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Preface

It was a pleasure to organize the 37th German Conference on Pattern Recognition
(GCPR), which was held in Aachen during October 7–10, 2015. This time, GCPR was
co-located with the 20th International Symposium on Vision, Modeling and Visuali-
zation (VMV).

For GCPR 2015, we received 108 submissions from institutions of 28 countries.
Each paper underwent a rigorous double-blind reviewing procedure by at least three
Program Committee (PC) members, sometimes with support from additional experts.
Afterward, one of the involved PC members served as moderator for a discussion
among the reviewers and prepared a consolidation report that was also forwarded to the
authors in addition to the reviews. The final decision was made during a PC meeting
held in Aachen based on all reviews, discussions, and, if necessary, additional
reviewing. As a result of this rigorous reviewing procedure, 45 of the 108 submissions
were accepted, which corresponds to an acceptance rate of 42 %. Finally, these
accepted papers were presented either as oral talks (18) or posters (27) in a single-track
program. All accepted papers are published in these proceedings and cover the entire
spectrum of pattern recognition, machine learning, image processing, and computer
vision. Following the tradition of this conference series, GCPR 2015 also featured a
Young Researchers Forum to promote scientific interaction between excellent young
researchers and our community. From eight submissions, five works were selected for a
poster presentation and one was additionally included as a short paper in the
proceedings.

In addition, we were very happy to have three internationally renowned researchers
as our invited speakers to present their work in three fascinating areas: Andrew Blake
(Microsoft Research Cambridge, UK), Niloy J. Mitra (University College London,
UK), and Max Welling (University of Amsterdam, The Netherlands and University of
California Irvine, USA). The technical program was complemented by one workshop
and one tutorial. The Workshop on New Challenges in Neural Computation (NC2) was
organized by Barbara Hammer (Bielefeld University), Thomas Martinetz (University of
Lübeck), and Thomas Villmann (University of Applied Sciences Mittweida). The
Tutorial on Causality was held by Jonas Peters (Max Planck Institute for Intelligent
Systems).

The success of GCPR 2015 would not have been possible without the support of
many institutions and people. First of all, we would like to thank all authors of the
submitted papers and the invited speakers for their contributions. All PC members and
additional reviewers deserve great thanks for their timely and competent reviews. We
are grateful to our sponsors for their support as well. Finally, special thanks go to the



Proceedings and Website Chairs and the Local Organizing Committee. We would like
to thank Springer for giving us the opportunity of continuing to publish GCPR pro-
ceedings in the LNCS series.

October 2015 Juergen Gall
Peter Gehler

Bastian Leibe
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Road Condition Estimation Based
on Spatio-Temporal Reflection Models

Manuel Amthor1(B), Bernd Hartmann2, and Joachim Denzler1

1 Computer Vision Group, Friedrich Schiller University Jena,
Jena, Germany

manuel.amthor@uni-jena.de
2 Advanced Engineering, Continental Teves AG & Co. oHG,

Frankfurt a.M., Germany

Abstract. Automated road condition estimation is a crucial basis for
Advanced Driver Assistance Systems (ADAS) and even more for highly
and fully automated driving functions in future. In order to improve
vehicle safety relevant vehicle dynamics parameters, e.g. last-point-to-
brake (LPB), last-point-to-steer (LPS), or vehicle curve speed should be
adapted depending on the current weather-related road surface condi-
tions. As vision-based systems are already integrated in many of today’s
vehicles they constitute a beneficial resource for such a task. As a first
contribution, we present a novel approach for reflection modeling which
is a reliable and robust indicator for wet road surface conditions. We then
extend our method by texture description features since local structures
enable for the distinction of snow-covered and bare road surfaces. Based
on a large real-life dataset we evaluate the performance of our approach
and achieve results which clearly outperform other established vision-
based methods while ensuring real-time capability.

1 Introduction

The continuous improvement of road safety is an important field of research and
development in the automotive industry. Considerable efforts have been made
to reduce the number of road fatalities, damages and the consequences of acci-
dents, e.g. by automated emergency brake systems [10], road detection for lane
departure warning [2], or vulnerability prediction [18]. Advanced Driver Assis-
tance Systems (ADAS) which warn and support the driver in normal driving and
especially in hazard situations form an important contribution towards “vision
zero” [6]. As for example to assess a critical driving situation properly the under-
standing of the present road condition is of vital importance. Nowadays, this
information is determined manually by the driver but is intended to be esti-
mated automatically to serve as input for higher automated vehicle safety sys-
tems. Based on this valuable information the effectiveness of current assistance
systems can be increased considerably, e.g. by adapting system thresholds such
as last-point-to-brake (LPB) for automated emergency brake systems. Further-
more, it is desired to obtain the current road condition automatically for the
purpose of highly and fully automated driving in the future.
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 3–15, 2015.
DOI: 10.1007/978-3-319-24947-6 1
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Recent advances in road condition estimation based on on-board surrounding
sensors, as for example rain, humidity, or laser sensors, have proven to be the
key element for the task at hand. Another potential resource are visual sensors
which have the advantage of being already integrated in many of today’s vehicles.
Additionally, cameras allow for hazard prediction as they asses the area directly
in front of the moving vehicle. Thereby, the most difficult task is the recognition
of wet and icy areas, being some of the most dangerous situations. By using
stereo vision systems this challenge can be addressed by utilizing polarization
filters [7] to obtain information about the presence of reflections as a typical
indicator for those conditions. However, since the market penetration of stereo
camera systems is very low compared to mono camera systems, road condition
estimation has to be performed on monocular image data which renders the task
very challenging.

In this paper, our goal is to overcome limitations of road condition esti-
mation based on single cameras in order to distinguish between dry, wet and
snow-covered road surface conditions. In particular, we apply enhanced spatio-
temporal reflection models combined with strong texture description features.
Furthermore, our proposed method is very robust to occurring disturbances and
achieves real-time capability.

In Sect. 2 we give an overview of related work and motivate our approach.
Section 3 presents our novel method in detail based on previously introduced
standard techniques for reflection modeling. In Sect. 4 the actual road condition
estimation framework is explained which is currently implemented in a first
demonstration vehicle. A comprehensive evaluation on a large real-life dataset
is finally presented in Sect. 5.

2 Related Work

In the past decades several approaches have been developed for the challenging
task of road condition estimation. There are mainly two approaches to provide
weather-related information for individual vehicles. On the first hand, so-called
road side units [16] collect data in a specific region by a variety of sensors.
Afterwards, these statistics are processed and distributed to individual vehicles
as presented in [13]. On the other hand, this network can be supported by each
particular vehicle as well by utilizing on-board surrounding sensors for rain [8],
air humidity [21], acoustics [1,12], and surface roughness [5].

In the area of pure computer vision, the most challenging task is to detect
wet road surface conditions. Usually, this problem can be addressed by using a
stereo camera setup utilized with polarization filters [7]. To be able to distinguish
between dry, wet and snowy conditions, polarization characteristics are combined
with additional image feature types like gray level co-occurrence matrices [17,24]
or wavelet packet transforms [25].

However, in the absence of a stereo camera system, as it is commonly the
case for most of the today’s vehicles, more elaborate features based on single
cameras have to be developed. As for example in [19,20] sole texture description



Road Condition Estimation Based on Spatio-Temporal Reflection Models 5

followed by a dimensionality reduction technique is applied for stationary road
condition estimation. Examples for on-board systems are presented in [9,22]
where texture characterization based on gray level co-occurrence matrices is the
key element. In the work of [9] texture description is extended by additional
block-wise RGB ratios to obtain color and luminance features. Another inter-
esting method presented in [15] applies block-wise RGB histograms combined
with edge histograms considering the entire lower image region in order to cover
additional information.

In the case of monocular image analysis it is still difficult to detect wet
areas due to the high variability of the appearance of those regions caused by
mirrored environmental objects. To overcome these difficulties certain road con-
ditions can be determined by modeling different reflection types based on spatio-
temporal information, i.e. taking an image sequence into account. In the course
of this, typical reflections for wet situations, namely specular reflections, are mod-
eled by investigating appearance variations of individual road surface regions as
presented in [23]. The major drawback of this approach is the required time-
consuming registration of individual regions which is also prone to unregistered
movements of the vehicle.

Therefore, in this work we present a novel approach to model reflection types
by not considering individual regions directly but by evaluating the paths those
regions pass. By assuming an almost linear motion of the vehicle together with an
appropriate image transformation, considered regions will pass the scene through
individual image columns which then provide all relevant information of potential
appearance changes. This enables us to avoid expensive and unstable registration
techniques in contrast to other works. We then combine our novel reflection
features with strong texture description to obtain a robust and fast approach for
the challenging task of road condition estimation.

3 Fast and Robust Reflection Modeling

The most difficult part of road condition estimation is the recognition of wet
areas on the road surface. Due to the high variability of the appearance of wet
regions particularly caused by unpredictable mirrored environmental objects,
features such as texture description, color information, statistical moments, etc.
turned out to be not very discriminative. However, exactly those mirrored objects
are considered as key elements for wet surface recognition in our paper. The
main issue is to not only consider one single frame but to evaluate a sequence of
consecutive images. With the help of this spatio-temporal modeling the nature
of different reflection types can be revealed. This allows for the recognition of wet
surfaces in a very general way. Thus, in the following sections different reflection
types together with their properties are introduced in detail. Afterwards, a basic
approach for the detection of a specific reflection type indicating wet conditions–
namely specular reflections–is presented. Motivated by serious shortcomings of
this basic technique a novel method for the recognition of reflection types is
introduced in Subsect. 3.3.
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(a) diffuse reflection (b) specular reflection

Fig. 1. Scheme of different reflection
types. In (a) diffuse reflection is shown
where the incident light is equally scat-
tered in all directions. A change of the
viewpoint has no visual effect on the
observed surface point. In (b) a specu-
lar reflection is depicted and the reflected
light is focused into one single direction.
An altered perspective would lead to an
appearance shift of the observed surface,
since the particular reflected ray would no
longer meet the camera.

Fig. 2. Schematic representation of
recovering individual regions on the
road in consecutive frames based on
the one-track-model.

3.1 Diffuse and Specular Reflections

As mentioned above our main assumption is that identifying surface reflec-
tion types allows for the distinction between the underlying road condition.
In Fig. 1(a) and (b) the difference between diffuse and specular reflections is
depicted. In the case of dry asphalt as well as snow coverage fine-grained struc-
tures on the surface reflect incident light in all directions equally. Thus, a change
of the perspective would lead to the same visual appearance of the focused region.
In contrast, a surface covered by water is very smooth which has the properties
of a mirror and thus the incident light is theoretically reflected in exactly one
direction. If the perspective changes, this reflection will no longer encounter the
observer’s view and the region seems to change its appearance.

To decide about the presence of specular reflections and thus the occurrence
of wet road conditions, potential appearance changes of individual regions have
to be evaluated. This can be realized by comparing identical regions on the road
between several consecutive frames. In the following section a basic method is
presented which allows for the examination of particular regions with respect to
the presence of specular reflections given a sequence of images.

3.2 Physical Model

To decide about the present reflection type it is required to evaluate the change
of appearance of individual regions on the surface along consecutive frames.
Therefore, corresponding pixel values of those regions have to be considered. To
be able to align such regions over different frames it is beneficial to project the
original image into a top view image based on an estimated homography. Hence,
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potential transformations are reduced to simple translation and rotation. To
obtain the geometric transition between two consecutive frames vehicle dynamics
parameters have to be taken into account. Those parameters–available from
the vehicle’s system–provide the current steering angle as well as the actual
velocity and thus the distance traveled during two acquired images. In Fig. 2
the geometric relationship between two frames is shown exemplarily. As can
be seen an individual point (x′, y′) placed in the top view image of frame f ′

can be recovered as (x′′, y′′) in the subsequent frame f ′′. The corresponding
transformation between these points can be expressed in general by

x′′ = (x′ + SR) · cos
(

ΔC

SR

)
+ (y′ + D) · sin

(
ΔC

SR

)
− SR

y′′ = −(x′ + SR) · sin
(

ΔC

SR

)
+ (y′ + D) · cos

(
ΔC

SR

)
− D, (1)

where SR is the pole distance, ΔC is the distance traveled, and D is the offset
between rear axle and the region of interest. Additionally, the pole distance
can be obtained by SR = L

tan(β) where L denotes the distance between rear
and front axle. However, β increases proportionally with the current steering
angle for which the relationship has to be estimated in advance. As can be seen
δ = ΔC

SR
is basically the angle of the rotation matrix for the required image

transformation.
Once all frames are registered and related regions are aligned the evaluation

of potential appearance changes can be applied. The most intuitive way is to
determine the gray value variances of corresponding pixels along the time axis
which can be enhanced by considering grid cells instead of single pixels to avoid
misalignments caused by small transformation errors. The result of this proce-
dure is an image containing the variance over time at each pixel location and thus
an indication of the present reflection type. However, under real world conditions,
serious problems arise due to the technical setup as well as the simple assump-
tions. At first, erroneous transformations between two frames can be obtained
due to the fixed homography in combination with common vertical movements
of the car. Those errors increase drastically for regions which are far away from
the observer. In order to rectify the biased transformation it is possible to adapt
the homography for each frame individually based on ground-plane estimation.
However, the estimation over several frames leads to cumulative errors in terms
of sub-pixel accuracy caused by the coarse discrete scale of the vehicle dynamics
parameters, e.g. the steering angle. To resolve these problems, in the following,
we propose a novel fast and robust reflection modeling approach which can easily
deal with inaccurate motion estimation.

3.3 A Novel Approach: Specular Reflection Maps

The idea we suggest in our paper is to evaluate paths of individual regions instead
of regions themselves. This approach allows for accurate detections of different
reflection types even during severe unregistered movements of the car. Note, that
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the following method is based on the introduced top view transformation (cf.
Subsect. 3.2).

Let us assume an almost linear motion of the vehicle. Then, an individual
point on the surface will pass the region of interest through a single image column
of the transformed top view image. Hence, potential appearance variations can
be detected not by tracking the region directly but by assessing the path of the
region, i.e. the same image column of consecutive frames. To obtain one image
including those temporal information an average image It is computed by

It = α · It−1 + (1 − α) · It. (2)

To be able to emphasize recent events we make use of the moving average con-
trolled by the parameter α. Furthermore, only one single image has to be kept in
memory which is of great benefit regarding embedded systems. By subtracting
the column average from each point of the average image It reflection types can
be distinguished by the resulting specular reflection map given by

SRMt(x, y) = It(x, y) − 1
K

K∑
k=0

(
It(x, k)

)
. (3)

The idea is that diffuse reflections, i.e. without appearance variations, have sim-
ilar values along the corresponding image column in It. Thus, subtracting the
column average leads to small values for most of the surface points. In contrast,
specular reflections provide severe appearance changes and the related image
column of It yields high variance resulting in high values for SRMt. In Fig. 3 the
different stages of our approach can be seen for two examples showing dry and

(a) Original image (b) It (c) It (d) SRMt

Fig. 3. Examples for reflection modeling based on specular reflection maps. The first
row shows an example taken from a dry road. In the second row an instance of a wet
road is presented. The pipeline for reflection detection is depicted for an image (a)
which was transformed into a top view (b). The averaged frame (c) is computed based
on previous frames which results finally in the corresponding refection map (d).
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wet asphalt. The resulting reflection maps clearly show the indication for the
described reflection types and in consequence the different road conditions.

To finally obtain features based on the computed specular reflection map
(SRMt) several methods can be applied. As presented later (cf. Subsect. 4.2) we
use texture description based on Local Binary Patterns (LBPs) [14] in order to
extract discriminative features for dry and wet road conditions.

The major advantage of our proposed method is that no expensive tracking
of individual regions or an image registration technique is required. Further-
more, our method only needs to compute simple image averages and subsequent
subtractions. Hence, results can be computed very efficiently while being robust
against unregistered movements in contrast to the physical model described in
Subsect. 3.2.

4 Road Condition Estimation Framework

Since the main goal of this work is to estimate the actual road condition, a
common classification framework is utilized. The processing pipeline consists
of three stages, namely the selection of a region of interest, the extraction of
appropriate features, and finally the classification into road condition classes. In
the following each of these essential steps is explained in detail.

4.1 Region of Interest

To obtain suitable feature vectors, describing a specific image region, the shape
and size of this region has to be defined in advance. In [2] it was shown that
road-only parts can be determined optimally by semantic segmentation. For
our method, however, the region is limited to a simple and static geometric
shape since we focus on feature extraction as well as the classification process.
As already mentioned in Sect. 3, a favorable shape of this region would be a
trapezoidal one, since the required rectangular top view image can be obtained
based on an estimated homography. In our setup the homography is assumed to
be fixed, although the ground-plane changes due to small vertical movements of
the car.

4.2 Feature Extraction

Once the region of interest is defined, features can be obtained from the covered
area to describe the underlying road condition. Several feature types have been
investigated during the past and we found two very crucial feature types for the
task at hand. In the first place, the novel specular reflection maps introduced
in Subsect. 3.3 which aim to detect specular reflections are an essential resource
to distinguish between dry and wet road conditions. Secondly, texture features
have proven to be most suitable to describe characteristic structures caused by
wheel tracks on wet asphalt or on snow-covered roads.
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Specular Reflection Maps Based on a quantitative analysis–which is not
presented in this paper due to the limited space–we found that texture descrip-
tion methods are most suitable to cover meaningful information provided by
the specular reflection map. Thereby, unique patterns induced by the presence
of wet areas can be recognized in a very robust manner. As shown in the next
paragraph LBPs are a prominent approach for the task of texture description.
For our scenario of reflection maps it is superior in terms of accuracy to other
state-of-the-art approaches such as GLCMs [4]. Additionally, those descriptors
can be computed very efficiently which is a crucial factor when implemented on
embedded systems.

Texture Description Since sole reflection modeling is not sufficient to distin-
guish between dry and snow-covered areas, texture description on the original
image became the second key element. Here, characteristic structures on the
lane provide useful information about the present road condition. As already
mentioned in the previous paragraph LBPs have proven to be the most suit-
able texture description approach for the task at hand. The reasons for that
are twofold: On the one hand, LBPs can be computed very efficiently which
is as beneficial as crucial while running on an embedded environment. On the
other hand, it is highly discriminative in contrast to other fast texture recog-
nition methods. As we are interested in the texture of the actual road surface,
a cropped version of the original image is transformed into a top view image
(cf. Sect. 3). We limit ourselves to the intensity channel of the HSI image repre-
sentation, since color information is prone to color shifts (e.g. different colored
windshields).

4.3 Classification

The final step in our framework is the classification into road condition classes,
namely dry, wet, and snow-covered. We have decided for Extremely Randomized
Trees [3] as a prominent non-linear classifier for two reasons. On the one hand,
the implementation is highly memory efficient in contrast to comparable meth-
ods like Nearest-Neighbor classifier. Only some simple thresholds have to be kept
in memory instead of entire highly dimensional feature vectors of some or even
all training samples. On the other hand, the computation time during classifi-
cation is very low based on only few and simple numerical comparisons. Both
advantages make Extremely Randomized Trees highly preferable for our task.

5 Experiments

In the following, we present evaluations of our proposed method which are based
on a huge real-life data collection acquired over the past 18 months. The dataset
comprises a variety of environmental settings such as motorways as well as urban
and suburban scenes at different locations from all over Germany as well as
from Sweden. We use a total of ∼3,500 sequences resulting in ∼150,000 single
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images each with a resolution of 1076 × 648 pixels at a frame rate of 16 fps.
Ground-truth data was provided for all sequences by an human expert during the
acquisition including the unique labels dry, wet, and snow-covered. Additionally,
intermediate labels are assigned to sequences which show mixed conditions and
transition between unique classes which are not considered for this evaluation.
The overall distribution of class labels is given by 60% showing dry, 14% showing
wet, and 26% showing snow-covered conditions. Example images for each road
condition class can be seen in Fig. 4. For the evaluation we conduct a 10-fold cross
validation where only 10% of the data was used for training and the remaining
90% for testing. Overall and average recognition rates were used in order to
measure the classification performance sample-wise as well as in a class-wise
manner. We compare our proposed method to state-of-the-art techniques and
provide a simple baseline approach developed during a preliminary study of this
work. It is shown that our method outperforms all other methods despite of
challenges, e.g. color shifts, under- and overexposed images, severe reflections
due to low sun, and even image artifacts caused by erroneous demosaicing [11].
In the course of a parameter evaluation–which is not presented in this paper due
to the limited space–we found the most suitable setting given by α = 0.05, P = 8,
R = 1, 2, 4. Thereby, an increasing value of α would lead to erroneous estimations
caused by short-term disturbances whereas smaller values would cause a delayed
recognition of an actual change of the road condition. As presented in [14] the
number of neighbors is set to P = 8 to ensure an efficient implementation by
using an 8-bit data type. The corresponding radius R has been set to different
distances to obtain a pyramidal representation. As suggested in [3] an ensemble
size of 100 trees was selected for the classification.

5.1 Evaluation and Comparison

Since there is no commonly used dataset for the task of road condition estimation
and sources of other methods are not publicly available, works of [9,15,22] have
been reimplemented. This allows us to compare the performance of our proposed
method with recent works in this field of research. Additionally, we present
results produced by a baseline approach developed during a preliminary study.

Table 1. Comparison of various camera based methods for road condition estimation.

Method dry wet snow ARR ORR

Baseline 82.71 75.22 64.24 74.06 77.33

Kawai et al. [9] 42.03 52.56 79.25 57.95 55.55

Sun et al. [22] 70.23 91.31 76.35 79.30 74.95

Omer et al. [15] 96.85 79.89 95.49 90.74 94.25

Ours 98.90 93.17 94.93 95.67 96.84

Ours + context 99.44 93.50 97.84 96.79 98.09
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In Table 1 the recognition rates for our approach as well as for works of
[9,15,22] are presented. As can be seen our method is superior regarding each
condition class which results in a substantial increase of overall and average
performances. The system of [22] which is solely based on GLCM texture mod-
eling is capable of detecting wet conditions, but shows poor results for dry and
snow-covered scenes. Our implementation of [9] provides rather poor results for
all classes and has the additional disadvantage of high computational costs,
i.e. 12 s per frame, which renders the method useless for real-time applications.
In contrast to that, [15] provides high recognition rates for snow-covered and
bare roads for which the method was initially designed. This strength can be
explained by the fact, that they use context information from non-road parts
by considering the entire lower image region. Additionally, the usage of color
information is very useful as long as the setup does not change, e.g. by dif-
ferently colored windshields or unexpected illumination changes. Although our
method produces slightly worse results for snow-coverage compared to [15], it
was possible to obtain superior overall as well as average recognition rates while
still considering only-road parts without using color information. As a further
improvement of our approach, the entire lower image region was considered to
cover useful information about saturation and intensity variations between road
and non-road parts. The idea is that snow-covered areas yield low variances in
the saturation channel whereas bare road scenes show high variances caused by
road-markings and grass verges. The resulting performance gain can be seen in
the last row of Table 1.

The major advantages of our proposed approach is the ability to distinguish
between all potential road conditions in a very robust manner without the sen-
sitivity to color and illumination changes. Furthermore, the actual runtime, e.g.
at least 16 fps, renders our method suitable for real-time applications. In Fig. 4
qualitative results are presented for each road surface condition class showing
the advantages of our method.

Limitations of our approach appear when driving through narrow bends as
the method assumes an almost linear motion. This drawback can be resolved
by an adaptation of the static homography in terms of aligning the top view
image in the direction of motion. Furthermore, disturbances on the windshield,
e.g. contamination and reflections caused by the car’s hood can result in erro-
neous estimations. In addition, varying exposure times of the camera can lead
to changing appearance of individual regions which can be rectified by taking
the corresponding value into account.

5.2 Computation Times

The presented road condition estimation framework was solely implemented in
C/C++ using the OpenCV library 2.4.9. Similar to the computer setup of the
demonstration vehicle an Intel R© CoreTM i7-2600 standard desktop computer
@3.40 GHz was used for our experiments. The computation time for one single
frame was approximately 50 ms which guarantees real-time capability of our
approach, i.e. 16 frames per second.
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Fig. 4. Qualitative evaluation of our approach compared to Kawai et al. [9], Sun et al.
[22], and Omer et al. [15]. Results are highlighted below each image (color figure online).

6 Conclusions

In this paper we presented a fast and robust approach for the task of road condi-
tion estimation based on a monocular camera. Motivated by a physical reflection
model a transformation of the input image into a reflection map was proposed.
Feature vectors were obtained by the extraction of texture features based on
the reflection map as well as on the original image. Afterwards, a standard clas-
sifier was applied which meets the special requirements of embedded systems.
Based on a large and challenging dataset it was possible to show that the pro-
posed method clearly outperforms other vision-based state-of-the-art methods.
The main advantages of our approach are the capability of running in real-time
as well as the robustness against diverse disturbances in contrast to standard
reflection modeling based on image registration and tracking.
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Abstract. We propose to look at large-displacement optical flow from
a discrete point of view. Motivated by the observation that sub-pixel
accuracy is easily obtained given pixel-accurate optical flow, we conjec-
ture that computing the integral part is the hardest piece of the problem.
Consequently, we formulate optical flow estimation as a discrete inference
problem in a conditional random field, followed by sub-pixel refinement.
Näıve discretization of the 2D flow space, however, is intractable due to
the resulting size of the label set. In this paper, we therefore investigate
three different strategies, each able to reduce computation and memory
demands by several orders of magnitude. Their combination allows us to
estimate large-displacement optical flow both accurately and efficiently
and demonstrates the potential of discrete optimization for optical flow.
We obtain state-of-the-art performance on MPI Sintel and KITTI.

1 Introduction

Estimating dense optical flow is a fundamental problem in computer vision.
Despite significant progress over the last decades, realistic scenes with displace-
ments of several hundred pixels, strong changes in illumination and textureless
or specular regions remain challenging to date [9,17]. Traditionally, dense opti-
cal flow estimation has been formulated as a continuous optimization problem
[20,25], and many of today’s most successful methods leverage elaborate vari-
ants of the original formulation, allowing for more robust penalties or improv-
ing optimization. As continuous methods typically require linearizing the highly
non-convex data term, they only permit the estimation of very small displace-
ments up to a few pixels. Thus, in order to handle large displacements in real-
world videos, a simple heuristic is often employed: Optical flow is estimated in
a coarse-to-fine manner, thereby guaranteeing an upper bound to the maximal
displacement at each level of the image pyramid. Unfortunately, this strategy is
highly susceptible to local minima as small structures and textural details vanish
at coarse image resolutions, leading to oversmoothing artifacts in the estimated
flow field.

In contrast to optical flow, the most successful approaches to stereo match-
ing typically rely on discrete inference in graphical models. While such models
are loopy by nature and thus lead to NP-hard optimization problems, good
approximate solutions can often be efficiently computed using graph cuts, belief
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 16–28, 2015.
DOI: 10.1007/978-3-319-24947-6 2



Discrete Optimization for Optical Flow 17

Fig. 1. Strategies for Efficient Discrete Optical Flow. Left: We create a large
set of diverse flow proposals per pixel (red node) by combining nearest neighbors in
feature space from a set of grid cells (green nodes) with winner-takes-all solutions from
neighboring pixels (blue nodes). The red square indicates the search region. Middle: We
apply block coordinate descent, iteratively optimizing all image rows and columns (red)
conditioned on neighboring blocks (white) via dynamic programming. Right: Taking
advantage of robust penalties, we reduce pairwise computation costs by pre-computing
the set of non-truncated (< τψ) neighboring flow proposals (black) for each flow vector
(red) (Color figure online).

propagation or mean field approximations. Importantly, no image pyramids are
required as the full data cost volume is considered at the same time during
inference. Unfortunately, the application of discrete methods to the problem of
optical flow is not straightforward and hence there exists only relatively little
work in this direction. The main reason for this is the huge size of the label space
which needs to be considered for the 2D large-displacement optical flow problem
as opposed to the 1D stereo problem.

In this paper, we propose three different strategies to make discrete infer-
ence in a pairwise conditional random field (CRF) applicable to the estimation
of optical flow, see Fig. 1 for an illustration. First, we restrict the label set by
considering only the L most likely matches per pixel which we obtain via approxi-
mate nearest neighbor search in feature space subject to non-maxima suppression
constraints. To validate this restriction, we experimentally show that the oracle
solution of the restricted set outperforms all existing optical flow techniques by
a significant margin. Second, our inference scheme takes advantage of efficient
convergent block coordinate descent (BCD) and iteratively updates all image
rows and columns conditioned on the remaining variables via dynamic program-
ming. Third, we exploit the special form of the pairwise potentials used by our
formulation to further decrease computational complexity, thereby making very
large unordered label sets with hundreds of labels tractable. Upon convergence,
we remove outliers (e.g., in occluded regions) using strategies borrowed from
the stereo literature. Finally, we regress a real-valued dense flow field from our
semi-dense integer flow estimate using variational techniques [32,42]. We exper-
imentally validate the proposed method on two challenging benchmarks: MPI
Sintel [9] and KITTI [17]. Our experiments show that the proposed method
attains state-of-the-art performance. Importantly, our results indicate that
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discrete optimization can be a powerful tool for solving optical flow problems -
even when considering pairwise flow priors only. Our code and supplementary
material are available from our project page: http://www.cvlibs.net/projects/
discrete flow.

2 Related Work

Global estimation of optical flow has traditionally been formulated as a contin-
uous variational optimization problem with linearized data terms [4,20] and
many of the most successful works still follow the same paradigm to date
[8,12,30,34,35,37,40,43]. To estimate displacements larger than 1 pixel, as
required by modern benchmarks [1,9,17] and for many applications, continu-
ous methods typically rely on image pyramids [7]. Unfortunately, this heuristic
is prone to local minima as texture details and fine structures vanish at small
scales. As a consequence, methods leveraging sparse feature correspondences
to guide the optimization process have been popularized [5,6,32,38,42], incor-
porating feature matches into initialization or as an additional data term. Our
approach shares similarity with these methods in the sense that we also refine our
integer-valued flow result to sub-pixel accuracy as proposed in [32,42]. However,
in contrast to the above-mentioned works, our integral matches are obtained
via discrete optimization with optical flow priors. This allows our algorithm
to establish denser correspondences than possible with independently matched
sparse features and, in combination with sub-pixel refinement, leads to better
results.

Alternatively, optical flow can be viewed as a discrete optimization prob-
lem. In the absence of regularization constraints, this corresponds to a complete
search of the discretized 2D flow space which has to be carried out for each pixel
[2,47]. While local support windows [33] alleviate the effect of border bleeding,
they generally cannot compete with methods that leverage global regulariza-
tion. Incorporating smoothness constraints, however, is much more difficult for
discrete optical flow than for the related stereo matching problem due to the
extremely large label space of the discretized 2D flow field. To avoid this diffi-
culty, a number of approaches formulate optical flow as a segmentation problem:
Based on a small set of dense flow field proposals, the most likely flow field at each
pixel subject to regularization constraints is approximated via quadratic pseudo-
boolean optimization (QPBO) or belief propagation (BP) [11,23,44,45,48]. A
reduced label set for all pixels is proposed by [28] restricting the method to
scenes with little and non-complex motion. In contrast, here we pursue a more
direct approach to discrete optical flow which does not rely on proposed flow
fields or a global label set but allows for an arbitrary set of flow proposals per
pixel. Compared to the approaches of Steinbrücker et al. [36] and Liu et al. [24],
we neither require a complete search nor image pyramids [24]. Our approach
is also related to particle-based methods such as particle BP [46] or Patch-
Match BP [3,21]. In contrast to those methods, our algorithm is not restricted
to a relatively small set of particles or local resampling which can lead to local

http://www.cvlibs.net/projects/discrete_flow
http://www.cvlibs.net/projects/discrete_flow
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minima. Instead, we maintain diverse distributions over much larger state spaces
throughout the whole inference process.

