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    Chapter 3   
 Epigenetic and Cancer: An Evaluation 
of the Impact of Dietary Components                     

       James     A.     Stokes     III    ,     Sanjay     Kumar    ,     Karyn     Scissum-Gunn    ,     Udai     P.     Singh    , 
and     Manoj     K.     Mishra    

3.1             Introduction 

  Natural  dietary   compounds isolated from fruits, vegetables, and spices have shown 
great potential in the prevention and treatment of various diseases such as cancer 
[ 1 – 12 ]. These compounds contain several bioactive properties that are ubiquitous in 
plants, many of which have been used in ancient traditional medicines. Herbs, fruits, 
and veggies are not only a good source of fi ber, vitamins and minerals, but also 
consist of constituents like resveratrol (RES), curcumin, genistein, polyphenols, 
alkaloids, phenolics and sulforaphane. Evidence indicates that these compounds 
may serve more than a basic nutritional function; thereby, effectively mediating the 
regression of multiple debilitating diseases including cancer. In addition to the com-
pounds listed above, other polyphenols such as isothiocynates, silymarin, dialyl sul-
fi de, lycopene, rosmarinic acid, apigenin and gingerol have demonstrated their 
potency against cancer [ 1 – 12 ]. Interestingly, these compounds have shown the abil-
ity to inhibit cancer via the facilitation of various epigenetic processes. Therefore, 
this chapter will focus on the epigenetic targets of these compounds, which are 
heavily involved in cancer prevention and therapy. 

 The study of  epigenetics   is comprehensive and includes all intracellular and 
extracellular interactions that may affect the expression of specifi c genes without 
directly altering nucleotide sequences [ 11 – 25 ]. Epigenetics can best be defi ned as 
the study of the mechanisms affecting temporal and spatial control of gene activity 
during the development of complex organisms [ 26 ]. Perhaps one of the best 
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examples of this is the  epigenetic modifi cation   of  chromatin   during embryonic 
development after the fertilization of eukaryotic eggs. In fact, epigenetic changes 
are so wide- ranging that they can be used as molecular tools in the screening and 
treatment of various diseases including cancer. Cancer is the result of genetic muta-
tions and/or epigenetic modifi cations stemming from the exposure to various 
adverse environmental factors [ 27 – 29 ]. Studies have shown that exposure to envi-
ronmental toxins, the quality of  nutrition   and other factors including physical and 
chemical pollutants can alter  gene expression   and modulate individual genetic sus-
ceptibility to changes within the epigenome [ 17 ,  30 ]. To this end, there are several 
known mechanisms that are capable of altering the epigenome, which include  DNA 
methylation  , histone acetylation,  chromatin   remodeling and RNA-interference/
interaction. 

 Epigenetic mechanisms often regulate the transcription of genes that facilitate 
cellular proliferation, differentiation, and survival. These mechanisms have also 
been linked with tumorigenesis. Aberrant  chromatin   modifi cations such as  DNA 
methylation   and histone acetylation are the main processes studied in cancer  epi-
genetics   [ 17 ,  31 ,  32 ]. Recent studies have demonstrated that during cancer develop-
ment, approximately 50 % of all tumor suppressor genes are most likely inactivated 
by epigenetic rather than genetic, mechanisms [ 33 ]. Reports also suggest that bioac-
tive dietary compounds can often restore the function of tumor suppressor genes, 
increase survival, and under certain circumstances induce  apoptosis   in many kinds 
of cancers [ 34 ,  35 ]. In addition to the transcriptional silencing of tumor suppressor 
genes, non-coding  micro-RNAs (miRNAs)   can be used to affect mRNA stability 
and subsequent translation by epigenetic processes during cancer progression [ 29 , 
 32 ]. More interestingly, these miRNAs can regulate the expression of various epi-
genetic modifying enzymes such as methyltransferases (DNMTs), histone methyl-
transfereases (HMTs), and histone deacetylases (HDACs), which historically have 
been documented to participate in tumorigenesis [ 36 ,  37 ]. Recent studies also sug-
gest that bioactive dietary compounds may target different tumor suppressor  miR-
NAs   to change the function(s) of genes that are being used to classify human cancers 
[ 38 ,  39 ]. Furthermore,  miRNAs   either directly or indirectly regulate cancer progres-
sion by acting as a  tumor suppressor   or epigenetically modifying enzyme. In a 
recent study,  miRNA-221  and  miRNA-222  inhibit the oncogene  KIT , and therefore 
functions as a tumor suppressor in erythroblastic cells and other solid tumors of 
human origin [ 40 ]. Conversely, the  miRNA-29  family can directly control the 
expression of DNMTs and enhance the expression of both  DNMT-3a  and  DNMT-3b  
causing genomic  hypermethylation   and the silencing of sensitive tumor suppressor 
genes:  FHIT  and  WWOX  [ 41 ].  

