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10.1           Introduction 

     Enhancer of zeste homology 2 (Ezh2)   is a histone-lysine  N -methyltransferase 
 enzyme  . It  is   regulated by  Ezh2  gene that is involved in  DNA methylation  , which 
ultimately leads to the suppression of transcription. Ezh2 catalyzes the addition of 
methyl (–CH3) groups to histone H3 at lysine 27 with the help of a cofactor 
 S -adenosyl- L -methionine (SAM). The methylation in Ezh2 induces heterochroma-
tization, which is responsible for the remodeling of  chromatin   thereby silencing 
gene function(s). Further, Ezh2 is the functional catalytic core protein of Polycomb 
Repressor Complex 2 (PRC2), which is essential for normal embryonic develop-
ment through the  epigenetic modifi cations  . Ezh2 is also responsible for PRC2 
methylation and catalyzes the trimethylation of histone3 lysine27 (H3K27). Ezh2 
induces silencing of target genes, which are involved in suppressing tumor growth 
and cellular homeostasis [ 1 – 7 ]. These target genes are associated with cellular pro-
liferation, invasiveness, senescence,  angiogenesis   and metastasis of cancer develop-
ment [ 8 ]. Studies suggest that over expression/dysregulation of Ezh2 could be an 
important factor for tumor development and progression [ 2 – 7 ]. Therefore, the pre-
vention of Ezh2 over expression is a promising strategy for effective therapeutic 
interventions in many aggressive cancers including prostate cancer [ 2 – 7 ]. 

 Studies have established the location of the  Ezh2  gene on chromosome 21q22.2 in 
almost all mammals [ 9 ]. However, later fi ndings presented by Cardoso and his col-
leagues found the location of  Ezh2  on chromosome number 7q35 and the sequence 
isolated from chromosome 21 corresponded to a pseudo gene [ 10 ]. Structurally, the 
human  Ezh2  gene contains 20 exons, which encode 746 amino acid residues respec-
tively. Additionally, human  Ezh2  gene has evolutionarily conserved sequences such 
as domain-1, domain-2 and a cysteine-rich amino acid stretch that leads to the 
carboxy- terminal SET domain. The SET domain is directly associated with the acti-
vation of histone methyltransferases (HMTase). The removal of a single amino acid 
(Tyr641) in SET domain signifi cantly reduces histone methyltransferase (HMTase) 
activity  in vitro  [ 11 – 13 ]. However, studies on human PRC2 demonstrated that opti-
mal HMTase activity requires Ezh2, Embryonic Ectoderm Development (EED), 
and SUZ12 [ 11 ]. Biochemically, EED is essential to the enzymatic activity of Ezh2 
which organizes the EED-Ezh2 complex. The formation of this important protein 
complex typically leads to increased activity and functionality of PRC2's HMTase 
[ 12 ,  13 ]. The WD40 (Trp-Asp) domain of EED is crucial to the proper funcition of 
the EED-Ezh2 complex; however, point mutations in WD40 domain showed inter-
rupted interaction between EED and Ezh2 [ 11 ,  14 ]. Studies show that PRC2-induced 
activation of H3K27me3 plays an important role in cell proliferation, senescence 
and carcinogenesis [ 8 ,  15 ,  16 ]. Therefore, targeting over expression of EZh2 in can-
cer cells will certainly prove successful in paving the way to novel epigenetic drug 
discoveries and presenting as a viable therapeutic regimen in the treatment of 
cancer. 
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 Ezh2 resides in both the nucleus and the cytoplasm of the cell. It produces nuclear 
localization signals (NLS) that activate downstream  signaling   of F-actin polymer-
ization, which may eliminate the possibility of Ezh2-mediated prostate cancer pro-
gression and invasion [ 17 ]. A past study showed that increased expression of Ezh2 
was observed in malignant prostate cancer tissues as compared to normal prostate 
tissues, which suggest that over expression of Ezh2 is associated with prostate can-
cer development and progression [ 18 ]. Therefore, inhibition of Ezh2 can be achieved 
using pharmacological inhibitors such as 16-hydroxycleroda-3, 13-dien-15, 16-olide 
(PL3) and small moles DZNep. Besides these pharmacological strategies, silencing 
of gene function using microRNA has gained great attention for further research in 
this direction. The use of microRNAs, specifi cally microRNA-101 is crucial to this 
avenue of research [ 16 ]. Several studies suggest that the expression of micro- 
RNA- 101 decreases during cancer progression; however, in some cases there exists 
an inverse relationship between microRNA-101 and Ezh2 expression [ 19 ]. Anti- 
parallel expression profi les have been observed between microRNA-101 and Ezh2 
further cementing such studies [ 16 ]. Furthermore, knockdown of microRNA-101 in 
cancer may lead to over expression of Ezh2 and deregulation of epigenetic path-
ways, thus resulting in cancer progression [ 3 ,  20 – 22 ]. Interestingly, it was found 
that AKT phosphorylates Ezh2, which also increases the likelihood of carcinogen-
esis [ 23 ,  24 ]. In addition, Akt-dependent ser-21 phosphorylation was found in  breast 
cancer   cells after treatment with IGF-1 or estrogen. Therefore, it is believed that 
phosphorylation results in the weak interaction between Ezh2 and other PRC2 sub-
units, which has shown decrease methylation of H3K27. Furthermore, phosphoryla-
tion results in activation of JNK-STAT3-AKT  signaling   that leads to trimethylation 
of histone H3 lysine 27 (H3K27me3) [ 25 ,  26 ].  

