Stochastic Local Search for Falsification
of Hybrid Systems

Jyotirmoy Deshmukh!®) | Xiaoqing Jin!, James Kapinski®,
and Oded Maler?

! Toyota Technical Center, Gardena, CA, USA
{jyotirmoy.deshmukh,xiaoqing.jin, jim.kapinski}@tema.toyota.com
Verimag, Gieéres, France
Oded.Maler@imag.fr

Abstract. Falsification techniques for models of embedded control sys-
tems automate the process of testing models to find bugs by searching
for model-inputs that violate behavioral specifications given by logical
and quantitative correctness requirements. A recent advance in falsifi-
cation is to encode property satisfaction as a cost function based on a
finite parameterization of the (bounded-time) input signal, which allows
formulating bug-finding as an optimization problem. In this paper, we
present a falsification technique that uses a local search technique called
Tabu search to search for optimal inputs. The key idea is to discretize the
space of input signals and use the Tabu list to avoid revisiting previously
encountered input signals. As local search techniques may converge to
local optima, we introduce stochastic aspects such as random restarts,
sampling and probabilistically picking suboptimal inputs to guide the
technique towards a global optimum. Picking the right parameterization
of the input space is often challenging for designers, so we allow dynamic
refinement of the input space as the search progresses. We implement
the technique in a tool called SITAR, and show scalability of the tech-
nique by using it to falsify requirements on an early prototype of an
industrial-sized automotive powertrain control design.

1 Introduction

Embedded control systems governing safety-critical aspects in medical devices,
avionics and automotive systems are increasingly being designed using the
model-based development (MBD) paradigm. The early phase of MBD involves
rapid iterations to check the correctness of the control software or to check the
feasibility of a new control algorithm. Design models are usually closed-loop
models, i.e., a plant model in a feedback loop with a controller model. Plant
models represent the dynamic, physical behavior of the environment that is to
be controlled (e.g., an engine, a powertrain system, a human heart, an avoinics

Oded Maler’s research was supported in part by the ANR project CADMIDIA and
Toyota.
© Springer International Publishing Switzerland 2015

B. Finkbeiner et al. (Eds.): ATVA 2015, LNCS 9364, pp. 500-517, 2015.
DOI: 10.1007/978-3-319-24953-7_35

Stochastic Local Search for Falsification of Hybrid Systems 501

power-distribution system). Controllers are modeled as a reactive computer pro-
gram interacting in real-time with the plant, and are typically designed in a visual
block-diagram based language such as Simulink®. The closed-loop system also
has exogenous inputs, usually modeling user events or other disturbances from
the environment. As fixing software issues in late design stages is expensive,
identifying such bugs in the early phase of the design cycle is valuable.

Closed-loop models can be modeled as hybrid dynamical systems, and it is
well-known that for even simple hybrid systems, the verification problem is highly
undecidable [4,11]. Prevalent practice in industry is extensive model-based test-
ing, where control designers use heuristics and previous experience to pick a set
of test input signals and system parameters to stimulate the system-under-test.
Modeling environments usually have numerical simulation to estimate the sys-
tem behavior for such inputs. Designers typically perform a finite number of such
simulations over the chosen set of inputs and parameters, and identify undesir-
able behaviors by manual inspection of the resulting outputs. These techniques
are incomplete in the sense that they provide no guarantees on whether a bug is
found; however, they significantly increase the possibility of identifying problems
early in the system design.

Recently developed falsification techniques seek to automate this process in
many ways. First, they allow the designer to express correct behavior as a set
of logical or quantitative requirements on the inputs and outputs in a machine-
checkable format. Second, they allow formulating the search for errors as an
optimization problem by encoding property satisfaction by a function that maps
a given input/output signal and a logical requirement to a real number. A recent
development is the advent of quantitative semantics for real-time temporal log-
ics. Fainekos and Pappas define a robust semantics for metric temporal logic
(MTL) [10], which allows to quantify how much a signal satisfies a specification.
Similarly, Donzé and Maler define robust semantics for signal temporal logic
(STL), which permits a similar analysis [8].

A core step in falsification is thus to find a (bounded-time) input signal
that minimizes the cost function. Falsification tools typically rely on a global
optimization algorithm to perform this task. Most falsification techniques are
often ineffective when the cost function is nonconvex or discontinuous, or if the
underlying model has discontinuous dynamic behavior. The S-TaLiRo tool has
several algorithms to perform global optimization including simulated annealing,
ant-colony optimization, and the cross-entropy method among others [2,3,15,18].
The Breach [7] tool provides a similar framework but uses nonlinear-simplex
optimization, also known as the Nelder-Mead algorithm. Other falsification tools
such as those based on the RRT algorithm [9,16,17], multiple-shooting [20],
combined global and local search [14] and gradient descent-based local search [1]
have also shown promise in exploring hybrid state-spaces and complex, nonlinear
cost surfaces.

In this paper, we continue the quest to find an effective global optimiza-
tion algorithm. In particular, we focus on addressing models whose structure
reflects typical control designs found in industrial systems. Common features of
some of these systems include: presence of Boolean combinations of predicates

502 J. Deshmukh et al.

on real-valued input signals (typically to decide an operating mode of the sys-
tem), discrete switching influenced strongly by the shape of the input signal and
to a lesser extent by the state of the sytem, and highly nonlinear and occa-
sionally discontinuous dynamics in the plant models. We present an adaptation
of a discrete optimization technique known as Tabu search to address systems
with such features, and make a case for the effectiveness of our technique with
experimental evidence.

