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Abstract. We propose to look at large-displacement optical flow from
a discrete point of view. Motivated by the observation that sub-pixel
accuracy is easily obtained given pixel-accurate optical flow, we conjec-
ture that computing the integral part is the hardest piece of the problem.
Consequently, we formulate optical flow estimation as a discrete inference
problem in a conditional random field, followed by sub-pixel refinement.
Näıve discretization of the 2D flow space, however, is intractable due to
the resulting size of the label set. In this paper, we therefore investigate
three different strategies, each able to reduce computation and memory
demands by several orders of magnitude. Their combination allows us to
estimate large-displacement optical flow both accurately and efficiently
and demonstrates the potential of discrete optimization for optical flow.
We obtain state-of-the-art performance on MPI Sintel and KITTI.

1 Introduction

Estimating dense optical flow is a fundamental problem in computer vision.
Despite significant progress over the last decades, realistic scenes with displace-
ments of several hundred pixels, strong changes in illumination and textureless
or specular regions remain challenging to date [9,17]. Traditionally, dense opti-
cal flow estimation has been formulated as a continuous optimization problem
[20,25], and many of today’s most successful methods leverage elaborate vari-
ants of the original formulation, allowing for more robust penalties or improv-
ing optimization. As continuous methods typically require linearizing the highly
non-convex data term, they only permit the estimation of very small displace-
ments up to a few pixels. Thus, in order to handle large displacements in real-
world videos, a simple heuristic is often employed: Optical flow is estimated in
a coarse-to-fine manner, thereby guaranteeing an upper bound to the maximal
displacement at each level of the image pyramid. Unfortunately, this strategy is
highly susceptible to local minima as small structures and textural details vanish
at coarse image resolutions, leading to oversmoothing artifacts in the estimated
flow field.

In contrast to optical flow, the most successful approaches to stereo match-
ing typically rely on discrete inference in graphical models. While such models
are loopy by nature and thus lead to NP-hard optimization problems, good
approximate solutions can often be efficiently computed using graph cuts, belief
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Fig. 1. Strategies for Efficient Discrete Optical Flow. Left: We create a large
set of diverse flow proposals per pixel (red node) by combining nearest neighbors in
feature space from a set of grid cells (green nodes) with winner-takes-all solutions from
neighboring pixels (blue nodes). The red square indicates the search region. Middle: We
apply block coordinate descent, iteratively optimizing all image rows and columns (red)
conditioned on neighboring blocks (white) via dynamic programming. Right: Taking
advantage of robust penalties, we reduce pairwise computation costs by pre-computing
the set of non-truncated (< τψ) neighboring flow proposals (black) for each flow vector
(red) (Color figure online).

propagation or mean field approximations. Importantly, no image pyramids are
required as the full data cost volume is considered at the same time during
inference. Unfortunately, the application of discrete methods to the problem of
optical flow is not straightforward and hence there exists only relatively little
work in this direction. The main reason for this is the huge size of the label space
which needs to be considered for the 2D large-displacement optical flow problem
as opposed to the 1D stereo problem.

In this paper, we propose three different strategies to make discrete infer-
ence in a pairwise conditional random field (CRF) applicable to the estimation
of optical flow, see Fig. 1 for an illustration. First, we restrict the label set by
considering only the L most likely matches per pixel which we obtain via approxi-
mate nearest neighbor search in feature space subject to non-maxima suppression
constraints. To validate this restriction, we experimentally show that the oracle
solution of the restricted set outperforms all existing optical flow techniques by
a significant margin. Second, our inference scheme takes advantage of efficient
convergent block coordinate descent (BCD) and iteratively updates all image
rows and columns conditioned on the remaining variables via dynamic program-
ming. Third, we exploit the special form of the pairwise potentials used by our
formulation to further decrease computational complexity, thereby making very
large unordered label sets with hundreds of labels tractable. Upon convergence,
we remove outliers (e.g., in occluded regions) using strategies borrowed from
the stereo literature. Finally, we regress a real-valued dense flow field from our
semi-dense integer flow estimate using variational techniques [32,42]. We exper-
imentally validate the proposed method on two challenging benchmarks: MPI
Sintel [9] and KITTI [17]. Our experiments show that the proposed method
attains state-of-the-art performance. Importantly, our results indicate that
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discrete optimization can be a powerful tool for solving optical flow problems -
even when considering pairwise flow priors only. Our code and supplementary
material are available from our project page: http://www.cvlibs.net/projects/
discrete flow.