Very recently, object recognition and feature learning have been exploited as
a powerful source of information for optical flow. Notable examples are the data-
driven flow transfer method of Wei et al. [41] and FlowNets based on deep neural
networks by Fischer et al. [15]. In this paper our focus lies on a more generic
model without the need for large annotated training sets. However, these ideas
could be easily incorporated into the proposed model, e.g., via additional unary
terms, promising further gains in performance in the future.

3 Model

Let us assume two input images I and I′ of size W × H. Our goal is to assign as
many pixels as possible from the reference image I to pixels in the target image
I′. In other words, we aim for a semi-dense integer-valued flow field, establishing
correspondences which are visible in both views. Flow vectors are selected from
a diverse set of proposals (Sect. 3.1) based on a CRF model (Sect. 3.2) which is
efficiently optimized (Sect. 3.3). Interpolation, extrapolation and sub-pixel refine-
ment are then addressed in a subsequent post-processing step (Sect. 3.4).

3.1 Diverse Flow Proposals

Unfortunately, näıve pixel-wise discretization of all possible flow vectors would
lead to an intractably large set of labels at each pixel. Consider for instance a
flow range of ±250 pixels in u- and v-direction. While this range is sufficiently
large for the datasets tackled in this paper (see supplementary material), it
leads to more than 60, 000 labels per pixel for which even the data term alone
would be challenging to calculate and to store. In this section, we therefore
propose a mechanism which extracts a subset of L flow proposals (L = 500 in
our experiments) while maintaining a high recall of ground truth optical flow.

Towards this goal, we partition the target image into cells of equal size as
illustrated in Fig. 1 (left). For each cell, we apply the randomized k-d tree algo-
rithm [29] on the feature descriptors1 of the pixels falling into that cell, yielding
an efficient approximate search structure. Next, for each pixel in the reference
image (red node in Fig. 1), we find all relevant cells in the target image accord-
ing to the desired optical flow range (red shaded cells in Fig. 1) and concatenate
all M flow vectors corresponding to the K nearest neighbor matches from the
k-d tree of each cell (green nodes in Fig. 1). In contrast to a single search struc-
ture constructed for the entire target image, this strategy has two advantages:
First, arbitrary optical flow search ranges can be implemented with little com-
putational overhead by searching only in relevant cells. Second, the retrieved
flow vectors respect an approximate non-maximal-suppression constraint, i.e.,
we obtain exactly K flow vectors per cell.
1 As feature descriptor, we leverage DAISY [39] due to its computational efficiency

and robustness against changes in illumination.
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As neighboring pixels often exhibit similar optical flow, we additionally sam-
ple N random pixels (blue nodes in Fig. 1) from a local Gaussian distribution
centered at the reference pixel and add the respective winner-takes-all solution
(i.e., the flow vector corresponding to the best match at the sampled pixel) to
the proposal set of the current pixel. In case it is already present in the proposal
set, we proceed with the next best flow vector, ensuring that the final set of
L = M + N flow vectors is unique. In our experiments we use M = 300 nearest
neighbors and N = 200 proposals from neighboring pixels.

3.2 Random Field Model

We associate a discrete label lp ∈ {1, . . . , L} with each pixel p = (x, y) in
the reference image, corresponding to the (unique) integer-valued proposal flow
vectors fp(lp) ∈ Z

2 described in Sect. 3.1. We consider optical flow estimation as
MAP inference in a pairwise CRF. More specifically, we aim at minimizing

E(l) = λ
∑
p∈P

ϕp(lp)︸ ︷︷ ︸
data

+
∑
p∼q

ψp,q(lp, lq)︸ ︷︷ ︸
smoothness

(1)

with respect to the set of image labels l = {lp|p ∈ P} where P denotes the
set of pixels in image I. Here, we have dropped the dependency on the input
images I and I′ for clarity and ∼ denotes all neighbors on a 4-connected image
grid. The relative weight between the data term (measuring data fidelity) and
the smoothness term (encouraging smooth flow fields) is defined by λ.

The data term ϕp(lp) encodes the cost at pixel p given label lp. We model it
as the truncated �1-penalty evaluating the difference between feature descriptors

ϕp(lp) = min
(
‖dp − d′

p(lp)‖
1
, τϕ

)
(2)

where dp ∈ R
D denotes the feature descriptor at pixel p in the reference image,

d′
p(lp) ∈ R

D denotes the feature descriptor associated with pixel p and label lp
in the target image, and τϕ is the truncation threshold of the data term.

The second term in Eq. 1 encourages smooth flow fields and is modeled as
the weighted truncated �1-distance of neighboring optical flow vectors

ψp,q(lp, lq) = wp,q min
(‖fp(lp) − fq(lq)‖1, τψ

)
(3)

where fp(lp) ∈ R
2 denotes the flow vector at pixel p associated with label lp

and τψ is the truncation threshold of the smoothness term. We remark that a
truncated penalty is not only robust against outliers and thus preferable from
a statistical point of view [34], but it is also critical for tractable inference in
our model as described in Sect. 3.3. Moreover, note that Eq. 3 is a generaliza-
tion of the pairwise potential proposed for stereo matching by Hirschmüller [19]
to arbitrary truncation thresholds τψ. As we expect flow boundaries to coin-
cide with image edges, we additionally weight the smoothness term by a weight
factor wp,q = exp

(−α κ2
p,q

)
. Here, κp,q ∈ [0, 1] measures the strength of the

edge between pixel p and pixel q. We calculate κp,q using structured edge
detection [13].
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3.3 Inference

Despite the simplicity of the model described in Sect. 3.2 and the label set of size
L = 500, inference using max-product loopy BP is still prohibitively slow. To
enable efficient inference, we therefore exploit two additional strategies. First,
instead of loopy belief propagation, we perform block coordinate descent (BCD).
More specifically, we follow [10] and iteratively update alternating image rows
and columns conditioned on the MAP solution of the remaining variables as
illustrated in Fig. 1 (middle). Second, we exploit the truncated form of the pair-
wise potentials in Eq. 3. This is illustrated in Fig. 1 (right). In combination, both
steps reduce computational complexity by about four orders of magnitude.

Without loss of generality, consider the optimization of image row y. The
näıve dynamic programming algorithm recursively fills the cumulative cost
matrix C for each x from 1 to W using the following update equation:

C(x, l) = λ ϕ(x,y)(l) + ψ(x,y),(x,y−1)(l, l∗x,y−1) + ψ(x,y),(x,y+1)(l, l∗x,y+1)

+ min
0≤k<L

(
ψ(x,y),(x−1,y)(l, k) + C(x − 1, k)

)
(4)

Here, l∗p denotes the assignment of the fixed variables, i.e., the variables outside
row y. While the global problem is NP-hard and can be solved only approxi-
mately, each sub-problem corresponds to a chain MRF for which we obtain an
optimal solution via dynamic programming (backtracking). This leads to the
desirable property that this algorithm (unlike loopy BP) is guaranteed to con-
verge.

In case of ordered label sets (e.g., in stereo matching [14] or depth recon-
struction [10]) the efficient distance transform [14] can be employed to lower
the complexity of this algorithm from O(WL2) to O(WL) by calculating the
expression in the last row of Eq. 4 in linear time. Unfortunately, in our case the
flow vectors involved in ψ(x,y),(x−1,y)(l, k) are sparse and unordered, therefore
prohibiting the application of this trick. However, we are still able to utilize the
fact that our pairwise potentials ψ are truncated at τψ: First, note that for prac-
tical truncation thresholds (i.e., τψ < 15), the majority of the L2 pairwise terms
evaluates to τψ. We exploit this observation by partitioning the labels of each
neighboring pixel pair (p,q) into sets

Kp,q,l = {k ∈ {1, . . . , L} | ‖fp(l) − fq(k)‖1 < τψ} (5)

which contain all labels k at pixel q for which the flow fq(k) is within τψ from
the flow fp(l) associated with label l at pixel p. Figure 1 (right) illustrates Kp,q

for a single flow vector at pixel p (shown in red) and a set of flow vectors at pixel
q (black+gray). Given this definition, the last term in Eq. 4 can be written as

min
(

min
k∈K(x,y),(x−1,y),l

(
ψ(x,y),(x−1,y)(l, k) + C(x − 1, k)

)
, c

)
(6)

where the constant c is given by

c = min
0≤k<L

(
w(x,y),(x−1,y)τψ + C(x − 1, k)

)
(7)
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Table 1. Pilot Study on MPI Sintel and KITTI Training Sets. See text.

EPE (px) Out (%)
DM+DeepFlow [42] 2.85 10.22
DM+EpicFlow [32] 2.25 8.63
Ours+DeepFlow 2.64 9.14
Ours+EpicFlow 2.25 8.06
Ours+Oracle 0.85 3.97

(a) MPI Sintel

EPE (px) Out (%)
DM+DeepFlow [42] 1.40 7.13
DM+EpicFlow [32] 1.41 7.43
Ours+DeepFlow 1.17 6.13
Ours+EpicFlow 1.17 5.64
Ours+Oracle 0.58 1.01

(b) KITTI

As c does not depend on l and can be calculated in O(L), Eq. 6 can be evaluated
(for all l) in O(

∑
l |Kp,q,l|) instead of O(L2), where |Kp,q,l| � L in practice due

to the diversity of the proposal set as evidenced by our experimental evaluation
in Sect. 4. It is important to note that the sets Kp,q,l can be pre-computed and
reused during all BCD iterations. In our implementation, we further accelerate
this pre-computation step using hash maps for efficiently retrieving flow vectors.

3.4 Postprocessing

The inference algorithm described above solves the correspondence problem, i.e.,
it assigns each pixel in the reference image to a pixel in the target image. As
we do not model occlusions explicitly, also occluded pixels and pixels leaving
the image domain are assigned a label. We therefore remove outliers from our
result, borrowing ideas from the stereo matching literature [19]. More specifi-
cally, we perform forward-backward consistency checking, i.e., we calculate the
optical flow forwards and backwards in time and retain only flow vectors which
are consistent. In addition, we remove small isolated segments which often corre-
spond to wrong optical flow estimates using connected component labeling with
a minimum segment size of 100 px and a flow consistency threshold of 10 px.
Finally, in order to obtain sub-pixel flow values and to inter-/extrapolate into
unmatched regions, we refine our results using the state-of-the-art flow refine-
ment techniques of DeepFlow and EpicFlow.

4 Experimental Evaluation

We evaluate our approach on the challenging MPI Sintel [9] and KITTI [17]
datasets. Our evaluation starts with a pilot study where we experimentally val-
idate the claims from the introduction, followed by a quantitative and qual-
itative evaluation of our model. The parameters in our model are set via
block coordinate descent on the respective training set (see supplementary
material). To further increase efficiency we use a stride of 4 pixels. For sub-
pixel interpolation of our results, we leverage the interpolation stages of Deep-
Flow (“Ours+DeepFlow”) and EpicFlow (“Ours+EpicFlow”). On average, our
MATLAB/C++ implementation requires about 3 min for one 0.5 megapixel color
image pair from the KITTI training set (10 % descriptor extraction, 40 % pro-
posal generation, 35 % BCD, 15 % postprocessing and overhead).
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(a) MPI Sintel
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(b) KITTI

Fig. 2. Frequency of Neighboring Flow Proposals wrt. Distance. This figure
shows the frequency of neighboring flow proposal vectors with respect to their endpoint
distance on MPI Sintel (a) and KITTI (b) in red. The blue plots depict the cumula-
tive frequency corresponding to |Kp,q,l|/L over the distance threshold τψ, respectively
(Color figure online).

4.1 Pilot Study

Table 1 shows results on the non-occluded parts of the MPI Sintel and KITTI
training sets in terms of endpoint error (EPE) and outliers (threshold: 3 px).
We show (from top-to-bottom) the results of DeepFlow [42], EpicFlow [32], our
results in combination with the refinement stages of DeepFlow [42] and EpicFlow
[32], as well as an “Oracle” which refers to the flow map obtained by selecting
the flow with the smallest EPE at each pixel from our proposal set. Note that
our approach uses only the refinement stages of [32,42] and not the DeepMatches
(DM) which form the foundation for [32,42]. As evidenced by this experiment,
our method obtains state-of-the-art performance, outperforming [32,42] in most
of the error metrics. Furthermore, our proposal set contains flow vectors close
to the ground truth for most of the pixels while being diverse enough to avoid
local minima and reduce the computational complexity of the pairwise terms.
Figure 2 shows histograms of the frequency of neighboring flow proposals with
respect to the distance of their endpoints for L = 500. While the pairwise term
in Eq. 3 can take L2 = 250, 000 states in total, only 2% of them fall below the

Table 2. Evaluation on MPI Sintel Test Set. This table lists the top 10 out of 44
ranked methods on the MPI Sintel flow benchmark in terms of endpoint error (EPE)
in all, matched (Noc) and unmatched (Occ) regions. The results on the clean images
are shown in (a). The results on the final set are shown in (b).

EPE (px)
All Noc Occ

Ours+EpicFlow 3.567 1.108 23.626
FlowFields 3.748 1.056 25.700
DM+EpicFlow [32] 4.115 1.360 26.595
PH-Flow [48] 4.388 1.714 26.202
AggregFlow [16] 4.754 1.694 29.685
TF+OFM [22] 4.917 1.874 29.735
Deep+R 5.041 1.481 34.047
SPM-BP 5.202 1.815 32.839
SparseFlowFused [38] 5.257 1.627 34.834
DM+DeepFlow [42] 5.377 1.771 34.751

(a) Clean Set

EPE (px)
All Noc Occ

FlowFields 5.810 2.621 31.799
Ours+EpicFlow 6.077 2.937 31.685
DM+EpicFlow [32] 6.285 3.060 32.564
TF+OFM [22] 6.727 3.388 33.929
Deep+R 6.769 2.996 37.494
SparseFlowFused [38] 7.189 3.286 38.977
DM+DeepFlow [42] 7.212 3.336 38.781
FlowNetS+ft+v [15] 7.218 3.752 35.445
NNF-Local 7.249 2.973 42.088
SPM-BP 7.325 3.493 38.561

(b) Final Set
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Table 3. Evaluation on KITTI Test Set. This table lists the top 15 out of 57
ranked methods on the KITTI optical flow benchmark in terms of outliers and endpoint
error (EPE) in non-occluded and all regions. For comparability, only pure optical flow
methods are shown, excluding motion stereo methods and techniques which use stereo
information or more than two frames as input.

Outliers (%) EPE (px)
Noc All Noc All

PH-Flow [48] 5.76 10.57 1.3 2.9
FlowFields 5.77 14.01 1.4 3.5
NLTGV-SC [30] 5.93 11.96 1.6 3.8
DDS-DF [41] 6.03 13.08 1.6 4.2
TGV2ADCSIFT [5] 6.20 15.15 1.5 4.5
Ours+EpicFlow 6.23 16.63 1.3 3.6
AnyFlow 6.37 15.80 1.5 4.3
BTF-ILLUM [12] 6.52 11.03 1.5 2.8
DeepFlow2 6.61 17.35 1.4 5.3
CRT-TGV 6.71 12.09 2.0 3.9
Data-Flow [40] 7.11 14.57 1.9 5.5
DM+DeepFlow [42] 7.22 17.79 1.5 5.8
RME 7.25 17.74 3.1 8.5
DM+EpicFlow [32] 7.88 17.08 1.5 3.8
TVL1-HOG [31] 7.91 18.90 2.0 6.1

(a) Outlier Threshold: 3 px

Outliers (%) EPE (px)
Noc All Noc All

Ours+EpicFlow 3.89 12.46 1.3 3.6
PH-Flow [48] 3.93 7.72 1.3 2.9
FlowFields 3.95 10.21 1.4 3.5
DDS-DF [41] 4.41 10.41 1.6 4.2
NLTGV-SC [30] 4.50 9.42 1.6 3.8
AnyFlow 4.51 12.55 1.5 4.3
TGV2ADCSIFT [5] 4.60 12.17 1.5 4.5
BTF-ILLUM [12] 4.64 8.11 1.5 2.8
DeepFlow2 4.73 14.19 1.4 5.3
CRT-TGV 5.01 8.97 2.0 3.9
TVL1-HOG [31] 5.26 15.45 2.0 6.1
DM+DeepFlow [42] 5.31 14.69 1.5 5.8
Data-Flow [40] 5.34 11.72 1.9 5.5
DM+EpicFlow [32] 5.36 12.86 1.5 3.8
RME 5.49 14.70 3.1 8.5

(b) Outlier Threshold: 5 px

truncation value of 15 px and need to be evaluated in Eq. 6. Thus, pre-calculating
the partitions Kp,q,l saves almost two orders of magnitude in computation time.

4.2 Quantitative Results

We also compare our method to the state-of-the-art on the challenging held-
out test data of MPI Sintel [9] and KITTI [17]. As requested by the evaluation
protocol, we only submitted our strongest entry (“Ours+EpicFlow”) for evalu-
ation on the test set. Tables 2 and 3 compare our results to the state-of-the-art
in two-frame optical flow. On MPI Sintel we obtain rank 1 on the “clean” set
and rank 2 on the “final” set out of 44 ranked methods in total. On KITTI
our method ranks 6th (out of 57 submitted results) for an outlier threshold of 3
pixels and 1st when using a threshold of 5 pixels. Note that we have excluded
motion stereo methods and methods using additional information from Table 3
for a fair comparison. For full results, we refer to the online leaderboards2.

4.3 Qualitative Results

Figure 3 depicts qualitative results of our method on a subset of MPI Sintel (top
four images) and KITTI (bottom four images). As we require ground truth for
visualizing the error maps we utilize the training sets for this purpose. We show
the input image (left), our results in combination with EpicFlow postprocessing
(middle) and the color-coded error map with respect to the ground truth flow

2 http://sintel.is.tue.mpg.de.
http://www.cvlibs.net/datasets/kitti.

http://sintel.is.tue.mpg.de
http://www.cvlibs.net/datasets/kitti
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Fig. 3. Qualitative Results on MPI Sintel and KITTI Training Sets. From
left-to-right: Input image, “Ours+EpicFlow”, inliers (blue)/outliers (red) (Color figure
online).

field (right). At the top of each error map we specify the percentage of outliers
and the endpoint error (EPE). The color coding visualizes outliers (> 3 px
EPE) in red and inliers (< 3 px EPE) in blue on a logarithmic color scale. Pixels
without ground truth value are shown in black. Note how our method is able
to capture fine details in the optical flow. The last result of each dataset shows
a failure case. For MPI Sintel, errors can be mostly attributed to homogeneous
regions, occlusions and large changes in motion blur. On KITTI, we identified
large perspective distortions, illumination artifacts and saturated or reflective
regions as the primary sources of error.
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5 Conclusions

We presented a discrete solution to the estimation of optical flow by exploit-
ing three strategies which limit computational and memory requirements. Our
experiments show that discrete optimization can lead to state-of-the-art opti-
cal flow results using a relatively simple prior model. In the future, we plan to
integrate richer optical flow priors into our approach. In particular, we aim at
jointly reasoning about several image scales and at incorporating semantic infor-
mation [18,41] into optical flow estimation. Furthermore, we plan to extend our
approach to the estimation of 3D scene flow [26,27].
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Abstract. Imaging systems consisting of multiple conventional cameras
are of increasing interest for computer vision applications such as Struc-
ture from Motion (SfM) due to their large combined field of view and
high composite image resolution. In this work we present a SfM frame-
work for multi-camera systems w/o overlapping camera views that inte-
grates on-line extrinsic camera calibration, local scene reconstruction,
and global optimization based on combining hand-eye calibration meth-
ods with standard SfM. For this purpose, we propose a novel method for
extrinsic calibration based on rigid motion constraints that uses visual
measurements directly instead of motion correspondences. Only a single
calibration pattern visible within the view of one camera is needed to
provide an accurate reconstruction with absolute scale.

1 Introduction

During the recent years, camera systems with large visual field coverage have
proved useful to solve a variety of practical computer vision problems such as
surveillance tasks, pose tracking, scene reconstruction, and Augmented Reality.
Omnidirectional cameras with a 360◦ field of view in the horizontal plane are
commonly used in robotics for visual odometry and simultaneous localization
and mapping, e.g., for advanced driver assistant systems, autonomous vehicle
navigation, and urban scenes modeling, while wide-angle fisheye lens cameras
are often used for panorama imaging, edificial inspection, and site measuring.

While omnidirectional cameras made up from specific lenses or cameras imag-
ing mirror surfaces are still very common for these tasks, rigs composed of mul-
tiple off-the-shelf cameras have gained popularity during the recent years. Major
advantages of such devices are often lower costs, flexible configuration, less com-
plex mathematical models and intrinsic calibration, and considerably higher res-
olution of the virtual composite field of view. In order to maximize the visual
field it is beneficial to assemble the individual cameras so that their fields of view
have minimal overlap. However, extrinsic camera calibration (i.e., determining
the locations and orientations of all cameras within a common reference coordi-
nate frame) is complicated by this setup since conventional calibration methods
such as [26] rely on jointly observed patterns or objects with known geometry.
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 29–40, 2015.
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Previous Work. Common approaches for extrinsic multi-camera calibration
without overlapping views require very specific calibration objects such as large
patterns [15] or planar mirrors [11,13,21] to supply global image correspon-
dences. Finding correspondences between cameras over time during motion of
the rig [9] poses difficult matching problems. Also, all these methods can be
impractical due to occlusions or large camera offsets. Attempts based on per-
camera image or pose correspondences only were first proposed in [3] for cam-
eras with coinciding projection centers and in [5] for general setups. In [7], a
flexible method for extrinsic camera calibration from rigid motion constraints
was described that utilizes simultaneous Structure from Motion (SfM) to esti-
mate camera motion correspondences. This approach – denoted as eye-to-eye
calibration here – is based on the classical hand-eye calibration problem from
the robotics community [25], in particular on extended methods using SfM for
camera localization [1]. Since publication, it has been developed further, most
notably towards vehicle-based camera systems [20], and improved by global opti-
mization using joint bundle adjustment [14] or including partial rigid motion
constraints in the SfM step [6].

Our Contribution. In this paper we will propose a multi-camera SfM pipeline
integrating the aforementioned approaches to provide a reconstruction with
absolute scale from rigidly coupled cameras without overlapping views with
known intrinsics but a priori unknown extrinsic parameters. Only a single cali-
bration pattern visible for the first camera is needed. The eye-to-eye calibration
problem is solved with a novel method minimizing image errors instead of motion
differences and is further refined via the bundle adjustment approach from [14].

2 Rigidly Coupled Motion Constraints

Each pose transformation T ∈ SE(3) is described by a rotation matrix R ∈
SO(3) and translation vector t ∈ R

3. Rotations with angle α around axis r ∈ S2

are parametrized by unit quaternions q ∈ S3 in the following (see [24], Sect. 2.4):

q = (q , q) = (sin(α
2 )r , cos(α

2 )) and Rq = (q2 + 1)I + 2q[q ]× + 2[q ]2× (1)

Given n+1 rigidly coupled cameras at m+1 different positions as illustrated in
Fig. 1, the relative coordinate transformations Ri

k, t i
k for the i-th camera at the

k-th position with respect to the reference pose at k = 0 (“local” measurements)
are given by some pose measuring process. Denoting the reference camera by
i = 0, the eye-to-eye transformations ΔTi,Δλi describe the coordinate transfer
from the i-th camera to the reference camera for each i = 0, . . . , n. Due to the
rigid coupling, for each k = 0, . . . , m holds:

R0
kΔRi = ΔRiRi

k and R0
kΔt i + t0

k = ΔλiΔRit
i
k + Δt i (2)

Each scalar Δλi > 0 describes an isometric scaling between the local coordinate
frames of the i-th and the reference camera while ΔRi,Δt i describe the pose of
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Fig. 1. Overview of coordinate frames and transformations for two rigidly coupled
cameras at reference location and k-th location as used in eye-to-eye SfM.

camera i within its reference coordinate frame. Note that Ri
0 = I, t i

0 = 0 for all
i = 0, . . . , n and ΔR0 = I,Δt0 = 0 ,Δλ0 = 1 are fixed in (2).

If poses of the reference camera are measured within the world coordinate
frame instead, a similar equation is derived:

R̃0
kΔRi = ΔR̃iRi

k and R̃0
kΔt i + t̃0

k = ΔλiΔR̃it
i
k + Δt̃ i (3)

where ΔT̃i = T̃0
0ΔTi describes the eye-to-world transformation (in accordance

to the hand/eye and world/base calibration problem from robotics). To distin-
guish local poses and 3d points from measurements within the world coordinate
frame (“global” measurements), we will use a tilde for the latter.

Partial Rigid Motion Constraints. Following from (2), all rigidly coupled motions
Ri

k, t i
k with non-zero rotation have the same absolute rotation angle αi

k and
amount of translation along the rotation axis pi

k = r i T
k t i

k (see [4], Sect. 4.1).
Using the latter constraint, the scaling Δλi can be derived for non-planar
motion as Δλi = p0

k / pi
k for any pose with R �= I and pi

k �= 0. Both con-
straints can be used to robustify simultaneous SfM for rigidly coupled cameras
as described in [6].

Geometric Eye-to-Eye Calibration. Similar to hand-eye calibration where the
reference camera is replaced by a robotic gripper providing absolute poses, (2)
can be solved for the eye-to-eye transformation parameters from m ≥ 2 motion
correspondences with sufficient rotation and translation and distinct rotation
axes. A standard approach is to solve the first part of (2) for ΔRi first, e.g.,
using the unit quaternion parametrization [7] (solved via SVD):

min
Δqi

m∑
k=0

‖q0
k · Δqi − Δqi · qi

k‖2 s. t. ‖Δqi‖ = 1 (4)
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Then solve the linear equation system resulting from the second part of (2) for
Δt i,Δλi and refine all parameters jointly via nonlinear optimization [23] (using
the reduced unit quaternion parametrization from [24] to avoid constraints):

min
Δθi

m∑
k=0

drot(R0
kΔRi,ΔRiRi

k)2 + dpos(R0
kΔt i + t0

k,ΔλiΔRit
i
k + Δt i)2 (5)

where Δθi are the eye-to-eye transformation parameters describing ΔRi,
Δt i,Δλi for the i-th camera, and drot, dpos are appropriately weighted error
measures between rotations (e.g., quaternion distance or residual angle mea-
sure d∠) and translations (e.g., Euclidean distance). This approach is denoted
as geometric eye-to-eye calibration (E2E-geom) in the following since the error
function (5) describes differences between pose transformations. As pointed out
in [23], weighting of the rotational and translational error terms has a crucial
impact on the estimation results. The authors advise to use statistical weights
derived from the input pose accuracy, accessed for instance via covariance prop-
agation from the prior pose estimation process.

3 Integrating Eye-to-Eye Calibration into SfM

In the following we describe how to integrate eye-to-eye calibration into the
classical SfM pipeline and provide an algorithm for incremental eye-to-eye cali-
bration of multi-camera systems based on errors in the image domain, relieving
the problem of weighting geometric error terms.

Pose Transfer. Given an estimate for the k-th pose of the reference camera
R0

k, t0
k relative to the reference pose, the corresponding pose for the i-th camera

within its reference frame is inferred from (2) as:

Ri
k = ΔRT

i R0
kΔRi and t i

k = Δλ−1
i ΔRT

i

(
(R0

k − I)Δt i + t0
k

)
(6)

where R0
0 = I, t0

0 = 0 are fixed. The corresponding global pose given the initial
global pose R̃0

0, t̃
0
0 of the reference camera is inferred by:

R̃i
k = R̃0

0R
0
kΔRi and t̃ i

k = R̃0
0(R

0
kΔt i + t0

k) + t̃0
0 (7)

Visual Eye-to-Eye Calibration. Given Ni 3d points for the i-th camera within its
local coordinate frame and corresponding projections x i

k,� of the �-th 3d point
X i

� into the k-th image with known camera functions Ki, the i-th eye-to-eye
transformation is obtained by minimizing the reprojection error using the pose
transfer function (6):

min
Δθi

m∑
k=0

Ni∑
�=1

V i
k,� di(x i

k,�,R
i T
k (X i

� − t i
k))2 (8)
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where V i
k,� ∈ {0, 1} describes the visibility of 3d point X i

� in the k-th image. The
reprojection error is described by a generic function di : R2×R

3 → R for the i-th
camera which is commonly chosen as di(x ,X ) = ‖x−Ki(X )‖ assuming that the
camera function Ki is known (e.g., from previous intrinsic calibration). For 2d
point observations x with non-isometric errors described by covariance matrices
Σx , the Mahalanobis distance ‖x − Ki(X )‖Σx can be used instead. This novel
approach will be denoted as visual eye-to-eye calibration (E2E-vis). Note that
the scaling parameter Δλi can be encoded implicitely in (8) by parametrizing
the scaled rotation matrix Δλ−1

i ΔRi used in the prediction function (6) with
a non-unit quaternion Δqi, i.e. Δλ−1

i ΔRi = RΔqi
with Δλ−1

i = ‖Δqi‖2 as
defined in (1), leading to an unconstrained optimization problem.

Eye-to-Eye Bundle Adjustment. Including 3d points and reference camera poses
within the world coordinate frame according to (7) as parameters provides the
eye-to-eye bundle adjustment (E2E-BA) problem similar to [14]:

min
Δθi,θ̃0,...,θ̃m

χ̃i
1,...,χ̃i

Ni

m∑
k=0

∑
j∈{0,i}

Nj∑
�=1

V j
k,� dj(x

j
k,�, R̃

j T
k (X̃ j

� − t̃j
k))2 (9)

where θ̃k are the k-th global pose parameters for the reference camera and χ̃i
�

are the parameters of the �-th 3d point X̃ i
� for the i-th camera transformed into

the world coordinate frame, initialized by X̃ i
� = R̃0

0(ΔλiΔRiX
i
� + Δt i) + t̃0

0.
The scaling parameter Δλi is dropped from Δθi since it is encoded by the
3d points. Note that 3d points for the reference camera are already expressed
within the world coordinate frame associated with some calibration object here.
Gauge freedoms are avoided since the 3d points of the reference camera are
fixed. Depending on the given application, the E2E-BA error function can be
modified in order to fix either all 3d points (calibration objects used for both
cameras) or none (SfM used for both cameras). The first case is equivalent to
adding the reference camera poses as parameters to E2E-vis, in the latter case
gauge freedoms must be taken care of (in general by fixing T0

0 = I and ‖t0
1‖ = 1).

