
6SequenceAlignment

6.1 Introduction

Sequence alignment is the process of comparing two or more sequences by searching
for a series of characters that appear in the same order in these sequences. In DNA
sequence alignment, we would be searching for an alignment of nucleotides, whereas
amino acid sequences are aligned in proteins. Using sequence alignment, similar
segments of DNA, RNA, or proteins can be identified which may indicate functional,
structural, or evolutionary relationships between these sequences [23].

The general aim of any sequence comparison method in bioinformatics is to de-
termine whether the similarities between two or more sequences is incidental or
they are derived from a common ancestral sequence in which case they are homol-
ogous. Homology indicating a common ancestor may reveal a common function or
structure. Homologous genes, for example, are derived from the same ancestral gene
which is altered due to a number of mutations. Homology is displayed more easily
in protein amino acid sequences than the DNA nucleotide sequences. This is due to
the smaller alphabet of 4 nucleotides (A, C, G, T) in DNA sequences compared to 20
amino acids in proteins. That is, the chances of finding matches in DNA sequences
are greater than finding amino acid matches in protein sequences. Also, different
codons in DNA encode for the same amino acid and the 3D structure of a protein is
determined by its amino acid sequence. In order to have the same functionality of a
protein which is based on its 3D shape, the evolutionary process in a protein sequence
is slower. In general, we would be interested in both the alignment of DNA/RNA
nucleotide sequences and protein amino acid sequences.

Sequence comparison also allows finding evolutionary relationships among or-
ganisms. This association is commonly used to construct phylogenetic trees and
networks which display ancestor–descendant affinities and these structures can be
used for a wide range of applications including disease analysis as we will see in
Chap. 15. Also, the distances between the sequences as computed by sequence align-
ment algorithms are frequently input to sequence clustering algorithms which groups
biological sequences based on their similarities as we review in Chap. 7. A sequence
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112 6 Sequence Alignment

motif is a repeating DNA nucleotide or protein amino acid sequence which has a
biological significance. Sequence comparison methods are used to discover these
motifs as we will analyze in Chap. 8. In summary, the distances and similarities be-
tween biological sequences is required in various sequence analysis methods and the
alignment methods are usually the first step that provides the needed input to all of
these methods.

Two sequences are aligned in pairwise alignment and multiple sequences are
aligned in multiple alignment. In global alignment, two homologous sequences of
similar lengths are compared over their entire sequence. This method is used to
find similarities of two closely related sequences. In many cases, however, only
certain segments of two sequences may be similar but the rest of the sequences may
be completely unrelated. For example, two proteins may consist of a number of
domains and only one or two of these domains may be similar. The global alignment
will not display a high similarity between these two proteins in this case. Local
alignment refers to the method of finding similar regions in two sequences which
may have very different lengths. Multiple sequence alignment can be performed by
global alignment if the input sequences are closely related and we are searching
for the similarity of these sequences as a whole; or local alignment in which case
we are interested to find similar subsequences of otherwise not related sequences.
Different types of alignment methods need different algorithms; however, they can
be coarsely classified as dynamic programming based, heuristic or a combination of
both in general.

In this chapter, we first state the sequence alignment problem, describe ways
of evaluating goodness of any alignment method and then analyze representative
sequential global, local and multiple sequence alignment algorithms in detail. We
then provide parallel/distributed algorithms aimed to solve these problems and review
current research in this area.

6.2 Problem Statement

Sequence alignment is the basic and most fundamental method of comparing two
biological sequences. In the very common application of such alignment, we have an
input sequence called the query that needs to be identified since it is newly discovered
or not aligned before; and this query is typically aligned with each sequence in a
database of sequences. The sequences in the database that have the highest scores are
then identified as the ones having highest similarity and therefore relatedness to the
query sequence. This affinity in base structures may imply phylogenetic relationships
and also similar functionality to aid the analysis of the newly discovered sequence.

6.2.1 The Objective Function

We need to asses the quality of an alignment which reflects its goodness. The cost-
benefit approach identifies three scores during alignment:
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• The benefit of aligning two identical characters (match)
• The cost of aligning two different characters (mismatch or substi tution)
• The cost of aligning a character in a sequence with a gap in the other sequence

(insertion or deletion-indel). The first sequence has a gap in the related column
in insertion, and the second sequence has a gap in the corresponding column in
deletion.

Insertion and deletion of gaps refer to the operations on the first sequence, that
is, insertion/deletion means inserting/deleting a gap to/from the first sequence. An
alignment between two DNA sequences X and Y is shown below with matches,
mismatches, insertions, and deletions.

A positive score is associated with a match and negative scores are used to penal-
ize a mismatch and an indel. The negative scores or penalties are based on observed
statistical occurrences of an indel and a mismatch and typically, the indels are pe-
nalized more, reflecting their relatively less prevalence in the genome alignment. As
an example, let us use the scores +2 for a match, –1 for a mismatch and –2 for an
indel. Given the two DNA sequences X = ATGGCTACAC and Y = GTGTACTAC,
we can have various alignments four of which are shown with mismatches (m) and
indels (i) marked. Among these four options, the alignment in (a) or (b) should be
chosen as they both have the highest scores.