2 Related Work

Global estimation of optical flow has traditionally been formulated as a contin-
uous variational optimization problem with linearized data terms [4,20] and
many of the most successful works still follow the same paradigm to date
[8,12,30,34,35,37,40,43]. To estimate displacements larger than 1 pixel, as
required by modern benchmarks [1,9,17] and for many applications, continu-
ous methods typically rely on image pyramids [7]. Unfortunately, this heuristic
is prone to local minima as texture details and fine structures vanish at small
scales. As a consequence, methods leveraging sparse feature correspondences
to guide the optimization process have been popularized [5,6,32,38,42], incor-
porating feature matches into initialization or as an additional data term. Our
approach shares similarity with these methods in the sense that we also refine our
integer-valued flow result to sub-pixel accuracy as proposed in [32,42]. However,
in contrast to the above-mentioned works, our integral matches are obtained
via discrete optimization with optical flow priors. This allows our algorithm
to establish denser correspondences than possible with independently matched
sparse features and, in combination with sub-pixel refinement, leads to better
results.

Alternatively, optical flow can be viewed as a discrete optimization prob-
lem. In the absence of regularization constraints, this corresponds to a complete
search of the discretized 2D flow space which has to be carried out for each pixel
[2,47]. While local support windows [33] alleviate the effect of border bleeding,
they generally cannot compete with methods that leverage global regulariza-
tion. Incorporating smoothness constraints, however, is much more difficult for
discrete optical flow than for the related stereo matching problem due to the
extremely large label space of the discretized 2D flow field. To avoid this diffi-
culty, a number of approaches formulate optical flow as a segmentation problem:
Based on a small set of dense flow field proposals, the most likely flow field at each
pixel subject to regularization constraints is approximated via quadratic pseudo-
boolean optimization (QPBO) or belief propagation (BP) [11,23,44,45,48]. A
reduced label set for all pixels is proposed by [28] restricting the method to
scenes with little and non-complex motion. In contrast, here we pursue a more
direct approach to discrete optical flow which does not rely on proposed flow
fields or a global label set but allows for an arbitrary set of flow proposals per
pixel. Compared to the approaches of Steinbrücker et al. [36] and Liu et al. [24],
we neither require a complete search nor image pyramids [24]. Our approach
is also related to particle-based methods such as particle BP [46] or Patch-
Match BP [3,21]. In contrast to those methods, our algorithm is not restricted
to a relatively small set of particles or local resampling which can lead to local

http://www.cvlibs.net/projects/discrete_flow
http://www.cvlibs.net/projects/discrete_flow
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minima. Instead, we maintain diverse distributions over much larger state spaces
throughout the whole inference process.

Very recently, object recognition and feature learning have been exploited as
a powerful source of information for optical flow. Notable examples are the data-
driven flow transfer method of Wei et al. [41] and FlowNets based on deep neural
networks by Fischer et al. [15]. In this paper our focus lies on a more generic
model without the need for large annotated training sets. However, these ideas
could be easily incorporated into the proposed model, e.g., via additional unary
terms, promising further gains in performance in the future.

3 Model

Let us assume two input images I and I′ of size W × H. Our goal is to assign as
many pixels as possible from the reference image I to pixels in the target image
I′. In other words, we aim for a semi-dense integer-valued flow field, establishing
correspondences which are visible in both views. Flow vectors are selected from
a diverse set of proposals (Sect. 3.1) based on a CRF model (Sect. 3.2) which is
efficiently optimized (Sect. 3.3). Interpolation, extrapolation and sub-pixel refine-
ment are then addressed in a subsequent post-processing step (Sect. 3.4).

3.1 Diverse Flow Proposals

Unfortunately, näıve pixel-wise discretization of all possible flow vectors would
lead to an intractably large set of labels at each pixel. Consider for instance a
flow range of ±250 pixels in u- and v-direction. While this range is sufficiently
large for the datasets tackled in this paper (see supplementary material), it
leads to more than 60, 000 labels per pixel for which even the data term alone
would be challenging to calculate and to store. In this section, we therefore
propose a mechanism which extracts a subset of L flow proposals (L = 500 in
our experiments) while maintaining a high recall of ground truth optical flow.

