S, Panesar PS (2015) Production of microbial pigments utilizing agro-
industrial waste: a review. Curr Opin Food Sci 1:70–76

189. Dai J, Mumper JR (2010) Plant phenolics: extraction, analysis and their antioxidant and
anticancer properties. Molecules 15:7313–7352

190. Ahlawat KS, Khatkar BS (2011) Processing, food applications and safety of aloe vera
products: a review. J Food Sci Technol 48:525–533

191. Hynninen PH, Räisänen R, Elovaara P, Nokelainen E (2000) Preparative isolation of anthra-
quinones from the fungus Dermocybe sanguinea using enzymatic hydrolysis by the endoge-
nous β-glucosidase. Z Naturforsch 55(7–8). doi: 10.1515/znc-2000-7-820

192. Lech K, Jarosz M (2011) Novel methodology for the extraction and identification of natural
dyestuffs in historical textiles by HPLC-UV-Vis-ESI-MS. Case study: chasubles from the
Wawel Cathedral collection. Anal Bioanal Chem 399:3241–3251

193. Neagu D, Leopold L, Thonart P, Destain J, Socaciu C (2014) Enzyme-assisted extraction of
carotenoids and phenolic derivatives from tomatoes. Bull UASVMAnim Sci Biotechnol 71:20–26

194. Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major
secondary metabolites produced by two commercial Trichoderma strains active against dif-
ferent phytopathogens. Lett Appl Microbiol 43:143–148

195. Cao X, Ye X, Lu Y, Yu Y, Mo W (2009) Ionic liquid-based ultrasonic-assisted extraction of
piperine from white pepper. Anal Chim Acta 640:47–51

196. Du F-Y, Xiao X-H, Luo X-J, Li G-K (2009) Application of ionic liquids in the microwave-
assisted extraction of polyphenolic compounds from medicial plants. Talanta 78:1177–1184

197. Zhang L, Geng Y, Duan W, Wang D, Fu M, Wang X (2009) Ionic liquid-based ultrasound-
assisted extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. J Sep Sci 32
(20):3550–3554. doi:10.1002/jssc.200900413

198. Han D, Row KH (2010) Recent applications of ionic liquids in separation technology.
Molecules 15:2405–2426

199. Veggi PC, Martinez J, Meireles MAA (2013) Fundamentals of microwave extraction. In:
Chemat F, Cravotto G (eds) Microwave-assisted extraction for bioactive compounds: theory
and practice. Springer, New York

200. Zhang H-F, Yang X-H, Wang Y (2011) Microwave assisted extraction of secondary metabo-
lites from plants: current status and future directions. Trends Food Sci Technol 22:672–688

201. Baiano A (2014) Recovery of biomolecules from food wastes – a review. Molecules
19:14821–14842

202. Li H, Chen B, Zhang Z, Yao S (2004) Focused microwave-assisted solvent extraction and
HPLC determination of effective constituents in Eucommia ulmodies Oliv. (E. ulmodies).
Talanta 63:659–665

566 Y. Caro et al.



203. Mandal V, Mohan Y, Hemalatha S (2008) Microwave assisted extraction of curcumin by
sample-solvent dual heating mechanism using Taguchi L9 orthogonal design. J Pharm Biomed
Anal 46:322–327

204. Gallo M, Ferracane R, Graziani G, Ritieni A, Fogliano V (2010) Microwave assisted extracion
of phenolic compounds from four different spices. Molecules 15:6365–6374

205. Hemwimol S, Pavasant P, Shotipruk A (2006) Ultrasound-assisted extraction of anthraqui-
nones from roots of Morinda citrifolia. Ultrason Sonochem 13:543–548

206. Barrera Vázquez MF, Comini LR, Martini RE, Núñez Montoya SC, Bottini S, Cabrera JL
(2014) Comparisons between conventional, ultrasound-assisted and microwave-assisted
methods for extraction of anthraquinones from Heterphyllaea pustulata Hook
f. (Rubiaceae). Ultrason Sonochem 21:478–484

207. Borges ME, Tejera RL, Díaz L, Esparza P, Ibáñez E (2012) Natural dyes extraction from
cochineal (Dactylopius coccus). New extraction methods. Food Chem 132:1855–1860

208. Plaza M, Amigo-Benavent M, del Castillo MD, Ibáñez E, Herrero M (2010) Neoformation of
antioxydants in glycation model systems treated under subcritical water extraction conditions.
Food Res Int 43:1123–1129

209. Baby KC, Ranganathan TV (2013) Enzyme-assisted extraction of bioingredients. ChemWeek
59:213–224

210. Gandhi K (2014) A review of ionic liquids, their limits and applications. Green Sustainable
Chem 4:article ID:43349. doi:10.4236/gsc.2014.41008

211. Fan Y, Chen M, Shentu C, El-Sepai F, Wang K, Zhu Y, Ye M (2009) Ionic liquids extraction of
para red and sudan dyes from chilli powder, chilli oil and food additive combined with high
performance liquid chromatography. Anal Chim Acta 650:65–69

212. Tan Z, Li F, Xu X (2012) Isolation and purification of aloe anthraquinones based on an ionic
liquid/salt aqueous two-phase system. Sep Purif Technol 98:150–157

213. Ventura SP, Santos-Ebinuma VC, Pereira JF, Teixeira MF, Pessoa A, Coutinho JA (2013)
Isolation of natural red colorants from fermented broth using ionic liquid-based aqueous
two-phase systems. J Ind Microbiol Biotechnol 40:507–516

214. Shen L, Zhang X, Liu M, Wang Z (2014) Transferring of red Monascus pigments from
nonionic surfactant to hydrophobic ionic liquid by novel microemulsion extraction. Sep
Purif Technol 138:34–40

215. Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future
natural food colorants? Trends Biotechnol 28:300–307

216. LathaBV, JeevaratnamK (2010) Purification and characterization of the pigments fromRhodotorula
glutinis DFR-PDY isolated from natural source. Glob J Biotechnol Biochem 5:166–174

217. Fang LZ, Qing C, Shao HJ, Yang YD, Dong ZJ, Wang F, Zhao W, Yang WQ, Liu JK (2006)
Hypocrellin D, a cytotoxic fungal pigment from fruiting bodies of the ascomycete Shiraia
bambusicola. J Antibiot (Tokyo) 59:351–354

218. Thakur M, Azmi W (2013) Extraction and purification of β-carotene from filamentous fungus
Mucor azygosporus. Ann Phytomed 2:79–84

219. Sasanya JJ (2008) Quantification and characterization of mycotoxins, masked mycotoxins, and
Fusarium graminearum pigment. PhD dissertation, North Dakota State University of Agri-
culture and Applied Science, Dakota

220. Leatherhead Food Research (2015) New research reveals natural colours overtake artificial/
synthetic colours for first time. https://www.leatherheadfood.com/new-research-reveals-natu
ral-colours-overtake-artificial-synthetic-colours-for-first-time#sthash.fr6dEk5D.dpuf.
Accessed 28 Sept 2015

221. Prepared Foods & BNP Media (2011) Trends in global colorings. http://www.preparedfoods.
com/articles/109323-trends-in-global-colorings. Accessed 25 Sept 2015

222. Mortensen A (2006) Carotenoids and other pigments as natural colorants. Pure Appl Chem
78:1477–1491

16 Pigments and Colorants from Filamentous Fungi 567

https://www.leatherheadfood.com/new-research-reveals-natural-colours-overtake-artificial-synthetic-colours-for-first-time#sthash.fr6dEk5D.dpuf
https://www.leatherheadfood.com/new-research-reveals-natural-colours-overtake-artificial-synthetic-colours-for-first-time#sthash.fr6dEk5D.dpuf
http://www.preparedfoods.com/articles/109323-trends-in-global-colorings
http://www.preparedfoods.com/articles/109323-trends-in-global-colorings


223. Dufossé L (2009) Microbial and microalgal carotenoids as colourants and supplements
(Chapter 5). In: Britton G, Pfander H, Liaaen-Jensen S (eds) Carotenoids, vol 5, Nutrition
and health. Birkhäuser, Basel

224. Leray C (2014) Lipids and human nutrition (Chapter 3). In: Leray C (ed) Lipids: nutrition and
health. CRC Press, Boca Raton

225. EFSA (2008) Use of lycopene as a food colour. Scientific opinion of the panel on food
additives, flavourings, processing aids and materials in contact with food. EFSA J
674:51–66. http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_docu
ments/afc_ej674_lycopene_op_en,3.pdf. Accessed 28 Sept 2015

226. Horgan KA, Murphy RA (2001) Pharmaceutical and chemical commodities from fungi
(Chapter 6). In: Kavanagh K (ed) Fungi: biology and applications, 2nd edn. Wiley, Chichester

227. Kumar A, Hari Shankar Vishwakarma HS, Singh J, Dwivedi S, Kumar M (2015) Microbial
pigments: production and their applications in various industries. J Pharm Chem Biol Sci
5:203–212

228. Esser K, Hofrichter M (2010) The Mycota: a comprehensive treatise on fungi as experimental
systems for basic and applied research. 10. Industrial applications, 2nd edn. Springer, Berlin

229. Fabre CE, Santerre AL, Loret MO, Baberian R, Pareilleux A, Goma G, Blanc PJ (1993)
Production and food applications of the red pigments of Monascus ruber. J Food Sci
58:1099–1102

230. Baranova M, Mal’a P, Burdova O, Hadbavny M, Sabolova G (2004) Effect of natural pigment
of Monascus purpureus on the organoleptic characters of processed cheeses. Bull Vet Inst
Pulawy 48:59–62

231. Ropars J, Cruaud C, Lacoste S, Dupont J (2015) A taxonomic and ecological overview of
cheese fungi. Int J Food Microbiol 155:199–210

232. Wang CC, Chiang YM, Kuo PL, Chang JK, Hsu YL (2008) Norsolorinic acid from Aspergillus
nidulans inhibits the proliferation of human breast adenocarcinoma MCF-7 cells via
Fas-mediated pathway. Basic Clin Pharmacol Toxicol 102:491–497

233. Cai Y, Ding Y, Tao G, Liao X (2008) Production of 1,5-dihydroxy-3-methoxy-7-methylan-
thracene-9,10-dione by submerged culture of Shiraia bambusicola. J Microbiol Biotechnol
18:322–327

234. Ahmad W, Yusof NZ, Nordin N, Zakaria ZA, Rezali MF (2012) Production and characteriza-
tion of violacein by locally isolated Chromobacterium violaceum grown in agricultural wastes.
Appl Biochem Biotechnol 167:1220–1234

235. Križanec B, Le Marechal AM, Vončina E, Brodnjak-Vončina D (2005) Presence of dioxins in
textile dyes and their fate during the dyeing processes. Acta Chim Slov 52:111–118

236. Raisanen R (2002) Anthraquinones from the fungus Dermocybe sanguinea as textile dyes.
Academic dissertation, University of Helsinki

237. Nagia FA, EL-Mohamedy RSR (2007) Dyeing of wool with natural anthraquinone dyes from
Fusarium oxysporum. Dyes Pigm 75:550–555

238. Sharma D, Gupta C, Aggarwal S, Nagpal N (2012) Pigment extraction from fungus for textile
dyeing. Indian J Fibre Text Res 37:68–73

239. Poorniammal R, Parthiban M, Gunasekaran S, Murugesan R, Thilagavathi G (2013) Natural
dye production from Thermomyces sp fungi for textile application. Indian J Fibre Text Res
38:276–279

568 Y. Caro et al.

http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/afc_ej674_lycopene_op_en,3.pdf
http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/afc_ej674_lycopene_op_en,3.pdf


Yeast Diversity and Flavor Compounds 17
Francisco Carrau, Eduardo Boido, and Eduardo Dellacassa

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570

1.1 Yeast Diversity and Foods: Flavor Traits Matter Most . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
2 Esters, Higher Alcohols, Acids, Lactones, and Sulfur Aroma Compounds . . . . . . . . . . . . . . 572
3 Yeast Enzymatic Hydrolysis of Bound Aroma Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

3.1 Yeast Glycosidase Activity During Wine Fermentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
4 Biosynthesis and Biotransformation of Terpenoids by Yeast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

4.1 Biotransformation of Terpenoids by Yeasts During Fermentation . . . . . . . . . . . . . . . . . . . 578
4.2 Yeast Biosynthesis of Monoterpenes and Sesquiterpenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

5 Biosynthesis of Phenylpropanoids by Yeast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
6 Mixed Cultures and Development of Consortia Strategies to Increase

Flavor Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
7 Nutrient Limitations for Discrimination of Flavor Phenotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
8 Genetic Engineering Techniques for Flavors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

Abstract
Yeast had participated with humans in food fermentation since the production of
wine and bread, more than 10,000 years of shared history. It is well understood
that fungi diversity is still underestimated and that we are far from understanding
its importance and potential impact in biotechnology. Flavor compounds as
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“secondary metabolism” are very sensitive to fermentation conditions and mixed
cultures, and although we had experience an exponential development of molec-
ular biology in the last 30 years, metabolomics is still in its infancy. It was
demonstrated in recent years that increase strain and species yeast diversity in a
fermentation system increases sensory complexity and chemical aroma com-
pound diversity in the final fermented product. Flavor compounds had many
key functions for yeast, such as for survival and dispersion strategies, pheromone
and defense mechanisms, and “quorum sensing” mechanisms for cell communi-
cation. Humans had taken advantage of many of these functions to increase taste
and food sensory pleasure for a more exigent consumer, a phenomenon called
“yeast domestication.”We focus this chapter mainly in the recent discussed yeast
synthetic pathways for the formation of phenylpropanoid and terpenoid aroma
compounds.

In addition, we will emphasize the current knowledge that grape and wine
microbiology research has contributed to understand how complex natural and
inoculated yeast flora can affect flavor quality. The flavor phenotype concept and
how to screen natural flora and develop consortia starters to innovate in food
biotechnology are discussed.

Keywords
Aroma • Wine • Beer • Biotechnology • Terpenoids • Benzenoids

1 Introduction

The grape and wine sector was pioneer in developing sensory analysis with a
scientific basis in the earliest 40s [1, 2]. Sensory analysis is widely applied in
wine research to describe the effect of factors such as grape variety or
processing properties of wine and to study the relationship between chemical
and sensory characteristics. Today we are convinced once again that wine
research has contributed significantly to understanding how complex natural
microbial flora can affect fermentation behavior of commercial inoculated
yeasts, as well as how to conduct spontaneous fermentations [3, 4]. In the
last three decades, the challenge of developing analytical chemical techniques in
order to determine metabolite concentrations under 1 mg was successful and
increased our knowledge of yeast and fermentation metabolism, nutrient effects,
mixed cultures, and physical conditions such as pH, temperature, redox situa-
tion, osmotic stress, etc.

Wine and beer microbiologists are now promoting the use of increase diversity
for fermentations, as the limited number of commercial yeast strains used throughout
the world is thought to result in products with relatively uniform style, compromis-
ing consumer demand due to lack of flavor diversity [5, 6]. Yeast diversity interac-
tions and their effects on flavor quality will demand further studies to understand
mixed strain fermentation strategies.
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1.1 Yeast Diversity and Foods: Flavor Traits Matter Most

In food biotechnology, the “flavor phenotype” must be considered a fundamental
property when developing yeast selection methods [7]. Functional traits are what
matter most in a given ecosystem when general biology mechanisms are considered.
In contrast, volatile compounds are found in foods under milligram concentration
levels and more than 2000 volatile compounds can be identified by the human
olfactory system in their over 400 sensory receptors that are present [8, 9]. Interest-
ingly, since flavor traits are not necessarily essential for cell survival, underlying
genetic pathways are less affected by positive selection pressures contributing to
increased whole genome variability during microbial evolution [10, 11] that could
enrich flavor diversity within yeast species. In addition, wine compounds that can
affect flavor are more affected by polygenic features than are traditional enological
traits, such as alcohol tolerance, low acetic acidity, or good fermentation rate at low
temperature [11–14]. These concepts are the milestone for managing and influencing
the food fermentation system as a whole (in a holistic way) to impact on quality or
increase differentiation of our products from the massive market. Table 1 shows the

Table 1 Aroma threshold of important flavor compounds produced by yeasts during fermentation

Referencesa
Aroma threshold
(μgL�1) Descriptor

Isoamyl acetate [15] 2 Banana, pear

Ethyl acetate [15] 5000 Fruity, solvent

Ethyl hexanoate [15] 14 Apple, fruit

Ethyl octanoate [16] 70 Fruity, fatty

Ethyl decanoate [17] 200 Pleasant

2-Methyl-1-propanol [16] 1000 Solvent-like

2-Methyl-1-butanol [16] 30,000 Malted

3-Methyl-1-butanol [16] 1000 Whiskey, malt, burned

β-Phenylethyl alcohol [17] 14,000 Floral, honey

1-Propanol [18] 306,000 Fresh, alcohol

Isobutyric acid [17] 200,000 Cheesy/rancid

Isovaleric acid [18] 33 Sweat, acid, rancid

Butanoic acid [15] 240 Rancid, cheese, sweat

Hexanoic acid [17] 3000 Cheese, rancid, fatty

Octanoic acid [17] 500 Rancid, harsh, cheese,
fatty acid

Decanoic acid [17] 15,000 Fatty, unpleasant

γ-Butyrolactone [19] 50,000 Pleasant, creamy, caramel

Ethyl 4-hydroxybutanoate [20] 4000 Caramel

β-Phenylethyl acetate [17] 250 Pleasant, floral

3-Methylthio-1-propanol [17] 500 Boiled potato, rubber
aReferences indicate the medium in which the threshold values were calculated
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known threshold values of many of the compounds discussed in this review.
Threshold values could be determined by a sensory panel of tasters adding each
compound individually to a simulated hydroalcoholic solution or in a prepared
medium with the same beverage that has been evaluated. Odor-active values
(OAV) could be easily calculated for a given beverage determining compound
concentration divided by the threshold value. Although this is considered an
approach to see, the impact of each compound is difficult to obtain conclusive results
for the overall flavor of a beverage if a sensory analysis is not performed. Although
most of the studied compounds showed significant chemical and OAV differences
between strains, some of them may not contribute to the sensory characteristics of a
wine at the studied concentrations.

2 Esters, Higher Alcohols, Acids, Lactones, and Sulfur Aroma
Compounds

Research on the chemical identification of aroma compounds in wine derived from
the metabolic activity of yeasts has been widely reported in the literature during the
last decades [21–24]. From these studies, it can be concluded that various fermen-
tation products, including ethyl and acetate esters, higher alcohols, fatty acids,
lactones, and sulfur compounds (see Fig. 1), are especially important for the sensory
perception of different wine types [24–28]. While this research provides important
information on the sensory significance of yeast volatile compounds, more targeted
research is required on the sensory impact of these compounds when combined in a

Fig. 1 Yeast volatile compounds that are known to contribute to grape wine and beer final flavor.
Different strains will synthesized different concentrations of these compounds
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complex food matrix such as wine and beer and how they contribute to flavor
quality [29].

It is well established that Saccharomyces cerevisiae produces different concen-
trations of aroma compounds as a function of fermentation conditions and must
treatments, for example, temperature, grape variety, micronutrients, vitamins and
nitrogen composition of the must, size of inoculum, redox situation, etc. However,
limited information about non-Saccharomyces has been reported. Yeast assimilable
nitrogen (YAN) level and amino acid profile is a key nutrient to the majority of these
aroma compounds.

In Fig. 2 we showed the comparison between two groups of Saccharomyces
cerevisiae that behaves differently in relation to YAN levels, KU1 the low nitrogen
demand group (KU1 group) and M522 the high nitrogen demand group (M522
group). Flavor compounds accumulation in a model synthetic medium is shown at
five YAN levels.

The nitrogen-dependent common trend for the production of isoacids and higher
alcohols suggests that their metabolism and production may be coordinated and
dependent on the NAD/NADH balance of the cell [30–32]. On the other hand, it was
suggested that the significantly higher production of higher alcohols and isoacids by
the M522 group could reflect a less efficient usage of nitrogen resulting in an

Fig. 2 Aroma compounds produced at different YAN levels by two different yeast groups, KU1
group considered low nitrogen demand strains (white curves) and M522 group considered high
nitrogen demand strains (yellow curves) (Modified from Carrau et al. [24])
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increase of carbon flux related to branched-chain amino acid metabolism by this
strain [24]. KU1 group, which produces less higher alcohols and isoacids at all
nitrogen concentrations tested, when compared to M522 group, might regulate more
effectively the carbon flux at any given nitrogen level – resulting in less quantities of
cell “carbon metabolic wastes” (Ribereau-Gayon et al. 2000).

In contrast 1-propanol is known to be formed by the condensation of pyruvic acid
and acetyl CoA [33], and the increase with assimilable nitrogen is an opposite
behavior with the other higher alcohols [24]. It was proposed that strains with low
nitrogen demand produced relatively higher concentrations of 1-propanol at higher
nitrogen concentrations but relatively less at higher nitrogen levels (see Fig. 2). The
relative concentration of 1-propanol produced in response to nitrogen is generally
reversed to ethyl acetate with respect to each of high and low nitrogen demand
strains and would be an interesting topic for further research [24].

Yeasts synthesize fatty acids by the hydrolysis of the acyl-CoA derivatives and
esters by esterification of activated fatty acids and alcohols. The behavior of KU1
group strains, in which higher concentrations of these compounds are produced
when nitrogen availability is low, contradicts the concept raised in many reports that
stated that increase in ester production is directly related to the increase of nitrogen in
the must. This contradictory behavior of KU1 group strains could also explain why
several studies did not observe a consistent correlation between YAN grape musts
and ester and fatty acid concentration [21, 22]. More interestingly, the profiles of
fatty acids and esters obtained with the KU1 group are quite similar to the higher
alcohols and isoacids profiles as it is shown in Fig. 2, the opposite situation for the
high nitrogen demand strains.

Limited information about the production of γ-butyrolactone and ethyl
4-hydroxybutanoate by yeast is found in the literature. The profile of
γ-butyrolactone production also resembles those for higher alcohols and isoacids.
The relation of γ-butyrolactone with ethyl 4-hydroxybutanoate production was
previously proposed [34].

Despite of the large number of papers describing the effects of fermentation
conditions on hydrogen sulfide formation [35, 36], only a few studies have investi-
gated the relationship between fermentation management and formation of volatile
sulfur compounds (VSCs), in particular, mercaptans, sulfides, and disulfides, which
can potentially affect wine aroma [37]. The strategy used for the aroma impact
evaluation of VSCs was based on the characterization of the possible odorant zones
determined by gas chromatography–olfactometry (GC-O). This analytical technique
represents the best way to screen the odor-active compounds in a complex matrix by
using the human nose as the detector for molecules eluting from the gas chroma-
tography column.

There is an extremely wide variation in the odor threshold values reported for
these compounds, and certain sulfur compounds are known to contribute positively
when they are present in sub- or peri-threshold concentrations, but they can be
responsible for off-flavors at higher concentrations [38, 39]. Such occurrences
highlight the importance of understanding and managing the yeast ecology of
fermentation. The selection of yeast with a low propensity to produce sulfur
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derivatives can minimize the production of off-flavors, and limited assimilable
nitrogen in screening synthetic mediums could be a key tool for this purpose [5].
We suggest the reader for further information on esters, higher alcohols, acids, and
sulfur aroma compounds, the excellent reviews made by other authors [7, 14, 29]. In
this review, we will emphasize the terpenoid and phenylpropanoid aroma com-
pounds synthesized by yeast; both chemical groups are being normally associated
and found in fruits as free and bound (glycosylated) aroma compounds.

3 Yeast Enzymatic Hydrolysis of Bound Aroma Compounds

In several grape varieties, the dominating aroma compounds found are bound to
sugars, such as the volatile group of benzenoid/phenylpropanoid and the isoprenoids
(monoterpenes), that substantially contribute to wine aroma during fermentation or
barrel aging [40]. β-Phenylethyl alcohol, benzyl alcohol, linalool, nerol, geraniol,
and citronellol have been identified in grape must in their bound form and contribute
with floral or fruity flavors if they are hydrolyzed [41–44]. Many of these com-
pounds can represent 10–90 % of the total hydrolyzed volatile fraction of grapes
such as Chardonnay [45], Cabernet Sauvignon, Merlot [46], Tannat [41], Pinot Noir
[42], or aromatic varieties such as Muscats [47].

The hydrolysis of monoglucosides requires the action of a β-glucosidase, while
hydrolysis of disaccharide glycosides requires the sequential activity of an appro-
priate exo-glycosidase to remove the outermost sugar residue, followed by a
β-glucosidase to remove the remaining glucose (Scheme 1) [48]. It was also
shown that an endo-glycosidase alone is capable of hydrolyzing this linkage thus
liberating disaccharide and aglycon [49, 50]. Plant and microbial glycosidases have
been reported and reviewed by different authors [51, 52].

Grapes have reasonable β-glucosidase activity [53, 54], but low α-rhamnosidase,
α-arabinosidase, and β-xylosidase activities have been detected [54]. However,

Scheme 1 Hydrolysis of disaccharide glycosides by sequential action of an appropriate
exo-glycosidase, followed by a β-glucosidase to remove the remaining glucose
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β-glycosidase activity of grape juice is virtually absent, as its low pH and the
presence of glucose inhibit the enzymatic activity [49, 53–57].

3.1 Yeast Glycosidase Activity During Wine Fermentation

Numerous reports have shown that several yeasts involved in vinification processes
display β-glycosidase activity and that this activity tends to be greater in
non-Saccharomyces strains than in S. cerevisiae [58–62]. Nevertheless, in recent
work, it has been demonstrated that permeabilized cells of Saccharomyces species
can exhibit β-glycosidase activity as high as non-Saccharomyces species, suggesting
that the transport of glycosidic precursors is a limiting factor in the aromatic release
and could orientate breeding programs for the construction of new interspecific wine
yeasts [63]. One large screen of strains belonging to 20 species of yeasts, including
Debaryomyces castellii, D. hansenii, D. polymorphus, Kloeckera apiculata
(Hanseniaspora uvarum), and Hansenula anomala, showed β-glucosidase activity
[61]. Furthermore, these indigenous species of non-Saccharomyces yeasts may
impart special characteristics to the wines [64, 65]. Therefore, in order to enhance
the sensorial attributes of the wines, it is important to explore the potential of wild
yeasts isolated from enological ecosystems producing β-glucosidases. One strain
identified as a Rhodotorula mucillaginosa, isolated from grapes of cultivars typical
of Irpinia region and used in winemaking conditions showed an increase of the free
terpene fraction [66]. Some native Saccharomyces and non-Saccharomyces strains
were identified that show glycosidase activity in an esculin solid medium [67]. This
technique directly correlates with the glycosyl–glucose (GG) index determination
method that measures their enzymatic hydrolysis of glycosylated compounds in
grape must [68]. The glycosidic activity related to S. cerevisiae has been proven in
Riesling and Chardonnay musts [69, 70] and is weakly sensitive to the presence of
sugar, but its action is very reduced due to must and wine pH [57, 71, 72]. On the
other hand, several non-Saccharomyces yeasts have been shown to possess glyco-
sidic activities, but are strongly inhibited by glucose concentration [73–75]. More
promising findings come from work with Debaryomyces and Candida strains
[61, 76, 77]. Studies with isolates obtained from enological ecosystems in the
Utiel Requena Spanish region found that Wickerhamomyces anomalus and
P. membranifaciens were the most interesting species because the glycosidase
activity had a high degree of tolerance to glucose and ethanol high levels
[78]. Metschnikowia pulcherrima was selected from fermenting grape must for its
high β-glucosidase activity [67]. The isolation, purification, and partial characteri-
zation of the main enzyme it produced have contributed to a better understanding for
the development of immobilized enzyme methods of potential application in wine
production [79]. However, many β-glucosidases from non-Saccharomyces species
are not active also at low pH [3], as shown forM. pulcherrima [79], H. uvarum [80],
Z. bailii [81], and P. pastoris [82]. The activity of these enzymes in must and wine
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(normal pH of about 3.0 to 3.8) has not been extensively characterized, and there-
fore, their effects on wine flavor are still unclear [83, 84]. The isolation and
characterization of an extracellular β-glucosidase enzyme from Issatchenkia
terricola that was selected for its activity at low pH above 3.0 [85] proved to be
very active for white Muscat wine production in the presence of glucose (100 gL�1),
ethanol (18 %), and metabisulfite (60 mgL�1). These results support the expectation
that further studies of the wide yeast diversity that are still unknown will allow
identifying better designed glucosidase enzymes by nature.

4 Biosynthesis and Biotransformation of Terpenoids by
Yeast

The identification of monoterpenoids, compounds with strong sensory perception
and widely diffused in plants such as V. vinifera varieties, had helped to elucidate
the basic flavor chemistry of these compounds [21, 23, 86]. Monoterpenols,
particularly linalool, geraniol, and nerol, are responsible for the characteristic
floral aroma in grapes and wines of V. vinifera cultivars such as Muscat varieties,
Gew€urztraminer, and Riesling [47]. Acid-catalyzed rearrangements during wine
processing and aging can also result in changes in concentration and formation of
new compounds that were not present in the original grapes [87, 88]. In
nonaromatic grape varieties, these compounds usually occur at concentrations
lower than their odor thresholds. The question therefore arises as to which
chemical and/or biological processes are responsible for the increase of monoter-
pene alcohols during fermentation of low monoterpene grape varieties. In this
review, the contribution of several chemical and biological pathways to the
formation of monoterpenes during alcoholic fermentation of wine is discussed
by showing results that will make more understandable some of the events of
isoprenoid micrometabolism in fungi.

Terpenoids are the most numerous and structurally diverse group of natural products
[89–92], including hemi-, mono-, sesqui-, di-, tri-, and tetra-terpenes. It has been
estimated that there are more than 30,000 isoprenoid compounds in plants [93].
They play numerous vital roles in basic plant processes, including respiration, photo-
synthesis, growth, development, reproduction, defense, and adaptation to environmen-
tal conditions [91, 94–96]. Terpenoids are biosynthesized by condensation of the
isopentenyl diphosphate 5-carbon unit (IPP) and its isomer dimethylallyl diphosphate
(DMAPP) in a head-to-tail or head-to-head fashion. In higher plants, there are two
isoprenoid biosynthetic pathways which result in the precursors IPP and DMAPP. Over
the course of evolution, plants have maintained the well-known eukaryotic mevalonic
acid (MVA) pathway [97] in the cytosol (the classical pathway) and acquired the later
discovered prokaryotic 2-C-methyl-D-erythritol 4-phosphate (MEP) (alternative path-
way) [98–100] from the endosymbiotic ancestor of plastid.

17 Yeast Diversity and Flavor Compounds 577



4.1 Biotransformation of Terpenoids by Yeasts During
Fermentation

The demonstration that exogenous monoterpenes can undergo biotransformation
provides further evidence for the existence of a terpene metabolic pathway in yeasts
[101]. The transformation of free terpenes by different yeasts, especially
non-Saccharomyces species, has been reported [102]. This might be important in
“low input winemaking” techniques, in which spontaneous fermentations are pro-
moted and more yeast diversity is developed in the process [3, 5, 103–105].

The biotransformation and formation of some terpenes by S. cerevisiae in grape
musts was proposed previously. In winemaking conditions, S. cerevisiae can
biotransform geraniol to citronellol [106]. Biotransformation of the monoterpenes
linalool, α-terpineol, nerol, and geraniol by S. cerevisiae was shown in model
fermentations [107]. However, the mechanisms are currently ill-defined; further-
more, only one cyclase gene related to sterol metabolism in yeast, lanosterol
synthase, has been reported [108].

4.2 Yeast Biosynthesis of Monoterpenes and Sesquiterpenes

Lynen proposed in 1964 [109] that terpene and sterol biosynthesis are related.
Anaerobic conditions were suggested to inhibit several essential steps in ergosterol
biosynthesis, including squalene epoxidation and the oxidative demethylation/dehy-
drogenation of lanosterol, essential steps for the formation of ergosterol. Some
researchers suggested that such inhibition of sterol biosynthesis could stimulate
terpene formation by fungi due to the accumulation of sterol precursor compounds
[110]. In yeast and animals, only the MVA pathway is present and no monoterpene
synthases have been reported. Monoterpenes have only rarely been reported from
fungi. A chlorinated monoterpene was isolated from the fermentation broth of the
mangrove endophytic fungus Tryblidiopycnis sp. [111]. Esteya vermicola, an endo-
parasitic fungus of pine wood nematode, has also been reported to produce mono-
terpenes as a mechanism to predate the nematode [112]. Production and export of
monoterpenes by the fungus Ceratocystis moniliformis has also been reported
[113]. Different volatile sesquiterpenes have been reported as cell–cell signaling
molecules in Candida species: farnesol for Candida albicans and nerolidol for
Candida parapsilosis [114, 115]. A yeast strain of Rhodotorula glutinis has been
shown to produce the sesquiterpene nerolidol [116]. Farnesol is a volatile sesquiter-
pene widely distributed in many plant essential oils, in animals, and in microbes. It is
naturally produced in trace amounts and plays essential roles in signal transduction,
quorum sensing, and apoptosis induction. Farnesol is produced by dephosphoryla-
tion of FPP by phosphatases, pyrophosphatases, or specific sesquiterpene
synthases [117].

In yeast, there is a unique enzyme, Erg20p, that synthesizes FPP from isoprene
precursors [118]. Deletion of ERG20 is lethal since mutants are unable to synthesize
ergosterol, an essential component of cell membranes required to maintain
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membrane permeability and fluidity [119]. In an erg20 point mutant context
(K197E), the tight binding of GPP to the farnesyl diphosphate synthase catalytic
site is relaxed, and therefore, GPP is freely available as a precursor for the synthesis
of the monoterpenes geraniol and linalool [120]. However, as fungi do not typically
produce monoterpenes, research on the synthesis pathways has been focused on
polyterpenoids, such as triterpenoids, carotenoids, and ubiquinone [121].

Knowledge on the formation of terpenoids by native yeasts until recently was
limited to the production of trace concentrations by S. cerevisiae [122] and a small
number of non-Saccharomyces species, such as Kluyveromyces lactis [123],
Torulaspora delbrueckii [124], Hanseniaspora uvarum [122], Metschnikowia
pulcherrima, Candida stellata [125], and Ambrosiozyma monospora
[126]. Although recently some interesting efforts have been made to produce
sesquiterpenes by engineered yeasts, there is limited literature in relation to natural
sesquiterpene production by yeasts. A metabolically engineered Saccharomyces
cerevisiae strain that expressed a plant sesquiterpene epi-cedrol synthase using
FPP [127], production of the antimalarial drug precursor artemisinic acid [128],
and accumulation of higher levels of FPP for commercial synthesis of these kinds of
compounds [129] were reported. However, information on monoterpene formation
by yeasts is still limited. S. cerevisiae M522 was used to evaluate the factors
affecting terpene production, where it was demonstrated that, strikingly, the YAN
and oxygen content of the fermentation medium influences monoterpene formation.
High YAN concentration of the medium (400 compared with 180 mg NL�1), which
stimulates fermentation rate, but not biomass yield, stimulates monoterpene, but not
sesquiterpene (nerolidol and farnesol) formation [122]. In addition, microaerobic
compared with anaerobic conditions favored terpene accumulation in the ferment.
To explain these results, based on blast searches performed on the Saccharomyces
genome database, the authors hypothesized that monoterpenes might not be derived
only from the sterol pathway, as sesquiterpenes appear to be, but by an alternative
pathway. This latter pathway, which involves the conversion of leucine to mevalonic
acid (Fig. 3) is located in the mitochondrion [122], and this fact could explain the
non-coordinated synthesis of the two terpene groups (monoterpenes and sesquiter-
penes). Assimilable nitrogen, as well as oxygen, is known to regulate mevalonic acid
and sterol formation, and hence the concentration of intermediates, such as geranyl
pyrophosphate, which can act as a terpene precursor.

Recently, this pathway interconnecting leucine catabolism and isoprenoid metab-
olism has been studied in fungi [133, 134]. Although the precise enzymatic basis for
the link between sterol biosynthesis and leucine catabolism is still lacking, there is
strong genetic evidence reported for the fungus, Aspergillus nidulans [135] that
supports the existence of such a metabolic link. The pivotal reaction required for
both leucine catabolism and isoprenoid metabolism is catalyzed by the enzyme
3-methylcrotonyl-CoA carboxylase (MCCase; EC 6.4.1.4), which has been
described in some bacterial species and is present in the mitochondria of mammals
and plants [136, 137]. The existence of a putative MCCase in yeast mitochondria
was proposed [122], HFA1 a gene with unknown function (see Fig. 4). On the other
hand, geranyl diphosphate synthase (GPPase), the other key enzyme for
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monoterpene synthesis that produces geranyl diphosphate from the IPP pool,
although not previously described in yeast, might be present, according to a putative
gene identified in these studies COQ1. Overexpression of this gene in S. cerevisiae
significantly increases the formation of linalool and the sesquiterpene nerolidol
[138]. At exponential growth conditions, COQ1 gene participates in the isoprenoids
biosynthesis fulfilling not only a geranyl pyrophosphate synthase function but also a
nerolidol synthase activity. The tight binding of GPP to the farnesyl diphosphate
synthase (FPPS) catalytic site might explain why generally in animals and microor-
ganisms no GPP is released and made available for the biosynthesis of C-10
byproducts [139]. However, the mechanism of formation of monoterpenes in natural
wine yeasts and in the yeast mutants erg20 gene that encodes the FPPS [140] is still
not well understood. Increase concentration of linalool due to overexpression of
COQ1, in the Saccharomyces cerevisiae genome, argues in favor of the hypothesis
that some of the monoterpenes detected in the ferments could be formed in the

Fig. 3 Biosynthetic pathways of isoprenoids in yeast. These separate pathways (in mitochondria
and in cytosol) would explain the differences found between monoterpene formation and sesqui-
terpene metabolism. This model is in agreement with the following facts: the existence of isozymes
in S. cerevisiae of 3-hydroxy-3-methylglutaryl reductase HMGR1 and HMGR2 [130], the increase
production of geraniol by erg20 mutants [119], and the proposed compartmentation of the MVA
pathway for the production of carotenoids and sterols in fungal cells [131, 132]. Although no
putative genes were identified for the formation of linalool and α-terpineol in yeast, the low pH of
the vacuoles might explain the formation of these compounds in wine fermentation. The key
compounds or genes are indicated. MCC methylcrotonyl CoA, FPP farnesyl diphosphate, HMGR
3-hydroxy 3-methylglutaryl CoA reductase, IPP isopentenyl diphosphate, MVA mevalonic acid,
HFA1 unknown function mitochondrion gene with high homology to the Aspergillus MCC, COQ1
mitochondrial hexaprenyl pyrophosphate synthetase homologue to plant GPP synthase
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mitochondrion. Figure 3 shows the behavior of the erg20mutants that are blocked in
the FPP synthase in the cytosol, resulting in an excess of IPP that could enter the
mitochondrion, as was shown in plant plastids and cytosol [141]. Yeast mutants in
COQ1 gene are currently under study to understand this hypothesis. The last step of
the formation of free monoterpenes is dephosphorylation. Although the enzyme
activity involved in GPP dephosphorylation has not yet been identified in yeast, it
was shown that the genes encoding the diacylglycerol phosphate phosphatases
(LPP1 and DPP1) accept isoprenoid pyrophosphates as substrates in vitro in Sac-
charomyces cerevisiae [142]. However, the expression of a plant geraniol synthase
(GES) in the erg20 mutant strain of S. cerevisiae resulted in a tenfold increase in
geraniol production [139], which confirms that GPP dephosphorylation is indeed a
limiting step in terpenoid formation in yeast. An endogenous isoprenoid phosphatase
activity, apart from LPP1 and DPP1, could explain the formation of geraniol in this
mutant. However, the formation of some of the geraniol and probably all the linalool
was proposed to take place in the vacuoles due to low pH effect [139]. When an
erg20 mutant was tested, the levels of the monoterpenes geraniol and linalool
increased almost 10 times, compared to the wild-type BY4743 genetic context.
Linalool levels in BY4743 were around 2 μgL�1, while in K197E background,
linalool production was around 200 μgL�1. However, when this erg20 mutant strain
K197E was transformed with a plasmid overexpressing Coq1p and cultivated in a
chemically defined medium that mimics grape juice, the levels of linalool reached
760 μgL�1 [138]. To the best of our knowledge, this is the highest level of linalool
produced by S. cerevisiae up to now. On the other hand, several natural strains of
Hanseniaspora vineae were recently studied and characterized in relation to mono-
terpene and sesquiterpene accumulation in the same synthetic medium used

Fig. 4 Proposed pathways for the formation of benzenoids (benzyl alcohol, benzaldehyde) and
p-hydroxybenzenoids (p-hydroxybenzyl alcohol and p-hydroxybenzaldehyde) in Hanseniaspora
vineae through the chorismate pathway, with phenylpyruvate and p-hydroxyphenylpyruvate as
intermediates
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previously for S. cerevisiae studies, and we had found a wide variability between
strains (from 10 to 61 μgL�1 of each of these groups) with concentration levels up to
54 μgL�1 of monoterpenes and 61 μgL�1 for sesquiterpenes in the same strain [143],
tenfold higher concentrations compared to natural S. cerevisiae strains.

In summary, some strains of yeast, Saccharomyces and non-Saccharomyces,
might contribute to the floral aroma of grape wine and other fermented beverages,
by de novo synthesis of monoterpenes, and this effect could be augmented by higher
juice nitrogen in combination with microaerobic fermentation.

5 Biosynthesis of Phenylpropanoids by Yeast

The significance of volatile aryl alkyl alcohols in plants was recently well reviewed
[144], where the volatile group of benzenoid/phenylpropanoid-related compounds
(intermediates and end products) substantially contributes to plant fitness including
essential metabolites such as hormones, cofactors, defense compounds, and attrac-
tants for pollinators and seed dispersers [144]. Benzyl alcohol is a widely used
compound in the cosmetic, pharmaceutical, and fragrance industries [145]. It plays
an important role in fungi lignin biodegradation processes, supplying together with
other aromatic alcohols, hydrogen peroxide to the ligninolytic system
[146]. Although it has not been thoroughly studied yet, benzyl alcohol could also
participate in fungi cell–cell interactions, as quorum sensing molecules such as
tyrosol, farnesol, or β-phenylethanol [24, 114, 147].

The formation of benzyl alcohol by fungi is limited to some Basidiomycetes
[148], and until recently only one study in a synthetic medium was found for some
non-Saccharomyces species showing the formation of this volatile compound:
Kloeckera apiculata (Hanseniaspora uvarum), Candida stellata, Schizosac-
charomyces, and Zygosaccharomyces [149]. Furthermore, although the biosynthetic
pathway is not elucidated for p-hydroxybenzoate in yeast, it is proved to be an
intermediate of ubiquinone Q6 synthesis in Saccharomyces [150].

Free and bound β-phenylethyl alcohol and benzyl alcohol have been identified in
grape must and wine and contribute with floral or fruity flavors [41–44].

We had recently showed that benzyl alcohol, benzaldehyde, p-hydroxyben-
zaldehyde, and p-hydroxybenzyl alcohol can be synthesized de novo in absence of
grape-derived precursors by the wine yeast Hanseniaspora vineae. Although little is
known about the complete metabolic pathways in plants leading to the formation of
volatile benzenoids, it is known that benzyl alcohol is formed within
phenylpropanoid synthesis by PAL enzyme (phenylalanine ammonia lyase)
[144]. This enzyme catalyzes the conversion of phenylalanine to trans-cinnamic
acid [151] which is subsequently converted into benzyl alcohol and other derived
compounds. This enzyme is the first of the phenylpropanoid metabolism in plants
and has been found in some Basidiomycota and Ascomycota fungi such as Neuros-
pora, Aspergillus, and Botrytis [152]. To our knowledge, this enzyme is rarely found
in yeast. Although it has been reported for the Basidiomycota yeast, Rhodotorula
graminis [153], it has not been found in the subphylum Saccharomycotina.
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Genomic analysis of H. vineae indicates that the phenylalanine ammonia lyase
(PAL) and tyrosine ammonia lyase (TAL) pathways, used by plants and some fungi to
generate benzyl alcohols from aromatic amino acids through cinnamic acids, are
absent inH. vineae genome-sequenced strains. Consequently, an alternative pathway
derived from chorismate through phenylpyruvate and p-hydroxyphenylpyruvate
through mandelate as intermediate was proposed [154]. Feeding experiments with
the aromatic amino acids and the confirmation that H. vineae and S. cerevisiae are
unable to synthesize cinnamic acids in our experimental conditions had supported
the pathway presented in Fig. 4.

As we have sequenced the genomes of two H. vineae strains [155], using
comparative genomics with S. cerevisiae data, we had confirmed the existence of
genes needed by this yeast species to synthesize benzenoids. In Fig. 4, the mandelate
pathway for the synthesis of benzenoid compounds is shown, which will also be
used by S. cerevisiae for the synthesis of ubiquinone Q6 precursor, the
4-hydroxybenzoate. These results obtained for H. vineae will contribute to under-
stand three putative pathways: the peroxisome β-oxidative pathway recently proved
in plants, the cytosol non-oxidative pathway CoA-dependent or independent, also
proposed for plants but not proved yet [144], and the mandelate pathway proposed
here as the main route from sugars to benzenoids when cinnamic acids are not
present or synthesize in the medium.

6 Mixed Cultures and Development of Consortia Strategies
to Increase Flavor Diversity

Indigenous yeasts present in grape musts at the onset of wine fermentation can be
divided broadly into two groups, i.e., the wine yeast Saccharomyces cerevisiae and
the non-Saccharomyces (NS) yeasts. Several studies have shown that NS yeast
strains can be detected throughout fermentation [156] and that their dominance
during early stages can influence the final composition of wine [157].

Although a large population of active yeast cells is typically used for inoculation,
many studies have shown that indigenous strains are not completely suppressed and can
develop to a significant extent during early stages of juice fermentation [158, 159].
Indigenous NS yeasts are found predominantly on grapes, and to lesser extent on cellar
equipment [160]. NS yeasts are present in highest numbers in grape must prior
inoculation with commercial S. cerevisiae. In what is termed “spontaneous fermenta-
tion,” there is a sequence of dominance by various NS grape must yeasts, followed by
S. cerevisiae which can then complete fermentation [3]. Indigenous yeasts have been
reported to contribute either positively or negatively to overall sensory characteristics of
wine. Such results could be explained, in part, by the diversity of NS yeasts in grape
must and the limited number of studies in different laboratories with consistent
methodologies for controlling available nutrients [161]. Competition for nutrients
during winemaking process may affect the development of a sequential inoculation
process, and the addition of some vitamins and/or YAN may be needed to end the
fermentation [161].
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However, a number of studies have shown that the presence of NS yeast is
associated with increased wine quality and complexity [4, 67, 159,
162–168]. Even though S. cerevisiae is responsible for the majority of the ethanol
in wine, the presence of NS yeasts may have a significant effect on the production of
aroma compounds including esters, higher alcohols, acids, monoterpenes, and
benzenoids [23].

We have previously seen and recently demonstrated that during white Chardon-
nay wine production, inoculation of Hanseniaspora vineae increased spontaneous
S. cerevisiae strain diversity and some key aroma compounds such as benzyl alcohol
and β-phenylethyl acetate, compared to Saccharomyces single strain fermentations
[4, 163, 169]. Further studies with different combinations of mixed cultures are
needed to understand the cooperation or competition mechanisms between different
species and how these processes improve flavor accumulation in the final fermented
beverage.

7 Nutrient Limitations for Discrimination of Flavor
Phenotypes

A lack of recognition of the importance of defining the nitrogen content of media in
relation to aroma compounds has produced considerable discrepancies and mis-
understandings in the literature. The importance of an appropriate YAN level for
yeasts characterization in relation to aroma compounds was studied to understand
flavor profiles changes due to the main nutrient of industrial juices [24]. Moreover,
many commercial yeasts produce undesirable off-flavors, such as hydrogen sulfide,
and high concentration of higher alcohols, depending on the concentration of
assimilable nitrogen present in the grape must [36]. In the late seventies, these
fermentation problems were partially solved by the addition of ammonium salts to
deficient musts which increased fermentation rate but also the sensory desirability of
the wines [35, 36, 170, 171]. As a consequence, the routine addition of ammoniacal
nitrogen to musts to correct nitrogen limitation is widely used by winemakers.

Initial studies have attempted to relate the yeast nitrogen demand concept with the
profile of aroma compounds in wines. Paradoxically, various studies reported to
characterize the yeast aroma compounds of wines made with various yeast strains
had not considered the importance of nitrogen level of the grape must or the
fermentation medium utilized [70, 172–188]. Moreover, many studies were
conducted under conditions of nitrogen excess, above 300 mg N L�1 [24]. This
experimental approach has proved to be unsuitable since S. cerevisiae yeast strains
can produce very different profiles of fermentation rate and aromatic compounds
under industrial conditions of lower initial nitrogen level, usually of around
140 mgN L�1 [169, 189, 190].

From the chemical point of view, only a few studies have investigated the yeast
aroma compounds of wines prepared under defined conditions of YAN contents
similar to winemaking conditions [36, 169, 191–198].
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However, some interesting changes on the behavior for aroma compounds in two
model strains may contribute to chemical yeast discrimination if an appropriate
nitrogen level is used in a chemical-defined medium. In Fig. 5, we show how with
a limited YAN medium of 100 mgN L�1 we can obtain the highest flavor compound
production of many of the main group of aromas such as higher alcohols, isoacids,

Compounds
µg/l

140
Discriminating YAN level

120

100

80

60

40

20

0

4500

4000

3500

3000

2500

2000

1500

1000
500

0

250000

200000

150000

100000

50000

0
Average
YAN-75

Average
YAN-125

Average
YAN-180

Average
YAN-250

Average
YAN-400

Average
YAN-75

Average
YAN-125

Average
YAN-180

Average
YAN-250

Average
YAN-400

Average
YAN-75

Average
YAN-125

Average
YAN-180

Average
YAN-250

Average
YAN-400

Lactones

Benzenoids

Sulphur
compounds
Isoacids

Esters

Higher
alcohols

Acids

Fig. 5 Aroma profile of Saccharomyces cerevisiae strains considered of low nitrogen demand for
wine fermentation. Fermentations were carried out in a chemical-defined medium with five YAN
levels at 20 C. Clearly with YAN levels above 180 mgNL�1, the production of flavor aroma
compounds was decreased significantly making screening methods not ideal in terms of discrim-
inating flavor potential of new yeast strains
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benzenoids, esters, lactones, and sulfur compounds (left side of the graphs). As it
was discussed above due to a limited YAN screening medium, we had identified
H. vineae as a high producer of benzenoid, compounds that their synthesis is
significantly inhibited when diammonium phosphate was added [154]. In contrast,
when the medium utilized contains high YAN levels, screenings of natural flora give
just only 12 % of different strain species with detectable levels of benzyl acetate
production [199].

In addition, as it was reported previously, an improved discrimination of fermen-
tation kinetics capacities between strains was also obtained at low YAN level in a
synthetic medium (78 mgNL�1) compared to high YAN levels (390 mgNL�1)
[189]. Increase variations of growth and fermentation kinetics obviously result in
increased variation of the flavor secondary metabolism. These results are in agree-
ment with the first gene expression analysis made with an industrial strain [200],
where, at low nitrogen level (53 mgNL�1) compared to high nitrogen level
(400 mgNL�1), cultures display greater expression of genes involved in translation
and in oxidative carbon metabolism, suggesting that respiration is more nitrogen-
conserving than fermentation [200], and this phenomenon may contribute to increase
some flavors from secondary metabolism.

8 Genetic Engineering Techniques for Flavors

Examples of yeast genetic modification for increasing concentration or flavor diver-
sity are scarce [201–203]. Moreover, subsequent formal sensory analysis evaluation
of the final product is exceptional [203]. Besides the consumer’s controversial
perception of genetically modified organisms, the current limitation of use of these
strains at real production conditions is also the lack of stability or cell vigor of these
strains at industrial level [204]. Usually when yeast strains were genetically
engineered, they may be applied in a simple or sterilized system for the production
of a single valued compound, such as for the pharmaceutical industry. Sterilization
methods of food substrates for fermentation are assumed to affect many aroma
precursors such as amino acids, vitamins, and other carbon and sulfur compounds
that are important for the final product characteristics. Other breeding strategies or
generation of interspecific wine yeast hybrids have successfully improved wine
flavor by reducing off-flavor production and enhancing volatile thiol release in
Saccharomyces [205, 206]. However, still very limited information is reported
about how these engineered strains behave in mixed culture fermentations as
naturally happens in the majority of the food fermentation industries.

9 Conclusions

The role of yeasts biodiversity associated with grapes and the contribution to aroma
and flavor compounds of wine is clearly demonstrated from the large number of
studies that have been conducted worldwide. In particular, the diversity associated to
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Saccharomyces and non-Saccharomyces yeasts has only recently become appreci-
ated, and this diversity can directly impact wine aroma or flavor or can interact with
grape components to enhance or mask varietal characters.

The more diverse the yeast flora, the more diverse the spectrum of end products of
the wine will be. This may be positive, depending upon the desired wine aroma
profile. These results open a new field within yeast micrometabolism quantification
where flavor compounds are accumulated in a fermented beverage. A better under-
standing of terpenoid and benzenoid biosynthetic pathways in yeast could help in the
interpretation of more complex systems, such as mixed cultures.

Consequently, the application of metabolic footprinting techniques with
GC-MS analysis would make possible the evaluation of yeast flavor metabolome,
including terpenoids and benzenoids at very low concentration (sub- and peri-
thresholds) from microbial or different raw material origin. Yeast strain selections
by using the metabolome is expected to be a more sensitive tool to discriminate
quality starters when compared to either the transcriptome or proteome analysis.
Future research must be focused on the exploration of some key yeast mutants to
better understand yeast benzenoid and terpenoid metabolic pathways and its
potential development in food fermentation processes combining nutrients and
mixed cultures interactions.
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Abstract
The use of immobilized cell technology (ICT) is viewed as a promising biotech-
nological tool to achieve high volumetric productivities of yeast fermentation in
bioindustry of alcoholic beverages. During this process a huge number of organic
compounds are being formed as yeast secondary metabolites, among which
volatile compounds, such as higher alcohols, esters, and vicinal diketones, are
the most important flavoring compounds. The objective of this chapter is to
summarize the knowledge on the origin of the flavor-active and nonvolatile
compounds synthesized by yeast and to describe how the composition of the
medium, culture strain, process conditions (temperature, aeration, etc.), bioreac-
tor design, and other critical parameters influence the metabolic activities of yeast
cultures. Despite the technological and economic advantages provided by ICT,
commercialization of this technology experienced only limited success, mainly
due to unpredictable effect of immobilization on yeast physiology. This chapter is
an attempt to rationalize and make some conclusions about the impact of cell
immobilization on yeast metabolism collected from empirical experiences in
production of alcoholic beverages. The knowledge addressing this issue may be
of particular benefit to the nascent bioflavor industry.

Keywords
Yeast • Bioproduction • Fermentation • Higher alcohols • Esters • Carbonyl
compounds • Fatty acids

1 Introduction

The process of ethanol fermentation catalyzed by yeast has a long history in the
production of alcoholic drinks and in bioethanol production since the 1970s. Particu-
larly, Saccharomyces cerevisiae (brewer’s yeast) is an economically attractive biocat-
alyst due to its availability, ease of handling and disposal, low cost, safety for food and
pharmaceutical applications, and a high catalytic capability for a variety of substrates.
Namely, yeasts have the capacity to catalyze a wide range of stereoselective biochem-
ical reactions in the production of pure compounds, which are of increasing importance
in the fine chemical and pharmaceutical industries in particular. A variety of flavor-
active compounds is being produced via yeast metabolism, and the profile of flavor-
active compounds largely depends on yeast strain and substrate composition. For
example, many pure flavoring compounds can be obtained by asymmetric reductions
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of ketonesmediated by yeast cells by using glucose as a C-source. However, in contrast
to bioethanol and beverage production by yeast fermentation, which are already well-
developed industries, production of pure biocompounds has not yet been considered
suitable for large-scale processes, mainly due to several constraints such as low
concentration of reagents, toxicity of the substrates used or the aroma compounds
produced, and complexity of downstream processing, since the reactions are generally
performed in a batch process. Furthermore, the process is accompanied by formation of
undesired by-products due to the complex pathways involved. Another reason is that
physiological changes that yeast goes through during fermentation have not yet been
completely resolved despite extensive research including genome-wide expression
profiling done so far [1–5]. For the development of economically competitivemicrobial
processes, agro-industrial residueswith negligible or even no cost have become popular
as substrates for flavor production by microorganisms [6, 7]. Another application area
for yeast catalytic activity is in environmental protection since baker’s yeast is the
whole-cell system, which has been used for reduction of volatile organic compounds
present in the environment as pollutants, such as aldehydes and ketones.

Immobilization procedures confine cells to a specific region of space in order to
preserve their biocatalytic activity and enable reuse. The technology of immobilizing
yeast for alcoholic fermentation has received great attention since the 1970s. It has
been put in practice for bioethanol production, production of alcohol-free or
low-alcohol beer, the secondary fermentation for sparkling wine, and batch
winemaking of white wines, while primary beer fermentation, continuous brewing,
and wine production are still under scrutiny.

Carriers that have been proposed for yeast immobilization include inorganic,
organic, or natural materials, such as porous mineral rocks, cellulosic agro-industrial
products and wastes, hydrocolloid polysaccharides (Ca-alginate, k-carrageenan) and
proteins, etc. Porous supports have high specific surface area due to a complex
structure, including pores and tubes with sizes down to nano- and microscales, where
cells are located mainly inside the pores (Fig. 1a). Fibers, particularly nanofibers
produced by electrospinning, are becoming a promising alternative to conventional
porous materials [10]. Some microorganisms have been immobilized jointly, either
on an inert support, for example, S. cerevisiae and Candida shehatae yeasts [11],
S. cerevisiae and Lactobacillus plantarum [12], Saccharomyces bayanus and
Leuconostoc oenos [13], Saccharomyces cerevisiae and Oenococcus oeni [14], or
simply by spontaneous co-immobilization without the need for an external support
or a chemical binder; this kind of couple is, for example, the flor yeast S. cerevisiae
and the filamentous fungus Penicillium chrysogenum, with nonliving hyphae encap-
sulating the viable yeast cells [9, 15, 16] as shown in Fig. 1b. Food-grade supports,
such as wheat [17, 18], potato [19, 20], corn [21], gluten, and spent grains (a brewing
by-product) [22], delignified cellulosic material (having a tubular structure) [23], and
pieces or skins of fruits (such as apple, quince, grape, raisins, figs) [24–30] have
become popular for research, as they are easily accepted by consumers. Besides, the
use of alcohol-resistant and cryotolerant yeasts immobilized on these supports
enables fermentations at low-temperature producing wines and beers with excellent
taste and aroma. Furthermore, fruits as supports are rich in fiber, trace minerals,
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antioxidant polyphenols, proteins, sugars, and volatile compounds that provide a
fruity aroma and taste. At present, the only carriers reported to have been used at full
scale are porous glass and DEAE-cellulose with additions of titanium dioxide and
polystyrene, kieselguhr filters filled with yeast and kieselguhr, silicon carbide tubular
matrix, and hydrogel (k-carrageenan, chitosan, and alginate) beads but with less
success. The combination of immobilization and freeze-drying has been applied
successfully for some of the above biocatalysts, allowing the supply of preserved
and marketable ready-to-use immobilized cells to breweries and wineries. Different
mechanisms of yeast immobilization onto a carrier have been identified: cell-carrier
adhesion, cell-cell attachment (leading to a multilayer yeast immobilization), cell
adsorption (accumulation) inside natural shelters (carrier’s surface roughness), and
flocculation. Actually, immobilization of microbial cells by porous supports usually
involves a combination of those, rather than only one mechanism.

1.1 Technological Considerations

The advantages of immobilized cell technology (ICT) in fermentation processes can
be summarized as the following:

– Continuous processing. Since continuous fermenters may work in uninterrupted
operation for weeks or months, this kind of processing has the economic benefits.
Generally, a higher efficiency of the process is achievable and subsequently
higher productivities and lower operating costs. Even more, improvements in
the product quality have been attained. Such a process can be industrialized and
the products have commercial value. The continuous process has been so far
industrially applied in beer maturation and alcohol-free beer production.

Fig. 1 Immobilized yeast (a) within porous polymeric capsules [8] (TEM image of immobilized
yeast 5 mm-sized capsule prepared by phase separation of poly(m-phenylene isophthalamide)
solution by using starch to position the microorganisms in the capsule pores and to form spaces
around the microorganisms; (b) by linking to fungus hyphae [9] (SEM image of biocapsules
3–5 mm in diameter obtained from S. cerevisiae strain G1 (ATCC: MYA-2451) and Penicillium
chrysogenum strain H3)
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– Fermentation at extremely low temperatures. Low-temperature fermentation
(below 15 �C) by cold-sensitive yeasts has been recognized as a valuable tool
to improve the quality of fermented products such as wine and beer. However, at
low temperatures the problem arises from the low fermentation rate of sugars,
especially of maltose (the sugar involved in processes such as beer, bread, whisky,
vodka, fuel and potable alcohol production, etc.), which fermentation rate is
markedly below that of glucose [31]. Solid carries can have a significant promo-
tional effect on the rate of alcoholic fermentation in brewing.

– The increased resistance to inhibiting substances (e.g., ethanol tolerance) is
ascribed to immobilized yeast in comparison to free suspended cells. This
phenomenon is connected either to changes in the composition and organization
of the cell wall and plasma membrane of the immobilized cells (increased levels
of DNA, structural carbohydrates, glycogen, and fatty acids) [32, 33] or to some
protective effect of the immobilization support.

– High productivities due to high cell concentrations within the reactor can be
realized. Thus, the maximum yeast concentration, e.g., in a packed bed reactor
using immobilized cells, can be up to ten times larger than at the end of a
conventional batch fermentation. High yields are achievable even at extremely
low temperatures (0–5 �C) by using cryotolerant and ethanol-resistant
immobilized yeast cells.

– Possibility of the biocatalyst reuse; in this respect, regeneration of the carrier
should be considered. A longer active life of biocatalysts is preferred in industrial
productions, particularly when the production is halted, for example, when there
is a need to preserve biocatalysts from the end of a winemaking season until the
next year. The immobilized biocatalysts can be easily stored and reactivated while
keeping their activity after storage for 6 months or even longer.

– Cell separation is facilitated.
– Shorter fermentation time. ICT dramatically reduces fermentation time, espe-

cially the maturation time (secondary fermentation) compared with traditional
processes. An increased rate of fermentation has been explained by the higher
activity of immobilized cells as compared with that of free cells due to a reduction
of the activation energy.

– Better sensory characteristics of special-type wines have been ascribed to fruit
pieces as support for yeast immobilization.

Disadvantages of ICT. The immobilized biocatalysts have not yet been commer-
cialized due to the following reasons:

– Modified yeast metabolism due to internal and external mass transfer limitations
(resulting in different ATP content and altered activity of key enzymes), specific
microenvironment (created by the immobilization matrix), cell aging, and con-
tinuous mode of operation [34–37].

– A consequence of altered yeast physiology is unbalanced flavor and difficulty in
maintaining the traditional character of the product. In general, beverages pro-
duced by yeast fermentation technology, such as beer and wine, are complex
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aqueous solutions containing CO2, ethanol, inorganic salts, and as much as about
800 organic compounds. The well-balanced aroma and flavor of the final product
is the primary goal, perhaps even more important than an efficient fermentation
and high yield.

– The composition of the solid matrix may also interfere in the flavor profile.
– Frequent replacement of biocatalyst is required since accumulation of dead

biomass in the biocatalyst occurs due to the relatively short life span of cells.
– High capital costs (due to additional costs of a carrier) and complex and unstable

operation often make a process economically unfeasible.
– Engineering problems linked with ICT are excess biomass and problems with

CO2 removal, optimization of operating conditions, clogging, and channeling of
the reactor.

– Consumers may be wary of any deviation from the traditional way of production.

This chapter gives an overview on the most important secondary metabolites (higher
alcohols, esters, carbonyl compounds, organic acids, and others) produced by yeast
during fermentation and presented in Fig. 2. A special focus will be on the impact of
ICT on synthesis of these compounds. When judging the metabolic activity of
immobilized cells, process parameters (temperature, pH, oxygen, substrate, and product
concentration gradients) have to be regarded as well. However, since the information

Fig. 2 Schematic presentation of the major flavor groups formation during fermentation
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concerning physiological conditions of immobilized yeast is rather complex due to
different matrices and variable system configurations, the impact of cell immobilization
on synthesis mechanism of any metabolite is difficult to predict. This chapter is an
attempt to rationalize and make some conclusions about the impact of cell immobili-
zation on yeast metabolism obtained from different experiments.

2 Higher Alcohols

2.1 Biosynthetic Pathway of Higher Alcohols

“Higher alcohols” (also called “fusel alcohols”) are compounds, which have more
than two carbon atoms and a higher boiling point than ethanol [38]. They are
produced by yeast cells as by-products during beer fermentation. They represent
the major fraction of the volatile aroma compounds, but their contribution to beer
aroma is usually not very pronounced, due to their relatively high flavor threshold
values (10–600 mg/l) [34]. More than 40 higher alcohols in beer have been identified
[39]. Table 1 gives the most important compounds, which can be classified into
aliphatic (1-propanol, isobutanol (2-methyl-1-propanol), 2-methylbutanol (or active
amyl alcohol), and 3-methylbutanol (or isoamyl alcohol)) and aromatic
(2-phenylethanol, tyrosol, tryptophol (indole-3-ethanol)) higher alcohols. Aliphatic
higher alcohols contribute to the “alcoholic” or “solvent” aroma of beer, and they
produce a warm mouthfeel. The aromatic alcohol 2-phenylethanol has a sweet rose-
like aroma and has a positive contribution to the beer aroma. Isoamyl alcohol and

Table 1 Major higher alcohols in beer [40–47]

Compound

Flavor
threshold
(mg/l) Aroma or taste

Concentration
range (mg/l)
Bottom
fermentation

Concentration
range (mg/l)
Top
fermentation

1-Propanol 600–800 Alcoholic 7–19 20–45

Isobutanol (2-methyl-
1-propanol)

100–200 Alcoholic 4–20 10–24

2-Methyl-1-butanol
(amyl alcohol)

50–70 Banana,
solvent-like

9–25 80–140

3-Methyl-1-butanol
(isoamyl alcohol)

50–65 Alcoholic,
fusel, banana

25–75 80–140

2-Phenylethanol 5–125 Roses,
sweetish,
perfume

4–42 8–50

Tyrosol 10–200 Bitter,
chemical

6–15 7–22

Tryptophol 10–200 Almonds,
solvent

0.5–14 2–12

18 Immobilized Yeast Cells and Secondary Metabolites 605



2-phenylethanol can be found around their flavor threshold concentrations in lager
beer and can significantly contribute to the flavor of these beers. The latter com-
pound can mask the sweetcorn-like flavor of dimethyl sulfide (DMS) [48]. The
aromas of tyrosol and tryptophol are undesirable, but they are only present above
their thresholds in some top-fermented beers. Besides their own contribution to the
overall beer aroma, higher alcohols are precursors of the flavor-intensive esters.

Higher alcohols are synthesized via the catabolic and anabolic pathway (syn-
thesis from wort carbohydrates via pyruvate) [49–52]. In the catabolic Ehrlich
pathway, the yeast uses the amino acids of the wort to produce the corresponding
α-keto (2-oxo) acid via a transamination reaction. Isobutanol, amyl alcohol, and
isoamyl alcohol are produced via this route from the superpathway of the
branched-chain amino acids leucine, isoleucine, and valine biosynthesis (Fig. 3).
The branched-chain amino acids are first deaminated to the corresponding α-keto
acids (α-ketoisocapric acid from leucine, α-ketoisovaleric acid from valine, and
α-keto-β-methylvaleric acid from leucine). The transamination reaction is medi-
ated by the branched-chain amino acid transaminase (Bat1p) and aminotransferase
(Bat2p) [53–56]. The excess oxoacids are subsequently decarboxylated into alde-
hydes by pyruvate decarboxylases (Pdc1p, Pdc5p, and Pdc6p) and a 2-oxo-acid
decarboxylase Aro10p [57, 58]. There are significant differences in the way each
α-keto acid is subsequently decarboxylated. In the valine degradation pathway
toward the production of isobutanol, any of the pyruvate decarboxylases can
mediate the decarboxylation of 2-keto-isovalerate [59]. Leucine degradation
toward active 3-methyl-1-butanol is mediated by major decarboxylase Kid1p
[60], and in the isoleucine degradation pathway toward 2-methyl-1-butanol, any
of the decarboxylases Pdc1p, Pdc5p, Pdc6p, Kid1p, or Aro10p can perform the
decarboxylation reaction [61]. Next, the aldehydes are reduced to higher alcohols
by alcohol dehydrogenases Adh1-7p or the formaldehyde dehydrogenase Sfa1p
[52, 62, 63]. This last reduction step also regenerates NAD+. An outsider in this
pathway is 1-propanol, which is derived from threonine via oxidative
deamination.

Likewise, tryptophol, tyrosol, and phenylethanol are also produced via the
Ehrlich pathway from the degradation of the aromatic amino acids tryptophan,
tyrosine, and phenylalanine, respectively (Fig. 4). The transamination reactions are
performed using the aromatic amino acid aminotransferases Aro8p and Aro9p [64,
65]. The decarboxylation and reduction of phenylalanine to 2-phenylethanol and of
tryptophan to indole-3-ethanol tryptophol have been studied in more detail than the
degradation of tyrosine to tyrosol [66]. The decarboxylases Pdc1p, Pdc5p, Pdc6p,
and Aro10p and the alcohol dehydrogenases Ahd4p, Adh5p, and Sfa1p are involved
in these reactions.

In the anabolic pathway (Fig. 3), the higher alcohols are synthesized from α-keto
acids during the synthesis of amino acids from the carbohydrate source [67, 68]. The
pathway choice depends on the individual higher alcohol and on the level of
available amino acids available. The importance of the anabolic pathway decreases
as the number of carbon atoms in the alcohol increases [50] and increases in the later
stage of fermentation as wort amino acids are depleted [69].
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2.2 Influence of Process Variables on Bioproduction of Higher
Alcohols

Conditions that promote yeast cell growth such as high levels of nutrients (amino
acids, oxygen, lipids, zinc, etc.) and increased temperature and agitation stimulate
the production of higher alcohols [70–74]. The synthesis of aromatic alcohols is
especially sensitive to temperature changes. The higher alcohol (1-propanol,
isobutanol, amyl and isoamyl alcohol) concentration was increased when the
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temperature was increased from 7 �C to 15 �C during continuous fermentation using
a bubble column reactor with yeast cells immobilized on spent grains [75]. Reduction
in the total higher alcohol concentration was also observed due to temperature
decrease during repeated discontinuous fermentation with yeast cells immobilized
on spent grains [76]. On the other hand, conditions that restrict yeast growth, such as
lower temperature and higher pressure, reduce the extent of higher alcohol produc-
tion. Higher pressures can reduce the extent of cell growth and, therefore, the
production of higher alcohols [73]. The yeast strain, fermentation conditions, and
wort composition have all significant effects on the pattern and concentrations of
synthesized higher alcohols [69]. The amino acid composition has a major effect on
the formation of higher alcohols: supplementation of wort with valine, isoleucine,
and leucine induces the formation of isobutanol, amyl alcohol, and isoamyl alcohol,
respectively [68, 77]. The overexpression of the branched-chain amino acid trans-
ferase genes BAT1 and BAT2 resulted in an increased production of isoamyl alcohol
and isobutanol [78]. The addition of fatty acids and sterols also increased the higher
alcohol content of the beer [79].

2.3 Effect of Immobilized Cell Technology on Bioproduction
of Higher Alcohols

The obtained higher alcohol concentration in beer that was produced using ICT has
been reported to be lower, comparable, or higher than beers produced with
suspended cells (Table 2). A decrease has been attributed to the limited cellular
growth in immobilized cell systems, leading to a poor nitrogen removal [86, 88, 93,
97, 98], in contrast to rapid yeast growth, which leads to enhanced anabolic
production of amino acid precursors with concomitant overflow of higher alcohols,
oxoacids, organic acids, and vicinal diketones [99]. A higher specific growth rate of
brewers’ yeast encapsulated in alginate/chitosan beads with a liquid core compared
to free cells was reported, which resulted in slightly higher levels of higher alcohols
and esters [100]. Yeast growth control by aeration has been employed to increase the
level of higher alcohols. For example, Kirin Brewery (Japan) developed a two-stage
immobilized fermentation system where the first reactor was a stirred aerated reactor
with suspended yeast cells simulating the yeast growth in the beginning of a
conventional batch fermentation and where most of amino acids were consumed
with a sufficient amount of higher alcohols produced [101, 102]. In the second
reactor, immobilized cells fermented anaerobically the wort further with production
of ethanol and esters but no higher alcohols. In an ICT system with limited yeast
growth, higher alcohol levels were mostly comparable to free cell batch fermenta-
tion, and some of the alcohols (i.e., propanol) were even present at a higher

�

Fig. 4 Ehrlich pathway of aromatic acid degradation for the production of (a) tryptophol (indole-3-
ethanol), (b) 2-phenylethanol, and (c) tyrosol with indication of the enzymes and their coding genes
(Adapted from “pathways.yeastgenome.org”)

18 Immobilized Yeast Cells and Secondary Metabolites 609



Table 2 Higher alcohol production in immobilized cell and free cell systems (without reference to
a footnote, the data correspond to the analysis of green beer) (Adapted from [80])

Compound Carrier Immobilized cells Free cells Reference

1-Propanol Porous glass beads
Diatomaceous earth
DEAE-cellulose beads
Ca-alginate beads
Ca-pectate beads
Silicon carbide rod
Aspen wood chips
Beech wood chips
Spent grains
k-carrageenan
Ceramic
hydroxylapatite
Ceramic chamotte

15.5a/17.2b

12.7
10.9
11.6
31.8c/31.2d

14.1
9.8e/7.5f

19.8
6.4
20.0
15.7-50.5g (24.9h)
14.8i/20.4j

15
15.6s/18.0t/32.4u

32.5j

5.6q

0.0r

55.9q

2.4r

–
–
–
10.4
23.0
12.4
8.0
14.0
6.1
–
10.0
10.2
17.5
–
9.9j

26.2q

0.0r

44.1q

10.6r

[81]
[82]
[82]
[83]
[84]
[85]
[86]
[87]
[88]
[89]
[90]
[91]
[92]
[75]
[93]
[94]
[94]

Isobutanol Porous glass beads
DEAE-cellulose
Ca-pectate beads
Silicon carbide rod
Polyvinyl alcohol
Lentikats®

Aspen wood chips
Beech wood chips
k-carrageenan
Spent grains
Ceramic
hydroxylapatite
Ceramic chamotte

9.4a/12.1b

11.0
10.5k/18.9l/21.3m

29.0c/32.3d

13.4
14.3
31.7n/29.5�

7.5-10.8g (8.4h)
8.0i/9.2j

11.1j

10.1
11.7s/12.0t/18.6u

0.45q

1.7r

18.3q

10.7r

–
9.7
10.4k/19.6l/
20.6m

24.0
19.6
–
30.1
8.2
6.5
7.8j

12.5
–
14.3q

11.0r

25.5q

32.4r

[81]
[83]
[86]
[84]
[88]
[89]
[95]
[90]
[91]
[93]
[92]
[75]
[94]
[94]

3-Methyl-1-
butanol

Porous glass beads
Diatomaceous earth
DEAE-cellulose
Ca-alginate beads
Silicon carbide rod
Aspen wood chips
Beech wood chips
k-carrageenan

35.8a/42.2b

33.9
32.8
35.7
60.4c/58.4d

48.4
31.0e/38.0f

51.2
30.0-59.5g (47.0h)
32.5i/29.3j

47.4j

–
–
–
36.5
58.4
60.3
62.0
–
51.0
29.7
46.7j

[81]
[82]
[82]
[83]
[84]
[85]
[86]
[89]
[90]
[91]
[93]

2-Methyl-1-
butanol

Porous glass beads
Beech wood chips

13.7a/15.8b

12.1c/12.6j
–
11.5

[81]
[91]

(continued)
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concentration [90]. The high propanol production was linked to the relatively high
2,3-pentanedione concentration and to 2-ketobutyrate-mediated processes. It was
hypothesized that the overproduction was the result of a more active 2-ketobutyrate
pathway. A high propanol production has also been reported for other ICT systems
(Table 2) (e.g., [88, 98, 103]).

Mass transfer limitations of amino acids have also an influence on higher alcohol
synthesis. In a fluidized bed reactor, it was observed that the free amino nitrogen
(FAN) uptake by entrapped yeast cells increased linearly with the superficial velocity
of the wort in the reactor [98, 104]. This mass transfer effect has also been
demonstrated in a gas-lift bioreactor [105]. Amino acids of group III amino acids
(e.g., tryptophan) were absorbed slower by immobilized yeast cells, where group I
and II amino acids were removed at a rate equal to that of free cells [98]. Beer
production in a fluidized bed reactor, where yeast cells were immobilized in alginate
beads, resulted in lower free amino nitrogen (FAN) levels than in a packed bed
reactor, and higher apparent fluid velocities through the reactors resulted in lower
FAN levels [106].

Table 2 gives examples of reported higher alcohol levels in ICT systems com-
pared to free cell batch fermentation. These data show that flavor formation is
dependent on the bioreactor system and used carrier material. Since fermentation
conditions and yeast strains differ for the reported data, it is not possible to evaluate
the influence of the carrier material rigorously. In some studies, the effect of the
carrier material on the formation of flavor products was evaluated. For example,
Smogrovicova et al. compared PVA Lentikats with Ca-alginate carriers [95] and
DEAE-cellulose, Ca-pectate, and k-carrageenan beads [88] in a gas-lift bioreactor
(Table 2). Higher ethanol evolution was comparable for yeast cells entrapped in PVA
Lentikats and Ca-alginate carriers. This was also the case for cells entrapped in
Ca-pectate and k-carrageenan beads. However, the behavior of cells adsorbed on
DEAE-cellulose was similar to that of free cells but significantly different from
entrapped cells. Virkajärvi [107] observed that the carrier material (i.e., porous glass
beads, Celite, DEAE-cellulose-based carrier) had an effect on the higher alcohol

Table 2 (continued)

Compound Carrier Immobilized cells Free cells Reference

DEAE-cellulose beads
Ceramic
hydroxylapatite
Ceramic chamotte

16.2c/16.1d

12.7q

0r

23.6q

12.3r

12.1
25.1q

8.1r

34.5q

21.1r

[84]
[94]
[94]

Phenylethanol Polyvinyl alcohol
Lentikats®

Ca-alginate beads
Ca-pectate beads

4.1n/4.2�

+p

10.1

4.1
+p

14.6

[95]
[96]
[88]

aAverage over day 0–138; baverage over day 378–442; cday 8; dday 10; epacked bed reactor;
ffluidized bed reactor; grange; haverage; imaturation with immobilized cells; jconventional matura-
tion; k8 �C; l15 �C; m20 �C; nrecycled CO2;

ogas bottle CO2;
pno significant difference (p < 0.05);

qale strain; rlager strain; s7 �C; t10 �C; u15 �C
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concentration, but the effect varied with the yeast strain used [107]. It was hypoth-
esized that the immobilization method (surface adsorption or adsorption onto a
porous material) and direct effects of the carrier (e.g., differences in adsorption of
wort components onto the carrier) could explain some of the observed effects.

3 Esters

3.1 Biosynthetic Pathway of Esters

Esters are very important flavor compounds in beer since they have a significant
effect on the fruity/flowery aromas of beers due to their low flavor threshold despite
their presence in low concentrations (Table 3) [108, 110, 111]. The major esters can
be subdivided into two categories: (1) acetate esters and (2) medium-chain (C6–C10)
fatty acid (MCFA) ethyl esters. Major members of the acetate esters (the acid group
is acetate, the alcohol group ethanol or a complex alcohol derived from amino acid
metabolism) group are ethyl acetate, isoamyl acetate, and 2-phenyl acetate (Table 3).
Isoamyl acetate (banana flavor) is the most influential acetate ester present in most
beers. MCFA ethyl ester group (the alcohol group is ethanol, the acid group is a
medium-chain fatty acid) includes ethyl hexanoate (ethyl caproate) and ethyl
octanoate (ethyl caprylate) (Table 3). Esters are desirable components of beer
when present in appropriate quantities and proportions but can become unpleasant
(bitter, over fruity taste) when in excess.

Esters are produced by yeast mainly during the growth phase but also during the
stationary phase [47]. They are formed by the intracellular reaction between a fatty
acyl-coenzyme A and an alcohol:

R0OH þ RCO � SCoA ! RCOOR0 þ CoASH

An alcohol acetyl � CoA an acetic ester Coenzyme A
(1)

This reaction is catalyzed by alcohol acyltransferases (AATases; or ester synthetases)
of the yeast [112, 113]. Since acetyl-CoA is also a central molecule in the synthesis
of lipids and sterols, ester synthesis is linked to fatty acid metabolism. The majority

Table 3 Major esters in beer [39, 42, 47, 51, 108, 109]

Compound
Flavor threshold
(mg/l) Aroma

Concentration range
(mg/l)

Ethyl acetate 25–30 Fruity, solvent-like 8–32

Isoamyl acetate 1.2–2 Banana, pear 0.3–3.8

2-Phenylethyl acetate 0.2–3.8 Roses, honey, apple,
sweetish

0.10–0.73

Ethyl hexanoate (ethyl
caproate)

0.2–0.21 Apple-like, aniseed 0.05–0.3

Ethyl octanoate (ethyl
caprylate)

0.9–1.0 Apple-like, fruity 0.04–0.53
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of acetyl-CoA is formed by oxidative decarboxylation of pyruvate, while most of the
other acyl-CoAs are derived from the acylation of free CoA, catalyzed by acyl-CoA
synthase.

Several enzymes are involved in the synthesis of acetate esters, and the most
studied and best characterized are AATases I and II that are encoded by ATF1,
ATF2, and Lg-ATF1 [113–120]. ATF1 and ATF2 are both present in both ale
(S. cerevisiae) and lager strains (S. pastorianus), but Lg-ATF1 is only present in
lager strains [115, 117]. This additional gene expression in lager yeast enhances
acetate ester production and ultimately this beer’s aroma profile [109]. Alcohol
acetyltransferases (AAT) have been initially localized in the plasma membrane
[121], and it is strongly inhibited by unsaturated fatty acids, ergosterol, heavy
metal ions, and sulfhydryl reagents [122]. Both cytosolic and membrane-bound
AAT have been described [123, 124] and shown that the ester-synthesizing activity
of AAT is dependent on its positioning within the yeast cell, where acetate ester
formation varied directly with the level of cytosolic AAT activity [125]. Acetate
ester synthesis rates are dependent on AAT activity, and ester synthesis is modu-
lated by a repression-induction of enzyme synthesis or processing, the regulation
of which is presumably linked to lipid metabolism [126]. The presumed associa-
tion of AATase with the membrane was not supported by a hydrophobicity analysis
that indicated that Atf1p and Atf2p did not contain a membrane-spanning region
[127]. Atf1p has been localized inside lipid sphere-like organelles in the cytoplasm
of the yeast cell [128]. The localization of Atf1p in these lipid particles may
indicate that Atf1p has a specific role in the lipid and/or sterol metabolism that
takes place in these particles.

To investigate and compare the roles of the known S. cerevisiae AATs, Atf1p,
Atf2p, and Lg-Atf1p, in volatile ester production, the respective genes were either
deleted or overexpressed in a laboratory and industrial brewing strains [78, 115–118,
120, 129–131]. The strong impact of the expression levels of the ATF genes on
acetate ester production was demonstrated [115, 116, 129]. Overexpression of ATF1
and ATF2 in a wine yeast resulted in increased levels of ethyl acetate, isoamyl
acetate, 2-phenyl ethyl acetate, and ethyl hexanoate in the produced wine [78, 130].
Analysis of beer fermentation products confirmed that the expression levels of ATF1
and ATF2 greatly affect the production of ethyl acetate and isoamyl acetate and that
Atf1p and Atf2p are also responsible for the formation of a broad range of less
volatile esters, such as propyl acetate, isobutyl acetate, pentyl acetate, hexyl acetate,
heptyl acetate, octyl acetate, and phenyl ethyl acetate. Atf2p seemed to play only a
minor role compared to Atf1p [131]. The atf1Δatf2Δ double deletion strain did not
form any isoamyl acetate, showing that together, Atf1p and Atf2p are responsible for
the total cellular isoamyl AAT activity. Later, it was confirmed that the maximum
expression levels of ATF1 and ATF2 were directly correlated to the final acetate ester
concentration in the beer [132]. However, the double deletion strain still produced
considerable amounts of certain other esters, such as ethyl acetate (50 % of the wild-
type strain), propyl acetate (50 %), and isobutyl acetate (40 %), which provides
evidence for the existence of additional, as-yet-unknown ester synthases in the yeast
proteome [131].
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Overexpression of CAT2, which encodes the major mitochondrial and peroxi-
somal carnitine acetyltransferase that catalyzes the reversible reaction between
carnitine and acetyl-CoA to form acetylcarnitine and free CoA, resulted in
a reduction in ester concentrations, especially in ethyl acetate and isoamyl
acetate [133]. It was hypothesized that overproduction of Cat2p favors the
formation of acetylcarnitine and CoA and therefore limits the precursor for ester
production.

