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11.1 Introduction

Clustering is the process of grouping similar objects based on some similarity mea-
sure. The aim of any clustering method is that the objects belonging to a cluster
should be more similar to each other than to the rest of the objects under consid-
eration. Clustering is one of the most studied topics in computer science as it has
numerous applications in bioinformatics, data mining, image processing, and com-
plex networks such as social networks, biological networks, and the Web.

We will make a distinction between clustering data points commonly distributed
in 2D plane which we will call data clustering and clustering objects which are
represented as vertices of a graph in which case we will use the term graph clustering.
Furthermore, graph clustering can be investigated as inter-graph clustering where a
subset from a given set of graphs are clustered based on their similarity or intra-graph
clustering in which our object is to find clusters in a given graph. We will assume
the latter when we investigate clustering in biological networks in this chapter.

Intra-graph clustering or graph clustering in short, considers the neighborhood
relationship of the vertices while searching for clusters. In unweighted graphs, we
try to cluster nodes that have strong neighborhood connections to each other and this
problem can be viewed as finding cliques of a graph in the extreme case. Our aim in
edge-weighted graphs, however, is to place neighbors that are close to each other in
the same cluster using some metric.

Biological networks are naturally represented as graphs as we have seen in
Chap. 10, and any graph clustering algorithm can be used to detect clusters in bio-
logical networks such as the gene regulation networks, metabolic networks, and PPI
networks. There are, however, important differences between a graph representing a
general random network and the graph of a biological network. First of all, the size
of a biological network is huge, reaching tens of thousands of vertices and hundreds
of thousands of edges, necessitating the use of highly efficient clustering algorithms
as well as usage of distributed algorithms for this computation-intensive task. Sec-
ondly, biological networks are scale-free with few very high-degree nodes and many
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low-degree nodes. Third, they exhibit small-world property having small diameters
relative to their sizes. These last two observations may be exploited to design efficient
clustering algorithms with low time complexities but this alone does not provide the
needed performance in many cases and using distributed algorithms is becoming
increasingly more attractive to solve this problem.

Our aim in this chapter is to first provide a formal background and a classification
of clustering algorithms in biological networks. We then describe and review efficient
sample algorithms, most of which are experimented in biological networks and have
distributed versions. In cases where there are no distributed algorithms known to
date, we propose distributed algorithm templates and point potential areas of further
investigation which may lead to efficient algorithms.

11.2 Analysis

We can have overlapping clusters where a node may belong to two or more clusters
or a node of the graph becomes a member of exactly one cluster at the end of a
clustering algorithm, which is called graph partitioning. Also, we may specify the
number of clusters k beforehand and the algorithm stops when there are exactly
k clusters, or it terminates when a certain criteria is met. Another distinction is
whether a node belongs fully to a cluster or with some probability. In fuzzy clustering,
membership of a node to a cluster is specified using a value between 0 and 1 showing
this probability [47].

Formally, a clustering algorithm divides a graph G(V, E) into a number of possibly
overlapping clusters C = C1, . . . , Ck where a vertex v ∈ Ci is closer to all other
vertices in Ci than to vertices in other clusters. This similarity can be expressed in
a number of ways and a common parameter for graph clustering is based on the
average density of the graph and the densities of the clusters. We will now evaluate
the quality of a graph clustering method based on these parameters.

11.2.1 Quality Metrics

A basic requirement from any graph clustering algorithm is that the vertices in a
cluster output from the algorithm should be connected which means there will be
at least one path between every vertex pair (u, v) in a cluster Ci. Furthermore, the
path between u and v should be internal to the cluster Ci meaning u is close to v
[40], assuming the diameter of the cluster is much smaller than the diameter of the
graph. However, a more fundamental criteria is based on evaluating the densities of
the graph in a cluster and outside the cluster and comparing them. We will describe
two methods to evaluate these densities next.
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11.2.1.1 Cluster Density
The quality of a clustering method is closely related to the density of vertices in a
cluster which can be evaluated in terms of the density of the unweighted, undirected
graph as a whole. Let us first define the density of a graph. The density ρ(G) of an
unweighted, undirected simple graph G is the ratio of the size of its existing edges
to the size of maximum possible edges in G as follows:

ρ(G) = 2m

n(n − 1)
(11.1)

Let us now examine the edges incident to a vertex v in a cluster Ci. Some of these
edges will be connecting v to other vertices in Ci which are called internal edges
and the rest of the edges on v that connect it to other clusters are called external
edges. Clearly, degree of vertex v is the sum of its internal and external edges. The
size of internal edges (δint(v)) and external edges (δext(v)) of a vertex v gives a good
indication of the appropriateness of v being in Ci. Considering the ratio δint(v)/δext(v),
if this is small, we can conclude v may have been wrongly placed in Ci, and on the
contrary, a large ratio reveals v is properly situated in Ci. We can generalize this
concept to the clustering level and define the intra-cluster density of a cluster Ci as
the ratio of all internal edges in Ci to all possible edges in Ci as follows [40].

δint(Ci) = 2
∑

v∈Ci
δint(v)

|Ci||Ci − 1| (11.2)

We can then define the intra-cluster density of the whole graph as the average of
all intra-cluster densities as follows:

δint(G) = 1

k

k∑

i=1

δint(Ci) (11.3)

where k is the number of clusters obtained. For example, the intra-cluster densities
for clusters C1, C2, and C3 in Fig. 11.1a are 0.66, 0.33, and 0.5 respectively and the
average intra-cluster density is 0.50. We divide the same graph into different clusters
in (b) with intra-cluster densities of 0.7, 0.5, and 0.6 for these clusters and the average
density becomes 0.6. We can say that the clusters obtained in (b) are better as we
have a higher average intra-cluster density, as can be observed visually. The cut size
of a cluster is the size of the edges between Ci to all other clusters it is connected.
The inter-cluster density δext(G) is defined as the ratio of the size of inter-cluster
edges to the maximum possible size of edges between all clusters as shown below
[40]. In other words, we subtract the size of maximum total possible intra-cluster
edges from the size of the maximum possible edges between all nodes in the graph
to find the size of the maximum possible inter-cluster edges, and the inter-cluster
density should be as low as possible when compared with this parameter.

δext(G) = 2 × sum of inter-cluster edges

n(n − 1) − ∑k
i=1(|Ci||Ci − 1|) (11.4)



244 11 Cluster Discovery in Biological Networks

C3

C2

C1

C3

C2
0.66

(a) (b)
0.33

0.5

0.5

0.6

C1

0.7

Fig. 11.1 Intra-cluster and inter-cluster densities example

The inter-cluster densities in Fig. 11.1a, b are 0.08 and 0.03 respectively, which
again shows the clustering in (b) is better since we require this parameter to be as
small as possible. The graph density in this example is (2 × 22)/(15 × 14) = 0.21
and based on the foregoing, we can conclude that a good clustering should provide a
significantly higher intra-cluster density than the graph density, and the inter-cluster
density should be significantly lower than the graph density.

