
Lattice-Based Semantics for Combinatorial
Model Evolution

Rachel Tzoref-Brill1,2(B) and Shahar Maoz1

1 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
maoz@cs.tau.ac.il

2 IBM, Haifa Research Lab, Haifa, Israel
rachelt@il.ibm.com

Abstract. Combinatorial test design (CTD) is an effective test design
technique, considered to be a testing best practice. CTD provides auto-
matic test plan generation, but it requires a manual definition of the test
space in the form of a combinatorial model. As the system under test
evolves, e.g., due to iterative development processes and bug fixing, so
does the test space, and thus, in the context of CTD, evolution translates
into frequent manual model definition updates.

In this work, we show that the Boolean semantics currently in use
by CTD tools to interpret the model is inadequate for combinatorial
model evolution, and propose to replace it with a new lattice-based
semantics that (1) provides a consistent interpretation of atomic changes
to the model via Galois connections, and (2) exposes which additional
parts of the model must change following an atomic change, in order
to restore validity. We further use the new lattice-based semantics to
define new higher-level atomic operations for combinatorial model evolu-
tion. Finally, we identify recurring abstraction and refinement patterns
in the evolution of 42 real-world industrial models, and use the new
lattice-based semantics to define new higher-level atomic constructs that
encapsulate these patterns.

The proposed lattice-based semantics and related new modeling con-
structs advance the state-of-the-art in CTD with a new foundation for
model evolution and with better tools for change comprehension and
management.

1 Introduction

Combinatorial test design (CTD) is an effective technique for coping with the
verification challenge of increasingly complex software systems, and is considered
a testing best practice [1,2,5,8,26]. In CTD, the test space is manually modeled

This research was done under the terms of a joint study agreement between IBM
Corporation Inc (via the IBM Research Lab - Haifa) and Tel Aviv University. Addi-
tionally, part of the research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007–2013) under
grant agreement no. 610802.

c© Springer International Publishing Switzerland 2015
B. Finkbeiner et al. (Eds.): ATVA 2015, LNCS 9364, pp. 276–292, 2015.
DOI: 10.1007/978-3-319-24953-7 22



Lattice-Based Semantics for Combinatorial Model Evolution 277

by a set of parameters, their respective values, and constraints on the value
combinations. The aggregate of parameters, values, and constraints is called a
combinatorial model. We refer to the parameters and their values as the model
domain. A valid test in the test space is defined to be an assignment of one value
to each parameter without violating the constraints. A subset of the space is
automatically constructed so that it covers all valid value combinations of every
t parameters, where t is usually a user input. This systematic selection of tests is
based on empirical data that shows that in most cases, the appearance of a bug
depends on the interaction between a small number of features of the system
under test [5,12,24].

An under-explored challenge for wide deployment of CTD in industry is the
manual process for modeling and maintaining the test space. A recent survey
by Nie et al. [16] reveals that only around 5 % of the publications on CTD
explore the crucial modeling process. The topic of model maintenance is not
even mentioned in [16]. However, in practice, model maintenance is of signifi-
cant importance, since creating a CTD model is not a one time effort. Models
must be maintained during the evolution of the system under test, and this need
is significantly strengthened by the move to agile methodology and to contin-
uous delivery mode. As software development cycles are getting ever shorter,
with monthly and weekly deliveries, test design needs to frequently adjust to
changes, which in the context of CTD means frequent model definition updates.
While in these settings technologies for handling model changes are increasingly
necessary, we are unaware of any work that reasons about the evolution process
of combinatorial models or provides tool support for it. Close to 40 CTD tools
are listed in [18], for example PICT [4] and ACTS [21]. However, to the best
of our knowledge, none of the existing tools provides indication on the effect of
change operations on the model, i.e., what is the relation between the original
model and the new one, and how they differ. The practitioner is “left in the
dark” as to whether the performed change will result in the intended effect, and
what other changes are required. This problem exacerbates when a series of such
change operations is performed, as is typically the case.

To start examining the evolution of combinatorial models in practice, as a
preliminary study, we have gathered information about the evolution of 42 real-
world industrial combinatorial models, which have been created over the last
7 years, each with 2–5 versions.1 The number of parameters in a model version
ranged from 4 to 109 (arithmetic mean 18.3); the number of constraints ranged
from 0 to 381 (arithmetic mean 32.2). A total of 107 artifacts and 65 version
commits were examined. The models originate from various domains and were
written by different CTD practitioners. When analyzing the semantic changes
applied to the models, we observed 6 recurring patterns, 4 of which are abstrac-
tion and refinement patterns. The frequency of occurrence of the latter patterns
in real-world model evolution motivated us to try and interpret the evolution
1 Unfortunately, all models are confidential and cannot be shared since they were

created for IBM or for its clients. We are in the process of checking the option of
sharing most of them after obfuscation.



278 R. Tzoref-Brill and S. Maoz

process using abstraction and refinement techniques. In fact, abstraction and/or
refinement patterns were observed in all models, and in 90 % of commits. The
first two patterns we identified are contraction (in 38 % of the commits) and
extension (in 52 % of the commits), where parts are either removed from or
added to the model to describe the test space with less or more detail. The
next two abstraction and refinement patterns we identified are merge and split.
These patterns replace existing parts of the model with new parts that describe
the original parts with less or more detail. Neither merge nor split are currently
directly supported in existing CTD tools, though we detected split in 26 % of the
version commits and merge in 14 % of them, implicitly implemented as a series
of atomic operations. The last two change pattens we observed were refactoring
and correction, both observed in 26 % of the commits.