Ester production can be altered by changing the synthesis rate of certain fusel
alcohols. Hirata et al. [134] increased the isoamyl acetate levels by introducing
extra copies of the LEU4 gene in the S. cerevisiae genome. A comparable
S. pastorianus mutant has been isolated [135]. The mutants have an altered regu-
lation pattern of amino acid metabolism and produce more isoamyl acetate and
phenylethyl acetate. Isoamyl acetate is synthesized from isoamyl alcohol and acetyl
coenzyme A by AAT and is hydrolyzed by esterases at the same time in
S. cerevisiae. To study the effect of balancing both enzyme activities, yeast strains
with different numbers of copies of ATF1 gene and isoamyl acetate-hydrolyzing
esterase gene IAH1 (isoamyl acetate-hydrolyzing esterase) have been constructed
and used in small-scale sake brewing [136]. Fermentation profiles as well as
components of the resulting sake were largely alike. However, the amount of
isoamyl acetate in the sake increased with increasing ratio of AAT/Iah1p esterase
activity, which indicates that the balance of these two enzyme activities is important
for isoamyl acetate accumulation in sake mash.

MCFA ethyl esters are synthesized by other enzymes than Atf1p and Atf2p since
the double deletion of ATF1 and ATF2 did not influence the produced amount of
ethyl esters [131]. The involvement of another enzyme (called ethanol hexanoyl
transferase) was previously suggested to be involved in ethyl ester synthesis
[137]. The majority of the MCFA ethyl esters are catalyzed by two acyl-CoA:
ethanol O-acyltransferases (AEATases), i.e., Eeb1p (ethyl ester biosynthesis) and
Eht1p (ethanol hexanoyl transferase) [138]. The evaluation of EEB1 and EHT1 gene
deletion upon ethyl ester formation indicated that Eeb1p is the most important
enzyme for ethyl ester synthesis, while Eht1p plays a minor role [138]. The double
deletion of EHT1 and EEB1 causes a pronounced drop in the production of all
MCFA ethyl esters, while the production of ethyl hexanoate was practically elimi-
nated [138]. The additional deletion of YMR210w (a putative acyltransferase with
similarity to Eeb1p and Eht1p) in the eht1Δeeb1Δ strain produced a further drop in
ethyl octanoate and ethyl decanoate concentration. Overexpression of EHT1 and
EEB1 did not result in a significant increase in MCFA ethyl ester production
[138]. Since it was shown that Eht1p and Eeb1p contain also esterase activity besides
AEATase activity in vitro, it was suggested that both enzyme activities control the
ester synthesis. In contrast, EHT1 overexpression in a wine yeast strain resulted in a
small increase of all esters [78]. The Eht1p enzyme was further characterized in vitro
[139]. It was functional as an acyltransferase and, unexpectedly, was optimally
active toward octanoyl-CoA. Eht1p was also revealed to be active as a thioesterase
but was not able to hydrolyze p-nitrophenyl acyl esters. Recently, an elevated
production of ethyl caproate was reported in Chinese liquor using a recombinant
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yeast overexpressing EHT1 with deleted FAA1 encoding for acyl-CoA
synthetases [140].

3.2 Influence of Process Variables on Bioproduction of Esters

Ester formation is highly dependent on the yeast strain used [118, 141, 142] and on
some fermentation conditions such as temperature [71, 111, 143–145], specific
growth rate [143], pitching rate [143, 146, 147], top pressure [47, 118], and wort
gravity [132, 148, 149]. Additionally, the composition of the wort can influence the
ester production rate, i.e., the concentration of assimilable nitrogen compounds [144,
150, 151], carbon sources [152–155], dissolved oxygen [144, 156–158], and fatty
acids [159, 160]. The carbohydrate source has also an influence on the ester
synthesis. Maltose produces less esters compared to glucose and fructose
[154]. The main factor controlling ester biosynthesis is the expression level of the
ATF1 gene [130, 161]. ATF1 gene expression is repressed by oxygen and unsatu-
rated fatty acids [162, 163].

Acetate ester formation in brewer’s yeast is controlled mainly by the expres-
sion level of the AATase-encoding genes [118]. Additionally, changes in the
availability of the two substrates for ester production, higher alcohols and acyl-
CoA, also influence ester synthesis rates. Any factor that influences the expres-
sion of the ester synthase genes and/or the concentrations of substrates will
affect ester production accordingly. Perhaps the most convenient and selective
way to reduce ester production is applying tank overpressure, if necessary in
combination with (slightly) lower fermentation temperatures, low wort free
amino nitrogen (FAN) and glucose levels, and elevated wort aeration or wort
lipid concentration [118]. Enhancing ester production is slightly more compli-
cated. If it is possible, overpressure or wort aeration can be reduced. Otherwise,
worts rich in glucose and nitrogen combined with higher fermentation temper-
atures and lower pitching rates or application of the drauflassen technique may
prove helpful.

3.3 Effect of Immobilized Cell Technology on Bioproduction
of Esters

The low ester concentrations, which were obtained in some ICT processes (Table 4),
could be related to the low cellular metabolic activities in these systems [97, 164]. It
has also been reported that for some systems, ester synthesis is increased upon cell
immobilization (Table 4). This could be attributed to mass transfer limitations of
oxygen (low oxygen concentrations in the immobilization matrix) causing reduced
cellular growth, so that the cellular acetyl-CoA pool can be more available for ester
synthesis instead of channeling to fatty acid biosynthesis [164]. A reduction of
cellular total fatty acid content upon yeast immobilization on stainless steel fiber
cloth supports this explanation [37]. During the fermentation of alcohol-free beer in
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Table 4 Ester production in immobilized cell and free cell systems (without reference to a
footnote, the data correspond to the analysis of green beer) (Adapted from [80])

Compound Carrier Immobilized cells Free cells Reference

Ethyl acetate Porous glass beads
Diatomaceous earth
DEAE-cellulose beads
Ca-alginate beads
Ca-pectate beads
Silicon carbide rod
Polyvinyl alcohol Lentikats®

Aspen wood chips
Beech wood chips
Spent grains
k-carrageenan
Ceramic hydroxylapatite
Ceramic chamotte

23.4a/15.6b

24.4
27.8
33.3
27.9c/28.5d

14.3
11.0e/8.5f

18.8
11.6
31.6
10.1g/5.4h

20.1–39.8i (26.4j)
21.4k/24.5l

17.9
103.9q/48.2r/
52.9s

11.3l

18.1o

0.0o

42.5p

10.5p

–
–
–
16.8
16.0
16.7
19.0
15.2
16.8
–
5.2
21.5
17.2
17.2
–
26.4l

26.9o

3.54o

33.6p

29.1p

[81]
[82]
[82]
[83]
[84]
[85]
[86]
[87]
[88]
[89]
[95]
[90]
[91]
[92]
[75]
[93]
[94]
[94]

Isoamyl acetate Porous glass beads
Diatomaceous earth
DEAE-cellulose
Ca-alginate beads
Ca-pectate beads
Silicon carbide rod
Polyvinyl alcohol Lentikats®

Aspen wood chips
Beech wood chips
Spent grains
k-carrageenan
Ceramic hydroxylapatite
Ceramic chamotte

0.7a/0.6b

1.2
1.0
2.8
0.38c/0.25d

0.66
0.06e/0.05f

1.25
++m

3.19
1.3
2.09g/0.98h

0.3–1.9i (1.0j)
1.0k/0.6l

0.8q/0.4r/1.0s

<0.01l

0.0o

0.0o

3.2p

0.0p

–
–
–
1.3
1.16
1.36
2.0
0.85
+
2.11
–
1.06
1.5
1.0
–
0.08l

1.6o

0.0o

1.3p

0.3p

[81]
[82]
[82]
[83]
[84]
[85]
[86]
[87]
[96]
[88]
[89]
[95]
[90]
[91]
[75]
[93]
[94]
[94]

Ethyl hexanoate Porous glass beads
Polyvinyl alcohol Lentikats®

DEAE-cellulose
Ca-pectate beads
Aspen wood chips
Beech wood chips
Ceramic hydroxylapatite
Ceramic chamotte

0.1a/0.1b

0.54g/0.13h

0.08c/0.01d

1.89
0.1–0.5i (0.2j)
0.1k/0.1l

0.1o

0.0o

0.7p

0.1p

–
0.11
0.14
1.39
0.4
0.1
0.7o

0.02o

0.5p

0.2p

[81]
[95]
[84]
[88]
[90]
[91]
[94]
[94]

(continued)
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a packed bed reactor with surface-attached cells on DEAE-cellulose beads, a simul-
taneous increase in the activity of alcohol acetyl transferase and formation of ethyl
acetate and isoamyl acetate were observed [165]. Additionally, the amount of
unsaturated fatty acids in wort decreased significantly, which was attributed to the
anaerobic conditions and the absence of substantial levels of unsaturated fatty acids
that limit cell growth and stimulate the formation of acetate esters. Esters concen-
tration increased by 22 % upon cell immobilization on stainless steel fiber cloth
[37]. Additionally, the expression level of AFT1 was significantly increased in the
immobilized cells, resulting in a twofold increase of isoamyl acetate formation.
Possibly, the microenvironment created by cell immobilization activates the
cAMP/PKA/Sch9p pathway, resulting in an induction of ATF1 expression leading
to enhanced ester concentrations in the final fermentation product. Encapsulation of
brewing yeast in alginate/chitosan beads showed a higher degree of fermentation and
higher specific growth rate and produced slightly higher levels of esters [100].

4 Carbonyl Compounds

4.1 Biosynthetic Pathway of Carbonyl Compounds

Carbonyl compounds (aldehydes and ketones) contain a functional group composed
of a carbon atom double bonded to an oxygen atom. Aldehydes have different flavor
characteristics ranging from “green-leaf-like” to “apple-like” to “citrus-like” to
“nutty,” depending on the chemical structure, thus contributing to an overall flavor
of a number of foods and beverages. In alcoholic beverages among all aldehydes,
acetaldehyde is the major component (>90 %) giving different flavors depending on
concentration: from a pleasant fruity aroma at low levels to a pungent “green grass-
like” odor and “overripe apple” notes at high levels [166]. Higher concentrations of
acetaldehyde are also unfavorable because it can bind catechins and other phenolics

Table 4 (continued)

Compound Carrier Immobilized cells Free cells Reference

Ethyl octanoate Polyvinyl alcohol Lentikats®

Ca-pectate beads
Aspen wood chips
Spent grains
Ceramic hydroxylapatite
Ceramic chamotte

0.04g/0.01h

0.21
0.2–1.2i (0.6j)
0.2q/0.2r/0.3s

4.2o

0.0o

13.2p

0.3p

0.01
0.59
1.4
–
14.0o

0.1o

9.5p

1.2p

[95]
[88]
[90]
[75]
[94]
[94]

aAverage over day 0–138; baverage over day 378–442; cday 8; dday 10; ePacked bed reactor;
ffluidized bed reactor; grecycled CO2;

hgas bottle CO2;
irange; javerage; kmaturation with

immobilized cells; lconventional maturation; mcompound detected in amount significantly higher
than free cells (p < 0.05); nno significant difference (p < 0.05); oale strain; plager strain; q7 �C;
r10 �C; s15 �C
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[167]. Acetaldehyde concentrations in fermented beverages are usually in the range
13–40 mg/l, and its flavor threshold in cider and apple wines is approximately 30 mg/
L. When present in excess, acetaldehyde can be easily masked by the addition of SO2

[168]. Acetaldehyde is synthesized during fermentative glycolysis by decarboxyl-
ation of pyruvate (see Fig. 2). It is mostly formed during the active growth phase of
yeast and accumulated when the rate of carbon dissimilation is at its maximum. After
this stage acetaldehyde formation decreases, and some of the acetaldehyde that was
previously excreted is again absorbed and further reduced to ethanol. Thus, its
concentration falls to a low level at the end of fermentation and then slowly increases
over time [34, 118]. Other short-chain aliphatic aldehydes (3-methyl butanal,
2-methyl butanal, hexanal, heptanal, etc.) are formed by reduction of keto acids
(oxo acids) both via the anabolic process from carbon source and the catabolic
pathway from exogenous amino acids. Aldehydes and keto acids are being
(1) excreted in the medium and (2) biochemically converted to higher alcohols (see
Fig. 2). The biochemical reactions described above are determined by activities of
various enzymatic systems (isoenzymes of alcohol dehydrogenase, aldehyde dehy-
drogenase, and aldo-keto reductases), but the exact mechanism of enzyme action has
been the subject of extensive investigation and is still under scrutiny [169–173].

Vicinal diketones (VDK) are produced via the ILV (branched-chain amino acids
isoleucine, leucine, and valine) pathway during fermentation. Among them, diacetyl
(2,3-butanedione) and 2,3-pentanedione, characterized by a buttery and sweetish
aroma, are important due to their low sensory threshold values in beverages [38]. For
example, in beer diacetyl has a very low taste threshold of approximately 0.15 mg/L
[108]. Diacetyl is sensorily more important than 2,3-pentanedione. These two
compounds are formed by chemical oxidative decarboxylation of two acids,
α-acetolactate and α-acetohydroxybutyrate, respectively, leaked from the valine
and isoleucine biosynthetic pathway to the extracellular environment, respectively.
VDK are subsequently re-assimilated by the yeast where they are being degraded by
the activity of different alcohol dehydrogenase systems to acetoin and further to
2,3-butanediol and 2,3-pentanedione to 2,3-pentanediol (Fig. 2). These reactions
occur at the end of the primary beer fermentation, but at the end of this process, their
concentrations are still too high giving unpleasant green-feel-like taste. That’s why
secondary fermentation (maturation) is needed to reduce diacetyl to an acceptable
level. Sufficient yeast cells in suspension are necessary to obtain an efficient
reduction [80]. Acetoin is also being excreted into the extracellular surrounding.
Acetoin formation depends on the yeast strain used, and it is generally known that
non-Saccharomyces yeasts produce more of it. The amount of acetoin in wines
ranges from 2 to 25 mg/L [174].

4.2 Influence of Process Variables on Bioproduction of Carbonyl
Compounds

Fermentation parameters that stimulate cell growth may increase α-acetolactate
concentration (which is a precursor of diacetyl) and consequently also the level of
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diacetyl. In general, yeast strain, medium composition, and fermentation conditions
influence the amount and profile of α-acetohydroxyacids (which are intermediates in
the synthesis of valine and isoleucine) and therefore the level of VDK
[175–177]. For example, it has been noticed for brewing that worts (substrate
medium) deficient in valine result in elevated diacetyl levels and worts deficient in
leucine result in increased 2,3-pentanedione concentrations [178, 179]. During the
period of valine uptake from wort, the intracellular valine concentration increases
causing inhibition of the enzyme responsible for α-acetolactate synthesis and total
diacetyl formation becomes reduced [180].

Acetaldehyde accumulation has been more pronounced at high initial sugar
concentrations, especially in case of must fermentation during wine production
[20]. Apart from substrate composition, oxygen supply has a large influence on
the profile of flavor-active compounds and thus on carbonyl compounds as well.
Namely, aeration stimulates cell growth, and since acetaldehyde is mostly formed
during the active growth phase of yeast, its content can be controlled by proper
oxygen supply. Higher temperatures and a longer residence time promote aldehyde
reduction to higher alcohols, which was also confirmed for ICT [17, 20, 24, 30, 181],
but there are numerous exceptions to this rule [18, 21, 182]. Sipsas et al. [182]
confirmed that during batch fermentations, not only both the bioreactor system
(packed bed versus multistage fixed bed tower) and the fermentation temperature
(5–30 �C) affected significantly the concentration of acetaldehyde, but a strong
interaction between the two factors was also observed.

4.3 Effect of Immobilized Cell Technology on Bioproduction
of Carbonyl Compounds

It is hard to make any solid conclusion about the impact of immobilization itself on
the amount of carbonyl compounds during fermentation since the concentration
profile of carbonyl compounds is tightly related to fermentation conditions and
yeast strain. Continuous fermentations with immobilized cell systems often end up
with increased level of acetaldehyde in comparison to batch free cell systems, but
this is connected with over-aeration and high volumetric oxygen mass transfer
coefficients of such systems, the technological parameters which stimulate acetal-
dehyde formation [183]. Regarding the influence of immobilization itself on car-
bonyl reduction kinetics, different conclusions have been made. Thus, in some
cases increased acetaldehyde accumulation (in comparison to free cell systems) was
attributed to highly active glyceropyruvic fermentation at the beginning of the
process and under hyperosmotic conditions of fermentation of a must (substrate
medium in winemaking) containing a high concentration of sugars [9]. Thus,
acetaldehyde concentrations obtained by ICT can be very high, for example, up to
106 mg/L in wines produced using quince pieces as support material [184]. On the
contrary, lower amounts of acetaldehyde were also reported for wines produced
with cells immobilized onto fruit pieces than with free cells but still above the
orthonasal perception threshold (10 mg/L) [26, 29, 30]. One explanation for the
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improved capacity of yeast to reduce acetaldehyde can be an increased alcohol
dehydrogenase activity in immobilized yeast due to a more efficient cofactors
NADH and NADPH regeneration ascribed to a higher glucose flux in cells
[185]. It should be stressed that different support-based yeast biocatalysts gave
different results concerning acetaldehyde levels, even when all other conditions
were kept the same (temperature, substrate composition, bioreactor design)
[25]. Even more, one immobilized cell biocatalyst can behave inconsistently
regarding the profile of flavor-active compounds during repeated batch fermenta-
tions and/or after its storage.

Increased levels of diacetyl have been frequently detected as a consequence of
cell immobilization. This has been explained by the slow decarboxylation rate of
α-acetolactate into diacetyl, which is considered to be the rate-limiting step in
traditional batch processes, and the greater barrier in the immobilized reactor toward
diffusion of diacetyl from medium to immobilized yeast cells also considered a
classical drawback of immobilized systems. Another possible explanation is an
increased expression of acetohydroxy acid synthetase gene during growth of the
yeast cells in the carrier [186]. It is the biomass concentration that affects the final
level of diacetyl. Thus, as a result of the intense biomass growth, high levels of
diacetyl (above its flavor threshold of 0.07–0.15 ppm) have been obtained during
primary fermentation of wort [92, 183, 187]. Increased levels of diacetyl have also
been interpreted as a consequence of the alteration of the amino acid metabolism of
the immobilized cells; particularly, lower amino acid uptake by yeast entrapped
inside polymer matrix [88, 188]. On the other hand, under continuous operation
mode and optimal conditions, it is possible to reduce diacetyl level below its
threshold, due to increased mass transfer limitations accompanying the high biomass
density achievable in a gas-lift bioreactor with gel microbeads as yeast carriers [189,
190]. Continuous secondary fermentation with immobilized cells usually ends with
acceptable or even very low levels of diacetyl [191, 192].

5 Carboxylic Acids

5.1 Biosynthetic Pathway of Carboxylic Acids

5.1.1 Short-Chain Fatty Acids
Numerous short- and medium-chain fatty acids are present in alcoholic beverages.
These can be introduced to the system with fermentation substrates, but yeast
activity also has a significant impact on organic acid composition and concentration.
Organic acids are important biochemical intermediates in several biochemical reac-
tions and have a direct role in maintaining redox balance within the cell. Their
concentrations are directly affected by environmental conditions and can influence
positively or negatively the organoleptic properties of beverages. Short-chain fatty
acids found in beverages include acetic, citric, lactic, malic, pyruvic, succinic,
tartaric, and 2-oxoglutaric acids [193, 194]. The concentrations of many of these
can be altered by yeast during fermentation. Grape juice, for example, contains

620 V. Djordjević et al.



naturally high concentrations of citric and lactic acid, but yeast fermentation is
required to contribute organic acids such as succinic and ketoglutaric acids to
wines [195, 196]. Concentrations of organic acids during fermentation are dynamic,
and yeast in some cases will remove organic acids to some extent through normal
metabolic activity. This occurs, for example, with malic acid, the concentration of
which may be reduced as much as 45 % during fermentation through yeast activity
[197]. Coote and Kirsop [198] noted an increase in wort pyruvic acid during early
fermentation. This increase was, however, followed by stabilization and subsequent
lowering of concentration toward the end of the fermentation [198].

In addition to their contribution to beverage sourness, these organic acids can
impart bitter, astringent, vinegar, salty, and “goaty” flavors [108] and are often
deemed to be off-flavors at higher concentrations. However, certain organic acids
at appropriate concentrations are considered to be positive or even essential to the
flavor profile of certain beverages. Succinate and malate are, for example, important
flavor components in sake [199]. Acetic acid can make a positive contribution to
wine flavor and aroma at appropriate concentrations (0.2–0.7 g l�1), though at higher
levels, they impart a distinct vinegar note to wines [200]. Organic acids may also
influence the physical properties of a beverage. Oxalic acid can bind with calcium
ions to form insoluble calcium oxalate crystals, which reduce clarity and can in some
cases promote excessive foaming by acting as nucleation sites for CO2 [201]. During
fermentation, organic acids are produced during amino acid catabolism and under
fermentative conditions due to an inability of the yeast cell to further process them in
the absence of oxygen [202].

5.1.2 Acetic Acid
The acetic acid content of wine is the main determinant of volatile acidity, which is
an important characteristic of a wine style. Concentrations up to 0.8 g l�1 acetic acid
can contribute positively to the perceived complexity of a wine’s aroma profile.
Higher concentrations introduce vinegar notes and may prevent sale [203]. Control
of acetic acid concentration is therefore a necessity in winemaking. There are various
routes through which acetic acid may enter wine. In particular, acetic and lactic acid
bacteria can produce this acid in the grape or during fermentation. Botrytis-infected
grapes are particularly susceptible [204]. Production of acetic acid by wine yeast is
limited, and rather, certain strains are known to remove acetic acid from wine. As
this ability is restricted to a small number of strains, excessive acetic acid content is a
relatively common problem in winemaking. To reduce concentrations, such wines
are typically blended with wine of low volatile acidity or undergo reverse
osmosis [205].

5.2 Influence of Process Variables on Bioproduction of Carboxylic
Acids

A number of factors are known to influence short-chain organic acid concentrations
during fermentation. The situation is complex as different conditions have different
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effects depending on the biochemical pathway of the organic acid in question. It is
clear, however, that the yeast strain plays a critical role in determining concentra-
tions. The aforementioned uptake of malic acid is highly variable among strains of
S. cerevisiae, but strains of other species such as Schizosaccharomyces pombe and
S. malidevorans can effect complete degradation of this acid [197]. Holgate [206]
noted that under identical conditions, malic acid could be either increased or
decreased depending on the S. cerevisiae strain utilized. Malic acid production
appears to be relatively rare among S. cerevisiae species, and this characteristic is
seen more often with the cryotolerant yeast S. uvarum [207]. Likewise, S. uvarum
and the related species S. bayanus are known to produce high concentrations of
succinic acid, while this property is highly variable in S. cerevisiae [207, 208]. Envi-
ronmental conditions may also influence production. Coote and Kirsop [198]
observed that cessation of pyruvic acid production during brewery fermentation
coincided with loss of assimilable nitrogen from the wort. In contrast, α-ketoglutaric
acid is known to accumulate in response to nitrogen deficiency [209] as well as
glutamic acid availability [198]. Malic acid can also increase under low-nitrogen
conditions as well as at low pH and under starvation conditions [210]. Succinic acid
concentration in wine is influenced by a range of conditions including temperature,
must composition, nitrogen availability, acidity, and SO2 content [211, 212]. Acetic
acid concentration can vary greatly depending on the nitrogen content of the must.
The lowest concentrations are observed around 200–250 mg l�1 and are higher
outside of this range [213]. Outside of optimal fermentation temperatures, the
production of acetic acid diminishes, presumably due to a reduction in yeast growth
rate [214], but generally a lowered fermentation temperature results in a larger acetic
acid production [17, 88]. The provision of asparagine or aspartic acid to growth
media results in acetic acid accumulation [198]. Clarification of wine must has
been observed to reduce acetic acid production and fermentation rate
simultaneously [215].

5.3 Effect of Immobilized Cell Technology on Bioproduction
of Carboxylic Acids

As described above, immobilized cell technology offers numerous benefits for
various fermentation industries. Improvements in cell tolerance, fermentation per-
formance, and productivity should, however, not come at the expense of product
quality. In this respect, it is important that flavor profiles of fermented beverages at
least match or indeed improve upon those produced through traditional processes. A
clear understanding of the relationship between immobilization technology and
organic acid production is essential if this is to be achieved. Organic acids can
have either a positive or negative influence on perceived quality depending on their
concentration, and it is essential that strategies are in place to adjust concentrations,
either up or down, to the desired levels.

Malolactic fermentation is essential for the creation of many styles of wine and
cider [216]. In this process, the organoleptic properties of the fermented beverage are
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improved through the conversion of malic acid to carbon dioxide and lactic acid,
thereby creating a stable, less acidic, and more pleasant-tasting beverage. As indi-
cated earlier, the malolactic capabilities of fermentative yeast are generally limited,
and the process is mediated by bacteria of the genera Lactobacillus, Oenococcus,
and Pediococcus [217]. Immobilization of such bacteria has been proposed as a
mechanism to exert control on the process. Immobilized cells are expected to be
more tolerant to the stressful conditions in wine (ethanol, SO2, etc.), to be more
concentrated (facilitating higher reaction rates), and to be easily recycled for multiple
malolactic fermentations [14].

The form of immobilization is critical to ensure successful industrial application.
Calcium-alginate-embedded bacterial cells have been used effectively to remove
malic acid, but the support material has been found to be relatively weak and the
culture also suffered from a lack of the important cofactors NAD and Mn2+ [218],
indicating a possible problem with mass transfer. Other support materials have also
included k-carrageenan [219], calcium pectate [220], diethyl and diethylaminoethyl
cellulose [221], and delignified cellulosic material [222]. Recently, cells of
Oenococcus oeni immobilized in Lentikats were shown to remove as much as
100 % of the malic acid present in wine [223].

Yeast may also be used as immobilized cell catalysts for the purpose of malic acid
degradation. Hong et al. [224] have demonstrated the malic acid-degrading ability of
the yeast Issatchenkia orientalis when immobilized on a mixture of oriental oak
charcoal and alginate. It has been suggested that the approach could be simplified by
co-immobilizing an ethanolic fermentation organism and a malolactic fermenting
organism in a single catalyst. Such a catalyst could simplify the overall winemaking
process. Servetas et al. [14] demonstrated the potential of such a catalyst involving
cells of Oenococcus oeni trapped in delignified cellulosic material and surrounded
by a layer of starch, in which cells of an alcohol-tolerant yeast strain were embedded.
Wines produced at an experimental scale with this catalyst were reported of better
quality than those produced by immobilized yeast alone (higher ester and lower
malic acid concentrations). There was, additionally, no evidence of any biological
competition between the two different organisms. Simultaneous bioprocessing can
be taken a step further by including the abilities of two different species in a single
organism. This has been achieved by incorporating genetic material from different
species into a fermentative yeast. Williams et al. [225] successfully incorporated an
enzyme from Lactobacillus delbrueckii that allowed the yeast strain to convert malic
to lactic acid, albeit at low rates. Further developments involved cloning yeast with
the responsible enzyme (from Lactococcus lactis or Oenococcus oeni) but also an
active malate permease from Schizosaccharomyces pombe [226, 227]. The
constructed strains could efficiently remove malic acid from red and white wine
musts during fermentation. Such approaches are still met with skepticism by the
general public [228], even when strains have achieved the GRAS status [227], and
therefore more natural approaches to combined primary and malic acid degradation
by yeast have been considered. Many yeast strains including species of Schizosac-
charomyces, Zygosaccharomyces, Candida, Pachysolen, Hanseniaspora, and
Issatchenkia as well as certain strains of Saccharomyces cerevisiae have the ability
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to degrade appreciable amounts of malic acid [229]. Therefore, there exists consid-
erable potential for combining ethanolic and malolactic fermentation by creating
catalysts involving immobilized yeasts with complementary activities or, in the case
of Saccharomyces species, strains that naturally carry out both processes efficiently.
Mating of different Saccharomyces yeasts could be used to generate interspecific
hybrids with, for example, the aroma profile from a wine yeast with the MLF
capability of another member of the Saccharomyces group. Novel hybrids may be
a simple and natural way to combine diverse phenotypes in one catalyst. Such yeasts
have already been shown to have potential for application in winemaking [230] and
brewing [231].

Reduction of acetic acid content through the use of immobilized yeast cells has
been proposed as a cost-effective and natural solution. Vilela-Moura et al. [232] have
found that selected yeast strains (both Saccharomyces and non-Saccharomyces) are
effective at removing acetic acid from wine during a re-fermentation process. One
strain of S. cerevisiae in particular (S26) was an efficient deacidification agent, and
further investigation involved immobilization of this yeast in alginate beads in an
effort to optimize the process [233]. Immobilized yeast cells were capable of
reducing acetic acid content from unacceptable to acceptable levels without any
major detriment to wine quality. A number of studies have determined the impact of
yeast immobilization on wine quality, including volatile acidity, and give an indica-
tion of the impact of various conditions (species, strain, carrier, etc.) on acetic acid
concentrations. Mallouchos et al. [234] showed that the acetic acid content of wine
could be reduced almost 30-fold when cells were immobilized on delignified
cellulose or gluten pellets compared to free cells. The utilized carrier also influenced
the acetic acid content, though the relative effect appeared to be temperature
dependent. The same authors noted a threefold to fourfold reduction in acetic acid
content of wines after fermentation with yeast immobilized on brewer’s spent grain
compared to wines fermented in the traditional manner [235]. Kandylis et al. [20]
reported low but detectable levels (7 mg l�1) of acetic acid in wines fermented with
free cells, but no acetic acid in wines fermented with yeast immobilized on potato
pieces. This was despite a general increase in organic acids when cells were
immobilized. A similar result was observed when the same strain was immobilized
on wheat and fermentations were scale up to 80 l [17]. This reduction in acetic acid
content has been observed in various fermentations [17, 20, 234–236] but is not
however universal. Oliveira et al. [237] noted either no change or only a modest
reduction in acetic acid concentration of fruit wine fermented with Ca-alginate-
immobilized cells relative to free cells. The influence of immobilization appeared
to be strain dependent in this case. Pereira et al. [238] found that the acetic acid
content of mead was unaffected or even increased when cells were immobilized and,
again, the strain used was influential. Šmogrovičová and Dömény [88] found no
significant difference between beers produced by immobilized cell technology and
those produced traditionally with respect to acetic acid. Also, co-immobilization of
yeast cells with Penicillium chrysogenum had no influence on acetic acid in wine
after fermentation [16, 239]. Therefore, it is clear that while the use of an
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immobilized cell catalyst to reduce acetic acid to acceptable levels is feasible, the
appropriate choice of the strain and carrier is critical to the outcome.

5.4 Summary and Outlook

Immobilized cell technology has been applied at industrial scale with some notable
successes. Despite this, ICT is not yet at a stage where it can be considered a
mainstream technology. A number of factors have impeded the full exploitation of
this technology’s potential. In the beverage fermentation industries, an important
issue is the difficulty in matching flavor profiles with those produced using tradi-
tional technologies. This issue is compounded by the fact that even small adjust-
ments to yeast physiological state may lead to small but perceptible changes in
organoleptic profile. A number of studies have addressed this problem, and in many
cases partial or complete solutions have been achieved, examples being the use of
overpressure or FAN modification to control ester formation [118] or aeration [102]
to steer higher alcohol evolution [102]. The accumulated knowledge from studies
addressing this issue may be of particular benefit to the nascent bioflavor industry.
There is currently a strong market demand for naturally produced flavors for food
and cosmetic applications [240], and results from investigations on ICT use for
beverages are directly applicable to the bioflavor industry, where ICT may be used to
boost concentrations of individual flavors or aromas.

ICT has been sometimes perceived as a relatively inflexible technology, requiring
long start-up times and being prone to contamination. One of its main appeals, its
suitability for continuous fermentation, may also be to its detriment as this necessi-
tates constant monitoring that may not be suitable for every business, particularly
smaller companies with limited personnel. A more modular approach is however
possible and its efficacy has been demonstrated. There are a number of solutions
including the use of bioreactors that allow the rapid removal and replacement or
maintenance of catalysts without any significant effect on the operation. Catalysts
may also be removed and stored to facilitate periods of low demand, e.g., in the wine
industry with its seasonal requirement for fermentation catalysts.

How organisms respond to immobilization is still not fully understood, and it is
expected that a deeper understanding of the changes occurring at the molecular
level may be of benefit. Improved stress tolerance, for example, is typical of
immobilized cells, and this phenomenon has been observed in diverse systems
with different carriers and organisms. However, the reasons for this increased
tolerance remain obscure. The use of modern technologies for genome,
transcriptome, or metabolome analysis has not been used extensively to study the
relevant changes that occur when cells change from a planktonic to sessile mode of
life or when cells remain immobile for extended periods. Such knowledge would
help to tailor conditions to enhance stress tolerance and fine-tune flavor develop-
ment for maximum benefit to the system. The choice of organism may also be
critical for full realization of ICT’s potential. A typical strategy involves application
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of traditional catalysts, e.g., brewer’s or wine yeast in ICT systems. However, it may
be that alternative organisms could be better suited to immobilization. It may be of
benefit to select organisms that are not adapted to aqueous systems but rather
naturally exist in an immobile state. Likewise, flavor correction might be achieved
by taking advantage of the different flavor profiles produced by different organisms.
The use of alternative fermentative organisms has already been considered for
flavor modification in wine production [241] and could be of value in ICT systems.
In particular, organisms with limited fermentative potential but which produce
similar flavor profiles as S. cerevisiae could be applied for low-alcohol beverages
[242]. Likewise, targeted genetic modification has rarely been applied in the
production of fermented beverages due to a low level of consumer acceptance as
well as regulatory restrictions. However, recent developments in the technology, in
particular the advent of gene editing, have reinitiated the debate surrounding the use
of modified organisms in food production [243]. If modified organisms could be
applied in ICT, many of the problems associated with flavor matching, such as
diacetyl overproduction, could be resolved quite easily [244].

While findings of new research are always of value, it may be argued that the full
realization of ICT’s potential will be achieved through an integrated, multidis-
ciplinary approach involving the concerted application of varied technologies for
improved bioreactor design, carrier optimization, selection (or modification) of
suitable catalysts, and a more comprehensive understanding of the biological and
chemical mechanisms involved. It is hoped that this review of the current knowledge
regarding ICT and its impact on flavor is one step toward achieving this goal.
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Abstract
Lipases are enzymes with remarkable properties and catalytic versatility. These
proteins are capable of catalyzing hydrolytic and synthetic reactions, allowing the
production of different compounds. Aspergillus are important producers of
lipases, since they are able to secrete large amounts of these proteins to the
extracellular media. Several studies have reported the importance of fermentation
parameters as well as genetic engineering of Aspergillus strains in order to
improve lipase production. Different Aspergillus species secrete lipases with
interesting characteristics such as thermostability, stability in a wide pH range,
stability in organic solvents, and enantioselectivity toward the substrate. The
obtainment of lipases with highlighted characteristics for use in industry is the
main focus of several studies. Such lipases can be obtained with screening of
Aspergillus strains, protein engineering, and immobilization of lipases that can
frequently improve thermostability and enantioselectivity. Among the applica-
tions of lipases from Aspergillus, there are studies on the improvement of
sensorial properties of different products in the food industry, compatibility
with detergents for removal of fat stains from fabrics, and the obtainment of
enantiopure pharmaceuticals.

Keywords
Lipases • Aspergillus • Lipase properties • Biotechnological applications • Bio-
technology • Immobilization • Lipase production

1 Introduction

Biotechnology has shown to be a promising and efficient approach for many
industrial fields that, somehow, require catalysts. In this context, the use of enzymes
is considered of immense advantage when compared to conventional chemical
catalysts. Although the latter can be very efficient and frequently cheaper, the use
of these compounds results in several toxic byproducts, requiring many purification
steps. This is mainly due to the low selectivity chemical catalysts present for the
substrates. Enzymes, on the other hand, act in mild reaction conditions showing,
frequently, remarkable selectivity, allowing the obtainment of high-added value
products, such as enantiomers applied in pharmaceutical and food industries [1].

Lipases (triacylglycerol acyl hydrolases, EC 3.1.1.3) are enzymes that naturally
catalyze the hydrolysis of triacylglycerols into di- and monoacylglycerols, fatty
acids, and glycerol at an oil–water interface, through interfacial activation [2]. How-
ever, in nonaqueous solutions, they are capable of catalyzing synthetic reactions
such as esterification and transesterification. This versatile spectrum of reactions
added to their chemo-, regio-, and enantioselectivity for substrates makes them a
popular choice as industrial biocatalysts [3].

Despite different sources of lipases, microorganisms are considered the most
interesting tool for lipase production when compared to animal and plant sources.

640 F.J. Contesini et al.



Microorganisms grow faster and easier, and the enzyme production is influenced
neither by climatic conditions or seasonal changes nor by regulatory or ethical issues
related to animal slaughter or tree or plant felling. Extracellular lipase-producing
microorganisms are preferred since they facilitate downstream processing, which
lowers production costs [4]. Hence, filamentous fungi are the first choice, since these
organisms are capable of secreting large amount of proteins to the extracellular
media [5]. Among the fungal sources, Aspergillus is a very promising candidate for
lipase production. This is because there are many species of this genus with immense
biochemical versatility added to large capability of protein secretion. The most
reported species are Aspergillus niger and A. oryzae, considered efficient lipase
producers. On the other side, A. nidulans is one of the few filamentous fungi for
which molecular genetic tools have been created, which is of great interest for the
development and construction of strains for heterologous enzyme production [6].

Lipases are applied in many different industrial areas due to their catalytic versa-
tility. In food industry, these lipases can be used in bread making, where it can
selectively hydrolyze lipids of the dough, resulting in better characteristics of the
bread [7]. They can also be used in detergent industries, as part of detergent compo-
sition, where it can hydrolyze fats present in stains in fabrics [8]. In pharmaceutical and
chemical industries, lipases can be applied to resolve racemic mixtures in order to
obtain enantiomeric compounds [9]. Another interesting application of lipases is in
biodiesel production, through esterification and transesterification reactions [10, 11].

Although lipases present great potential to be used in many industrial fields, the
immobilization of lipases can bring about advantages when compared to free enzymes.
This is because immobilized enzymes can be reused for different cycles of reactions
and frequently have their characteristics improved such as thermostability and selec-
tivity [12, 13]. Lipases can be immobilized by adsorption, entrapment, covalent
bonding, or the combination of these techniques. Each approach presents different
advantages and disadvantages, depending on the application process.

This chapter deals with different aspects of lipases from many Aspergillus
species, considering the great potential of this enzyme in various industrial fields.
The production, characteristics, immobilization, and applications of Aspergillus
lipases were highlighted.

2 Aspergillus as a Biotechnological Tool

The Aspergillus genus comprises about 350 species that can live in a wide variety of
environments such as soil, plant, and animal parasite, which reflects its natural
metabolic and nutritional plasticity [14, 15]. This ascomycete is known by its
conidial heads and stalks and was first classified by Micheli’s (1729) Nova
Plantarum Genera [14].

The Aspergillus genus is among the most economically important fungi and has
been used in food and beverage production processes for more than 1,500 years. The
genus is widely used in the food and pharmaceutical industry for the production of
Oriental foods, various acids, enzymes, and other compounds useful for humans.
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The biotechnological and economic importance has encouraged the genetic and
physiologic research of Aspergillus species aiming for the expansion of its applica-
tions and increase in profit.

Nowadays, filamentous fungi are used as cell factories for a wide range of
biotechnological products including organic acids, human therapeutics, polysaccha-
rides, biosurfactants, and an array of enzymes, which may be of fungal or non-fungal
origin [16, 17]. Today, the genus is employed in the large-scale production of
enzymes with commercial added value such as pectinases, lipases, oxidases, pro-
teases, amylases, cellulases, hemicellulases, and others [18]. The easy separation of
biomass and rapid growth in low-cost culture media are some of the advantages to
the use of Aspergillus as producers of enzymes [18, 19]. In addition, compounds
produced by Aspergillus can be safely used in the industry, which has resulted in the
classification of generally regarded as safe (GRAS) status [17].

Among Aspergillus species, Aspergillus nidulans is largely studied in detail in
basic research since the 1960s and offers advantages due to its well-characterized
sexual cycle and ease of handling of its genetic system, which provide benefits in the
development and construction of strains [16, 20, 21]. This species is one of the few
filamentous fungi for which molecular genetic tools have been developed. In
comparison with industrial strains, A. nidulans shows potential enzymes in its
genome and secretome able to supply the needs of basic research [21, 22].

For centuries, filamentous fungi have been known for their capacity to secrete a
large amount of proteins. Biotechnological interest in the genus Aspergillus has
increased concomitantly with molecular biology techniques for production of
homologous and heterologous proteins. In the early 1980s, the first protocols were
described using A. nidulans as a host for recombinant proteins [23].

3 Obtainment and Properties of Lipases from Aspergillus

The first description of the effects of lipolytic enzymes action dates from 1849 when
the French scientist Claude Bernard and his associates described the action of
pancreatic juice in olive oil releasing fatty acids and glycerol. The term lipase was
initially assigned to the most representative and potent lipolytic extracts known at
that time, which were from pancreatic sources. Over the years, proteins obtained
from different origins that were also capable of catalyzing neutral fats or glycerol
ester hydrolysis were also called lipases [24]. Since then, a huge variety of lipases are
the object of the study, and today this class of enzymes is the most broadly used in
biotechnology, mainly because it possesses the ability of catalyzing reactions with an
infinity of substrates, even in heterogeneous media, and was available for applica-
tions since the beginning of the industrial enzymology [25].

Lipases belong to the class of serine hydrolases and catalyze the hydrolysis of
triacylglycerides (or neutral lipids) into di- and monoacylglycerols, glycerol, and
free fatty acids at the lipid–water interface. These hydrolytic reactions can be
reversed under micro aqueous environment, such as in organic solvents, leading to
synthetic reactions such as esterification and transesterification [1, 26, 27]. From the
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variety of reactions catalyzed by lipases and its capacity of hydrolyzing water-
soluble substrates, the difficulty in determining a simple terminology in this field
became known [24]. In a catalytic point of view, lipases are esterases with high
activity toward water-insoluble substrates, but a real distinction between those two is
the fact that lipases present the phenomenon of interfacial activation [24, 25].

Additionally, lipases catalyze reactions with high specificity, regioselectivity, and
enantioselectivity, characteristics that assure them as the most important group of
biocatalysts for synthetic organic chemistry [28]. However, it presents what we can
call enzyme promiscuity (in all three defined forms: condition, substrate, and
catalytic promiscuity [29]), the ability to catalyze alternative reactions that differ
from their physiological reaction [25]. Lipases promiscuity may be a useful charac-
teristic when the subject is the enzyme improvement based on divergent evolution of
new catalysts [25]. However, this characteristic jointly with the high sequence
diversity presented by lipases avoids a classification similar as the one made for
carbohydrate-active enzymes [30]. The latter is based mostly on the amino acid
primary sequence, so lipases are classified based on topological characteristics [27].

In 1999, Arpigny and Jaeger were the first group to propose a concrete classifi-
cation of lipases [31]; an extensive classification was made taking into account the
amino acid sequence motifs and some fundamental biological properties of 53 bac-
terial lipases and esterases leading to the creation of 8 families. Only the enzymes
belonging to families II and VIII were identified as not being α/β-hydrolase fold
proteins [32] wherein these families correspond to SGNH hydrolase and
β-lactamase, respectively [27, 31]. Four years before, the ESTHER database was
created [33], initially as a cholinesterase (phylogenetically related to proteins which
have a similar α/β-fold structure) server [34], and after being revised several times, it
is now a widely used database dedicated to proteins with α/β-hydrolase fold,
containing more than 30,000 manually curated proteins [35], and it is available
online (http://bioweb.ensam.inra.fr/esther).

After many attempts to categorize lipolytic enzymes originated from a broad
variety of organisms, including higher and lower vertebrates, invertebrates, fungi,
and bacteria, today we know that lipase classification mainly lies in the
α/β-hydrolase fold, a class that also contains esterases, acetylcholinesterases,
cutinases, carboxylesterases, and epoxide hydrolases [36]. Lipases and those already
cited α/β-hydrolase enzymes share not only a common structure but also a common
architecture and conserved active site signatures. Based on these characteristics, the
Lipase Engineering Database (LED) was developed [37], a resource of fully and
consistently annotated superfamilies and homologous families of α/β-hydrolases
available online (http://www.led.uni-stuttgart.de/). The curation and annotation pro-
cess for the LED is supported by DWARF, an in-house data warehouse system for
protein families [36, 38].

Lipases and related enzymes possess a catalytic triad commonly formed by Ser,
His, and Asp residues; the serine residue usually appears in the conserved penta-
peptide Gly-X-Ser-X-Gly [31, 39]. Another common characteristic is the oxyanion
hole, formed by a backbone of amides and well-conserved amino acid side chains
[39]. Depending on the amino acids involved in forming the oxyanion hole, the
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enzymes can be classified into three classes, GGGX, GX, and Y. A complete
description of this classification can be found in [38].

In the LED, protein sequences are grouped hierarchically considering that all
sequences with high similarity were assigned to a single homologous family that
received the name of the organism that originated and represents the family
[36]. Homologous families with low, but significant sequence similarity were
grouped into a single superfamily. Superfamilies have no significant sequence
similarity between each other, but are grouped according to the oxyanion hole
classification [37]. In the beginning of this databank, 92 microbial lipases and
homologous serine hydrolases from microbial sources were assigned to 32 homolo-
gous families and 15 superfamilies [39]. However, today, among 112 homologous
families and 38 superfamilies, we can survey 24,783 sequence entries corresponding
to 18,585 proteins [27] belonging to 2,174 organisms.

Microbial lipases show a broad spectrum of industrial application, and filamen-
tous fungi are recognized as the best lipase producers and are currently the preferred
sources since they produce extracellular lipases. Despite of the 600,000 possible
fungi species living on Earth, only approximately 7 % have been catalogued.
Among them, the ubiquitous group of the Aspergillus genus is present [27, 40],
and although it is known as a great producer of enzymes, a lot of information is
lacking in terms of its lipase structures. Considering 241 lipase structures were
deposited on the Protein Data Bank and that none belong to fungi from Aspergillus
genus, the best information source available is in the LED, as observed in Table 1.

Aspergillus α/β-hydrolases are distributed in 19 of 38 superfamilies, but
according to Gupta et al. [27], only the superfamilies abh02 and abh04 (GXXX
type), abh07 and abh24 (GX type), and abh38 (Y type) are really fungi or yeast
lipases; therefore, abh24 lacks in Aspergillus.

Aspergillus able to produce lipases are found in several habitats, including soils
contaminated with oils, waste of vegetable oils, dairy product industries, seeds, and
deteriorated food. Furthermore, the rapid development of molecular biology tech-
niques, as well as the availability of more reliable high-throughput screening
methods, has increased the utility that lipase offers for organic synthesis [1]. Lipase
production by fungi varies according to the strain, the composition of the growth
medium, cultivation conditions, temperature, pH, and the kind of carbon and
nitrogen sources [41]. Generally lipidic carbon sources seem to be essential to obtain
a high lipase yield, although a few authors observed that the presence of fats and oils
was not statistically significant for enzyme production [1].

Approximately 90 % of all industrial biocatalysts are produced by submerged
fermentation (SmF), frequently using specifically optimized media and genetically
manipulated microorganisms. For this purpose, SmF processing can offer several
advantages over solid-state fermentation (SSF), but on the other hand, almost all of
these enzymes could also be produced in SSF [1]. A quantitative comparison
between submerged fermentation (SmF) and SSF is difficult due to the difference
in the methods used for determining the lipase activity [41].

Table 2 summarizes some characteristics of production and purification of Asper-
gillus lipases, and shows their basic biochemical properties as pH and temperature
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Table 1 Description of Aspergillus alpha/beta-hydrolase superfamilies (lipases included
highlighted in red) found in Lipase Engineering Database

Organism

Sum of 
sequences 
of 
alpha/beta 
proteins 

Superfamilies (Number of superfamilies)

A. flavus 5 abH23/abH04/abH32/ (3)

A. kawachii 1 abH32/ (1)

A. nomius 1 abH04/ (1)

A. tamarii 1 abH23/ (1)

A. aculeatus 1 abH32/ (1)

A. fumigatus 71

abH23/abH01/abH07/abH15/abH14/abH36/

abH03/abH04/abH02/abH09/abH08/abH22/

abH32/abH27/abH34/abH13/abH19/abH31/

abH38/ (19)

A. fumigatus Af293 19
abH15/abH14/abH36/abH03/abH09/abH22/

abH27/abH34/abH19/ (9)

A. fumigatus CBS 144.89
1

abH27/ (1)

A. nidulans 61

abH23/abH01/abH07/abH14/abH36/abH03/

abH04/abH02/abH09/abH32/abH27/abH34/

abH13/ abH31/ abH38/ (15)

A. oryzae 106

abH23/abH01/abH07/abH14/abH36/abH03/

abH04/abH02/abH09/abH08/abH22/abH32/

abH27/abH34/abH13/abH19/abH31/abH38/ (18)

A. terreus 92

abH23/abH01/abH07/abH14/abH36/abH03/ 
abH04/abH02/abH09/abH08/abH22/abH32/

abH27/ abH34/abH13/abH19/abH31/abH38/ (18)

A. awamori 1 abH23/ (1)

A. niger 90

abH23/abH01/abH07/abH15/abH14/abH36/

abH03/abH04/abH02/abH09/abH08/abH22/

abH32/abH27/ abH34/abH13/abH19/abH31/ (18)

A. niger CBS 120.149 1 abH27/ (1)

A. parasiticus 2 abH23/abH04/ (2)

A. tumbingensis 2 abH23/abH32/ (2)

A. clavatus 57

abH23/abH01/abH07/abH15/abH14/abH36/

abH03/abH04/abH02/abH09/abH08/abH22/

abH32/ abH27/ abH34/abH13/abH19/abH31/ (18)

A. sojae
1

abH32/ (1)

A. versicolor
1

abH32/ (1)
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optimum. More information about these subjects can be found in the following
works [26, 42–48].

4 Immobilization of Lipases Obtained from the Genus
Aspergillus

Enzymes are highly specific biocatalysts and have been exploited along the years by
different industry sectors due to their inherent catalytic properties [69]. However, the
desired purposes by industries are often difficult to achieve using the native forms
because the enzymes, when used in certain processes, may be unstable or may show
neither optimum activity nor optimum selectivity. From an economic viewpoint,
several studies have described the techniques for enzyme immobilization as a
powerful tool to reduce operating costs of industries [70–73]. The main advantages
of using immobilized enzymes as biocatalysts are the possibility to repeat the use of
a single batch of enzymes, thus making the process economically feasible, enzyme
stabilization due to binding to the support, and no contamination of the product with
the enzyme [74, 75]. Immobilization can also drastically affect enzyme properties
such as the resistance to proteolytic digestion and denaturants, pH dependence,
temperature profile, thermostability, and kinetics [76].

Many supports have been exploited for lipase immobilization. Generally, these
techniques involve traditional methods such as adsorption, entrapment, covalent
binding, and cross-linking (Table 3) [10]. The following text will describe the
characteristics of each technique for lipase immobilization produced by Aspergillus
sp. strains.

The physical adsorption is one of the simplest methods used for lipase immobi-
lization. This technique commonly involves adsorption of the enzymes through
nonspecific forces such as van der Waals forces, hydrogen bonds, and hydrophobic
interactions with the support material [77]. Comparing this technique with other
immobilization techniques, the adsorption is advantageous since it can be performed
under mild conditions and easy operation, it uses low-cost support materials, it does
not require chemical additives during adsorption, and the regeneration of supports
can be easily done by recycling. However, one disadvantage of the physical adsorp-
tion method is associated with weak interactions of the enzyme with the support
materials, which cause biocatalyst leaking, and thus it exhibits reduced activity when
used repeatedly [71, 77]. Commercial lipases from A. oryzae were analyzed in the
work of Y€ucel et al. [78]. The authors investigated the immobilization onto micro-
porous polymeric matrix using two methods: physical adsorption and covalent
linking. The results showed that covalent immobilization was able to load more
enzymes on support than the adsorption method, but it lost some activity due to the
inactivity of active sites of enzymes. Immobilized process by physical adsorption
showed stable operation for 5 reuses [78].

Lipase immobilization via adsorption was also studied by Silva et al. [12]. The
authors used a lipase from A. niger and analyzed various properties of both the free
and immobilized enzyme on Celite, such as the hydrolytic and esterification
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activities, stability, and enantioselectivity. The most important advantage observed
with the immobilized lipase was its thermal stability and an improved esterification
activity during the reaction of (R, S)-ibuprofen with 1-propanol in isooctane. Fur-
thermore, immobilized A. niger lipase showed a high activity for esterification
process (73 % after 5 days of storage at 40 �C) and a significant operational stability
for recycling and reuse of enzyme [12]. Silva et al. [13] also tested the immobiliza-
tion of lipase from A. niger in five types of support via adsorption (Accurel EP-100,
Amberlite MB-1, Celite, Montmorillonite K10, and silica gel). This lipase was
studied for use in the kinetic resolution of (R, S)-ibuprofen, and the matrix Amberlite
MB-1 was found as the best support, with a conversion of 38.2 %, enantiomeric
excess of 50.7 %, and enantiomeric ratio (E value) of 19 in 72 h of reaction.
Moreover, the immobilized enzyme maintained a high operational stability of at
least 80 % after 8 months in storage at 4 �C and could be reused at least 6 times [13].

Entrapment is another classic way to immobilize lipases. This method refers to
the capture of enzymes within a polymeric network or microcapsules of polymers
that allows the substrate and products to pass through but retains the enzyme
[80]. Entrapment method shows important advantages such as reduced enzyme
leakage in comparison with the physical adsorption method, and it is simpler to
perform than covalent binding. However, the biggest disadvantage of entrapment is
the mass transfer limitation, so the lipase is only effective for low molecular weight
substrates. The entrapment of lipases can be carried out in different polymers, both
natural and synthetic [1, 70, 79]. Encapsulation in a sol–gel matrix of lipase from
A. niger was studied by Zubiolo et al. [80]. The encapsulated lipase in a sol–gel
matrix showed greater thermal stability at temperatures of 45 and 60 �C than the free
enzyme. The positive influence of the immobilization process was observed on the
thermal stability of the enzyme, since a longer half-life t1/2 and lower deactivation
constant were obtained with the encapsulated lipase when compared with the free
lipase [80]. Osho et al. [81] tested the lipase immobilization produced by A. niger
ATCC 1015 in matrices of a structural fibrous network of pawpaw (Carica papaya)
wood and vegetable sponge (Luffa aegyptiaca) by entrapment. The authors showed
that the immobilization of lipase successfully enhanced its pH stability, especially in
slightly acidic environments. A relative activity above 75 % was achieved for the
immobilized lipase stored at 4 �C and 50 % at 28 �C until the fourth week of storage
for both supports [81].

Covalent binding is the immobilization technique of enzymes that involves the
chemical reaction between certain amino acid residues outside the catalytic site
(e.g., thiol and amine groups of enzymes) with the support carriers [70]. The
immobilized method by covalent binding to the solid carrier has the expected
advantage of strong interactions between the enzyme and the carrier during the
catalytic process, which makes the enzyme very stable. However, the covalent
binding process has a distinct disadvantage where the enzyme is chemically modi-
fied [79, 82]. A. niger lipase was immobilized by covalent binding on chitosan-
coated magnetic nanoparticles. Immobilization enhanced the enzyme stability
against changes of pH and temperature, compared to free lipase. Moreover, the
storage stability was studied during 50 days, and high stability was observed in the
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immobilized derivatives. Finally, immobilized derivatives retained over 80 % of
their initial activity after 15 hydrolytic cycles [83]. In the work by Dhand et al. [84],
the immobilization of lipase produced by A. oryzae was tested using the covalent
binding method onto a polyaniline–nanotube-based film, electrophoretically depos-
ited onto indium tin oxide via glutaraldehyde. Immobilized lipase was used for
triglyceride detection and showed an improvement in biosensing characteristics,
such as linearity, fast response time, and high sensitivity [84].

In the immobilization method by cross-linking, the lipases are chemically
immobilized via the formation of intermolecular cross-linkages. The cross-link of
enzymes can be achieved by the addition of bi- or multifunctional cross-linking
reagents such as glutaraldehyde. An advantage of this technique is that it is usually
support-free and involves joining enzymes to each other to form a three-dimensional
structure [85, 86]. Despite this great advantage, cross-linking method has disadvan-
tages in the following aspects: (i) using cross-linking reagents that can change the
conformation of lipases and potentially lead to significant loss of activity,
(ii) performed under relatively harsh conditions, and (iii) low immobilization yields
and absence of desirable mechanical properties [77]. A new strategy applying cross-
linking method was described by Tudorache et al. [87] for lipase immobilization
produced by A. niger. The strategy for lipase immobilization was explored leading to
cross-linked enzyme aggregate onto magnetic particles using glutaraldehyde as
cross-linker. The lipase immobilized by this method showed high operational per-
formance with 61 % glycerol conversion, 55 % glycerol carbonate yield, and 90 %
selectivity in glycerol carbonate. Immobilized biocatalyst also proved to be robust
when used in conversion of “crude” glycerol extracted from the biodiesel process
leading to glycerol carbonate with similar performance as with pure glycerol.
Moreover, immobilized lipase showed in the recycling experiments that it is stable
for 20 successive reaction cycles [87].

5 Industrial and Biotechnological Applications of Lipases

5.1 Food Industry

For lipase, the food industry is considered one of the most important markets in their
application. In 2014, the Novozymes reported lipase represented the second best-
selling product for the food industry, which was 26 % of the total company sales.
The sectors of dairy and baking goods were the ones which requested larger
production of lipase. Data show that Japan and China are the biggest investors in
lipase for the food industry [88]. In addition, many industries also use additives such
as stabilizers and preservatives [89].

The majority of the food industries search for enzymes (including lipases) that
exhibit catalytic specificity, thermostability, high catalytic activity in a wide range of
pH and temperature, and structural properties which can be immobilized with high
catalytic efficiency [1].
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All materials must be appropriate with high purity degree and current Good
Manufacturing Practice (cGMP). The pathogenic and toxigenic potential of the
production strain is the main target in evaluating enzyme safety.

As previously stated, the lipase is vastly used in the fields of baking and dairy
industries. However, we must increase our interest in creating new sources of these
lipases to find alternatives. At the same time, the drive to search this genus in the area
of food is important to expand knowledge and create new technological processes.
All these processes using enzymes of different genres of microorganisms expand the
variability of processes considered green, which drastically decreases the use of
waste and toxic compounds.

5.1.1 Dairy Products
Lipases used in the industry are mainly for food processing, such as biomaterial
modification and breakdown. Most of them are utilized for flavor development in
dairy products and processing of other foods, such as baked goods, aroma, surfac-
tants, and others [90].

Lipases have been successfully used as catalyst for the synthesis of ester. The
ester produced from short-chain fatty acids is used as flavoring agents in the food
industry. Lipases are used in the dairy industry for the hydrolysis of milk fat to
modify the fatty acid chain lengths to enhance the flavor of various cheeses. One of
the most important features of lipase is the temperature of reaction. To produce
specific compounds for food, the industry uses different types of lipase that are
incubated at elevated temperatures in order to produce concentrated flavor by lipase
catalysis to be used as ingredients in dips, sauces, soups, and snacks. Current
applications also include the acceleration of cheese ripening and the lipolysis of
butter, fat, and cream [91, 92].

Hérnandez et al. [93] compared three commercial lipases [two from pregastric
bovine and one from A. niger (“Palatase 20000 L®”, Novozymes, Spain)] to develop
the characteristic pungent flavor of Idiazabal (sheep’s raw milk) cheese. In the
experimental productions, all lipases significantly increased the concentration of
total free fatty acids (FFAs), both after 90 and 180 days of ripening. Lipase Palatase
20000 L increased primarily the concentration of short-chain FFA, in which C16:0
and C18:1 were the main FFAs. Cheeses made with no lipase had the lowest
concentrations of total FFA. Sensory analysis was performed after 90 and
180 days of ripening. A linear correlation was observed between the percentage of
short-chain FFA and the score for pungent flavor for all amounts of lipase used in this
study. They concluded that lipases are an adequate enzyme to develop the charac-
teristic flavor of Idiazabal cheese and which type of lipase produces different flavor
characteristics, both in artisan and industrial fabrications.

Arbige et al. [94] published a patent that accelerated cheese aging and improved
cost efficiency and lessened storage space. This patent relates to a novel lipolytic
enzyme derived from A. oryzae ATCC 20719. According to the authors, the treat-
ment with this enzyme has not formed associated rancidity compounds, which brings
an advantageous process compared to the conventional lipolytic enzymes.
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Besides free fatty acids, lactones are also important compounds as flavor ingre-
dients during cheese maturation (ripening). Jolly and Kosikowski [95] reported a
lactone production from blue cheese using blended lipases of different microorgan-
isms, including genus Aspergillus. After 75 days, the concentrations of
δ-tetradecalactone and δ-dodecalactone were the highest produced in blue cheese.
That represented five times more than the initial maturation. Also, the same group
published in that same year a study of rate and quality of flavor development and
type and concentration of carbonyls produced in blue cheese after applying selected
microbial and animal enzyme preparations directly to cheese curds. Two out of ten
microbial lipase preparations (Aspergillus) gave good-quality blue cheese flavor
within 45–75 days at 5 �C in cheese made from pasteurized milk. Total carbonyls
were maximum in 75 days at 5 �C and were highest in cheeses with added microbial
lipase. Cheeses without added enzymes had lowest values and differed in the relative
distribution of individual carbonyls. The most important compounds generated
during this process were 2-heptanone and 2-nonanone, both increased remarkably
the flavor of this dairy products.

5.1.2 Bakery Products
Lipases have been used to enhance the flavor content and increase the shelf life,
texture, and softness of bakery products by releasing short-chain fatty acids. Nowa-
days, there is another important reason to use lipase in baking industries, which is to
substitute or supplement traditional emulsifiers in wheat lipids. That is achieved by
catalytic reaction to degrade polar compounds and produce emulsifying lipids [96, 97].

Rey et al. [98] published a patent regarding methods for preparing dough. They
consisted in incorporating a composition of an effective amount of lipase into the
dough, which improved one or more properties of the dough or a baked product. This
patent also conveys to the use of different types of enzymes, including lipase from
genus Aspergillus and compositions comprising an effective amount of such lipase
for improving one or more properties of a dough and/or a baked product. The lipase
has an advantageous effect on the crumb softness of the final baked product. The
combination of the enzyme preparation of the invention and shortening can replace
emulsifiers such as monoglycerides, which are used as crumb softener.

Siswoyo et al. [99] reported the effects of lipase from Aspergillus and amylase for
retrogradation of starch in bread and their impact on its rheological properties. The
combined addition of lipase and α-amylase increased significantly the loaf volume
compared with the control and slightly increased the stability time of the dough. The
addition of lipase alone increased the gelatinization enthalpy of the dough starch and
the starch–lipid complexes of dough and bread. After 5 days of storage, the retro-
gradation rate of bread was slowed to 1.73-fold (against control by adding only
lipase), while the combined addition of lipase and α-amylase slowed the retrogra-
dation rate to 2.65-fold. These results suggest that lipase retards retrogradation of
bread during storage. The addition of lipase suggests a retardation effect of retro-
gradation, meaning lipase could retard the retrogradation of bread.

Park et al. [100] evaluated chemical, rheological, and bread-making characteris-
tics on quinoa and wheat flours using lipase from A. niger. The additions of lipase
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(7.5 � 103 U/g) significantly increased the loaf volume of quinoa and wheat bread.
Addition of lipase on wheat bread distinctly decreased the firmness of breadcrumbs
compared to those without lipase. Also, lipase decreased the viscosity, while the
enthalpy change of melting for starch–lipid complexes was slightly higher than the
substituted doughs without lipase. However, addition of lipase made the extensible
gluten structure that covered starch granules. These improvements might be caused
by the effects of mono- and di-acylglycerol as natural emulsifiers, which were
increased from lipid hydrolyzed by lipase during bread making.

5.1.3 Fats and Oils
Fats and oils are among the most important compounds present in foods, and their
modifications are of great impact in food processing industries. This industry is
currently working to figure out ways to produce more using economic and green
technologies to cross out residues. As it was described before, lipase can be used for
different reactions, such as hydrolysis, esterification, and interesterification of fats
and oils, which is important for the variability of fat and oil products with several
features on chemical and physical processes and biological activities. The nutritional
and biological functions of food lipid are mainly dependent on the chain length and
degree of unsaturation of fatty acids [101]. Therefore, the obtainment of modified
lipids by the incorporation of a new fatty acid or restructuration to change the
positions of fatty acids results in the obtainment of the structured lipids. Structured
lipids may provide the most effective means of delivering the desired fatty acids for
nutritive or health purposes, such as prevention of coronary diseases. Structured
lipids are suited for use as nutraceuticals because their structure can be manipulated
to suit specific patient requirements [101–103].

Zhou et al. [102] produced structured lipids using eicosapentaenoic and
docosahexaenoic acids in a batch reactor by lipase-catalyzed acidolysis of fish oil
with caprylic acid. The following free lipases – lipase AP, A. niger; lipase P,
Pseudomonas sp.; lipase AY,Candida rugosa; lipase AK, Pseudomonas fluorescens;
lipase F, Rhizopus oryzae; and lipase D, Rhizopus delemar – were screened under
selected reaction conditions. Lipase AP was suitable for the production of structured
lipids from fish oil. The optimal molar substrate ratio of fish oil to caprylic acid was
1:6 to 1:8. The time course of the reaction at different enzyme loads demonstrated
that 10 % incorporation of caprylic acid could be obtained for lipase AK in 5 h with
10 % enzyme load. Lipase AP had an incorporation of caprylic acid similar to acyl
migration of caprylic acid from sn-1,3 positions to the sn-2 position and a slightly
lower selectivity toward docosahexaenoic acid.

5.2 Pharmaceutical Industry

In the pharmaceutical industry, lipases are very promising for chemical synthesis,
what increases interest in these enzymes. Some advantages in this context include
mild conditions that avoid isomerization, epimerization, racemization, and
rearrangement reactions, enantio- and regioselectivity, reuse of the immobilized
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lipase, overexpression of the lipase, economy of the process, and mutagenesis of the
lipase for specific functions [41].

One application that has received attention is the use of lipases in obtaining drugs
or pharmaceutical ingredients in their active enantiomeric forms with high optical
purity, since these enzymes are chiral molecules able to recognize a specific isomer
in a racemic mixture [104]. The use of lipases to resolve racemic mixtures is
currently exploited for drug production. Indeed, frequently only one enantiomer of
a drug is responsible for the specific therapeutic effect. In some cases, milder or
fewer side effects are observed when using optically pure drug products compared
with those found with the use of racemic mixtures [105].

Following this perspective, many pharmaceutical companies worldwide are
focusing their efforts on the preparation of optically active intermediates on a
kilogram scale. Biotechnological companies, such as Enzymatix in the UK, are
specialized in biotransformations and offer a whole variety of intermediates prepared
via lipase-mediated resolution [106].

Houde et al. listed several lipases that are suitable to be used in the synthesis of
various enantiopure molecules such as alcohols, amides, carboxylic acids, and esters
[105]. These molecules can produce anti-inflammatory drugs (ibuprofen, naproxen),
anticancer drugs (Taxol®, spergualin), antiviral drug (lobucavir), antihypertensive
drug (captopril), anticholesterol drugs (squalene synthase inhibitor), anti-Alzheimer
disease drug ([S]-2-pentanol), and vitamin A [105]. Ibuprofen is an example of the
applications of lipases [105]. Commercialized as Advil or Motrin, ibuprofen sold
around $290 million worth of Motrin alone, in the USA. The (S)-ibuprofen molecule
is 160 times more potent in inhibiting the prostaglandin synthesis than the (R)-
ibuprofen [105].

To obtain lipases, various species of Aspergillus are being used in the research
and production of these enzymes with the potential of subsequent application in the
pharmaceutical industry. To illustrate this, in the context of obtaining
enantiomerically pure alcohols for use in organic synthesis to achieve enantiopure
pharmaceuticals, Carvalho et al. studied the kinetic resolution of (R,S)-2-octanol
with octanoic acid in n-hexane by four Aspergillus lipases (A. flavus AC-8, A. niger
AC-54, A. oryzae AC-122, and A. terreusAC-241) [107]. They observed that lipases
from A. niger and A. terreus showed the best results in terms of enantioselectivity
(E = 4.9 and E = 4.5, respectively). These properties make these lipases good
candidates for biocatalysis in organic media [1, 107].

Direct esterification of racemic alcohols or carboxylic acids with dry mycelia of
strains of A. oryzae and Rhizopus oryzae often resulted in an efficient kinetic
resolution. For example, A. oryzae has been used in pure organic solvents for the
resolution of (RS)-flurbiprofen, displaying good enantioselectivity toward (R)-
flurbiprofen and providing results that are competitive with the data obtained using
commercial enzymes [108].

Among the ways to obtain a specific enantiomer, Hu et al. improved the ability of
A. terreus lipase to separate the racemic ketoprofen vinyl ester into individual enantio-
mers using hollow self-assembly of alginate–graft–poly(ethylene glycol)/α--
cyclodextrins (Alg-g-PEG/α-CD) spheres as enzyme immobilization carriers [109].
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Pandey et al. made a survey on major commercial lipases in 1999 revealing that
Aspergillus lipases were highly selective for short-chain acids and alcohol [110]. A
triacylglycerol lipase from A. oryzae stands out showing high specificity toward
triacylglycerols of middle-chain saturated fatty acids [110].

To complement Aspergillus lipase works, Li et al. reported a novel method of
synthesis of 1,3-diglyceride (1,3-DG), a healthy natural lipid which is extensively
used in food processing and utilized as pharmaceutical intermediate. The synthesis
of 1,3-DG via glycerolysis of triglyceride (TG) was catalyzed by whole-cell lipase
from a new isolated strain, A. niger GZUF36 [111].

Organic esters are used in various industries such as perfumery, flavor, and
pharmaceutical intermediates. Tamalampudi et al. developed an enantioselective
transesterification reaction by using recombinant A. oryzae whole-cell biocatalyst
expressing lipase encoding gene from Candida antarctica [112]. Pera et al. showed
indications that by manipulating the cultivation conditions of A. nigerMYA135, it is
possible to produce lipase extracts with different enzymatic properties, which would
allow them to be used in diverse industrial processes [113].

5.3 Chemical Industry

The use of lipases in the oleochemical industry is enormous as it saves energy and
minimizes thermal degradation during hydrolysis, esterification, acidolysis,
alcoholysis, interesterification, and aminolysis [41]. Some of the industrially impor-
tant chemicals manufactured from fats and oils by chemical processes could be
produced by lipases faster and with better specificity under mild conditions
[106]. The chemo-, regio-, and enantiospecific behavior of these enzymes has caused
tremendous interest among scientists and industrialists [106].

These enzymes carry out reactions of prochiral substrates and kinetic resolution
of racemic mixtures. The functional groups in which lipases act vary greatly:
alcohols and chiral or prochiral carboxylic esters, cyanohydrins, chlorohydrins,
diols, α- and β-hydroxy acids, amines, diamines, and amino alcohols [114].

Lipases are also used as biocatalysts in the production of useful biodegradable
compounds. 1-Butyl oleate is synthesized by direct esterification of butanol and oleic
acid to reduce the viscosity of biodiesel in winter use [41]. The mixture of 2-ethyl-1-
hexyl esters is obtained in a good yield by enzymatic transesterification from
rapeseed oil fatty acids for use as a solvent [41]. Trimethylolpropane esters are
also similarly synthesized as lubricants. Lipases can also catalyze ester syntheses,
and transesterification reactions in organic solvent systems have opened up the
possibility of enzyme-catalyzed synthesis of biodegradable polyesters [41].

One very important application of lipases has been in the organic synthesis of
pesticides for the production of optically active compound [110]. Generally, these
compounds were produced through the resolution of racemic mixtures of alcohol or
carboxylic esters; stereospecific synthesis reactions were also employed [110].

In a research of Aspergillus lipases potentially applied in the chemical industry,
Ding et al. studied lipases in the field of Knoevenagel condensation [115]. In the
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enzyme-catalyzed organic synthesis, they found that several lipases displayed
observable activities for Knoevenagel condensation. In particular, the commercially
cheap available lipase lipoprotein (LPL) from A. niger could efficiently catalyze the
Knoevenagel condensation of aromatic aldehydes with various active methylene
compounds in good to excellent yields with Z configuration exclusively [115].

Lipases from A. niger, Rhizopus delemar,Geotrichum candidum, and Penicillium
cyclopium were employed in the synthesis of esters of oleic acid with various
primary alcohols, whereas lipases from the species Rhizopus niveus and A. terreus
have been used for the esterification of free fatty acids (FFAs) in solvent-free systems
with promising results [116].

Cellulose esters (CEs), from which cellulose acetate (CA) is the more popular, are
of great importance because of their abilities for selective absorption and removal of
organic compounds or their compatibilities with plastics as a reinforcing material
[117]. Božič et al. studied the acetylation efficiency of nanofibrillated cellulose
(NFC) with acetic anhydride as acetyl donor using lipase from A. niger in a mixture
of dimethyl sulfoxide (DMSO) and phosphate buffer solution at ambient conditions
and in supercritical carbon dioxide (scCO2) [117]. This work shows a promising and
straightforward method for the surface modifications of nanocellulose with various
functionalities and opens up new opportunities for using it as a new absorbent for the
selective adsorptions of proteins and the removals of organic compounds [117].

5.4 Detergent Industry

Lipases have their major application in industrial laundry and household detergents
[118]. Lipases added to detergents improve the washing performance, since a reduced
amount of detergent is required, and save energy because of the lower washing
temperature [2, 119]. In addition to lipases, enzymes such as proteases, amylases,
and cellulases are added to the detergents to improve their efficiency [120].

For use as additives, the lipases should present low substrate specificity, because
they have greater ability to hydrolyze fat of various compositions and tolerate
alkaline washing conditions (pH 10), high temperature (50 �C), and the presence
of surfactants and other enzymes [2, 121]. Cold wash conditions can also be
performed using cold-active lipase [65]. Considering washing conditions are hostile
to most enzymes, a continuous screening of lipases is required. Then, suitable lipases
for detergent applications from different hosts were isolated such as Rhizomucor
miehei and Humicola lanuginosa [122].

Lipase from Aspergillus has also been reported. Lipase from A. terreus hydro-
lyzed both animal and plant oils and was tolerant in a wide range of pH (pH 3–12),
and it remained stable under the highest temperature of 65 �C. There was no change
on enzyme activity with the addition of detergents, except SDS that stimulates
enzymatic activity [123]. The lipase from A. niger MTCC 2594 was isolated and
showed pH stability between pH 4.0 and 10.0 and temperature stability between 4 �C
and 60 �C. Furthermore, in the presence of SDS, Tween 80 and commercial
detergents such as Henko and Surf Ultra improved the enzymatic stability [124].
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Another enzyme from Aspergillus presented excellent performance and possible
application in the detergent industry. The A. carneus lipase showed temperature and
pH optimum of 37 �C and 9.0, respectively. The pH stability was 8.0–10.0 for 24 h,
and stability temperature was 70 �C for 5 min. The SDS was a strong inhibitor, while
other types of different detergents such as taurocholic acid, hexadecyl trimethyl
ammonium bromide, and n-octyl-α- and n-octyl-β-D-glucopyranosides strongly
stimulated enzyme activity [125].

A cold-active lipase from A. nidulans hydrolyzed fatty acids of short and middle
chain and showed high activity in the range 0–20 �C and pH stability conserved at
alkaline pH [66].

5.5 Biofuel Industry

The use of energy sources in the generation of products depends on their burns.
During this process, the carbon that was confined in the oil and gas reserves is
transferred to the atmosphere in the form of gases, mainly as CO2, contributing to the
increase of the greenhouse effect and global warming. This scenario, coupled with
the finite character of fossil fuels, encourages the search for alternative energy
sources that will mitigate the negative effects generated in the environment and the
economy [126]. For power generation, renewable sources such as biodiesel have
been used to replace the fossil fuels [127].

Biodiesel is a mixture of fatty acid methyl esters (FAME) that are obtained by
transesterification or esterification of oils from different origins. Out of these two
processes, the enzymatic transesterification using lipase is the most advantageous
due to the easy byproduct retrieval of this reaction, the glycerol. Currently, the main
obstacle to biodiesel production using lipase is the high cost of enzyme production.
Consequently, researchers have invested in lipases prospecting in order to lower the
cost biodiesel production [128].

Lipase from Aspergillus strains has been used in biodiesel production. A genet-
ically modified lipase from A. oryzae was used to perform the transesterification of
soybean oil for biodiesel. Under optimized conditions assay using response surface
methodology, a yield of 93.6 % �0.014 (w/w) biodiesel was obtained [129].

The fungus A. nomius was isolated from soil and exhibited maximum whole-cell
lipase, which remains either inside the cell or in the cell wall, and methanolysis
activity when waste cooking oil was used as the carbon source. The maximum yield
of biodiesel was 95.3 % [130].

6 Conclusions

Lipases belong to a very select group of enzymes that are capable of catalyzing a
diverse number of reactions in mild reaction conditions. Although the major area of
application of lipases is the detergent industry, these enzymes are used to obtain
high-added value compounds in the pharmaceutical industry, mainly enantiomers,
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through esterification, transesterification, and hydrolysis reactions. This is a remark-
able feature of lipases since several enantiomerically enriched drugs can be obtained,
including ibuprofen, ketoprofen, flurbiprofen, and atenolol, among others. The use
of enzymes to this purpose is advantageous since the resolution of these compounds
is highly difficult due to their identical physicochemical properties. The source of
lipase is a major issue, since depending on it, the cost of enzyme production and
enzyme characteristics vary. In this context, filamentous fungi are of great interest
since they present a very efficient machinery for protein secretion. Among those,
Aspergillus are highlighted because they produce different types of enzymes, includ-
ing lipases, carbohydrate-active enzymes, and proteases. Several Aspergillus lipases
present good potential to be used in food, pharmaceutical, chemical, detergent, and
biofuel industries. However, more efforts should be directed to structurally charac-
terize lipases from this genus, what can result in the knowledge of the action
mechanism of these enzymes, optimizing their use. In addition, it is of great help
for protein engineering in order to improve Aspergillus lipase characteristics for
optimal industrial use.
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Abstract
Emerging viewpoints from contemporary research on terrestrial fungal metabo-
lites provides an insight into their valuable insidious biological activity including
cancer therapeutics. Some well-characterized fungal metabolites surprisingly
display remarkable antitumor properties at preclinical and clinical trial stage.
Although their underlying mechanism of action is still being investigated,
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overwhelming evidence points to their actions operationally targeting core regu-
latory pathways and enzymes dysregulated during pathogenesis of cancer. Some
metabolites have progressed into clinical pipeline, while others preset unique
window of opportunity to capitalize as lead compound for future synthesis of
anticancer drug of translational relevance. This chapter presents a succinct pre-
clinical and clinical perspective on a few select and structurally diverse fungal
metabolites with supportive mechanism-based bioactivity deciphered against
tumor cells and with the presumptive notion of their future development as
novel synthetic analog. The metabolites included are: Phenylahistin,
Palmarumycin CP-1, Rhizoxin, Epoxyquinol B, Fumagillin, Destruxin B,
Cotylenin A, Myriocin, Cytochalasin E, Chaetocin, Apicidin, and
Galiellalactone. None of these agents are currently being adopted for treatment
of cancer, but with some metabolite analog compounds, clinical trials have been
conducted to ensure clinical safety and efficacy. However, based on overwhelm-
ing precedence of preclinical and clinical anticancer activity, this new class of
structurally diverse fungal metabolites may become an important source of
anticancer lead molecules for use either as monotherapy or in combination with
other drugs in fight against cancer.

Keywords
Fungal metabolites • Phenylahistin • Palmarumycin CP-1 • Rhizoxin •
Epoxyquinol- B • Fumagillin • Destruxin-B • Cotylenin-A •Myriocin • Cytocha-
lasin-E • Chaetocin • Apicidin and Galiellalactone

1 Introduction

Cancer continues to besiege as a threat to humankind since antiquity dating from the
times of Pharaohs in ancient Egypt, until today. It derives its name from the father of
medicine Hippocrates, who used the Greek word “Karkinos” to describe tumors, but
modern concept about this disease differs from ancient view. According to World
Health Organization (WHO), cancer is defined as an abnormal growth of cells
caused by multiple changes in gene expression leading to dysregulated balance of
cell proliferation and cell death and ultimately evolving into a population of cells that
can invade tissues and metastasize to distant sites causing significant morbidity and,
if untreated, death of the host. Adding further rhetoric dimensions to the complexity
of this disease are some additional recognized set of hallmarks compiled and
published by Hanahan D and Weinberg RA [1].

Despite advancements in our knowledge during past quarter of a century leading
to identification of critical hallmarks associated with this disease, cancer still remain
a major cause of morbidity and mortality both in developing and developed coun-
tries. In the year 2016 itself, 1,685,210 new cancer cases and 595,690 cancer deaths
are projected to occur in the United States [2]. These dismal figures strongly attest
we are still lagging behind perception of “magic bullet,” pioneered over 100 years
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ago by Paul Ehrlich, the father of chemotherapy, and draw attention to invigorate
existing anticancer drug discovery and development agenda. Such efforts may
ultimately capitalize on attractive drug leads for patients benefit.

Of all currently available anticancer drugs in the clinics, over 60 % of them are
either of natural origin or products from modifications of natural product derived
compounds. Interest in search for anticancer agents from natural sources started in
earnest in the 1950s with the discovery and development of the vinka alkaloids,
vinblastine and vincristine, and later taxol from bark of the Pacific yew, Taxus
brevifolia. Despite advancements relating to understanding pathobiology of cancer
over the past few decades, a number of reports emerged in parallel in the literature
highlighting the production of secondary metabolites of interest with valuable bio-
logical activities by endophytic and terrestrial fungi. Thereafter, over the time period,
our knowledge regarding the role of fungal metabolites in context of cancer therapy
also advanced leading to confirmation of antitumor activity against a vast majority of
cancers including leukemia, lymphoma, and solid tumors. Moreover, information
accrued from underlying mechanism of action of some investigated fungal metabo-
lites provided basis to develop novel synthetic analogs harboring potent efficacy and
low toxicity with additional therapeutic advantage. This chapter presents a succinct
overview within framework of historical origin, chemical structure, mechanism, and
antitumor effects of some select promising fungal metabolites, which have been
extensively researched relating to tumor prognosis. Included herein are the bioactive
compounds: Phenylahistin, Palmarumycin CP-1, Rhizoxin, Epoxyquinol- B,
Fumagillin, Destruxin-B, Cotylenin-A, Myriocin, Cytochalasin-E, Chaetocin,
Apicidin, and Galiellalactone. Their structure and other available chemical relevant
information are presented in Table 1. Figure 1 depicts a generalized overview of
fungal metabolite targets within tumor cells. Almost all these metabolite compounds
demonstrate potent therapeutic advantage at preclinical stage of investigation, as
inferred from inhibition of tumor growth, delaying the tumor progression as well as,
an effect on invasion and metastasis of tumor cells. Some metabolites have entered the
clinical trial stage for translation as potential candidate drugs traversing from bench to
the clinics as future cancer therapeutics. Some of these presumptively promising
metabolite compounds are discussed below individually.

2 Phenylahistin

In 1997, Kanoh et al. isolated phenylahistin (PHL), a lowMWmetabolite from the agar
culture medium of terrestrial fungi Aspergillus ustus NSC-F038 as part of a screening
program aiming to identify new cell cycle inhibitors [3]. This new and novel class of
diketopiperazine consist of L-phenylalanine along with a unique isoprenylated
dehydrohistidine residue and a quaternary carbon at the 5-position of the imidazole
ring that confers a colchicine-like microtubule activity to the molecule (Fig. 1).
Although PHL is produced as a racemic mixture, only the (�) enantiomer has been
proven to be more cytotoxic and associated with potent antitumor activity which
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suggests stereochemistry of the α-carbon of phenylamine residue is important for its
activity. Moreover, (�)-PHL specifically inhibits cell cycle activities during G2/M
phase by inhibiting tubulin polymerization which are the major constituent of microtu-
bules and an essential component of cytoskeleton system and spindle dynamics within
mitotic apparatus of cells [3, 4]. It has been further concluded that (�)-PHL act directly
on tubulin, and competitive binding assay using radiolabeled colchicine and vinblastine
indicates it recognizes the colchicine-binding site on tubulin [5].

