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Abstract. The presence of a bias in each image data collection has
recently attracted a lot of attention in the computer vision community
showing the limits in generalization of any learning method trained on a
specific dataset. At the same time, with the rapid development of deep
learning architectures, the activation values of Convolutional Neural Net-
works (CNN) are emerging as reliable and robust image descriptors. In
this paper we propose to verify the potential of the DeCAF features
when facing the dataset bias problem. We conduct a series of analyses
looking at how existing datasets differ among each other and verifying
the performance of existing debiasing methods under different represen-
tations. We learn important lessons on which part of the dataset bias
problem can be considered solved and which open questions still need to
be tackled.

1 Introduction

Since its spectacular success in the 2012 edition of the Imagenet Large Scale
Visual Recognition Challenge (ILSVRC, [28]), deep learning has dramatically
changed the research landscape in visual recognition [20]. By training a Convo-
lutional Neural Network (CNN) over millions of data it is possible to get impres-
sively high quality object annotations [1] and detections [38]. A large number
of studies have recently proposed improvements over the CNN architecture of
Krizhevsky et al. [20] with the aim to better suit an ever increasing typology of
visual applications [16,30,38]. At the same time, the activation values of the final
hidden layers have quickly gained the status of off-the-shelf state of the art fea-
tures [27]. Indeed, several works demonstrated that DeCAF (as well as Caffe [6],
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Overfeat [32], VGG-CNN [3] and other implementations) can be used as power-
ful image descriptors [3,14]. The improvements obtained over previous methods
are so impressive that one might wonder whether they can be considered as a
sort of “universal features”, i.e. image descriptors that can be helpful in any
possible visual recognition problem. The aim of this paper is to contribute to
answering this question when focusing on the bias of existing computer vision
datasets.

The main causes and consequences of the dataset bias have been pointed out
and named in [34]. The capture bias is related to how the images are acquired
both in terms of the used device and of the collector preferences for point of view,
lighting conditions, etc. The category or label bias is due to a poor definition of
the visual semantic categories and to the in-class variability: similar images may
be annotated with different names and the same name can be assigned to visually
different images. Finally, each collection may contain a distinct set of categories
and this causes the negative bias. If we focus only on the classes shared among
them, the rest of the world will be defined differently depending on the collection.
All these bias aspects induce a generalization problem when training and testing
a learning algorithm on images extracted from different collections. Previous
work seemed to imply that this issue was solved, or on the way to be solved,
by using CNN features [6,37]. However, the evaluation is generally restricted
to controlled cases limited to specific visual domain shift [6,18] or with images
extracted from the testing collection available at training time [26,37].

In this work we revisit and scale up the dataset bias analysis, making two
contributions:

1. we asses the performance of the DeCAF CNN features on the most compre-
hensive experimental setup existing for dataset bias. We build on the setting
proposed in [33], consisting of a cross-dataset testbed over twelve different
databases.

2. we propose a new measure to quantify the ability of a given algorithm to
address the dataset bias. As opposed to what was proposed in [34], our mea-
sure takes into account both the performance obtained on the in-dataset task
and the percentage drop in performance across datasets.

Our experiments evaluate the suitability of CNN features for attacking the
dataset bias problem, pointing out that: (1) the capture bias is class-dependent
and can be enhanced by the CNN representation due to the influence of the
classes on which the neural network was originally trained; (2) the negative bias
persists regardless of the representation; (3) attempts of undoing the dataset
bias with existing ad-hoc learning algorithms do not help, while some previ-
ously discarded adaptive strategies appear effective; (4) fine-tuning the CNN
network does not fit in the dataset bias setting and if näıvely forced does not
seem beneficial.

The picture emerging from these findings is that of a problem open for
research and in need for new directions, able to accommodate at the same time
the potential of deep learning and the difficulties of large scale cross-database
generalization.
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2 Evaluation Protocol

We describe here the setup adopted for the experiments and we introduce the
measures used to evaluate the cross-dataset generalization performance.

Datasets and Features. We focus on twelve datasets, created and used before
for object categorization, that have been recently organized in a cross-dataset
testbed with the definition of two data setups [33]:

– sparse set. It contains 105 Imagenet classes [5] aligned to 95 classes of Cal-
tech256 [15] and Bing [35], 89 classes of SUN [36], 35 classes of Caltech101
[10], 17 classes of Office [31], 18 classes of RGB-D [21], 16 classes of Animals
with Attributes (AwA) [22] and Pascal VOC07 [8], 13 classes of MSRCORID
[25], 7 classes of ETH80 [23], and 4 classes of a-Yahoo [9].