When we are dealing with weighted graphs, we need to consider the total weights
of edges in the cut set, as the internal and external edges, rather than the number of
such edges. The density of an edge-weighted graph can be defined as the ratio of
total edge weight to the maximum possible number of edges as follows:

ρ(G(V, E, w)) = 2
∑

(u,v)∈E w(u,v)

n(n − 1)
(11.5)

The intra-cluster density of a cluster Ci in such an edge-weighted graph can then
be computed similarly to the unweighted graph but we sum the weights of edges
inside the clusters and divide it by the maximum possible number of edges in Ci

this time. The graph intra-cluster density is the average of intra-cluster densities
of clusters as before and the general requirement is that this parameter should be
significantly higher than the edge-weighted graph density. For inter-cluster density
of an edge-weighted graph, we can compute the sum of weights of all edges between
each pair of clusters and divide it by the maximum possible number of edges between
clusters as in Eq. 11.4 by just replacing the number of edges with their total weight.
We can then compare this value with the graph density as before and judge the quality
of clustering.
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11.2.1.2 Modularity
The modularity parameter proposed by Newman [35] is a more direct evaluation of
the goodness of clustering than the above described procedures. Given an undirected
and unweighted graph G(V, E) which has a cluster set C = {C1, .., Ck}, modularity
Q is defined as follows [36]:

Q =
k∑

i=1

(eii − a2
i ) (11.6)

where eii is the percentages of edges in Ci, and ai is the percentage of edges with
at least one edge in Ci. We actually sum the differences of probabilities of an edge
being in Ci and a random edge would exist in Ci. The maximum value of Q is 1 and
a high value approaching 1 shows good clustering. For calculating Q conveniently,
we can form a modularity matrix M which has an entry mij showing the percentage
of edges between clusters i and j. The diagonal elements in this matrix represent the
eii parameter in Eq. 11.6 and the sum of each row except the diagonal is equal to
aij of the same equation. We will give a concrete example to clarify these concepts.
Evaluating the modularity matrices M1 and M2 for Fig. 11.1a, b respectively yields:

M1 =
⎡

⎣
0.18 0.09 0.14
0.09 0.32 0.14
0.14 0.14 0.14

⎤

⎦ M2 =
⎡

⎣
0.32 0.05 0.09
0.05 0.23 0.05
0.09 0.05 0.27

⎤

⎦

For the first clustering, we can calculate the contributions to Q using M1 from
clusters C1, C2 and C3 as 0.127, 0.267, and 0.060 giving a total Q value of 0.247.
We can see straight away clustering structure in C3 is worse than others as it has the
lowest score. For M2 matrix of clusters in (b), the contributions are 0.30, 0.22, and
0.25 providing a Q value of 0.77 which is significantly higher than the value obtained
using M1 and also closer to unity. Hence, we can conclude that the clustering in (b)
is much more favorable than the clustering in (a). We will see in Sect. 11.4 that there
is a clustering algorithm based on the modularity concept described.

11.2.2 Classification of Clustering Algorithms

There are many different ways to classify the clustering algorithms based on the
method used. In our approach, we will focus on the methods used for clustering
in biological networks and provide a taxonomy of clustering algorithms used for
this purpose only as illustrated in Fig. 11.2. We have mostly included fundamental
algorithms in each category that have distributed versions or can be distributed.

We classify the clustering algorithms in four basic categories as hierarchical,
density-based, flow-based, and spectral algorithms. The hierarchical algorithms con-
struct nested clusters at each step and they either start from each vertex being a single
cluster and combine them into larger clusters at each step, or they may start from one
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Fig. 11.2 A taxonomy of clustering algorithms in biological networks

cluster including all of the nodes and divide them into smaller clusters in each itera-
tion [28]. The MST-based and edge-betweenness-based algorithms are examples of
the latter hierarchical methods. Density-based algorithms search for the dense parts
of the graph as possible clusters. Flow-based algorithms on the other hand are built
on the idea that the flow between nodes in a cluster should be higher than the rest of
the graph and the spectral clustering considers the spectral properties of the graph
while clustering.

We search for clusters in biological networks to understand their behavior, rather
than partitioning them. However, we will frequently need to partition a graph repre-
senting such a network for load balancing in a distributed memory computing system.
Our aim is to send a partition of a graph to a process in such a system so that parallel
processing can be achieved. The BFS-based partitioning algorithm of Sect. 7.5 can
be used for this purpose. In the next sections, we will investigate sample algorithms
of these methods in sequential and distributed versions in detail.

11.3 Hierarchical Clustering

We have described the basic hierarchical clustering methods in Sect. 7.3. We will now
investigate two graph-based hierarchical clustering approaches to discover dense
regions of biological networks.

http://dx.doi.org/10.1007/978-3-319-24966-7_7
http://dx.doi.org/10.1007/978-3-319-24966-7_7
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Fig. 11.3 MST-based clustering in a sample graph. MST is shown by bold lines and the edges are
labeled with their weights. The highest weight edge in the MST has weight 13 and removed in the
first step resulting in two clusters C1 and C2. The next iteration removes the edge with weight 12
and three clusters C1, C2, and C3 are obtained

11.3.1 MST-Based Clustering

The general approach of MST-based clustering algorithms is to first construct an
MST of the graph after which the heaviest weight edges from the MST are iteratively
removed until the required number of clusters is obtained. The idea of this heuristic
is that two nodes that are far apart should not be in the same cluster. Removing
one edge in the first step will disconnect MST as MST is acyclic like any tree and
will result in two clusters, hence we need to remove the heaviest k − 1 edges to get
k clusters. Note that removing the heaviest edge may not result in a disconnected
graph. Figure 11.3 displays the MST of a graph removing of two edges from which
results in three clusters.
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Instead of removing one edge at each iteration of the algorithm, we may start with
a threshold edge weight value τ and remove all edges that have higher weights than
τ in the first step which may result in a number of clusters. We can then check the
quality Q of the clusters we obtain and continue if Q is lower than expected. This
parameter can be the ratio of intra-cluster density to the inter-cluster density or it
can simply be computed as the ratio of the total weight of intra-cluster edges in the
current clusters to the total weight of inter-cluster edges. We may modify the value
of τ as we proceed to refine the output clusters as a large τ value may result in many
small clusters and a small value will generally give few large clusters. MST of a
graph can be constructed using one of the greedy approaches as follows:

• Prim’s Algorithm: This algorithm greedily includes an edge of minimum weight
in MST among edges that are incident on the current MST vertices but not part of
the current MST as we have seen in Sect. 3.6. Prim’s algorithm requires O(n2) as
it checks each vertex against all possible vertex connections but this time may be
reduced to O(mlogn) by using the binary heap data structure and to O(m + nlogn)

by Fibonacci heaps [13].
• Kruskal’s Algorithm: Edges are sorted with respect to their weights and starting

from the lightest weight edge, an edge is included in MST if it does not create
a cycle with the existing MST edges. The time for this algorithms is dominated
by the sorting of edges which is O(m log m) and if efficient algorithms such as
union-find are used, it requires O(m log n) time.

• Boruvka’s Algorithm: This algorithm is the first MST algorithm designed to con-
struct an efficient electricity network for Moravia, dating back to 1926 [5]. It finds
the lightest edges for each vertex and contracts these edges to obtain a simpler
graph of components and then the process is repeated with the components of the
new graph until an MST is obtained. It requires O(m log n) time to build the MST.