Preliminary investigations towards any predictive antitumor activity of (�)-PHL
were initially carried out according to drug evaluation program of the Japanese
Foundation for Cancer Research based on the growth inhibition of 38 human tumor
cell lines [6]. Further evaluation using seven human tumor cell lines [A431 (dermal),
A549 (lung), HeLa (cervical), K562 (leukemia), MCF-7(breast), TE671(CNS), and
WiDr (colon)] and a mouse leukemia cell line [P388 (mouse leukemia)], PHL
reaffirmed its potent antitumor activity in vitro with IC50 values that ranged between
0.18 and 3.7 μM [4]. Additionally, the antitumor activity of (�)-PLH has also been
evaluated against P-338 mouse leukemia and Lewis lung carcinoma cells in vivo
revealing significant antitumor activity at the highest given dose (100 mg/kg)
[4]. Moreover, no toxicity due to phenylahistin has been noted on ex vivo studies

Fig. 1 Molecular targets of fungal metabolites within tumor cells
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performed on primary cultures of rat or human hepatocytes [7]. Based on foregoing
encouraging bioactivity and total synthesis of (�)-PHA, further extensive structural
modifications based on structure-activity relationship lead to emergence of a syn-
thetic derivative – NPI-2358 in 2006, which was chosen as a clinical candidate with
US adopted name designation as Plinabulin [8]. Plinabulin displays potent cytotox-
icity against HT-29 colon cancer cells [IC50 value = 15 nM] and inhibits cell cycle
progression of HeLa cells in G2/M phase. Initial studies also revealed that Plinabulin
induce tubulin depolymerization and permeable at low concentrations through
monolayer of human umbilical vein endothelial (HUVEC) cells in culture causing
tumor vasculature to collapse earning status quo as “vascular disrupting agent”
(VDA) [8]. Some recent preclinical in vitro data indicate Plinabulin exhibits growth
inhibitory activity and induces apoptotic cell death in multiple myeloma cell lines
and tumor cells from patients with multiple myeloma and significantly inhibit tumor
growth and prolong survival in an human MM.1S plasmacytoma murine xenograft
model bolstering rationale for clinical evaluation of Plinabulin to improve patient
outcome in multiple myeloma [9].

Dose escalation of NPI-2358 was conducted in a phase-I trial [NCT00322608 at
https://clinicaltrials.gov] enrolling patients with advanced solid tumors and lymphomas
who were not candidates for further standard therapy and over 18 years of age or more
and were treated with a weekly intravenous infusion of NPI-2358 on days 1, 8, and
15 of 4-week cycles [10]. The study essentially used accelerated dose titration design in
which the dose of NPI-2358 was escalated in cohorts from 2 mg/m2 to a recommended
phase II dose (RP2D). In total, 38 patients were enrolled with Plinabulin generally well
tolerated without apparent irreversible or cumulative toxicities. Adverse events com-
monly ascribed to Plinabulin at RP2D included transient hypertension, tumor pain,
fatigue, fever and nausea/vomiting. Although no confirmed tumor response have been
reported, a notable rate of stable disease (30 % after 2 cycles) was observed with
interesting outcomes in several patients. Four patients maintained stable disease for
4 months or more, including a patient with pancreatic adenocarcinoma (4 months), and
1 with hemangiopericytoma [10]. Following this trial data, another clinical trial
[NCT00630110] on patients with advanced nonsmall cell lung cancer (NSCLC) with
primary outcome endpoint comparing overall survival of patients treated with docetaxel
to patients treated with docetaxel + NPI-2358 has been completed, but no results of this
study have been posted yet. Currently patient recruitment is ongoing for a randomized
phase 3 assessment of a second line chemotherapy with docetaxel plus Plinabulin
compared to docetaxel alone in patients with advanced NSCLC with at least one
large lung lesion [NCT02504489 at https://clinicaltrials.gov]

3 Palmarumycin CP-1

Palmarumycin was first isolated in 1994 by Krohn and coworkers as part of an
screening program to isolate biologically active secondary metabolites from myce-
lial cultures of an endophytic fungus Coniothyrium palmarum [11]. Palmarumycin

20 Preclinical and Clinical Perspective on Fungal Metabolites and Their Analogs. . . 677

https://clinicaltrials.gov/
https://clinicaltrials.gov/


CP-1 belongs to a family of unique bioactive fungal metabolites that carry a
naphthoquinone spiroketal pharmacophore (Fig. 1). Palmarumycin CP1 displays
diverse biological activity including antifungal, antibacterial, and antiproliferative
effect although its action against tumor cells remained mostly undermined due to
the high electrophilic functionality present in their spiroketal structure making it
highly unstable, and issues with aqueous solubility of the compound. At molecular
level, an important pharmacological target for therapeutic intervention by
Palmarumycin CP-1 is inhibition of the enzyme thioredoxin reductase-1 [12,
13]. With thioredoxin reductase-1 being overexpressed in human tumors and
secreted thioredoxin-1-stimulating tumor cell growth, tumor cells’ sensitivity to
apoptosis induction is compromised [14]. Intriguingly, despite known benchmark
inhibitory activity against thioredoxin reductase-1, issues relating to solubility and
stability posed a significant challenge to move Palmarumycin CP-1 or its analogs
in the clinic, which has now been addressed by total synthesis of a water-soluble
prodrug PX-916. This NADPH-dependent prodrug analog also retains its efficacy
in irreversibly inhibiting purified thioredoxin reductase-1 most likely by reacting
with the selenocysteine-containing catalytic site of the enzyme and subsequently
releases the parent compound with half-life of 1 h. Of clinical interest, PX-916 do
not inhibit other NADPH-dependent reductases such as human glutathione reduc-
tase and cytochrome P450 reductase until � 100-fold high concentration is used;
and the major toxicity observed 24 h after 5 daily doses of PX-916 (25 mg/kg iv) is
neutropenia and thrombocytopenia, with no evidence of elevation in plasma liver
enzymes, and no significant weight loss nor any other gross toxicity being apparent
[12]. Of noteworthy, when administered as a single dose to mice bearing MCF-7
breast cancer cells induced xenografts, tumor thioredoxin reductase-1 activity was
inhibited up to 60 % and remained inhibited for 48 h [12]. Moreover, repeated
administration of the drug for 5 days inhibited the enzyme up to 75 % when
evaluated 24 h after the last dose, attesting pharmacological modulation of
thioredoxin reductase-1 enzyme in tumor cells and thereby beholding PX-916 as
a new therapeutic modality in cancer [12]. An extension of the study by same
research group also concluded excellent antitumor activity of PX-916 in other
preclinical models against A673 rhabdomyosarcoma, SHP-77 small cell lung
cancer, and MCF-7 breast cancer giving the drug either through intraperitoneally
(i.p.) or intravenous (i.v.) route. Of interest, with SHP-77 cells, complete tumor
regressions were noted in some mice. The most active schedule optimized for
PX-916 was every other day administration, and inhibition of tumor growth was
seen as long as the drug was given. However, no significant antitumor activity was
seen following oral administration at doses that presented i.v. antitumor activity.
Another novel palmarumycin analog [8-(furan-3-ylmethoxy)-1oxo-1,4-
dihydronaphthalene-4-spiro-20-naphtho[100,800-de] [10,30] [dioxin] or SR-7 has
been synthesized which blocks mammalian cell cycle transition in G2/M but not
in G1 phase [15]. Clearly more studies are warranted before SR-7 or Palmarumycin
PX-916 translates into clinics as antitumor therapy for cancer.

678 S. Banerjee and S.B. Paruthy



4 Rhizoxin

Rhizoxin is a 16-membered macrocyclic polyketide metabolite isolated from the
fungus Rhizopus chinensis – the virulence factor for rice seedling blight disease
which infects and threatens mainly the plant roots. Later, a series of elegant exper-
iments revealed rhizoxin is not made by the fungus but by an endosymbiotic
bacterium Burkholderia living within the hyphae of its host and providing the fungus
with the antimitotic compound rhizoxin. Of interest is the observation that fungal
strain without the bacteria is unable to manufacture rhizoxin [16]. In addition to
being an important virulence factor for infection to plants by Rhizopus sps., rhizoxin
has been found and reported very cytotoxic against human and murine tumor cells.
Mechanistically, like phenylahistin, rhizoxin also binds efficiently to ß-tubulin and
inhibits polymerization of the tubulin molecules, which otherwise is essential for
formation of the mitotic apparatus during cell division and therefore classified as an
antimitotic agent. Additionally, rhizoxin also has the capability to extensively
depolymerize preformed microtubules [17]. However, unlike other fungal metabolite
phenylahistine, rhizoxin binding to tubulin is independent from colchicine binding,
but instead have a high binding affinity to vinka alkaloids binding site of tubulin and
reportedly inhibits microtubule assembly at 10fold lower concentration (10 ng/ml)
than vincristine and found more active than vincristine in P-glycoprotein-mediated
vincristine-resistant murine and human cell lines (P388/VCR and K562/VCR)
[18, 19]. Additionally, rhizoxin demonstrates potent cytotoxicity over an exception-
ally broad range of concentrations (10�4M to 10�13M) in vitro in NCI tumor cell
screening panel and also found effective against human tumor cell lines resistant to
vinca alkaloids Vincristine and Adriamycin in vitro and in vivo [19–21]. Moreover,
rhizoxin has also been evaluated in a number of human tumor xenografts and found
to exhibit schedule-dependent antitumor effect. It has been concluded that repeated
daily drug dosing results in superior antitumor activity compared to single dosing or
less frequent repeated dosing schedule [22]. Total synthesis of an enantioselective
rhizoxin D has been reported, and its palmitoyl derivative-13-O-palmitoyl-rhizoxin
(RX-1541) has been found more lipophilic having greater in vivo antitumor activity
and increased the length of survival of mouse; these results were inferred on
evaluation after intravenous administration of drug to mice bearing subcutaneously
inoculated M5076 sarcoma cells [23]. RX-1541 therefore seems to hold promise as a
new antitumor drug in future but only after undergoing rigorous toxicity and
pharmacological evaluation.

Mainly due to its mitostatic effects, rhizoxin has been the subject of several Phase
I and II clinical trials. In the initial Phase-I and subsequent Phase-II studies
performed by EORTC (European Organization for Research and Treatment of
Cancer), pharmacokinetic profile was characterized by rapid clearance and was
undetectable in blood at blood sampling beyond 30 min from drug administration
following 5 min bolus infusion schedule, but just modest antitumor activity was
noted, possibly due to rapid systemic clearance. To overcome this limitation and to
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further exploit the potential for schedule-dependent behavior of rhizoxin, adminis-
tering rhizoxin as a 72-h continuous intravenous (i.v.) infusion was evaluated
[24]. Nineteen patients with advanced solid malignancy were entered into this
study. Rhizoxin was administered at doses ranging from 0.2 mg/m2 i.v. over 12 h
to 2.4 mg/m2 i.v. over 72 h every 3 weeks. The principal dose-limiting toxicities
(DLT) were severe neutropenia and mucositis, and the incidence of DLT was
unacceptably high at rhizoxin doses above 1.2 mg/m2, which was determined to
be the MTD and recommended dose for Phase-II study. Unfortunately in this trial, no
objective antitumor responses were observed, but nonetheless, information obtained
can serve as guide for further improvements in dosing schedule and tried with new
isolated derivatives that are showing distinct higher effects and therefore still holds
promise until clinical trials are planned with new candidate analogs of rhizoxin.

5 Epoxyquinol B

Epoxyquinol B (EPQB) is a highly functionalized pentacyclic compound grouped
under epoxyquinoid class of compounds. It was isolated together with closely related
epoxyquinol A and C, from an uncharacterized fungus designated as BAUA3564
from soil sample as part of a screening program by Osada and coworkers to identify
novel cytotoxic agents of microbial origin. The biosynthetic mechanism of
epoxyquinols has attracted considerable interest because of their structural novelty
being characterized by a unique pentaketide dimer, about which biosynthetic knowl-
edge is very limited except some indirect evidences suggesting its assembly by a
polyketide synthase [25]. Interestingly, EPQB features potent antiangiogenic effects
and many of the pathological conditions such as cancer, rheumatoid arthritis,
diabetic retinopathy, and other chronic inflammatory diseases are characterized by
extensive angiogenesis. Distinct cellular and molecular events have been identified
during the various sequential steps of development of pathological angiogenesis
including cell migration, proliferation, and formation of capillary tubes by endothe-
lial cells (neovascularization). Additionally, the production and secretion of VEGF
by normal and tumor cells also plays a pivotal role in subsequent hyperactivation of
downstream signaling pathways of neovascularization, which conceptually can be
halted either by inhibiting endothelial cell functioning or VEGF secretion and
signaling pathway. Several angiogenesis inhibitors from natural products and chem-
ical synthesis have been developed targeting endothelial cells and signaling path-
ways, but given that EPQB also inhibits angiogenesis, it may serve as a lead
compound towards development of new and novel antiangiogenic and antitumor
drug. This stimulated many laboratories to partake synthesis of EPQB from a
biosynthetic precursor epoxycyclohexenone aldehyde via an electrocyclization/
intermolecular Diels-Alder dimerization cascade reaction and subsequently evaluate
their biological potency relevant to generate better efficacious drugs [25–27]. EPQB
(10 mg/kg body wt) reportedly reduces the number of blood vessels supplying
tumors and tumor volume without toxicity in Renca-cell-bearing Balb/c mice [28].
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Several emerging mechanistic studies shed light that EPQB is an unselective
covalent kinase inhibitor that inhibits growth factor-induced activation of VEGF
receptor-2 (VEGFR2), Epidermal Growth Factor Receptor (EGFR), Fibroblast
Growth Factor receptor (FGFR), and Platelet-derived Growth Factor receptor
(PDGFR), thus providing an insight into EPQB molecular basis of action and for
drug development relating to antiangiogenic therapy during pathophysiological
events. Given that EPQB harbors highly reactive moieties two epoxides, it inhibits
angiogenesis by covalently binding with nucleophiles, especially cysteine thiol
residues of VEGFR2, EGFR, FGFR, and PDGFR [28]. EPQB has been found to
inhibit human umbilical endothelial cell (HUVEC) migration stimulated by vascular
endothelial growth factor (VEGF) in dose-dependent manner (ED100 = 2.6 μm)
without presenting any significant toxicity [29]. Moreover, in addition to these
proteins, EPQB inhibits NF-kB signaling through inhibition of the TGF-β activating
kinase-1(TAK1) complex, a factor upstream of IKKβ and NF-kB, and only few
inhibitors of TAK-1 have been reported [30]. cDNA microarray analysis reveals that
EPQB inhibits the expression of TNF-α-induced genes such as NF-kB, I-kB,
ICAM1, VCAM1, and E-selectin. Further, due to its reactive point, EPQB cross-
links other target proteins as well mainly through cysteine residues by opening its
two epoxides and may potentially inhibit several signal transduction pathways
linked with proliferation and migration of tumor cells [31]. Summarizing, the actions
of EPQB within tumor cells may be proposed as: (1) dual inhibition of multiple
receptor kinases by binding to cysteine residues of receptor kinases and (2) intramo-
lecular cross-linking directly with cysteine residues of multiple targets within signal
transduction pathways. Thus, based on literature precedence, interest in EPQB
remains elevated because of its potent biological activity.

6 Fumagillin

Fumagillin is a potent natural meroterpenoid metabolite antibiotic that was isolated in
1949 by Elbe and Hanson from soil fungus of the genus Aspergillus fumigates [32]. It
is widely used in apiculture against nosema disease, and in human medicine,
Fumagillin is the most broadly effective antimicrosporidial drug especially in patients
with compromised immune system due to AIDS, to relieve symptoms of intestinal
microsporidiosis after organ transplant procedures and to treat ocular microsporidial
infections [33–37]. NMR and X-ray crystallographic data to characterize the structure
of fumagillin revealed the presence of six stereogenic centers, a functionalized cis diol
and two epoxides (Fig. 1) [38]. This information later prompted to investigate the
mechanism of its mode of action until the discovery that fumagillin inhibits angio-
genesis – indispensable for tumor growth, invasion, and metastasis in several kinds of
cancer by inhibition of the endothelial cells proliferation and migration as mentioned
earlier; this led interest to understand structure-activity relationships to limit the size
and metastasis of tumors by blocking angiogenesis. Mechanistically, fumagillin acts
against and binds to the enzymemethionine aminopeptidase-2 (MetAP-2) [39].Methi-
onine aminopeptidases (MetAps) are bifunctional cytosolic proteins that play a critical
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role in the regulation of posttranslational processing of newly synthesized proteins by
removing the amino acid methionine positioned at their amino acid terminal
[40]. Overexpression of MetAP-2 plays an important role in the growth of many
tumors, and overexpression of MetAP2 has been reported in many tumors such as,
colon cancer, B cell lymphoma, and cholangiocarcinoma [41–43]. In lung cancer,
patients’ survival rate was increasingly favorable in low MetAP-2 expressing patients
than in high MetAP-2 expression patients, and compared to normal lung tissue, tumor
tissues had significantly higher activity [44]. Crystallography data revealed that
fumagillin covalently binds to a histidine moiety (His231) of the enzyme, resulting
in opening of the spiroepoxide on the core skeleton of fumagillin causing a 1000-fold
decrease in biological activity of MetAP-2 by opening of this cyclohexane ring
spiroepoxide [39, 45]. Furthermore, fumagillin arrests endothelial cells in G1 phase
of cell cycle along with suppression of cyclin E mRNA expression and protein level
resulting in the inhibition of endothelial cell proliferation and motility. Microarray
analysis of fumagillin-treated HUVEC shows an upregulation of 71 genes and
downregulation of 143 genes that are mostly involved in cell proliferation, migration,
adhesion, differentiation, and gene transcription [46]. Low dose of fumagillin treat-
ment to SCID mice bearing colon cancer cells in the subcutis when harvested after
4 weeks of treatment had small tumor mass, fewer pulmonary metastases, and lower
microvessel density relative to control group [46]. Suppression of hepatoma growth
and metastasis by fumagillin has also been reported [47].

Despite initial overwhelming success in understanding the underlying biological
effects of fumagillin in context of cancer therapy, potential toxic and undesirable
consequences of fumagillin treatment restricted its therapeutic utility in current form.
Common side effect in human clinical trials in which fumagillin was administered
orally was gastrointestinal-related cramping, diarrhea, and significant loss of body
weight alongside thrombocytopenia, neutropenia, and hyperlipasaemia being most
frequent biological adverse events at the highest administered dose of 60 mg which
later ceased after the treatment was terminated [34, 35]. Thus, to move fumagillin
forward based on the knowledge gained, chemical analogs of fumagillin have been
synthesized retaining similar novel mechanism of disrupting tumor vasculature by
targeting the enzyme MetAp2. These include TNP-470, PPI-2458, and CKD-732.
TNP-470 demonstrate antitumor activity both as monotherapy and in combination
with conventional chemotherapy in numerous variety of different tumor types in
preclinical models by blocking endothelial cell proliferation in vitro and angiogen-
esis in vivo and tried in human clinical trials. Unfortunately, one of the trials
[NCT00038701 at https://clinicaltrials.gov] with the goal to assess survival and
patterns of failure in patients treated with Gemzar-based chemoradiation plus
TNP-470 for locally advanced adenocarcinoma of the pancreas had to be terminated
because of slow patient accrual. The other trial was a Phase-I study of TNP-470 in
the treatment of AIDS-associated Kaposi’s sarcoma (AIDS-KS) [NCT00000763 at
https://clinicaltrials.gov].This study progressed to completion and in essence con-
cluded with the note that TNP-470 administered as a weekly 1-h infusion to patients
with early AIDS-KS is well tolerated at doses up to 70 mg/m2, which was the highest
dose tested, and tumor responses were observed in a substantial number of cases at
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various tested dose levels. The clinical researchers propose TNP-470 be further
evaluated in patients with AIDS-KS as a single agent and in combination with
other biologic response modifiers in early disease or after initial response to cyto-
toxic chemotherapy [48]. Unpredictably, incidence of central nervous system (CNS)
and visual impairment-related adverse effects at optimal therapeutic dose became a
limiting factor for its use in clinics, and thus later, PPI-2458 was designed to
overcome clinical limitations of TNP-470 with greatly reduced CNS toxicity com-
pared to TNP-470. PPI-2458 shows antitumor activity in a broad range of xenograft
tumor models including melanoma, breast cancer, glioblastoma, lung, prostate, and
leukemia and lymphoma. A clinical trial [NCT00100347 at https://clinicaltrials.gov]
under multi-institutional collaboration was initiated to assess the safety and tolerability
of escalating doses of PPI-2458 in subjects with non-Hodgkin’s lymphoma (NHL) and
solid tumors, but unfortunately the study got prematurely terminated because of
nonscientific reasons with no outcome posted. Another semisynthetic analog
CKD-732 [6-(4-dimethylaminoehoxy) cinnanoyl-fumagillol] entered into a clinical
trial for the treatment of refractory solid cancer, including combination with
capecitabine and oxaliplatin for the treatment of metastatic colorectal cancer in patients
who had progressed despite being on irinotecan chemotherapy [49, 50].

7 Destruxin B

The Destruxin family of cyclodepsipeptide first isolated and reported by Kodiara
(1961) is major small molecule secondary mycotoxin metabolite secreted by the
entomopathogenic fungi Metarhizium anisopliae [51]. Later, isolation of Destruxin
(DxB) has been reported from other pathogenic fungi such as Alternaria brassicae
and from liquid cultures of Ophiosphaerella herpotricha (Fr.) Walker [52]. The
structure of DxB has been confirmed comprising of an α-hydroxy acid and five
amino acid residues (Fig. 1). A broad spectrum biological effects such as phytoxic,
antiviral, insecticidal, antitumor, cytotoxic, and cytostatic effects have been reported,
and additional forthcoming information about this metabolite is growing exponen-
tially [53–55]. Largely due to constrain imposed to obtain relatively large amounts of
DxB from natural sources needed to investigate their anticancer and biological
activity, chemical synthesis of DxB under optimized conditions has provided suffi-
cient amounts of the compound to investigate and evaluate antitumor properties and
understand underlying molecular mechanism associated with its action. Of interest,
there is good evidence which indicates inhibition by DxB of ubiquitous multisubunit
complex proton pump-vacuolar H+-ATPase (V-ATPase) residing in the endo- and
plasma membrane of all eukaryotic and animal cells [56]; this may also be consid-
ered as attractive target for cancer therapy because of its potential involvement in
tumor invasion, metastasis, and osteopetrosis and may provide basis for develop-
ment of new drugs for the treatment of bone resorption in osteoporosis and cancer
[57–59]. Clearly, there exists supportive experimental evidence to indicate
V-ATPase inhibitors overcoming Bcl-xL-mediated chemoresistance through
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restoration of caspase-independent apoptotic pathway supporting the possibility of
using DxB as a therapeutic adjunct in cancer therapy [60].

Further promising in vitro and in vivo anticancer effect of DxB on human colon
and hepatocellular carcinoma have been cited based on inhibition of the
Wnt/β-catenin/TCF signaling pathway including invasion and migration of tumor
cells coordinated by suppression of MMP-2 and MMP-9 enzymatic activities
[61–63]. It is now well accepted that dysregulation of the Wnt pathway plays a
critical role in the development of many human cancer including colorectal cancer
and hepatocellular cancer, and thus, DxB could be an important pharmacological
molecule to antagonize proliferation of tumor cells in many of these cancers
expressing aberrant Wnt signaling. Experimentally, in the NOD/SCID mice xeno-
graft model, DxB at dose of 5 mg/kg/day suppresses tumor size and burden
significantly without any associated symptoms of toxicity as inferred from food
and fluid consumption as well as body weight. Immunohistochemical analysis
performed on harvested tumor samples for molecular targets of DxB confirmed
diminished expression of β-catenin and associated molecules including cyclin D1
and survivin and downregulation of CD31 indicative of antiangiogenic effect of
DxB [61]. There is also good evidence of DxB showing a strong suppressive effect
on the production of the hepatitis B surface antigen in human hepatoma cells [64]. In
oral cancer and non-Hodgkin lymphoma, apoptotic mechanism including
programmed cell death by DxB has been projected resulting in antitumor effect
[65, 66]. Finally, although there is good evidence indicating the role of destruxins in
cancer therapy, further work is necessary before initiation of clinical therapy.

8 Cotylenin A

Cotylenin A was the main small bioactive effector molecule originally isolated by
Sassa (1970) from culture broth of Cladosporium sps strain 501-7w along with
Cotylenin B-I [67]. Cotylenin A displays cytokinin-like bioactivity in plants, similar
to fusicoccin-A. Later, it was established that cotylenin A has a novel structure
comprising of a fusicoccin-diterpene glycoside with complex sugar moiety (Fig. 1)
[68]. Its stereochemistry was later confirmed by HMBC experiments and X-ray
crystallography of its diacetyl-dihydro derivative which supports the observed
integral interrelationship between its stereochemical conformation and biological
activity [69]. Further investigations with crystallographic data and in silico screening
analysis, a unique mode of action of cotylenin A in tumor cells came to attention. It
acts as a novel stabilizer by making multiple simultaneous contact points with
human cancer relevant 14-3-3 PPIs (Protein-protein interactions). PPIs and its
partner proteins are reportedly involved in an array of signal transduction and
regulatory pathways that lead, among other, to an upregulation of apoptosis regu-
lating genes. Cotylenin A is also potent in stimulating differentiation and therefore
evaluated from therapeutically strategic point of view to enhance sensitivity of tumor
to many anticancer agents. cDNA microarray of human myeloid leukemia HL-60
cells exposed to cotylenin A revealed significant upregulation in the expression of
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21 genes including rapid expression of calcium-binding protein S100P gene that
induces differentiation. This gene has been found methylated in pancreatic cancer
cells and currently perceived that Cotylenin A may alter the transcriptional activity
of S100P promoter and possibly other promoters by its demethylation actions [70].

The differentiation-inducing activity of Cot A in several human and murine myeloid
cell lines has been recorded [71–73]. It significantly stimulated both functional and
morphological differentiation in primary cultures of 9 out of 12 cases of leukemia cells
that were freshly isolated from acute myelogenous leukemia (AML) patients,
earmarking Cot A as a candidate agent for inducing differentiation in AML [73]. Fur-
ther, the therapeutic efficacy of Cot Awas also proven in experimental preclinical model
of leukemia. Administrating cotylenin A significantly extended survival of SCID
(severe combined immunodeficiency) mice inoculated with retinoid-sensitive and
retinoid-resistant human acute promyelocytic leukemia (APL) cell line-NB4 without
any noticeable adverse effects. This attests that cotylenin A may be useful in therapy for
leukemia and some other malignancies, as well [74]. Additionally, a rational combina-
tion of cotylenin A and Interferon-α (IFN-α) has also been evaluated for synergism in
solid human nonsmall cell lung cancer (NSCLC) preclinical models [75]. The com-
bined treatment induced apoptosis in cancer cells while sparing normal lung epithelial
cells and significantly inhibited the growth of human lung cancer cells as xenografts
without any apparent adverse effects supporting potential therapeutic advantage of this
combination. In an investigated xenograft mouse model, PC14 lung cancer cells were
inoculated into athymic nude mice and given a daily subcutaneous (s.c.) injection of
3 � 104 IU of IFNα, and/or s.c. injections every other day of 100 μg of cotylenin A
(6.7 mg/kg body weight) at a site distant to the tumors; the first injection was initiated
7 days after the inoculation of tumor cells. As predicted above, significant inhibition in
growth of PC14 cells was noted in combination group relative to monotherapy groups
as xenografts. An extension of the study also included an arm wherein treatment was
continued for 12 days and then stopped, with a follow-up on day 26. All of the untreated
mice had a large tumor burden at day 26. On the other hand,>50 % of the treated mice
escaped from the disease (13 of 20 mice), and the rest had only a small tumor burden,
suggesting and confirming that the therapeutic effects could still persist after the
termination of treatment. These results indicate that the combination of cotylenin A
and IFNα is more effective therapeutically than treatment with cotylenin A or IFNα
alone, and the combined treatment carries a significant therapeutic advantage as
antitumor effect.

Cotylenin A plus IFNα also regresses the growth of drug-resistant ovarian carci-
noma SK-OV3 and OVCAR-3 cells as xenografts [76]. Furthermore, Rapamycin-a
macrolide fungicide with immunosuppressive properties and currently of significant
interest having exhibited promising antitumor effect in several types of refractory
tumors including breast cancer. It has been found that rapamycin and cotylenin A
cooperatively induce growth arrest of breast cancer cell MCF-7 in vitro and tumor cell
xenografts in vivo [77]. Further, cotylenin A has also been described to enhance
arsenic trioxide (ATO)-induced anticancer activity in experimental human breast
cancer even suppressing their invasive behavior [78]. Investigations into synthesis
of new analogs are still ongoing, but nothing exciting has come up yet in literature.
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9 Myriocin

Myriocin [Synonyms ISP-1, Thermozymocidin] is a novel amino fatty acid
[2S-amino-3R,4R-dihydroxy-2-(hydroxymethyl)-14-oxo-6E-eicosenoic acid] anti-
fungal antibiotic originally isolated from the culture filtrates and mycelium of the
thermophilic Ascomycete, Myriococcum albomyces in 1972 [79]. It was later also
isolated from extract of the fruiting body of entomopathogenic fungus Isaria
sinclairii which is native to Asia, mainly China, Korea, and Japan, and from the
culture broth of certain other thermophylic fungi such as Mycelia sterilia
[80]. Myriocin is a potent inhibitor of serine palmitoyltransferase (Ki = 0.28 nM),
the enzyme that catalyzes the first committed step in de novo biosynthesis of major
class of bioactive sphingolipid with ceramide as the final metabolite turnover. There
exists ample evidence implicating members of the sphingolipid family especially
sphingosine-1-phosphate (S1P) and sphingosine-1-phosphate receptors 1–5 (S1PR)
involvement in the oncogenic transformation, dysregulation of cell proliferation, and
resistance to apoptotic cell death as recently reviewed [81, 82]. Accordingly, phar-
macological manipulation of sphingolipids content in tumor cells is emerging as a
potential target for cancer therapy. Myriocin exerts a strong fungistatic effect against
yeast and dermatophytes, antiviral activity (including influenza, hepatitis B, and
hepatitis C viruses) and a potent immunosuppressant activity having 10–100-fold
more activity than cyclosporin A, but its poor solubility and high toxicity limit its
usage in clinics over that of cyclosporin A [83, 84]. Thus, to improve physical
characteristic (e.g., solubility) and biological properties including improved activity
and toxicity profile of Myriocin, structure-activity guided studies lead to the emer-
gence of an preclinical analog of interest-Fingolimod (FTY-720; trade name Gilenya
by Novartis Pharma) that was later approved by US Food and Drug Administration
in September 2010 as a new drug for Multiple Sclerosis. Unlike Myriocin, FTY-720
does not interfere with sphingolipid biosynthesis but rapidly converted to FTY720-
phosphate (FTY720-P) by sphingosine kinase 2 in vivo and FTY720-P acts as a
potent agonist at sphingosine-1-phosphate receptor (S1PR) pathway [85, 86]. Here-
after, FTY-720 emerged as a key player in clinical use and have shown strong
preclinical antitumor efficacy in vitro and in vivo across a broad range of malignan-
cies including breast, glioblastoma, prostate, lung, cholangiocarcinoma, gastric,
pancreatic, colon, bladder, ovarian, and hematopoietic malignancies either as single
agent or in combination with other drugs showing better clinical outcome
establishing its value as an potential therapeutic drug [87, 88, 89]. As an example,
administration of FTY720 at 10 mg/kg/day reduces the growth of androgen inde-
pendent prostate CWR22R xenografts in castrated nude mice [90]. Also, FTY-720
enhances the radiosensitivity of prostate cancer cells overexpressing miR-95-
microRNA associated with resistance to radiation [91]. Likewise, the combination
of FTY720 and radiation affected sphingosine kinase-1 inhibition and tumor sup-
pression in a mouse xenograft model of prostate cancer [92].

Additionally, inhibition of migration and invasion of tumor cells, such as those of
prostate, glioblastoma, hepatocellular carcinoma, pancreatic, and cholangio-
carcinoma following FTY-720 treatment has been recorded [93–97]. To cite an

686 S. Banerjee and S.B. Paruthy



example in a preclinical investigative model, tumor cells were implanted into the
peritoneal cavity of nude mice followed by FTY-720 treatment. On necropsy after
4 weeks, in control group the tumor cells had extensively colonized the visceral
organs and formed multiple metastatic nodules, whereas in the treated mice the
number of metastatic nodules was found significantly reduced attesting
antimetastatic efficacy of the drug without any overt toxic side effects [98]. Further-
more, FTY-720 has been shown to inhibit angiogenesis and found to reduce the
migration of human umbilical vein endothelial cells (HUVEC) [99]. The IC50
values of Fingolimod tested in different tumor cell lines vary between 5 and
20 μM. In general, the anticancer effects of FTY720 are reportedly mainly attributed
to its cytotoxicity towards cancer cells through direct mitochondrial damage
(caspase-dependent, caspase-independent, or autophagic cell death pathways)
[100, 101]. Moreover, in most instances, phosphorylation of FTY720 is not required
for its cytotoxic effect, but instead numerous molecular targets have been proposed
for the unphosphorylated form of FTY720 including ROS, PP2A, cyclin D1, SphK1,
dephosphorylation of Akt, and 14-3-3 proteins acting in concert to suppress cell
growth and induce cell death in a variety of cellular settings [88, 102]. An interven-
tional phase-I trial [NCT02490930 at https://clinicaltrials.gov] is currently recruiting
patients to evaluate whether Fingolimod can be safely combined with radiation and
temozolomide in newly diagnosed high grade glioma patients.

Further to improve clinical activity against a variety of human malignancies,
synthetic second generation of FTY-720 compound has been developed –
(1) nonimmunosuppressive analogs that lack sphingosine-1 receptor binding capa-
bility (OSU-2S and AAL-149) and (2) derivative with enhanced sphingosine kinase
inhibition (S-FTY720 vinylphosphonate and (R)-FTY720 methyl ether (ROME)
[103–105]. These analogs demonstrate either greater or equal potency like
FTY-720. None of these analogs have yet entered into clinical trial.

10 Cytochalasin E

As member of a complex and diverse cytochalasins (Greek cytos, cell; chalasis,
relaxation) group, Cytochalasin E is a distinct epoxide-containing cell-permeable
mycotoxin isolated as a minor secondary metabolite from the food storage mold
Aspergillus clavatus. Later, it was confirmed as produced by a range of fungi
[Alternaria chlamydospora, Cochliobolus tuberculatus, Rhinocladiella sps.,
Rosellinia nectaris and Helminthosporium demantiodeum] and its production
under different fermentation conditions has been reported [106].

Cytochalasin E has been established functioning as a novel inhibitor of angio-
genesis and tumor growth [107]. Under experimental conditions, it inhibits capillary
endothelial cells proliferation attributable to its distinctive structural group element,
the epoxide group. In an in vivo mouse corneal neovascularization model, cytocha-
lasin E inhibits bFGF- and VEGF-induced angiogenesis by approximately 50 %
[108]. Cytochalasin E has also been recorded efficacious in inhibiting the growth of
Lewis lung tumors in mice by approximately 72 % [107]. Being a cell-permeable
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toxin, some other well-characterized biological effect of cytochalasin E has been
recorded including depolymerization of actin filaments resulting in impairment of
cytokinesis during cell division affecting cell growth and cell migration and cell
cycle G2/M phase arrest [109, 110]. These are of considerable clinical interest since
it prevents the actively proliferating tumor cells to complete cytokinesis and their
sensitivity, especially with different treatment modalities (chemo- and/or radiother-
apy), and may elicit synergistic response. A rapid and sustained elevation of
intracellular free Ca2+ in B lymphocytes by increasing the extracellular Ca2+ influx
has also been recorded for cytochalasin E [111]. In preclinical evaluation for
antiglioma therapy, cytochalasin E has been found to efficiently arrest glioblastoma
cell growth using a concentration below 1 μM by inducing cell cycle G2/M phase
arrest and apoptosis [112]. Intriguingly, against the SKOV3 ovarian cancer cell line,
cytochalasin E has been found less cytotoxic than current clinically approved
antineoplastic agents such as doxorubicin, paclitaxel, and vinblastine [113]. Thus,
development of novel analogs of cytochalasin E need to be explored for future
clinical applications with acceptable tolerable dose in human.

11 Chaetocin

Chaetocin is a natural antimicrobial fungal mycotoxin metabolite originally isolated
from fermentation broth of Chaetomium minutum and has recently shown promise as
an antitumor agent. Structurally, chaetocin belongs to the class of 3–6 epidithio-
ketopiperazines and exists as molecular dimer of two five-membered rings cis fused
(Fig. 1). Mechanistic studies reveal chaetocin exerts multiple actions in cancer cells
resulting in significant antiproliferative activity against a wide variety of tumor cell
lines and therefore attracts much attention in the field of cancer therapeutics.

Published studies attest chaetocin as a drugable epigenetic agent by virtue of its
nonselective potential to affect methylation status of Lysine 9 on histone H3 (H3K9)
mediated by specific inhibition of the Lysine-specific histone methyltransferase SU
(VAR)3-9 [IC50 = 0.8 μM] [114]. Molecular insight reveal histones are methylated
at many lysine and arginine residues, and histone lysine methyltransferases
(HKMTs) have been envisioned as an important class of targets for epigenetic
therapy [115, 116]. Several other targets are also emerging relating to chaetocin
action on tumor cells. There are reports that chaetocin inhibits the molecular
chaperone heat shock protein 90 (Hsp90) and SUV3-9H1 is a novel client protein
of Hsp90 [117]. Additionally, inhibition of SUV3-9H1 by chaetocin reportedly also
affects several important steps in metastasis process such as migration and invasion
of cells [118, 119].

Recently, it has been reported for hepatocellular carcinoma that cumulative
recurrence rate is significantly higher for patients with elevated SUV3-9H1 expres-
sion and Histone H3 lysine 9 trimethylation (H3K9me3) [120]. The antitumor
efficacy of chaetocin was therefore investigated and validated in vivo by xenograft
transplantation of HCC (Huh1/Huh7) cells into NOD/SCID mice. Both tumor
initiation and subcutaneous tumor growth were suppressed by chaetocin treatment
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in a dose-dependent manner at 8 weeks after transplantation and immunohistochem-
ical staining of tumors revealed chaetocin remarkably reduced H3K9me3 levels,
Ki-67, and apoptotic markers compared with control [120]. In acute myeloid leuke-
mia (AML), pharmacological inhibition of SUV3-9H1 by chaetocin induces apo-
ptosis in leukemia cell lines in vitro and primary AML cells ex vivo and delayed
leukemia growth in vivo [121–123]. Other researchers have confirmed chaetocin and
other HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA, an approved drug
for cutaneous T-cell lymphoma) and trichostatin A, generate potent cytotoxicity to
leukemia cells derived from patients [121, 124]. Similarly, another small molecule
epigenetic inhibitor JQ-1 exhibited synergistic cytotoxicity with chaetocin [121].

One of the molecular entities commonly seen silenced in many malignancies
including AML is TSG-SOCS1 expression, and chaetocin by suppressing H3K9
methylation on SOCS1 promotor upregulates SOCS1 expression signifying a
novel foresight into AML therapy [125]. Additionally, a close coupling between
other Lys9-specific HMTs including G9a [and its related molecule G9a-like protein
which exists as G9a/GLP complex] and DIM5 has been reported to be altered by
chaetocin. An important biological role of G9a/GLP complex is cell proliferation
and upregulation of G9a have been reported in many solid tumors such as breast
cancer, lung cancer, colon cancer, and prostate cancer [126–128]. An oncogenic
role of this methyltransferase in AML has been suggested and with all pragmatic
rationale, the usefulness of chaetocin either as monotherapy in therapeutic regimen
or combination with other established drugs merits consideration and attention for
beneficial effect.

Chaetocin affects other cell survival-related molecular targets relevant to tumor
pathogenicity. It induces apoptosis via caspase-8/caspase-3-mediated pathway
in vitro and in vivo as exemplified in a myeloma mouse xenograft model [129,
130]. Additionally, chaetocin has also emerged as a potent inducer of cellular
oxidative stress, due in part, by its capacity to compete with thioredoxin (Trx)
which is the native substrate of the oxidative stress mitigation enzyme thioredoxin
reductase-1 (TrxR1). TrxR1 and/or Trx are known to be upregulated in a variety of
human cancers, including lung, colorectal, cervical, hepatic, and pancreatic [131,
132], and Trx overexpression has been linked to aggressive tumor growth and poorer
prognosis [133, 134]. As the TrxR1/Trx pathway limits the generation of cellular
reactive oxygen species (ROS), it advantageously favors tumor cells with growth
and/or survival advantage. Worthily, with redox targeting potential of chaetocin, it
imposes within tumor cells ROS stress leading to cell death upholding as a prom-
ising candidate in therapeutic strategy of solid tumors [135, 136]. In preclinical
setup, redox targeting by chaetocin and its antineoplastic effects have been presented
in glioblastoma model wherein ROS-mediated apoptosis by chaetocin results in
reduction of tumor burden in glioma xenografts [137]. Another important target
for observed anticancer effect of chaetocin relates to inhibition of hypoxia-induced
increased production of the angiogenic mediator VEGF by tumor cells, and conse-
quently inhibition of migration and proliferation of the endothelial cells ensues
directly; cumulatively this action inhibits tumor growth by reducing angiogenesis
at the tumor microvasculature level [138].
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12 Apicidin

Apicidin is a novel nonribosomal cyclic tetrapeptide (IUPAC: cyclo(N-O-methyl-l-
tryptophanyl-l-isoleucinyl-d-pipecolinyl-l-2-amino-8-oxodecanoyl) isolated as a
metabolite from endophytic fungi (Fusarium pallidoroseum) from twigs collected
in Costa Rica, at Merck Sharp Laboratory, Rahway, New Jersey [139]. Underlying
its effect against several protozoan and parasite sps. is the structure of this compound
containing an unusual ethyl ketone site as potential zinc binding group (ZBG), a long
alkyl chain, and the cyclic tetrapeptide that interacts with the surface of the HDAC
(histone deacetylase) and inhibits both mammalian and protozoan histone
deacetylases (HDACs) [140–142]. Apicidin is ranked as a relatively potent
HDAC-1 inhibitor (IC50 in cervical cancer HeLa cells = 290 nM) and displays
good antiproliferative activity against several human cancer cell lines and therefore,
considered as promising group of pharmaceutically active compound and cancer
treatment agent. Additionally, a succession of multitargeted antineoplastic actions of
apicidin in tumor cells has been described. It targets oxidative phosphorylation for
apoptosis induction and arrests cancer cell growth through selective induction of
p21WAF-1/Cip1 and gelsolin which controls cell cycle and cell morphology, respec-
tively [143]. In human acute promyelocytic leukemia cells (HL-60) and Bcr-Abl-
positive leukemic cells, apicidin transiently increases the expression of Fas-Fas
ligand resulting in the release of cytochrome c from mitochondria and subsequent
activation of caspase-3 and caspase-9 culminating in apoptosis [144]. Deregulated
ras activation is a common genetic defect in human cancers. Apicidin significantly
inhibits H-ras-induced invasive phenotype of MCF10A human breast epithelial cells
in parallel with specific downregulation of matrix metalloproteinase-2, implying the
potential worth of apicidin as inhibitor of invasion and metastasis in cancer therapy
[145]. In a related context, CXCR4 activation directs migration towards the specific
ligand CXCL12, and CXCR4 activation affects proliferation and migration through
ERK, Akt phosphorylation, c-Src phosphorylation, and JAK-STAT pathway.
Apicidin indirectly impairs migration-related molecular signaling events by
circumventing the activation of STAT-3 and c-Src phosphorylation, and these have
shown an effect on migration of human renal, nonsmall cell lung cancer (NSCLC)
cells and glioblastoma cells suggesting its possibility in delaying or preventing the
metastatic process in solid tumors [146, 147]. Since estrogen receptors play an
important role in control of proliferation in breast cancer, apicidin downregulates
ERα expression in ER-α-positive human breast cancer cells (MCF-7 cells) along
with modulation of cyclin D1 expression and Bax/Bcl2 expression causing G1 phase
cell cycle arrest and apoptosis probably in a way associated with ER-α-mediated
transcriptional regulation [148]. In pancreatic cancer, MUC-4 has been linked with
resistance to gemcitabine therapy and with apicidin reportedly significantly reducing
the expression of MUC-4, and its transcription factor hepatocyte nuclear factor 4α
appears to be a novel antiproliferative agent against pancreatic cancer cells [149]. In
several cervical cancer cells (HeLa, CaSki, and C33A), apicidin upregulates the
expression and protein level of hypoxia-inducible factor prolyl 4-hydroxylase PHD2
negating stimulus for angiogenesis and tumor progression [150]. Furthermore,
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studies aiming at combination strategies that exploit the unique activity of apicidin as
deacetylase inhibitor have been carried out in range of solid tumors and leukemia
and lymphomas with common outcome pointing greatly enhanced antitumor activity
in combination group. The drugs evaluated in combination screening include
docetaxel in breast cancer, proteasome inhibitors in colon cancer, gemcitabine in
pancreatic cancer, doxorubicin in hepatocellular carcinoma, imatinib, and TRAIL in
leukemia cells and antiviral agents in lymphoma [149, 151–156]. Thus, clearly, the
role of apicidin in cancer therapy cannot be underestimated and hopes remain high
for its translational output in the future.

13 Galiellalactone

Galiellalactone (GL) is a hexaketide fungal metabolite isolated from strains of
Galiella rufa (Sarcosomataceae, Ascomycota) in the course of screening for plant
growth-regulating compounds and later from two unidentified fungi that was shown
by their 18S rDNA sequences as belonging to the Sarcosomataceae family.
Sarcosomataceous fungi are known mainly as degraders of wood or as pathogens
[157, 158]. GL has not yet been found in any fungus outside the Sarcosomataceae
despite thorough screening program, and thus its presence is currently deemed as a
chemotaxonomic marker of the Sarcosomataceae family [159]. GL structure has
been determined by X-ray crystallography (Fig. 1) [160] and found to contain a
reactive α, β-unsaturated lactone which functionally enhances its affinity towards
biological nitrogen- and sulfur-nucleophiles including cysteine to produce inactive
adducts [161, 162]. GL has also been synthetically produced [163].

GL was initially evaluated for cytotoxicity in few representative human liquid
and solid tumor cell lines that included HL-60, L1210, HeLa S3, and COS7 and its
potency was found � 10 times higher in suspension cells compared to monolayer
cell lines with median IC50 values varying in the range between 2.0 and 0.01 μM
[164]. GL mechanism of action has been characterized as an inhibitor of signal
transducer and activator of transcription-3 (STAT-3) signaling by binding directly
to STAT-3 and blocking the binding of STAT-3 to DNA transcriptional elements.
STAT-3 is a transcription factor that plays a key role in normal cell growth and is
constitutively activated in about 70 % of solid and hematological cancers. Devel-
opment of potent and selective inhibitors targeting STAT3 is of interest to oncologist
since persistently activated STAT-3 also plays a pivotal role in metastasis and
angiogenesis and development of therapy resistance [165]. Mass spectrometry
analysis of recombinant STAT-3 protein pretreated with GL revealed modifications
at three different sites within cysteines – Cys-367, Cys-468 and Cys-542
[166]. Thus, GL being a potential inhibitor of cysteine reactivity covalently binds
to one or more cysteine(s) in STAT-3 leading to inhibition of STAT-3 binding to
DNA and thus blocks STAT-3 signaling without affecting either tyrosine or serine
phosphorylation. In addition, GL has also been shown to inhibit NF-kB and TGF-β
signaling, preventing the association of p65 with the importin α3 and inhibiting the
binding of the activated Smad2/3 transcription factor to DNA [167, 168]. STAT-3
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being a common feature of progression in prostate cancer, GL has been researched in
preclinical models as a potential therapeutic candidate against hormone-refractory
prostate cancer. Nude mice bearing subcutaneously developing prostate tumor
xenograft when subjected to daily intraperitoneal injections of GL for 3 weeks
suppresses the xenograft growth of tumor along with reduction noted in the relative
mRNA expression of antiapoptotic Bcl-xL and Mcl-1 in vivo [169]. Another recent
study mentions GL effectively reduces the growth and metastatic spread of
androgen-insensitive prostate tumor cells in a orthotopic xenograft mouse model;
mouse that were treated with GL (dose: 5 mg/kg b wt ip daily; and initiated after
3 weeks of cell implantation and continued for up to 6 weeks) had comparatively
smaller primary tumors and early metastatic dissemination was significantly reduced
compared to the control group, attesting GL capacity to reduce the primary tumor
growth and metastasis in vivo primarily by reducing proliferation of primary tumor
and apoptosis of tumor cells following treatment with GL [170]. Furthermore, there
are reports associating GL inhibiting dose-dependently the growth of stem cell-like
ALDH-positive cancer cells, and inducing cell cycle arrest and apoptosis through the
ATM/ATR pathway in prostate cancer [171, 172]. Thus, GL could be a promising
therapeutic compound and serve as a promising lead structure for development of
new and potent analogs against hormone-refractory prostate and other cancers as
well, which are associated with poor prognosis and mean survival.

14 Conclusion

Summing up the aforementioned write-up, the findings support a favorable foresee-
able premise that fungal metabolites can surge as unique pharmacological com-
pounds with perceived antitumor effects. The metabolites have additional capability
of targeting core regulatory pathways in cancer cells, sparing normal cells, and
tissues. However, fungal metabolites need to undergo rigorous quality control and
dose escalating pharmacological evaluation before human trials become initiated on
cancer subjects. In clinical trials, pharmacologically relevant metabolite compound
may be utilized as monotherapy, or used as adjuvant agent in cancer therapy.
Furthermore, high throughput screening strategies for fungal metabolite library
screening need to be standardized since new metabolites are being continuously
discovered. Also, the availability of complete genome sequence of fungi producing
promising metabolites will facilitate large scale production under experimental
condition or cloned for large scale production rather than depending on classical
culture medium for their isolation.
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Abstract
Mycotoxins are toxic substances produced by fungi that contaminate various food
and feedstuffs. There are about 100 different types of mycotoxins which are
produced by a wide range of fungal species. The variety of their toxicity is linked
to the diversity of their chemical structure. Amongst them, three biosynthesis
origins are mostly studied: the polyketides (e.g., aflatoxins, fumonisins), the
terpenes (e.g., trichothecenes), and the ergot alkaloids (e.g., ergotamine). In this
chapter we present those biosynthetic origins and focus on the mycotoxins
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threatening human health. Their biosynthesis, producing fungi, toxicity, and
regulation are succinctly presented. In the second part of the chapter, we focus
our attention on fungal metabolites as a potential source of biocontrol, being
antifungal, impacting both fungal growth and mycotoxins production and
preventing mycotoxins biosynthesis. We finally conclude on the wide diversity
of mycotoxins origins and the need to pursue the discovery of new fungal
metabolites to counteract mycotoxins production.

Keywords
Fungal metabolites • Mycotoxins biosynthesis • Polyketides • Terpenes • Alka-
loids • Mycotoxin biocontrol

1 Introduction

Among the diversity of fungal metabolites, some are potentially dangerous such as
mycotoxins. According to the Collins dictionary, mycotoxins are “any of various
toxic substances produced by fungi, some of which may affect food and others of
which are alleged to have been used in warfare.” The word mycotoxin comes from
the ancient Greek word “mykes” which means mushroom and the Latin word
“toxicus” which means poison [1]. Bennett and Klich [9] elaborated a more precise
definition of mycotoxins:

(i) Low molecular weight molecules;
(ii) Secondary metabolites produced by filamentous fungi;
(iii) Which can cause death or disease to human being or animal at a low

concentration.

The first human health disease associated with mycotoxins was the ergotism with
major outbreaks during the Middle Ages. In the most severe cases, a leg-necrosis
appeared. This illness was the result of eating bread polluted by “ergot.” This “ergot”
was produced by Claviceps purpurea in the rye used for the bread flour [2].

The first outbreak leading to the development of mycotoxins research field
happened at the end of 1959; peanuts from Brazil were imported in England to
be used as protein supplements in farming feeds. Following that, young turkeys
began to die and other animals like pigs developed symptoms. This disease
killed 100,000 turkey poults and was called “turkey X disease,” with the “X”
being for its likeness to a viral-origin illness [3]. A short time after this
epidemic, aflatoxins were identified as the source of this intoxication [4]. Indeed,
56 years after, the aflatoxins are still of great concern as they are currently the
only mycotoxins validated as human carcinogens by the International Agency
for Research on Cancer (Group 1, IARC) [5]. The carcinogenic effect was
validated by many cohort studies conducted in China on the incidence of
aflatoxins on hepatocellular carcinoma (HCC) occurrence. Blood and/or urine
samples were taken from more than 43,000 persons (aflatoxins biomarkers were

702 C. Verheecke et al.



quantified). Exposure to aflatoxins led to a 2.4 to 5.5-fold increase of HCC
occurrence [6–8].

With the development of the mycotoxins research field, other mycotoxins were
identified and currently 300–400 mycotoxins are known, among which 30 have been
studied for their toxic and/or disturbing impacts for human and animal [9, 10].

Those mycotoxins are produced mainly by the Aspergillus, Penicillium, Fusar-
ium, and Alternaria genera. Those genera are known as common food-borne
spoilers. Thus, the Aspergillus genus is known to be tolerant of elevated tempera-
tures and reduced water activities [11]. As such, there are only few food commodities
spared by Aspergillus spp. and it is the predominant food-spoiler in the tropics.
Aspergillus spp. are known producers of many mycotoxins of great concerns
including aflatoxins, ochratoxin A (OTA), and citrinin. These mycotoxins can be
detected in a wide variety of food commodities including cereals, grapes, nuts,
coffee, cocoa, and spices [12–16]. The Fusarium genus is known for its plant
pathogenicity and the wide range of associated plant diseases. It is known to be
predominant in temperate areas. The Fusarium spp. are the major producers of
mycotoxins. Among these, trichothecenes (e.g., deoxynivalenol, T2, and HT2),
zearalenone, and fumonisins are the most studied. These mycotoxins can be detected
in many food commodities including cereals [17]. The Alternaria genus is starting to
be known as a mycotoxin producer. It is a competitor of Fusarium genus in the
temperate areas. The Alternaria spp. are producing “emergent” mycotoxins such as
alternariol and is detected mainly in fruits and vegetables [18]. The last but not least
is the Penicillium genus: a predominant food-spoiler in the temperate and cold areas.
The Penicillium spp. are known to produce many mycotoxins including patulin and
OTA. These mycotoxins can be detected in a wide range of food commodities
including cereals and apples [19, 20]. Due to their diverse chemical structures and
origins, mycotoxins are very hard to classify. They can be arranged according to their
chemical structure, toxicity, biosynthetic origin, and/or producing fungi. Hereafter,
we will summarize the different mycotoxins depending on their biosynthesis path-
way and then focus on their toxicity and regulation.

To reduce mycotoxins occurrence all along the agrofood chain (e.g., field,
storage, process), two complementary approaches exist. On one hand, solutions
for the prevention of mycotoxins production are developed: the management of
abiotic (water activity, temperature, CO2, etc.) and the management of biotic (fungal
or bacterial interactions and metabolites) parameters. On the other hand, decontam-
ination techniques are developed: process optimization, chemicals addition (e.g.,
ammoniation or ozone), sorbents addition (e.g., bentonite), or application of
degrading organisms [21, 22].

In this chapter, a section will be focused on fungal metabolites used to prevent
mycotoxins production and their modes of action. They can be classified into three
types: (i) fungal metabolites with antifungal properties; (ii) fungal metabolites
impacting both fungal growth and mycotoxins production, and (iii) metabolites
preventing mycotoxins synthesis.

The purpose of this review is first: to highlight the diversity of mycotoxins
biosynthesis. And secondly, present the use of fungal metabolites as a potential
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preventing methods as biocontrol against fungal growth and/or mycotoxins
production.

2 Mycotoxins: Diversity in Their Biosynthesis

There are about 100 different families of mycotoxins which are produced by a wide
range of fungal species. The variety of their toxicity is linked to the diversity of their
chemical structure and so of their biosynthesis.

2.1 Polyketide-Based Biosynthesis

Polyketide synthases (PKS) are enzymes required for the production of many
polyketides in plant, bacteria, and fungi. Among those latter, different fungi were
found to be involved in mycotoxins production.

These multimodular enzymes are at least composed of three main domains: the
β-ketosynthase (KS), acyl-transferase (AT), and acyl-carrier protein (ACP) domains.
The KS module initiates the polyketide production by the condensation of the acetyl-
CoA molecule and a malonyl-CoA. The latter is provided thanks to the loading
realized by the AT domain. The potentially iterative transfer between the AT and KS
module is realized by the ACP domain which will move the molecule in shaping
from substrate to product and vice versa. These enzymes can also possess optional
domains. The three main optional domains are: β-ketoreductase (KR), dehydratase
(DH), and enoyl reductase (ER) domains.

These enzymes are going to be classified according to their reducing functions
depending on the absence or the presence of the reduced domains. The highly
reducing PKS (HR-PKS) are PKS containing all the main domains (KS, AT, and
ACT) and all the additional domains (KR, DH, and ER). The nonreducing PKS
(NR-PKS) are PKS containing all the main domains (KS, AT, and ACT) and none of
the additional domains. The partially reducing PKS (PR-PKS) also contains the main
domains and a part of the additional domains (KR, DH, or ER).

Moreover, apart from being classified by their reducing property, PKS are also
divided into three types:

Type I: large enzymes with multiple functional domains only active once during the
biosynthesis (bacteria and fungi)

Type II: a complex of several single module proteins with separated enzymatic
activities, acting iteratively to produce a polyketide (bacteria)

Type III: a single active site enzyme which acts repeatedly to form the final product;
they function as homodimers and do not include an ACT protein domain (mainly
in plants)

PKS required for mycotoxins are solely belonging to the type I PKS. Many of the
regulated mycotoxins are produced thanks to one or more PKS acting at the first step
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of their biosynthesis. For example, aflatoxins are produced thanks to AflC, a
NR-PKS required for acetate conversion into the norsolorinic acid (NOR): the first
stable precursor of aflatoxin. The different types of PKS and their associated
mycotoxin family, the core structure of the produced polyketide, and their major
representative are represented in Table 1.

Hereafter, we will describe the main PKS-dependant mycotoxin families. Each
time, the PKS involved will be first presented followed by the structure of the
polyketides produced, their producing fungi, their toxicity, and their regulation
especially in EU.

Table 1 The main mycotoxins originating from polyketide synthase biosynthesis [23]

Mycotoxins
family

PKS
type Structure Major representative

Aflatoxins NR-PKS 3 furans and 1 coumarin Aflatoxin B1

O

O

O

O
O

OCH3

Citrinin PR-PKS Dihydroisocoumarin Citrinin

O

O

O

OH

OH

Fumonisins HR-PKS 20 carbons chain coupled with
an acid ester and an acetyl
amino acid

Fumonisin B1

O

O

COOH
COOH

OHO

O
COOH

NH2

COOH

OH OH

Ochratoxins PR-
PKS

Dihydroisocoumarin coupled
with an L-phenylalanin

Ochratoxin A
O OH OHO O

ON
H

Cl
CH3

Patulin PR-PKS Polyketide lactone Patulin

O
O

O

OH

Zearalenone NR and
HR-PKS

Acid resorcyclic lactone Zearalenone

O

O

OOH

HO

HR highly reducing, NR nonreducing, PR partially reducing, PKS polyketide synthase
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2.1.1 Aflatoxins
The NR-PKSAflC is needed for aflatoxins production condensation [24] (Fig. 1, step 1).
The association of AflA, AflB, and AflC constitutes a complex, called NorS, of
1.4 � 106 Da (partially purified in A. parasiticus). The first role of NorS is the synthesis
of a hexanoyl primer thanks to the addition of two malonyl CoA units. This primer is
then transferred to the acyl carrier or β-ketoacyl synthase domain of AflC [24]

Fig. 1 The genes cluster of the biosynthesis pathway of aflatoxin in A. parasiticus [26, 27]. New
gene names are labeled on the left and old gene names are labeled on the right of the cluster. Number
1–12 and their associated genes (predicted genes in brackets) represent the identified genes of
aflatoxin biosynthesis. NOR norsolorinic acid, AVN averantin, HAVN 50-hydroxy-AVN, AVNN
averufanin, AVF averufin, VHA versiconal hemiacetal acetate, VAL versiconal, VERB
versicolorin B, VERA versicolorin A, ST sterigmatocysin, DMST demethylST, DHDMST
dihydroDMST, DHST dihydroST, OMST O-methylST, DHOMST dihydro-OMST
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and is converted into Noranthrone (NAA) by the iterative addition of seven other
Malonyl CoA units. This intermediate is not stable in time and is converted (spontane-
ously or by AflCa [25]) into NOR: the first stable intermediate of the aflatoxin
biosynthesis.

Four aflatoxins are produced by Aspergillus spp. Those mycotoxins are divided into
two types based on their fluorescence: the “B” aflatoxins (AFB) with a violet-blue
fluorescence (445 nm) and the “G” aflatoxins (AFG) with a green fluorescence
(455 nm). The AFB are made of AFB1 and AFB2. The chemical structure of AFB1
represented in Fig. 2 is based on a coumarin group (in red) attached to a bisfuran ring
(in green) and a pentan group (in blue). AFB1 molecular weight is 312 g.mol�1. Unlike
AFB1, the AFB2 structure does not have a double bond in the bisfuran ring. The AFG
chemical structure is close to the B’s, with the same coumarin and bisfuran ring. The
difference is that AFG have a furan group where AFB aflatoxins have a pentan group.
The distinction between AFG1 and AFG2 is the same as between AFB1 and AFB2.

Flavi, Ochraceorosei, and Nidulantes are the three sections of Aspergillus produc-
ing aflatoxins. Among Flavi section, the members biosynthesize AFB and sometimes
AFG. The predominant AFB producer is A. flavus. The second predominant producers
are A. parasiticus and A. nomius which produce AFB and additionally AFG [28, 29].
AFG production by species belonging to section Ochraceorosei and Nidulantes are
not currently described. Moreover, the production of AFB1 and AFG1 was recently
reported by Schmidt-Heydt et al. (2009) in Fusarium kyushuense [30].

The entire aflatoxins gene cluster is a 75 kb cluster (29 genes) located in the
subtelomeric region of chromosome 3 (represented in Fig. 2) [31]. They encode all
the required enzymes that convert malonyl CoA and acetyl CoA into aflatoxins. This
pathway is regulated by two specific (AflR, AflS) transcription regulators contained
in the cluster. The aflatoxin excretion system is made by the primary metabolism
[32]. Both A. flavus and A. parasiticus have this cluster in the same gene order. There
is a slight difference between the two though. A. flavus has a deletion in the cluster
from 0.8 to 1.5 kb depending on the isolate (50 ends of aflF and aflU) and this is the
reason why A. flavus does not produce AFG [31].

Fig. 2 2D representation of
AFB1 structure
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The toxicity of aflatoxins has already been broadly studied [33–35]. Since 2012,
those aflatoxins are considered as carcinogen for humans (Group 1 [5]). The main
target organ is the liver [33]. Exposure happens through ingestion, inhalation, or
intradermal contact. The oral median lethal dose (oral LD50) for AFB1 ranges from
0.3 mg.kg�1 bw for rabbits to 18 mg.kg�1 bw for rats [36]. For humans, acute
exposure (2–6 mg of AFB1 daily during a month) led to clinical symptoms such as
hepatitis, bile duct proliferation, edema, anorexia, malaise, reduced kidney function,
lethargy, and death [34, 37, 38]. The last case was reported in April 2004 with a maize
contamination of up to 46.4 mg.kg�1. This led to 317 cases of aflatoxicosis in
children, among which 125 died [39]. The chronic ingestion of aflatoxins can led to
increase of: hepatocellular carcinoma occurrence [6–8] (especially for hepatitis
B-positives patients) [40], immunodeficiency [41] (particularly for HIV-positive
patients) [42], child growth retardation [43] and birth defects [44]. For animals other
symptoms can also occur: pulmonary disease and tracheal exudates in horses; and
mucus accumulation, pulmonary edema, capillarity fragility and icterus injuries in
swine [37].

Faced with those risks, the AFB1 is the mycotoxin which is most regulated
worldwide with more than 100 nations having allowance levels for food and feed.
Thus, aflatoxins are regulated at 20 μg.kg�1 in food in many countries including
USA or China, except for EU. They set maximum authorized levels of aflatoxins in
various products to reduce consumers’ exposure (Table 2). The maximum levels for
AFB1 range from 12 μg.kg�1 in almonds, pistachios, and apricot kernels (before

Table 2 Maximum levels authorized for aflatoxins in foodstuffs (1881/2006 modified on 6th
March 2014) [45]. AFT total amount of AFB1 + AFB2 + AFG1 + AFG2; M1 = aflatoxin M1.
(�) = no level applied

Mycotoxins Foodstuffs
Maximum levels
(μg.kg�1)

Aflatoxins Dietary foods for special medical purposes B1 AFT M1

0.1 – 0.025

Infant milk and follow-on milk – – 0.025

Raw milk, heat-treated milk, and milk for the
manufacture of milk-based products

– – 0.05

Cereals and food for babies 0.1 – –

Groundnuts, nuts, dried fruit, and cereals and derived
ingredients

2 4 –

Tree nuts, dried fruit, and cereals sorted/treated before
human consumption, spices (Capsicum spp., Piper spp.,
Pyristica fragnans, Zingiber officinale, Curcuma longa)

5 10 –

Dried figs 6 10 –

Almonds, pistachios, and apricot kernels intended for
direct human consumption

8 10 –

Hazelnuts, Brazil nuts, groundnuts sorted/treated before
human consumption

8 15 –

Almonds, pistachios, and apricot kernels sorted/treated
before human consumption

12 15 –
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being sorted for human consumption) to 0.1 μg.kg�1 for baby food and dietary food
for medical purposes. For feed materials, aflatoxins are the only mycotoxins with
maximum levels in the EU, the maximum levels of AFB1 range from 20 μg.kg�1 for
cattle, sheep, goats, pigs, and poultry to 5 μg.kg�1 for dairy cattle, calves, lambs,
kids, piglets, and young poultry.

2.1.2 Citrinin
The gene pksCT ofMonascus purpureus encodes a PR-PKS without the ER and DH
domains. This PR-PKS is essential for the production of citrinin [46]. Its supposed
role is the formation of the polyketide dihydroisocoumarin core by the condensation
of 1 acetyl CoA and 3 malonyl CoA to produce a tetraketide.

The citrinin (Table 1), a polyketide containing a dihydroisocoumarin moiety, was
discovered in 1931 and has a molecular weight of 250.24 g.mol�1 [47]. A few is
known about the other members of the family, such as dicitrinin A and dicitrinin E,
dimers of citrinin, that can be produced by fungi [48].

Citrinin is produced by Aspergillus, Penicillium, and Monascus. For Penicillium,
16 species of Citrina section (P. citrinium), one Penicillium section (P. expansum),
and two Fasciculata section (P. radicicola and P. verrucosum) are citrinin producers
[49–51]. For Aspergillus, the section Terrei contains the citrinin producers with eight
known species [52]. For Monascus, eight species are producers including
M. aurantiacus, M. purpureus, and M. ruber [53, 54].

The citrinin gene cluster (43 kb) has been recently identified and is represented in
Fig. 3. Among the 16 ORF included in this cluster, nine genes have been identified as
required for the citrinin biosynthesis. They encode enzymes that convert 1 acetyl
CoA and 3 malonyl CoA into citrinin. The putative functions are: a fatty acyl-CoA
synthetase (ctnI), an oxygenase (orf3), dehydrogenases (ctnE, orf1, ctnH), and
oxidoreductases (ctnD, orf4). It also includes potential transcriptional regulator
(ctnA) and membrane transport protein (orf5) [55].

The citrinin is not carcinogenic for humans (Group 3 [56]). The main target
organs are the kidneys. The oral LD50 is 56 mg.kg�1 bw in turkey poults [57]. For
humans, no impact on human health has been confirmed. For animals, it is

Fig. 3 The 16-ORF cluster of the biosynthesis pathway of citrinin in M. aurantiacus [55]. Arrows
show the genes and their direction of transcription. The designated genes are: ctnD oxidoreductase,
ctnE dehydrogenase, orf6 hypothetical protein, orf1 dehydrogenase, ctnA transcriptional regulation
protein, orf3 oxygenase, orf4 oxidoreductase, pksCT PKS, orf5 membrane transport protein, ctnF
mutase, orf7 hypothetical protein, ctnRWD repeat protein, orf8 hypothetical protein, ctnG carbonic
anhydrases, ctnH short chain dehydrogenase, ctnI acyl-coA synthetase
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teratogenic and nephrotoxic [58, 59]. In vitro tests showed genotoxicity [60] and a
synergy in nephrotoxicity with another mycotoxin: ochratoxin A [61].

In EU, citrinin is regulated only in food (Table 3). It is only regulated in food
supplements based on rice fermented with M. purpureus at 2,000 μg.kg�1.

2.1.3 Fumonisins
The HR-PKS Fum1 is required for the first condensation step of fumonisins pro-
duction [62]. The coding gene fum1 is the second gene of the cluster (Fig. 5). The
first role of Fum1 is to catalyze the carbon-chain assembly. Thanks to the conden-
sation of 1 Acetyl-CoA, 8 Malonyl-CoA, and 2 S-adenosyl methionine (SAM),
Fum1 and Fum8 lead to a polyketide-alanine condensation product [63].

Among the 28 fumonisin analogues identified since 1988 [64], only six
fumonisins have been widely studied as produced by fungi. Fumonisins are based
on a linear chain of 18 carbons as represented in Fig. 4. These six fumonisins are
divided into two types: the “B” fumonisins (FB) have a terminal methyl group
derived from an amino acid at the R1 while the “C” fumonisins (FC) have not.
Both FB and FC have three main representatives which differ from their R2 and R3

composition. The major mycotoxin is fumonisin B1 (FB1) with a molecular weight
of 721 g.mol�1.

The predominant fumonisin producers belong to the Fusarium genus with
F. verticillioides and F. proliferatum as the most studied representatives. Neverthe-
less, Aspergillus niger has also been identified as a FB producer and several
Tolypocladium species are also able to produce fumonisins B2 and B4 [65, 66].
The Fusarium species producing fumonisins are regrouped in the Fusarium
(Gibberella) fujikuroi species complex (FFSC) with the exception of F. oxysporum
[67, 68]. The FFSC species belong to Liseola, Dlaminia, and at a smaller scale
Elegans and Arthrosporiella sections [64]. Most of the FFSC species produce mainly
FB (99 %) and at a lower scale FC (1 %). However, the opposite ratio of FC over FB
also occurs by F. oxysporum [67].

The cluster (18 genes) is a 42 kb region sequenced in F. verticillioides represented
in Fig. 5. The genes included in this cluster encode enzymes that convert acetate and
alanine groups into fumonisins [63]. The ratio variation between FB and FC is due to
Fum8 function. Indeed, the latter would condensate an alanine with the 18-carbon
polyketide for FB producers and a glycine with the 18-carbon polyketide for FC
producers [69]. This difference is due to a modification of residues between a valine
and an alanine at residue579 of Fum8.

Table 3 Maximum levels authorized for citrinin in foodstuffs (1881/2006 modified on 6th March
2014) [45]

Mycotoxins Foodstuffs
Maximum levels
(μg.kg�1)

Citrinin Food supplements based on rice fermented with red yeast
Monascus purpureus

2,000
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The toxicity of fumonisins has been mainly studied for two fumonisins: FB1 and
FB2. In 2002, the IARC has confirmed the classification of FB1 as possibly
carcinogenic to human (Group 2B [70]). The main targets are the esophagus and
the neural tube. The no-observed-adverse-effect-level (NOAEL) in pigs fed with
FB1 is lower than 5.0 mg FB1.kg�1 bw.day�1 [71]. For humans, fumonisins are
supposedly linked to esophagus cancer [72, 73]. For animals, the other health
impacts include liver toxicity, cancer, leukoencephalomalacia, immunodeficiency,
and pulmonary disease in pigs, poultry, calves, equine, and other farm animals [74].

To prevent those risks, the FB1 and FB2 are regulated in EU in food and
guidances are provided for feed. The maximum levels for the total amount of FB1
and FB2 (independently of the proportion) are from 200 μg.kg�1 for baby foods,
infants, and young children to 4,000 μg.kg�1 for unprocessed maize (exception of
wet milling) (Table 4).

2.1.4 Ochratoxin A
The genes aoks1 of A. westerdijkiae, otapks PN of P. nordicum, and AoOTApks-1 of
A. ochraceus encode two different PR-PKS without the ER and DH domains and a
HR-PKS, respectively. Moreover, different putative PKS were identified in
A. carbonarius [75]. Those encoding PKS are essential for the production of

Fig. 4 Fumonisins B and C chemical structures [67]
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ochratoxins [23, 76, 77]. Their supposed role is the formation of the polyketide
dihydroisocoumarin core of the ochratoxins.

Ochratoxins are isocoumarins (Fig. 6). Ochratoxin A (OTA) and ochratoxin B
(OTB) are isocoumarins coupled with a l-phenylalanin (R1) with OTA having a
chlorine as R2 while OTB having an hydrogen as R2. Ochratoxin α (OTα) and
ochratoxin β (OTβ) are isocoumarins coupled with a hydroxide group (R1). The
distinction between OTα and OTβ is the same as between OTA and OTB.

OTA is produced by both Penicillium and Aspergillus genera while OTB is
produced only by Aspergillus. The predominant producers are A. ochraceus,
A. westerdijkiae, A. carbonarius, and A. steynii in warm region [78–81], while
P. verrucosum and P. nordicum are the only OTA producers in cold/temperate area
[82, 83]. Circumdati, Flavi, and Nigri are the three sections of Aspergillus producing
ochratoxins [66].

Unlike many other mycotoxins presented in this chapter, the biosynthesis of OTA
in both fungal genera has not yet been elucidated. It is commonly hypothesized that
OTα and OTβ are intermediates of OTA and OTB production. Currently, putative
PKS have been identified in both fungal genera. Moreover, for Aspergillus, two
putative p450-type monooxygenase genes, a nonribosomal peptide synthetase
(NRPS) were identified as oxygenases and phenylalanine incorporator into
ochratoxins, respectively. For Penicillium, a NRPS, a putative transport protein
and a chlorinating enzyme (OTA chlorination) were also identified [66].

Table 4 Maximum levels authorized for fumonisins in foodstuffs (1881/2006 modified on 6th
March 2014) [45]

Mycotoxins Foodstuffs
Maximum levels (μg.
kg�1)

Fumonisins
(B1 + B2)

Baby foods for infants and young children 200

Breakfast cereals and snacks 800

Maize intended for direct human consumption 1,000

Milling fractions of maize >500 micron/�
500 micron

1,400/2,000

Unprocessed maize (exception of wet milling) 4,000

OOHO

H

CH3

O

R2

R1

Fig. 6 Ochratoxin A and B
structures
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The toxicity tests on ochratoxins have focused on OTA. It is potentially carcino-
genic for humans (Group 2B [84]). The main target organs are the kidneys [85]. The
ORAL LD50 of OTA in mice ranges from 46 to 58.3 mg.kg�1 bw for mouse to
0.2 mg.kg�1 bw for dogs [86]. For humans, it was investigated as the potential origin
of the Balkan endemic nephropathy but was disculpate [87]. For animals, OTA is
genotoxic, teratogenic, carcinogenic, hepatotoxic, nephrotoxic, and immunotoxic
[88–92].

Ochratoxin A is regulated mainly in UE in food, and guidances are provided for
feed. The maximum levels for food are 0.5 μg.kg�1 for dietary foods for special
medical purposes and baby foods and 80 μg.kg�1 in liquorice extract, in particular
beverages and confectionary (Table 5).

2.1.5 Patulin
The 6-methylsalicylique synthetase (6MSAS), for example, in P. expansum, is a PKS
without the ER domain [93]. This PR-PKS is essential for patulin production
[23]. The role of 6MSAS is to condensate 1 acetyl-CoA and 3 malonyl-CoA to
produce the 6-methylsalicylic acid. The latter is the first precursor of the patulin
production.

Patulin was discovered in 1943 and had many names (clavacin, expansine,
claviformin, clavatin, gigantic acid, or myosin C) [94]. It is a polyketide lactone as
represented in Table 1. Its molecular weight is 154.12 g.mol�1.

Patulin is produced by Penicillium, Aspergillus, Paecilomyces (P. sturatus), and
Byssochlamys (B. niveai). Among Aspergillus, the Clavati section contains patulin
producers including A. clavatus [95]. Regarding Penicillium, most of the pro-
ducers (11) are belonging to the Penicillium section with two exceptions,
P. sclerotigenum belonging to Sclerotiora and P. paneum belonging to
Roquefortorum section [49, 50].

The entire cluster of patulin biosynthesis in A. clavatus has been identified and is
represented in Fig. 7. It is a 40 kb region encoding the genes necessary for the ten

Table 5 Maximum levels authorized for ochratoxin A in foodstuffs (1881/2006 modified on 6th
March 2014) [45]

Mycotoxins Foodstuffs
Maximum levels
(μg.kg�1)

Ochratoxin
A

Dietary foods for special medical purposes, baby foods 0.5

Wine, grape juice, and wine-based products 2

All products derived from unprocessed cereals 3

Unprocessed cereals, roasted coffee 5

Wheat gluten not sold directly to the consumer 8

Dried vine fruit, soluble coffee 10

Spices 15

Liquorice root, ingredient for herbal infusion 20

Liquorice extract, in particular beverages and
confectionary

80

714 C. Verheecke et al.



enzymatic reactions as well as transporters (PatA, PatC, PatM) and specific tran-
scription regulator (PatL) [96]. The cluster in Penicillium sp. remains to be
investigated.

Patulin is not carcinogenic for humans (Group 3 [56]). The ORAL LD50 for
patulin is 29 mg.kg�1 for rats and 55 mg.kg�1 for mice [98]. No incidence on
humans has been reported. For animals, it is teratogenic and possibly immunotoxic
[99–101]. In addition, symptoms such as weight loss, intestinal and gastric prob-
lems, neurotoxicity, and nephrotoxicity can occur [98]. The UE has set up patulin
regulation for apples and their derivates from 10 to 50 μg.kg�1 (Table 6).

PatA

Aspergillus clavatus

Acetyl-CoA
+

3 malonyl-CoA

6-methylsalicylic acid
Synthase (6MSAS)

6MSA
decarboxylase

6-methylsalicylic acid

m-cresolm-hydroxybenzyl
alcohol

PatH

CYP619C3

CYP619C2
PatI

CYP619C2
PatI

m-hydroxybenzaldehydem-hydroxybenzoic
acid
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Fig. 7 The putative gene cluster of the patulin in A. clavatus [96, 97]. Arrows show the genes and
their direction of transcription. The designated genes are: PatA acetate transporter, PatB carboxyl-
esterase, PatC MFS transporter, PatD Zn-dependent alcohol dehydrogenase, PatE GMC oxidore-
ductase, PatF hypothetical protein, PatG amido hydroxylase (decarboxylase), PatH m-Cresol
hydroxylase, PatI m-Hydroxybenzyl alcohol hydroxylase, PatJ hypothetical protein, PatK
6MSAS, PatL C6 transcription activator, PatM ABC transporter, PatN isoepoxydon dehydroge-
nase, PatO isoamyl alcohol oxidase. The genes represented in the cluster on the top and the action
of their encoded enzyme in the scheme below
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2.1.6 Zearalenone
The production of zearalenone (ZEA or ZON) relies on two complementary PKSs.
PKS13 is a NR-PKS and PSK4 is a HR-PKS. Nevertheless, it is not known if the two
PKS work simultaneously to form the tetraketide backbone and the tetraketide
moiety [102]. The ZEA precursors are acetyl CoA and malonylCoA [103].

ZEA was discovered in 1962 [104], it has been differentially named (e.g., F-2,
RAL) and is identified as an acid resorcyclic lactone (Table 1). Its molecular weight
is 318.36 g.mol�1.

It is only produced by the Fusarium genus. Among the producers, Arthrosporiella
and Roseum sections has been identified as producers. The main representative is
F. graminearum (Gibberella zeae) from Arthrosporiella section [105].

The ZEA biosynthesis has been partially elucidated. The 50 kb continuous DNA
supposed to be the cluster represented in Fig. 8. In addition to the two PKSs, two
other genes have been identified as required, a putative isoamyl alcohol oxidase
genes (ZEB1) and a putative transcription factor (ZEB2).

The ZEA is not considered as carcinogenic for humans (Group 3 [84]). It is
mainly known for its endocrine disruptor capacity due to its close structure to

Table 6 Maximum levels authorized for patulin in foodstuffs (1881/2006 modified on 6th March
2014) [45]

Mycotoxins Foodstuffs
Maximum levels (μg.
kg�1)

Patulin Apple juice, solid apple products for infants and young
children

10

Solid apple products 25

Fruit juices and spirit drinks 50
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Fig. 8 The supposed genes cluster of the zearalenone in Fusarium zeae (the grey arrow are
validated as needed for ZEA production). Arrows show the genes and their direction of transcription.
The designated genes are: GzALD aldehyde dehydrogenase, GzHET heterokaryon incompatibility
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the cluster on the top and the action of their encoded enzymes in the scheme below [102]
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17 ß-estradiol [106]. The oral LD50 of ZEA in mice is 500 mg.kg�1 bw [107]. For
humans, there is a presumed link between exposure to ZEA and premature puberty in
Puerto-Rico [108]. For animals, it is genotoxic, teratogenic, carcinogenic, hepato-
toxic, hematotoxic, immunotoxic, responsible for animal abortion, and
infertility [105].

ZEA is regulated mainly in UE in food, and guidances are provided for feed. The
maximum levels for food are 20 μg.kg�1 for cereals-based foods for infants and
young children and up to 350 μg.kg�1 for unprocessed maize (with an exception of
wet milling) (Table 7).

2.2 Terpene Cyclase-Based Biosynthesis

Another family of mycotoxins takes its biosynthetic origin from terpenes biosyn-
thesis. The terpenes are all produced thanks to the terpene cyclase widely present in
plants and fungi. This cyclase uses different diphosphate structures as substrates.
Terpenes can be composed of several isoprene units and are classed depending on
the diphosphate structure used as substrate by the cyclase. As an example, all the
members of the class of sesquiterpenes are generated from farnesyl pyrophosphate as
substrate [109].

2.2.1 Trichothecenes
Among the sesquiterpenes, trichothecenes are the main representative and are
considered the major class of mycotoxins. They are produced thanks to a terpene
cyclase trichodiene synthase (e.g., Tri5). The latter is essential for the cyclization of
the farnesyl pyrophosphate which itself induces the production of
trichothecenes [110].

There are more than 200 trichothecenes with a common 12–13 epoxytrichothec-
9-ene core structure (Fig. 9). They are classified into four groups from A to D,
according to their attached radical group [111]. The group at the C-8 position is the
differentiating element between groups A and B. The type A has an ester function at
C-8, while all type B trichothecenes have a C-8 keto (carbonyl) function. These two

Table 7 Maximum levels authorized for zearalenone in foodstuffs (1881/2006 modified on 6th
March 2014) [45]

Mycotoxins Foodstuffs
Maximum levels (μg.
kg�1)

Zearalenone Cereals-based foods for infants and young children 20

Bread 50

Cereals intended for direct human consumption 75

Unprocessed cereals other than maize 100

Milling fractions of maize >500 micron/�500
micron

200/300

Unprocessed maize (exception of wet milling) 350

Refined maize oil 400
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types of trichothecenes are the most alarming in terms of occurrence and toxicity.
Indeed, for type A trichothecenes the major representatives are T-2 and HT-2, while
for type B trichothecenes the major representative is deoxynivalenol (DON) and at a
lower rate nivalenol (NIV). The type C have a C-7/C-8 epoxide, while Type D have
an additional ring (C-4 and C-15) [112].

Many genera are producers of trichothecenes: Fusarium, Myrothecium, Spicellum,
Stachybotrys, Cephalosporium, Trichoderma, and Trichothecium [113]. Fusarium
are mainly producers of type A and B, while Trichoderma, Trichothecium,
Myrothecium, and Stachybotrys produce the four different types of trichothecenes.
There is currently no review precising which of the above producers are precisely
producing DON or T-2 and HT-2. Nevertheless, it is known that DON is produced
mainly by F. graminearum, while T-2 and HT-2 by F. langsethiae [114, 115].

