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Abstract. We propose two expressive and complementary techniques
for the verification of safety properties of infinite-state BIP models. Both
our techniques deal with the full BIP specification, while the existing
approaches impose considerable restrictions: they either verify finite-
state systems or they do not handle the transfer of data on the interac-
tions and priorities.

Firstly, we propose an instantiation of the ESST (Explicit Scheduler
Symbolic Thread) framework to verify BIP models. The key insight is to
apply symbolic reasoning to analyze the behavior of the system described
by the BIP components, and an explicit-state search to analyze the
behavior of the system induced by the BIP interactions and priorities.
The combination of symbolic and explicit exploration techniques allow
to benefit from abstraction, useful when reasoning about data, and from
partial order reduction, useful to mitigate the state space explosion due
to concurrency.

Secondly, we propose an encoding from a BIP model into a symbolic,
infinite-state transition system. This technique allows us to leverage the
state of the art verification algorithms for the analysis of infinite-state
systems.

We implemented both techniques and we evaluated their performance
against the existing approaches. The results show the effectiveness of our
approaches with respect to the state of the art, and their complementar-
ity for the analysis of safe and unsafe BIP models.

1 Introduction

BIP [2,4] is a framework for the component-based design of complex concur-
rent systems that is being actively used in many industrial settings [3,5]. The
verification of BIP plays a crucial role in the Rigorous System Design method-
ology [28], where a correct implementation of the system is obtained by a series
of transformations from its high-level model; proving that a property holds in
the model will ensure that it holds in the implementation.

This work was carried out within the D-MILS project, which is partially funded
under the European Commission’s Seventh Framework Programme (FP7).

c© Springer International Publishing Switzerland 2015
B. Finkbeiner et al. (Eds.): ATVA 2015, LNCS 9364, pp. 326–343, 2015.
DOI: 10.1007/978-3-319-24953-7 25



Formal Verification of Infinite-State BIP Models 327

Despite the importance of verifying BIP models, the existing approaches (e.g.
implemented in tools like DFinder [7],VCS [20] and Bip2Uppaal [29]) impose
considerable restrictions on the models that can be analyzed. In particular, only
DFinder verifies models with infinite-state data variables. However, DFinder
does not consider the data transfer on interactions, an essential feature to express
that data is exchanged among the components (consider that in BIP the com-
ponents cannot share variables), and the priorities among interactions.

In this paper, we focus on the safety property verification of infinite-state BIP
models, and we propose two techniques that are: (i) expressive enough to capture
all the features of infinite-state BIP models (e.g. data transfer, priorities); (ii)
complementary, with respect to the performance, for verifying safe and unsafe
models.

The first solution is a novel verification algorithm based on the Explicit Sched-
uler, Symbolic Threads (ESST) framework [16]. The ESST extends lazy pred-
icate abstraction and refinement [21,22] to verify concurrent programs formed
by a set of cooperative threads and a non-preemptive scheduler; the main char-
acteristic of the approach is to use lazy predicate abstraction to explore threads
and explicit-state techniques to explore the scheduler. The choice of ESST is
motivated by the clear separation of computations and coordination in the BIP
language, which is similar to the separation of threads and scheduler in the
ESST, and by the ESST efficiency, since the ESST outperforms the verifica-
tion techniques based on sequentialization (e.g. in the context of SystemC and
Fair Threads programs [16]). In our work, we show an efficient instantiation of
the ESST framework in an algorithm that verifies BIP models (ESSTBIP). The
instantiation is not trivial, and consists of defining a suitable interaction model
between the threads and the scheduler, the consequent mapping of BIP com-
ponents into threads, and of implementing the scheduler. Moreover, we improve
the performance of our approach with several optimizations, which are justified
by the BIP semantic.

In our second solution we explore a conceptually simple, but still novel, encod-
ing of a BIP model into an infinite-state transition system. This alternative flow
is motivated by the recent advancements in the verification of infinite-state sys-
tems (e.g. see [14,23]). Also this technique supports all the BIP features, like
priorities and data transfer on interactions.

We provide an implementation of both approaches: the ESSTBIP is imple-
mented in the Kratos [13] software model checker; the translational approach
is performed using the BIP framework and then verified with the nuXmv [12]
model checker. We performed a thorough experimental evaluation comparing the
performance of the two techniques and of DFinder (in this case, only on the
models without data transfers). The results show that the proposed approaches
always perform better than DFinder, and that ESSTBIP and the translational
approach using nuXmv are complementary, with ESSTBIP being more efficient
in finding counterexamples for unsafe models, while the translational approach
using nuXmv is more efficient in proving correctness of safe models.
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This paper is structured as follows. We first provide the background of the
BIP language in Sect. 2. Then in Sect. 3 we describe the ESSTBIP algorithm, as
well as its optimizations. In Sect. 4 we show the encoding of BIP into a symbolic
transition system. Then, in Sect. 5 we review the related work and in Sect. 6 we
present the experimental evaluation. Finally, in Sect. 7 we draw some conclusions
and outline directions for future work.

2 The BIP Model

We denote by V ar a set of variables with domain Z
1, (i.e. for all x ∈ V ar,

Dom(x) = Z). An assignment is of the form x := exp, where x ∈ V ar and
exp is a linear expression over V ar. An assumption is of the form [bexp], where
bexp is a Boolean combination of predicates over V ar. Let BExp(V ar) be the
set of assumptions and Exp(V ar) be the set of assignments. Let Ops(V ar) =
BExp(V ar)∪Exp(V ar)∪{skip} be the set of edge operations, where skip denotes
an operation without effects on V ar. A state s : V ar → Z is a mapping from
variables to their valuations; we use State to denote the set of all possible states.
We define an evaluation function [[·]]E : exp → (State → Z) for assignments and
[[·]]B : bexp → (State → {true, false}) for assumptions. We refer to [16] for the
definition of [[·]]E and [[·]]B. We denote by s[x := e] the substitution of x by e in
expression s.

