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    Chapter 5   
 Invertebrates of Freshwater Temporary Ponds 
in Mediterranean Climates                     

       Dani     Boix     ,     Jamie     Kneitel    ,     Belinda     J.     Robson    ,     Claire     Duchet    ,     Luís     Zúñiga    , 
    Jennifer     Day    ,     Stéphanie     Gascón    ,     Jordi     Sala    ,     Xavier     D.     Quintana    , 
and     Leon     Blaustein    

         Introduction to Mediterranean Temporary Ponds 

    Long Known But Neglected Until Recently 

 Temporary ponds have long attracted the attention of Mediterranean people. In 
“History of Animals,” Aristotle described the seemingly spontaneous generation 
of life from mud or sand using observations from a  temporary pond   (“fi sh” prob-
ably refers to the aquatic invertebrates, such as fairy shrimp, that he was 
observing):

   The great majority of fi sh ,  then ,  as has been stated ,  proceed from eggs. However ,  there are 
some fi sh that proceed from mud and sand ,  even of those kinds that proceed also from pair-
ing and the egg. This occurs in ponds here and there ,  and especially in a pond in the neigh-
bourhood of Cnidos. This pond ,  it is said ,  at one time ran dry about the rising of the 
Dogstar ,  and the mud had all dried up ;  at the fi rst fall of the rains there was a show of water 
in the pond ,  and on the fi rst appearance of the water shoals of tiny fi sh were found in the 
pond . [Aristotle (350 BC) Book VI. Chapter 15. In: The History of Animals (translated in 
1907 by D’Arcy Wentworth Thompson. London: John Bell)] 

   The lack of scientifi c publications on Mediterranean temporary ponds does not 
refl ect their ecological importance (Grillas et al.  2010 ), and research in these envi-
ronments has increased signifi cantly over the last two decades (Boix et al.  2012 ). 
The absence of comparative studies on  aquatic ecosystems   in regions with a 
Mediterranean-type climate has been reported (Gasith and Resh  1999 ) and par-
tially addressed for Mediterranean-climate streams and rivers (Bonada and Resh 
 2013 ). However, studies have emphasized the importance, abundance, function-
ing, and biodiversity of Mediterranean temporary ponds in the last several decades 
(e.g., Balla and Davis  1995 ; Witham  1998 ; Diget and Rioux  1998 ; Blaustein and 
Schwartz  2001 ), highlighting the need to  develop conservation plans   for these 
systems (Zedler  2003 ; Grillas et al.  2004 ; Fraga et al.  2010 ; Sancho and Lacomba 
 2010 ).  



142

    Mediterranean Biome: The Five Mediterranean Regions 

 The term “Mediterranean” as a biome is not recognized in the same way as other 
biomes (e.g., boreal forest, desert, or savannah). Although it is named for a particu-
lar geographic region, the term is used to designate regions with a similar climate 
around the world. Mediterranean climates are typically located in a narrow latitudi-
nal band between 30° and 40°, although in the Mediterranean basin itself the biome 
expands to 45° (Bolle  2003 ). This  habitat   is located on fi ve continents (Eurasia, 
Africa, South and North America, and Australia), and thus fi ve biogeographic 
regions (Palearctic, Afrotropic, Neotropic, Nearctic, and Australasian) (Fig.  5.1 ). 
   The concept of a Mediterranean biome remains controversial (Stamou  1998 ) 
because some defi ne the habitat with a defi nite drought period, while others take 
into account two features:  dry summers and cool winters  . However, biogeographic 
studies have clearly identifi ed Mediterranean forests, woodlands, and scrub, as well 
as wetlands, since they share similar bioclimatic conditions.

   The area covered by the Mediterranean biome is quite small compared to other 
biomes (Olson et al.  2001 ). It covers only 5 % of the earth’s surface (Fig.  5.1 ), and 
the subregions vary tremendously in size (Underwood et al.  2009 ). South and North 
America and South Africa combined are small, roughly 100,000 km 2  each (11 % of 
the Mediterranean area). The south-western Australian Mediterranean-climate 
region covers more than 750,000 km 2  (25 % of this biome) divided into two separate 
areas. However, the biome has its maximum extent (64 % of the total area covered 
by this biome) around the Mediterranean Sea, from which it takes its name. The 
 Circum-Mediterranean region   forms an incomplete belt around the Mediterranean 
Sea (Fig.  5.1 ), with the maximum width of this belt located on the Iberian Peninsula. 

 Temporary water bodies predominate in Mediterranean regions because of their 
typically long, hot, dry summers. Their widespread occurrence and abundance 
therefore make temporary habitats the characteristic wetlands of this biome. In this 
chapter, we use “ Mediterranean temporary ponds  ” in a broad sense, including all 
the temporary freshwater wetlands located in Mediterranean regions, and not 
restricted by any legal defi nition. For example, the European Habitats Directive 
(European Directive 92/43/CEE) considers “Mediterranean temporary ponds” a pri-
ority habitat to conserve, but the Directive defi nes this wetland type strictly by the 
presence of particular plant species (European Commission  2003 ; Bagella et al. 
 2007 ). Curiously, this protected habitat is identifi ed in the United Kingdom 
(McAbendroth  2004 ), outside of the Mediterranean-climate region.  

    Climate: Hot Dry Summers and Mild Winters 

 Mediterranean climates are transitional between  temperate and tropical climates  , 
hence their prevalence between 30° and 40° of latitude (Aschman  1973 ; Daget 
 1984 ). The climate can be summarized as follows:
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    1.    Hot summers which coincide with the dry period   
   2.    Mild, but cool winters   
   3.    High temporal variability (i.e., high intra- and inter-annual differences)    

  These characteristics determine the hydrology and ecological functioning of 
the  wetlands  . The combination of dry weather and high temperatures causes large 
water-level fl uctuations (Álvarez-Cobelas et al.  2005 ; Beklioglu et al.  2007 ) and 
thereby regulates the presence of temporary waters in Mediterranean areas. The 
mild winters mean that most Mediterranean wetlands remain ice-free (Britton and 
Crivelli  1993 ).  Freezing   of wetlands affects both limnological processes (e.g., 
thermal or oxygen vertical gradients in the water column) and the availability of 
habitat and resources for the biota. This particular combination of annual drying 
and the absence of freezing typify Mediterranean wetlands and distinguish them 
from wetlands in most  other   biomes. Moreover, high inter-annual climate vari-
ability is also characteristic of Mediterranean regions (Gasith and Resh  1999 ) 
(Fig.  5.2 ). 

 Despite the narrow latitudinal range and small area of Mediterranean regions, 
extreme gradients of aridity (i.e., duration of the dry period) and temperature 
exist (Bolle  2003 ) (Fig.  5.2 ).    Those gradients have been used to distinguish 
various climate  types   and are used to classify Mediterranean climates (Stamou 
 1998 ):

     1.    Duration of the dry period

    (a)    Perarid: 11–12 months   
   (b)    Arid: 9–10 months   

  Fig. 5.1    World map showing the location of Mediterranean-climate regions. The sites indicated 
on the map correspond to the  ombrothermic diagrams   shown in Fig.  5.2        
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  Fig. 5.2     Ombrothermic diagrams   for eight locations in Mediterranean-climate regions.  Upper  
diagrams correspond to sites in the Mediterranean Basin and  lower  diagrams correspond to sites 
located in other Mediterranean regions. Monthly mean maximum ( red line ) and minimum ( blue 
line ) temperature, and monthly mean rainfall ( bars ) were shown. The high intra-annual variability 
characteristic of mediterranean climates is evident, as well as variability among and within regions 
(i.e., Mediterranean Basin)       
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   (c)    Semiarid: 7–8 months   
   (d)    Subhumid: 5–6 months   
   (e)    Humid: 3–4 months   
   (f)    Perhumid: 1–2 months       

   2.    Mean temperature of the coldest month

    (a)    Warm winter: more than 7 °C (no periods of freezing)   
   (b)    Mild winter: between 3 and 7 °C (freezing is rare)   
   (c)    Cold winter: between 0 and 3 °C (freezing is frequent)   
   (d)     Severe   winter: less than 0 °C (freezing may be extensive)        

  Division of Mediterranean climates into subclasses using a numerical approach 
has been proposed by Nahal ( 1981 ). The use of  Ebergers’ index   of drought ( Q ) is 
the most widely accepted approach:

  
Q

P

M m M m
=

+ -
2

( )( )    

where 
  P  is annual rainfall 
  M  the mean maximum temperature of the hottest month 
  m  the mean minimum temperature of the coldest month 
 Thus, we can distinguish the following  subclasses   of Mediterranean climate:

    1.    Arid:  Q  values between 20 and 30; annual rainfall between 300 and 500 mm   
   2.    Semiarid:  Q  values between 30 and 50; annual rainfall between 500 and 

700 mm   
   3.    Subhumid:  Q  values between 50 and 90; annual rainfall between 700 and 

1000 mm   
   4.    Humid:  Q   values   more than 90; annual rainfall more than 1000 mm    

      Mediterranean regions are characterized by an annual precipitation in the range 
of 275 to 900 mm with over 65% occurring in the 6 colder months (Aschman  
 1973 ). However, Mediterranean areas with annual rainfall less than 275 mm do 
exist (e.g., in Morocco, Spain, and Israel). Two  seasonal patterns   of precipitation 
have been described in Mediterranean regions: (1) a single rainfall maximum in 
winter, and (2) two rainfall maxima, one in spring and the other in autumn. In those 
Mediterranean regions with strong oceanic infl uences, winter rainfalls are heavy 
due to storms moving from high latitudes towards the equator (e.g., southern 
Australia). In contrast, in areas with less oceanic infl uence (e.g., coast of the western 
Mediterranean basin), the storms are weaker, so winter rains are meagre, while 
spring and autumn rains that are generated by cold air masses are more important to 
hydrology (Ferrés  1993 ).  

5 Invertebrates of Freshwater Temporary Ponds in Mediterranean Climates
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     Hydrology      

 Mediterranean temporary wetlands are usually fl ooded by rainfall and evaporation 
is the primary mechanism of drying (Fig.  5.3a ). However, there are exceptions. 
Groundwater-fed temporary wetlands (Fig.  5.3b ) are abundant in the southern 
Australia (Sim et al.  2006a ; Horwitz et al.  2009 ; Boulton et al.  2014 ) and the 
African Cape (Mlambo et al.  2011 ; de Moor and Day  2013 ) Mediterranean regions, 
and they are present in some areas of the Mediterranean basin (Rodríguez-Rodríguez 
 2007 ). Groundwater-fed temporary wetlands are also found in karstic limestone 
areas (Boix et al.  2001 ). Temporary pools or riverine-fl oodplain wetlands resulting 
from fl ash fl oods (ultimately caused by rains),  or      by springs that vary in output, 
resulting in areas that fl ood (sometimes with fossil water), recede and dry (Issar 
 1990 ) (Fig.  5.3c ).

   Although rain and evaporation are the main inputs and outputs, respectively, 
freshwater temporary ponds rarely accumulate ions in their basins. Runoff of ions 
(on the surface or via ground water) must therefore occur from these waterbodies. 
However, athalassic lakes and ponds (saline water isolated from the sea, sensu 
Williams  1981 ) occur in endorheic basins of the more arid locations of Mediterranean 
climates, such as the Iberian Peninsula, North Africa, California, Australia, and 
South Africa. In these systems, ions accumulate in the basin because water output 
occurs only by evaporation. Groundwater-dependent wetlands have water levels 
that rise and fall seasonally as groundwater tables fl uctuate and thus moderate con-
centrations of ions develop as water levels decline. 

 Several classifi cations for temporary ponds have been proposed using hydrologi-
cal patterns. Duration and predictability of the hydroperiod are frequently used cri-
teria (Comín and Williams  1994 ; Keeley and Zedler  1998 ; Boulton et al.  2014 ; 
Williams  2006 ). Our proposal, following Boulton et al. ( 2014 ), distinguishes fi ve 
types of temporary lentic waters:

    (a)     Ephemeral : Filled only after unpredictable rain and by runoff. The fl ooded area 
dries out during the days following the fl ooding and supports low numbers of 
macroscopic aquatic species.   