11.3.1.1 A Sequential Algorithm
We will now describe a simple sequential MST algorithm that does not require the
number of clusters beforehand. It starts with an initial distance value τ and a cluster
quality value Q and at each iteration of the algorithm, edges that have weights greater
than the current value τi are deleted from the graph to obtain clusters. The new cluster
quality Qi is then computed and if this value is lower than the required quality of
Qreq, another iteration is executed. Algorithm 11.1 shows the pseudocode for this
algorithm [20]. BFS_form is a function that builds a BFS tree starting from the
specified vertex and includes all vertices in this BFS tree in the specified cluster.

http://dx.doi.org/10.1007/978-3-319-24966-7_3
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Algorithm 11.1 Seq_MST_Clust
1: Input : G(V, E, w) � edge-weighted graph
2: τi ← τ1, Qreq ← Q1 � initialize
3: Output : C1, ..., Ck � k clusters
4: construct MST of G
5: D[n, n] ← distances between points
6: int i ← 1
7: while Qi < Qreq do
8: j ← 1
9: for all (a, b) ∈ D such that d(a, b) < τi do
10: D[a, b] ← ∞
11: BFS_form(a, Cj)

12: BFS_form(b, Cj+1)

13: j ← j + 1
14: end for
15: compute Qi

16: adjust τi if required
17: i ← i + 1
18: end while

11.3.1.2 Distributed Algorithms
Let us review the MST-based clustering problem; we need to first construct an MST of
the graph, then we either remove the heaviest weight edge at each step or may remove
a number of edges that have weights greater than a threshold value. The building of
the MST dominates the time taken for the clustering algorithm and we have already
reviewed ways of parallelizing this process in Sect. 7.5. We may partition the graph
to processors of the distributed system and then implement Boruvka’s algorithm in
parallel as a first approach. The CLUMP algorithm takes a different approach by
forming bipartite subgraphs and use Prim’s algorithm in parallel in these graphs and
combine the partial MSTs to get the final MST as described next.

CLUMP

Clustering through MST in parallel (CLUMP) is a clustering method designed to
detect dense regions of biological data [38]. It is not particularly designed for bio-
logical networks, however, it uses representation of biological data as a weighted
undirected graph G(V, E) in which each data point is a node and an edge (u, v) con-
necting nodes u and v has a weight proportional to distance between these two points.
This algorithm constructs an MST of the graph G and proceeds similarly to the MST-
based clustering algorithms to find clusters. Since the most time-consuming part of
an any MST-based clustering scheme is the construction of the MST, the following
steps of CLUMP are proposed:

http://dx.doi.org/10.1007/978-3-319-24966-7_7
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1. The original graph G(V, E, w) is partitioned into Gj(Vj, Ej), j = 1, . . . , s where
Gj is the subgraph induced by Vj, Eij is the set of edges between Vi and Vj.

2. The bipartite graphs Bij = {V i ∪ Vj, Eij} for all subgraphs formed in step 1 are
constructed.

3. For each Gi; an MST Tii, and for each Bij an MST Tij is constructed in parallel.
4. A new graph G0 = ⋃

Tij, 1 ≤ i ≤ j ≤ s is constructed by merging all MSTs
from step 3.

5. The MST of the graph G0 is constructed.

The authors showed that the MST of G0 is the MST of the original graph G. The
idea of this algorithm is to provide a speedup by parallel formation of MSTs in step
3 since the formation of G0 in the last step is relatively less time consuming due to
the sparse structure of this graph. Prim’s algorithm was used to construct MSTs and
the algorithm was evaluated using MPI and ANSI C. The authors also provided an
online CLUMP server which uses an MySQL database for registered users. CLUMP
is implemented for hierarchical classification of functionally equivalent genes for
prokaryotes at multi-resolution levels and also for the analysis of the Diverse Sitager
Soil Metagenome. The performance of this parallel clustering algorithm was found
highly effective and practical during these experiments.

MST-based clustering is used in various applications including biological net-
works [45]. A review of parallel MST construction algorithms is provided in [34]
and a distributed approach using MPI is reported in [17].

11.3.2 Edge-Betweenness-Based Clustering

As we have seen in Sect. 11.5, the vertex betweenness centrality CB(v) of a vertex
v is the percentage of the shortest paths that pass through v. Similarly, the edge
betweenness centrality CB(e) of an edge e is the ratio of the shortest paths that pass
through e to total number of shortest paths. These two metrics are shown below:

CB(v) =
∑

s �=t �=v

σst(v)

σst
, CB(e) =

∑

s �=t �=v

σst(e)

σst
(11.7)

Girvan and Newman proposed an algorithm (GN algorithm) based on edge
betweenness centrality to provide clusters of large networks which consists of the
following steps [24].
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1. Find edge betweenness values of all edges of the graph G(V, E) representing the
network.

2. Remove the edge with the highest edge betweenness value from the graph.
3. Recalculate edge betweennesses in the new graph.
4. Repeat steps 1 and 2 until a quality criteria is satisfied.

The general idea of this algorithm is that an edge e which has a higher edge
betweenness value than other edges has a higher probability of joining two or more
clusters as there are more shortest paths passing through it. In the extreme case,
this edge could be a bridge of G in which case removing it will disconnect G.
It is considered as a hierarchical divisive algorithm since it starts with a single
cluster containing all vertices and iteratively divides clusters into smaller ones. The
fundamental and most time consuming step in this algorithm is the computation of
the edge betweenness values which can be performed using the algorithms described
in Sect. 11.5.

11.3.2.1 A Distributed Edge-Betweenness Clustering Algorithm
GN algorithm has a high computational cost making it difficult to implement in large
networks such as the PPI networks. Yang and Lonardi reported a parallel implemen-
tation of this algorithm (YL Algorithm) on a distributed cluster of computers and
showed that a linear speedup is achieved up to 32 processors [46]. The quality of the
clusters is validated using the modularity concept described in Sect. 11.2. All-pairs
shortest paths for an unweighted graph G can be computed using the BFS algorithm
for all nodes of G and the edge betweenness values can be obtained by summing all
pair dependencies δst(v) over all traversals. The main idea of YL Algorithm is that
the BFS algorithm can be executed independently in parallel on a distributed memory
computer system. It first distributes a copy of the original graph G to k processors,
however, each processor pi executes BFS on its set of vertices Vi only. There is one
supervisor processor ps which controls the overall operation. Each processor pi finds
the pair dependencies for its vertices in Vi it is assigned and sends its results to ps

which in turn sums all of the partial dependencies and finds the edge e with the high-
est edge betweenness value. It then broadcasts the edge e to all processors which
delete e from their local graph and continue with the next iteration until there are no
edges left as shown in Algorithm 11.2 for the supervisor and each worker process.
Modularity is used to find where to cut the output dendrogram. YL algorithm was
implemented in C++ using MPI on five different PPI networks. The results showed it
found clusters in these networks correctly with linear speedups up to 32 processors.
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Algorithm 11.2 YL_Alg
1: Input : G(V, E) � undirected graph,
2: Output : edges e1, . . . , em of G in reversal removal order
3: if I am root then
4: assign vertex sets V1, . . . , Vk to processors p1, . . . , pk

5: end if
6: while there are edges left on processors do
7: if I am root then
8: receive δst(v)
9: calculate edge betweenness values for all edges
10: find the edge e with the maximum value and broadcast e
11: else
12: for all v ∈ Vi parallel do � worker process pi does this part in parallel with others
13: BFS(Gi, v)
14: send all pair dependencies δst(vi) to the root
15: end for
16: receive the edge e that has the highest betweenness
17: remove e from the local graph partition Gi

18: synchronize
19: end if
20: end while

11.4 Density-Based Clustering

The dense parts of an unweighted graph have more edges than average and exhibit
possible cluster structures in these regions. If we can find methods to discover these
dense regions, we may detect clusters. Cliques are perfect clusters and detecting a
clique does not require any comparison with the density in the rest of the graph.
In many cases, however, we will be interested in finding denser regions of a graph
with respect to other parts of it rather than absolute clique structures. We will first
describe algorithms to find cliques in a graph and then review k-cores, HCS, and
modularity-based algorithms with their distributed versions in this section.

