
Effective Verification of Replicated Data Types
Using Later Appearance Records (LAR)

Madhavan Mukund(B), Gautham Shenoy R., and S.P. Suresh

Chennai Mathematical Institute, Chennai, India
{madhavan,gautshen,spsuresh}@cmi.ac.in

Abstract. Replicated data types store copies of identical data across
multiple servers in a distributed system. For the replicas to satisfy strong
eventual consistency, these data types should be designed to guaran-
tee conflict free convergence of all copies in the presence of concurrent
updates. This requires maintaining history related metadata that, in
principle, is unbounded.

While earlier work such as [2] and [9] has concentrated on declar-
ative frameworks for formally specifying Conflict-free Replicated Data
Types (CRDTs) and conditions that guarantee the existence of finite-
state (distributed) reference implementations, there has not been a sys-
tematic attempt so far to use the declarative specifications for effective
verification of CRDTs.

In this work, we propose a simple global reference implementation for
CRDTs specified declaratively, and simple conditions under which this is
guaranteed to be finite. Our implementation uses the technique of Later
Appearance Record (LAR). We also outline a methodology for effective
verification of CRDT implementations using CEGAR.

1 Introduction

Replicated data types are used by web services that maintain multiple copies of
the same data across different servers to provide better availability and fault tol-
erance. Clients can access and update data at any copy. Replicated data types
cover a wide class of data stores that include distributed databases and DNS
servers, as well as NoSQL stores such as Redis and memcached. The CAP the-
orem [4] shows that it is impossible for replicated data types to provide both
strong consistency and high availability in the presence of network and node fail-
ures. Hence, web services that aim to be highly available in the presence of faults
opt for a weaker notion of consistency known as eventual consistency. Eventual
consistency allows copies to be inconsistent for a finite period of time. However,
the web service must ensure that conflicts arising due to concurrent updates
across multiple copies are resolved to guarantee that all the copies eventually
agree. Conflict-free Replicated Data Types (CRDTs), introduced in [11,12], are a
subclass of replicated data types that are eventually consistent and conflict free.

An abstract specification of a data type describes its properties indepen-
dent of any implementation. Such a specification plays a crucial role in formal
c© Springer International Publishing Switzerland 2015
B. Finkbeiner et al. (Eds.): ATVA 2015, LNCS 9364, pp. 293–308, 2015.
DOI: 10.1007/978-3-319-24953-7 23

294 M. Mukund et al.

verification of the correctness of any implementation of the data type. Most
of the early work on CRDTs described these data types through implementa-
tions [1,8,11,12]. Recently, a comprehensive framework has been proposed in [2]
to provide declarative specifications for a wide variety of replicated data types,
along with a methodology to prove the correctness of an implementation via
replication aware simulations. Unfortunately this strategy does not lend itself to
effective formal verification of the implementations.

In [9], we describe a bounded reference implementation of a CRDT generated
from a declarative specification. This construction produces a distributed imple-
mentation where each replica only has a local view of the overall computation,
obtained through the messages that it receives. This requires an intricate dis-
tributed timestamping protocol [7,10] to reuse timestamps in order to bound the
implementation. Moreover, strong assumptions about the underlying operating
environment have to be directly incorporated into the reference implementation.

The main aim of generating a reference implementation is to come up with
an effective verification procedure for generic CRDT implementations. The key
observation of this paper is that a global reference implementation is sufficient
for this purpose. In a global reference implementation, we can directly keep
track of causality between update events without exchanging additional infor-
mation between replicas. In fact, we show that we can maintain a local sequential
history for each replica in terms of a later appearance record (LAR) [5], from
which we can faithfully reconstruct the causality relation. This greatly simpli-
fies the construction. Moreover, the LAR-based construction is independent of
any assumptions on the environment required to bound the size of the reference
implementation.

The paper is organized as follows. In the next section, we define CRDTs and
introduce declarative specifications. Section 3 describes how the construction of a
reference implementation. In the next section, we describe an effective technique
for CRDTs using CEGAR [3]. We conclude with a summary and a discussion of
future research directions.

2 CRDTs, Traces and Specifications

We consider distributed systems consisting of a set R of N replicas, denoted
[1..N]. We use p, q, r, s and their primed variants to range over R. These replicas
are interconnected through an asynchronous network. We assume that replicas
can crash and recover infinitely often. However, when a replica recovers from
a crash it is expected to resume operation from some safe state that it was in
before the crash. We are interested in replicated data types that are implemented
on top of such distributed systems.

A replicated data type exposes a set of side-effect-free operations known as
queries for clients to obtain information contained in the data type. It makes
available a set of state-modifying operations known as updates to allow clients to
update the contents of the data type. For example, in a replicated set, contains
is a query method, while add and delete are update methods.

Effective Verification of Replicated Data Types 295

At any point, a client can interact with any one of the N replicas. The replica
that services a query (respectively, update) request from the client is said to be
the source replica for that query (respectively, update). The source replica uses
its local information to process the query. On receiving an update request from
the client, the source replica modifies its local state appropriately.