Tabu search is a meta heuristic applied to a lower-level heuristic method
used to solve an optimization problem. It essentially restricts the search of a
discrete decision space so that particular valuations of the decision variables are
not revisited once they have been evaluated using a data structure known as the
Tabu list. The technique has been applied to integer programming problems and
is mainly used to prevent cycling that would eventually occur while searching
finite spaces [6].

In applying Tabu search, we handle the continuous input signals by discretiz-
ing the solution space. In Sect. 3, we explain how the algorithm locally searches
in a neighborhood of an input signal (i.e., neighboring points on the discrete
parameterization of the input signals) and follows a descent direction obtained
by stochastically approximating the gradient of the cost function. Naive local
search techniques can converge to local optima. Also, an interesting case is when
the output signals are Boolean or if their values are closely dependent on some
internal Boolean conditions in the models. Here, the cost function has “plateaus”
and “narrow valleys,” i.e., the surface of the function to be optimized has regions
that are flat with narrow regions where the cost is significantly lower. By adding
stochastic aspects such as random restarts, and allowing the algorithm to pick
sub-optimal inputs with a small probability, we allow the Tabu search to escape
local optima and increase its chances of reaching the global optimum.

A key consideration for us is the ease of use of the tool by control designers;
hence, we avoid techniques that seek user annotations to assist extraction of the
underlying hybrid structure of the model [5]. Furthermore, when engineers use
falsification tools like S-TaLiRo or Breach, they must parameterize the space of
inputs to their models for the tools to work. This parameterization is usually in
the form of a list of uniformly spaced control points, i.e., a list of times at which
the optimizer is free to pick a value for the input signal. For the intermediate
times, a suitable interpolation scheme is used to define a continuous input signal.
A key challenge in using such tools is that the verification engineers need to have
good insight into how many control points to choose. If too many control points
are chosen, then the input search space becomes large, and the efficiency of the
optimizer suffers. On the contrary, if too few control points are chosen, then the
tool may be unable to find problematic behaviors that rely on having flexibility
in the shape of the input signal. In Sect. 4, we show how we can allow designers
to specify a coarse discretization of the input space, and we provide a mechanism
to automatically refine the discretization to incrementally increase the accuracy
of the optimization.

We have implemented stochastic local Tabu search with refinements in a tool
named SITAR. In Sect. 5, we show how we use SITAR in a falsification framework

Stochastic Local Search for Falsification of Hybrid Systems 503

and demonstrate its efficacy on a range of benchmarks, starting from toy models
that pose challenges to existing falsification engines to industrial-sized bench-
marks. Finally, we conclude with some promising future directions in Sect. 6.

2 Preliminaries

We denote the system under test S. We assume that S is given by some model of
an embedded control system and is equipped with a simulator, which is capable
of computing typed output sequences generated by & under a given typed input
sequence. A typed input sequence is a sequence of time-value pairs, where the
values lie in a set known as the domain. We note that input domains can be
finite, i.e., finite subsets of sets such as Z and B, or could be compact (i.e.,
bounded and closed) subsets of sets such as R. Let W = W; X ... x W,,, where
each W; C R is a dense domain. Let V be a subset of the Cartesian product of
some finite domains. Then, in general, the domain of values is Y = W x V. Let
Ur be the set of all input sequences over time bound 7. An input sequence is
defined as:

u= (UO,to), (ulatl)v T a(qutN)a

where u; € U, t; < t;41 for each 0 < ¢ < N, and ¢ty < T. Note that input
sequences are often used to represent continuous-time signals; sequences can
be used to represent a strictly discrete-time signal or can be used to represent
the parameterization of a continuous-time signal'. We similarly define) as an
output set and Yr as the set of all output sequences. Outputs are given as a
sequence

Yy = <y07£(0)a (ylagl)a T (y]\/[7t~]\/1)a

where y; € Y, t; < t~i+1 for each 0 < i < M, and {3y < T. We use the notation
S(u) to mean the output sequence given by S under input u. Note that the
sequence of time instants associated with a given u, t;, does not necessarily
match the time instants associated with the corresponding y, #;.

We define a property that should hold for § in terms of a property function.
Let ¢ : Up x Yr — R be a function that maps an input and output sequence
to a real value that determines whether system S under a given input sequence
satisfies the desired property. Positive valuations of ¢ indicate that the desired
property is satisfied and negative values of ¢ indicate that the desired property
is not satisfied. Furthermore, the magnitude of the valuation indicates how much
the property is satisfied. This function provides the cost used by an optimiza-
tion tool to search for input sequences that give rise to output sequences that

! For inputs representing continuous functions over dense time, the actual input sig-
nal to S is obtained by interpolating across the sequence u using a user-specified
interpolation scheme.

504 J. Deshmukh et al.

demonstrate incorrect behavior from S. The falsification problem can then be
cast as the following optimization problem.
min ¢(u,y) subject toy = S(u) (1)
uelr
Any assignment of the decision variable u that produces a negative value from

the cost function is an input sequence that demonstrates a behavior from S that
fails to satisfy the desired property defined by .

3 Stochastic Local Tabu Search

Local search is the discrete/combinatorial variant of steepest-descent, gradient-
based methods for solving global optimization problems, such as the optimization
problem indicated in (1). Local search is based on defining a distance function
on the solution space, where typically the distance between two points is related
to the number of modifications needed to transform one point into the other.
The neighborhood of a point is typically the set of neighbors at distance 1 or
some subset of this set. A key feature of Tabu search (a variant of local search)
is to utilize a data structure called a Tabu list, to avoid repeated computations
on visited points. In this section, we present a modification of the Tabu search
procedure that allows systematic exploration of a finite parameterization of the
input sequences of a model with the goal of falsifying a given quantitative prop-
erty specification. We first introduce some required terminology.