Pairwise E2E-BA as defined in (9) can be extended to cover several cou-
pled cameras at the same time in a straightforward way, leading to large-scale
sparse optimization problems. Common sparse bundle adjustment implementa-
tions such as sba cannot be applied to solve (9) since the Jacobian matrix of the
error function has not the distinct block structure needed to compute the Schur
complement [17], due to the fact that Δθi appears in all residuals for the i-th
camera. We use sparseLM instead, a sparse implementation of the Levenberg-
Marquardt algorithm [16].

Eye-to-Eye Structure from Motion. The proposed algorithm for interactive on-
line eye-to-eye calibration via SfM (E2E-SfM) is outlined as follows. First, cam-
era functions K1, . . . ,Kn are obtained by individual intrinsic camera calibration
(e.g., following [26]). A calibration object (e.g., a checkerboard pattern) is placed
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within viewing range of the reference camera. Images of the calibration pattern
are captured with the reference camera during motion of the camera rig, and
images for the i-th camera are captured simultaneously (start with i := 1):

• Add initial keyframe with poses T0
0 = I and Ti

0 = I.
• Compute global reference pose T̃0

0 for reference camera from 2d/3d matches.
• Detect feature points in reference image of the i-th coupled camera.
• For each subsequently captured image:

• Set k := number of keyframes for each camera.
• Compute current global pose T̃0

k for reference camera from 2d/3d
matches.

• Find feature matches from reference to current image of i-th camera.
• If k = 1 (→ SfM initialization stage):

• If ‖t0
1‖ = ‖(R̃0

0)
T (t̃0

1 − t̃0
0)‖ > tmin:

• Estimate essential matrix Ei from 2d/2d correspondences and
initialize SfM for i-th camera (see [10], Part II).

• Refine and scale relative pose Ti
1 derived from essential matrix

Ei using partial rigid motion constraints as described in [6].
• Add keyframe with poses T0

1 = (T̃0
0)

−1T̃0
1 and Ti

1.
• Else (→ SfM tracking stage):

• Estimate current pose Ti
k for i-th camera from 2d/3d matches.

• Refine pose Ti
k using partial rigid motion constraints [6].

• Triangulate new 3d points for i-th camera from 2d/2d matches.
• If d∠(R̃0

k−1, R̃
0
k) > αmin and ∠(r̃0

k−1, r̃
0
k) > βmin:

• Add keyframe with poses T0
k = (T̃0

0)
−1T̃0

k and Ti
k.

• Compute initial eye-to-eye transformation ΔTi from correspond-
ing motions in keyframes via E2E-geom.

• Refine eye-to-eye transformation ΔTi from 2d/3d matches in
keyframes via E2E-vis.

• Compute E2E-BA with fixed 3d points for the reference camera.
• If k = kmax (or other termination criterion holds):

• Clear keyframes and start over with i := i + 1 unless i = n holds.

Fig. 2. Overview of eye-to-eye Structure from Motion pipeline.
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The main pipeline is illustrated in Fig. 2. SfM requires some minimal initial
translation defined by the threshold tmin (here: tmin = 25 cm). Keyframes for
eye-to-eye calibration are added according to the criteria suggested in [1] for
on-line hand-eye calibration, i.e., sufficiently large rotation angle and rotation
axis difference w. r. t. the previous keyframe pose using thresholds αmin, βmin

(here: αmin = 10◦, βmin = 15◦). The termination criterion can be based on the
covariance matrix ΣΔθi

of the estimated eye-to-eye transformation parameters
Δθi resulting from E2E-BA given some accuracy requirement for the solution, or
maximal keyframe number kmax. Further details on the basic SfM algorithms can
be found in [10]. E2E-BA can be computed in a separate thread for efficiency.

Post-processing. After all eye-to-eye transformations have been estimated, multi-
camera SfM using all cameras jointly as described in [9] or [12] can be applied.
The resulting reconstruction and extrinsic parameters can be optionally refined
via E2E-BA using all coupled cameras at the same time.

4 Tests and Evaluation

4.1 Evaluation of Visual Eye-to-Eye Calibration

First, geometric and visual eye-to-eye calibration as described above were imple-
mented in C/C++ (using MINPACK [18] and sparseLM [16]) in order to com-
pare both methods with synthetic data. For each test case, Ni random 3d points
with uniform distribution were created in front of 2 virtual cameras with ran-
dom spatial arrangement set apart by Δα1 = 60◦ and ‖Δt1‖ = 25 cm, image
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Fig. 3. Evaluation of pose estimation and eye-to-eye calibration accuracy with respect
to number of keyframes m (left column: known 3d points for both cameras [test 1],
middle column: known 3d points for reference camera [test 2], right: known 3d points
for none [test 3]; upper row: rotation errors, lower row: position errors).
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Fig. 4. Evaluation of pose estimation and eye-to-eye calibration accuracy with respect
to 2d point error σx (see Fig. 3 for description).

size 800 × 600 px and 60◦ × 46.8◦ field of view (FOV). m random poses of the
reference camera with max. rotation angle αmax = 30◦ and distance dmax = 1m
w. r. t. the original location were created, providing up to Ni 2d projections into
the virtual image of the i-th camera per keyframe. Zero-mean Gaussian noise
with standard deviation σx was added to all 2d points prior to pose estimation.

In the first test, all 3d points are supposed to be known, resembling the case
of using a calibration object for each camera. In the second test, only 3d points
for the reference camera are known, corresponding to the proposed scenario. In
the third test, all 3d points are assumed unknown (Δt1 can only be recovered
up to scale here). Camera poses are computed from 2d/3d matches for known 3d
points (use Ni = 100), otherwise via SfM initialized with the first two keyframes
and extended via triangulation for each subsequent keyframe (use Ni = 1000).

Methods E2E-geom, E2E-vis, and E2E-BA were evaluated for 1000 ran-
dom samples with respect to the number of keyframes m for fixed σx = 1px
resp. 2d point error σx with fixed m = 8. The resulting average pose estimation
errors for both cameras and eye-to-eye calibration errors for all methods are
shown in Figs. 3 and 4. In all cases, E2E-vis is capable of improving the results
from E2E-geom. This becomes most significant when SfM and absolute pose
estimation from known 3d points are combined (2nd test). In general, calibration
accuracy increases with rising number of keyframes and 2d point accuracy.

4.2 Eye-to-Eye Structure from Motion Application

The complete eye-to-eye SfM pipeline including image preprocessing, feature
detection and matching (using methods from the OpenCV library [2]) was evalu-
atedwith rendered and real image sequences. In order to achieve robustness against
erroneous feature point matches, RANSAC is used in the SfM initialization and
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Fig. 5. Scene and example images of 4 cameras from virtual test dataset.
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Fig. 6. Pose estimation errors for virtual test dataset (left: rotation, right: position).

tracking stages, and triangulated 3d points are pruned by evaluating their repro-
jection errors using the X84 outlier rejection rule [8].

In the first test, a sequence consisting of 87 images (800 × 600 px) viewed by
a virtual rig composed of 4 cameras was rendered (see Fig. 5). The scene size is
8 × 8 × 3m. Cameras C1 and C2 are yawed 81◦ left and right w. r. t. reference
camera C0, camera C3 is tilted 30◦ upwards. The distance to C0 is 57.4 cm for
C1/2 and 70.1 cm for C3. C0 has 60◦ × 46.8◦ FOV, the other cameras are limited
to 53.1◦ × 41.1◦. SfM initialization succeeded after 8 images. For each camera,
10 keyframes were used for eye-to-eye calibration. The pose estimation errors for
each camera during eye-to-eye SfM are shown in Fig. 6. While the pattern-based
pose estimation for C0 has constant error, pose estimation errors of C1−3 via
SfM vary depending on the visible scene and motion. However, the plots show
that intermediate rigid motion constraint enforcement is capable of preventing
drift and reducing the average pose estimation error over time. The calibration
error is < 0.3◦ in rotation and 1.1% − 1.7% in translation (Table 1), improving
comparable test results from [21] (Δαerr ≈ 0.8◦, Δterr ≈ 1.8% for 10 views).

In the second test, a video sequence was captured with a real setup consist-
ing of two Point Grey Grasshopper� (GRAS-20S4C-C) cameras equipped with
Schneider-Kreuznach Cinegon 1.8/4.8 lenses with 70◦ × 56◦ FOV. Camera C1

is mounted approx. 25 cm to the right of C0 and is rotated towards the upper
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Table 1. Eye-to-eye parameters and calibration results for virtual test dataset Indoor
(rotation angles in XYZ order, symbols with ∗ indicate ground truth values).

Δα∗
x Δα∗

y Δα∗
z Δt∗

x Δt∗
y Δt∗

z Δαx Δαy Δαz Δtx Δty Δtz Δαerr Δterr

C1 60◦ 60◦ −5◦ 50 20 −20 60.1◦ 60.0◦ −4.99◦ 49.9 20.8 −20.5 0.07◦ 1.0 cm

C2 60◦ −60◦ 5◦ −50 20 −20 59.8◦ −60.1◦ 4.65◦ −49.5 19.3 −20.4 0.21◦ 0.98 cm

C3 30◦ 0◦ 0◦ 0 −50 −50 30.0◦ −0.01◦ 0.01◦ 0.03 −49.2 −49.9 0.03◦ 0.8 cm

Fig. 7. Camera setup and example images from real test dataset.

Table 2. Eye-to-eye parameters and calibration results for real test dataset Boxes
(rotation angles in XYZ order, symbols with ∗ indicate stereo calibration results).

Δα∗
x Δα∗

y Δα∗
z Δt∗

x Δt∗
y Δt∗

z Δαx Δαy Δαz Δtx Δty Δtz Δαerr Δterr

C1 38.5◦ −36.2◦ 22.1◦ 24.8 −8.5 −7.4 38.4◦ −35.9◦ 22.3◦ 24.6 −8.7 −7.2 0.42◦ 0.37 cm

left direction (Fig. 7). Note that the cameras have partially overlapping fields
of view. However, this is used only for validation of the calibration results. An
image sequence of 320 images (800 × 600 px) captured during handheld motion
was used for the eye-to-eye SfM pipeline, providing 24 keyframes in total.

The calibration results are shown in Table 2. For comparison, the results from
classical stereo calibration according to [26] were used instead of ground truth
data. The translational part of ΔT1 differs by 1.4% which is slightly better than
comparable results from [21] (Δαerr ≈ 0.7◦, Δterr ≈ 1.6% for > 12 views).

5 Conclusion

In this paper we proposed a Structure from Motion framework with integrated
eye-to-eye calibration that is capable of estimating the extrinsics of a multi-
camera system with non-overlapping views stepwise for each camera with respect
to a designated reference camera capturing images of a default calibration pat-
tern. We proposed a novel method for eye-to-eye calibration (E2E-vis) based on
reprojection errors instead of pose-based error functions as used in existing meth-
ods (E2E-geom) adopted from hand-eye calibration. It was demonstrated that
E2E-vis improves the results from E2E-geom and can be used a preprocessing
step for advanced optimization methods such as eye-to-eye bundle adjustment
(E2E-BA). Accurate calibration results could be obtained in experiments with
both synthetic data and real image sequences.
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Future work. A remaining disadvantage of E2E-BA as final optimization step
is the large problem size for systems consisting of several cameras. This prob-
lem could be solved by either pruning the resulting 3d point clouds prior to
joint bundle adjustment or by removing explicit 3d point parameters from the
error function entirely as proposed in [22] for monocular bundle adjustment.
Furthermore, real-time processing of the proposed algorithm should be achieved
by further parallelization and usage of GPU accelerated algorithms as present
in more recent real-time SfM applications such as DTAM [19].
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Abstract. We propose a variational approach for estimating egomotion
and structure of a static scene from a pair of images recorded by a sin-
gle moving camera. In our approach the scene structure is described by a
set of 3D planar surfaces, which are linked to a SLIC superpixel decom-
position of the image domain. The continuously parametrized planes are
determined along with the extrinsic camera parameters by jointly min-
imizing a non-convex smooth objective function, that comprises a data
term based on the pre-calculated optical flow between the input images
and suitable priors on the scene variables. Our experiments demonstrate
that our approach estimates egomotion and scene structure with a high
quality, that reaches the accuracy of state-of-the-art stereo methods, but
relies on a single sensor that is more cost-efficient for autonomous systems.

1 Introduction

1.1 Overview

For the scenario of a camera moving through a static scene, e.g. in an automotive
environment, we present an approach for jointly estimating the scene structure
and the camera egomotion. In a preprocessing step the optical flow between
these two frames together with a confidence map is estimated, and serves as
input data. Moreover, for one of the frames, a partition of the image domain
into superpixels is determined. The main part (and main contribution) of our
method consists of a variational approach with a non-convex smooth objective
function, which includes suitable chosen priors on the scene depth and plane
parameters to guarantee a consistent scene representation with only a sparse
set of depth discontinuities. By minimizing this objective function we obtain an
estimate of the egomotion in terms of rotation and translation together with
a description of the scene by one 3D plane per superpixel. Figure 1 depicts a
typical scene reconstruction. From the plane parameters both scene depth and
surface normals can be determined directly.

We stress that, due to the monocular nature of the considered problem with
a less favorable motion parallax, the task is more difficult than stereo setups
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 41–52, 2015.
DOI: 10.1007/978-3-319-24947-6 4
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(a) reference frame

near

far

(b) estimated scene depth

(c) surface visualization of reconstructed scene

Fig. 1. Best viewed in color. (a) first frame of an image pair from the KITTI stereo
benchmark; (b) depth map derived from the piecewise planar scene structures com-
puted by our monocular approach jointly with the camera motion; (c) shaded visual-
ization of the piecewise planar structure (Color figure online).

studied in this context. However, industry favors more cost- and energy-efficient
sensor solutions.

1.2 Related Work

Scene reconstruction in the automotive context poses an important foundation
for higher-level reasoning e.g. in advanced driver assistant systems. For vision
based outdoor scene reconstruction stereo based systems currently dominate,
as this well-posed problem setting with a known calibrated stereo camera setup
leads to highly accurate results. This is substantiated by the enormous popularity
of the KITTI benchmark [7].

In the recent years monocular scene reconstruction approaches became
increasingly popular although they have to additionally determine the unknown
relative camera position between two frames. This has been proved to be feasible
also in real-time both for indoor [9,12,13,15,16] and the even more challenging
task of outdoor setups, where a world map is aggregated over an entire image
sequence (Simultaneous Localization And Mapping, SLAM) [5,22]. Despite the
higher computational effort compared to stereo setups, monocular camera sys-
tems feature reduced calibration effort which is interesting from the industrial
point of view. Results presented e.g. in [3] demonstrate that depth accuracy
comparable to stereo methods can be achieved even in an automotive context.
Similar to the methods above we consider the case of a monocular camera setup,
however, do not accumulate information over an image sequence but only resort
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to two consecutive image frames to estimate scene and egomotion. In [24,25]
epipolar geometry is pre-computed and flow is restricted to fixed epipolar lines.
We implement a joint estimation approach of egomotion and scene description,
as is also done in [3,13].

A few algorithms rely on independent matches for scene reconstruction [18],
but most algorithms incorporate a prior on the regularity of the depth map
to cope with ambiguities and distortions in the data. Piecewise constant depth
maps seem to be a reasonable assumption in connection with modeling shal-
low objects and occlusions present in indoor scenes. For street scenes however,
slanted planes such as the street or house fronts dominate, and providing an accu-
rate reconstruction is important for subsequent reasoning steps. Stereo meth-
ods [20,21,23,24] implementing this prior rank at top positions in the according
KITTI benchmark. While the above methods work with a (partially) discretized
parameter space, we consider continuous variables, which results in a differen-
tiable objective function, for which established and soundly studied numerical
method are available. The objective function enables us to perform a joint opti-
mization in all variables.

Since our approach utilizes a scene description by piecewise planar surfaces, it
closely relates to estimating multiple homographies explaining the optical flow
induced by the motion of a camera relative to planar surfaces. The seminal
works [14,26] showed that the set of homographies of any number of views is
embedded in a four dimensional subspace which also carries a manifold struc-
ture [6]. Recent approaches [4,17] are based on inter-homography constraints and
do not require camera calibration. In contrast, our method assumes the intrinsic
camera parameters to be known. This requirement comes with the advantage,
that the planes can be estimated physically correctly (up to a global scale).

The approach presented in this work builds upon an accurate estimation of
the optical flow for which we can resort to existing and publicly available methods
that have proven to be accurate in the considered scenario. We choose to the
top ranked monocular optical flow method [19] in the KITTI benchmark with
source code available.

2 Approach Overview

Preliminaries, Notation. Throughout this paper, we consider scenarios where
a 3D scene is recorded by a projective camera from two different perspectives.
We denote 3D points by X ∈ R

3. W.l.o.g. we assume the first camera position
to be (0, 0, 0)� with viewing direction (0, 0, 1)� and refer to the image recorded
from this position by I1. We denote the projection of a point X onto the first
image plane by x = π(X) ∈ Ω with image domain Ω ⊂ R

2. Assuming the
intrinsic camera parameter to be known we can w.l.o.g. utilize normalized image
coordinates, i.e. π(X) := X−1

3

(
X1
X2

)
.

For the second recording, the camera is rotated with rotation matrix R ∈
SO(3) and translated by vector t ∈ S2. We refer to (R, t) as the extrinsic camera
parameters. The translation is constrained to unit norm, since scene scale cannot



44 A. Neufeld et al.

be determined from monocular images. The projection of a point X onto the
second image plane then is given as x′ := π(R�(X − t)) and the acquired image
is denoted by I2.

We aim at representing the reconstructed scene by a number of space planes
which we parametrize by v ∈ R

3, such that any space point X ∈ R
3 lying on the

plane fulfills 〈v,X〉 = 1. Assuming that the scene can be (locally) represented
by plane parameters v, the apparent motion induced by the camera movement
is described by

x′ = π (H(R, t, v) ( x
1 )) , (1)

with the homography H(R, t, v) := R�(I − tv�) (cf. e.g. [10, Chap. 13]).
Finally, we estimate planes on a pre-computed connected partition {Ωi}i

(superpixels) of the first image using the SLIC (Simple Linear Iterative Cluster-
ing) method [2]. We further define the common boundary of superpixel i and j

by ∂ij := Ωi ∩ Ωj . The set of all neighboring superpixel pairs is denoted by
NΩ := {(i, j)|i, j ∈ {1, . . . , n}, ∂ij �= ∅}. We assume that all space points X ∈ R

3

projected to superpixel i ∈ {1, . . . , n}, i.e. π(X) ∈ Ωi, lie on a plane parametrized
by vi ∈ R

3, see Fig. 2 for an illustration. Using (1) we gain a low-parametric
model for the optical flow

u(x;R, t, v) := x′ − x = π(H(R, t, v) ( x
1 )) − x. (2)

Then, for an observed optical flow û : Ω 	→ R
2 which approximately trans-

ports I1 to I2 we formulate the inverse problem of determining the piecewise
planar scene description v := (v1, . . . , vn) ∈ R

3n and camera motion (R, t),
which explains û, as finding a solution to the problem

min
R∈SO(3),t∈S2,v∈R3n

E(R, t, v). (3)

The energy function E(R, t, v) furthermore incorporates priors on the scene
structure and is detailed in Sect. 3.

3 Variational Approach

Our energy function E(R, t, v) decomposes into

E(R, t, v) = Eu(R, t, v) + λzEz(v) + λvEv(v) + λpEp(v), (4)

where Eu is the data fidelity term, Ez and Ev are priors on the depth and the
plane parameters, respectively and Ep is a term penalizing negative depth values.
We detail all four terms in Sects. 3.1, 3.2, 3.3 and 3.4. The terms are coupled via
the positive weighting parameters λz, λv and λp. Our choice for these parameters
is provided in the experimental section, cf. Sect. 4. Our numerical approach to
minimize (4) is presented in Sect. 3.5.
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Ωi

Ωj

Ω

x

∂ijxi
c

x
j
c

O

Fig. 2. Best viewed in color. Projective camera and discretization. Two rectangular
superpixels Ωi, Ωj in the image domain Ω and two space planes parametrized by
vi, vj and restricted to the cone defined by the camera origin O and the superpixel
coverage. Regularity of depth is evaluated at all positions x ∈ ∂ij (blue dots) along
common superpixel boundaries – see Sect. 3.2. The non-negativity prior on depth is
evaluated on superpixel centers xi

c, xj
c (red dots) – see Sect. 3.4 (Color figure online).

3.1 Data Fidelity

The fidelity term Eu(R, t, v) in our optimization problem is the deviation of an
observed optical flow û(x) from our model (2) and is defined as

Eu(R, t, v) :=
n∑

i=1

∑
x∈Ωi

wû(x)‖u(x;R, t, vi) − û(x)‖22. (5)

Here, wû(x) ≥ 0 denotes a spatially varying weighting of the data term which is
provided by a confidence measure of the optical flow algorithm as detailed next.

Optical Flow Estimation. The optical flow û between images I1 and I2 as
required by the data term (5) is computed in a pre-processing step using the
algorithm Data-Flow being the highest ranked publicly available monocular
implementation (cf. [19]) in the KITTI optical flow challenge.

We complement the output obtained from Data-Flow with a confidence
map wû(x), which avoids the influence of flow vectors which are considered
incorrect. To this end we also estimate the backward flow between I2 and I1,
providing an estimate û−1(x) of the inverse mapping of û(x). Only points that
are consistently mapped forth and back are considered correct and we define the
confidence map as

wû(x) := exp
(− 1

2‖x − (û−1 ◦ û)(x)‖22/σ2
û

)
(6)

with value σû > 0. Experimentally, we found the value σû = 1
2
√
2

to be suitable.

3.2 Smoothness Prior on Depth

In order to enforce that planes of neighboring superpixels form a seamlessly
connected surface in most parts of the image, we introduce the prior Ez(v) as
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follows. We consider points on the common boundary x∂ ∈ ∂ij of superpixel i
and j and penalize deviations of their inverse depth z−1(x∂ , v) = x�

∂ v according
to the two plane models vi and vj , see Fig. 2 for an illustration.

In order to encourage sharp depth edges we make use of the generalized
Charbonnier functional

ρC(x) := (x2 + ε)α − εα. (7)

We choose ε = 10−10 and α = 1/4 throughout the work, so that ρ2C(x) smoothly
approximates |x|. Then the energy function for one boundary ∂ij reads as

Eij
z (v) :=

∑
x∈∂ij

ρ2C(x�vi − x�vj). (8)

Note that we opted to compare inverse depth z−1(x, v) due to a superior numer-
ical performance and reconstruction. Then the global smoothness term consists
of a weighted sum of Eij

z over all neighboring superpixels (i, j) ∈ NΩ :

Ez(v) :=
∑

(i,j)∈NΩ

wij
ΩEij

z (v). (9)

The weights wij
Ω ≥ 0 are computed based on appearance differences, i.e.

wij
Ω := exp

(− 1
2 (mi − mj)2/σ2

Ω

)
, (10)

where mi and mj are the mean gray values of frame I1 in superpixel Ωi and Ωj ,
respectively. For parameter σΩ, we use a fixed value of 0.2.

3.3 Smoothness Prior on Plane Parameters

In addition to seamless surfaces on superpixel boundaries, we aim at plane para-
meters which up to a small set of discontinuities are constant over the image
domain. This property encourages large connected planar structures.

For the plane smoothness prior we employ again the Charbonnier function ρC

(see (7), here applied component-wise), and the boundary weights wij
Ω from (10):

Ev(v) =
∑

(i,j)∈NΩ

wij
Ω‖ρC(vi − vj)‖22 . (11)

3.4 Positive Depth Prior

As a further constraint, we require all observed space points to be in front of
the camera. Thus, we introduce an additional prior Ep. We apply a soft hinge
function

ρ+(x) :=

⎧⎪⎨
⎪⎩

1 − 2x x ≤ 0
(1 − x)2 0 < x ≤ 1
0 1 < x

, (12)
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to the inverse depth given by z−1(xi
c, v

i) =
〈(

xi
c
1

)
, vi

〉
, evaluated at superpixel

centers xi
c ∈ Ωi, see Fig. 2. Summing over all superpixels, this leads to

Ep(v) =
n∑

i=1

ρ2+(z−1(xi
c, v

i)). (13)

3.5 Optimization

The considered optimization task (3) comprises a non-convex smooth energy
function (4) and manifold constraints R ∈ SO(3) and t ∈ S2. In order to find a
local minimum of E(R, t, v), we choose the Levenberg-Marquardt method [11],
which has been adapted to Riemannian manifolds in [1].

The proposed energy function E(R, t, v) can be decomposed into a sum of
m squared functions fj(R, t, v), where m = 2|Ω|+∑

(i,j)∈NΩ
|∂ij |+3|NΩ |+n, i.e.

E(R, t, v) =
m∑

j=1

(fj(R, t, v))2 = ‖f(R, t, v)‖22, (14)

with f(R, t, v) := (f1(R, t, v), . . . , fm(R, t, v))� ∈ R
m.

We combine the variables into a joint vector Y := (R, t, v) and locally re-
parametrize Y near (Rk, tk, vk) by parameters η := (ω, δt, δv)� ∈ R

3+3+3n as

Y (η) := (Rk Exp([ω]×),ΠS2(tk + δt), vk + δv). (15)

Here, Exp(·) is the matrix exponential function applied to the skew-symmetric

matrix [ω]× :=
( 0 −ω3 ω2

ω3 0 −ω1−ω2 ω1 0

)
, which can be efficiently evaluated using the

Rodrigues’ rotation formula, c.f. [10]. Furthermore, ΠS2(t) := t/‖t‖2 denotes the
orthogonal projection of t to S2. Using first order Taylor expansion we obtain
an approximation of f(Y (η)) in Y = (Rk, tk, vk),

f̃k(η) := fk(0) +
(
J fk(η)

∣∣
η=0

)
η, (16)

with Jacobian J fk of fk. The Jacobian is obtained for the rotation and
translation by differentiating the function compositions ∂

∂ω (f ◦ Exp)(ω) and
∂
∂t (f ◦ ΠS2)(t), respectively. Substituting this approximation in (14) yields a
model of the actual energy function Ẽk(η). However, we augment this objective
function by a step regularization term in order to cope with strongly non-linear
terms:

min
η

Ẽk(η) + μk‖η‖22. (17)

The resulting objective is quadratic in η and thus can be solved efficiently. The
update rule for the damping parameter μk is described in [1]. A limit of 80 iter-
ations was used as stopping criterion which was sufficient for most of the con-
sidered data. We again stress the fact that the minimization of E(R, t, v) is
performed jointly w.r.t. R, t, v.
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4 Experiments

Evaluation Methodology. In the following we evaluate the quality of scene
description and egomotion estimate separately, see paragraphs Plane Parameter
Evaluation and Camera Motion Evaluation below. The KITTI benchmark data-
base [7] provides a suitable image data source as it is annotated with accurate
depth and egomotion estimates. As reference surface normal information is not
available in these data sets and no monocular approach with publicly available
code can be compared to, we resort to a state-of-the-art stereo method [24],
which is highly ranked as SPS-St in the KITTI stereo benchmark. It provides
scene depth as well as a surface normals and can be assumed to be very accurate
due to the well-posed stereo setup.

The KITTI odometry benchmark contains reference camera poses for a small
number of sequences. Based on this reference data, we compare the odome-
try results of our approach to those of the freely available monocular approach
VISO2-M [8].

Parameter Choice. In order to reduce errors caused by optical flow vectors point-
ing outside the image area, we apply our method to an image pair in inverse
temporal order. The camera motion is thus initialized by a trivial backward
motion R = I, t = (0, 0,−1)� and flat scene v = (0, 0, 0.001)� everywhere. Fur-
thermore, we chose λz = 0.05, λv = 0.001 and λp = 0.1 – see (4) – throughout
the experiments.

Plane Parameter Evaluation. In contrast to stereo methods, the accuracy of
depth estimates of monocular methods varies depending on the projected position
in the image plane and camera motion. We adopt the error measure proposed
in [3] between estimated depth z(x) and reference depth zref(x) which respects
this varying sensitivity,

e(x) := F
|z(x) − zref(x)|
σg(zref(x), x)

(18)

with F denoting the camera’s focal length in pixels.
Estimating the global scale inherently unknown in a monocular setting allows

a quantitative comparison to metric reference data. To this end we approximate

ceiling

floor

rightleft rear

(a) (b) (c) (d) (e)

Fig. 3. Best viewed in color. (a) Approximate visually equidistant color scheme for
plane normal visualization used throughout the work. (b) Exemplarily frame of a simple
synthetic sequence and (c) ground truth normals, and normals as reconstructed by (d)
SPS-St and (e) our method (Color figure online).
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0m 60m

(a) Depth color map (clipped)

-10m +10m

(b) Depth difference color map (clipped)

(c) Sequence 9 (d) Sequence 19

(e) Sequence 23 (f) Sequence 24

Fig. 4. Best viewed in color. Depth and plane normal comparison between our monoc-
ular and a reference stereo method [24]. From top to bottom, and left to right, each
subfigure shows (top row) the reference frame and depth difference, (middle row) ref-
erence and estimated depth and (bottom row) reference and estimated normals. The
depth values and depth differences are encoded as depicted in (a) and (b), respectively.
The encoding of plane normals is illustrated in Fig. 3. Both depth and normal recon-
structions mostly agree, but there is a loss in reconstruction detail near the epipole
(near image center), see e.g. (d), which is an inherent problem of all monocular setups.
Note that especially the ground surface is reconstructed well in most cases (Color figure
online).

the scale as the median of the depth ratios z(x)/zref(x) on the most reliable 10 %
according to sensibility prediction similar as done in [3].

Table 1 lists summarizing statistics of errors e(x) computed over all pixels
with reference depth zref (calculated from disparities) for 194 frames. A quali-
tative comparison against the stereo method SPS-St is given in Fig. 4.

Plane normal parameters are qualitatively compared to those obtained
from [24] in Figs. 4 and 5. For a quantitative comparison, we use 240 frame pairs
(each with 1280×720 pixels) from four simple ray-traced scenes but with known
ground truth normals, see Fig. 3 for an example. Results for our method and
SPS-St are presented in Table 2. We use the same parameters as on the KITTI
dataset with both methods. We observe that despite the less favorable monoc-
ular setup the error of the plane normals estimated by the proposed method is
smaller than the errors from SPS-St.
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Fig. 5. Best viewed in color. Detailed views of scene reconstruction by (center) SPS-
St and (right) our monocular method, showing depth and plane normals for both.
Top row: our method uses less connected planes to explain the object. Lower row: the
stereo method reconstructs the tree trunk overly wide but with sharp borders while
our solution is more detailed but has smoother edges (Color figure online).