Towards this goal, we partition the target image into cells of equal size as
illustrated in Fig. 1 (left). For each cell, we apply the randomized k-d tree algo-
rithm [29] on the feature descriptors1 of the pixels falling into that cell, yielding
an efficient approximate search structure. Next, for each pixel in the reference
image (red node in Fig. 1), we find all relevant cells in the target image accord-
ing to the desired optical flow range (red shaded cells in Fig. 1) and concatenate
all M flow vectors corresponding to the K nearest neighbor matches from the
k-d tree of each cell (green nodes in Fig. 1). In contrast to a single search struc-
ture constructed for the entire target image, this strategy has two advantages:
First, arbitrary optical flow search ranges can be implemented with little com-
putational overhead by searching only in relevant cells. Second, the retrieved
flow vectors respect an approximate non-maximal-suppression constraint, i.e.,
we obtain exactly K flow vectors per cell.
1 As feature descriptor, we leverage DAISY [39] due to its computational efficiency

and robustness against changes in illumination.
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As neighboring pixels often exhibit similar optical flow, we additionally sam-
ple N random pixels (blue nodes in Fig. 1) from a local Gaussian distribution
centered at the reference pixel and add the respective winner-takes-all solution
(i.e., the flow vector corresponding to the best match at the sampled pixel) to
the proposal set of the current pixel. In case it is already present in the proposal
set, we proceed with the next best flow vector, ensuring that the final set of
L = M + N flow vectors is unique. In our experiments we use M = 300 nearest
neighbors and N = 200 proposals from neighboring pixels.

3.2 Random Field Model

We associate a discrete label lp ∈ {1, . . . , L} with each pixel p = (x, y) in
the reference image, corresponding to the (unique) integer-valued proposal flow
vectors fp(lp) ∈ Z

2 described in Sect. 3.1. We consider optical flow estimation as
MAP inference in a pairwise CRF. More specifically, we aim at minimizing

E(l) = λ
∑

p∈P
ϕp(lp)
︸ ︷︷ ︸
data

+
∑

p∼q

ψp,q(lp, lq)
︸ ︷︷ ︸
smoothness

(1)

with respect to the set of image labels l = {lp|p ∈ P} where P denotes the
set of pixels in image I. Here, we have dropped the dependency on the input
images I and I′ for clarity and ∼ denotes all neighbors on a 4-connected image
grid. The relative weight between the data term (measuring data fidelity) and
the smoothness term (encouraging smooth flow fields) is defined by λ.

The data term ϕp(lp) encodes the cost at pixel p given label lp. We model it
as the truncated �1-penalty evaluating the difference between feature descriptors

ϕp(lp) = min
(
‖dp − d′

p(lp)‖
1
, τϕ

)
(2)

where dp ∈ R
D denotes the feature descriptor at pixel p in the reference image,

d′
p(lp) ∈ R

D denotes the feature descriptor associated with pixel p and label lp
in the target image, and τϕ is the truncation threshold of the data term.

The second term in Eq. 1 encourages smooth flow fields and is modeled as
the weighted truncated �1-distance of neighboring optical flow vectors

ψp,q(lp, lq) = wp,q min
(‖fp(lp) − fq(lq)‖1, τψ

)
(3)

where fp(lp) ∈ R
2 denotes the flow vector at pixel p associated with label lp

and τψ is the truncation threshold of the smoothness term. We remark that a
truncated penalty is not only robust against outliers and thus preferable from
a statistical point of view [34], but it is also critical for tractable inference in
our model as described in Sect. 3.3. Moreover, note that Eq. 3 is a generaliza-
tion of the pairwise potential proposed for stereo matching by Hirschmüller [19]
to arbitrary truncation thresholds τψ. As we expect flow boundaries to coin-
cide with image edges, we additionally weight the smoothness term by a weight
factor wp,q = exp

(−α κ2
p,q

)
. Here, κp,q ∈ [0, 1] measures the strength of the

edge between pixel p and pixel q. We calculate κp,q using structured edge
detection [13].
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3.3 Inference

Despite the simplicity of the model described in Sect. 3.2 and the label set of size
L = 500, inference using max-product loopy BP is still prohibitively slow. To
enable efficient inference, we therefore exploit two additional strategies. First,
instead of loopy belief propagation, we perform block coordinate descent (BCD).
More specifically, we follow [10] and iteratively update alternating image rows
and columns conditioned on the MAP solution of the remaining variables as
illustrated in Fig. 1 (middle). Second, we exploit the truncated form of the pair-
wise potentials in Eq. 3. This is illustrated in Fig. 1 (right). In combination, both
steps reduce computational complexity by about four orders of magnitude.