   (b)     Episodic : Dries in 9 out of 10 years, with rare and irregular fl ooding (or wet 
periods) which may last for a few months.   

   (c)     Intermittent : Alternating wet and dry periods, but a more irregular fre-
quency of filling  than      seasonal wetlands. Flooding may persist for months 
or years.   

   (d)     Seasonal : Alternating wet and dry periods annually, in accordance with the 
season. Usually fi ll during the wet season of the year, and dry out in a predict-
able way every year. The fl ooding lasts for several months, long enough for 
macroscopic animals and plants to complete their life cycles.   

   (e)     Near - permanent : Predictable fl ooding, though water levels may vary. The 
annual input of water is greater than the losses (does not dry out) in 9 out of 10 
years. The majority of organisms living here cannot tolerate desiccation.    

D. Boix et al.
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  In this chapter we focus on two of these types, intermittent and seasonal, because 
these are the types most commonly found in Mediterranean regions. However, these 
categories represent points along a gradient. For example, some waterbodies dry 
more often than 1 year in 10 (e.g., 1 year in 3). For these types of ponds, the term 
“semipermanent” (dry but not every year) is commonly used (e.g., Stewart and 
Kantru  1972 ; Collinson et al.  1995 ; Gascón et al.  2005 ).   

    Invertebrate Assemblages of Mediterranean Temporary Ponds  

 The similar climatic conditions among Mediterranean regions have led to convergent 
evolution in the fl ora (Matesanz and Valladares  2014 ) characterized in part by remark-
ably high species diversity. However, the regions’ isolation and geologic history have 
resulted in differences in the  aquatic fauna   (Bonada et al.  2008 ). For example,  fauna 
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  Fig. 5.3    Water  budget      diagram characteristics of Mediterranean temporary ponds. Model ( a ) rep-
resents rain-dependent temporary ponds such as vernal pools; model ( b ) represents groundwater- 
fed temporary ponds unconnected to rivers commonly found across southern Australia and Cape 
Mediterranean region, and also present in karst geologies; and model ( c ) shows temporary ponds 
fed by fl ash-fl oods (occurring in some countries of the Mediterranean basin (e.g., Israel))       
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groups   (e.g., aquatic coleopterans) are characterized by very restricted distributions 
in the Mediterranean basin region, very likely a consequence of two evolutionary 
processes: (1) the Mediterranean basin as a refugium during the glacial maxima and 
(2) the Mediterranean as an area of endemism during isolation in the glacial cycles 
(Hewitt  2000 ; Ribera et al.  2003 ). Similarly, the south-western Australian 
Mediterranean-climate region has been isolated by surrounding arid zones for millen-
nia, and as a result of this isolation is depauperate in some aquatic fauna, such as 
stonefl ies (Davies and Stewart  2013 ). Therefore, Mediterranean temporary ponds are 
characterized by a unique combination of isolation and connectedness at different 
spatial scales, which can result in the evolution of  endemic species   (Zedler  2003 ). 

 Appendix  1  provides a list of the families of aquatic invertebrates reported from 
the fi ve Mediterranean regions. The list is geographically and taxonomically biased 
due to different research efforts among regions and taxonomic groups. The data 
were obtained in an extensive review of the literature and complemented by unpub-
lished data of the authors (see Appendix  1  for references). Biodiversity (number of 
genera) in Mediterranean temporary ponds is dominated by  arthropods  : primarily 
insects and secondarily crustaceans (Appendix  1 ). In the case of insects, two fami-
lies have the highest biodiversity in all Mediterranean regions: Dytiscidae 
(Coleoptera) and Chironomidae (Diptera). Another six  insect families   possess at 
least ten genera (in decreasing order of genera richness): Hydrophilidae, Corixidae, 
Libellulidae, Ceratopogonidae, Coenagrionidae, and Hydraenidae. Similarly, two 
families of crustaceans have the highest biodiversity in all Mediterranean regions: 
Chydoridae (Branchiopoda) and Cyprididae (Ostracoda). These two families are fol-
lowed by two  copepod families  : Cyclopidae and Diaptomidae. For  non- arthropods  , 
two other families have high genera richness: typhloplanid turbellarians and planor-
bid gastropods. This pattern of richness among taxonomic groups is in accordance 
with published comparisons among temporary ponds around the world, regardless 
of the climate region (e.g., Boix et al.  2001 ; Boix and Sala  2002 ; Williams  2006 ). 

     Large Branchiopods  : Flagship Invertebrate Species 
of Mediterranean Temporary Ponds 

 Large branchiopods are a group of crustaceans that almost exclusively inhabit tem-
porary ponds (Hartland-Rowe  1972 ) and they have a worldwide distribution 
(Brendonck et al.  2008 ). In the Mediterranean they are often considered a fl agship 
group of invertebrates for temporary ponds (Belk  1998 ; Thiéry  2004 ) and they are 
promoted to monitoring ecological status of temporary ponds, since they are very 
sensitive to habitat and landscape degradation (Gascón et al.  2012 ; van den Broeck 
et al.  2015a ,  b ). Appendix  2  provides a list (and references) for the large branchio-
pod species present in Mediterranean ponds to show the high species richness of 
this group and the high level of endemism. We only included species specifi cally 
observed in the temporary ponds located in the Mediterranean biome, below 1500 
m.a.s.l., and in fresh water. Species present in the Mediterranean basin but only 
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located at high altitude (e.g.,  Chirocephalus algidus ,  C. marchesonii ,  C. ruffoi ,  C. 
sibyllae  or  C. tauricus ; Cottarelli and Mura  1983 ; Cottarelli et al.  2010 ) were not 
included, nor were saline species (the genus  Parartemia  in Australia has up to 15 
species in Australian Mediterranean regions, 11 of them being endemic: Timms 
 2014  and references therein). Some early-described species are not included in the 
Appendix because our existing knowledge consists only of very old records, and 
taxonomic revision is probably needed; this is especially true for the Spinicaudata 
(Hartland-Rowe  1967 ; Thiéry  1996 ) and for some Anostraca of the Mediterranean 
basin area (such as  Chirocephalus recticornis  and  Chirocephalus festae ; Brauer 
 1877 ; Colosi  1922 ). Only species that appear in the scientifi c literature during the 
second half of the twentieth century have therefore been included. 

 Large branchiopods are known in four of the fi ve Mediterranean regions (no species 
have been identifi ed from the South American Mediterranean region) and their species 
richness is high (Appendix  2 ). The degree of endemism is also quite high, except in 
South Africa, where only a single endemic species has been recorded. The proportion 
of endemic species is 55 %, 46 %, and 45 % in the Mediterranean basin, southern 
Australia, and North America, respectively. At generic level, the anostracan  Linderiella  
(California and Mediterranean basin) and the  spinicaudatan  Maghrebestheria    
(Mediterranean basin) can be considered as endemic to the Mediterranean regions. 
Some genera have broad distributions across several Mediterranean regions, although 
endemic species within these genera occur. They represent an example of faunal com-
plexes  persisting   over millennia with locally adapted endemic species (Keeley and 
Zedler  1998 ). This is especially evident in the  Notostraca   (e.g.,  Triops ), Spinicaudata 
(e.g.,  Cyzicus ,  Eulimnadia ), and Laevicaudata ( e.g.,Lynceus ), although it also occurs in 
some anostracan genera (e.g.,  Streptocephalus ,  Branchinecta ). It is interesting to note 
that some genera are highly speciose in a particular Mediterranean region, such as 
 Streptocephalus  and  Branchipodopsis  in South Africa,  Branchinecta  in North America, 
 Branchinella ,  Eulimnadia , and  Limnadopsis  in southern Australia, and  Chirocephalus , 
 Tanymastigites  and  Triops  in the Mediterranean basin.   

    Dynamics of Invertebrate Assemblages of Mediterranean 
Temporary Ponds 

    Key  Environmental Factors   

 Hydroperiod is an important factor determining the faunal composition and struc-
ture of Mediterranean temporary ponds (e.g., Boix et al.  2004 ; Ripley and Simovich 
2009; Sim et al.  2013 ; Kneitel  2014 ). However, pond size is also considered a deter-
minant factor (e.g., Ebert and Balko  1987 ; March and Bass  1995 ; Meintjes  1996 ; 
Spencer et al.  1999 ). Indirect effects of pond size on community structure (i.e., 
larger ponds have different environmental characteristics than smaller ones) seems 
to be weak in temporary Mediterranean ponds (Ballón et al.  in press ). The effects of 
both hydroregime and habitat size depend on the dispersal modes of the taxa. 

5 Invertebrates of Freshwater Temporary Ponds in Mediterranean Climates



150

 Hydroregime   has been found to be more important for passive dispersers than for 
active dispersers (Vanschoenwinkel et al.  2009 ), for instance, and interactions 
between inundation length and timing can differentially affect dispersal modes 
(Kneitel  2014 ). Further, nested community patterns have been observed in 
Mediterranean temporary ponds and found to be most associated with environmen-
tal variation (hydroperiod and pond size), but the presence of species with poor 
dispersal abilities can also increase nestedness (Ripley and Simovich  2009 ; 
Florencio et al.  2011 ). 

 Water quality has also been related to community structure, although it shows an 
inconsistent pattern over invertebrate successional phases. Water quality fl uctua-
tions probably coincide with changes in invertebrate assemblages, rather than caus-
ing them (Barclay  1966 ; Meintjes  1996 ). The main physical and chemical variables 
related to species richness and community composition in Mediterranean temporary 
ponds are salinity (Boix et al.  2008 ; Waterkeyn et al.  2009 ; Mlambo et al.  2009 ), 
turbidity (Alonso  1998 ; Mlambo et al.  2009 ; Ruhí et al.  2014 ), light (Mokany et al. 
 2008 ) and nutrient concentration (Balla and Davis  1995 ; Mlambo et al.  2009 ). 
Although local pond characteristics, and intra- and inter-annual variability are of 
greater importance than biological factors for shaping the physical and chemical 
 characteristics   of temporary ponds, bottom-up and top-down trophic effects are also 
infl uential (e.g., Magnusson and Williams  2006 ), but few studies have specifi cally 
addressed this topic in Mediterranean temporary ponds (but see Balla and Davis 
 1995 ; Waterkeyn et al.  2013 ).  

    Seasonal Succession 

     Successional Phases   

 Change in community composition during inundation was the focus of early studies 
in temperate temporary ponds of the northern hemisphere (e.g., Murray  1911 ; 
Mozley  1932 ; Kenk  1949 ). These pioneering studies built a general conceptual 
model, which described the seasonal succession of invertebrate communities. This 
model has subsequently been improved and/or validated in studies in temperate 
regions of the southern hemisphere (Barclay  1966 ; Lake et al.  1989 ) and in more arid 
zones with short hydroperiods (e.g., Rzóska  1961 ; Meintjes  1996 ; Lahr et al.  1999 ). 

 Kenk ( 1949 ) identifi ed several different community structures during the 
hydroperiod of temporary ponds in cool-temperate Michigan (USA) and 
described them as “stages or phases.” Two aquatic phases were described based 
on water temperature and season: the cold-water and the spring phase. In the 
southern hemisphere, in New Zealand, Barclay ( 1966 ) also observed similar 
time periods with distinguishable temporary pond communities (autumn-winter 
stage and spring-early summer stage), but described a third phase during drying 
(dry stage). Lake et al. ( 1989 ) constructed a three-phase conceptual model in 
which phases were called: “fi lling,” “middle or aquatic” and “drying.” The com-
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munity dynamics of fi lling and drying phases represent allogenic succession 
driven by environmental processes. During fl ooding, resources become abun-
dant, and biotic interactions have limited effect on community composition. 
During drying, environmental variables change dramatically (e.g., temperature 
increases, dissolved oxygen fl uctuates), and although higher faunal densities 
intensify biotic interactions, changes in community composition are again 
mostly driven by environmental conditions. However, the succession observed 
between these two phases is autogenic, that is, the result of biological processes 
(i.e., predation and competition). Case studies of faunal community succession 
in Mediterranean basin ponds are consistent with the three-phase model 
(Bazzanti et al.  1996 ; Boix et al.  2004 ; Florencio et al.  2009 ; Sahuquillo and 
Miracle  2010 ). Additionally, comparisons among the same phases of different 
hydroperiods suggest that secondary changes in community composition related 
to season exist in Mediterranean temporary ponds (Yaron  1964 ; Boix et al. 
 2004 ; Culioli et al.  2006 ). In these studies, invertebrate species compositions 
for the three successional phases were identifi ed, but species were also identi-
fi ed that only appeared in spring or in autumn-winter hydroperiods. Similarly, in 
a temporary wetland in the south- western Australian Mediterranean region, 
Strachan et al. ( 2014 ) observed  three   distinct phases of invertebrate community 
structure during the process of wetland drying and refl ooding, with an almost 
complete turnover of species between hydrologically defi ned phases (damp 
phase, sediment damp but surface water absent; dry phase, groundwater at its 
lowest level and sediment surface dry; refl ooded phase, surface water had 
returned). These results suggest that groundwater-fed Mediterranean temporary 
ponds are likely to show very large shifts in community composition over short 
time periods driven by the marked hydrological changes that occur there. 