The biosynthesis of trichothecenes is atypical. It is the only biosynthesis pathway
to be situated in more than one genomic location. Indeed, in F. graminearum, three
loci have been identified [116]: the core cluster (26 kb) of TRI genes [117], the TRI1-
TRI16 locus [118] (both represented in Fig. 10), and the TRI101 locus [119]. In other
Fusarium sp. (F. equiseti), these loci can be reduced to two: TRI cluster (with TRI1
and TRI101 included) and TRI16 locus [120]. They encode enzymes that convert the
farnesyl pyrophosphate into the different type of trichothecenes. The differential of
trichothecene production is linked to the nonfunction of certain TRI genes in the
cluster. Indeed, all the genes (represented in Fig. 10) are necessary for T2 toxin
production, while nonfunction of TRI7, TRI13, and TRI16 are required for
deoxynivalenol (DON) production. This pathway is regulated by two specific
(TRI6 and TRI10) transcription regulators with their coding genes located in the
cluster [121, 122].
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Currently, among more than 200 trichothecenes, only three have been judged as
threats to human health by the UE. Those three are the T-2, HT-2, and DON toxins,
and they are briefly presented above.

The major representatives for type A trichothecenes are T-2 and HT-2. Those are
produced thanks to the trichothecenes pathway with their last common precursor
with DON biosynthesis being the calonectrin. T-2 and HT-2 have the 3,4,15-
triacetoxyscirpenol as the last common precursor with nivalenol production. T-2
toxin (Group 3 [84]) is teratogenic, hepatotoxic and causes weight loss, decrease in
blood cell and leukocyte count, reduction in plasma glucose, and stomach toxicity
for animals. There are few studies on the HT-2 toxin, its deacetylated form, which
has alleged health impacts. Unfortunately, too little is known on T-2 and HT-2
impacts on human health [123]. T-2 and HT-2 are regulated by the UE in food but
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no maximum levels for food have been implemented for unprocessed cereals and
cereals products (Table 8).

DON is the major representative for type B trichothecenes. It is produced thanks
to the trichothecenes pathway with 7,8-dihydroxycalonectin as the first precursor
different from NIV and T-2 and HT-2 biosynthesis. DON is not carcinogenic for
humans (Group 3 [84]). The symptoms (animals and humans) linked to DON
exposure are weight loss, anorexia, nausea, diarrhea, nutritional loss, and immune
system modification [124–126]. DON is regulated mainly in UE in food, and
guidances are provided for feed. The maximum levels for food are 200 μg.kg�1

for infants and young children and up to 1,750 μg.kg�1 for unprocessed durum
wheat, oats, and maize (Table 8).

2.3 Alkaloid-Based Biosynthesis

The following family of mycotoxins takes its origin from alkaloids. Alkaloids are
widely produced by prokaryotes, plants, animals, and fungi. Among these, the ergots
alkaloids are produced by fungi and plants. Among these, some are considered as
good medical drugs and are commercialized while others are mycotoxins. All of
them are produced thanks to the dimethylallyltryptophan synthase, essential for the
conversion of l-tryptophan and dimethylallyl diphosphate into the tetracyclic
ergoline ring. As an example, cpd1 of Claviceps purpurea encodes a
dimethylallyltryptophan synthase needed for the production of ergotamine.

There is a wide number of ergots alkaloids. All possess the ergoline ring as their
main core, represented in Fig. 11a. The ergots alkaloids are divided into three
classes: clavine, ergoamides, and ergopeptines alkaloids. Although none of the
clavine ergots have been considered as mycotoxins, currently one ergoamide
(ergometrine) and five ergopeptines (ergotamine, ergosine, ergocristine,
ergocryptine, and ergocornine) have been under monitoring by the UE for potential
threats to human health [127]. Among these, ergotamine (Fig. 11b) is the most
predominant ergopeptine in ergots.

Table 8 Maximum levels authorized for DON, T-2, and HT-2 in foodstuffs (1881/2006 modified
on 6th March 2014) [45]

Mycotoxins Foodstuffs
Maximum levels
(μg.kg�1)

Deoxynivalenol Baby foods for infants and young children 200

Cereals, pasta, milling fractions of maize with particle
size >500 micron

750

Unprocessed cereals, milling fractions of maize with
particle size �500 micron

1,250

Unprocessed durum wheat, oats, and maize 1,750

T-2 + HT-2 Unprocessed cereals and cereal products /
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Ergot alkaloids, apart from being produced by plants, are produced by Claviceps,
Penicillium, and Aspergillus genera. Commonly they are found in sclerotia of
Claviceps. C. purpurea, C. fusiformis, and C. paspali are the major sources of
ergot alkaloids [128].

The biosynthesis of ergots has been characterized at least in C. purpurea and
A. fumigatus. The biosynthesis has been well characterized and is represented in
Fig. 12 [129].

Ergot alkaloids are not classified by the IARC. The symptoms (animals and
humans) linked to ergots exposure are neurotoxicity, agitation, muscular weakness,
shiver, and anorexia [132]. Ergot is regulated mainly in UE in food. The maximum
level for food is 0.05 % of ergots in wheat [133].

Hereafter, the second part of this chapter will present the use of fungal metabolites
as a potential preventing methods as biocontrol against fungal growth and/or myco-
toxins production.

3 Fungal Metabolites: Impact on Mycotoxigenic Fungi
and Their Mycotoxins Production

Among the potential methods to prevent mycotoxins production in the agrofood
chain, there is the management of biotic parameters. For this, numerous biocontrol
agents (BCAs) based on the use of microorganisms were developed as alternatives
to phytopharmaceutical inputs. For example, a well-known fungal BCA is
AflaSafe® technology. It uses a nonaflatoxigenic A. flavus strain to competitively
interact with aflatoxigenic fungi at the field, reducing the growth and the produc-
tion of aflatoxins [134–136]. Bacterial BCAs are also available including bacteria
such as Streptomyces spp. [137, 138]. Few studies reviewing the use of biocontrol
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Fig. 11 Structure of ergot alkaloids (a) Structure of the ergoline ring in ergo alkaloids. (b)
Structure of the ergotamine alkaloid
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agents to reduce mycotoxin contamination are already available [139–142]. For
example, Abbas et al. (2011) reviewed the competitiveness of nonaflatoxigenic
strains on maize against production of aflatoxins and cyclopiazonic acid produc-
tion [139]. Ponsone et al. (2012) reviewed all the epiphytic yeasts considered as

Fig. 12 Representation of ergot alkaloids biosynthesis cluster in C. purpurea. [129–131]. Arrows
show the genes and their direction of transcription. The designated genes are: cpps3 NRPS, cpox3
probable NADPH2 dehydrogenase, cpps2 NRPS, cpP450-1 CND5p (cytochrome P450), cpcat
hypothetical catalase, cpox2 short chain deshydrogenase, cpox1 isoamyl alcohol oxidase, orfB
hypothetic protein, orfA hypothetic protein, cpd1 dimethylallyltryptophan synthase, orfC
phytanoyl-CoA dioxygenase, cpps1 peptide synthetase, orfE phytanoyl-CoA, cpps4 peptide
synthetase
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putative biocontrols on berries against OTA production [140]. Future use of BCAs
in agrofood chain should be to systematically screen to determine the ecotoxico-
logical properties and putative toxicity of the system (mycotoxigenic fungus/
BCAs interaction) [143]. For some active metabolites involved in fungal BCAs,
mode of action has already been determined. We will focus on these fungal
metabolites (Table 9). They can be classified into three categories: (i) fungal
metabolites with antifungal properties; (ii) fungal metabolites impacting both
fungal growth and mycotoxins production; and (iii) metabolites preventing myco-
toxins synthesis.

Table 9 List of fungal metabolites able to impact fungal growth (column 3) and/or mycotoxins
production (column 4). NE = the impact of the described fungal metabolites has not been directly
evaluated on mycotoxins production

Fungal metabolites
Producing
fungi

Impact on
fungal growth

Impact on
mycotoxins
production References

Antifungal compounds

Peptaibols
(atroviridins,
neoatroviridins)

Trichoderma
sp.
F. oxysporum

A. niger NE [144, 145]

Pyrrocidines A and B Acremonium
zeae

A. flavus NE [146, 147]

F. verticillioides

F. graminearum

Trichodermin Trichoderma
harzianum

A. niger NE [148]

F. oxysporum

PgAFP, PAF, AFP
(antifungal proteins)

A. giganteus NE [149–151]

A. niger Aspergillus sp.

P. nalgiovense Fusarium sp.

P. chrysogenum Penicillium sp.

Gibberella zeae

Compounds impacting fungal growth and mycotoxins production

Volatile compounds impacting fungal growth and mycotoxins production

2-Phenylethanol Pichia anomala A. flavus Aflatoxins [152, 153]

2-Phenyl ethyl
acetate

Pichia anomala A. ochraceus OTA [154]

Pichia Kluyveri

Hanseniaspora
uvarum

Diffusible compounds impacting fungal growth and mycotoxins production

Lentinans (β-glucan) Lentinula
edodes

A. flavus Aflatoxins [155–159]

Trametes
versicolor

Compounds impacting mycotoxins production

Ligninolytic
enzymes

Trametes
versicolor

No impact on
A. flavus

Aflatoxins [155, 156]

21 Application of Fungal Metabolites Against Mycotoxins Production 723



3.1 Fungal Metabolites with Antifungal Property Against
Mycotoxigenic Fungi

Among the metabolites exerting strong antifungal activity (Table 9), peptaibols,
nonribosomal peptides of 10–20 residues, are produced by Trichoderma spp. In
2002, seven peptaibols were isolated from a Trichoderma atroviride strain
(atroviridins A-C and neoatroviridins A-D). These peptaibols showed an antimi-
crobial activity against filamentous fungi such as Aspergillus niger [144]. Recently,
Degenkolb et al. (2015) use a HPLC/MS-based peptaibiomics approach to analyze
referenced commercial BCAs formulated with Trichoderma sp. such as
Trichosan® or Vitalin® [145]. The authors show the systematic presence of
peptaibols in these commercial BCAs, thus suggesting their implication in fungal
inhibition.

Pyrrocidines A and B are polyketide-amino acid-derived antimicrobial com-
pounds produced by Acremonium zeae during fermentation [147]. Ac. zeae, a
preharvest maize contaminant, is known to be antagonistic to various Aspergillus
spp. and Fusarium spp. [146]. Its antagonistic effect is linked to the production of
pyrrocidines. Pyrrocidine A seems to be ten times more efficient than pyrrocidine B
with minimal inhibitory concentration of 5 μg/ml against A. flavus and 10 μg/ml
against F. verticillioides [146].

Trichodermin is a tricothecene produced by Trichoderma spp., a well-known
fungal BCA against mycotoxigenic fungi [160]. It was shown that trichodermin has
antifungal activity against A. niger and F. oxysporum [148]. Liu et al. (2012) have
shown that antifungal activity of trichodermin in Trichoderma harzianum can be
enhanced by overexpression of the transporter Thmfs1. This overexpression facili-
tates trichodermin secretion by the strain, and so trichodermin production
increases [148].

Antifungal proteins, presented in Table 9, are produced by various fungi of
Penicillium, Aspergillus, and Gibberella genera [151]. For example,
P. chrysogenum secretes the cysteine-rich protein PAF (Penicillium antifungal pro-
tein) which inhibits growth of a variety of filamentous fungi [150]. It was determined
that this PAF directly impacts conidial germination and hyphal extension by severe
changes in cell morphology [150]. Another identified antifungal protein, PgAFP,
produced by P. chrysogenum, inhibits growth of A. flavus by reducing its energy
metabolism and increasing stress response [149]. Besides, it appears that 24 h after
addition of PgAFP in the culture medium of A. flavus, enzymes essential for the
biosynthesis of aflatoxins (AflK, AflM) were no longer detectable in hyphae. PgAFP
may also prevent mycotoxins production by fungi [149].

3.2 Fungal Compounds Impacting Fungal Growth
and Mycotoxins Production

Now are presented some volatile compounds exerting an effect on mycotoxins
concentration (Table 9). For example, 2-phenylethanol (2-PE) is a major volatile
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compound produced by Pichia anomala, a known BCA against aflatoxins produc-
tion [152]. High level of 2-PE completely inhibits growth of A. flavus, while a low
level of this volatile compound promotes A. flavus growth but suppress aflatoxins
production (Table 9) [152, 153]. So, the biocontrol capacity of Pi. anomala is
attributed to the production of this volatile compound, which affects spores germi-
nation, growth, and genes expression in A. flavus. Pi. anomala was also shown to
produce the volatile compound: 2-phenyl ethyl acetate (2- PEA), as well as Pi.
kluyveri and Hanseniaspora uvarum [154]. It was shown that a dose of 48 μg.l�1 of
2-PEA allows complete inhibition of A. ochraceus growth. Smaller doses could be
applied for OTA production inhibition by the producing fungus, but prevention of
OTA production by 2-PEA seems to be related to reduction of the fungal biomass
[154]. Thus, antifungal effect or mycotoxin production inhibition of these fungal
volatile compounds was dose dependent.

Recently the volatile organic compounds (VOCs) of four yeasts (Cyberlindnera
jadinii, Candida friedrichii, Candida intermedia, and Lachancea thermotolerans)
were shown to reduce growth of the OTA producer A. carbonarius in grape juice
[161]. However, the type of VOCs produced by these yeasts remains undetermined.
As C. friedrichii shows a significant reduction of the vegetative growth of
A. carbonarius, further investigation should focus on chemical composition of
VOCs produced by this strain.

Another type of fungal metabolites interesting to reduce mycotoxins contam-
ination is lentinans, β-glucan compounds which are sometimes synthetically
modified as carboxymethylation or phosphorylation (Table 9) [158,
159]. Lentinan is produced by shiitake mushroom (Lentinula edodes) in the
culture filtrate which is suggested to inhibit aflatoxins production by Aspergillus
spp. [158]. Authors suggest that lentinan present in the culture filtrates could
stimulate the activation of transcription factors in Aspergillus spp. related to
antioxidant response and antioxidant enzyme activity. This activation leads to a
delay in aflatoxins genes transcription and so to a marked reduction of aflatoxins
production. The synthetically modified lentinans show an increased inhibitory
potential [159]. For example, the phosphorylated lentinan allows a complete
inhibition of aflatoxins production at 50 μg.ml�1 while maximum aflatoxins
inhibitory activity of lentinan is 200 μg.ml�1. About the carboxymethylated
derivative, it acts at the same concentration of lentinan. The author shows that
when they increase the concentration of lentinan in the culture medium, its
inhibitory activity is reduced. This is not the case for the carboxymethylated
lentinan. This difference is due to different modes of action of the lentinan and
its carboxymethylated derivative. Indeed, it was shown that lentinan inhibits
AflQ transcription, while it is not the case of its derivative. Ma et al. (2014)
insist on the fact that chemical modification of this Lentinula edodes derivative
could improve its impact on prevention of aflatoxins production [159]. Interest-
ingly, lentinan present in the L. edodes culture filtrate also enhances biocontrol
capacity of the yeast Cryptococcus laurentii on P. expansum growth and patulin
production. Lentinan improves growth of C. laurentii and its antioxidant
enzymes [157].
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3.3 Fungal Metabolites Impacting Mycotoxins Production

Lentinan has also been isolated from liquid filtrates of the basidiomycetes Trametes
versicolor which inhibits aflatoxins production by Aspergillus sp. [156]. The anti-
oxidant capacity and lentinan content of the culture filtrate can vary depending on
the T. versicolor strain used for the production of the culture filtrate. Thus, depending
on the culture filtrate used, aflatoxins production by A. parasiticus is inhibited from
40 % to above 90 % in liquid culture medium. This difference in the aflatoxins
inhibition ability of each culture filtrate is linked to its lentinan content and its
antioxidant capacity. Some aflatoxins genes (aflR, norA) transcription are delayed
in presence of T. versicolor culture filtrates [156].

It was also shown that ligninolytic enzymes present in the liquid filtrates of
T. versicolor were involved in aflatoxin production inhibition in A. flavus
[155]. Due to the laccase function of these ligninolytic enzymes, authors cannot
define if they inhibit aflatoxins production or degrade produced aflatoxins.

Culture filtrates of L. edodes and T. versicolor, containing β-glucan and/or
ligninolytic enzymes, have the same mode of action concerning inhibition of
mycotoxins production. They improve the antioxidant enzymes activity of the
mycotoxin producing fungus [156, 158]. This improvement leads to a better oxida-
tive stress response of the mycotoxigenic fungus. As mycotoxins biosynthesis is
linked to the oxidative stress suffered by the producing fungus, improvement of its
oxidative stress response limits mycotoxins production [158]. So other antioxidant
compounds can be used as BCAs against mycotoxins production. For example,
ascorbic acid was shown to improve Pi. caribbica biocontrol activity against
P. expansum growth and patulin production on apples [162]. A mix of butylated
hydroxyanisol (BHA) and propyl paraben (PP), two chemical antioxidants, were
also shown to inhibit OTA production by A. carbonarius [163], fumonisin produc-
tion by Fusarium spp., and aflatoxins production by A. flavus [164, 165]. Filamen-
tous fungi and edible mushrooms are well-known sources of antioxidant metabolites
such as phenolics, flavonoids, glycosides, polysaccharides, tocopherols,
ergothioneine, carotenoids, and ascorbic acid [166]. These antioxidant metabolites
have to be tested for their putative inhibition properties against mycotoxins produc-
tion. For example, an A. niger crude extract containing naphtho-gamma-pyrones
metabolites and presenting an antioxidant capacity equivalent to ascorbic acid is
currently tested in our lab for the inhibition of aflatoxins production by A. flavus and
A. parasiticus [167].

3.4 Towards the Elucidation of Metabolites Involved
in Mycotoxins Production Inhibition by BCAs

Some information about mechanisms and metabolites responsible for the biocontrol
activity of some fungal BCAs are available. For example, control of A. carbonarius
OTA production by a strain of Saccharomyces cerevisiae was studied
[168]. Coculture between the two microorganisms shows a strong inhibition of
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A. carbonarius growth. The same inhibition of A. carbonarius growth is observed
when the culture medium is supplemented with the yeast crude supernatant or the
yeast autoclaved one. Interestingly, growth of A. ochraceus was strongly decreased
in presence of yeast crude supernatant while it is only slightly impacted when
exposed to autoclaved supernatant. In the latter case, OTA production by
A. ochraceus was drastically reduced through inhibition of OTA PKS transcription.
These results suggest that at least two different compounds produced by S. cerevisae
were involved in biocontrol activity of the strain. They are still not determined but
some have antifungal activity while other directly impacts mycotoxins production
[168]. Based on the same approach, our lab tries to elucidate the active compounds
involved in T-2 toxin production inhibition by F. langsethiae when the yeast
Geotrichum candidum is used as BCA. It was shown that in vitro coculture of
G. candidum and F. langsethiae led to partial inhibition of both fungal growths but
that T-2 toxin production was drastically reduced [169]. The putative mechanisms
associated with the biocontrol capacity of different yeast strains (Cryptoccocus
albidus, Pi. membranifaciens, Cryptoccocus victoriae) against the patulin-producer
P. expansum was also partially elucidated [170]. For example, authors have shown
that inhibition of pathogen growth is linked to diffusible compounds production by a
strain of C. albidus while for another strain it is linked to production of VOCs
compounds.

4 Conclusion

Mycotoxins are secondary metabolites produced by filamentous fungi which are
potentially dangerous for animals and humans. The latter has been confirmed in
human illnesses such as ergotism in Middle age or aflatoxicosis in the past century.
Nowadays, 300–400 mycotoxins are identified and among these 15 are currently
under regulation indicating maximum levels authorized within the EU.

In this chapter, we presented the three different biosynthesis origins of the
EU-regulated mycotoxins and their associated toxicities. Within the polyketide
family, we highlighted the PKS involved in the known mycotoxins biosynthetic
pathways. We started from the aflatoxin biosynthesis (in Aspergillus spp.) and
continued with citrinin (in Aspergillus spp. and Penicillium spp.), patulin
(in Aspergillus spp.), and zearalenone (in Fusarium spp.). The following biosynthe-
sis family was the terpenes. Mycotoxins concerned by this family are named
trichothecenes. They are first generated by the action of a cyclase enzyme and
among these T-2 and HT-2 (Type A – in Fusarium spp.) and deoxynivalenol (Type
B – in Fusarium spp.) are EU regulated. The last biosynthesis family presented in
this study was the ergot alkaloids (in Claviceps spp.) which requires a
dimethylallyltryptophan synthase for it biosynthesis.

Throughout our chapter, the different intermediate precursors were also presented
whenever it was possible as well as other products identified from the same biosyn-
thesis (e.g., NIV for DON). Nevertheless, only 15 out of 400 mycotoxins are
regulated and were deeply presented in this chapter. Other mycotoxins should be
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kept in mind as potential threat to human health. As an example, the Alternaria
genus is starting to be known as a mycotoxin producer. Its secondary metabolites
include different metabolites such as alternariol, alternariol monomethyl ether,
tenuazonic acid, tentoxin, and altenuene [127]. Other mycotoxins of concerns
include phomopsins produced by Diaporthe toxica [169].

To reduce mycotoxins occurrence in the agrofood chain, prevention and decon-
tamination techniques exist. In this chapter, a section was focused on fungal metab-
olites used to prevent mycotoxins production. Various fungal metabolites can be
used as BCAs against mycotoxins production. Those fungal metabolites can be
classified into three categories (Table 9). The first category is fungal metabolites
with antifungal activity. Among this category we can find peptaibols, pyrrocidines,
trichodermin, and antifungal proteins. The second category is fungal metabolites
both impacting fungal growth and mycotoxins production. For example, 2-PE, a
VOC, acts on a dose-dependent manner: low level of 2-PE produced by Pi. anomala
inhibits aflatoxins biosynthesis while high level inhibits A. flavus growth. Finally, the
third category is fungal metabolites inhibiting mycotoxins production. For example,
the ligninolytic enzyme is produced by the basidiomycetes T. versicolor which
improves oxidative stress response of the mycotoxigenic fungus. This induces a
limitation of mycotoxins production. Filamentous fungi represent an inexhaustible
source of fungal metabolites with a putative biocontrol activity against mycotoxin
production. This is also the case for plants and bacterial metabolites. Essentials oils
from various plants such as peppermint, eucalyptus, oregano, or thyme are currently
used to limit A. flavus growth and/or aflatoxins accumulation [170, 171]. For thyme
essential oil, it is determined that a phenolic compound named thymol presents
antifungal effect against Aspergillus spp. and Fusarium spp. [172]. Concerning
bacterial metabolites, our lab is currently determining the active compounds pro-
duced by some actinomycetes strains which impact aflatoxins production by
A. flavus without impacting its fungal growth [137, 138].
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Abstract
The basidiomycete Agaricus subrufescens Peck, also known as the almond
mushroom due to its particular flavor, became in a few years one of the most
important culinary-medicinal cultivable mushrooms with potentially high added-
value products and extended agronomical valorization. As other mushrooms, it
produces metabolites of great interest as potential antioxidant defensive agents to
reduce the oxidative damage caused by free radicals. The quality of raw mush-
rooms or extracts and yield in metabolites may vary with the genetic background
of the mushrooms and the environmental conditions. This chapter uses
A. subrufescens as a guideline for illustrating the diversity in radical scavenging
activities and metabolites in edible fungi, how it can be studied, and how active
molecules might be identified.

Keywords
Agaricus brasiliensis • Agaricus blazei • CPC • HPLC • Agaritinal

1 Introduction

Antioxidant supplements, or natural products containing bioactive compounds, may
be used to reduce oxidative damage to the human body [1, 2]. Edible mushrooms are
good candidates for obtaining such natural products. They are widely recognized as
a functional food and a source of various physiologically active compounds for the
development of new drugs and nutraceuticals [3, 4]. There have been recent inves-
tigations on the antioxidant properties of extracts from various cultivated and wild
edible species [5–11]. Antioxidant properties of mushroom polysaccharides are well
documented. They improve the activity of antioxidant enzymes, scavenge free
radicals, and inhibit lipid peroxidation and they are proposed as valuable functional
food additives or sources of therapeutic agents for antioxidant and cancer treatments
[8, 12, 13]. On the other hand various phenolic compounds, flavonoids, ascorbic acid
[5, 6], and other compounds such as the water-soluble thiol ergothioneine [14, 15]
are recognized as antioxidants in mushrooms.

Many studies have compared the content of bioactive compounds or antioxidant
activities in different mushroom species [9, 14, 16]. However, in most of them,
analyses were done on only few sporophores from one strain of each species,
generally collected on a local place in the wild or bought from a local market,
sometimes collected at a mushroom farm and rarely cultivated in a research institute
under controlled conditions. Consequently in such experiments, what were referred
as differences between species could actually be only case studies. Within a species,
antioxidant activities and bioactive compounds may vary significantly due to genetic
differences between strains, environmental conditions, cultivation techniques, matu-
rity of the harvested mushrooms, and shelf life conditions [17, 18]. In addition
comparisons of data from different articles are rendered difficult by the diversity of
extraction methods, of assays for antioxidant activities, and of the units the data are
expressed.
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Agaricus subrufescens Peck is formerly known in the literature as Agaricus blazei
Murrill sensu Heinemann (ABM), or Agaricus brasiliensis Wasser et al. and is also
called Almond Mushroom, Himematsutake and Cogumelo do Sol [19]. The medic-
inal properties of this culinary-medicinal mushroom are known for more than three
decades and several reviews analyzed its importance as functional food or for
medicinal purposes [20–24]. Currently, there are few published data for antioxidant
activities of A. subrufescens not due to polysaccharides [25–31].

In this chapter we describe recent advances in understanding of factors affecting
antioxidant activities in mushroom extracts and how to go from activities to the
active metabolites, through a focus on the almond mushroom A. subrufescens
including new data (Fig. 1).

2 The Genetic Background Affects Antioxidant Activities
of Mushroom Extracts

2.1 Interspecies Versus Intraspecies Diversity

Finding the best mushrooms for the selection of candidates for either direct use as
food additives or for isolation of active molecules is a challenge. For that, many
authors compared various edible mushroom species they can obtain locally, but only
few of them took into account the intraspecific diversity which could be a significant
factor of variation in potentials of antioxidant activities. To evaluate the effect of the
genetic background within a species on the expression of a trait, it is necessary to
limit the effect of the environment and cultural practices by cultivating different
strains or varieties simultaneously under the same conditions. This is convenient
with mushrooms that can be cultivated on the same substrate in a cultivation room
with climatic managements.

That was what we did with eight strains of A. subrufescens cultivated with the
methods described in Llarena-Hernadez et al. [32]. Three were Brazilian cultivars

Stipes vs caps
growing conditions

DPPH. scavenging activity - Reducing power
Polyphenol content - active biomolecules

Wild vs cultivars
Primordia vs fruiting bodies

Agaricus subrufescens

Fig. 1 Factors affecting antioxidant activities in the almond mushroom

22 Antioxidant Activities and Metabolites in Edible Fungi, a Focus on the. . . 741



cultivated in the last 10 years, one (CA454) was a supposed subculture of the
Brazilian strain at the origin of the modern cultivation of this mushroom, and three
were recently isolated strains from France and Spain. The last one was a hybrid
between CA454 and a French isolate. An analysis of DNA single sequence repeats
(SSR) fingerprinting showed no differences in genetic distances between the three
Brazilian cultivars and two clusters were distinguished with the Brazilian cultivars
and CA454 on the one hand and the European wild strains on the other hand [28,
32]. These strains had been cultivated under the same conditions in experimental
facilities at our institute (INRA) for measuring antioxidant activities in mushrooms
collected at (a) the primordium stage and (b) the sporocarp commercial stage, veil
closed, considered as stage 3 for the button mushroom Agaricus bisporus [33].

Irrespective of the genetic distances, ANOVAs with contrast showed that the
group of wild strains did not differ from the group consisting of CA454 and cultivars
for scavenging activity and reducing power, measured in caps with the methods
previously described in Savoie et al. [34], with p = 0.312 and 0.772 respectively
(Tables 1 and 2). However, intraspecific variability was observed. When compared
to the other strains, the cultivars CA561 and CA565 exhibited the significant highest
DPPH scavenging activities in the sporophores and the stipes (Table 1). The highest
activity was 2.8-fold the lowest activity. Variations in antioxidant activities with the
strains have been documented for the button mushroom. Czapski [35] measured

Table 1 DPPH radical scavenging activities of methanolic extracts from eight A. subrufescens
strains harvested at the primordium and sporophore stages

Strainc
EC50 values (mg mushroom mL�1)

Primordium Whole sporophore Cap Stipe

CA438-A 1.49 ca BCDb 2.17 b BC 1.72 c BC 2.84 a B

CA487 1.74 b AB 2.06 ab BC 1.88 b BC 2.37 a BC

CA643 1.56 c BC 2.48 b B 2.19 b AB 2.86 a B

Hybrid 1.04 d CD 1.86 b C 1.49 c CD 2.16 a C

CA454 2.12 b A 3.17 a A 2.47 b A 3.49 a A

CA561 0.95 b D 1.38 a D 1.42 a CD 1.35 a D

CA565 1.43 a BCD 1.13 b D 1.13 b D 1.13 b D

CA570 1.00 b CD 1.95 a C 1.75 a BC 2.12 a C

EC50 were measured as in Savoie et al. [34]; values are means of 3 replicates
aWithin a line, values followed by the same lower case letter are not different at p = 0.05 by the
Duncan’s test
bWithin a column, values followed by the same capital letter are not different at p = 0.05 by the
Duncan’s test
cCA561, CA565, CA570 were cultivars of A. subrufescens from Brazil purchased by D. Zied in
2007. CA454 is a subculture of the collection strain WC837 in PSUMCC the Pennsylvania State
University Mushroom Culture Collection (PSUMCC, USA, PA) provided by D. J. Royse.
According to PSUMCC, WC837 is similar to ATCC 76739 which according to ATCC, was
originally provided by T. Furumoto, who is known to have discovered A. subrufescens in Brazil
(São Paulo State) during the 1960–1970 and used by Mizuno et al. [24], at the origin of the modern
cultivation of this mushroom. CA438-A, CA487 and CA643 were recently isolated wild European
strains of A. subrufescens
EC50 of radical scavenging activity for ascorbic acid was 0.023 mg mL�1
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EC50 values for scavenging of stable DPPH radicals in 50 % methanolic extracts
from mushrooms of four strains of A. bisporus and observed activities varying from
1.0 to 3.6 times. In a comparison of a white commercial hybrid and two wild strains
of A. bisporus cultivated under the same conditions and harvested at the same
development stage lesser variations in DPPH activities (1.65�) were measured in
ethanolic extracts [34]. These magnitudes in intraspecific variations of EC50 of
DDPH scavenging activities are higher than or similar to those reported in many
studies comparing different mushroom species. Tsai et al. [36] have found significant
differences, but with a magnitude of only 1.25, in comparison of ethanolic extracts
from A. subrefescens and two other taxonomically different species, Boletus edulis
and Agrocybe cylindracea. In a comparison of five species in the genus Agaricus, the
extreme EC50 values of DDPH scavenging activity of methanolic extracts were
5.4–15.8 mg mL�1 for Agaricus sylvaticus and Agaricus arvensis respectively [37].

Finally, the studies concluding on ranks of mushroom species for their antioxi-
dant activities without taking into account the intraspecific variability should be
considered with precautions. However, in studies where more than 20-fold higher
activities are measured in some species than in others [16], one can consider their
different potential being characters of the species, even if intraspecific variations due
to the variability in genetic backgrounds may exist.

2.2 Selection of Strains with High Antioxidant Potential

Agaricus subrufscens exhibits almost the largest diversity of the genus at the
morphological, climatic, and geographical levels [38] and the preliminary data
presented above show a potential significant diversity for antioxidant activities.

Table 2 Reducing power of methanolic extracts from eight A. subrufescens strains harvested at the
primordium and sporophore stages

Strain

Concentration (mg mushroom mL�1) leading to 0.25 absorbance

Primordium Whole sporophore Cap Stipe

CA438-A 2.64 ca BCb 3.87 b CD 2.75 c D 5.50 a BCD

CA487 2.90 c BC 4.30 b BCD 3.18 c CD 5.89 a B

CA643 4.20 c A 6.57 b A 4.29 c AB 9.49 a A

Hybrid 2.65 d BC 4.77 b BC 3.60 c BC 5.69 a BCD

CA454 3.63 c AB 5.33 a B 4.48 b A 5.73 a BC

CA561 2.24 b C 3.23 ab D 2.96 ab CD 3.65 a CD

CA565 3.67 a AB 3.17 b D 2.96 c CD 3.30 b D

CA570 2.85 c BC 4.20 ab BCD 3.70 bc ABC 4.65 a BCD

Reducing power was measured as in Savoie et al. [34]; values are means of 3 replicates
aWithin a line, values followed by the same lower case letter are not different at p = 0.05 by the
Duncan’s test
bWithin a column, values followed by the same capital letter are not different at p = 0.05 by the
Duncan’s test
The reducing power measured with ascorbic acid was 0.018 mg mL�1
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Rapid ways to rapidly estimate the antioxidant potential of a strain and select in a
collection for biotechnological purposes would be useful.

For A. bisporus, whereas the main cultivated strains are white hybrids, there are
also cream and brown cultivars exhibiting different properties and only a very low
percentage of white wild strains have been collected. Comparing white and brown
strains, Dubost et al. [39] observed that the white strains they studied contained the
least while portabellas (brown) contained the highest content of L-ergothioneine, a
naturally occurring antioxidant. Shao et al. [40] measured higher concentrations of
ergosterols and antioxidant activities in a brown cultivated strain than in a white
hybrid. Agaricus subrufescens cultivars are all known to be characterized by a
brownish gold color of the cap, which explains that there is no report in the literature
on antioxidant capacity in A. subrufescens in relation to cap color. In our work using
wild strains with different cap colors [28], radical scavenging activity and reducing
power of light cream strains (CA438-A, CA487, and the hybrid) were in the same
range as those of the brown CA643 and the brownish gold cultivars CA561, CA565,
and CA570 (Tables 1 and 2).

To analyze a putative effect of the cap pigmentation on the antioxidant activities,
the pileipellis was removed from caps of CA643 and CA438 using a scalpel. The
samples were immediately frozen at �80 �C and kept at this temperature until being
freeze dried. Actually, no significant difference in DPPH scavenging activity was
detected between caps with or without pileipellis (Table 3) either in the light cream
strain CA438-A or in the brown strain CA643. The reducing power was reduced
when the pileipellis of CA438-Awas removed. Removal of the pileipellis by cutting
it off produced a yellowish color that could explain this decrease in antioxidant
capacity. The antioxidant activity of methanolic extracts of A. subrufescens appeared
to depend on the strain, and probably without correlation with the cap color.

Radical-scavenging activity in methanolic extracts of sporophores of the eight
evaluated strains of A. subrufescens ranged among EC50 values of 1.13–3.17 mg
mushroom mL�1. Some works on the antioxidant properties of A. subrufescens
cultivars have been made, but data varied greatly depending on the strain, technique
of extraction, and method of antioxidant activity measurement. Carvajal et al. [41]
determined EC50 values of 0.305 mg mL�1 of extract for DPPH radical scavenging
using a mix of ethanol:water (70:30) for extraction. On the other hand, Soares
et al. [30] have observed EC50 values of 3.0 – 3.2 mg mL�1, using methanol as

Table 3 Effect of the pileipellis on antioxidant activities of methanolic extracts from a cream
(CA438-A) and a brown (CA643) strain of A. subrufescens

Treatment

Radical scavenging activity Reducing power (mg mushroom mL�1)

EC50 values (mg mushroom mL�1) Leading to 0.25 absorbance

CA438-A CA643 CA438-A CA643

Peeled 1.720 a 2.187 a 3.87 a 4.94 a

Not peeled 1.364 a 2.219 a 2.75 b 4.29 a

Radical scavenging activity and reducing power were measured as in Savoie et al. [34]; values
are means of 3 replicates. Within a column, values followed by the same letter are not different at
p = 0.05 by the Duncan’s test
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extraction solvent. In the present work we expressed the activities as EC50 per mg of
dry powder of mushroom used for obtaining the extract, because it takes into account
the extraction rate and it is more representative of the use of mushrooms as functional
food. It was feasible because no concentration of the extracts was performed due to
the high level of activity. This way of data presentation should be used most of the
time for favoring comparisons between studies. By a rapid conversion of the
published data, we stated that the ranges of antioxidant activity observed herein
among the eight strains showed efficient abilities compared to other works.

Over the differences in a trait level between genetically distinct strains, the effect
of the genetic background may be stressed by genetic studies of hybrids between
strains and evaluation of the heredity of the trait. In the study presented in this
chapter, a hybrid (CA454-3 x CA487-100) was provided by E. Huang and P. Callac
who crossed homokariotic single spore isolates of the Brazilian strain CA454 and the
French strain CA487. It did not differ from its French parent but it had significant
higher antioxidant activity (lower EC50) than its Brazilian parent (Table 1). This
illustrates that crossing various strains is a putative way to improve the performances
of selected strains to be used for the isolation of antioxidant compounds. To date,
there is no known study on the improvement of antioxidant activities in mushrooms
by breeding programs. This would, however, be feasible taken into account new
genomic approaches are developing for cultivated mushrooms, as it is done for
plants. Foulongne-Oriol [42] reviewed the used of genetic linkage mapping in fungi.
Genetic linkage maps provide foundation for studying genome structure and orga-
nization and are highly valuable tools to identify the location of loci controlling
important traits of interest. One can expect to improve the mushroom quality and
their natural ability to produce selected health-promoting compounds by breeding
programs as for other traits. Concerning A. subrufescens, intercontinental hybrids
between strains with a large diversity of morphological traits [38] and a genetic
linkage map have recently been obtained [43]. This opens the door to further
breeding programs for improving the antioxidant activities and antioxidant com-
pound contents in cultivated strains.

3 Antioxidant Activities of Mushroom Extracts Vary
with the Development Stage and Part of Fruiting Bodies

The choice of the optimal stage of harvest and the part of the fruiting body
containing the higher amount of bioactive compounds is also important to improve
the use of mushrooms as a functional food. Antioxidant activity had been measured
in A. subrufescens fruiting bodies with closed caps compared to mushrooms with
open caps [29, 30], and compared between caps and stipes [31]. Variations in
antioxidant activity during the A. subrufescens sporophore ripening were reported.
These works concerned the mushroom biology and its use as a nutritional source of
antioxidant. Soares et al. [30] found no significant difference in antioxidant proper-
ties comparing DPPH radical scavenging activity and reducing power in young
(cap closed) and mature (cap opened) sporophores of a Brazilian cultivar.
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Mourão et al. [29] analyzed five Brazilian cultivars and measured higher DPPH
radical scavenging activity in mushrooms with closed cap compared to aging
mushrooms with cap completely turned apart. Nevertheless, no information on the
antioxidant activities in the first stage (primordium) of A. subrufescens fruiting body
development was available in the literature. All these works concerned cultivars
which are suspected by Neves et al. [44] to have a common origin, based on genetic
studies. To our knowledge, no report has been done about changes in antioxidant
activity during the development of various strains of A. subrufescens from primordia
to fruiting bodies.

In the work described above, all strains but CA565 showed higher antioxidant
activities in the primordia (10–15 mm high, collected before gill development)
compared to the whole sporophores, although differences were not significant for
CA487 ability to scavenge DPPH radicals (Table 1) and for the reducing power of
CA561 (Table 2). In contrast to the other strains, CA565 exhibited a higher activity
in the whole sporophore whatever the method used. Tsai et al. [45] analyzed ethanol
extracts of A. bisporus fruiting body at five development stages: pin head, veil intact
(tight), veil intact (stretched), veil opened, and gills well exposed. They found the
highest radical DPPH scavenging activity and reducing power in the sporophore veil
intact stage. Higher antioxidant activities in primordia than sporophores with closed
veil we observed here could result from antioxidant mediated defences necessary to
protect the cells from the high levels of reactive oxygen species (ROS) generation at
this critical stage of mushroom differentiation, as previously proposed for
A. bisporus [46].

Beyond the development stage of the mushroom, the antioxidant activity can
differ depending on the part of the sporophore. Caps of the wild A. subrufescens
strains, CA454, and the hybrid showed higher DPPH radical scavenging activity
compared to stipes whilst similar activity was measured in caps and stipes of
cultivars. The reducing power in the caps was higher compared to that found in
the stipes in all strains but CA561. Despite some variability between strains and
species in various studies [31, 47, 48] the presence of higher antioxidant capacities in
the cap compared to the stipe is probably common in edible fungi. This is in
agreement with the results of Savoie et al. [34] who found the highest antioxidant
activities in the gills of A. bisporus, since the gills are organs supporting the
differentiation of spores where the redox reactions are important and consequently
the antioxidant defences are higher.

In the data presented here, the type of sample showing the highest antioxidant
activities was primordium for the hybrid, primordium or cap for the wild strains
CA438-A and CA487, and cap for CA565. In strains CA561, CA570, and CA643,
the highest radical scavenging activity was measured in the cap, but similar reducing
power was found in primordium and cap. The opposite was observed with CA454.
Agaricus subrufescens is a culinary-medicinal mushroom mainly sold as powder,
extracts, or tea. From a scientific point of view, the primordia and the caps without
stipe of A. subrufescens were the samples the most interesting for antioxidant
properties, but processing primordia (weak biomass, time-consuming harvest) or
caps (one more step in preparation compared to whole sporophore) seemed not the
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best choice for commercial production when antioxidant properties were taken as a
whole.

The antioxidant properties of a mushroom collected at the best development stage
have to be preserved until its final use as food or for biomolecule extractions. Various
postharvest physicochemical treatments and specific storage conditions are applied
for limiting the development of microbial contaminations and decreasing the meta-
bolic activity of the mushrooms. They generally have physiological effects leading
to increases in the expression of antioxidant systems in mushrooms. Positive effects
have been observed in shiitake mushrooms, Lentinula edodes. A heat treatment at
121 �C for 30 min increased the ABTS and DPPH radical scavenging activities by
2.0-fold and 2.2-fold compared to the raw sample [18], and postharvest application
of UV-C radiation delayed softening and enhanced antioxidant capacity [49]. During
the storage of A. bisporus, the highest expression of the enzymatic antioxidant
system was found in the mushroom stored under modified atmosphere packaging
with vacuum cooling treatment [50], or with nitric oxide treatment [51]. Some
composite chemical pretreatments using EDTA, citric acid, CaCl2, sorbitol were
also efficient for increasing antioxidant enzymes and scavenging ROS, indicating
higher defensive potential for mushrooms [52]. Mushrooms exposed to 80 % O2

exhibited higher DPPH-radical scavenging activity after 6 days of storage [53]. Both
in A. subrufescens and A. bisporus, γ -irradiation did not affect antioxidant properties
of methanolic extracts [25, 54]. However, conventional industrial food processing
such as freezing and canning were shown to slightly negatively affect the antioxidant
activity of seven edible fungi [55]. DPPH free radical scavenging activities of
A. bisporus were shown to be significantly affected in ethanol extracts by boiling
of the mushroom for 30 min [56] whereas activities decreased in methanol extracts
of both fresh and frozen mushrooms of A. subrufuscens boiled for 20 min
[57]. Microwaving had also a detrimental effect [57].

The above selection of studies on postharvest treatment highlights the lack of
stability of antioxidant properties in a living material as mushrooms are, but there are
some ways to partly stabilize or improve them. However, in reports on antioxidant
activities measured in mushrooms from local markets where the storage conditions
were not controlled, there is a large risk of misevaluation of the species or strain
potential.

4 Changes in Antioxidant Activities of Mushroom Extracts
with the Environment

Growing condition is another source of variability in antioxidant activities of
mushrooms. The base ingredients of the commercial compost used in the study
presented in this chapter were wheat straw and horse manure, whose nutrient content
varied with batches. Nine months separated the preparation of the two batches of
compost provided by the same company, in two replications of the experiment (expA
and expB). The eight studied strains showed significant differences in total mush-
room biomass produced until 65 days after casing in the two different crops despite
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the control of the climatic conditions. Mushroom yield of wild European strains
ranged from 149 to 189 g kg�1 substrate in expA, and from 123 to 227 g kg�1 in
expB, whilst Brazilian cultivars and CA454 produced 7.1 to 28 g kg�1 in expA and
13–91 g kg�1 in expB. The wild strains were early fruiting compared to the other
strains, irrespective of the experiment. Antioxidant capacities varied significantly
with the experiment. The DDPH scavenging activity was higher in expA than in
expB for CA438-A, CA487, and CA565 whilst it was the opposite for the other
strains but the hybrid (Fig. 2). The Pearson coefficient between mushroom yields and
DPPH EC50 values (r = 0.785 p = 0.037 for expAwithout CA454 (poorly yielding,
7.1 g kg�1), and r = 0.753, p = 0.031 for expB, all strains) showed that the more a
strain was productive, the more its scavenging activity of DPPH radicals was low.
No significant correlation ( p= 0.05) was observed between mushroom yield and the
level of reducing power. A common effect of the experiment was observed; all the
strains had higher reducing power in expB, but the differences between experiments

Fig. 2 Comparison of DPPH radical scavenging activity (a) and reducing power (b) of methanolic
extracts from eight A. subrufescens strains harvested at the sporophore stages on two different batches
of compost. Radical scavenging activity and reducing power were measured as in Savoie et al. [34];
values are means of 3 replicates. Dark bars experiment A, white bars experiment B.
* significant difference between the two experiments at p <0.05, Duncan’s test
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were not significant for CA438-A, CA487, and CA565. As a summary the best batch
of substrate for mushroom antioxidant activities depended on the strain. Similarly,
Geosel et al. [31] reported antioxidant capacity variations between A. subrufescens
cultivars and years and suggested that substrate fluctuation may influence the
polyphenol biosynthesis pathway of the mushroom. Zied et al. [58] assessed how
various cultivation practices (different strains, compost materials, casing layers used
for fruiting induction, and cultivation environments) affect the final β-glucan content
of the cultivated A. subrufescens mushrooms. The factors with the greatest contri-
bution to the variation in β-glucan content were both the strain and the casing layer
type (both 35 %), followed by the cultivation environment (16 %), and the type of
compost (10 %).

These studies performed with different substrate origins and strains pointed out
the importance of the genetic and phenotypic background of the strain and the
crossed effect with environmental conditions when the objective is to produce
functional food or bioactive components. This crossed effect is probably as signif-
icant with the mushroom collected in forest as with the cultivated ones. Conse-
quently it is hazardous to compare data between published works performed on
samples coming from different locations.

5 From Activities to Active Metabolites

Antioxidant activity in mushroom extracts is probably the result of the interaction
between various metabolites having individually contrasted potential. However
many works in mycopharmacy are dedicated to the isolation and identification of a
major bioactive molecule in fractions and to the optimization of their production.

5.1 Antioxidant Molecules in Mushrooms

Among the antioxidant compounds in mushrooms, both polysaccharides and phe-
nolic compounds have attracted much attention. In many studies comparing antiox-
idant activities in alcoholic extracts from different mushrooms, positive correlations
were found with the total phenolic content evaluated by means of the
Folin–Ciocalteu assay [34, 59–63].

Depending on their composition, all phenolic compounds are not as strong
antioxidants as the others. In extracts, the antioxidant effect is affected by interac-
tions between molecules which may result in synergism or antagonism [64]. Several
studies measured the contents in individual phenolic compounds in mushroom
extracts. Palacios et al. [65] found homogentisic acid to be the most abundant
compound in mushrooms, but its concentration did not correlate with the antioxidant
efficiency of the mushrooms. On the contrary, the activity of caffeic acid seems to be
significant [65]. Finally when only phenolic acids detected by HPLC are taken into
account, there is no significant correlation between their content and the antioxidant
activity [66]. Actually, other compounds than phenolic acids are present in
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mushrooms, react with the Folin-Ciocalteu reagent, and contribute to their antioxi-
dant properties [66]. However, as for antioxidant activity the composition in pheno-
lic compounds in mushrooms might depend on strains, the place the samples come
for, the storage conditions of the mushroom, the extraction, and analytical methods.

5.2 Identifying a New Antioxidant Molecule in A. subrufescens,
Agaritinal

Following is an illustration of a strategy developed to isolate and characterize a new
antioxidant compound in A. subrufescens extracts and to identify factors affecting its
yield of biological production. Powder of A. subrufescens sporophores strain CA487
was shaken for 4 h in 70 % ethanol. Ethanol was evaporated and three successive
extractions were performed with ethyl acetate. The aqueous residue was lyophilized
for drying, the solid residue dissolved with ethyl acetate/butanol/ water (1/4/5; v/v/v)
to the concentration of 200 mg mL�1 and submitted to Centrifugal Partition Chro-
matography (CPC) using a Kromaton CPC 200 FCPC operating in either
descending or ascending mode, with total cell volume of 220 mL. Three fractions
(f1–f3) were selected during the ascending mode of the CPC and represented 3, 1.5,
and 4.4 %, respectively, of the total dry weight of the extract. Two fractions, f4 and
f5, obtained during the descending mode represented the major part of the extract
(26–65 %, respectively). The Folin-Ciocalteu method [59] was used to assess the
total phenolic content in these fractions and the Oxygen Radical Absorbance Capac-
ity (ORAC) [67] was a measure of their antioxidant activity. The fraction with the
highest quantity of phenolic compounds was f3, followed by f2 (Fig. 3). The major
part of the antioxidant activity was also found in these two fractions. Far fewer
quantities of phenolic compounds were detected in the other fractions, and only f1
had antioxidant activities although about ten times lower than those in f2.

The three fractions with significant antioxidant activities were submitted to
analytical HPLC with Prontosil column 120-5-C18 (NC 04 250 � 4.0 mm). Com-
pounds were eluted with a gradient of water TFA 0.005 % (solvent A) and acetoni-
trile TFA 0.005 % (solvent B) according to the following gradient program (v/v):
0 min 100 % A 0 % B, 50 min 100 % B isocratic for 5 min. Flow rate was
1 mL min�1. Elution material was monitored by an UV detector. Two peaks were
detected in fraction f1 and several peaks in fraction f2. Only a major peak (f3-m,
Fig. 4) was observed on the chromatogram of fraction f3 which showed the highest
polyphenol content with the Folin-Ciocalteu test. Peak wavelengths and retention
times were reported in Table 4.

Fraction 3 was analyzed by HPLC-MS and the major compound was purified by
preparative HPLC with Microsorb column 100-5-C18 (250 � 21.4 mm). The
structure of the purified molecule was determined by 1H NMR from spectra of
homonuclear 1H/1H correlation experiments (COSY), Heteronuclear Single-
Quantum correlation (HSQC), and Heteronuclear Multi-Quata Correlation
(HMBC) experiments. The chemical formula obtained was C12H15O4N3, with
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Fig. 4 Chromatogram at 310 nm of the purified f3 aqueous fraction from A. subrufescens submit-
ted to analytical HPLC with Prontosil column 120-5-C18 with an elution gradient of water TFA
0.005 % and acetonitrile TFA 0.005 %, showing the major compound, f3-m
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a molecular mass of 265.265 g mol�1. NMR techniques were used to identify
the structure of this compound. In 13C NMR (600 MHz, D2O), the signature of
carbons were at δ 194.3, 174.9, 173.5, 153.7, 132.7, 128.3,111.9, 54.1, 29.5, 25.9.
The 1H NMR (600 MHz, D2O) spectrum gave the following data: δ 9.70 (1H, s);
7.88 (2H, d, J= 8.3Hz); 6.98 (2H, d, J = 8.3Hz); 3.85 (1H,t,J = 6Hz); 2.62 (2H,m);
2.26 (2H,m). Results from 1D and 2D NMR and high-resolution MAS and compar-
ison with the published literature [68] led to the chemical structure of agaritinal,
β-N-(γ-glutamyl)-4-formylphenylhydrazine (Fig. 5). Analytical HPLC of the f3
fraction by comparison with serial dilutions of purified agaritinal revealed that
agaritinal contributed only 25 % to the fraction mass, and 1.1 % of the aqueous
extract. Considering the mean ORAC value of agaritinal (5186 μmol TE g�1) and the
ORAC value measured for f3 (3020 μmol TE g-1), it was estimated that agaritinal
contributed to about 40 % of the antioxidant activity of the f3 fraction.

These data allowed linking the antioxidant activity with phenolic compound
concentrations in simplification fractions. However, in an attempt to identify active
molecules, agaritinal, which is not a phenolic compound, accounted for 40 % of the
antioxidant activity of the fraction with the highest antioxidant activity and phenolic
content. To our knowledge, this work is the first report on antioxidant properties of
A. subrufescens related to agaritinal.

Table 4 Peak wavelengths and retention times of the major compounds detected in three aqueous
fractions of A. subrufescens submitted to analytical HPLC with Prontosil column 120-5-C18 with
an elution gradient of water TFA 0.005 % and acetonitrile TFA 0.005 %

Aqueous fractions Peak wavelengths (nm) Retention times (min)

f1 383 30.26

372 (240)a 49

f2 260 9.1

220 10.44

245 15.03

258 17.34

220 (277) 21.18

281 21.92

f3 312 (232) 16.21
aWavelength of secondary peak

Fig. 5 Agaritinal chemical
structure
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In an attempt to characterize the specificity of agaritinal production in
A. subrufescens we compared the species with two other cultivated mushrooms.
Agaricus subrufescens CA487 and the commercial A.bisporus 30A (France Myce-
lium) kept in the CGAB collection since 1997, cultivated at our institute, did not
differ significantly for their phenolic content and antioxidant activity whilst far less
polyphenolic compounds and antioxidant activities were measured in L. edodes,
strain 4306 (Somycel, France). Very little agaritinal was found in A. bisporus and the
molecule was not detected in L. edodes (Fig. 6). The higher content of phenolic
compounds in the wild A. subrufescens CA487 compared to the medicinal mush-
room L. edodes confirmed published data for commercial strains of A. subrufescens
and L. edodes [27]. Besides, the absence of agaritinal in the analyzed sample of
L. edodes is not surprising, as the molecule is an oxidative form of agaritine which is
limited to the genus Agaricus. The presence of agaritinal in the Meadow Mushroom
Agaricus campestris was the first report of the presence of the molecule in a fungus
[68]. A study of the distribution of agaritine within the genus Agaricus (covering
32 spp.) revealed that the compound is often accompanied by agaritinal, mainly in
A. arvensis, A. campestris, A. macrosporus, A. perrarus, and A. subperonatus
[69]. The level of agaritinal could be substantial in some of these mushrooms
(above 1 g kg�1 fresh weight). Three of these species (A. arvensis, A. macrosporus,
A. perrarus) are in the same phylogenetic section (Arvenses) as A. subrufescens
[70]. However the same group from Switzerland reported analyses of samples of
A. subrufescens from Brazil (cultures and wild isolates), and from cultures in USA
showing variations of 1–6 of agaritine concentrations in fruit bodies whilst agaritinal
was not detected [71]. The absence of agaritinal is contradictory to our own data and
to the abundance of the metabolite in other species of the section Arvenses. The
differences might be due to the drying condition and storage of the mushrooms
before analysis and to the strain origin, but also to the cultivation conditions.

The wild strain CA487 was cultivated under different environmental conditions
during the fruiting phase. Treatment 1 (no light, no cold shock) was as follows: the
room temperature was set at 23–25 �C with 95–97 % humidity and CO2 concentra-
tion lower than 1200 ppm. In treatment 2, no light but cold shocks for 4 h at 18 �C
twice a week were applied; 12 h light/24 h without cold shock characterized
treatment 3 while treatment 4 contained both 12 h light/24 h and cold shocks for
4 h at 18 �C twice a week. The different environment conditions had no significant
effect on the total phenolic content (Fig. 4a) and antioxidant activity of the strain
(Fig. 4b), but marked variations in agaritinal content were observed between treat-
ments and between replicates of treatments 1 and 3 (Fig. 4c). In a published work,
agaritine was identified in freeze-dried A. subrufescensmushrooms which have been
cultivated on sugarcane bagasse and defatted rice bran substrate, but the agaritine
peak split into two peaks in ethanol solution but not in methanol solution [72]. We
wondered whether the two peaks could represent agaritine and agaritinal.

Controversial conclusions on the effect of agaritine on human health exist in the
literature, but A. subrufescens is known as a medicinal mushroom and recent works
concluded to the safety of the mushroom [73] and the antitumor effect of agaritine
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depending on the concentration used [74]. A putative pharmacological concern of
A. subrufescens agaritinal might be possible if medicinal properties are identified. It
could be an additional specific metabolite as the known blazeispirols, triterpenoid
compounds with antioxidant activity and cytotoxic effects against several cancer cell
lines, and proposed in the prophylactic and/ or therapeutic treatment of diseases that
responds to the modulation of Liver X receptor [75].

5.3 Induction of Antioxidant Enzymes by Mushrooms

The primary function of antioxidant compounds in fungi is to prevent cell
damage induced by ROS. Under normal conditions, ROS are cleared from the
cell by action of superoxide dismutase (SOD). SOD catalyzes the conversion of
O2-· to H2O2 which is then decomposed in the presence of catalase (CAT) into
water and oxygen. In addition, glutathione (GSH) and glutathione-related
enzymes also play an important role against ROS, which are reduced by GSH
in the presence of glutathione peroxidase (GPx) and GSH is regenerated by
glutathione reductase (GR).

The oxidative stress can be removed by the induction of these antioxidant
enzymes. In a few in vivo studies, generally an aqueous extract of
A. subrufescens was administered orally to rats or mice. During aging of rats, de
Sa-Nakanski et al. showed that A. subrufescens was protective mainly to the brain
against the oxidative stress by increasing activity of antioxidant enzymes such as
SOD and CAT. An improvement in the functionality of mitochondria from brain as
evidenced by an increase in the activity of respiratory chain enzymes was also
observed [76, 77]. Likewise, Zhou and Chen have observed a protective role of
purified polysaccharides from A. subrufescens against the oxidative stress in rats
suffering from breast cancer by induction of antioxidant enzymes (SOD, CAT,
GPx, and GR) in the blood with a strong antitumor activity [78]. Contradictory
results were also recorded about the protection by A. subrufescens against carbon
tetrachloride-induced liver injury as shown by an increase in antioxidant enzymes
in serum of animals, positive in a rat model [79] and negative in a mouse model
[80]. Polysaccharides appear to be involved in this activity of mushrooms related
to the antioxidant enzymes, as has been shown for some fungi such as L. edodes,
Ganoderma sp, Auricularia sp, Grifola frondosa, Hericium erinaceus, and
Pleurotus abalones [81]. Many other edible mushrooms were reported to have
in vitro and in vivo antioxidant properties due to the presence of various putative
bioactive compounds such as polysaccharides, vitamins, carotenoids,
micronutrients, and polyphenols [82]. SOD, CAT, and GSH-dependent and
recycling enzymes are also present in mushroom cells and they contribute to
their antioxidant and detoxicant defences.
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6 Conclusions

Antioxidant properties of A. subrufescens compounds that are soluble in methanol
varied with the strain, development stage, part of the fruiting body studied, and
cultivation conditions. All samples showed important radical scavenging activity but
primordia and caps were particularly more active. The rapid production of a large
biomass easy to transform is of prime importance for commercial valorization of
A. subrufescens as food or dietary supplement with antioxidant properties. Besides,
the antioxidant capacities of the strain should vary little with the batch of commercial
substrate. This point might be the most difficult to solve, although strains like
CA438-A and CA487 could have this potential, taking into account their short
time to fruiting, high yield, and good antioxidant capacities. One of the antioxidants
that is not a polysaccharide has been identified as agaritinal. The potential of wild
strains can be useful to improve cultivated strains through breeding programs. This
set of conclusions was obtained after an analysis of the published works and
presentation of new data about a species of mushroom, but it is easily extendable
to most of the cultivated mushrooms, as well as the species picked in forest, and is a
guide for further improvements of the use of edible mushrooms as sources of new
antioxidants.
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Abstract
For thousands of years, natural products from medicinal mushroom are being
used for the cure of different lethal diseases. Among the huge category of
medicinal herbs, the genus Cordyceps is gaining special attention due to its
broad spectrum of biological activity. Cordycepin, a nucleoside analogue, is the
main bioactive ingredient of Cordyceps and known to mediate a variety of
pharmacological effects. Many chemically modified cordycepin derivatives
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have been reported which have shown more potential therapeutic effects. With the
advancement in fermentation techniques, it has been possible to produce the
higher cordycepin product. The modern techniques enabled the researchers for
an easy detection and extraction of cordycepin from fermentation medium. Being
a nucleoside analogue, cordycepin can interfere with the DNA/RNA biosynthesis
and acts as a potential candidate for the treatment of the dreadful diseases such as
cancer. Besides, cordycepin have also been known to modulate a variety of
signaling pathways involved in apoptosis, proliferation, metastasis, angiogenesis,
and inflammation. This chapter will describe the chemistry, production, detection,
and extraction strategies of cordycepin. In addition, variety of therapeutic appli-
cations of cordycepin with all possible molecular mechanisms of actions have
also been summarized.

Keywords
Cordyceps • Cordycepin • Derivatives • Fermentation • Detection • Extraction •
Therapeutic potential

1 Introduction

Although there is an availability of numerous resources to design new therapeutic
tools, the natural products are still preferred over the synthetic as they do not have
any side effects. About 50 % of prescribed drugs in the USA are either the natural
products or their structurally modified compounds [1, 2], which further increases the
curiosity about the importance of these natural compounds in medical biology. There
have been limited studies about the phytochemistry of the medicinal plants/herbs and
their pharmacological potential. Today, the advancement in the research facilities
and medical field has enabled us to carry out production, isolation, and identification
of bioactive molecules. The modern tools such as ultraviolet, infrared, nuclear
magnetic resonance, and mass spectrometry can help to identify an individual
compound in a very short period of time.

Medicinal mushrooms have been known for thousands of years to produce a
variety of biometabolites, which are being used as a possible therapeutic tool for the
treatment of different diseases [3]. Over two third of cancer-related deaths could be
prevented or reduced by modifying our diet with eatable mushrooms, as they contain
many antioxidants [4, 5]. Cordyceps militaris is one of the medicinally important
mushrooms, which has remarkable biomedical and pharmacological activities. The
name Cordyceps has been derived from two Latin words, i.e., cord and ceps meaning
club and head, respectively. Cordyceps militaris belongs to the Phylum Ascomycota
classified in the Order Hypocreales, as spores are produced internally in sacs called
ascus [6, 7].

Cordyceps, especially its extract, contains many biologically active compounds,
including cordycepin, cordycepic acid, adenosine, exopolysaccharides, vitamins,
and enzymes. Among these, cordycepin or 30-deoxyadenosine (9-(3-deoxy-β-D-
ribofuranosyl) adenine), a nucleic acid antibiotic, is the main active constituent
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which is most widely studied and have a broad spectrum of biological activity
[8]. Cordycepin is known to interfere with various biochemical and molecular
processes such as purine biosynthesis, DNA/RNA synthesis, and mTOR (mamma-
lian target of rapamycin) signaling transduction [3, 9]. It is predominantly produced
commercially via solid-state fermentation and submerged cultivation of Cordyceps.
Considerable effort is currently focused on three aspects of cordycepin production:
strain screening and improvement, additives, and optimizing fermentation. How-
ever, high-efficiency batch fermentation of C. militaris is carried out in static culture
for more than 30 days, which is too long to achieve high production efficiency and
low operational cost and energy consumption [10]. Therefore, various methods have
been proposed to extract and analyze bioactive metabolite like cordycepin from
liquid culture as well as the fruiting body of C. militaris. This chapter reveals about
the various production and extraction strategies adopted by the researchers for
maximum gain of cordycepin. Furthermore, this chapter will update us about the
potential applications of cordycepin as a therapeutic agent.

2 Chemistry of Cordycepin

The chemical formula of cordycepin (9-(3-Deoxy-β-D-ribofuranosyl) adenine) is
C10H13N5O3 and its melting point is 228�231 �C. The structure of cordycepin
shows that it has a molecular weight of 251.24 Da. Its UV spectrum reveals strong
absorption bands at � 259.0 nm [11]. The NMR spectrum of cordycepin shows
singlet at 3.4 ppm, which can be attributed to C-H proton. The -NH2 peak is found to
present at 4.6 ppm, whereas the absorption peaks due to different -OH groups are
found to be in the range of 8–8.5 ppm. The signals due to R3-CH and -N-C-H
protons can be observed at 2.3 and 2.5 ppm, respectively [12]. The structure of
cordycepin comprises a purine nucleoside molecule attached to a ribose sugar
moiety via a β-N9-glycosidic bond (Fig. 1). Chemical synthesis of cordycepin is
mainly achieved by the replacement of deoxyribose ring 30 CO bond to form 20,
30-epoxy deoxyribose structure and region stereo-selective open-loop and direct
synthesis of 3-deoxyribose derivatives. In a study, [13] investigated the synthesis
of cordycepin monophosphate either via treatment of cordycepin with cyanoethyl
phosphate in the presence of N, N0-dicyclohexylcarbodiimide via enzymatic trans-
ference of phosphate from uridine 50-phosphate to cordycepin [13]. Cordycepin
analogue of 2-5A (2–5 linked oligoadenylate) has also been synthesized and found
to be a potent antiviral agent with comparison to natural molecule [14, 15]. The
synthesis of N-acyl-cordycepin derivatives using alkyl chain has also been prepared.
The resultant derivatives were not only observed to protect fast oxidation of
cordycepin but also enhance its bioavailability and bioactivity [16]. Also, there
have been immense possibility toward the formation of cordycepin-based metal
complexes due to the presences of electron-donating atoms (N and O) in its structure
and can easily donate their lone pairs of electron to the empty d orbital of the metal
atoms [11].
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3 Fermentation Strategy for Cordycepin Production

The medicinal mushrooms are abundant sources of useful natural products with
various biological activities. Therefore, the extensive research has been seen in the
past few decades on isolation and characterization of bioactive molecules from
medicinal mushrooms [17]. Evidences suggested that most of the active contents
of the mushrooms are being extracted from their fruiting bodies while fewer parts are
derived from mycelium culture [18]. Since there is a huge requirement of medicinal
mushroom-based biometabolites, it is necessary to cultivate mycelium biomass
artificially for which variety of methods for its cultivation have been proposed by
many research groups [19–21]. The Cordyceps mycelium can grow on different
nutrients containing media, but for commercial fermentation and cultivation, insect
larvae (silkworm residue) and various cereal grains had been used in the past. It has
been seen consistently that from both insect larvae and cereal grains, fruiting body of
fungus can be obtained with almost comparable medicinal properties [22].

There are basically two fermentation techniques by which the cultivation of
mycelium biomass of Cordyceps can be achieved including surface and submerged
fermentation. In surface fermentation, the cultivation of microbial biomass occurs on
the surface of liquid or solid substrate. While in submerged fermentation, microor-
ganisms are cultivated in liquid medium aerobically with proper agitation to get the
homogenous growth of cells and media components [23]. Some reports are men-
tioned below describing the cordycepin production using submerged and surface
fermentations.

Mao et al. (2005) studied the effects of various carbon sources and carbon/
nitrogen ratios on production of cordycepin by submerged cultivation. The highest
cordycepin production, i.e., 245.7 � 4.4 mg L�1 on day 18, was obtained with
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N
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bond

N

N
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NH2Fig. 1 The chemical
structure of cordycepin
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medium containing 40 g glucose L�1. Further, using central composite design and
response surface analysis, cordycepin production and productivity was increased up
to 345.4 � 8.5 and 19.2 � 0.5 mg L�1 day�1, respectively [24]. Similarly, the
production conditions of cordycepin using surface culture technique were investi-
gated by Masuda et al. [25]. They reported that under the optimal conditions, the
maximum cordycepin concentration in the culture medium reached 640 mg L�1, and
the maximum cordycepin productivity was 32 mg L�1 day�1. Further, Masuda
et al. (2011) studied the effects of adenosine on cordycepin production in a surface
liquid culture of the mutant and the wild-type strains [26]. For the mutant strain, the
maximum levels of cordycepin production with and without adenosine were 8.6 and
6.7 g L�1, respectively. The effects of nitrogen sources (NH4

+) on cell growth
and cordycepin produced by submerged cultivation of Cordyceps militaris were
studied by Mao et al. [27]. The authors found that by optimizing the feeding
time and feeding amount of NH4+, a maximal cordycepin concentration of
420.5 � 15.1 mg L�1 could be obtained. Similarly, [28] investigated the influence
of initial pH value, various nitrogen sources, plant oils, and modes of propagation
(shake flask and static culture) on the production of fungal biomass,
exopolysaccharide (EPS), adenosine, and cordycepin using Cordyceps militaris
CCRC 32219 [28]. They employed a Box–Behnken experimental design to optimize
the production of cordycepin and achieved up to 2214.5 mg L�1 of cordycepin.
Effect of ammonium feeding on cordycepin production was also investigated by
Leung and Wu [29]. The authors reported that cordycepin production increases
nearly fourfold (from 28.5 to 117 l μg g�1) by the supplementation of 10 mM
NH4Cl. However, at higher concentration, they found its negative effect on myce-
lium growth. In a study, Das et al. (2009) used mutant of the medicinal mushroom
Cordyceps militaris for higher cordycepin production [30]. Among all the mutants,
G81-3 had the highest cordycepin production of 6.84 g L�1 under optimized
conditions compared to that of the control of 2.45 g L�1 (2.79 times higher). In
addition, influences of different additives on the cordycepin production such as
glycine and adenosine were also studied by the authors and found that cordycepin
production can be increased up to 8.57 g L�1. Xie et al. (2009) optimized fermen-
tation temperature, pH, and medium capacity using Box–Behnken design and
showed that highest dry mycelium weight (19.1 g L�1) and cordycepin
(1.8 mg g�1) can be obtained at temperature 28 �C, pH 6.2, and medium capacity
57 mL [31]. In another study, [32] explored the effect of inoculation on cordycepin
production in surface fermentation using Cordyceps militaris [32]. Results showed
that cordycepin production increases with increase in inoculum size. The effect of
ferrous sulfate addition to production of cordycepin (30-deoxyadenosine) has also
been investigated in submerged cultures of Cordyceps militaris in shake flasks
[33]. Researchers showed that at a concentration of 1 g L�1 of ferrous sulfate
addition results in 70 % higher cordycepin production compared to control experi-
ment. The effect of liquid culture conditions on extracellular secretion of cordycepin
from C militaris was investigated in ref. [34]. They reported the optimal
cultural conditions as follows: initial pH 7, cultivation temperature 24 �C, shaking
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speed 180 rpm, and cultivation period 9 days. They observed that these culture
conditions led to reach cordycepin content of up to 0.537 g L�1 in the culture fluid.
In another study, Zhang et al. (2013) applied response surface methodology (RSM)
to optimize the medium components for the cordycepin production by submerged
liquid culture [35]. They also suggested that repeated batch operation could be an
efficient method to increase the cordycepin yield. Recently, Kang et al. (2014)
studied single-factor design, using Plackett–Burman and central composite design
to establish the key factors responsible for cordycepin production. They reported that
maximum cordycepin up to 2 g L�1 could be achieved with working volume of
700 mL in the 1000 mL glass jar [36]. Similarly, Jiapeng et al. (2014) carried out
fermentation to optimize maximum production of cordycepin in static culture using
single-factor experiments with Placket–Burman and a central composite design.
They demonstrated a maximum cordycepin yield of 7.35 g L�1 that can be achieved
in a 5 L fermenter under the optimized conditions [37].

4 Analysis Tool for Cordycepin Detection

Nowadays different products of Cordyceps are available in the market, as health
supplement or neutraceuticals. Hence, it is very important to analyze the presence of
cordycepin for its quantitative as well as qualitative analysis [38]. Several techniques
such as thin layer chromatography, high performance liquid chromatography
(HPLC), and capillary electrophoresis have been reported in the analysis of the
cordycepin present in medicinal herb Cordyceps. Herein, the development in bio-
chemical analysis of cordycepin is reviewed and discussed.

4.1 Thin Layer Chromatographic Analysis

Thin layer chromatography (TLC) is known to be an easy and versatile method for
separation of mixture of chemical components. Kim et al. (2006) developed TLC
plates in chloroform/ methanol/water (64:14:1). The spots of separated molecules
were stained with 10 % sulfuric acid solution (in ethanol) for visualization [39]. Ma
and Wang (2008) established a dual wavelength TLC-scanning method for the
determination of nucleosides in the preparation of Cordyceps sinensis and analyzed
the samples on silica GF254 thin layer plate using 1 % CMC-Na (carboxyl-methyl-
cellulose) as adhesive and chloroform-ethyl acetate-isopropanol-water-ammonia
(8∶2∶6∶0.5∶0.12) as developing agent [40]. Hu and Fang (2008) compared the simi-
larity between chemical components of Cordyceps sinensis and solid fermentation of
Cordyceps militaris by TLC. They showed that solid fermentation of Cordyceps
militaris and Cordyceps sinensis were basically similar in terms of their TLC spots
occurred at the corresponding place except for a slight difference in size [41].
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4.2 Spectrometry Analysis of Cordycepin

The spectrophotometric detection of cordycepin is based on its color reaction with
anthrone. It has been reported that cordycepin reacts with a slightly modified
anthrone (0.2 g anthrone in 100 mL 90 % H2SO4) reagents at high temperature,
which results in the production of a cherry-red color [42]. The reaction was reported
negative with adenine.

4.3 HPLC Analysis of Cordycepin

A simple high performance liquid chromatography (HPLC) with UV detection
(HPLC–UV) method was proposed for the detection of cordycepin
[43–46]. Chang et al. (2005) determined the concentrations of adenosine and
cordycepin, 30 deoxyadenosine in the hot water extract of a cultivated Antrodia
camphorate by HPLC method. The procedure was carried out on a reversed-phase
C-18 column [47]. Meena et al. (2010) compared the cordycepin content in natural
and artificial cultured mycelium of Cordyceps using reverse phase HPLC [48]. In
addition, though UV detection is widely used for chromatographic analysis, MS
detection allows more definite identification and quantitative determination of com-
pounds which may not be fully separated. ESI-MS in positive mode is most
commonly used in the analysis of nucleosides in Cordyceps [49, 50].

4.4 Capillary Electrophoresis

Ling et al. (2002) determined the content of cordycepin by capillary zone electro-
phoresis in ultrasonic extracted Cordyceps for the first time [51]. Similarly, Rao
et al. (2006) investigated a modified capillary electrophoresis (CE) procedure with
UV detection at 254 nm for determination of cordycepin. They found 20 mM sodium
borate buffer with 28.6 % methanol, pH 9.5, separation voltage 20 kV, hydrody-
namic injection time 10 s, and temperature 25 �C were the optimal conditions for
cordycepin detection [52]. Furthermore, Yang et al. (2009) developed capillary
electrophoresis-mass spectrometry (CE-MS) method for the simultaneous analysis
of 12 nucleosides and nucleobases including cytosine, adenine, guanine, cytidine,
cordycepin, adenosine, hypoxanthine, guanosine, inosine, 20-deoxyuridine, uridine,
and thymidine in natural and cultured Cordyceps using 5-chlorocytosine arabinoside
as an internal standard (IS). They optimized systematically for achieving good CE
resolution and MS response tested compounds and found optimum parameters as
follows: 75 % (v/v) methanol containing 0.3 % formic acid with a flow rate of
3 μL min�1 as the sheath liquid; the flow rate and temperature of drying gas were
6 L min�1 and 350 �C, respectively [53].
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5 Extraction Strategy for Cordycepin

Being a biologically active molecule, a large quantity of pure cordycepin is urgently
needed for further studies. Several extraction methods have been developed to
extract cordycepin from the fermentative fluid and fruiting bodies of C. militaris,
including ultrasound- or microwave-assisted extraction, pressurized extraction,
soxhlet extraction, and reflux extraction. Some of them are discussed as follows.

Kredich and Guarino (1960) gave the first report on cordycepin extraction from
liquid culture of Cordyceps militaris. They concentrated the fermented broth in an
evaporator at 50 �C followed by cold precipitation and removal of impurities.
Further, the obtained sample was passed through a column packed with Dowex-I-
chloride of 200–400 mesh size [42]. In another study, Wang et al. (2004) compared
supersonic water extraction, supersonic ethanol extraction, hydrothermal refluxing
extraction, and ethanol thermal refluxing extraction for cordycepin and polysaccha-
ride extraction using an orthogonal design experiment. They showed that hydrother-
mal refluxing extraction was the best extraction method of cordycepin and
polysaccharide and its optimal technological conditions were optimized
[54]. Rukachaisirikul et al. (2004) isolated and analyzed nine compounds from
fungal mycelium as well as from liquid culture of Cordyceps militaris. Out of
these, three were 10-membered macrolides, two were cepharosporolides,
2-carboxymethyl-4-(30-hydroxybutyl) one was, furan, one was cordycepin, and
one was pyridine-2, 6-dicarboxylic acid [55]. From dried fruiting bodies of
Cordyceps militaris, Kim et al. (2006) extracted cordycepin using solvent-solvent
extraction method. They extracted aqueous layer of crude fermented broth with
hexane, butanol, and ethyl acetate [39]. Similarly, Rao et al. (2010) extracted and
purified ten pure compounds, including cordycepin from the fruiting body of
Cordyceps militaris [56]. Still, all these methods need optimization and were
unsuitable for industrial applications. Jiansheng (2008) extracted and purified
cordycepin from Cordyceps militaris using ion-exchange resin and silica gel column
chromatography. They detected cordycepin on HPLC, LC/MS, and CE [57]. In a
study, Wei et al. (2009) presented an efficient method of extracting and purifying
cordycepin from the waste of the fruiting body production medium. This method
included continuous counter-current extraction followed by column chromatography
using 732 cation exchange resins. They found under optimized conditions
cordycepin extraction yield reached up to 66.0 % [16]. Ni et al. (2009) developed
column chromatography extraction (CCE) method for the extraction of cordycepin
from the solid waste medium of Cordyceps militaris. The dried waste material was
imbibed in water for 6 h and transferred to the columns and eluted with water.
Eluates were directly separated with macroporous resin DM130 columns followed
by purification steps with more than 95 % extraction yield [23]. Song et al. (2007)
investigated optimization of cordycepin extraction from cultured Cordyceps
militaris by HPLC-DAD coupled method. They reported that cordycepin extraction
yield reached a peak with ethanol concentration 20.21 %, extraction time
101.88 min, and volume ratio of solvent to sample 33.13 g mL�1 [58]. The super-
critical fluid extraction (SFE) method was purposed to extract cordycepin and
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adenosine from the Cordyceps kyushuensis by Ling et al. (2009). They applied
orthogonal array design (OAD) test, L9 (3)

4 followed by preparative SFE extraction
using high-speed counter-current chromatography (HSCCC). Their results yielded
8.92 mg of cordycepin and 5.94 mg of adenosine with purities of 98.5 % and 99.2 %
from 400 mg SFE crude extraction, respectively [59]. Yong et al. (2010) compared
six kinds of cordycepin extraction method from Cordyceps militaris medium. The
authors got a higher extraction rate of cordycepin using microwave extraction
method [60]. Zhang and his colleagues (2012) optimized the cordycepin extraction
from the fruiting body of Cordyceps militaris YCC-01 using water, ethanol, ultra-
sonic, and synergistic approaches. They found that a synergistic approach was more
efficient with cordycepin content of 9.559 mg g�1. Results suggested that the yield
was 66.2 % higher than the control group [61]. The microwave-assisted extraction of
cordycepin from the cultured mycelium of Cordyceps militaris was investigated by
Chen et al. (2012). The prepared extract was purified using a cation exchange resin
(CER) of LSD-001. They found optimal desorption conditions as follows: 0.2 M of
NH3 combined with 80 % ethanol (v/v), desorption time – 2 h, temperature – 25 �C,
and pH – 14 [62]. Yu et al. (2013) investigated the optimal conditions for cordycepin
extraction from the waste medium of Cordyceps militaris using column chromatog-
raphy. Initially, they did hot water leaching of Cordyceps waste at 70 �C for 8 h with
dried feed and water ratio of 1 g∶ 20 ml followed by separation of cordycepin on
macroporus resin XAD16 and polyamide column chromatography [63].

6 Therapeutic Potential of Cordycepin

Our society is facing heavy health burden due to increasing incidences of cancer-
related morbidity and mortality. Therefore, to come up with an effective therapeutic
strategy to combat cancer is being considered an essential focus of the research and
medical field. Among the natural anticancer compounds, cordycepin is considered to
be an important molecule in terms of its potent anticancer activity without any
potential side effects [64, 65]. The anticancer role of cordycepin has been intensively
investigated in a variety of cancers, including glioma and cancers of oral, breast,
lung, hepatocellular, bladder, colorectal, testicular, prostate, melanoma, and blood
cell. Previous studies demonstrated that cordycepin has potential to modulate mul-
tiple signaling pathways involved in cancer cell proliferation, apoptosis, invasion,
metastasis, angiogenesis, and cancer immunity (Fig. 2). The reports of anticancer
activity and other therapeutic effects of cordycepin along with the molecular mech-
anisms of actions are summarized in the Tables 1 and 2, respectively.

7 Bioactivity of Some Other Cordyceps Constituents

Besides cordycepin, a number of other bioactive compounds including cordycepic
acid, ergosterol, and polysaccharides have also been identified from Cordyceps.
Cordycepic acid, an isomer of quinic acid, is considered to be an active medicinal
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component with potent anti-inflammatory activity [3]. Polysaccharides are other
class of bioactive molecules which vary in the range 3–8 % of the total weight of
Cordyceps. The exopolysaccharide fraction (EPSF) of Cordyceps on the hepatoma
(H22) tumor-bearing mice not only inhibited the cancer growth but also significantly
improved the immunocytic activity [116–118]. Similarly, a polysaccharide of
210-kDa from C. sinensis mycelia has been reported to protect pheochromocytoma
(PC12) cells against H2O2-induced injuries [119]. A polysaccharide fraction from
C. sinensis significantly inhibited proliferation of U937 cells by upregulating the
levels of interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha, and interleu-
kin (IL)-1 [120]. In other study, Zhang et al. (2005) demonstrated that
exopolysaccharide fraction of C. sinensis inhibits the metastasis of melanoma cells
and also downregulates the antiapoptotic protein level Bcl-2 into B16 melanoma-
bearing mice [121]. The moieties such as glucan and galactosaminoglycan have also
been identified from Cordyceps and found to suppress the growth of sarcoma
180 solid-type tumors in mice [122]. In addition to antitumor activity, polysaccha-
rides from Cordyceps have shown potent hypoglycemic activity in diabetic mice
[123, 124]. An antimalarial metabolite, i.e., cordyformamide, a xanthocillin like
precursor, was extracted from Cordyceps which was found to exhibit toxicity against
Plasmodium falciparum [125]. Kneifel and his colleagues extracted ophiocordin, an
antifungal from submerged cultures of C. ophioglossoides [126]. Antifibrotic effects
of extracellular biopolymer of C. militaris on fibrotic rats were observed by

Fig. 2 The variety of signaling pathways modulated by cordycepin in cancer cells. These includes
tumor cell proliferation, inflammation, angiogenesis, metastasis, survival, and apoptosis
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Table 1 Cordycepin mediated anticancer effects along with mechanism of actions

S. no Cancer types Mechanisms of inhibition References

1 Glioma
C6 rat glioma cell line
SK-N-SH and BE (2)-

M17 cells neuroblastoma
cell lines

Increased total p53 and phosphorylated
p53 protein level, cleaved caspase-7 and
poly (ADP-ribose) polymerase (PARP)
pathway
Apoptosis and autophagy (LC3)

[66]
[67]

2 Oral cancer
OEC-M1 human oral

squamous cancer cells
KB and HSC3 squamous

cell carcinoma cell lines

Cell blebbing, increased cell percentage
in subG1 and G2 phase indicating
apoptosis

[68, 69]

3 Breast cancer
MDA-MB-231 and

MCF-7 cell lines
BRCA1-deficient MCF-7

cell line
MCF10A, MCF7, T47D,

MDA-MB-435, MDA-MB-
231 cell lines
MCF-7

Mitochondrial-associated apoptosis,
activation of caspase 3 and 9, and
autophagosome-associated proteins
Inhibit PARP
Inhibit RNA synthesis, DNA double
strand break
Inhibit MMP9, AP-1 protein activation,
and MAPK pathways

[70]
[71]
[72]
[73]

4 Lung cancer
Lewis lung

adenocarcinoma

Stimulation of A3 receptor [74]

5 Hepatocellular carcinoma
BEL-7402 cells
HepG2 cell line
Hep3B human cell line

Metabolism-associated protein
expression
Apoptosis and antiangiogenesis
TRAIL-mediated apoptosis, chromatin
condensation and accumulation of cells
in subG1 phase, inactivation of JUN
pathway

[75]
[76]
[77]

6 Bladder cancer
5637 and T-24 cell lines

G2/M-phase arrest, upregulation of
p21WAF1 expression, induced
phosphorylation of JNK
Downregulate MMPTNF and AP-1

[78]
[79]

7 Colorectal cancer
HT-29 (colorectal

adenocarcinoma)

G1 and G2/M-phase cell cycle arrest,
ROS generation increase, extrinsic and
intrinsic apoptotic pathway activation,
cleaved PARP expression increased

[80]

8 Testicular cancer
MA-10 cells (mouse

leydig tumor cell line)

DNA fragmentation, increased cell
percentages in subG1 phase, extrinsic
apoptotic pathway

[81, 82]

9 Prostate cancer
LNCaP human prostate

cancer cell line

Activation of extrinsic and intrinsic
apoptotic pathways, autophagy pathway
activation (LC3-II level and autophagy
flux elevation)
Downregulating the activity of TJs and
MMPs, possibly in association with
suppression of PI3K/Akt pathway
G2/M cell cycle arrest, upregulation of
CDK inhibitor p21

[83]
[84]
[85]

(continued)
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significant reduction in aspartate transaminase (AST), alanine transaminase (ALT),
alkaline phosphatase (ALP) along with bilirubin and hydroxyproline content
[127]. The vasorelaxant activity of some protein constituents of Cordyceps has
been found and could play an important role in cardiovascular diseases [128].