– dense set. It contains 40 classes shared by Bing, Caltech256, Imagenet
and SUN.

The testbed has been released together with three feature representations:

– BOWsift: dense SIFT descriptors [24] extracted with the protocol defined
for the ILSVRC2010 contest [29] and quantized into a BOW representation
based on a vocabulary of 1000 visual words;

– DeCAF6, DeCAF7: the mean-centered raw RGB pixel intensity values of
all the collection images (warped to 256× 256) are given as input to the CNN
architecture of Krizhevsky et al. by using the DeCAF implementation [6]. The
activation values of the 4096 neurons in the 6-th and 7-th layers of the network
are considered as image descriptors.

In our experiments we use the L2-normalized version of the feature vectors and
adopt the z-score normalization for the BOWsift features when testing domain
adaptation methods. We mostly focus on the results obtained with the DeCAF
features and use the BOWsift representation as a reference baseline.

Evaluation Measures. We analyze both the in-dataset (training and testing on
samples extracted from the same dataset) and the cross-dataset (training and
testing samples belonging to different collections) performance. We use Self
to specify the in-dataset performance and Mean Other for the average cross-
dataset performance over multiple test collections.

In [34] cross dataset generalization was evaluated through the percentage
drop (% Drop) between Self and Mean Others. However, being a relative
measure, it loses the information on the value of Self which is important if we
want to compare the effect of different learning methods or different representa-
tions. For instance a 75 % drop w.r.t. a 100 % self average precision has a different
meaning than a 75 % drop w.r.t. a 25 % self average precision. To overcome this
drawback, we propose here a different Cross-Dataset (CD) measure defined as

CD =
1

1 + exp−{(Self−Mean Others)/100} .
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CD uses directly the difference (Self −Mean Others) while the sigmoid func-
tion rescales this value between 0 and 1. This allows for the comparison among
the results of experiments with different setups. Specifically CD values over 0.5
indicate a presence of a bias, which becomes more significant as CD gets close
to 1. On the other hand, CD values below 0.5 correspond to cases where either
Mean Other ≥ Self or the Self result is very low. Both these conditions indi-
cate that the learned model is not reliable on the data of its own collection and
it is difficult to draw any conclusion from its cross-dataset performance.

3 Studying the Sparse Set

Dataset Recognition. One of the effect of the capture bias is that it makes any
dataset easily recognizable. We want to evaluate whether this effect is enhanced
or decreased by the use of the CNN features. To do it we run the name the
dataset test [34] on the sparse data setup. We extract randomly 1000 images
from each of the 12 collections and we train a 12-way linear SVM classifier that
we then test on a disjoint set of 300 images. The experiment is repeated 10 times
with different data splits and we report the obtained average results in Fig. 1.
The plot on the left indicates that DeCAF allows for a much better separa-
tion among the collections than what is obtained with BOWsift. In particular
DeCAF7 shows an advantage over DeCAF6 for large number of training samples.
From the confusion matrices (middle and right in Fig. 1) we see that it is easy to
distinguish ETH80, Office and RGB-D datasets from all the others regardless of
the used representation, given the specific lab-nature of these collections. DeCAF
captures better than BOWsift the characteristics of A-Yahoo, MSRCORID, Pas-
cal VOC07 and SUN, improving the recognition results on them. Finally, Bing,
Caltech256 and Imagenet are the datasets with the highest confusion level, an
effect mainly due to the large number of classes and images per class. Still, this
confusion decreases when using DeCAF.

These experiments show that the idiosyncrasies of each data collection become
more evident when using a highly accurate representation. However, the dataset
recognition performance does not provide an insight on how the classes in each
collection are related among each other, nor how a specific class model will gen-
eralize to other datasets. We look into this problem in the following paragraph.