 The study of temporal changes in community structure based on body size is 
complementary, rather than a replacement for the taxonomic approach (Rodríguez 
and Magnan  1993 ). Successional analyses based on taxonomic or functional 
approaches clearly show temporal changes in the community related to different 
life-history strategies of the organisms, such as dispersal or resistance to drought 
(Kenk  1949 ; Wiggins et al.  1980 ). In contrast, succession analyses based on body 
size emphasize the temporal changes in the community related to trophic structure 
(Quintana et al.  2015 ). In Mediterranean temporary ponds, differences in biomass- 
size spectra were observed during succession, while permanent ponds remained 
more static (Solimini et al.  2005 ). Size-based approaches have also been  used   to 
identify successional phases (Boix et al.  2004 ).  

    Mediterranean Versus Cold-Temperate  Regions   

 Although temporary ponds are very important in arid and semiarid areas, such as 
Mediterranean-climate regions, most ecological knowledge, and the resulting 
paradigms are biased by studies developed in cold-temperate areas. The general 
successional models for temporary pond communities may be valid for 
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Mediterranean ponds, but important distinctions must be recognized. First, in con-
trast with the mild winters in Mediterranean region, ponds in cold-temperate regions 
freeze and become snow-covered in winter (e.g., Kenk  1949 ; Wiggins et al.  1980 ; 
Boix et al.  2011 ) (Fig.  5.4 ). Consequently, these colder temperate regions may have 
lower densities of invertebrates and decreases in certain faunal activities, such as 
aerial dispersal, when compared to Mediterranean temporary ponds (see Ruhí et al. 
 2012  for an example in created wetlands). Second, the life-history traits and distri-
bution of species differ in cold-temperate and Mediterranean regions (Ruhí et al. 
 2013a ). Species in Mediterranean regions tend to have narrower thermal tolerances 
and allocate more to reproduction and resistance than species found in colder habi-
tats (Ruhí et al.  2012 ). Third, precipitation, and hence hydroperiod, is more variable 
in Mediterranean ponds: annual rainfall vary markedly in some regions across 
years, and a deviation of 30 %  or   more from a long-term average is not uncommon 
(Gasith and Resh  1999 ; Florencio et al.  2009 ; Sahuquillo and Miracle  2010 ; Chester 
and Robson  2011 ). Moreover, this inter- and intra-annual variability can result in 

Autumn Winter Spring Summer

COLD TEMPERATE ZONE

MEDITERRANEAN ZONE

Vernal pool (short hydroperiod)

Vernal pool (long hydroperiod)

Intermittent 

Wet phase Dry phase

Wet phase
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Dry phaseDry phase

Dry phaseDry phase

Dry phase

Snow & Ice

Snow & Ice

Wet phase

Seasonal 
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  Fig. 5.4     Schematic   diagram of temporary pond hydroperiods in cold-temperate and some 
Mediterranean regions (duration of wet phases can be different depending on the geographical or 
inter-annual variability of each site). Shaded area indicates favorable environmental conditions for 
aerial colonizers. In cold-temperate regions, an increase in hydroperiod length implies an increas-
ing number of days with good environmental conditions for aerial dispersers, but this is not the 
case in all Mediterranean regions       
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basins fl ooding in autumn, winter, spring, and occasionally in summer, and ponds 
can also dry in different seasons, sometimes remaining dry for consecutive years 
(Fig.  5.4 ). In contrast, many vernal and autumnal temporary ponds in cold-temper-
ate regions follow a more consistent seasonal pattern, both drying in summer and 
fl ooding in spring or autumn, respectively (Wiggins et al.  1980 ).

        Trait-Based Groups   During Succession 

 In cold-temperate temporary ponds, community structure exhibits consistent tem-
poral patterns of functional-feeding groups. Initially, fi ltering collectors, gathering 
collectors, and shredders dominate followed by increasing predator densities with 
increasing hydroperiod (Wiggins et al.  1980 ; Williams  1983 ). The majority of pred-
ator species cannot persist in the temporary pond during the dry phase. Moreover, 
predation pressure tends to increase with increasing hydroperiod length (Schneider 
and Frost  1996 ). These patterns are commonly associated with changes in resource 
availability (Wiggins et al.  1980 ) and the hydrological limitations imposed on cer-
tain functional-feeding and life-history groups (Schneider and Frost  1996 ; Higgins 
and Merrit  1999 ). There are similarities between cold-temperate and Mediterranean 
temporary ponds, but there are many differences. 

 Temporal patterns of invertebrate composition in temporary Mediterranean 
ponds can be explained by life-history strategies (Wiggins et al.  1980 ; see also 
Chap.   1    ). Passive dispersers that are desiccation-resistant often dominate at the 
beginning of the hydroperiod, whereas taxa that are non-desiccation-resistant active 
dispersers may dominate in both the beginning and in the fi nal stages of the hydro-
period (Culioli et al.  2006 ; Boix et al.  2009 ). The dominance of detritivores at the 
beginning and of predators at the end of the hydroperiod has been observed in many 
Mediterranean and arid ponds (Lahr et al.  1999 ; Culioli et al.  2006 ), although this 
pattern is not ubiquitous (Bazzanti et al.  1996 ; Spencer et al.  1999 ; Boix et al.  2004 ). 
Other sequences have been observed, including the dominance of desiccation- 
resistant taxa at both the beginning (aerially colonizing insects) and in the middle 
(passive-colonizers) of the hydroperiod (Bazzanti et al.  1996 ). An absence of a pat-
tern resulting in similar proportions among all life-history groups can also develop 
(Sim et al.  2013 ). Predators can be present at the beginning of the hydroperiod after 
mild winters, or the dominant predators can emerge from pond sediment rather than 
via fl ight (i.e., they have drought-resistant stages). For example, when Mediterranean 
temporary ponds fi ll in winter, heteropterans (mainly Corixidae) colonize quickly 
(e.g., Bazzanti et al.  1996 ; Boix et al.  2001 ; Florencio et al.  2009 ). Additionally, it 
is known communities in which the main predators, such as the notostracan   Triops 
cancriformis    and the coleopteran   Agabus nebulosus   , are desiccation-resistant and 
become active during initial fl ooding (Boix et al.  2006 ). In these communities the 
highest  p  redation pressure occurred 20–25 days after fl ooding with no increase over 
the rest of the hydroperiod. 

 High inter-annual variability of hydroperiod length in Mediterranean ponds 
causes variability in life-history groups (Boix et al.  2009 ; Sim et al.  2013 ; Kneitel 
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 2014 ). Sim et al. ( 2013 ) proposed a conceptual model of the relationships between 
hydroperiod length, proportions of the different life-history groups, and the domi-
nant recolonization strategy (dispersal or egg-bank hatching). The model showed 
how hydroperiod variability could interact with life-history traits that result in com-
munity structural differences (see also Chap.   1    ). One persistent limitation to prog-
ress in understanding these dynamics is the lack of life-history information for 
many freshwater invertebrates (Robson et al.  2011 ). Recent studies show that inver-
tebrates might be capable of adapting to variable hydroperiods in ways not previ-
ously understood (e.g., Strachan et al.  2015 ).   

    Dry Period: Drought Resistance and Dispersal 

 Drought-tolerance, microrefuges, or high dispersal capacity allow aquatic animals 
of temporary ponds to survive dry periods.  Colonization   from other wetlands and 
persistence in a wetland are not mutually exclusive strategies for some invertebrate 
taxa (Anderson and Smith  2004 ). The dry period is considered a constraint for the 
 aquatic fauna  , causing lower taxa richness in temporary than in permanent ponds. 
Studies (e.g., Wiggins et al.  1980 ; Williams  1996 ; Boulton et al.  2014 ; Strachan 
et al.  2015 ) have shown, however, that a wide variety of invertebrate groups are 
adapted to desiccation. For this reason, some authors consider desiccation a  mythi-
cal constraint   rather than a strong ecological fi lter (Biggs et al.  1994 ). Although 
some evidence shows higher species richness in permanent ponds (Della Bella et al. 
 2005 ; but see Boix et al.  2008 ), this may be caused by single sampling events under-
estimating species richness in temporary wetlands with high temporal turnover in 
species (Robson and Clay  2005 ). However, the duration and the predictability of the 
dry period implies a selection of the fauna, since resistance to desiccation by some 
groups is related to the duration of the dry period and the existence of suitable ref-
uges (Strachan et al.  2014 ,  2015 ). For example, in a temporary pond located in the 
NE of the Iberian Peninsula, three abundant pioneering  macroinvertebrates   ( Physa 
acuta ,  Galba truncatula , and  Berosus signaticollis ) were always present during pre-
vious hydroperiods (dry period length between hydroperiods was less than 6 
months), but became absent after the pond was dry for more than 2 years (Boix et al. 
 2001 ).  Freshwater gastropods   can survive short-term exposure to air (Havel et al. 
 2014 ), resting in  microrefuges   such as surface depressions of temporary ponds dur-
ing the dry period, and some species can also aestivate in the sediment (Strachan 
et al.  2014 ).  Beetles      of the genus  Berosus  rest in the sediment during the metamor-
phosis from larval instar III to imago while waiting for the pond to refl ood (Thiéry 
 1979 ; Barbero et al.  1982 ). Although crustacean eggs may be viable in sediment for 
long periods (300 years in some copepods; Hairston et al.  1995 ), surviving numbers 
decline over time (Jenkins and Boulton  2007 ). Besides drying stress, aestiviating 
crustacean eggs can be consumed by predators (Waterkeyn et al.  2011a ). 

 Studies of  egg-bank dynamics   in Mediterranean temporary ponds are scarce 
(but see Mura  2004 ), but the presence of species in ponds has been related to their 
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optimal water temperatures (Nourisson and Aguesse  1961 ; Waterkeyn et al.  2009 ). 
 Temperature   not only determines the presence of species, but can also determine the 
presence of different clones, as in the case of the ostracod  Heterocypris incongruens  
(Rossi and Menozzi  1990 ). In laboratory experiments, photoperiod variation can 
produce clones with different life-history traits (Rossi and Menozzi  1993 ). In fact, 
both photoperiod and temperature have been identifi ed as cues for diapause in sev-
eral species of  crustaceans and insects   (e.g., Sawchyn and Church  1973 ; Otero et al. 
 1998 ). Temporal hatching patterns, whether bet-hedging or synchronous, can vary 
for invertebrates. Some crustacean species use bet-hedging in more unstable, tem-
porary habitats, and use synchronous hatching in the more stable places (Simovich 
and Hathaway  1997 ; Waterkeyn et al.  2013 ). Other factors playing a role in the 
 hatching process   include salinity (Waterkeyn et al.  2009 ), light (Pinceel et al.  2013 ), 
and predation (Spencer and Blaustein  2001 ), among others. 