In this work, we explore the evolution process of combinatorial test space
modeling. We show that the Boolean semantics currently in use by CTD tools
is inconsistent and inadequate for combinatorial model evolution, and extend it
to a lattice-based semantics that provides a consistent interpretation of model
changes via Galois connections. A Galois connection establishes the connection
between the elements in an abstract domain and those in a concrete domain,
via abstraction and concretization functions. We use these functions to uniquely
define the validity of tests when moving from a certain test space domain to a
more concrete or more abstract domain via an operation on the model domain.
The reasoning behind the abstraction and refinement interpretation is that in
the inherently incremental and forward fashion evolution process, each change
is interpreted in isolation, without knowing the larger context and what changes
will follow. In such settings, abstraction and refinement are natural interpreta-
tions of model domain changes, since each such change either hides details from
the model or adds details to it.

We first address atomic change operations, e.g., adding or removing a para-
meter and its values, and use the new semantics to present their formal interpre-
tation as either abstractions or refinements. We also use the new semantics as
a means to mark the tests whose validity is defined as unknown following such
changes in the model, and thus expose the fact that some changes in the model
require additional changes to follow.

We further propose two higher-level change operations, which we call merge
and split, that capture the merge and split change patterns observed in real-
world model evolution. We use our lattice-based semantics to extend the CTD
modeling language with constructs that encapsulate these change patterns and
enable their safe and consistent application.

It is important to note that in this work we focus on the evolution at the
model level, and do not address the evolution of the test plans generated from
the model. Furthermore, our work is completely independent of the criteria and
algorithm used to generate test plans. Reasoning about co-evolution of models
and the test plans derived from them is part of our future work plans.

We implemented the new semantics and related constructs in our industrial-
strength commercial CTD tool IBM Functional Coverage Unified Solution (IBM
FOCUS) [10,22]. For scalability, the implementation is symbolic and is based on



Lattice-Based Semantics for Combinatorial Model Evolution 279

Table 1. Example on-line shopping model

Parameter Values

ItemStatus (IS) InStock, OutOfStock, NoSuchProduct

OrderShipping (OS) Air, Ground

DeliveryTimeframe (DT) Immediate, OneWeek, OneMonth

Constraints

DT = Immediate → OS = Air

DT = OneMonth → OS = Ground

Binary Decision Diagrams. The proposed semantics and related new modeling
constructs advance the state-of-the-art in CTD with a new foundation for model
evolution and with better tools for change comprehension and management.

2 Running Example and Overview

We start off with an example and overview of our work. The presentation in this
section is semi-formal. Formal definitions appear in Sects. 3 to 6.

Table 1 depicts the parameters, values, and constraints of a combinatorial
model for an on-line shopping system, which we use as a running example.

The model defines the test space and which tests in it are valid. For example,
the test (IS = InStock, OS = Air, DT = Immediate) is valid, while the test
(IS = InStock, OS = Ground, DT = Immediate) is invalid.

Example 1: Adding a Value to an Existing Parameter. Following
the addition of a new feature to the system, a practitioner added the value
Sea to the parameter OrderShipping. Using the Boolean semantics, as is the
case in all existing CTD tools, we get that the question whether the test
(IS = InStock, OS = Sea, DT = Immediate) is valid is inconsistently answered,
depending on the syntactic representation of the test space. If the constraints are
written as in Table 1, then this test is invalid. In contrast, if the first constraint
was instead written DT = Immediate → OS �= Ground, then the same test is
valid. Thus, although the two original models have equal semantics (they induce
the same set of valid tests), adding the value Sea to the parameter OS results
in two different new models. Moreover, the practitioner is not informed of this
inconsistency and of what further input is required to resolve it. As a result,
tests in the new model might not be assigned with their intended validity.

Our work addresses this problem. With our new, lattice-based semantics,
the test in question is assigned with an “unknown” validity, regardless of the
syntax in which the original constraints were specified. Intuitively, its validity
depends on the order shipping value, for which the practitioner has yet to pro-
vide validity information, and is thus defined as unknown. In contrast, the test
(IS = InStock, OS = Sea, DT = OneWeek) will be valid in our semantics, because



280 R. Tzoref-Brill and S. Maoz

its validity is determined regardless of the order shipping value. Moreover, our
tool identifies and marks the tests that have an unknown validity following
the addition of the Sea value, namely all tests that contain the combinations
(OS = Sea, DT = Immediate) or (OS = Sea, DT = OneMonth), and presents them
in a concise form to the practitioner for further validity specification. Thus,
our semantics enables exposing to the practitioner what additional changes are
required following the addition of the value to the model.

Example 2: Splitting a Value. After further inquiries, the practitioner real-
ized that delivery time frame of one month actually consists of two different
values, 6To10WorkingDays and Over10WorkingDays, which represent two sepa-
rate logical paths of the application under test. To change the model accordingly
using existing CTD tools, the practitioner needs to remove the OneMonth value,
add the two new values, and change the constraints to consider the split values,
without any indication from the tool regarding the effect of each step and the
required consequent steps.

We call this type of change a split. Using our semantics, a split is formally pre-
sented as a refinement of the model domain, where the split values refine the orig-
inal value. According to our semantics, a test containing a 6To10WorkingDays
or Over10WorkingDays value automatically inherits the validity of the same test
with the OneMonth value, which is no longer in the model. Our tool offers a split
operation that incorporates the above three steps, based on our semantics.