In this paper, we restrict our attention to a class of replicated data types
called Conflict-free Replicated Data Types (CRDTs), introduced in [11]. In these
data types, each time a replica receives an update request from a client, it applies
the update locally and broadcasts to all the other replicas a message containing
the data that they require to apply this update. On receiving this broadcast,
each replica performs a local update using the data sent by the source replica.
We now define some terminology from [11,12] to reason about these data types.

A CRDT D is a tuple (V,Q,U ,Ret) where:

– V is the underlying set of values stored in the datatype and is called the
universe of a replicated datatype. For instance, the universe of a replicated
read-write register is the set of integers that the register can hold.

– Q denotes the set of query methods exposed by the replicated data type.
– U denotes the set of update methods.
– Ret is the set of all return values for queries.

We assume that ⊥ is a designated “empty value”, belonging to both V and Ret.

Definition 1 (Operations). An operation of a CRDT D = (V,Q,U ,Ret) is a
tuple o = (m, r, args, ret) where m ∈ Q ∪ U ∪ {receive} is the action, r ∈ R
is the source replica, args is a tuple of arguments from V, and ret ∈ Ret is the
return value, satisfying the following conditions:

– if m ∈ U , ret = ⊥.
– if m = receive, args = ret = ⊥.

For an operation o = (m, r, args, ret), we define Op(o) = m, Args(o) = args,
Rep(o) = r, and Ret(o) = ret. We call o a query operation if m ∈ Q, an update
operation if m ∈ U and a receive operation if m = receive.

We denote the set of operations of D by Σ(D).

Definition 2 (Run). A run of a replicated data type is a pair (ρ, ϕ) where

– ρ is a sequence o1o2 . . . on of operations from Σ(D).
– ϕ is a partial function from [1..n] to [1..n] such that

• dom(ϕ) = {i ≤ n | oi is a receive operation}.
• if ϕ(i) = j then j < i, oj is an update operation and Rep(oi) �= Rep(oj).

For a sequence ρ = o1o2 · · · on, we denote by ρ[i] the operation oi, and we
denote by ρ[i : j] the subsequence oioi+1 · · · oj.

Definition 3. Let (ρ, ϕ) be a run with ρ = o1 · · · on. An update operation oi is said
to be delivered if (∀r ∈ R)

[
r �= Rep(ρ[i]) =⇒ (∃j)[r = Rep(ρ[j]) ∧ ϕ(j) = i]

]
.

296 M. Mukund et al.

Definition 4 (Events). Let (ρ, ϕ) be a run of a replicated data type. We asso-
ciate an event with each update and receive operation performed in ρ. Formally,
the set Eρ is a set of events associated with the operations in ρ given by

Eρ = {ei | 1 ≤ i ≤ |ρ|,Op(ρ[i]) ∈ U ∪ {receive}}.

Each ei ∈ Eρ corresponds to the operation ρ[i] in ρ. We define Rep(ei), Op(ei)
and Args(ei) to be Rep(ρ[i]), Op(ρ[i]) and Args(ρ[i]).

We extend ϕ to Eρ as follows. For ei ∈ Eρ, let ρ[i] be the corresponding event
in ρ. Then, ϕ(ei) = ej if ϕ(ρ[i]) = j.

Definition 5 (Happened before). For a run (ρ, ϕ) and a replica r, we denote
by Er

ρ the set of r-events {e ∈ Eρ | Rep(e) = r}. The total order {(ei, ej) | ei, ej ∈
Er

ρ , i < j} is denoted by ≤r
ρ. We denote by ≤receive

ρ the relation {(ϕ(e), e) | e ∈
Eρ,Op(e) = receive}.

The happened before relation on (ρ, ϕ), denoted �ρ, is defined by
⋃

r∈R
(≤receive

ρ ∪ ≤r
ρ)

+

For a pair of update events e, e′ we say that e has happened before e′ if
e �ρ e′. We say that a pair of events e, e′ ∈ E are concurrent (denoted by
e ‖ρ e′) when neither e �ρ e′ nor e′ �ρ e holds.

The definition of �ρ is subtle. If a replica r receives information about an
update at r′, r continues to know about this update even after it performs
more local actions. But r does not necessarily know about events at r′ prior to
this update. Hence, �ρ is not transitive, though it is always acyclic. If we have a
strong delivery criterion like causal delivery along with the assumption that each
update is broadcast to every replica, then one can show that �ρ is transitive.

We now define the trace associated with a run.

Definition 6 (Trace). The trace associated with a run (ρ, ϕ) is the triple
(Eρ, ϕ,�ρ). (The term trace is borrowed from Mazurkiewicz trace theory [6]).
We denote the trace of a run (ρ, ϕ) by trace(ρ, ϕ). The set of all traces is denoted
by T .

Given a trace (E , ϕ,�) and a subset of events X ⊆ E, the subtrace induced
by X is given by (X,ϕX ,�X), where ϕX and �X are the obvious restrictions of
ϕ and � to the set X.

Definition 7 (View). Let t = (E , ϕ,�) be a trace. For a replica r ∈ R, the
maximal r-event in t is denoted by max r(t). The view of r in t, denoted ∂r(t),
is the subtrace induced by the subset E ′ = {e′ ∈ E | e′ � max r(t)}.