 Different temporal patterns should be expected among groups that differ in  dis-
persal abilities  , such as active vs. passive dispersers, aerial vs. terrestrial dispersers, 
or large- vs. small-bodied organisms (Bilton et al.  2001 ; De Bie et al.  2012 ; Ruhí 
et al.  2013b ). For example, large-bodied species are more dispersal-limited if they 
are passive dispersers, whereas the opposite is true for active dispersers (De Bie 
et al.  2012 ). Small organisms producing resting stages have not been considered 
dispersal-limited, under the so-called   cosmopolitan paradigm   , but the generality of 
this paradigm is currently being debated (Incagnone et al.  2015  and references 
therein). Several vectors for passive dispersers have been described, each acting at 
different  spatial scales  : wind (Parekh et al.  2014 ), insects (Van de Meutter et al. 
 2008 ), amphibians (Bohonak and Whiteman  1999 ), fi shes (Beladjal et al.  2007 ), 
birds (Frisch et al.  2007 ), and mammals (Vanschoenwinkel et al.  2008 ) including 
human (Valls et al.  in press ). With  animal dispersal  , eggs can be transported exter-
nally, but there are also cases of dispersal following ingestion and defecation 
(Bohonak and Whiteman  1999 ). Different dispersal abilities among active dispers-
ers interact with local and regional factors resulting in different spatiotemporal 
diversity patterns (Miguel-Chinchilla et al.  2014 ). Insect fl ight may be infl uenced by 
atmospheric conditions (mainly air temperature, wind speed, air humidity; Boix 
et al.  2011  and references therein) as well as landscape type, habitat conditions, and 
biological interactions, such as predation and competition. These factors may also 
act as cues for the initiation of colonization fl ights (e.g., Velasco and Millán  1998 ; 
Pajunen and Pajunen  2003 ; Yee et al.  2009 ), or may be important to insects in their 
selection of a suitable habitat (Blaustein et al.  2004 ).  

    Predation, Competition, and Trophic Webs 

 Along the hydroperiod gradient, the importance of  abiotic and biotic factors   both 
change. In the schematic model proposed by Wellborn et al. ( 1996 ), ephemeral hab-
itats were considered as refuges against predation, while increased hydroperiod 
length led to increased predation pressure. In contrast, permanent wetland 
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invertebrates were viewed as being under higher predation pressure, mainly by fi sh. 
This model is widely accepted, but it also generates misunderstandings. First, it is 
incorrect to assume that predation is absent in temporary ponds, even in those ponds 
with short  hydroperiod   length (e.g., Blaustein  1998 ; Brendonck et al.  2002 ; Boix 
et al.  2006 ; Strachan et al.  2014 ). Second, in Mediterranean temporary waters, lon-
ger hydroperiods are not always associated with the highest predation pressure 
(Spencer et al.  1999 ). Wetlands with short spring hydroperiods can show stronger 
effects of insect predation than wetlands with long autumn-winter hydroperi-
ods (Fig.  5.4 ). Third, autogenic changes at community level (as described in the 
Seasonal Succession section) are caused, at least in part, by predation (Higgins and 
Merrit  1999 ; Boix et al.  2006 ). Fourth, indirect effects of predation were also 
reported in these  habitats  ; for example, bioturbation created by  Triops  negatively 
affected microcrustaceans by impeding fi ltering capacities (Waterkeyn et al.  2011a ) 
and altering water physico-chemistry (Croel and Kneitel  2011 ). Therefore, preda-
tion is particularly important in structuring communities in temporary waters 
because the inhabitants typically lack defences against predation (Wilcox  2001 ; 
Petrusek et al.  2009 ), and the abundance of predaceous insects can be very high in 
short-duration habitats (Batzer and Wissinger  1996 ). 

 From an evolutionary point of view, temporary ponds have been considered fau-
nal refuges from  predation   (Kerfoot and Lynch  1987 ). The reduction of the global 
distribution of branchiopods and the rise of cladocerans (small-sized species) coin-
cided with the increase in fi sh predation during the  Mesozoic  .  Large branchiopods   
now almost exclusively inhabit temporary (fi sh-free) waters (Kerfoot and Lynch 
 1987 ). However, some defences against predators, which are exclusive of tempo-
rary waters (i.e.,   Triops cancriformis   ), have been observed in the invertebrate fauna. 
 Morphological changes   that increase prey survival (i.e., formation of heart-shaped 
lobes armed by long spines in the head shield, increased tail spine length, increased 
body lengths and widths) have been observed in individuals of  Daphnia  spp. when 
those individuals were incubated with chemical cues released by predatory tadpole 
shrimp (Petrusek et al.  2009 ; Rabus et al.  2012 ). 

 Other ways of avoiding or reducing the risk of predation also exist. For example, 
some diel patterns observed in zooplankton species of Mediterranean temporary 
ponds can be interpreted as adaptations to the effects of predators (Compte et al.  in 
press ). In non-Mediterranean fi shless ponds, predatory invertebrates that inhabit 
temporary ponds generate diel responses in zooplankton prey (Neill  1990 ; Gilbert 
and Hampton  2001 ; Trochine et al.  2009 ). In these studies, the diel pattern varied 
markedly among zooplankton-prey species, but examples also exist showing that 
zooplankton diel patterns cannot be explained by predation (Arranz et al.  2015 ). 
Other adaptations that reduce exposure to predators also exist in Mediterranean 
temporary ponds. For example, some culicid (mosquito) females avoid ovipositing 
in pools that contain predators (Blaustein et al.  2004 ). Although the cue for oviposi-
tion avoidance is generally chemical (Blaustein et al.  2004 ; Silberbush et al.  2010 ) 
 mosquitoes   appear to use other cues for detecting predators (odonates; Stav et al. 
 2000 ), or may not avoid certain kinds of predators (urodeles) when ovipositing 
(Blaustein et al.  2014 ). 
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 Predation can also have population-level effects.  Triops , potentially a keystone 
predator, may selectively prey upon particular sizes or sexes of prey. Populations of 
  Daphnia magna    and the mayfl y   Callibaetis californicus    exposed to  Triops  preda-
tion were size-biased, and characterized by preying on a high proportion of larger 
individuals (Walton et al.  1991 ; Rabus et al.  2012 ). In another study,  Triops  targeted 
male copepods ( Megacyclops viridis ) (Boix et al.  2006 ). The role of predation in 
temporary ponds may therefore be important for population-level, as well as com-
munity, dynamics. 

 Unlike predation, only a few studies have addressed competition in Mediterranean 
temporary ponds. One interesting feature of these studies is the important effect of 
predation interacting indirectly with competition through: (1) keystone predation 
(sensu Paine  1969 ); and (2) intraguild predation. The most competitively dominant 
cladoceran genus,  Daphnia , is also the preferred prey of   Notonecta maculata    (Eitam 
and Blaustein  2010 ), so densities of less competitive and smaller cladocerans increase 
with increasing predator abundance. Consequently species diversity increases, as is 
typical of keystone predation. Two examples of intraguild predation have been 
reported: mosquito versus toad competition in a temporary pool in Israel (Blaustein 
and Margalit  1994 ), and fairy shrimps versus microcrustaceans in French and Spanish 
temporary ponds (Sánchez and Angeler  2007 ; Waterkeyn et al.  2011b ). Mosquito 
 larvae   (  Culiseta longiareolata   ) and toad tadpoles (  Bufotes variabilis   ) compete for 
periphyton food, but late-stage  Culiseta  larvae also prey on  Bufotes  hatchlings. Fairy 
shrimps compete with and potentially also prey on microcrustaceans. 

  Analyses of food web structure   and top-down and bottom-up dynamics are rare 
in temporary ponds, and the few existing examples are from studies performed out-
side the Mediterranean biome (Magnusson and Williams  2009 ; Schriever and 
Williams  2013 ; O’Neill and Thorp  2014 ). These studies illustrate, however, that (1) 
food-chains are short (average of 3.3 trophic levels, range of 1.7–4.6) regardless of 
pond size (Schriever and Williams  2013 ); (2) food-chain length increases as tempo-
rary waterbodies approach the end of the hydroperiod (O’Neill and Thorp  2014 ); 
and (3) strong top-down effects generated by insect predators (Odonata and 
Coleoptera) have been observed, regulating the abundance of dipterans and zoo-
plankton with the effects propagating downwards through the food web to lower 
trophic levels (i.e., trophic cascades; Magnusson and Williams  2009 ). Short food- 
chains and trophic cascades have been also observed in temporary brackish waters 
in coastal Mediterranean ponds (Compte et al.  2012 ).   

    Conservation and Management of Mediterranean 
Temporary Ponds  

 From a global perspective, conservation of temporary aquatic environments is pre-
carious, because historically they have been neglected. For example, degradation 
and disappearance of temporary wetlands and streams progressed continuously dur-
ing the last century (Holland et al.  1995 ; Brown  1998 ), in part due to the negative 
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effects of both intensive (Euliss and Mushet  1999 ; Barry and Davies  2004 ; 
Underwood et al.  2009 ) and expansive (Robson and Clay  2005 ; Sim et al.  2006a ,  b ) 
agricultural practices. Temporary ponds in the Mediterranean basin that were com-
patible with agricultural activity for thousands of years (Grillas et al.  2004 ) are now 
clearly negatively affected by current intensive agriculture (Beja and Alcazar  2003 ; 
Parra et al.  2005 ) as they are in other Mediterranean regions (e.g., southern Australia: 
Robson and Clay  2005 ; Sim et al.  2006a ,  b ).  Remote sensing and historical com-
parison studies   performed in several Mediterranean regions (e.g., De Roeck et al. 
 2008 ; Levin et al.  2009 ; Gómez-Rodríguez et al.  2010 ; Rhazi et al.  2012 ; Tulbure 
et al.  2014 ) reveal degradation (i.e., reduced hydroperiod due to human activities) 
and drastic reduction in the number of temporary ponds. The  shallowness   and the 
small size of many Mediterranean temporary ponds have made them very vulnera-
ble to human impacts: they can easily be drained for agriculture, urbanization, tour-
ism, or industrial purposes (Grillas et al.  2004 ; Zacharias et al.  2007 ). In other cases, 
 temporary waterbodies   have been converted to permanent ones for waste disposal, 
water storage, or (perceived) aesthetics (e.g., Davis et al.  2001 ). Thus, Mediterranean 
temporary ponds are endangered habitats, and consequently the scientifi c commu-
nity has emphasized the need to reverse the situation (Giudicelli and Thiéry  1998 ; 
Boix et al.  2001 ; Horwitz et al.  2009 ; Díaz-Paniagua et al.  2010 ; Zacharias and 
Zamparas  2010 ), so as to restore and preserve these unique and valuable 
environments. 

 Negative impacts continue despite the existence of preservation initiatives for 
Mediterranean temporary ponds and their species (e.g., Europe, European Habitat 
Directive 92/43/CEE; US Federal Register  2003 ; but see Zedler  2003 ). The great 
value of the fl ora of Mediterranean temporary aquatic environments has been widely 
reported (e.g., Holland and Jain  1981 ; Boutin et al.  1982 ; Ferchichi-Ben Jamaa 
et al.  2010 ; Rhazi et al.  2012 ), as well as the importance of these aquatic environ-
ments for  amphibian conservation   (e.g., Beja and Alcazar  2003 ; Gómez-Rodríguez 
et al.  2009 ; Ferreira and Beja  2013 ; Escoriza et al.  2014 ). Invertebrates have received 
less attention, with the exception of some crustaceans (e.g., King et al.  1996 ; Belk 
 1998 ; De Roeck et al.  2007 ). However, the need to protect these environments and 
even to create new ones for the conservation of endangered invertebrate species has 
been noted (Baltanás et al.  1992 ; Valdecasas et al.  1992 ; Fugate  1998 ; Chester and 
Robson  2013 ). In recent years, public perception, scientifi c knowledge, and man-
agement efforts have improved. For example, the number of scientifi c symposia and 
publications for both scientifi c and general audiences has increased signifi cantly in 
the last two decades (Witham  1998 ; Diget and Rioux  1998 ; Blaustein and Schwartz 
 2001 ; Grillas et al.  2004 ; Fraga  2009 ). Pioneering examples of vernal pool restora-
tion, mitigation against damage, and conservation activities were developed in 
California in the 1980s (Black and Zedler  1998 ; Ferren et al.  1998 ), and more fol-
lowed in the other Mediterranean regions. For example, in Europe, local and inter-
national projects to establish the value of Mediterranean temporary ponds, and to 
improve their management, have fl ourished in the last 15 years (including continen-
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tal France, Corsica, Minorca, València, southwest of Portugal, Crete and Sardinia; 
Grillas et al.  2004 ; Fraga et al.  2010 ; Sancho and Lacomba  2010 ). In southern 
Australia, recent research has focused on understanding the effects of water regime 
change on temporary wetlands (e.g., Robson and Clay  2005 ; Chambers et al.  2013 ; 
Chester et al.  2013 ; Sim et al.  2013 ), the biodiversity and recolonization dynamics 
of temporary wetland biota (Horwitz et al.  2009 ; Tuckett et al.  2010 ; Strachan et al. 
 2014 ), and whether artifi cial wetlands can play a role in conservation as more and 
more natural wetlands become drier (Chester and Robson  2013 ; Chester et al. 
 2013 ). Globally, several new tools or methods have been proposed for Mediterranean 
temporary ponds to evaluate the impact of  human socioeconomic pressure   (Zacharias 
et al.  2008 ), estimate their environmental status (Dimitriou et al.  2006 ), establish 
their habitat condition or ecological integrity (Sala et al.  2004 ; Sutula et al.  2006 ; 
Chester et al.  2013 ; van den Broeck et al.  2015a ), assess their water quality using 
invertebrates (Chessman et al.  2002 ; Boix et al.  2005 ), and assess the contribution 
anthropogenic wetlands could make to conservation goals (Chester and Robson 
 2013 ; Chester et al.  2013 ). 