The BIP Syntax. An atomic component is a tuple Bi = 〈V ari, Qi, Pi, Ei, l0i
〉

where V ari is a set of variables, Qi is a set of locations, Pi is a set of ports,
Ei ⊆ Qi × Pi × BExp(V ari) × Exp(V ari) × Q′

i is a set of edges extended with
guards and operations and l0i

∈ Qi is the initial location.
We assume that, for each location, every pair of outgoing edges labeled with

the same port has disjoint guards. This can be achieved by simply renaming the
ports and imposes no restrictions on the BIP expressiveness. We also identify a
set of error locations, Qerri

⊆ Qi to encode the safety property2.
Let B = {B1, . . . , Bn} be a set of atomic components. An interaction γ for

B is a tuple 〈Act, g, op〉 such that: Act ⊆
⋃n

i=1 Pi, Act �= ∅, and for all i ∈ [1, n],
|Act ∩ Pi| ≤ 1 , g ∈ BExp(

⋃
Bj∈γB V arj) and op ∈ Exp(

⋃
Bj∈γB V arj), where

γB = {Bj|Bj ∈ B, Act ∩ Pj �= ∅}.
We assume that the sets of ports of the components in aBIPmodel and the sets

of local variables are disjoint (i.e. for all i �= j, Pi ∩ Pj = ∅ and V ari ∩ V arj = ∅).
For a port α ∈ Pi, we identify with id(α) the index i of the component Bi.

Let Γ be a set of interactions, a priority model π of Γ is a strict partial order
of Γ . For γ1, γ2 ∈ Γ , γ1 has a lower priority than γ2 if and only if (γ1, γ2) ∈ π.
For simplicity, we write γ1 < γ2 in this case.

1 We also consider finite domain variables (e.g. Boolean), which can be easily encoded
in Z.

2 We can express any safety property using additional edges, interactions and error
locations.
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A BIP model PBIP is a tuple 〈B, Γ, π〉, where B = 〈B1, . . . , Bn〉 is a set of
atomic components, Γ is a set of interactions over B and π is a priority model
for Γ .

We assume that each component Bi of PBIP has at most an error location,
without outgoing edges and such that the port of all its incoming edges is errori;
each errori appears in a unique singleton interaction and all such interactions
have the highest priority in PBIP. Any BIP model can be put into such form
(see [10]).

The BIP Semantics. A configuration c of a BIP model PBIP is a tuple
〈〈l1, s1〉, . . . , 〈ln, sn〉〉 such that for all i ∈ [1, n], li ∈ Qi and si : V ari → Z is a
state of Bi. Let PBIP = 〈B, Γ, π〉 be a BIP model and c = 〈〈l1, s1〉, . . . , 〈ln, sn〉〉
be a configuration. The interaction γ = 〈Act, g, op〉 ∈ Γ is enabled in c if,
for all the components Bi ∈ B such that Act ∩ Pi �= ∅, there exists an edge
〈li, Act ∩ Pi, gi, opi, l

′
i〉 ∈ Ei and [[gi]]B(si) = true, and [[g]]B(s1, . . . , sn) = true.

A BIP model PBIP = 〈B, Γ, π〉 can take an edge from the configuration
c = 〈〈l1, s1〉, . . . , 〈ln, sn〉〉 to the configuration c′ = 〈〈l′1, s′

1〉, . . . , 〈l′n, s′
n〉〉 if there

exists an interaction γ = 〈Act, g, op〉 such that: (i) γ is enabled in c; (ii) there
does not exist an enabled interaction γ′ ∈ Γ in c such that γ′ > γ; (iii) for all
Bi ∈ B such that Act ∩ Pi �= ∅, there exists 〈li, Act ∩ Pi, gi, opi, l

′
i〉 ∈ Ei and if

op = x := exp, opi = y := expi then s′′
i = si[x := [[exp]]E(si)], s′

i = s′′
i [y :=

[[expi]]E(s′′
i )]; (iv) for all Bi ∈ B such that Act ∩ Pi = ∅, l′i = li and s′

i = si.
We use the notation c

γ→ c′ to denote that there exists an edge from the
configuration c to the configuration c′ on the interaction γ. A configuration
c0 = 〈〈l1, s1〉, . . . , 〈ln, sn〉〉 is an initial configuration if, for some i ∈ [1, n], li = l0i

and, for all i ∈ [1, n], si is a valuation for V ari
3. A configuration c is reachable

if and only if there exists a sequence of configurations c0
γ1−→ c1

γ2−→ . . .
γk−→ ck,

such that c0 is an initial configuration and ck = c. A BIP model is safe if no
error locations are reachable.

3 ESST for BIP (ESSTBIP)

3.1 The ESST Framework

In this subsection we provide the necessary background on the ESST framework,
following the presentation of [16,17].