114 6 Sequence Alignment

The aim of any alignment method is to maximize the total score. However, there
are exponential number of combinations to check and if we can find an alignment that
has a higher score than others, then using it should be preferred. Formally, alignment
of two sequences can be defined as follows:

Definition 6.1 (sequence alignment) Let
∑

org be an alphabet and X = x1 . . . xn

and Y = y1 . . . ym be two sequences over this alphabet and let
∑ ← ∑

org ∪{−},
that is, the space character added to the original alphabet. An alignment of these two
sequences is a two-row matrix where the first row are the elements of X and the
second row are the elements of Y and each row contains at least one element of �org.

A related parameter between two sequences is the edit distance between them
which is defined as follows:

Definition 6.2 (edit distance) Edit distance, or the Levenshtein distance, is the min-
imum number of substitutions, insertions, and deletions between two sequences.
Hamming distance is an upper bound on edit distance.

For the above example, the edit distance between the two sequences is 4 which
occurs in (a). The procedure for sequence alignment is very similar to finding LCS
between them; however, we now have costs associated with matches, mismatches,
and indels and search for the highest scoring alignment.

6.2.2 ScoringMatrices for Proteins

Proteins consist of a sequence of amino acids from a 20-letter alphabet. Some mis-
matches are more likely to occur in proteins and they are more frequently encountered
than other substitutions. This fact necessitates the use of a weighting scheme for each
amino acid substitution. Scoring matrices for mismatches in protein amino acid se-
quences define the scores for each substitution in these sequences. The two widely
used matrices for this purpose are the point accepted mutation (PAM) matrix [11] and
the blocks substitution matrix (BLOSUM) [17]. They both use statistical methods
and are based on counting the observed substitution frequency and comparison of
this value with the expected substitution frequency.

A positive score in the entry mi j of a PAM matrix M means that the probability of
the substitution between i and j is more than its expected value; therefore, it bears
some significance. The entry mi j is formed by considering the expected frequencies
of i and j , and the frequency of alignment between i and j in the global alignment
of homologous sequences [4]. The nth power of M is then taken to form the PAM-n
matrix such as PAM-80, PAM-120, or PAM-250. A large value of n should be used
to align proteins that are not closely related.
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PAM may not provide realistic values for remotely related protein sequences as it
uses extrapolation of values. BLOSUM matrix structure proposed by Henikoff and
Henikoff [17] overcomes this difficulty by analyzing segments of proteins rather than
the whole. If two segments of proteins under consideration have similarity over a
threshold value, they are clustered. The threshold value t is specified as BLOSUM-p
which means the matrix is generated by combining sequences which have at least t %
similarity. The BLOSUM62 matrix which which is formed by clustering sequences
that have at least 62 % identity level is shown below. A small value of t is used
for distantly related protein sequences and more closely related ones can be aligned
using a larger value.

A R N D C Q E G H I L K M F P S T W Y V B Z X *

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4

R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4

N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4

D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4

C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4

Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4

E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4

H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4

I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1 -4

K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1 -4

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4

F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4

S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0 -4

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0 -4

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2 -4

Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4

V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4

B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1 -4

Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1 -4

* -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 1

6.3 Pairwise Alignment

Pairwise alignment is the comparison of two distinct DNA or protein sequences. It
can be performed globally to compare two sequences as a whole or locally to detect
similar subsequences in the two sequences as outlined below.

6.3.1 Global Alignment

Global alignment assumes that the sequences to be compared are sequentially
homologous and attempts to align all of the sites optimally within the sequences.
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Fig. 6.1 An entry S[i, j] of
the alignment matrix

An alignment matrix S is a convenient way of displaying the alignment between
two sequences. In order to represent two sequences X and Y of lengths n and m, S
contains n rows and m columns. When aligning two sequences, we can have four op-
tions. The characters match; they do not match; a gap is inserted in the first sequence;
or a gap is inserted in the second sequence. The filling of the alignment matrix is
based on selecting the option which gives the highest score. An entry S[i, j] of an
alignment matrix depends on the values of the entries just before it in the preceding
column, row, and diagonal as shown in Fig. 6.1. The first row and column of this
graph are initialized with the gap penalties when these occur at the beginning of
sequences X and Y .

We can therefore compute the value of the element (i, j) by checking the three
previous entries at (i − 1, j), (i − 1, j − 1), and (i, j − 1). The first value of the
array is initialized to 0. Finding all other entries can be done using the dynamic
programming approach where subsolutions are used to find the solution. Needleman
and Wunsch provided the first dynamic algorithm for this purpose as described next.