Note that in all existing tools, the practitioner can perform the split only
as a sequence of separate steps; after the first two steps, the validity of the
different tests in Boolean semantics depends on the syntax in which the orig-
inal constraints were written, and might differ from the same tests contain-
ing the original value. Following the removal of OneMonth and the addition of
6To10WorkingDays and Over10WorkingDays, the set of valid tests will contain
the pair (OS = Air, DT = 6To10WorkingDays), while it will not contain the pair
(OS = Air, DT = OneMonth). However, this new pair could also be excluded
from the set of valid tests if the syntax of the original constraints were different,
e.g., DT �= Immediate ∧ DT �= OneWeek → OS = Ground. Furthermore, as in the
case of adding the Sea value, there would be no indication that the constraints
should change in order to be consistent with the original model, and thus the
practitioner might neglect changing them. The required changes may be easy to
manually identify when there are only two constraints in the model, but they
are much more challenging when the model contains dozens of parameters and
constraints, as is typically the case in real-world industrial models.

Alternative Solutions. One may suggest alternative solutions to overcome the
inconsistent constraints interpretation following extensions to the model domain,
and the incomplete interpretation following removals from the model domain.
For example, to handle the former problem, one may suggest to remove the
negation operator from the constraint language made available to the practi-
tioner. While this will resolve the inconsistent interpretation, it will extremely
limit the flexibility of the practitioner to specify constraints in a concise manner,



Lattice-Based Semantics for Combinatorial Model Evolution 281

and is thus infeasible in practice. To handle the latter problem, one may suggest
to use propositional semantics, where each partial parameter assignment maps
each constraint to a new constraint. Such a solution will result in numerous ver-
sions of the constraints, which the practitioner needs to reason about following
each single removal from the model. In contrast to these alternatives, our pro-
posed lattice-based semantics handles both problems at once, without limiting
the constraints specification language and without requiring the practitioner to
deal with overly complex information.

3 Preliminaries

We provide formal definitions for the mathematical constructs that will be used
throughout this work, the combinatorial model, which defines a test space, and
lattices and Galois connections, which we use as a basis for the new semantics.

Combinatorial Models. A combinatorial model is defined as follows. Let P =
{p1, . . . , pn} be an ordered set of parameters, V = {V1, . . . , Vn} an ordered set
of finite value sets, where Vi is the set of values for pi, and C a set of Boolean
propositional constraints over P . A test (v1, . . . , vn), where ∀i, vi ∈ Vi, is a tuple
of assignments to the parameters in P .

The current semantics used in practice by CTD tools [18] is Boolean seman-
tics. In this semantics, a valid test is a test that satisfies all constraints in C.
The semantics of the model is the set of all its valid tests, denoted by S(P, V,C).

Complete Lattices and Galois Connections. A lattice is a tuple L = 〈D,
�,	,
,⊥,�〉, where D is a set of elements, � is a partial order on D, 	 is the
join operator that defines a least upper bound for every finite set of elements in
D, 
 is the meet operator that defines a greatest lower bound for every finite
set of elements in D, ⊥ is the bottom element in D, defined as 	∅, and � is the
top element in D, defined as 	D. L is a complete lattice if the meet and join
operators are defined for arbitrary sets in D, rather than only for finite ones.

Given two complete lattices C = 〈DC ,�C ,	C ,
C ,⊥C ,�C〉 and A =
〈DA,�A,	A,
A⊥A,�A〉, representing the concrete domain and the abstract
domain, respectively, a Galois connection is a quadruple (C,α, γ,A) that relates
C and A via a monotone abstraction function α : DC → DA and a monotone
concretization function γ : DA → DC . It must hold that ∀c ∈ DC , c � γ(α(c))
and ∀a ∈ DA, α(γ(a)) � a. A Galois insertion is a Galois connection for which
∀a ∈ DA, α(γ(a)) = a. Specifically in our work, c represents a set of tests in the
concrete domain, and a represents a test in the abstract domain. The concrete
domain is derived from the abstract domain by an atomic operation such as
the addition of a value to a parameter. The abstract domain is derived from the
concrete domain by the reverse operation, e.g., the removal of the value from
the parameter. α maps c to a test which is its most precise abstraction in the
abstract domain, and γ maps a to a set of tests which is its most general con-
cretization in the concrete domain. A mathematical introduction to lattices and
Galois connections can be found in [7].



282 R. Tzoref-Brill and S. Maoz

Finally, given a set V , a complete lattice L, and a function β : V → L,
termed an extraction function, the following quadruple (2V , α, γ, L) is a Galois
connection between 2V and L, where α(X) = 	{β(v) | v ∈ X} for any X ⊆ V ,
and γ(a) = {v ∈ V | β(v) � a} [17].

4 Lattice-Based Semantics for Combinatorial Model
Evolution

We are now ready to present the main contribution of our work, a lattice-based
semantics for combinatorial model evolution. We define the new semantics to
be consistent with Boolean semantics for a single version of the model, yet to
provide a consistent definition of the model following each atomic change in the
domain of the model and to mark the assignments whose validity is unknown
following such changes.

Our lattice-based semantics for combinatorial models consists of two lattices:
an information lattice, which captures the parameter assignments, and is by
itself a Cartesian product of lattices per parameters, and a validity lattice, which
captures the validity information for the parameter assignments.

Formally, let P = {p1, . . . , pn} be a set of parameters, and V = {V1, . . . , Vn}
a set of finite value sets, where Vi = {vi1, . . . , vimi

} is the set of values for pi. Let
Vi∗ be the set Vi

⋃{�,⊥}. For each parameter pi we define a complete lattice
of possible assignments Li = 〈Vi∗,�,	,
,⊥,�〉, where � is a partial order on
Vi∗ in which the elements of Vi are not ordered, � represents the unknown value
which contains the least information about the assignment to pi and therefore
is the top element of Li, and ⊥ represents a contradicting assignment to pi and
is therefore the bottom element of Li.