Programming Model. The ESST framework analyzes a multi-threaded pro-
gram P = 〈T ,Sched〉, consisting of a set of cooperative threads T = 〈T1, . . . , Tn〉
and a non-preemptive scheduler Sched. A non-preemptive scheduler cannot
interrupt the execution of a thread, while a cooperative thread is responsible
for suspending its execution and releasing the control to the scheduler.
3 While we did not add initial predicates for V ari, this can be encoded with an addi-

tional initial location and an edge that has as guard the initial predicates.
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A thread Ti = 〈Gi, LV ari〉 is a sequential program with a set of local variables
LV ari and is represented by a control-flow graph (CFG) Gi = (Li, Ei, l0i

, Lerri
),

where: (i) Li is the set of locations; (ii) Ei ⊆ Li × Ops(LV ari) × Li is the set
of edges; (iii) l0i

∈ Li is the entry location; (iv) Lerri
⊆ Li is the set of error

locations.
A scheduler Sched = 〈SVar ,FS 〉 has a set of variables SVar and a scheduling

function FS . For each thread Ti, the scheduler maintains a variable stTi
∈ SVar

to keep track of its status (i.e. Running,Runnable,Waiting). A scheduler state
S is an assignment to all the variables SVar . Given a scheduler state S where
no thread is Running, FS (S) generates the set of scheduler states that describes
the next thread to be run. We denote by SState the set of all possible scheduler
states, and by SStateOne the set of scheduler states, where only one thread
is Running. A thread can change the scheduler state by calling a primitive
function. For example, the call to a primitive function can change the thread
status from Running to Waiting to release the control to the scheduler.

The intuitive semantics of a multi-threaded program is the following: the
program executes the thread in the Running status (note that there is at most
one running thread); the running thread Ti can suspend its execution, setting
the variable stTi

to a value different from Running, by calling an appropriate
primitive function; when there are no running threads, the scheduler executes its
scheduling function to generate a set of running threads. The next thread to run
is picked non-deterministically. See [10] for a formal definition of the semantic.

The ESST Algorithm. The ESST algorithm [16,17] performs a reachability
analysis of a multi-threaded program P = 〈T ,FS 〉 using explicit-state tech-
niques to explore the possible executions of the scheduler and lazy predicate
abstraction [22] to explore the executions of the threads. In the following, we
rely on the extended version of the ESST where the scheduler execution is
semi-symbolic [17], since we will need a scheduler that reads and writes the local
state of the threads. We provide a concise description of the reachability analysis
algorithm, and refer to [16,17] for the details.

The ESST constructs an abstract reachability forest (ARF) to represent the
reachable states. An ARF node is a tuple 〈〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ,S〉, where for
all i ∈ [1, n], li ∈ Li is a location of Ti and ϕi is a local region (a formula over
LV ari), ϕ is a global region4 (a formula over

⋃
i∈[1,n] LV ari) and S is a scheduler

state. The ARF is constructed by expanding the ARF nodes. An ARF node can
be expanded as long as it is not covered (no other nodes in the ARF include the
set of states denoted by this node) or if it is not an error node (the node does
not contain any error location). If ESST terminates and all the nodes in the
ARF are covered then P is safe. If the expansion of the ARF reaches an error
node, the ESST builds an abstract counterexample (a path in the ARF from
the initial node to the error node), which is simulated in the concrete program;

4 Whereas in the general ESST framework the global region is used to track both local
and global variables, we use it to only track the relations among the local variables
due to the data transfer on interactions.
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if the simulation succeeds, we find a real counter-example and the program is
unsafe. Otherwise the counter-example is spurious, the ESST refines the current
abstraction, and restarts the expansion (see [16] for details).

The node expansion uses three basic operations: the symbolic execution of a
thread (based on the abstract strongest post-condition), the execution of a prim-
itive function, and the semi-symbolic execution of the scheduling function FS .
The abstract strongest post-condition SPδ

op(ϕ) is the predicate abstraction of the
set of states reachable from any of the states in the region ϕ after executing the
operation op, using the set of predicates δ. ESST associates a set of predicates
to thread locations (δl′i), as well as to the global region (δ). The primitive func-
tions are executed by the primitive executor Sexec : (SState×PrimitiveCall) →
(Z× SState) to update the scheduler state. The scheduler function FS is imple-
mented by a function FS : ARFNodes → (2SStateOne×LFProg), where SStateOne

is the set of scheduler states with only one running thread, ARFNodes is the set
of ARF nodes and LFProg is the set of loop-free programs (programs that con-
tains assignments and conditional statements, but not loops) over the variables
of P5. A ARF node η = (〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ,S) is expanded by the following
two rules:

E1. If S(stTi
) = Running and there exists an edge (li, op, l′i) ∈ Ei, create a

successor node (〈l1, ϕ′
1〉, . . . , 〈l′i, ϕ′

i〉, . . . , 〈ln, ϕ′
n〉, ϕ′,S′), where:

– 〈S′, ôp〉 =

{
〈S, op〉 if op is not a primitive function call
〈S′′, x := v〉 if op is x := f(y) and (v,S′′) = Sexec(S, f(y))

– ϕ′
i = SP

δl′
i

ôp (ϕi ∧ ϕ), ϕ′
j = ϕj , for i �= j, and ϕ′ = SPδ

ôp(ϕ).
(δl′i and δ are the precisions associated to the location li and to the global
region respectively).

E2. If there are no running threads, for each 〈S′, P lf 〉 ∈ FS (η) create a successor
node
(〈l1, ϕ′

1〉, . . . , 〈ln, ϕ′
n〉, ϕ′,S′), where ϕ′

j = SP
δl′

j

P lf (ϕj ∧ ϕ), for j ∈ [1, n] and
ϕ′ = SPδ

ˆP lf
(ϕ).