10.2     Role of Ezh2 in Prostate Cancer 

 Previous studies suggest that Ezh2 is highly expressed in a wide range of malignan-
cies, including: cancers of prostate, colon, bladder, lung, breast,  pancreatic cancer   
as well as lymphomas and sarcomas as compared to normal tissue/cells [ 1 ,  8 ,  19 ,  20 , 
 27 – 51 ]. Increased expression of Ezh2 is often correlated with an advanced state of 
cancer progression and poor survivability [ 8 ]. Cells that express more Ezh2 demon-
strate a high rate of cellular proliferation and oncogenic properties [ 4 ,  12 ,  18 ,  28 , 
 52 – 56 ]. Li et al. showed over expression of Ezh2 in mammary epithelial cells of the 
tumorigenic mouse model results in the development of an epithelial hyperplasia 
phenotype [ 57 ]. Furthermore, mutations in Ezh2 result in B cell lymphoma, follicu-
lar lymphoma, myelodysplasic and myelo-proliferative disorders [ 1 ,  2 ,  21 ,  49 – 51 , 
 58 – 62 ]. 

 It has been shown that prostate cancer patients showed enhanced expression of 
Ezh2 with increased cellular proliferation, invasiveness, and metastasis of cancer 
cells [ 63 ]. In cases of human prostate cancer, increased expression of Ezh2 results 
in extra prostatic extension, positive surgical margins and a recurrence of prostatic 
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specifi c antigens [ 63 ]. Opposite to this, knockdown of endogenous Ezh2 using 
siRNA showed reduce cellular proliferation, differentiation and invasion in prostate 
cancer patients [ 18 ]. Additionally, Ezh2 induced prostate cancer cell invasion and 
metastasis by repressing RKIP (Raf-1 kinase inhibitor protein), which is a metasta-
sis suppressor gene [ 15 ]. Therefore, it may be plausible to assume that metastasis is 
the outcome of Ezh2 over expression. In addition, studies indicate that Ezh2 plays a 
vital role in the regulation and suppression of the expression of metalloproteinase 
and the inhibitors of metalopeptidases-2 and -3 in prostate cancer cells [ 64 ]. 
However, Ezh2 showed 11 genetic variations in prostate cancer, which are not 
accountable for the linkage of 7q to prostate cancer [ 65 ]. The individual variation 
did not show signifi cant differences in the allele frequencies between the experi-
mental and controls. Although, one haplotype may be higher in frequency than 
those of another haplotype which showed signifi cantly higher levels in low grade 
tumors and vice versa in high grade tumors [ 65 ]. Therefore, the mechanism of Ezh2 
over expression in prostate cancer is not well understood and requires further inves-
tigation. In castration- resistance prostate cancer cells, Ezh2 may be a transcriptional 
co-activator of androgen receptor instead of a transcriptional repressor of PCR2 
[ 66 ]. Moreover, the phosphatidylinositol 3-kinase-Akt pathway mediated by Ezh2 
phosphorylation at ser-21 could act as transcriptional activator [ 36 ]. 