3.1 Discretization and Neighborhoods

Note that, in general, the space of input sequences Uy is infinite. Without loss of
generality, we can assume that the dense input domain (W) is the set [0, tmax]™

For ease of exposition, we will start with a discretized representation of signals
and a fixed discretization scheme. We assume a time step ¢ and space increment
d. See Fig. 1 (a) for an illustration.

Definition 1 (Uniform J¢-Discretization of Input Domain). For a given
0, let { = LU(SJJ Let A, (6, W) denote a uniform grid over W, i.e., Ay(6, V) =
{j-0|0<j <™. A uniform é-discretization of the input domain U is then
defined as Ay (0,U) = Ay(6, W) x V.

Definition 2 (Uniform (4, ¢)-Discretization of Input Sequence Space).
LetT = L%J . We abuse notation and let Ay (e, T) denote a uniform discretization
of time, i.e., Ay(e,T) ={j-e|0<j <7} A uniform (6,¢)-discretization of
Ur, denoted Ay (6, e,Ur) is defined as the finite set of sequences 0 of the form
(o, to), - .., (Un,txn), where for each i, t; € Ay(6,U), and t; € Ay(e,T).

Having fixed the search-space, we define distance and neighborhoods in this
space. For the finite input domain V, we assume that there is function Ny (v)
mapping each element v € V to a set of neighbors in V. For example, if V is the
following set of integers: {1, 3, 5,8}, then Ny (5) may be defined as {3, 8}.

Stochastic Local Search for Falsification of Hybrid Systems 505

Definition 3 (Neighborhood in Input Domain). Consider a v =
(wh, .. w™, v) € Ay(6,U). For a given §, the (i,d, W)-neighbor of u is defined as:

1

nbw(i,0,u) = (wh,...,w' +45,...,w™,v).

Let D = {—6,+8}. The W-neighborhood of u is defined as:

m

Ny s(u) = U U nbw (i, 0,u).

i=15€D

We abuse notation and let the V-neighborhood of w be defined as:
Ny(u) = {(w',...,w™v) [v € Ny(v)}.

Finally, we define the neighborhood of u, Ny sv(u) = Ny s(u) U Ny(u), and
say that v’ is a neighbor of u if u' € Ny sy (u).

Definition 4 (Neighborhood in Input Sequences). Given an input seque-
nee u, its j-neighborhood Ny..(j,u) is the set of sequences:

NUT(j7u) = {(UOatO)a"' 7(u;'7tj)7"’ 7(uNatN) ‘ u; € NW,&V('“J’)}

Given a time horizon T, the neighborhood of u is defined as:

Nysve(u)= | Nu(j,u).

0<j<7

For an illustration of neighbors, see Fig. 1. Uniform discretizations provide a
simple way to define a quantization of the decision space for the falsification prob-
lem, but it produces a decision space that increases exponentially as § decreases,
and it does not provide the flexibility to define a refinement of the decision space
in specific regions. To address these deficiencies, we define a generalization of the
uniform discretization notions that permits uneven discretizations. See Fig. 1(b)
for an illustration.

Definition 5 (Nonuniform §-Discretization of the Input Domain). Let
8 be a nonuniform grid over the input domain, i.e., § = Wi,..., Wy,), where

each V/\Z is a finite set of elements of W;. A nonuniform §-discretization of U,
denoted as Ap,(8,U) is the set Wi X ... X Wy, x V.

Definition 6 (Nonuniform (§,e)-Discretization of the Input Sequence
Space). Let e denote a nonuniform discretization of the time domain, where € is
a finite set of elements from [0, T). Given a nonuniform §-discretization of U, and
g, a nonuniform (§,€)-discretization of Ur, denoted An,(8,€,Ur), is a finite set
of input sequences 0 = (i, to),. .., (Un,tn), such that for all i, i; € Apy(8,U)
and t; € €.

506 J. Deshmukh et al.

N g g g
5 f —0

to t1 ta t3 ta trt to t1 2} Tt to t1 2} t3 Tt
(a) (b) (c)

Fig.1. Fig. (a) shows an instance of Ay(d,e,Ur). For the input sequence u =
(uo, to),(u1,t1),(u2,t2),(us, ts),(ua, ta),(us, t-), the sequences ur = (uo,to), (ui,t1),
(UQ,tQ), (U3,t3), (U4,t4), (U5,t7) and ugy = (’LLo,to), (u1,t1), (UQ,tQ), (U3,t3), (ui,t4),
(us,t-), are two neighbors, shown in blue and red resp. Figure (b) and (c) show an
instance of A (8, €,Ur), where (c) shows a refinement of the space in (b) by adding a
new time (¢3).

The notion of neighborhoods easily extends to nonuniformly distributed input
spaces and input sequence spaces, and we denote them as Nyy 51 and Nyy 5 (1)
respectively.