 Common threats to  temporary wetlands   are prevalent among Mediterranean 
regions: habitat loss, hydrological perturbation, disconnection and habitat fragmen-
tation, fi re damage, pollution, eutrophication, sedimentation, physical disturbance 
of the sediment, invasive species, livestock impacts, and climate change (Grillas 
et al.  2004 ; Zacharias et al.  2007 ; Zacharias and Zamparas  2010 ). However, the rela-
tive importance of each differs among countries. For example, increased livestock 
herd size has caused overgrazing and disturbance of sediments in North Africa 
(Bouahim et al.  2014 , but see Ferchichi-Ben Jamaa et al.  2012 ). In contrast, the use 
of  livestock   has been proposed as a management tool to maintain disturbances that 
favor rare plant germination and amphibian reproduction in Europe (Grillas et al. 
 2004 ), and to reduce invasive plant species and promote natives in California (Marty 
 2005 ).  Water extraction and diversion   can dramatically affect the hydrology of tem-
porary ponds in some areas (Serrano and Serrano  1996 ; Levin et al.  2009 ; Sim et al. 
 2013 ; Boulton et al.  2014 ). Habitat loss through drainage appears to be a universal 
issue across Mediterranean-climate regions (e.g., Hambright and Zohary  1998 ; 
Robson and Clay  2005 ; Horwitz et al.  2009 ). Moreover, annual  rainfall   has been 
declining substantially since 1900 in several Mediterranean regions owing to cli-
mate change (IPCC  2007 ) and already dry periods in rivers and wetlands have been 
markedly prolonged (Davies  2010 ; Sim et al.  2013 ). Many formerly perennial wet-
lands are now seasonal, and several formerly seasonal wetlands are now rarely inun-
dated. These changes in  hydroregime   (duration, timing, and frequency of inundation) 
will imply changes in the populations and metacommunities dynamics, and differ-
ent patterns between organisms with different dispersion mode or ability are 
expected (Pyke  2005 ; Sim et al.  2013 ; Kneitel  2014 ; Fig.  5.5 ).

   Although many threats are common among temporary ponds in Mediterranean 
regions, legal protections and conservation plans differ among locations with very 
different  political and social contexts  . However, three fundamental concepts are 
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shared: (1) habitat loss continues to be the primary challenge to conservation and 
management; (2) integration of freshwater and terrestrial biodiversity priorities in 
systematic conservation planning is a major challenge to conservation planners 
(Amis et al.  2009 ; Davies and Stewart  2013 ) and it is especially relevant in areas 
with a high abundance of temporary ponds (Chester and Robson  2013 ); and (3) 

  Fig. 5.5    Schematic diagram showing changes in hydroregime and to  invertebrates   in some future 
climate change scenarios. Three types of Mediterranean temporary ponds are shown: long hydro-
period (LH); short hydroperiod (SH); and ephemeral (EP). The  left panels  represent the present 
situation, the  middle panel  shows moderate effects of climate change and the  right-hand panel  
shows severe effects of climate change along with the expected changes to hydroperiod length for 
each pond type. Larger clouds and suns indicate higher rainfall and temperature, respectively. Each 
panel shows three variables: hydroregime ( a ), organism dynamics ( b ), egg-bank dynamics ( c ). In 
the hydroregime plots ( a ) the  blue area  shows seasonal water levels ( A  autumn,  W  winter,  Sp  
spring,  Su  summer) and hydroperiod length. In the organism dynamic plots ( b ) the bigger the icons 
( red  for passive dispersal invertebrates and  green  for the active ones) the higher the population 
size, and  red  and  green lines  represent the change of population size during the year. Finally, the 
pattern in ( c ) plots identifi es three statuses of the egg-bank:  black , high density and diversity of 
propagules;  dark gray , low density and diversity of propagules;  light gray , depleted egg-bank. 
Rainfall reduction and temperature increase cause shorter hydroperiod lengths with decreased life 
cycle duration and, in turn, a gradual depletion of the egg-bank. For active dispersers, optimal 
dispersal conditions (i.e., late spring) will be decoupled from hydroperiod since these conditions 
would occur when ponds would probably be dry. Thus, metapopulation sizes will decrease in time, 
and taxa presence can be only explained by neighboring ponds ( gray panels )       
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biodiversity protection requires networks of ponds with diverse hydroperiods, 
where the  natural   hydrologic regimes are preserved (Beja and Alcazar  2003 ; Díaz- 
Paniagua et al.  2010 ; Chester and Robson  2013 ; Chester et al.  2013 ; Florencio et al. 
 2014 ). Pond networks in regions under strong human pressure exhibit poorly devel-
oped invertebrate metacommunities (Gascón et al.  2012 ). More knowledge of  plants 
and vertebrates   in these environments means that these organisms are sometimes 
used as surrogates for total biodiversity, but evidence exists that biodiversity pat-
terns and spatiotemporal dynamics of plants, vertebrates, and invertebrates, and 
even among invertebrate groups, are different (Alexander and Schlising  1998 ; 
Gascón et al.  2009 ; Bagella et al.  2010 ,  2011 ; Davies and Stewart  2013 ; Ruhí et al. 
 2014 ; Rouissi et al.  2014 ). Thus the use of surrogates may be ineffective in 
Mediterranean-climate regions. 

 To solve these conservation dilemmas and improve the sustainability of biodi-
versity and ecosystem function in Mediterranean temporary wetlands, much more 
research is needed into the dynamics of populations and communities. 
Comparatively little is known of local and regional patterns of biodiversity, of 
invertebrate population genetics and dispersal (with the exception of some groups 
such as  large branchiopods  ; e.g., Aguilar  2011 ,  2012 ; Simovich et al.  2013 ), and of 
the dynamics of invertebrates in the wide range of habitats and microhabitats pres-
ent in these wetlands. For example, only recently have invertebrate movements 
into  sediment microrefuges   during the drying process been documented in a 
Mediterranean- climate wetland, showing dynamics not previously observed 
(Strachan et al.  2014 ). Finally, progress is being made in elucidating how changes 
in the hydroregime or in the climate characteristics affect community structure 
(Ruhí et al.  2014 ; Kneitel  2014 ), and further research in this subject should allow 
improved conservation management of Mediterranean temporary ponds in future 
 scenarios   (Fig.  5.5 ).     

  Acknowledgement   We especially thank Christopher Rogers and Brian Timms for their help 
with the appendix on large branchiopods, and Valentina Pieri with ostracod genera included in 
the fi rst appendix. We also thank Laura Serrano for her valuable comments in the preparation of 
this text.  

         Appendix 1  

 Invertebrate taxa observed in Mediterranean temporary ponds of the fi ve world 
regions (data from published and non-published studies). The fi gures correspond to 
the number of identifi ed genera in each family. The symbol + indicates the presence 
of a certain taxa, but without any genera identifi ed. MED. REG., total number of 
genera identifi ed in all Mediterranean regions. 

5 Invertebrates of Freshwater Temporary Ponds in Mediterranean Climates



162

 M
ed

. B
as

in
 

 N
or

th
 A

m
er

ic
a 

 So
ut

h 
A

m
er

ic
a 

 So
ut

he
rn

 A
us

tr
al

ia
 

 So
ut

h 
A

fr
ic

a 
 M

E
D

. R
E

G
. 

  N
E

M
A

T
O

D
A

  

 N
em

at
od

a 
un

de
t. 

 +
 

 +
 

 +
 

 +
 

 +
 

 +
 

  D
or

yl
ai

m
id

a  
 D

or
yl

ai
m

id
ae

 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
 T

ho
rn

en
em

at
id

ae
 

 1 
 −

 
 −

 
 −

 
 −

 
 1 

  E
no

pl
id

a  
 T

ri
py

lid
ae

 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
   M

on
hy

st
er

id
a 

   
 M

on
hy

st
er

id
ae

 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
  R

ha
bd

it
id

a  
 R

ha
bd

iti
da

 u
nd

et
. 

 +
 

 −
 

 −
 

 −
 

 −
 

 +
 

  B
R

Y
O

Z
O

A
  

  P
lu

m
at

el
lid

a  
 Pl

um
at

el
lid

ae
 

 1 
 −

 
 1 

 −
 

 −
 

 1 
  C

N
ID

A
R

IA
  

  H
yd

ro
id

a  
 H

yd
ri

da
e 

 1 
 +

 
 1 

 2 
 1 

 2 
  T

U
R

B
E

L
L

A
R

IA
  

 T
ur

be
lla

ri
a 

un
de

t. 
 +

 
 +

 
 +

 
 +

 
 +

 
 +

 
  C

at
en

ul
id

a  
 St

en
os

to
m

id
ae

 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
  D

al
ye

lli
oi

da
  

 D
al

ye
lli

da
e 

 2 
 −

 
 −

 
 −

 
 −

 
 2 

  R
ha

bd
oc

oe
la

  
 Po

ly
cy

st
id

ae
 

 1 
 −

 
 −

 
 −

 
 −

 
 1 

 Ty
ph

lo
pl

an
id

ae
 

 10
 

 −
 

 −
 

 −
 

 1 
 10

 
   T

ri
cl

ad
id

a 
   

 T
ri

cl
ad

id
a 

un
de

t. 
 −

 
 −

 
 −

 
 +

 
 −

 
  +

 
 D

ug
es

iid
ae

 
 1 

 −
 

 1 
 −

 
 −

 
 1 

 Pl
an

ar
iid

ae
 

 −
 

 +
 

 −
 

 −
 

 −
 

  +
 

 R
hy

nc
ho

de
m

id
ae

 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
  T

A
R

D
IG

R
A

D
A

  
 Ta

rd
ig

ra
da

 u
nd

et
. 

 +
 

 −
 

 −
 

 +
 

 +
 

 +
 

  N
E

M
E

R
T

E
A

  
 N

em
er

te
a 

un
de

t. 
 −

 
 −

 
 −

 
 +

 
 −

 
 +

 
  N

E
M

A
T

O
M

O
R

P
H

A
  

 N
em

at
om

or
ph

a 
un

d.
 

 −
 

 −
 

 −
 

 −
 

 +
 

  +
 

D. Boix et al.



163
 M

ed
. B

as
in

 
 N

or
th

 A
m

er
ic

a 
 So

ut
h 

A
m

er
ic

a 
 So

ut
he

rn
 A

us
tr

al
ia

 
 So

ut
h 

A
fr

ic
a 

 M
E

D
. R

E
G

. 