The rule E1 expands the ARF node by unfolding the CFG edge 〈l, op, l′〉
of the running thread Ti. If the operation op is not a primitive function, then
the scheduler state is unchanged (i.e. S′ = S). Otherwise, if the operation op
is a primitive function, (e.g. x := f(y)), the algorithm executes the primitive
executor Sexec to change the scheduler state and collect the return value of the
function (i.e. (v,S′′) = Sexec(S, f(y))). In both cases, the state of the running
thread and the global region are updated by computing the abstract strongest
post condition. The rule E2 executes the scheduling function to create a new
ARF node for each output state of the scheduling function when all the threads
are not running. A detailed illustration of the execution of scheduling function
will be give in Sect. 3.2.

5 The ESST framework does not allow the scheduler to produce programs with loops.
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3.2 Instantiation of ESST for BIP

To instantiate ESST for BIP, there are two näıve approaches. One is to trans-
late a BIP model to a SystemC program, hence relying on the SystemC prim-
itive functions and the SystemC scheduler (i.e. the existing instantiation of
ESST [16]). This approach is inefficient, since one has to encode the BIP seman-
tics with additional threads. Another approach is to reuse the SystemC primitive
functions as in [16,17], modifying the scheduler to mimic the BIP semantics. This
approach is not efficient either, since the primitive functions in SystemC only
allow threads to notify and wait for events. This has the effect of introducing
additional variables in the scheduler to keep track of the sent and received events,
which considerably increases the state space to be explored.

In this paper, we provide a novel instantiation of the ESST framework to
analyze BIP models, it consists of: (i) a mapping from BIP to multi-threaded
programs and the definition of a new primitive function wait() used by threads
to interact with the scheduler; (ii) a new semi-symbolic scheduler that respects
the BIP operational semantics and preserves the reachability of error locations.

We use the ESST version with a semi-symbolic scheduler, instead of using
a purely explicit one, allowing the scheduler to read and write the state of the
threads. This feature is important to analyse BIP models because, in BIP, inter-
action guards and effects are expressed over the global state of the system.
Moreover, the semi-symbolic scheduler is also needed to correctly enforce the
BIP priorities.

In each scheduling loop, the scheduler performs two tasks: (i) it computes
the set of possible interactions and chooses one to be run; (ii) it schedules the
execution of each thread that participates in the chosen interaction. When all
the threads are in the Waiting state, the scheduler computes the set of possible
interactions and chooses one interaction to be run by setting the status of the
participating threads to Runnable, and by setting the value of a local variable in
the thread. The variable is used in the guards of the thread edges and encode the
BIP ports. Moreover, the scheduler is also responsible for executing the global
effects of the interaction. Whithin each scheduling cycle, the scheduler picks the
Runnable threads one by one, until no such threads are available.

Primitive Functions and Threads. In our BIP instantiation of ESST we
introduce a primitive function wait(), which suspends the execution of the calling
thread and releases the control back to the scheduler (thus, we have only one
primitive function). The function does not change the state of the thread, but
changes the status of the thread in the scheduler state to Waiting. Since the
return value of wait() is of no interest, we will write wait() instead of x := wait().
Formally, the semantics of wait() is defined by the primitive executor Sexec,
that is [[wait()]]E(s,S) = Sexec(〈S, wait()〉) = 〈∗,S′〉, where ∗ denotes a dummy
return value, s is the state of Ti, and S

′ = S[stTi
:= Waiting], if Ti is the caller

of wait().
Given an atomic component Bi = 〈V ari, Qi, Ei, l0i

, Qerri
〉 of PBIP, we define

the thread Ti = 〈Gi, LV ari〉, where LV ari = V ari ∪ {evti}, Dom(evti) = Z and
Gi = (Li, Ei, l

′
0i

, Lerri
), where:
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Li ={l, lwait|l ∈ Qi} ∪ {le|e ∈ Ei, e = 〈l, α, g, op, l′〉};
Ei ={〈l, wait(), lwait〉|l ∈ Qi}∪

{〈lwait, evti = α, le〉, 〈le, op, l′〉|e ∈ Ei, e = 〈l, α, g, op, l′〉};
l′0i

=l0i
;

Lerri
=Qerri

.

We introduce an additional integer variable evti for each thread and we associate
every port α to a distinct integer value; for clarity, we use the notation evti = α
instead of evti = i, where i ∈ Z is the value we associated to the port α. The
CFG Gi of the thread is obtained from a transformation of the BIP atomic
component Bi: (i) adding a location lwait and an edge from l to lwait for each
l ∈ Qi; (ii) for each edge e = 〈l, α, g, op, l′〉 ∈ Ei, add an intermediate location
le, and an edge from lwait to le, labelled with evti = α, and an edge from le to
l′, labelled with op6.

The edge to the location lwait labelled by the primitive function wait()
ensures that the thread releases the control to the scheduler, waiting that the
scheduler chooses an interaction to be run. The subsequent edge labelled by
evti = α ensures that the thread only executes the edge chosen by the scheduler
and constrained by the value of the variable evti. Notice that the edge guard
will be taken into account by the BIP scheduler.