In the sequel, we describe an implementation of the stochastic local Tabu
search method that can be configured to use either uniform or nonuniform dis-
cretizations of the decision space. In Algorithm 1, we show the basic steps of the
search algorithm. The innermost while-loop (Lines 8-19) implements a stochas-
tic local search scheme, augmented with a Tabu-list. A run of this while-loop to
completion is called a single local improvement. The main steps executed in the
loop are as follows: (1) Select a neighbor of the current input u (Line 11) that is
not in the Tabu list. (2) Evaluate the cost of uy, (by running a simulation with
Uyp as input and computing the value of ¢(un, S(unp))) (Line 15). (3) Add each
uyp not previously in the Tabu list to the list (Line 16). (4) Once the desired
number of neighbors have been visited, pick the minimal-cost neighbor as the
next point in the search (Line 19). (5) Terminate when the stopping condition
is reached (Line 17); typically this is ¢, < 0. The while-loop from Line 3 to
Line 23 iterates over the maximum number of local improvements permitted.
The number maxLocalImprovements provides the user control over how much
they wish to utilize the stochastic gradient-descent. A larger number is useful
when the surface of the cost function is smooth, while a smaller number is bet-
ter to use when the cost function is highly discontinuous or with sharp valleys
(as gradient-descent has less chance of success in this scenario). The outermost
while-loop (Lines 2-27) iterates over the maximum number of random restarts
permitted. We explain the purpose of random restarts in Sect. 3.3.

3.2 Local Search by Stochastic Gradient-Descent

The size of the neighborhood for a given point is 2m|V|r and depending on
m, V|, 7 = L%L and the cost of simulation, it might be too large to explore
the entire neighborhood in each step. The procedure for selecting a subset of
the neighborhood is stochastic: we sequentially sample up to maxNeighbors

number of neighbors of u from Nyy 5y e(u). The actual sampling is effected

Stochastic Local Search for Falsification of Hybrid Systems 507

Algorithm 1. Stochastic Local Tabu Search over given discretization of
Ur.

Input: Model S, Input Sequence u, grid over input domain §, time domain
discretization €, Property function ¢, maxLocalImprovements,
maxRestarts

Output: Minimum cost ¢min, Minimizing input Umin

1 Cmin,Cprev = 0 ; 4,J = 0; TabulList := 0

2 while ¢ < maxRestarts do

3 while j < maxLocalImprovements do

4 TabulList.add(u)

5 y := Simulate(S,u) ; ¢ := p(u,y)

6 if ¢ < ¢min then cpin:=c; Upin:=u

7 neighborsVisited := 0

8 while neighborsVisited < maxNeighbors do

9 k:=0

10 do

11 | b := pickNeighbor(3,e,u) ; k ==k + 1
12 while up, € TabuList A k < |Nw s v.e(u)]
13 if uy, = 0 then break

14 neighborsVisited := neighborsVisited + 1
15 ¥nb := Simulate(S, unb), cnb := ©(Unb, Ynb)
16 TabuList.add(unb)

17 if StoppingCondition(cab) then halt

18 if copb < cmin V with probability Psusop: then
19 L Cmin ‘= Cnb ; Umin := Unb
20 U := Umin
21 if slowConvergence(cmin, Cprev) V localOptimum(c, cmin) then
22 L break

23 L .7 = .7 + 17 Cprev ‘= Cmin

24 do

25 ‘ u := pickRandomlInput(§, &, Ur)

26 while u ¢ TabuList

27 =1+ 1

by randomly selecting a j, and for the chosen u;, randomly picking either a
V-neighbor or a W-neighbor from Ny (u;) or Nyy 5(u;). If the latter is picked, the
W-neighbor nbyy (i, ,u;) is obtained by randomly picking an i € [0, | “=ex |] and
a 0 € {+d,—0}. The random choice can be performed based on any distribution
function on the set of ,j indices or on the V-neighborhood. In our implemen-
tation, we use uniform random sampling. This general technique of obtaining a
stochastic approximation of the gradient is called the finite-difference stochastic
approximation (FDSA) method [19], and is the technique currently implemented
in our tool. The algorithm then moves to the neighbor with the lowest cost in
the neighborhood (thus performing the steepest descent along the stochastically

508 J. Deshmukh et al.

approximated gradient). If there is no neighbor with a lower cost, the algorithm
infers that a local optimum has been reached (Line 21).

3.3 Random Restarts and Stochasticity

Like any local search method there is a risk of getting stuck in a local optimum.
We use two mechanisms to help the search procedure escape a local optimum:

1. We introduce jumps in the search procedure stochastically: If the algorithm
detects a local optimum or slow convergence, or once it has exhausted the
maximum permitted local improvements, it restarts the local search from a
randomly chosen point in the input search space that is not in the Tabu list
(Line 21).

2. In the phase where the algorithm is performing local search, we allow the
algorithm to select a neighbor that is not optimum with a small probability
(Line 18) in spirit of techniques such as simulated annealing [13].

To provide the control over termination of the algorithm, we permit the user
to limit the number of random restarts (maxRestarts). Together, maxRestarts,
maxNeighbors, and maxLocalImprovements influence the number of simulations
performed by the algorithm. The performance of Algorithm 1 depends on several
factors. The size of the search space influences how much we can explore it in
finite time. Given a time horizon T, the search space defined by A (6, e,Ur) or
Apn(8,€,Ur) is finite and of size O(7™VI9), i.e., it depends exponentially on m,
the dimension of the dense input domain, maximum number of neighbors in the
finite input domain (which in the worst case is |[V| — 1), and exponentially in ¢
or the number of discretizations of the signal domain, and linearly in 7, i.e., the
length of the input sequence. The efficiency of the operations depends on the
inner-most loop of the procedure, which includes application of the mutation
operations, the cost of running a single simulation and the size of the neighbor-
hood (which determines the number of simulations in each step).