Table 1. Depth accuracy of our monocular method and stereo reference method SPS-
St, evaluated on the KITTI stereo benchmark training data, distinguishing between
areas without (noc) and with occluded areas (occ) as specified in the benchmark.
Mean of depth error measurement e(x) (see (18)) and percentage of pixels with error
e > 2 px and e > 3 px, respectively. Our approach shows similar performance as SPS-St
despite the less beneficial parallax and unknown camera position.

noc occ

Mean e [px] p2px [%] p3px [%] Mean e [px] p2px [%] p3px [%]

Our method 4.09 12.9 8.63 4.88 13.6 9.17

SPS-St 3.15 12.6 7.46 9.12 13.8 8.57

Table 2. Plane normal errors for four synthetic sequences with known normals, see
Fig. 3. The normal angle error w.r.t. ground truth is evaluated over 240 scene recon-
structions. Note that we do not use a normalization scheme as in Eq. (18). Our method
outperforms the stereo method despite the less favourable monocular setup.

Mean [deg.] p1deg. [%] p2deg. [%] p5deg. [%] p10deg. [%]

Our method 11.5 58.4 45.5 31.1 22.7

SPS-St 14.8 79.4 66.6 46.4 33.4

Egomotion Evaluation. We evaluate the egomotion accuracy of the proposed
method as well as a reference method [8] on the first 100 frames of the first 11
KITTI odometry sequences which all provide ground truth camera poses. We
determine the angle error of the camera rotation and – due to the ambiguity in
global scale – also between the translation vectors. Our method has an average
rotational error of 0.057◦ and translation error of 3.86◦, and performs better
than the reference method VISO2-M [8] with errors 0.18◦ and 6.0◦, respectively.
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5 Conclusion and Further Work

We presented a variational method for estimating relative camera positions and
planar scene structure from two views of a static scene. An objective function
over egomotion and scene planes defined on superpixels was formulated and min-
imized continuously. We demonstrated that our monocular approach provides
a scene reconstruction with reasonable accuracy in depth and plane normals
compared to an approach in the less challenging stereo setup. Egomotion esti-
mates also show a slightly better performance than a state-of-the-art odometry
method. Future directions are extension to multiple frames, explicitly handling
depth discontinuities and simultaneous estimation of flow and scene parameters.
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Abstract. Typical Structure-from-Motion systems spend major compu-
tational effort on geometric verification. Geometric verification recovers
the epipolar geometry of two views for a moving camera by estimating
a fundamental or essential matrix. The essential matrix describes the
relative geometry for two views up to an unknown scale. Two-view tri-
angulation or multi-model estimation approaches can reveal the relative
geometric configuration of two views, e.g., small or large baseline and
forward or sideward motion. Information about the relative configura-
tion is essential for many problems in Structure-from-Motion. However,
essential matrix estimation and assessment of the relative geometric con-
figuration are computationally expensive. In this paper, we propose a
learning-based approach for efficient two-view geometry classification,
leveraging the by-products of feature matching. Our approach can pre-
dict whether two views have scene overlap and for overlapping views it
can assess the relative geometric configuration. Experiments on several
datasets demonstrate the performance of the proposed approach and its
utility for Structure-from-Motion.

1 Introduction

Over the last decade Structure-from-Motion (SfM) systems have seen tremen-
dous evolution in terms of robustness and efficiency [1,8,13,31]. Incremental
SfM systems (Fig. 2) typically start with feature extraction and detection (Stage
1), followed by matching (Stage 2) and geometric verification (Stage 3) of suc-
cessfully matched pairs by the assessment of the relative viewing configuration.
The major computational effort is spent on Stages 2 and 3. The incremental
reconstruction seeds the model with a carefully selected initial two-view recon-
struction. Next, the procedure incrementally registers new cameras from 2D–3D
correspondences, triangulates new 3D features, and refines the reconstruction
using a non-linear optimization, known as bundle-adjustment (Stage 4). The
input to the incremental reconstruction procedure (Stage 4) is typically a graph
of relative, pairwise epipolar transformations. Information about the relative
geometric configuration, such as small or large baseline and forward or sideward
motion, is essential for SfM, since the incremental reconstruction procedure is
highly dependent on the order in which cameras are registered. A suitable initial
image pair and similarly a suitable next-best-view during the incremental exten-
sion depends on the relative viewing geometry, i.e. uncertainty of 3D features
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 53–64, 2015.
DOI: 10.1007/978-3-319-24947-6 5
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Fig. 1. The proposed framework for extracting PAIGE, and its application for scene
overlap and viewpoint change prediction.

and camera parameters. However, assessment of the relative viewing geometry
for every overlapping image pair in a dataset is computationally expensive. This
paper presents a technique for efficiently recognizing image pairs that work well
for incremental SfM – significantly improving efficiency for geometric verification
as well as improving reconstruction robustness.

The relative geometric configuration of overlapping image pairs serves as
the input to the incremental reconstruction procedure. Geometric verification
attempts to estimate the relative viewing geometry for pairs of overlapping
images. Usually, the majority of image pairs in large-scale, unordered photo-
collections do not have scene overlap, and thus rejecting invalid pairs dominates
execution time. Determining the relative viewing geometry for large image sets
comes at significant computational expense, especially if the overlap between
most images is sparse. However, it is a necessary step, as unfavorable initial-
izations or an unfortunate order in camera registrations, e.g., pairs resulting in
high camera and/or point uncertainty, can lead to failures in registration and
bundle-adjustment due to weak geometry, local minima, degeneracies, etc.

The traditional procedure to assess the two-view geometry in geometric ver-
ification comprises fundamental or essential matrix estimation [20] followed by
triangulation of 3D points [15], multi-model estimation strategies like GRIC [29],
or extended RANSAC procedures for model selection such as QDEGSAC [12].
The essential matrix reveals the entire two-view geometry of calibrated cameras
up to unknown scale. Triangulation of 3D points, GRIC, or QDEGSAC then
determine the properties of the relative viewing geometry, e.g., the amount and
direction of viewpoint change. However, while efficient on a per pair basis, these
methods are computationally expensive for a large number of image pairs.

In this paper, we design an encoding of image characteristics and build a
framework (Fig. 1) for the efficient recognition of image pairs with scene overlap
and prediction of the stability of their two-view geometry, all without explicitly
reconstructing the actual camera configuration using essential matrix estimation.
The approach is based on the location and orientation properties of putative
feature correspondences. In Sect. 6, we experimentally demonstrate the utility of
the proposed framework for a variety of SfM modules, e.g. reducing the set of
image pairs for which to perform geometric verification and efficient search for
stable initial image pairs in large datasets.
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Fig. 2. The stages of a typical SfM pipeline, and applications of our proposed scene
overlap and viewpoint change predictor in green and purple (Color figure online).

2 Related Work

Over the last years large-scale SfM systems have tremendously advanced in terms
of increased robustness and reduced runtime. A variety of methods to reduce run-
time in different stages of the SfM pipeline (Fig. 2) have been proposed. However,
current state-of-the-art systems typically still spend major time in Stages 2 and
3. To reduce the number of image pairs in the exhaustive matching module (Stage
2), Frahm et al. [13] leverage iconic image selection through clustering of similar
images, Agarwal et al. [1] employ image retrieval systems [21] to only match
against similar images, Raguram et al. [26] use GPS tags to match images only
to spatially nearby ones, and Wu [31] proposes a preemptive matching strategy.
Recently, Hartmann et al. [16] proposed to predict the matchability of indi-
vidual features (Stage 1) to reduce the number of feature comparisons during
exhaustive matching (Stage 2). Most recently, Schönberger et al. [27] proposed a
learning-based approach to predict scene overlap based on approximate feature
correspondences. However, these techniques still yield a significant amount of
image pairs that have no scene overlap, and the set of images contains many
redundant viewpoints. Despite the variety of approaches, they all rely on elabo-
rate two-view reconstructions on their potentially reduced set of images in the
geometric verification stage. Apart from algorithmic advancements on estima-
tion techniques [20,23], only Raguram et al. [25] tried to specifically improve
runtime of Stage 3 using an online learning strategy. However, their approach
suffers from a significant loss of image registrations.

Complementary to these previous efforts, we propose a new method to fur-
ther improve the efficiency in SfM by significantly reducing the runtime of the
geometric verification module (Stage 3). Our method can detect overlapping
image pairs before geometric verification and for overlapping image pairs it can
efficiently classify the geometric two-view configuration in terms of the amount
of viewpoint change. We achieve this by extending the method of Schönberger
et al. [27] who pose the problem of scene overlap detection as a classification
task. Similar to their method, we exploit the observation that when images are
taken from different viewpoints, corresponding features change in scale, location,
and rotation in recognizable patterns. However, instead of approximate corre-
spondences through histogram intersection, we leverage the more reliable feature
correspondences from putative matching enabling a less noisy encoding and more
accurate prediction. Even though our method builds on the idea of Schönberger
et al. [27], both approaches can be used together as filters for feature matching
and geometric verification in the same SfM pipeline.
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3 Two-View Geometry

3.1 Estimation

Traditional techniques to derive the two-view geometry comprise feature match-
ing (Stage 2), followed by robust essential matrix estimation (Stage 3). The
essential matrix reveals the relative viewing geometry [15], but its estimation
is computationally expensive [20] due to outliers and non-linearity. RANdom
SAmple Consens (RANSAC) [10] or its more efficient variants [6,7,23,24] are
usually used for robust estimation. RANSAC can deal with large fractions of
outliers, but has exponential computational complexity in the number of model
parameters s and the inlier ratio e. To sample at least one outlier-free set of
measurements with confidence p, one must run at least

d = log (1 − p) / log (1 − es) (1)

number of iterations. Hence, the complexity quickly rises for small inlier ratios
which are commonly encountered in SfM from unordered photo collections [26]
(see Sect. 5). Moreover, RANSAC becomes infinitely expensive for image pairs
without overlap since those pairs have no inliers. Hence, traditionally a minimum
inlier ratio emin is assumed to set an upper bound for the number of RANSAC
iterations. Efficiently detecting image pairs that do not have scene overlap prior
to geometric verification can significantly reduce the runtime of Stage 3.

The essential matrix reveals the relative transformation between two views
up to an unknown scale. To derive more information about the relative viewing
geometry, such as the amount of viewpoint change or the type of motion, further
processing is necessary. Scene reconstruction enables to determine the amount of
viewpoint change through scene analysis such as triangulation angle calculation.
Alternatively, decision criterions like GRIC [29] or an extend RANSAC proce-
dure like QDEGSAC [12] can be used to avoid degenerate viewing configurations.
These methods are computationally expensive. In this paper, we propose a more
efficient method to classify the amount of viewpoint change without explicit
reconstruction of the scene.

3.2 Uncertainty

In this section, we briefly describe the relevance of the two-view geometry for
uncertainty estimation in 3D reconstruction, its relation to the baseline-length
and the triangulation angles, and how this affects the search for an initial pair
and the order of camera registrations in SfM. Uncertainty of the 3D feature and
the camera parameter estimates in bundle-adjustment are determined by five
main factors [9,11,17,18]: redundancy, reliability, uncertainty of measurements,
viewing geometry, and gauge. These factors have important implications for the
design of SfM systems w.r.t. the search for an optimal initial pair and a suitable
next-best-view. On the one hand, for accurate reconstructions, we want to jointly
maximize the number of image measurements (high redundancy and reliability)
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and the stability of the two-view geometry (large triangulation angles). On the
other hand, we wish to achieve optimal results (uncertainty and model size)
with minimal computational effort, i.e. with as few measurements and camera
registrations as possible.

4 Feature Representation

Our proposed feature representation builds upon the PAIGE feature by
Schönberger et al. [27]. In this section, we describe our adaptions and exten-
sions to their method for the efficient prediction of the two-view geometry.

PAIGE takes the extracted features from Stage 1, performs approximate fea-
ture matching through histogram intersection, and predicts scene overlap for an
image pair by exploiting statistics from corresponding feature properties. Only
overlapping image pairs are then forwarded to the computationally expensive
pairwise image matching module (Stage 2). Analogous to their approach, we
exploit the fact that corresponding features change in scale, location x, and ori-
entation o in recognizable patterns when images are taken at different viewpoints.
However, our approach leverages the more precise feature correspondences pro-
duced by feature matching in Stage 2, which enables us to produce a less noisy
encoding for more accurate prediction.

For each putative feature correspondence of a matched image pair a and b,
we determine the normalized image coordinates xa,xb, such that xi ∈ [0, 1]2.
Normalization is necessary due to possibly different image resolutions of image
a and b. Next, we calculate the displacement for each correspondence as

Δx = ‖xa − xb‖2 (2)

We quantize the distribution of feature displacements in a dΔx-dimensional his-
togram hΔx with evenly spaced bins in the interval [0, 1]. Analogously, for each
feature correspondence, we calculate the change in feature orientation

Δo = |oa − ob| mod 2π (3)

and we quantize the distribution of orientation changes in an dΔo-dimensional
histogram ho with evenly spaced bins in the interval [0, 2π]. We normalize each
of the histograms

h̄x =
hx

‖hx‖2
, h̄o =

ho

‖ho‖2
(4)

for invariance w.r.t. the number of feature correspondences. Finally, we use the
concatenation of the normalized histograms as our proposed encoding

P(a, b) = [h̄x h̄o] (5)

Similarly to PAIGE, we do not represent scale changes in the feature as it is
a noisy measure. The next section describes a classification strategy leveraging
this feature representation for scene overlap and triangulation angle prediction.
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5 Classification

Based on the proposed encoding in Sect. 4, we now describe a classification strat-
egy to answer the following two questions for any given image pair: Is there scene
overlap (CA)? and Is there a stable two-view geometry (CB)?. We choose random
forests [3] as a classification method as it gave best results in terms of accuracy
and computational efficiency.

Table 1. Evaluation datasets with average inlier ratio for matched (eall) and verified
pairs (egeo). Number of RANSAC iterations for geometric verification without classifiers
CA and CB (d0), after classifier CA (d1), and after classifiers CA and CB (d2). d0, d1, d2
for Training & Test only given for held-out test set.

Total pairs Matched Verified eall egeo d0 d1 d2

pairs pairs

Training &

Test

73,542,704 1,602,996 449,207 47% 70% 2,357,586,073

(100%)

295,230,950

(12.5%)

194,851,427

(8.3%)

Oxford 82,944 21,574 16,303 56% 70% 72,445,847

(100%)

14,557,490

(20.0%)

9,604,943

(13.2%)

Louvre 693,889 252,798 4,539 27% 65% 613,625,401

(100%)

72,898,480

(11.9%)

48,212,996

(7.9%)

Acropolis 8,767,521 439,609 16,492 29% 78% 1,139,606,104

(100%)

117,886,481

(10.3%)

77,105,077

(6.8%)

5.1 Training

For training, we use an existing 3D reconstruction of an image collection and
its feature correspondences. Then, we calculate the mean triangulation angle
ᾱab for each image pair {a, b} with scene overlap as the dependent variable and
extract the proposed feature P(a, b) as the independent variable.

Specifically, we use 3D reconstructions of 17 unordered Internet photo-
collections from different locations across the world (Rome, Notre Dame, Stone-
henge, etc.) and a set of temporally sequential image sequences acquired by
video cameras (to account for the orientation bias of crowd-sourced images) to
serve as a training and test dataset (Table 1). The dataset consists of 1,602,996
matched (≥30 putative feature correspondences) out of all 73,542,704 possi-
ble image pairs, of which 449,207 pairs have a geometrically verified overlap
(≥15 inliers for essential matrix estimation). Table 1 lists the minimum number
of RANSAC iterations (Sect. 3) for essential matrix estimation of all matched
image pairs with confidence p = 0.99, sample size s = 5, and minimum inlier
ratio emin = 0.28. As a result of these parameters, RANSAC runs for a maxi-
mum of dmax = 2674 iterations for each image pair. The maximum number of
iterations is reached for <5 % of the pairs, since >95 % of the pairs have an inlier
ratio >28 %. We employ SIFT features and use the ratio test for robust match-
ing [19]; note that SIFT could be replaced by any other feature that provides
location and orientation properties. The quantization of the location and orien-
tation histograms include all 110,587,256 putative feature matches for all image



Efficient Two-View Geometry Classification 59

Fig. 3. Left: Triangulation angle distribution for geometrically verified image pairs.
Right: Performance evaluation for scene overlap classification CA.

Fig. 4. Location and orientation change distributions of PAIGE for the entire dataset.

pairs, including 51,968,824 geometric inliers and 58,618,432 outliers, i.e. overall
inlier ratio eall = 47% and egeo = 70% for geometrically verified pairs. We use
a 172-dimensional feature vector P(a, b) with dΔx = 100 and dΔo = 72. Figure 3
visualizes the distribution of triangulation angles and Fig. 4 the average feature
vector P(a, b) over all image pairs. We find a significant amount of pairs with only
a small viewpoint change, caused by popular viewpoints of famous landmarks
and less stable feature matching for large viewpoint changes. As expected, the
overall location and orientation change is higher for wide than for small baselines,
and the orientation change for images without overlap is significantly larger.

To answer the two binary classification problems CA and CB, we divide the
set of image pairs into three different categories: small and large mean triangu-
lation angle (using an angle threshold), and no scene overlap (pairs with failed
geometric verification). Next, the dataset is split in randomly permuted training
(70 %) and test samples (30 %). Two random forests were trained on the train-
ing dataset, using 50 decision trees each, entropy as the splitting criterion, and
considering

√
172 ≈ 13 features when looking for the best split at each node

in the tree. A minimum number of three samples per leaf is enforced to avoid
over-fitting. The parameters were determined with a 5-folded cross-validation on
the training set. The trained random forests can efficiently decide on the two
classification problems CA and CB. An embedding of the proposed classifiers in
a typical SfM pipeline is demonstrated in Sect. 6.

5.2 Performance Evaluation

On a conventional desktop computer the training time for both classifiers is
approximately 5 min, and the classification frequency averages at around 200 K
pairs per second including quantization and prediction, compared to around 20 K
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Fig. 5. Performance evaluation for triangulation angle classification CB using different
angle thresholds. Area under curve as AUC.

pairs per second for the PAIGE approach [27]. We evaluate the classification per-
formance on the held-out test set (30 %), and three unordered photo-collections
of completely unseen landmarks (see Table 1) at different geo-locations (Oxford,
Louvre, Acropolis). Figure 5 demonstrates the performance for both classifiers
CA and CB. For classifier CA, we find minimal bias towards the trained landmarks,
and we experience the same for classifier CB. In a subsequent evaluation, the per-
formance of classifier CB is evaluated on the unseen landmarks w.r.t. different
triangulation angle thresholds by only considering overlapping image pairs using
CA. Figure 5 shows that our method generalizes well. Next, we demonstrate the
applicability of the two classifiers CA and CB within the context of SfM.

6 Efficient Structure-from-Motion

In the following, we show the embedding of the proposed method into a typical
SfM system (Fig. 2) w.r.t. the datasets in Table 1. We demonstrate that the
classifiers significantly improve the computational performance by reducing the
set of images for the geometric verification module. Furthermore, we show the
utility for the efficient search of stable initial image pairs in large datasets.

6.1 Scene Overlap Prediction

In Sect. 3, we have seen that the number of RANSAC iterations is exponentially
dependent on the outlier ratio. Hence, we spend a majority of the runtime to
evaluate pairs with no scene overlap. For these pairs RANSAC reaches the max-
imum number of iterations, leading to a significant computational burden. Our
proposed method allows to filter these pairs prior to geometric verification, pre-
venting the high computational effort for pairs that do not contribute to the final
3D model. Assuming we filtered all pairs with no scene overlap for the unseen
landmarks (see Table 1) using a perfect classifier, and run RANSAC only for the
remaining pairs, we can reduce the number of iterations by a factor of 35. For our
classifier CA, we enforce a precision of ≥0.99 for classifying pairs with no scene
overlap using an appropriate prediction confidence, and hereby lower the recall
to 81 %. This leads to the fact that our modified SfM pipeline only misses 1.7 %
of actually overlapping pairs. Please note that the majority of those images are
still contributing to the final model through other pairs. Using these parame-
ters, we achieve a 7.8× speedup for the training & test-set, and overall an 8.9×
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speedup for the unseen landmarks compared to the potential speedup of 35 using
a perfect classifier. Since the computational effort for the classification is insignif-
icant compared to geometric verification (3 to 4 orders of magnitudes faster),
this speedup directly propagates to the overall geometric verification runtime.
Note that the performance improves even more, if we verify very weak image
pair connections, since we assume a minimum inlier ratio of 28 % (dmax = 2674).
The reported runtimes are a vast improvement over previous efforts [25], which
achieve a 70 % speedup but lose 26 % of image registrations, in contrast to our
9-fold speedup with 1.7 % loss. Due to the less noisy encoding based on putative
feature matches, our approach misses significantly fewer image pairs than the
PAIGE [27] approach, which loses 38–90 % of actually overlapping image pairs.
Note that both approaches could be employed together, since PAIGE operates
as a filter to feature matching and our approach as a filter to geometric verifi-
cation. On average, we find that exhaustive matching and geometric verification
spends 52 % in Stage 2 using a GPU SIFT implementation and 48 % in Stage
3 using a multi-threaded CPU RANSAC implementation. Ideally, the PAIGE
approach [27] can eliminate the runtime of Stage 2 for sparsely connected image
collections. Our proposed approach in this paper reduces the runtime of Stage
3 by a factor of 9. Combining the two approaches, we can effectively eliminate
the original cost of Stages 2 and 3 compared to standard exhaustive matching.

6.2 Redundant Viewpoint Detection

In SfM systems, we achieve redundancy by tracking a 3D feature over multi-
ple images. Corresponding features between two images cannot only be veri-
fied with direct pairwise geometric verification, but also by bridging the track
using an intermediate image, that has the same point in common. Especially
for small viewpoint changes, the continuation of tracks over multiple images
is very likely. Beyond that, uncertainty and reliability of parameter estimates
in bundle-adjustment only improve up to a certain redundancy [2,30], i.e. the
resulting 3D models do not gain from high redundancy in the same way as we
spend an unproportional amount of increased computational effort. For outlier-
detection in SfM, it is typically critical to have at least 3–4 observations per 3D
point. Leveraging these facts and classifier CB, we can detect clusters of images
with small viewpoint change. Next, we select one iconic image in the cluster
with the most points in common, and finally only perform geometric verifica-
tion from the iconic image to the rest of the images in the cluster rather than
exhaustive verification between all pairs. Moreover, for very large clusters, we
can limit the number of images for geometric verification, and simply register
the remaining images w.r.t. the final model using 2D-3D pose estimation [10]. In
both datasets, we see 40 % of image pairs (282,387) with small viewpoint change
(ᾱ < 10◦). To find clusters, we build an undirected graph of all pairs with small
viewpoint change using images as nodes and small viewpoint change as edges.
In this graph, we find 6,404 disjoint maximal cliques [4,5,28] in the training &
test-set. These cliques are similar to the clusters described by Frahm et al. [13],
but our clusters are based on viewpoint change rather than GIST similarity [22].
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By only considering edges from the iconic to the remaining images in a clique, we
reduce the pairwise geometric verifications from 97,564 to 20,426. In addition,
we further decrease this number to 14,469 by only considering images up to a
maximum cluster size of 10, i.e. we improve geometric verification runtime by
30 % from 282,387 to 199,292 pairs. This technique is especially beneficial for
very dense datasets, as often encountered in Internet photo-collections.

6.3 Search for Optimal Initial Pairs

Searching for a good initial pair as a seed for incremental reconstruction is com-
putationally expensive, since it involves essential matrix estimation followed by
triangulation of feature correspondences, and the calculation of triangulation
angles or uncertainty estimates. With state-of-the-art essential matrix solvers
[20] and linear triangulation [14, Chap. 12.2], around 10–50 two-view recon-
structions can be computed per second [25] using the parameters as in Sect. 5.
As opposed to the traditional approach, our classifier CB enables us to efficiently
search for stable pairs through an entire dataset at significantly reduced compu-
tational cost. In the unseen landmarks, we find 14,886 stable pairs (out of 17,330
true stable pairs) with ᾱ > 20◦, where 83 % of the reported pairs are actually
stable. We use these pairs as initial seeds for the incremental reconstruction
by ranking the reported stable pairs based on the number of putative feature
matches to attain higher initial redundancy. On the one hand, our method leads
to significantly faster search for initial pairs and, on the other hand, it allows us
to search for optimal initial image pairs globally.

7 Conclusion

In this paper, we adapt the PAIGE feature for efficient two-view geometry clas-
sification to further improve the computational efficiency and robustness in SfM.
Experiments demonstrate a speedup for geometric verification by an order of a
magnitude over the traditional exhaustive approach, while only losing less than
1.7 % of the valid image pairs. Compared to PAIGE, our method provides an
order of magnitude faster prediction performance, while achieving significantly
better prediction accuracy. PAIGE and our approach are complementary meth-
ods that can both be integrated into the same SfM pipeline to speedup feature
matching and geometric verification. Furthermore, the framework significantly
reduces runtime for very dense photo-collections and we demonstrate the utility
for the efficient, global search of optimal initial pairs.
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Abstract. Prototypical data clustering is known to suffer from poor
initializations. Recently, a semidefinite relaxation has been proposed to
overcome this issue and to enable the use of convex programming instead
of ad-hoc procedures. Unfortunately, this relaxation does not extend to
the more involved case where clusters are defined by parametric models,
and where the computation of means has to be replaced by parametric
regression. In this paper, we provide a novel convex relaxation approach
to this more involved problem class that is relevant to many scenarios of
unsupervised data analysis. Our approach applies, in particular, to data
sets where assumptions of model recovery through sparse regularization,
like the independent subspace model, do not hold. Our mathematical
analysis enables to distinguish scenarios where the relaxation is tight
enough and scenarios where the approach breaks down.

1 Introduction

Given data (measurement, pattern, observation, ...) vectors bi ∈ R
d, i ∈ [n] :=

{1, 2, . . . , n}, the basic clustering problem amounts to jointly minimize the objec-
tive function

min
u,x

∑
i∈[n]

∑
j∈[k]

uij‖xj − bi‖2 (1)

with respect to prototypes xj ∈ R
d, j ∈ [k], and assignment variables uij ∈

{0, 1}, i ∈ [n]. The well-known k-means algorithm shows that, if either set of
variables is fixed, then solving for the other set of variables is trivial. However,
the task to jointly solve for both assignment variables and prototypes is inherently
combinatorial. Accordingly, there exist a broad range of heuristic algorithms (k-
means, mean-shift, etc.) that locally solve this chicken-and-egg problem in an
EM-like alternating fashion and hence strongly depend on proper initializations.
To overcome this shortcoming, combinatorial optimization techniques (e.g. [10])
have been applied, but they do not scale up to large data sets. Alternatively,
semidefinite convex relaxations [11] have been suggested along with extensions
to ensemble clustering [14], using the same relaxation.

In this paper, we adopt the latter focus on convex relaxation but study the
more involved problem
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 67–78, 2015.
DOI: 10.1007/978-3-319-24947-6 6
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min
u,x

∑
i∈[n]

∑
j∈[k]

uij‖Aixj − bi‖2 (2)

with given data (Ai, bi) ∈ R
l×d × R

l, i ∈ [n], unknown model parameters xj ∈
R

d, j ∈ [k], and unknown assignments uij ∈ {0, 1} of datum i to model j, to
be determined by minimizing the objective (2). In comparison with (1), this
approach extends the representation of data by points (prototypes, centroids) to
affine subspaces, which is significant for many applications.

Regarding the fitting of such “union of subspaces” models to data, signifi-
cant progress has been recently made by assuming the dimensions of these spaces
to be low relative to the ambient space [3]. This enables to establish recovery
guarantees based on sparsity priors and basic convex programming techniques
[6] that are more convenient and robust than alternatives like, e.g., algebraic
techniques [9]. In this paper, however, we do not rely on such low-rank assump-
tions. A simple such problem, illustrated by Fig. 1, concerns the clustering of
one-dimensional linear subspaces in R

2, which clearly violates the “independent
subspaces” assumption of [6, Sect. 4].

Fig. 1. Left: An unsupervised subspace clustering problem where recovery guaran-
tees by sparse regularization fail. Right: Our approach jointly partitions the data and
estimates the model parameter by solving a single convex optimization problem (relax-
ation) followed by spectral clustering.

Another and equally important line of research concerns pairwise, graph-based
clustering [8], where locally converging methods like mean-field annealing have
been developed and also extended to piecewise regression problems [13]. To
reduce the susceptibility to local initializations, spectral relaxation is commonly
applied [4,17]. However, while Euclidean embeddings [1] of pairwise data pro-
vide a connection to central clustering, working out the implications for our novel
mathematical approach to solve problem (2) is beyond the scope of this paper.

Contribution, Organization. We sketch in Sect. 2 the semidefinite relaxation
of the basic problem (1) and elucidate why this relaxation is specific to (1)
and does not generalize to problem (2). As a consequence, we present in Sect. 3
our novel mathematical approach to the relaxation of the joint optimization
problem (2). In Sect. 4, some properties of the approach are derived together
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with limitations that are inherent to any non-tight relaxation of a combinatorial
problem. The approach is illustrated by few academical examples in Sect. 5.
We point out that working out applications is beyond the scope of our theoretical
work that has been motivated by the class of unsupervised learning problems (2).

2 Prototypical Clustering by Convex Programming

2.1 Problem, Convex Relaxation

Collecting the assignment variables into a matrix U , the basic clustering problem
(1) reads

min
u,x

∑
i∈[n]

∑
j∈[k]

uij‖xj − bi‖2 s. t. Ue = e, U ∈ {0, 1}n×k, (3)

where e = (1, 1, . . . , 1)�. The derivation of a convex relaxation is based on the
simple observation that, for any subset S ⊆ [n] of data vectors {bi}i∈S , one has

1
|S|

∑
i∈S

bi ∈ arg min
x

∑
i∈S

‖x − bi‖2. (4)

Thus, given a fixed assignment {uij}, one can express every xj in terms of the
respective uij variables by setting

xj(U) =

∑
i∈[n] uijbi∑
i∈[n] uij

. (5)

Collecting all data vectors bi ∈ R
d, i ∈ [n], as columns of a matrix B ∈ R

d×n,
insertion of (5) into (3) yields after an elementary rearrangement

min
U

〈B�B, I − U(U�U)−1U�〉 s. t. Ue = e, U ∈ {0, 1}n×k. (6)

Substituting Z = U(U�U)−1U� gives the equivalent [11] problem

min
Z

〈B�B, I − Z〉 s. t. Ze = e, 〈Z, I〉 = k, Z2 = Z, Z ∈ Sn ∩ R
n×n
+ (7)

where Sn denotes the linear space of symmetric n × n matrices.
Even though (7) looks much simpler than its original formulation (3), it is

still intractable and nonconvex due to the constraint Z2 = Z. However, this
can be relaxed to Z ∈ Sn

+ (semidefinite matrix cone) which yields a tractable
semidefinite program (SDP). In this context, B�B plays the role of a similarity
measure which is the only data-dependent information for the algorithm.
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2.2 Why This Approach Does Not Generalize

A key property of (7) is dealing with the inherent symmetries of (3), which is
necessary for any convex relaxation. To see why this is an issue, consider the
convexified set Un,k = {U ∈ [0, 1]n×k |Ue = e}. For any U ∈ Un,k and for any
π ∈ Sk (Sk: symmetric group on [k]), let Uπ be the result of permuting the
columns of U according to π. Then Uπ ∈ Un,k and, by convexity,

∑
π∈Sk

Uπ =
1
kJ ∈ Un,k where J = ee� is the matrix of all ones. It follows for any symmetric
convex function f (f(U) = f(Uπ) for all π ∈ Sk) that 1

kJ is an optimal but
useless solution, because every point can be assigned to every cluster at the
same cost.