 PCR2 maintains cellular homeostasis during  chromatin   remodeling [ 67 ]. In 
mammals, there are two types of polycomb group complexes, PCR1 and PCR2. The 
PCR2 complex consists of four core components: Ezh2, Suppressor of Zeta 12 
(SUZ12), EED, and retinoblastoma associated protein 46/48 [ 13 ]. Ezh2 with SET 
domain forms a complex, which catalyzes H3K27me3 and is involved in the silenc-
ing of tumor suppressor genes such as Disabled homology2-interaction protein 
(DAB2IP) (Fig.  10.1 ) [ 75 ].

  Fig. 10.1    Role of Ezh2 in tumor progression. ( a ) The mutation in Ezh2 activates gene transcrip-
tion. ( b ) Over expression of Ezh2 results in trimethylation of H3K27 to terminate gene tran-
scription, especially the inhibition of  tumor suppressor  s [ 53 ,  58 ,  68 – 74 ]       
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   It has been shown that Ezh2 and STAT3 (signal transducer and activator of tran-
scription 3) affect self-renewal, tumorigenicity, chemo-resistance, pluropotency, 
and proliferation in cancer cells [ 22 ,  76 ,  77 ]. Akt-dependent Ezh2 phosphorylation 
at ser21 was also observed in  breast cancer   cells treated with insulin-like growth 
factors 1 or estrogen [ 23 ]. Furthermore, JNK-STAT3 and JNK-STAT3-Akt  signal-
ing   induces phosphorylation of Ezh2 [ 24 ]. Transcriptional repression of c-Myc by 
Ezh2 may be a novel mechanism for the treatment of gliomablastoma and stem cells 
maintenance [ 78 ]. In addition, phosphorylation of Ezh2 induces H3K29 trimethyl-
ation and target gene silencing. Cyclin-dependent kinase (CDK) is a family of pro-
tein kinases, which are involved in cell cycle regulation. CDKs have also been found 
to be involved in gene transcription, mRNA processing, and differentiation. 
Mutations alter the functions of CDKs, which may result in uncontrolled cell divi-
sion and progression of cancer. In addition, CDKs also induced Ezh2 over expres-
sion by phosphorylating Thr350 [ 79 ]. CDK1/2 harbors and phosphorylates Thr350 
of Ezh2; however, Ezh2 has a mutation at a site of an amino acid located within 
Thr350 (Thr350A) that silences CDK1/2 thus decreasing the expression of Ezh2. 
Therefore, CDKs regulates the expression of Ezh2 and cancer cell proliferation. 
Further,  chromatin   immune-precipitation shows that inhibition of Ezh2 decreased 
H3K27me3 levels in the promoter of HOXA9 and DAB2IP, which are downstream 
targets of Ezh2 (Table  10.1 ) [ 79 ]. In the mammalian cell system, phosphorylation of 
Ezh2 results in altered biological functions by suppressing the transcription of other 
genes [ 1 ,  13 ,  51 ,  91 ]. Furthermore, a large number of genes that were transcription-
ally repressed by CDK1/2 restored wild type Ezh2 expression [ 16 ]. It is suggested 
that the phosphorylation of Ezh2 is critical to ensuring the proper regulation of tar-
geted genes [ 1 ,  13 ,  56 ,  91 – 93 ]. In addition, Ezh2 is frequently over expressed in 
several types of cancers, such as advanced human prostate [ 18 ,  65 ,  76 ,  94 ,  95 ]. It has 
been shown that thr350 phosphorylation is essential for the tumorigenic function of 
Ezh2 in prostate cancer cells. However, dephosphorylation of Ezh2 at the site of 
Thr350 increases its tumor suppressor gene DAB2IP expression in LNCaP cells, 
while abnormal activation of CDK1/2 contributes to the aggressive phenotypes 

     Table 10.1    List of Ezh2 targets in prostate cancer   

 Ezh2 targets in prostate cancer 

 Gene 
 Roles in pathways 
inhibition  Role in carcinogenic 

 DAB2IP  NF-kB/Ras pathways  Invasion, proliferation and transformation [ 75 ,  80 , 
 81 ] 