  G
or

di
oi

de
a  

 G
or

di
id

ae
 

 1 
 1 

 −
 

 −
 

 −
 

 1 
  R

O
T

IF
E

R
A

  
 R

ot
if

er
a 

un
de

t. 
 −

 
 −

 
 −

 
 +

 
 +

 
 +

 
   B

de
llo

id
ea

   
 

 B
de

llo
id

ea
 u

nd
et

. 
 +

 
 +

 
 +

 
 −

 
 −

 
 +

 
 Ph

ilo
di

ni
da

e 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
  M

on
og

on
on

ta
  

 A
sp

la
nc

hn
id

ae
 

 2 
 −

 
 1 

 −
 

 −
 

 2 
 A

tr
oc

hi
da

e 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
 B

ra
ch

io
ni

da
e 

 6 
 2 

 3 
 −

 
 −

 
 6 

 C
on

oc
hi

lid
ae

 
 1 

 −
 

 1 
 −

 
 −

 
 1 

 E
uc

hl
an

id
ae

 
 2 

 −
 

 1 
 −

 
 −

 
 2 

 Fi
lin

iid
ae

 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
 Fl

os
cu

la
ri

id
ae

 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
 H

ex
ar

th
ri

da
e 

 1 
 1 

 1 
 −

 
 −

 
 1 

 L
ec

an
id

ae
 

 1 
 2 

 2 
 −

 
 −

 
 2 

 L
ep

ad
el

lid
ae

 
 2 

 2 
 2 

 −
 

 −
 

 3 
 M

yt
ili

ni
da

e 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
 N

ot
om

m
at

id
ae

 
 2 

 −
 

 1 
 −

 
 −

 
 2 

 Pr
oa

lid
ae

 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
 Sc

ar
id

iid
ae

 
 −

 
 1 

 1 
 −

 
 −

 
 1 

 Sy
nc

ha
et

id
ae

 
 2 

 1 
 1 

 −
 

 −
 

 2 
 Te

st
ud

in
el

lid
ae

 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
 T

ri
ch

oc
er

ci
da

e 
 1 

 1 
 1 

 −
 

 −
 

 1 
 T

ri
ch

ot
ri

id
ae

 
 1 

 −
 

 1 
 −

 
 −

 
 1 

(c
on

tin
ue

d)

5 Invertebrates of Freshwater Temporary Ponds in Mediterranean Climates



164

 M
ed

. B
as

in
 

 N
or

th
 A

m
er

ic
a 

 So
ut

h 
A

m
er

ic
a 

 So
ut

he
rn

 A
us

tr
al

ia
 

 So
ut

h 
A

fr
ic

a 
 M

E
D

. R
E

G
. 

   M
O

L
L

U
SC

A
   

 
  G

as
tr

op
od

a  
 A

nc
yl

id
ae

 
 2 

 −
 

 −
 

 1 
 1 

 2 
 C

hi
lin

id
ae

 
 −

 
 −

 
 1 

 −
 

 −
 

 1 
 G

la
ci

do
rb

id
ae

 
 −

 
 −

 
 −

 
 1 

 −
 

 1 
 H

yd
ro

bi
id

ae
 

 −
 

 −
 

 1 
 −

 
 −

 
 1 

 Ly
m

na
ei

da
e 

 3 
 2 

 −
 

 1 
 2 

 5 
 Ph

ys
id

ae
 

 1 
 1 

 1 
 1 

 2 
 2 

 Pl
an

or
bi

da
e 

 6 
 −

 
 −

 
 4 

 2 
 10

 
 Po

m
at

io
ps

id
ae

 
 −

 
 −

 
 −

 
 1 

 1 
 2 

 Su
cc

in
ei

da
e 

 1 
 −

 
 −

 
 1 

 −
 

 1 
 Ta

te
id

ae
 

 1 
 −

 
 −

 
 −

 
 −

 
 1 

  B
iv

al
vi

a  
 Sp

ha
er

iid
ae

 
 2 

 −
 

 +
 

 2 
 −

 
 2 

  A
N

N
E

L
ID

A
  

   P
ol

yc
ha

et
a 

   
 Po

ly
ch

ae
ta

 u
nd

et
. 

 −
 

 −
 

 +
 

 −
 

 −
 

 +
 

 A
el

os
om

at
id

ae
 

 1 
 −

 
 −

 
 1 

 1 
 1 

  O
lig

oc
ha

et
a  

 O
lig

oc
ha

et
a 

un
de

t. 
 −

 
 +

 
 +

 
 +

 
 −

 
 +

 
 E

nc
hy

tr
ae

id
ae

 
 2 

 −
 

 −
 

 +
 

 −
 

 2 
 L

um
br

ic
id

ae
 

 2 
 −

 
 −

 
 −

 
 −

 
 2 

 L
um

br
ic

ul
id

ae
 

 +
 

 −
 

 −
 

 −
 

 −
 

 +
 

 N
ai

di
da

e 
 3 

 +
 

 +
 

 3 
 +

 
 4 

 T
ub

ifi 
ci

da
e 

 2 
 +

 
 +

 
 3 

 +
 

 5 
  H

ir
ud

in
ea

  
 H

ir
ud

in
ea

 u
nd

et
. 

 −
 

 −
 

 +
 

 +
 

 −
 

 +
 

 E
rp

ob
de

lli
da

e 
 2 

 −
 

 −
 

 −
 

 −
 

 2 
 G

lo
ss

ip
ho

ni
id

ae
 

 2 
 −

 
 −

 
 +

 
 −

 
 3 

 H
ir

ud
in

id
ae

 
 2 

 −
 

 −
 

 +
 

 −
 

 2 
 R

ic
ha

rd
so

ni
an

id
ae

 
 −

 
 −

 
 −

 
 +

 
 −

 
 +

 

(c
on

tin
ue

d)

D. Boix et al.



165
 M

ed
. B

as
in

 
 N

or
th

 A
m

er
ic

a 
 So

ut
h 

A
m

er
ic

a 
 So

ut
he

rn
 A

us
tr

al
ia

 
 So

ut
h 

A
fr

ic
a 

 M
E

D
. R

E
G

. 

  C
R

U
ST

A
C

E
A

  
   B

ra
nc

hi
op

od
a 

   
 B

os
m

in
id

ae
 

 1 
 1 

 1 
 2 

 1 
 2 

 B
ra

nc
hi

ne
ct

id
ae

 
 1 

 1 
 −

 
 −

 
 −

 
 1 

 B
ra

nc
hi

po
di

da
e 

 1 
 −

 
 −

 
 1 

 1 
 3 

 C
hi

ro
ce

ph
al

id
ae

 
 2 

 2 
 −

 
 −

 
 −

 
 3 

 C
hy

do
ri

da
e 

 16
 

 8 
 5 

 16
 

 7 
 24

 
 C

yz
ic

id
ae

 
 2 

 1 
  –

 
 1 

 −
 

 3 
 D

ap
hn

iid
ae

 
 4 

 4 
 3 

 5 
 5 

 6 
 Il

yo
cr

yp
tid

ae
 

 1 
 −

 
 1 

 1 
 −

 
 1 

 L
ep

te
st

he
ri

id
ae

 
 3 

 −
 

 −
 

 −
 

 1 
 3 

 L
im

na
di

id
ae

 
 2 

 1 
 −

 
 3 

 −
 

 5 
 Ly

nc
ei

da
e 

 1 
 1 

 −
 

 1 
 −

 
 1 

 M
ac

ro
tr

ic
hi

da
e 

 1 
 1 

 −
 

 2 
 1 

 2 
 M

oi
ni

da
e 

 1 
 1 

 −
 

 1 
 1 

 1 
 Si

di
da

e 
 2 

 1 
 1 

 2 
 −

 
 3 

 St
re

pt
oc

ep
ha

lid
ae

 
 1 

 1 
 −

 
 −

 
 1 

 1 
 Ta

ny
m

as
tig

id
ae

 
 2 

 −
 

 −
 

 −
 

 −
 

 2 
 T

ha
m

no
ce

ph
al

id
ae

 
 −

 
 −

 
 −

 
 1 

 −
 

 1 
 T

ri
op

si
da

e 
 2 

 2 
 −

 
 2 

 1 
 2 

   C
op

ep
od

a 
   

 C
an

th
oc

am
pt

id
ae

 
 4 

 3 
 2 

 1 
 −

 
 5 

 C
en

tr
op

ag
id

ae
 

 −
 

 −
 

 −
 

 2 
 −

 
 2 

 C
yc

lo
pi

da
e 

 12
 

 5 
 5 

 3 
 5 

 13
 

 D
ia

pt
om

id
ae

 
 9 

 5 
 −

 
 −

 
 3 

 15
 (c
on

tin
ue

d)

5 Invertebrates of Freshwater Temporary Ponds in Mediterranean Climates



166

 M
ed

. B
as

in
 

 N
or

th
 A

m
er

ic
a 

 So
ut

h 
A

m
er

ic
a 

 So
ut

he
rn

 A
us

tr
al

ia
 

 So
ut

h 
A

fr
ic

a 
 M

E
D

. R
E

G
. 

  O
st

ra
co

da
  

 C
an

do
ni

da
e 

 6 
 2 

 1 
 1 

 2 
 7 

 C
yp

ri
di

da
e 

 14
 

 11
 

 7 
 15

 
 8 

 33
 

 D
ar

w
in

ul
id

ae
 

 1 
 −

 
 −

 
 1 

 −
 

 1 
 H

em
ic

yt
he

ri
da

e 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
 Il

yo
cy

pr
id

id
ae

 
 1 

 −
 

 −
 

 1 
 −

 
 1 

 L
im

no
cy

th
er

id
ae

 
 2 

 2 
 −

 
 3 

 1 
 4 

 N
ot

od
ro

m
ad

id
ae

 
 1 

 −
 

 −
 

 2 
 −

 
 3 

  Is
op

od
a  

 A
m

ph
is

op
id

ae
 

 −
 

 −
 

 −
 

 1 
 −

 
 1 

 A
se

lli
da

e 
 1 

 −
 

 +
 

 −
 

 −
 

 1 
 Sc

yp
ha

ci
da

e 
 −

 
 −

 
 −

 
 1 

 −
 

 1 
   A

m
ph

ip
od

a 
   

 C
ei

ni
da

e 
 −

 
 −

 
 −

 
 1 

 −
 

 1 
 C

ra
ng

on
yc

tid
ae

 
 −

 
 1 

 −
 

 −
 

 −
 

 1 
 H

ya
le

lli
da

e 
 −

 
 −

 
 1 

 −
 

 −
 

 1 
 Pe

rt
hi

id
ae

 
 −

 
 −

 
 −

 
 1 

 −
 

 1 
 A

eg
lid

ae
 

 −
 

 −
 

 1 
 −

 
 −

 
 1 

  D
ec

ap
od

a  
 C

am
ba

ri
da

e 
 1 

 1 
 −

 
 −

 
 −

 
 1 

 Pa
ra

st
ac

id
ae

 
 −

 
 −

 
 1 

 3 
 −

 
 4 

  A
R

A
C

H
N

ID
A

  
  O

ri
ba

ti
da

  
 H

yd
ro

ze
tid

ae
 

 1 
 −

 
 −

 
 −

 
 −

 
 1 

(c
on

tin
ue

d)

D. Boix et al.



167
 M

ed
. B

as
in

 
 N

or
th

 A
m

er
ic

a 
 So

ut
h 

A
m

er
ic

a 
 So

ut
he

rn
 A

us
tr

al
ia

 
 So

ut
h 

A
fr

ic
a 

 M
E

D
. R

E
G

. 

  P
ro

st
ig

m
at

a  
 Pr

os
tig

m
at

a 
un

de
t. 