The information lattice is built as the Cartesian product of the lattices
defined above: Lcart = 〈V1∗ × V2∗ × . . . × Vn∗,�cart,	cart,
cart,⊥cart,�cart〉,
where �cart is the point-wise application of �, and 	cart and 
cart are the
point-wise application of 	 and 
, respectively. ⊥cart and �cart are the elements
resulting from the assignment of ⊥ and � to all parameters in P , respectively.
For simplicity, we merge all tests that contain a ⊥ value into the ⊥cart element.
As will become clear in the sequel, the implications of this are minor, as all of
these tests map to the empty set of concrete tests, whether valid or not.

Validity is given using a second complete lattice Lvalid = 〈{0, 1,⊥valid,
�valid},�valid,	valid,
valid,⊥valid,�valid〉, where 0 stands for invalid, 1 stands
for valid, �valid stands for unknown validity, and ⊥valid stands for contradicting
validity. �valid is a partial order on {0, 1,⊥valid,�valid} in which 0 and 1 are not
ordered. Figure 1 depicts the information lattice of our on-line shopping example
as well as the validity lattice.

We further define a validity function Fvalid : Lcart → Lvalid that maps each
element in the Cartesian product to its validity information. A test is an element
t ∈ Lcart. We denote the value of a parameter p ∈ P in a test t ∈ Lcart by t(p). A
test is a complete test if ∀p ∈ P, t(p) �= �. Otherwise it is a partial test. The set



Lattice-Based Semantics for Combinatorial Model Evolution 283

Fig. 1. On the left, part of the information lattice Lcart of our on-line shopping exam-
ple. Parameters that do not appear in a square are assigned with the � (unknown)
value. On the right, the validity lattice Lvalid.

of valid tests consists of all complete tests t ∈ Lcart such that Fvalid(t) = 1. The
set of invalid tests consists of all complete tests t ∈ Lcart such that Fvalid(t) = 0.

We impose the following requirements on Fvalid, to make it consistent with
Boolean propositional constraints, as will be shown by Lemma2:

1. Monotonicity. ∀t1, t2 ∈ Lcart, if t1 � t2 then Fvalid(t1) � Fvalid(t2). That
is, the more information is given on the parameter assignment, the more
information is deduced on the validity of the assignment.

2. Consistency. Fvalid(t) = ⊥valid iff t = ⊥cart.
3. Completeness. For a single version of the model, we require that for every

complete test t, Fvalid(t) �= �valid. This will no longer be a requirement during
the evolution of the model.

Fvalid induces two dual properties: strongest exclusions and strongest inclu-
sions. A test t ∈ Lcart is a strongest exclusion if Fvalid(t) = 0 and ∀t′, t �
t′ → Fvalid(t′) = �valid. In other words, a strongest exclusion contains the least
assignment information needed to deduce its invalidity. A test t ∈ Lcart is a
strongest inclusion if Fvalid(t) = 1 and ∀t′, t � t′ → Fvalid(t′) = �valid. In other
words, a strongest inclusion contains the least assignment information needed to
deduce its validity.

These properties are important as they will allow us to describe Fvalid and the
changes that occur to it uniquely and succinctly. The validity of the other tests
is directly determined by the validity of the strongest exclusions and strongest
inclusions. Going back to our on-line shopping model, Table 2 presents its Fvalid

function via its strongest exclusions and strongest inclusions.

Lemma 1. For a single version of a model, (a) the set of strongest exclu-
sions Tex uniquely determines Fvalid, and (b) the set of strongest inclusions
Tinc uniquely determines Fvalid.



284 R. Tzoref-Brill and S. Maoz

The proof relies on the consistency, monotonicity, and completeness require-
ments. For details see the long version of the paper at [25].

Table 2. Strongest inclusions and exclusions for the on-line shopping model

Fvalid(IS = �, OS = �, DT = OneWeek) = 1

Fvalid(IS = �, OS = Ground, DT = OneMonth) = 1

Fvalid(IS = �, OS = Air, DT = OneMonth) = 0

Fvalid(IS = �, OS = Air, DT = Immediate) = 1

Fvalid(IS = �, OS = Ground, DT = Immediate) = 0

Lemma 2. For a single version of a model, lattice-based semantics is consistent
with Boolean semantics.

To prove Lemma 2, we show that a model in Boolean semantics S(P, V,C) can
be represented in lattice-based semantics by creating an Fvalid function that is
consistent with the set of valid tests captured by S(P, V,C). Similarly, given a
model in lattice-based semantics (PL, VL, Fvalid), we can create a model in Boolean
semantics S(PL, VL, C) whose set of valid tests is {t ∈ Lcart | Fvalid(t) = 1}. The
full proof appears in [25].

5 Atomic Operations on Combinatorial Models

We observe the following atomic operations that are performed by practitioners
on combinatorial models: adding a parameter and its values, removing a para-
meter and its values, adding a value to an existing parameter, removing a value
from an existing parameter, and adding, removing, or changing a constraint.

In the following, we provide semantics for atomic operations on combinato-
rial models. We interpret each atomic change in the domain of the model as
either an abstraction or a refinement via a Galois connection. Abstraction and
refinement are natural interpretations of an atomic domain change when viewing
it in isolation, without knowing what consequent changes will occur. The Galois
connection is a means to automatically provide a consistent definition of the
validity of the entire model following a domain change, via its abstraction and
concretization functions. We interpret an atomic change in the validity function
as an abstraction, refinement, refactoring, correction, or as a mixture of these
change types. Higher-level semantic changes are discussed in Sect. 6.

5.1 Adding or Removing a Parameter and Its Values

Adding a parameter pi with a set of values Vi∗ = Vi∪{�,⊥} to the model results
in a new domain L′

cart defined over the set of parameters P ′ = P ∪ {pi} and
values V ′ = V ∪ Vi∗. This domain is a refinement of the original domain Lcart.