Without loss of generality, consider the optimization of image row y. The
näıve dynamic programming algorithm recursively fills the cumulative cost
matrix C for each x from 1 to W using the following update equation:

C(x, l) = λ ϕ(x,y)(l) + ψ(x,y),(x,y−1)(l, l∗x,y−1) + ψ(x,y),(x,y+1)(l, l∗x,y+1)

+ min
0≤k<L

(
ψ(x,y),(x−1,y)(l, k) + C(x − 1, k)

)
(4)

Here, l∗p denotes the assignment of the fixed variables, i.e., the variables outside
row y. While the global problem is NP-hard and can be solved only approxi-
mately, each sub-problem corresponds to a chain MRF for which we obtain an
optimal solution via dynamic programming (backtracking). This leads to the
desirable property that this algorithm (unlike loopy BP) is guaranteed to con-
verge.

In case of ordered label sets (e.g., in stereo matching [14] or depth recon-
struction [10]) the efficient distance transform [14] can be employed to lower
the complexity of this algorithm from O(WL2) to O(WL) by calculating the
expression in the last row of Eq. 4 in linear time. Unfortunately, in our case the
flow vectors involved in ψ(x,y),(x−1,y)(l, k) are sparse and unordered, therefore
prohibiting the application of this trick. However, we are still able to utilize the
fact that our pairwise potentials ψ are truncated at τψ: First, note that for prac-
tical truncation thresholds (i.e., τψ < 15), the majority of the L2 pairwise terms
evaluates to τψ. We exploit this observation by partitioning the labels of each
neighboring pixel pair (p,q) into sets

Kp,q,l = {k ∈ {1, . . . , L} | ‖fp(l) − fq(k)‖1 < τψ} (5)

which contain all labels k at pixel q for which the flow fq(k) is within τψ from
the flow fp(l) associated with label l at pixel p. Figure 1 (right) illustrates Kp,q

for a single flow vector at pixel p (shown in red) and a set of flow vectors at pixel
q (black+gray). Given this definition, the last term in Eq. 4 can be written as

min
(

min
k∈K(x,y),(x−1,y),l

(
ψ(x,y),(x−1,y)(l, k) + C(x − 1, k)

)
, c

)
(6)

where the constant c is given by

c = min
0≤k<L

(
w(x,y),(x−1,y)τψ + C(x − 1, k)

)
(7)
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Table 1. Pilot Study on MPI Sintel and KITTI Training Sets. See text.

EPE (px) Out (%)
DM+DeepFlow [42] 2.85 10.22
DM+EpicFlow [32] 2.25 8.63
Ours+DeepFlow 2.64 9.14
Ours+EpicFlow 2.25 8.06
Ours+Oracle 0.85 3.97

(a) MPI Sintel

EPE (px) Out (%)
DM+DeepFlow [42] 1.40 7.13
DM+EpicFlow [32] 1.41 7.43
Ours+DeepFlow 1.17 6.13
Ours+EpicFlow 1.17 5.64
Ours+Oracle 0.58 1.01

(b) KITTI

As c does not depend on l and can be calculated in O(L), Eq. 6 can be evaluated
(for all l) in O(

∑
l |Kp,q,l|) instead of O(L2), where |Kp,q,l| � L in practice due

to the diversity of the proposal set as evidenced by our experimental evaluation
in Sect. 4. It is important to note that the sets Kp,q,l can be pre-computed and
reused during all BCD iterations. In our implementation, we further accelerate
this pre-computation step using hash maps for efficiently retrieving flow vectors.

3.4 Postprocessing

The inference algorithm described above solves the correspondence problem, i.e.,
it assigns each pixel in the reference image to a pixel in the target image. As
we do not model occlusions explicitly, also occluded pixels and pixels leaving
the image domain are assigned a label. We therefore remove outliers from our
result, borrowing ideas from the stereo matching literature [19]. More specifi-
cally, we perform forward-backward consistency checking, i.e., we calculate the
optical flow forwards and backwards in time and retain only flow vectors which
are consistent. In addition, we remove small isolated segments which often corre-
spond to wrong optical flow estimates using connected component labeling with
a minimum segment size of 100 px and a flow consistency threshold of 10 px.
Finally, in order to obtain sub-pixel flow values and to inter-/extrapolate into
unmatched regions, we refine our results using the state-of-the-art flow refine-
ment techniques of DeepFlow and EpicFlow.