1 5 10 50 100 500 1000
0

10

20

30

40

50

60

70

Num. of training samples per dataset

%
 R

ec
o

g
n

it
io

n
 R

at
e

Sparse set − 12 datasets

BOWsift
DeCAF6
DeCAF7
Chance

assigned

co
rr

ec
t

BOWsift

A
W

A

A
Y

H

C
10

1

E
T

H

M
S

R

O
F

C

R
G

B
D

P
A

S

S
U

N

B
IN

G

C
25

6

IM
G

AWA
AYH

C101
ETH
MSR
OFC

RGBD
PAS
SUN

BING
C256
IMG 0

20

40

60

80

100

assigned

co
rr

ec
t

DeCAF7

A
W

A

A
Y

H

C
10

1

E
T

H

M
S

R

O
F

C

R
G

B
D

P
A

S

S
U

N

B
IN

G

C
25

6

IM
G

AWA
AYH

C101
ETH
MSR
OFC

RGBD
PAS
SUN

BING
C256
IMG 0

20

40

60

80

100

Fig. 1. Name the dataset experiment over the sparse setup with 12 datasets. The title
of each confusion matrix indicates the feature used for the corresponding experiments.
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Class-Specific cross-dataset generalization test. We study the effect of the
CNN features on the cross-dataset performance of two object class models: car
and cow. Four collections in the sparse set contain images labeled with these
object classes: PascalVOC07 (P), SUN (S), ETH80 (E), and MSRCORID (M).
For the class car we selected randomly from each dataset two groups of 50
positive/1000 negative examples respectively for training and testing. For the
class cow we considered 30 positive/1000 negative examples in training and 18
positive/1000 negative examples in testing. We repeat the sample selection 10
times and the average precision results obtained by linear SVM are presented in
Table 1.

Coherently with what deduced over all the classes from the name the dataset
experiment, scene-centric (P,S) and object-centric (E,M) collections appear sep-
arated among each other. For the first ones, the low in-dataset results are mainly
due to their multi-label nature: an image labeled as people may still contain a
car and this creates confusion both at training and at test time. The final effect
is a cross-dataset performance higher than the respective in-dataset one. This
behavior becomes even more evident when using DeCAF than with BOWsift.

Although the name the dataset experiment indicated almost no overall con-
fusion between E and M, the per-class results on car and cow show different
trends. Learning a car model from images of toys (E) or of real objects (M)

Table 1. Binary cross-dataset generalization for two example categories, car and cow.
Each matrix contains the object classification performance (AP) when training on one
dataset (rows) and testing on another (columns). The diagonal elements correspond to
the self results, i.e. training and testing on the same dataset. We report in bold the
CD values higher than 0.5.
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does not seem so different in terms of the final testing performance when using
DeCAF. The diagonal matrix values prominent with BOWsift are surrounded
by high average precision results for DeCAF. On the other hand, recognizing a
living non-rigid object like a cow is more challenging. An important factor that
may influence these results is the high level nature of the DeCAF representation:
they are obtained as a byproduct of a training process over 1000 object classes
[6] which cover several vehicles and animal categories. The class car is in this
set, but cow is not. This intrinsically induce a category-specific bias effect, which
may augment the image collection differences. Overall the DeCAF features pro-
vide a high performance inside each collection, but the difference between the
in-dataset and cross-dataset results remains large almost as with BOWsift.

We also re-run the experiments on the class cow by using a fixed negative
set in the test always extracted from the training collection. The visible increase
in the cross-dataset results indicate that the negative set bias maintain its effect
regardless of the used representation.

From the values of %Drop and CD we see that these two measures may
have a different behavior: for the class cow with BOWsift, the %Drop value for
E (92.6) is higher than the corresponding value for M (82.0), but the opposite
happens for CD (respectively 0.57 and 0.61). The reason is that CD integrates
the information on the in-dataset recognition which is higher and more reliable
for M. Passing from BOWsift to DeCAF the CD value increases in some cases
indicating a more significant bias.

On the basis of the presented results we can state that the DeCAF features
are not fully solving the dataset bias. Although similar conclusions have been
mentioned in a previous publication [18], our more extensive analysis provides
a reliable measure to evaluate the bias and explicitly indicate some of the main
causes of the observed effect: (1) the capture bias appears class-dependent and
may be influenced by the original classes on which the CNN features have been
trained; (2) the negative bias persists regardless of the feature used to represent
the data.

Undoing the Dataset Bias. We focus here on the method proposed in [19] to
overcome the dataset bias. Our aim is to verify its effect when using the DeCAF
features. The Unbias approach has a formulation similar to multi-task learning:
the available images of multiple datasets are kept separated as belonging to
different tasks and a max-margin model is learned from the information shared
over all of them. We run the experiments focusing on the classes car, cow, dog
and chair, reproducing a similar setup to what previously used in [19] and using
the original implementation of the Unbias method provided by the authors. For
the class car we consider two settings with three and five datasets, while we use
five datasets for cow and chair and six datasets for dog. One of the datasets is
left out in round for testing while all the others are used as sources of training
samples1.

1 More details about the method and the experimental setup can be found in the
supplementary material.
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Fig. 2. Percentage difference in average precision between the results of Unbias and
the baseline All over each target dataset. P,S,E,M,A,C1,C2,OF stand respectively for
Pascal VOC07, SUN, ETH80, MSRCORID, AwA, Caltech101, Caltech256 and Office.
With O (in black) we indicate the overall value: average percentage difference over all
the considered datasets.