11.4.1 Clique Algorithms

A clique of a graph G is a subset of its nodes which induce a complete graph as we
saw in Sect. 3.6, and finding the maximum clique of a graph is NP-hard [23]. In the
extreme case, detecting clusters in a graph G can be reduced to finding cliques of
G. However, a graph representing a biological network may have only few cliques
due to some links not being detected or deleted from it. For this reason, we would
be interested in finding clique-like structures in a graph rather than full cliques to
discover clusters. These structures can be classified as follows [20]:

http://dx.doi.org/10.1007/978-3-319-24966-7_3
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Definition 11.1 (k-clique:) In a k-clique subgraph G′ of G, the shortest path between
any two vertices in G′ is at most k. Paths may consist of vertices and edges external
to G′.

Definition 11.2 (quasi-clique:) A quasi-clique is a subgraph G′ of G where G′ has at
least γ |G′||G′| − 1)/2 edges. In other words, a quasi-clique of size m has γ fraction
of the number of edges of the clique of the same size.

Definition 11.3 (k-club:) In a k-club subgraph G′ of G, the shortest path between
any two vertices which consists of vertices and edges in G′, is at most k.

Definition 11.4 (k-core:) In a k-core subgraph G′ of G, each vertex is connected to
at least k other vertices in G′. A clique is a (k − 1) core.

Definition 11.5 (k-plex:) A k-plex is a subgraph G′ of G, each vertex has at most k
connected to at least n − k other vertices in G′. A clique is a 1-plex.

11.4.1.1 Bron and Kerbosch Algorithm
Bron and Kerbosch proposed a recursive backtracking algorithm (BK algorithm)
to find all cliques of a graph [9]. This algorithm works using three disjoint sets of
vertices; R which is the current expanding clique, P is the set of potential vertices
connected to vertices in R, and X contains all of the vertices already processed. The
algorithm recursively attempts to generate extensions to R from the vertices in P
which do not contain any vertices in X. It consist of the following steps [9]:

1. Select a candidate.
2. Add the selected candidate to R.
3. Create new sets P and X from the old sets by removing all vertices not connected

to R.
4. Call the extension operator on the newly formed sets.
5. Upon return, remove the selected candidate from R, add it to X.

In order to have a clique, set P should be empty, as otherwise R could be extended.
Also, the set X should be empty to ensure R is maximal otherwise it may have been
contained in another clique. Algorithm 11.3 shows the pseudocode of this algorithm
based on the above steps. The time complexity of this algorithm was evaluated to be
O(4n) according to the experimental observations of the authors. Bron and Kerbosch
also provided a second version of this algorithm that uses pivots with an experimental
time complexity of O(3.14n) where 3n is the theoretical limit.
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Blaar et al. implemented a parallel version of Bron and Kerbosch algorithm using
thread pools in Java and provided test results using 8 processors [6]. Mohseni-Zadeh
et al. provided a clustering method they called Cluster-C to cluster protein sequences
based on the extraction of maximal cliques [32] and Jaber et al. implemented a parallel
version of this algorithm using MPI [27]. Schmidt et al. provided a scalable parallel
implementation of Bron and Kerbosch algorithm on a Cray XT supercomputer [41].

Algorithm 11.3 Bron Kerbosch Algorithm
1: procedure BronKerbosch(R, P, X)
2: P ← V includes all of the vertices and R, X ← Ø
3: if P = Ø ∧ X = Ø then
4: return R as a maximal clique
5: else
6: for all v ∈ P do
7: BronKerbosch(R ∪ {v}, P ∩ N(v), X ∩ N(v))
8: P ← P \ {v}
9: X ← P ∪ {v}
10: end for
11: end if
12: end procedure

11.4.2 k-core Decomposition

Given a graph G(V, E), a subgraph Gk(V ′, E′) of G induced by V ′ is a k-core of G
if and only if ∀v ∈ V ′ : δ(v) ≥ k and Gk is the maximum graph with this property.
Main core of a graph G is the core of G with maximum order and the coreness value
of a vertex v is the highest order of a core including v. The k-class of a vertex can
be defined as the set of vertices which all have a degree of k [15]. Cores of a graph
may not be connected and a smaller core is the subset of a larger core. Figure 11.4
displays 3 nested cores of a sample graph.

2−core

3−core

1

3

2

1−core

coreness values

Fig. 11.4 Cores of a sample graph
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The k-core decomposition of a graph G is to find the k-core subgraphs of G for all
k which can therefore be reduced to finding coreness values of all vertices of G. Core
decomposition has been used for complex network analysis [2] and to detect k-cores
in PPI networks [1]. Detecting group structures such as cliques, k-cliques, k-plexes,
and k-clubs are difficult and NP-hard in many cases, however, finding k-cores of a
graph can be performed in polynomial time as we describe in the next section.

11.4.2.1 Batagelj and Zaversnik Algorithm
Batagelj and Zaversnik proposed a linear time algorithm (BZ algorithm) to find the
core numbers of all vertices of a graph G [4] based on the property that removing
all vertices of degree less than k from a graph with their incident edges recursively
will result in a k-core. This algorithm first sorts the degrees of vertices in increasing
order and inserts them in a queue Q. It then iteratively removes the first vertex v
from the queue, and labels it with the core value which equals the current degree
of v, and decrements the degree of each neighbor u of v, if u has a larger degree
than v, to effectively delete the edge between them. The vertex u may not have a
degree smaller than v as Q is sorted but u may have equal degree to v in which case
we do not want to change its degree since u will be moved to a lower class. The
pseudocode of this algorithm is shown in Algorithm 11.4 [4,20]. The algorithm ends
when Q is empty and k-cores of G consist of vertices which have label values up to
and including k. Batagelj and Zaversnik showed that the time complexity of this
algorithm is O(max(m, n)), and time complexity is O(m) in a connected network as
m ≥ n − 1 in such a case.