3.2     Mechanism of Epigenetic: DNA Methylation 

   DNA methylation   has been observed in many different types of organisms including 
mammals, plants and bacteria [ 42 ,  43 ]. DNA methylation occurs during DNA rep-
lication and is considered a stable gene-silencing mechanism. During this process 
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DNMTs add methyl groups to the 5′ end of the DNA molecule, thus inactivating the 
affected gene by directly interfering with the assembly of transcription factors 
essential for  gene expression  . These enzymes use  S -adneylmethionine (SAMs) to 
transfer methyl groups to cytosine-phosphate- guanine (CpG) sites along the 
DNA. However, CpG sites are not randomly distributed in the genome, but are con-
centrated in short CpG-rich DNA fragments commonly referred to as  CpG islands   
[ 33 ,  44 – 46 ]. Additionally, the majority of CpG sites (except the nucleotide cyto-
sine) are methylated, during development and differentiation in normal cells. 
Certain subsets of CpG islands at promoter regions may be methylated leading to 
long term inactivation of target genes, which can be seen in the CpG islands of 
tumor suppressor genes [ 47 – 51 ]. DNA methylation patterns are formed during cell 
proliferation, and can disrupt cellular division. DNA methylation is tissue specifi c, 
and distinct methylation patterns have been observed across various tissue types. 
Evidence indicates that the  hypermethylation   of genes often facilitates conditions 
that are conducive to carcinogenesis (Fig.  3.1 )  [ 33 ,  44 – 48 ,  54 – 59 ].

3.3        Histone Modifi cation 

  The basic structure of  the   nucleosome consists of the histone octamer, which 
includes two molecules of each H2A, H2B, H3 and H4 proteins. The N-terminal of 
these proteins extends from the nucleosome core and the exposed amino acids 
undergo a series of covalent modifi cations including methylation, acetylation, phos-
phorylation, ubiquitinization and sumolization [ 11 ,  18 ,  32 ,  60 ]. Singular occurrence 

  Fig. 3.1    Mutations in epigenetic modifi ers not only induce cancer formation, but also induce 
epigenetic changes  like   DNA methylation,  histone modifi cation  , and microRNAs, which lead to 
abnormal  gene expression   and genomic instability [ 52 ,  53 ]       
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or a combination of these modifying events are believed to cause inheritable epigen-
etic programs that facilitate different nucleosome functions such as gene transcrip-
tion, the inactivation of the X-chromosome, formation of heterochromatin, mitosis 
and DNA repair and replication [ 10 ,  36 ,  57 ,  61 ,  62 ]. Direct interaction between the 
chromodomain of  Tip60  and histone H3 trimethylized on lysine 9 (H3K9me3) at 
double-strand breaks (DSBs) activate acetyltransferase. H3K9me3 deletion inhibits 
acetyltransferase activation of  Tip60 , resulting in defective ATM activation that 
leads to defective DSB repair. These functions are induced either by altered nucleo-
some interactions with  chromatin   or by recruiting effector proteins that possess 
modules that recognize specifi c histone modifi cations in a sequence specifi c man-
ner. The epigenetic codes reside in the substrate specifi city of the enzymes that cata-
lyzes the various covalent modifi cations as well as the enzyme that reverses these 
modifi cations. 