 PCAT-1  Transcription  Proliferation [ 82 – 84 ] 
 TIMP2/3  ECM deletion  Invasion [ 85 ] 
 RKIP  Raf and NF-kB pathways  Invasion [ 15 ] 
 PSP94  MPM secretion  Invasion [ 86 ] 
 CDH1  Cell adhesion  Invasion [ 87 ] 
 SLIT2  Chemorepellent protein  Proliferation and invasion [ 88 ,  89 ] 
 ADRB2  Anderenegic  signaling    Invasion and transformation [ 90 ] 
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typically found in tumors. This is accomplished via phosphorylation and the sub-
sequent tumorigenic/gene silencing mechanisms of Ezh2 (Table  10.1 ) [ 79 ,  96 ,  97 ]. 
Therefore, dephosphorylation of Ezh2 at Thr350 may serve as a viable therapeutic 
target to prevent the tumor inducing functions of Ezh2 in human prostate cancer 
[ 79 ,  98 ] (Table  10.1 ).

10.3        Ezh2: Prostate Cancer Therapy 

  The main difference between genetic  and   epigenetic mechanisms is the degree of 
reversibility of each respective process [ 7 ,  91 ,  93 ,  94 ,  99 ,  100 ]. Genetic changes that 
alter nucleotide sequences are diffi cult to restore and affect gene product(s). 
Conversely,  epigenetic modifi cations   have shown the ability to be reversed without 
disrupting the DNA sequence. Therefore, it is possible that Ezh2 can be targeted 
using several inhibitors against the enzymes, which are directly involved in the epi-
genetic modifi cation of Ezh2 [ 91 ,  93 ,  100 – 103 ]. This may prove to be a novel thera-
peutic strategy for prostate cancer treatment and tumor elimination. A number of 
lead treatment studies are in the process to develop an effective pharmacological 
agent. 

 Keeping these facts in view, we analyzed effective molecular targets currently 
being used in prostate cancer treatment therapies such as 16-hydroxycleroda-3, 
13-dien-15, 16-olide (PL3) and DZNep. It was demonstrated that small molecules 
like 3-deazaneplanocin-A (DZNep) can be used in inhibiting  S-adenosyl-l  -homo-
cysteine (SAH) hydrolase, a cofactor, essential for Ezh2-dependent methylation and 
synergistically enhanced the anti-proliferative activity [ 104 ]. Furthermore, DZNep 
deplete PRC2 complex proteins (Ezh2) and inhibits H3K27me3; therefore, DZNep 
may be the fi rst targeting compound in this area [ 105 ]. Furthermore,  in vivo  studies 
suggest that DZNep induces  apoptosis   in cancer cells without affecting normal cells 
[ 95 ,  105 ]. Therefore, treatment with DZNep not only showed anti-proliferative and 
anti-cancer activities but also blocked migration and invasion of prostate cancer 
cells [ 95 ,  106 ,  107 ]. As a result, DZNep has gained attention from cancer research-
ers and is being used as a chemotherapeutic agent against several types of human 
cancers. DZNep has a short half-life (1.10 h); therefore, the liposome method was 
used to improve the pharmacokinetics of DZNep [ 40 ,  108 – 110 ]. DZNep acts on 
enzymes H3K27me3 and H3K4me3, which stimulate gene transcription and inhib-
its histone methylation resulting in poor histone demarcation [ 106 ,  107 ]. DZNep 
can be implemented as a potential therapeutic agent due to its ability to suppress 
many cancers; however, it also has some limitations that need to be investigated in 
further detail. 