Algorithm 11.4 BZ_Alg
1: Input : G(V, E)

2: Output : core values of vertices
3: Q ← sorted vertices of G in increasing weight
4: while Q �= Ø do
5: v ← front of Q
6: core(v) ← δ(v)
7: for all u ∈ N(v) do
8: if δ(u) > δ(v) then
9: δ(u) ← δ(u) − 1
10: end if
11: end for
12: update Q
13: end while

Execution steps of this algorithm in the sample graph of Fig. 11.5 is shown in
Table 11.1.
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Fig. 11.5 Output of BZ algorithm on a sample graph

11.4.2.2 Molecular Complex Detection Algorithm
The Molecular Complex Detection (MCODE) Algorithm is used to discover protein
complexes in large PPI networks [3]. It consists of vertex weighting, complex predic-
tion, and optional post-processing to add or filter proteins in the output complexes.
In the first step of this algorithm, the local vertex density of a vertex v is computed
using the highest k-core of its neighborhood. We will repeat the definition of the
clustering coefficient cc(v) of a vertex v as follows:

cc(v) = 2mv

nv(nv − 1)
, (11.8)

where nv is the number of neighbors of v and mv is the existing number of edges
between these neighbors. It basically shows how well connected the neighbors of v
are. The MCODE algorithm defines the core clustering coefficient of a vertex v as the
density of the highest k-core of the closed neighborhood of v. Using this parameter
provides removal of many low-degree vertices seen in PPI networks due to the scale-
free property, while emphasizing the high-degree nodes which we expect to see in
the clusters. The weight of a vertex v, w(v), is then assigned as the product of the
core clustering coefficient ccc(v) of vertex v and the highest k-core value kmax in the
closed neighborhood of v as follows.

w(v) = ccc(v) × kmax (11.9)

The second step of the algorithm involves selecting the highest weighted vertex v
as the seed vertex and recursively adding vertices in its neighborhood if their weights
are above a threshold. The threshold named vertex weight percentage (VWP) is a
predetermined percentage of the weight of the seed vertex v. When there are no more
vertices that can be added to the complex, this sub-step is stopped and the process
is repeated with the next highest and unvisited vertex. WWP parameter effectively
specifies the density of the complex obtained, with a high threshold resulting in a
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smaller and a denser complex and a low value results in the contrary. The last step is
used to filter and modify the complexes. Complexes that do not have at least a 2-core
are removed during filtering process and the optional fluff operation increases the
size of the complexes according to the fluff parameter which is between 0.0 and 1.0.
The time complexity of this algorithm is O(nmh3) where h is the vertex size of the
average vertex neighborhood in G as shown in [3].

There is not a reported parallel or distributed version of this algorithm, however,
the search of dense neighbors can be performed by the BFS method and this step
can be employed in parallel using a suitable parallel BFS algorithm such as in [10].

11.4.2.3 A Distributed k-core Algorithm
Although the BZ algorithm is efficient for small graphs, distributed algorithms are
needed to find k-cores in large biological networks such as PPI networks. The BZ
algorithm has inherently serial processing as we need to find the vertex with the
smallest degree globally and hence is difficult to parallelize. One very recent effort
to provide a distributed k-core decomposition method was proposed by Montresor
et al. [33]. This algorithm attempts to find coreness values of vertices in a graph G
which provides k-cores of G indirectly. They considered two computational models;
in one-to-one model, each computational node is responsible for one vertex and one
node handles all processing for a number of vertices in one-to-many model. The latter
is obtained by extending the first model. The main idea of this algorithm is based on
the locality concept in which the coreness of a node u is the greatest k value where u
has at least k neighbors, each belonging to k or larger cores. Based on this concept, a
node can compute its coreness value using the coreness values of its neighbors. Each
node u in this algorithm forms an estimate of its coreness value and sends this value
to it neighbors and uses the value received from neighbors to recompute its estimate.
After a number of periodic rounds, coreness values can be determined when no new
estimates are generated. The time complexity was shown to be O(n − s + 1) rounds
where s is the number of nodes in the graph with minimal degree. The messages
exchanged during the algorithm was shown to be O(Δm) where Δ is the maximum
degree of the graph. The authors have experimented one-to-one and one-to-many
versions of this algorithm with both a simulator and real large data graphs and found
it is efficient.

11.4.3 Highly Connected Subgraphs Algorithm

The highly connected subgraphs (HCS) algorithm proposed by Hartuv and Shamir
[26] searches dense subgraphs with high connectivity rather than cliques in undi-
rected unweighted graphs. The general idea of this algorithm is to consider a subgraph
G′ of n vertices of a graph G as highly connected if G′ requires a minimum of n/2
edges to have it disconnected. In other words, the edge connectivity of G′, kE(G′)
should be n/2 to accept it as a highly connected subgraph. The algorithm shown in
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Algorithm 11.5 starts by first checking if G is highly connected, otherwise uses the
minimum cut of G to partition G into H and H ′, and recursively runs HCS procedure
on H and H ′ to discover highly connected subgraphs.

Algorithm 11.5 HCS_Alg
1: procedure HCS(G)
2: Input : G(V, E)

3: Output : highly connected clusters of G
4: (H, H̄, C) ← MinCut(G)

5: if G is highly connected then
6: return(G)
7: else
8: HCS(H)
9: HCS(H̄)
10: end if
11: end procedure

The execution of HCS algorithm is shown in a sample graph in Fig. 11.6 after
which three clusters are discovered. HCS has a time complexity of 2N × f (n, m)

where N is the number of clusters discovered and f (n, m) is the time complexity
of finding a minimum cut in a graph that has n vertices and m edges. HCS has
been successfully used to discover protein complexes, and cluster identification via
connecting kernel (CLICK) algorithm is an adaptation of HCS algorithm for weighted
graphs [43].

11.4.4 Modularity-Based Clustering

We have seen that the modularity parameter Q provides a good indication of the
quality of the clustering in Sect. 12.2. The algorithm proposed by Girvan and Newman

C1
C2

C3

Fig. 11.6 HCS algorithm run on a sample graph. Three clusters C1, C2 and C3 are discovered

http://dx.doi.org/10.1007/978-3-319-24966-7_12
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(GNM algorithm) attempts to obtain clustering by increasing the value of Q as follows
[35]:

1. Each node of the graph is a cluster initially.
2. Merge the two clusters that will increase the modularity Q by the largest amount.
3. If merges start reducing modularity, stop.

This algorithm can be classified as an agglomerative hierarchical clustering algo-
rithm as it iteratively forms larger clusters and the output is a dendrogram as in such
algorithms. Its time complexity is O((m + n)n), or O(n2) on sparse graphs.

11.4.4.1 A Survey of Modularity-Based Algorithms
A review of modularity and methods for its maximization is presented by Fortuna
[22]. Clauset et al. provided a method to find clusters using modularity in favorable
time using the sparse structure of a graph [16]. They kept the clustering information
using a binary tree in which every node is a cluster formed by combining its children.
The time complexity of this algorithm is O(mh log n) where h is the height of the
tree. The Louvain method proposed in [7] evaluates modularity by moving nodes
between clusters. A new coarser graph is then formed where each node is a cluster.
This greedy method optimizes modularity in two steps. The small communities are
searched locally first, and these communities are then combined to form the new
nodes of the network. These two steps are repeated until modularity is maximized.

Parallel and Distributed Algorithms

Parallel and distributed algorithms that find clusters using modularity are scarce.
Gehweiler et al. proposed a distributed diffusive heuristic algorithm for clustering
using modularity [25]. Riedy et al. proposed a massively parallel community detec-
tion algorithm for social networks based on Louvani method [39]. We will describe
this algorithm in detail as it is one of the only parallel algorithms for this purpose.
It consists of the following steps which are repeated until a termination condition is
encountered:

1. Every edge of the graph is labeled with a score. If all edges have negative scores,
exit.

2. Compute a weighted maximal matching using these scores.
3. Coarsen matched groups into a new group which are the nodes of the new graph.