Semi-symbolic BIP Scheduler. For analyzing BIP models, we design the
semi-symbolic BIP scheduler Sched(PBIP) = 〈FS ,SVar〉, where SVar = {stT1 ,
. . . , stTn

}, and FS is the scheduling function that respects the BIP semantics.
As required by the ESST, the scheduler keeps the status of each thread Ti in a
variable stTi

, with values {Running, Runnable, Waiting}. Initially all stTi
are

Runnable.
Given an ARF node η = 〈〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ,S〉, we say that an interac-

tion γ = 〈{α1, . . . , αk}, g, op〉 is enabled if there exists a set of edges {tα1 , . . . , tαk
}

such that, for all i ∈ [1, k], tαi
∈ Eid(αi), tαi

= 〈lid(αi), αi, gtαi
, optαi

, l′tαi
〉. In

that case, we write enabled(η, γ) and we denote with EnabledSet(η) the set of
all the enabled interactions in η. Notice that the concept of enabled interaction
on an ARF node is different from the one we had on a BIP configuration: we do
not check the satisfiability of the guards in the ARF node to determine the set
of enabled interactions. Instead, interaction guards and effects are accounted for
by the symbolic execution of the scheduling function.

FS alternates two different phases: (i) scheduling of new interactions; (ii)
execution of edges participating in the chosen interaction. Given an ARF node
η = 〈〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ,S〉, FS (η) is defined as follows:

F1. If for all stTi
∈ SVar , such that S(stTi

) = Waiting and EnabledSet(η) =
{γ1, . . . , γk}, FS (η) = {〈S1, P lf

1 〉, . . . , 〈Sk, P lf
k 〉}, where for all i ∈ [1, k]:

6 Note that, while the formal presentation introduces intermediate locations and edges,
in practice these are collapsed in a single edge since we use the large block encod-
ing [8].
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– γi = 〈{α1
i , . . . , α

l
i}, gi, opi〉;

– Si = S[stT
id(α1

i
)
:= Runnable, . . . , stT

id(αl
i
)
:= Runnable];

– P lf
i = p; gi; ge; opi; evt1

id(α1
i )

:= α1
i ; . . . ; evtl

id(αl
i)

:= αl
i, where

p =
∧

〈γi,γ′〉∈π,α∈γ′
∧

〈l,α,gα,opα,l′〉∈Eid(α)
¬gα

and ge =
∧

α∈γi

∨
〈l,α,gα,opα,l′〉∈Eid(α)

gα.
F2. If there exists a thread Ti, such that S(stTi

) = Runnable, then FS (η) =
{〈S[stTi

:= Running], skip〉}.

In rule F1, the formula p encodes the priority constraints (there are no
enabled interactions with a higher priority than γi), and the formula ge imposes
that, in each thread that participates in the interaction, there is at least one
enabled edge labeled with the corresponding interaction port. Thus, the loop
free program P lf

i ensures that the interaction γi will be scheduled, according to
the BIP semantics, and also imposes the correct ports that must be executed
by the threads. The rule F2 just picks the next thread to be run.

Correctness of ESSTBIP.

Theorem 1. Let PBIP = 〈B, Γ, π〉 be a BIP model and P = 〈T ,Sched(PBIP)〉
be the corresponding multi-threaded program with semi-symbolic BIP scheduler
Sched(PBIP). If the ESSTBIP algorithm terminates on P, then the ESSTBIP

returns safe iff the BIP model PBIP is safe.

For lack of space, we provide the proofs in the extended technical report [10].

3.3 Optimizations

In this section we present some optimizations aiming to reduce the number of
the ARF nodes that must be explored during the reachability analysis.

Partial Order Reduction for BIP. The application of POR to the ESSTBIP

is based on the following idea: when the ESSTBIP executes the scheduling func-
tion FS on a node η, it creates the successor nodes only for a representative
subset of the set of all the enabled interactions EnabledSet(η). To compute the
independence relation between interactions, we define the following valid depen-
dence relation [16] for BIP models: two interactions are dependent if they share
a common component. This valid dependent relation can be computed statically
from the BIP model. We have implemented both persistent set and sleep set
POR approaches. The use of POR in ESSTBIP is correct since the application
of POR to the general ESST framework is sound, provided a valid dependence
relation [16].
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Simultaneous Execution of the Edges Participating in an Interaction.
In the basic ESSTBIP, we serialize the edges participating in the same interaction
since we use a scheduling function that allows only one thread to run at a time.
Consider an ARF node η = 〈〈l1, ϕ1〉, . . . , 〈ln, ϕn〉, ϕ,S〉, and an interaction γ =
〈{α1, . . . , αk}, g, op〉 enabled in η. Let {tα1 , . . . , tαk

} be the set of participating
edges in γ and opα1 , . . . , opαk

be their respective effects. When we expand η, we
will create the following sequence of successor nodes:

η
E2−−→ η1

E2−−→ η2
α1−→ η3

opα1−−−→ η4
wait()−−−−→ η5

E2−−→ η6
α2−→ . . .

wait()−−−−→ η2+4k

where the label E2 denotes the execution of the ESSTBIP scheduler function.
The intermediate nodes η1, . . . , η2+4k−1 are due to the sequentialization of the
execution of the edges participating in the interaction. These intermediate nodes
increase the complexity of the reachability analysis. They do not correspond
to any state reachable in the BIP model, where all the edges involved in an
interaction are executed simultaneously, and are an artefact of the encoding of
the BIP model into the ESST framework. We can modify the search discussed
in Sect. 3 in order to avoid the generation of these intermediate states by (i)
extending the primitive execution function Sexec to simultaneously evaluate
a sequence of primitive functions, (ii) changing the node expansion rule E1 of
ESST as follows:

E1’. If S(stTi
) = Running, let TR = {Ti ∈ T |S(stTi

) �= Waiting} be the set of
threads not in the Waiting state. Let op = op1; . . . ; opk be a sequential com-
position (in arbitrary order) of the operations labeling the outgoing edges
(li, opi, l

′
i) ∈ Ei, for Ti ∈ TR

7. The successor node is(〈l′1, ϕ′
1〉, . . . , 〈l′n, ϕ′

n〉, ϕ′,
S

′), where:

– 〈S′, ôp〉 =

{
〈S, op〉 if none of the opi in op is a call towait()

〈S′′, skip〉 if all opi in op is await() and(∗,S′′) = Sexec(S, op)

– ϕ′
i = SP

δl′
i

ˆopi
(ϕi ∧ ϕ) for each thread Ti ∈ TR, ϕ′

j = ϕj and l′j = lj for
each thread Tj /∈ TR, and ϕ′ = SPδ

ôp(ϕ), where ôpi is the projection of
ôp on the instructions of thread Ti.