Lattice-Based Semantics for Combinatorial Model Evolution 285

Similarly, removing a parameter pi and its values Vi∗ from the model results in a
new domain which is an abstraction of the original one. The connection between
the two domains can be described as a Galois connection (2L

′
cart , α, γ, Lcart) via

an extraction function as follows.

Definition 1 (Galois connection for adding or removing a parameter).
Let β : L′

cart → Lcart be an extraction function, where ∀t ∈ L′
cart, β(t) = t \ pi.

Then β uniquely defines α and γ functions as follows: ∀T ⊆ L′
cart, α(T ) =

	cart{β(t) | t ∈ T}, and ∀t ∈ Lcart, γ(t) = ∪{t′ ∈ L′
cart | β(t′) �cart t}.

The intuition behind this reasoning is that the additional parameter adds
more details to the domain and to each test derived from this domain, and
therefore is a form of refinement. Going back to our on-line shopping model
from Sect. 2, adding the parameter ExportControl with values true, false,
refines the test space by describing in each test whether or not export control
is required. Similarly, removing a parameter hides the information it represents,
and is therefore a form of abstraction. For example, removing the parameter IS
from the model eliminates from each test the information about the status of
the item to be purchased.

Theorem 1. (2L
′
cart , α, γ, Lcart) is a Galois insertion.

The proof follows directly from the definitions of α, β, and γ. For details see [25].
Though the addition or removal of a parameter does not directly change

the validity function, it implicitly influences it. As demonstrated in Sect. 2,
such changes might result in an inconsistent or inadequate interpretation of the
model when Boolean semantics is considered. For example, if a removed parame-
ter appears in the constraints, they can no longer be interpreted with Boolean
semantics in the new model due to the missing information.

In contrast, the lattice-based semantics provides a consistent and unique
definition of the validity function following a change in the model domain, via
the Galois connection. Let Fvalid : Lcart → Lvalid be the validity function in the
domain without the additional parameter pi, and F ′

valid : L′
cart → Lvalid be

the validity function in the domain that includes it. Then the validity functions
are defined as follows.

Definition 2 (Validity function following the addition or removal of
a parameter). ∀t ∈ L′

cart, F
′
valid(t) = Fvalid(α({t})) = Fvalid(β(t));∀t ∈

Lcart, Fvalid(t) = 	valid{F ′
valid(t′) | t′ ∈ γ(t)}.

Lemma 3. Fvalid and F ′
valid preserve monotonicity and consistency.

For proof refer to [25].
Note that Definition 2 does not depend on the syntax of the constraints, but

rather on Definition 1, i.e., on the Galois connection relating the two domains.
According to Definition 2, when a parameter pi is added to the model, L′

cart

“inherits” the validity of Lcart. That is, ∀(t, pi = v) ∈ L′
cart, F

′
valid((t, pi =

v)) = Fvalid(β((t, pi = v))) = Fvalid(t). This is indeed the extension of Fvalid



286 R. Tzoref-Brill and S. Maoz

to F ′
valid that CTD tools implicitly use. For example, when the parameter

ExportControl is added to the on-line shopping model, the validity of all tests is
determined regardless of the export control information, although they contain
it. Further refinement of the validity information based on the added parameter
can be performed by the practitioner in subsequent steps.

When a parameter is removed from the model, existing CTD tools mark the
constraints in which it appears as erroneous, and the validity function becomes
undefined until the constraints are corrected. For example, if the OS parameter
is removed from the on-line shopping model, the validity information cannot be
computed anymore in Boolean semantics.

In contrast, using Definition 2, we get the following: ∀t ∈ Lcart, Fvalid(t) =
	valid{F ′

valid(t′) | t′ ∈ γ(t)} = 	valid{F ′
valid(t′) | t′ ∈ L′

cart ∧ β(t′) �cart t} =
	valid{F ′

valid((t′′, pi = v)) | t′′ �cart t, v ∈ Vi∗} = F ′
valid(	cart′{(t′′, pi = v) |

t′′ �cart t, v ∈ Vi∗}) = F ′
valid((t, pi = �)).

That is, the validity of each test in the more abstract model is determined
by assigning the removed parameter with the unknown (�) value. If the valid-
ity can still be determined, it is derived from the refined model. If it cannot
be determined, it becomes unknown (�valid). The advantage of our semantics
is that it pinpoints the exact parameter assignments for which the removal
of pi leads to an unknown validity, and therefore may need to be refined. In
our example, though OS was removed from the model, the validity of the par-
tial test (IS = �, DT = OneWeek) is 1, while the validity of the partial tests
(IS = �, DT = Immediate) and (IS = �, DT = OneMonth) is �valid. This again
demonstrates how the lattice-based semantics provides the practitioner with
more refined information about which parts of the model lost validity infor-
mation and require further input, and which parts maintained complete validity
information following the change and can be kept as is.

5.2 Adding or Removing a Value from an Existing Parameter

Adding a value vik to a parameter pi results in a new domain L′
cart defined

over P and the set of values V ∗, where V ∗(pi) = V (pi) ∪ {vik}. This domain is
a refinement of the previous domain Lcart. Similarly, removing a value vik from
a parameter pi results in a new domain which is an abstraction of the previous
one. Note that Lcart ⊂ L′

cart. The connection between the two domains can be
described as a Galois connection (2L

′
cart , α′, γ′, Lcart) via an extraction function

as follows.