 The emerging approach to target Ezh2 over expression is to block HDAC and 
DNMTs activity. Inhibition of HDAC and DNMTs, which results in Ezh2-mediated 
epigenetic gene silencing, is depicted in Fig.  10.2 . Inhibition of the enzymes can be 
achieved by suberoylamilide hydroxamic acid (SAHA) and desi-peptide 
(Romidespin) which are FDA approved inhibitors of enzymes HDAC and DNMTs 
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[ 111 ]. SAHA directly targets the catalytic site of the enzymes HDAC and inhibits 
its activation while Romidespin, a pro-drug binds to zinc (Zn) present in HDAC’s 
active site resulting in diminished catalytic activity [ 99 ,  112 ]. Therefore, SAHA and 
Romidepsin have been considered as potential inhibitors of prostate cancer growth 
and proliferation [ 98 ,  113 ,  114 ]. These enzymes are considered to be among the 
most effective emerging therapy strategies against prostate cancer [ 19 ,  20 ,  51 ,  106 , 
 115 ,  116 ]. 5aza-2′-deoxycytodine (5aza), a nucleotide analogue to be a potent 
inducer of  apoptosis   in prostate cancer cells. Although, the specifi c mechanism 
remains to be elucidated [ 117 ,  118 ]. DZNep, HDAC, and DNMT inhibitors have 
number of limitations and serious concerns in their clinical applications (side 
effects).

   Small molecules can inhibit the enzymatic activity of Ezh2 by blocking its phos-
phorylation [ 55 ,  72 ,  110 ]. Previous studies shows that the formulated drug 3,3′-diin-
dolylmethan is able to inhibit Ezh2 over expression [ 21 ,  52 ,  55 ,  119 – 121 ]. In fact, 
prostate cancer patients treated with BR-DIM in phase-II clinical trials showed 
increase expression of let-7; however, Ezh2 expression was diminished signifi cantly 
[ 21 ,  52 ,  55 ,  119 – 121 ]. Other molecules such as, 16-hydroxycleroda-3, 13dien-15, 
16-olide (PL3), which is a naturally isolated compound from the bark of polyathi-
alongifolia has shown great promise in therapeutic applications against prostate 
cancer [ 18 ,  22 ,  54 ,  63 ,  65 ,  84 ,  98 ,  122 ]. PL3 inhibited histone modifying enzymes 

  Fig. 10.2    Role of CDK1/2 in Ezh2 over expression and carcinogenesis. CDK1/2 induces Ezh2 
phosphorylation at Thr350, which results in decreased expression of tumor suppressor genes by 
enhancing H3K27me3 at the promoters of Ezh2 targeted genes. However, inhibition of Ezh2 phos-
phorylation by of CDK1/2 or Thr350 of Ezh2 inhibitors suppressed cancer cell proliferation and 
migration [ 53 ,  58 ,  68 – 74 ]       
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including two PRC2 components, Ezh2, and SUZ12 [ 54 ,  79 ,  113 ,  114 ,  121 – 124 ]. 
PL3 induced the reactivation of genes, which were repressed by PRC2 and induced 
 apoptosis   in K562 cells. Further studies show that PL3 also induced apoptosis in 
human leukemia cells by suppressing the expression of Ezh2 and SUZ12 which 
further leads to the reactivation of the PRC2 tumor suppressor gene [ 56 ,  92 ,  115 , 
 116 ,  123 – 126 ]. These fi ndings reveal the link between the anti-infl ammatory and 
cytotoxic effects of PL3 against breast and hepatocellular carcinomas, and provide 
new insight into the modulation of Ezh2 over expression in prostate cancer [ 127 ]. 
Studies indicate that all trans-retinoic acid (ATRA), a potent anticancer agent, 
induces  apoptosis   in leukemia, gastric cancer, and prostate cancer by inhibiting 
Ezh2 and DNMT3B-induced  hypermethylation   of HOXB13 [ 54 ,  128 – 131 ]. 
However, Ezh2 recruits DNMT3B to the promoter regions of specifi c gene loci and 
induces  DNA methylation   [ 132 ]. In addition, ATRA treatment showed androgen- 
independent cell growth arrest in prostate cancer DU145 cells by blocking Ezh2 and 
DNMT3B methylation resulting in the subsequent reactivation of HOXB13 [ 54 ]. 