We remark that, in BIP, we do not have shared variables. Thus, all the opi

are local to the corresponding components, and executing a sequence of opi

altogether will not create any conflict. The correctness of this optimization can
be easily justified since it respects BIP operational semantics.

Implicit Primitive Functions. The previous optimization does not remove
all the intermediate ARF nodes η1, . . . , η2+4k−1 visited by the ESSTBIP that
do not have a corresponding configurations in the BIP operational semantics.
In particular, we can avoid the creation of the intermediate ARF nodes created

7 Note that there is no non-determinism on the outgoing edge to be executed by each
thread Ti after the scheduling of the interaction γ.
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by calls to wait() noting that: (i) wait() is always executed immediately after

the execution of some edge tαi
labeled by αi, i.e. η

αi−→ η′ wait()−−−−→ η′′ (see the
description of the sequence of the ARF nodes visited after the scheduling of an
interaction in the previous optimization); (ii) wait() only modifies the scheduler
states of an ARF node. Thus, we can combine the execution of wait() with the
execution of its preceding edge tαi

. This optimization can be integrated in the
ESSTBIP framework by modifying rule E1 as follows.

E1”. If S(stTi
) = Running, and {(li, op, l1i ), (l

1
i , wait(), l′i)} ⊆ Ei, then the suc-

cessor node is (〈l1, ϕ′
1〉, . . . , 〈ln, ϕ′

n〉, ϕ′,S′), where:
– 〈S′, ôp〉 = 〈S′′, op; skip〉 if op is not wait() and (∗,S′′) = Sexec(S,

wait())

– ϕ′ = SPδ
ôp(ϕ), ϕ′

i = SP
δl′

i

ôp (ϕi ∧ ϕ), and ϕ′
j = ϕj , for i �= j,

This optimization is correct with respect to BIP semantics since ESSTBIP will
still visit all the reachable states of the original BIP model PBIP. To see this,
notice that there are no interactions to be scheduled in the intermediate sequence
of ARF nodes created while executing an interaction, and after the execution of
the edge tαi

the thread Ti will always stop its execution.
We remark that the optimization for the implicit execution of primitive func-

tions and the optimization for the simultaneous execution of the edges of an
interaction can be combined together, to further reduce the search space of the
basic ESSTBIP.

4 Encoding BIP into Transition System

In this section, we show how to encode a BIP model into a Symbolic Transition
System, thus enabling a direct application of state-of-the-art model checkers for
infinite state systems, such as the nuXmv [12] symbolic model checker.

A Symbolic Transition System (STS) is a tuple S = 〈V, I, T r〉, where: (i)
V is a finite set of variables, (ii) I is a first-order formula over V (called initial
condition), and (iii) Tr is a first-order formula over V ∪V ′ (called transition con-
dition8). The semantic of an STS can be given in terms of an explicit transition
systems (see for example [26]).

The encoding of a BIP model PBIP = 〈B, Γ, π〉 as an STS SPBIP
= 〈V, I, T r〉

is the following. The set of variables is defined as:

V =
⋃n

i=1 {loci} ∪
⋃n

i=1 x|x ∈ V ari} ∪
⋃n

i=1 {vα|α ∈ Pi} ∪ {vΓ }

where for all i ∈ [1, n], we preserve the domain of each var x ∈ V ari, Dom(loci) =
Qi; for all α ∈ Pi, Dom(vα) = {true, false}; and Dom(vΓ ) = Γ .

The initial condition is I =
∧n

i (loci = l0i
), since we do not have initial

predicates in PBIP. The transition condition is Tr = (
∧n

i=1(Trei
∧Trpi

)∧TrΓ ∧
Trπ, where Trei

encodes the edges of the component Bi, Trpi
determines when

8 Hereby and below, we denote with V ′ = {x′|x ∈ V } the set of primed variables of V .
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the variable vα for port α is true, TrΓ encodes when an interaction is enabled,
and Trπ encodes the priorities.

In the following, let ΓBi
= {〈Act, g, op}|Act ∩ Pi �= ∅〉 be the set of all the

interactions on which Bi participates and Γe = {〈Act, g, op〉|e = 〈li, α, ge, ope, l
′
i〉,

α ∈ Act}, with e ∈ Ei, be the set of interactions that contain the port that labels
e.