Definition 8 (Declarative Specification and Permitted Runs). Let D =
(V,Q,U ,Ret) be a CRDT. A declarative specification of D is a function f :
T × Q × V∗ → Ret that determines the return value of any query q ∈ Q with
arguments args ∈ V∗ in a trace t.

Effective Verification of Replicated Data Types 297

If f is a declarative specification of D, the set of permitted runs of D, denoted
Runs(D, f), consists of all D-runs (ρ, ϕ) such that for all query operations ρ[i] =
(q, r, args, ret), ret = f(∂r(trace(ρ[i], ϕ)), q, args).

If a CRDT is specified declaratively, all responses to queries are determined
by the trace generated by a run, and not the specific interleaving of operations in
the run. Even this is an overkill—typically, the response to a query is determined
not by the entire trace but by the subtrace generated by a set of relevant events
whose size is bounded, independent of the length of the trace. Further, this set
can usually be computed easily. We now formalize this intuition.

Definition 9 (Computable specification). Let D be a CRDT and f be a
declarative specification of D. f is said to be computable if there exist computable
functions g : T × Q × V∗ → T and h : T × Q × V∗ → Ret such that:

– g(t, q, args) is a subtrace of t containing only update events.
– f(t, q, args) = h(g(t, q, args), q, args).
– If g(t, q, args) ⊆ t′ ⊆ t then g(t′, q, args) = g(t, q, args).
– If t and t′ are isomorphic, h(t, q, args) = h(t′, q, args).

In such a situation, we say that f is computable via g and h.
The subtrace g(t, q, args) can be thought of as the relevant information needed

to compute f(t, q, args). The function h computes the desired value of f using the
subtrace identified by g. The third condition captures a monotonicity constraint:
information that has become irrelevant now will never reappear as relevant infor-
mation later.

Example 10. OR-Set [1,8,11] is a CRDT implementation of sets. The operations
are given by DOR−Set = (V, {contains}, {add,delete}, {True,False}).

The main issue is resolving concurrent add and delete operations. In OR
sets, add wins in such a situation, so contains returns true.

The declarative specification f capturing this behaviour, given via computable
functions g and h, is defined as follows:

– (∀x ∈ V)(∀t ∈ T) g(t, contains, x) is the set of maximal events in the subtrace
tx of t where tx = {e | Op(e) ∈ {add,delete} ∧ Args(e) = x}.

– (∀x ∈ V)(∀t ∈ T) h(t, contains, x) is True iff there is a maximal event e of t
with Op(e) = add and Args(e) = x.

Definition 11 (Bounded specification). If a specification function f is com-
putable via g and h and there is a bound K such that |g(t, q, args)| ≤ K for all
t, q and args, we say that f is a bounded specification (with bound K).

Example 12. The specification of OR-Sets provided in Example 10 is bounded
with a bound N = |R| since g(t, contains, x) contains the maximal x-events
and there can be at most one maximal x-event in g(t, contains, x) per replica.

298 M. Mukund et al.

3 CRDT Implementation

Recall that a run is a pair (ρ, ϕ) where ρ is a sequence of operations of D and
ϕ is a function that identifies the update (at a remote replica) corresponding to
each receive operation in ρ. When we consider an implementation of a CRDT, its
runs will typically be just sequences of operations. The function ϕ is not provided
along with the run, but it is reasonable to assume that the implementation has
enough extra information to identify the update operation corresponding to each
receive event. One way to model this abstractly is to timestamp each operation
by a natural number and assign the same timestamp to a receive and its matching
update. Since we are interested in finite-state CRDT implementations also, we
would like to use a bounded linearly ordered set ID of identifiers as timestamps.
It is simplest to assume that ID ⊆ N.

For a time-stamped operation o′ = (o, id) ∈ Σ(D)×ID , we define Id(o′) = id
and ψ(o′) = ψ(o) for ψ() ∈ {Rep(),Op(),Ret(),Args()}.

We say that a timestamped run ρ′ ∈ (Σ(D) × ID)∗ is well-formed if
timestamps are assigned sensibly, as follows.

– for every receive operation ρ′[j], there is i < j such that Id(ρ′[i]) = Id(ρ′[j]),
Op(ρ′[i]) ∈ U and for all k ∈ [i + 1..j − 1],

Op(ρ′[k]) = receive =⇒ Rep(ρ′[k]) �= Rep(ρ′[j]) ∨ Id(ρ′[k]) �= Id(ρ′[j]).

– For i < j, if ρ′[i] and ρ′[j] are update operations and Id(ρ′[i]) = Id(ρ′[j]),
then for every replica r �= Rep(ρ′[i]), there is a k ∈ [i + 1..j − 1] such that
Op(ρ′[k]) = receive, Rep(ρ′[k]) = r and Id(ρ′[k]) = Id(ρ′[i]).

The first condition captures the fact that timestamps unambiguously match
receive events to update operations. The second condition prevents a timestamp
from being reused before it has been received by all replicas.