The two key properties of (7) are that the objective is asymmetric and that
the feasible set can be easily convexified. Intuitively, the symmetry variant ques-
tion of (3), “which points belong to which cluster”, is reduced to a weighted
version of the symmetry invariant question, “which points belong to the same
cluster”, since urjusj in Zrs =

∑
j∈[k](urjusj)(

∑
i∈[n] uij)−1 denotes whether r

and s are in cluster j at the same time. This also allows to extract the clusters
at the end.
Now consider generalizations of problem (1) of the form

min
u,x

∑
i∈[n]

∑
j∈[k]

uij‖f(xj , Ai) − bi‖2 s. t. Ue = e, U ∈ {0, 1}n×k (8)

for some differentiable function f and data (Ai, bi), i ∈ [n]. If one wants to
generalize the approach of Sect. 2.1 accordingly, then the prototypes have to
be eliminated and the objective has to be reduced to an asymmetric convex
function in the remaining variables. Assume cluster j is indexed by S ⊆ [n], that
is the assignment variables are fixed and the constraints obsolete. Then, taking
derivatives gives the optimality condition

0 =
∑
i∈S

〈∇xf(x,Ai)
∣∣
x=xj

, f(xj , Ai) − bi

〉
. (9)

Depending on f , (9) is arbitrarily hard to solve for xj in closed form. The simplest
generalization takes the form (2), that is f(xj , Ai) = Aixj . Then (9) becomes

xj(U) =
( ∑

i∈[n]

uijA
�
i Ai

)†( ∑
i∈[n]

uijA
�
i bi

)
. (10)

Unfortunately, taking the pseudo-inverse (. . . )† of a linearly parametrized matrix
is highly nonlinear. In particular, even if we could assume that the matrices∑

i∈S A�
i Ai admit an ordinary matrix inverse, then xj(U) in (10) would be a

multivariate rational function in U whose coefficients strongly depend on the
specific given data. Without further assumptions, there is neither an easy way
to see the range of possible values for the coefficients of U after substituting xj

by (10) nor an easy way to estimate the approximation quality of the correspond-
ing convex hull. These facts motivate our approach presented in the subsequent
section.
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3 Joint Approach to Clustering and Regression

3.1 Problem, Problem Reformulation

In this section, we consider problem (2) in the form

min
u,x

∑
i∈[n]

∑
j∈[k]

uij‖Aixj − bi‖2 (11a)

s.t. Ue = e, U ∈ {0, 1}n×k, {xj}j∈[k] ⊆ P (11b)

where P ⊆ R
d is a polytope, {Ai} ⊆ R

l×d and {bi} ⊆ R
l. This is equal to (2) if

we know a polytope P containing the optimal solution. We will assume this for
now, showing examples where we can construct P in closed form in Sect. 5.

Problem Reformulation. Since P is a polytope, P = conv({vs}s∈[m]) for
the columns vs of some matrix V ∈ R

d×m. By Caratheodory’s theorem [12,
Theorem 2.29], we can thus assume that there is a λj ∈ R

m
+ where 〈λj , e〉 = 1

and | supp(λj)| ≤ d + 1 such that xj = V λj .
Using this substitution and applying that 1 = 〈λj , e〉, one easily checks that

‖Aixj − bi‖2 =
∑

r,s∈[m]

λj
rλ

j
s(v

�
r A�

i Aivs − (b�
i Ai)(vr + vs) + ‖bi‖2). (12)

Setting Wi, i ∈ [n], with (Wi)rs := (v�
r A�

i Aivs − (b�
i Ai)(vr + vs) + ‖bi‖2)rs and

Λj := λjλ
�
j , yields ‖Aixj − bi‖2 = 〈Λj ,Wi〉 := tr(ΛjWi) and the reformulation

min
u,Λ

∑
i∈[n]

∑
j∈[k]

uij〈Λj ,Wi〉 (13a)

s.t. Ue = e, U ∈ {0, 1}n×k,

〈λj , e〉 = 1, λj ≥ 0, ‖λj‖0 ≤ d + 1, Λj = λjλj�
. (13b)

The constraints (13b) can be equivalently expressed in terms of Λj by demanding

〈Λj , J〉 = 1, rank(Λj) = 1, Λj ∈ CPm, ‖diag(Λj)‖0 ≤ d + 1 (14)

where CPm := {M ∈ Sm : M =
∑

μiμ
�
i , μi ∈ R

m
+} is the cone of completely

positive matrices [2].

3.2 Convex Relaxation

In order to get a convex relaxation we have to convexify both the objective and
the feasible set. We even go one step further and linearize the objective.

Linearizing the Objective. Setting Λi(U) :=
∑

j∈[k] uijΛ
j , we get

∑
i∈[n]

〈
∑
j∈[k]

uijΛ
j ,Wi〉 =

∑
i∈[n]

〈Λi(U),Wi〉, (15)
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where the variables U model Λi(U) ∈ {Λj}j∈[k], which is invariant under per-
mutations of (Λ1, . . . , Λk). This implies that relaxing the condition Λi(U) ∈
{Λj}j∈[k] without introducing symmetry is a good first step to get a tractable
relaxation with a linear objective.
To proceed, we derive some properties of {Λj}j∈[k]. Consider the sets

N m
ν,d : = {Λ ∈ CPm : 〈Λ, J〉 = ν, rank(Λ) ∈ [ν], ‖diag(Λ)‖0 ≤ ν(d + 1)}

= ν · N m
1,d

(16)

where ν · N m
1,d denotes the Minkowski-sum of ν copies of N m

1,d. In particular,
we have ∑

j∈S

Λj ∈ N m
|S|,d for all S ⊆ [k]. (17)

It follows that for every feasible, integral assignment U , we have

Λi(U) ∈ N m
1,d, Λ∗ :=

∑
j∈[k]

Λj ∈ N m
k,d and Λ∗ − Λi(U) ∈ N m

k−1,d. (18)

Thus, replacing Λi(U) by a variable Λi defines an asymmetric linear objective
function for the relaxation

min
Λ

∑
i∈[n]

〈Λi,Wi〉 s.t. Λ∗ ∈ N m
k,d, Λi ∈ N m

1,d, Λ∗ − Λi ∈ N m
k−1,d. (19)

The only relaxation made so far concerns condition Λ∗−Λi ∈ N m
k−1,d that cannot

strictly enforce the set {Λi}i∈[n] to only have k distinct members. While some
problem structure is lost, this is necessary to remove the symmetry.

Relaxing the Feasible Region. Optimizing over the set N m
ν,d is intractable.

The rank-constraint as well as the bounded support make the problem non-
convex and very hard in practice. Furthermore, even though CPm is a convex
cone, separation over CPm is NP-hard [5], so this is intractable as well.

Since we are interested in a tractable convex relaxation, we apply standard
relaxations for these conditions. To this end, define the sets

Mm
ν,d := {Λ ∈ Sm

+ ∩ R
m×m
+ : 〈Λ, J〉 = ν, tr(Λ) ≥ ν

d + 1
} = ν · Mm

1,d, (20a)

K := Sm
+ ∩ R

m×m
+ . (20b)

Theorem 1. Mm
ν,d is convex, tractable and N m

ν,d ⊆ Mm
ν,d.

Proof. CPm ⊆ K follows from the definition. Furthermore, N m
ν,d ⊆ Mm

ν,d is
implied by N m

1,d ⊆ Mm
1,d, so consider ν = 1. For Λ ∈ N m

1,d, by definition, there
exists λ such that Λ = λλ�, λ ≥ 0, 〈λ, e〉 = 1 and ‖λ‖0 ≤ d + 1. We have
tr(Λ) = ‖λ‖22 and one can verify that under these constraints a minimizer of
this term is given by any vector λ∗ where ‖λ∗‖0 = d + 1 and λ∗

i = 1
d+1 for all

i ∈ supp(λ∗). This gives the desired lowerbound on tr(Λ). ��
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As a direct corollary, we get the tractable, convex relaxation of our problem

min
Λ

∑
i∈[n]

〈Λi,Wi〉 s.t. Λ∗ ∈ Mm
k,d, Λi ∈ Mm

1,d, Λ∗ − Λi ∈ Mm
k−1,d. (21)

Again, this relaxation loses some structure of the problem but is necessary to
achieve tractability.

3.3 Extension to Disjunctive Programming

In (11), we required the prototypical model parameters to be contained in a
polytope: {xj}j∈[k] ⊆ P . We can generalize P to a finite union of (not necessarily
disjoint) polytopes P =

⋃
t∈T Pt with some additional work. Let Vt be the matrix

which has the vertices of Pt as columns. Then x ∈ P is equivalent to x =∑
t∈T Vtλt for a vector λ� = (λ�

1 , . . . , λ�
|T |) such that

〈λ, e〉 = 1, λ ≥ 0, ‖λ‖0 ≤ d + 1, {(λr = 0) ∨ (λs = 0)}r,s∈T (22)

where ∨ denotes the logical or. Adding {(λr = 0) ∨ (λs = 0)}r,s∈T to (13b) then
results in a disjunctive program [7].

Now observe that (λr = 0) ∨ (λs = 0) implies λrλ
�
s = 0 for any r, s ∈ T , so

the matrix Λ = λλ� = (λrλ
�
s )r,s∈T is block diagonal. Since Λ ≥ 0, this can be

encoded by a 0/1-matrix Ω as a single linear constraint 〈Λ,Ω〉 = 0, where J −Ω
shares the block structure of Λ.

Using the rank condition one can show that adding {(λr = 0)∨(λs = 0)}r,s∈T

to (13b) is equivalent to adding 〈Λj , Ω〉 = 0 to (14). Following Sect. 3.2 we can
relax this constraint for (21) to 〈Λ∗, Ω〉 = 0, which implies 〈Λi, Ω〉 = 0 for all
i ∈ [n]. Hence, we showed

Proposition 1. Let Ω ∈ {0, 1}m×m be symmetric and tr(Ω) = 0. Then adding
〈Λ∗, Ω〉 = 0 to (21) entails that the solution xj of (11) can be written as a convex
combination of {vi}i∈Sj

where [m] ⊇ Sj � {r, s} for all ωrs = 1. In particular,
if J − Ω is block diagonal, then 〈Λ∗, Ω〉 = 0 implies that P =

⋃
t∈T Pt, where

each Pt is the convex hull of columns Vt indexed by a diagonal block.

Note that, while the relaxation in Λ is convex, the recovery of λ from Λ will
in general not preserve convexity. Depending on how we recover λ, the relax-
ation does not necessarily model a convex space in the x variables, which makes
this approach viable. Now observe, however, that for the objective function,
convex combinations of rank-1 matrices are in general “bad” since, by linear-
ity and for any convex combination Λ =

∑
i∈S μiλiλ

�
i , we have 〈W,Λ〉 =∑

i∈S μi〈W,λiλ
�
i 〉 ≥ mini∈S〈W,λiλ

�
i 〉. Setting ωrs = 1 cuts off rank-1 matri-

ces Λ corresponding to λ with λr, λs > 0. As a consequence, optimization will
favor rank-1 matrices with either λr = 0 or λs = 0 instead of approximating
the cut off matrix, which shows that Proposition 1 extends problem (11) and its
relaxation in a reasonable way.
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3.4 Algorithm

While the computation of (21) is straight forward using any SDP-solver, round-
ing the solution afterwards requires some care. The easiest way is to use spec-
tral clustering. To this end, define a similarity matrix H by setting Hrs =
1 − 〈Λr, Λs〉/(‖Λr‖2 · ‖Λs‖2), which yields a value in [0, 1] corresponding to the
angle between Λr and Λs in R

m×m.

Algorithm 1.1. k-Cluster Relaxation
Data: {(Ai, bi)}i∈[n] ⊆ R

l×d × R
l, V ∈ R

d×m, k ∈ N, Ω ∈ {0, 1}m×m

Result: assignments U and centroids {xj}j∈[k]

1 compute Wi ← (v�
r A�

i Aivs − (b�
i Ai)(vr + vs) + ‖bi‖2)rs for i ∈ [n];

2 solve (21) subject to 〈Λ∗, Ω〉 = 0 for {Λi}i∈[n];
3 compute similiarity matrix H ← (1 − 〈Λr, Λs〉/(‖Λr‖2 · ‖Λs‖2))rs;
4 compute the assignment U by spectral clustering using H;
5 compute centroids {xj}j∈[k] using U ;
6 return (U, {xj}j∈[k]);

4 Analysis

Inspecting the relaxed problem formulation (21) reveals the following: The objec-
tive function is separable in terms of the variables Λi, and the right-most con-
straint that has to be satisfied simultaneously for all Λi, i ∈ [n], fuses this local
information. In this section we derive conditions that characterize when this lat-
ter condition is sufficiently weak so that the relaxation must fail. Conversely, the
more these conditions are not satisfied, the more likely the relaxation will return
a useful result. Our theoretical findings will be illustrated in Sect. 5.

Specifically, we derive values of (k,m, d) so that we can choose Λ∗ ∈ Mm
k,d

such that Λ∗ − Λi ∈ Mm
k−1,d will be satisfied for all choices of Λi ∈ Mm

1,d. Our
corresponding main result is stated below as Theorem 2.

Condition Λ∗ − Λi ∈ Mm
k−1,d is equivalent to

tr(Λ∗) − tr(Λi) ≥ k − 1
d + 1

, Λ∗ − Λi ∈ K. (23)

Note that since tr(Λi) ≤ 〈Λi, J〉 = 1 is sharp, we infer that tr(Λ∗) ≥ d+k
d+1 is

necessary for the first condition to hold.
As for the second condition, let A ≤K B denote the inclusion B − A ∈ K.

Then we need an upper bound of Mm
1,d with respect to the partial order ≤K,

given by the following Lemma.

Lemma 1 (≤K-Upper Bound of Mm
1,d). I + 1

4J is a ≤K-upper bound for
Mm

1,d.

Our main result is
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Theorem 2 (Decoupling Condition). There is a matrix Λ∗ ∈ Mm
k,d such

that (Λ∗ − Λ) ∈ Mm
k−1,d for all Λ ∈ Mm

1,d if there are α, β ∈ R such that
k = β · m2 + α · m, β ≥ 1

4 and

α ≥ max{1,
β

d
(m − (d + 1)) +

1
m

}. (24)

In particular, for fixed m, d there is a minimal value k∗(m, d) ∈ N that satisfies
these conditions, and the conditions can be satisfied for all k ≥ k∗(m, d).

Proof. We fix m, d and derive conditions on k. By symmetry of Mm
k,d we can

assume that Λ∗ = αI + βJ where β ≥ 1
4 and α ≥ 1 by Lemma 1. It follows that

k = 〈Λ∗, J〉 = β · m2 + α · m and tr(Λ∗) = (α + β)m.
Together with tr(Λ∗) ≥ d+k

d+1 from (23), we have (α+β)m = tr(Λ∗) ≥ d+k
d+1 > k

d+1 ,
where we can substitute k = β ·m2+α·m and rewrite it as α ≥ β

d (m−(d+1))+ 1
m .

Since m, d is fixed, the inequalities bound α, β and thus k from below. Therefore
a minimal value k∗(m, d) ∈ N that satisfies these conditions exists. ��

5 Experiments

All examples have been carried out in Matlab using the SDPT3 [15,16] package.

Euclidean Clustering. By choosing Ai = I we recover (3), where (4) tells
us to use P ⊇ conv({bi}i∈[n]). Using any simplex containing all the points is a
coarsest approximation, but yields in general bad results.

Figure 2 is tied to Theorem 2 - while k is fixed, k∗(m, d) and the quality
increase from top to bottom as a consequence of additional polytopes separating
the local solutions: When Λr, Λs are optimal centroids, then (21) has 〈J,Λr ∧
Λs〉 excess weight to shift around in Λ∗, where ∧ denotes the componentwise
minimum. Refining P , Λr ∧ Λs decreases, thus improving the quality. Given
that the optimal solution is already covered, adding disjoint polytopes does not
negatively impact the quality of the output, as can be seen in the bottom row
of Fig. 2.

Hyperplane Clustering. By choosing bi = 0 for all i ∈ [n] and choosing
Ai = ai as row vectors, problem (2) translates into finding normal vectors xj of
k hyperplanes such that every data point ai lies on exactly one hyperplane. To
exclude the degenerated solution 0 we need an appropriate P for (11).
Without loss of generality we can assume that the xj are unit vectors belonging
to the “upper” half-sphere Sd−1∩H, where H = {x ∈ R

d |x1 ≥ 0}. The coarsest
polytope approximation P is then given by the union of the facets of Cd in H,
where Cd is the cross polytope Cd = conv{±el | l ∈ [d]} of dimension d. This
yields V =

(
0 1 0

−I 0 I

)
and ω(el,−el) = 1 for all 1 �= l ∈ [d].

Ideally, P corresponds to a disjoint union of polytopes each including one Λj .
Figure 3 shows that one may need to use separate copies of the same vertices.
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Fig. 2. Euclidean Clustering on data spread around three points in 2d, k = 3. Left:
Partial cover of [−1, 1]2 given by V and corresponding block structure of Λ∗ given by
Ω. Middle: Orange data points and blue centroids extracted from Λi. Right: Clustered
data points and blue centroids given by our algorithm. Top: Naive cover by a single
square where Ω = 0. Bottom: Optimal choice of P and oversegmentation yield the
same result (Color figure online).

Fig. 3. Hyperplane Clustering on three Lines in 2d, k = 3. Left: Polytope approximation
of S1 ∩ H given by V and corresponding block structure of Λ∗ given by Ω. Middle:
Orange data points and grey centroids extracted from Λi. Right: Clustered data points
and grey centroids given by our algorithm. Top: Coarsest approximation given by the
facets of C2 in H. Bottom: Oversegmentation where separate copies of the same vertices
needed to be used to get the proper result (Color figure online).
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6 Conclusion

We introduced a novel mathematical model to deal with the affine subspace
clustering problem. Our analysis shows why it works reasonably well. Experiment
show that it is attractive to use the algorithm with an oversegmentation of the
set of feasible solutions, with the focus on separating local solutions. This cannot
be achieved using sparsity regularization. Prior knowledge can be used to speed
up the algorithm, but is not necessary. Automatically balancing this trade off
based on the data in an efficient way is a subject for future work.

Acknowledgement. Authors gratefully acknowledge support by the DFG, grant
GRK 1653.
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Abstract. On the one hand, anisotropic diffusion is a well-established
concept that has improved numerous computer vision approaches by
permitting direction-dependent smoothing. On the other hand, recent
applications have uncovered the importance of second order regularisa-
tion. The goal of this work is to combine the benefits of both worlds. To
this end, we propose a second order regulariser that allows to penalise
both jumps and kinks in a direction-dependent way. We start with an
isotropic coupling model, and systematically introduce anisotropic con-
cepts from first order approaches. We demonstrate the benefits of our
model by experiments, and apply it to improve an existing focus fusion
method.

1 Introduction

Second order regularisation has become a powerful tool in a number of applica-
tions. For example, it is well-suited for the estimation of depth maps, because
many real-world scenes are composed of piecewise planar surfaces. In a vari-
ational context, there are three popular approaches to model such a sec-
ond order smoothness assumption: (i) The most intuitive one is to directly
penalise second order derivatives, e.g. the Laplacian or the entries of the
Hessian [6,8,16,18,28,30]. However, this direct approach only allows to model
discontinuities in the second derivative that correspond to kinks in the solution.
It does not give access to the first derivative which is required to model jumps.
(ii) Thus, researchers came up with indirect higher order regularisation tech-
niques; see e.g. [4,13,15] and related infimal convolution approaches [5]. Such
indirect approaches can be interpreted in the sense of a coupling model that,
in the second order case, consists of two terms: One term couples the gradient
of the unknown with some auxiliary vector field, while the other one enforces
smoothness of this vector field. Contrary to a direct second order penalisation,
such coupling models allow to treat both jumps and kinks in the solution explic-
itly. (iii) A related idea is to locally parameterise the unknown by an affine
function, and to optimise for the introduced parameters with a suitable smooth-
ness constraint; see e.g. [21]. However, this does not allow such an explicit access
to jumps and kinks [30].

c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 79–90, 2015.
DOI: 10.1007/978-3-319-24947-6 7
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Concerning first order regularisation, several approaches have demonstrated
the benefits of incorporating anisotropy in the smoothness term; see e.g.
[3,12,19,24,29,34]. Thus, it seems to be a fruitful idea to also apply anisotropic
concepts in second order regularisation. For instance, Lenzen et al. [16] incorpo-
rate directional information into a direct second order approach. Unfortunately,
as discussed, such a direct approach constrains the degree of freedom in the
modelling. Also the nonlocal coupling model of Ranftl et al. [26] can be seen as
related. However, in this work we aim at a fully local model that allows a natural
definition of the anisotropy in terms of image and depth derivatives. In this way,
we can provide a natural transition from anisotropic first to anisotropic second
order approaches. In a local framework, Ranftl et al. [27] and Ferstl et al. [9]
propose a coupling model that incorporates directional image information, but
the anisotropy is restricted to the coupling term. To summarise, first steps to
include anisotropy into second order models have been done. However, existing
approaches do not exploit successful anisotropic ideas to the full extent.

Contributions. The goal of our work is to systematically incorporate well-
established anisotropic ideas from first order approaches into second order cou-
pling models. We make maximal use of directional information by introducing
anisotropy both into the coupling as well as into the smoothness term. In addi-
tion, we propose a joint image- and depth-driven technique that allows a different
amount of coupling and smoothing along and across image structures. Contrary
to previous work, we apply a direction-dependent penalisation that is important
for good inpainting results. Last but not least, we demonstrate the performance
of our anisotropic second order technique in the context of focus fusion.

Paper Organisation. Starting with a discussion of related work, we present
our variational framework for focus fusion in Sect. 2. In Sect. 3, we introduce
our anisotropic second order regulariser and explain the minimisation of the full
model in Sect. 4. We evaluate our approach and compare it to related baseline
methods in Sect. 5. Section 6 illustrates the performance of our method on focus
fusion. Finally, we summarise our work and give an outlook in Sect. 7.

2 Variational Model for Focus Fusion

Especially in macro photography, a typical problem is the limited depth of field of
common cameras. Due to this, it is often not possible to capture a single entirely
sharp image. A common remedy is to take several photographs while varying
the focal plane. In this context, focus fusion describes the task of combining
the acquired image stack to an all-in-focus composite that is sharp everywhere.
Most previous focus fusion approaches rely on (multi-scale) transformations of
the input images and combine them in the particular transform domain; see
e.g. [1,10,17,22,25]. However, this may introduce undesirable artefacts. Inspired
by [14,20], Boshtayeva et al. [3] recently demonstrated that it is preferable to
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approach focus fusion by regularising the underlying depth map. Afterwards, the
fusion of the focal stack images to the all-in-focus image is done in a straightfor-
ward way by combining the pixels from the input images that correspond to the
computed depth values. Related to this method are so-called depth from defocus
approaches that also compute a sharp image in combination with a depth map;
see e.g. [23]. However, they are computationally more demanding and require
more assumptions such as the knowledge of the point spread function of the
acquisition system. Hence, we do not consider them here.

The work of Boshtayeva et al. [3] motivates us to apply focus fusion as testbed
for our novel anisotropic second order regularisation technique. More specifically,
we start with an initial depth map d that is computed in the same way as in [3]:
Based on some sharpness measure we determine the image where a pixel is in-
focus. Then, we interpret the corresponding focal plane distance as depth value.
This depth map d is equipped with a sparse confidence function w that indicates
meaningful depth values. Next, we jointly regularise and fill-in the initial depth
with the following variational approach:

E(u) =
1
2

∫
Ω

w(x) · Ψ
((

u(x) − d(x)
)2) dx + α · R(u), (1)

where Ω ⊂ R
2 describes the rectangular image domain, and α is a posi-

tive regularisation parameter. Furthermore, we apply the penalisation function
Ψ(s2) =

√
s2 + ε2 with ε > 0 to handle outliers in the input. The regularisation

term R(u) provides smooth depth maps and fills in missing information. We
propose and discuss different choices of R(u) in Sect. 3.

3 Coupling Model for Second Order Regularisation

3.1 Isotropic Coupling Model

Compared to direct implementations of higher order regularisation, coupled for-
mulations as in [4,13] offer several advantages: First they do not require the
explicit estimation and implementation of higher order derivatives. Second and
even more importantly, they allow to individually model discontinuities for each
derivative order. This is not possible with direct higher order models. Hence, we
base our anisotropic second order regulariser on the following isotropic coupling
model that replaces a direct second order smoothness term of u by

RI(u) = inf
v

{
1
2

∫
Ω

(
Ψ

(|∇u − v|2) + β · Ψ
(|Jv|2F

))
dx

}
, (2)

where Ψ(s2)=
√

s2 + ε2 is a subquadratic function with a small positive constant
ε, | · | denotes the Euclidean norm, and | · |F the Frobenius norm. Furthermore,
the vector field v=(v1, v2)T can be seen as an approximation of the gradient ∇u,
and Jv is the Jacobian of this vector field. Since the first term in (2) inherently
couples ∇u to v, we refer to it as coupling term. The second term provides
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smoothness of the vector field v. Hence, we refer to it as smoothness term. Here,
the parameter β>0 allows to steer the importance of both terms.

Let us discuss the meaning and interplay of both terms: With the nonlinear
function Ψ , the smoothness term implements a first order penalisation of v that
favours piecewise constant vector fields. For didactic reasons, let us first assume
a hard coupling such that v is identical to ∇u. Then, piecewise constant v are
equivalent to piecewise constant first order derivatives of u. This way, one can
see that the smoothness term is responsible for modelling kinks in the solution.
With that in mind, let us now consider the behaviour of the nonlinear coupling
term. With ε → 0, it allows sparse deviations of the vector field v from the
gradient of u, i.e. sparse peaks of the coupling term energy. Regarding v as an
approximation of ∇v, this shows that the coupling term allows to model peaks in
the first derivative of u which correspond to jumps in the solution. Summing up,
the discussed coupling model provides direct access to both jumps and kinks of
the unknown function u by the coupling and smoothness term, respectively. For
small ε, the coupling model in (2) resembles total generalised variation (TGV)
of second order [4]. In many image processing and computer vision applications,
such isotropic coupling models have led to high quality results. However, they
do not make use of any directional information which is important for a variety
of applications such as the one that we consider in this work.

3.2 Extracting Directional Information

As for instance demonstrated by Nagel and Enkelmann [19] in the context of optic
flow estimation, it is highly beneficial to use the structure of a given input image
to regularise the unknown flow in an anisotropic way. This allows to apply a differ-
ent kind of smoothing along and across image structures. In this work, we extend
this successful concept from first to second order regularisation, and in particu-
lar to the discussed coupling model. To this end, let us first determine a way to
identify the structures of an image or more specifically the directions across and
along them. Let f denote a given guidance image. In the case of focus fusion we
take the evolving all-in-focus image as guidance. Then, we calculate those direc-
tions r1 and r2 as the normalised eigenvectors of the structure tensor [11]

Gρ ∗ (∇(Gσ ∗ f)∇(Gσ ∗ f)T
)
, (3)

where ∗ describes a convolution, and Gσ and Gρ are Gaussians with standard
deviation σ and ρ, respectively. The computed eigenvectors form an orthonormal
system where the vector r1, which belongs to the dominant eigenvalue, points
across image structures and r2 along them.

3.3 Anisotropic Modification of Coupling Term

Let us now incorporate this directional information into the isotropic coupling
model. To this end, we first consider the isotropic coupling term from (2):

CI(u,v) = Ψ
(|∇u − v|2) = Ψ

( 2∑
�=1

(
eT� (∇u − v)

)2)
, (4)
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where e1 = (1, 0)T and e2 = (0, 1)T. This reformulation of the coupling term in
terms of the unit vectors e1 and e2 allows to incorporate the directional informa-
tion as follows: First, we exchange e1 and e2 in Eq. (4) with the eigenvectors r1
and r2 of the structure tensor. Second, we penalise both directional components
differently to introduce an anisotropic behaviour, i.e. we exchange the position
of the penalisation function Ψ and the summation

∑2
�=1. This results in the

anisotropic coupling term

CA(u,v) =
2∑

�=1

Ψ�

((
rT� (∇u − v)

)2)
. (5)

Here, we apply different penalisation functions Ψ� along and across image struc-
tures. This allows for instance to enforce a full coupling along edges by setting the
corresponding Ψ2(s2)=s2, and to relax the coupling constraint in the orthogonal
direction with Ψ1(s2)=2ε

√
s2 + ε2 such that Ψ ′

1(s
2) is the Charbonnier diffusiv-

ity [7]. To analyse the introduced anisotropy in a better way, let us take a look
at the resulting gradient descent of (5) w.r.t. u and v:

∂tu = div
(
D(∇u − v)

)
, (6)

∂tv = D(∇u − v), (7)

where div is the divergence operator, and ∂t denotes an artificial time deriva-
tive to model an evolution of u and v, respectively. Equation (6) describes an
evolution that occurs within gradient domain methods. However, here the tensor

D =
2∑

�=1

Ψ ′
�

((
rT� (∇u − v)

)2)· r�r
T
� (8)

steers this process in an anisotropic way. Moreover, this equation shows a nice
feature of our model: When fixing the coupling variable v to 0, our second order
coupling model comes down to a first order anisotropic diffusion process on the
unknown u; see e.g. Weickert [31] and references therein. Please note that for
v=0 the smoothness term vanishes since in this trivial case |Jv|2F is equal to 0.
The right hand side of Eq. (7) is a reaction term that models the similarity of
v and ∇u. Here, this similarity is enforced along edges (r2) while it is relaxed
across them (r1). This becomes obvious by considering the tensor D in (8) that
adapts the amount of similarity in a directional dependent way. This is achieved
by a solution-driven scaling of the eigenvalues of D, where its eigenvectors are
given by r1 and r2.

3.4 Anisotropic Modification of Smoothness Term

Let us now introduce anisotropy into the smoothness term in a similar way. To
this end, we first rewrite it by means of the unit vectors e1 and e2:

SI(v) = Ψ
(|Jv|2F

)
= Ψ

( 2∑
�=1

2∑
k=1

(
eTkJv e�

)2)
, (9)
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where the term eTkJv e� can be seen as an equivalent of the second order direc-
tional derivative ∂eke�

u=eTkHu e� with Hu representing the Hessian of u. Our
goal is to penalise this term differently along and across image structures. Hence,
similarly to the anisotropic modification of the coupling term, we modify Eq. (9)
by exchanging e1 and e2 with r1 and r2, and swapping the positions of the
penalisation function Ψ and the summation

∑2
�=1:

SA(v) =
2∑

�=1

Ψ�

( 2∑
k=1

(
rTk Jv r�

)2)
, (10)

where we again apply different penalisations Ψ� in both directions. Also here, let
us shed light on the introduced anisotropy by analysing the associated gradient
descent of (10):

∂tv = div(Jv T ) =
(

div(T ∇v1)
div(T ∇v2)

)
, (11)

where div applies the standard divergence operator div to the rows of a matrix-
valued function (common definition), and thus yields a column vector with two
components. Equation (11) can be seen as an anisotropic diffusion of the coupling
variable v. Here the diffusion tensor

T =
2∑

�=1

Ψ ′
�

( 2∑
k=1

(
rTk Jv r�

)2)· r�r
T
� (12)

describes this anisotropic behaviour: We smooth the coupling variable v differ-
ently across and along image structures, where the amount of smoothness is
determined by the eigenvalues of T .