4 Search Space Refinement

We intend our technique to be used by designers who may not have good insight
into the optimal discretization of the input space needed to find a falsifying
(u,y) pair. A conservative assumption is that designers start with a coarse dis-
cretization of the input space. There are distinct advantages to starting with
a coarse level of discretization: as the cardinality of the decision space is given
by 7™V larger values of § and € result in a smaller search space; however, in
most cases, the initial discretization is too coarse to be able to find the (u,y)
with the optimal cost. To address this, our tool supports automatic and heuristic
refinement of the discretization of the input space. We describe this procedure in
Algorithm 2. In Algorithm 2, the key procedure is Refine. This is a heuristic step
to increase the number of elements in the quantized search space. The Refine
procedure currently supports the following heuristics:

Stochastic Local Search for Falsification of Hybrid Systems 509

Algorithm 2. Input Search Space Refinement Procedure

Input: Model S, Initial grid over input domain §q, Initial grid over time
domain &g, Property function ¢, User-defined parameters:
maxRefinements, maxLocalImprovements, maxRestarts

Output: Minimum cost ¢min, Minimizing input Wmin

1 refinementNum := 0

2 §,€:= §0,%0

3 u := pickRandomlInput($, €, Ur)

4 while refinementNum < maxRefinements do
S,u,8,¢, ¢,

5 (Cmin, Wmin) := StochasticLocalTabuSearch | maxLocalImprovements,
maxRestarts

6 if cmin < 0 then

7 L Report violation found, violating input: Umin

8 else

o L $,€,u, TabuList, — Refine <3,s,u, TabuList,)

maxLocallmprovements maxLocallmprovements
10 refinementNum := refinementNum + 1

. Naive Refinement: For uniform discretization, in each refinement iteration, we
can set § = 27 e = 5. Note this quadratically increases the search space for
each input dimension in each iteration, and can cause an exponential blowup
in the number of refinements.

. Input Domain Random Refinement: For a given discretization Ay, (8§,€,Ur),
we choose (at random) an index 4, and for the corresponding dense input
domain)//\71 € §, we add at random a new value in [0, Upqz] to 17\/\1-. In other
words, we increase the number of quantization levels in the i** dense input
domain.

. Time Domain Largest Gap Refinement: For a given discretization
Anu(8,€,Ur), where € = {tg,...,tn} and txy = T, we find the index j corre-
sponding to the largest time-gap in €, and add a time-point there. Formally, j
= argmax {t;41—1; | t;,t;j41 € €}. Then, we add the time-point 2 (¢; +t;41).

0<j<N-1
E.g.,ife ={0.0,1.1,5.3, 7.3,10.0}, then we add the time 3.2 to €. We can com-
bine this heuristic with the heuristic above or the one below. (See Fig.1 (c)
for an illustration).

. Input Domain Largest Gap Refinement: We can use a similar scheme as the
above heuristic to refine the input domain for a particular dense input domain.
We first choose (at random) an index 7, and then for the corresponding input
domain 17\/\1- € §, we add a value to V/\Z where the distance between adjacent
elements is the largest.

510 J. Deshmukh et al.

Definition 7 (Dense Neighborhoods). Given a point u = (w°,... w™, v)

in the input domain U and a J, a dense neighborhood of u is defined as follows:
DNy s5(u) = {(w° +0°,...,w™ +6™,v) | |6°] < J}.

Given an input sequence u = (ug,tg), ..., (un,tn), and a time perturbation
step €, a dense neighborhood of the input sequence u is defined as follows:

DNy s5.-(u) = {(ugsto +€0), - - -, (un,tn +en) | us € DNw s(u;) and V5 : ;| < e}.

Definition 8 (Robust Violation). We say that an input u = (ug,to), -,
(un,ty) robustly violates a property o if the following conditions hold:

1. The model interprets u as a piecewise constant function® u. over [to,tn],
where u. is defined s.t. Vj € [0,N — 1], Vt € [t;,tjy1), uc(t) = u;, and
u.(ty) = un.

2.y =8(u) Ap(u,y) <0,

3. 36 > 0,e* > 0, s.t. Yu' € DNyy s+ «(u) it is true that y = S(u’) A
p(u’,y’) <0.

In other words, a violation is robust if for a given input sequence that
violates the property, all sufficiently nearby input sequences also violate the
property. In the following theorem, we characterize the asymptotic behav-
ior of Algorithm2. The inputs to Algorithm 2 include user-defined constants
maxLocalImprovements, maxRestarts, and maxRefinements; we show that as
the user makes these constants arbitrarily large, the probability of finding a
robust violation goes to 1.

Theorem 1. If the given system S has an input u* that robustly wviolates
the property ¢, then as the choice for the parameters maxLocallmprovements,
maxRefinements, and maxRestarts tend to oo, with a suitable refinement
scheme, the probability that Algorithm 2 finds an input u’ such that p(u’,y’) <0,
where y' = S(u'), tends to 1.

Proof. Due to lack of space, we give only a proof sketch for the case when we
choose the naive refinement scheme. Let u* = (ug,tg),..., (ur,tr) for some
L, where t;, = T, and let §* and * be values that satisfy Condition 3 from
Definition 8. We first show that as we increase maxRefinements, there is some
(large enough) refinementNum (Line 10) for which the refinement generates
uniform discretization A, (9, e,Ur), such that

1. For every point ¢; in u*, there is a corresponding point ¢; in Ay (4, e,Ur) such
that |t; —t;| < e*. (Note that the number of time-points in A, (6, e,Ur) may
be much larger than L);

2. Let uj = (wj,...,wh, ..., wi*,v;). Then, ¥j,i there is a (w',...,w™

Au(6,U) such that |w} — w'| < 6%, and v; = v.

,v) in

2 We can also use piecewise linear interpolation to define uc.

Stochastic Local Search for Falsification of Hybrid Systems 511

Table 1. Results of comparison between SITAR approach and S-TaLiRo tool. For model
RD, we allow refinement of the control points of the input state space, we report the
initial control points in the table and mark these with a .