The run associated with a well-formed timestamped run ρ′ =
((o1, �1), (o2, �2), . . . , (om, �m)) is a pair (ρ, ϕ) such that ρ = o1o2 · · · om and for any
i ≤ |ρ′|, if oi is a receive operation, ϕ(i) = max{j < i | �j = �i and Op(oj) ∈ U}.

In what follows, we consider only well-formed timestamped runs.

Lemma 13. For every run (ρ, ϕ) of D, we can identify a set ID such that there
is a well-formed timestamped run ρ′ ∈ (Σ(D) × ID)∗ whose associated run is
(ρ, ϕ).

Proof. All query operations can be labelled with a fixed identifier (say 0, for
concreteness). Each update operation ρ[i] is labelled with the smallest identifier
in ID that does not label any undelivered update operation in ρ[1 : i− 1]. Every
receive operation ρ[i] is labelled by the same identifier that labels ρ[j], where
ϕ(i) = j.

Definition 14 (CRDT Implementation and its runs). An implementation
of a CRDT D is a tuple DI = (S,s

0, ID ,→) where:

Effective Verification of Replicated Data Types 299

– S is set the global states.
– s0 ∈ S is the initial state.
– ID ⊆ N is the set of identifiers, which serve as timestamps.
– → ⊆ S × (Σ(D) × ID) × S is the transition relation.

A timestamped run ρ′ = o′
1 · · · o′

n is accepted by DI if there exists a sequence of

states s0s1 · · · sn such that s0 = s0, and for every i ≤ n, si−1
o′
i−→ si. (ρ, ϕ) is

a run of DI if it is the run associated with a well-formed timestamped run ρ′

accepted by DI . We denote the set of all runs of DI by Runs(DI).

Definition 15 (Correctness of a CRDT Implementation). Let D be a
CRDT with declarative specification f . An implementation of CRDT DI is cor-
rect if Runs(DI) ⊆ Runs(D, f).

We now present a canonical implementation of a CRDT D = (V,U ,Q,Ret)
with a declarative specification f . The canonical implementation, denoted Dref ,
satisfies the property that Runs(Dref) = Runs(D, f).

3.1 Reference Implementation

Before we describe the reference implementation, we present the ingredients
needed. The aim is to maintain as little information as possible to respond to
each query. The key observation is that the reference implementation is global—
it can pool together information stored at all replicas without paying the cost of
synchronization. If we have a declarative specification f of D that is computable
via g and h, then each replica needs to maintain

⋃
q,args g(t, q, args), where t is

the view of r at any point in time. The important ingredient in g is the prece-
dence relation between events, and hence the reference implementation needs
to store enough information to recover this. The implementation also needs to
intelligently discard information that will no longer prove useful.

The most direct implementation would store (as part of the “state” of each
replica) the relevant suffix of the trace—the upward closure of the events in⋃

q,args g(t, q, args). But we choose a more compact representation called Later
Appearance Records (LARs), from which the information needed to answer
queries can be recovered. An LAR is a set of sequences rather than a partial
order, and hence easier to manipulate.

Let L be a (potentially infinite) set of labels, equipped with a total order ≤.
We use labels to distinguish between multiple occurrences of the same update
method at the same replica with the same arguments. Operations equipped with
labels are called nodes.

Definition 16 (Node). A node is a tuple (u, r, args , l) ∈ U × R × V∗ × L.
For v = (u, r, args , l), we define Op(v) = u, Rep(v) = r, Args(v) = args and
Label(v) = l. The set of all nodes is denoted by N .

Definition 17 (Later Appearance Record). A Later Appearance Record
(LAR) is a sequence of distinct nodes. For a node v and an LAR A, we write
v ∈ A to denote that v appears in the sequence of nodes in A.

300 M. Mukund et al.

For nodes v1, v2 ∈ A, v1 ≤A v2 if v1 occurs earlier than v2 in A. If A is an
LAR and V is a set of nodes then A − V is the subsequence of A consisting of
nodes not in V . The set of all LARs is denoted by A.

Each replica uses the LAR to record the order in which it has seen updates,
originating locally as well as remotely. In an actual implementation, updates are
generated at replicas, and information about them is passed to other replicas by
the network, whose behaviour is not under the control of the implementation.
But it is assumed that when a replica receives information about an update, it
can determine which update is being mentioned. The network might sometimes
provide additional guarantees about message delivery (such as causal delivery
or FIFO delivery), and we can sometimes make use of these facts to simplify
the implementation. Here we present the general case, without any assumptions
about the network.

When information about an update has been passed to all other replicas, we
would like to be able to discard this information from every replica. For this, it
becomes important to record the set of replicas to which information about an
update has been communicated. This is modelled using a network node. Recall
that a node is an update operation along with an identifying label. A network
node attaches to a node a timestamp as well information about the state of
replicas that have received the update.

Definition 18 (Network node). A network node is a member of N ×ID×2R.
The set of all network nodes is denoted by Nnet . For a network node vnet =
(v, id , R) we define Node(vnet) to mean v, Id(vnet) to mean id and define
Rep(vnet), Id(vnet), Args(vnet) and Label(vnet) to be the corresponding func-
tions applied on v. We use Delivered(vnet) to denote R.