Definition 3 (Galois connection for adding or removing a value). Let
β′ : L′

cart → Lcart be an extraction function, where ∀t ∈ L′
cart, β

′(t) = t[vik/�].
Then β′ uniquely defines α′ and γ′ functions as follows: ∀T ⊆ L′

cart, α
′(T ) =

	cart{β′(t) | t ∈ T}, and ∀t ∈ Lcart, γ
′(t) = ∪{t′ ∈ L′

cart | β′(t′) �cart t}.
Similarly to the previous case, the intuition behind this reasoning is that the
additional value adds more details to the domain, this time with respect to the
specific parameter it is being added to, and therefore is a form of refinement.



Lattice-Based Semantics for Combinatorial Model Evolution 287

Adding the value Sea to the OS parameter refines the information about the avail-
able shipping methods. Similarly, removing a value from a parameter hides the
information it represents for the parameter, and is therefore a form of abstrac-
tion. For example, removing the value NoSuchProduct from the parameter IS
hides the information of whether the item requested to be purchased actually
exists.

Theorem 2. (2L
′
cart , α′, γ′, Lcart) is a Galois insertion.

The proof follows directly from the definitions of α′, β′, and γ′. For details
see [25].

As in the previous case, though the validity is not explicitly changed by the
atomic operation, it is implicitly influenced by it. Again, the Galois connection
provides a consistent and unique definition of the validity function, which exposes
the exact cases in which the validity becomes unknown due to the domain change,
and therefore requires further information from the practitioner.

Definition 4 (Validity function following the addition or removal of
a value). ∀t ∈ L′

cart, F
′
valid(t) = Fvalid(α′({t})) = Fvalid(β′(t)); ∀t ∈ Lcart,

Fvalid(t) = 	valid{F ′
valid(t′) | t′ ∈ γ′(t)}.

Lemma 3 applies to Definition 4 as well. For details see [25].
When a value is added to the model, according to the definition of β′, we get

that if t(pi) �= vik then F ′
valid(t) = Fvalid(t). Otherwise F ′

valid(t) = Fvalid(t′),
where t′(pi) = � ∧ ∀j �= i, t′(pj) = t(pj).

That is, the new value is treated as unknown when interpreting the valid-
ity of an assignment in which it participates. If the validity can be determined
regardless of the value of the parameter pi, then it remains determined. Oth-
erwise, it is defined as unknown, making the validity function for this assign-
ment under-specified and forcing the practitioner to explicitly define it. As
shown in Sect. 2, using Definition 4 we are able to deduce that the validity
of (IS = �, OS = Sea, DT = Immediate) is �valid, because the validity of
(IS = �, OS = �, DT = Immediate) is also �valid, regardless of the syntax of
the original constraints. In contrast, in Boolean semantics, the test is assigned
with conflicting 0 and 1 validity in this case, depending on the syntax of the
constraints.

When removing a value vik of a parameter pi from the model, we get that
Fvalid(t) = 	valid{F ′

valid(t′) | t′ ∈ γ′(t)} = 	valid{F ′
valid(t′) | t′ ∈ L′

cart ∧
β′(t′) �cart t} = 	valid{F ′

valid(t′) | t′ ∈ L′
cart ∧ t′[vik/�] �cart t} =

F ′
valid(	cart′{t′ ∈ L′

cart | t′ �cart′ t}) = F ′
valid(t). In this case, since

Lcart ⊂ L′
cart, we simply get that the validity of t is inherited from the refined

model.

5.3 Adding, Removing, or Changing a Constraint

As opposed to a change in the domain of the model that implicitly changes its
validity function, an addition, removal, or change in a constraint does not implic-
itly change the domain of the model. Therefore, it does not require guaranteeing



288 R. Tzoref-Brill and S. Maoz

a consistent interpretation of an implicit change. Instead, we reason about the
different semantics of changes in the constraints, such as abstraction, refinement,
refactoring, and correction, by analyzing their effect on the strongest exclusions
and strongest inclusions. Since this analysis is an extension of our proposed
semantics that is not required for the understanding of the main contribution of
this work, we opt for describing it in [25].

6 Split and Merge Operations on Combinatorial Models

We now move from analyzing each atomic operation in isolation, to examining
higher-level operations that stand for a semantic change. Specifically, we focus on
two such changes which we call merge and split. These changes replace existing
parts of the model with new parts that describe the original parts with less or
more detail. We provide formal definitions for split and merge using our lattice-
based semantics, and offer high-level operations for them.

Formally, a split operation on a value vik of a parameter pi to a set of values
{vik1, . . . , vikm} results in a new domain L′

cart defined over P and the set of
values V ∗, where V ∗(pi) = V (pi) \ {vik} ∪ {vik1, . . . , vikm}. This domain is a
refinement of the previous domain Lcart. Similarly, a merge operation on a set
of values {vik1, . . . , vikm} of a parameter pi to a single value vik results in a new
domain which is an abstraction of the previous one. The connection between the
two domains can be described as a Galois connection (2L

′
cart , α′, γ′, Lcart) via

an extraction function as follows.

Definition 5 (Galois connection for splitting or merging values). Let
βms : L′

cart → Lcart be an extraction function, where ∀t ∈ L′
cart, βms(t) =

t[vik1/vik] . . . [vikm/vik]. Then βms uniquely defines αms and γms functions as
follows: ∀T ⊆ L′

cart, αms(T ) = 	cart{βms(t) | t ∈ T}, and ∀t ∈ Lcart, γms(t) =
∪{t′ ∈ L′

cart | βms(t′) �cart t}.
Theorem 3. (2L

′
cart , αms, γms, Lcart) is a Galois insertion.

The proof follows directly from the definitions of αms, βms, and γms. For details
see [25].