  Chromatin   is the template for DNA mediated processes; therefore, it might be 
worthy to note that histone modifi cations are an important component in controlling 
the structure and/or function of the chromatin, which often produces functional con-
sequences. Previous reports suggest that site-specifi c histone modifi cation can be 
linked with gene transcription [ 33 ,  63 ,  64 ]. For instance, histone H3, lysine 9 acetyla-
tion (H3K9ac), H3 serine 10 (H3S10) phosphorylation and H3 lysine 4 trimethylation 
(H3K4me3) are found to be associated with transcriptional activation [ 33 ,  64 – 67 ]. 
However,  hypomethylation   of H3 and H4 have shown to suppress transcription. In 
brief, the importance of histone modifi cation is highlighted after the revelation that 
transcription apparatuses often recognize and respond to histone modifying activity 
[ 44 ,  58 ,  68 ]. Studies have also shown that histone H3S10 phosphorylation is catalyzed 
by mitogen and stress activated protein kinase 1 (MSK1). H3S10 phosphorylation is 
also recognized by a 14-3-3e/14-3-3y heterodimer through its interaction with H3K4 
trimethyltransferase (SMYD3) and the  p52  subunit of FIIH (Fig.  3.2 )  [ 64 ].

3.4        microRNAs Interaction 

 MicroRNAs are evolutionarily conserved endogenous non-coding RNAs.  MiRNAs 
  are typically 19–25 nucleotides long, which partially or completely match the 3′ 
untranslated regions (3′UTR) of target RNAs. The hybridization of miRNAs to tar-
get RNAs controls  gene expression   by post-translational modifi cation, silencing, 
and degradation mechanisms [ 21 ,  38 ,  40 ,  41 ,  68 ,  71 – 73 ]. Previous reports suggests 
that more than 30 % of human genes are controlled by  miRNAs   which suggests that 
these small non-coding RNAs play important roles in many biological processes 
including cell cycle regulation, cell growth,  apoptosis  , cell differentiation and stress 
reactions [ 42 ,  43 ,  74 – 78 ]. 

 In recent studies, increased detection of  miRNA   among clinical samples clearly 
suggests that regulatory functions involve miRNAs [ 12 ,  16 ,  18 ,  21 ,  73 ,  79 ,  80 ]. 
According to data retrieved from the Sanger miRNA Registry in 2013, more than 
800 or 1000 human miRNAs have been recorded however; many more  miRNAs   are 
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expected to be discovered in the future [ 81 ]. miRNA control is very similar to the 
regulation of tightly controlled protein encoding genes. However, during cases of 
cancer proliferation miRNAs have been found to be greatly deregulated [ 42 ,  43 , 
 74 – 78 ,  82 – 85 ]. 

 Epigenetic manipulation of  miRNAs   is believed to be highly complex [ 4 ,  18 ,  21 , 
 22 ,  68 ,  73 ]. Additionally, tissue specifi c expression of miRNAs is tightly regulated 
by epigenetic mechanisms such as  DNA methylation   and  histone modifi cation  ; 
however,  miRNAs   themselves can also affect epigenetic mechanisms and regulate 
gene transcription via post-translational gene silencing [ 16 ,  37 ,  41 ,  73 ]. In addition 
to these important biochemical pathways  miRNAs   can also be regulated by dietary 
supplements such as RES. Research shows that oncomirs such as  miR-21  are upreg-
ulated during the manifestation of various types of cancers. RES is an effective 
regulator of these [ 86 – 89 ].  

3.5     Epigenetic and Carcinogenesis 

 Epigenetic mechanisms help to maintain cellular homeostasis during normal physi-
ological conditions [ 5 ,  10 ,  13 ,  20 ,  21 ,  23 ,  24 ,  30 ,  48 ]. However, alterations in epi-
genetic regulation may lead to aberrant  gene expression  , which can result in the 

  Fig. 3.2    Epigenetic mechanisms of gene regulation [ 69 ,  70 ]       
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development of cancer. Cancer development is typically associated with genetic 
mutation and the subsequent improper unregulated functioning of genes [ 9 ,  15 ,  40 , 
 44 ,  54 ,  90 – 94 ]. However, our understanding shows that carcinogenesis cannot be 
the result of genetic alterations alone, but also involve epigenetic changes such as 
 DNA methylation  ,  histone modifi cations   and microRNAs (Fig.  3.2 ). The level of 
lysine methylation varies and depends upon cell type. Data suggests that these 
molecular changes are associated with different types of cancers (Table  3.1 ).