6.3.1.1 Needleman–Wunsch Algorithm
Let us specify the scores for each character comparison. A match is given a score
α, a mismatch a β and an indel γ when two characters ai and bi are compared, as
shown below. The match score is commonly positive as this is what we require and
the other scores are negative.

score(ai , bi ) =
⎧
⎨

⎩

α, ai = bi

β, ai �= bi

γ , ai =′ −′ or bi =′ −′

Let us assume an optimal alignment A between two sequences X and Y , and
A′ ⊂ A as an alignment of X ′ ⊂ X and Y ′ ⊂ Y . If A is optimal, A′ is also an
optimal alignment which leads to the following dynamic algorithm solution. We
consider the prefixes Xi = x1 . . . xi and Y j = y1 . . . y j of two sequences. In order
to find the optimal alignment, we need to select the one that gives the highest score
from the following:
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1. Align xi with yi and Xi−1 with B j−1
2. Align xi with a gap and Xi−1 with B j

3. Align y j with a gap and Xi with B j−1.

The first case shows whether there is a match or a mismatch and δ is equal to α

when there is a match, and β when a mismatch occurs. Aligning a prefix Xi of X
with no element of Y is the product of the length of Xi with the gap penalty and
the same is valid for Y . Therefore, M[i, 0] = γ i and M[0, j] = γ j . Needleman–
Wunsch algorithm brings together all of the concepts we have discussed until now
in the dynamic programming based algorithm as shown in Algorithm 6.1.

Algorithm 6.1 N W _Alg
1: Input : Sequences X = {x1, ..., xn} and Y = {y1, ..., ym}
2: Output : Array S[n, m]
3: S[0, 0] ← 0
4: for j = 1 to n do
5: S[0, j] ← γ × j
6: end for
7: for i = 1 to m do
8: S[i, 0] ← γ × i
9: end for
10: for j = 1 to n do

M[i, j] = max

⎧
⎨

⎩

M[i − 1, j] + γ

M[i, j − 1] + γ

M[i − 1, j − 1] + δ(ai , b j )

11: end for

Let us form the alignment array M for two given DNA sequences X = ACCGT
and Y = AGCCTC with n = 5 and m = 6; and we select α = 2, β = −1 and
γ = −1 for simplicity. We first fill the first row and column of M with gap penalties
and assign 0 value for the first entry. We then form each entry using the dynamic
programming relation in the NW algorithm to obtain the final array as shown below.

A G C C T C
0 -1 -2 -3 -4 -5 -6

A -1 2 ← 1 0 -1 -2 -3

C -2 1 1 3 2 1 0

C -3 0 0 3 5 4 3
↑

G -4 -1 2 2 4 4 3

T -5 -2 1 1 3 6 ← 5
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The global alignment problem can now be reduced to finding the best scoring
path between vertices M[0, 0] and M[n, m]. We can now start from the lowest right
corner of M and work our way upwards until we reach M[0, 0] by following in
reverse direction of the path we have chosen while filling the array. An up arrow
means a gap in the top sequence, a left arrow represents a gap in the second sequence
on the lefthandside, and a diagonal arrow shows a match or a mismatch without any
gap in that position. The alternative paths result in alternative alignments with the
same score. Implementing this procedure for the above example yields the following
alignment with a score of 5 (4 matches and 3 indels).

A G C C - T C
A - C C G T -

The time to fill the array is O(nm) which is the size of the array and hence the
space requirement is the same. At the end of the algorithm, best alignment score is
stored in M[n, m].

6.3.2 Local Alignment

The global alignment may not provide the correct results because of the genome
shuffling and rearrangements. A segment of a sequence inversion may happen in a
sequence causing a subsequence to look radically different. Local alignment pro-
vides us information about the conserved subsequences within organisms. A local
alignment between two sequences with four matches and a mismatch is shown in
bold below.

A T G C T A G T G C C
G C A C T T G T A A T

As a general rule, subsequences of the sequences are aligned separately without
considering the general order of the global sequences in local alignment. Given two
sequences X = x1 . . . xn and Y = y1 . . . ym , some parts of X and Y may be aligned
with high scores by local alignment but the remaining subsequences may be very
different. One way of tackling this problem is to identify all possible subsequences
of X and Y and then compute all global alignments between every pair of these
subsequences and select the one with the highest score. Unfortunately, this brute
force algorithm can find subsequences of X and Y in O(n2) and O(m2) times,
and performing global alignment results in complexity of O(n2m2nm) or O(n3m3)

which is unacceptable for large sequences. A commonly used algorithm for local
alignment was proposed by Smith and Waterman [31] which is an adaptation of
the NW algorithm for local alignment. The main differences between these two
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algorithms are as follows. First, a fourth value of zero is allowed in addition to the
three possible values in the NW algorithm to prevent negative values in the alignment
graph. The first row and column of the array M contain zeros now to discard gaps
occurring in the beginning of sequences. We still attempt to find a path with maximum
value but we do not have to start from the beginning to allow for local alignments.
Instead, we start with the maximum value of the array and stop when a zero is
encountered which signals the end of the regional alignment. Algorithm 6.2 shows
the pseudocode of this algorithm.