Similarly to the cases described in Sect. 5, the Galois connection is a means
to consistently define the new validity function following the domain change,
and to expose which new parts of the test space have an unknown validity:

Definition 6 (Validity function following the split or merge of values).
∀t ∈ L′

cart, F
′
valid(t) = Fvalid(αms({t})) = Fvalid(βms(t)); ∀t ∈ Lcart,

Fvalid(t) = 	valid{F ′
valid(t′) | t′ ∈ γms(t)}.

Lemma 3 applies to Definition 6 as well. For details see [25].
In case of a split, according to βms definition, we get that if t(pi) �∈

{vik1, . . . , vikm} then F ′
valid(t) = Fvalid(t). Otherwise, F ′

valid(t) = Fvalid(t′),
where ∀j �= i, t′(pj) = t(pj), and t′(pi) = vik. That is, the validity of a test with



Lattice-Based Semantics for Combinatorial Model Evolution 289

the split values is inherited from the validity of the same test with the original
value.

In case of a merge, we get that Fvalid(t) = 	valid{F ′
valid(t′) | t′ ∈ γms(t)} =

	valid{F ′
valid(t′) | t′ ∈ L′

cart ∧ βms(t′) �cart t} = 	valid{F ′
valid(t′) | t′ ∈

L′
cart ∧ t′[vik1/vik] . . . [vikm/vik] �cart t}.
If t(pi) �= vik then we get that Fvalid(t) = F ′

valid(t), because in this case t is
also in L′

cart and the same tests are smaller than t in both domains. Otherwise,
Fvalid(t) = 	valid{F ′

valid(t
′) | ∀j �= i, t′(pj) = t(pj) ∧ t′(pi) ∈ {vik1, . . . , vikm}}.

That is, if all split values agree on the validity, the merged value will inherit it.
Otherwise, it will be assigned with the �valid value, forcing the practitioner to
explicitly determine it.

In our example from Sect. 2, a split of OneMonth into 6To10WorkingDays and
Over10WorkingDays will result in the following additions to Fvalid:

– Fvalid(IS = �, OS = Ground, DT = 6To10WorkingDays) = 1
– Fvalid(IS = �, OS = Ground, DT = Over10WorkingDays) = 1
– Fvalid(IS = �, OS = Air, DT = 6To10WorkingDays) = 0
– Fvalid(IS = �, OS = Air, DT = Over10WorkingDays) = 0

As previously noted, in our semantics, a test containing a split value (in our
example 6To10WorkingDays or Over10WorkingDays), automatically inherits the
validity of the same test with the original value (in our example, OneMonth),
whereas in Boolean semantics, its validity is ambiguous, and depends on the
syntactic representation of the constraints.

Now assume the practitioner realized that OneWeek and 6To10WorkingDays
are functionally equivalent, and should be merged into a single value named
UpTo10WorkingDays. As a result of performing the merge as a composite oper-
ation in lattice-based semantics, the partial test (IS = �, OS = Air, DT =
UpTo10WorkingDays) will be assigned with �valid validity (“unknown”), since
the corresponding strongest exclusions and inclusions in the split model “dis-
agree” on its validity. Similarly to the case of adding a value to the model, we
suggest to extend the merge operation to include determination of validity for
such merged tests, to result in a validity function that satisfies the completeness
requirement, i.e., every complete test has a known validity. The practitioner can
assign a 0 or 1 validity to the merged test, which is an abstraction of the split
strongest exclusions and inclusions in the merged model. Alternatively, the prac-
titioner can decide to keep the unknown validity, and instead specify a 0 or 1
validity for a set of tests T so that the merged test in question is their least
upper bound. For example, a 0 validity can be assigned in this case if the item
is out of stock, and a 1 validity can be assigned otherwise.

In contrast, in Boolean semantics, after replacing the split values with the
merged one, the question whether the combination of values (OS = Air, DT =
UpTo10WorkingDays) appears in the valid set of tests depends entirely on the
syntax of the constraints, and there is no indication about the conflicting validity
of the split tests with respect to the merged one.

Similarly to split and merge of values, we define corresponding operations
for split and merge of parameters. For lack of space, we do not include here the



290 R. Tzoref-Brill and S. Maoz

formal definition of these operations, however it is similar in nature to that of
split and merge of values for a single parameter.

7 Related Work

There is a large body of work on various aspects of combinatorial testing. To
the best of our knowledge, none of it addresses the problem of combinatorial
model evolution. Nie et al. [16] survey 93 academic papers on combinatorial
testing, and categorize them into 8 different research areas, but do not mention
model evolution. There are also many existing CTD tools [4,18,21], which to
the best of our knowledge, provide no support for model evolution, though from
our practical experience, managing and comprehending changes in models is a
challenge encountered frequently by CTD practitioners in their routine tasks.

Qu et al. [20] examine the effectiveness of combinatorial test prioritization
and re-generation strategies on regression testing in evolving programs with mul-
tiple versions. However, the work ignores the modeling aspects of the evolution.

Much work has been published on the evolution of other kinds of models,
from a semantic and syntactic point of view. For example, Maoz et al. presented
semantic model differencing for class and activity diagrams [13,14], where the
difference between two models is given as a set of diff witnesses, instances of one
model that are not instances of the other. We are unaware of any work on model
evolution that uses a lattice-based semantics.

Lattices and Galois connections have been widely used in program analysis
and verification, based on the abstract interpretation framework [3]. The frame-
work has numerous applications, including for example, in reactive systems [6]
and more recently in semantic differencing of programs [19]. Another notable
application of lattices is for multi-valued model checking [9,11,15,23]. We are
unaware of any use of lattices in the context of model evolution.