8 Conclusions and Future Perspectives

In the last few decades, people have shown faith on mushroom-based products for
the treatment of various dreadful diseases. The fruiting body of Cordyceps is an
excellent reservoir of the therapeutic bio-agents with multidisciplinary mechanism
of action. The availability of sophisticated instrumentation has made possible the
higher rate of production as well extraction of these bioactive metabolites. Due to the
redox behavior, cordycepin can modulate a number of cellular signaling pathways
associated with various malignancies. A number of chemical modifications can be

Table 1 (continued)

S. no Cancer types Mechanisms of inhibition References

10 Melanoma
B16-F1 mouse melanoma

cells
B16-BL6 mouse

melanoma cells

Blocking of ADP-induced platelet
aggregation
Stimulating adenosine A3 receptors
followed by the Wnt signaling pathway,
including GSK-3β activation and cyclin
D1 inhibition

[86, 87]
[86, 87]

11 Blood cell tumors
Daudi, (Burkitt’s

lymphoma)
Molt-4, (acute

lymphoblastic leukemia)
Human leukemia
Multiple myeloma (MM)

DNA fragmentation, cell cycle arrest
ROS generation, mitochondrial
dysfunction, activation of executioner
caspases, and cleavage of poly
(ADP-ribose) polymerase protein
Inhibit RNA synthesis, apoptosis
Suppressing GSK-3b/b-catenin
signaling

[88]
[89]
[90]
[91]

Lipopolysaccharide (LPS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase
(GPx), glutathione reductase (GR), glutathione-S-transferase (GST), reduced glutathione (GSH),
vitamin C and vitamin E, and elevated levels of malondialdehyde (MDA), serum aspartate
aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine, inflammation-
induced osteoporosis (IMO), serum osteocalcin (OC), homocysteine (HCY), C-terminal cross-
linked telopeptides of collagen type I (CTX), RA synovial fibroblasts (RASFs), maleic dialdehyde
(MDA), polymorphonuclear cells (PMN), interleukin-1β (IL-1β), and tumor necrosis factor- α
(TNF-α), rheumatoid arthritis synovial fibroblasts (RASVs), osteoarthritis (OA), human African
trypanosomiasis (HAT), oxygen–glucose deprivation (OGD), malondialdehyde (MDA), superoxide
dismutase (SOD), matrix metalloproteinase-3 (MMP-3), amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid (AMPA), N-methyl-D-aspartic acid (NMDA), cholesterol (TC), triglycerides (TG),
and low-density lipoprotein cholesterol (LDL-c), levels of phospho–AMP-activated protein kinase
(AMPK) and phospho–acetyl-CoA carboxylase (phospho-ACC) phospho–acetyl-CoA carboxylase
(phospho-ACC), rat renal interstitial fibroblast (NRK-49 F) cells
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Table 2 An overview of therapeutic potential mediated by cordycepin

S. no Role/model Mechanisms Dose References

1 Anti-inflammatory
LPS-stimulated

BV2 microglia
Wistar rats (IMO)
Murine model of

acute lung injury
Mice (C57BL/6)

(lung injury
associated)
Human OA

chondrocytes
RASFs

NF-κβ, Akt, and MAPK signaling
pathways
"CTX, MDA, PMN, IL-1β,
TNF-α, and nitrate levels in
plasma
Inhibition of Th2-type responses
through the suppression of the
p38-MAPK and NF-κβ signaling
pathway
Block the expression of ICAM-1
and VCAM-1, MCP-1, MIP-1α,
MIP-2 and KC, and CXCR2, and
#TNF
Suppress IL-1β-stimulated GAG
release, " MMP-1, MMP-13,
cathepsin K, cathepsin S,
ADAMTS-4 and ADAMTS-5
gene expression, inhibited
IL-1β-induced COX-2 and iNOS
expression and blocked NO
production
Inhibit p38/JNK/ AP-1 signaling
pathway

7.5 μg/ml
20 mg/kg
10, 20, and
40 mg/kg
2 mg/kg
5–100 μM
50–100 mM

[92]
[93]
[94]
[95]
[96]
[97]

2 Antioxidant
Male

Sprague–Dawley rats

" Activity of SOD, CAT, GPx,
GR and GST, GSH, vitamins C
and E and# levels of MDA, AST,
ALT, Urea and creatinine

20 mg/kg [98]

3 Neuroprotective
Hippocampal CA1

pyramidal neuron
Ischemia mice and

(OGD) injury of brain
slices
Hippocampal brain

slices
Ischemic mice

#the frequency of both the
spontaneous and evoked
action potential (AP) firing
#the extracellular level of
glutamate and aspartate,
MDA, " the activity of (SOD)
and # MMP-3
Suppresses excitatory synaptic
transmission by decreasing the
excitatory neurotransmitter
release presynaptically,
suppressed AMPA and NMDA
receptor-mediated responses
Improve learning and memory, "
number of pyramidal cells, both
in hippocampal CA1 and CA3
regions

2, 5, 10, 20, and
100 mg/l
20, 40, 80 μM
20 mg/L
5 and 10 mg/kg

[99]
[100]
[101]
[102]

3 Cardioprotective
SD rat (rat aortic

smooth muscle cells
(RASMCs))
Sprague–Dawley

rat

Inhibit PDGF-BB–induced
migration and proliferation via
interfering with adenosine
receptor-mediated NOS
pathways, suppressed the
phosphorylation of p38 MAPK

10 mg/kg 3,
10, 30 mg/kg

[103]
[104]

(continued)
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Table 2 (continued)

S. no Role/model Mechanisms Dose References

and Hsp27, #ROS, O2, and H2O2

"The phosphorylation of Akt/
GSK-3b/p70S6K pathways, #Bax
and cleaved caspase-3 expression
while increasing Bcl-2
expression, Bcl-2/Bax ratio, and
heme oxygenase (HO-1)
expression

4 Antiasthmatic
Mouse model of

allergic asthma
Calu-3 and

16HBE14o- cells

# IL-17A, " IL-10 level " Foxp3,
and inhibited RORγt
Na+�K+� 2Cl� cotransporters
and apical CFTR Cl-channels,
cAMP- or Ca2+-activated K+

channel activation

20–40 mg/kg
300 and 10 μM

[105]
[106]
[107]

5 Antidiabetes
LPS-stimulated

RAW 264.7 cells

Inhibited the production of NO,
IL-1β, IL-6, and TNF-α, NF-kβ,
#11β-HSD1 and PPARγ, ICAM-
1, and B7-1/-2

40 μg/ml [108]

6 Antihyperlipidemia
3 T3-L1

preadipocytes
Male Syrian

golden hamsters,
HepG2 cell and
abnormal metabolic
mice

Intervention in the mTORC1-C/
EBPb–PPARg pathway
Reduced the accumulation of
serum total cholesterol (TC),
triglycerides (TG), and
low-density lipoprotein
cholesterol (LDL-c) and, " the
levels of phospho-AMPK and
phospho-ACC
AMPK activation in HepG2 cells
"the insulin sensitivity and
improved the oral glucose
tolerance

100 mg/mL
50 mg/kg, 1 μM
and 50 mg/kg

[109]
[110]

7 Antiosteoporosis
Wistar female rats

#ALP, TRAP activity, and CTX
level, " OC

5, 10, 20 mg [111]

8 Antidepressant
CUMS mice

Normalized the change of TNF-α,
IL-6, and NE levels, by the
upregulating BDNF and
downregulating 5-HT2AR levels

20, 40 mg/kg [112]

9 Renal interstitial
fibrosis
NRK-49Fcells

Suppress myofibroblast
activation. Inhibit Smad2/3
protein, upregulate HGF
expression and the HGF receptor
activation

80 μM [113]

(continued)
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made in the internal structure of the cordycepin to counter drug resistance develop-
ment and to increase its pharmaceutical potential. The therapeutic potential of
cordycepin may be increased using synergistic approaches with the multiple che-
motherapeutic agents [129]. In future, it is essential to characterize the other
unknown molecules of Cordyceps to understand their structure-function relation-
ship. The scientific community should also focus on nano-biotechnology-mediated
targeted drug delivery system not only to reduce the requirement of active doses of
drug but also to enhance its bioavailability.
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Abstract
Cyclosporin A is a cyclic undecapeptide with a variety of biological activities
including immunosuppressive, anti-inflammatory, antifungal, and antiparasitic
properties. It is an extremely powerful immunosuppressant and is approved for
the use in organ transplantation to prevent graft rejection in kidney, liver, heart,
lung, and combined heart–lung transplants. As its role in transplantation surgery
increases, the demand on industry for improved yields intensifies. For this reason,
this chapter mainly focuses on enhanced production of cyclosporin A from
microbes by different techniques.

Keywords
Cyclosporin A • Immunosuppressant • Anti-inflammatory • Antifungal •
Antiparasitic • Transplantation

List of Abbreviations
Abu Aminobutyric acid
Ala Alanine
EMS Ethyl methanesulphonate
HPLC High performance liquid chromatography
MeBmt Butenyl-methyl-L-threonine
Me(Leu) Methylleucine
Me(Val) Methylvaline
NG Nitrosoguanidine
NMR Nuclear magnetic resonance spectroscopy
Sar Sarcosine
UV Ultra violet

1 Introduction

Fungi fall in those eukaryotic organisms that are known by their usage as the most
prolific producers of a number of novel secondary metabolites which can be either
serve as lead structures for synthetic modifications or directly use as drugs in various
medications [1–7]. The versatility of fungal biosynthesis is demonstrated by the
enormous production of enzymes; polysaccharides; vitamins; pigments; polyhydric
alcohols; lipids; glycolipids; antibiotics with their derivatives, for instance β-lactam
peptide antibiotics, tetracyclines, and the macrolide polyketide erythromycin;
aminoglycosides; enzyme inhibitors; hypocholesterolemic agents; immunosuppres-
sants; and antitumor compounds. Of these, certain products are produced at com-
mercial scale while others occupy valuable space in the field of biotechnology [8, 9].

Secondary metabolites are compounds with varied and sophisticated chemical
structures, produced by microorganisms. They have a major effect on health,
nutrition, and economics of our society. Secondary metabolites have no obvious

784 T. Anjum and W. Iram



function in the growth of the producing organisms and often are produced as a family
of structurally related compounds.

A large number of known fungal secondary metabolites have been produce by
known filamentous fungi e.g., Aspergillus oryzae (Ahlburg) Cohn, Aspergillus sojae
Sakag & K. Yamada, and Aspergillus tamarii Kita used in the food fermentation
industry are considered to be safe because they produce no aflatoxins. A. tamarii is a
morphologically distinct species, also producing kojic and cyclopiazonic acids,
among other secondary metabolites. Aspergillus fumigatus Fresenius produces
many secondary metabolites including fumagillin, fumitremorgin, fumigaclavine,
gliotoxin, helvolic acid, verruculogen, and sphingofungins. It has been suggested
that the virulence of the strain may be enhanced by these metabolites [10]. The
occurrence of indole alkaloids among secondary fungal metabolites was studied in
different Aspergillus species [11]. Fumigaclavine B was formed by A. fumigatus,
α-clyclopiazonic acid by the isolates of A. fumigatus, A. flavus Johann Heinrich
Friedrich, Aspergillus versicolor (Vuill.) Tirab, Aspergillus phoenicis (Corda) Thom
and A. clavatusDesm whereas, diketopiperazine alkaloids by A. flavus, A. fumigatus,
and Aspergillus ochraceus G. Wilh [12]. These microbial secondary metabolites are
protein in nature several of which possess peculiar medicinal properties among
which the immunosuppressant cyclosporine A is an example.

Cyclosporins is a group of nonpolar cyclic oligopeptides with Cyclosporin “A” as
the major component possessing immunosuppressive activity [13]. A
multifunctional enzyme, Cyclosporin synthetase of the filamentous fungus,
Tolypocladium inflatum is used for the production of CyA [14]. Dreyfuss
et al. [15] first time investigated CyA as an antifungal antibiotic. For the last few
decades, CyA has been used as an immunosuppressive agent that was discovered, by
employees of Sandoz (now Novartis) in Basle, Switzerland, in January 1972 during
the screening test designed by Hartmann F. Stahelin on immune-suppression [16]. It
was subsequently approved for clinical use in 1983 by USFDA [17]. Now CyA is
widely used in the prevention of rejection of various transplants of heart, kidney, and
liver and in treatment of graft-versus-host reactions in bone marrow transplantation.
In numerous diseases like Graves disease, uveitis, ulcerative colitis, Crohn disease,
primary biliary cirrhosis, chronic active hepatitis, diabetes mellitus, sarcoidosis,
myasthenia gravis, systemic lupus erythematosus, dermatomyositis, psoriasis, rheu-
matoid arthritis, and certain nephropathies where immunological factors might be
involved in a pathogenic role, CyA has been found to be effective and proved a
substantial role in the respective therapies [18, 19].

In submerged fermentation process, sterilization and process control are rather
easier to control; therefore, now a days this is the most preferred method principally
used for the large scale production of CyA from T. inflatum. Cyclosporin production
is also reported in Cylindrocarpon spp., Fusarium spp., Tolypocladium geodes,
Trichoderma virile, Neocosmospora vasinfecta, Isaria spp., Verticellium spp.,
Acremonium spp., and Beauveria nivea [20]. In general, high yield of microbial
products like CyA are closely associated with various physical and chemical param-
eters in fermentation process like the choice of proper organism, medium composi-
tion, rate of aeration/agitation, and the control of antifoam/pH etc. These parameters
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are however may not provide a suitable rise in the overall product yield in fermen-
tation. Presently, application of induced mutations is the possible way out that is
being extensively used in altering industrial organisms for the high production of
CyA at commercial scale.

In this chapter, we describe the chemistry and mode of action of CyA, its
antifungal activity, different fermentation techniques used for its production, medium
optimization, and mutational approach for its enhanced production by fungal species.

2 Chemical Structure of Cyclosporin A

Cyclosporin A (chemical name: Cyclo [[(E)-(2S, 3R, 4R)-3-hydroxy-4-methyl-2-
(methylamino)-6-octenoyl]-L-2-aminobutyryl-N-methylglycyl-N-methyl-L-leucyl-L-
valyl-N-methyl-L-leucyl-L-alanyl-D-alanyl-N-methyl-L-leucyl-N-methyl-L-leucyl-N-
methyl-L-valyl]) is a neutral lipophilic cyclic polypeptide. Molecular weight of CyA
is 1202 with a molecular formula of C62H111N11O12. As shown by acid hydrolysis, it
is found to be composed of 11 amino acids, 10 of which are known aliphatic amino
acids while 1 is unknown [21]. In further study, Wenger [22] demonstrated that the
unknown amino acid of cyclosporin was MeBmt that could be significant for phar-
macological activity of CyA and its synthesis in enantiomerically pure form. More-
over, it was illustrated that amino acids i.e., (4R)-4-[(E)-2-butenyl]-4, N-dimethyl-L-
threonine (MeBmt), L-alpha-aminobutyric acid (Abu), sarcosine (Sar), and N-
methylvaline (MeVal) are responsible for immunosuppressive properties of CyA.

In CyA, 2S configuration have been found in all amino acids except at position
8 and 3 where alanine residue has 2R configuration and achiral sarcosine respec-
tively. An antiparallel β-pleated sheet confirmation was observed in the backbone
amino acid residues having 3 transannular H-bonds at position 1–6 [23]. An open
loop is formed by remaining residues (7–11) having only cis amide linkage between
two adjacent N-methyl leucine residues at position 9 and 10. Lipophilic nature of the
molecule is associated with N-methylated amino acids at positions 1, 3, 4, 6, 9, 10,
and 11. Moreover, the rigidity of the skeleton is due to the hydrogen bond formation
by four available amide groups (Fig. 1).

Nuclear magnetic resonance spectroscopy (NMR) of CyA showed to comprise of
a compacted sheet in antiparallel orientation joined with four intra molecular hydro-
gen bonds involving the four non-methylated amide (NH) groups: Abu2 (NH)-Va15
(CO), Va15 (NH)-Abu2(CO), A1a7(NH)-MValll (CO), and D-Ala8(NH)-MLeu6
(CO). This tightly folded structure has a highly hydrophobic surface on the outer
side due to interior intra-molecular hydrogen bonds [25].

3 Properties

Cyclosporin “A” is a white- to off-white crystalline solid having melting point of
148–151 �C (natural) and 149–150 �C (synthetic) [13, 18].

It is stable in solution at temperatures below 30 �C but is sensitive to light, cold,
and oxidization. When heated to decomposition, cyclosporin “A” emits toxic fumes
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of nitrogen oxides [18]. These are highly lipophilic substances and poorly soluble in
water [26]. While they show very good solubility in organic solvents such as
methanol, ethanol, acetone, ether, and chloroform. Solubility of cyclosporin “A”
was found to be inversely proportional to the temperature [27].

4 Mode of Action

Cyclosporin is assumed to bind to the immunocompetent lymphocytes, especially
T-lymphocytes, of cyclophilin (cytosolic protein) [28]. Under normal circumstances,
the transcription of interleukin is facilitated by calcineurin, which is inhibited by
cyclosporin and cyclophylin complex. Moreover, production of lymphokine and
interleukin release is inhibited by this complex resulting in subsequent reduction in
the function of effector T-cells [26]. Cytostatic activity is remained unaffected by
CyA. However, cyclosporin A prevents the opening of mitochondrial permeability
transition (PT) pore which in turn inhibits the release of a potent apoptotic stimula-
tion factor “cytochrome c” [29].

CyA is known to be a human carcinogen [18, 30]. Literature showed that CyA has
been found to produce cancer in both laboratory animals and humans. Lymphoma
and skin cancer (common malignancies) are associated with long-term exposure to
CyA [31]. Literature shows that when CyA is used in combination with predniso-
lone, it causes chromosomal aberrations in the peripheral blood lymphocytes of
kidney transplant patients, sister chromatid exchange in human lymphocyte cell, and
in vitro, unscheduled DNA synthesis. It has been documented that patients
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undergoing immunosuppressive therapy showed an increased risk of cancer
resulting subsequent use of CyA [18]. According to previous literature, risk of
developing a malignancy during Cyclosporin “A” treatment is due to immunosup-
pression rather than genotoxicity [32, 33].

CyA teratogenicity is also not well documented. However, at higher dose (two to
five times the normal human dose), CyA causes fetal mortality in rats and rabbits
when it was administered during pregnancy [18, 33].

Limited data is available for describing the occupational exposure to CyA.
According to literature primary exposure routes to CyA include inhalation, acciden-
tal injection, and dermal absorption [30, 34]. However, after treatment with CyA,
chronic effects in patients and laboratory animals could lead to a number of serious
health effects.

5 Applications

Cyclosporin “A” is used in organ transplantation to prevent graft rejection in kidney,
liver, heart, lung, and combined heart–lung transplants. It is used to prevent rejection
following bone marrow transplantation and in the prophylaxis of host-versus-graft
disease [35]. The pharmacological effects of cyclosporin “A” are rapid when drug is
administered in combination with steroids, azathioprin, or mycophenolic acid [36].

Cyclosporin “A” has also been used in number of clinical applications which
includes: the reversal of multidrug resistance, antimalarial, herpes virus infection,
rheumatoid arthritis, type I diabetes, and also as a potent anti-human immunodefi-
ciency virus 1 (HIV-1) agent [37, 38].

Additionally, it is also use to treat fulminant hepatitis, multiple sclerosis, lupus
nephritis, systemic lupus erythematosus, alopecia areata, atopic dermatitis, derma-
tomyositis, lichen planus, myasthenia gravis, polymyositis, psoriatic arthritis, pul-
monary sarcoidosis, and uveitis [39].

Cyclosporin “A” has been investigated as a possible neuroprotective agent in
conditions such as traumatic brain injury and has been shown in animal experiments
to reduce brain damage associated with injury [29]. Studies indicate that cyclosporin
“A” used in combination with antilymphocyte globulin can be used for acquired
aplastic anemia [40–42]. It was reported in open studies that cyclosporin is effective
for induction of remission in Crohn disease [43].

6 Cyclosporine Metabolism

Cyclosporine is metabolized in liver and the small intestine and is converted into
more than 30 metabolites by both phase I and II metabolism. These cyclosporin
metabolites in blood stream are responsible for its immunosuppressive activities
[44]. The structural characterization of theses metabolites have been done by mass
spectrometry. The reaction involved in phase I metabolism of cyclosporin are
hydroxylation, demethylation, as well as oxidation and cyclization at amino
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acid 1. The enzymes CYP3A4 and CYP3A5 catalyzes phase I metabolic reactions
[45–47]. Moreover, cyclosporine also acts as an inhibitor and a substrate of the
MDR1 transporter [48] that is found to be located in enterocytes and hepatocytes
[49]. These enterocytes and hepatocytes both express CYP3A4 and the efflux
transporter MDR1 [50], which maximize the cyclosporin exposure to metabolism
by CYP3A4 through repeated cycles of absorption and efflux [51].

7 Cyclosporin Pharmacokinetics

For many years, pharmacokinetics has been extensively used to relate immunosup-
pressant dose to drug exposure. Its primary method of measurement is drug absorp-
tion, distribution, metabolism, routes of excretion, and interactions with other drugs.
In blood and serum, the cyclosporin concentration was monitored as a means of
reducing the risk of nephrotoxicity or rejection which are associated with inappro-
priate drug concentrations. In humans, the CyA pharmacokinetics is quite
unpredictable [52]. The cyclosporin use become complicated due to high inter and
intra patient pharmacokinetic variability [53]. This variability is found to be associ-
ated with patient’s disease state, the type of organ transplant, the age of the patient,
and therapy with other drugs that interact with CyA.

Cyclosporin distribution not only depends upon physicochemical characteristics
but also on biological carriers such as lipoproteins and erythrocytes in blood. In the
body, cyclosporin distribution have been influenced by cyclophilin which is a
binding protein for cyclosporin. Cyclosporin metabolites distribution are found to
be different from that of cyclosporin in the body. This drug is mainly eliminated via
bile as metabolites. Several metabolites are reported to have less immunosuppressive
activity than the parent drug. Some shows renal side effects due to highly variable
activity of cyclosporin metabolizing liver enzymes [54].

8 Cyclosporine Chronopharmacokinetics

Previous studies showed that the concentration of cyclosporin is high in morning as
compared to evening, while the difference in concentration is not clear. It have been
suggested that changes in liver blood flow, microsomal activity differences, different
transporter function, or differences in protein binding during night and day may be
the possible cause [55]. Heifets et al. [56] conducted a study on five patients and
observed high cyclosporine clearance (intravenous administration) in the evening as
compared to morning. They hypothesized that this difference may be due to increase
activity of the metabolic enzymes in the liver at night. However, Curtis
et al. suggested that the metabolic rate remains same throughout the day, and any
differences in cyclosporine concentrations are attributable to the fact that patients are
more likely to be fasted before the morning dose and fed before the evening
dose [57].
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9 Therapeutics Side Effects of CyA

Despite its most powerful immunosuppressive effect, one of the most commonly
observed adverse effects of cyclosporin “A” is the development of gingival
overgrowth [58]. It is also reported to cause less frequently occurring side effects
diabetogenic, hyperlipidaemia, abnormal liver enzyme, hypertension, hirsutism,
neuropathy, nephrotoxicity, tremor, hyperkalemia [59], gastrointestinal abnormali-
ties, hypomagnesemia, central nervous system disturbances, hyperglycemia, and
infection.

10 Cyclosporin Derivatives to Improve Drug Properties

Numerous analogues and derivatives of CyA have been tested in order to improve
the drug’s therapeutic properties. For example, CyG, a cyclosporin A analogue with
L-novaline subtituent at position 2, displays equal immunosuppressive effects as
CyA but with less nephrotoxicity [60]. Similarly, ISATX247 is a potent derivative
with higher activity and lower nephrotoxicity as compared to CyA [61].

Another derivative SZZ IMM-125, which is a hydroxyethyl derivative of D-serine-
8-cyclosporin, was found to be slightly more potent but less nephrotoxic than CyA in
both in vitro and in vivo model studies [62].

Several other cyclosporin analogues with high immunosuppressive activity were
obtained through chemical modification of side chains at the first and third amino
acids [63].

11 Antifungal Activity of Cyclosporin

Antibacterial and antifungal activity of CyA has been examined by Dreyfuss and
colleagues [15]. According to their findings, CyA has a very narrow spectrum of
antifungal activity while no antibacterial activity was observed. Only deformation
and branching of growing hyphal tips was observed during inhibition while the
germination of fungal spores or conidia remain unaffected. Strains of some
mucorales, ascomycetes, and fungi imperfecti were found to be sensitive to the
metabolite. Inhibition of cell wall synthesis (in particular chitin) might be the mode
of antifungal action of CyA as hypothesized by Dreyfuss and colleagues after
analyzing the taxonomic positions of sensitive organisms. Same narrow spectrum
antifungal activity was observed in polyoxin (a chitin blocking antibiotic) when
compared with CyA. Polyoxin is an antifungal drug having high specificity and low
toxicity to non-fungal hosts that inhibited cell wall synthesis like beta-lactam
antibiotics.

Rodriguez et al. [64] studied the in vitro antagonistic activity of Fusarium
oxysporum strain by dual cultures. They identified that CyA was found to be
responsible for antifungal activity of F. oxysporum against pathogen. Further, their
study showed that in a greenhouse assay, a significant increase in number of
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surviving soybean (Glycine max) plants was recorded when S. sclerotiorum and
F. oxysporum were inoculated together as compared to plants inoculated with
S. sclerotiorum alone. CyA also showed antifungal activity against Aspergillus
fresenii Subram, A. juponicus Saito, A. niger Tiegh, Cryptococcus neoformans
(Sanfelice) Vuillemin, candida sp., Trichophyton mentagrophytes (Robin)
Blanchard, T. tonsurans Malmsten, T. violaceum Sab. apud Bodin, and Fusarium
sp. [65].

12 Biosynthesis of Cyclosporin A

There are four general mechanisms reported for biosynthesis of peptides, two of
which are nucleic acid dependent, i.e., classical ribosomal translation and ribosomal
independent bacterial pentaglycine peptide biosynthesis [66–68]. While the other
two are nucleic acid independent, namely the enzymatic biosynthesis of short
peptides and thiotemplate mechanism involving multienzymes.

CyA is synthesized from its precursor amino acids by cyclosporin synthetase, a
single multifunctional enzyme. The enzyme fraction involved in the production of
CyA was purified from Tolypocladium inflatum by Zocher et al. [69]. The enzyme
was found capable of forming covalent enzyme-substrate complexes and catalyzing
the ATP-pyrophosphate exchange reactions dependent on the unmethylated constit-
uent amino acids of CyA.

Billich and Zocher [62] isolated an enzyme fraction able to synthesize the
undecapeptide CyA from crude extracts of the fungus Tolypocladium inflatum.
The formation of CyA was monitored by incorporation of the radiolabeled constit-
uent amino acids of CyA or by using S-adenosyl-L-[14C-methyl] methionine.

Similarly, Lawen et al. [70] extracted an enzyme from Beauveria niveawhich was
found to be responsible for in vitro synthesis of cyclosporins. They observed that at
sub optimal temperature, a CyAyield of about 50 μg/mL was obtained. The enzyme
also produces several naturally occurring congeners of CyA, such as the
cyclosporins B, C, D, G, M, O, Q, U, and V and some of the analogues known to
be produced by the fungus via precursor directed biosynthesis. Furthermore,
Cyclosporins that are not obtainable by the fungus could be prepared by the
enzyme system in the presence of the appropriate precursor amino acids as the
synthesis of [N-methyl-(+)-2-amino-3-hydroxy-4,4-dimethyloctanoic acid]CyA,
[L-norvaline, N-methyl-L-norvaline]CyA, [L-norvaline, N-methyl-L-norvaline]
CyA, [L-allo-isoleucine, N-methyl-L-allo-isoleucine]CyA, [L-allo-isoleucine]
CyA, [D-2-aminobutyric acid]CyA, and [beta-chloro-D-alanine]CyA could be
established [71].

In further study, Lawen et al. [72] reported that the cyclosporin synthetase is also
capable of introducing β-alanine into position 7 or 8 of the ring instead of the
α-alanines present at these positions in CyA. This leads to 34-membered rings in
contrast to the 33-membered ring of the cyclic undecapeptide CyA.

In contract to peptide synthetase from prokaryotes (forming, e.g., gramicidin,
surfactin, thyrocidine, bacitracin), synthetases present in filamentous fungi such as
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enniatin synthetase, delta-(L-alpha-aminoadipyl)- L-cycteinyl-D-valine synthetase,
beauvericin synthetase, SDZ 214-1-3 synthetase, and cyclosporin synthetase do
not exhibit subunit structure [73–76]. They possess all the catalytic activities neces-
sary for nonribosomal peptide formation.

12.1 Characterization of Cyclosporin Synthetase

This enzyme is able to synthesize cyclosporin A and its congeners using constituent
amino acids in their unmethylated form [74]. The methyltransferase activity for
methylation of peptide bond is an integral part of the enzyme, contributing to
biological activity and stabilization against proteolytic cleavage which was con-
firmed by sequencing of the entire gene [75]. The correct mass of the enzyme was
found to be 1.69 MDa which was determined after sequencing the open reading
frame of the corresponding gene. These results were confirmed by electron micros-
copy of cyclosporin synthetase [77].

At least 40 different reactions steps are catalyzed by the cyclosporin synthe-
tase which includes 11 aminoadenylation reactions, 11 transthiolation reaction,
7 N-methylation reactions, 10 elongation reactions, and final cyclization
reaction [78].

12.2 Localization of Enzyme Involved in Cyclosporin Biosynthesis

Studies performed on T. inflatum revealed the localization and compartmentalization
of three key enzymes of cyclosporin biosynthesis (cyclosporin synthetase, alanine
racemase, and Bmt-polyketid synthase). Using electron microscopy based
immunostaining technology and selective antisera against the key enzymes, the
active CySyn and alanine racemase were found to be bound or attached to the
outer membrane of vacuoles. In contrast, Bmt-PKS seems to operate in the cyto-
plasm. At the end of fermentation process, almost all cyclosporin that are produced
by the cell is stored in vacuoles. Approximately 75 % of biosynthetic enzymes are
detected in the vacuoles which indicates a degradation of inactive enzyme [77].

13 Fungal Production of CyA

CyA was first produced by submerged culturing of aerobic fungi, originally identi-
fied as strains of Trichoderma polysporum [15] but later identified as belonging to
the species of Tolypocladium inflatum [14]. CyA formation is also reported from
Cylindrocarpon spp., Fusarium spp., Tolypocladium geodesW. Gams, Trichoderma
virile Pers. ex Gray, Neocosmospora vasinfecta Smith, Isaria spp., Verticellium spp.,
Acremonium spp., Beauveria nivea (Rostrup) Arx, and Aspergillus terreus
[20, 79]. It is evident from the literature that most of secondary metabolites produc-
tion was carried out by submerged and solid state fermentation.
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13.1 Submeregd Fermentation

Generally, the production of commercially important metabolites is done in sub-
merged cultures of filamentous fungi in which fungal growth is in the form of freely
suspended mycelia, pellets, and clumps [80]. The pelleted growth is preferred
because it produces broth that is relatively less dense, leading to easy mixing and
aeration [81]. Under given conditions, specific growth morphology is affected by
several factors like fungal strain, the nature of the growth medium, method of culture
initiation (e.g., spores, pellets, and dispersed mycelium), and the hydrodynamic
regime in the bioreactor [80–82].

In another study, Fattah et al. [83] worked on sequential optimization strategy for
production enhancement of CyA by Tolypocladium inflatum in a submerged culture
based on statistical experimental designs. They design 2-level Plackett-Burman to
screen the bioprocess parameters which significantly influence CyA production.
Their results showed that sucrose, ammonium sulfate, and soluble starch have
significant positive effect on CyA production among 11 tested variables. Moreover,
they adopted a response surface methodology which involves a 3-level
Box-Behnken design to obtain best process conditions. Thus, a polynomial model
was created to correlate the relationship between three variables and CyA yield. In
addition, nonlinear optimization algorithm of EXCEL-So/ver were used for evalu-
ation of major media constituents for CyA production, i.e., sucrose 20 %; starch
20 %; and ammonium sulfate 10 %. Their study concluded that predicted optimum
yield of CyA was twofold the amount obtained with the basal medium, while the
experimental verification of the predicted model resulted in 97 % of the theoretically
calculated yield of CyA.

Similarly, El-Enshasy et al. [84] worked on the kinetics of cell growth and
production of CyA in shake flasks and bioreactors by Tolypocladium inflatum
under controlled and uncontrolled pH conditions. They found that in shake flasks,
maximum CyA production was 76 mg/L after 226 h. At bioreactor level, significant
increase in the cell growth and the drug production level was demonstrated after only
70 h, i.e., 144.72 mg/L and 131.4 mg/L under controlled and uncontrolled pH
cultures, respectively. In addition, a significant reduction in both the dry cell mass
and the drug concentration was observed after CyA production phase.

13.2 Solid State Fermentation

Solid state fermentation has been successfully used for enzymes and secondary
metabolites. In case of T. inflatum large intra population variations in colony color
and shape were observed on solid media. Thus, colony color can range from white to
brownish [85]. The production of pink pigment was found to be associated with
cyclosporin production in certain T. inflatum strains [86].

Sekar et al. [87] used wheat bran as the solid substrate for CyA production from
Tolypocladium sp. and recorded ten times more yield than that obtained by sub-
merged fermentation. They used different solvents for the optimization of extraction

24 Production of Cyclosporine A by Submerged Fermentation 793



of CyA from fermented bran. Furthermore, their results depicted that high drug yield
was obtained after hydrolyzing the wheat bran using dilute HCl. In 1998, Sekar and
Balaraman [88] optimized various parameters for the optimum production of CyA
by solid state fermentation using Tolypocladium sp. This study was proved to be
economically worthwhile for the production of CyA in bulk quantities.

Solid state fermentation is different from that of submerged fermentation which is
carried out at low moisture content with microbial growth on moist solid substrates.
As compared to submerged fermentation, solid state fermentation has no systematic
study to guide the design and operation of large scale fermentation with proper
control. Various modifications in solid state fermentation like the packed bed,
rocking/rotating drum, fluidized bed, and stirred tank reactors have been used by
Manpreet et al. [89]. Solid state fermentation is affected by various parameters pH,
temperature, agitation, and aeration.

In further studies, Khedkar et al. [20] improved the method for the production of
CyA by solid state fermentation using Fusarium solani (Mart.) Sacc in a bioreactor
under optimal fermentation parameters. The product is extracted and further purified
by treating with alum and subsequent chromatographic procedures to get pharma-
ceutically acceptable purity. Their study showed that high efficiency of the alum
treatment during the purification process results in higher yields.

14 Optimization of Culture Medium for Cyclosporin
Production

Various studies have been reported in past for optimization of culture media for
maximum production of CyA. In 1986, Agathos et al. [90] formulated a semi
synthetic media containing single carbon source, Bacto-peptone, potassium phos-
phate, and potassium chloride for CyA production by Tolypocladium inflatum. A
wide range of carbon sources supported fungal growth and the subsequent CyA
production. The highest CyA production among these carbon sources was observed
with 2 % sorbose followed by 5 % myo-inositol. In order to reach higher volumetric
drug production, sequential addition of two carbon sources such as sorbose and
maltose was also employed.

It was found that by the external addition of the amino acid constituents of the
molecule, the biosynthesis of CyA is heavily influenced. CyA was produced in
semisynthetic and synthetic media by Tolypocladium inflatum in suspension culture
by Lee and Agathos [91]. They found that specific production of CyAwas increased
by 62 % by the addition of L-valine in semisynthetic media. Similarly, the produc-
tion was enhanced four times in synthetic media by addition of L-leucine as com-
pared to semisynthetic media. Further results presented that D-valine shows no
stimulatory effect on the production of CyA.

Chahal [92] used different fed batch strategies to increase the volumetric produc-
tion of CyA in a 14 L bioreactor. A nicotinamide adenine dinucleotide (NADH)
fluoresensor, interfaced with a computer, was used to monitor the growth of fungus
B. nivea. In their study, mathematical models were developed to relate the
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fluorescence intensity with biomass and fructose concentrations in the bioreactor.
Their results concluded that most successful fed-batch fermentation strategy
involved a continuous feeding of substrate at the rate of substrate consumption for
48 h, after the fructose concentration in batch mode had dropped down to 5 g/L. The
substrate feed rate was then switched to the maintenance level for the next 72 h of
fermentation. This strategy gave the highest Cya concentration of 504 mg CyA/l
with a yield of 15.14 mg CyA/g mycelial dry weight.

Similarly, Margaritis and Chahal [93] developed a fructose based medium to
grow Beauveria nivea for the production of CyA. Correspondingly, the highest CyA
level of 150–200 mg L�1 was recorded by Isaac et al. [94], on Casamino acids
medium by Tolypocladium strains after 12 days. After that, Lee and Agathos [95]
reported the effect of externally supplemented L-valine on the production of the
immunosuppressant CyA by Tolypocladium inflatum in chemically defined medium.
It was observed that in a batch laboratory stirred reactor cultivation, the concentra-
tion of intracellular L-valine increased by up to four times between the end of the
exponential phase and the beginning of the stationary phase when the medium was
supplemented externally with 4 g/L L-valine. The final CyA titre under these
conditions was higher as compared to CyA titer attained without L-valine supple-
mentation. In contrast to substantial growth-associated production of CyA in
unsupplemented culture, the formation of the immunosuppressant was prolonged
during the stationary phase in L-valine supplemented medium. As a result, the
conversion yield of CyA on L-valine remained constant during the stationary phase.

Similarly, a feeding strategy for L-valine was also tested in the production of CyA
in celite-immobilized cells of Tolypocladium inflatum by Chun and Agathos
[96]. According to the findings, during exponential growth phase, addition of L-
valine to immobilized cells significantly increase the CyA biosynthesis. However,
amino acid addition after this phase failed to stimulate CyA production. Later on, the
kinetics of submerged fungal growth, consumption of nutrients, and production of
CyA was described by a mathematical model in another study by Agathos and Lee
[97] in 1993 that highlighted the stimulated effect of L-valine on drug production.
The basis of the proposed mathematical model was the emerging mechanistic data
and kinetic information of CyA biosynthesis. The findings were based on the
hypothesis that L-valine acts like an inducer in the biosynthetic process of the CyA
in one of its synthesizing multienzyme and an intermediate of CyA which is
unmethylated. The proposed model comprised of two parts, cell growth and sub-
strate consumption was described in first part while the second part addressed the
kinetics of CyA biosynthesis. Actually, this kinetic profile of both internal and
external variables occupies the major part in the success of this model which not
only correctly monitor the optimum concentration level but the time of exogenous L-
valine addition for obtaining maximum drug production, suggesting new avenues for
improving fermentation process using fungal strains.

Further study on batch fermentation processes by Balakrishnan and Pandey [98]
on CyA production showed that the fungal growth and drug production was more
prominent in complex media rather than in synthetic media. Under the same
conditions, the addition of peptone tremendously increased fungal culture growth
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increasing biomass production while casein and acid hydrolyzate supplementation
favored CyA production. Balakrishnan and Pandey further demonstrated that in
synthetic/semisynthetic media, L-leucine and L-valine act as strong inducers for
drug production upto tenfold as compared to an unsupplemented control. Moreover
they also found that when sarcosine and L-methionine are added exogenously, drug
production was greatly lessened.

Correspondingly, Sallam et al. [79] worked on a local isolate of Aspergillus
terreus among different microorganisms as a new CyA producing culture. The
formation of CyA was investigated under different fermentation conditions.
According to their results, relatively higher production of CyA was attained with
an addition of glucose in the medium during fermentation carried out using a
medium composed of bactopeptone, at pH 5.3, incubated with 2 % standard inoc-
ulum of 48 h age, shaken at 200 rpm for 10 days.

In 2006, Balaraman and Mathew [99] conducted a worthwhile study for optimi-
zation of medium composition by Tolypocladium species in static fermentation for
21 days at 25 +/� 2 �C. CyA extraction was performed by homogenization of fungal
cells in methanol. They examined extracted CyA by a chromatographic technique
(high performance liquid chromatography-HPLC) as their confirmation step. They
optimized the growth medium by glucose 8 %, casein acid hydrolysate 3 %, malt
extract 2 %, peptone 1 %, and DL- alpha-amino butyric acid 0.5 % for obtaining the
maximum drug production.

In a contemporary study, Kannan and Kalaichelvan [100] investigated change in
culture conditions for biomass, protein, and CyA production by Tolypocladium
inflatum. They observed that pH 6.0 and temperature 24–27 �C significantly pro-
moted the biomass and extracellular proteins. Glucose and yeast extract were more
effective carbon and nitrogen sources, respectively, for biomass and extracellular
protein production. Synthetic medium supplemented with L-valine promoted 30 %
increase of CyA over the medium deficient of L-valine. It was observed that L-valine
addition increased CyA production in fermentation.

The extraction kinetics of CyA is greatly influenced by the temperature and this
study was done by Margaritis and Ly [101] using the mycelia of Tolypocladium
inflatum. From fungal mycelia, CyA extraction was performed by using 30 % v/v
aqueous methanol in 2-L stirred, baffled vessel at temperature range from 5 �C to
45 �C. A sort of direct relationship was observed between the extraction yield of
CyA and temperature. Their results concluded that with increase in temperature,
CyA yield also increased, i.e., it found to be maximum at 45 �C, which is 21.3 %
higher than the yield obtained at 25 �C. The extraction of CyA from the fungus
T. inflatum as indicated by activation energy (36.7 KJ/mol) is controlled together by
solubilization of CyA and diffusion from the solid phase of mycelia. Additionally, in
their study, experimental kinetic data of CyA extraction was fit into a mathematical
diffusion model which determine Cyclosporin “A” effective diffusivities at different
temperatures.

Furthermore, various other parameters greatly influence solid state fermentation
process. These parameters have been sequentially evaluated by Survase et al. [102]
which include mainly the choice of solid substrate, hydrolysis of these substrates,
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initial moisture content of the medium, salts supplementation, exogenous addition of
carbon, and nitrogen sources, as well as the inoculum size and age on CyA
production by using Tolypocladium inflatum fungus. They found that at initial
moisture content of 70 %, maximum CyA production was documented by the
addition of combination of hydrolyzed wheat bran flour and coconut oil cake
(1:1). Furthermore, supplementation of salts, glycerol (1 % w/w), and ammonium
sulfate (1 % w/w) also escalate CyA production per kilogram of substrate. In the
same year, a comparison was made between the solid and submerged fermentation
processes by Nisha et al. [103], with and without the addition of amino acids. The
findings supported solid state fermentation with 40 % increased yield in cyclosporin
without any addition of amino acids as compared to the submerged fermentation.
However, in solid state fermentation, longer incubation periods were usually
observed; increased drug yield was achieved by the exogenous addition of a number
of amino acids like L-valine, L-leucine, and L-α-Aminobutyric acid.

In a recent study, Tanseer and Anjum [104] worked on another fungus Aspergillus
terreus for enhanced production of CyA by the use of various carbon and nitrogen
sources in the growth medium. The results of their study illustrated that glucose
(10 %) as carbon source and peptone (0.5 %) as nitrogen source improved the CyA
yield from selected Aspergillus terreus strain (FCBP58). They also concluded that as
there was no relationship between CyA production and fungal biomass, the medium
modifications are exhausted in increasing overall drug synthesis powers of the fungi.
In 2012, Azam et al. [105] explored Trichoderma harzianum as a new fungal source
for the production of CyA. In the same year, Anjum et al. [106] checked six strains of
Penicillium for their potential to produce CyA through submerged fermentation. The
findings of their study showed that among tested fungal species, CyA production
was observed in P. fellutanum.

15 Immobilization for CyA Production

The immobilized system has shown to have promise over conventional submerged
systems. Foster et al. [107] worked on immobilization of Tolypocladium inflatum
conidiophores into a porous celite particles for production of CyA. In comparison
with free cell cultures originated with spores or mycelia, rapid germination was
observed by immobilized cells. Entrapped Tolypocladium inflatum produced CyA in
low foaming semisynthetic media in an airlift bioreactor with an external circulation
loop. Recovery of CyAwas carried out by ethyl acetate extraction which was free of
endogenously produce microbial products and media contamination.

It has been documented that CyA production has been negatively influenced
by L-valine when added at initial stages of immobilized cell growth as compared
to free cell cultures; however, cell growth was increased to a certain extent
[86]. Significant differences were observed in precursor flow between the
immobilized and free cell systems showing the effects of L-valine on CyA
biosynthesis by Chun and Agathos [108]. Supplementation of L-valine during
or after exponential growth phase act as a stimulator for CyA biosynthesis in
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freely suspended cells. This implies an incongruity between primary and second-
ary metabolic networks apprehensive in CyA biosynthesis within the
immobilized state upon external addition of the amino acid.

For immobilization of fungal cell culture, Lee et al. [109] developed a competent
immobilization procedure having abridge time and number of steps for sporulation
which was applied to an immobilized-cell perfusion bioprocess for unremitting
production of CyA. In this technique, fungal cells entrapped in pores of celite
beads were cultured in top-driven stirred tank fermentor. Their study demonstrated
that because of high density of immobilized cells within the fermentor, productivity
of CyA containing free cells within the effluent was terribly high i.e., six- to tenfold
over that of batch suspended cell culture. Later on, in this study, subsequent decantor
was developed for such a proficient immobilized perfusion bioprocess, which
efficiently discrete cell-immobilized beads from effluent while bead loss increased
to some extent as the cell loading intensify in the latter part of culture. Furthermore,
enduring operation of the method was efficaciously carried out by employing an
in-situ immobilization approach. It was found that new immobilized cells were
formed by in-situ entrapment of bulk quantities of spores into newly supplemented
celite beads in reactor during fermentation.

Moreover, Sallam et al. [110] investigated the CyA formation by immobilized
spores and mycelia of Aspergillus terreus. They used different immobilizing carriers
but further experimentation was carried out by Ca-alginate. Different parameters like
biomass weight, pH of the cultivation medium, role of alginate concentration,
supplementation of different amino acid precursors, as well as repeated utilization
of the immobilized fungus were also studied. Their findings suggested that best CyA
productivities were achieved after four repeated cycles with Ca-alginate 3 % (w/v),
pH 4.5, and mycelial weight 15 % (w/v). While studying the effect of amino acids on
the production of CyA, Sallam et al. noticed marked acceleration in productivity of
CyA in the presence of L-valine alone and together with L-leucine mixture.

In a recent study, Survase et al. [102] explored different immobilization matrix
like gellan gum, celite beads, and sodium alginate for the production of CyA by
immobilized spores and mycelia of Tolypocladium inflatum MTCC 557. They also
tested the role of the carrier concentration, number of spore inoculated beads,
biomass weight, and repeated utilization of the immobilized fungus. The findings
of their study showed that both gellan gum [1 % (w/v)] and a mycelial weight [7.5 %
(w/v)] supported the utmost production of CyA. The stability of immobilized
mycelia beads upto four repetitive cycles indicates its semicontinuous potential for
CyA production.

16 Mutational Approach for Strain Improvement

Commercially important metabolites of microbial origin are generally produced in
low quantities. So, there is a need to increase the yield of fermentation product in
order to maintain competitive economic position for new and existing fermentation.
Generally high yield of the fermentation product is associated with proper organism,
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medium, aeration, precursor, pH control, etc. [111, 112]. These concerns would not
offer an appropriate increase within the overall product yield for fermentation.
During this state of affairs, the mutational approach has been extensively used for
industrial organisms to improve the overall productivity which is essential for the
commercialization of fermentation product [113]. Major objectives of strain
improvement program are the yield enhancement of required product, maintenance
of desired morphological characteristics, and unwanted cometabolites elimination
[114]. Such improved strains thus can rationalize the disbursement of the processes
with enhanced productivity and may also possess some specialized fascinating
characteristics. A number of cultures that could be screened after mutagenic treat-
ment are mandatory for the successful accomplishment of any strain improvement
program.

16.1 Screening for Improved Mutants

Screening is required to detect mutants from hundreds and thousands of individuals
exhibiting trait of interest.

A screen can be divided into two types:

1. A direct screen where product is directly analyzed and
2. An indirect, rational or prescreen.

In the second case, a known biochemical or genetic property is assayed that is
associated with the product of interest rather than the actual product [115–117].

16.1.1 Random Selection
A direct screen is commonly referred to as a random screen or random selection and
can be organized into a multi-level screen. A multi-level screen is a useful screening
strategy when improved mutants are rare and the error of testing, or production from,
the screen is high [117–120]. Following incubation of the mutagenized conidia,
isolated colonies are selected and streaked onto solid medium. After incubation, each
colony is inoculated as a single replicate and incubated. Primary screening is
designed with a lower resolution to allow the maximum throughput of isolates to
be assayed.

The low-resolution screen can be performed with agar plugs or plates, miniature
shake flasks, or in tubes [117] and differentiates the high producers from the low
producers with the high producers being selected for further analysis in a
mid-resolution screen [118]. At this secondary level, the number of replicates is
increased and approximately 10 % of the most active producers are selected for assay
with the maximum allowable number of replicates in a high-resolution screen at the
retest level. The number of replicates is increased to improve accuracy and screening
[120]. From this high resolution screen, the top producing strains are then selected as
start strains in the next cycle [118, 119, 121].
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16.1.2 Rational Selection
A rational screen is a prescreen and is highly effective because it kills those mutants
with low productivity [117]. In this way, the application of a prescreen will signif-
icantly concentrate the improved mutants of interest within the mutated population
thus making the entire screening process more efficient [122].

Swidinsky [123] worked on improvement in Cyclosporin productivity and its
relation to growth and glucose metabolism. The regulation of CyA productivity-
improved mutants derived from the classical techniques of strain improvement was
involved in this research. It focuses on classical methods of mutation, selection of
mutant, carbon consumption, growth of producing organism, i.e., T. inflatum, activ-
ity of enzyme involved in glucose catabolism and their relationship with increase
yield of CyA.

Ramana Murthy et al. [124] used solid-state fermentation to produce CyA by
growing Tolypocladium inflatum strains on moist wheat bran. Among these strains,
high CyA yielding strain was selected and its spores were subjected to different
mutagenic treatments for enhancement in CyA production. They found that cultiva-
tion of mutated strain on wheat bran medium comprised of jawar flour (10 %), millet
flour (20 %), Ferric chloride (0.25 %), zinc sulphate (0.15 %), and cobalt chloride
(0.05 %) resulted in highest production of CyA under optimum fermentation condi-
tions, i.e., incubation temperature 25 �C, initial moisture content of inoculum (60 %)
and bran (70 %), and pH 2. They used solvent extraction for the purification of CyA,
followed by column chromatography.

17 Physical Mutagens

Physical mutagens include ultraviolet (UV) light and ionizing radiation such as
x-rays and gamma rays, as well as fast neutron exposure. Ultra violet rays are
non-ionizing because they have a long wavelength and therefore have less energy.
It can induce both base pair substitution and frame shifts mutations. The intra stand
cyclobutan pyrimidine dimmer is the predominant DNA lesion produced by UV
radiation (254 nm) [125]. Many other lesions have been reported such as hydration
across 5–6 double bonds of pyrimidines and dimmers with the amino acid
cystein [126].

Fungi manifest two kinds of responses to ultraviolet radiations, i.e., mutation and
death, depending upon the doses as well as the wavelength. It has been observed that
the shorter wavelengths are more lethal than the longer ones, which are more
effective as mutagenic and cause nonlethal mutations. Ultraviolet radiation is
absorbed by pyrimidines, particularly thymine. Once the energy is absorbed, the
ring structure becomes unstable and sometimes ends up in the formation of
thymine–thymine dimmers.

If the thymines are in opposite strands, the chromosomes will break once making
an attempt to replicate, however more frequently the thymine dimmers form from
adjacent thymines within the same strand. The T: T dimmers do not have traditional
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base pairing properties, therefore when DNA tries to replicate, the inappropriate base
may be inserted.

17.1 Production Enhancement of CyA by Physical Mutation

Previous studies showed successful use of UV mutagenesis to increase the biosyn-
thetic capabilities of fungi for CyA. Besides the type strain used, the production
levels of CyA are dependent on several regulating factor such as inoculum type and
size, medium composition and additives, as well as process parameters such as
temperature, pH, and partial oxygen pressure. A high density of the spore inoculum
was found to be necessary for the development of small pellets, which is preferred
morphology for cyclosporin production [15, 94].

Jung and Kyeong [127] worked for making a highly productive fusant of
Tolypocladium inflatum and also made comparison between wild and fusant strain for
the production of CyA by submerged fermentation. They used UV radiation for the
development of mutant strains that were dependent on amino acid and nitrogen source
for proper functioning and, additionally, established appropriate condition and culturing
methodology of fusant strain for prime production of CyA. Among many nitrogen
sources, a fine protein source like peptone is required by wild strain for CyA production
whereas, a highly productive fusant produces more amounts of CyA than wild strain due
to increase proteolytic activity in such a way that it has an ability to use both fine protein
source (peptone) and cheap, crude, and natural protein sources like cottonseed meal,
soybean meal, cornsteep liquor, and peanut meal. Jung and Kyeong used nutrient media
composed of glucose and peptone as carbon and organic nitrogen source with varying
concentration of amino acids (L-leucine and L-valine) for the cultivation of wild and
fusant strains, L-leucine and L-valine dependent strains. They concluded that wild strain
use low concentration of L-leucine and L-valine for the production of CyAwhile large
quantities of these amino acids were required by fusant strain which act as a precursor
for target compound resulting in increased CyA production.

Gharavi et al. [128] used UV radiation for higher production of CyA in
Tolypocladium inflatum (DSM 915). They prepared α-aminobutyric acid dependent
auxotroph by UV mutation to enhance the biosynthesis of CyA by altering cell
metabolism. Later on, combine strategy of UV mutation and protoplast transforma-
tion was used by Lee et al. [129] for higher productivity of CyA by T. niveum ATCC
34921. They initially performed random mutagenesis by UV mutation and got
ninefold increase in CyA yield, afterwards Vitreoscilla hemoglobin gene VHb
(a foreign bacterial gene) was transformed via protoplast regeneration which resulted
in 33.5 % increase in CyA production.

In a more recent study, Iram and Anjum [130] used ultraviolet radiation (254 nm)
for induction of mutation in Aspergillus terreus strains to produce higher level of
CyA. In their study, exposure time of parental cultures towards UV light was
increased from 5 to 60 min with regular intervals of 5 min. The findings of their
results depicted that increased exposure time resulted in decreased number of
survivals and complete death in last treatment. Mutants with desired higher drug
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production were recorded in very first treatment of 5 min exposure. Maximum CyA
production was observed in mutant MU1.3, i.e., 298.4 μg/ml.

18 Chemical Mutagens and Production Enhancement of CyA

Besides the selection of highly productive colonies of wild type strains, attempts
were undertaken to increase the strain productivity by mutation using chemical
mutagens such as methyl sulphate, epichlorohydrin, or nitrosoguanidine
[90]. Agathos and Parekh [131] worked on production enhancement of cyclosporin
by Tolypocladium inflatum strain using epichlorohydrin treatment. They concluded
that new strain arise after treatment with 0.15 M epichlorohydrin showed similar
growth rate as that of parent organism but more extensive conidiation with higher
production of cyclosporin A.

Classification of chemical mutagens is based on type of modification occurred on
DNA after treatment. These chemical reactions include deamination, alkylation,
intercalation, or substitution of bases. Once variation has been introduced, strains
with the desired characteristic are detected by screening and subsequently selected
for commercial use in large-scale fermentation or chosen as the start strain for
another round of mutation and selection. All mutation and selection is a form of
recycling [116, 132].

The most potent chemical mutagens are alkylating agents, e.g., ethyl methane
sulfonate (EMS) and the nitroso compounds such as N-methyl-N-nitro-N-
nitrosoguanidine. The alkylating agent EMS or NG can be use in strains, which
are resistant to UV light. Each mutagen induce a characteristic spectrum of mutants,
and it is not possible to predict what kind of mutation is essential to boost the
production of desired compound. That is why wide range of mutants are generated
by several dosages of these mutagens.

EMS is well known for the induction of random mutation through nucleotide
substitution in DNA, particularly by guanine alkylation which ultimately produces
point mutations. Mutation produced by this chemical can be at the rate of 5 � 10�4

to 5� 10�2 per gene without any substantial killing. Reaction of ethyl group of EMS
with guanine, leads to the formation of an abnormal base O-6-ethylguanine. As a
result of which, DNA polymerases induce the placement of thymine opposite to
O-6-ethylguanine instead of cytosine, throughout the DNA replication. Later on
by successive rounds of replication, the original G: C base pair can become an A:
T pair.

In a research conducted by Iram and Anjum [130], four different concentrations
of EMS were used to induce mutation in Aspergillus terreus strains for production
enhancement of CyA. The number of survivals with greater CyA biosynthesis than
parental one was recorded in all treatments. They concluded that treatment with
200 μg/ml of EMS was found the most effective, as all the mutants showed
significant increase in immunosuppressant production. The activity ranged between
78.4 and 615 μg/ml. Both UV radiation and EMS are known to increase the yields of
CyA by about 33 % and 37.5 %, respectively [133].
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19 Isolation and Purification of Cyclosporin A

Cyclosporins are not released in culture media but have to extract from mycelia. In
literature, various purification processes have been reported to isolate pharmacopoe-
ial grade CyA.

Conventionally, organic solvent was used to extract fermented biomass, then
solvent was evaporated, reextracted and the residue is concentrated. At the end
these, residues were analyzed by various chromatographic techniques to separate
CyA from other cyclosporins and impurities.

Derk [134] used supercritical CO2 for extracting cyclosporin from mycelia of
Beauvaria nivea. Their results showed that about 70–80 % of CyA were extracted
from mycelia of tested fungi. Completely dried mycelia showed lower extraction
yields as compared to mycelia with 7–29 % moisture content. The addition of
methanol showed no effect on cyclosporin extraction. Co-extracted materials,
obtained during extraction experiment, were tentatively identified as lipids. More-
over in their study, scanning electron micrographs of mycelial structure were to
visualize the physical barriers in cyclosporin removal.

Sekar and Balaraman [88] and Survase et al. [135] used butyl acetate for the
extraction of CyA from fermentation broth or fermented solid substrate. Similarly,
ethyl acetate was to extract fermented matter by Ramana Murthy et al. [124] with
subsequent purification using silica gel and Sephadex LH20 resin. These columns
were eluted with hexane:chloroform:methanol (10:9:1) and methanol, respectively.
They used NMR and IR techniques for characterization of CyA.

Szanya et al. [136] stated that solid mixture or evaporative residues can be
efficiently separated by heating at 80–115 �C prior to chromatography on silica
gel. They used mixture of chloroform-dichloromethane–ethanol or chloroform–ethyl
acetate–ethanol as eluent. The resultant product was subjected to further chroma-
tography and recrystallization. Another study was reported by Lee and Agathos [91]
in which fermentation broth was treated with concentrated NaOH and heated at
60 �C for 30 min for CyA recovery. This mixture was then extracted with equal
volume of n-butyl acetate on rotary shaker (250 rpm) for 24 h.

The findings of Ly et al. [137] depicted that acetone with 50 % v/v concentration
proved to be best solvent for extracting CyA from mycelia of T. inflatum as
compared to methanol and isopropanol at room temperature.

20 Analytical Methods for Analysis of Cyclosporin A

Various methods are used for the analysis of cyclosporin A in clinical samples, such
as immunoassays, HPLC, liquid chromatography–tandem mass spectrometry
[138–140]. For rapid analysis of CyA, immunoassays are used but cross-reactivity
of the antibodies with inactive CyA metabolites is its main concern. So, for routine
monitoring of CyA in transplant recipients, HPLC-tandem mass spectrometry assay
is used as an alternative to immunoassays [141].
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In contrast, HPLC is more time consuming but for various researchers it is a
method of choice for CyA analysis in fermentation broths. Kreuzig [139] developed
a HPLC method, for separation and determination of the closely related cyclosporins,
i.e., CyA, CyB, CyC, and CyD present in fermentation broths. They used Nucleosil
C8 column with temperature 70 �C and acetonitrile–water–phosphoric acid
(70:30:0.01) as a mobile phase. In the later study, HPLC analytical conditions were
optimized by George et al. [142] for analysis of different cyclosporins. Their findings
depicted that CyA, CyB, and CyC were well separated with a Supelco C8, column
(60 �C) using mobile phase [acetonitrile–water (50:50)]. However, Husek [143]
developed a simple and reliable HPLC method for analysis of CyA, its congeners,
and degradation products.

21 Conclusion

Cyclosporin A is among the most important immune suppressants used. The use of
cyclosporin as a transplant medicine has no doubt revolutionized the clinical use
since 1970s. It has transformed the medicine field into miracle as it not only
improves the rates of acute rejection but also enhance early graft survival. The
commercial demand for CyA is increased worldwide due to its numerous novel
applications. Recent literature showed that researcher’s main concern is focused on
the CyA bulk production, its easy purification, and uses in the field of medicine. For
this reason, the mechanism of action of cyclosporin is also under thorough investi-
gation. Efforts are being made in the last few years to investigate the use of
biologically safe and low-cost sources such as microbial strains to improve drug
production. A few dynamic fungal strains were found to produce efficient levels of
CyA, however for its commercial production further research for viable organism is
the need of hour. In addition, other physical parameters and processes should be
opted at commercial scale which could amplify drug yields in turn reducing the cost
of production. Other genetic techniques like recombinant DNA, protoplast fusion,
RNAi mediated gene silencing, Frame-shift mutation, and DNA manipulation in
industrial strain improvement for higher production of Cyclosporin may be the
proper way out for its high fold production.
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Abstract
Streptokinase is a fibrinolytic agent widely used in thrombosis. The clinical trials
and experimental studies proved that the SK is a safe and inexpensive thrombo-
lytic medicine compared with its homologues such as tissue plasminogen activa-
tor (t-PA), urokinase (UK), and other plasminogen activators. Increased risk and
prevalence of thrombosis worldwide, demand for SK, low production yields in
native strain, high purification, and other antigenicity toxins limit the usage of
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native SK. However, these inadequacies can be overcome by using genetic
engineering technology to express SK gene (skc) in microbial host systems.
This chapter addresses about the SK structure, mechanism of action, and recom-
binant SK expression in yeast and fermentation.

Keywords
Streptokinase • Streptococci • Yeast • Plasminogen • Plasmin • Fermentation •
Heterologous expression

List of Abbreviations
AA Amino acid
ATCC American type culture collection
GRAS Generally regarded as safe organism
H Hour
HPG/PG Human plasminogen
HPM/PM Plasmin
APSAC Acylated plasminogen-streptokinase activator complex
kDa Kilo Daltons
L Liter
Lys Lysine
mg Milligram
PEG Polyethylene glycol
rSK Recombinant streptokinase
SCU-PA Single-chain urokinase-type plasminogen activator
SK Streptokinase
tPA Tissue-type plasminogen activator
UK Urokinase

1 Introduction

Streptokinase (SK) is a protein that belongs to a group of hydrolases and is secreted
by Lancefield group A, C, and G strains of β-hemolytic streptococci [1, 2]. SK is a
single polypeptide chain of 414 amino acids with 47 kDa molecular weight and
isoelectric pH 4.7. The enzyme has its maximum activity between pH 7.3 and 7.6 [3,
4]. SK has been widely used in the treatment of acute myocardial infarction for its
robust action in liquefying fibrin. Venous thromboembolism (VTE) is the third cause
of mortality after myocardial infarction and stroke, and it is the second cause of death
in patients with cancer. The clinical trials and experimental studies proved that the
SK is a safe and inexpensive thrombolytic medicine compared with its homologues
such as tissue plasminogen activator (t-PA), urokinase (UK), and other plasminogen
activators [4, 5]. Native SK, purified from hemolytic streptococci, displayed antige-
nicity which may damage the myocardium and liver due to the hemolysin residues
[4, 6]. However, these inadequacies can be overcome by using genetic engineering
technology to express SK gene (skc) in native and heterologous bacterial hosts like
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Escherichia coli [2, 7]. Yeast expression systems are also employed as production
cells [8]. In this chapter, we discuss about the SK structure, mechanism of action, and
recombinant SK production in yeast and fermentation.

2 Structure of SK

Major biophysical techniques revealed structural information of SK [9]. SK contains
three structural domains with 414 amino acids: α (AA 1–150), β (AA 151–287), and
γ (AA 288–414) [9]. The highly conserved α and γ domains provide maximum
contact sites with the plasmin moiety and shows the synergism on plasminogen
activation [9–11] (Fig. 1). The β domain provides no direct contact sites with the
plasmin active site; however, surface-exposed hairpin loop (250-loop) requires
plasminogen docking. The second structural loop (170 loop) function is unknown,
but it is responsible for the heterogeneity of the SK and associated with infection and
disease in group A of streptococci [9–12].

3 Mechanism of Action

SK activates the fibrinolytic system for the degradation of blood clots (Fig. 2).
Fibrinolysis is a common biological phenomenon in mammals for the degradation
of blood clots [13]. Since the native SK does not have proteolytic activity, it forms an
equimolar complex (SK-HPG) with human plasminogen (HPG). Further conforma-
tional changes yield unstable SK. HPG0 complex which possesses an active site in
PG moiety. This nonstable interaction is rapidly converted to SK * HPM complex
due to intramolecular cleavage of peptide bond between Arg560 and Val561 of the SK.
HPG0 complex (Eq. 1).

HPGþ SK �� ! SK:HPG� ! SK:HPG0� ! SK � HPM (1)

SK þ HPM� ! SK � HPM (2)

SK * HPM can also be formed with the combination SK with HPM (Eq. 2).
Simultaneously, after formation of HPM in the complex, SK immediately converted
other proteolytic form SK* with 36 kDA molecular weight. The loss of the 9 kDa
does not effect the activity of the SK. Further, SK plays an important role in

Fig. 1 Structural domains of SK [9–12]

25 Streptokinase Production in Yeast Systems 813



modulating the substrate specificity for plasminogen [13]. SK binds to plasminogen
through the lysine binding site to trigger conformational activation of plasminogen
[14, 15]. SK-HPG activator complex interacts with plasminogen through
protein–protein interactions to maximize catalytic turnover [16]. The loss of
N-terminal residues (first 59 amino acids) seems to have multiple functional roles
in SK [17]. Without these, SK leads to unstable secondary structure and reduces the
activity of the remaining SK fragment (i.e., residues 60–414) [18].

4 Production of SK

4.1 Native Microorganism

Streptococci were first identified in 1874 by Billroth in exudates of infected wounds
and were later grouped into three categories based upon their ability to hemolyze
erythrocytes into α, β, and γ. Serologic distinctions by Lancefield further differen-
tiate the β-hemolytic streptococci into groups A to O. Tillet (1933) observed that
Lancefield group A β-hemolytic streptococci isolated from patients produced a
substance that could be used to dissolve fibrinous exudate. A, C, and G group
streptococci are major producers of SK and among them group C is preferred for

Plasminogen activators SK, UK, tPA, SCU-PA, APSAC

Plasminogen activator-inhibitor-1 (PAI-1) 

Plasminogen Plasmin 

α2
- anti plasmin 

Fibrin Fibrin degradation product

Fig. 2 Schematic representation of the fibrinolytic system. SK Streptokinase, UK urokinase, tPA
tissue-type plasminogen activator, SCU-PA single-chain urokinase-type plasminogen activator,
APSAC acylated plasminogen-streptokinase activator complex
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its low erythrogenic toxins. Streptococcus equisimilis H46A (ATCC 12449) is
widely used as the source for the production of SK [1–4].

4.2 Recombinant SK Production in Yeast

The streptokinase gene (skc) cloned from S. equisimilis H46A has been used for
production in native, several heterologous bacterial and yeast expression systems
[7, 8, 19]. A variety of promoter systems like T7, P170, glnAP2, AOX1, and GAP
were adapted for clinical grade synthesis of SK [7, 19–22]. Commercial grade
production of SK has been reported in Escherichia coli through fed-batch and
continuous culture system [23, 24]. Nevertheless, the recombinant SK production
in E. coli has been reported with some complications including plasmid instability,
loss of cell viability due to its toxicity towards the expression host and inclusion
body formation, and association of endotoxins post purification. To overcome the
above limitations, yeast expression systems have been adapted for the production of
SK due to their ease of genetic manipulation, access to genomic information
resources, and is generally regarded as safe organism (GRAS) due to their extensive
utilization in food and beverage industry. The tightly regulated promoters of P. pastoris:
alcohol oxidase (AOX) and glyceraldehyde 3-phosphate dehydrogenase (GAP) with
high specific secretion efficiency for heterologous proteins made downstream
processing simple and cost effective [25]. SKwas successfully expressed intracellularly
and also in secretory mode in P. pastoris through AOX1 promoter [8, 26].

The difficulties associated with AOX expression system include high methanol
consumption, transient toxicity to host, heat production due to methanol combustion,
and hydrogen peroxide formation due to methanol oxidation leading to cell death
and also difficulty in bioprocess scale up. Alternate promoter systems like GAP,
formaldehyde dehydrogenase (FLD), and isocitrate lyase (ICL1) are applied for
protein expression [25, 27, 28]. Of the above promoters, GAP-based promoter
system has been applied for constitutive intracellular expression of SK in
P. pastoris. Statistical optimization indicated that dextrose and peptone are effective
and improved the SK expression by 95 % [22]. Another study expressed SK in
S. cerevisiae by utilizing GAP promoter of P. pastoris and reported 110 % increase in
activity levels [29].

Degradation of SK during large-scale production could be avoided by a
glycosylated form of SK. By expressing the chimeric protein with α-mating factor
as signal sequence instead of native signal codon in P. pastoris, the secreted
glycosylated SK had improved proteolytic stability with activity levels of
3,200 IU m l�1 at shake flask level and 3,727 IU m l�1 at bioreactor level
[26]. However, the secreted proteins expressed in P. pastoris and S. cerevisiae
are often hyperglycosylated [30]. Schizosaccharomyces pombe was exploited to
evade this limitation. Sz. pombe is a good choice over S. cerevisiae, since it shows
several molecular similarities with higher eukaryotes in splicing mechanism and
posttranslational modifications to higher eukaryotes. Chimeric expression of SK
with Sz. Pombe signal sequence under thiamine-regulated (nmt1) promoter
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improved signal sequence processing and secreted mature SK compared to
P. pastoris [31, 32].

4.3 Fermentation

A detailed batch and fed-batch cultivation methods at bioreactor level are reported
for SK production in E. coli [23, 24, 33–36]. However, limited studies were reported
for SK synthesis by fermentation in yeast. Hagenson et al. [8] have successfully
produced SK intracellularly and scaled up the bioprocess using a bioreactor. The
fermentor cultures were grown in the batch mode with 2.5 % w/v glycerol-FM21
salts minimal media, and continuous cultures were established using 10 % w/v
glycerol feed. The nutrient feed was switched from glycerol to 15 % v/v methanol
and maintained for 255 h as sole source of carbon and energy. The amount of
streptokinase expressed during continuous fermentation on methanol was deter-
mined to be about 77 mg L�1 of fermentor broth at an intermediate cell density of
46 g L�1 (dry weight).

Adivitiya et al. [37] have generated P. pastoris cell systems secreting SK under
the control of AOX1 and GAP promoters and adapted them for large-scale cultures.
Biomass production was done at 30 �C in batch medium using dextrose as carbon
source instead of glycerol until a wet cell weight of 132 g L�1 was achieved. The
cells were then induced using 100 % methanol at controlled flow rate and cultured in
high cell density medium to reach a biomass of 318 g L�1. Avolumetric productivity
of 57.43 mg L�1 h�1 and a specific activity of 55,240 IU m g�1 partially purified
rSK were achieved. Biological and biophysical characterization of the rSK was in
agreement with native protein. The constitutive secretory expression under GAP
promoter was also attempted; however, expression yields were significantly
compromised due to its toxicity towards expression host [37].

At shake flask level, constitutive expression and production of SK in Pichia
pastoris was achieved with Plackett–Burman design by screening different carbon
sources, e.g., dextrose, galactose, fructose, maltose, sucrose, lactose, and glycerol
and nitrogen sources, e.g., yeast extract, tryptone, peptone, casamino acids, beef
extract, corn steep liquor, and polypeptone. Dextrose and peptone sources have
generated maximal rSK expression. Further response surface methodology (RSM)
optimization revealed the values for the dextrose, 2.90 %; peptone, 2.49 %; pH, 7.2;
and temperature, 30.4. With the combinations of these parameters, P. pastoris
expressed 2,136.23 IU m L�1 more SK than initial levels (2,089 IU m L�1)
[22]. Using a baffled flask design and RSM optimization on the S. cerevisiae
expressing SK revealed yeast extract 3.215, dextrose 2.952, pH 7.42, and tempera-
ture 32.45 as optimum conditions. These variables combination improved the SK
production 2352.07 IU m L�1 [29]. The mature SK produced in both the RSM
studies is biologically active and is temperature sensitive.
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5 Current Status of Streptokinase-Based Thrombolytic
Drugs

Immunogenicity of streptokinase, half-life in circulation, and degradation in circu-
lation by plasmin are some of the limitations of SK in clinical approach. Structurally
modified SK has been produced in several ways including genetic mutation, and
chemical or enzymatic modification of the native streptokinase. Mutant streptoki-
nase with improved stability has been prepared. Two of the major sites of the
proteolytic action of plasmin on streptokinase are Lys59 and Lys386, and variants
have been generated that were resistant to plasmin with stability and comparable
biologic effectiveness [38]. A mutant streptokinase that lacked the C-terminal
42 amino acids was found to be less immunogenic than the native molecule [39].

Fibrin and activated platelets are the chief constituents of a thrombus/clot and are
the main targets for targeted delivery of SK. Conventional and PEGylated liposomes
composed of neutral palmitoyl-oleoyl phosphatidyl choline (POPC) have been tested
to encapsulate SK. This formulation led to limiting effects of anti-SK antibodies on
SK efficacy, prolong systemic circulation, eliminate platelet aggregation and alter
biodistribution of SK in favor of the thrombus and therapeutic thrombolysis. The
designed liposomes proved controlled release of encapsulated SK close to thrombus
vicinity and increased local concentration of SK [40, 41]. Major commercial pro-
ducers of SK are Aventis Behring GmbH, Germany; BBT Biotech, Germany; Bharat
Biotech International, India; Cadila pharmaceuticals, India; Heber Biotec, Havana,
Cuba; Shantha biotechnics, India; Dongkook Pharm Co. Ltd, Korea; Kyung Dong
Pharm Co. Ltd, Korea; and Pharmacia Upjohn, Sweden with different brands name
like Akinase, Durakinase, Heberkinasa, Indikinase, Kabikinase, Myokinase,
Shankinase, Streptonase, STPase, Solustrep, etc. [42].

6 Conclusion

SK is as effective as rtPA in treating acute myocardial infarction, and it is certainly
more cost effective. Currently available SK with minimum risks is an effective
medication for thrombotic disorders. Its adverse effects are very well defined
which can be clinically treated. Numerous approaches are developed for the alter-
ation of SK for spreading its half-life in flow, refining plasminogen activation, and
diminishing or excluding immunogenicity. Expression of rSK in yeast system is a
better choice, since it is a GRAS organism and genetic engineering technologies are
well established. Continuous culture fermentation will give better yields over the
batch and fed-batch fermentation if used in conjunction with a strong constitutive
expression system. Demand for rSK is higher than native SK in the current market
than other thrombolytic drugs in developing countries. Subsequently, it can be
conceivable to produce a SK at the desired level to compete with tPA.
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Abstract
Secondary metabolites of the fungus Monascus include pigments, monacolins,
and citrinin. This chapter summarizes the biosynthesis of these metabolites, their
biological activities, as well as new methods of determination based mainly on
chromatography and spectrophotometry. In addition, asexual and sexual repro-
duction, solid substrates and submerged liquid cultivation conditions, together
with the use of this fungus in food biotechnology and condiments are described.
Emerging topics such as methods in molecular biology of Monascus, based on
recent genomic sequencing of M. purpureus, M. ruber, and M. pilosus, are also
discussed.

Keywords
Monascus • Pigment • Citrinin • Monacolin • Red yeast rice

1 Introduction

The fungus Monascus has, for centuries, been well known in Asian countries,
especially China, Japan, Korea, Indonesia, Philippines, and Thailand, and is mostly
associated with the production of Monascus-fermented rice (red yeast rice). Red
yeast rice is known under various Asian names, i.e., as angkak (Philippinese), hong
qu (Chinese), or beni-koji (Japan), and is mostly associated with food colorings with
beneficial effects on human health, particularly its positive effects on digestion and
against cardiovascular diseases. Medicinal effects of red yeast rice were described in
the traditional Chinese Pharmacopoeia from the Ming Dynasty (A.D. 1368–1644),
although its culinary uses probably reach back further into history. Dried powder
from red yeast rice, or red yeast rice itself, was used for coloring different kinds of
foods such as cheese, fish, soya, and meat products. In addition, a red koji (i.e.,
Monascus-fermented substrate, usually rice) is utilized in food fermentations as a
source of hydrolytic enzymes and active fungus. In this way, red rice wine, red rice
vinegar, fish paste (e.g., bagoong), or fermented tofu (sufu or tofuyo) are produced.

In contrast, in Western countries Monascus is mainly associated with food
supplements containing red yeast rice, which can be efficient in lowering blood
LDL cholesterol and triglyceride levels. It is believed that this effect of red rice is
caused mainly by its content of monacolin K, a statin of the same structure as
lovastatin (mevinolin), which acts in association with other compounds in red rice
(pigments, different monacolins). In the 1990s, Monascus was also thought to be a
possible source of natural food pigments, a convenient alternative for artificial red
and yellow colorants. This period ended with the identification of monascidin A as
the mycotoxin citrinin [1]. The complete condemnation of Monascus pigments as
toxic material, even though some Monascus strains are nontoxigenic, is an example
of double standards from Western countries, where other fungi associated with food
fermentation, e.g., Penicillium roqueforti, can also produce mycotoxins under cer-
tain conditions, but this has not resulted in a reduction or a ban on blue cheese
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production. The attitude ofWestern countries towardsMonascus is even more baffling
with respect to red rice food supplements. Surprisingly, in this case, the fact that these
products may contain varying concentrations of citrinin is often not considered
although controversy is possible, through varying contents of monacolin K.
The American Food and Drug Administration (FDA) banned several food supple-
ments containing red rice with monacolin K and warned consumers that use of these
supplements, especially together with prescribed drugs containing the same com-
pound, may elicit or increase side effects of statins, potentially damaging health
[2]. In contrast, the European Food Safety Authority (EFSA) approved the statement:
“Monacolin K from red yeast rice contributes to the maintenance of normal blood
cholesterol concentrations” [3] which can be shown on Monascus food supplements.
The basis of the EFSA position comes from proven cause-effect relationships between
monacolin K and cholesterol lowering but neglects the fact that monacolin K is
identical to lovastatin (mevinolin), which is an efficient (active) compound in
approved, prescribed drugs.

In Asian countries, especially in China and Japan, the fungusMonascus has been
studied intensively. In China, Monascus is so respected that a position for it was
found in the limited space of the Shenzhou 3 recoverable spaceship (the experiment
was performed successfully to obtain mutants with higher monacolin K production)
[4]. Unfortunately, not all results of Asian researchers are published in English and
therefore they remain hidden from nonnative people. This fact, together with the
association of the fungus with exotic fermented meals such as bagoong, red sufu, and
red rice wine or brandy give the fungus a mysterious aura. Nevertheless, the
genomes of all three most famous Monascus species, i.e., M. purpureus, M. ruber,
and M.pilosus, were recently sequenced [5–8], enabling a deeper insight into
Monascus physiology and revealing new approaches to strain improvement.

2 Fungus Monascus – Taxonomy, Reproduction,
and Metabolism

Originally, the genus Monascus was classified in the family Monascaceae (phyllum
Eumycota, subphyllum Ascomycotina, class Plectomycetes, order Eurotiales) [9]
but based on recent genome sequencing, it seems that the genus is more closely
associated with the genus Aspergillus, and thus should be reclassified in the
Aspergillaceae family [10]. The genus Monascus comprises nine species, the most
important of which are M. purpureus, M. ruber, and M. pilosus. The most famous
species is M. purpureus (see Fig. 1), which is also known under many synonyms,
e.g., M. anka, M. albidus, M. major, or M. rubiginosus.

Monascus species are usually homothallic, teleomorphic fungi that form mycelia
composed of branched hyphae. Asexual reproduction also includes formation of
single or chained aleurioconidia at the tips of specialized hyphae (see Fig.2). In rare
cases, intercallar chlamydoconidia or arthroconidia are developed.

The Western name for the fungus – Monascus – is not appropriate because it
implies formation of a single ascus (monoascus) during sexual reproduction, which
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is only true in rare cases [11]. In fact, one sexual act often results in the formation of
multiple croziers at the terminal ends of ascogenous hyphae. The complete chain of
events occurring during sexual reproduction, originally proposed by Young (1931)
[12], was proven in further studies [11, 13, 14] and remains mostly unchanged. Both
male and female sexual organs grow towards each other. The male sexual organ, the
antheridium, arises by septation from hyphae tips. The female organ, the ascogo-
nium with trichogyne, arises from protuberant cells beneath the septum. Male nuclei
migrate through the trichogyne to the ascogonium but do not fuse with the female
nuclei. The ascogonium enlarges and is dotted with sterile hyphae. Ascogenous
hyphae inside the ascogonium organize themselves into cells, each containing both
nuclei, thus giving rise to asci. It is only within asci that the nuclei fuse and undergo
meiotic and mitotic divisions, resulting in eight haploid daughter nuclei, forming the
basis of eight ascospores within an ascus. The asci are grouped from 1 to 15, or even

Fig. 1 Colonies ofM. purpureus grown on Petri dishes containing potato-dextrose agar (a) or malt
extract agar (b). The fungus was cultured for 7 days at 30 �C

Fig. 2 Round aleurioconidia
at the tips of specialized
hyphae. M.purpureus grown
on potato-dextrose agar plates.
The bar represents 30 μm
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more, in a cleistothecium (see Fig. 3) that contains up to 120 or more ascospores. The
ascus wall is transparent, dissolving after maturation, and ascospores are released to
the cleistothecium. After rupture of the cleistothecium wall, the ascospores are
released into the environment.

There is a clear influence of cultivation medium on the formation of spores of all
types, the most significant probably being the influence of nitrogen source [15]. In
other filamentous fungi, e.g., in Aspergilli [16], there is usually a relationship
between mycelium differentiation, followed by sporogenesis, and secondary metab-
olism. This relationship has never been studied systematically in Monascus, but
some recent studies [17] with Monascus albino mutants (constitutive nonpigment
forming) suggest that such a relationship probably exists. Secondary metabolism and
reproduction also appear to be regulated by a G-protein signaling pathway [18].

The fungus is aerobic, saprophytic, mesophilic, with respirofermentative metab-
olism; it can also be characterized as Crabtree negative with limited respiration
because it creates ethanol under conditions of glucose excess, even in aerated
systems [19]. The fungus produces different lytic enzymes including those with
amylolytic, proteolytic, or lipolytic activities that enable growth on different
substrates. The species M. ruber can degrade cellulose [20]. In addition to ethanol,
L-malic and succinic acids can be formed as primary metabolites [21, 22].

2.1 Strain Improvement

Initially, strain improvement methods consisted mainly of random mutagenesis
induced by UV irradiation or the action of chemical mutagens. In this way,
Monascus mutants preferably producing yellow pigments [23] or albino mutants
(nonpigment producing) [17] were obtained. Protoplast fusion then became a pop-
ular method to strengthen phenotypic traits in the fungi. Intergeneric protoplast

Fig. 3 Cleistothecia
containing oval ascospores.
M. purpureus grown on
potato-dextrose agar plates.
The bar represents 30 μm
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fusion betweenMonascus anka and Aspergillus oryzae resulted in better growth and
ethanol production by fusants [24]. Monacolin K production was increased by
intergeneric protoplast fusion of M. anka and A. terreus [25]. Recently, different
transformation approaches were applied to improve production of pigments and/or
monacolins and to decrease/eliminate citrinin production. These methods, including
electroporation, biolistic transformation, and Agrobacterium tumefaciens-mediated
transformation, were reviewed in 2014 [26].

3 Biosynthesis of Secondary Metabolites

The fungus Monascus is the most famous for production of pigments and
monacolins; however, it can also form other metabolites – citrinin, dimerumic
acid, and GABA (γ-aminobutyric acid). Formation of particular metabolites depends
on the strain and cultivation conditions.