Algorithm 6.2 SW _Alg
1: Input : Sequences X = {x1, ..., xn} and Y = {y1, ..., ym}
2: Output : Array S[n, m]
3: S[0, 0] ← 0
4: for j = 1 to n do
5: S[0, j] ← 0
6: end for
7: for i = 1 to n do
8: S[i, 0] ← 0
9: end for
10: for j = 1 to n do

M[i, j] = max

⎧
⎪⎪⎨

⎪⎪⎩

M[i − 1, j] + γ

M[i, j − 1] + γ

M[i − 1, j − 1] + δ(ai , b j )

0

11: end for

As an example, given two DNA sequences X = GGATACGTA and Y =
TCATACT with n = 9 and m = 7, and scoring as before with α = 2, β = −1
and γ = −1; we proceed similar to the global alignment algorithm by first initial-
izing the first row and column of the similarity matrix M . We then form each entry
using the SW algorithm and fill the entries of M , keeping the track of the selected
path as in NW algorithm. Backtracking starts from the highest value element of M
this time, stopping whenever a zero is encountered as shown below.

We start with the maximum value entry 9 and backtrack the path until a 0 is
encountered. The obtained maximum local alignment between these two sequences
is shown below in bold.

G G A T A C G T A
T C A T A C - T
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G G A T A C G T A
0 0 0 0 0 0 0 0 0

T 0 0 0 2 ← 1 0 0 2 1

C 0 0 0 1 1 3 2 1 1

A 0 0 2 1 3 2 2 1 3

T 0 0 1 4 3 2 1 4 3

A 0 0 2 3 6 5 4 3 6

C 0 0 1 2 5 8 ← 7 6 5

T 0 0 0 3 4 7 6 9 8

If we start with 6 shown in the upper path, a local alignment with one mismatch
and one gap, and a score of 6 is obtained as follows.

G G A T A C G T A
T - C A T A C T

We can have various local alignments between these two sequences using alter-
native paths, starting with the next largest value and continuing until a 0. The time
and space complexities of this algorithm are O(nm) as in NW algorithm since we
need to fill the alignment matrix as before.

6.4 Multiple Sequence Alignment

Multiple sequence alignment (MSA) aims at aligning more than two biological se-
quences. We have a set of k input sequencesS = S1, . . . , Sk and our aim is to provide
alignment of these k sequences. We can have global and local multiple alignment in
MSA. In theory, we can use NW algorithm for the global alignment of k sequences,
for each possible pairs of a set of k sequences S = S1, . . . , Sk each with a length of
n, invoking this algorithm k(k−1)/2 times. For large k, this method is inefficient due
to its increased time complexity of O(n2k2). For this reason, heuristics are widely
used for MSA. The main methods of MSA can be stated as follows:

• Exact methods: These algorithms typically use dynamic programming outlined
and have high running times and can be effective for only 3 or 4 sequences.

• Approximation algorithms: They have polynomial run times but only approximate
the solution. However, performance is guaranteed to be within the approximation
ratio.
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• Heuristic methods: The algorithms based on heuristics typically search only a
subset of the possible alignments and find an alignment that is suboptimal. There
is no performance guarantee but they are widely used in practice.

• Probabilistic methods: They assume a probabilistic model and search alignment
that best fits this model.

We will now take a closer look at representative algorithms for these methods
starting with an approximation algorithm.

6.4.1 Center Star Method

The center star method is an approximation algorithm with a ratio of 2. The main
idea of this algorithm is to identify a sequence which is closest to all others as the
center and then work out the alignments of all sequences with respect to this center.
There are various methods to measure the distances between the sequences. As a
simple approach, we can find the consensus sequence Scs of S = {S1, . . . , Sn} of n
input sequences which is the sequence containing the most frequent symbols ofeach
column to be matched in each sequence. We can then work out the distance of each
sequence Si to Scs and mark the sequence with shortest distance to Scs as the central
sequence Sc. Alternatively, we can compute pairwise distances between all pairs of
sequences which is called the sum of pairs distance which is used in the center star
method. The center star algorithm specifically consists of the following steps:

1. Input: A set S = {S1, . . . , Sk} of k sequences of length n each.
2. Output: MSA of sequences in S.
3. Work out the distance matrix D between sequences such that di j entry of D is

equal to the distance between Si and S j .
4. Find the center sequence Sc that has the minimum value of sum of pairs,

∑k
i=1 di j .

5. For each Si ∈ S \ Sc, find an optimal global alignment between Si and Sc using
Needleman–Wunsch algorithm.

6. Insert gaps in Sc to complete MSA.

The center sequence is the one that is most similar to all other sequences. For
example, given the four sequences below, we can find their pairwise similarities as
shown.

S1: A C C G T G G C S1: A C C G T G A T S1: A C C G T G T T
S2: C G C C T C T T S3: C A G G T C T G S4: C G T A A T A G

d=3 d=3 d=5

S2: C G C C T C G A S2: C G C C T C A G S3: C G C C T C A G
S3: C A G G T C T A S4: C G T A A T T A S4: C G T A A T T A

d=2 d=4 d=1
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Fig. 6.2 The star tree
formation for four sequences

S1 S2 S3 S4
S1 0 3 3 5
S2 3 0 2 4
S3 3 2 0 1
S4 5 4 1 0

The total number of comparisons is k(k − 1)/2 times, 6 in this case, resulting in a
total time complexity of O(k2n2) for this step. We can then form the distance matrix
D with these values and find the sequence that has the greatest similarity to all others
as shown in Fig. 6.2. This step involves summing rows of the matrix D and detecting
the sequence with the lowest sum, which is S3 in this case, in O(k2n2) time.