8 Summary and Future Work

In this work, we demonstrate the shortcomings of the Boolean semantics cur-
rently used by CTD tools for reasoning about model evolution, and extend it
with a new lattice-based semantics. The new semantics provides a consistent
interpretation of changes in the model, and constitutes a new foundation for
better comprehension and management of changes in combinatorial models. We
further define higher-level atomic operations for combinatorial model evolution
using our lattice-based semantics. An analysis of the evolution of 42 real-world
industrial models reveals that these operations are indeed recurring evolution
patterns, and serves as preliminary evidence for the strength of our semantics.

This work is a first step in a larger research agenda involving different aspects
of combinatorial model evolution. We already implemented the new semantics
and higher-level constructs in our CTD tool IBM FOCUS. We plan to perform a
thorough evaluation of these enhancements and assess the degree to which they
help CTD practitioners manage changes in real-world models.



Lattice-Based Semantics for Combinatorial Model Evolution 291

We also plan to extend our analysis of the evolution of real-world models, and
identify additional recurring evolution patterns. The current analysis was mostly
performed manually, with only lightweight tool support. We plan to further
extend the tool support for semantic differencing between combinatorial models.

Another research direction we are pursuing is the co-evolution of models and
the test plans derived from them. We plan to use our lattice-based semantics
to establish the connection between the interaction coverage requirements in
different versions of a model, and determine what changes are required in the
test plan to match the evolved model and coverage requirements.

Finally, our work is part of a more general plan to explore the benefits of
lattice-based semantics for supporting the evolution of other kinds of models,
for example relational models and transition systems.

References

1. Burroughs, K., Jain, A., Erickson, R.L.: Improved quality of protocol testing
through techniques of experimental design. In: SUPERCOMM/ICC (1994)

2. Cohen, M.B., Snyder, J., Rothermel, G.: Testing across configurations: implications
for combinatorial testing. SIGSOFT Softw. Eng. Notes 31(6), 1–9 (2006)

3. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

4. Czerwonka, J.: Pairwise Testing in Real World. In: PNSQC (2006)
5. Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J.M., Lott, C.M., Patton, G.C.,

Horowitz, B.M.: Model-based testing in practice. In: ICSE (1999)
6. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems.

ACM Trans. Program. Lang. Syst. 19(2), 253–291 (1997)
7. Davey, B.A., Priestley, H.A.: Introduction To Lattices and Order. Cambridge Uni-

versity Press, Cambridge (1990)
8. Grindal, M., Lindström, B., Offutt, J., Andler, S.F.: An evaluation of combination

strategies for test case selection. Softw. Eng. Empirical 11(4), 583–611 (2006)
9. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: Don’t know in the µ-Calculus.

In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 233–249. Springer,
Heidelberg (2005)

10. IBM Functional Coverage Unified Solution (IBM FOCUS). http://researcher.
watson.ibm.com/researcher/view project.php?id=1871

11. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for prob-
abilistic systems. In: JLAP (2012)

12. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and implica-
tions for software testing. IEEE Trans. Softw. Eng. 30(6), 418–421 (2004)

13. Maoz, S., Ringert, J.O., Rumpe, B.: ADDiff: semantic differencing for activity
diagrams. In: ESEC/FSE (2011)

14. Maoz, S., Ringert, J.O., Rumpe, B.: CDDiff: semantic differencing for class dia-
grams. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 230–254. Springer,
Heidelberg (2011)

15. Meller, Y., Grumberg, O., Shoham, S.: A framework for compositional verification
of multi-valued systems via abstraction-refinement. In: Liu, Z., Ravn, A.P. (eds.)
ATVA 2009. LNCS, vol. 5799, pp. 271–288. Springer, Heidelberg (2009)

http://researcher.watson.ibm.com/researcher/view_project.php?id=1871
http://researcher.watson.ibm.com/researcher/view_project.php?id=1871


292 R. Tzoref-Brill and S. Maoz

16. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2),
11 (2011)

17. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
New York (1999)

18. Pairwise testing website. http://www.pairwise.org/tools.asp
19. Partush, N., Yahav, E.: Abstract semantic differencing via speculative correlation.

In: OOPSLA (2014)
20. Qu, X., Cohen, M.B., Woolf, K.M.: Combinatorial interaction regression testing:

a study of test case generation and prioritization. In: ICSM (2007)
21. Lei, Y., Kuhn, R., Kacker, R.: Practical combinatorial testing beyond pairwise. IT

Prof. 10(3), 19–23 (2008)
22. Segall, I., Tzoref-Brill, R., Farchi, E.: Using binary decision diagrams for combina-

torial test design. In: ISSTA (2011)
23. Shoham, S., Grumberg, O.: 3-valued abstraction: more precision at less cost. Inf.

Comput. 206(11), 1313–1333 (2008)
24. Tai, K.C., Lie, Y.: A test generation strategy for pairwise testing. IEEE Trans.

Softw. Eng. 1, 109–111 (2002)
25. Tzoref-Brill, R., Maoz, S.: Lattice-based semantics for combinatorial model evolu-

tion. Technical report H-0323, IBM Research (2015)
26. Wojciak, P., Tzoref-Brill, R.: System level combinatorial testing in practice - the

concurrent maintenance case study. In: ICST (2014)

http://www.pairwise.org/tools.asp

	Lattice-Based Semantics for Combinatorial Model Evolution
	1 Introduction
	2 Running Example and Overview
	3 Preliminaries
	4 Lattice-Based Semantics for Combinatorial Model Evolution
	5 Atomic Operations on Combinatorial Models
	5.1 Adding or Removing a Parameter and Its Values
	5.2 Adding or Removing a Value from an Existing Parameter
	5.3 Adding, Removing, or Changing a Constraint

	6 Split and Merge Operations on Combinatorial Models
	7 Related Work
	8 Summary and Future Work
	References