 −
 

 −
 

 +
 

 −
 

 −
 

 +
 

 A
rr

en
ur

id
ae

 
 1 

 1 
 −

 
 1 

 1 
 1 

 E
yl

ai
da

e 
 1 

 1 
 −

 
 1 

 1 
 1 

 H
yd

ra
ch

ni
da

e 
 1 

 −
 

 −
 

 1 
 1 

 1 
 H

yd
ro

dr
om

id
ae

 
 1 

 −
 

 −
 

 1 
 1 

 1 
 H

yd
ry

ph
an

tid
ae

 
 2 

 −
 

 −
 

 +
 

 3 
 4 

 H
yg

ro
ba

tid
ae

 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
 L

im
ne

si
id

ae
 

 −
 

 1 
 −

 
 1 

 −
 

 1 
 L

im
no

ch
ar

id
ae

 
 −

 
 −

 
 −

 
 1 

 1 
 1 

 O
xi

da
e 

 −
 

 −
 

 −
 

 1 
 −

 
 1 

 Pi
on

id
ae

 
 2 

 −
 

 −
 

 2 
 1 

 3 
 Te

ut
on

id
ae

 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
 U

ni
on

ic
ol

id
ae

 
 −

 
 −

 
 −

 
 2 

 1 
 3 

   A
ra

ne
ae

   
 

 Pi
sa

ur
id

ae
 

 −
 

 −
 

 −
 

 +
 

 −
 

 +
 

  IN
SE

C
T

A
  

  E
ph

em
er

op
te

ra
  

 B
ae

tid
ae

 
 1 

 1 
 −

 
 1 

 1 
 2 

 C
ae

ni
da

e 
 1 

 −
 

 1 
 1 

 −
 

 2 
 C

ol
ob

ur
is

ci
da

e 
 −

 
 −

 
 +

 
 −

 
 −

 
 +

 
 L

ep
to

ph
le

bi
id

ae
 

 1 
 −

 
 1 

 −
 

 −
 

 2 

(c
on

tin
ue

d)

5 Invertebrates of Freshwater Temporary Ponds in Mediterranean Climates



168

 M
ed

. B
as

in
 

 N
or

th
 A

m
er

ic
a 

 So
ut

h 
A

m
er

ic
a 

 So
ut

he
rn

 A
us

tr
al

ia
 

 So
ut

h 
A

fr
ic

a 
 M

E
D

. R
E

G
. 

   O
do

na
ta

   
 

 A
es

hn
id

ae
 

 3 
 2 

 +
 

 3 
 1 

 5 
 A

us
tr

oc
or

du
lii

da
e 

 −
 

 −
 

 −
 

 1 
 −

 
 1 

 C
al

op
te

ry
gi

da
e 

 1 
 −

 
 −

 
 −

 
 −

 
 1 

 C
oe

na
gr

io
ni

da
e 

 6 
 3 

 +
 

 4 
 3 

 11
 

 C
or

du
lii

da
e 

 1 
 −

 
 −

 
 2 

 −
 

 3 
 G

om
ph

id
ae

 
 −

 
 −

 
 −

 
 2 

 +
 

 2 
 L

es
tid

ae
 

 3 
 −

 
 +

 
 1 

 −
 

 4 
 L

ib
el

lu
lid

ae
 

 5 
 5 

 +
 

 7 
 4 

 13
 

 M
eg

ap
od

ag
ri

on
id

ae
 

 −
 

 −
 

 −
 

 2 
 −

 
 2 

 Pe
ta

lu
ri

da
e 

 −
 

 −
 

 −
 

 1 
 −

 
 1 

 Pl
at

yc
ne

m
id

id
ae

 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
 Sy

nt
he

m
is

tid
ae

 
 −

 
 −

 
 −

 
 2 

 −
 

 2 
 Te

le
ph

le
bi

id
ae

 
 −

 
 −

 
 −

 
 1 

 −
 

 1 
   P

le
co

pt
er

a 
   

 C
ap

ni
id

ae
 

 1 
 −

 
 −

 
 −

 
 −

 
 1 

 G
ri

po
pt

er
yg

id
ae

 
 −

 
 −

 
 2 

 −
 

 −
 

 2 
 Pe

rl
id

ae
 

 −
 

 −
 

 +
 

 −
 

 −
 

 +
 

 N
ot

on
em

ou
ri

da
e 

 −
 

 −
 

 1 
 −

 
 −

 
 1 

(c
on

tin
ue

d)

D. Boix et al.



169
 M

ed
. B

as
in

 
 N

or
th

 A
m

er
ic

a 
 So

ut
h 

A
m

er
ic

a 
 So

ut
he

rn
 A

us
tr

al
ia

 
 So

ut
h 

A
fr

ic
a 

 M
E

D
. R

E
G

. 

  H
em

ip
te

ra
  

 B
el

os
to

m
at

id
ae

 
 1 

 1 
 −

 
 1 

 1 
 3 

 C
or

ix
id

ae
 

 10
 

 4 
 +

 
 4 

 2 
 13

 
 G

er
ri

da
e 

 2 
 1 

 −
 

 −
 

 2 
 3 

 H
eb

ri
da

e 
 −

 
 −

 
 +

 
 −

 
 −

 
 +

 
 H

yd
ro

m
et

ri
da

e 
 1 

 −
 

 −
 

 +
 

 −
 

 1 
 M

es
ov

el
iid

ae
 

 1 
 1 

 +
 

 +
 

 1 
 1 

 N
au

co
ri

da
e 

 2 
 −

 
 −

 
 −

 
 −

 
 2 

 N
ep

id
ae

 
 2 

 −
 

 −
 

 1 
 −

 
 2 

 N
ot

on
ec

tid
ae

 
 3 

 2 
 −

 
 3 

 2 
 5 

 Pl
ei

da
e 

 1 
 −

 
 −

 
 2 

 1 
 2 

 Sa
ld

id
ae

 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
 V

el
iid

ae
 

 2 
 −

 
 −

 
 1 

 −
 

 2 
   M

eg
al

op
te

ra
   

 
 Si

al
id

ae
 

 −
 

 −
 

 1 
 −

 
 −

 
 1 

  N
eu

ro
pt

er
a  

 O
sm

yl
id

ae
 

 −
 

 −
 

 +
 

 −
 

 −
 

 +
 

 Si
sy

ri
da

e 
 −

 
 −

 
 −

 
 1 

 −
 

 1 

(c
on

tin
ue

d)

5 Invertebrates of Freshwater Temporary Ponds in Mediterranean Climates



170

 M
ed

. B
as

in
 

 N
or

th
 A

m
er

ic
a 

 So
ut

h 
A

m
er

ic
a 

 So
ut

he
rn

 A
us

tr
al

ia
 

 So
ut

h 
A

fr
ic

a 
 M

E
D

. R
E

G
. 

  C
ol

eo
pt

er
a  

 A
lle

cu
lid

ae
 

 +
 

 −
 

 −
 

 −
 

 −
 

 +
 

 C
ar

ab
id

ae
 

 −
 

 −
 

 +
 

 −
 

 −
 

 +
 

 C
hr

ys
om

el
id

ae
 

 1 
 −

 
 −

 
 +

 
 −

 
 1 

 C
ur

cu
lio

ni
da

e 
 2 

 +
 

 −
 

 1 
 −

 
 2 

 D
ry

op
id

ae
 

 1 
 −

 
 −

 
 −

 
 1 

 1 
 D

yt
is

ci
da

e 
 27

 
 14

 
 +

 
 23

 
 12

 
 52

 
 E

lm
id

ae
 

 1 
 −

 
 2 

 −
 

 −
 

 3 
 E

ri
rh

in
id

ae
 

 1 
 −

 
 −

 
 −

 
 −

 
 1 

 G
eo

ri
ss

id
ae

 
 −

 
 −

 
 −

 
 −

 
 +

 
 +

 
 G

yr
in

id
ae

 
 1 

 1 
 −

 
 −

 
 1 

 2 
 H

al
ip

lid
ae

 
 3 

 3 
 −

 
 1 

 1 
 4 

 H
el

op
ho

ri
da

e 
 1 

 1 
 −

 
 −

 
 −

 
 1 

 H
et

er
oc

er
id

ae
 

 −
 

 1 
 −

 
 −

 
 −

 
 1 

 H
yd

ra
en

id
ae

 
 3 

 2 
 +

 
 2 

 9 
 10

 
 H

yd
ro

ch
id

ae
 

 1 
 −

 
 1 

 1 
 1 

 1 
 H

yd
ro

ph
ili

da
e 

 14
 

 6 
 1 

 7 
 11

 
 21

 
 H

yg
ro

bi
id

ae
 

 1 
 −

 
 −

 
 −

 
 −

 
 1 

 L
im

ni
ch

id
ae

 
 −

 
 −

 
 −

 
 +

 
 −

 
 +

 
 N

ot
er

id
ae

 
 1 

 −
 

 −
 

 1 
 −

 
 2 

 Pt
ili

id
ae

 
 −

 
 −

 
 −

 
 +

 
 +

 
 +

 
  Pt

ilo
da

ct
yl

i  d
ae

 
 −

 
 −

 
 −

 
 +

 
 −

 
 +

 
 Sc

ar
ab

ae
id

ae
 

 −
 

 1 
 −

 
 −

 
 −

 
 1 

 Sc
ir

tid
ae

 
 2 

 −
 

 1 
 1 

 +
 

 3 
 Sp

er
ch

ei
da

e 
 −

 
 −

 
 −

 
 −

 
 +

 
 +

 
 St

ap
hy

lin
id

ae
 

 −
 

 −
 

 +
 

 −
 

 −
 

 +
 

(c
on

tin
ue

d)

D. Boix et al.



171
 M

ed
. B

as
in

 
 N

or
th

 A
m

er
ic

a 
 So

ut
h 

A
m

er
ic

a 
 So

ut
he

rn
 A

us
tr

al
ia

 
 So

ut
h 

A
fr

ic
a 

 M
E

D
. R

E
G

. 

   T
ri

ch
op

te
ra

   
 

 E
cn

om
id

ae
 

 −
 

 −
 

 −
 

 +
 

 −
 

 +
 

 H
yd

ro
ps

yc
hi

da
e 

 −
 

 −
 

 1 
 −

 
 −

 
 1 

 H
yd

ro
pt

ili
da

e 
 2 

 −
 

 1 
 1 

 1 
 3 

 L
ep

to
ce

ri
da

e 
 −

 
 −

 
 2 

 4 
 −

 
 5 

 L
im

ne
ph

ili
da

e 
 5 

 1 
 −

 
 −

 
 −

 
 5 

 Ph
ry

ga
ne

id
ae

 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
 Po

ly
ce

nt
ro

po
di

da
e 

 1 
 −

 
 1 

 −
 

 −
 

 2 
 Se

ri
co

st
om

at
id

ae
 

 1 
 −

 
 −

 
 −

 
 −

 
 1 

 St
en

op
sy

ch
id

ae
 

 −
 

 −
 

 +
 

 −
 

 −
 

 +
 

  L
ep

id
op

te
ra

  
 C

ra
m

bi
da

e 
 −

 
 −

 
 −

 
 +

 
 −

 
 +

 
 Py

ra
lid

ae
 

 1 
 −

 
 +

 
 +

 
 +

 
 1 

(c
on

tin
ue

d)

5 Invertebrates of Freshwater Temporary Ponds in Mediterranean Climates



172

 M
ed

. B
as

in
 

 N
or

th
 A

m
er

ic
a 

 So
ut

h 
A

m
er

ic
a 

 So
ut

he
rn

 A
us

tr
al

ia
 

 So
ut

h 
A

fr
ic

a 
 M

E
D

. R
E

G
. 