We now need to align sequences S1, S3, S4 to the central sequence S2 by the
Needleman–Wunsch algorithm in O(kn2) time. Finally, gaps are inserted in the
aligned sequences to complete the multiple sequence alignment O(k2n) resulting
in a total time of O(k2n2) since the first step dominates. It can be shown using
the triangle inequality between three sequences that the approximation ratio of this
algorithm is 2 [33].

6.4.2 Progressive Alignment

Progressive alignment methods employ heuristic algorithms to compute the MSA of
a set of sequences. A general approach is to to align two closely related sequences
and then progressively align other sequences. Typically in the first step, all possible
pairwise alignments of k sequences for a total of k(k − 1)/2 pairs are computed.
A phylogenetic tree (see Chap. 14) that shows the evolutionary relationships based
on their distances is then estimated and used as a guide to perform alignment. The
most similar sequences that are close to each other in the phylogenetic tree are then
pairwise aligned. CLUSTALW is one such widely used global progressive alignment
tool that can be used for both DNA and protein sequence analysis [32]. It performs
the following steps:

1. Computation of all pairwise alignment scores and forming the distance matrix D
based on these scores.

2. Construction of a phylogenetic tree T using D by the neighbor-joining (NJ)
method (see Sect. 14.3).

3. Perform MSA with the sequences starting with the closely related ones in the tree.

The NJ algorithm proposed by Saitou and Nei [29] is basically a hierarchical
clustering algorithm that iteratively groups closely related input data which are also
farthest to the rest of inputs. The CLUSTALW algorithm then iteratively performs

http://dx.doi.org/10.1007/978-3-319-24966-7_14
http://dx.doi.org/10.1007/978-3-319-24966-7_14
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Fig. 6.3 A phylogenetic tree
which has the five input
sequences A, B, C, D, and E
as its leaves. Sequences A
and B are first aligned as
they are closest, and then
sequences C and D are
aligned followed by the
alignment of the resulting
sequence with E . Finally, the
resulting two sequences are
aligned

pairwise sequence alignment with the closest sequences in the tree. Figure 6.3 dis-
plays an example phylogenetic tree where the input sequences are the leaves of this
tree.

The NJ algorithm in general will produce unrooted trees where the input sequences
may not be equidistant to their ancestors. The root in this tree is placed in a location
from which the average distances on its both sides are equal. The CLUSTALW
algorithm will use this tree to pairwise align the closest sequences as guided by the
tree. Starting from the leaves, the closest leaves are aligned iteratively to form larger
clusters at each step. Progressive alignment methods introduce significant errors
when sequences are distantly related. Also, the guide tree is formed using pairwise
alignments which may not reflect the evolutionary process accurately.

6.5 Alignment with Suffix Trees

Suffix trees can be used for global sequence alignment. A fundamental method used
for this purpose is called anchoring in which similar regions called anchors in two
sequences are first identified using suffix trees. The segments between the anchors
are then aligned using dynamic programming or using the same method recursively
or a combination of both approaches.

MUMmer is one such algorithm that uses suffix trees for extracting maximal
unique matches (MUMs) that are used for anchoring [12]. Given two sequences X
and Y of lengths n and m, a MUM is a subsequence of both X and Y of length
greater than a given threshold d. A MUM of X and Y has to be unique in both of
them. A brute force algorithm needs to search all possible prefixes of both strings
in O(nm) time. However, this problem can be simplified by the aid of a generalized
suffix tree. We need to build a generalized suffix tree for the two strings and search
for internal nodes that have exactly two leaves, one from each sequence. We then
check whether the node representing the substring is maximal. If this condition is
satisfied, the prefix starting from the root and ending at the internal node represents
a MUM. This algorithm takes O(n + m) steps which is the time to construct the
generalized suffix tree and also the time for other steps.
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The order of MUMs is also conserved between related genomes, and therefore
we can predict that the conserved regions in two biological sequences contain or-
dered MUMs rather than randomly distributed MUMs. The idea behind the MUM-
mer algorithm is this observation and it attempts to find these conserved regions by
finding the longest common subsequence (LCS) of them [12]. The LCS problem
can be solved by the dynamic programming algorithm we reviewed in Sect. 5.4 in
O(n2) time and O(n2) space or by using generalized suffix trees. However, since
each MUM is unique, it can be replaced by a special character allowing a solu-
tion in O(n log n) time [33]. The regions between the anchors are aligned using
the Needleman–Wunsch algorithm. Multiple genome aligner (MGA) is a tool for
multiple sequence alignment based on suffix trees [18]. The longest nonoverlapping
sequence of maximal multiple exact matches (multiMEMs) are computed and then
used to guide the multiple alignments in this algorithm. The LAGAN [5] is another
tool based on anchoring; however, it uses the CHAOS local alignment algorithm and
uses the local alignments produced by CHAOS as anchors limiting the search area
of the Needleman–Wunsch algorithm around these anchors [6]. LAGAN provides
the visual display of alignment results.