3.5 Anisotropic Coupling Model

With the proposed coupling (5) and smoothness term (10), our fully anisotropic
coupled regulariser is given by

RA(u) = inf
v

{
1
2

∫
Ω

(
CA(u,v) + β · SA(v)

)
dx

}
. (13)

As in the isotropic case (2), the coupling term CA(u,v) is responsible for handling
jumps whereas the smoothness term SA(v) is responsible for handling kinks.
However, contrary to the isotropic model our new anisotropic model now effec-
tively incorporates directional information to steer this coupling and smoothing.

Furthermore, for scenarios where jumps or kinks of the unknown function
highly correlate with edges of the guidance image, it is beneficial to include also
the strength of an image edge in addition to its direction. To this end, we scale
both summands of the coupling term (5) and of the smoothness term (10) with
g�

(
(rT� ∇fσ)2

)
, where g�(s2) is a decreasing function with g�(0) = 1, and fσ =

Gσ∗f a smoothed version of the guidance image f . This further reduces coupling
and smoothing across image edges while enforcing it along them. Referring to
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Table 1. Overview of regularisers covered by our model. Note that D and T degenerate
to the identity matrix I if Ψ�(s

2)=s2 and g�(s
2)=1, �∈{1, 2}.

Regularisation model v D T

(FI) First order Isotropic Fixed to 0 I I

(FA) First order Anisotropic Fixed to 0 Eq. (8) Eq. (12)

(CI) Coupled Isotropic Optimised I I

(CA) Coupled Anisotropic Optimised Eq. (8) Eq. (12)

Sects. 3.3 and 3.4, this solely causes an additional scaling of the eigenvalues of
the tensors D and T in Eqs. (8) and (12). In Table 1 we summarise different
regularisation terms that result from our model with specific parameter choices.
We will evaluate those regularisers in Sect. 5.

4 Minimisation

Minimising the convex energy (1) with the proposed convex regularisation term
comes down to solving the following system of Euler-Lagrange equations:

δuM(u) − α · div(D(∇u − v)) = 0, (14)
D(v − ∇u) − β · div(Jv T ) = 0, (15)

where
δuM(u) = w(x) · Ψ ′

((
u(x) − d(x)

)2) · (
u(x) − d(x)

)
(16)

is the functional derivative of the data term in (1) w.r.t. u. With n as outer nor-
mal vector on the image boundary ∂Ω, the corresponding boundary conditions
read (∇u − v)TDn = 0 and Jv Tn = 0.

We discretise the Euler-Lagrange Eqs. (14) and (15) on a uniform rectangu-
lar grid, and approximate the derivatives at intermediate grid points. Accord-
ingly, we appropriately discretise the divergence expressions with the approach
of Weickert et al. [33] using the parameters α=0.4 and γ =1. Furthermore, we
apply a lagged nonlinearity method where we solve the occurring linear systems
of equations with a so-called Fast Jacobi solver [32].

5 Evaluation

In this section we evaluate the proposed regularisation model and compare it to
the baseline methods from Table 1. To this end, we consider a synthetic data set
where ground truth is available. Figure 1 (top) depicts the input guidance image,
the ground truth depth map that consists of two segments with a linear slope
in vertical direction, a noisy depth map, and a sparse version of it. The last one
serves as input for our evaluation. More specifically, we generate the input depth
map d in the following way: First we add Gaussian noise of standard deviation
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guidance image ground truth depth noisy sparse and noisy

1st order isotropic
(2.85)

1st order anisotropic
(1.96)

coupled isotropic
(2.60)

coupled anisotropic
(0.44)

Fig. 1. Synthetic experiment. Top: Guidance image, ground truth depth map, noisy
version, sparse and noisy version that serves as input depth map. Bottom: Computed
depth maps. We state the root mean square error between the computed and the
ground truth depth map in brackets under the corresponding results (×10−2).

0.1 to the ground truth depth map, where the initial depth values range from
0 to 1. Next we randomly select 10% of this noisy version to obtain the final
sparse and noisy input depth map.

Figure 1 (bottom) shows the resulting depth maps that are computed with
first order isotropic (FI), first order anisotropic (FA), coupled isotropic (CI), and
coupled anisotropic (CA) regularisation; cf. Table 1. For each approach the reg-
ularisation parameters α and β are optimised w.r.t. the root mean square error
(RMSE). These resulting RMSEs between the ground truth and the computed
depth maps are listed right below the corresponding results in Fig. 1. First, this
experiment demonstrates that incorporating directional information from the
guidance image is highly beneficial. Both first and coupled anisotropic regu-
larisers outperform their isotropic counterparts. With anisotropic regularisation
the edges of the computed depth maps are desirably sharp, while the isotropic
variants cannot provide this quality. Second, the assumption of piecewise affine
functions is much more suited than assuming piecewise constant depth maps in
this case. Accordingly, both second order coupling models yield better results
than their corresponding first order variants. It is clearly visible that the latter
ones lead to piecewise constant patches, which is not desirable in the consid-
ered scenario. Last but not least, the proposed coupled anisotropic regulariser
provides the best results, both visually and in terms of the RMSE.
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one input image confidence map fused image ground truth image

initial depth Boshtayeva et al. [3] computed depth ground truth depth

Fig. 2. Synthetic set from [3]. Top: One of the thirteen unsharp input images, confi-
dence map, our fused image, and ground truth image. Bottom: Rendered depth maps.

6 Application to Focus Fusion

In this section, we demonstrate the performance of our technique with the appli-
cation to focus fusion. To this end, we first consider a synthetic data set from [3].
It contains a ground truth all-in-focus image that allows a comparison in terms
of the mean square error (MSE). Figure 2 (top left) depicts one of thirteen focal
stack images and the confidence map w from [3]. In Fig. 2 (bottom), we com-
pare the initial depth d, the result of Boshtayeva et al. [3], and our computed
depth to the ground truth. We see that both approaches are able to improve
the initial depth map effectively. However, our depth map shows less staircase
artefacts than the first order smoothness approach of Boshtayeva et al., and is
closer to the ground truth. Also our fused image resembles the ground truth
all-in-focus image; cf. Fig. 2 (top right). This is underlined by Table 2, where we
compare our result in terms of the MSE between the fused image and its ground
truth. Using the initial depth map to fuse the images gives an error of 10.55.
This is improved by [3] to obtain a MSE of 3.47. Exchanging their first order
regularisation technique by our novel anisotropic second order approach yields
an improvement with a MSE of 3.08. The comparison to further state-of-the-art
approaches shows the usefulness of our technique for the task of focus fusion.

Table 2. Mean square error (MSE) between computed and ground truth image.

Forster et al. [10] Agarwala et al. [1] Aguet et al. [2] Boshtayeva et al. [3] Our

152.12 135.97 113.73 3.47 3.08
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one input image Boshtayeva et al. [3] our fused image

Fig. 3. Real-world focal stack of an insect consisting of thirteen images with size
1344 × 1201 (available at grail.cs.washington.edu/projects/photomontage). Top: One
of the unsharp input images, fused image of Boshtayeva et al. [3], and our fused image.
Bottom: Zooms into the images, where red rectangles indicate obvious differences
(Colour figure online).

In Fig. 3, we demonstrate the quality of our approach by an additional real-
world experiment with a focus set of an insect. Since no ground truth is available,
we have to restrict ourselves to a visual comparison. To this end, we depict one
unsharp input image of the focal stack and the resulting fused images obtained
with the approach of Boshtayeva et al. [3], and our method. Especially the zooms
in the bottom illustrate that our fused image contains less errors and more small
scale details than the first order approach of Boshtayeva et al. [3].

7 Conclusions

On the one hand, it is known that anisotropic techniques allow to obtain results
of highest quality when using first order regularisation. On the other hand, recent
developments have rendered higher order regularisation very attractive. In this
paper, we build a bridge between both approaches and systematically combine
such anisotropic ideas and higher order regularisation. As a result, our novel
anisotropic second order regulariser allows to steer the preferred direction of
jumps and kinks based on image structures. To achieve this, we have introduced
a direction-dependent behaviour both in the coupling and the smoothness term.
We have experimentally shown that this yields superior results compared to
first order anisotropic and second order isotropic approaches. Moreover, we have
demonstrated the usefulness of the proposed regularisation technique for the
task of focus fusion. In this regard, we plan to show the benefits of our novel
anisotropic second order smoothness term for further computer vision applica-
tions such as stereo or optic flow computation in future work.
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Abstract. Blind deconvolution is a common method for restoration of
blurred text images, while binarization is employed to analyze and inter-
pret the text semantics. In literature, these tasks are typically treated
independently. This paper introduces a novel binarization driven blind
deconvolution approach to couple both tasks in a common framework.
The proposed method is derived as an energy minimization problem
regularized by a novel consistency term to exploit text binarization as
a prior for blind deconvolution. The binarization to establish our con-
sistency term is inferred by spatially regularized soft clustering based
on a set of discriminative features. Our algorithm is formulated by the
alternating direction method of multipliers and iteratively refines blind
deconvolution and binarization. In our experimental evaluation, we show
that our joint framework is superior to treating binarization and deconvo-
lution as independent subproblems. We also demonstrate the application
of our method for the restoration and binarization of historic document
images, where it improves the visual recognition of handwritten text.

1 Introduction

The automatic analysis of text images has become an essential tool within a
wide range of applications in industry, forensics or historical research. Some of
the most frequently required tasks for text image analysis include optical char-
acter recognition (OCR) or handwritten text recognition (HTR) [8], writer iden-
tification and verification [6] as well as structural document segmentation [9].
Hereby, most methods rely on the existence of accurate features extracted from
document images, e.g., keypoints [6,9]. Another essential feature widely used for
OCR and HTR is binarization, i.e., the segmentation of text images into char-
acter and background regions. The reliability of such features strongly depends
on the quality of the underlying text images. To address this requirement, image
enhancement and restoration techniques are commonly used for preprocessing
prior to text analysis [8]. In this context, text image restoration by means of
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deconvolution is a technique to recover a sharp image from a blurred acqui-
sition. Reasons for blurring can be motion blur, i.e., blur induced by moving
the camera or a movement of the scene. Another reason that is relevant for
document images acquired under a controlled environment, e.g., digital scan-
ning, are limitations of optics and sensors. We consider the extraction of text
features and image deconvolution as complementary problems that can be, how-
ever, strongly coupled in order to enhance both of them. In particular, this is the
case for deconvolution and binarization. If a sharp text image obtained by image
deconvolution is available, this serves as a reliable input for text binarization.
Conversely, an accurate text binarization can be utilized as a strong prior for
image deconvolution.

Text Image Binarization. Most methods for automatic binarization of text
images can be categorized into two groups. The most basic global threshold-
ing techniques estimate a single threshold, e.g., using Otsu’s method [18], to
discriminate characters and background in two-tone images. This approach is
computationally efficient but is sensitive to global illumination changes, which is
a common issue in large document images. As a complementary approach, local
thresholding techniques estimate a threshold per image patch or even per pixel
to make binarization spatially adaptive [1,20].

Text Image Restoration. Document image restoration can be approached
from a natural scene statistics or a text-specific point of view. Most general-
purpose methods exploit natural scene statistics and make use of the fact that
natural images are sparse in the gradient domain. This can be modeled by total
variation [2,17] or heavy tailed priors [15]. A variety of algorithms has been
proposed to solve image deconvolution as a non-blind problem [5] or as blind
estimation [14] in which the blur characteristics are estimated simultaneously
with the deblurred image. Despite their success, natural image statistics typi-
cally fail to model the characteristics of text images [4] since they provide a too
weak prior. For this reason, various blind deconvolution approaches have been
proposed which exploit the properties of text images. One class of methods uti-
lizes the two-tone property of document images for blur kernel estimation and
deblurring [3,16]. A different strategy has been proposed by Zhang [23] that
directly restores a binarization from a blurred two-tone image. However, this
method does not provide a deblurred intensity image. The use of more compre-
hensive text-specific properties in addition to the intensity has been examined in
the work of Cho et al. [4]. These properties guide the image deconvolution and
include contrast, color-uniformity and gradient statistics of characters and back-
ground, respectively. However, the success of this algorithm relies on the stroke
width transform (SWT) [7] that is used to describe text-specific properties. For
this reason, a complementary approach has been proposed by Pan et al. [19]. In
their method, text deblurring is formulated via an L0 norm regularized energy
function using intensity and gradient information. Deblurring yields outstanding
results in presence of severe motion blur for both pure text images as well as
natural images containing text. However, it yields only a deblurred image with
the associated blur kernel estimate without considering binarization.
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Proposed Binarization Driven Blind Deconvolution. This work faces
document image restoration from a different point of view. Similar to prior
work [3,16,23], we exploit properties of two-tone text images. In doing so, we
consider blind deconvolution and binarization as coupled problems and aggre-
gate them in a novel energy minimization framework. The proposed algorithm
gradually refines text binarization that is exploited as a prior for blind decon-
volution. The advantage of this novel strategy is twofold: (1) deconvolution is
guided by binarization as a strong prior compared to priors derived from nat-
ural image statistics, and (2) text binarization benefits from deconvolution and
is incrementally refined in our optimization. In detail, our contributions are:

• a novel energy minimization formulation for blind deconvolution that exploits
text binarization as guidance,

• a binarization method using a soft clustering algorithm as inner optimization
loop in the proposed framework,

• demonstration of the impact of our method in a comprehensive evaluation for
document restoration on synthetic data as well as real historic text images.

2 Image Deconvolution Model

We examine blind deconvolution of single-channel images linearized to a vector
y ∈ R

n with yi ∈ [0; 1]. Our method is derived from the image formation model
y = h ∗ x + ε, where x ∈ R

n denotes the unknown deblurred image, h ∈ R
m

denotes a linear, space invariant blur kernel in vector notation and ∗ is the
discrete convolution operator. The signal ε ∈ R

n models additive noise.
In the proposed model, for x there exists a corresponding binarization s

describing the partitioning of x into characters and background, respectively.
This binarization is encoded by a probability map s ∈ [0; 1]n, where si is the
probability that the i-th pixel belongs to the background. The image x and its
binarization s can be considered as coupled variables. If one knows an ideal image
x, s could be determined accurately by means of image binarization. Conversely,
if an ideal binarization s would be known, blind deconvolution could be guided
by s. Hence, we formulate blind deconvolution as the joint energy function:

E(x,h, s) = D(x,h) + λxR(x) + λhH(h) + λcC(x, s), (1)

where D(x,h) and R(x) with weight λx ≥ 0 denote the data fidelity and regu-
larization term for image deconvolution, respectively. H(h) with weight λh ≥ 0
denotes a regularizer for the blur kernel h. C(x, s) with weight λc ≥ 0 describes
a consistency term that couples the image x with the associated binarization s.
We define the data fidelity term as:

D(x,h) = ||Hx − y||22 , (2)

where H ∈ R
n×n denotes the blur kernel h in matrix notation. Mathemat-

ically, D(x,h) provides a maximum likelihood estimate under additive, zero-
mean Gaussian noise. The regularization term for the deblurred image is given



94 T. Köhler et al.

Fig. 1. Flowchart of the proposed binarization driven blind deconvolution method.

by a Hyper-Laplacian prior [14] derived from natural image statistics:

R(x) =
n∑

i=1

(
[∇hx]2i + [∇vx

2
i ]

) p
2 , (3)

where 0 ≤ p ≤ 1, and ∇h and ∇v denote the gradient of x in horizontal and
vertical direction (computed pixel-wise). This term exploits sparsity of x in
the gradient domain for the regularization of image deconvolution. For the blur
kernel estimation, we enforce non-negativity of its elements hi [14] according to:

H(h) =
m∑
i=1

H(hi) where H(h) =

{
h h ≥ 0
∞ h < 0

. (4)

In order to guide the estimation of x, we propose a new consistency term to
couple deconvolution with the associated binarization s. In doing so, we exploit
the fact that discontinuities in x and s should be aligned. Although this is not
completely true for natural images, it is a reasonable assumption for document
images. For instance, a discontinuity in s associated with the boundary of a
character corresponds to a discontinuity of the intensities in x and the gradients
∇s and ∇x are equal up to scale. In background regions, one can even assume
equal gradients ∇s and ∇x. We enforce this consistency in the gradient domain
by the term:

C(x, s) = ||∇hx − ∇hs||22 + ||∇vx − ∇vs||22 , (5)

where we construct s such that its gradient ∇s has a consistent direction with
the gradient ∇x. For this purpose, a character at the i-th pixel in x associated
with a low intensity xi corresponds to a low probability si in the binarization s.

3 Binarization Driven Deconvolution Algorithm

The proposed method is based on the minimization of the energy function in Eq. 1
and requires knowledge of the binarization s to exploit the consistency C(x, s).
However, in practice s is unknown and it would be error-prone to obtain it from
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the blurred image directly using standard image binarization techniques. For this
reason, one strategy would be a formulation as joint energy minimization w. r. t.
the deblurred image, the latent blur kernel and the binarization. Unfortunately,
this approach is only computationally tractable with simplified models of image
binarization. In the proposed method, we solve Eq. 1 w. r. t. x and h while the
binarization s is gradually refined over t ≥ 1 iterations. The outline of our
approach as depicted in Fig. 1 is as follows: First, we obtain the binarization s(t)

using soft clustering in an inner optimization as proposed in Sect. 3.1. Then, we
minimize Eq. 1 w. r. t. x and h by exploiting the binarization s(t) as shown in
Sects. 3.2 and 3.3 according to:

(
x(t),h(t)

)
= arg min

x,h
E(

x,h, s(t)
)
. (6)

These stages are solved alternately, where (x(t−1),h(t−1), s(t−1)) is propa-
gated from iteration t − 1 to obtain refined estimates at iteration t. For an effi-
cient implementation that avoids local minimums, iterations are performed in a
coarse-to-fine scheme [14,19]. Starting at the coarsest level that is obtained by
downsampling the input image and the support of the blur kernel, we gradually
estimate the deblurred image and the blur kernel over different scales without
using the consistency term in a first pass. Then, the blur kernel and the deblurred
image with its binarization are refined on the finest scale using the full model
with our consistency term in a second pass. Finally, we propose a further refine-
ment of the deblurred image x̃ by means of guided filtering [12] that exploits
the binarization s̃ to remove remaining deblurring artifacts, e. g. ringing [19]. We
compute this refinement as the average image x = 1

2 (GF(x̃, s̃)+GF(x̃, x̃)), where
GF(p, q) denotes the guided filter with input image p and guidance image q.

3.1 Text-Specific Binarization

We formulate text binarization as a soft clustering problem using c = 2 clus-
ters corresponding to characters and background. Each cluster is described in
a feature space by the center μj ∈ R

d with j ∈ {1, 2}. To take the property
of text into account that adjacent pixels should be assigned to similar clusters,
we incorporate spatially regularized Fuzzy C-means clustering [22] to the pro-
posed text binarization. Based on the features fx that are pixel-wise extracted
as fx,i ∈ R

d at the i-th pixel in the image x, the binarization is obtained by:

(μ(t), s(t)) = arg min
µ,s

n∑
i=1

c∑
j=1

sqij
∣∣∣∣fx,i−μj

∣∣∣∣2
2
+α

n∑
i=1

c∑
j=1

n∑
k=1

wiks
q
ij(1−skj)q, (7)

where q > 1 is a weighting parameter for the fuzzy cluster membership sij ∈ [0; 1]
of the i-th feature vector to the j-th cluster. The weights wik are set to wik = 1
if the i-th and the k-th pixel are adjacent in an 8-neighborhood and wik = 0,
otherwise. The data fidelity term of soft clustering and the regularization term
for adjacent pixels in Eq. 7 are weighted to each other by α ≥ 0.
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To define the feature set fx, we perform a scale space analysis over d ≥
1 scales on the image x(t−1). The features associated with the i-th pixel are
assembled as fx,i =

(
Qi

(
x(t−1), ω1

)
Qi

(
x(t−1), ω2

)
. . . Qi

(
x(t−1), ωd

))� ∈ R
d,

where Qi(x(t−1), ωj) is the i-th pixel of a filtered version of x(t−1) using the
filter size ωj . In this work, we implement the discrete filter Qi via 2-D median
filtering. This provides edge preserving filtering and enables character analysis
over various scales in soft clustering. Once the features fx are extracted, the
cluster centers and the binarization map s are computed as the zero-crossings
of Eq. 7. Soft clustering is obtained by alternating computation of:

μj =

∑n
i=1 sqijfx,i∑n

i=1 sqij
(8)

sij =

(
c∑

k=1

||fx,i − μj ||22 + α
∑n

l=1(1 − sli)qwjk)

||fx,i − μk||22 + α
∑n

l=1(1 − slk)qwjk

)− 1
q−1

, (9)

until convergence of the clustering procedure using s(t−1) obtained at the previ-
ous iteration as initialization. Finally, the refined binarization s(t) is assembled
from the cluster membership degrees sij associated with the background.

3.2 Estimation of the Deblurred Image

In order to estimate the deblurred image x(t) at the current iteration, we solve
Eq. 6 w. r. t. x while keeping the blur kernel fixed as h(t−1). Using the consistency
term C(x, s(t)) that couples the image x with the binarization map s(t), the
deblurred image is obtained by the energy minimization problem:

x(t) = arg min
x

{
D(

x,h(t−1)
)

+ λxR(x) + λcC
(
x, s(t)

)}
. (10)

This unconstrained problem is solved by the alternating direction method of
multipliers (ADMM) using Split Bregman iterations [11]. For this purpose, we
derive a constrained problem that is equivalent to Eq. 10:

arg min
x,vh,vv

{
||H(t−1)x − y||22 + λc

(||vh − ∇hs(t)||22 + ||vv − ∇vs
(t)||22

)

+ λx

n∑
i=1

(
[vh]2i + [vv]2i ]

) p
2
}

s.t. vh = ∇hx,vv = ∇vx, (11)

where vh and vv are auxiliary variables and H(t−1) is constructed from the ker-
nel estimate h(t−1). This provides a decoupling of the data fidelity term D(x,h)
from the regularizer R(x) and our consistency term C(x, s). For numerical opti-
mization, Eq. 11 is re-formulated to the unconstrained minimization problem:

arg min
x,vh,vv

{
||H(t−1)x − y||22 + λv

( ||vh − ∇hx − bh||22 + ||vv − ∇vx − bv||22
)

+λx

∑n
i=1

(
[vh]2i + [vv]2i ]

) p
2 + λc

(||vh − ∇hs(t)||22 + ||vv − ∇vs
(t)||22

)}
, (12)
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where λv is a Lagrangian multiplier that weights the quadratic penalty terms
derived from the constraints in Eq. 11, and bh and bv denote the Bregman vari-
ables. We solve this minimization problem by coordinate descent for x, vh and
vv, where bh and bv are chosen per Bregman iteration. Similar to [14], the opti-
mization of Eq. 12 is performed in the Fourier domain.

3.3 Estimation of the Blur Kernel

The estimation of the blur kernel h can be done in a similar way. For blur
estimation, we minimize Eq. 6 w. r. t. h and keep the deblurred image given
by x(t) fixed. Hence, we can omit the consistency term and optimize only the
deconvolution term. Similar to prior work [14,19], the kernel is estimated in the
gradient domain resulting in the energy minimization problem:

h(t) = arg min
h

{
D(∇x(t),h

)
+ λhH(h)

}
. (13)

Then, we use ADMM and introduce the auxiliary variable g to substitute the
blur kernel h in the regularizer H(h), the associated Bregman variable bg, and
the Lagrange multiplier λg. This yields the unconstrained problem:

arg min
h,g

{
||∇X(t)h − ∇y||22 + λhH(g) + λg||h − g − bg||22

}
, (14)

where we reformulated Hx(t) as X(t)h. Minimization is performed by coordinate
descent for h and g in the Fourier domain with a re-centering of the kernel after
each iteration [14]. The non-negativity constraint according to Eq. 4 is enforced
at each iteration using thresholding of the kernel elements hi.

4 Experiments and Results

We evaluated our algorithm on artificial and real document images. For a quan-
titative evaluation, we used an artificial dataset consisting of 18 images of sizes
between 120 × 120 and 240 × 240 pixel that were simulated by blurring ground
truth images with a 15× 15 Gaussian kernel of standard deviation σb = 2.5,
see Fig. 2. Moreover, images were disturbed by adding zero-mean Gaussian noise
with varying standard deviation σn. To demonstrate the performance of our app-
roach in terms of binarization, we used 19 excerpts of real historical documents
with manually generated ground truth text binarizations. Our method was com-
pared with the general-purpose deconvolution approach of Kotera et al. [14] and
the method of Pan et al. [19] that has been recently proposed for text images.
The F1 measure was used to assess the reliability of text binarization. For arti-
ficial data with known ground truth grayscale images, we also measured the
peak-signal-to-noise ratio (PSNR) as well as structural similarity (SSIM).

Deconvolution Results. For a quantitative evaluation, the Gaussian noise
standard deviation to simulate artificial text images was first set to σn = 0.01.
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(a) Original (b) Kotera [14] (c) Pan [19] (d) Proposed (e) Ground truth

Fig. 2. Blind deconvolution results on simulated data with known ground truth.

Fig. 3. Influence of Gaussian noise with standard deviation σn to blind deconvolution
and the binarization obtained from the deblurred images. We evaluated the median of
all quality measures over 18 simulated images with ground truth data.

Then, we adjusted the regularization weights of all compared deconvolution
methods on one single training image taken from our simulated data by optimiz-
ing the PSNR of the deblurred image. In addition to pure blind deconvolution,
we applied blind deconvolution and binarization as a two-stage approach using
the methods of Kotera et al. [14] and Pan et al. [19] followed by hard threshold-
ing using Otsu’s method [18]. To assess binarization achieved by our method,
we employ the binarization provided in the final pass of our coarse-to-fine opti-
mization. For this setup, Table 1 compares the blind deconvolution methods on
the simulated dataset using the PSNR and SSIM measures on grayscale images
and the F1 measure to assess the binarizations. In terms of all measurements,
our method consistently outperformed the methods of Kotera et al. [14] and Pan
et al. [19].

Another experiment was conducted to analyze the noise robustness of the
different algorithms. Therefore, we varied the noise standard deviation of the
simulated images and compared the different deconvolution methods. Figure 3
shows the median of different quality measures over 18 simulated images. Bina-
rization driven blind deconvolution consistently outperformed the approach of
Kotera et al. [14] and achieved higher robustness with respect to image noise.
For small noise levels, it also achieved higher quality measures compared to blind
deconvolution of Pan et al. [19] with competitive results in case of severe noise.

For qualitative results on real data, we tested our method with excerpts of
document images, cf. Fig. 4. As samples we used scans of historical handwritten
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(a) Input (b) Kotera [14] (c) Pan [19] (d) Proposed

Fig. 4. Results of the different blind deconvolution methods applied on scanned hand-
written documents (source: Göttingen Academy of Sciences & Humanities).

Table 1. Mean and standard deviation of all quality measures for blind deconvolution
on simulated images (noise level σn = 0.01). Binarizations for [14,19] were obtained by
applying Otsu’s method [18] on the deblurred images.

PSNR (in dB) SSIM F1 measure

Original 17.57 ± 0.42 0.64 ± 0.02 0.72 ± 0.01

Kotera et al. [14] 18.30 ± 0.54 0.73 ± 0.03 0.79 ± 0.02

Pan et al. [19] 19.79 ± 0.49 0.81 ± 0.02 0.85 ± 0.02

Proposed 20.08± 0.61 0.83± 0.02 0.87± 0.02

documents. The images are of low quality and are affected by image noise. Com-
pared to the results of Kotera et al. [14], binarization driven blind deconvolution
was able to reconstruct sharper boundaries of characters with accurate denoising
in the background.

Binarization Results. Although the main target of our method is image blind
deconvolution, we show that it provides also binarization results comparable to
the state of the art. To investigate the performance of the binarization routine
of our framework, we used the same artificial dataset as in the previous experi-
ments as well as the handwritten dataset with manually generated ground truth
binarization. Table 2 shows the results of our binarization in contrast to other
local [1,20,21] and global binarization methods [18] applied to the original images.
Moreover, we evaluated the deconvolution methods of Kotera et al. [14] and Pan
et al. [19] by applying the method of Bradley and Roth [1] on the deblurred images.
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Table 2. Mean and standard deviation of F1 measure on binarizations obtained from
the artificial and handwritten documents as well as the merged dataset. The best and
second best measures per dataset are highlighted.

Artificial Handwritten Merged

Otsu [18] 0.72 ± 0.01 0.75 ± 0.15 0.73 ± 0.11

Sauvola and Pietikäinen [20] 0.79 ± 0.04 0.78± 0.07 0.79 ± 0.06

Bradley and Roth [1] 0.85± 0.01 0.78± 0.08 0.82± 0.07

Su et al. [21] 0.80 ± 0.01 0.79± 0.09 0.80 ± 0.07

Kotera et al. [14] + Bradley and Roth [1] 0.82 ± 0.01 0.71 ± 0.10 0.76 ± 0.09

Pan et al. [19] + Bradley and Roth [1] 0.85 ± 0.02 0.73 ± 0.09 0.79 ± 0.09

Proposed 0.87± 0.02 0.76 ± 0.11 0.81± 0.10

(a) Reference (b) Otsu [18] (c) Sauvola [20] (d) Su [21]

(e) Bradley [1] (f) Kotera [14] (g) Pan [19] (h) Proposed

Fig. 5. Binarization results on a scanned handwritten document image.

Binarization driven deconvolution outperformed all other binarization methods
on the artificial dataset. On the historical dataset our method performed worse
than local thresholding, but substantially outperformed global thresholding. The
proposed method also achieved higher results than the the other deconvolution
methods. Overall the method of Bradley and Roth [1] achieved slightly better
results. A visual comparison between all methods is shown in Fig. 5.