Model | Requirement | SITAR S-TaLiRo
A ||U],| e || Falsified? | Time (sec) | Sim. ||T| | Falsified? | Time (sec) | Sim.
AFC |(2); ¢=0.024 |U |4,3 y 23 18 7 |y 13 5
(2); ¢=0.028 /U |4,3 y 3 2| 7y 19
(2); ¢=0.032|U |4,3 y 102 717 |y 79 32
MRS | (3) NU | 35,3 y 50 233140 |n 745 1000
(3) U |353 y 241 2058 40 |n 2121 3000
RD (5) NU | 3,2* y 17 206| 2 |n 141 2000
(5) U |3,3" y 47 575 4 |n 141 2000
(5) U |34" y 28 575 8 |y 1 17
PTAC|(6); ¢ =¢1 |U (3,3 y 3996 18| 6 |y 2448 6
(6); ¢=¢ |U |33 y 8424 31| 6 |y 21348 51
(6); ¢=¢ |U |33 y 8784 39| 6 |y 26568 71

Next we show that at this level of discretization, the algorithm can asymp-
totically find an input sequence u’ in DNy s+ .« (u*), which guarantees
that @(u’,y’) < 0. The following observations are used to complete the
proof: Under Condition 1 in Definition 8, any L-length sequence of the form
(ug,t0), ..., (ur,tr) in u*, can be found embedded in a sequence over more time
points. For any given A,(d,&,Ur), there is a finite number of input sequences.
The Tabu list ensures progress as it disallows visiting the same sequence twice;
thus, the probability that a certain neighbor in DNy 5« . is not picked goes
to zero as the user-defined parameters maxLocalImprovements — oo and
maxRestarts — oo.

5 Experimental Results

We implemented Algorithm 2 with support for refinement heuristics and both
uniform and nonuniform discretization in a tool named SITAR (StochastIc Tabu-
search And Refinement). We present the results of comparing the performance
of our method with a state-of-the-art falsification tool S-TaliRo on multiple
academic and industrial system models. For each model, we give requirements
in temporal logic and compare the performance of SITAR and S-TaLiRo.

We pick S-TaLiRo for comparison as our tool SITAR shares several features
with S-TaLiRo: (1) both tools use a property function ¢ to guide the search over
the input space (S-TaLiRo uses robustness degree of a requirement specified
using Metric Temporal Logic), (2) both tools support a finite parameterization
of the input sequence space, (3) both tools use heuristic global optimization
relying on black-box simulations of a given Simulink®model. A key difference is
that S-TaLiRo allows a fixed parameterization of the input signals, where users
choose a number uniformly spaced time-points in the time domain (known as

512 J. Deshmukh et al.

control points), and the optimizer is free to pick any input value in the range
[0, Usmaz] for each dense input dimension. In contrast SITAR also uses a grid over
the dense input domain, and search is restricted to be over the grid elements.
Further, SITAR supports automatic refinement of the input discretization and
allows nonuniform control points in the time domain.

In the results reported in the sequel, we highlight the input sequence dis-
cretization method (A), which is either uniform (U) or nonuniform (NU), size of
the input sequence discretization (JU/]), number of control points in time domain
(IT]), the result of whether faslficiation was successful, total computation time,
and the total number of simulations (Sim.). For comparison between SITAR and
S-TaLiRo, we use a fixed number of control points for three of the four cases and
demonstrate the refinement capability of SITAR on one model. All requirements
used are of the form O;(y < ¢) (specifying that over the interval I, the output
signal y remains less than c¢). We use a property function similar to the robust
satisfaction degree of STL [8].

5.1 Air-Fuel Control System (AFC)

Our first case study is an automotive air-fuel control (AFC) model [12]. The
model is a representation of a closed-loop embedded control system, and con-
tains several challenging features that are commonly found in industrial systems.
It consists of a plant that describes physical phenomena such as fuel injection
dynamics, exhaust gas transport dynamics, and sensor dynamics. While some
aspects of the plant dynamics are derived using first principles, others aspects
are captured with multi-dimensional lookup tables. One challenging aspect of
the system dynamics from an analysis perspective is the presence of a variable
transport delay; this effectively models dynamics containing a delay differen-
tial equation. The controller contains two parts: (1) an open-loop feedforward
observer, and (2) a Proportional + Integral (PI) controller that regulates the
air-fuel (A/F) ratio. For detailed description of this model, please refer to [12].
The controller has several modes, but for the purpose of this case study, we
restrict ourselves to the normal mode of operation.

The paper [12] describes a safety requirement in the normal mode: in the
time range [Thom, Thoz] the normalized A/F ratio should remain within a given
threshold (. The requirement can be described in temporal logic as following:

D[Tnom,Thoz]y <. (2)

We use miny, ¢(7,,,,..7,,.](C—¥(ti)) as the property function. The results shown in
Table 1 show that both SITAR and S-Tal.iRo can falsify the property for all three
choices of the ¢ parameter for the requirement. Two out of three requirements
can be falsified by S-TaLiRo faster than SITAR. For the case when ¢ = 0.028,
SITAR outperforms S-Tal.iRo. The main lesson from this case study is that,
although SITAR uses an essentially discrete optimization based technique, it can
still search over a continuous state space relatively well.