6.6 Database Search

It is of interest to compare a newly discovered biological sequence against many
other existing ones in databases to find its affinity to them, and therefore to predict
and compare the functionality of the new sequence. The sequences deciphered using
modern sequencing techniques have increasingly large sizes making it difficult to
align them using the SW or NW algorithms which have O(nm) time complexities.
The focus of the research studies have then been the design of algorithms that use
heuristics and provide approximate but fast solutions. There are many sequence
alignment tools for this purpose two of which are more commonly used than others
and we will describe them briefly.

6.6.1 FASTA

FASTA is an early local pairwise sequence alignment tool for database comparison
of a biological sequences [27]. Its predecessor was called FASTAP [21] and handled
protein sequence alignment only, and since FASTA can search for both protein and
DNA sequences, it was called FASTA (Fast-All). It is a heuristic algorithm that
compares a given input query sequence against the sequences in a database. Its
operation can be summarized as follows:

1. Given a query sequence Q and a set of sequences S = S1, . . . , Sn in the database,
it searches for exact matches of length l between the query and a database sequence
Si ∈ S. These matches are called hotspots. Commonly used values of values of

http://dx.doi.org/10.1007/978-3-319-24966-7_5
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l are 2 for protein amino acid sequences and between 4–6 for DNA sequence
comparisons.

2. The hotspots are combined into a long sequence called initial regions. These
regions are scored using the similarity matrix M . Only a small part of M is
aligned and the best scoring 10 alignments are considered for the next step.

3. Using dynamic programming, the ten best partial alignments are combined to
give a longer alignment.

4. SW algorithm is used to align these sequences.

The main idea of this program is to find subsequence matches between the query
sequence and each of the sequences in the database, enlarge them and compute local
alignment in these regions using dynamic programming. There are few efforts on
parallelizing FASTA such as [19,30] on a cluster of workstations.

6.6.2 BLAST

Basic local alignment search tool (BLAST) developed at the National Center for
Biotechnology Information by Altchul and colleagues [1] is a popular tool for local
sequence alignment. BLAST and its derivative algorithms are one of the most widely
used tools for sequence alignment. The main idea of BLAST is to search only a
subspace of the sequences. In its basic version, gaps are not allowed during alignment
which simplifies the alignment procedure greatly. The assumption here is if there is
a similarity between two sequences, it will show even if the gaps are not allowed.

A segment pair in BLAST is defined as a pair of equal-length subsequences be-
tween two sequences S1 and S2 which are aligned without gaps. A maximal segment
pair (MSP) of S1 and S2 is the highest scoring segment between them. As the first
step, BLAST searches all sequences with length l in the database that have an MSP
score higher than a threshold τ with the input query Q [9]. It searches the short
sequences first and then extends them. The found subsequences are called hits which
are then extended in both directions to find if the score is higher than τ . In detail,
BLAST performs the following steps:

1. We are again given a query sequence Q and a set of sequences S = S1, . . . , Sn in
the database. BLAST searches hits of length l that have an MSP of score higher
than τ between the query and the database sequence Si ∈ S. Typical values of l
are 3 for protein amino acid sequences and 11 for DNA sequences. The threshold
τ is dependent on the scoring matrix used.

2. It searches for pairs of hits which have a maximum distance of d between them.
3. The hit pairs are extended in both directions and the alignment score is checked

at each extension. This process is stopped when the score does not change. The
pair of hits scoring above a threshold after the extension are called high scoring
pairs (HSPs).

4. The consistent HSPs are combined into local alignment that gives the highest
score.
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The newer versions of BLAST alow gaps [2,26]. The BLAST algorithm also
provides an estimate of the statistical significance of the output. This tool is available
for free usage at www.ncbi.nlm.nih.gov/blast/.

6.7 Parallel and Distributed Sequence Alignment

We have reviewed basic global and local exact alignment algorithms and the com-
monly used database alignment tools which use heuristic methods that provide ap-
proximate results. The database tools are simpler to parallelize on a distributed mem-
ory computer system as we can easily partition the database across the machines or
duplicate it if its size is not very large. We will first look at ways of parallelizing the
exact algorithms and then review existing methods for distributed alignment using
the database tools.

6.7.1 Parallel and Distributed SWAlgorithm

The SW algorithm is a dynamic programming method to provide local alignment
of two sequences as we have reviewed. We can have fine-grain or coarse-grain par-
allel running of this algorithm on a number of processors [7]. In fine-grain parallel
computing, we have small tasks that cooperate more frequently for small data sizes.

Forming the alignment matrix is the most time-consuming part of the algorithm.
We can have a fine-grain parallel mode of SW algorithm by assigning each cell of
the alignment matrix to a process. The value of each cell S[i, j] in this matrix is
dependent on the values of the preceding row, column, and diagonal values. We can
therefore employ a scheme in which every process responsible for the cell S[i, j] that
calculates its value sends it to the cells S[i + 1, j + 1] , S[i, j + 1], and S[i + 1, j]
for further processing as shown in Fig. 6.4. As the computation progresses along
waves which increase in size until diagonal and then decrease, this scheme is called
the wavefront method [4]. We would need nm processes to fill the matrix for two
sequences of lengths n and m. Hence, specific architectures such as array processors
are suitable for this method. An early attempt that used this approach was reported
in [14] which used 12 processors with shared memory, and another implementation
was described in [28]. The same technique can be used to find global alignment
between two sequences using the NW algorithm.