   Additionally, the deregulation of lysine methyltransferase and demethylases has 
been found in a variety of cancers as shown in Tables  3.2  and  3.3 .

    These changes lead to stable alterations in the pattern of  gene expression   that 
control the neoplastic phenotype, such as cellular growth and invasiveness. At this 
point, we focused on epigenetic targets of the bioactive compound resveratrol (RES) 
and its role in cancer prevention and therapy. 

 RES is a dietary polyphenol obtained from grapes, berries, peanuts, and other 
plant sources. RES shows a wide range of anti-cancer benefi ts such as modulating 
signal transduction pathways that regulate growth, differentiation,  apoptosis  , 
infl ammation,  angiogenesis  , and metastasis [ 117 – 122 ]. Studies also suggest that 
treatment with RES inhibits the proliferation of various human cancers such as skin, 
breast, prostate, lung and colon [ 123 – 127 ]. The success of RES has led to the devel-
opment of preclinical animal studies in an effort to determine the potential of this 
agent for cancer chemo therapeutics  . Furthermore, RES has shown remarkable 
effects against cancer cells at both the biochemical and molecular levels [ 128 ]. 

 RES has weaker DNMT inhibitory activity as compared to other bioactive 
 compounds such as epigallocatechin-3-gallate (EGCG). In addition, RES inhibits 
epigenetic silencing  of    BRCA-1  induced by aromatic hydrogen receptor (AhR) in 
MCF-7 cells [ 129 ]. Studies show that treatment with RES results in AhR-mediated 
enrichment of mono-methylated-H3K9, DNMT1, and methyl-binding domain pro-
tein- 2 at the  BRCA-1  promoter, which was associated with  BRCA-1  reactivation in 
MCF-7 cells [ 129 ]. Conversely, it has also been reported that RES induces retinoic 

   Table 3.1    Lysine methylation pattern during cancer progression   

  Histone 
modifi cation   

 Expression during 
cancer 
progression  Cancer types 

 H3K4me1  ↑  Unknown 
 H3K4me2  ↑  Prostate [ 95 ,  96 ] 
 H3K4me3  ↓  Bladder cancer [ 95 ] 
 H3K9me2  ↑  Gastric adenocarcinomas [ 95 ,  97 ] 
 H3K9me3  ↓  Prostate [ 95 ,  97 ] 
 H3K27me3  ↑  Paragangliomas [ 77 ] 
 H4K20me1  ↓  Bladder cancer, Lymphomas, colorectal adenocarcinomas 

[ 77 ,  78 ], breast carcinomas, bladder cancer, liver cancer, 
non-small cell lung cancer 

 H4K20me3  ↓  Lymphomas, colorectal adenocarcinomas [ 77 ,  78 ], breast 
carcinomas, bladder cancer, liver cancer, non-small cell 
lung cancer 
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   Table 3.2    Histone lysine methyltransferases implications in cancer   

 Histone 
modifi er  Changes during cancer  Cancer types 

 MLL1  Translocation, 
amplifi cation, 
duplication 

 Human lymphoid and myloid leukemia [ 98 ,  99 ] 

 MENIN  Mutated  Multiple endocrine neoplastia type-1 [ 94 ,  100 ] 
 Ash2L  Increase expression  Squamous cell carcinoma of cervix and lyrix, 

melanoma, rhabdomyosarcoma, breast and colon 
carcinoma, pancreatic ductal adenocarcinoma and 
gastric carcinoma [ 101 ,  102 ] 

 Low level  Hepatocellular carcinoma [ 103 ] 
  Ezh2    Over expression  Prostate neuroblastoma, breast cancer [ 51 ,  104 ] 

 Mutation  B cell lymphoma, gallbladder adenocarcinoma [ 105 ] 
 Suv39H1  Over expression  Colon 
 SMYD3  Over expression  Colon, breast, hepatocellular carcinoma [ 105 ] 
 RIZ1  Mutation/down 

regulation 
 Liver breast and gastric cancer [ 105 ] 