The encoding of an edge e of a component Bi is defined as:

Trei =
∨

e=〈li,Act∩Pi,ge,ope,l′i〉∈Ei

loci = li ∧ loc′
i = l′i ∧ ge ∧

∨

γ∈ΓBi

vΓ = γ∧

∧

γ∈ΓBi

(
vΓ = γ →

∧

x∈V ari

x′ = update(x, e, γ)
) ∧

∧

γ �∈ΓBi

(
vΓ = γ →

∧

x∈V ari

x′ = x
)

update(x, e, γ) =

{
replace(e, γ) if ope = x := e

replace(x, γ) otherwise

and replace(e, γ) is a function that replaces all the occurrences of a variables
y in e with eγ , if opγ = y := eγ and γ = 〈Act, gγ , opγ〉9. Trpi

is defined as∧
α∈Γ

(
vα ↔

∨
〈li,α,ge,ope,l′i〉∈Ei

(
loci = li ∧ge

))
. Finally, the conditions that con-

straint the interactions to their ports and the priorities among the interactions
are defined as:

TrΓ =
∧

γ=〈Actγ ,gγ ,opγ〉∈Γ

∧

α∈Actγ

vΓ = γ → (vα ∧ gγ)

Trπ =
∧

(γ1,γ2)∈Γ,γ1=〈Actγ1 ,gγ1 ,opγ1 〉
(gγ1 ∧

∧

α∈Actγ1

vα) → vΓ �= γ2

Theorem 2. The transition system SPBIP
for a BIP model PBIP preserves

reachability of any configuration of the BIP model.

The proof relies on the fact that the state space of the BIP model is preserved.
The initial configuration is preserved by formula I, where loci is constrained to
the initial locations of the corresponding component. The transition relation is
also preserved, since the variable vΓ can be assigned to the value representing
an interaction γ, enabling the corresponding edges, if and only if γ is enabled
in the corresponding state of the BIP model. The valuations of the additional
variables vα and vΓ do not alter the state space: their valuations are constrained
by formula the Tr to reflect the BIP semantics.

5 Related Work

Several approaches to the verification of BIP models have been explored in the
literature. DFinder [7] is a verification tool for BIP models that relies on com-
positional reasoning for identifying deadlocks and verifying safety properties.
9 Note that, while in our definition opγ is a single assignment, the approach can be

easily generalized to sequential programs applying a single-static assignment (SSA)
transformation [18].
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The tool has several limitations: it is unsound in the presence of data transfers
among components (it assumes that the involved variables do not exchange val-
ues); its refinement procedure is not effective for infinite-state systems, since it
consists only in removing the found unreachable deadlock states from the next
round of the algorithm; finally, it can only handle BIP models with finite domain
variables or integers. Our approaches instead are sound in the presence of data
transfer, they exploit standard refinement mechanisms (e.g. refinement based on
interpolation) and can handle BIP models with real variables.

The VCS [20] tool supports the verification of BIP models with data trans-
fer among components, using specialized BDD- and SAT-based model checking
algorithms for BIP. Differently from our approach, VCS is only able to deal with
finite domain variables, and priority is ignored.

Our encoding in transition system is related to works in [25,29]. In [29], a
timed BIP model is translated into Timed Automata and then verified with
Uppaal [6]. The translation handles data transfers, but it is limited to BIP
models with finite domain data variables and without priorities. In [25], the
authors show an encoding of a BIP models into Horn Clauses. They do not han-
dle data transfers on interactions and do not describe how to handle priorities.
We remark that, any transition system can be encoded into Horn Clauses and
then verified with tools such as Z3 [23] or Eldarica [24].

With respect to the verification of multi-threaded programs, the works most
related to ours are [16,17,30]. In [16,17], the authors present the ESST frame-
work, instantiating it for SystemC [27] and FairThreads [11]. They neither con-
sider instantaneous synchronizations nor priorities among interactions. Instead,
in this work we instantiate the ESST framework for the analysis of BIP models,
which encompasses instantaneous synchronizations and priorities. The semi-
symbolic scheduler in [17] is also different from ours: while they use the semi-
symbolic scheduler to handle parameters of the primitive functions, we use it to
change the status of the local threads. We also apply and adapt several opti-
mizations sound w.r.t. the BIP operational semantics. The work in [30] combines
lazy abstraction and POR for the verification of generic multi-threaded programs
with pointers. They do not leverage on the separation between coordination and
computation which is the core of our ESSTBIP approach. Moreover, because of
the pointers, they rely on a dynamic dependence relation for applying POR.

6 Experimental Evaluation

We implemented ESSTBIP extending the Kratos [13] software model checker.
We implemented the encoding from BIP to transition system in a tool based
on the BIP framework [2]. Our tool generates models in the input language of
nuXmv, allowing us to reuse its model checking algorithms.

In the experimental evaluation, we used several benchmarks taken and
adapted from the literature, including the temperature control system model
and ATM transaction model used in [7], the train gate control system model
used in [25], and several other consensus and voting algorithm models. Every
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Fig. 1. Cumulative plot for all the benchmarks Fig. 2. Run time (sec.) DFinder
(y axes) Ic3 (x axes)

benchmark is scalable with respect to the number of components. In total, we
created 379 instances of both safe and unsafe models, and verified different invari-
ant properties. All the benchmarks are infinite-state, due to integer variables,
and some of them feature data transfer on interaction. Due to lack of space, we
do not provide the details of each benchmark, but refer to our webpage10 for
more information.

We run several configurations of ESSTBIP: EsstBip, EsstBiP+P,
EsstBip+S, EsstBip+S+P, EsstBip+S+I and EsstBip+S+I+P, where
EsstBip is the base version without any optimization, P denotes the use of
partial order reduction, S denotes the use of the simultaneous execution of the
interaction edges and I denotes the implicit execution of the primitives functions.
After the encoding into transition systems, we run two algorithms implemented
in nuXmv: (Ic3) an implementation of the IC3 algorithm integrated with pred-
icate abstraction [14]; (Bmc) an implementation of Bounded Model Checking [9]
via SMT [1] solving. For the benchmarks that do not exhibit data transfer, we
also compared our approaches against DFinder (version 2) [7].