The coarse-grain distributed sequence alignment is basically based on parallel
database operations in which sequences from a database are searched in parallel.
In a typical supervisor–worker parallel computation model, the supervisor process
sends a number of sequences to each worker to align. The workers send the results
to the supervisor which ranks them and keeps the best alignments. As the processing
times of workers will be of varying lengths, a dynamic load balancing strategy is
usually needed in this mode of operation to keep processes busy at all times [7].

www.ncbi.nlm.nih.gov/blast/
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S[1,1] S[1,2] S[1,3] S[1,4] S[1,5] S[1,6]

S[2,1] S[2,2] S[2,3] S[2,4] S[2,5] S[2,6]

S[3,1] S[3,2] S [3,3] S[3,4] S[3,5] S[3,6]

S[4,1] S[4,2] S[4,3] S[4,4] S[4,5] S[4,6]

S[5,2] S[5,3] S[5,4] S[5,5] S[5,6]S[5,1]

0

0

0

0

0

0 0 0 0 0 0

Fig. 6.4 The wavefront method for parallel SW algorithm

6.7.2 Distributed BLAST

When the database to be searched is comparatively small, a simple way to provide
parallelism is to replicate it on a number of machines. We can then divide the batched
queries to k processors which implement the BLAST algorithm in parallel. The
supervisor–worker model can be adopted in this case in which the supervisor process
gathers all of the results obtained from the individual workers and outputs the final
result. Figure 6.5 shows this process visually. This method has been the subject of
various studies including BeoBLAST [15] and Hi-per BLAST [24].

Recent sequencing techniques allow discovery and provision of many biological
sequences which constitute large databases. These databases cannot usually be ac-
commodated in a single computer and a convenient way of providing parallelism
using such large databases is to partition the data. We can again implement the
supervisor–worker model where each process implements BLAST on partial data
and sends the partial results to the supervisor which combines them to get the final
output. The general approach of a distributed BLAST algorithm employing parti-
tioned database is shown in Fig. 6.6.

The TurboBLAST tool implements database segmentation along with load bal-
ancing and scheduling algorithms to run BLAST on a cluster of workstations [3].
This approach has also been applied in mpiBLAST [10] which uses the message
passing interface (MPI) parallel programming environment [16]. Its claimed bene-
fits are first the decreased disk I/O operations due to partitioned database and the
reduction of interprocess communications between processes as each worker uses
data in its partition only. At the start of mpiBLAST, each worker process notifies
the supervisor of the database segments it has. The supervisor then inputs the query
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Fig.6.5 Distributed BLAST using replicated database. The input query batch is Q1, . . . , Qn . Each
worker Wi has a copy of the database and receives a portion of the input query batch from the
supervisor process (SUP). Each worker then runs part of the BLAST query in its local database,
obtains the results (Ap, . . . , Aq ) and sends them to the supervisor which combines the partial results
and outputs them

batch and broadcasts the batch to all workers. Upon a worker Wi announcing it is idle
and can start working, the supervisor assigns Wi a database segment. The worker Wi

then performs alignment in the segment it is allocated and reports the result to the
supervisor process. The operation of the algorithm is very similar to what is depicted
in Fig. 6.6 with the additional enhanced load balancing in which a worker that has
finished searching a database can be assigned another search in a different database
segment as assigned by the supervisor. The authors report that mpiBLAST achieves
super-linear speedup in all tests [10].

The multithreaded versions of BLAST are also available to run on shared memory
multiprocessor systems. This mode of operation is similar to partitioned database
approach; however, the database is loaded to shared memory now and each thread
can work in its partition. Thread and shared memory management may incur over-
heads and cause scalability issues. NCBI BLAST [25] and WU BLAST [34] are the
examples of multithreaded BLAST systems [35]. The UMD–BLAST is an interface
that enables to use the most suitable parallel/distributed BLAST algorithm. It inputs
the database size, query batch size, and query length and determines which algo-
rithm to use. For large databases which cannot be accommodated in the memory
of a single computer, UMD–BLAST uses mpiBLAST; for long query batches with
not very large query lengths, BLAST++ which employs replicated database is used.
Otherwise, the multithreaded BLAST is employed and the outputs are combined [35].
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Fig.6.6 The operation of distributed BLAST using partitioned database. Each worker Wi now has
a segment of the database and receives the full input query batch from the supervisor process (SUP).
It then runs all of the BLAST query in its database partition, finds the results, and sends them to
the supervisor which combines the partial results and outputs them

6.7.3 Parallel/Distributed CLUSTALW

Let us review the main three steps of the CLUSTALW algorithm [32]. In the first
step, it computes pairwise distances followed by the construction of the guide tree
using the neighbor-joining algorithm in the second step. This tree is used as a guide
to perform alignment in the last step where the leaves are first aligned followed by
the alignment of close nodes in the tree in sequence.