Stochastic Local Search for Falsification of Hybrid Systems 513

5.2 Mode-specific Reference Selection Model (MRS)

In [9], the authors observe that current falsification tools became trapped at a
local optimum due to the structure of the model, which contains complex discrete
and temporal behaviors. The model selects an operating mode based on a region
in the dense input state space. The mode is defined as a Boolean combination of
conditions arising from 8 input signals w?, ..., w® being compared to a threshold.
The output is some function of a ninth input w?, with a different function for
each operating mode. The range for inputs in w!, ..., w8, is [0,100] and the range
for w? is [—5,5]. The safety property requires the output y to remain above —8.
The temporal logic requirement is defined as follows, and the property function
can be derived as before:

Otr Thoa1 (Wi > =8). (3)

In the above, we use 7 = 5.1 s, and T},, = 10 s. According to [9], in order to
falsify the requirement, the system has to select the mode corresponding to the
satisfaction of the following condition:

A (@ (1) >90) A (w*'(t) < 10)) . (4)

i€[1..4]

The probability of hitting the right combination of the w® values that falsify
the property is 10~% (8 inputs, and for each input there is a probability of
%). Given the right combination, a tool such as S-TaLiRo can quickly falsify
the requirement. However, it is not practical to expect that the designer to
provide this insight to the tool, as a Boolean circuit of arbitrary complexity
could be embedded in the given Simulink®model. In our opinion, the value of
the falsification tool is to automatically explore the search space to identify the
problematic input sequences with minimal user input.

As shown in Table 1, SITAR can falsify the requirement. When we discretize
the input space in a nonuniform fashion, SITAR can falsify the requirement in
less than one minute. Here, we choose the partition for w? where i € [1,...,8] as
{0,10,90,100} and {-5,0,5} for w?. One may claim that through this nonuni-
form discretization, we give extra information to the search algorithm; however,
we argue that this information is related to the domain of the inputs and rep-
resentative operating conditions, and such knowledge can be provided by design
engineers with relative ease. Even with uniform gridding, SITAR is still able to
falsify the requirement, with a moderate increase in computing time. For this
example, S-TaLiRo (using the simulated annealing optimization heuristic) could
not find a falsifying input sequence after 3000 simulations.

5.3 Rate Detection (RD) System

Next, we describe the performance of the SITAR algorithm with refinement. We
choose to use a simplified model originating from a rate detection system. The
rate detection system checks if the rate of decrease of the signal is within a
certain threshold [(1,(2] in a given time window [r1,T2], and if yes, causes the

514 J. Deshmukh et al.

60 ¢
40 [9° 28
20

Robustness

Refinement
Fig. 2. The robustness value changes during the refinement process.

output y to be less than —0.001. For different values of (1, (2, 71, 72 the difficulty
of finding the violating input varies. We picked the values [(1, (2] = [2.2, 3.2] and
[11, 2] = [5, 7], which present a reasonable level of difficulty for both SITAR and
S-TaLiRo.

The safety requirement can be expressed as

Opr 7,01 (y > —0.001). 5)

Here, 7 = 0.1 is some initial time where the output behavior is ignored. For
a falsifier like S-TaLiRo that uses a fixed parameterization of the input state
space if the falsifier fails to find a falsifying input sequence using an initial input
parameterization, the algorithm may be run again using an input parameteri-
zation corresponding to a finer resolution in the time domain. This approach is
inefficient for this example, because it is not possible to find a falsifying input
sequence unless discrete time instants exist near the required window of [71, 2],
meaning computational effort is wasted on parameterizations of the time domain
that are too coarse (and thus cannot possibly result in falsifying traces for this
example). This explains why S-TaLiRo fails if the number of input parameters is
less than 8, in Table 1. When using the appropriate number of input parameters,
S-TaLiRo can trivially falsify the requirement; however, knowing the appropriate
number of parameters requires significant user insight.

On the other hand, SITAR dynamically refines the discretization of the input
space as needed. If combined with nonuniform input discretization, the SITAR
algorithm can falsify the requirement in less than 20 s. In Fig. 2, we show how the
robustness value decreases over the 8 refinement steps. Although SITAR could be
trapped in a local optimum (in refinements 4 to 7), it eventually escapes from
the local optimum and falsifies the requirement. Even with a uniform input
discretization, as SITAR introduces time discretization, it can find a falsifying
input sequence.

5.4 Powertrain Air Control (PTAC) System

To illustrate the scalability of our algorithm, we consider a powertrain air con-
trol subsystem (PTAC). This is a prototype model, developed during the early
design phase of an advanced powertrain project. It has a complex, high fidelity
plant model that is able to generate accurate simulation results, which corre-
lates closely with data collected from the actual powertrain components. The
controller contains logic for two of the system’s electronic control units (ECU).

Stochastic Local Search for Falsification of Hybrid Systems 515

Because of the complexity of the model, simulations are computationally expen-
sive (simulating 1 s of real operation requires almost 5 s, so 5x slower). Although
simulation is usually light-weight, in this case, it is crucial for the falsification
tool to use fewer simulations. The safety requirement for this system, obtained
from design engineers, is expressed as follows in temporal logic:

|:I[T,T] (y < C) (6)

Due to proprietary reasons, we suppress the values of . As shown in the last
few rows in Table 1, both S-TalLiRo and SITAR can falsify all requirements suc-
cessfully. We use three values of threshold (i, (2, and (3, where (1 < (2 < (5.
Note that falsifying the requirement becomes harder with increasing ¢ value.
For the last two values of (, SITAR can falsifiy the requirements much faster,
using less than half the time and a lower number of simulations. When ¢ = (i,
S-TaLiRo can falsify the requirement faster, partly because SITAR performs thrice
the number of simulations.