A configuration consists of the LAR of each replica along with the network
nodes pertaining to undelivered updates. The aim is to try to purge nodes from
LARs whenever possible. A consistent configuration is one where these purges
have been done safely. Specifically, replica r does not purge a node pertaining
to a local update so long as it is present in the LAR of some other replica. Also,
if information about a local update has not yet been communicated to all other
replicas, r does not purge the corresponding node.

Definition 19 (Configuration). A configuration C is a member of AR×2Nnet .
For any configuration C = ((A1, A2, . . . , AN), Vnet), we denote by C[r] the LAR
Ar. We shall denote by Cnet the set of network nodes Vnet .

We say that a configuration C is consistent iff

– ∀r, r′ if there exists v ∈ C[r] such that Rep(v) = r′ then v ∈ C[r′].
– ∀vnet ∈ Cnet if r ∈ Delivered(vnet) then Node(vnet) ∈ C[r].

The trivial configuration denoted by C0 is one where ∀r ∈ R : C0[r] is the empty
LAR and C0

net = ∅. We denote the set of all consistent configurations by C.

Effective Verification of Replicated Data Types 301

Using the LARs of all the replicas, we can reconstruct the happened before
relation for all events that are mentioned in a configuration. Suppose r sees
two updates u′ and u′′ originating at r′ and r′′. Since updates are seen at the
originating replica first before being seen by others, the relation between u′ and
u′′ can be determined by their relative order of appearances in the LARs of r′

and r′′. Here we crucially use the fact that our implementation is global.

Definition 20 (Precedence and Concurrency). Let C be a consistent con-
figuration. Let r be a replica and vi, vj ∈ C[r] with Rep(vi) = r′ and
Rep(vj) = r′′. We say that vi precedes vj in C, denoted by vi ≤C vj, if
(vi ∈ C[r′′] ∧ vi ≤C[r′′] vj) ∧ (vj ∈ C[r′] =⇒ vi ≤C[r′] vj). (In other words, both
r′ and r′′ locally see vi before vj.)

If neither vi ≤C vj nor vj ≤C vi for any vi, vj ∈ C[r], then we say that vi

and vj are concurrent in C, denoted by vi ‖C vj.
For a consistent configuration C and replica r, the view of r in C, denoted

by ∂r(C), is the trace (C[r],≤C).

If a node in a trace t contains information about an update that is in
g(t, q, args) for a query q(args), then that node cannot be purged—otherwise
the response to that query would be inaccurate. This is formalized below.

Definition 21 (Relevant node). Let f be a specification of D computable via
g and h. We say that a node v in a consistent configuration C is relevant with
respect to f if there exists a replica r, query q ∈ Q and args ∈ V∗, such that
v ∈ g(∂r(C), q, args).

3.2 Details of the Reference Implementation

The reference implementation is formally presented below. Each replica main-
tains an LAR to which it appends information pertaining to each local update.
On receiving information about a remote update, it again appends this to the
LAR, and also seeks to purge from all LARs nodes that have ceased to become
relevant and have been seen by all replicas. This enables the reuse of labels. Since
at any trace t the relevant nodes subsume all subtraces of the form g(t, q, args),
it follows that the implementation never purges information that is needed to
answer a query.

Let f be a specification of a CRDT D computable via g and h. Its reference
implementation is defined to be Dref = (C, C0, ID ,→ref) where ID = N and
→ref is defined as follows.

Let C,C ′ ∈ C and let o = ((m, r, args , ret), id) ∈ Σ(D)×ID . Then C
o−→ref C ′

iff one of the following holds:

– m ∈ Q and ret = f(∂r(C),m, args) and C ′ = C.
– m ∈ U , ∀vnet ∈ Cnet : Id(vnet) �= id , and C ′ is defined as follows:

• ∀r′ ∈ R : r′ �= r =⇒ C ′[r′] = C[r′].
• C ′[r] = C[r].v, with v = (m, r, args , l) where l is a label such that ∀v′ ∈

C[r] : Label(v′) �= l.

302 M. Mukund et al.

• C ′
net = Cnet ∪ {(v, id , {r})}.

– m = receive and there exists a node v and R ⊆ R such that (v, id , R) ∈ Cnet

and r �∈ R, and C ′ is defined as follows:
Let C ′′ be a configuration given by
• ∀r′ �= r : C ′′[r′] = C[r′].
• C ′′[r] = C[r].v.
• C ′′

net = Cnet ∪ {(v, id , R ∪ {r})} \ {(v, id , R)}.
If R ∪ {r} �= R then C ′ = C ′′ else
• ∀r′ ∈ R : C ′[r′] = C ′′[r′] − V , where

V = {v ∈
⋂

r′∈R
C ′′[r′] | v is not relevant in C ′′}.

• C ′
net = C ′′

net \ {(v, id , R ∪ {r})}.

3.3 Correctness of the Reference Implementation

Lemma 22. Every reachable configuration C of Dref is consistent.

Proof. The initial configuration is trivially consistent, and each transition purges
only those nodes that are no longer relevant and are delivered to every replica.
This proves the lemma.