3.1 Pigments

There are three major pairs of Monascus polyketide azaphilone pigments, in which
the two analogues differ in length of side chain (see Structure 1) – yellow ones
(ankaflavin, monascin), orange ones (rubropunctatin, monascorubrin), and red ones
(rubropunctamine, monascorubramine). In addition, there are many minor
pigmented compounds that have been isolated recently from Monascus strains
cultivated under different conditions; for a recent survey see [27, 28]. Some of
these novel colored metabolites may originate fromMonascus strains with defective
gene clusters for the formation of major pigments, as in the case of monascusone A,
which was produced by a M. purpureus strain with a targeted deletion in the FAS
gene cluster [7].

The structures of all major pigments were elucidated over the period from 1950 to
1980 [29–34]. In the same period, the pathway for pigment biosynthesis was
proposed. Individual steps in this proposed sequence are gradually being confirmed,
but there are still some steps that are only hypothesized but not proven.

According to current opinion based on transcriptomic analysis [5] which is in
agreement with previous chemical views [29, 32] and experimental evidence [6, 7,
35–37], biosynthesis of the orange pigments (rubropunctatin, monascorubrin)
requires coordinated activity of fungal polyketide synthase (PKS), in particular
nonreducing (NR-) polyketide synthase with a reductive release domain (�R), and
fatty acid synthase (FAS). NR-PKS-R ensures formation of the basic hexaketide
chromophore structure, which is then methylated and hydroxylated. Subsequently,
FAS provides C8 or C10 chains that are necessary for the complete pigment structure
(for simplified rubropunctatin biosynthesis, see Scheme 1). Current opinion is that
synthesis of the hexaketide backbone starts with the condensation of one acetyl-CoA
with five malonyl-CoA subunits, and 3-oxo-octanoic acid or 3-oxo-decanoic acids,
which are necessary for rubropunctatin or monascorubrin, respectively, are
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synthesized by FAS and PKS from one acetyl-CoA and two malonyl thioesters. In
the case of Monascus, NR-PKS-R is a multifunctional polypeptide, composed of
catalytic domains consisting of the starter unit ACP transacylase (SAT), β-ketoacyl
synthase (KS), acyltransferase (AT), product template (PT), acyl carrier protein
(ACP), C-methyltransferase (MT), and an R terminal domain [6]. In general, poly-
ketide synthesis consists of iterative Claisen type condensations from acetyl-CoA
and malonyl-CoA subunits, catalyzed by SAT, KS, and ACP catalytic domains of
PKS, which result in the generation of a poly-β-ketoacyl thioester intermediate. This
is further modified by other catalytic domains, but their actions are not iterative. For
biosynthesis of yellow and red pigments, it is believed that the yellow pigments
(ankaflavin, monascin) are formed from orange ones by reduction, and red pigments
are generated by the reaction of orange ones with compounds containing amino
groups through Schiff base formation; for a scheme of red pigment formation see
[28, 38]. Surprisingly, mechanisms for biosynthesis of all majorMonascus pigments
were also found in Penicillium marneffei, where genes responsible for their biosyn-
thesis were identified and the biosynthetic pathway, which is more or less the same as
in Monascus, was hypothesized [39].

H H

Yellow pigments

Monascin C21H26O5, M = 358.43 Ankaflavin C23H30O5, M = 386.48

Rubropunctatin C21H22O5, M = 354.40 Monascorubrin C23H26O5, M = 382.45 

Orange pigments

Rubropunctamine C21H23NO4, M = 353.41 Monascorubramine C23H27NO4, M = 381.46 

Red pigments

Structure 1 Major Monascus pigments
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PKS- and FAS-encoding genes, which participate in orange pigment biosynthesis,
are grouped into PKS-FAS gene clusters that share relatively high homology in
M. purpureus, M. ruber, and M. pilosus [5–8]. In general, biosynthetic regulation
of fungal secondary metabolites is mediated by a G-protein signaling pathway and a
global regulator of secondary metabolism (LaeA). The G-protein is a heterotrimer
composed of α, β, and γ subunits and receives signals from the cellular environment
by a membrane-bound G-protein receptor. G-protein activation results in regulation
of gene expression in three ways, i.e., by cAMP-dependent protein kinase A,
mitogen-activated protein kinase (MAPK), or phosphorylation of protein kinase C
[40]. LaeA is a master regulator of secondary metabolism and fungal development,
the functioning of which was described for Aspergilli. It is located in the nucleus, and
its main regulatory functions are attributed to a methyltransferase domain [41, 42].
Regulation of the PKS-FAS gene cluster in Monascus has not been described fully.
For M. ruber M7, inactivation of the Mga1 gene encoding the G-protein α-subunit
induced pigment and citrinin production [43]. In the same strain, signal transfer by

S-CoA

S-ACP

S-CoA

S-CoA

S-CoA

PKS

2

FAS, PKS

acylation

Rubropunctatin

PKS

PKS

methylation

hydroxylation

5

Scheme 1 Simplified rubropunctatin biosynthesis
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cAMP-dependent protein kinase Awas confirmed by addition of varying amounts of
cAMP [44]. It was also found that inM. ruber, the regulator of the G-protein signaling
pathway, MrflbA, controls citrinin and pigment formation, together with growth and
reproduction [44]. Overexpression of the laeA gene inM. pilosus resulted in increased
production of pigments and monacolins [45].

3.2 Monacolins

The fungusMonascus is also known for production of monacolins, compounds from
the statin family that act as inhibitors of 3-hydroxy 3-methyl glutaryl CoA reductase,
a key enzyme in cholesterol production in mammals. The fungus can produce
different monacolins (monacolin K, L, J; dihydromonacolin L; and others) that
share common biosynthetic routes [38]. The most important compound from this
group is monacolin K, also known as lovastatin or mevinolin (see Structure 2). Its
production was recognized in different fungal species, including Penicillium
citrinum and Aspergillus terreus. For Monascus, it was initially isolated from
M. ruber in 1979 [46]. Currently, monacolin K, under the name lovastatin, is
produced by Merck using A. terreus fermentation and is the active compound of
the drug Mevacor®. Other companies use not only A. terreus but also Monascus in
submerged liquid cultivation for production of monacolin K [47–49].

Although monacolin K production is often associated with health benefits of
M. purpureus fermented rice, the monacolin K gene cluster has only been described
fully for M. pilosus [50, 51]. The biosynthetic pathway for monacolin K was
proposed based on knowledge gathered for Aspergillus terreus [52]. In A. terreus,
monacolin K is synthesized by lovastatin nonaketide synthase (PKS), through
dihydromonacolin K and monacolin L to monacolin J, which is modified by addition
of a methylbutyryl side chain synthesized by lovastatin diketide synthase (PKS); for
an outline of the pathway, see [52]. Based on homology of lovastatin (monacolin K)

H

Monacolin K, C24H36O5, M = 404.55 Citrinin, C13H14O5, M = 250.24

H

H

Structure 2 Structure of monacolin K and citrinin
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gene clusters in M. pilosus and A.terreus, the biosynthetic pathways in these two
species appear to be similar [8]. There are known 27 monacolin compounds [49],
including the recently identified unusual aromatic monacolin analogues,
monacophenyl and monacophenylone, isolated from rice fermented by
M. purpureus [53, 54].

3.3 Citrinin

Production of the mycotoxin citrinin, which is produced by many fungal species,
e.g., Penicillium citrinum, was isolated from Monascus in 1995 [1]. Citrinin is a
yellow colored aromatic polyketide (Structure 2), and gene clusters for its synthesis
were described forM. purpureus [55] andM. aurantiacus [56], although citrinin was
also detected as a product ofM. ruber [43, 57]. The biosynthetic pathway for citrinin
production was originally proposed by Hajjaj (1999) [57], see [8]. Tetraketide is
initially formed from acetyl-CoA and three malonyl-CoAs (this step is catalyzed by
PKS-CT) and then the pathway proceeds with additional steps such as condensation,
methylation, oxidation, reduction, and dehydration, which are all catalyzed by
individual domains of PKS-CT.

Citrinin production in Monascus appears to be independent of pigment produc-
tion [58] although its biosynthesis can be regulated by G-protein signal pathway in
the same way as pigments production [43]. As citrinin has significant nephrotoxic
activity, its production in allMonascus products is undesirable. However, disruption
of selected genes from the citrinin gene cluster can result in lower or no citrinin
production, and in this way it is possible to increase the safety of Monascus-
fermented products [59, 60].

3.4 Other Metabolites

In addition to the above metabolites, dimerumic acid (DMA) and γ-aminobutyric
acid (GABA) were found to be products ofMonascus fermentation (see Structure 3).
DMA is considered to be a breakdown product of the siderophore coprogen B, a
secreted iron-chelating compound [61]. In general, siderophores facilitate iron
absorption by fungi, and their synthesis comes from the nonproteinogenic amino
acid ornithine, catalysed by nonribosomal peptide synthetase [62]. DMAwas found
to increase iron absorption in Aspergillus nidulans [62], and acts as an antioxidant,
which is the reason it contributes to the beneficial health effects of Monascus-
fermented products [63].

GABA is ubiquitously present in fungi, being formed by decarboxylation of
L-glutamic acid, and probably influences sporulation [64, 65]. Human consumption
of GABA is associated with antihypertensive, liver-protective, and tranquilizing
effects.
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4 Biological Activity of Monascus Metabolites

4.1 Monascus Pigments

The predominant Monascus yellow and orange pigments (see Structure 1) are
azaphilones, which can react, more or less readily, in dependence on pH, with
compounds containing amino groups (amino acids, peptides, proteins, and nucleo-
tides). Orange pigments are particularly reactive. These reactions, in which oxygen
in the pyrane ring is exchanged for nitrogen, result in the formation of vinylogous
γ-pyridones [38, 66, 67] and may be responsible for a spectrum of biological
activities.

In red yeast rice, yellow and red pigments are usually detectable while orange
ones can be obtained after submerged liquid cultivation (SLC) under certain condi-
tions (see below). The red rice is considered to be a folk medicine in Asian countries,
being especially effective against indigestion, dysentery, blood circulatory problems,
spleen disfunction, and also externally against skin diseases and muscle bruising.

Antimicrobial activities of orange pigments from SLCwere observed several times
against selected G+ and G� bacteria, yeasts, and fungi [67–70]. Antimicrobial effects
of yellow pigments were similar but weaker compared to orange [67, 69]. Derivatives
of red pigments with different amino acids exhibited antimicrobial activities against
bacteria and fungi [71] and the mechanism of action, as suggested by SEM micro-
photographs, was pigment adsorption onto the cell wall of the microorganisms.
However, in previous tests [67], antimicrobial activity of red pigments was not
observed although this might be explained by differing water solubilities of red
pigment derivatives and the effect might also be dose dependent.

Monascus pigments, as well as whole red yeast rice, were also tested for different
biological activities including antitumor, antiproliferative, anti-inflammatory,

OH

HO

Dimerumic acid, C22H37N4O5, M = 485.56

H
H2

Gamma-aminobutyric acid, C4H9NO2, M = 103.12

HH
H H

Structure 3 Structures of DMA and GABA
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anticholesterolemic, and other effects; for recent reviews see [72–75]. Antitumor
effects were observed in different tests for all types of Monascus pigments. Most
frequently, beneficial effects are attributed to yellow pigments, monascin and
ankaflavin, which exhibit anti-inflammatory effects and are often tested for the
treatment of metabolic syndromes [76–78].

Dried red yeast rice or its extracts were tested for toxicity on mice and rats, in
varying doses (1–5 g.kg�1 of body weight) and for varying times [79–81] with
negative results. The Ames test for mutagenicity was also performed with red rice
but with negative results [80]. Nevertheless, embryotoxicity and teratogenicity of
orange, yellow, and glycine derivatives of red pigments were proven at a dose of
100 μg of extract per chicken embryo [69]. Contrary results may arise through
different test methodologies and especially through different doses of the active
components. Despite this, it seems probable that the use of red yeast rice as a
coloring agent and condiment is without risk provided that the red yeast rice is
citrinin free or contains citrinin in amounts not exceeding allowed limits (see below).

4.2 Monacolin K (Lovastatin, Mevinolin)

Lovastatin, which is of the same structure as monacolin K, was the first compound
from the statin group that was approved in 1987 by the FDA as a cholesterol-
lowering drug. Its mechanism of action consists of competitive inhibition of
HMG-CoA reductase, a key enzyme in cholesterol de novo synthesis in mammals.
Inhibition occurs through structure analogy between an HMG-CoA intermediate and
lovastatin in the form of a β-hydroxy acid (for detailed scheme of inhibition
mechanism, see [52]). The effect of lovastatin to decrease serum cholesterol is
significant within a few days.

As monacolin K can be formed by some Monascus strains, it can be found in red
yeast rice, and as a result it is not only consumed as a prescribed drug but also in the
form of a food supplement. Regular consumption of red yeast rice supplements
containing monacolin K can result in an effect comparable with prescribed drug use
[79, 82–84]. However, there are two significant concerns regarding the consumption
of red yeast rice for medical purposes. The first is possible contamination of the
supplements with the nephrotoxic mycotoxin citrinin, and the second is varying
concentrations of monacolin K (and other monacolins) in the supplements. In
general, production of food supplements is not governed by good manufacturing
practice, a regime ensuring standard product quality during drug production, and
therefore Monascus food supplements cannot be considered as safe as drugs
containing the pure compound. Nevertheless, there are opposing attitudes between
US and European authorities toward Monascus food supplements, and these were
described in the Introduction.

It is also important to note that it may be dangerous to consume prescribed statin
drugs simultaneously with Monascus food supplements because of possible
increased serious side effects associated with statins. These include risks of liver
injury, memory loss, potential for muscle damage, and a risk of diabetes; see FDA
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warning from 2012 [85]. For these reasons, Monascus food supplements should not
be taken without medical supervision.

In addition to anticholesterolemic effects, red yeast rice containing monacolin K
seems to have other beneficial effects on human health, including a slowing of
Alzheimers disease [74], reduction in aortic aneurysms [86], and others. Monacolin
K produced by Monascus can also influence animal health. Impaired digestion was
observed in cattle consumingM. ruber-contaminated silage [87]. In contrast, feeding
hens Monascus-fermented products improved their performance and resulted in
decreased egg cholesterol and an increase in yolk color [88].

4.3 Citrinin

Citrinin can not only be produced by some Monascus strains but also by some
Aspergillus and Penicillium species, and as a result, can be detected in different
foods and feeds, especially kernels, often together with other mycotoxins, ochratoxin
A or patulin. Citrinin consumption affects kidneys and livers of different mammals,
including humans, and seems to be a probable cause of endemic Balkan nephropa-
thy. No mutagenic activity was observed in the Ames test, with or without metabolic
activation, but after preculture of citrinin with hepatocytes, a mutagenic product was
formed from citrinin [89]. This risk of a citrinin genotoxic effect after metabolic
biotransformation has been proven recently [90] and according to EFSA scientific
opinion [91], this phenomenon requires further study because the genotoxic effect of
citrinin is distinct at lower concentrations than nephrotoxicity or acute toxicity.
Because of scientific uncertainty, and because the effect of citrinin is not restricted
to potential kidney damage, EFSA has refused to recommend a general citrinin limit
in food or feed. However, some Asian countries have introduced their own limits:
50 μg/kg, South Korea [92]; or 200 μg/kg, Japan [93]. Despite the EFSA opinion,
according to EU Commission Regulation No.212/2014, an upper limit of citrinin in
red yeast rice food supplements sold in Europe is 2000 μg/kg.

Citrinin also acts against microbial growth of different bacteria (both G+ and G�)
[94, 95]. The antibacterial effect of citrinin against Bacillus subtilis was even chosen
as a selection marker for screening M. purpureus non-citrinin-producing mutants
[96], raising doubts about whether extracts of red yeast rice containing only pig-
ments can really exhibit antimicrobial activity (see Sect. 4.1) or whether this activity
should be attributed to citrinin contamination.

5 Determination of Monascus Secondary Metabolites

Three main groups of compounds, consisting of monacolins, citrinin, and pigments,
are frequently analyzed in Monascus-fermented solid or liquid media. All com-
pounds share some similar physicochemical properties, enabling simultaneous anal-
ysis for most of them. Nevertheless, most published works describe only selected
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metabolites of interest and only exceptionally is a simultaneous analysis of all
Monascus metabolites carried out.

5.1 Extraction of Metabolites from Monascus-Fermented
Substrates

With few exceptions where substances are analyzed directly from solid matrices, the
first step in analysis of Monascus metabolites is extraction into a liquid solvent. As
the secondary metabolites are mostly water insoluble, extraction agents are fre-
quently organic solvents such as methanol, ethanol, acetonitrile, n-hexane, benzene,
etc. Micro emulsion extraction for pigments was also introduced [97]. Various
extraction reagents, their ratios, and differing formats of the extraction process can
lead to different extraction efficiencies for the various Monascus metabolites
[98, 99]. Therefore, the choice of extraction procedure is a critical part of a
successful, sensitive, and reliable analytical quantification. In addition to the signif-
icance of a particular solvent, the presence of water or acid might contribute to
higher recovery rates based on wetting (moisturizing) effects on the extracted
material and disruption of metabolite-sample interactions, respectively
[100–102]. Wu et al. [99] provide a comparative study of the effects of various
solvents, temperatures, and times on the extraction yield of citrinin, lactone and
acidic form of monacolin K, and yellow pigments monascin and ankaflavin.
Monacolins and citrinin were extracted with the highest recoveries using 75 % and
50 % ethanol, yellow pigments using 75 % ethanol or ethyl acetate; however, ethyl
acetate gave poor results for citrinin and monacolin.

Extraction methods such as vortexing, ultrasonication, mixing, and shaking and
sample to solvent ratios, times, and temperatures of extraction all contribute to the
final extraction efficiency [99, 102, 103]. The extraction procedure is routinely
followed by centrifugation and/or extracts filtration prior to analysis.

A huge variety of metabolites of Monascus together with products of side
reactions with substances from the medium yield a large number of chemicals that
are extracted together; effective separation and identification of target compounds is
therefore laborious [104] and some authors have introduced cleanup steps prior to
analysis. Cleanup procedures incorporated into the extraction technology are pre-
dominantly liquid to liquid [105] or solid phase extraction [106]. However, during
cleanup, losses in desired compounds can also occur [102], leading to lower method
sensitivities.

5.2 Citrinin Analysis

Citrinin is water insoluble with a conjugated, planar structure, natural fluorescence,
and UV adsorption that enables its detection by fluorimetric or spectroscopic
methods [100]. Citrinin is acidic with spectral characteristics strongly dependent
on pH and solvents [107, 108]. Only the protonated neutral form of citrinin is
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fluorescent, therefore higher analytical sensitivity can be achieved by lowering the
pH to zero and the use of pure methanol instead of acetonitrile [108]. For citrinin
detection, a broad range of methodologies can be found in the literature, including
surface enhanced Raman spectroscopy – SERS [109], analysis based on an amper-
ometric biosensor [110], a number of various immunoassays, microsphere-based
flow cytometric immunoassay (MFCI) [111], competitive indirect enzyme immuno-
assay [112], a semi-quantitative fluorimetric technique [113], thin layer chromatog-
raphy (TLC) [114], and high performance liquid chromatography (HPLC). For a
survey of detection limits of these techniques, see [91]. The most commonly used
methodology for separation and quantification of citrinin is HPLC, with UV [22] or
fluorimetric detection [98, 102, 103, 115, 116]. HPLC followed by mass spectro-
photometric detection and quantification of citrinin [101, 102, 107, 115, 117, 118] is
also very popular, especially for its direct identification of metabolites and signifi-
cantly lower LOD and LOQ comparing to fluorescence or UV detection
[102]. Although HPLC-MS provides a very sensitive and accurate analytical method
for citrinin analysis, it requires expensive equipment that is not generally available in
most laboratories. Therefore, for routine analysis of citrinin, UV or FL detection is
used, although the sensitivity of UV detection is significantly lower than that of
fluorescence and is insufficient for some applications [101]. On the other hand, UV
detection is more universal across the whole scale of Monascus metabolites.

The preferred system for HPLC separation of citrinin consists of reverse phase
material such as a C18 (octadecyl carbon chain bonded silica – ODS) stationary
phase. The pH and composition of mobile phases are variables that affect binding
interactions and hence the retention time and elution order of citrinin. As a mobile
phase, methanol, water, acetonitrile, and an acidifier are usually used in isocratic or
preferably gradient mode.

5.3 Monacolin K (Monacolins) Analysis

Within the monacolin group, monacolin K is the most well-known and abundant
(75–90 % of total monacolin content) substance [117, 119]. Analysis of monacolins
inMonascus-fermented products is mostly based on HPLC in a similar configuration
as for citrinin except for fluorescence detection, where monacolins can be quantified
and identified by mass spectrometry or by their absorption properties in UV light
[106, 116, 118, 119]. This similarity with citrinin analysis allows simultaneous
assays for citrinin and monacolins [98, 117, 120]. However, the UV detection of
citrinin gives poor LOD and LOQ, hence sequential detection comprising fluores-
cence and UV detectors in series are not unusual [99].

As an alternative to HPLC, micellar electrokinetic capillary chromatography,
providing separation within 2 min followed by DAD detection, was introduced by
Nigovic [121] for monacolin and citrinin.

In the fermentation broth, monacolin K exists in two forms as a lactone or in an
acidic form, having different retention properties and showing as two separate peaks.
An acidic or alkaline environment during extraction of monacolins influences the
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ratio of forms [106, 122] and in addition, extraction with methanol under acidic
conditions can lead to the formation of a methyl ester and the occurrence of a third
separated peak [122]. In reality, many more chromatographic peaks can be linked to
monacolins, because most of the substances originating from Monascus-fermented
products and belonging to the monacolin family, whether in hydroxy acid or lactone
forms, have absorption spectra showing typical “mountain-like” profiles with a
maxima close to 237 nm [123]. Such similar absorption spectra provides insufficient
specificity for proper identification, therefore further identification employing mass
spectrometry is commonly used [98, 119, 122, 123].

In general, HPLC separation of monacolins is carried out on a reverse phase
stationary matrix such as a C18 column with isocratic or gradient elution combining
water, organic solvents, or an acid. Li et al. [123] found methanol-water and
acetonitrile-water elution systems unsatisfactory and suggested increasing symmetry
and resolution by decreasing the pH of the mobile phase. This is usually achieved by
addition of phosphoric acid, acetic acid, trifluoracetic acid, or formic acid at con-
centrations of 0.05–0.1 %.

5.4 Monascus Pigment Analysis

As the name itself suggests,Monascus pigments are substances with specific spectral
properties, whereupon they are generally divided into three groups, yellow, orange,
and red pigments. More than 50 different pigments have already been described
[116] so each group consists of a number of structurally diverse chemicals, which are
often analyzed together by colorimetry or spectrophotometric techniques. Within the
huge number ofMonascus pigments, only six of them predominate (see Structure 1)
and these are most frequently quantified. The degree of yellow color is therefore
ascribed to the presence of monascin and ankaflavin, orange to rubropunctatin and
monascorubrin, and red to rubropunctamine and monascorubramine. UV–VIS spec-
trometry is a traditional and well-established methodology for characterization and
quantification of pigment production by Monascus. Direct absorbance measure-
ments of centrifuged or/and filtered fermentation broths or extracts at particular
wavelengths, namely 410 nm for yellow, 470 for orange, and 510 nm for red
pigments (or 400 nm, 460 nm, and 500 nm) compared with nonfermented extracts
or broths, yield absorbance values as OD (optical density), AU (absorbance units), or
units per ml or g [18, 98, 124, 125]. To reflect the representation of each color
component, a ratio of absorbances at a single wavelength can be used.

Typical features of absorption spectra of all the six pigments are curves with
multiple maxima and valleys with absorption in the UV as well as in the visible
spectra; complete spectra were published, e.g., in refs. [107, 126]. Colorimetry
or/and image analysis enables precise characterization of pigment colors by assess-
ment of lightness and hue angle values for redness, blueness, greenness, and
yellowness. Whereas Monascus pigments are generally used as a food colorant,
such characteristics are used for evaluation of color, stability, and changes
[127, 128].
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Similar to spectrometry, TLC is a common method for pigment analysis. Indi-
vidual spots are clearly visible owing to their color and respective substances are
characterized by their retention factors (Rf). TLC plates for pigment separation are
most frequently coated with silica gel as a solid adsorbent but various combinations
of developing agents have been described. 2D TLC was used by Teng and Feldheim
[126] for a better separation of anka pigments and their nitrogen analogues. In the
first dimension, ankaflavin and monascin were effectively separated by n-hexane:
ethylacetate (7:3, v/v) but red and orange remained close to each other. In a second
dimension n-hexane: acetone (2:1, v/v) was applied to separate monascorubrin and
rubropunctatin from monascorubramine and rubropunctamine.

The review [28] summarizes some applications of HPLC in Monascus pigment
isolation, purification, and analysis. As well as with previous metabolites, the most
common stationary matrix is based on C18 and mobile phases are various combi-
nations of organic solvents and water, in some cases acidified with trifluoracetic acid
or formic acid. Detection is performed mostly by photodiode array detector (PDA) or
refractive index detector (RID).

Advanced technologies such as nuclear magnetic resonance (NMR),
IR-spectroscopy, mass spectrometry, and their combination provide a better insight
into structure and chemical compositions ofMonascus pigments [129–132] and have
enabled characterization of a whole range of newly discovered azaphilones.

5.5 Simultaneous Analysis of Monascus Metabolites

Some efforts have been made to find simultaneous analytical procedures for the most
prevalent metabolites citrinin, monacolins, and yellow, orange, and red pigments.
The experimental arrangement is, however, complicated by different contents of
analytes in natural samples. Wu et al. [99] developed a combined methodology for
citrinin, monacolin K, ankaflavin, and monascin based on synchronous UV and
fluorescence detection and HPLC separation by isocratic elution with a mobile phase
consisting of 0.05 % trifluoracetic acid in acetonitrile:water (62.5:37.5 v/v) on a C18
column with peak identification by mass spectrometry.

6 Cultivation Conditions

6.1 Solid Substrate Cultivation (SSC)

Fungal cultivation on a solid substrate is a classical process to prepare traditional
Monascus-fermented products. SSC mimics the natural habitat of filamentous fungi,
which are cultivated on the surface of concentrated water-insoluble substrates with
low water activity, such as rice. SSC is the original process developed in far eastern
countries to manufacture traditional products such as koji, miso, soybean sauce, or
sake [133]. Originally, red yeast rice was produced in covered bamboo trays placed
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in the fermentation room. Nonglutinous rice was used, and this was agitated by hand
and moistened by addition of water, if necessary [134].

Nowadays, the process of red yeast rice manufacturing consists of several steps.
The rice is washed to remove surface impurities and soaked in fresh water to soften.
Steaming is performed to eliminate interfering microorganisms, then cooling,
followed by blending with the Monascus strain. Cultivation usually lasts for
7 days and rice kernels are incubated in a temperature controlled chamber on rotary
perforated beds for continuous aeration with a ploughing mixer to remove excess
heat and to ensure grain separation. The temperature should be maintained at
30–35 �C until the core of the rice becomes deep red colored. The rice is dried at a
temperature of around 50 �C. Sterilization is carried out to denature anyMonascus in
the food product, followed by grinding to obtain a rice powder, inspection, and
packaging [48, 135, 136].

Monascus cultivation conditions on the solid substrate may vary depending on
the intended use of the final product, i.e., food coloring (red yeast rice), starter
culture (koji), or food supplement [137]. The production of red yeast rice for food
coloring is the most practiced cultivation ofMonascus. The aim is to obtain pigments
that are used as food colorants and food condiments for foodstuffs such as processed
fish, meat, soya products, or sausages, in order to enrich their visual or nutritional
value. As described previously, red yeast rice has various designations depending on
the country in which the fermented product is applied. In China, the product is called
hong qu (Monascus red rice), in Japan Beni-Koji, in the Philippines Ang-Khak, and
in Germany Rotschimmelreis.

Monascus has been grown on many types of solid substrates of different chemical
compositions, such as jackfruit seed, cassava, corn, wheat, hardy yam, adlay, or
breadfruit, while rice kernels remain the most common substrate for the production
ofMonascus-fermented products [76, 118, 138]. During stationary phase of growth,
Monascus produces compounds enhancing the sensory and nutritional value of the
fermented product, such as pigments, organic acids, and esters. The quality and
quantity of these agents are mostly influenced by the following factors: type of solid
substrate, water activity, oxygen access, cultivation temperature, and predominantly
the Monascus strain and any genetic modification [28, 82]. The temperature is
usually set between 25 �C and 30 �C. Water activity (aw) seems to be a critical
parameter for the fermentation process. When aw is high, fungal glucoamylase
activity is elevated, causing a rapid release of glucose from starch and resulting in
the production of ethanol instead of pigments. During production of Monascus-
fermented products, water content should be adjusted to 40–50 % and maintained by
occasional moistening of the substrate to enhance fungal growth. It is also suggested
to initiate the fermentation process at a lower water content (25–30 %) to keep
glucoamylase activity low and to increase pigment yield [139]. In the course of
culturing, it is necessary to ensure oxygen access by rubbing, stirring, or turning the
fermented substrate, because the accumulation of CO2 in the substrate will inhibit
pigment formation [140]. Fermentation of the substrate should proceed in the dark to
obtain the maximum yield of pigments, whereas exposure to white light decreases
yield to a minimum [141, 142].
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Monascus cultivation of cooked kernels or legumes is also utilized for the
production of red koji, functioning as a starter culture. The koji mould-based starter
helps to release hydrolytic enzymes such as amylases, proteases, and lipases which
hydrolyze starches, proteins, or fats into their nutritional precursors glucose, pep-
tides, amino acids, and fatty acids [143]. The decomposition of complex compounds
provides nutrition for yeast and bacterial cultures, which are subsequently used in
further fermentation stages for the production of traditional Asian food products
such as red rice wine, soybean-related food products, Chinese spirits, liqueurs, and
others. The production process takes place in a shallow tray fermenter where
fermentation is carried out for about 3–4 days.

Another use of Monascus cultivation is based on fermentation of cereals such as
rice, millet, or wheat for the production of monacolin K. This agent is used as a food
supplement or functional food to lower blood cholesterol levels, particularly in
humans. The procedure takes place in special fermentation bottles and lasts for
about 20 days; monacolin levels are significantly higher after 3 weeks of fermenta-
tion compared to 2 weeks. Addition of soybean powder, glycerol, sodium nitrate, or
peptone results in higher production [144].

In comparison to liquid submerged cultivation, solid state fermentation has several
advantages. These include issues such as: agricultural or food wastes can be used as
fermentation substrates; a smaller reaction volume is involved, with low capital invest-
ment due to highly concentrated medium; easy technology and low volume of effluent
water; higher product yield and easy product recovery; low risk of contamination by
other microorganisms because of low aw and a complex substrate [133, 145, 146].

6.2 Submerged Liquid Cultivation (SLC)

Secondary metabolite formation is influenced by the composition of the cultivation
medium. An excess of easily utilized substrate, e.g., glucose at a concentration
higher than 30 g.l�1, can result in repression of respiratory metabolism and the
substrate is processed by glycolysis to ethanol [19]. Both pigment and monacolin K
formation are repressed by excess glucose [147]. The nitrogen source, in combina-
tion with initial pH of the cultivation medium, represents key factors that affect
pigment formation, biomass growth, and sporulation (see Fig. 4). Organic nitrogen
sources such as peptone or yeast extract stimulate growth and conidia formation. In a
medium containing organic nitrogen sources, free amino acids are available to react
with orange pigments forming red ones; the reactions are supported by a neutral pH
in the medium [148]. Nitrates limit growth but stimulate ascospores, conidia, and
pigment formation; the pH of the medium increases supporting the production of red
pigments, but amino group-containing reactants in the cultivation medium are
limited. Therefore, the use of nitrates results in a yellow-orange colored cultivation
medium. Use of ammonium ions results in a decreased pH, conidia and ascospore
formations are limited, but pigment biosynthesis is supported. A low pH prevents
nucleophilic addition of oxygen to orange pigments with an amino group, resulting
again in a yellow-orange color [149].
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As the conditions for biomass and secondary metabolite formation differ, tests
were carried out to separate growth from secondary metabolite production, espe-
cially pigment formation, during a two-step cultivation process [150, 151]. Specific
pigment production (per biomass amount) increased when ethanol was used as a
substrate in the second stage of cultivation [150]. A slightly alkaline pH (about 8.5)
in the cultivation medium in this second stage supported the formation of water-
soluble red pigment complexes [151].

Currently, statistical approaches like Plackett-Burman designs or response sur-
face methodologies are often applied in the design of SSC and SLC experiments,
resulting in the optimization of medium composition and culture conditions. These
approaches facilitate the identification of optimal conditions for particularMonascus
strains [152–154], but they are usually strain specific and not optimal for all strains.
As an example, it was found that monacolin K production in M. purpureus MTTC
410 was positively influenced by replacing glucose with maltose, the use of peptone
as a nitrogen source, a cultivation temperature of 28 �C, and a pH of 5 [155].

7 Monascus in Food

7.1 Food Coloring

Traditionally, Monascus fermented red yeast rice is used both as a colorant and as a
condiment because it influences not only color but also flavor of foods. Usually,
a dried powder of the red rice is added directly to selected foods in small amounts or

Fig. 4 Ethanol extracts fromM. purpureus mycelium obtained after 7 days from submerged liquid
cultivation at 30 �C, in media differing in nitrogen source: A peptone, B NaNO3, C yeast extract,
D sodium glutamate, E (NH4)2SO4, F urea
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a red rice ethanol extract can be added. However, the use of Monascus pigments is
limited to pH-neutral and non-heat-processed foods because the pigments can be
degraded at low pH, at higher temperatures, and in full sunlight. Currently, it is
assumed that about 1500 t of red yeast rice is produced in China each year, and these
are used for coloring 20 different kinds of foodstuffs including cheese, fish, meat
products, and beverages [48].

In addition to traditional uses, Monascus pigments were tested for coloring
processed meat products such as sausages or pate [156, 157]. These tests were
conducted with the aim of replacing nitrite salts in meat products with a healthier
alternative. However, nitrite salts are not only added for color but mainly as a
preservative to prevent possible deadly poisoning due to bacterial toxins. Although
the Monascus-colored meat products had an attractive color and smell, it is ques-
tionable whether pigment addition can prevent growth of toxinogenic bacteria such
as Clostridium botulinum. Monascus pigments exhibit antimicrobial activity against
G+ and G� bacteria, even against Staphylococcus aureus [71], but they were not
tested against C. botulinum.

7.2 Monascus Fermented Foods

Monascus can be used as a starter in different food fermentations. In Japan, this type
of microbial starter, which serves both as a source of active microorganisms and
many types of hydrolytic enzymes, is called koji. Koji is a term that was adopted into
the English language and can often be found in professional literature. However, it
should not be forgotten that koji is a generic name and can be used in association
with any microorganism, although mostly it is used in association with Aspergillus
oryzae grown on rice and subsequently for sake production. For Monascus koji, the
correct term is beni-koji; the Chinese equivalent of Japanese koji is qu (hong qu for
Monascus). Monascus can form not only saccharifying enzymes such as α-amylase
and glucoamylase, enabling the breakdown of starch, but also proteases, lipases, and
esterifying enzymes [143, 158]. It is believed that mainly esterifying enzymes
contribute to the final flavor of the products.

Monascus koji or qu can be used for the production of rice wine and rice vinegar.
In China, cereal vinegars have a long tradition of preparation and one of the most
famous vinegars is Fujian Monascus vinegar, which is produced using Monascus
rice qu as a saccharifying and alcohol-forming agent [143]. In subsequent steps
acetic acid bacteria and salt are added and the process continues with ripening, aging,
sterilization, and bottling.

In many Asian countries, fermented tofu is prepared and in some special types of
this fermented tofu (sufu), Monascus can be used. For example, in Japan, Okinawa
Prefecture, fermented tofu called tofuyo is produced [159]. In the preparation of this
product, Bacillus, Aspergillus, and Monascus strains are used. The working proce-
dure for tofuyo consists of preparing dehydrated tofu of the right consistency (not
too hard not too soft), which is inoculated with Bacillus and then soaked with
awamori (indigenous Okinawa distillate from fermented indica long grain rice).
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Red and yellow koji are separately prepared usingMonascus and Aspergillus strains
respectively, and then mixed with salt and awamori. This mixture is used for ripening
awamori-soaked tofu, and as a result, tofuyo, which can be served and directly
consumed at tea time with awamori, is produced. Tofoyo can be considered as a
functional food because it contains compounds that are beneficial for human health,
e.g., peptides inhibiting angiotensin converting enzymes (ACE) or antioxidants
[159, 160].

Monascus can also be used for fermentation of fish, resulting in fish sauces or
pastes. The most famous of these products is probably bagoong, produced in the
Philippines from different kinds of fish or krill. Scientific notes on Monascus fish
fermentations are rare; however, Monascus fermentation of Mackarel mince has
been described, resulting in muscle protein hydrolysis and accumulation of free
amino acids that enhance the flavor of the product [161]. In addition, growth of
contaminating bacteria was inhibited and the product was of an attractive color
[161, 162].

8 Conclusion

Monascus secondary metabolites appear to have great potential, both in medicine
and the food industry. Despite the publication boom over the last 3 years, the fungus
still remains under investigated in comparison with organisms like Penicillium or
Aspergillus, and there are many aspects of its physiology that remain unclear. For
example, why does the fungus produce secondary metabolites? From the point of
view of the fungus, both citrinin and monacolin K might be considered “biological
weapons” that are produced to gain an advantage over other microorganisms living
in the same environment. Citrinin is active against bacteria while monacolin K may
inhibit ergosterol synthesis in fungal cell walls in the same way as it inhibits
cholesterol biosynthesis in mammals. But why does the fungus produce pigments?
Do they play a regulatory role in sexual reproduction and conidiation or do they have
other unknown functions? Hopefully, future investigations will answer these
questions.
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Abstract
Fungi constitute an enormous unexplored pool of protease inhibitors. Only a
handful of fungal protease inhibitors have been exhaustively characterized, but
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they reveal great versatility and many unique features and novel types of inhib-
itory mechanisms. Small molecule and protein inhibitors of all catalytic classes of
proteases have been identified in fungi, those that target serine proteases
predominating. As important regulators of proteases, the function and potential
applications of protease inhibitors are intimately connected with those of pro-
teases they inhibit. In this chapter, both small molecule and protein protease
inhibitors from fungi are described, including their biochemical characteristics,
inhibitory mechanisms, and biological functions together with their potential for
application in the fields of biotechnology, crop protection, and medicine.

Keywords
Peptidase • Protease • Protease inhibitor • Fungi • Regulation • Mycospin •
Mycocypin • E-64

List of Abbreviations
ACE Angiotensin I-converting enzyme
AFLEI Aspergillus flavus elastase inhibitor
AFUEI Aspergillus fumigatus elastase inhibitor
BIR Baculoviral inhibitor of apoptosis protein repeat
CVPI Coriolus versicolor pepsin inhibitor
E-64 L-N-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane
GLPIA2 Ganoderma lucidum proteinase A inhibitor 2
IAP Inhibitor of apoptosis
LeSPI Lentinula edodes serine protease inhibitor
PDB Protein Data Bank
POIA Pleurotus ostreatus proteinase A inhibitor

1 Introduction

Protease inhibitors are important regulators of proteases that fulfill very important
physiological roles in many life and death processes. Since their value is intimately
connected with that of the proteases they inhibit, an overview of proteolytic enzymes
is first provided, together with their classification and relevance.

Proteases occur in all living organisms and are essential for nutrient acquisition
and make growth and proliferation possible. Extracellular proteases hydrolyze pro-
teins into smaller peptides and amino acids that can be absorbed by cells as nutrients,
an indispensable step in nitrogen metabolism, especially for wood-degrading fungi
[1, 2]. Furthermore, they perform important regulatory functions in many biological
processes, including DNA replication, regulation of gene expression, transport of
proteins, the cell cycle, cell growth and differentiation, heat shock response, SOS
response to DNA damage, and responses to oxidative stress, misfolded proteins,
senescence, and programmed cell death. They achieve this by regulating the activity,
localization, and fate of many proteins, modulating protein-protein interactions, and
making significant contributions to the generation, transduction, and amplification of
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molecular signals. Furthermore, in multicellular organisms, proteases carry out
additional critical tasks in the extracellular environment, where they participate in
tissue morphogenesis and remodeling, sexual and asexual reproduction, germina-
tion, hormone signaling, and defense responses against pathogens and parasites
[2–5]. In pathogenic species, proteases also act as virulence factors, since they are
vital for the acquisition of nutrients for growth and proliferation through host tissue
degradation and for evasion of host immune responses [5–7].

Proteases, also called peptidases or proteolytic enzymes, are hydrolytic enzymes
that catalyze the hydrolysis of peptide bonds. Protease is the narrower term,
encompassing peptidases that act on protein substrates. Peptidases that cleave
peptide bonds at the termini of polypeptide chains are termed exopeptidases and
are further classified into those cleaving N-terminal peptide bonds, i.e., aminopep-
tidases, and those that cleave C-terminal peptide bonds, i.e., carboxypeptidases.
Those that act on a single terminal amino acid residue are termed monoamino-
peptidases or monocarboxypeptidases, and those that act on small peptides are
termed dipeptidyl or tripeptidyl exopeptidases. Peptidases that cleave peptide
bonds within the polypeptide chain are termed endopeptidases. The main classifica-
tion of proteases is based on their mechanism of catalysis. According to the
nucleophilic residue that attacks the substrate peptide bond, peptidases are classified
into serine, cysteine, aspartic, glutamic, threonine, and metallopeptidases. In serine,
threonine, and cysteine peptidases, nucleophilic attack is mediated by an oxygen or
sulfur atom of the side chain of the amino acid in the active site (Ser, Thr, Cys). In the
case of metallo-, aspartic, and glutamic peptidases, a water molecule, bound in the
active site, acts as the nucleophile [8]. A seventh class of proteolytic enzymes was
recently described that utilizes asparagine as the nucleophile for peptide bond
cleavage and are not peptidases or hydrolytic enzymes but are termed asparagine
peptide lyases [9]. The International Union of Biochemistry and Molecular Biology
(IUBMB) enzyme nomenclature system (http://www.chem.qmul.ac.uk/iubmb/
enzyme/) classifies peptidases acting on peptide bonds (EC 3.4) based on the
position of the cleaved peptide bond and the catalytic class. For example, EC
3.4.16 are serine-type carboxypeptidases, and EC 3.4.22 are cysteine-type endopep-
tidases. The most comprehensive classification of proteolytic enzymes is in the
MEROPS database (http://merops.sanger.ac.uk) where peptidases are classified
into families based on sequence similarity. Catalytic class is reflected in the family
designation, each family being identified by a letter representing the catalytic class
(A for aspartic, C for cysteine, G for glutamic, M for metallo, N for asparagine, P for
mixed, S for serine, T for threonine, and U for unknown), together with a unique
number. Families are further grouped into clans, based on similarity of 3D structures
and amino acid sequences around the catalytic amino acids as well as by the
arrangement of catalytic residues in the polypeptide chain. There are currently
253 families of proteolytic enzymes grouped into 61 clans in the MEROPS database
(release 9.13; August 2015) [8, 10–12].

Since the hydrolysis of a peptide bond is irreversible, regulation of proteolytic
activity is vital for the balance of life and death processes. Activity of peptidases is
regulated on several levels. A common characteristic of peptidases is that they are
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mostly synthesized as inactive pre-pro-polypeptides, where the pre-sequence repre-
sents a signal peptide and the pro-sequence is an auto-inhibitory pro-domain which
undergoes strictly controlled cleavage to yield an active enzyme. Mechanisms of
peptidase regulation further include regulation of gene expression at transcriptional
and posttranscriptional levels, blockade by endogenous inhibitors, pH or solute
concentrations, spatial and/or temporal compartmentalization by targeting to specific
compartments, posttranslational modification such as glycosylation and phosphory-
lation, cofactor binding, limited proteolysis, S-S bridging, oligomerization, and,
finally, degradation [3, 12].

In this chapter, we describe protease inhibitors that constitute the very important
mechanism of regulation of peptidase activity. Following a general description of
their characteristics, we focus on small molecule and protein protease inhibitors of
fungal origin which are listed according to the peptidase class they inhibit. Finally,
their biological roles and potential applications are outlined.

2 Protease Inhibitors

Protease inhibitors are very important regulators of proteolytic activity. They form a
complex with the target peptidase, preventing cleavage of the substrate peptide bond.
They can be small molecule inhibitors or protein inhibitors that act irreversibly or
reversibly. The latter type can be competitive or noncompetitive relative to the
substrate [12–14].

2.1 Classification

Protease inhibitors can be classified according to their origin (e.g., microbial and
plant protease inhibitors), their inhibitory mechanism (e.g., reversible and irrevers-
ible protease inhibitors), and their structural similarity (e.g., inhibitors with a beta-
trefoil fold). Very often they are classified roughly according to the class of proteases
they inhibit (e.g., serine or aspartic protease inhibitors). They are classified,
according to their specificity, into those that inhibit different classes of proteases,
those that inhibit one class of proteases, one family or a single protease [14,
15]. However, protease inhibitors that target proteases of different catalytic classes
or are composed of multiple inhibitor units restrict unambiguous classification.

The most comprehensive classification of protease inhibitors is included in the
MEROPS database (http://merops.sanger.ac.uk/inhibitors) which follows a hierarchy
similar to that for the classification of proteases. Protein protease inhibitors are
grouped into families based on sequence homology and into clans based on similarity
of 3D structures. There are currently 79 families of protease inhibitors listed in the
MEROPS database (release 9.13; August 2015), those with available structural data
being grouped into 39 clans. Of the 79 families, there are 22 that include members of
fungal origin (Table 1), and, of the latter, three families include protease inhibitors
exclusively of fungal origin (I34, I48, and I85). From a further three families, only
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fungal representatives have been identified at the protein level (I66, I78, and I79). The
astonishing diversity of protease inhibitors of fungal origin is indicated by the fact
that 17 families have been included into 15 clans and another five families have not
yet been assigned to a clan [11, 14, 16]. Families of serine protease inhibitors
predominate, followed by a few families of cysteine and metalloprotease inhibitors.
There is only one family that encompasses aspartic protease inhibitors (I34).

There is no settled classification of small molecule protease inhibitors, but, like
protein protease inhibitors, they can be classified according to their mechanism of
inhibition (reversible or irreversible), according to their specificity (broad-spectrum
class-specific inhibitors or inhibitors specific for one protease), or according to their
structural similarity (e.g., amino acid derivatives or vinyl sulfones). Small molecule
protease inhibitors are produced naturally by microorganisms. Various protease
inhibitors have been isolated from fungi, several from cultures of Actinobacteria
and predominantly from different species of the genus Streptomyces, while many
more have been synthesized and derivatized in vitro. An alphabetical list of small
molecule protease inhibitors is included in the MEROPS database that provides
basic information and references [11].

2.2 Mechanism of Inhibition

Two general mechanisms of protease inhibition are recognized: irreversible, “trap-
ping” reactions and reversible tight-binding reactions.

The irreversible trapping mechanism is specific to proteolytically active endo-
peptidases, since it depends upon cleavage of an internal peptide bond in the
inhibitor molecule that triggers a conformational change. These inhibitors are also
called suicide inhibitors, since their conformation is not reformed. They function as
guardians, protecting cells and tissues from unwanted proteolytic activity. Only three
families utilize this type of irreversible inhibitory mechanism: I4 (serpins), I39 (α2-
macroglobulin), and I50 (viral caspase inhibitors) [14, 17]. Serpins (family I4)
inhibit serine and cysteine proteases that cleave an appropriate peptide bond in the
large reactive center loop. Cleavage triggers a dramatic conformational change, the
N-terminal part of the loop being inserted into a β-sheet of the inhibitor. The enzyme
molecule is carried, attached as an acyl-enzyme intermediate, to the opposite pole of
the inhibitor. Formation of the covalent serpin-protease complex deforms the
enzyme active site and renders the protease inactive [14, 17–19]. Similarly, inhibi-
tors of family I50 form an irreversible complex with the protease after cleavage of a
caspase-sensitive bond in the reactive site loop leading to a conformational change,
stabilizing the acyl-enzyme complex [14]. In another example, the large inhibitor α2-
macroglobulin encloses the protease after it has cleaved a peptide bond in the bait
region. Any catalytic class of protease can be trapped, but without inactivation of the
protease. Access to the active site is prevented for protein substrates, while small
substrates can still be hydrolyzed [14, 17].

Many protease inhibitors utilize the tight-binding, reversible mechanism of
protease inhibition, which involves a high-affinity interaction with the protease
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active site. Reversible protease inhibitors block access to the protease active site by
binding directly to it in a substrate-like manner or, indirectly, around the active site.
The latter can be achieved without influence to the catalytic mechanism (e.g., in the
inhibition of cysteine proteases by cystatins of family I25 or by clitocypin of family
I48). On the other hand, the metalloprotease inhibitors of family I35 (tissue inhib-
itors of metalloproteases) interfere with the catalytic machinery of the protease by
chelating the catalytic metal ion [11, 14, 17, 20]. The mechanism of protease
inhibition by protein protease inhibitors described in most detail is the “standard”
or “Laskowski mechanism.” These inhibitors possess a stabilized loop that mimics
the substrate and binds into the active site. Due to the conformational stability, the
specific peptide bond in the reactive site loop is cleaved but not released from the
active site, remaining in the complex in equilibrium with the intact form of the
inhibitor. The cleavage occurs between the P1 and P1’ residues, and consecutive
residues in the N-terminal direction of the cleaved peptide bond are labeled P2, P3,
and P4, while on the carboxyl side the residues are labeled P2’, P3’, P4’, etc.
Correspondingly, in the protease active site, the residues binding the substrate
(or inhibitor) are termed subsites and labeled S4-S3-S2-S1-S1’-S2’-S3’-S4’
[21]. This “standard” type of mechanism has been conclusively demonstrated only
for serine protease inhibitors. Additionally, some of these inhibitors also bind pro-
teases outside the active site, at sites termed exosites, usually through secondary
binding, which extends the contact surface area between the inhibitor and protease
and influences the affinity and specificity of the interaction. Protease inhibitors of
fungal origin belong to several families that utilize the reversible tight-binding
mechanism of inhibition, including I1, I2, I8, I12, I13, I15, I19, I20, I25, I48, I66,
and I85. Some inhibitors can inhibit different families of proteases, which, in some
inhibitors, is achieved through the same reactive site and by others through different
reactive sites and mechanisms [14, 17, 20, 22].

Small molecule protease inhibitors utilize similar principles for protease inhibi-
tion by competing for the substrate binding site either by direct competition or by
deformation of the protease active site. Their potency is increased through interac-
tion with the catalytic machinery and their specificity through interaction with
substrate binding sites on either side of the active site [11, 17].

3 Small Molecule Protease Inhibitors from Fungi

Most small molecule protease inhibitors show broad inhibitory specificity and
inhibit all proteases of a catalytic class and sometimes even those of different
catalytic classes. For this reason, they are often used in protease inhibitor cocktails.
Many were originally isolated from bacteria belonging to various Streptomyces
species, including bestatin (inhibitor of serine and metalloproteases), pepstatin A
(inhibitor of aspartic proteases), phosphoramidon (inhibitor of metalloproteases),
and leupeptin (inhibitor of cysteine and serine proteases) [12].

Several natural small molecule inhibitors were originally isolated from
fungal species (Fig. 1). The most known and widely used is E-64 (L-N-
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trans-epoxysuccinyl-leucylamido(4-guanidino)butane), an irreversible inhibi-
tor of cysteine proteases from clan CA, that was originally isolated from
Aspergillus japonicus [23]. Irreversible inhibition is achieved by S-alkylation
of the catalytic cysteine, which results in opening of the epoxide ring [11,
24]. Several other cysteine protease inhibitors have been isolated from differ-
ent ascomycete fungi, including kojistatin A from Aspergillus oryzae [25],
paecilopeptin from Paecilomyces carneus [26], prohisin from Cephalosporium
sp. [27], and thysanone from Thysanophora penicilloides [28]. In addition,
many derivatives have been synthesized based on their structures with the aim
of improving selectivity for specific proteases.

A few natural proteasome inhibitors have been isolated from fungi, including
TMC-95 and gliotoxin (Fig. 1). Four diastereomers of TMC-95 were isolated from
the culture broth of a saprophytic ascomycete Apiospora montagnei, and two of

Fig. 1 Structures of small molecule protease inhibitors from fungi. E-64, TMC-95A, gliotoxin,
vibralactone, kynapcin-12, and fumagillin
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them inhibited, noncovalently and selectively, chymotrypsin-like, trypsin-like, and
peptidylglutamyl-peptide-hydrolyzing activities of the 20S proteasome, with IC50
values at low nanomolar levels [29]. Various types of derivatives were subsequently
designed and synthesized in vitro [30–35]. Gliotoxin is an important secondary
metabolite of the epipolythiodioxopiperazine class isolated from the opportunistic
pathogen Aspergillus fumigatus. It shows a range of biological activities, including
antimicrobial, antiviral, antiparasitic, immunosuppressing, and apoptosis inducing.
It inactivates enzymes such as alcohol dehydrogenase, creatine kinase, and farnesyl-
transferase and is an effective noncompetitive inhibitor of the chymotrypsin-like
activity of the 20S proteasome [36–39].

A serine protease inhibitor, vibralactone (Fig. 1), was isolated from cultures of a
basidiomycete Boreostereum vibrans as a lipase inhibitor [40, 41]. This bicyclic
β-lactone inhibits the caseinolytic ClpP protease (family S14), an important viru-
lence factor of Listeria monocytogenes [42]. From fruiting bodies of the basidiomy-
cete Polyozellus multiplex, a serine protease inhibitor specific for prolyl
endopeptidase (family S9), polyozellin, was isolated [43]. Several dibenzofuranyl
derivatives of polyozellin, called kynapcins (Fig. 1), were subsequently isolated
from the same fungus and were also inhibitory to prolyl endopeptidase [44–46].

An irreversible inhibitor specific for methionyl aminopeptidase fumagillin
(Fig. 1) was first isolated from Aspergillus fumigatus [47]. It has been widely used
in apiculture and human medicine to treat fungal infections, and, based on the
specific inhibitory profiles, this inhibitor and its derivatives are considered as
angiogenesis inhibitors in the treatment of cancer [48–50].

4 Protein Protease Inhibitors from Fungi

Very few protein protease inhibitors from fungi have been thoroughly characterized
at the protein level (Table 2). Nevertheless, they exhibit great versatility, many
unique features, and novel inhibitory mechanisms that distinguish them from prote-
ase inhibitors from other sources [12, 51]. Information on characterized protease
inhibitors is provided in this section classified according to the protease catalytic
class they inhibit.

4.1 Serine Protease Inhibitors

Several families of serine protease inhibitors have been identified in fungal genomes
at the genetic level alone (I1, I2, I12, I13, I15, I19, and I20) (Table 1). Not many
serine protease inhibitors have been isolated and characterized, and those with only
limited knowledge of primary structures are not yet included in the MEROPS
database. More thoroughly characterized serine protease inhibitors from fungi are
arranged based on the MEROPS family and described below.

Inhibitory activity against serine proteases trypsin and thrombin (both family S1)
has been detected in crude protein extracts of various species of ascomycetes [125]
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and basidiomycetes [126–128], showing that fungi constitute a rich source of serine
protease inhibitors. Trypsin inhibitors isolated from fruiting bodies of basidiomy-
cetes Abortiporus biennis [109], Pleurotus floridanus [129], Macrolepiota procera,
Armillaria mellea, and Amanita phalloides [108] were partially characterized. With
the exception of that from P. floridanus, they are all heterogeneous small acidic
proteins with molecular masses around 20 kDa and isoelectric points around pH 4.
The molecular mass of the inhibitor from P. floridanus is 38 kDa. They all exhibit
exceptional thermal stability as well as resistance to exposure to extremes of pH
[108, 109, 129]. Similarly, inhibitors of proteinase K (family S8), isolated from the
mycelium of white rot basidiomycete Trametes versicolor, also exhibit high thermal
stability. They are heterogeneous proteins with molecular masses between 14 and
20 kDa and similarly acidic isoelectric points [130].

A peptide antibiotic, plectasin, a fungal defensin isolated from a saprophytic
ascomycete Pseudoplectania nigrella [112], was shown to inhibit the dengue virus
serine protease NS2B-NS3pro (family S7) and, consequently, viral replication
in vitro [113]. Plectasin is synthesized as a 95-amino acid peptide with an
N-terminal signal sequence (1–23), a propeptide (24–55), and a 40-amino acid
mature C-terminal domain (56–95) composed of an α-helix and two β-strands
stabilized by three disulfide bonds (Fig. 2). It shows strong antibacterial activity
against gram-positive bacteria and high thermal and pH stability, as well as resis-
tance to proteolytic digestion by papain (family C1) and pepsin (family A1)
[111–113].

4.1.1 Family I4: Serpins
Serpins (serine protease inhibitors) are the largest and most widely distributed
superfamily of protease inhibitors. They are present in all multicellular organisms
and more sporadically in primitive unicellular eukaryotes and prokaryotes. In
multicellular organisms, they play important roles in many highly regulated physi-
ological processes, including fibrinolysis, blood coagulation, immune responses, and
inflammation; viral serpins are required as virulence factors. Most serpins inhibit
serine proteases (families S1 and S8), some inhibit cysteine proteases (families C1
and C14), and, rarely, some fulfill other non-inhibitory functions. They are suicide
protease inhibitors that utilize a unique and extensive conformational change to
inhibit proteases (described in Sect. 2.2) [131–133].

Only one fungal serpin, from an anaerobic fungus Piromyces sp., has been
characterized to date. Called celpin, it is a component of the cellulosome, the high-
molecular-mass complex specialized in degradation of crystalline cellulose. Celpin
presumably protects the cellulosome from proteolytic degradation by proteinases in
the immediate environment that are secreted by the host’s digestive system, com-
peting microbiota or the plant cell substrate [52]. Celpin contains all features of
functional serpins and, as inferred from deduced amino acid sequence data, a
conserved set of structural features involved in the inhibition process. The serpin
fold consists of three C-terminal β-sheets (A, B, and C), an N-terminal helical
domain composed of eight or nine α-helices (hA-hI), and the reactive center loop
in an exposed conformation above the serpin scaffold. Celpin shares 30 % sequence
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identity and 50 % sequence similarity to vertebrate and bacterial serpins [52, 131, 133].
A serpin was also found to be a cellulosome component in the anaerobic thermophilic
bacteriumClostridium thermocellum. As a broad inhibitor of subtilisin-like proteases, it
probably plays a key role in protecting the cellulosome from protease attack [134].

4.1.2 Family I9: Subtilisin Propeptide-Like Inhibitors
The first member of family I9 was isolated from Saccharomyces cerevisiae as an
endogenous inhibitor IB of peptidase B [55], a subtilisin-like protease (family S8)
now named cerevisin. It was then established that there are two similar inhibitors of
yeast vacuolar proteinase B (cerevisin) in S. cerevisiae, namely, IB1 and IB2, that are
8.5 kDa proteins consisting of 74 amino acids differing only in one amino acid
residue [57–59]. The predominant IB2 inhibitor is not essential for protection of the
cell against unwanted peptidase B activity in the cytoplasm [59]. Like the bacterial
subtilisin BPN’ propeptide, it probably acts as an intramolecular chaperone assisting
folding of the peptidase and, on peptidase activation, is gradually degraded, making
it a temporary inhibitor. The C-terminal region of the protein is critical for the

Fig. 2 Structures of fungal serine protease inhibitors. Ribbon diagrams of plectasin (PDB code
3E7U), POIA1 of family I9 (PDB code 1ITP), IC of family I51 in complex with carboxypeptidase Y
(PDB code 1WPX), cospin of family I66 (PDB code 3N0K), and AFUEI of family I78 (PDB code
3W0E) are shown. Secondary structure is indicated by colors: α-helix in red, β-strand in yellow, and
loop in green; the protease is shown in gray.
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inhibitory interaction with the cognate proteinase [53, 54, 56]. In addition to its
function as a proteinase B inhibitor, IB2 is also a component of a protein complex
with thioredoxin required for effective vacuole inheritance in yeast [60, 61].

Two similar acid- and heat-stable isomeric endogenous inhibitors that specifically
inhibit an intracellular subtilisin-like proteinase A (family S8) were isolated from
fruiting bodies of the oyster mushroom (Pleurotus ostreatus) and designated POIA1
(Fig. 2) and POIA2. Their molecular masses are approximately 8.3 kDa, and they
consist of 76 amino acids differing in only two residues [62]. Like IB2, the
C-terminal region harbors the inhibitory reactive site and also determines the
strength of inhibition and resistance to proteolysis [64]. POIA1 is highly stable as
it is, in contrast to the propeptide of the bacterial subtilisin BPN’, a structured
protein, while folding of the bacterial subtilisin propeptide is induced on binding
to the protease. Stabilization of the POIA1 structure by internal hydrophobic resi-
dues is important for stable protease inhibition [63, 67]. The high structural stability
of POIA1 makes it an effective intramolecular chaperone for the bacterial subtilisin
BPN’ [65, 66].

4.1.3 Family I51: Carboxypeptidase Y Inhibitors
Family I51 includes inhibitors of carboxypeptidase Y that belong to the
phosphatidylethanolamine-binding protein (PEBP) family. The first representative
was isolated from yeast S. cerevisiae. It is a cytoplasmic N-acetylated small protein
(24.4 kDa) with isoelectric point of pH 6.6 that specifically inhibits endogenous
vacuolar carboxypeptidase Y (family S10). The N-terminal acetyl group is essential
for protease inhibition [70, 75, 135, 136]. The inhibitor IC binds to carboxypeptidase
Y through multiple binding sites, and the N-terminal acetyl group binds to the active
site, resulting in complete inhibition of the protease. A secondary binding site
contributes to the tight and stable inhibitor-protease interaction. The IC protein
consists of a major β-type domain and an N-terminal helical segment, both binding
sites being located on the latter (Fig. 2). A novel type of “tight-binding” inhibitory
mechanism and mode of interaction was revealed by solving the structure of IC

inhibitor in complex with carboxypeptidase Y. In contrast to the standard mecha-
nism, the inhibitor binds, in a non-substrate-like manner, through a posttransla-
tionally modified N-terminal. Additional binding at an exosite strengthens the
interaction. In addition to the binding sites for carboxypeptidase Y, IC possesses a
ligand-binding site corresponding to the binding site for the phosphate group of
phospholipid in phosphatidylethanolamine-binding proteins. The phospholipid
probably binds via both the ligand-binding site and the secondary protease-binding
site [74, 76].

A dual role was indicated for IC by high-affinity binding to membranes containing
anionic phospholipids (e.g., phosphatidylserine) and by highly specific inhibitory
activity against the vacuolar carboxypeptidase Y. Determination of its protein-
binding partners suggested that IC acts as a bridge between cell signaling, through
GTPase regulation, and intermediate metabolism in yeast. It is localized in the
cytoplasm during logarithmic growth phase and is translocated to the vacuole in
the stationary phase. Its transcription is elevated in the stationary growth phase and
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in response to environmental stress, including oxidative stress and heat shock [68,
69, 71–73].

4.1.4 Family I66: Mycospins
Trypsin-specific inhibitors – LeSPI from Lentinula edodes [81], cnispin from
Clitocybe nebularis [79], and cospin from Coprinopsis cinerea [78] – were isolated
from fungal fruiting bodies and constitute the MEROPS family I66. These fungal
serine protease inhibitors are collectively called mycospins. They are small proteins
(�16 kDa) with isoelectric points around pH 5; they resist exposure to extreme pH
conditions. They are all very strong and specific inhibitors of the trypsin (family S1),
while their inhibition of chymotrypsin (family S1) is weaker; other serine proteases
are not inhibited [78, 79, 81]. The crystal structure of cospin revealed the β-trefoil
fold of family I66 (Fig. 2), and classification to clan IC, together with Kunitz
protease inhibitors from plants (family I3) and mycocypins (families I48 and I85),
has been proposed [20, 78]. The β-trefoil fold is composed of 12 β-strands that form
three structurally similar repeats (α, β, and γ) folded together in pseudo-3-fold
symmetry. The β-strands are connected with 11 loops of differing length and residue
composition. Mycospins show a surprising plasticity of utilization of the loops, since
different loops are recruited for trypsin inhibition in cnispin (β11-β12) and cospin
(β2-β3). Moreover, most serine protease inhibitors from plants with the β-trefoil fold
utilize the β4-5β loop for inhibition of trypsin or chymotrypsin, depending on the P1
residue. Arg or Lys as P1 residues confer trypsin specificity, while chymotrypsin
inhibitors generally employ a Phe, Tyr, or Leu as P1 residue. Nevertheless, they are
all tight-binding inhibitors that inhibit trypsin (and other S1 family proteases)
through the binding loop that binds to the protease active site in a substrate-like
manner. The very low dissociation constants generate a stable enzyme-inhibitor
complex. The conformation of the binding loop depends on stabilization by a
hydrogen bond network of scaffolding residues, which also accounts for the lon-
gevity of the complex. The β2-β3 loop of cospin is better optimized for trypsin
inhibition, the complex persisting in vitro for over a month at 37�C, while cnispin is
degraded within 24 h. Nevertheless, the loops β2-β3 and β11-β12 of both cnispin and
cospin can be recruited for trypsin and/or chymotrypsin inhibition, depending on the
introduced P1 residues [20, 77].

A dual biological role has been proposed for cnispin and cospin in defense against
predators and parasites and in regulation of endogenous serine proteases involved in
fruiting body development and/or resource recycling [78–80]. Cnispin and cospin
are expressed abundantly in fruiting bodies, while expression is lower in vegetative
mycelium. Strong and highly specific inhibition of trypsin, strong entomotoxicity
against Drosophila melanogaster mediated by protease inhibition, and absence of
trypsin-like protease genes in many saprophytic fungal genomes suggest that,
in vivo, mycospins are directed mainly toward exogenous proteases, supporting a
defensive activity for mycospins as their primary biological role. Mycospins are
widely distributed in the subphylum Agaricomycotina of Basidiomycota that com-
prises most mushroom-forming fungi [78, 79, 137].
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4.1.5 Family I78: Aspergillus Elastase Inhibitors
Inhibitors of the serine protease elastase (family S1) have been identified in several
strains of Aspergillus flavus and Aspergillus fumigatus but none in Aspergillus niger
[85]. Isolation of elastase inhibitors from A. flavus (AFLEI) and A. fumigatus
(AFUEI) showed them to be identical, non-glycosylated proteins composed of
68 amino acids with molecular mass of 7.5 kDa and isoelectric point pH 7.4. They
are both strong inhibitors of elastases from A. fumigatus and A. flavus, and they
inhibit human leukocyte elastase, but not porcine pancreas elastase [82, 84,
86]. AFUEI is a wedge-shaped protein composed of an extended binding loop
containing a β-strand and a scaffold protein core containing two α-helices and a
β-sheet (Fig. 2). Structural similarity to the potato I family (MEROPS family I13)
enabled modeling of the inhibitory mechanism and identified family I78 as a
probable member of clan IG. The binding loop region shows much higher sequence
similarity (56 % sequence identity) than the core region (12 % sequence identity),
indicating that the mechanism of inhibition is similar in both families. The disulfide
bond between the α-helix and the β-strand in the core scaffold contributes signifi-
cantly to the inhibitory activity, since it makes the inhibitor more compact and rigid
than potato I family inhibitors. Furthermore, the hydrogen bond network that
stabilizes the binding loop in its correct orientation enables the tight-binding mech-
anism of inhibition, in this case also called the clogged gutter mechanism. Determi-
nation of the P1 residue to be Met45 indicated that chymotrypsin-like, but not
trypsin-like, proteases will be inhibited by AFUEI, which was confirmed experi-
mentally [87]. Both inhibitors are secreted showing their highest levels at 4–7-day-
old culture. The same Aspergillus strains also secrete elastases, which represent
important virulence factors of aspergillosis [84–86].

A smaller elastase inhibitor, asnidin, with a molecular mass of 4.2 kDa, was isolated
from Aspergillus nidulans. It resists heat treatment and displays stability over a wide
pH range. Like AFLEI and AFUEI, asnidin strongly inhibits A. fumigatus and
A. flavus elastases and human leukocyte elastase but not chymotrypsin [138].

4.2 Cysteine Protease Inhibitors

Inhibitors of cysteine proteases are apparently less widely distributed in fungi than
serine protease inhibitors. Only a few families have been identified, of which family
I25 (cystatins) and I71 (falstatins) were identified at the genomic level only.

Cysteine protease inhibitor Pit2, specific for a set of plant apoplastic cysteine
proteases, was identified in the plant pathogenic basidiomycete Ustilago maydis.
These proteases are crucial components of defense activation in maize, and Pit2 was
shown to be essential for fungal virulence. Sequence similarity with orthologs in the
related smut species Sporisorium reilianum and Ustilago hordei revealed a con-
served 14-amino acid-long motif that comprises the inhibitory reactive site that, by
itself, also inhibits cysteine proteases. Flanking regions around the central inhibitory
motif (amino acids 44–57) of the 118-amino acid-long protein confer specificity for
selected cysteine proteases [139].
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There are only three MEROPS families comprising fungal cysteine protease inhib-
itors (I48, I79, and I85) that have been identified at the protein level. They are
described below. Fungal homologs of survivins or BIR-domain proteins, which belong
to family I32 of caspase (family C14) inhibitors, do not function as protease inhibitors
but are essential for equal chromosome segregation and cytokinesis and act indirectly
as inhibitors of apoptosis-like cell death in yeast. Unlike mammalian inhibitor-of-
apoptosis proteins (IAPs) that utilize BIR domain for direct inhibition of caspases,
thereby inhibiting apoptosis, yeast homolog Bir1p in S. cerevisiae does not interact
with the yeast caspase but nevertheless exhibits antiapoptotic activity [140–142].

4.2.1 Families I48 and I85: Mycocypins
Mycocypins, fungal inhibitors of cysteine proteases, comprise two MEROPS fam-
ilies that include clitocypin isolated from fruiting bodies of Clitocybe nebularis
(family I48) and macrocypins isolated from fruiting bodies ofMacrolepiota procera
(family I85). Mycocypins are small proteins with molecular masses of 16–19 kDa
and isoelectric points around pH 4.8. They exhibit resistance to exposure to high
temperatures and extreme pH, this apparent stability being mediated by their ability
to unfold reversibly. They are inhibitors of papain-like cysteine proteases (family
C1) of animal and plant origin. They very strongly inhibit papain and human
cysteine cathepsins L, V, K, and S with endopeptidase activities, while cathepsins
B and H, which exhibit both endopeptidase and exopeptidase activities, are not or
weakly inhibited by mycocypins. Through a second inhibitory reactive site,
clitocypin and macrocypins 1 and 3 also inhibit legumain/asparaginyl endopeptidase
(family C13), and macrocypin 4 inhibits trypsin (family S1) [88, 89, 93]. The crystal
structures of clitocypin and macrocypin 1 show the β-trefoil fold of both mycocypin
families (Fig. 3), allocating them to clan IC, together with Kunitz serine protease
inhibitors from plants (family I3). Structural and mutagenesis studies showed a

Fig. 3 Structures of fungal cysteine protease inhibitors. Ribbon diagrams of family I48 clitocypin
in complex with cathepsin V (PDB code 3H6S) and family I85 macrocypin 1 (PDB code 3H6Q) are
shown. The secondary structure of the protease inhibitors is indicated by colors: α-helix in red,
β-strand in yellow, and loop in green; the protease is shown in gray.
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unique tight-binding mechanism of inhibition of papain-like cysteine proteases by
mycocypins. The two loops (β1-β2 and β3-β4) bind either side of the protease active
site, thereby occluding the catalytic cysteine in the middle and preventing approach
of substrate. In addition, a peptide bond flip between two conserved Gly residues in
clitocypin enables direct contact with the cysteine in the active site. The interaction is
stabilized by several hydrogen bonds formed directly between the inhibitor and
protease surface residues or mediated through solvent molecules [20, 92]. For
inhibition of legumain/asparaginyl endopeptidase (family C13) or trypsin (family
S1) by the second inhibitory reactive site in loop β5-β6, the tight-binding mechanism
of inhibition has been proposed, the inhibitor binding to the protease active site in a
substrate-like manner. Clitocypin and macrocypins 1 and 3 inhibit legumain by the
β5-β6 loop with the conserved Asn residue. Replacement of the P1 Asn residue with
Lys in macrocypin 4 turned the legumain inhibitor into a trypsin inhibitor [20, 92]. In
addition to the suitable P1 residue, the loop conformation also appears to be
important, as engineering a trypsin inhibitor by simple P1 residue replacement
(N70K) did not turn clitocypin from a legumain to a trypsin inhibitor [92].

Mycocypins exhibit great genetic diversity and are encoded by gene families in
both fungal species. Very high sequence variability is observed for the macrocypin
family in M. procera, where macrocypin sequences have been grouped into five
groups (macrocypins 1–5) with 75–86 % sequence identity between groups and
more than 90 % sequence identity within groups. Despite very similar biochemical
properties, macrocypins show very low sequence identity with clitocypin – between
17 % and 21 % [89, 90, 93]. The variability is also reflected in regulation of
expression as clitocypin is at the protein level uniformly expressed in the fungal
fruiting body and in vegetative mycelium, and the protein is not secreted. On the
other hand, studies of the regulation of macrocypin expression have revealed tissue-
specific expression during fruiting body development in the model mushroom
C. cinerea. Expression patterns at the promoter level in this mushroom were
congruent with that in the origin mushroom at the protein level but not at the
mRNA level. Differences in spatial and temporal expression regulation indicate
different developmental or defensive roles for individual mycocypins. A primarily
defensive function against various fungal antagonists was proposed for mycocypins
in which they would target exogenous proteases including mycoviral proteases or
digestive proteases of nematodes, insects, mites, and slugs [89–91, 93,
137]. Clitocypin-encoding genes were identified in a few other mushroom species
belonging to subphylum Agaricomycotina of Basidiomycota, and there was no
similarity found to macrocypin sequences. Either these protease inhibitors are not
widespread or their sequence diversity hinders identification of proteins with similar
biochemical functions [137].

4.2.2 Family I79: Avr2
Avr2 protein constitutes the I79 family of cysteine protease inhibitors. It is a small,
cysteine-rich protein that is secreted into the tomato apoplast by the phytopathogenic
ascomycete Cladosporium fulvum (syn. Passalora fulva) during the infection that
leads to leaf mold of tomato. The mature protein consists of 58 amino acid residues,
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eight of which are cysteines that form four disulfide bonds and are important for its
stability [11, 97, 143]. Avr2 is an important virulence factor of C. fulvum and inhibits
a set of papain-like cysteine proteases (family C1) that constitute the essential basal
host defense. Several cysteine proteases are secreted into the apoplast by the host,
but Avr2 selectively targets cysteine proteases PIP1 and RCR3, while others are only
weakly (TDI-65, aleurain, glycinain) or not (cathepsin B) inhibited. The mechanism
of inhibition is unknown, but physical interaction and inhibition of proteolytic
activity are established, and binding outside the protease active site was proposed
[94–97]. A similar approach of apoplast cysteine protease inhibition is employed by
the non-fungal distant relative phytopathogenic oomycete Phytophtora infestans,
with the modification that two cystatin-like cysteine protease inhibitors (family I25)
are employed [143–145].

4.3 Metalloprotease Inhibitors

In the MEROPS database, only members of families of metalloprotease inhibitors
that have been identified as homologs in a few ascomycete genomes are listed. They
include families I8, I63, and I87 (Table 1). In addition, metalloprotease inhibitory
activity against different matrix metalloproteinases (family M10), collagenase (fam-
ily M9), and thermolysin (family M4) has been detected in extracts of fungal fruiting
bodies and in mycelia from wood-degrading fungi prepared in organic solvents or
buffers. Inhibitory substances were, however, not isolated [146, 147].

Specific inhibition of thermolysin family metalloproteinases (family M4) from
Aspergillus fumigatus by the cognate propeptide has been demonstrated. The
propeptide did not however inhibit Aspergillus flavus metalloproteinase. The endog-
enous regulatory role of protease inhibitors in keeping extracellular enzymes inac-
tive until secretion consists of inhibiting mature enzymes by their respective
propeptides [148].

Several angiotensin I-converting enzyme (ACE, family M2) inhibitors have been
isolated from mushrooms. ACE is a dipeptidyl carboxypeptidase playing a crucial
role in the renin-angiotensin system for blood pressure control. Its fungal inhibitors
are mostly peptides ranging from di- to tripeptides isolated from fruiting bodies of
Tricholoma giganteum [119] and Ganoderma lingzhi [121] and from penta- and
hexa-peptides from Grifola frondosa [114], Pholiota adiposa [149], Agaricus
bisporus [150], and Pleurotus cystidiosus [118] to longer oligopeptides with molec-
ular masses ranging from 560 to 2040 Da from Grifola frondosa [120], Pleurotus
cornucopiae [116], and Hypsizygus marmoreus [117]. These are mostly competitive
ACE inhibitors that bind to the protease active site. Proteins with ACE inhibitory
activity have also been isolated from water extracts of Ganoderma lucidum mycelia
[151] and Leucopaxillus tricolor fruiting bodies [115], although their mechanism of
action has not been elucidated. Isolation and characterization of ACE inhibitors from
edible mushrooms are driven by their potential use as nutraceutical bioactive com-
pounds for antihypertension effects.
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4.4 Aspartic Protease Inhibitors

Only a few aspartic protease inhibitors have been identified in fungi, and only one
family (family I34) of aspartic protease inhibitors with fungal members is included
in the MEROPS database [11].

An aspartic protease inhibitor GLPIA2 was isolated from submerged fermenta-
tion of Ganoderma lucidum. The 15 kDa inhibitor inhibited saccharopepsin, also
named yeast proteinase A, and pepsin (both family A1) [122].

A secreted pepsin inhibitor CVPI was isolated from cultured basidiomycete
Coriolus versicolor (syn. Trametes versicolor). It is a monomeric inhibitor with a
molecular mass of 23 kDa which exhibits high thermal and pH stability. It is a
reversible inhibitor of pepsin, but the mechanism of action is not known [123].

An oligopeptide inhibitor of fungal aspartic protease PepA was isolated from
the culture of Penicillium sp. It is a competitive tight-binding inhibitor with a
molecular mass of 1585 Da that binds to the protease active site. Its expression is
associated with fungal growth and exhibits antifungal activity against Aspergillus
fumigatus and Aspergillus niger by inhibiting mycelial growth and spore
germination [124].

4.4.1 Family I34: Saccharopepsin Inhibitor IA3
Inhibitor IA3 or saccharopepsin inhibitor from Saccharomyces cerevisiae is the only
member of family I34 and is a highly specific endogenous inhibitor of the vacuolar
aspartic protease saccharopepsin or yeast proteinase A (family A1). It is a compet-
itive inhibitor with molecular mass 7.6 kDa consisting of 68 amino acids. Inhibition
of the cognate protease is most effective at the yeast intracellular pH of around 6.5,
while at pH 3, the pH optimum for saccharopepsin activity, only partial inhibition
occurs. This, together with the high selectivity and specificity and its cytoplasmic
localization, indicates a probable role in protection against unwanted proteolysis by
vacuolar proteinase A leaked into the cytoplasm [55, 98, 101, 105, 107].

Structural studies have shown a unique mechanism of inhibition of
saccharopepsin by IA3 inhibitor. The 68-amino acid protein is unstructured in
solution. Upon contact with saccharopepsin, the N-terminal half of the molecule,
namely, residues 2–32, adopts an amphipathic α-helix conformation that completely
covers the active site cleft (Fig. 4). The 36 residues of the C-terminal half of the
molecule remain unstructured [99, 102, 103]. The exclusive selectivity for
saccharopepsin inhibition and its induced folding has been explained in terms of a
few key residues strategically positioned in the inhibitor and enzyme molecules.
Numerous interactions and an extensive hydrogen bond network along the whole
length of the helix keep the inhibitor tightly bound and prevent access of substrates
to the active site. This unique interaction presents a valuable tool for studies of
protein folding, enzyme-inhibitor interactions, and aspartic protease inhibitor design
[102–104, 106, 152].
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5 Biological Functions of Fungal Protease Inhibitors

The biological function of a protease inhibitor is intimately connected with that of
the protease it inhibits. In general, these proteases are either endogenous or
exogenous.

For endogenous proteases, protease inhibitors act either as guardians and protect
from unwanted proteolysis by misplaced proteases that have escaped other regula-
tory mechanisms or as chaperones that assist the folding of proteases. Examples of
fungal protease inhibitors acting as chaperones are family I9 protease inhibitors,
including the IB2 inhibitor of cerevisin from S. cerevisiae and the POIA1 inhibitor of
the subtilisin-like proteinase A from P. ostreatus. Examples of guarding protease
inhibitors in fungi that protect from unwanted proteolysis are the family I34 inhibitor
IA3 specific for S. cerevisiae vacuolar saccharopepsin and the family I4 inhibitors
serpins, with the single fungal representative celpin from Piromyces sp. Proteases
targeted by celpin are probably both endogenous and exogenous.

Inhibitors of exogenous proteases act either as defense molecules, protecting the
source organism from proteases of parasites, pathogens, and predators, or as viru-
lence factors, enabling evasion of host immune responses and effective invasion of
host tissues. Examples of defense protease inhibitors include the serine and cysteine
protease inhibitors abundant in fungal fruiting bodies from families I66 (cnispin

Fig. 4 Structure of yeast aspartic proteinase A inhibitor IA3 in complex with saccharopepsin (PDB
code 1DPJ). The inhibitor’s α-helix is shown in red and the protease in gray.
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from C. nebularis and cospin from C. cinerea), I48 (clitocypin from C. nebularis),
and I85 (macrocypins from M. procera) that mainly target exogenous proteases. In
some plant pathogenic fungi, protease inhibitors are important virulence factors,
including, for example, cysteine protease inhibitor Pit2 from U. maydis (unclassi-
fied) and Avr2 from C. fulvum (family I79).

6 Potential Applications of Fungal Protease Inhibitors

Protease inhibitors have found numerous applications in the fields of biotechnology,
agriculture, and medicine [12]. Like their biological function, potential applications
of protease inhibitors are intimately connected with their target proteases. They can
be used to control deregulated proteolytic activity in various diseases, to control
important microbial virulence factors, to inhibit digestive proteases of predators and
parasites, or to inhibit viral proteases to prevent viral polyprotein processing in the
fields of medicine and agriculture. They are invaluable tools in the fields of biotech-
nology and life sciences research.

6.1 Applications in Biotechnology

Fungal protease inhibitors are valuable research tools, and small molecule protease
inhibitors are routinely used as buffer additives for preparation of protein extracts of
cells or tissues to prevent proteolytic degradation during downstream analytical or
purification procedures. Of the fungal small molecule inhibitors, broad-spectrum
cysteine protease inhibitor E-64 is commonly included in protease inhibitor
cocktails [12].

Protease inhibitors that act as intramolecular chaperones can be coexpressed as
fusion partners to aid with proper protease folding in addition to protection of the
recombinant protein during expression and purification processes. An example is the
POIA1 serine protease inhibitor from P. ostreatus (family I9) that enables proper
refolding of the fused subtilisin protease from inclusion bodies in a bacterial
expression system [66].

Reversible protease inhibitors can be used as ligands in affinity chromatography
for isolating various proteases. Based on the target protease to be purified, broad-
spectrum or very specific protease inhibitors can be selected for immobilization to
the solid support; however, the strength of inhibition must be considered as very
weak (ineffective binding) or very strong (ineffective elution) binding that prevents
effective protease purification. Advantages of using fungal protease inhibitors
include (i) unique inhibitory profiles that differ from those of protease inhibitors
from microbial, plant, or animal sources, (ii) resistance to proteolytic degradation,
and (iii) stability on exposure to extreme thermal and pH conditions that may be used
for effective immobilization to the solid support and for allowing several cycles of
elution steps, which usually include extreme changes in pH and/or ionic strength,
without losing their inhibitory activity. Fungal serine protease inhibitor cnispin

874 J. Sabotič and J. Kos



(family I66) and cysteine protease inhibitor macrocypin 1 (family I85) have been
used as ligands in affinity chromatography for isolation of proteases from various
sources [153].

6.2 Applications in Crop Protection

Herbivorous crop pests such as insects, slugs, and mites depend on effective food
protein digestion for normal growth and development. Different proteolytic classes
predominate in digestion for different groups of organisms; e.g., in beetles and mites,
cysteine digestive proteases predominate, while in flies, serine digestive proteases
are dominant. Furthermore, for many phytopathogenic bacteria, fungal and virus
proteases are essential virulence factors, enabling evasion of host defenses and
invasion of tissues. Endogenous protease inhibitors in plants thus constitute an
important plant defense strategy against herbivorous, parasitic, and pathogenic
organisms [154–156]. Since there is a strong selection pressure to evade plant
defenses, pests develop resistance to endogenous plant protease inhibitors [157,
158]. The search for novel protease inhibitors with potential protective function is
thus integral to continuous development of environmentally friendly pest
management.