  D
ip

te
ra

  
 A

nt
ho

m
yi

id
ae

 
 −

 
 +

 
 −

 
 +

 
 +

 
 +

 
 A

th
er

ic
id

ae
 

 −
 

 −
 

 +
 

 −
 

 −
 

 +
 

 C
er

at
op

og
on

id
ae

 
 6 

 4 
 +

 
 8 

 1 
 11

 
 C

ha
ob

or
id

ae
 

 1 
  –

 
 −

 
 1 

 1 
 2 

 C
hi

ro
no

m
id

ae
 

 40
 

 13
 

 +
 

 21
 

 10
 

 49
 

 C
hl

or
op

id
ae

 
 +

 
 −

 
 −

 
 −

 
 −

 
 +

 
 C

ul
ic

id
ae

 
 5 

 5 
 +

 
 4 

 5 
 7 

 D
ix

id
ae

 
 2 

 1 
 −

 
 −

 
 +

 
 2 

 D
ol

ic
ho

po
di

da
e 

 1 
 +

 
 −

 
 +

 
 −

 
 1 

 E
m

pi
di

da
e 

 +
 

 −
 

 +
 

 +
 

 −
 

 +
 

 E
ph

yd
ri

da
e 

 4 
 4 

 +
 

 +
 

 +
 

 6 
 L

im
on

iid
ae

 
 3 

 −
 

 +
 

 −
 

 −
 

 3 
 Ps

yc
ho

di
da

e 
 2 

 1 
 −

 
 1 

 1 
 2 

 R
ha

gi
on

id
ae

 
 1 

 −
 

 −
 

 −
 

 −
 

 1 
  Sc

at
op

ha
gi

da
  e 

 −
 

 1 
 −

 
 −

 
 −

 
 1 

 Sc
io

m
yz

id
ae

 
 2 

 −
 

 −
 

 1 
 −

 
 2 

 Si
m

ul
iid

ae
 

 2 
 +

 
 +

 
 −

 
 −

 
 2 

 St
ra

tio
m

yi
da

e 
 3 

 2 
 −

 
 +

 
 +

 
 4 

 Sy
rp

hi
da

e 
 1 

 2 
 −

 
 −

 
 −

 
 2 

 Ta
ba

ni
da

e 
 1 

 1 
 −

 
 +

 
 +

 
 1 

 T
ha

um
al

ei
da

e 
 −

 
 −

 
 −

 
 +

 
 −

 
 +

 
  T

ip
ul

  id
ae

 
 3 

 3 
 +

 
 +

 
 +

 
 4 

  M
IN

IM
U

M
 N

U
M

B
E

R
 O

F
 G

E
N

E
R

A
  

 39
4 

 16
9 

 10
1 

 25
3 

 15
0 

 63
3 

  M
IN

IM
U

M
 N

U
M

B
E

R
 O

F
 F

A
M

IL
IE

S  
 14

9 
 73

 
 77

 
 11

2 
 71

 
 20

4 

(c
on

tin
ue

d)

D. Boix et al.



173

   Main literature sources: 
 MEDITERRANEAN BASIN—Terzian  1979 ; Boutin et al.  1982 ; Metge  1986 ; 

Bazzanti et al.  1996 ; Bazzanti et al.  1997 ; Chaves  1999 ; Fahd et al.  2000 ; Boix et al. 
 2001 ,  2005 ; Eitam et al.  2004 ; Pieri et al.  2006 ; Culioli et al.  2006 ; Carchini et al. 
 2007 ; Marrone et al.  2009 ; Florencio et al.  2009 ; Sahuquillo and Miracle  2010 ; 
Martins et al.  2010 ; Caramujo and Boavida  2010 ; Elron and Gafny  2011 ; Moubayed- 
Breil et al.  2012 ; Tornero et al.  2014 ; Rouissi et al.  2014 ; Gerecke et al.  2014 ; Gilbert 
et al.  2015 ; Escrivà  2015 . NORTH AMERICA—Ebert and Balko  1987 ; Zedler 
 1987 ; King et al.  1996 ; Rogers  1998, 2014 ; Belk  1998 ; Helm  1998 ; Simovich  1998 ; 
de Szalay and Resh  2000 ; Marchetti et al.  2010 . SOUTH AMERICA—Araya and 
Zúñiga  1985 ; Villagran-Mella et al.  2006 ; Figueroa et al.  2009 ; Correa-Araneda 
et al.  2014 . SOUTHERN AUSTRALIA—Williams  1975 ; Davis and Christidis 
 1999 ; Robson and Clay  2005 ; Sim et al.  2013 ; Pinder et al.  2013 ; Strachan et al. 
 2014 . SOUTH AFRICA –De Roeck et al.  2007 ; Day et al.  2010 ; Mlambo et al.  2011 .  

      Appendix 2 

  Large branchiopods species   observed in temporary ponds in four of the fi ve 
Mediterranean regions (data from published studies; no species have been identifi ed 
from South American Mediterranean region).  P  means that this species occurs both in 
and outside the Mediterranean areas, whereas  E  means that it is endemic to one 
Mediterranean area. For the species inclusion criteria see section “Invertebrate assem-
blages of Mediterranean temporary ponds?” means that this taxon cannot be included in 
one of the two previous categories, because taxonomic identity is not at species level.

 Med. Basin  North America  Southern Australia  South Africa 

  O. NOTOSTRACA  

  F. Triopidae  
  Lepidurus apus apus    P   −  −  − 
  Lepidurus apus viridis   −  −   P   − 
  Lepidurus couesii    P   −  −  − 
  Lepidurus lubbocki    P   −  −  − 
  Lepidurus packardi   −   E   −  − 
  Triops    austra    liensis   −  −   P   − 
  Triops baeticus    E   −  −  − 
  Triops cancriformis    P   −  −  − 
  Triops emeritensis    E   −  −  − 
  Triops gadensis    E   −  −  − 
  Triops granarius    P   −  −   P  
  Triops longicaudatus   −   P   −  − 
  Triops mauritanicus    E   −  −  − 
  Triops simplex    E   −  −  − 
  Triops vicentinus    E   −  −  − 
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 Med. Basin  North America  Southern Australia  South Africa 

  O. SPINICAUDATA  
  F. Cyzicidae  
  Cyzicus bucheti    E   −  −  − 
  Cyzicus    californicus     −   E   −  − 
  Cyzicus gihoni    E   −  −  − 
  Cyzicus grubei    E   −  −  − 
  Cyzicus tetracerus    P   −  −  − 
  Eocyzicus saharicus    P   −  −  − 
  Ozestheria mariae   −  −   E   − 
  Ozestheria packardi   −  −   P   − 
  F. Limnadiidae  
  Eulimnadia  sp. 1   ?  −  −  − 
  Eulimnadia feriensis   −  −   E   − 
  Eulimnadia datsonae   −  −   E   − 
  Eulimnadia palustera   −  −   E   − 
  Eulimnadia vinculuma   −  −   E   − 
  Eulimnadia texana   −   P   −  − 
  Imnadia yeyetta    P   −  −  − 
  Limnadia    lenticularis      P   −  −  − 
  Limnadopsis occidentalis   −  −   P   − 
  Limnadopsis paradoxa   −  −   E   − 
  Limnadopsis tatei   −  −   P   − 
  Paralimnadia badia   −  −   E   − 
  Paralimnadia cygnorum   −  −   E   − 
  Paralimnadia sordida   −  −   P   − 
  F. Leptestheriidae  
  Eoleptestheria ticinensis    P   −  −  − 
  Leptestheria dahalacensis    P   −  −  − 
  Leptestheria mayeti    P   −  −  − 
  Leptestheria rubidgei   −  −  −   P  
  Maghrebestheria maroccana    E   −  −  − 
  O. LAEVICAUDATA  
  F. Lynceidae  
  Lynceus  sp.  2     ?  −  −  − 
  Lynceus baylyi   −  −   P   − 
  Lynceus brachyurus   −   P   −  − 
  Lynceus tatei   −  −   P   − 
  Lynceus macleayanus   −  −   P   − 
  Lynceus magdaleanae   −  −   P   − 
  Lynceus susanneae   −  −   E   − 
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 Med. Basin  North America  Southern Australia  South Africa 

  O. ANOSTRACA  
  F. Streptocephalidae  
  Streptocephalus cafer   −  −  −   P  
  Streptocephalus dendyi   −  −  −   P  
  Streptocephalus    gracilis     −  −  −   P  
  Streptocephalus ovamboensis   −  −  −   P  
  Streptocephalus papillatus   −  −  −   P  
  Streptocephalus purcelli   −  −  −   P  
  Streptocephalus torvicornis    P   −  −  − 
  Streptocephalus woottoni   −   E   −  − 
  F. Tanymastigidae  
  Tanymastix    affi nis      E   −  −  − 
  Tanymastix stagnalis    P   −  −  − 
  Tanymastix stellae    E   −  −  − 
  Tanymastigites brteki    E   −  −  − 
  Tanymastigites cyrenaica    P   −  −  − 
  Tanymastigites lusitanica    E   −  −  − 
  Tanymastigites perrieri    P   −  −  − 
  F. Branchipodidae  
  Australobranchipus parooensis   −  −   P   − 
  Branchipodopsis dayae   −  −  −   P  
  Branchipodopsis    hodgsoni     −  −  −   P  
  Branchipodopsis karroensis   −  −  −   E  
  Branchipodopsis wolfi    −  −  −   P  
  Branchipus cortesi    E   −  −  − 
  Branchipus pasai    E   −  −  − 
  Branchipus schaefferi    P   −  −  − 
  F. Thamnocephalidae  
  Branchinella affi nis   −  −   P   − 
  Branchinella australiensis   −  −   P   − 
  Branchinella basispina   −  −   E   − 
  Branchinella complexidigitata   −  −   E   − 
  Branchinella erosa   −  −   E   − 
  Branchinella kadjikadji   −  −   E   − 
  Branchinella halsei   −  −   P   − 
  Branchinella hattahensis   −  −   P   − 
  Branchinella hearnii   −  −   E   − 
  Branchinella    longirostris     −  −   E   − 
  Branchinella lyrifera   −  −   P   − 
  Branchinella nana   −  −   P   − 
  Branchinella occidentalis   −  −   P   − 
  Branchinella papillata   −  −   P   − 
  Branchinella vosperi   −  −   E   − 
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 Med. Basin  North America  Southern Australia  South Africa 

  F. Branchinectidae  
  Branchinecta campestris   −   P   −  − 
  Branchinecta coloradensis   −   P   −  − 
  Branchinecta conservatio   −   E   −  − 
  Branchinecta dissimilis   −   P   −  − 
  Branchinecta ferox    P   −  −  − 
  Branchinecta gigas   −   P   −  − 
  Branchinecta lindahli   −   P   −  − 
  Branchinecta longiantenna   −   E   −  − 
  Branchinecta    lynchi     −   E   −  − 
  Branchinecta mackini   −   P   −  − 
  Branchinecta mesovallensis   −   E   −  − 
  Branchinecta orientalis    P   −  −  − 
  Branchinecta sandiegonensis   −   E   −  − 
  F. Chirocephalidae  
  Chirocephalus anatolicus    E   −  −  − 
  Chirocephalus bairdi    E   −  −  − 
  Chirocephalus brteki    E   −  −  − 
  Chirocephalus diaphanus    P   −  −  − 
  Chirocephalus kerkyrensis    E   −  −  − 
  Chirocephalus murae    E   −  −  − 
  Chirocephalus neumanni    E   −  −  − 
  Chirocephalus salinus    P   −  −  − 
  Eubranchipus bundyi   −   P   −  − 
  Eubranchipus oregonus   −   P   −  − 
  Eubranchipus    serratus     −   P   −  − 
  Linderiella africana    E   −  −  − 
  Linderiella baetica    E   −  −  − 
  Linderiella massaliensis    E   −  −  − 
  Linderiella occidentalis   −   E   −  − 
  Linderiella santarosae   −   E   −  − 

    1 The taxonomic identity at species level of this population in Tunisia (Rabet et al.  2015 ) is not 
determined 
  2 According to Hartland-Rowe ( 1967 ) this species is not the ubiquitous  L. brachyurus  

 Main literature sources: 
 MEDITERRANEAN BASIN—Hartland-Rowe  1967 ; Dimentman  1981 ; Cottarelli 
and Mura  1983 ; Thiéry  1987 ,  1991 ,  1996 ,  2004 ; Brtek and Thiéry  1995 ; Alonso 
 1996 ; Defaye et al.  1998 ; Samraoui and Dumont  2002 ; Brtek and Cottarelli  2006 ; 
Cottarelli et al.  2007 ,  2010 ; Miracle et al.  2008 ; Turki and Turki  2010 ; van den 
Broeck et al.  2015b ; Rabet et al.  2015 . NORTH AMERICA - Helm  1998 ; US Fish 
and Wildlife Service  2008 ; Rogers et al.  2010 . SOUTHERN AUSTRALIA—
 Williams   1968 ; Timms  2002 ,  2005 ,  2006 ,  2008 ,  2009 ,  2012 ,  2013 ,  2015 ; Richter 
and Timms  2005 ; Timms and Richter  2009 ; Rogers and Hamer  2012 . SOUTH 
AFRICA—De Roeck et al.  2007 .   
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