Lemma 23. Suppose ρ′ ∈ (Σ(D) × ID)∗ is accepted by Dref and that C0
ρ′
−→ref

C. Let (ρ, ϕ) be the run associated with ρ′ and t = trace(ρ, ϕ). Then, for all r,
q and args, g(∂r(t), q, args) is isomorphic to g(∂r(C), q, args).

Proof. The proof is by induction on the length of ρ′. The case when ρ′ = ε is

trivial. So let ρ′ = σ′.o. Let C ′ be a configuration such that C0
σ′
−→ref C ′ o−→ref C.

Let (σ, ϕ) be the run corresponding to σ′ and let t′ = trace(σ, ϕ). We assume by
the induction hypothesis that for all r, q and args, g(∂r(t′), q, args) is isomorphic
to g(∂r(C ′), q, args). There are three cases to be considered.

o is a query operation: In this case C = C ′ and t = t′, so the lemma follows.
o is an update operation: Suppose Rep(o) = r. For r′ �= r, it is clear from the

transition rules that C[r′] = C ′[r′]. It is also the case that ∂r′(t) = ∂r′(t′),
so the lemma still holds for queries at replicas other than r.
On the other hand, C[r] = C ′[r].v where v is a node with a fresh id , corre-
sponding to o. Since v is the latest node in C[r] and v /∈ C[r′] for any other
r′, it is clear that v′ ≤C v iff v′ ∈ C[r]. But v′ ∈ C[r] iff v′ corresponds
to an update received by r or originating in r. Thus ∂r(C) = ∂r(C ′) ∪ {v},
with v as the largest element. It is easy to see that the maximal r-event in
the trace t is greater than all other events in ∂r(t′). Thus g(∂r(C), q, args) is
isomorphic to g(∂r(t), q, args).

Effective Verification of Replicated Data Types 303

o is a receive operation: Suppose Rep(o) = r. We add a node at the end
of C[r], but also purge all the LARs of some irrelevant nodes (those that
are received by every replica). Since irrelevant nodes do not feature in
g(∂r′(t), q, args) for any r′ and q(args), all we need to show is that the order
among relevant nodes is captured correctly. But the order between update
events does not change at the point of time of a receive. It can be checked
that ≤C = ≤C′ , and thus the lemma follows.

Lemma 24. Suppose a well-formed timestamped run ρ′ ∈ (Σ(D) × ID)∗ is
accepted by Dref . Let (ρ, ϕ) be the run associated with ρ′. Then (ρ, ϕ) ∈
Runs(D, f).

Proof. Suppose C0
ρ′
−→ref C. Let t = trace(ρ, ϕ). Since g(∂r(C), q, args) is iso-

morphic to g(t, q, args) and since h returns the same values on isomorphic
traces, it easily follows that for all query operations ρ[i] = (q, r, args, ret),
ret = f(∂r(trace(ρ[i], ϕ)), q, args). Thus (ρ, ϕ) ∈ Runs(D, f).

Lemma 25. Suppose (ρ, ϕ) ∈ Runs(D, f). Let ρ′ ∈ (Σ(D) × ID)∗ be a well-
formed timestamped run whose associated run is (ρ, ϕ). Then ρ′ is accepted by
Dref .

Proof. We prove the lemma for ρ′[1 : i], by induction on i. The base case,
when i = 0 is trivial. So let i > 0. Suppose ρ′[1 : i − 1] is accepted by Dref

by an execution ending in configuration C. Let (σ, ϕ) and (σ′, ϕ) be the runs
associated with ρ′[1 : i − 1] and ρ′[1 : i] respectively. Let t = trace(σ, ϕ) and
t′ = trace(σ′, ϕ). Let o = ρ′[i] = ((m, r, args , ret), id). There are three cases to
consider.

m ∈ Q: In this case t = t′. We know that ret = f(∂r(t′),m, args) =
f(∂r(t),m, args). But we also know that g(∂r(C),m, args) is isomorphic to
g(∂r(t),m, args). Thus it follows that ret = f(∂r(C),m, args). Hence C

o−→ C
and ρ′[1 : i] is accepted by Dref .

m ∈ U : Since ρ′[1 : i] is well-formed, it has to be the case that either id is not
used in ρ′[1 : i − 1], or if it is used in an update operation ρ′[j], every replica
has received that update in ρ′[j+1 : i−1]. Thus, there is no node vnet ∈ Cnet

with Id(vnet) = id . So, o is enabled at C and ρ[1 : i] is accepted by Dref .
m = receive: Since ρ′[1 : i] is well-formed, it has to be the case that there is an

earlier update at some other replica with the same identifier that has not yet
been communicated to r. Thus there exists a node v and R ⊆ R such that
(v, id , R) ∈ Cnet and r �∈ R. It follows that o is enabled at C and ρ′[1 : i] is
accepted by Dref .

From the previous two lemmas we can conclude the following:

Theorem 26. Runs(Dref) = Runs(D, f)

304 M. Mukund et al.

3.4 Bounding the Reference Implementation

For effective verification, we need to ensure that the set of traces of the CRDT
has a finite representation. The reference implementation constructed in the
previous section is not necessarily finite-state. The unboundedness arises due to
several reasons.