 In order to analyze more therapeutic targets against Ezh2 over expression, we 
moved towards the agents that can act as competitive inhibitors against methyl 
transferase enzymes. For example, GSK-A acts as a competitive inhibitor against 
both Ezh2 and methyltransferase. GSK-A displaces the endogenous substrate for 
the enzymes, which results in the marked reduction of H3K27 trimethylation [ 5 ,  7 , 
 58 ,  59 ,  133 ,  134 ]. Furthermore,  in vivo  studies suggest that a slightly different com-
pound, GSK126, inhibits Ezh2 in a highly specifi c manner as compared to GSK-A 
[ 21 ,  59 ,  135 ,  136 ]. However, in lymphoma models, mutations in Ezh2 lead to 
enhance activity of GSK126, which reduces the activity of H3K27me3 and PRC2 
target genes resulting in impeded growth and proliferation of cancer cells [ 137 , 
 138 ]. Keeping these facts in view, it may be possible to assume that GSK com-
pounds hold great therapeutic potential by targeting Ezh2 in prostate cancer but 
further investigations are needed to explore the underlying mechanisms. 

 Taken together, Ezh2 inhibitors and agents that block HDAC and DNMT may 
work as potential anti-cancer agents and could be used in combination therapy to 
inhibit prostate cancer growth. Therefore, these therapeutic strategies may effec-
tively reduce tumorigenesis/carcinogenesis without affecting the normal cells and 
reduce disease recurrence (Fig.  10.3 ) .

10.4        Conclusion and Future Perspective 

 Previous studies have shown that expression of Ezh2 increase many times over 
during cancer progression and development [ 18 ,  68 ,  77 ]. In this chapter, we reviewed 
mechanism of Ezh2 regulation including over expression of Ezh2 can be regulated 
by various mechanisms such as the inhibition  of   ,  histone modifi cation   and chromo-
somal remodeling [ 40 ,  111 ,  134 ]. Therefore, it may be safe to assume that the mod-
ulation of Ezh2 regulatory mechanisms could highly impact Ezh2 activity and 
subsequently be therapeutically effective in many cancers. However, several inhibi-
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tors of enzymes like HDAC, DNMTs and Ezh2 are being used in clinical trials and 
have shown great potential in inhibiting cancer growth and metastasis [ 15 ,  41 ,  93 , 
 140 ]. Evidence regarding these inhibitors suggests that the molecules could poten-
tially act in suppressing Ezh2 over expression and prevents the recurrence of pros-
tate cancer [ 57 ,  58 ,  68 ,  69 ,  73 ]. In addition, the use of DZNep, HDAC and DNMT 
inhibitors result in decreased expression of Ezh2, which further leads to inhibition 
of cancer cell proliferation [ 106 ,  107 ]. Therefore, use of these inhibitors may dis-
able Ezh2-mediated tumorigenesis. More interestingly, inhibition of CDK1/2 also 
results in down regulation of the tumor suppressor gene DAB2IP, which plays an 
important role in inhibiting cancer growth by phosphorylating Ezh2 at Thr350 [ 79 , 
 125 ,  141 ].  miRNA   inhibits invasiveness and proliferation of cancer cells  in vitro  in 
a similar fashion like knocking down Ezh2 over expression [ 96 ,  116 ,  126 ]. Therefore, 
it will be interesting to test whether miR-101 treatment can be therapeutically effec-
tive  in vivo  as microRNA inhibition of overexpression has been exploited in pre-
clinical and clinical trials as a potential cancer treatment regimen [ 7 ,  96 ,  116 ,  126 ]. 
Interestingly, other, studies show that the prevention of Ezh2 over expression in 
mouse adult stem cells could produce small imperfections in normal organ develop-
ment or function [ 60 – 62 ,  134 ,  142 – 144 ]. In brief, the administration of Ezh2 inhibi-
tors using specifi c delivery systems may be necessary to avoid adverse side effects 
in normal cells [ 92 ,  96 ,  111 ,  114 ,  118 ,  136 ]. Therefore, better characterization of 
blocking Ezh2-induced tumorigenesis targets/ signaling   pathways can be more prac-
tical and effective as compared to previously described techniques. Understanding 
the regulatory mechanisms and the function of  Ezh2  gene targets will help to expe-
dite the development of novel cancer therapeutic regimens   .   

  Fig. 10.3    A schematic representation of the regulation of prostate cancer progression using 
different regulatory mechanism(s) [ 15 ,  21 ,  40 ,  52 ,  55 ,  59 ,  64 ,  66 ,  77 ,  110 ,  115 ,  120 ,  121 ,  126 , 
 135 ,  136 ,  139 ]       
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