Protease inhibitors from fungi display unique characteristics that distinguish them
from their plant counterparts and offer several advantages for their potential use as
biopesticides. They are exceptionally stable proteins, resisting exposure to extreme
temperature and pH conditions and to proteolytic degradation. Further, they could
confer a more durable resistance than plant counterparts, since plant pests have not
coevolved with these substances, so they are less likely to possess mechanisms for
adaptation to fungal proteins. Moreover, protease inhibitors originating from fungi
that are generally recognized as safe or from edible mushrooms are more readily
acceptable for use in crops intended for human consumption. Finally, their protein
nature makes them incapable of accumulating in soil or organisms and therefore
convenient for biopesticide usage.

Fungal cysteine protease inhibitors mycocypins (families I48 and I85) display
entomotoxic effects against the major potato pest Colorado potato beetle. Clitocypin
and macrocypins exhibit antinutritional effects that affect growth and development
of Colorado potato beetle larvae when applied to the diet as recombinant proteins
heterologously expressed in Escherichia coli or as transgenes expressed in potato.
The underlying mode of action is inhibition of a specific set of digestive cysteine
proteases, intestains. Moreover, no changes in transcription levels of known
adaptation-related digestive enzymes have been observed in larval guts, as is regu-
larly observed for other dietary cysteine protease inhibitors from various sources
[159, 160].

In addition to dealing with herbivorous pests, protease inhibitors offer concurrent
protection against viral, bacterial, and fungal pathogens as well as parasitic nema-
todes. In the latter, digestive proteases are targeted, and for other pathogens, pro-
teases that constitute important virulence factors are targeted. They are secreted by
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fungal and bacterial pathogens to aid in host tissue invasion or manipulation of
defense signaling, and, for viral pathogens, proteases are essential for polyprotein
processing and replication [12, 155].

In addition to biotic stress, protease inhibitors can provide protection against
abiotic stress. Proteases are implicated in plant responses to abiotic stresses involv-
ing a dehydration component including drought, freezing, and increased salt con-
centration to help reduce protein aggregation, degradation, and extensive changes in
metabolism [12, 161, 162]. Fungal protease inhibitors have not yet been considered
for this purpose.

6.3 Applications in Human and Veterinary Medicine

Proteases play essential metabolic and regulatory roles in many biological pro-
cesses, and their deregulation often leads to disease. Protease inhibitors are
extensively studied as promising therapeutic drugs for many different types of
diseases targeting a variety of deregulated proteases, including viral polyprotein
processing proteases; secreted bacterial, fungal, and parasite proteases that enable
a pathogen’s colonization of host tissues and evasion of host defenses; and those
involved in cancer, autoimmune, neurodegenerative, inflammatory, and cardio-
vascular diseases. However, since disease-associated proteases are similar to
those involved in normal physiological processes, unselective protease inhibitors
could cause severe side effects in treated patients. Therefore, high selectivity and
specificity are paramount for a clinically suitable therapeutic protease inhibitor
[12, 163–167].

Elastase inhibitors isolated from Aspergillus species (family I78, Sect. 4.1.5) have
been evaluated as antifungal agents for the prevention and treatment of aspergillosis
by inhibiting Aspergillus elastases that are the major pathogenic factors involved in
degradation of lung tissue. The inhibitor AFLEI has been shown to inhibit patho-
logical changes in rat lung tissue caused by Aspergillus elastase, including bleeding,
inflammatory cell infiltration, and effusion of fibrin-like substance [83].

Epoxysuccinyl peptide E-64 and its synthetic derivatives have been studied as
protective agents in cancer, autoimmune, neurodegenerative, cardiovascular dis-
eases, osteoporosis, muscular dystrophy, diabetes, and others. Derivatives designed
to selectively target specific cysteine proteases have been shown to reduce tumor
growth, invasion, and angiogenesis of many cancer types [12].

Proteasome inhibitors have been evaluated as anticancer agents due to their
preferential antiproliferative and proapoptotic activity on cancer cells
[168–170]. Structurally different proteasome inhibitors have been isolated from
fungi (Sect. 3).

Several peptide and protein inhibitors of the metalloprotease angiotensin
I-converting enzyme have been identified in fungi (Sect. 4.3), and several showed
antihypertensive effect in spontaneously hypertensive rats, indicating their potential
value as hypertension therapeutics [115–117, 119].
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7 Conclusions

Fungi constitute a largely unexplored source of both small molecule and protein
protease inhibitors. Those identified so far have unique structures and new types of
inhibitory mechanisms, broadening our understanding of enzyme-inhibitor interac-
tions. Their incredible natural diversity, together with considerable possibilities for
optimizing additional specificity through derivatization or mutagenesis, provides an
impressive starting point for the development of protease inhibitors tailored to many
different applications in medicine, agriculture, and biotechnology.
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Abstract
Ergot alkaloids are indole derivatives produced by a wide range of fungi, being
considered medically important because of their significant effect on the central
nervous system of mammals, due to their structural similarity to neurotransmit-
ters. They are also considered mycotoxins due to the severe toxic effects of ergot-
contaminated grains on human and animal health. This chapter summarizes
different aspects of ergot alkaloids concerning their chemistry, biosynthesis,
and bioactivity, discussing the pharmacological activity as well as some important
aspects related to their toxicity, occurrence, and regulations. Finally, an overview
of analytical methods for the determination of ergot alkaloids is included,
whereby high-performance liquid chromatography coupled to fluorescence or
mass spectrometer detection are the most widely used methods, although other
techniques such as capillary electrophoresis or immunoassays have also been
reported.

Keywords
Ergot alkaloids • Ergot alkaloid chemistry • Fungi • Biosynthesis • Pharmaceu-
tical properties • Toxicology • Mycotoxins • LC–MS analysis

List of Abbreviations
5-HT 5-Hydroxytryptamine
AA Amino acid
AdoMet Adenosylmethionine
APCI Atmospheric pressure chemical ionization
APPI Atmospheric pressure photoionization
ARfD Acute reference dose
BGE Background electrolyte
CE Capillary electrophoresis
CMC Critical micellar concentration
CONTAM Panel Panel on Contaminants in the Food Chain
CPE Cloud point extraction
CZE Capillary zone electrophoresis
DMA Dimethylallyl
DMAPP Dimethylallyl diphosphate
DMAT Dimethylallyltryptophan
DMATS Dimethylallyltryptophan synthase
d-SPE Dispersive solid phase extraction
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EA Ergot alkaloid
EC European Commission
EFSA European Food Safety Authority
ELISA Enzyme-linked immunosorbent assay
ESI Electrospray ionization
EU European Union
FAD Flavin adenine dinucleotide
FLD Fluorescence detection
GC Gas chromatography
HPLC High-performance liquid chromatography
HRMS High-resolution mass spectrometry
IT Ion trap
LC Liquid chromatography
LD50 Lethal dose 50 %
LLE Liquid–liquid extraction
LSA Lysergic acid amide
LSD Lysergic acid diethylamide
MIP Molecularly imprinted polymer
MS/MS Tandem mass spectrometry
MS Mass spectrometry
MT Methyltransferase
NIR Near infrared
pCEC Pressurized capillary electrochromatography
PSA Primary secondary amine
Q-TOF Quadrupole time of flight
QuEChERS Quick, easy, cheap, effective, rugged, and safe
RIA Radioimmunoassay
SCX Strong cation exchange
SPE solid phase extraction
TDI Tolerable daily intake
TLC Thin layer chromatography
TOF Time of flight

1 Introduction

Ergot alkaloids (EAs) are nitrogen-containing natural products belonging to indole
alkaloids. They are secondary metabolites produced by a wide range of fungi of the
families Clavicipitaceae (e.g., Claviceps) and Trichocomaceae (including Aspergil-
lus and Penicillium), which parasitize the seed heads of living plants at the time of
flowering. Fungal infections are most common in rye and triticale that have open
florets, but wheat and other small grains are also potential hosts together with grasses
infected with endophytes. The fungal hyphae invade the ovule of the host grass and
colonize the whole ovary. Around 3–4 weeks after infection, the wintering body of
the fungus becomes visible and replaces the developing grain or seed. These
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alkaloid-containing wintering bodies, named sclerotia or ergot (derived from old
French word “argot,” meaning cock’s spur since grains colonized with Claviceps
often resemble the spurs on the legs of a rooster), are dark, crescent shaped, and
protruding from the regular grains and represent the final stage of the disease [1]. The
term ergot refers also to the common name for this disease of cereals and grains
caused by these fungi. The sclerotia are harvested together with the cereals or grass
and can contaminate cereal-based food and feed products with EAs, being especially
important in seasons with heavy rainfall and wet soils [2]. EAs have also been
identified in plants of the families Convolvulaceae, Poaceae, and Polygalaceae, in
which recently investigations suggest that these compounds are produced by plant-
associated fungi [3].

This family of indole derivatives with diverse structures is chemically very
complex, showing different biological and pharmacological activities. They can be
classified as micotoxins, which have been responsible for historic episodes of mass
poisoning in the Middle Ages due to the consumption of grains, flour, or bread
contaminated with EAs. Historic events associated with ergot poisoning include the
first Crusade (1095), the cause of symptoms associated with witchcraft surrounding
the Salem witch trials (1690s), and the interrupted Russian campaign (1720-22)
under Peter the Great against the Ottoman Empire [4]. Ergot poisoning in humans
and animals is known as ergotism. This disease, one of the oldest known, may cause
strange hallucinations, the feeling of itchy and burning skin, gangrene, loss of hands
and feet, and even death.

In modern times, the cause of the disease is well understood and improvements in
agricultural practices and milling techniques (grading, sieving, and sorting) have
removed the risk of severe epidemic outbreaks of ergotism. Mechanical means and
other conventional techniques of industrial grain processing like dockage removing,
separators, air screens, density separators, color sorting, and their combinations can
significantly reduce EA levels in grain. Cleaning procedures become less reliable
when the intact ergot sclerotia break into smaller fragments during transport or when
dry climatic conditions produce fungal sclerotia which are similar in size to the grain
[2]. Also, food processing, such as baking/pancake preparation with
EA-contaminated flours, can produce a reduction of EA levels in the final product,
as well as the effect of cooking and drying of some products like noodles or
spaghetti. A small part of the EA loss is due to leaking into the cooking water,
implying that EAs are to some extent heat sensitive, but depending on the EA
content of the raw material, significant amounts of EAs may still remain in the
final product [5].

In relation to animals, consumption of feedstuffs contaminated with EAs has
a broad impact on many different physiological mechanisms that alters
the homeostasis of livestock. These alterations on homeostasis cause an
increased sensitivity in livestock to environment perturbations, which involve
a reduced production and economic losses in livestock producers around the
world [6]. Sclerotia can be removed from cereal grains by standard seed-
cleaning techniques. Since the EAs are heat sensitive, they may be reduced
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during compound feed manufacture, where pellets generally leave the die at
temperatures ranging from 60 �C to 95 �C [5]. Other strategies to reduce the risk
of ergot infection in most cereal crops include changes in crop rotation, deeper
plowing, application of fungicides, breeding for disease resistance, and crossing
of natural rye with hybrid rye [1].

Following a request from the European Commission, in 2012, the Panel on
Contaminants in the Food Chain (CONTAM Panel) was asked to deliver a scientific
opinion on the risks to human and animal health related to the presence of EAs in
food and feed [5]. Since the publication in 2005 of the European Food Safety
Authority (EFSA) opinion on EAs in feed [7], no relevant information was identified
that would alter the previous risk assessment. Estimates of exposure based on
example diets and levels of EAs in cereal grains reported in Europe would suggest
that under normal conditions the risk of toxicosis in livestock is low. Furthermore,
the risk of ergotism in livestock as a result of consuming contaminated cereal grains,
or compound feeds manufactured from them, is reduced where appropriate seed
cleaning is carried out. In relation to humans, the CONTAM Panel performed
estimates of both chronic and acute exposure for various age groups across
European countries, concluding that while the available data do not indicate a
concern for any population subgroup, the dietary exposure estimates are related to
a limited number of food groups and a possible unknown contribution from other
foods cannot be discounted. As recommendation, they suggest that efforts should
continue to collect analytical data on occurrence of EAs in relevant food and feed
commodities.

On the other hand, EAs present important applications in medicine, being included
with both natural and semisynthetic origins, in different formulations. Their thera-
peutic potential was already recognized in theMiddle Ages, usingClaviceps sclerotia
by midwives in support of childbirth or to induce abortion, according to medieval
texts [1]. Their broad physiological effects are mainly based on their interactions with
neurotransmitter receptors on the cells. Together with their traditional uses (prolactin
inhibition, Parkinsonism, cerebrovascular insufficiency, venous insufficiency, throm-
bosis, migraine, uterine stimulation), new therapeutic applications have emerged
(e.g., against schizophrenia, among others). EAs are also of social relevance because
the semisynthetic alkaloid, lysergic acid diethylamide (LSD), is an illicit drug con-
sidered one of the most potent hallucinogen. Thus, over the years, EAs and deriva-
tives have been synthesized by artificial parasitic cultivation on rye and saprophytic
growth techniques [8, 9]. Today this uneconomic method has been replaced by
submerged fermentation. Even after a century of research on EAs, the search still
continues for new, more potent, and more selective EA derivatives.

Considering all of the abovementioned aspects, the developments in instrumental
techniques in the last decades have led to separate and measure individual ergot
compounds and their isomers, being of special interest in the monitoring and regula-
tion of the contamination of cereal-based foods. There is a requirement therefore to
measure EA in ergot sclerotia, infected cereals, forage grasses, processed foods,
pharmaceutical preparations, illicit preparations, and body fluids and organs [10].
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2 Chemistry

In 1920, Stoll isolated the first pure EA, ergotamine [11], and since then, more than
80 different EAs have been isolated, mainly from Claviceps spp. (over 70 EAs).

Natural EAs share a common tetracyclic ergoline ring system methylated on
nitrogen N6 and substituted on C8 (Fig. 1). Most EAs have a double bond in position
C8, C9 (Δ8,9-ergolenes) or in position C9, C10 (Δ9,10-ergolenes), with asymmetric
centers at C5-C10 or C5-C8, respectively.

The configurations resulting from those centers of chirality are depicted in Fig. 2.
The hydrogen at C5 has always β-configuration and only EA synthesized or prepared
by isomerization of natural EAs can have α-configuration at C5. It reflects the
derivation of these alkaloids from l-tryptophan (the amino acid precursor of the
indole ring). The hydrogen at C10 (not existing in Δ9,10-ergolenes) can have
α-configuration (trans-position relative to the hydrogen atom on C5) or
β-configuration (cis-position relative to the hydrogen atom on C5). The stereochem-
istry C5-C10 has been represented by the use of roman number, I for trans-position
and II for cis-position. However, this nomenclature has sometimes been misused: as
example agroclavine-I that has C5-C10 cis-position [12]. Δ9,10-Ergolenes undergo
epimerization, with respect to the center of symmetry at C8, resulting in rotating
isomers: the left rotating (8R configuration) or β-Δ9,10-ergolenes and the right
rotating (8S configuration) or α-Δ9,10-isoergolenes epimers [2, 13].

EAs are classified into four biogenetically related classes based on the substitu-
tions at C8 and the structure of D-ring (Fig. 1) in the tetracyclic ergoline ring system
[13–15]: clavine-type alkaloids, simple lysergic acid derivatives or ergoamides,
ergopeptines, and ergopeptams.

2.1 Clavine-Type Alkaloids

Clavine-type alkaloids or clavines consist merely of the ergoline ring or its tricyclic
precursors. They have been isolated from various fungal strains, especially in the
family Trichocomaceae. Some of these metabolites are primary products in EA

Fig. 1 Tetracyclic ergoline
ring system
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biosynthetic pathway and they can be precursors of other EAs [12, 16]. According to
their structures, clavine-type alkaloids can be classified into six different groups:
6,7-secoergolenes, 6,7-secoergolines, Δ8,9-ergolenes, Δ9,10-ergolenes, ergolines,
and alkaloids with modified ergoline structure [13]. Representative structures of
clavine-type alkaloids are given in Fig. 3.

6,7-Secoergolenes and 6,7-secoergolines are tricyclic seco derivatives and show a
structure in which the D-ring of ergoline system is not closed. 6,7-Secoergolenes
have a double bond in position C8, C9, while 6,7-secoergolines have a saturated
D-ring. Some important naturally occurring representatives of 6,7-secoergolenes are
chanoclavine-I and its two isomers, chanoclavine-II and isochanoclavine-I.
Dihydrochanoclavine-I and isodihydrochanoclavine-I are representatives of
6,7-secoergolines.

Clavine metabolites with a closed D-ring include Δ8,9-ergolenes (e.g.,
agroclavine and elymoclavine) that contain a double bond in position C8-C9,
Δ9,10-ergolenes (e.g., lysergol and penniclavine) with a double bond in position
C9-C10, and ergolines (e.g., festuclavine and fumigaclavine A) possessing a satu-
rated D-ring.

Finally, alkaloids with modified ergoline structure have been also found in nature,
but very few of them are produced by Claviceps spp. Paspaclavine, cycloclavine,
and rugulovasine A are some of EAs included in this group.

Fig. 2 Stereochemistry of lysergic acid and dihydrolysergic acid
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2.2 Simple Lysergic Acid Derivatives or Ergoamides

Ergoamides are primary or secondary carbon acid amides of D-lysergic acid. In this
group, paspalic acid and its derivatives (e.g., 10-hydroxy-trans-paspalamide and

Fig. 3 Representative structures of clavine-type alkaloids
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10-hydroxy-cis-paspalamide) are also included, as D-lysergic acid is biosynthesized
from the isomerization of paspalic acid.

The first simple lysergic acid derivative identified was ergometrine (also called
ergonovine or ergobasine), and in its structure, D-lysergic acid is amidated with
2-aminopropanol. Ergometrine and its semisynthetic derivatives, methylergometrine
(D-lysergic acid amidated with 2-aminobutanol) and methysergide (D-lysergic acid
amidated with 2-aminobutanol and methylated on nitrogen N1), are the most
important ergoamides.

Ergoamide derivatives of lysergic acid (8R-epimers) are indicated by the suffix -
ine (e.g., ergometrine); those that are derivatives of isolysergic acid (8S-epimers) are
indicated by the suffix -inine (e.g., ergometrinine). Representative structures of
ergoamides are given in Fig. 4.

2.3 Ergopeptines

Ergopeptines or ergopeptides are D-lysergic acid peptides containing lysergic acid
and three amino acids in their structure (Fig. 5). They are the most widely spread
natural peptide-type EAs.

The cyclic part of the tripeptide results from the reaction of an α-hydroxyamino
acid adjacent to lysergic acid with the carboxyl group of proline. Ergopeptines have
l-proline at AA3 and the variability of ergopeptines is therefore given by the nature
of AA1 and AA2. However, other configurations at AA3 have been described, such

Fig. 4 Representative structures of ergoamides
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as ergobalansine and its corresponding epimer, ergobalansinine, where l-proline is
substituted by l-alanine [17].

Ergopeptines can be classified into four subgroups based on the different amino
acids AA1: ergotamines (AA1: alanine), ergoxines (AA1: α-aminobutyric acid),
ergotoxines (AA1: valine), and ergoannines (AA1: isoleucine). Ergopeptines also
undergo epimerization, and the isomers derived from D-lysergic acid and D-
isolysergic acid are characterized by the suffix -ine and -inine, respectively. This
EA class also includes derivatives with saturated D-ring (e.g., dihydroergotamine,
dihydrocristine, or dihydroergosine) and they are subgrouped correspondingly.

2.4 Ergopeptams

The ergopeptams are tripeptidic non-cyclol EAs. Their structure is similar to that of
ergopeptines except that l-proline at AA3 is exchanged by d-proline, and the
tripeptide chain is a non-cyclol lactam (Fig. 6). It was suggested that ergopeptams
are formed as a result of competitive epimerization at the last stage of the
cyclopeptide biosynthesis [8].

The first ergopeptam isolated was ergocristam. This class of peptide-type alka-
loids was originally found in small amounts in certain strains accompanying the
ergopeptines. In addition, the probability of the existence of ergopeptams decreases
with the decreasing volume of radical R1, which is explained by its high lability
[8]. Later, ergopeptams have been found to predominate in some infected wild
grasses from Norway [18].

Fig. 5 Representative structures of ergopeptines
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Similar to ergopeptines, ergopeptams can be classified into four groups based on
the AA1 type: ergotamams (AA1: alanine), ergoxams (AA1: α-aminobutyric acid),
ergotoxams (AA1: valine), and ergoannams (AA1: isoleucine). Figure 6 shows the
representative structures of ergopeptams. No isomers derived from D-isolysergic acid
have been reported for ergopeptams, which is related to its high lability because
these compounds readily decompose into simpler derivatives in the presence of
bases [8]. However, the established nomenclature suggests that these hypothetical
8S-isomers are characterized by the suffix -inam and should be included into the
corresponding groups.

2.5 Physicochemical Properties

The variability of EA compounds involves a wide range of physicochemical prop-
erties, although most EAs appear as colorless crystals that are readily soluble in
various organic solvents, like acetonitrile, methanol, or organic/buffer mixtures [5,
19], and insoluble or only slightly soluble in water [9]. Moreover, EAs are neutral at
higher pH values and positively charged at N6 in acidic solutions.

The most important characteristic of Δ9,10-ergolenes is their rapid epimerization
with respect to the center of symmetry at C8, resulting in the right rotating (8S) and
left rotating (8R) isomers. These EAs can epimerize from R to S forms and vice
versa, especially in aqueous acidic or alkaline solutions [8], via enolization at C8
(Fig. 7), as C9-C10 double bond permits to form a large conjugated π-electron
system [20, 21].

The ratio of epimerization depends mainly on the nature of the amide substituent
[22]; however, this epimerization is enhanced through exposure to strong light,

Fig. 6 Representative structures of ergopeptams
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prolonged storage, or contact with some solvents at high or low pH. The C8 epimers
show different physicochemical properties, such as basicity and solubility
[22]. Moreover, protonated pKa values, given by the N6 nitrogen, showed differ-
ences between both C8-epimers. They ranged between 5.5 (ergocristine) and 6.0
(ergometrine) for 8R-epimer, while pKa values of 8S-epimers ranged between 4.8
(ergocorninine) and 6.2 (ergometrinine) [11, 23].

Δ9,10-Ergolenes show natural fluorescence with excitation wavelengths of
254, 313, 325, or 366 nm and emission wavelength of 445 nm [24]. On the contrary,
the rest of EAs without Δ9,10 double bond do not show native fluorescence, but they
show ultraviolet absorption at 280 nm [13].

2.6 Stability

Most EAs melt with decomposition at high temperatures. Moreover, EAs are known
to show high sensitivity to light, which leads not only to epimerization but also
degradation [8, 22]. Δ9,10-Ergolenes add one molecule of water to C10 carbon of the
lysergic acid moiety upon illumination, especially on irradiation with UV light, and
acid catalysis. The reaction leads to a mixture of two diastereomers called lumi-
derivatives: lumi-I-derivatives (e.g., lumi-ergotamine-I) or 10-α-hydroxy deriva-
tives, with hydroxyl group being trans to the hydrogen atom in position 5 and
lumi-II-derivatives (e.g., lumi-ergotamine-I) that have a cis-junction of rings C and
D [22]. These lumi-derivatives are characterized by loss of fluorescence properties
and lack of biological activity [25].

In addition, other degradation products called aci-derivatives are formed by acid-
catalyzed isomerization of the 20-carbon of the tricyclic peptide moiety of the
ergopeptines [26, 27]. However, the aci-derivatives are formed at much slower
rates than those for C8-epimers [27].

Stability of EAs is also affected by the epimerization process during storage,
handling, and analysis. In order to minimize changes in the natural ratio of epimers
and to improve the understanding of the factors affecting the epimerization, some
studies have tried to explain the process using complex simulations [28]. However,

Fig. 7 Epimerization scheme of ergot alkaloids (Adapted from Ref. [21])
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the epimerization process is not yet well understood [10]. Some authors proposed
different recommendations to avoid significant epimerization. EA standards are best
stored below �20 �C in non-protic solvents or in the form of thin dry films, but they
also have shown to be stable, in terms of epimerization and degradation, in chloro-
form at room temperature [21], over a period in excess of 12 months [29]. Solutions
of EA standards in ethanol containing tartaric acid, ethylene glycol, 2-propanediol,
and tartaric acid are also recommended [30].

The lability of EAs to decomposition must be taken into account during the
technological treatments and the chemical and analytical handling of EAs in the
development of stable medicinal forms, and in the storage of raw materials,
semiproducts, parent substances, and ready-to-use medicinal preparations [8].

3 Biosynthesis

As it was shown in the previous sections, EAs are a large group of metabolites,
showing very different structures. However, all of them share the first biosynthetic
steps, consisting of tetracyclic ergoline ring system formation, except the simplest
tricyclic compounds as 6,7-secoergolenes and 6,7-secoergolines. Biosynthesis of
EAs has been investigated in detail for many years [1, 3, 31, 32], and although most
of the biosynthetic pathways have been elucidated from the 1950s, some step
remains largely unelucidated [33].

The variability of EAs and biosynthetic pathway depends largely on the EA
producer fungi. As example, Clavicipitaceae typically produces either lysergic
acid-derived EAs or dihydroergot alkaloids and several members of the
Trichocomaceae produce alkaloids derived from festuclavine.

3.1 Ergot Alkaloid Producers

EAs are produced mainly by two orders of fungi, Eurotiales and Hypocreales,
belonging to the phylum Ascomycota. Within the Hypocreales, EAs are associated
exclusively with Clavicipitaceae family, although not all the members of the
Clavicipitaceae produce EAs [31]. The fungal genera so far known to produce
EAs in Clavicipitaceae family are Claviceps spp. [34, 35], Epichloë spp. (including
their close relatives, the Neotyphodium spp.), Atkinsonella spp., Balansia spp.,
Periglandula spp. [36, 37], and Metarhizium spp. [36]. Within the Eurotiales
order, the genera Aspergillus [38] and Penicillium [39] in Trichocomaceae family
are also EA producers. Recently, it was demonstrated that Onygenales order belong-
ing also to phylum Ascomycota, in particular Arthroderma genera (Trichophyton), is
also related with EA production [40]. Moreover, EAs producing fungi occupy
different ecological niches. Claviceps spp. are plant parasites and biotrophic symbi-
onts, while Aspergillus fumigatus is an opportunistic pathogen of mammals [31, 41].

It was reported that three families of plants, i.e., Convolvulaceae [42, 43],
Poaceae [44], and Polygalaceae [45], also produce EAs. For a long time, it was
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believed that horizontal gene transfer from fungi to higher plants had taken place
during the evolutionary process. However, further investigations revealed that, at
least in Poaceae and Convolvulaceae, the plant-associated fungi are likely responsi-
ble for EA production, since the treatment of these plants with fungicides led to
elimination of associated fungus and simultaneous loss of alkaloids from the plant
[3, 41, 46]. Fungi and plants form mutualistic symbiosis that consists of production
of bioactive EAs by fungi to protect the host plant from insect, vertebrate herbivores
and root nematodes, enhancements of drought tolerance and nutrient status, and
improved growth, particularly of the root, while the fungi benefit from protected
niche, nutrition, and dissemination from the plant [3, 41, 47]. The fungal symbionts
are vertically transmitted through seed of the host plant, though the mechanism of
how the fungi spread in the respective host plant remains unclear [41, 44, 48].

Claviceps purpurea is the most important of all the EA producers and it is
otherwise known as the ergot fungus of rye and related grasses. In C. purpurea,
EAs are found in the sclerotia, and their spectra vary strongly between different
C. purpurea strains [49], although the main produced compounds are ergocristine,
ergotamine, ergocornine, α- and β-ergocryptine, ergometrine, ergosine,
ergocristinine, ergotaminine, ergocorninine, α- and β-ergocryptinine, ergometrinine,
and ergosinine [5, 50–53]. Moreover, C. purpurea is morphologically a highly
variable species with respect to sclerotial length and shape, color of the stomata,
and conidial size and shape [54, 55].

Other important members of Claviceps spp. are C. africana, in which
dihydroergosine is the principal EA found in its sclerotia [56]; C. fusiformis, related
to agroclavine, elymoclavine, chanoclavine, penniclavine, and setoclavine produc-
tion [57], but no D-lysergic acid derivatives [35, 58]; and C. gigantea [59],
C. paspali, and C. hirtella, which are also mainly clavine producers [13].

On the other hand, A. fumigatus and Penicillium strains, including P. roqueforti,
P. verrucosum, and P. commune, are fungi also associated to the production to
clavines. Aspergillus has been related to the production of fumigaclavines A, B,
and C, while Penicillium has been related to the production of fumigaclavines A
and B, but not C [3].

3.2 Ergoline Ring Formation

The biosynthesis of the ergoline ring begins with the prenylation of l-tryptophan at
position C4 with dimethylallyl diphosphate (DMAPP) as prenyl donor. This reaction
is catalyzed by the prenyltransferase 4-dimethylallyltryptophan synthase (DMATS),
also called FgaPT2 in A. fumigatus [33, 60–62], leading to the formation of 4-l-
dimethylallyltryptophan (DMAT). The DMAT-forming reaction delivers the carbon
skeleton of the ergoline ring system. After this first step, all enzymatic steps concern
modifications and rearrangements leading to formation of rings C and D. The next
step involves a N-methylation of the amino nitrogen of DMAT in the presence of
S-adenosylmethionine (AdoMet) and is catalyzed by a 4-dimethylallyltryptophan
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N-methyltransferase EasF (FgaMT in A. fumigatus). The result is the formation of
4-dimethylallyl-l-abrine (4-DMA-l-abrine).

Chanoclavine-I was the next detected intermediate found in the biosynthesis of
EAs [41, 63, 64]. Its accumulation is observed in many EA producers, and in some
cases at relatively high concentrations [65]. Chanoclavine-I was obtained by decar-
boxylation and closure of ring C. This step would include at least three reactions, i.e.,
decarboxylation, cyclization, and hydroxylation [3], and the enzymes flavin adenine
dinucleotide (FAD)-dependent oxidoreductase EasE (also called ccsA and FgaOx1
in A. fumigatus) and the catalase EasC (known as FgaCat in A. fumigatus) are needed
[66, 67].

The next step is the oxidation of the hydroxyl group of chanoclavine-I to yield
chanoclavine-I aldehyde. This reaction is catalyzed by the short-chain dehydroge-
nase/reductase (SDR) EasD (FgaDH in A. fumigatus). Chanoclavine-I aldehyde is
the last shared intermediate and represents the branch point of the biosynthetic
pathway of several fungi to produce agroclavine and festuclavine (and its 8S-
stereoisomer, pyroclavine) [41, 65]. Agroclavine is usually the key intermediate in
the formation of more complex EAs in Clavicipitaceae fungi, while festuclavine and
pyroclavine are the substrates in Trichocomaceae fungi. The branch point is mainly
controlled by the old yellow enzyme EasA (also called FgaOx3 in A. fumigatus and
FgaOx3pc in P. commune) [68–70], and the divergence between fungi depends on the
activities of different versions of this enzyme. The version of EasA (FgaOx3) found
in A. fumigatus reduces the C8-C9 double bond in chanoclavine-I aldehyde to give
the cyclized iminium intermediate in ring D formation [41, 71]. On the other hand,
the versions of EasA found in most EA producers in the Clavicipitaceae do not
permanently reduce the double bond; instead, these enzymes promote isomerization
around the double bond. Finally, for the formation of agroclavine in the
Clavicipitaceae or festuclavine (and its 8S-stereoisomer pyroclavine) in the
Trichocomaceae, enzyme EasG (also called FgaFS in A. fumigatus and FgaFSpc in
P. commune) is required to reduce the iminium ion [65, 72]. Moreover, versions of
EasG found in A. fumigatus and P. commune differ in the proportion of the stereo-
isomers (festuclavine and pyroclavine). The formation of festuclavine was signifi-
cantly higher in A. fumigatus, while P. commune produced higher concentration of
pyroclavine [70].

Further investigation demonstrated that EasA was not necessary for the conver-
sion of chanoclavine-I aldehyde to agroclavine in C. purpurea, at least in vitro
experiments, and EasG was sufficient for the formation of agroclavine via a
nonenzymatic adduct with reduced glutathione [73].

The mentioned steps of ergoline ring formation are shown in Fig. 8.

3.3 Fumigaclavine Formation

Festuclavine and its 8S-stereoisomer pyroclavine are the main substrates in the
formation of fumigaclavines in Trichocomaceae fungi (Fig. 8). Both metabolites
lead the formation of isomers 8R and 8S fumigaclavine B via a hydroxylation in
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A. fumigatus and P. commune, respectively. This reaction is probably catalyzed by
the monooxygenase FgaP450-2 in A. fumigatus and its analogue FgaP450-2PC in
P. commune [3]. The next step is the formation of fumigaclavine A catalyzed by the
acetyltransferase FgaAT (FgaATPC) in the presence of acetyl-CoA [74]. Finally,
fumigaclavine C is obtained by catalysis of the prenyltransferase FgaPT1 only in
A. fumigatus [33]. Figure 9 shows the fumigaclavine biosynthetic pathway.

3.4 D-Lysergic Acid Formation

Although the formation of D-lysergic acid remains largely unelucidated, two impor-
tant intermediates have been identified: elymoclavine and paspalic acid. It was

Fig. 8 Ergoline biosynthetic pathway (Adapted from Ref. [33, 65])
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proposed that the conversion of agroclavine to paspalic acid via elymoclavine
involves two oxidation steps (2-electron and 4-electron oxidation) [31]. The
C8-linked methyl group can be oxidized by the action of a cytochrome P450
monooxygenase CloA [75]. The different isoforms of CloA determine the level of
oxidation, i.e., CloA ofC. fusiformis catalyzes the 2-electron oxidation of agroclavine
to elymoclavine, whereas CloA of C. purpurea and many other Clavicipitaceae
catalyze a 6-electron oxidation of agroclavine to paspalic acid [35, 65]. Subsequently,
paspalic acid is isomerized enzymatic or spontaneously to D-lysergic acid [76], which
serves as the acyl component of ergoamides, ergopeptines, and ergopeptams. The
biosynthetic pathway of D-lysergic acid is show in Fig. 10.

3.5 Formation of Ergoamides, Ergopeptines, and Ergopeptams

Most EA-producing Clavicipitaceae fungi produce more complex metabolites such
ergoamides, ergopeptines, or ergopeptams. The diversity among them arises via an
interesting combinatorial system involving two different pairs of peptide
synthetases [65].

Ergopeptams are intermediate metabolites in the biosynthetic pathway of
ergopeptines. Their formation is controlled by a nonribosomal peptide synthetase
(NRPS) enzyme complex, which contains d-lysergyl peptide synthetases 1 and

Fig. 9 Fumiclavine biosynthetic pathway (Adapted from Ref. [33])

Fig. 10 D-Lysergic acid biosynthetic pathway
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2 (LPS1 and LPS2) [33, 41]. Firstly, D-lysergic acid is activated by LPS2 and
subsequently LPS1 catalyzes its progressive elongation to the d-lysergyl mono-,
di-, and tripeptide thioester intermediates, to get finally the d-lysergyl tripeptide
lactam or ergopeptam [65, 77]. The next step is catalyzed by mono-oxygenase easH
yielding an intermediate, which undergoes spontaneous cyclization that leads to the
formation of ergopeptines [3].

Ergoamides, such as ergometrine, are also formed from D-lysergic acid.
Ergometrine arises by interaction of LPS2 and LPS3 (a monomodular peptide
synthetase that recognizes and activates l-Alanine) enzymes [78]. Figure 11 shows
the biosynthetic pathway of ergoamides, ergopeptams, and ergopeptines.

Dihydroergot alkaloids, such as dihydroergosine, can also arise from festuclavine
in C. africana and C. gigantea (Fig. 12). The CloA present in these fungi catalyzes

Fig. 11 Ergoamide, ergopeptine, or ergopeptam biosynthetic pathway (Adapted from Ref. [3, 33])
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the oxidation of festuclavine to dihydrolysergol in C. gigantea or to dihydrolysergic
acid via dihydrolysergol in C. africana. Dihydrolysergic acid can follow the same
biosynthetic pathway as that of other members of the Clavicipitaceae to produce
dihydroergosine via LPS1, LPS2, and easH [4, 65, 79, 80].

4 Bioactivity

EAs are particularly important for possessing a potent bioactivity. However, it is
necessary to distinguish their valuable pharmacological properties and their toxic
effects.

4.1 Pharmacological Activity

EAs have been reported to produce several effects including direct peripheral effects
as uterotonic action or vasoconstriction, indirect peripheral effects as serotonin
antagonism or adrenergic blockade, and central nervous effect as induction of
hypothermia and emesis or control of the secretion of pituitary hormones [1, 81].

The effects of EAs are mainly responses mediated by neurotransmitters as
noradrenaline, serotonin, or dopamine (5-hydroxytryptamine, 5-HT). The structure
of these neurotransmitters fits well onto the D-lysergic acid ring structure (Fig. 13)
[1]. Natural EAs possess the above-described effects to a greater or lesser degree,
depending of the substituents attached to the carboxyl group at C8 of D-lysergic acid
ring system that define agonistic or antagonistic mode (or a dual role as partial-
agonist and antagonist) and the intensity of the interaction with receptors for these
neurotransmitters [1, 61, 82, 83]. Peptide ergot alkaloids usually have high affinity
for α-adrenergic receptors, while derivatives of D-lysergic acid amidated with small
amino alcohols show high affinity for serotonin receptors [61]. Moreover, the
biological activity of EAs depends largely on their configuration and epimers 8R

Fig. 12 Dihydroergot alkaloid biosynthetic pathway in C. africana and C. gigantean (Adapted
from Ref. [65])

28 Ergot Alkaloids: Chemistry, Biosynthesis, Bioactivity, and Methods of. . . 905



and 8S differ in biological properties; 8R-isomers are biologically active, whereas
the 8S-isomers are inactive [2].

The uterine contraction is the most known pharmacological effect. EAs as
ergotamine and ergometrine were officially used for the first time in obstetrics to
treat postpartum hemorrhage and to accelerate uterine involution in the puerperium
[8, 81]. Later, it was demonstrated that although all natural EAs have qualitatively
the same effects on uterus, ergometrine is most active and less toxic than ergotamine.
So, ergometrine and its semisynthetic derivative methylergometrine replaced other
EAs in obstetric applications [9]. Other important direct peripheral effect of EAs is
their vasoconstrictor effect. The best-known drug of this type is ergotamine that has
been widely used as migraine treatment due to its tonifying effect on the smooth
muscle of the blood vessels [81]. However, methysergide, a semisynthetic EA and a
serotonin antagonist, unlike ergotamine, has also been used in the treatment of
migraine [84].

The indirect peripheral (humoral) effects are manifested in an adrenaline and
noradrenaline antagonism, as well as serotonin antagonism. EAs are used in internal
medicine as sympathetic agents due to their adrenolytic effect. EAs also present very
diverse effects on the central nervous system, such as the reduction of the activity of
the vasomotor center and the stimulation of sympathetic structures of the dienceph-
alon, particularly the hypothalamus [81, 85].

The most important effects of natural ergopeptines are mainly their vasoconstric-
tive and sympatholytic–adrenolytic actions due to their high affinity for adrenergic

Fig. 13 Structural analogy
between the tetracyclic
ergoline system and
dopamine, noradrenaline, and
serotonin neurotransmitters
(Adapted from Ref. [61])
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receptors [1, 86]. However, slight modifications in the chemical structures produce
changes in their biological activity. Dihydroergopeptines such as dihydroergotamine
have an increased adrenolytic effect and reduced vasoconstrictive effect; thus, it is
preferentially used for the treatment of migraine instead of ergotamine [1,
87–89]. The EAs are administered separately and in numerous complex composi-
tions [8] as dihydroergotoxin, a mixture of three dihydroergopeptines (dihydroer-
gocornine, dihydroergocristine, and dihydroergocryptine) that is used for the
treatment of diseases associated with circulatory problems as high blood pressure
and cerebral dysfunctions [1, 90, 91].

Clavine-type alkaloids have much less adrenolytic activity and show strong
anti-serotoninergic action due to elevated affinity for serotonin (5-HT) receptors
[61]. EAs, especially clavine-type alkaloids, possess activity inhibiting the
growth of certain mammary tumors in animals and also in humans by blocking
the release of prolactin from the anterior pituitary gland. In particular, clavine-
type alkaloids with a C8 methyl group as festuclavine and agroclavine were
shown to exhibit some inhibitory activity against cell proliferation in the
L5178y mouse lymphoma system [92–94]. Recently, six EAs (agroclavine, ergos-
terol, ergocornine, ergotamine, dihydroergocristine, and 1-propylagroclavine tar-
trate) were investigated for their inhibitory activity toward a panel of cell lines of
different tumor origins (ovarian carcinoma, brain tumor, prostate cancer, lung
cancer, melanoma, colon cancer, renal carcinoma, breast cancer, or leukemia).
1-Propylagroclavine tartrate showed the strongest effect on tumor cells, especially
against leukemia cell lines [95].

Serotonin agonist in the brain is also thought to be a key factor in hallucinogenic
activities [31]. However, none of the naturally occurring EAs have typical halluci-
nogenic properties; such properties are confined to a number of semisynthetic
derivatives of lysergic acid, as LSD [96], which has been used for psychedelic
recreation [31].

Many EAs, including ergocryptine, produce a more or less pronounced dopami-
nergic effect. Bromination of ergocryptine in the 2-position (2-bromo-ergocryptine)
strongly increases dopamine agonist activity. 2-Bromo-ergocryptine is semisynthetic
derivative that is used for treatment of hyperprolactinaemia. Bromocriptine was also
used for treatment of advanced breast cancer [97] and Parkinson’s disease due to its
high affinity to dopaminergic receptors [98].

Limited information is available on the metabolism of EAs. They are rapidly
cleared from the blood and the tissues with a high first pass effect in the liver
[99]. In contrast, their physiological effect persists for a longer period of
time [2].

Despite the beneficial pharmacological properties, natural and semisynthetic EAs
also possess serious and unpredictable side effects and high instability, reducing their
medical applications and being replaced by synthetic analogs. As example,
ergocristine, ergocryptine, and ergocornine, despite having a similar activity spec-
trum to ergotamine, present some toxic effects, which prevents them from achieving
the same clinical significance [81].
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4.2 Toxicity

Intoxications induced by EAs have been known for many centuries. The most severe
and frequent epidemic of ergotism took place during the Middle Ages in Europe,
where the disease was called Holy Fire or St. Anthony’s Fire. It was caused by eating
rye bread contaminated with C. purpurea, resulting in gangrene of limbs, distur-
bances in the function of the central nervous system, and ultimately death [100].

There are two symptomatic forms of ergotism: gangrenous and convulsive. The
two distinct types of ergotism may be considered as acute and chronic varieties. The
gangrenous form is caused by the extreme vasoconstrive properties of some EAs,
which results in restriction of the blood flow to parts of the body (ischemia) [31,
101]. As a result, tingling effects are felt in fingers and toes followed in many cases
by dry gangrene of the limbs and eventually loss of the limbs [102, 103]. In the
convulsive form, tingling is followed by neurotoxic symptoms such as hallucina-
tions, delirium, and epileptic-type seizures [104].

Outbreaks of ergotism tended to happen after cold, wet winters followed by warm
spring weather, and arose mainly in areas where rye was commonly eaten. Also,
some outbreaks were caused by other types of grain contaminated with ergot
[101]. The gangrenous type was mostly seen in France and other European countries
west of the Rhine and the convulsive one in Germany and Scandinavia [100,
101]. The symptoms of EAs poisoning vary, probably depending on the particular
profiles of alkaloids present in the contaminated food. Clavines are thought to
contribute substantially to convulsive ergotism, while the ergopeptines are known
to produce similar symptoms and also to cause gangrenous ergotism [31, 101]. More-
over, it was proposed that a deficiency in vitamin A could be a causative factor
inducing convulsive ergotism [105] and that EAs present at high concentrations in
ergots could cause convulsive ergotism at a circulating concentration insufficient to
produce peripheral ischemia [101].

In the late twentieth century, human poisoning from ergot was reported in France
[106], India [107], and Ethiopia [108]; and the last recorded outbreak of gangrenous
ergotism that occurred in the Arsi Zone (Ethiopia 2001) was attributed to the
ingestion of barley containing ergotized wild oats [109]. While nowadays human
poisoning from ergot has become of less concern, mainly owing to cleaning pro-
cedures at mills, EA contamination remains an important veterinary problem [2,
110]. There are numerous reports of poisoning of farm animals by ergot-
contaminated feed [111] and by endophyte-infected grasses [112, 113]. Moreover,
gangrenous ergotism has also been reported among free-living moose and roe deer in
Norway [102, 114].

The toxic side effects of EAs have been studied in more detail, especially with
respect to biological functions beyond the receptor interactions. In vivo studies
regarding acute toxicity lead to different LD50 (lethal dose, 50 %) values depending
on the used animal species, application form, and ergot alkaloid. Griffith et al. [115]
reported a series of LD50 values (ranging between 0.9 and 275 mg/kg body weight)
determined for several naturally occurring and semisynthetic EAs by subcutaneous
and oral exposure in mouse, rat, and rabbit, demonstrating that rabbit is the most
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susceptible (LD50 values between 0.9 and 3.2 mg/kg). Sublethal acute exposure to
EAs induces signs of neurotoxicity in mammals, including restlessness, miosis or
mydriasis, muscular weakness, tremor, and rigidity. Moreover, tail gangrene was
observed in rats after intraperitoneal injection of ergotoxin (ergocristine +
ergocryptine + ergocornine). Recently, a case study of spontaneous tail necrosis in
a rabbit colony has been reported, concluding that in order to avoid symptoms such
as tail lesions and necrosis in younger rabbits, the mean EA content in such feeding
must be controlled and kept as low as possible. However, controlled feeding trials
under various conditions are necessary, to fully confirm that dietary EAs at concen-
tration levels of around 500 μg/kg may act as a causative agent of mycotoxicosis in
rabbits [116].

For in vitro experiments, only limited data are available for the single substances
and their toxic effects on human cells [117]. Most data consist of receptor interaction
analysis for single substances in dopamine overexpressing cells or tumor cells [118,
119]. Further experiments indicated a different toxic potential for peptide ergot
alkaloids and lysergic acid amide alkaloids revealing that the cytotoxicity of EAs
in human cell lines obviously depends on the type of alkaloids [120]. Mulac
et al. described the apoptotic effect of some ergopeptines (especially ergocristine)
[117]. Despite their lack of bioactivity, the 8S-epimers are considered to be mainly
responsible for this effect, since they are preferentially accumulated in hepatic cell
lines [121]. Therefore, it is important to consider both epimers when the EA
contamination level has to be determined. Recently, it was demonstrated that
ergometrine and its corresponding epimer ergometrinine exhibit cytotoxicity on
animal smooth muscle cells, showing a positive correlation with alkaloid
concentration [122].

EAs have a number of well-established effects on the reproductive process
including prevention of pregnancy by interfering with implantation, embryotoxicity,
developmental effects, and inhibition of lactation [115]. Several studies reported the
effect of EAs reducing livestock reproductive performance with particular emphasis
on the female gender [123, 124]. This is due to both direct and indirect effects of EA
exposure through regional vasoconstriction and corresponding decreases in blood
flow to reproductive tissues, decreases in dry matter intake, and/or increased body
temperature [6]. Moreover, EAs inhibit milk production in humans, laboratory
animals, and livestock animals [105, 125–127], effect linked by several authors to
the decrease of prolactin (a protein hormone secreted mainly by the anterior pituitary
gland) [5, 128]. However, later it was reported that decreased serum prolactin in
lactating animals did not directly equate to decreased milk production [124, 129,
130]. 2-Bromo-ergocryptine, besides its indications in the treatment of Parkinson’s
disease, prolactinoma, and hyperprolactinemia, has been described to inhibit
lactation [131].

The high toxicity of EAs has led to frame these compounds as mycotoxins, and
the interest in assessing the extent of the mycotoxins issue has increased in the last
years. Despite improvements in agriculture practices and grain cleaning, generally it
is only possible to remove up to 82 % of ergot by mechanical means with conven-
tional grain cleaning equipment such as sieves and separators used during the
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harvesting process. So, different studies have demonstrated that EAs can still be
present in cereal-based food and feed, sometimes in excessive amounts.

In this sense, De Saeger’s group at the University of Ghent carried out a large
survey, in which 1,065 samples of cereals and cereal products intended for human
consumption and animal feeding in Europe were analyzed. This study included rye,
wheat, and multigrain-based food as well as rye, wheat, and triticale-based feed; and
it was shown that 59 % of analyzed samples were contaminated with EAs at total
levels ranging from 1 to 12,340 μg/kg [132]. Incidence of positive samples and the
obtained alkaloid contents were in line with other published data. Storm
et al. detected rye flour samples from Danish mills containing an average of 46 μg/
kg of EAs with a maximum content of 234 μg/kg [133]; Crews et al. detected EAs in
25 of 28 samples, including all of 11 rye crispbreads that had up to 340 μg/kg [134];
and M€uller et al. found EAs in 92 % of analyzed rye product samples with a
maximum content of 739.7 μg/kg [19]. Reinhold et al. analyzed 500 food samples
from Germany, and approximately 50 % were positive with a highest concentration
of 1,063 μg/kg [135], whereas Masloff et al. reported twice higher maximum total
EA content in surveys conducted in rye samples in Germany [136] and a maximum
of 4,700 μg/kg was detected in Canadian wheat samples [137]. In most surveys,
ergocryptine, ergocristine, and ergotamine including their C8-isomers were the most
common EAs. Moreover, the main compound co-occurred with its corresponding
8S-epimers and in most cases the 8S-epimers had a higher maximum concentration
compared with the main compounds [132].

Recently, Bryła et al. tested 65 samples, detecting EAs in 83 % of the tested rye
grain, 94 % of rye flour, and 100 % of rye bran and flake samples. Measurable levels
of alkaloids were found in the majority of the analyzed samples, particularly in rye
flour, where a relatively high mass fraction of 1,215.5 μg/kg was found. Ergotamine,
ergocornine, and ergosine were the most commonly found alkaloids, whereas
ergometrinine and ergometrine were the least commonly found ones [138].

Regarding cereal-based infant foods, EAs also have been detected in 25 % of
samples including oat, barley, soy and rice, and mixed-grain infant cereals from the
Canadian retail marketplace. The incidence and overall mean level of EAs was
highest in the barley-based samples (56 %, 18 μg/kg) [139].

Therefore, ergot infections of cereals are a severe problem of food security and
consequently European Commission (EC), assisted by the EFSA, has established
recommendations and directives that limit the maximum amount of ergot (i.e.,
sclerotia) that may be present in feed and food. So far, no regulatory limits for
sclerotia have been set in the European Union (EU) for grain intended for human
consumption. However, for intervention grain, a maximum level of 500 mg/kg has
been set for ergot. For all feed containing unground cereals, the European Union
Directive 2002/32/EC sets a maximum content of ergot of 1,000 mg/kg, whereas the
maximum permissible level in the USA and Canada is 300 mg ergot per kg grain [2],
and in Australia and New Zealand, a maximum level of 500 mg/kg of ergot sclerotia
in cereal grains is applied [5].

There are currently no legislated limits for total EAs in food or feed; however, it is
likely that limits for EAs will be included in future mycotoxin legislation [10]. Some
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countries have set guideline limits for EAs in cereals by deriving a limiting value for
the maximum EA level from the maximum amount of sclerotia that may be present
[140]. In this way, Germany and Switzerland have set limits for EAs in cereals for
human consumption of 400–500 μg/kg and 100 μg/kg, respectively [140]. In
Canada, the guideline limits for the total EA content in feed for poultry, swine,
and chicks are 100, 600, and 9,000 μg/kg, respectively, whereas the guideline limits
in animal feed in Uruguay is 450 μg/kg [5]. However, at the present, no country has
established limits for individual EAs in food or feed.

According to EFSA, physical techniques to determine the contamination rate are
often inaccurate as size, weight, and composition of the sclerotia may vary consid-
erably [7]. In addition, sorting is impossible in processed feed materials, and there
are significant variations of the total EA content within the sclerotia [141] and
differences in the pattern of produced EAs. Hence, EFSA suggested replacing the
physical methods by chemical analysis [7].

At present, the data on the toxicological properties of individual EAs are too
limited to select individual marker toxins for monitoring the extent of contamination
[7]. For that reason, EFSA has stated that more data on the variability of the EA
patterns in European food and feed should be collected and that validated analytical
methods for the quantification of EAs should be developed. In this way, the basic
information needed for scientific risk assessment can be obtained and limits can be
set for total and individual EAs via legislative regulations [104].

Recently, the European Commission has issued a recommendation to its member
states to perform the monitoring on the presence of EAs in cereals and cereal
products intended for animal feeding and in compound feed [142]. The European
Commission has also requested the establishment of a relationship between the
presence of EAs and the amount of sclerotia present, focusing the monitoring on
the six main EAs, i.e., ergometrine, ergotamine, ergosine, ergocristine, ergocryptine,
and ergocornine and their related epimers [142].

On the other hand, the interaction with neurotransmitter receptors could result in
acute as well as longer-term effects, so EFSA has also established an acute reference
dose (ARfD) of 1 μg/kg body weight and a tolerable daily intake (TDI) of 0.6 μg/kg
body weight per day for EAs [5].

5 Determination of Ergot Alkaloids

Wide range of analytical methods has been proposed for determination of EAs from
several matrices in pharmaceutical, forensic, and food areas. High-performance
liquid chromatography (HPLC) and fluorescence detection (FLD) or tandem mass
spectrometry (MS/MS) are the most widely used methods; however, other minor
techniques including capillary electrophoresis (CE) or immunoassays are also
available.

Regardless the analytical technique chosen for determination, a sample treatment
is usually mandatory in order to remove interferences and pre-concentrate the
analytes. Most of the reported analytical methods involve a liquid extraction
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followed by a clean-up by means of liquid–liquid extraction (LLE) or solid phase
extraction (SPE) using different sorbents. Moreover, in order to compensate for the
matrix effect, most methodologies include matrix-matched calibration.

Another aspect to be highlighted is the fact that during sample preparation and
analysis, it is difficult to control the epimerization degree of EAs and both epimeric
forms can interconvert. Attempts have been made to avoid this epimerization.
Otherwise, it is necessary to determine both epimers and, alternatively, specify the
EA content as a sum of both epimers for each EA [5].

The EFSA scientific opinion on EAs in food and feed [5] as well as a several
reviews published during the last decade present a comprehensive overview of the
different methodologies proposed for the determination of EAs, including sample
preparation [2, 10, 24]. Thus, in the next sections, only most recent or relevant
contributions in this field will be commented.

5.1 Capillary Electrophoresis

CE offers some advantages over liquid chromatography (LC), such as high effi-
ciency, reduced analysis time, and low sample and reagent consumption, demon-
strating its great potential for a wide range of compounds. However, depending on
the analytes, sensitivity in CE needs to be improved, especially when UV detection
is used.

CE analysis has been rarely applied for determination of EAs. Most of these
works were developed in the 1990s, when CE was emerging as a promising
analytical technique. Thus, Fanali et al. resolved for the first time a mixture of EA
enantiomer derivatives (dl-terguride, dl-lisuride, dl-nicergoline, dl-isolysergic acid
hydrazide and dl-1-methyl-10α-methoxy-dihydro-lysergol (dl-meluol), ergotamine,
ergotaminine, ergometrine, and ergometrinine) using capillary zone electrophoresis
(CZE), studying the effect of cyclodextrins as a chiral additive in the background
electrolyte (BGE), on the migration time and the resolution [143]. CZE-UV was also
used for simultaneous determination of ergotamine and caffeine in pharmaceutical
dosage tablet formulations [144], ergovaline in the seeds of Festuca arundinacea
(tall fescue) infected with fungus Acremonium coenophialum [145]. Also, Frach
et al. proposed CE with laser-induced fluorescence (LIF) as an alternative to UV
detection, improving limits of detection about 30-fold. Cyclodextrins, urea, and poly
(vinyl alcohol) were included in the BGE, achieving the separation of ergometrinine,
ergometrine, ergocorninine, ergocryptine, ergocornine, ergosine, ergocristinine,
ergocristine, and ergotamine and their determination in sclerotia [146]. Cyclodextrins
were also used as BGE modifiers in CZE for the determination of lisuride enantio-
mers, a chiral compound derived from EA and used for treatment of Parkinson’s
disease. The method was used for enantiomeric purity checking of commercial
lisuride pharmaceuticals, in order to determine the concentration of undesirable
l-enantiomer [147].

Later on, CZE was also investigated for the separation of lysergic, isolysergic,
and paspalic acid in pharmaceuticals. The method provided a detailed study
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describing the possibilities of CZE-UV as well as of mass spectrometry (MS) using
quadrupole-time-of-flight (Q-TOF) as detection for the determination of these com-
pounds. BGEs and detection conditions were carefully optimized regarding selec-
tivity and analysis time as well as MS compatibility. The method was applied to the
determination of these compounds in samples obtained from different stages of the
manufacturing process such as fermentation broth, solution for precipitation,
raffinate, or the raw product [148].

In these methods, sample treatment was based mainly on solid–liquid extraction
using mixtures of different solvents or by simple dissolution in the case of pharma-
ceuticals. However, recently a new sample treatment based on cloud point extraction
(CPE) prior to CE-UV for determination of ergotamine and ergometrine in cereal
samples has been proposed. CPE is one of the nonpolluting phase separation
techniques using surfactant at concentrations higher than its critical micellar con-
centration (CMC). Analytes are extracted from aqueous solutions into micelles.
Afterward, the change on the experimental conditions that promotes the phase
separation leads to a surfactant-rich phase with concentrated analytes on the one
hand and aqueous solution saturated with surfactant monomers on the other. With
CPE, a preconcentration factor of 22 of total EAs was achieved. This method was
applied to the determination of EA in commercial flour samples, grain samples, and
one cereal-based product for infant feeding [149].

5.2 Liquid Chromatography: Fluorescence Detection

The first attempts for chromatographic separation of EAs were carried out by normal
phase HPLC and UV detection at different wavelengths [24]. Nowadays, reverse
phase-based chromatography is the mode of choice used for the separation of EAs,
mainly using C8 and C18-sorbent, because of limited separation provided by the
normal phase procedures. Separation can be achieved with both isocratic and gradi-
ent mobile phases, and most methods use solvent systems of methanol–water or
acetonitrile/water mixtures with added ammonium hydroxide, ammonium carbonate,
ammonium carbamate, or triethylamine to provide alkaline pH conditions [5, 10].

Currently, FLD has replaced UV detection since most EAs possess native fluo-
rescence, allowing increasing sensitivity and selectivity [8]. Δ9,10-Ergolenes can be
effectively detected with an excitation and detection wavelength of 310 nm and
410 nm, respectively, while Δ8,9-EAs and EAwith a saturated D-ring show maximal
fluorescence with excitation at 272 nm and emission wavelength at 371 nm
[31]. HPLC–FLD provides sufficient chromatographic resolution for the determina-
tion of major EAs, according to EFSA, and their corresponding epimers, with typical
run times around 40–45 min [150, 151]. However, some compounds, such as α- and
β-ergocryptine and similarly α- and β-ergocryptinine, have been reported as single
compounds if they co-elute [10].

In the last decade, different applications of HPLC–FLD for the determination of
EAs in food and feed have been reported, as well as clinical applications, usually
after SPE.
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Examples of food and feed analysis comprise a method for the determination of
ergocornine, α-ergocryptine, ergocristine, ergometrine, and ergotamine and their
C8-isomers in rye flour [133] and ergometrine, ergotamine, ergocristine,
α-ergocryptine, and ergocornine analysis of cereals for animal feed [152], where
extraction was carried out by liquid extraction under acidic conditions, followed by
strong cation exchange (SCX) SPE [133, 152]. Also, 12 main EAs in rye and rye
products were determined by HPLC–FLD, where extraction under basic conditions
was followed by SPE using basic alumina cartridges [19, 150]. Finally, Köppen
et al. reported a HPLC–FLD method to quantitate 12 priority EAs in rye flour and
wheat germ oil. In this case, acidic and alkaline conditions were avoided during
extraction, enabling minimized epimerization. Moreover, an improved SPE
method using SCX material neutralized with sodium (Na + -SCX) was proposed,
where EAs (in their protonated form) were eluted from the column by forming ion
pairs with sodium hexanesulfonate, delaying epimerization for over 96 h
[151]. Recently, a QuEChERS-based extraction has been proposed as sample
treatment for the determination of ergovaline in tall fescue seed and straw followed
by HPLC–FLD determination. This sample treatment (quick, easy, cheap, effec-
tive, rugged, and safe) is developed in two different steps: (i) an extraction/
partitioning step and (ii) a clean-up based on dispersive SPE (d-SPE). In this
work, 14 extraction solvents were tested and ammonium carbonate/acetonitrile
(50/50, v/v) gave the highest and most consistent recovery (91–101 %), with no
necessity of clean-up, eliminating the need for halogenated/chlorinated solvents.
QuEChERS procedure was also compared with SPE using Ergosil, a chemically
modified silica gel designed for the analysis of ergopeptine alkaloids, obtaining
good agreement [153].

In addition to food analysis, Beaulieu et al. used HPLC–FLD to evaluate the
diversity and distribution of EAs in seeds and seedlings and variation in alkaloid
distribution among different morning glories. The compounds determined were
ergobalansine, chanoclavine, lysergol, and ergometrine. In addition,
cycloclavine, festuclavine, ergine, and lysergic acid α-hydroxyethylamide
could be detected. Identification was confirmed by LC–MS. Before analysis,
plant tissues were dried for 3 days at 40 �C and pulverized with 3-mm diam
silica beads. The resulting fine powder was soaked in methanol for 3 days at
4 �C with daily vortexing to extract EAs [42]. Also, Nakamichi et al. measured
methylergometrine (a postnatal uterotonic drug) in human breast milk using
HPLC–FLD. Samples were diluted with McIlvaine buffer containing 5 %
EDTA, and after centrifugation, the supernatant was loaded onto a mixed
mode cation exchange (MCX) SPE cartridge. Recoveries from 93.5 % to
103.0 % were obtained [154].

5.3 Liquid Chromatography: Mass Spectrometry

Although HPLC–FLD is still a significant technique for the determination of EAs,
LC–MS and, more recently, UHPLC–MS are becoming more and more relevant for
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the determination of mycotoxins, due to the MS capacity of an unambiguous
compound identification, especially when high-resolution MS (HRMS) is used.
Most of these methods use acidified acetonitrile/water mixtures as mobile phase in
reverse mode, and equipment capable to perform MS/MS such as triple quadrupole
or, less frequently, ion trap (IT) are commonly employed.

Due to the lack of available standards, most of the reported LC–MS/MS methods
have been developed for the determination of the six major EAs (ergometrine,
ergosine, ergotamine, ergocornine, ergocryptine, and ergocristine) and their
corresponding -inine epimers (ergometrinine, ergotaminine, ergosinine,
ergocristinine, ergocryptinine, and ergocorninine). De Saeger’s group determined
these compounds in different food and feed samples by a method involving extrac-
tion under alkaline conditions and subsequent clean-up by a liquid–liquid
partitioning procedure prior to LC–MS/MS analysis. The optimized sample clean-
up and a careful selection of the sample solvent allowed minimizing the
epimerization of the ergot alkaloids during analysis [132, 155]. This was also the
methodology chosen for the in vitro binding efficacy study of a clay-based myco-
toxin binder toward EAs [156]. Moreover, the same group reported the first molec-
ularly imprinted polymer (MIP) toward these compounds and its application in SPE
for clean-up of barley samples before LC–MS/MS determination. Metergoline was
used as template in the production of suspension polymerized beads used as selective
sorbent, obtaining recoveries between 65 % and 79 % [157].

These six major EAs and four of their respective epimers were determined by
UHPLC–MS/MS in rye and wheat. In this case, the analytes were extracted with
acetonitrile–ammonium carbonate solution and the extract was clean-up with a
commercial SPE column (Mycosep 150 Ergot) [104]. EAs were also determined
in rye-based food products and ergot sclerotia isolated from rye grains by
LC–IT–MS. In this case, neutral alumina-based SPE was selected for clean-up,
avoiding the problems of matrix ions that may easily degrade the performance of
the IT [138]. LC–IT–MS was also used for the determination of ergovaline in
infected tall fescue, after liquid extraction [158].

Concerning ionization sources, electrospray ionization (ESI) has been preferred
above other ionization techniques, such as atmospheric pressure photoionization
(APPI) or atmospheric pressure chemical ionization (APCI), for determination of
mycotoxins. In all these techniques, the sample is ionized at atmospheric pressure
before entering the mass spectrometer, but in different ways: in ESI the ionization is
achieved by application of a voltage to the spray tip; in APPI by reaction of aerosol
droplets with photons produced by a UV lamp; and in APCI by gas-phase
ion–molecule reactions. In a very recent paper, ESI and APPI have been compared
as ionization sources in the LC–MS/MS determination of lysergic acid amide (LSA)
and ergometrine in grass samples, after extraction with methanol [159]. The conclu-
sion of this study was that the performance of APPI and ESI methods was
comparable.

One of the main drawbacks of MS detection is matrix effect (signal suppres-
sion/enhancement) due to matrix component. In an interesting study, the effect of
sample treatment, chromatographic separation, and ionization technique on the
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matrix effect in EA determination was studied [160]. Thus, LLE, d-SPE using
primary secondary amine (PSA), and SPE with different sorbents, such as SCX,
MycoSep Ergot multifunctional, and MIP, were compared. For all the procedures
tested, no clear signal enhancement was noted, although, for the later eluting ergot
alkaloids, MycoSep and SCX cartridges minimized signal suppression. ESI and
APCI were also compared; signal suppression was observed in the ESI mode for
almost all analytes (with ergometrine being the most susceptible) with no signif-
icant difference between ESI+ and ESI-. On the other hand, the use of APCI
resulted in a very high signal enhancement for most of the EA. In the same study,
LC and UHPLC were compared, concluding that UHPLC was more preferred for
the later eluting compounds, as matrix effects were minimized. Other interesting
conclusion of this study is that matrix effect varied significantly not only between
grain types but also to a lesser extent within one grain type. This fact must be
considered when selecting an appropriate blank sample for preparation of a matrix-
matched calibration [160].

Multi-mycotoxin determination including EAs by LC–MS/MS has also been
reported. For instance, 22 mycotoxins (including ergotamine and ergocornine)
were determined in wheat, barley, oats, rye, and maize grain [161] and 26mycotoxins
(including aflatoxins, ochratoxins, fumonisins, trichothecenes, and EAs) in corn,
rice, wheat, almond, peanut, and pistachio products using 13C-isotope-labeled inter-
nal standards for some of the mycotoxins and liquid extraction with acetonitrile/
water [162]. In another work, 63 fungal and bacterial metabolites (including 11 EAs)
were determined in commercial poultry feed from Nigeria. The samples were
extracted in just one step with acidified acetonitrile, and no further clean-up was
required [163]. QuEChERS were the method chosen for the simultaneous determi-
nation of 56 mycotoxins (including 12 EAs) in 343 samples of animal feed
(non-fermented or fermented feeding stuffs, feeding stuff supplements, and complex
compound feeds) by UHPLC–MS/MS, with the aim of estimating absolute myco-
toxin concentrations and animal exposure to mycotoxins. In this case, a Q-Trap mass
spectrometer was used, operating in both ESI+ and ESI- mode. Among other
conclusions, a fairly high co-occurrence was noticed for deoxynivalenol and EAs
[164]. The same MS (Q-Trap) and a simple “dilute and shoot” treatment were
proposed for the LC–MS/MS determination of 295 fungal and bacterial metabolites
(including several EAs). This method was validated in four different food matrices:
apple puree for infants, hazelnuts, maize, and green pepper [165]. Other interesting
studies involving liquid extraction and subsequent semiquantitative determination of
mycotoxins (including EAs) in different samples also with LC–Q-Trap–MS/MS
have been reported by Sulyok’s group; those studies comprise analysis of foods
infected by molds (concluding that EAs occurred in all samples of dark bread/
pastries at low ppb [166]), analysis of grain grown in exceptional climatic conditions
[167], and grain dust from Norwegian grain elevators and compound feed
mills [168].

HRMS, as Orbitrap or time-of-flight (TOF) MS analyzers, is becoming more and
more popular for identification purposes in natural product analysis. In this sense, a
QuEChERS-based extraction and UHPLC-Orbitrap MS with APCI have been
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proposed in the determination of four different groups of mycotoxins (including four
EAs) in cereal-based products [169]. Moreover, HRMS has been used not only for
the determination of major EAs but also for the identification of less studied or novel
EA derivatives. In this regard, recently Arroyo-Manzanares et al. developed a
method based on HRMS and IT-MS technology for the study of the fragmentation
pattern of EAs and established a simple strategy for the identification of novel ergot
alkaloid derivatives [170]. With this approach, besides the six most common ergot
alkaloids and their corresponding epimers, 11 EA derivatives, for which commerical
standards were not available, were identified. The same authors investigated the
suitability of a Q-TOF-MS instrument based on the TripleTOF technology to
provide simultaneously a quantitative analysis of common ergot alkaloids and the
screening, detection, and identification of unexpected or novel EAs in rye samples
[171]. On the other hand, Paulke et al. also used LC–HR–MS/MS for the identifi-
cation of EAs in different “legal highs” derived from Argyreia nervosa, concluding
that LSA/iso-LSA and ergometrine are the main ergot alkaloids present in these
products, although a variety of additional EA could be identified, contributing to the
pharmacological effects of these drugs [172, 173].

5.4 Immunological Methods

Immunological methods rely on the specificity of binding between antibodies and
antigens. Radioimmunoassays (RIAs) and enzyme-linked immunosorbent assays
(ELISAs) have been a rapid and inexpensive alternative for EAs determination.
However, these methods are less specific and less accurate than HPLC–FLD or
LC–MS methods [10].

ELISA has largely replaced RIA, since it has the advantage of not using radio-
isotopes, avoiding the associated disposal problems, with no sacrifice in sensitivity.
Early assays used polyclonal antibodies, which recognized peptide EAs having a
phenylalanine moiety, such as ergotamine, ergosine, and ergocristine [24, 174]. Nev-
ertheless, these polyclonal antibodies were replaced by monoclonal antibodies [56,
175, 176] that provided the potential advantage of being more specific for the target
hapten, since specific anti-target antibody producing hybridoma cell lines could be
selected [13]. Monoclonal antibodies recognized a much wider range of EAs, any
with an ergoline ring, since they hinder the antibody binding to the lysergic acid ring
structure. However, many peptide EAs with large groups attached to the lysergic
acid (ergocryptine, ergocristine, ergocornine, and ergotamine) are not amenable to
ELISA [10, 24]. Molloy et al. compared monoclonal and polyclonal antibodies for
determination of dihydroergosine in sorghum ergot and both assays were capable of
detecting dihydroergosine concentrations above 0.01 mg/kg [56].

ELISA methods have frequently been used to determine the total concentration of
EAs produced by endophytic fungi in fescue grass forage [175, 177, 178]. Sample
preparation was based mainly on drying and grinding before diluting with
phosphate-buffered saline with Tween 20. This was allowed to stand and the liquid
portion of the sample was analyzed by ELISA [176]. Different commercial ELISA
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kits are available, providing LOD around 2 μg/kg [5]. These kits have been applied
for the determination of total EAs in tall fescue [179] and in urine samples from
lambs fed with tall fescue [180]. However, ELISA methods are not specific for
individual EA and gave only an estimation of total EA content. Thus, when
quantification of individual EA is required, analysis by HPLC–FLD or LC–MS is
mandatory.

Immunological methods have been widely used to determine LSD in biological
fluids, and commercial assays are also available [181]. Unfortunately, they are
subject to cross-reactivity with structurally related and unrelated compounds poten-
tially yielding false-positive results. So, the best practice following a positive LSD
involves confirmation with MS [182].

5.5 Miscellaneous

Besides the liquid separation techniques and immunoassays previously commented,
other techniques have been reported for EA determination.

Regarding separation techniques, gas chromatography (GC) was used for the
analysis of low molecular weight clavine-type alkaloids and simple lysergic acid
derivatives lacking hydrophilic functional groups [183–185], and it has mainly been
applied in pharmaceutical and forensic areas. Nevertheless, this technique was not
very useful for the determination of peptide EAs because of their high molar mass,
low vapor tension, and heat instability, decomposing in a hot injector (225–300 �C)
[13, 186]. Thus, most of the applications of GC–MS were published during the
1990s and concern the monitoring of LSD, proposing several derivatization strate-
gies in order to improve volatility and stability and to reduce the peak tailing
[187–190]. In food analysis, GC–MS was used for confirmation of identity of the
alkaloids in grain foods [191], while Franzmann et al. investigated a method based
on the determination of ricinoleic acid (as a characteristic components of ergot) by
GC–FLD to estimate the distribution of EAs (determined by HPLC–FLD) in differ-
ent milling fractions [53].

Thin layer chromatography (TLC) has also been proposed for the determination
of naturally occurring EAs in extracts of ergots, grasses, grains, and feeds [24],
although this technique has been clearly replaced by LC. TLC on silica gel was used
to identify EAs (agroclavine-I and epoxyagroclavine I and their N–N dimers, such as
dimer of epoxyagroclavine I and the mixed dimer of epoxyagroclavine I and
agroclavine-I) in Penicillium fungi [37], and different metabolites produced by
Penicillium fungi isolated from cheese-making and meat-processing plants included
EAs (festuclavine and its isomers pyroclavin, costaclavin, and epicostaclavin)
[192]. EAs were detected by UVabsorbance after spraying the plates with Ehrlich’s
reagent, while dimers were detected by luminescence in UV light at 366 nm and
positive staining by Dragendorff’s reagent.

Another chromatographic method, such as supercritical fluid chromatography
with UV detection at 280 nm or electron impact MS, has also been applied to the
identification of a number of clavine alkaloids from Claviceps purpurea [193].
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Also, Stahl et al. proposed the use of hybrid techniques such as capillary size
exclusion chromatography performed under pressurized capillary electrochroma-
tography (pCEC) on-line with MS for the separation of a crude extract of ergot
fungus (secalis cornuti). This set up was compared with other one- and
two-dimensional configurations of capillary HPLC [194].

Spectroscopic techniques have also been applied to the detection and quantifica-
tion of EA. Thus, early methods for EA determination were based on colorimetric
measures, where EAs reacted with p-dimethylaminobenzaldehyde under acid con-
ditions, yielding an intensely colored blue solution, which could be measured at
580 nm. Other color reactions like addition of ferric chloride or sodium nitrite and
combinations were also proposed [24]. Near-infrared (NIR) spectroscopy was also
proposed to determine total EA content on tall fescue [195], and more recently, a
method based on NIR hyperspectral imaging and multivariate image analysis has
been reported for quantification of ergot bodies in cereals [196]. This method was
intended for use in cereal conveyor belt systems at an industrial level.

6 Conclusion

Since the times of Holy Fire, EAs have been an interesting family of compounds,
which have roused the interest of the scientific community. These compounds have,
on the one hand, valuable pharmacological properties based on their interactions
with neurotransmitter receptors on the cells. However, on the other hand, some
natural and semisynthetic EAs also possess serious and unpredictable side effects.
So, they are considered toxic compounds and have been framed as mycotoxins.
Regarding their determination, a wide range of methods have been proposed in
pharmaceutical, forensic, and food areas, being those based on liquid chromatogra-
phy the most popular ones. LC–MS/MS deserves a special mention, as the recent
advances in this technique have allowed not only an accurate quantification of major
EAs in complex matrices but also the elucidation and identification of novel EA, not
described before. EAs are still a challenge, and the elucidation of their biosynthesis
pathway is still of great interest, especially because of their broad range of
pharmaceutical uses.
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Abstract
Lanostanes are a group of tetracyclic triterpenoids derived from lanosterol. They
have relevant biological and pharmacological properties, such as cytotoxicity,
immunomodulation, and anti-inflammation. Some of them also have interesting
effects on metabolism and anti-infectious properties. This review will compile
chemical data, biological effects, and mechanisms on the most relevant
lanostanoids isolated from fungi, such as those from Ganoderma lucidum,
Poria cocos, Laetiporus sulphureus, Inonotus obliquus, Antrodia camphorata,
Daedalea dickinsii, and other.
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List of Abbreviations
ABCB ATP-binding cassette
AIF Apoptosis-inducing factor
AKT Protein kinase B
AMPK AMP-activated kinase
C/EBPα CCAAT-enhancer-binding protein-α
CCAAT Cytosine-cytosine-adenosine-adenosine-thymidine
cdk4 Cyclin D kinase 4
COX Cyclooxygenase
CYP3A4 Cytochrome P450 3A4
DBD DNA-binding domain
DMBA 7,12-Dimethylbenz[a]anthracene
EBV-EA Epstein-Barr virus early antigen
ERK Erk Extracellular-regulated kinase
FXR Farnesoid X receptor
GLUT4 Glucose transporter type 4
GPDH Glycerol-3-phosphate dehydrogenase
HIV Human immunodeficiency virus
HO-1 Heme-oxygenase-1
hPXR Human pregnane X receptor
IC50 Inhibitory concentration 50
IFN-γ Interferon-γ
IL Interleukin
iNOS Inducible nitric oxide synthase
IRS-1 Insulin receptor substrate-1
IκBα Inhibitor of κBα
JAK Janus kinase
JNK c-Jun N-terminal kinase
LBD Ligand-binding domain
LPS Lipopolysaccharide
MDD Mean day of death
MIC Minimum inhibitory concentration
MMP-9 Matrix metalloproteinase-9
NF-κB Nuclear factor-κB
NK Natural killer
NO Nitric oxide
Nrf2 Nuclear factor (erythroid-derived 2)-like 2
PI3K Phosphatidylinositol-4,5-bisphosphate 3-kinase
PLA2 Phospholipase A2

PARP Poly(ADP-ribose)-polymerase
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PPAR-γ Peroxisome proliferator-activated receptor-γ
RXR Retinoid X receptor
SREBP-1c Sterol regulatory element-binding protein-1c
STAT3 Signal transducer and activator of transcription 3
T2DM Type 2 diabetes mellitus
TNFα Tumor necrosis factor-α
TPA 12-O-Tetradecanoylphorbol-13-acetate
uPA Urokinase-type plasminogen activator

1 Introduction

Lanostanes are a group of tetracyclic triterpenoids derived from lanosterol. They
have a tetracyclic skeleton with 30 carbons and include a gem-dimethyl group in C4.
There are other compounds with similar structures, such as dammaranes,
tirucallanes, euphanes, and cucurbitanes, but they are usually found in the plant
kingdom. In the case of fungi, the compounds known as lanostanes are the most
common of the possible triterpenes found in different fungi species [1–3].

Lanosterol is the previous metabolite synthetized by cyclization of squalene-2,3-
epoxide (1). This compound suffers a multiple cyclization to give a chair-boat-chair-
boat conformation in the carbonium ion intermediate metabolite (2), which after proton
elimination is transformed to protosterol (3), and a later backbone rearrangement leads
to give the metabolites derived from lanostane (4) and cycloartane (5), the former
intermediates in the metabolism of lanosterols (Fig. 1). Different ways of cyclization
and rearrangements give other structural compounds related to lanostanes, such as
tirucallanes and euphanes as the principal groups [1, 4, 5].

In this chapter, we cover the reports on the lanostanes and closely related
compounds obtained from fungi, with some relevant pharmacological interest. In
addition to lanostane (4) derivatives, other common lanostane-related compounds
are the members of C-31 group, called eburicanes (6) and their seco-derivatives,
nor-3,4-seco-lanostanes (7) and nor-3,4-seco-eburicanes (8), respectively [2–5].

The presence of tetracyclic triterpenes in nature is less notorious than that of
pentacyclic derivatives in the kingdom Plantae. However, the presence of
lanostanoids (tetracyclic triterpenes) in fungi is more relevant than that of its
pentacyclic derivatives. The Polyporaceae (Basidiomycetes class) is the family in
which the largest number of lanostanes has been isolated. In addition, only a small
number of tetracyclic triterpenes (fusidanes and protostanes) have been described in
the parent class Ascomycetes [3].

Different complete reviews on lanostanoids have been published in the last
decade. Some of them are included in the complete revision of triterpenes published
by Connolly and Hill, who have systematically reviewed the triterpenoids isolated
since 1989–2015 [6–29]. However, other more specific studies were carried out
focusing only in this kind of triterpenes, such as the reviews of Giner-Larza et al. [2]
on lanostanoids and the reviews of Ríos et al. [30] and Popović et al. [31].
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Since the year 1990, the most relevant species of fungi studied were Albatrellus
flettii [32], Antrodia camphorata [33–37], A. cinnamomea [38], Ascotricha sp. [39],
Ascotricha amphitricha [40, 41], Astraeus hygrometricus [42], A. odoratus [43],
A. pteridis [44], Coriolellus malicola [45], Daedalea dickinsii [46], Elfvingia
applanata [47], Fomes officinalis [48–50], Fomitopsis nigra [51], F. pinicola
[52–54], F. rosea [55], F. spraguei [56], Fuscoporia oblique [57], Ganoderma
applanatum [58–60], G. colossum [61, 62], G. concinna [63], G. lucidum [64–84],
G. hainanense [85], G. lingzhi [86], G. orbiforme [87], G. resinaceum [88],

Fig. 1 Principal groups of lanostanoids
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G. sinense [89–92], G. theaecolum [93], Hebeloma senescens [94], H. versipelle
[95], Hypocrella sp. [96], Inonotus obliquus [97–105], Jahnoporus hirtus [32],
Laetiporus sulphureus [106], L. versisporus [107], Naematoloma fasciculare [108,
109], Phellinus gilvus [110], P. punctatus [101], Piptoporus betulinus [111], Poria
cocos [112–124], Scleroderma citrinum [125], Spongiporus leucomallellus [80],
Stropharia aeruginosa [126, 127], Tomophagus cattienensis [128], and Tyromyces
fissilis [129, 130].

2 Pharmacological Interest of Lanostanoids

The species with the highest number of isolated lanostanoids are Ganoderma
lucidum, Inonotus obliquus, and Poria cocos. With respect to their potentiality as
medicinal agents, their effects on metabolic disorders such as diabetes mellitus and
hyperlipidemias can be of high interest as well as the relative pharmacological
potency of some of them. Other compounds have relevant anti-inflammatory and
anticancer activities, with high interest because of the mechanisms implicated. Their
role as anti-infectious agents depends on the effects of some specific compounds.

2.1 Lanostanoids in Diabetes Mellitus and its Associated
Undesirable Effects

Type 2 Diabetes Mellitus (T2DM) is a metabolic disease characterized by a persis-
tent increase in blood glucose above normal values (hyperglycemia) due to a
progressive insulin secretory defect on the background of insulin resistance
[131]. Some negative effects of chronic hyperglycemia involve damage in eyes,
kidneys, nerves, heart, and blood vessels. They are associated with other cardiovas-
cular risk factors such as hypertension, overweight, and dyslipidemia [132]. Devel-
opment of T2DM can be prevented or at least delayed in patients with impaired
glucose tolerance by implementing lifestyle changes [133] or the use of therapeutic
agents [134–136]. Some mushrooms have been used and studied for their potential
hypoglycemic effect: it is the case of the edible mushroom maitake (Grifola
frondosa). However, in this case the active compounds were identified as poly-
saccharides [137]. In the case of Phellinus gilvus, the hypoglycemic activity of the
crude extract and four isolated lanostanoids were tested, but the results were not
promising [110]. The studies focused on specific targets to avoid the negative effects
of diabetes are of high interest, such as the enzymes aldose reductase and
α-glucosidase, and the glucose transporter type 4 (GLUT4).

2.1.1 Effect on Aldose Reductase
Aldose reductase catalyzes the reduction of glucose to sorbitol, the first step in
polyol pathway of glucose metabolism [138]. Aldose reductase is involved in the
pathogenesis of diabetic complications. Its inhibitors could prevent eye and nerve
damage in people with diabetes [139]. In this case, some lanostanes from fungi have
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shown capacity for inhibiting aldose reductase, avoiding the metabolism of glucose
to sorbitol, which is increased in chronic hyperglycemia. The accumulation of
sorbitol in lens capsule is in part responsible of diabetic cataract formation, together
the osmotic imbalance, alteration of balance sodium/potassium, and the glutathione
decrease [139].

Fatmawati et al. [67] isolated ganoderic acid Df (9), from the fruiting body of
Ganoderma lucidum, which was assayed as a potential inhibitor of human aldose
reductase and showed in vitro activity with an inhibitory concentration 50 (IC50) of
22.8 μM. In this report, they demonstrated that the presence of a carboxyl group in
the side chain could be essential for eliciting inhibitory activity because its methyl
ester was less active (IC50 > 200 μM) [67].