Parallelization whether using shared memory or distributed memory computers
involves implementing these three steps in parallel. The first step requires calculation
of distance between k sequences with k(k − 1)/2 comparisons. This step is trivial
to parallelize again using the supervisor–worker model of parallel computation. We
can have the supervisor send groups of sequences to each worker process which
compute the distances and the results are then gathered at the supervisor. The parallel
implementation of the second and third steps is not so straightforward due to the data
dependencies involved.

ClustalW-MPI [20] is the distributed implementation of the CLUSTALW method
using the MPI parallel programming environment based on the described approach
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above. The distance matrix is first formed by allocating chunks of independent tasks
to processes. Large batches result in decreased interprocess communication times
but may have poor load balancing. On the other hand, small size of batches provides
balanced process loads at the expense of increased communication overheads.

The guided tree is formed by the neighbor-joining method as in CLUSTALW;
however, few modifications to the original algorithm resulted in the complexity of
O(n2) time for constructing the guided tree. As this algorithm searches sequences
that are closer to each other but also have the highest distance to all other clusters, a
parallel search method was designed to search for such sequence clusters. However,
details of this method are not described in the paper. In the final progressive alignment
step, a mixture of fine and coarse-grained parallelism methods is used. Coarse-grain
parallelism involves aligning external nodes of the guided tree and the speedup
obtained is reported as n/ log n where n is the number of nodes of the tree. The authors
also implemented recursive parallelism and calculated the forward and backward
steps of the dynamic programming in parallel. They showed experimentally the
speedup achieved for aligning 500-sequence test data as 15.8 using 16 processors.

Another parallel version of CLUSTALW, called pCLUSTAL, which can run on
various hardware from parallel multiprocessors to distributed memory parallel com-
puters using MPI was described in [8]. This study also uses supervisor–worker par-
adigm in which the supervisor process p0 maps the sequence-pairs to processes and
each process then performs sequential CLUSTALW algorithm on its own data set.
The results are then gathered at p0 which builds the guided tree T . It then examines
T for independently executable alignments and assigns these to processes. The final
step involves gathering of all the alignment results at p0. The experiments were car-
ried on protein sequences of average length of 300 amino acids. They showed the
time-consuming pairwise alignment step takes time proportional to 1/k where k is
the number of processors.

A shared memory implementation CLUSTALW in SGI multicomputers was de-
scribed in [22] using OpenMP and speedups of 10 on 16 processors was reported,
and a comparison of various implementations is presented in [13].

6.8 Chapter Notes

Comparison of biological sequences using alignment is needed as the first step of
various analysis methods in bioinformatics, for example, alignment of sequences pro-
vides their affinities which can be used to infer pyhlogenetic relationships between
them. Global alignment refers to comparing two or more sequences as a whole, and
local alignment methods attempt to align subsequences of the sequences under con-
sideration. The alignment methods, whether global or local, can be broadly classified
as exact and heuristic approaches. Exact methods typically use dynamic program-
ming and have favorable performances as we have seen in SW and NW algorithms.
However, even these linear times become problematic when the size of the sequences
is very large. Heuristic methods do not search exact solutions and typically narrow
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the search space by sampling of the data which results in favorable run times for large
sequences. FASTA and widely used BLAST are two commonly used tools which
adopt heuristic tools.

However, even the heuristic methods in sequential form are increasingly becoming
more inadequate as the sizes of databases increase due to the expansion in the number
of discovered sequences as a result of high volume efficient sequencing technologies.
A possible way to speedup the heuristic alignment methods is to employ parallel
and distributed processing. This can be achieved typically either by replicating the
database if this is not relatively large, or partitioning it. We described these two
approaches as implemented in various BLAST versions.

Sequence alignment is probably one of the most investigated and studied topic
in bioinformatics and the tools for this purpose are among the mostly publicly used
software in bioinformatics. There are books devoted solely to this topic as general
alignment or multiple sequence alignment, and this topic is treated in detail in many
contemporary bioinformatics books. Our approach in this chapter was to briefly
review the fundamental methods of alignment only, with emphasis on distributed
alignment.

Exercises

1. Work out the global alignment between the two DNA sequences below using the
dynamic programming approach of NW algorithm. Show all matrix iterations.

A T G G C T A G T A C C
G T G C T T G T A C C

2. Find the local alignment between the two protein sequences below using the SW
algorithm. Show all matrix iterations.

B N Q R S T U R V Y A C K
A N Q T T V T U R X E A C

3. For the following four DNA sequences, implement center star method of multiple
sequence alignment by first finding the distances between them and forming the
distance matrix D. Find the central sequence and align all of the sequences to
the central sequence using NW algorithm and finally insert gaps in sequences to
complete the alignment.

S1: A C C G A A C
S2: A G C G C T G
S3: C C C T A T G
S4: A T C G A T G

4. Compare FASTA and BLAST in terms of method used and the accuracy achieved.
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5. Given the following two DNA sequences, draw the general suffix tree for them
and find the LCS of these two sequences using this generalized suffix tree.

G T A C C T A A G T C A
A G T C T G A A C T G

6. Provide the pseudocode of a distributed BLAST algorithm based on supervisor–
worker model. Assume the input queries are distributed to k processes and each
worker returns the results to the supervisor.
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