6 Conclusions and Future Work

Conclusion: Given a model of an embedded control system, and a (quantifiable)
property over its input/output behaviors, we present a technique to find robust
violations of the property. The key idea is to transform the problem of searching
over an infinite set of timed input sequences to the system to a finite search over
a discretized version of the input space using a Tabu list to avoid repeated com-
putations. The search proceeds in the fashion of a stochastic gradient descent,
with random restarts to perturb the system away from local optima. We wrap
the search procedure in an outer loop that dynamically refines the input space
discretization. This removes the burden of providing a clever discretization from
the system designers, shifting it to the refinement heuristics employed by the
tool. Our technique shows promise on industrial-sized benchmark problems, as
well as toy problems that pose a challenge to existing falsification tools.

Future Work: In this paper, the technique to perform stochastic gradient
descent involves computing finite differences of a point’s cost with its neigh-
bors’ costs (k + 1 valuations for a k-dimensional space). Each cost computation
requires a simulation with the neighboring sequence as input. We can instead
use the simultaneous perturbation stochastic approximation technique (SPSA),
where the effect of a gradient descent is converged upon using a stochastic result
[19]. In the SPSA approach, only 3 valuations are made, regardless of the dimen-
sion. Each computation of a cost function requires a simulation; thus, the SPSA
scheme would help reduce the number of simulations.

In our current implementation, the Tabu list is stored as a simple list data
structure in MATLAB®; an alternative is to use spatial data structures such as
k-d trees. Currently, the random restarts in our technique are chosen based on
a uniform random distribution over the points in the discretization of the input
space. An interesting direction to pursue is that of coverage metrics such as the
star-discrepancy metric [9] to cover the input sequence space.

516 J. Deshmukh et al.

Acknowledgments. The authors would like to thank the anonymous reviewers for
constructive feedback that helped improve this paper.

References

1. Abbas, H., Fainekos, G.: Linear hybrid system falsification through local search.
In: Bultan, T., Hsiung, P-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 503-510.
Springer, Heidelberg (2011)

2. Annapureddy, Y.S.R., Fainekos, G.E.: Ant Colonies for Temporal Logic Falsifica-
tion of Hybrid Systems. In: Proceedings of the IECON, pp. 91-96 (2010)

3. Annapureddy, Y.S.R., Liu, C., Fainekos, G.E., Sankaranarayanan, S.: S-TaLiRo: a
tool for temporal logic falsification for hybrid systems. In: Proceedings of the Tools
and Algorithms for the Construction and Analysis of Systems, pp. 254-257 (2011)

4. Asarin, E., Maler, O.: Achilles and the tortoise climbing up the arithmetical hier-
archy. JCSS 57(3), 389-398 (1998)

5. Hoxha, H.A.B., Fainekos, G.: Using S-TaLiRo on industrial size automotive models.
In: Worskhop on Applied Verification for Continuous and Hybrid Systems (2014)

6. Cordeau, J.-F., Laporte, G., Mercier, A., et al.: A unified tabu search heuristic for
vehicle routing problems with time windows. J. Oper. Res. Soc. 52(8), 928-936
(2001)

7. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167-170. Springer, Heidelberg (2010)

8. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92-106. Springer, Heidelberg (2010)

9. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Effi-
cient guiding strategies for testing of temporal properties of hybrid systems. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp.
127-142. Springer, Heidelberg (2015)

10. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42), 4262-4291 (2009)

11. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s Decidable about Hybrid
Automata?. In: Proceedings of the Symposium on Theory of Computing, pp. 373—
382 (1995)

12. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain Control Ver-
ification Benchmark. In: Proceeding of Hybrid Systems: Computation and Control,
pp. 253-262 (2014)

13. Kirkpatrick, S., Vecchi, M., et al.: Optimization by simmulated annealing. Science
220(4598), 671-680 (1983)

14. Kuféatko, J., Ratschan, S.: Combined global and local search for the falsification
of hybrid systems. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol.
8711, pp. 146-160. Springer, Heidelberg (2014)

15. Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., Pappas,
G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear
hybrid systems. In: Proceeding of Hybrid Systems: Computation and Control, pp.
211-220 (2010)

16. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid systems: from verification to falsi-
fication by combining motion planning and discrete search. Formal Methods Sys.
Design 34(2), 157-182 (2009)

17.

18.

19.

20.

Stochastic Local Search for Falsification of Hybrid Systems 517

Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of 1t] safety properties in hybrid
systems. Softw. Tools Technol. Transfer 15(4), 305-320 (2013)
Sankaranarayanan, S., Fainekos, G.E.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. Computation and Control. In: Proceeding
of Hybrid Systems (2012)

Spall, J.C.: Introduction to Stochastic Search and Optimization, 1st edn. Wiley,
New York (2003)

Zutshi, A., Sankaranarayanan, S., Deshmukh, J.V., Kapinski, J.: Multiple shooting,
cegar-based falsification for hybrid systems. In: Proceedings of the 14th Interna-
tional Conference on Embedded Software, p. 5 (2014)

	Stochastic Local Search for Falsification of Hybrid Systems
	1 Introduction
	2 Preliminaries
	3 Stochastic Local Tabu Search
	3.1 Discretization and Neighborhoods
	3.2 Local Search by Stochastic Gradient-Descent
	3.3 Random Restarts and Stochasticity

	4 Search Space Refinement
	5 Experimental Results
	5.1 Air-Fuel Control System (AFC)
	5.2 Mode-specific Reference Selection Model (MRS)
	5.3 Rate Detection (RD) System
	5.4 Powertrain Air Control (PTAC) System

	6 Conclusions and Future Work
	References