In the first step, the change in optimization metric is evaluated if two adjacent
clusters are merged and a score is associated with each edge. The second step involves
selecting pairs of neighboring clusters merging of which will improve the quality of
clustering using a greedy approximately maximum weight maximal matching and the
selected clusters are contracted according to the matching in the final step. The time
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complexity of this algorithm is O(mk) where k is the number of contraction steps.
Each step of this algorithm is independent and can be performed in parallel. Reidy
et al. implemented this algorithm in Cray XMT2 and Intel-based server platforms
using OpenMP and obtained significant speedups with high performance and good
data scalability.

LaSalle and Karypis recently provided a multithreaded modularity-based graph
clustering algorithm using the multilevel paradigm [31]. Multilevel approaches for
graph partitioning are popular due to the high quality partitions produced by them.
These methods consist of coarsening, initial clustering, and uncoarsening phases.
The initial graph G0 is contracted into a series of smaller graphs G1, . . . , Gs in the
coarsening phase using some heuristics. The final graph Gs is then partitioned into
a number of nonoverlapping partitions using a direct partitioning algorithm in the
second phase. In the uncoarsening phase, a coarser graph is projected back to a
finer graph followed by a cluster refinement procedure such as the Kernighan–Lin
algorithm [29]. Maximal matching of edges is a frequently used heuristic during
coarsening. The algorithm matches vertex u with its neighbor vertex v that pro-
vides maximum modularity in the coarsening phase of multilevel methods. In this
study, the authors developed two modularity-based refinement methods called ran-
dom boundary refinement and greedy boundary refinement which consider border
vertices between clusters. This algorithm named Nerstrand has an overall time com-
plexity of O(m + n) which is the sum of complexities of three phases and the space
complexity is shown to be also O(m+n). The Nerstrand algorithm is implemented in
shared memory multithreaded environment where the number of edges each thread
works is balanced explicitly and the number of vertices for each thread is balanced
implicitly. Each thread creates one or more initial clustering of its vertices and the best
clustering is selected by reduction. Each thread then performs cluster projection over
the vertices it is responsible. The authors implemented this algorithm in OpenMP
environment and compared serial and multithreaded Nerstrand performances with
other methods such as Louvain. They found serial Nerstrand performs similar or
slightly better than Louvain method but parallel Nerstand finds clusters much faster
than contemporary methods, 2.7–44.9 times faster.

11.4.4.2 A Distributed Algorithm Proposal
We now propose a distributed algorithm for modularity-based clustering. The general
idea of our algorithm is to partition the modularity finding computation among k
processes. Each process computes the merge that causes the maximum modularity
in its partition and sends the pair that gives this value to the central process. Upon
the gathering of local results in the central process, it finds the merge operation that
results in maximum modularity change and broadcasts the cluster pair that has to
be merged to all processes. This process continues until modularity does not change
significantly anymore. We show below the main steps of this algorithm where we have
k processes running on k processors and one of these processes, p0, is designated
as the root process that controls the overall execution of the algorithm as well as
performing part of the algorithm. We will assume the graph G(V, E) is already
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Fig. 11.7 Clusters for the distributed modularity-based clustering algorithm

partitioned into a number of clusters, however, we could have started by the original
graph assuming each node is a cluster. The root performs the following steps:

1. Assume each cluster is a supernode and perform a BFS partition on the original
graph to have k cluster partitions such that C = {C1, . . . , Ck}.

2. send each partition to a process pi.
3. find the best cluster pair in my partition.
4. receive best cluster pairs from each pi.
5. find the pair Cx, Cy that gives the maximum modularity.
6. broadcast Cx, Cy to all processes.
7. repeat steps 3–5 until modularity starts reducing.

Figure 11.7 displays an example network that already has 10 clusters. The root
process p0 partitions this network by the BFS partitioning algorithm and sends the
two cluster partitions to processes p1 and p2. In this example, p1 computes the
modularity values for combining operations C2 ∪ C8, C2 ∪ C10, C2 ∪ C5, C5 ∪ C8,
C5 ∪ C10, and C5 ∪ C7, assuming for any cluster pair across the borders, the process
that owns the lower identifier cluster is responsible to compute modularity. Further
optimizations are possible such as in the case of local cluster operation in a process
is decided to merge C2 and C10 in p1, the processes p0 and p2 do not need to compute
their modularity values again as they are not affected.
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11.5 Flow Simulation-Based Approaches

A different approach than the traditional graph clustering methods using density is
considered in flow simulation-based methods. The goal in this case is to predict
the regions in the graph where the flow will gather. The analogy of the graph is a
water distribution network with nodes representing storages, and the edges as the
pipes between them. If we pump water to such a network, flow will gather at nodes
which have many pipes ending in them and hence in clusters. An effective way of
simulating the flow in a network is by using random walks which is described in the
next section.

11.5.1 Markov Clustering Algorithm

Markov Clustering Algorithm (MCL) is a fast clustering algorithm based on sto-
chastic flow in graphs [18] and uses the following heuristics [20]:

1. Number of paths of length k between two nodes in a graph G is larger if they are
in the same cluster and smaller if they are in different clusters.

2. A random walk starting from a vertex in a dense cluster of G will likely end in
the same dense cluster of G.

3. Edges between clusters are likely to be incident on many shortest paths between
all pairs of nodes.

The algorithm is based on random walks assuming by doing the random walks
on the graph, we may be able to find where the flow gathers which shows where
the clusters are. Given an undirected, unweighted graph G(V, E) and its adjacency
matrix A, this algorithm first forms a column-stochastic matrix M. The ith column of
M shows the flows out of node vi and the ith row contains the flows into vi. The sum
of column i of this matrix equals 1 as this is the sum of the probabilities of reaching
any neighbor from vertex vi, however, the sum of the rows may not add up to 1. The
matrix M can be obtained by normalizing the columns of the adjacency matrix A as
follows.

M(i, j) = A(i, j)
∑n

k=1 A(k, j)
(11.10)

This operation is equal to M = AD−1 where D is the diagonal matrix of the graph
G. The MCL algorithm inputs the matrix M and performs two iterative operations
on M called expansion and inflation and an additional pruning step as follows.

• Expansion: This operation simply involves taking the eth power of M as below:

Mexp = Me, (11.11)
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e being a small integer, usually 2. Based on the properties of M, Mexp shows the
distribution of a random walk of length r from each vertex.

• Inflation: In this step, the rth power of each entry in M is computed and this value
is normalized by dividing it to the sum of the rth power of column values as below.

Minf(i, j) = M(i, j)r
∑n

k=1 M(k, j)r
(11.12)

The idea here is to emphasize the flow where it is large and to decrease it where it
is small. This property makes this algorithm suitable for scale-free networks such
as PPI networks, as these networks have few high-degree hubs and many low-
degree nodes. As clusters are formed around these hubs, emphasizing them and
deemphasizing the low-degree nodes removes extra processing around the sparse
regions of the graph.

• Pruning: The entries which have significantly smaller values than the rest of the
entries in that column are removed. This step reduces the number of nonzero
column entries so that memory space requirements are decreased.

Algorithm 11.6 displays the pseudocode for MCL algorithm [42].