All the experiments have been performed on a cluster of 64-bit Linux machines
with a 2.7 Ghz Intel Xeon X5650 CPU, with a memory limit set to 8 Gb and
a time limit of 900 s. The tools and benchmarks used in the experiments are
available in our webpage.

Comparison with DFINDER. We first compare on the subset of the bench-
marks (100 instances) that DFinder can handle (these benchmarks do not have
data transfer and are safe). We compare DFinder and Ic3 in the scatter plot
of Fig. 2: DFinder is able to solve only 4 of our instances, while Ic3 solves
all the 100 instances. The best configuration of ESSTBIP (EsstBip+S+I+P)
shows a similar trend (solving 75 instances). For lack of space we do not show
the respective plot. DFinder requires about 142 s to solve the four benchmarks,
while both Ic3 and EsstBip+S+I+P solve all of them in a fraction of a sec-
ond. The main explanations for these results are: (i) DFinder cannot prove 60

10 https://es.fbk.eu/people/mover/atva15-kratos.tar.bz2.

https://es.fbk.eu/people/mover/atva15-kratos.tar.bz2
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Fig. 3. Safe benchmarks Fig. 4. Unsafe benchmarks

instances since it cannot find strong enough invariants to prove the property;
(ii) it exceeds the memory limits for the remaining 36 instances.

Comparison of NUXMV and ESSTBIP. We show the results of the com-
parison among our approaches on the full set of instances in Fig. 1, where we
plot the cumulative time to solve an increasing number of instances. Ic3 clearly
outperforms all the other approaches, while the version of ESSTBIP with all
the optimization outperforms all the other ESSTBIP configurations. In Fig. 3 we
focus only on the safe instances: the plot shows that Ic3 is more efficient than
ESSTBIP. Ic3 is much more effective than ESSTBIP on a subset of the instances,
where Ic3 can easily find an inductive invariant (for this subset, the number of
frames needed by Ic3 to prove the property does not increase when increasing
the number of components in each benchmark). In these cases instead, ESSTBIP

still has to visit several nodes before succeeding in the coverage check. In Fig. 4,
we focus on the unsafe properties. Both all the ESSTBIP approaches that enable
the implicit primitive function execution and Ic3 outperform Bmc. The main
reason is that BMC is not effective on long counterexamples, while in our bench-
marks the length of the counterexamples grows with the number of components.
We also observe that, for the unsafe cases, the approach EsstBip+S+I+P is
faster than Ic3. Thus, the experiments show that Ic3 and ESSTBIP are com-
plementary, with Ic3 being more efficient in the safe case, and ESSTBIP being
more efficient for the unsafe ones. This can be also seen in Fig. 1, where we plot
the virtual best configuration (VirtualBest) (i.e. the configuration obtained
taking the lower run time for each benchmark), which shows the results that we
would obtain running all our approaches in parallel (in a portfolio approach).

Evaluation of the ESSTBIP Optimization. In Fig. 5a and b we show two
scatter plots to compare the results obtained with and without partial order
reduction. The plot 5a shows how POR improves the performance when applied
to EsstBip (for EsstBip+S we get similar results), while the plot 5b shows
the same for EsstBip+S+I. The plots show that POR is effective on almost all
benchmarks, even if in some cases the POR bookkeeping introduces some over-
head. In Fig. 5c and d we show the results of applying the simultaneous execution
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(a) ESSTBIP (y axes) ESSTBIP+P (x axes) (b) ESSTBIP+S+I (y axes) ESSTBIP+S+I+P (x axes) (c) ESSTBIP (y axes) ESSTBIP+S (x axes)

(d) ESSTBIP+P (y axes) ESSTBIP+S+P (x axes) (e) ESSTBIP+S (y axes) ESSTBIP+S+I (x axes) (f) ESSTBIP+S+P (y axes) ESSTBIP+S+I+P (x axes)

Fig. 5. Scatter plots of run times (sec.) for the ESSTBIP optimizations

of the edges participating in an interaction to the basic configuration with and
without partial order reduction enabled (EsstBip and EsstBiP+P). In both
cases, the improvements to the run times brought by the concurrent execution
of edges is consistent, since the run times are always lower and the number of
solved instances higher. Finally, in Fig. 5e and f we show the plots that compares
EsstBip+S with EsstBip+S+I and EsstBip+S+P with EsstBip+S+I+P.
In both cases the implicit execution of the primitives functions always brings a
performance improvement.

7 Conclusions and Future Work

In this paper, we described two complementary approaches for the verification of
infinite-state BIP models that, contrary to the existing techniques, consider all
the features of BIP such as the global effects on the interactions and priorities.
First, we instantiated for BIP the ESST framework and we integrated several
optimization sound w.r.t. the BIP semantics. Second, we provided an encoding of
BIP models into symbolic transition systems, enabling us to exploit the existing
state of the art verification algorithms. Finally, we implemented the proposed
techniques and performed an experimental evaluation on several benchmarks.
The results show that our approaches are complementary, and that they out-
perform DFinder w.r.t performance and also w.r.t. the coverage of the BIP
features. As future work we would like extend the proposed techniques to sup-
port timed BIP [4] (e.g. the symbolic encoding could be extended to HyDI [15])
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and, in the case of ESST we would improve its performance in finding bugs
using direct model checking [19]. Finally, we will investigate the possibility to
exploit the invariants computed by DFinder in all our approaches.
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