To ratify this hypothesis, the same authors screened 17 lanostane-type
triterpenoids, previously isolated from the same source in order to establish a
structure-activity relationship. However, only two compounds had relevant effects:
ganoderic acid C2 (10) and ganoderenic acid A (11), which showed IC50 values of
43.8 and 119.2 μM, respectively. Both compounds showed less activity than the
previous isolated compound.

After the evaluation of the results of the active compounds in vitro on human
recombinant aldose reductase, they established that the OH substituent at C-11 is an
important feature and the carboxylic group in the side chain (C-26) is essential for
the recognition of aldose reductase inhibitory activity. In addition, a double bond
between C-20 and C-22 improves the inhibitory activity. Hydroxyl groups in C-3,
C-7, and C-15 are also important for the inhibitory activity. The authors conclude
that the basic structure for future design of active molecules could be that represented
in Fig. 2 [68]. They arrived to this idea after comparing the effects of pairs of
compounds. However, the most relevant compounds are 9 and 10 and none of them

Fig. 2 Active lanostanoids as aldose reductase inhibitors
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have C-20 and C-22 double bond. Only, the free carboxylic acid at C-26 seems to be
essential for activity (Fig. 2).

2.1.2 Effect on a-Glucosidase
The enzyme α-glucosidase breaks down starch and disaccharides to glucose. It is
located in the brush border of the small intestine. A specific mechanism for treating
diabetes is the inhibition of this enzyme, as acarbose does [131]. Different natural
products have been studied in this sense; however, the number of compounds with
high interest is reduced. Ying et al. [97] screened eight compounds isolated from the
submerged culture of chaga mushroom, Inonotus obliquus, and compared their
activity versus the standard inhibitor acarbose. Four of them are lanostanoids, and
the higher activity was obtained with inotolactone A (12) and inotolactone B (13),
both with IC50 values of 0.24 μM, whereas acarbose gave a value of 0.46 μM. These
values seem to be of interest for studying their potentiality for the treatment of
diabetes. The active lanostanes (12 and 13) were the unique with an α,β-dimethyl,
α,β-unsaturated δ-lactone side-chain moiety, data that could be of interest for future
studies of these compounds such as α-glucosidase inhibitors.

In a similar study, Fatmawati et al. [86] screened 19 lanostane-type triterpenoids
isolated from the fruiting body ofGanoderma lingzhi in order to establish a chemical
structure-inhibitory activity relationship. However, none of them showed remarkable
activity: the most active of them had an IC50 value of 110.1 μM (ganoderol B, 14).
The rest of the active compounds showed IC50 values between 207.8 μM
(ganoderiol F, 15) and 540.3 μM, whereas 12 compounds had IC50 values
>600 μM. Lanostane 9 showed similar limited effects than in the aldose reductase
test, with a modest activity (IC50 of 218.8 μM). As in the case commented above, the
authors established a chemical structure-activity relationship, with similar results: a
hydroxyl group in C-3 enhances the inhibitory activity and the double bond at the
side chain is necessary for inhibition (C-23/C-24 for ganoderma alcohols or C-20/C-
22 for ganoderma acids). In the case of ganoderma acids, the presence of a hydroxyl
at C-11 enhances the inhibitory activity. However, as in the case of aldose reductase,
these features did not have a great relevance in the activity or potency and a clear
relationship cannot be established, especially when data are compared with values
obtained for compounds 12 and 13 (Fig. 3).

2.1.3 Effect on Glucose Transporter Type 4
Insulin regulates and stimulates the transport of glucose into peripheral tissues
through the insulin-regulated GLUT4 found primarily in adipose tissues and striated
muscle. Insulin facilitates glucose uptake through the stimulation, translocation, and
redistribution of GLUT4 from specific intracellular compartments to plasma [140].

In traditional Chinese medicine, Poria cocos is used to treat hyperglycemic
disorders. However, the number of studies in these subjects is quite limited. In
order to investigate potential antidiabetic agents, Huang et al. [114] studied the
effect on glucose uptake and the possible mechanism of six lanostane-type
triterpenoids isolated from Poria cocos. Among them, pachymic acid (16) had the
best effect on glucose uptake in 3T3-L1 adipocytes. In fact, 16 induced an increase in
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GLUT4 expression at both the mRNA and protein levels, without affecting GLUT1,
which facilitates the transport of glucose across the plasma membranes of mamma-
lian cells. This transporter mediates basal glucose transport in various tissues [141],
whereas GLUT4 is expressed in insulin-responsive tissues, including adipose and
skeletal muscle cells [141, 142]. Moreover, 16 also increased the phosphorylation of
insulin receptor substrate (IRS)-1, protein kinase B (AKT), and AMP-activated
kinase (AMPK). These effects are completely blocked by phosphatidylinositol-
4,5-bisphosphate 3-kinase (PI3K) and AMPK inhibitors, demonstrating that 16
exerts its effects through these kinases. Finally, 16 also induces the triglyceride
accumulation and inhibits lipolysis in differentiated adipocytes (3 T3-L1 cells). In
conclusion, the hypoglycemic activity of P. cocos is due to the insulin-like activity of
its lanostanes, especially compound 16, which stimulates glucose uptake, GLUT4

Fig. 3 Active lanostanoids as α-glucosidase inhibitors

Fig. 4 Pachymic acid increases GLUT4 expression

938 J.-L. Ríos and I. Andújar



gene expression, and translocation and promotes triglyceride accumulation in adi-
pocytes (Fig. 4).

2.1.4 Promotion of Adipocyte Differentiation
Dehydrotrametenolic acid (17), isolated from Poria cocos, induces adipose conver-
sion, activates peroxisome proliferator-activated receptor (PPAR)-γ in vitro, and
reduces hyperglycemia in animal models of noninsulin-dependent diabetes mellitus
[143]. This lanostane acts as an insulin sensitizer in vivo and promotes adipocyte
differentiation in vitro. Two possible mechanisms for the induction of adipose
conversion are suggested, one is the activation of PPARγ and another is the activa-
tion of retinoid X receptor (RXR), both of which act as insulin sensitizers.

PPARγ plays an important role in lipid metabolism but also in other pathways
such as inflammation, immunity, and glucose homeostasis. It is induced during
differentiation of preadipocytes into adipocytes and can directly modulate the
expression of genes involved in glucose homeostasis, such as GLUT4 [144]. The
conclusion of Sato’s study [143] indicates that 17 acts as an insulin sensitizer by
activating PPARγ after binding; however, it is not clear if 17 binds directly to
PPARγ.

2.2 Lanostanoids in Prevention and Treatment
of Hyperlipidemias

Different mechanisms have been described for treatment of hyperlipidemias. In the
case of lanostanes, different authors have studied three principal mechanisms. The
adipocyte differentiation and adipogenesis inhibition could be relevant ways for
decreasing hyperlipidemias. On the other hand, lanostanoids can be of interest for
searching new therapeutic agents for the treatment of cholestasis and dyslipidemias
as farnesoid X receptor agonists.

2.2.1 Effects on Adipocyte Differentiation and Adipogenesis Inhibition
As commented above, lanostane 17 promotes adipocyte differentiation in vitro
[143], affecting both adipose conversion and insulin sensitization through PPARγ.
This nuclear receptor is involved in the adipocyte differentiation and stimulates the
expression of several genes critical to adipogenesis. Lanostane-type triterpenes, such
as 17, but 16 also, promote adipose conversion of ST 13 preadipose cells
in vitro [143].

In this same way, Lee et al. [71, 72] isolated a series of new lanostane triterpenes
from the fruiting bodies of Ganoderma lucidum and studied their effect on triglyc-
eride accumulation during the differentiation of 3 T3-L1 preadipocytes. This effect is
considered as an indicator of adipocyte differentiation. Of them, t-butyl lucidenate B
(18) at 80 μM reduced the triglyceride accumulation by 72% with respect to the
nontreated group. In addition, 18 suppressed the glycerol-3-phosphate
dehydrogenase (GPDH) activity in the cells and the gene expressions of PPARγ,
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CCAAT-enhancer-binding protein-α (C/EBPα), and sterol regulatory element-
binding protein-1c (SREBP-1c) in a dose-dependent manner during differentiation
[71]. They also tested 18 isolated compounds from the same source, and butyl
lucidenate N (19) showed the highest inhibition of lipid droplet formation (56 % at
40 μg/mL). It reduced in a dose-dependent manner the accumulation of lipid droplets
without toxicity against the cells, whereas other compounds showed toxicity at
concentrations higher than 40 μg/mL. Lanostane 19 also suppressed GPDH activity
in a similar way to lipid accumulation. This cytosolic enzyme plays a central role in
the triglyceride synthesis, and for that reason, the effect of 19 on GPDH activity
could justify the adipocyte differentiation in 3 T3-L1 cells [72].

In a complementary study, the same authors [73] tested four lanostane triterpenes
bearing a butyl ester side chain, such as the active compounds from the previous
research, as potential inhibitors of adipogenesis. They demonstrated inhibitory
effects on adipogenesis in 3T3-L1 cells and determined the mechanism of action
behind this effect on two of the lanostanes studied (19 and butyl ganoderate A (20).
Both of them reduced the mRNA and protein expression levels of SREBP-1c with
respect to the untreated control and suppressed the mRNA expression levels of fatty
acid synthase and acetyl-CoA carboxylase [73]. In summary, lanostane bearing a
butyl ester side chain showed remarkable inhibition on adipogenesis in 3T3-L1 cells,
indicating that the ester side chain influences the inhibitory potential of lanostanes
during adipogenesis. Moreover, these results demonstrated that this inhibition is
mediated in part through downregulation of the adipogenic transcription factor
SREBP-1c and its target genes, such as fatty acid synthase and acetyl-CoA carbox-
ylase [71–73] (Fig. 5).

Fig. 5 Lanostanoids as promoters of adipocyte differentiation
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2.2.2 Lanostanoids as Farnesoid X Receptor Agonist
The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor
superfamily. Like other nuclear receptors, it comprises a variable modular region,
a conserved DNA-binding domain (DBD) and a ligand-binding domain (LBD). As a
part of its physiological functions, FXR can act as a monomer stimulating the
expression of GLUT4, as a homodimer, or preferentially with its partner the nuclear
receptor 9-cis- RXR, forming an FXR/RXR heterodimer. Upon ligand binding, the
receptor connects to DNA, which results either in an upregulation or repression of
gene transcription [69, 145]. FXR is expressed in the liver, intestine, kidney, and
adipose tissue and is considered a key gene involved in the maintenance of choles-
terol and bile acid homeostasis. Its ligands are currently under clinical investigation
for the treatment of cholestasis, dyslipidemic disorders, and conditions of insulin
resistance in T2DM and nonalcoholic steatohepatitis [146]. In this way, Grienke
et al. [69] carried out a virtual screening of 25 Ganoderma lanostanes and obtained
positive results of some of them as putative FXR ligands. The in silico data were then
pharmacologically investigated and demonstrated that five lanostanes out of 25 sec-
ondary metabolites from G. lucidum, dose-dependently induced FXR in the low
micromolar range in a reporter gene assay. They were 15, lucidumol A (21),
ganoderic acid TR (22), and ganodermanontriol (23). After additional
pharmacophore profiling and molecular docking studies, the first structure-activity
relationship of the investigated lanostanes was established. Data of the putative
binding mode by molecular docking studies revealed crucial hydrogen bond inter-
actions between the contemplated structure and Arg331 in the nuclear receptor
backbone [69] (Fig. 6).

Fig. 6 Lanostanoids as farnesoid X receptor agonists
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2.3 Anti-inflammatory Properties

Extracellular phospholipase A2 (PLA2) is a key anti-inflammatory target since it
plays a pivotal role on chronic autoimmune diseases such as psoriasis, rheumatoid
arthritis, and uveitis, among others. Its pathogenic mechanism involves phospholipid
hydrolysis, which directly damages cellular membranes and its participation in the
synthesis of the eicosanoid-precursor arachidonic acid, responsible for inflammatory
response [147]. PLA2 inactivation requires a bulk tetracyclic structure and a side
alkyl carboxylic chain that blocks the catalytic site of the enzyme. The lanostanes
isolated from different fungi have been reported as PLA2 inhibitors in in vitro and
in vivo models. In this sense, the hydroalcoholic extract of Poria cocos was
demonstrated to be active in vivo against acute, chronic, and delayed hypersensitiv-
ity tests in mice [2, 124]. The inhibition of PLA2 activity is involved in the
mechanism of action of these lanostanes. Two lanostane derivatives were described
as responsible for the anti-inflammatory effects: 16 and dehydrotumulosic acid (24)
[123]. A study on the anti-PLA2 activity of triterpenoids against three different forms
of PLA2 was performed by Jain et al. [148] in which they established that
lanostanoids have a novel pharmacophore that interacts with the catalytic site of
the enzyme. These results were compared with those of the related lanostane
derivatives from Ganoderma lucidum and demonstrated that ganoderic acids
presented different results depending on the substitution pattern of the rings. So,
ganoderic acids R (25) and S (26) were active against pig pancreas PLA2, while
ganoderic acid T (27) was able to inhibit all the enzymes regardless of the origin.

Other in vitro studies have gone more in depth in the mechanism of action of
lanostane-type triterpenoids form Poria cocos in different cell lines. In this sense, Li
et al. [149] recently described that 16 attenuates lipopolysaccharide (LPS)-induced
pro-inflammatory cytokine secretion, such as tumor necrosis factor (TNF)-α, inter-
leukin (IL)-1, and IL-6, in H9c2 cardiomyocytes. Furthermore, in this same cells, 16
treatment also prevented the expression of caspases 3, 8, and 9 and the phosphory-
lations of extracellular-regulated kinase (Erk)1/2 and p38, therefore preventing the
apoptotic response in these cells.

Ganoderic acids from Ganoderma lucidum also have anti-inflammatory proper-
ties. They have been studied in an acute model of edema in mice and observed that
their anti-inflammatory activity was comparable of even better than that of the anti-
inflammatory drug indomethacin [78]. The mechanism of action of these ganoderic
acids has been studied in vitro by different authors in RAW 264.7 macrophages. As
these studies highlight, ganoderic acids inhibit LPS-induced nitric oxide
(NO) production, through the inhibition of the inducible nitric oxide synthase
(iNOS) [64, 66]. This anti-inflammatory effect was accompanied by a reduction in
LPS-induced TNF-α and IL-6 secretion [64] and the inhibition of cyclooxygenase
(COX)-2 [64, 66]. Choi et al. [64] postulate that this anti-inflammatory effect
generated by ganoderic acid occurs through the induction of heme-oxygenase
(HO)-1 expression via the PI3K/AKT-nuclear factor (erythroid-derived 2)-like
2 (Nrf2) pathway, since the inhibition of this pathway abrogated the anti-
inflammatory effect of the lanostane triterpenoids. The active compounds were 15,

942 J.-L. Ríos and I. Andújar



19, butyl lucidenate E2 (28), butyl lucidenate D2 (29), butyl lucidenate P (30), butyl
lucidenate Q (31), methyl ganoderate J (32), butyl lucidenate N (33), methyl
ganoderate H (34), lucidumol B (35), ganodermanondiol (36), methyl lucidenate N
(37), and methyl lucidenate A (38). Of them, the best activity as inhibitor of NO
production was 19 with an IC50 value of 4.5 μM.

As a final remark on the anti-inflammatory properties of lanostanes, it is worth
mentioning that other studies have been carried out to study lanostanes triterpenes
acids in other species, such as Fomitopsis pinicola: fomitopinic acids A (39) and B
(40), and their glycosides named fomitosides A-J [54], Piptoporus betulinus:
polyporenic acids A (41) and C (42) and their derivatives [111] and Antrodia
camphorate nonidentified compounds [37], and all of them describe similar mech-
anisms of action for these type of compounds: inhibition of COX-1 and COX-2 in a
prostaglandin biosynthesis assay in vitro [54] and inhibition of reactive oxygen
species production in peripheral human neutrophils and mononuclear cells [37]
(Fig. 7).

2.4 Potentiality as Anticancer Agents

Before 2013, the majority of lanostanoids isolated from fungi with potential anti-
cancer properties were reviewed by Popović et al. [31]. For that reason, we included
here the most recent studies as well as the most relevant compounds described until
2015. There are two principal groups of lanostanoids studied as potential anticancer
agents. They are the lanostanes isolated from different species of Ganoderma and
those isolated from Poria cocos.

2.4.1 Lanostanoids Isolated from Species of Ganoderma
There is currently a great interest in screening for products that enhance the immune
system and with antitumor properties. Compounds in Ganoderma spp., in particular
in G. lucidum, are standing out as important chemotherapeutic candidates. The
bioactive compounds in G. lucidum are polysaccharides, which stimulate the
immune system, and ganoderic acids, a group of lanostane triterpenes, which have
demonstrated cytotoxicity against different cancer cells [30]. In this sense, Tang
et al. [79] demonstrated that ganoderic acid T (27) exerts a dose-dependent cytotoxic
activity on several human carcinoma cell lines, being less toxic to normal human cell
lines. These authors described the mechanism of action of this cytotoxic effect in the
cell line 95-D, and they found that 27 markedly inhibited proliferation by inducing
apoptosis and cell cycle arrest at G1 phase through a mechanism that involved the
reduction of mitochondria membrane potential and release of cytochrome
C. Moreover, they observed an increase in the expression of pro-apoptotic p53, a
decrease in Bcl-2/Bax ratio and caspase-3 activation. Their results demonstrate that
27 induces apoptosis in metastatic lung tumor cells through a mechanism mediated
by mitochondrial dysfunction and p53 expression. In this same study, this
anticarcinogenic effect was demonstrated in vivo, because 27 (25 mg/kg) suppressed
the growth of human solid tumor in athymic mice.
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The results of Tang et al. [79] are consistent with those published one year after by
Wang et al. [76], who demonstrate that ganoderic acid Me (43) purified from
G. lucidum mycelia is effective in increasing the immune function, inhibiting
tumor growth and metastasis in an in vivo model of Lewis lung carcinoma in
C57BL/6 mice. The increase in the immune function was evidenced by an increase
in the expression of T helper type 1 cytokines, such as IL-2 and interferon (IFN)-γ,
and an increase in the cytotoxic activity of natural killer (NK) cells, induced by 43.
These authors also describe an increase in the protein expression of nuclear factor
(NF)-κB in this model; however, other authors have described an opposite regulation
of NF-κB, because they describe that this transcription factor is inhibited by
ganoderic acids in vitro [75, 150]. In particular, Jiang et al. [75] studied the effect
of different ganoderic acids in growth and invasive behavior of breast cancer cells
and found that ganoderic acids A (44) and H (45) suppressed both events in
MDA-MB-231 cells. These authors postulate that these lanostane-type triterpenes
act through the inhibition of transcription factors AP-1 and NF-κB, therefore
resulting in the downregulation of cyclin D kinase 4 (cdk4) and the suppression of
secretion of urokinase-type plasminogen activator (uPA), respectively.

Lanostane 44 has also been studied as a sensitizer to chemopreventive treatments,
such as cisplatin, in HepG2 cells [150]. As demonstrated by the authors, 44 inhibits
both constitutively active and IL-6-induced activation of signal transducer and
activator of transcription 3 (STAT3) activity through a mechanism that involves
the inhibition of Janus kinase (JAK)-1 and JAK2. This inhibition enhances the
sensitivity to cell death induction caused by cisplatin, reinforcing the idea that this
lanostane-type triterpene could be a good candidate for combined chemotherapy.
Moreover, Liu et al. [151] in a recent study demonstrated that ganoderenic acid B
(46) have an ATP-binding cassette (ABCB)1-mediated multidrug resistance reversal
properties. These authors demonstrated that 46 reversed ABCB1-mediated
multidrug resistance of HepG2/ADM cells to doxorubicin, vincristine, and pacli-
taxel, enhancing intracellular accumulation of rhodamine-123 through inhibition of
its efflux, and reversed the resistance of ABCB1-overexpressing MCF-7/ADR cells
to doxorubicin.

Other studies carried out by other authors also demonstrate the in vivo
anticarcinogenic effect of other compounds isolated from G. lucidum, such as
lucidenic acids. In particular, Akihisa et al. [78] demonstrated that
20-hydroxylucidenic acid N (47) at a dose of 85 nM (topical application) suppresses
the incidence of papilloma-bearing mice and the average number of papillomas per
mouse in a two-stage carcinogenesis mouse-skin model.

From the species Ganoderma sinense, six compounds have been isolated and
tested as selective cytotoxic compounds and for their ability to induce human
pregnane X receptor (hPXR)-mediated cytochrome P450 3A4 (CYP3A4) expres-
sion. Of them, ganoderic acid Jc (48) showed selective inhibitory activity against
MCF-7 cells with an IC50 value of 8.30 μM, whereas ganoderiol E (49) had an IC50

value of 6.35 μM against HL-60 cells. The other compounds had no activity at
concentrations of 40 μM and higher [89]. As inductor of hPXR-mediated CYP3A4
expression, the active compounds were ganodermatetraol (50), ganolucitade F (51),
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ganolucidic acids B (52), and C (53). Altogether, the studies carried out on the
different compounds found inG. lucidum andG. sinense give a scientific rationale to
its use in traditional oriental medicine.

2.4.2 Lanostanes from Poria cocos
The alcoholic extract of Poria cocos is rich in lanostane triterpenoids that exert
antitumor properties in vitro such as DNA polymerase inhibition [115, 121] and
inhibition of DNA topoisomerase II [121], showing in vivo anticancer effects in
different experimental models, such as skin tumor formation in mouse following
initiation with 7,12-dimethylbenz[a]anthracene (DMBA) [78, 117] and Epstein-Barr
virus early antigen (EBV-EA) activation in Raji cells [78, 117, 122]. In vitro,
lanostanoids from P. cocos have demonstrated cytotoxic activity in different cancer
cell lines such as human leukemia HL-60 cells [113, 117, 122], melanoma CRL1579
[117] human lung cancer cell line A549, and human prostate cancer cell line DU145
[118, 152], among others. A few studies have gone in depth in the determination of
the antitumor mechanism of action of these compounds. Ling et al. [152] studied the
mechanism by which polyporenic acid C (42) reduces cell proliferation of human
lung cancer A549 cells. From their results, it can be concluded that 42 induces
apoptosis via activation of caspase-8, which in turn cleaves caspase-3 and poly
(ADP-ribose)-polymerase (PARP) with no disruption of the mitochondrial mem-
brane potential, which suggests that the induction of apoptosis which suggests that
the induction of apoptosis is mediated by the death receptor. Moreover, they describe
an enhanced p53 activation and a suppression of PI3-kinase/Akt signaling pathway.

More recently, Kikuchi et al. [113] described a selective mechanism of action of a
different lanostane-type triterpene: poricotriol A (54), which varied depending on the
cell line. This way, in HL-60 cells, 48 activated caspases 3, 8, and 9 and increased the
ratio of Bax/Bcl-2 an apoptosis induction via mitochondrial and death receptor
pathways. On the other hand, this compound did not activate these caspases in
A549 cells. Instead, the induction of apoptosis occurred via the translocation of
apoptosis-inducing factor (AIF) from mitochondria and an increase of the ratio of
Bax/Bcl-2. Moreover, 54 showed selective toxicity in lung cancer cells, being only
weakly toxic to normal lung cells (WI-38).

Dehydrotrametenolic acid (17) inhibits the growth of H-ras transformed rat2 cells
with a similar mechanism as 54 in HL-60 cells [153]. It arrests cell cycle in G2/M
phase inducing apoptosis through caspase-3 activation, PARP degradation, chromo-
somal DNA fragmentation, and Lamin A/C degradation.

Finally, the mechanism of action of pachymic acid (16) has also been described in
human-derived MDA-MB-231 and MCF-7 breast carcinoma cells [154]). Treatment
reduced matrix metalloproteinase-9 (MMP-9) secretion because of the
downregulation of its mRNA expression, therefore inhibiting the invasiveness of
this cancer cells. According to their results, in this case, the target of 16 is NF-κB
signaling pathway, since a decrease in the degradation of inhibitor of κBα (IκBα) and
in p65 nuclear translocation was observed, together without altering the phosphor-
ylation states of mitogen-activated protein kinases, such as c-Jun N-terminal kinase
(JNK), ERK, and p38.
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2.4.3 Other Lanostanoid-Type Triterpenes with Anticancer Properties
The identification of new lanostane-type triterpenes from different mushroom spe-
cies is generating a huge body of scientific papers. Some of these studies include a
screening of antitumor activity of the identified lanostanoids. Among the studied
species, we find lanostane-type triterpenes with anticancer activity in Naematoloma
fasciculare [108, 109], Antrodia spp. [33, 35, 155], Astraeus spp. [43, 44],
Fomitopsis nigra [51], Hebeloma versipelle [95], Inonotus obliquus [98, 102–105,
156], Daedalea dickisii [46], and Scleroderma citrinum [125].

Moreover, Kikuchi et al. [157] have recently synthesized cyanogenated and
oxygenated lanostane-type triterpenes and evaluated their cytotoxic activities against
leukemia (HL60), lung (A549), stomach (AZ521), and breast (SK-BR-3) cancer cell
lines. Of the 35 assayed compounds, one natural triterpene, and ten semisynthetic
triterpenes exhibited potent (IC50 values in the range of 1.4–9.9 μM) cytotoxic
activity against one or more cell lines. Two lanostane-type triterpenes with a
cyanoenone functionality induced apoptosis in HL60 cells via both the mitochon-
drial and the death receptor-mediated pathways. In addition, in vivo activity was also
evaluated on EBV-EA activation induced with 12-O-tetradecanoylphorbol-13-ace-
tate (TPA) in Raji cells, and seven natural triterpenes and ten semisynthetic
triterpenes exhibited inhibitory effects.

Some of the above-mentioned studies not only screen for the anticancer activity
but also try to elucidate the mechanism of action, and it should be pointed out that the
majority of the lanostane-type triterpenoids analyzed share a common mechanism:
they induce cell cycle arrest followed by apoptosis, PARP cleavage, caspase-3
activation, and DNA fragmentation [35, 46, 51, 98, 103] (Fig. 8).

2.5 Lanostanoids as Anti-infectious Agents

2.5.1 Antibacterial Properties
Different fungi showed anti-infectious properties, and in some cases, lanostanoids
have been reported as the active principles. Some isolated compounds did not show
antimicrobial activity, such as cattienoids A-C isolated from fruiting bodies of
Tomophagus cattienensis [128], whereas other showed modest effects, such as
compounds isolated from Fomitopsis pinicola [52] or Ganoderma lucidum [65]. In
the first case, the activity of five lanostanes was assayed against Bacillus cereus and
obtained minimum inhibitory concentration (MIC) values comprised between
16 and 64 μg/mL. Of them, pinicolic acid (55) showed the best activity (16 μg/
mL), and it was not due to its cytotoxicity. It is worth highlighting that a 16-O-
acetylation decreases the activity, from 32 μg/mL (43) to 128 μg/mL (16α-acetyl-
polyporenic acid C, 56), and increases the cytotoxicity [52]. From G. lucidum, the
authors isolated seven compounds but only tested two of them. Only 12β-acetoxy-
3β,7β-dihydroxy-11,15,23-trioxolanost-8-en-26-oic acid butyl ester (57) was active
against S. aureus and B. subtilis, with MIC values of 68.5 and 123.8 μM,
respectively [65].
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Other species, such as Poria cocos, have been studied for their anti-infectious
properties [112, 158]. In a test of 58 samples, the extract of P. cocos inhibited both
bacterial (Acinetobacter baumannii and Staphylococcus aureus) and fungal (Asper-
gillus fumigatus) strains [112]. No active compounds have been described; never-
theless, some lanostanes present in this fungus were previously described as
antimicrobial [158].

An antibacterial bioassay-guided fractionation led to the isolation and identifica-
tion of an antibacterial lanostane, 3,11-dioxolanosta-8,24(Z)-diene-26-oic acid (58)
from Jahnoporus hirtus, which had MIC values of 40 and 32 μg/mL against Bacillus
cereus and Enterococcus faecalis, respectively. However, this potency seems to have
no interest as antimicrobial agent [32]. Fomitopsis rosea is another potential source
of antimicrobial lanostanoids, and five compounds showed antibacterial but no
antifungal activity. However, the authors did not establish the potency, only the
zone of inhibition was determined. The following lanostanes were tested:
42, 3α-oxepanoquercinic acid C (59), and 3α-carboxyacetoxyquercinic acid C
(60), but its activity was not relevant [55] (Fig. 9).

Other investigations were focused to specific diseases, such as tuberculosis. In
this case, Stanikunaite et al. [44] investigated the lanostanes from the mushroom
Astraeus pteridis as antituberculosis agents. They tested five compounds, but only
two showed moderate activity against Mycobacterium tuberculosis, giving MIC
values of 34 μg/mL for 3-epi-astrapteridiol (61), 58.0 μg/mL for 3-epi-astrahygrol
(62), and 64 μg/mL for astrahygrone (63).

Similar values were obtained from the edible mushroom Astraeus odoratus by
Arpha et al. [43] who isolated four lanostanes, and two of them, astraodoric acids A
(64) and B (65), exhibited moderate antibacterial activity, with MICs values of
50 and 25 μg/mL, respectively, whereas 3-αOH derivatives were inactive. A com-
pound isolated by Kanokmedhakul et al. [125] from Scleroderma citrinum and
identified as (20 S,22 S,23E)-22-O-acetyl-25-hydroxylanosta-8,23(E)-dien-3-one
had no activity against M. tuberculosis.

The results of higher interest were obtained with 3-epi-ganoderic acid T (66) and
its 3-isomer 27 both isolated from cultures of the mushroom fungus Ganoderma
orbiforme BCC 22324, which gave an IC50 value of 1.3 and 10 μM against
Mycobacterium tuberculosis H37Ra. Of ten lanostanes assayed, only two
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demonstrated relevant activity. These were the per-acetylated compounds, whereas
partial or nonacetylated derivatives had no activity [87] (Fig. 10).

2.5.2 Antifungal Properties
Ascosteroside (67), isolated from cultured broth of Ascotricha amphitricha,
inhibited the growth of Saccharomyces cerevisiae and Candida albicans, but not
its methyl ester [40]. It is active also against other yeasts (C. tropicalis, C. glabrata)
and filamentous fungi (Trichophyton mentagrophytes, Aspergillus nidulans) but
shows no activity against bacteria (S. aureus, E. coli). This lanostane at 5 μg/mL
gave similar in vitro inhibition zone that fluconazole at 25 μg/mL. Lanostane 17 also
had effect in vivo in C. albicans infected mice, and at 30 mg/kg/day it increases the
survival time in infected mice, with a mean day of death (MDD) of 16.3 days versus
10.2 days for the control group [41].

Astrakurkurol (68) and astrakurkurone (69) isolated from Astraeus hygrometricus
also had in vitro activity against C. albicans, comparable to standard antifungal
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clotrimazole [42]. Both lanostanes showed similar inhibition zone at the assayed
doses (0.2–10 μg/disk), with an inhibition range of 25 mm (10 μg/disk) to 9 mm
(0.2 μg/disk) for 68 and 29 mm (10 μg/disk) to 10 mm (0.25 μg/disk), whereas the
reference drug had an inhibition zone of 15 mm at 20 μg/disk for 69 [42] (Fig. 11).

2.5.3 Antiparasitic Properties
Both 68 and 69 were tested as potential leishmanicidal agents, but only 69 showed
relevant effects. Certainly, 69 significantly inhibited the growth of Leishmania
donovani promastigotes in vitro. At a concentration of 10 μg/mL, 69 inhibited its
growth by 68 % (2nd day), 91 % (4th day), and 95 % (6th day) versus control
(dimethyl sulfoxide). The reference drug, miltefosine, at the same dose only
inhibited by 49 % on 6th day of culture, a value significantly lower than that of
69 [42].
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2.5.4 Antiviral Properties
The anti-human immunodeficiency virus (HIV) has been also tested for different
lanostanoids from fungi: five compounds isolated from the spores of Ganoderma
lucidum showed anti-HIV properties: ganoderic acid β (70), 35, 36, 23, and
ganolucidic acid A (71). They showed significant anti-HIV-1 protease activity
with IC50 value range of 20–90 μM [82]. Ten years later, El Dine et al. [62] isolated
a series of lanostane triterpenes from the mushroom Ganoderma colossum, which
were tested as potential HIV-1 protease inhibitor, and four of them gave IC50 values
under 14 μg/mL. Colossolactone G (72) showed the highest potency (5 μg/mL),
followed by schisanlactone A (73, 8 μg/mL) and colossolactone V (74, 9 μg/mL),
whereas colossolactone VII (75, 13.8 μg/mL) was the less potent of these com-
pounds. Other lanostanes showed moderate or no activity. Sato et al. [90] also tested
a series of lanostanoids isolated from the fruiting body of Ganoderma sinense, and
four of them showed modest inhibitory effects on HIV-1 protease, with IC50 values
of 20–40 μM. The active compounds were 15 (22 μM), (47) (25 μM), ganoderic
acid GS-2 (76, 30 μM), and 20(21)-dehydrolucidenic acid N (77, 48 μM). Values of
other analyzed compounds were higher than 50 μM [90]. A previous and limited
relationship between the chemical structure and the activity was established. In
the case of 24(25) unsaturated ganoderic acids, the 3-oxo derivatives had
more inhibitory effects than the 3-hydroxy compounds. However, in the case of
lucidenic acids, the 3-hydroxy compounds showed higher inhibitory action
than the 3-oxo derivatives. Finally, in the case of ganoderma alcohols, the 24
(25) unsaturated compounds were more active than the 24-hydroxy derivatives
[90] (Fig. 12).
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2.6 Other Properties of Interest

Some authors [86] have studied the possible hepatoprotective effect of lanostanoids
isolated from Ganoderma theaecolum. They tested the activities of ten lanostanoids
on a human hepatic cell (HL-7702) injury model induced by DL-galactosamine
using a colorimetric assay, and the results were compared with a hepatoprotective
drug used in clinic, bicyclol. Six of the ten assayed compounds had significant
activity at a concentration of 10 μM, with a survival rate from 55 % to 80 % versus
55 % for the positive control. Active compounds were 10, 46, ganoderic acid XL1

(78), ganoderenic acid AM1 (79), ganoderesin C (80), and lucidone B (81) (Fig. 13).

3 Future Perspectives and Conclusions

Lanostanes constitute a group of tetracyclic triterpenes common in fungi. Some of
them have peculiarities in their chemical structures, which confer a clear difference
with lanostanoids isolated in plant kingdom. These characteristics give lanostanes
from fungi a clear interest and potentiality as medicinal agents. The majority of
studies focus on their cytotoxic effects and their possible interest as anticancer
agents, as in the case of lanostanes from Ganoderma lucidum, which have been
widely studied. Different compounds and mechanisms of action have been proposed
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for them, such as induction of apoptosis (30), the cell cycle arrest, modification of the
transporting or expression of proteins, and inhibition of transcription factors impli-
cated in the tumorigenic process. However, the added value of these triterpenoids
relies in their selective inhibition of topo II activity without affecting topo I, and their
ability to enhance chemosensitivity to other anticancer drugs, such as vinblastine
among others, reducing their IC50 values and their nondesirable side effects [30].

Fungi lanostanes have also risen interest for their anti-inflammatory activity, since
some compounds have a specific anti-inflammatory mechanism, such as lanostanes
from Poria cocos as anti-PLA2 inhibitors, and ganoderic acids from Ganoderma
lucidum as inhibitors of NO production, through the inhibition of iNOS, as well as
inhibition of TNF-α and IL-6 secretion, and COX-2 and HO-1 expression, all of
them via the PI3K/AKT-Nrf2 pathway [64, 66].

The third interesting activity of lanostanes is their potential effects on metabolic
disorders such as diabetes mellitus and hyperlipidemias. In this case, lanostanes can
act by different mechanisms, such as the inhibition of aldose reductase and
α-glucosidase activities, avoiding the damage caused by sorbitol, the formation of
cataracts in chronic diabetic patients (aldose reductase inhibition) and reducing the
production of glucose from starch, a mechanism that implies an increase in GLUT4
expression without affecting GLUT1. In this sense, the hypoglycemic activity of
some lanostanes (especially pachymic acid, 17, from P. cocos) is due to their insulin-
like activity, which stimulates glucose uptake, GLUT4 gene expression, and trans-
location and promotes triglyceride accumulation in adipocytes. In addition, the
promotion of adipocyte differentiation, adipogenesis inhibition, and FXR agonist
properties give some lanostanes high interest for clinical investigation in the treat-
ment of cholestasis, dyslipidemic disorders, and conditions of insulin resistance in
hypercholesterolemia and T2DM [69, 140–146].

Finally, the potential as anti-infectious agents seems to be of reduced interest as
can be observed when antimicrobial or antifungal values are analyzed. Some com-
pounds can be of interest for future research, such as ascosteroside (67) as antifungal
or colossolactone G (72) as antiviral.

Taken together, the studies on lanostanes from fungi have a high interest for
future research, especially for their novelty; the effects on metabolic disorders, such
as metabolic syndrome, can be relevant.
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Abstract
Kombucha, fermented black tea with symbiotic association of bacteria and yeast,
has been claimed by its drinkers for several health benefits. Health benefits of
kombucha tea are directly associated with the composition and the concentration
of the biomolecules present in it. Being a product fermented by bacteria and yeast
association, kombucha has very complex composition which has a range of
components from tea plant, bacteria, yeast, and compounds produced during
fermentation process. The compounds responsible for the claimed benefits of
kombucha have not been explored due to its complexity. This chapter focuses on
the metabolites of kombucha which have been reported.

Keywords
Acetic acid bacteria • Cellulose pellicle • Fermentation • Fermented tea •
Kombucha • Kombucha tea • Medusomyces gisevii • Symbiotic culture • Tea
beverage • Tea fungus • Tea fermentation • Yeast

1 Introduction

Kombucha tea is a slightly sweet, slightly acidic refreshing beverage consumed
worldwide, obtained by the fermentation of sugared tea by a symbiotic association of
bacteria and yeasts, forming “tea fungus” [1]. The tea fungus broth is composed of
two portions, a floating cellulosic pellicle layer and the sour liquid broth (Fig. 1).
This refreshing beverage tasting like sparkling apple cider is often produced in the
home by fermentation using a tea fungus passed from home to home. Black tea and
white sugar are the best substrates for the preparation of kombucha, although green
tea can also be used. Tea fungus is a best example of biofilm made by symbiotic
association of acetic acid bacteria and yeasts. The association of Kombucha with
human was reported to be since BC, but the exact details about the origin are unclear.
Details about the invention of tea fungus are also missing in the history. Kombucha
tea is prepared by inoculating the tea fungus culture into cooled sugared tea
decoction along with some amount of previous batch of fermented tea and allowing
fermenting in dark for 7–14 days. During fermentation, the pH reduces drastically
due to production of organic acids from added sugar due to yeast and bacterial
metabolism. Tea polyphenols undergo degradation or transformation by the enzymes
of bacteria and yeast which was evident by changes in color of the black tea during
the course of fermentation. Various enzymes have been reported to be active in
kombucha tea. Tea fungus is basically cellulose network where bacteria and yeast
cells are attached which finally appears as a jelly membrane. The thickness of this
biofilm is due to the deposition of cellulose as layer by layer during fermentation
time. Reports about the first use of tea fungus, its formation for the first time, and
inventor details are missing in the history. Kombucha has been reported continu-
ously by scientific community and users for its health benefits. Composition and
the concentration of the metabolites available in kombucha after the required time
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of fermentation would be the sole reason for the health benefits claimed.
Kombucha has a range of metabolites originated from tea plant, bacterial metab-
olism, yeast metabolism, sugar, and the biotransformed compounds produced
during fermentation which makes it very complex to study even by the state-of-
the-art instruments [2]. It is surprised to see in the literature that there were very
less attempts taken to reveal the complex composition of kombucha tea. As an
initiative to achieve this, the present chapter focussed to review the metabolites
already reported in the literature.

2 Kombucha Tea Preparation

Kombucha tea is traditionally prepared by freshly making sugared tea decoction and
inoculating the portion of tea fungus and previously fermented kombucha. The
preparation will be covered with paper towel or cheese cloth and will be kept for
fermentation in dark at room temperature for 7–14 days. After fermentation, the
fermented beverage will be separated from the newly formed tea fungus and filtered
through cheese cloth. The filtered beverage will be refrigerated and consumed
whenever required. The traditional preparation was subjected to different modifica-
tions based on the taste of kombucha drinkers. The modification lies in the amount of
sugar, amount and types of tea substrate, time taken for preparing the tea decoction,
period of fermentation, amount of inoculum, and fermentation temperature [2].

Fig. 1 Kombucha black tea
having fermented broth and
tea fungus (Reproduced with
prior permission, Jayabalan
et al. [2])
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3 Beneficial Effects of Kombucha Tea

Kombucha tea has been claimed to have several beneficial effects on human health
by the kombucha drinkers from all over the world. Except few, reported effects on
human health are yet to be studied scientifically. Reported effects of kombucha from
tea drinkers’ testimony and Russian researchers are to [3]:

Detoxify the blood
Reduce cholesterol level
Reduce atherosclerosis by regeneration of cell walls
Reduce blood pressure
Reduce inflammatory problems
Alleviate arthritis, rheumatism, and gout symptoms
Promote liver functions
Normalize intestinal activity, balance intestinal flora, and cure hemorrhoids
Reduce obesity and regulate appetite
Prevent/heal bladder infection and reduce kidney calcification
Stimulate glandular systems
Protect against diabetes
Increase body resistance to cancer
Have an antibiotic effect against bacteria, viruses, and yeasts
Enhance the immune system and stimulate interferon production
Relieve bronchitis and asthma
Reduce menstrual disorders and menopausal hot flashes
Improve hair, skin, and nail health
Reduce an alcoholic’s craving for alcohol
Reduce stress and nervous disturbances and insomnia
Relieve headaches
Improve eyesight
Counteract aging
Enhance general metabolism

4 Biochemical Composition of Kombucha Tea

Several scientific investigations published in the last 15 years have reported the
presence of several metabolites in kombucha tea. The composition of kombucha tea,
what is known today, is given in Fig. 2. All the analysis carried out to explore the
biochemical composition was done in static mode. The biochemical composition of
tea fungus and kombucha tea was not similar in all the reports. This might be due to
the fact that the microbial composition of tea fungus varies with region and country.
Hence, the metabolites produced by the bacteria and yeasts also vary which reflects
in the chemical composition of kombucha tea. The difference in composition may
also be due to the differences in amount of sugar and tea substrate, differences in the
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amount of tea fungus and kombucha tea used as inoculum, and difference in
fermentation time. However, uniform trends of change in some property have been
discussed by most of the researchers. For example, reduction in pH, increase in
content of organic acids, and initial increase and intermittent decrease in concentra-
tion of bacteria and yeast cells in tea broth were observed by many researchers
around world irrespective of the above mentioned differences. Few reports have also
revealed the trend of increase in antioxidant activity throughout the fermentation
time. Considering the contents of the biomolecules present in kombucha, an inter-
mittent increase and decrease during fermentation time was observed for most of the
compounds studied. Table 1 lists out the concentration of metabolites measured in
kombucha tea [2].

4.1 Sugar

Kombucha drinkers use only table sugar (sucrose) for the preparation and hence the
scientific analysis. One molecule of alpha-D-glucose and beta-D-fructose linked by
an alpha-1,4-glycosidic bond make one molecule of a disaccharide, sucrose.

Fig. 2 Biochemical composition of kombucha tea
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Hydrolysis of alpha-1,4-glycosidic bond releases equimolar mixture of glucose and
fructose. During kombucha fermentation, the yeast cells from the initial inoculum
hydrolyse sucrose to glucose and fructose by producing invertase or sucrase enzyme
(beta-fructofuranosidase, EC 3.2.1.26). Due to its broad range in acidic pH
(3.5–5.5), invertase activity is not inhibited by acids produced during kombucha
fermentation, and hence the added sucrose is continuously hydrolysed to glucose
and fructose.

Sucrose C22H12O11ð Þ !Yeast Invertase
Glucose C6H12O6ð Þ þ Fructose C6H12O6ð Þ

Yeast cells consume most of the fructose released by invertase action through
glycolysis and convert them to ethanol and carbondioxide. The produced ethanol is
rapidly oxidized to acetic acid by acetic acid bacteria present in the consortium.
Acetic acid is the predominant organic acid produced during fermentation and the
main reason for the pH decrease. Acetic acid bacteria also oxidizes glucose to
gluconic acid [2].

Fructose C6H12O6ð Þ !Yeast Glycolysis
Ethanol CH3CH2OHð Þ þ Caron dioxide CO2ð Þ

Table 1 Predominant components in kombucha tea at the end of the fermentation on sugared black
tea infusion (Reproduced with prior permission, Jayabalan et al. [2])

Component
Component
content (g/L)

Initial
sucrose (%) Black tea

Fermentation
temperature (�C)

Fermentation
time (days)

Acetic acid 8 10 2 bags 24 � 3 60

4.69 10 12 g/L 24 � 3 18

Glucuronic
acid

0.0031 5 1.5 g/L 28 21

0.0026 7 1.5 g/L 28 21

0.0034 10 1.5 g/L 28 21

1.71 10 12 g/L 24 � 3 18

Gluconic
acid

39 10 2 bags 24 � 3 60

Glucose 179.5 7 1.5 g/L 28 21

24.59 7 1.5 g/L 28 21

12 10 2 bags 24 � 3 60

Fructose 76.9 7 1.5 g/L 28 21

5.40 7 1.5 g/L 28 21

55 10 2 bags 24 � 3 60

Remaining
sucrose

192.8 7 1.5 g/L 28 21

11 10 2 bags 24 � 3 60

2.09 7 1.5 g/L 28 21
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4.2 Cellulose

Cellulose is a homopolysaccharide composed of beta-D-glucose monomers linked by
beta 1,4-glycosidic bond. Cellulose is the predominant material found in tea fungus
and is produced by aerobic acetic acid bacteria found in its consortium. Acetic acid
bacteria found in the air–liquid interface of the vessel used to produce kombucha
produces cellulose biofilm in direct contact with oxygen to protect themselves from
the high stressful growth conditions due to the presence of high concentration of
acetic acid or ethanol [4]. Biofilm production by acetic acid bacteria is reported to be
through cell–cell communication via quorum-sensing signaling [5]. Synthesis of
cellulose involves the synthesis of uridine diphosphoglucose (UDPGlc) by UDPGlc
pyrophosphorylase which were later polymerized into long and unbranched chains
through beta-1,4-glycosidic bond by cellulose synthase enzyme. However, the
conversion of glucose to UDPGlc requires two more additional steps which converts
initial glucose molecules to glucose-6-phosphate by glucose kinase and then to
glucose-1-phosphate by phosphoglucomutase (Scheme 1). It is also possible to
produce cellulose through fructose by its conversion to glucose-6-phosphate through
successive actions of fructose kinase and phosphoglucose isomerase enzymes. But
fructose may not be available to acetic acid bacteria due to the action of yeast cells.
Only part of the cellulose would be available for cellulose synthesis since glucose is
also oxidized to gluconic acid by acetic acid bacteria. Both gluconic acid production
and cellulose synthesis requires the presence of oxygen and this is the reason why
cellulose layer formation occurs only at the air–liquid interface of the kombucha
fermentation vessel [2].

Bacterial cellulose prepared from pellicles of A. xylinum (Gluconacetobacter
xylinus) is a unique biopolymer in terms of its molecular structure, mechanical
strength, and chemical stability [11]. A similar cellulose network floating on the
surface of various fruit juices fermented by a symbiotic culture composed of
A. xylinum and yeasts and named “nata” is consumed in Philippines as a delicacy.

Glucose

Glucose-6-Phosphate

Glucose-1-Phosphate

UDP-Glucose

Cellulose

Gluconic acid

Glucokinase

Phospho glucomutase

UDPGlc pyrophosphorylase

Cellulose Synthase

Oxidation at C-6 
position

Scheme 1 Formation of gluconic acid and cellulose from cellulose
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In Brazil, this cellulose network is used for the treatment of skin burns and other
dermal injuries and is produced by a pure culture of A. xylinum grown on a medium
composed mainly of sucrose and tea xanthines [6]. Caffeine and related compounds
(theophylline and theobromine) are identified as activators for cellulose production
in A. xylinum [7]. In ancient days, this cellulose biofilm has been used for the
treatment of wounds. Microbial cellulose synthesized in abundance by Acetobacter
xylinum shows vast potential as a novel wound healing system. The high mechanical
strength and remarkable physical properties result from the unique nanostructure of
the never-dried membrane [8].

4.3 Organic Acids

Kombucha was reported to have several acetic, gluconic, glucuronic, citric, L-lactic,
malic, tartaric, malonic, oxalic, succinic, pyruvic, and usnic acids. Most of these
acids are having origin of the tea substrate used to prepare kombucha tea. About
0.5–0.6 % of dry weight of fresh tea shoot consists of organic acids. Among the
organic acids present in kombucha tea citric, malic, tartaric, oxalic, and succinic
acids are reported to be present in fresh tea shoots [9]. Acetic, gluconic, glucuronic,
L-lactic, malonic, pyruvic, and usnic acids present in kombucha tea are produced by
the action of microbes on sugar during fermentation time. Acetic acid is the
predominant organic acid and is produced by acetic acid bacteria through oxidation
of ethanol. It is the main reason for the decrease in pH. Due to increased concentra-
tion of organic acids produced during the fermentation process by bacteria and
yeasts in the tea fungus consortium, the pH value decreased from 5.0 to 3.0.
Apparently the fermentation broth possessed some buffer capacity. During the
fermentation process, carbon dioxide is released at first slowly and much faster
after 2–3 days. The obtained water solution of carbon dioxide dissociates and
produces the amphiprotic hydrocarbonate anion (HCO3

_), which easily reacts with
hydrogen ions (H+) from organic acids, preventing further changes in the H+

concentration and contributing to a buffer character of the system. This will be the
valid reason for slight decrease in pH after 3 days [2].

Acetic acid was reported even when the sugar source was molasses. L-lactic
and citric acid is not characteristic compound for traditional kombucha beverage.
L-lactic acid was detected in traditional kombucha beverage and even when
molasses and green tea was used as sugar source and tea substrate, respectively.
Citric acid was detected in very small amount when black tea and green tea was
used as tea substrate [2]. Oxidation of first carbon of glucose gives gluconic acid
and at sixth carbon gives glucuronic acid (Fig. 3). Glucuronic acid is therapeu-
tically important due to the detoxification action inside human body. Conjugation
of glucuronic acid with undesirable compounds results in decreased toxicity due
to the increased solubility of them that further facilitates transport and elimina-
tion from the body. Glucuronidation is aided by UDP glucuronosyltransferases
enzyme [10]. Acetic acid bacteria convert glucose to gluconic acid and ethanol to
acetic acid by oxidation.
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4.4 Total Phenolic Compounds

Total phenolic compounds were progressively increased with fermentation time.
Phenolic compounds are considered as high-level antioxidants because of their
ability to scavenge free radical and active oxygen species such as singlet oxygen,
superoxide free radicals, and hydroxyl radicals. Complex phenolic compounds in
green tea, black tea, and waste tea might be subjected to degradation in acidic
environment of kombucha and by the enzymes liberated by bacteria and yeast in
tea fungus consortium. So, there are many chances for the enzymes liberated by
bacteria and yeast during kombucha fermentation which be the reason for the
degradation of complex polyphenols to small molecules which in turn results in
the increase of total phenolic compounds [2].

4.5 Tea Polyphenols

Source of polyphenols in kombucha tea is the tea substrate, black tea, or green tea.
The amount of polyphenols present depends on the variety or the grade of tea
substrate, the amount used, brewing time given to prepare decoction, and time of
fermentation. Total phenol content of tea decoction increases with time during
kombucha fermentation. Gallic acid, epicatechin isomers (-)-epigallocatechin-3-
gallate, (-)-epigallocatechin, (-)-epicatechin-3-gallate, (-)-epicatechin, theaflavin iso-
mers, and thearubigins were detected and quantified during fermentation period
(Fig. 4a, b, c). Theaflavin isomers (theaflavin-3-gallate, theaflavin 30-gallate, and
theaflavin 3,30-digallate) were not detected in kombucha tea. Highly complexed
polyphenols like EGCG and ECG undergo degradation and get converted to EGC
and EC, respectively, which was evident through the quantification of polyphenols.
The color of finally fermented kombucha tea is lighter than the initial tea decoction.
This suggests that the compounds responsible for color, thearubigins undergo
degradation in acidic environment of kombucha or by the enzymes liberated by
bacteria and yeasts. Loss in initial color might be also due to the microbial or
enzymatic transformation of thearubigins to less colored compounds [2].
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5 Microbial Composition of Kombucha

The name “Kombucha” usually denotes the beverage prepared through fermentation
or the inoculum (tea fungus) used to ferment. Tea fungus orMedusomyces gisevii is a
symbiotic association of bacteria and yeast in cellulose biofilm (Fig. 5a, b). The
name “tea fungus” is wrongly given to this association by local people due to its
resemblance with the statically grown fungus mat or with the upper portion of the
mushroom. Bacteria belong to acetic acid producers and yeasts belong to osmophilic
group. Cellulose is the metabolite produced by acetic acid bacteria when it is
aerobically grown and microbial cells present near the cellulose fibers are trapped
inside it. Composition of microbes present in tea fungus is not similar throughout the
world. The composition of metabolites of kombucha tea is depending on the
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metabolism of the microbes present in this symbiotic association. Hence, the com-
position of metabolites of kombucha is not same everywhere. Bacteria belong to the
genus Acetobacter and Gluconobacter. Among Acetobacter, A. xylinum,
A. pasteurianus, A. aceti, A. intermedium sp. nov., and Acetobacter nitrogenifigens
sp. nov are reported. Gluconobacter oxydans, Gluconoacetobacter sp. A4, and
Gluconoacetobacter kombuchae sp. nov. are found to be present among
Gluconobacter genus. Presence of Lactobacillus species were reported very recently.
Yeasts in tea fungus includes the genus Brettanomyces/Dekkera, Candida,
Kloeckera, Mycotorula, Mycoderma, Pichia, Saccharomyces, Schizosac-
charomyces, Torulospora, and Zygosaccharomyces. Genus Brettanomyces includes
Brettanomyces intermedius, B. bruxellensis, and B. claussenii. The reported species
in the genus Candida includes Candida famata, C. guilliermondii, C. obutsa,
C. famata, C. stellate, C. guilliermondi, C. colleculosa, C. kefyr, and C. krusei.
Saccharomyces genus includes Saccharomyces cerevisiae and Saccharomyces
bisporus. Schizosacchromyces genus was found to have Schizosaccharomyces
pombe and Zygosaccharomyces was identified as Zygosaccharomyces rouxii,

Fig. 5 Scanning electron
microscope image of the
consortia of yeasts and
bacteria in a portion of tea
fungus (magnification
4A = 3500� and
4B = 3700�) (Reproduced
with prior permission,
Jayabalan et al. [2])
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Zygosaccharomyces bailii, and Zygosaccharomyces kombuchaensis sp. n. Apart
from these yeast species, Sacchromyccoides ludwigii and Schizosaccharomyces
pombe were also reported. The following yeast species were also reported: Torula,
Torulopsis, Torulaspora delbrueckii, Mycoderma, Pichia, Pichia membranefaciens,
Kloeckera apiculata, and Kluyveromyces africanus. It is reported that viable count of
acetic acid bacteria and yeast reached maximum after 6 days of fermentation and
continued to decrease in latter period of fermentation. The decreased number of
bacteria and yeast during latter period of fermentation was likely caused by acid
shock (low pH), which influenced the multiplication of bacteria and yeast [2]. Chen
and Liu [1] reported that anaerobic and starved environment created could also be
the reason for the decrease in microbial content during the fermentation period.
Carbon dioxide generated as a result of alcohol fermentation by yeasts accumulated
in the interface between the pellicle and broth. This separates the pellicle from the
broth and creates an anaerobic and starved environment due to block of transfer of
nutrients from broth to pellicle and transfer of oxygen from the surface of the pellicle
to broth. There are controversial statements existing in literature about the concen-
tration of viable microbial cells in tea broth and cellulose pellicle.

6 Other Minor Metabolites

Yeast cells produce ethanol as a fermentative product from fructose through glycol-
ysis and by the action of pyruvate dehydrogenase and alcohol dehydrogenase during
kombucha fermentation. Ethanol was detected only in very less concentrations
(0.55 %) due to its oxidation to acetic acid by acetic acid bacteria. Water soluble
vitamins B1, B6, B12, and C are reported to be present in kombucha prepared with
traditional substrates, sugar, and black tea. Yeasts are responsible for the biosynthe-
sis of B vitamins. Presence of manganese, iron, nickel, copper, zinc, lead, cobalt, and
chromium was determined in kombucha beverage. Essential minerals like copper,
iron, manganese, nickel, and zinc were increased during fermentation period. Due to
the inclusion of cobalt in vitamin B12, it is not increased. Presence of anionic
minerals like fluoride, chloride, bromide, iodide, nitrate, phosphate, and sulphate is
also proved. The content of d-saccharic acid 1,4 lactone (DSL) increases during
fermentation period up to 8th day and found to be decreased after that. Likewise, the
protein content of kombucha beverage also increases up to 12th day of fermentation
and started to decrease after that. It may be due to the decrease in content of
extracellular proteins secreted by the bacteria and yeasts [2].

7 Factors Influencing the Presence and Concentration
of Kombucha Metabolites

Presence of different metabolites and their concentration in Kombucha from differ-
ent regions cannot be similar due to the following reasons:
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i. Changes in the microbial composition of tea fungus consortium
ii. Changes in the variety of tea substrates
iii. Changes in the amount of sugar, tea, inoculum, and temperature
iv. Changes in the fermentation time

8 Conclusion

Beneficial effects reported for kombucha drinking are based on the presence and
concentration of polyphenols, organic acids, and other micronutrients produced
during fermentation. Tea polyphenols are important in cancer prevention and other
metabolites are essential for the beneficial effects of kombucha tea. It is expected that
there will be an influence of microorganisms present in kombucha on the concen-
tration of kombucha metabolites. Changes in the concentration of metabolites during
fermentation period and the detailed composition of kombucha tea have not been
studied well. Studies on biotransformation of components by acidic environment
and enzymes of microbes during kombucha fermentation will be interesting and
provide details of therapeutic benefits of kombucha tea.
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Enantioselectivity, 640, 643, 656
Endochitinases, 64–65
Endocrine disruptor, 716
Endogenous, 856, 863, 865, 867, 872,

873, 875
Endoglucanase, 354
Endophytes

biotransformation reactions, 205–210
biotransformed flavor metabolites,

210–213
classes, 195
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Endophytes (cont.)
distribution, 196–202
ecology, 196
flavor related metabolites, 203–204
fungal transmission, 198–200
interactions, 202
isolated, 200
MOTUs, 195
quality marker metabolites, ratios of,

213–215
recovery, 200
scalding treatment, 202

Endophytic fungi, 671
Endosymbiotic bacterium, 679
Endoxylanases, 357
Engineering problems, 604
Enniatin, 162, 169
Entomopathogenic fungi, 683
Entrapment, 641, 649, 651
Entrapped yeast cells, 611
Environment conditions, 753
Enzyme(s), 5, 18–20, 321, 324, 614, 640,

643, 649, 651, 654, 656, 658,
784, 788, 789, 792

productions, 341
Enzyme assisted extraction (EAE), 548
Enzyme linked immunosorbent assays

(ELISAs), 226, 917
Enzyme stabilization, 649
(-)-Epicatechin, 973
(-)-Epicatechin-3-gallate, 973
Epi-cedrol, 579
Epicoccum nigrum, 18
Epidermal growth factor receptor (EGFR),

681
3-6 Epidithio-ketopiperazines, 688
(-)-Epigallocatechin, 973
(-)-Epigallocatechin-3-gallate, 973
Epimerization, 899
Epoxyquinol B, 680–681
Eremofortins, 300–301
Eremothecium ashbyii, 552
Ergoamides, 894–895, 904
Ergoline ring, 900–901
Ergopeptams, 896–897, 903–905
Ergopeptines, 895–896, 903–905
Ergot alkaloids, 3, 10, 149, 246, 887–919

analytical methods, 911
bioactivity, 905–911
biosynthesis, 899–905
chemistry, 892–899

derivatization, 918
determination, 911–919
toxicity, 908–911

Ergotamine, 720, 906
Ergotism, 890
Erwinia uredovora, 529
Erythroglaucin, 509, 511, 517, 533
Erythrostominone, 518
E-selectin, 681
Essentials oils, 728
Ester, 572–575, 584, 586, 612–617, 642,

653, 657, 659
Esterification, 641, 649, 655, 657
7β–Estradiol, 250
Estrogen receptor α (ERα), 690
Ethanolic extracts, 743
Ethyl, 4-hydroxybutanoate, 571, 574
Ethyl methane sulfonate (EMS), 802
Ethylene, 137
Eumelanins, 264, 265, 267
Eupenicillium, 488
European food safety authority (EFSA),

891, 910
European Organization for Research

and Treatment of Cancer
(EORTC), 679

Eurotiomycetes, 195
Eurotium, 511–513
Exochitinases, 64
Exoglucanases, 354
Exopolysaccharide (EPS), 765
Expansin, 248
Expression, 854, 856, 867, 870, 872, 874

level, 615
Extracellular enzymes, 404
Extracellular proteins, 796
Extraction, 768–769, 793, 795, 797, 800,

802, 834
biomass, pre-treatments of, 544–545
EAE, 548
efficiency, 545
ionic liquid assisted extraction, 548–549
MAE, 421, 546
organic solvents, 545
PLE, 422, 547–548
SFE, 422
solvents, 420–421
SWE, 422
UAE, 421, 546–547

Extremophiles, 418
Extremophylic fungi, 272–274
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F
Falconensins, 511
Falconensones, 511
Farnesoid X receptor, 941
Farnesol, 122, 578
Fas-Fas ligand, 690
Fats, 655
Fatty acids, 54, 572–575, 612, 615, 642,

653, 655, 659
Fatty acid synthase (FAS), 826
Feed, 910
Fermentation, 319–343

secondary, 601
yeast, 601
process, 526, 556

Fermentative glycolysis, 618
Ferulic acid and p-coumeric acid, 359
Feruloyl esterase, 360
Festuclavine, 305–307, 901
Fiber saturation point (FSP), 451
Fibroblast growth factor receptor (FGFR),

681
Filamentous fungi, 784, 791, 792

biomass, 544–545, 794, 798, 802
pigments and colorants (see Pigments

and colorants, filamentous fungi)
Fingolimod (FTY-720, 686
Flavoglaucin, 511
Flavonoids, 143
Flavor, 193, 203–204, 210–213, 467–472,

600, 653, 657
threshold values, 605

Fleming, Alexander, 8
Flocculation, 602
Flocculosin, 54
Fluidized-bed reactor, 611
Fluorescence detection, 913–914
Fluoresensor, 794
Fluorimetric detection, 835
Fluxomics, 542
Fomitopinic acid, 943
Fonsecaea pedrosoi, 270, 279, 280
Food, 556, 910

applications, 552
colorant, 550–553
enzymes, 379
fermentations, 841
grade pigments, 502
industry, 652–655
ingredient, 528
supplements, 528, 553

Fractionation
separation and purification,

chromatography, 426–427
solvent partition, 426

Free cell systems, 797
Free-radicals, 973
Fruit pieces, 619
Fruit wine, 624
Fruiting bodies, 745–747
Fruity/flowery aromas, 612
FSEOF, 542
Fumagillin, 860, 861
Fumigaclavine, 902
Fumitremorgin, 299
Fumonisins, 13, 246–247, 710–711
Functional food, 740, 741, 745
Fungi, 319–343, 402, 415–430, 642, 644,

660, 784, 790, 792, 797, 800,
802, 853–887, 899

bioactive molecules, 8, 21
carotenoids, 539–540
classification, 4
colorants, 554, 556
cultures, 532
endophytes see Endophytes
enzymes, 18–20
fermentation, 502
genomes, 540
metabolites, mycotoxins production

see Mycotoxins
pigments, 15, 21, 540–545, 552, 555–556
polyketide synthase, 826
root attachment, 61
taxa, 208
virulence, 868
mycotoxins see Mycotoxins

Fungicides, 56, 81, 275
Fusarin C, 535
Fusarium, 243, 249, 250, 402, 404, 482, 513,

710, 716, 718
F. domesticum, 553
F. fujikuroi, 513
F. graminearum, 550
F. oxysporum, 514, 554
F. sporotrichioides, 529
F. pallidoroseum, 690
F. proliferatum, 195, 200, 204, 205, 207,

209, 211, 214
Fusarubin, 515, 537
Fusel alcohols, 614
Fusicoccin, 168
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G
G9a/GLP complex, 689
Gaeumannomyces graminis, 270
Galacto(gluco)mannans, 354
Galacturonic acid, 437, 444
α-Galactosidase, 360
Galiella rufa, 691
γ-aminobutyric acid (GABA), 830
Gangrenous ergotism, 908
Ganoderate, 940
Ganoderenic acid, 936, 955
Ganoderesin, 955
Ganoderic acid, 936, 955
Ganoderiol, 937, 946
Ganoderma, 934

G. lucidum, 6
Ganodermanondiol, 943
Ganodermanontriol, 941
Ganodermatetraol, 946
Ganoderol, 937
Ganolucidic acid, 947
Ganolucitade, 946
Gas chromatography, 918
Gas double dynamic solid state fermenter, 377
Gas-lift bioreactor, 611
Gelsolin, 690
Gemzar, 682
Gene expression, 535, 540, 613
Genetic approaches, 377–379
Genetic background, 741–745
Genetic material, 623
Genetic modification, 626
Genetic modified organism (GMO), 539
Genomics, 540, 542
Geotrichum candidum, 727
Geraniol, 575, 577, 581
GHGs. See Greenhouse gas (GHG)
Gilenya, 686
Glioblastoma, 683
Gliocladium, 38, 53
Glioma, 771
Gliotoxin, 53–54, 162, 860, 861
β-Glucan, 726, 749
Glucanases, 65–73
Glucoamylase glaB, 335
Gluconic acid, 970
Gluconobacter, 975
Glucose, 615

flux, 620
oxidase, 58
repression, 378
transporter, 935
transporter type, 4, 937–939

α-Glucosidase, 937
Glucuronic acid, 972
α-Glucuronidase, 359
GLUT4, 935
Glutathione peroxidase, 755
Glutathione reductase (GR), 755
Glyceropyruvic fermentation, 619
Glycolipids, 54
Glycolysis, 976
Glycosemetabolism, 340
Glycosylation, 361
G-protein, 73, 75, 828
Green chemistry, 546
Green extraction method, 550
Greenhouse gas (GHG), 400, 401
Green synthesis, 400
Green tea, 972
Growing condition, 747
Growth, 330–331

cycle, 327
phase, 612

Gymnospermous wood, 437–441

H
Hallucinogenic activities, 907
Hanseniaspora vineae, 581, 582, 584
Harvesting, 419
Harzianum A, 56
HC-toxin, 161
Heartwood, 440
Heat dissipation, 371
Heat shock element, 336
Heat shock protein 90 (Hsp90), 688
Helminthosporin, 517
Helminthosporium demantiodeum, 687
Hemangiopericytoma, 677
(Hemi)cellulases, 351, 353, 357–360, 438
Hepatitis B surface antigen, 684
Hepatitis B virus (HBV), 245, 252
Hepato-carcinogenic substance, 221
Hepatocellular carcinoma (HCC), 232, 233,

688, 771
Hepatocyte nuclear factor 4α, 690
Hepatoprotective, 955
Heptalactone, 476
Herbaceous substrates, 367
Hericium erinaceus, 6
Heterologous expression, 815
Heterologous proteins, 642
Heteromannans, 354
Heteropolysaccharides, 352
Heterosynergy, 362
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Hexaketides, 476
High-end violins, 453
Higher alcohols, 572–575, 584, 585,

605–612
ethanol, 322, 618, 970
ethyl esters, 612
pressure, 609

High notes, 453
High performance liquid chromatography

(HPLC), 426, 749, 750, 752,
767, 835

High productivities, 603
High resolution MS, 915
High-resolution screening (HRS), 429
High-throughput screening (HTS), 429
Histone deacetylases (HDACs), 690
Histone H3 lysine 9 trimethylation

(H3K9me3), 688
Histone methyltransferase, 688
HIV, 953
1H NMR, 750, 752
Homeostasis, 399
Homogentisic acid, 749
Homosynergy, 362
Horizontally transmitted symbionts, 198
Hormoconis resinae, 269
Hormone, 137–139
Hortaea werneckii, 269, 273
Host-pathogen interaction, 163
Host, recognition, 73–78
Host-selective toxin, 153
HPLC-MS, 750
HPLC-tandem mass spectrometry, 803
H-ras, 690
Human health risks, mycotoxins.

See Mycotoxins
Human umbilical vein endothelial

(HUVEC) cells, 677
Hydrogel, 602
Hydrogen bond, 786
Hydrolases, 335
Hydrolysis, 642, 653, 657, 786, 796
Hydrolytic enzymes, 59
Hydrophobicity, 786
Hydrophobins, 61
Hydrothermal refluxing extraction, 768
Hydroxy acids, 463–464
Hydroxyanthraquinone pigments, 509, 513,

517, 531–534, 547, 549
Hydroxyfatty acids, 468
Hydroxylucidenic acid, 946
Hyperdermium, 518
Hyperglycemic disorders, 937

Hyperlipasaemia, 682
Hyperlipidemias, 939–941
Hypocreaceae family, 516–517
Hypomiltin, 521
Hypothemycin, 484
Hypoxylon, 520
Hypoxylone, 521
Hypoxyvermelhotins, 521
Hypoxyxylerone, 521

I
IB2, 857, 862, 865, 873
Ibuprofen, 651, 656
IC, 857, 862, 866
ICAM1, 681
Idiopathic pulmonary hemosiderosis

(IPH), 244
Idiophase, 327, 328
Imatinib, 691
Immobilization, 405, 649–652, 797–798
Immobilized cells, 795, 797
Immobilized cell technology (ICT), 602–605
Immobilized derivatives, 652
Immobilized system, 797
Immunoassays, 803
Immunological methods, 917–918
Immunostaining, 792
Immunosuppressant, 784, 789, 794, 802
Immunosuppressive, 785, 788, 789

teratogenic and carcinogenic
behavior, 248

Induced resistance, 78
Induced systemic resistance, 138
Industrial applications

biofuel industry, 659
chemical industry, 657–658
detergent industry, 658–659
food industry, 652–655
pharmaceutical industry, 655–657

Industrial fields, 327
Industrial scale, 625
Industrial waste, 543
Inert support, 324, 329
Infections, 399
Inhibitory mechanism, 856, 858, 859,

861, 868
Inonotus, 935

I. obliquus, 937
Inotolactone, 937
Integrated pest management, 36
Interesterification, 655, 657
Interfacial activation, 640, 643
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Interferon, 946
Interferon-α (IFN-α), 685
Interleukin (IL), 787, 942
Intra-esterification, 463–465
Intraspecific diversity, 741
Intraspecific variability, 742, 743
Invasion, tumor cells, 686
Invertase, 20, 970
Ion trap, 915
Ionic liquids (IL), 548–549
Ionizing radiation, 273, 800
Irinotecan, 683
Irreversible inhibition, 855, 858, 860, 862
Isaria, 518
Isaria sinclarii, 686
Isoacids, 573, 574, 585
Isoform, 443
Isoleucine, 618
Isopentenyl-pyrophosphate, 540
ISP-1, 686

J
JAK-STAT pathway, 690
Jasmonic acid, 137
JQ-1, 689

K
k-carrageenan, 611
α-Keto acids, 606
Keto-acids, 618
Ketones, 617
Ki-67, 689
Killer toxins, 57
Kinetics, 793, 795
Koji, 841
Kombucha tea

beneficial effects, 968
biochemical composition

cellulose, 971–972
organic acids, 972
sugar, 969–970
tea polyphenols, 973–974
total phenolic compounds, 973

microbial composition of, 974–976
preparation, 967

Kwashiorkor, 245
Kynapcin, 860, 861

L
Laccase, 20, 442, 443
Lactic acid, 326
Lactonase, 464

Lactose, 356
Lager beer, 606
Lanostanes, 933
Lanostanoids, 931–956
Lasiodiplodia, 487
Lasiodiplodin, 487
LD50, 908
L-Dihydroxyphenylalanine (DOPA),

267–268
Lecanicillium, 518
Legislation, 555
Legumain, 870
Leishmania donovani, 952
Leishmanicidal, 952
Lentinula edodes, 725
Lentinus edodes, 6, 7
L-ergothioneine, 744
Leucine, 579, 618
Leukemia and lymphoma, 683
Leukoencephalomalacia, 247
Lewis lung tumors, 687
Lignin peroxidase, 443
Lignocellulosic biomass, 351
Lignocellulosic materials (LCM), 352
Limited cellular growth, 609
Linalool, 575, 577, 580
Lipase, 20, 640–658

adsorption, 649, 651
Aspergillus ( see Aspergillus)
characteristics, 641, 643, 644,

646–648, 650
enantiomer, 656
media, 642, 644
medium, 204
oils, 655
polymers, 651
production, 640, 644
properties, 642–649
resolution, 656, 657
sequences, 644
support, 649
synthesis, 653, 656, 657

Lipase engineering database (LED), 643, 645
Lipid peroxidation, 271
Lipophilic, 786
Lipsticks, 553
Liquid chromatography-mass spectrometry

(LC-MS), 914–917
L-lactic acid, 972
Lovastatin, 332, 334, 475, 823
Low-alcohol beverages, 626
Low water activity, 331
L-phenylalanine, 671
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L-tryptophan, 900
Lucidenate, 939
Lucidenic acid, 953
Lucidone, 955

biodiversity, 416, 418, 544
biological activities, 533, 555

Lucidumol, 941, 943
Lung cancer, 771
Lycopene, 528–529
Lymphokine, 787
Lysergic acid diethylamide (LSD), 891, 918
Lysine 9 on histone H3 (H3K9), 688
Lysine-specific histone methytransferase SU

(VAR)3-9, 688
Lytic polysaccharide monooxygenases

(LPMO), 355

M
M5076 sarcoma cells, 679
Macrocyclic ketones, 470
Macrocyclic lactones, 470
Macrocyclic musk lactones, 470–472
Macrocypin, 869
Macrofungus, 241, 242
Macroporous resin, 768
Magnaporthe oryzae, 274, 276, 278,

280, 281
Maize, 717, 720
Malic acid, 622
Malolactic fermentations, 623
Mandelate, 583
Mangan peroxidase, 443
β-Mannanase, 360
β-Mannosidases, 360
Marcfortins, 307
Marine ecological niches, 529
Marine fungi, 529

bioactive compounds (see Bioactive
compounds, marine fungi)

Marine-derived filamentous fungi, 529–530
Market potential, 453
Mass loss, 446
Mass spectrometry (MS), 427, 836, 914–917
Mass transfer coefficients, 619
Mass transfer limitations, 611
Matrices, 651
Matthew Trusler, 453
Maunder Minimum, 447–448
MCF-7 breast cancer, 678
MCFA, 612
Mcl-1, 692
Medicinal mushrooms, 762

Medium-chain, 612
Medusomyces gisevii, 974
Melanin, 161, 524

DHN-melanin Biosynthesis, 266–267
extremophylic fungi, 272–274
glutaminyl-4-hydroxybenzene

melanin, 268
l-3,4-dihydroxyphenylalanine-melanin

biosynthesis, 267–268
localization of, 269–270
pathogenesis, 274–282
pathways of, 268–269
properties of, 271–272

Melanin-deficient mutants, 274, 277
Melanoma, 683, 772
Meleagrin, 297–299
Membrane cultures, 325
Membrane integrity, 54
Membrane-surface liquid culture, 341
MEROPS database, 855, 856
Meroterpenoid, 160, 301
Metabolic engineering, 401
Metabolic pathway, 408, 542
Metabolites, 203–205, 210–213, 401,

402, 406, 408, 420, 977
Metabolomics, 540, 542
Metalloprotease inhibitors, 871
Metalloproteinase, 947
Metalloproteinase-2, 690
Metarhizium anisopliae, 275, 683
Metastasis, 769
Metastasize/Metastasis, 670
Methanolic extracts, 743, 744
Methionine aminopeptidases, 681
Methyl syringate, 145
Methylcrotonyl-CoA, 579
Mevalonate, 540
Mevalonic acid pathway, 5
Microbial antagonism, 38
Microbial biomass, 764
Microbial communication, 473
Microbial competition

for nutrients, 59–61
for root colonization, 61–64

Microbial culture, 321
Microbial enzymes, 326
Microbial metabolites, 543
Microbial production, 543
Microemulsion, 549
Microextraction, 549
Microfibrils, 352
Microfungi, 242
Microsporidiosis, 681
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Microtubules, 679
Microwave assisted extraction (MAE),

421, 546
Middle lamella, 438
Migration, tumor cells, 686
Mild reaction conditions, 640, 659
Mitochondrial respiratory chain, 56
Mitogen-activated protein kinase (MAPK), 73
Mitorubrin, 521
Mixed cultures, 570, 583–584, 587
Mixing, 371–372
Mobile phase, 803
Moistening agents, 369–370
Moisture content, 369
Molecular damage, 58
Molecularly imprinted polymer (MIP), 915
Molecular operational taxonomic

units (MOTUs), 195–198, 201,
212, 214

Momilactone, 140
Monacolin K, 552, 823
Monascaceae family, 503–504
Monascin, 531, 836
Monascorubramine, 531, 552, 837
Monascorubrin, 504, 506, 531, 837
Monascus, 10, 16, 503, 822

absorption spectra, 836
asexual reproduction, 823
molecular studies, 332, 835
M. pilosus, 829
M. purpureus, 823
M. ruber, 825
M. purpureus, 503
patent, 553
pigments, 502, 503, 506, 549

Monascus-fermented rice, 822
Monascus-like azaphilones, 556
Monascus-like pigments, 552
Moniliformin, 247
Monilinia fructicola, 281
Monooxygenases, 463
Morinda citrifolia, 546
Morphogenesis, 108. See also Quorum

sensing
Mpa cluster, 304
mRNAs, 337
mTOR, 763
MUC-4, 690
Mucor, 243
Mucor circinelloides, 527–528, 553
Mucositis, 680

Multicolanic, 476–477
Multidimensional separation systems, 428
Multidrug resistance, 788
Multiformin, 522
Multi-mycotoxin, 916
Multiple sclerosis, 686
Multiplicity, 360–361
Mushroom extracts, antioxidant activities.

See Agaricus subrufescens
Mushrooms. See Agaricus subrufescens
Musical instrument, 437, 447
Mutagenesis, 800, 801
Mutagens, 800, 801
Mutants, 335, 614, 765, 798–799
Mutation, 785, 799
Mycelia sterilia, 686
Mycelium, 331, 764
Mycobacterium tuberculosis, 950
Mycocypin, 869–870
Mycoparasitic activity, 65
Mycoparasitism, 64–73
Myco-pharmacy, 749
Mycophenolic acid, 303–305
Mycosphaerella fijiensis, 274, 281
Mycospin, 867
Mycotoxicosis, 242, 909
Mycotoxins, 5, 10–15, 162, 170, 221,

243–244, 477–490, 515, 549,
555, 909

aflatoxins, 244–245
alkaloid-based biosynthesis, 720–721
antifungal property, 724
biocontrol agents, 726–727
biosynthesis (see Mycotoxins)
citrinin, 830
CTN, 245–246
ergot alkaloids, 246
fumonisins, 246–247
fungal growth, 724–725
legislation, 251–252
moniliformin, 247
OTA, 248
patulin, 248–249
polyketide-based biosynthesis, 704–717
prevention of, 703
terpene cyclase-based biosynthesis,

717–720
trichothecenes, 249–250
zearalenone, 250–251

Myriococcum albomyces, 686
Myrothecium, 10
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N
N-acetyl-β-D-glucosaminidases

(NAGases), 65
N-Acyl homoserine lactones, 477
NADH and NADPH, 620
NADPH dependent reductase, 678
NADPH oxidases (Nox), 58
Nanobiotechnology, 403, 408
Nanomaterials, 397, 400, 403, 405, 408
Nanoparticles, 395–409

bacteria, 401
biodegradable, 403, 406
biosynthesis, 403–405
mechanism of biosynthesis, 405–406
pathway, 401
precipitation, 405
precursor, 401, 403

Nanotechnology, 397–399, 403
Naphthoquinone, 515, 537, 678

pigments, 516, 535–539
Natural colorant, 550

pigment (see Pigments and colorants,
filamentous fungi)

Natural colors, 556
Natural food colorants, 550–553
Natural ingredients, 544, 553, 556
NATURAL RED™, 545, 552
Nature-identical pigments, 551
NCT00322608, 677
NCT00630110, 677
Nectria, 488
Nectriaceae, 513–516
Neolan Glaucin E-A, 445
Neovascularization, 680
Nephrotoxic activity, 830
Nephrotoxicity, 245, 710, 715
Nerol, 575, 577, 578
Nerolidol, 578, 580
Neural tube, 711
Neuroprotective agents, 773, 788
Neurospora crassa, 524
Neurosporaxanthin, 524
Neurotoxicity, 721
Neurotransmitters, 905
Neutropenia, 678, 680, 682
New antioxidants, 750–755
NF-κB, 681, 946
N-glutarylmonascorubramine, 506
N-glutarylrubropunctamine, 506
Nitric oxide, 942
Nitric oxide synthase, 942

Nitrite salts, 841
Nitrogen, 573, 575, 579, 582, 584, 586

compounds, 615, 802
sources, 370, 796, 797, 800

Nivalenol (NIV), 168, 249
NOD/SCID mice, 684
Noncomplexed cellulases, 354
Non-Hodgkin’s lymphoma (NHL), 683
Non-host selective (NHSTs) toxins, 153
Non-mevalonate pathway, 6
Nonobligate biotrophs, 147
Non-photosynthetic bacteria, 539
Nonribosomal cyclic tetrapeptide, 690
Non-ribosomal peptide synthetases

(NRPSs), 53
Non-small cell lung cancer (NSCLC), 677
Non-specific forces, 649
Norway spruce wood, 448
Novel hybrids, 624
Novozyme, 652
NPI-2358, 677
Nuclear magnetic resonance spectroscopy

(NMR), 427, 786
Nutrients, 204

O
Obligate biotrophs, 147
Ochratoxin A (OTA), 12–13, 248, 711–714
γ-Octalactone, 468
Off-flavors, 621
Olfactometry, 574
Oligopeptides, 785
9-O-Methylfusarubin, 513
Oosporein, 522
13-O-palmitoyl-rhizoxin, 679
Ophiosphaerella herpotricha (Fr.)

Walker, 683
OptForce, 542
OptGene, 542
Optically active compound, 657
OptKnock, 542
Opus, 58, 448
Oral cancer, 771
Orbitrap, 916
Organic ingredients, 544, 555
Organic products, 556
Organoleptic property, 209
Orsellinic acid, 302, 306
Orthonasal perception, 619
Osmotic stress, 331
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Osteopetrosis, 683
Oudemansins, 56
Oxalate decarboxylase, 58
Oxaliplatin, 683
ω-Oxidation, 463, 464, 469, 472
β-Oxidative, 583
Oxidative phosphorylation, 338, 690
Oxoacids, 609
Oxo-pre-bikaverin, 535
Oxygen access, 838
Oxygen limitation, 331
Oxygen Radical Absorbance Capacity

(ORAC), 750, 752, 754
Oxylipin, 123, 159, 164

P
p21WAF-1/Cip1, 690
Pachybasin, 516
Pachymic acid, 937
Packed bed reactor, 375–376, 611
Paclitaxel, 688
Paecilomyces, 486, 511–513, 553

P. sinclairii, 513
Paecilomycins, 486
Painting industries, 554–555
Palmarumycin CP-1, 678
Paracoccidioides brasiliensis, 269,

275, 279
Parietin, 524
Paspalic acid, 902
Pathogen, 861, 868, 871, 873, 875, 876
Pathogenesis, 274

animal and insect pathogenic fungi,
113–117

plant pathogenic fungi, 113
Pathogenic fungi, 402, 404
Patulin (PAT), 14, 248–249, 308, 480, 482,

714–716
apple juice, 716

PCR. See Polymerase Chain Reaction (PCR)
Pectinase, 443
Pectins, 438
Pellicle, 976
Penetration, 276
Penicillic acid, 482
Penicillin, 476

biosynthesis, 329
Penicillium, 245, 402, 404, 405, 473, 474,

476, 480, 482, 487, 489,
504–509, 709, 713, 714, 721

P. marneffei, 504
P. oxalicum, 505, 551, 552

P. purpurogenum, 506, 549, 553
P. simplicissimum, 505
P. brevicompactum, 303
P. camemberti, 308–309
P. notatum, 8
P. roqueforti, 295

Penitrem A, 307
Pentaketide dimer, 680
2,3-Pentanedione, 618
6-Pentyl-alpha-pyrone (6PAP), 38
Peptaibol(s), 47–53, 81
Peptidase, 855
Peptide bond, 855, 858, 870
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