4 Experimental Evaluation

We evaluate our approach on the challenging MPI Sintel [9] and KITTI [17]
datasets. Our evaluation starts with a pilot study where we experimentally val-
idate the claims from the introduction, followed by a quantitative and qual-
itative evaluation of our model. The parameters in our model are set via
block coordinate descent on the respective training set (see supplementary
material). To further increase efficiency we use a stride of 4 pixels. For sub-
pixel interpolation of our results, we leverage the interpolation stages of Deep-
Flow (“Ours+DeepFlow”) and EpicFlow (“Ours+EpicFlow”). On average, our
MATLAB/C++ implementation requires about 3 min for one 0.5 megapixel color
image pair from the KITTI training set (10 % descriptor extraction, 40 % pro-
posal generation, 35 % BCD, 15 % postprocessing and overhead).
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(b) KITTI

Fig. 2. Frequency of Neighboring Flow Proposals wrt. Distance. This figure
shows the frequency of neighboring flow proposal vectors with respect to their endpoint
distance on MPI Sintel (a) and KITTI (b) in red. The blue plots depict the cumula-
tive frequency corresponding to |Kp,q,l|/L over the distance threshold τψ, respectively
(Color figure online).

4.1 Pilot Study

Table 1 shows results on the non-occluded parts of the MPI Sintel and KITTI
training sets in terms of endpoint error (EPE) and outliers (threshold: 3 px).
We show (from top-to-bottom) the results of DeepFlow [42], EpicFlow [32], our
results in combination with the refinement stages of DeepFlow [42] and EpicFlow
[32], as well as an “Oracle” which refers to the flow map obtained by selecting
the flow with the smallest EPE at each pixel from our proposal set. Note that
our approach uses only the refinement stages of [32,42] and not the DeepMatches
(DM) which form the foundation for [32,42]. As evidenced by this experiment,
our method obtains state-of-the-art performance, outperforming [32,42] in most
of the error metrics. Furthermore, our proposal set contains flow vectors close
to the ground truth for most of the pixels while being diverse enough to avoid
local minima and reduce the computational complexity of the pairwise terms.
Figure 2 shows histograms of the frequency of neighboring flow proposals with
respect to the distance of their endpoints for L = 500. While the pairwise term
in Eq. 3 can take L2 = 250, 000 states in total, only 2% of them fall below the

Table 2. Evaluation on MPI Sintel Test Set. This table lists the top 10 out of 44
ranked methods on the MPI Sintel flow benchmark in terms of endpoint error (EPE)
in all, matched (Noc) and unmatched (Occ) regions. The results on the clean images
are shown in (a). The results on the final set are shown in (b).

EPE (px)
All Noc Occ

Ours+EpicFlow 3.567 1.108 23.626
FlowFields 3.748 1.056 25.700
DM+EpicFlow [32] 4.115 1.360 26.595
PH-Flow [48] 4.388 1.714 26.202
AggregFlow [16] 4.754 1.694 29.685
TF+OFM [22] 4.917 1.874 29.735
Deep+R 5.041 1.481 34.047
SPM-BP 5.202 1.815 32.839
SparseFlowFused [38] 5.257 1.627 34.834
DM+DeepFlow [42] 5.377 1.771 34.751

(a) Clean Set

EPE (px)
All Noc Occ

FlowFields 5.810 2.621 31.799
Ours+EpicFlow 6.077 2.937 31.685
DM+EpicFlow [32] 6.285 3.060 32.564
TF+OFM [22] 6.727 3.388 33.929
Deep+R 6.769 2.996 37.494
SparseFlowFused [38] 7.189 3.286 38.977
DM+DeepFlow [42] 7.212 3.336 38.781
FlowNetS+ft+v [15] 7.218 3.752 35.445
NNF-Local 7.249 2.973 42.088
SPM-BP 7.325 3.493 38.561

(b) Final Set
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Table 3. Evaluation on KITTI Test Set. This table lists the top 15 out of 57
ranked methods on the KITTI optical flow benchmark in terms of outliers and endpoint
error (EPE) in non-occluded and all regions. For comparability, only pure optical flow
methods are shown, excluding motion stereo methods and techniques which use stereo
information or more than two frames as input.