– If the size of the universe is not bounded, the number of nodes, and hence the
number of configurations, will not be bounded.

– If there is no bound on the number of undelivered messages, then the number
of network states would be unbounded, and therefore the size of Cnet of any
configuration C is unbounded.

– If the specification of the CRDT itself is not finite, then the number of relevant
nodes in the configuration is unbounded, even when the universe V is finite.

With some reasonable assumptions, we can ensure that the reference imple-
mentation is finite-state.

1. Universe Size: We assume that the size of the universe is bounded by a
parameter m. This is a reasonable assumption since most CRDT implemen-
tations treat the elements of the universe in a uniform manner. Hence for the
purpose of verification, it suffices to consider a universe whose size is bounded.

2. Delivery Constraints: We assume that the number of undelivered messages
in the network is bounded by the parameter b. Again, this is a reasonable
assumption since most practical implementations of strong eventual consis-
tency also requires that messages are reliably delivered to all the replicas.
We can pick a sufficiently large b that correctly characterizes the network
guarantee of the actual implementation.

3. Bounded Specification: We assume that the specification function f com-
putable via g and h comes with a bound K. Let k be the maximum arity
of any q ∈ Q. If the universe if bounded, the number of query instances is
bounded by |Q| × mk. Since the specification function has a bound K, the
size of the relevant nodes in a configuration is bounded by � = K ×|Q|×mk.
For example, in case of OR-sets, to answer the query contains(x) it sufficies
to keep track of the maximal x-events. Since the number of replicas R is
bounded by N the number of maximal x-events is bounded by N . Hence
if the universe is bounded by m then the number of relevant nodes in a
configuration is no more than m · N .

We now prove that, with these assumptions, the size of the reference imple-
mentation is bounded. Each configuration of Dref consists of an LAR for each
replica, and a set of network nodes. As is clear from the transition rules, the
only network nodes we retain are those that are still undelivered to some repli-
cas. Thus, if there is a bound on the number of undelivered messages, there is also
a bound on the number of network nodes present in each configuration. But the
set of network nodes that occur in all configurations might still be unbounded.
To bound this, we need to bound the set of all nodes and the set ID . The size

Effective Verification of Replicated Data Types 305

of the set ID can be bounded by b, the number of undelivered messages, as
explained below.

Let C be a reachable configuration of Dref and o an update operation enabled
at C. Now it has to be the case that only if there are at most b − 1 network
nodes in Cnet (otherwise, there would be more than b undelivered messages in
the run upto and including o). Thus as long ID has b elements, the reference
implementation can always attach a fresh timestamp to o. (Formally this means
that we can map any timestamped run of Dref to an equivalent run which uses
at most b timestamps.)

We now turn to bounding the set of all nodes. The only unbounded compo-
nent in this is the set L of labels.

Lemma 27. If the number of undelivered messages is bounded by b and the
number of relevant events is bounded by � then it is sufficient to have a label set
L of size b + �.

Proof. Let ρ = ρ′.o be any run of the reference implementation such that the
number of undelivered messages in ρ is bounded by b. Let o be an update oper-
ation at replica r. Let C ′ be the configuration of the reference implementation
at the end of ρ′.

Note that the number of undelivered update operations in ρ′ is strictly less
than b; otherwise, ρ would have more than b undelivered messages. It follows that
the number of undelivered nodes in C ′ is at most b−1. (A node v is undelivered
in C ′ if (v,R) ∈ C ′

net for some R ⊆ R.) A node v is present in some LAR C ′[r′]
if v is undelivered or v is relevant. Thus the number of distinct nodes in C ′ is at
most b + � − 1. Thus if |L| = b + �, there is at least one free label in L to label
the new node C[r] \C ′[r]. Thus, it is sufficient to have a label set L of size b+ �.

From the above, we can conclude that the number of nodes in N is bounded
by |U| × N × mk′ × (b + �) (where, as before, k′ is the maximum arity of any
u ∈ U).

Since the set ID is also bounded (by b, as already explained), the set of
network nodes is bounded (by |N | × |ID | × 2N).

From Lemma 27 it is clear that the number of distinct nodes in any con-
figuration cannot exceed b + �. Since the number of undelivered messages are
bounded by b, the number of network nodes is bounded by b. Thus, the set of
all configurations C is bounded as follows:

|C| ≤ |N |(b+�) × |Nnet |b.
Theorem 28. If the number of undelivered messages and the size of the uni-
verse are bounded and we have a bounded specification for the CRDT, then the
reference implementation is bounded.

4 Effective Verification Using Bounded Reference
Implementation via CEGAR

Verifying CRDT implementations is a challenging task. For instance, consider
an implementation that uses a bounded set of timestamps as we have proposed,

306 M. Mukund et al.

except that the size of this set is too small. Under certain circumstances, a replica
may be forced to reuse a timestamp even when a previous update with the same
timestamp has not been delivered. To detect such an error, we have to explore a
run that exceeds the bound in the implementation. Unfortunately, we typically
do not have access to the internal details of the implementation, so this bound
is not known in advance. This results in an unbounded verification task.