 NSD1  Translocation  acute myeloid leukemia [ 14 ,  106 ] 
 Mutation  Soto’s syndrome [ 14 ] 
 Silencing by promotor  Neuroblastoma and  gliomas   
 Hyper mutation 

 NSD2  Translocation  Multiple myeloma 
 Over expression  Multiple tumors 

 NSD3  Translocation  Leukaemia 
 Amplifi cation  Breast cancer [ 107 ,  108 ] 

 G9a  Over expression  Hepatocellular carcinoma [ 107 ,  108 ] 
 Hypoxia mediated 
upregulation 

 Gastric, lung cancer [ 109 ] 

   Table 3.3    Histone lysine demethylase implicated in cancer   

 Histone 
activator 

 Changes during 
cancer  Cancer types 

 LSD1  Over expression  Prostate, neuroblastoma, breast cancer [ 67 ,  110 ] 
 Low level  Hepatocellular carcinoma [ 67 ,  110 ] 

 FBXL10  Mutation  Lymphoma [ 111 ] 
 Decrease  Brain glioblastoma 

 JMJD2C  Over expression  Prostate, oesophageal squamous cell carcinoma, desmoplastic 
medulloblastoma, MALT lymphoma [ 103 ,  111 – 113 ] 

 RBP2  Over expression  Gastric cancer [ 114 ] 
 PLU-1  Over expression  Breast, prostate, testis, ovary, lung, bladder cancer [ 115 ] 
 UTX  Mutations  Multiple myeloma, renal cell carcinoma [ 116 ] 
 JMJD3  Over expression  Prostate,  pancreatic cancer  , lymphoma [ 116 ] 
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acid receptor beta 2 (RARbeta2) expressions by blocking RARbeta2 promoter 
methylation in MCF-7 cells as compared to other adenosine analogs [ 130 ]. 
Furthermore, RES induced activation of the type III HDAC inhibitors,  sitrin 1  
( SIRT1 ) and  p300 , in several  in vitro  and  in vivo  models [ 131 ]. However, activated 
 SIRT1  negatively down regulated the expression of survivin by deacetylase activity 
[ 132 – 135 ].  Human    BRCA-1  breast cancer cells showed decrease expression of 
 SIRT1  [ 132 – 135 ]. RES has been shown to induce the activation of  SIRT1  by altering 
H3 acetylation. This proved to be a useful approach for target therapy for  BRCA-1  
mediated breast cancer [ 136 ]. Furthermore,  SIRT1  associated  BRCA1   signaling   is 
important for targeting tumorigenesis by activating oncoproteins in human breast 
cancer [ 136 ]. It has been shown that  SIRT1 -encoded proteins are needed for RES- 
induced chemotherapy in APC/+ and APC/− mice [ 137 ].  SIRT1  also play an impor-
tant role in aging, since  SIRT1  null mice are unable to tolerate caloric restriction and 
fail to extend their life duration [ 137 ]. This demonstrates RES’s ability to modulate 
epigenetic processes via the activation of expressed HDAC inhibitors [ 138 ].  

3.6     Conclusion and Future Prospects 

 The emerging fi eld that involves nutritional genomics to target nutrient related 
genetic and epigenetic alterations for cancer  therapeutics   is unique and timely. The 
bioactive dietary compound (RES) holds great potential not only in the prevention, 
but also in the therapy of a wide range of cancers by inducing  epigenetic modifi ca-
tions  . Cancer is a highly resistant disease and uses several survival pathways to 
prevail over normal cells. RES can act at several levels to inhibit multiple cellular 
pathways (for instance the induction of  SIRT1  and the inhibition of NFkB) and can 
be developed as a potential therapeutic agent. Many bioactive dietary compounds 
have shown great promise in targeting many cellular pathways involved in carcino-
genesis as compared to other traditional therapies. However, further research is 
needed to assess organ specifi city, bioavailability and general safety of these dietary 
compounds for any prudent conclusions. Empirical evidence of the healing powers 
of ancient medicines strongly supports the use of RES for cancer therapy .     
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