5 Conclusions

In this work, we presented a new method for image blind deconvolution. Our
algorithm explicitly incorporates text binarization as guidance. For this purpose,
a novel consistency term serves as regularizer that couples deconvolution and
binarization. Compared to existing blind deconvolution algorithms, our method
provides more accurate deblurred intensity images as demonstrated for simulated
and handwritten documents. In addition, our method provides a binarization as
a by-product that is comparable to state-of-the-art text binarization techniques.
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In our future work, we would like to incorporate our method as preprocess-
ing step for successive processes like HTR or paleographic analysis. From an
algorithmic point of view, our soft clustering procedure could benefit from
the use of text-specific features like the stroke width transform [7]. By incor-
porating text-specific segmentation methods, we could extend our method to
text images in the wild, i.e., non document texts. Finally, other domains like
super-resolution [10,13] could benefit from our concept of a binarization driven
deconvolution.
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Abstract. We present a novel method for the unsupervised estimation
of a primitive unit cell, i.e. a unit cell that can’t be further simplified,
from a crystal image. Significant peaks of the projective standard devia-
tions of the image serve as candidate lattice vector angles. Corresponding
fundamental periods are determined by clustering local minima of a peri-
odicity energy. Robust unsupervised selection of the number of clusters
is obtained from the likelihoods of multi-variance cluster models induced
by the Akaike information criterion. Initial estimates for lattice angles
and periods obtained in this manner are refined jointly using non-linear
optimization. Results on both synthetic and experimental images show
that the method is able to estimate complex primitive unit cells with
sub-pixel accuracy, despite high levels of noise.

1 Introduction

The analysis and classification of the symmetry of crystalline structures is a
fundamental necessity in various scientific fields, such as biology, chemistry and
materials science [7,12,13,20]. Experimental analyses are often based on diffrac-
tion patterns, e.g. from X-rays [15] or electrons [21]. The most common technique
for symmetry extraction from crystalline images is the classification of the Bragg
reflections [3], i.e. relating the positions of image peaks in Fourier space with the
lattice vectors of the crystal. This direct relation is the foundation for a variety
of image processing techniques aimed at analyzing crystals or removing artifacts
from corresponding images [14].

Recently, real-space methods have proven to be very powerful for a wide
range of processing tasks on crystal images, such as grain segmentation [2], crys-
tal defect localization [10], noise reduction [16] and sample drift correction [19].
All of these methods have in common that they exploit the (average) crystal
symmetry in some way or another. Thus, they require prior knowledge on the
geometry of the corresponding (perfect) crystals. Typically, the necessary crystal
lattice parameters are estimated either manually or using Fourier-based tech-
niques, which often also requires manual assessment in order to correct errors
due to image distortion, noise and ambiguities. Thus, an entirely unsupervised
use of these otherwise automated processing methods is usually not possible.

In [19], Sang and LeBeau proposed a new real-space method for lattice angle
estimation based on projective standard deviations (PSD). While the method
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 105–116, 2015.
DOI: 10.1007/978-3-319-24947-6 9
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outperforms Fourier methods in accuracy and robustness to noise, it still needs
manual input to relate PSD peaks with the corresponding lattice directions.

The goal of this paper is to overcome the necessity for manual input in crystal
lattice extraction from images. To this end, we propose a novel unsupervised real-
space method to estimate primitive unit cells from crystal images. In particular,
we show how fundamental periods can be estimated robustly from 1D signals.

2 Methods

A crystal can be characterized by the positions and types of its elements, i.e. C ⊂
R

d × R. In case d = 3, the elements are typically atoms and their type is given
by the atomic number. An important property of crystals is their symmetry.
It allows for a decomposition of C into a unit cell U = {v1, . . . , vd} ⊂ R

d,
which defines the repeating pattern of the crystal, and the corresponding motif
M = MC (U) = {(m1, c1), . . . , (mnU

, cnU
)} ⊂ R

d ×R, which defines the relative
positions and types of the nU ∈ N elements within the unit cell U . This results
in the following representation of the crystal:

C (U,M) =
{(

mj +
∑d

i=1ziv i, cj

) ∣∣∣ zi ∈ Z for 1 ≤ i ≤ d, 1 ≤ j ≤ nU

}
. (1)

Note that this decomposition is not unique. For any given crystal C ,

UC = {U ⊂ R
d |#(U) = d ∧ ∃M ⊂ R

d × R : #(M) < ∞ ∧ C (U,M) = C } (2)

denotes the set of all of its unit cells. Then

Up
C = {U ∈ U |#(MC (U)) = min

U ′∈UC

#(MC (U ′))} (3)

is the set of primitive unit cells. The Bravais lattice

VC =
{∑d

i=1ziv i

∣∣∣ {v1, . . . , vd} ∈ Up
C , z1, . . . , zd ∈ Z

}
(4)

is called crystal lattice, i.e. its elements are lattice points. Since 0 ∈ VC , any
v ∈ VC can be interpreted as a vector connecting two lattice points. Such a
vector is called lattice vector. For an introduction to this terminology from a
mineral science point of view, we refer to [18]; for an illustration see Fig. 1.

UC can also be characterized by

UC = {{v1, . . . , vd} ⊂ VC | v1, . . . , vd linear independent}. (5)

Furthermore, {v1, . . . , vd} ∈ UC is primitive if and only if the parallelepiped (or
a parallelogram in two dimensions) spanned by v1, . . . , vd contains no lattice
point v ∈ VC other than its corner points.

In this paper, we discuss how to extract a primitive unit cell from a two-
dimensional experimental image of a projected crystal. The original crystal is
three dimensional and during acquisition its orientation is manually refined until



Unsupervised Extraction of Primitive Unit Cells from Crystal Images 107

Fig. 1. Left: crystal lattice (red dots) with a minimal motif of size two (pairs of blue
dots); Right: illustration of the points Pδ(p) in the image projected onto the line �p

(Color figure online)

the desired projection - orthogonal to one of its unit cell vectors - is retrieved.
This results in a crystal C ⊂ R

2 × R. In the following, we assume that the
projection and the modality of the crystal image retain a unique identification
of the elements in the crystal C and a unique relation to the image intensities.

Then, in an ideal setting, such an image f : Ω = (0, 1)2 → R fulfills

f(x + z1v1 + z2v2) = f(x) ∀x ∈ Ω ∀z1, z2 ∈ Z : x + z1v1 + z2v2 ∈ Ω (6)

for any two lattice vectors v1,v2 ∈ VC . Thus, lattice vectors are minimizers (in
the ideal setting also roots) of the following energy:

E(v1,v2) =
∑

(z1,z2)∈Z

∫
x∈Ω̃

(f(x) − f(x + z1v1 + z2v2))
2 dx, (7)

where Z = {(1, 0), (0, 1), (1, 1)} and Ω̃ ⊂ Ω has to be chosen in a suitable way for
the desired lattice vectors, which will be addressed later. In other words, v1,v2 ∈
VC ⇔ E(v1,v2) = 0. Moreover, the following non-parallel lattice vectors

(v1,v2) ∈ arg min
(u1,u2)∈{E=0}∩{u1×u2 �=0}

|u1| + |u2| (8)

form a primitive unit cell, since the parallelogram spanned by two shortest lattice
vectors cannot contain any lattice points other than its corner points.

While obtaining a primitive unit cell may seem trivial at this point, it turns
out to be very challenging in practice without manual input. Noise, image dis-
tortions and crystal defects result in the energy E being non-zero except for
v1,v2 = 0 or |v1|, |v2| > diamΩ. Nevertheless, due to the regularity imposed by
the integration, {v1,v2} ∈ UC still implies ∇E(v1,v2) = 0. However, the reverse
implication is not true in general. Figure 2 illustrates one potential pitfall. There
are two types of local minima. The one with larger energy corresponds to the
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spacing between diagonally neighboring atoms, but the actual lattice points skip
one row and belong to twice the spacing, i.e. the minima with smaller energy.

Fig. 2. Left: artificial crystal lattice (magenta dots) with a motif of size two (a
magenta/blue dot pair is a motif copy). Right: normalized energy (7) for v1 =
t(cos α, sin α)T , v2 = 0 as a function of t with α = −61.95◦ (green vector) (Color
figure online)

Furthermore, ∇E(v1,v2) = 0 implies ∇E(n1v1, n2v2) = 0 for all n1, n2 ∈ Z.
Thus, it is likely that minimization of E converges to a local minimum that either
does not correspond to a unit cell at all, or not to a primitive one.

In the following, we will discuss a method that allows for an efficient esti-
mation of primitive lattice vectors from E based on a sophisticated strategy for
finding the desired local minima. The strategy is split into three parts: approx-
imation of (1) lattice vector angles and (2) fundamental periods, and (3) refine-
ment of the resulting approximate primitive unit cell.

2.1 Real-Space Analysis of Lattice Vector Angles

Any α ∈ [0, 2π] such that there is a t ∈ (0,∞) with teα = t(cos α, sin α)T ∈ VC

is called lattice vector angle. In the following, we briefly recall a recent real-
space method to estimate lattice vector angles by Sang and LeBeau [19]. Let
πδ(x) = (x1 cos δ + x2 sin δ) eδ be the projection of a point x ∈ Ω onto the line
�δ(p) = peδ and Pδ(p) = π−1

δ (p) the points in Ω that are projected onto �δ(p)
(see Fig. 1). Then, the average intensity of the image projected onto �δ(p) is

Aδ(p) = −
∫

Pδ(p)

f dx for |Pδ(p)| > 0 and zero else . (9)

Here, for B ⊂ R
d, −

∫
B

f dx = 1
|B|

∫
B

f dx is the integral mean. Let xc
1 = (0, 0)T ,

xc
2 = (0, 0)T , xc

3 = (1, 0)T , xc
4 = (1, 1)T denote the corners of Ω = (0, 1)2 and

pmin = mini=1,...,4 π(xc
i ), pmax = maxi=1,...,4 π(xc

i ) the lower and upper bounds
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of their projections onto �δ. Then, using the interval [pmin, pmax] as a bound for
the support of Aδ, we define the projective standard deviation as (cf. [19])

psd(δ) =

√
−
∫ pmax

pmin

(Aδ(p) − μδ)
2 dp, μδ = −

∫ pmax

pmin

Aδ(p) dp. (10)

Significant peaks (δ1, . . . , δn) of the signal psd : [0, 2π] → R≥0 are indicators
that the image f is periodic along the perpendicular directions, i.e. αi = δi + π

2 ,
i = 1, . . . , n are lattice vector angles: As in the 3D case, projecting a 2D crystal
along any of its lattice vectors, i.e. onto a line perpendicular to the lattice vector,
yields a periodic signal, which is of high standard deviation.

Let us point out that the psd alone does not suffice to select two lattice vector
angles. Consider the example shown in Fig. 3. Selecting the two highest peaks
yields the lattice vector angles α1 = 180◦ (green vector) and α2 = 116.5◦ (blue
vector) or α2 = 243◦ (cyan vector). Lattice vectors pointing in these directions
cannot form a primitive unit cell. Possible pairs resulting in primitive unit cells
in this case are the blue & purple, purple & green, green & red, red & cyan and
purple & red vectors, while only the latter results in a primitive unit cell satis-
fying (8). Since Sang and LeBeau [19] do not address this issue, we propose to
select a suitable pair of lattice vector angles in an unsupervised fashion by find-
ing one that satisfies (8). However, this requires knowledge of the corresponding
fundamental periods.

Fig. 3. Left: hex lattice with vacancies, vectors Tαieαi , i = 1, . . . , 5 (blue, purple,
green, red, cyan), primitive unit cell (purple/red box); Right: psd for δ ∈ [0, π] (Color
figure online)

2.2 Real-Space Analysis of Fundamental Periods

For any lattice vector angle α, let Tα = {t ∈ (0,∞) | teα ∈ VC }. Then, the
fundamental period is Tα = min Tα. In the following, we props a method to
estimate Tα from an image f of the corresponding crystal C .
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We consider the one-dimensional energy

Eα(t) = −
∫

Ωα(t)

(f(x + teα) − f(x))2 dx, (11)

where Ωα(t) = {x ∈ Ω |x + teα ∈ Ω}. Assuming that f is exactly periodic
along the direction eα yields Tα = E−1

α (0) \ {0}. Thus, in an ideal situation,
we have Tα = min(E−1

α (0) \ {0}). In practice, however, distortions and noise in
the image f , as well as errors in the angle α prohibit such a classification of the
fundamental period. Still, elements of Tα should be local minimizers of Eα. Let

Sα = {t ∈ (0,∞) | ∃δ > 0 ∀s ∈ [t − δ, t + δ] \ {t} : Eα(t) < Eα(s)} (12)

denote the set of isolated local minima of Eα except for t = 0. Unfortunately, as
illustrated in Fig. 2, possibly (minSα)eα /∈ VC . Thus, we need a robust way to
select the desired local minimum from Sα.

Let us assume that all errors (image noise, distortions, discretization) are
small enough that the energy Eα at least fulfills the following properties:

I The (numerical) fundamental period of the signal Eα is close to Tα

II Multiples of Tα lie near local minimizers of Eα

III The local minimizer with smallest energy is roughly a multiple of Tα

IV Distances between energies of local minimizers close to multiples of Tα are
smaller than those between them and the energies of other local minimizers.

Note that in an ideal setting, these properties are a consequence of (6).
Property I implies that Eα(Sα) may be split in k ≤ #({t ∈ Sα | t ≤ Tα}) clus-

ters C1, . . . , Ck corresponding to the different types of local minima in each fun-
damental period of Eα. Moreover, due to Properties II–IV, the cluster containing
min Eα(Sα) also contains Eα(Tα), but no Eα(t) with t /∈ Tα. Thus, Tα can be
estimated as T̂α = min(E−1(Ci) ∩ Sα), where 1 ≤ i ≤ k with min Eα(Sα) ∈ Ci.

The proper choice of the number of clusters is crucial in this context: on the
one hand, if k is chosen too small, one risks that a local minimum corresponding
to a period t < Tα ends up in the same cluster as E(Tα), which implies T̂α = Tα;
on the other hand, if k is chosen too large, one risks that Eα(Tα) does not end
up in the same cluster as min Eα(Sα), also resulting in T̂α = Tα.

To this end, we propose a method for robust unsupervised selection of the
number of clusters k. Our approach is based on work by Pelleg and Moore [17].
They use a Bayesian information criterion (BIC) under an identical spherical
Gaussian assumption on the cluster formation to formulate an unsupervised
variant of k-means, known as X-means. Note that G-means [11], which has been
shown to outperform X-means, especially in higher dimensions, is not suitable
for our setting, because the total number of data points #(Sα) is very small.

We base our analysis on the Akaike information criterion AICk = −2L̂k+2pk

[1], where L̂k = L̂k(S) = maxθ Lk(S|Mk(θ)) is the maximum of the log-likelihood

Lk(S|Mk(θ)) = log
∏n

j=1P (xj |Mk(θ)) =
∑n

j=1 log P (xj |Mk(θ)) (13)
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of the data S = {x1, . . . , xn} given a model Mk(θ) of the data, which induces
point probabilities P (xj |Mk(θ)). As pointed out in [6], AIC has theoretical and
practical advantages over BIC. For instance, it allows for the evaluation of actual
model likelihoods, allowing for more sophisticated strategies to select a proper k
than simply minimizing the value of the criterion, as is usually done with BIC.

In our setting, let Mk(θ) model the set Sα = {x1, . . . , xn} as k one-
dimensional Gaussian distributions with means μ1, . . . , μk, μi = μl, i = l, vari-
ances σ2

1 , . . . , σ
2
k, and relative frequencies n1

n , . . . , nk

n . Then

P (xj |Mk(θ)) =
n(j)

n

(
2πσ2

(j)

)−1/2

exp
{

−|xj − μ(j)|2/(2σ2
(j))

}
. (14)

Here, (j) = min{i ∈ {1, . . . , k} | |xj − μi|2 ≤ |xj − μl|2 ∀l = i}. Usually, there is
only one such i. Since nk = n−∑k−1

i=1 ni, the set of free model parameters is θ =
(n1, . . . , nk−1, μ1, . . . , μk, σ1, . . . , σk). The maximum-likelihood estimator μ̂i =
1
ni

∑
x∈Ci

x is obtained as a result from the k-means clustering for each cluster
Ci. The maximum-likelihood estimator of the variance is σ̂2

i = 1
ni

∑
x∈Ci

(x−μ̂i)2.
This leads to the following expression for the maximum log-likelihood of S:

L̂k(S) =
∑k

i=1

[
ni log ni

n − 1
2ni

(
log

(
2πσ̂2

i

)
+ 1

)]
. (15)

In this setting, the number of free parameters is pk = 3k − 1.
As pointed out by Akaike, the likelihood of the model Mk given the data S is

L(Mk|S) = exp {(AICkmin − AICk)/2}, where kmin = arg min
k

AICk. Note that

L(Mkmin |S) = 1. Models with a likelihood not significantly less than 1 cannot be
discarded with confidence. In case two or more models cannot be discarded, we
suggest to prefer models assuming fewer clusters in order to increase the proba-
bility that the desired local minimum Eα(Tα) is assigned to the same cluster as
the global minimum min Eα(Sα). Thus we suggest to choose the optimal number
of clusters as

k∗ = min {k | L(Mk|S) > τ} . (16)

We used the threshold τ = 0.1 for all presented experiments and found that in
the regarded cases the result was not sensitive to this particular choice.

Using the unsupervised k-means clustering described above, we can assign
a fundamental period Tα to any given lattice vector angle α. Let α1, . . . , αn

be candidate lattice vector angles estimated as described in Sect. 2.1 and V ∗ =
{Tα1eα1 , . . . , Tαn

eαn
} ⊂ VC . Finally, in accordance with (8), we estimate the

primitive unit cell by

U = {v1,v2}, v1 = arg min
u∈V ∗

1
2 |u |2, v2 = arg min

u∈V ∗\{v1}
1
2 |u |2. (17)

2.3 Local Refinement of Lattice Vectors

The methods described above yield a good approximation of a primitive unit
cell U = {v1,v2} ∈ Up

C . However, by first estimating the angles of the desired
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lattice vectors followed by an estimation of their magnitudes, errors in the angles
α1, α2 amplify the error in the magnitudes |v1|, |v2|. Nevertheless, the initial
guess v1,v2 is expected to yield local convergence of iterative minimization of
(7) to the desired local minimum. This minimization can be performed efficiently
in practice, since the discretization of (7) is a sum of squares, which allows for
Gauss-Newton type algorithms to be used for numerical minimization. Finally,
Ω̃ = {x ∈ Ω |dist(x, ∂Ω) > max{|v1|, |v2|, |v1 + v2|} + ε} can be used as the
admissible set, with a fairly small ε (e.g. three times the pixels size), since the
solution is not expected to be more than a few pixels away from the initial guess.

3 Results and Discussion

Here, we show unsupervised analyses of exemplary crystal structures, using both
artificially created images, as well as electron micrographs acquired by scanning
transmission electron microscopy (STEM) [4]. In the following figures, the origin
of any crystal lattice is aligned manually with one of the atoms in the unit
cell. Also, motif recognition is not part of the proposed method and was done
manually to illustrate the full geometry of the crystals. The lattice and the
motive is only overlayed in the lower half of each image to facilitate a visual
confirmation of the correctness of the estimated lattice parameters.

Figure 4 shows an artificial rectangular crystal lattice with three 2D Gaussian
bells of similar intensity in each primitive unit cell, placed along the horizontal
lattice direction. The proposed estimator for the number of clusters yields the
correct result (k = 3) for Eα with α = 0, even though the absolute values of the
local minima are extremely close to each other.

Fig. 4. Left: rectangular crystal lattice (magenta dots) with a motif of three very similar
Gaussian bells placed along the horizontal lattice direction (magenta/blue/green dot
triples); Right: Eα(t) (11) for α = 0, i.e. the horizontal lattice direction (Color figure
online)

The accuracy of the proposed method is assessed on four artificially cre-
ated crystal lattices (cf. Fig. 5) with known parameters and varying levels of
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Gaussian noise. The resulting absolute errors in Table 1 show sub-pixel accuracy
in all cases except for the “Bumps3” image in Fig. 5 with 50 % noise standard
deviation. In this case, the combination of strong noise and low contrast between
local minima constitutes a violation of Property IV, resulting in a third of the
period to be estimated - hence the large error. Note that a classical Fourier
analysis, e.g. selecting the two brightest non-collinear peaks in Fourier space,
does not yield useful results for the images shown in Fig. 5.

Fig. 5. Artificial crystal lattice images; top row: ideal crystals (from left to right:
“Bumps3”, “HexVacancy”, “SingleDouble”, “Triples2”); bottom row: same images plus
Gaussian noise with a standard deviation of 50 % of the maximum intensity

Figure 6 shows experimental crystal images acquired using STEM. These
images exhibit all artifacts inherent to this particular acquisition technique,
namely intensity noise, small scale distortions and large scale sample drift. In the
left image, along the roughly diagonal (α ≈ −60◦) and vertical lattice directions,
there is a horizontal offset between neighboring atoms (slight in the former and
more apparent in the latter case). The proposed estimator (17) correctly identi-
fies this and chooses the horizontal and vertical lattice vectors - the latter with a
period that skips each second row of atoms (leaving the atoms in the other rows
as part of the motif). In the right image, a similar difficulty is tackled, where a
translation along the diagonal direction leads to high-auto correlation.

In [16], we recently proposed a method to denoise crystal images by non-local
averaging over periodic lattices. This method showed a substantial performance
increase over non-local averaging techniques [5,8] without such prior informa-
tion. However, the accuracy of our previously proposed approach to unsupervised
lattice vector estimation is limited due to its Fourier space lattice angle estima-
tion and likely unable to cope with complex motifs due to the employed period
estimation via real-space sine fitting. Experiments performed for a selection of
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Table 1. Errors in the lattice vectors detected by our method for the images from Fig. 5.
σ/ max f is the noise standard deviation relative to the maximal image intensity

Crystal σ/ max f |v∗
1 − v1| |v∗

2 − v2|
Bumps3 0 2.60 × 10−8 4.13 × 10−8

Bumps3 10 % 0.136 0.0670

Bumps3 50 % 0.425 22.3

HexVacancy 0 3.61 × 10−8 1.50 × 10−7

HexVacancy 10 % 0.218 0.408

HexVacancy 50 % 0.292 0.153

SingleDouble 0 2.20 × 10−10 1.30 × 10−9

SingleDouble 10 % 0.0937 0.0830

SingleDouble 50 % 0.360 0.306

Triples2 0 2.12 × 10−9 8.84 × 10−9

Triples2 10 % 0.0129 0.0240

Triples2 50 % 0.0172 0.00900

Fig. 6. Experimentally acquired STEM images and estimated crystal lattices (magenta
dots) and motifs (magenta/blue dot pairs); STEM images courtesy of P.M. Voyles
(Color figure online)

images from [16] indicate that the peak signal-to-noise ratio (PSNR) of the
denoised image can be increased by more than 1 dB just by using the proposed
real-space lattice vector estimation within the non-local denoising framework.

4 Conclusions

We have proposed a method for the unsupervised extraction of primitive unit
cells from crystal images. It involves the selection of desired local minima of a
periodicity energy by means of unsupervised clustering. Building on X-means
[17], an improved strategy for the unsupervised selection of the number of clus-
ters was proposed, using an extended data model considering clusters of different
variances, and based on true model likelihoods derived from AIC.
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Results on synthetic and experimental images demonstrate that the clus-
tering robustly selects the desired local minimum and that primitive unit cells
are estimated with sub-pixel accuracy, even in the presence of strong noise and
ambiguities due to strong auto-correlation of the image along lattice vectors and
inside the unit cells.

The proposed method offers the potential to turn powerful real-space process-
ing methods for crystal images requiring prior knowledge about crystal sym-
metries into unsupervised methods. Lastly, let us point out that the proposed
estimator for the fundamental frequency also suggests itself for pitch detection
problems in sound analysis [9,22].

Acknowledgments. The authors would like to thank P.M. Voyles for providing exper-
imental STEM images.
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Abstract. We present an extension of classical archetypal analysis
(AA). It is motivated by the observation that classical AA is not invari-
ant against strictly monotone increasing transformations. Establishing
such an invariance is desirable since it makes AA independent of the
chosen measure: representing a data set in meters or log(meters) should
lead to approximately the same archetypes. The desired invariance is
achieved by introducing a semi-parametric Gaussian copula. This ensures
the desired invariance and makes AA more robust against outliers and
missing values. Furthermore, our framework can deal with mixed dis-
crete/continuous data, which certainly is the most widely encountered
type of data in real world applications. Since the proposed extension is
presented in form of a preprocessing step, updating existing classical AA
models is especially effortless.

1 Introduction

Archetypal Analysis (AA), introduced by Cutler and Breiman in 1994 [5],
approximates the convex hull of a set of multivariate observations with a small
set of vertex points. These vertex points are called archetypes, because all obser-
vations can be approximated by a convex mixture of these vertex points plus a
noise term.

An example from biology, presented in [18], makes this concept intuitively
comprehensible: from a total of 108 species, Norberg and Rayner’s study of bat
wings [15] identified K = 3 archetypes which explain – to some degree – almost
all different species. The archetypal bats were found as to outperform all other
bats at a single given task, see Fig. 1.

The Problem with Classical Archetypal Analysis. Finding the archetypes
is a geometric concept that crucially depends on the representation of the obser-
vations in R

p. One major problem in classical AA, which we like to address,
is its sensitivity to monotone transformations of the coordinate axes: it can
make a huge difference if one measures a certain property for example in meters
or log(meters). This problem is illustrated in Fig. 2: After a transformation of
the original data by a strictly monotone increasing transformation, the lower
left panel would suggest a total of four archetypes, one located at each cor-
ner. Whereas the lower right panel, reconstructed by a semi-parametric copula,
identifies approximately the same three archetypes as in the original data.
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 117–128, 2015.
DOI: 10.1007/978-3-319-24947-6 10
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Fig. 1. Wing aspect ratio of bats versus their body mass [18]. Three archetypes were
identified; their inferred tasks are listed in the above table. The convex hull is the
border of the light blue area. Figure from [18].

Fig. 2. Upper left panel: 200 points sampled as (noisy) convex mixtures of 3 archetypes
(triangle symbols) in two dimensions. Upper right: Strictly monotone transformation
applied to each dimension. Lower left: Transformed datapoints and location of the orig-
inal archetypes after transformation. Lower right: Reconstruction of the transformed
dataset by copula-PCA.
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From a probabilistic viewpoint, classical AA can be seen as a linear latent
variable model: The n observations are described as convex mixtures of K
archetypes arranged as the rows of the matrix Z. The mixing components sum
to one, i.e.

∑K
i=1 αi = 1tα = 1. In a probabilistic archetype model we might

assume that a ∼ DirK(α), and the observations x ∈ R
p scatter around the

means Zta according to isotropic Gaussian noise with variance η, see also the
model proposed in [17]:

x|Z,a ∼ N(Zta, ηIp). (1)

As long as only Euclidean lengths are concerned, one might argue that the
sensitivity to monotone transformations is a problem of somewhat artificial
nature, but in high-dimensional real-world applications with features of different
types and different domains, the above representation problem indeed defines an
inherent limitation of classical AA.

Extending the Model. As a means for overcoming this representational prob-
lem we introduce a copula based preprocessing step thus making AA invari-
ant against all (strictly) monotone increasing transformations: being inherently
invariant against such strictly monotone increasing transformations, copula den-
sities prove to be exactly the invariance class needed for this task.

Presumably the most elegant solution for the problem of inferring the arche-
types would be to complement the model with priors over all (hyper-) parameters
and analyse the posterior distribution of the archetypes in a fully Bayesian fash-
ion. In general, we think this would be feasible but this is not the main focus
of this work. Instead, we would like to maintain a probabilistic “flavour”, but
we still want to make use of existing highly efficient algorithms for identifying
archetypes by minimising the negative log-likelihood

n∑
i=1

(xi − Ztai)2 = ‖X − AZ‖2F (2)

under the additional constraint that the archetypes themselves are convex mix-
tures of the observations: z = Xb, with 1tb = 1, or, in matrix form Z = BX.
Formally, this defines a non-negative matrix factorisation problem, and efficient
solution techniques have been proposed in the literature. The main computa-
tional idea in these models is to pre-select points on the convex hull by computing
the convex hull in two-dimensional projections (e.g. pairwise PCA projections or
random projections), see [1,3,11,23]. Models of this kind have been successfully
applied to image collections [6,22], document collections [4], economic market
studies [13], game strategies [19] etc. Extensions of archetypal analysis to non-
linear kernel models have been proposed in [2], probabilistic generalisations for
exponential family models appeared in [17], and the use of sparse regression
models that offer an elegant solution for the problem of automatically selecting
the number of archetypes have been proposed in [16] (Fig. 2).
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2 Copula Archetypal Analysis

In this section we show how to overcome the representational problem by embed-
ding archetypal analysis in a copula framework [10,14]. The framework includes
a strictly monotone increasing mapping h: y = h(x), Rp �→ R

p, thereby treating
X as latent variables, which are estimated on the oberservations Y , as shown
in the graphical model in Fig. 3. The formulation with latent variables allows to
re-use existing algorithms for recovering the archetypes.

Sklar’s theorem [20] allows the decomposition of every continuous multi-
variate cumulative distribution function (cdf) F (Y1, . . . , Yp) into it’s univariate
marginals F1(Y1), . . . , Fp(Yp) and a copula C comprising the dependency pat-
tern only. More precisely, the theorem states the existence and uniqueness of a
copula C such that

F (Y1, . . . , Yp) = C(U1, . . . , Up), (3)

where the uniformly distributed Uj = Fj(Yj) are generated with the probability
integral transformation of the univariate marginal cdfs. In the following, we
will look for a parametric copula C, which suitably represents the dependency
structure in the space of U .

Motivation for Gaussian Copula. A parametric copula C is used in order
to define a likelihood function l(θ; {yi}n

i=1), which makes it possible to esti-
mate the latent vectors xi. Subsequently these are used as input for classical
archetype reconstruction. A particularly simple choice of a dependency struc-
ture is a Gaussian copula model CΣ , which inherently implies a latent space
by transforming X̃j = Φ−1(Uj) with the standard normal inverse cdf, i.e. the
quantile function. The latent space X̃ ∼ N (0, Σ) is jointly normal distributed
with zero mean and correlation Σ. A graphical model is given in Fig. 3, right
panel. Clearly, the latent sample covariance

X̃tX̃ ∼ Wc (n,Σ) (4)

is central Wishart. In general, Gaussian copulas are very restrictive examples of
copulas, in particular if a certain application domain requires proper modeling
of tail-dependencies. For the purpose of reconstructing archetypes, however, the
Gaussian copula is highly suited, because in the generative archetype model

Fig. 3. Graphical models of Archetypal Analysis (left) and Gaussian Copula (right).
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outlined in Eq. (1), the dependency structure is indeed approximately Gaussian.
To see this, it is useful to rewrite Eq. (1) in matrix form:

X|Z,A ∼ MN (AZK×p, In, ηIp), (5)

where Xn×p contains the observations xi as rows, An×K contains the mixing
components α as rows and MN (M,Ω,Σ) denotes the matrix normal distrib-
ution with mean matrix M = AZ, row covariance Ω and column covariance
Σ. Since in Eq. (1), the individual components of x are independent given the
means, we might say that the means M capture the full dependency structure
of x. This interpretation can be formally expressed by analysing the covariance
structure of the observations xi. Since X is matrix normal with identity covari-
ances, it follows that XtX is non-central Wishart with non-centrality matrix
M tM . The non-central Wishart distribution, on the other hand, can be approx-
imated with a central Wishart, where the approximation is derived via moment
matching, see [21]:

XtX ∼ Wnc(n, ηI,M tM) ≈ Wc(n,
1
n

M tM + ηIp). (6)

Comparing Eq. (4) with Eq. (6) shows that under the generative archetype model
in Eq. (1), the covariance structure of the observed vectors x is approximately
Gaussian, which, in turn formally justifies the use of a Gaussian copula model
for estimating the latent space.