Algorithm 11.6 MCL_Alg
1: Input : G(V, E) � undirected unweighted graph
2: expansion parameter e, inflation parameter r
3: Output : Clusters C1, . . . , Ck of G
4: A ← adjacency matrix of G
5: M ← AD−1 � initialize M
6: repeat
7: Mexp ← Me � expand
8: inflate Minf ← Mexp using r � inflate
9: M ← Mexp

10: until M converges
11: interpret the resulting matrix Minf to find clusters

After a number of iterations, there will be only one nonzero element at each
column of M and the nodes that have flows to this node will be interpreted as a single
cluster. The level of clustering can be modified by the parameter r, with the lower r
resulting in a coarser clustering. The time complexity of this algorithm is O(n3) steps
since multiplication of two n × n matrices takes n3 time during expansion, and the
inflation can be performed in O(n2) steps. The convergence of this algorithm has been
shown experimentally only where the number of rounds required to converge was
between 10–100 steps [3]. The MCL algorithm has been successfully implemented
in biological networks in various studies [8,44], however, the scalability of MCL
especially at the expansion step was questioned in [42]. Also, MCL was found
to discover too many clusters in the same study and a modification to MCL by a
multilevel algorithm was proposed.
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11.5.2 DistributedMarkov Clustering Algorithm Proposal

The MCL algorithm has two time consuming steps as expansion and inflation
described above. We can see that these are matrix operations which can be per-
formed independently on a distributed memory computing system whether a mul-
tiprocessor or totally autonomous nodes connected by a network. The expansion is
basically a matrix multiplication operation in which many parallel algorithms exist.
The inflation operation yields asynchronous operations and hence can be performed
in a distributed system.

We will now sketch a distributed algorithm to perform MCL in parallel using m
number of distributed memory processes p0, . . . , pm−1. The supervisor process p0
controls the overall flow of the algorithm and m−1 worker processes. The supervisor
initializes the matrix M, broadcasts it to m−1 nodes which all perform multiplication
of M by itself using row-wise 1-D partitioning and send back the partial results to the
supervisor. This process now builds the M2 matrix which can be partitioned again
and sent to workers which will multiply part of it with their existing copy of M. This
process is repeated for t times to conclude the expansion of the first iteration and
for t = 2, finding M2 will be sufficient. The supervisor can now send the expanded
matrix Mexp by column partitioning it to m −1 processes each of which simply takes
the eth power of each entry in columns, normalizes them and sends the resulting
columns to the supervisor. The task of the supervisor now is to check whether M
has converged and if this is not achieved a new iteration is started with the seed Mp.
Algorithm 11.7 shows the pseudocode for the distributed MCL algorithm which can
easily be implemented using MPI.

Algorithm 11.7 DistMCL_Alg Supervisor Process
1: Input : G(V, E) � undirected graph,
2: expansion parameter e, inflation parameter r
3: Output : Clusters C1, . . . , Ck of G
4: A ← adjacency matrix of G
5: Mp ← AD−1 � initialize M
6: repeat
7: broadcast Mp to m − 1 processes
8: compute my partial product
9: gather partial products from all workers � synchronize
10: build Mexp

11: send rows of Mexp to m − 1 processes
12: compute my partial inflation
13: gather partial products from all workers � synchronize
14: build Mexp

15: Mp ← Mexp

16: until M converges
17: interpret the resulting matrix Minf to find clusters
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Fig. 11.8 An example graph
for distributed MCL
algorithm

0 1 2 3

4567

We will show the implementation of the distributed MCI algorithm using a sim-
ple example graph of Fig. 11.8 which will also show the detailed operation of the
sequential algorithm.

The M matrix row partitioned by the supervisor for parallel processing using this
graph will be:

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0.33 0 0 0 0 0 0.33 p0
0.5 0 0 0 0 0 0.33 0.33
0 0 0 0 0 0.25 0 0 p1
0 0 0 0 0 0.25 0 0
0 0 0 0 0 0.25 0 0 p2
0 0 1 1 1 0 0.33 0
0 0.33 0 0 0 0.25 0 0.33 p3
0.5 0.33 0 0 0 0 0.33 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Assuming we have 4 processors p0, p1, p2 and p3; and p0 is the supervisor; the
row partitioning of M will result in rows 2,3 to be sent to p1; rows 4,5 to p2 and 6,7
to p3. When the partial products are returned to p0, it will form Mexp shown below:

Mexp =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p0 p1 p2 p3
0.33 0.109 | 0 0 | 0 0.083 | 0.012 0.109
0.165 0.383 | 0 0 | 0 0 | 0.083 0.274
0 0 | 0.25 0.25 | 0.25 0 | 0.083 0
0 0 | 0.25 0.25 | 0.25 0 | 0.083 0
0 0 | 0.25 0.25 | 0.25 0 | 0.083 0
0 0.109 | 0 0 | 0 0.159 | 0 0.109
0.33 0.165 | 0.25 0.25 | 0.25 0 | 0.301 0.109
0.165 0.274 | 0 0 | 0 0.083 | 0.109 0.383

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We then do a column partitioning of it and distribute it to processors p1, p2 and
p3 which will receive columns 2,3; 4,5; and 6,7 consecutively. After they perform
inflation operation on their columns, they will return the inflated columns to p0 which
will form the Minf matrix as below. Although some of the entries start diminishing
as can be seen, convergence has not been detected yet, and p0 will continue with the
next iteration.
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Minf =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.401 0.044 0 0 0 0.178 0.001 0.047
0.099 0.538 0 0 0 0 0.053 0.291
0 0 0.25 0.25 0.25 0 0.053
0 0 0.25 0.25 0.25 0 0.053
0 0 0.25 0.25 0.25 0 0.053
0 0.044 0 0 0 0.643 0 0.047
0.401 0.099 0.25 0.25 0.25 0 0.695 0.047
0.099 0.275 0 0 0 0.178 0.092 0.570

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

As one of the few studies to provide parallel/distributed MCL algorithm, Busta-
mam et al. implemented it using MPI with results showing improved performance
[11]. They also provided another parallel version of MCL this time using graphic
cards processors (GPUs) with many cores [12].

11.6 Spectral Clustering

Spectral clustering refers to a class of algorithms that use the algebraic properties
of the graph representing a network. We have noted that the Laplacian matrix of
a graph G is L = D − A in unnormalized form, with D being the diagonal degree
matrix which has di as the degree of the vertex i in its diagonal and A is the adjacency
matrix. In normalized form, the Laplacian matrix L = I − D−1/2AD−1/2 and L has
interesting properties that can be analyzed to find the connectivity information about
a graph G. First of all, the eigenvalues of L are real as L is real and symmetric. The
second eigenvalue is called the Fiedler value and the corresponding eigenvector for
this eigenvalue, the Fiedler vector [21] provides connectivity information about the
graph G. Using the Fiedler vector, we can partition a graph G into two balanced
partitions in spectral bisection as follows [19]. We first construct the Fiedler vector
and then compare each entry of this vector with a value s, if the entry F[i] ≤ s then
the corresponding vertex of G, vi, is put in partition 1 and otherwise it is placed in the
second partition as shown in Algorithm 11.8. The variable s could simply be 0 or the
median of the Fiedler vector. Figure 11.9 displays a simple graph that is partitioned
using the value of 0.
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3