Outliers (%) EPE (px)
Noc All Noc All

PH-Flow [48] 5.76 10.57 1.3 2.9
FlowFields 5.77 14.01 1.4 3.5
NLTGV-SC [30] 5.93 11.96 1.6 3.8
DDS-DF [41] 6.03 13.08 1.6 4.2
TGV2ADCSIFT [5] 6.20 15.15 1.5 4.5
Ours+EpicFlow 6.23 16.63 1.3 3.6
AnyFlow 6.37 15.80 1.5 4.3
BTF-ILLUM [12] 6.52 11.03 1.5 2.8
DeepFlow2 6.61 17.35 1.4 5.3
CRT-TGV 6.71 12.09 2.0 3.9
Data-Flow [40] 7.11 14.57 1.9 5.5
DM+DeepFlow [42] 7.22 17.79 1.5 5.8
RME 7.25 17.74 3.1 8.5
DM+EpicFlow [32] 7.88 17.08 1.5 3.8
TVL1-HOG [31] 7.91 18.90 2.0 6.1

(a) Outlier Threshold: 3 px

Outliers (%) EPE (px)
Noc All Noc All

Ours+EpicFlow 3.89 12.46 1.3 3.6
PH-Flow [48] 3.93 7.72 1.3 2.9
FlowFields 3.95 10.21 1.4 3.5
DDS-DF [41] 4.41 10.41 1.6 4.2
NLTGV-SC [30] 4.50 9.42 1.6 3.8
AnyFlow 4.51 12.55 1.5 4.3
TGV2ADCSIFT [5] 4.60 12.17 1.5 4.5
BTF-ILLUM [12] 4.64 8.11 1.5 2.8
DeepFlow2 4.73 14.19 1.4 5.3
CRT-TGV 5.01 8.97 2.0 3.9
TVL1-HOG [31] 5.26 15.45 2.0 6.1
DM+DeepFlow [42] 5.31 14.69 1.5 5.8
Data-Flow [40] 5.34 11.72 1.9 5.5
DM+EpicFlow [32] 5.36 12.86 1.5 3.8
RME 5.49 14.70 3.1 8.5

(b) Outlier Threshold: 5 px

truncation value of 15 px and need to be evaluated in Eq. 6. Thus, pre-calculating
the partitions Kp,q,l saves almost two orders of magnitude in computation time.

4.2 Quantitative Results

We also compare our method to the state-of-the-art on the challenging held-
out test data of MPI Sintel [9] and KITTI [17]. As requested by the evaluation
protocol, we only submitted our strongest entry (“Ours+EpicFlow”) for evalu-
ation on the test set. Tables 2 and 3 compare our results to the state-of-the-art
in two-frame optical flow. On MPI Sintel we obtain rank 1 on the “clean” set
and rank 2 on the “final” set out of 44 ranked methods in total. On KITTI
our method ranks 6th (out of 57 submitted results) for an outlier threshold of 3
pixels and 1st when using a threshold of 5 pixels. Note that we have excluded
motion stereo methods and methods using additional information from Table 3
for a fair comparison. For full results, we refer to the online leaderboards2.

4.3 Qualitative Results

Figure 3 depicts qualitative results of our method on a subset of MPI Sintel (top
four images) and KITTI (bottom four images). As we require ground truth for
visualizing the error maps we utilize the training sets for this purpose. We show
the input image (left), our results in combination with EpicFlow postprocessing
(middle) and the color-coded error map with respect to the ground truth flow

2 http://sintel.is.tue.mpg.de.
http://www.cvlibs.net/datasets/kitti.

http://sintel.is.tue.mpg.de
http://www.cvlibs.net/datasets/kitti
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Fig. 3. Qualitative Results on MPI Sintel and KITTI Training Sets. From
left-to-right: Input image, “Ours+EpicFlow”, inliers (blue)/outliers (red) (Color figure
online).

field (right). At the top of each error map we specify the percentage of outliers
and the endpoint error (EPE). The color coding visualizes outliers (> 3 px
EPE) in red and inliers (< 3 px EPE) in blue on a logarithmic color scale. Pixels
without ground truth value are shown in black. Note how our method is able
to capture fine details in the optical flow. The last result of each dataset shows
a failure case. For MPI Sintel, errors can be mostly attributed to homogeneous
regions, occlusions and large changes in motion blur. On KITTI, we identified
large perspective distortions, illumination artifacts and saturated or reflective
regions as the primary sources of error.
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5 Conclusions

We presented a discrete solution to the estimation of optical flow by exploit-
ing three strategies which limit computational and memory requirements. Our
experiments show that discrete optimization can lead to state-of-the-art opti-
cal flow results using a relatively simple prior model. In the future, we plan to
integrate richer optical flow priors into our approach. In particular, we aim at
jointly reasoning about several image scales and at incorporating semantic infor-
mation [18,41] into optical flow estimation. Furthermore, we plan to extend our
approach to the estimation of 3D scene flow [26,27].
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