We compare the obtained results against those produced by a linear SVM
when All the training images of the source datasets are considered together. We
show the percentage relative difference in terms of average precision for these two
learning strategies in Fig. 2. The results indicate that, in most cases when using
BOWsift the Unbias method improves over the plain All SVM, while the opposite
happens when using DeCAF7. As already suggested by the results of the cross-
dataset generalization test, the DeCAF features, by capturing the image details,
may enhance the differences among the same object category in different collec-
tions. As a consequence, the amount of shared information among the collections
decreases, together with the effectiveness of the methods that leverage over it. On
the other hand, removing the dataset separation and considering all the images
together provides a better coverage of the object variability and allows for a higher
cross-dataset performance.

In the last column of Fig. 2 we present the results obtained with the class cow
together with the average precision per dataset when using DeCAF7. The table
allows to compare the performance of training and testing on the same dataset
(Self) against the best result between Unbias and All (indicated as Other).
Despite the good performance obtained by directly learning on other datasets,
the obtained results are still lower than what can be expected having access to
training samples of each collection. This suggests that an adaptation process
from generic to specific is still necessary to close the gap. Similar trends can be
observed for the other categories.
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4 Studying the Dense Set

Dataset Recognition. A second group of experiments on the dense setup allows
us to analyze the differences among the datasets avoiding the negative set bias.
We run again the name the dataset test maintaining the balance among the 40
classes shared by Caltech256, Bing, SUN and Imagenet. We consider a set of 5
samples per object class in testing and an increasing amount of training samples
per class from 1 to 15. The results in Fig. 3 indicate again the better perfor-
mance of DeCAF7 over DeCAF6 and BOWsift. From the confusion matrices it
is clear that the separation between object- (Bing, Caltech256, Imagenet) and
scene-centric (SUN) datasets is quite easy regardless of the representation, while
the differences among the object-centric collections become more evident when
passing from BOW to DeCAF.

Since all the datasets contain the same object classes, we are in fact repro-
ducing a setup generally adopted for domain adaptation [11,13]. By identifying
each dataset with a domain, we can interpret the results of this experiment as
an indication of the domain divergence [2] and deduce that a model trained on
SUN will perform poorly on the object-centric collections and vice versa. On
the other hand, a better cross dataset generalization should be observed among
Imagenet, Caltech256 and Bing. We verify it in the following sections.
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Fig. 3. Name the dataset experiment over the dense setup with 4 datasets. The title
of each confusion matrix indicates the feature used for the corresponding experiments.

Cross-dataset generalization test. We consider the same setup used before
with 15 samples per class from each collection in training and 5 samples per
class in test. However, now we train a one-vs-all multiclass SVM per dataset.
Due to its noisy nature we exclude Bing here and we dedicate more attention to
it in the next paragraph.

The average recognition rate results over 10 data splits are reported in Table 2.
By comparing the values of %Drop and CD we observe that they provide oppo-
site messages. The first suggests that we get a better generalization when pass-
ing from BOWsift to DeCAF7. However, considering the higher Self result,
CD evaluates the dataset bias as more significant when using DeCAF7. The
expectation indicated before on the cross-dataset performance are confirmed here:
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Table 2. Multiclass cross-dataset generalization performance (recognition rate). The
percentage difference between the self results and the average of the other results per
row correspond to the value indicated in the column % Drop. CD is our newly proposed
cross-dataset measure.

the classification models learned on Caltech256 and Imagenet have low recognition
rate on SUN. Generalizing between Caltech256 and Imagenet, instead, appears
easier and the results show a particular behavior: although the classifier on Cal-
tech256 tends to fail more on Imagenet than on itself, when training on Imagenet
the in-dataset and cross-dataset performance are almost the same. Of course we
have to remind that the DeCAF features were defined over Imagenet samples and
this can be part of the cause of the observed asymmetric results.

Noisy Source Data and Domain Adaptation. Until now we have discussed
and demonstrated empirically that the difference among two data collections
can originate from multiple and often co-occurring causes. However the standard
assumption is that the label assigned to each image is correct. In some practical
cases this condition does not hold, as in learning from web data [4]. Some state-
of-art domain adaptation methods seem perfectly suited for this task (see Fig. 4
top part) and we use them here to evaluate the cross-dataset generalization
performance when training on Bing (noisy object-centric source domain) and
testing on Caltech256 and SUN (respectively an object-centric and a scene-
centric target domain).