Alternatively, we have seen that by making reasonable restrictions on the
universe of the datatype and the behaviour of the underlying messasge delivery
system, we can generate a bounded reference implementation. Once we have
such a bounded reference implementation, we can use Counter Example Guided
Abstract Refinement (CEGAR) [3] to effectively verify a given CRDT imple-
mentation with respect to the assumptions made on the environment.

More formally, given a implementation of a CRDT with bounded specifi-
cation, let us assume suitable bounds on the size of the universe, m, and the
number of undelivered messages, b. We fix the bounded set of timestamps ID
accordingly. We assume the existence of an abstraction function that provides a
finite state abstraction DI = (SI , s

0, ID ,→I) of the implementation, whose runs
are in (Σ(D) × ID)∗.

We then construct the synchronous product Msync =
((SI × C) ∪ {serr}, (s0, C0), ID ,→sync), where →sync is defined as follows:

– The action o ∈ Σ(D)×ID is enabled at the product state (s, C) iff o is enabled
at s in DI . If o is enabled then we define
• (s, C) o−→sync serr , if o is not enabled at C in Dref

• (s, C) o−→sync (s′, C ′), if s
o−→I s′ and C

o−→ref C ′.
– ∀o ∈ ΣD : o is not enabled at serr

Lemma 29. If ρ is a run of Msync resulting in the state serr starting from the
initial state (s0, C0), then ρ ∈ Runs(DI) \ Runs(D, f).

Thus any run ρ leading to the state serr in the synchronous product is a potential
counter example. As usual, we can use the finite abstraction to try trace an
actual run in original implementation corresponding to ρ. If we succeed in finding
such a run, we have found a bug in the original implementation. If the abstract
counterexample turns out to be infeasible, then we refine our abstraction using
the feedback obtained from our failure to construct a valid run. We repeat this
process until a bug is found or we are satisfied with the level of abstraction to
which we have verified the system.

5 Conclusion

In this paper, we have shown how to construct a reference implementation for a
CRDT that is described using a bounded declarative specification. By imposing
reasonable constraints on the universe of the datatype and the underlying mes-
sage delivery subsystem, the reference implementation can be made finite-state.
This can be exploited to verify any given implementation using CEGAR.

Effective Verification of Replicated Data Types 307

The key observation in this paper is that a global reference implementation
suffices for verification. This greatly simplifies the construction compared to the
distributed reference implementation described in [9], which requires an intricate
distributed timestamping procedure due to the local nature of the information
available at each replica.

The other interesting feature of our reference implementation is that the basic
construction using LARs is independent of the assumptions that we make on the
set of data values and the nature of message delivery in order to bound the set of
timestamps used. Thus, the reference implementation relies only on the declar-
ative specificaton of the CRDT. We can then separately reason about the size
of this implementation under various constraints on the operating environment.

In future work, we would like to explore further benefits of declarative spec-
ifications for replicated data types. In particular, one challenging problem is to
develop a theory in which we can compose such specifications to derive complex
replicated data types by combining simpler ones.

References

1. Bieniusa, A., Zawirski, M., Preguiça, N.M., Shapiro, M., Baquero, C., Balegas, V.,
Duarte, S.: An optimized conflict-free replicated set. CoRR, abs/1210.3368 (2012)

2. Burkhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-
ification, verification, optimality. In: The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2014, 20–21 January,
2014, San Diego, CA, USA, pp. 271–284 (2014)

3. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

4. Gilbert, S., Lynch, N.A.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002)

5. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proceedings of the
Fourteenth Annual ACM Symposium on Theory of Computing, STOC 1982, pp.
60–65. ACM, New York (1982)

6. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Advances in Petri Nets 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg
(1987)

7. Mukund, M., Kumar, K.N., Sohoni, M.A.: Bounded time-stamping in message-
passing systems. Theor. Comput. Sci. 290(1), 221–239 (2003)

8. Mukund, M., Shenoy R., G., Suresh, S.P.: Optimized OR-sets without ordering
constraints. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN
2014. LNCS, vol. 8314, pp. 227–241. Springer, Heidelberg (2014)

9. Mukund, M., Shenoy R., G., Suresh, S.P.: Bounded implementations of replicated
data types. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol.
8931, pp. 355–372. Springer, Heidelberg (2015)

10. Mukund, M., Sohoni, M.A.: Keeping track of the latest gossip in a distributed
system. Distributed Comput. 10(3), 137–148 (1997)

308 M. Mukund et al.

11. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
Convergent and Commutative Replicated Data Types. Rapport de recherche RR-
7506, INRIA (2011). http://hal.inria.fr/inria-00555588/PDF/techreport.pdf

12. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011)

http://hal.inria.fr/inria-00555588/PDF/techreport.pdf

	Effective Verification of Replicated Data Types Using Later Appearance Records (LAR)
	1 Introduction
	2 CRDTs, Traces and Specifications
	3 CRDT Implementation
	3.1 Reference Implementation
	3.2 Details of the Reference Implementation
	3.3 Correctness of the Reference Implementation
	3.4 Bounding the Reference Implementation

	4 Effective Verification Using Bounded Reference Implementation via CEGAR
	5 Conclusion
	References