4

5

6

C1 C2

Fig.11.9 Partitions formed using Fiedler vector. The first three elements Fiedler vector have values
smaller or equal to zero and are put in the first partition and the rest are placed in the second
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Algorithm 11.8 Spect_Part
1: Input : A[n, n], D[n, n] � adjacency matrix and degree matrix of G
2: Output : V1, V2 � two balanced partitions of G
3: L ← D − A
4: calculate Fiedler vector F of L
5: for i = 1 to n do
6: if F[i] ≤ s then
7: V1 ← V1 ∪ {vi}
8: else V2 ← V2 ∪ {vi}
9: end if
10: end for

Newman also proposed a method based on the spectral properties of the modular-
ity matrix Q [37]. In this method, the eigenvector corresponding to the most positive
eigenvalue of the modularity matrix is first found and the network is divided into
two groups according to the signs of the elements of this vector. Spectral bisection
provides two partitions and can be used to find a k-way partition of a graph when exe-
cuted recursively. Spectral clustering however, is more general than spectral bisection
and finds the clusters in a graph directly. This method is mainly designed to cluster n
data points x1, . . . , xn but can be adapted for graphs as it builds a similarity matrix S
which have entries sij showing how similar two data points xi and xj are. The spectral
properties of this matrix are then investigated to find clusters of data points and the
normalized Laplacian matrix, L = I − D−1/2SD−1/2 can then be constructed. A
spectral clustering algorithm consist of the following steps [14]:

1. Construct similarity matrix S for n data points.
2. Compute the normalized Laplacian matrix of S.
3. Compute the first k eigenvectors of L and form the matrix V with columns as

these eigenvectors.
4. Compute the normalized matrix M of V .
5. Use k-means algorithm to cluster n rows of M into k partitions.

The k-means algorithm is a widely used method to cluster data points as we
reviewed in Sect. 7.3. The initial centers c1, . . . , ck can be chosen at random initially
and the distance of data points to these centers are calculated and each data point is
assigned to the cluster that it is closest. The spectral clustering algorithm described
requires significant computation power and memory space for matrix operations
and also to run the k-means algorithm due to the sizes of matrices involved. A
simple approach would involve computation of the similarity matrix S using row
partitioning. Finding eigenvectors can also be parallelized using parallel eigensolvers
and the final step of using the k-means algorithm can also be parallelized [30]. A
distributed algorithm based on the described parallel operations was proposed by
Chen et al. and they experimented this algorithm with two large data sets using MPI
and concluded it is scalable and provides significant speedups [14].

http://dx.doi.org/10.1007/978-3-319-24966-7_7
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11.7 Chapter Notes

Graph clustering is a well-studied topic in computer science and there are numerous
algorithms for this purpose. Our focus in this chapter was the classification and
revision of fundamental sequential and distributed clustering algorithms in biological
networks. We have also proposed two new distributed algorithms which can be
implemented conveniently using a distributed programming environment such as
MPI.

Two types of hierarchical clustering algorithms, MST-based and edge between-
ness-based algorithms have found applications in clustering of biological networks
more than other algorithms. Finding the MST of a graph using Boruvka’s algorithm
can be parallelized conveniently due to its nature. A different approach is taken in
the CLUMP algorithm where the graph is partitioned into a number of subgraphs
and bipartite graphs are formed. The MSTs for the partitions and the bipartite graphs
are formed in parallel and then merged to find the MST of the whole graph. The
edge-betweenness algorithm removes the edge with the highest betweenness value
from the graph at each iteration to divide it into clusters. The algorithm proposed by
Yang and Lonardi partitions the graph into processors which find pair dependencies
by running BFS in parallel on their local partitions.

Density-based clustering algorithms aim to discover dense regions of a graph as
these areas are potential clusters. Cliques are one example of such dense regions,
however, clique-like structures such as k-cliques, k-cores, k-plexes, and k-clubs are
more frequently found in biological networks than full cliques due to the erroneous
measurements and dynamicity in such environments. Out of these structures, only k-
cores of a graph can be found in linear time and therefore our focus was on sequential
and distributed algorithms for k-core decomposition of graphs. The MCODE algo-
rithm which uses a combination of clustering coefficient parameter and the k-core
concept is successfully used in various PPI networks. There is not a reported par-
allel/distributed version of MCODE algorithm and this may be a potential research
area as there are possibilities of independent operations such as finding weights of
vertices. The k-core based algorithms are widely used to discover clusters in com-
plex networks such as the biological networks and the Internet, and we reviewed a
distributed k-core algorithm. The modularity concept provides a direct evaluation of
the quality of clusters obtained and has formed the basis of various clustering algo-
rithms used in social and biological networks. We proposed as simple distributed
modularity-based algorithm that can be used for any complex network including
biological networks.

Flow-based algorithms consider the flows in the networks and assume flows gather
in clusters. An example algorithm with favorable performance that has been exper-
imented in PPI networks is the MCL algorithm which we reviewed in sequential
form and proposed its distributed version which can be implemented easily. Lastly,
we described spectral bisection and clustering based on the Laplacian matrix of a
graph and showed ways to implement distributed spectral clustering.

In summary, we can state most of these algorithms perform well in biological
networks. However, each have merits and demerits and complexities of a number of
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Fig. 11.10 Example graph
for Exercise 1
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Fig. 11.11 Example graph
for Exercise 2
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them have only been determined experimentally. Distributed algorithms for this task
are very rare and this may be a potential research area for researchers in this field.

Exercises

1. Find the intra-cluster and inter-cluster densities of the graph of Fig. 11.10. Do
these values indicate good clustering? What can be done to improve this cluster-
ing?

2. Work out the modularity value in the example graph of Fig. 11.11 based on three
clusters C1, C2, and C3 and determine which merge operation is to be done to
improve modularity. We need to check combining each cluster pair and decide
on the pair that improves modularity by the largest amount.

3. Show the output of the BFS-based graph partitioning algorithm on the example
graph of Fig. 11.12 in the first iteration, with the root vertex s. Then, partition the
resulting graphs again to obtain four partitions and validate the partitions in terms
of the number of vertices in each partition and the size of the minimum edge cut
between them.
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Fig. 11.12 Example graph
for Exercise 3
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Fig. 11.13 Example graph
for Exercise 4
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Fig. 11.14 Example graph
for Exercise 5

Fig. 11.15 Example graph
for Exercise 6

4. Work out the MST of the weighted graph of Fig. 11.13 using Boruvka’s algorithm.
In the second step, partition the graph into two processor p1 and p2 and provide a
distributed algorithm in which p1 and p2 will form the MSTs in parallel. Show also
the implementation of the distributed Boruvka algorithm in this sample graph.

5. Find the edge betweenness values for all edges in the graph of Fig. 11.14 and
partition this graph into 3 clusters using Newman’s edge betweenness algorithm.
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Fig. 11.16 Example graph
for Exercise 7 0 1
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6. For the example graph of Fig. 11.15, implement Batagelj and Zaversnik algorithm
to find the coreness values of all vertices. Show all iterations of this algorithm
and compose the k-cores for this graph in the final step.

7. Work out the two iterations of Markov Clustering Algorithm (MCL) in the exam-
ple graph of Fig. 11.16. Is there any display of the clustering structure?
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