The obtained results go in the same direction of what was observed previously
with the Unbias method. Despite the presence of noisy data, selecting them
(landmark) or grouping the samples (reshape+SA, reshape+DAM) do not seem
to work better than just using all the source data at once. On the other hand,
keeping all the source data together and augmenting them with target samples
by self-labeling [33] consistently improves the original results. One well known
drawback of this strategy is that progressively accumulated errors in the target
annotations may lead to significant drift from the correct solution. However,
when working with DeCAF features this risk appears highly reduced as can be
appreciated by looking at the recognition rate obtained over ten iterations of
the target selection procedure and considering the comparison against BOWsift
(small plots in Fig. 4).

Fine-Tuning. As indicated in Sect. 2 the DeCAF CNN features were obtained
from an initial pre-trained network whose parameters remain untouched. Fine-
tuning the network before using it for recognition on a new task is an alternative
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Fig. 4. Top: schematic description of the used domain adaptation methods. Bottom:
Results of the Bing-Caltech256 and Bing-SUN experiments with DeCAF7. We report
the performance of different domain adaptation methods (big plots) together with the
recognition rate obtained in 10 subsequent steps of the self-labeling procedure (small
plots). For the last ones we show the performance obtained both with DeCAF7 and
with BOWsift when having originally 10 samples per class from Bing.

strategy which demonstrated good results in transfer learning [26,37]. To com-
plete our analysis we clarify here that this fine-tuning process does not fit in the
dataset bias setting.

A network pre-trained on a dataset D is generally fine-tuned on a new dataset
D′ when the final task is also tested on D′. Thus the scheme (train, fine-tune, test)
corresponds to (D,D′,D′). For dataset bias, the condition is instead (D,D′,D′′):
here D′ and D′′ are different collection and no labeled data from D′′ is avail-
able at training time. The advantage of fine-tuning consists in making the net-
work specific for D′ [3], which in our setting can worsen the bias with respect
to D′′. By using the Caffe CNN implementation we fine-tuned the Imagenet
(D) pre-trained network on the dense set, specifically on Caltech256 (5046 train
images) and SUN (3015 train images), reserving respectively 1500 and 1300
images as test samples. The in-dataset and cross-dataset experimental results are:
(Caltech256(D′), Caltech256(D′)) = 86.4 %; (Caltech256(D′), SUN(D′′)) = 25.7 %;

(SUN(D′), Caltech256(D′′)) = 37.5 %; (SUN(D′), SUN(D′)) = 41.1 %. Compared
with what presented in Table 2 these results show the advantage of fine-tuning
in terms of in-dataset recognition rate. However they also indicate that the fine-
tuning process does not remove the cross-dataset bias (86.4 % > 25.7 %; 41.1 % >

37.5 %) and that using the wrong dataset to refine the network can be detrimental
(86.4 % > 37.5 %; 41.1 % > 25.7 %).
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5 Conclusions

In this paper we attempted at positioning the dataset bias problem in the CNN-
based features arena with an extensive experimental evaluation. At the same
time, we pushed the envelope in terms of the scale and complexity of the evalua-
tion protocol, so to be able to analyze all the different nuances of the problem. We
focused on DeCAF features, as they are popular CNN-learned descriptors, and
for the impressive results obtained so far in several visual recognition domains.

A first main result of our analysis is that DeCAF not only does not solve
the dataset bias problem in general, but in some cases (both class- and dataset-
dependent) they capture specific information that, although otherwise useful,
induce a low performance in the cross-dataset object categorization task. The
high level nature of the CNN features add a further hidden bias that needs to
be considered when comparing the experimental results against standard hand-
crafted representations. Moreover, the negative bias remains, as it cannot intrin-
sically be removed (or alleviated) by changing feature representation. A second
result concerns the effectiveness of learning methods applied over the chosen
features: nor a method specifically designed to undo the dataset bias, neither
algorithms successfully used in the domain adaptation setting seem to work
when applied over DeCAF features. It appears as if the highly descriptive power
of the features, that determined much of their successes so far, in the particular
dataset-bias setting backfires, as it makes the task of learning how to extract
general information across different data collection more difficult. Interestingly,
a simple selection procedure based on target self-labeling leads to a significant
increase in performance. Finally, a third outcome derives from the fine-tuning
experiments. Although standardly used for transfer learning, fine-tuning does
seem beneficial to remove the dataset bias. Together with the failure of existing
adaptive approaches, this questions whether methods effectively used in transfer
and domain adaptation settings should be considered automatically as suitable
for dataset bias, and vice versa.

How to leverage over the power of deep learning methods to attack the dataset
bias problem in all its complexity, well represented by our proposed experimental
setup, is open for research in future work.
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