Special Case: Continuous Observations Without Missing Values. If all
observations Y are continuous and if there are no missing values, the simplest way
of estimating each column X•,j , j = 1, . . . , p is to compute the normal scores
based on the empirical marginal cdfs Femp and the standard normal inverse
cdf: Û•,j = Femp(Y•,j) = ranks(Y•,j)/(n + 1) is a uniformly distributed random
variable, and X•,j = Φ−1(Û•,j) further transforms the density (elementwise) to
standard normal. Given the normal scores, the correlation matrix Σ which fully
parametrises the Gaussian copula, is then just the expected covariance of the
normal scores.

Using the empirical marginals Femp, corresponds to the non-parametric part
in the inference, since only the ranks are used in the transformation. This estab-
lishes invariance against arbitrary continuous cdfs F and also against their com-
position with an arbitrary strict monotone increasing transformation (F ◦ g)(y).

Data: Observations Y
Result: Archetypes Z
for all dimensions do

Compute normal scores X•,j = Φ−1
(

ranks(Y•,j)
n+1

)
;

end
Z ← FindArchetypes(X);

Algorithm 1. Copula Archetypal Analysis for continuous observations.
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This makes inference invariant against different representations as well as insensi-
tive against outliers. Note that we might have different cdfs and transformations
in every component of y.

The algorithm, outlined in Algorithm (1), now proceeds by estimating the
latent X based on the Gaussian copula model, and then calling an arbitrary func-
tion FindArchetypes(X) that minimises Eq. (2) and returns archetypes Z and
mixing coefficients A. We assume that this function implements some classical
archetype reconstruction algorithm, together with some mechanism for selecting
the number of archetypes. In practice, we use the group-Lasso based algorithm
proposed in [16] which uses the Bayesian Information Criterion (BIC)-score for
automatically choosing an appropriate number of archetypes.

General Case: Mixed Data and Missing Values. In general, however, we
allow the observations to be continuous and/or discrete (ordered factors), and we
also allow missing values. For discrete observations, the ranks in the empirical cdf
contain ties that might be broken in some arbitrary way. However, the resulting
cdf-mapping will not make the marginal densities uniform, since transformations
of discrete random variables do not change the distribution, but affect only the
sampling space.

In order to deal with such situations, it has been proposed to use the extended
rank likelihood [9]. The elementary observation is that for non-decreasing mar-
ginal cdfs, yi,j < yk,j implies xi,j < zk,j . For the entire set of observations Y ,
this generalises such that X must lie in the set

D =
{
X ∈ R

n×p : max(xk,j : yk,j < yi,j) < xi,j < min(xk,j : yi,j < yk,j)
}

(7)

Data: Observations Y
Result: Archetypes Z
initialise (X, Σ);
for N Gibbs sweeps do

for all observations do
for all dimensions do

conditioned on (Y, X), compute bounds {lo, up};
conditioned on (Σ, X), compute
- conditional mean μi,j and conditional variance σ2

i,j ;
draw xi,j ∼ Ntrunc(μi,j , σ

2
i,j , lo, up) from truncated normal;

end

end
conditioned on X, draw Σ from inverse Wishart;
A ← FindArchetypes(X);
update average archetypal scores in Ās(X)

end
find clusters in set {x|Ās(x) > 0};
return in every cluster the object with highest score Ās;

Algorithm 2. Copula AA for mixed observations and missing values.



Copula Archetypal Analysis 123

This enables us to see the marginal cdfs Fj as nuisance parameters in the likeli-
hood and hence to estimate the correlation matrix Σ on D.

Fig. 4. Left: 400 datapoints sampled as (noisy) convex mixtures of 3 archetypes in 10
dimensions, monotonically transformed (beta marginal densities) and linearly quan-
tised into 10 levels. Shown is the projection on the first two principal components, the
reconstructed archetypes (red circles) and the original archetypes after transformation
(triangles). Middle: reconstruction with Copula Archetypal Analysis. The size of the
blue circles indicates the archetype score for each datapoint. Points with a non-zero
archetype score are hierarchically clustered. The colored diamonds show the highest-
scoring datapoint in every cluster found by cutting the dendrogram in the right panel
(Color figure online).

Bayesian inference for Σ includes an inverse-Wishart prior distribution
p(Σ) ∼ W−1(ν0, ν0V0), with degrees of freedom v0 and scale V0. It can be
achieved by constructing a Markov chain having its stationary distribution at Σ’s
posterior distribution p(Σ|X ∈ D) ∝ p(Σ)p(X ∈ D|Σ). Sampling is done in a
Gibbs fashion, alternating between X|Σ,Y and Σ|X, as outlined in Algorithm (2).

Resampling the latent variable X|Y,Σ corresponds to sampling from a trun-
cated normal

xi,j ∼ Ntrunc

(
μi,j , σ

2
j , lo, up

)
, (8)

where the lower truncation lo = max(xi,j : yi,j < unique(yn,j , . . . , yn,j) and the
upper truncation up = min(xi,j : yi,j > unique(yn,j , . . . , yn,j) are determined
by the set D in Eq. (7). Thereby, the mean μi,j = Xi,−j

(
Σj,−jΣ

−1
−j,−j

)t
and

the variance σ2
i,j = Σj,j − Σj,−jΣ

−1
−j,−jΣ−j,j are conditioned on the remaining

variables.
Resampling the correlation matrix Σ|X means drawing from the inverse-

Wishart, augmented with the data term XtX

Σ ∼ W−1
(
v0 + n, voVo + XtX

)
. (9)

In order to accomodate for missing values yi,j , the step in Eq. (8) is adjusted
to use the unconstrained (i.e. untruncted) normal distribution.
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Now, in every Gibbs iteration, we run an existing algorithm for drawing a
set archetypes. For every object x, we update a score Ās(X), measuring the
average proximity to the closest archetypes. Clustering of the score landscape
and, within each cluster, selecting the objects with the highest score, finalises
the algorithm. An example is given in Fig. 4.

3 Demo-Application in Computational Biology

We applied the Copula archetype model to analyze the genetic stress response
induced by heat shock in Saccharomyces cerevisiae (yeast). Two different infor-
mation sources are used: (i) time-resolved gene expression measurements of yeast
genes under heat shock conditions, i.e. temporal changes in the process of syn-
thesizing gene products under heat stress. (ii) Binding affinity scores for certain
stress-related transcription factors. A transcription factor (TF) is a protein that
binds to DNA sequences near genes and regulates gene expression. The first
dataset has been published in [7] and can be downloaded from their web sup-
plement, the second one refers to [8] and can be downloaded at http://fraenkel.
mit.edu/Harbison/release v24/ as p-values for TF binding events. Probe names
in this dataset are matched to genes in order to combine the TF data with the
gene expression data. The p-values are exponentially transformed to a binding
affinity score on [0, 1] such that the upper half of the unit interval is associated
with highly significant bindings with p < 5 · 10−3. Combination of both datasets
leads to a 10-dimensional description of 6105 yeast genes, expression values at 4
different timepoints and binding affinities to the 6 transcription factors ADR1,
GAT1, HSF1, MSN2, SKN7, YAP1.

In the context of AA, we look for a few genes that show prominent expres-
sion/binding patterns that explain all observed patterns as convex mixtures in
the latent copula space. Since roughly 13 % of the genes contain missing val-
ues in one or more dimensions, we use the Gibbs-sampling strategy in Alg. (2)
for inferring archetypal genes. Figure 5 summarises the result of this analysis.
Copula archetypal analysis identified 6 archetypal gene clusters that roughly
correspond to the following patterns. Stress response (genes near the green
diamond): these are known heat-stress response genes, they are highly overex-
pressed and have high binding affinity to the stress-related transcription factor
SKN7, which is one of the two major transcriptional stress-response regula-
tors in yeast. Ribosomal RNA processing (red): these genes play an essen-
tial role in protein synthesis. As expected, they are downregulated under heat
stress, and this regulatory process is mediated by binding to YAP1, which is
the second major regulator, cf. [12]. Two archetypes, depicted by the magenta
and blue diamond, represent genes with mainly catalytic function that are reg-
ulated by exactly these two different stress response regulons, and two further
archetypes (cyan and yellow diamond) have opposite binding affinity to the tran-
scriptional activator ADR1. For further details see Fig. 5. Note that our findings
nicely corroborate the results in [18], where essentially the same major groups
of archetypal genes have been identified under environmental stress conditions

http://fraenkel.mit.edu/Harbison/release_v24/
http://fraenkel.mit.edu/Harbison/release_v24/
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Fig. 5. Yeast genes under heat stress, characterised by gene expression values and
binding affinity scores to stress-related transcription factors. Top left: PCA-plot of
archetype reconstruction with our copula model. Colored diamonds show genes with
highest archetype score in each of the clusters found by cutting the dendrogram in the
top right panel (the boxes indicate clusters with significantly enriched gene functions
represented by Gene Ontology (GO) terms). Middle row: enrichment analysis of genes
in the cluster indicated by the green, red, and magenta boxes in the dendrogram,
computed with the GOrilla software http://cbl-gorilla.cs.technion.ac.il/. Color encodes
p-values of enriched GO-term: yellow = 10−3 to 10−5, orange = 10−5 to 10−7, dark-
orange = 10−7 to 10−9. Bottom row: archetype-specific gene-expression and binding
pattern (schematic) (Color figure online).

http://cbl-gorilla.cs.technion.ac.il/
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but in a different organism. Classical archetypal analysis has severe problems on
this dataset: first, genes with missing values have to be removed, and second,
several archetypes that have a clear biological interpretation (like the magenta
one) could not be found by the classical algorithm, see Fig. 6.
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Fig. 6. Results of standard archetypal analysis. Left: 1st principal component (PC)
vs 2nd one, Right: 1st PC vs 3rd PC. The red circles indicate the location of the
archetypes. For comparison, the colored diamonds show the archetypal objects iden-
tified by Copula Archetypal Analysis. The projection in the right panel reveals that
there is no archetype in close proximity of the magenta- and yellow-colored diamonds
(Color figure online).

4 Conclusion

We introduced copula archetypal analysis, which wraps classical archetypal
analysis into a copula framework. This ensures invariance of archetypal analysis
against the class of strictly monotone increasing functions. We think, this is the
largest invariance class since it only keeps the rank relation of the data, while the
representation of the data can change. Furthermore, we devised the possibility
to include mixed data and missing values. This is an important property, since
in many real world datasets, mixed data and missing values are very common.
Moreover, our algorithm is formulated as a preprocessing step, such that estab-
lished algorithms can be re-used in order to efficiently recover the archetypes.
Lastly, we have demonstrated that our model works well on both simulated data
and in a real world application.
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Abstract. On a daily basis, experts in biodiversity research are con-
fronted with the challenging task of classifying individuals to build sta-
tistics over their distributions, their habitats, or the overall biodiversity.
While the number of species is vast, experts with affordable time-budgets
are rare. Image retrieval approaches could greatly assist experts: when
new images are captured, a list of visually similar and previously col-
lected individuals could be returned for further comparison. Following
this observation, we start by transferring latest image retrieval techniques
to biodiversity scenarios. We then propose to additionally incorporate an
expert’s knowledge into this process by allowing him to select must-have-
regions. The obtained annotations are used to train exemplar-models
for region detection. Detection scores efficiently computed with convo-
lutions are finally fused with an initial ranking to reflect both sources
of information, global and local aspects. The resulting approach received
highly positive feedback from several application experts. On datasets for
butterfly and bird identification, we quantitatively proof the benefit of
including expert-feedback resulting in gains of accuracy up to 25 % and
we extensively discuss current limitations and further research directions.

1 Introduction

In biodiversity research, experts are confronted with a growing amount of col-
lected images which build the foundation for statistics over distributions of
species, their habitats, or the overall biodiversity in ecosystems. Within this chal-
lenging process, classification of individuals is commonly done using field guides
and by comparing the current object of investigation against known classes,
thereby checking for the presence of unique characteristics (e.g., a red dotted
neck or a characteristically colored wing). Common image retrieval techniques,
e.g., [2,4,5,8,26,27,34,37], could greatly assist in this process by suggesting visu-
ally similar genera for further inspection to an expert. Simply applying these
techniques to biodiversity scenarios, however, does not necessarily lead to sat-
isfying results. One reason is that species, while visually similar on a global
scale, often show significant differences in small and localized details which are
easily missed. Furthermore, locations of discriminative details significantly dif-
fer between categories, which requires experts to investigate different sets of
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 129–141, 2015.
DOI: 10.1007/978-3-319-24947-6 11
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Fig. 1. Image retrieval techniques can assist biodiversity researchers by filtering col-
lected datasets for individuals visually similar to an unseen object (left and top row).
We present how an expert-in-the-loop can improve this baseline by selecting a must-
have-region (e.g., the dashed rectangle). By training region-specific detection models,
we can detect these regions in training images (indicated as circles in bottom row) to
verify and update the initial ranking.

parts depending on the currently faced individual. In this paper, we therefore
present an approach to improve existing image retrieval techniques by incor-
porating expert feedback about must-have-regions into the retrieval process. A
visualization of the underlying idea is given in Fig. 1.

We will build on neural codes [4] as baseline, a recently introduced technique
for image retrieval using activations of convolutional neural network architec-
tures. Thereby, handing over a query image results in similarity scores for all
previously collected training examples. Based on an image region specified by
an expert, we then learn a detection model from only this single positive exam-
ple following recent results for exemplar-models in patch discovery [12,19,30].
Efficient evaluations of the detection model on all training images result in a
second score indicating the presence of the selected region. We finally update
the ranking by fusing both results. In consequence, we obtain a list of visu-
ally similar individuals which additionally exhibit parts similar to the selected
region. For the sake of quantitative results, we require ground truth labels of
training images in the presented evaluations. However, our approach does not
rely on class annotations at all and can thus be applied even in unsupervised
tasks where no (machine-accessible) class information is available. Furthermore,
the resulting approach runs within seconds on standard hardware and is thus
also applicable for large image collections.

In the remainder of this paper, we first give a short review on state-of-the-art
in image retrieval (Sect. 2) and then introduce our approach for interactive image
retrieval in Sect. 3. Quantitative analyses of the resulting system are presented in
Sect. 4 on computer vision datasets related to biodiversity applications. Depend-
ing on the tackled scenario, we report significant accuracy gains but also show
and discuss limitations of the current approach and resulting future research
directions. A short summary concludes the paper.



Interactive Image Retrieval for Biodiversity Research 131

2 Image Retrieval in a Nutshell

Retrieving visually similar images given a newly captured query, i.e., the task we
motivated in the last section, is the central topic of an entire research area which
is commonly referred to as content-based image retrieval. In more then 20 years
of research, a variety of approaches has been developed, e.g., [1,2,4,5,7,8,15,
26,27,31,37]. While differing in algorithmic details and required assumptions,
the underlying pipeline mainly consists of three steps: (i) representing known
images and organizing representations in a search structure, (ii) computing rep-
resentations for a new query image, and (iii) matching of representations to
build a ranked list from which top-ranked images are returned. A great amount
of research and engineering art went into carefully designing and implement-
ing all three steps. However, we noticed two crucial issues for image retrieval
in biodiversity applications. First of all, latest findings from the image retrieval
community are yet to be transferred to remaining areas of application. While
this is partly successful, e.g., in medical scenarios [38], we found in several dis-
cussions that this process works rather poorly in biodiversity research. Besides,
we found that off-the-shelf retrieval algorithms are often not perfectly feasible
for biodiversity applications. This observation mainly arises from the fact that a
large fraction of retrieval algorithms aim at finding images of exactly the same
object as the query [2,4,5,8,26,27,31,37]. In this paper, we are instead inter-
ested in retrieving known individuals similar but not identical to a previously
unseen sample. This task is by far not novel, and an entire sub-field known as
category retrieval tackles this challenging problem by modeling or learning the
occurring intra-category variances (e.g., see [4,5,7] for latest impressive results
as well as [22] for an application to plant species identification scenarios). While
we received already promising feedback by simply applying image retrieval tech-
niques in biodiversity scenarios, the resulting framework was often found to be
too static. Instead, the possibility for selecting must-have-regions, e.g., a unique
wing pattern, was often desired. In terms of computer vision, we thus seek for
distance metrics which are user- and exemplar-specific and interpretable.

A research area similar in spirit is local learning, where known images most
similar to a test image are retrieved to then learn representations and models
from those similar images only [7,12,13,17,32,39,40]. In the focus of this paper,
we instead leave the decision process to the expert, but aim at providing him
with a set of relevant images as helpful as possible and further allow him to
interactively refine the query results.

The only related work we a aware of is [6] which allows to select outputs of
an unsupervised segmentation for query refinement. We instead propose a more
intuitive and precise technique for providing feedback as shown next.

3 Interactive Selection of Regions of Focus

Let us now introduce the aforementioned technique for interactive image
retrieval. As a result of several discussions, we found that the selection of rectan-
gles as must-have-regions for the current query is an intuitive, simple, and yet
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Fig. 2. Overview of our proposed approach for interactive image retrieval. Figure is
best viewed in color and by zooming in. See text for details.

powerful way for receiving feedback from an application expert. To integrate this
information into the retrieval process, we provide solutions for three questions:

i. how to train a detection model f from a single positive example,
ii. how to efficiently evaluate the model on all training images, and
iii. how to integrate detection responses into the process of image ranking.

An overview of the resulting approach is shown in Fig. 2.
Exemplar-models for Region Detection. Determining the existence or
absence of a selected region in a collected training set can be done most eas-
ily by casting it as a part detection task. Thus, we aim at training a detection
model from a single positive example and virtually everything else as negative
data. While this task appears cumbersome on first glance, exemplar-models such
as Exemplar-SVM [24] or Exemplar-LDA [16,19] provide an elegant solution and
have been found useful for learning patch detectors from a single positive exam-
ple [12,19,30]. Unfortunately, training of Exemplar-SVMs involves computation-
ally expensive hard negative mining, In contrast, Exemplar-LDA models can be
trained highly efficiently since the majority of computations is done only once in
an offline stage. Since we are interested in fast responses after an expert selected
a region, we thus follow [12,19] and apply LDA models as region detectors. In
consequence, distributions of (the single) positive and all negative examples are
assumed to be Gaussian with a shared covariance matrix Σ0 and mean vectors
μ1 and μ−1, respectively. Although this assumption might be far from being
perfectly correct, it offers two advantages: (i) a discriminative linear separation
of positive and negative data

wLDA = Σ−1
0

(
μ1 − μ−1

)
(1)

with (ii) fast training and model evaluations [16]. Furthermore, we can addition-
ally view Eq. (1) as de-correlated nearest class mean [25] and it is known that
reducing correlations in feature cells is beneficial for detection tasks [12,16]. We



Interactive Image Retrieval for Biodiversity Research 133

thus only need to compute Σ0 and μ−1 from all possible locations, aspect ratios,
and scales in all training samples once [16]. In practice, we add a scaled identity
matrix Σ0 +σ2

nI to increase numerical stability. During the interaction process,
it only remains to solve the linear equation system in Eq. (1) to obtain the desired
detection model.

Efficient Convolutions for Region Detection. To reliably detect the
selected region in training images, we need to densely evaluate the learned detec-
tor, i.e., on all possible locations and scales. Let therefore x denote the feature
vector extracted from a single position and scale. For a linear detector as in
Eq. (1), the response on x is computed as additive combination of dimension-
specific similarity scores (ignoring offsets for simplicity of notation):

f (x ) = 〈wLDA,x 〉 =
D∑

d=1

wLDA (d) · x (d). (2)

Evaluation of f on all possible locations can then be done in a sliding window
manner by computing Eq. (2) for densely extracted features. In this case, we
can also change the order of computations and can equivalently compute Eq.
(2) by adding D convolutions of 1 × 1 filters with corresponding feature planes.
As required later, this also holds if x follows a spatial tiling composed of T × T
cells with DC feature dimensions per cell (thus, D = T · T · DC in Eq. (2)). For
prominent examples, e.g., Spatial Pyramid Match Kernels [23] or HOG [11] for
detection tasks, Eq. (2) translates to

f (x ) =
T∑

di,dj=1

DC∑
c=1

wLDA ((djT + di) DC + c) · x ((djT + di) DC + c). (3)

Again, we can exchange order of summations which leads to adding results of DC

convolutions of T × T filters with corresponding feature planes. By computing
feature planes for all training images in an offline step, we can efficiently detect
selected regions and reduce an expert’s idle times to a minimum.

Fusion of Complementary Retrieval Scores. Given the previous steps, it
now remains to combine detection results with the previously obtained rank-
ing of the baseline retrieval system. As commonly done in object detection, we
perform max-pooling over response maps from all scales and return the largest
detection score for each image. Scores are linearly normalized into [0, 1] to main-
tain their relative ordering and still allow for a well-defined range of outputs.
Given results of baseline image retrieval and interactive selection, we now seek
for examples with high scores reflected by both indicators. We therefore assume
both sources of information to be complementary which justifies a simple product
as combination rule [3,20]. Note that the assumption of complementary infor-
mation is indeed justifiable, since a baseline retrieval is concerned with coarse
distinctions regarding the entire image. Instead, interactive selection explicitly
neglects the majority of this information and searches for the remaining parts
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Fig. 3. Visualizing the influence of expert feedback. Figure is best viewed in color.

with arbitrarily different techniques. While we also experimented with other
fusion techniques [20], we empirically found this strategy to be as simple as pow-
erful. Combined scores are finally ordered and top-ranked results are returned.
Putting all parts together, we obtain the framework as visualized in Fig. 2. The
entire pipeline runs within seconds and allows experts to easily investigate results
with different regions selected. A qualitative example is given in Fig. 3.

4 Experiments

By applying the previously introduced techniques to biodiversity tasks, we
already obtained highly positive feedback from several experts which we took as
a qualitative confirmation of our approach’s usability. In this section, we addi-
tionally present quantitative results on two established computer vision datasets
to analyze benefits, limitations, and future research directions.

4.1 Evaluation Criteria

To evaluate success of an image retrieval technique, a variety of different crite-
ria have been put forward and the presumably most common measure is mean
average precision (mAP) [2,4,5,8,26,27,37] based on precision and recall. When
returning k top-ranked images, precision refers to the relative number of cor-
rectly retrieved images, i.e., #true positives

k , whereas recall denotes the number
of correctly retrieved images relative to the absolute number of known positive
examples, i.e., #true positives

#known positives . Computing mAP is then done by plotting recall
against accuracy individually for each possible category and averaging areas
under the resulting curves. While mAP is excellent for evaluating an image
retrieval system’s performance over the entire range of possible working points,
i.e., different trade-offs between precision and recall, we observed that the major-
ity of possible working points is not feasible in practice. Instead, application
constraints often render high recall values as an irrelevant measure of quality.
According to our experience, an application expert is in fact not interested in a
supporting tool with perfect recall which returns almost all known images – only
to not miss a single correct one. Instead, he is usually interested in inspecting
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Fig. 4. Illustrating different criteria for evaluating image retrieval accuracy.

just a small set of retrieved images, and this retrieved set should exhibit sev-
eral properties. Interestingly, we also observed that these properties vary over
task and expert, e.g., experienced researchers are usually interested in inspect-
ing visually similar examples to then make a final decision on their own. In this
case, retrieving at least one example of the correct category is often sufficient
which we refer to as 1-of-all precision. Less experienced researchers, though,
often base their decision on relative frequencies of returned categories. In these
cases, as many retrieved images as possible should be of the correct category,
i.e., a high precision matters. While several papers followed the second evalua-
tion, e.g., [7,37], we are not aware of any work applying the first principle, which
however was found to be a useful criterion for application experts. We will see
later that both criteria can cover orthogonal aspects of a system’s performance
and thus should be considered side by side. Both criteria are illustrated in Fig. 4
visualizing results for a strong and a poor retrieval system.

4.2 Datasets for Illustrating Biodiversity Applications

So far, we are not aware of any biodiversity dataset publicly available for com-
puter vision researchers. To still allow for quantitative evaluations, we present
experimental results on two datasets established in the computer vision commu-
nity which cover areas of investigation relevant for biodiversity researchers. In
the following, we give a short overview on both datasets.

Leeds – Identifying Butterflies. The Leeds Butterfly dataset [36] contains
832 images of butterflies captured in a natural environment. It covers ten distinct
butterfly species with 55 to 100 images per category. Exemplary individuals of
eight species are shown in Fig. 5a.

CUB2011 – Recognizing Birds. The Caltech-UCSD Birds-200-2011
(CUB200) [35] dataset covers 200 bird species native in North America. The
provided dataset contains 11,788 individuals which are split in train and test set
of approximately same size. We also conducted experiments on the frequently
used subset (CUB14) by [10] which contains 14 categories of warblers and wood-
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Fig. 5. Left : Examples of different species from datasets used in our evaluations showing
butterflies [36] (top) and birds [35] (bottom). Right : GUI for acquisition of must-have-
regions to allow for quantitative evaluations.

peckers with 817 images. Examples are shown in Fig. 5b. Noteworthy, category
labels do not distinguish between male and female, nor between young and adult.

4.3 Experiments in a Butterfly Identification Scenario

We have already seen a qualitative example in Fig. 3. For a quantitative evalua-
tion, we start with the previously introduced butterfly dataset Leeds [36].

Experimental Setup. As baseline retrieval technique, we apply neural codes
by [4]. In detail, we use the AlexNet model [21] initially trained on ImageNet
for general purpose feature extraction [14,18]. Features of several layers are
extracted using the Caffe toolbox [18] and we empirically found conv3 to be
well suited for our application. Since the dataset does not provide any part
information, we asked six users to manually select a single region for each image
which they rate as informative. Notably, the users’ initial domain knowledge
ranged from no knowledge at all to individual training for several weeks. For
their guidance, we displayed individuals of each category as visualized in Fig. 5c.
Following recent trends in fine-grained recognition [12], we represent selected
regions using histograms of oriented gradients (HOG) [11] and histograms of
ColorNames (CN) [33] to capture color, texture, and shape. Spatial information
is kept by tiling the selected region using a regular grid and extracting features
in each cell separately [11]. HOG and CN features are extracted using publicly
available source-code of [16] and [33]. We train exemplar-specific LDA models
using the code provided by [12]. For evaluation, we follow the leave-one-out prin-
ciple and exclude each image once from the training set to serve as query image.
Precision and 1-of-all precision curves are finally averaged over all images and
shown in Fig. 6.

Evaluation. When averaging over all users (Fig. 6a), we notice a significant
increase in both precision and 1-of-all precision. Noteworthy, the accuracy with
respect to the first retrieved image is increased from 71% to 90%. From our
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Fig. 6. Evaluating image retrieval with interactive feedback on the butterfly dataset
Leeds [36]. Results are obtained from six annotators ranging from novices to experts.

experience, this result is indeed remarkable given the already sophisticated per-
formance obtained with neural codes as baseline technique. Furthermore, we
note that experienced annotators can easily lift the retrieval accuracy to ranges
significantly over 95% (Fig. 6b). However, even novices with little experience can
add valuable information (Fig. 6c). We also observe that solely relying on out-
puts of detection models further boosts performance if k is extremely small but
is inferior to combined results for larger retrieved sets. This behavior is plausible
since images with extremely high detection scores are likely to contain the exact
same pattern as the query. In contrast, medium scores likely result from exam-
ples of mixed-up categories which have a similar local pattern but are different
at a global scale. Consequently, incorporating the baseline information can cor-
rect these cases. Interestingly, we also notice different trends when comparing
precision and 1-of-all precision as a measure of accuracy. We therefore conclude
that a decision for one evaluation strategy over the other should be based on the
desired properties of the retrieved set of images.

4.4 Experiments in a Bird Recognition Task

In a second experiment, we evaluate limitations of our approach and further
research directions using the previously introduced CUB200 bird dataset.

Experimental Setup. Following previous research [9,12,42], we crop images to
the provided bounding box and apply the provided split in train and test images.
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Fig. 7. Evaluating limitations and further research directions for the introduced inter-
active retrieval approach on bird recognition datasets by [35].

We simulate region selection using provided part annotations for anchoring a
squared region of width and height proportional to 1

10 of the box’s main diagonal.
For verification, we additionally asked our most experienced annotator to mark
head regions on the small subset. The remaining setup is identical to the previous
experiment except that neural codes are extracted from conv5. Due to the lack
of space, we only present results in Fig. 7 obtained from head regions which are
known to be most discriminative [42].

Evaluation. In contrast to the superior results on Leeds, we notice that select-
ing a single region is too restrictive for bird recognition tasks and can even hurt
retrieval accuracy. Notably, even our most experienced expert was not able to
improve the accuracy (Fig. 7a). On CUB200, the accuracy induced by detection
scores finally drops significantly (Fig. 7b) and thus goes along with the combined
results. We attribute this observation to three reasons. First of all, captured bird
images are highly diverse, both with respect to pose (parts are often occluded,
thus, no model can be trained) and appearance (male vs. female, young vs. adult,
label errors). Besides, the number of species is significantly larger which renders
the task significantly more difficult. Finally, single parts are often not visually
discriminative with respect to different categories although their combination
is. Since the usability of the current approach was confirmed in personal dis-
cussions, we can conclude several important directions for improvement. First
of all, an extension to multiple selectable regions would be highly beneficial to
specify parts which are only discriminative when appearing jointly. Besides, esti-
mating the number of required annotations would be helpful for unexperienced
researchers. Finally, providing relative positions of multiple parts and expressing
their semantics would allow for more informative expert feedback.
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5 Conclusions

In this paper, we introduced image retrieval techniques to assist in biodiversity
research. Using neural codes as baseline, we then presented how to addition-
ally incorporate expert feedback by interactively selecting must-have-regions.
The provided information served for training of region-specific detection models
which are efficiently evaluated on all training images with convolutions. Com-
bining detection scores with baseline results finally allowed for verifying and
updating the initial ranking. In a butterfly identification task, this intuitive way
of providing feedback resulted in improved results for non-experts while more
experienced users could even further boost the performance. The resulting app-
roach is easy to use and already received highly positive feedback from several
experts. In a last experiment, we evaluated limitations of our approach and
discussed open research directions. As future work, we plan to incorporate rel-
evance feedback [29,41] which was suggested by medical experts. In addition,
transferring our approach to different application areas, e.g., retrieval of similar
plants [22] or moths [28], could assists experts in other domains. Furthermore,
replacing current region descriptions by efficiently computable CNN activations
is likely beneficial. While their applicability is currently limited by hardware
requirements, further progress in this field will allow for training even better
region detection models.
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Abstract. The Bag-of-Features principle proved successful in many pat-
tern recognition tasks ranging from document analysis and image classifi-
cation to gesture recognition and even forensic applications. Lately these
methods emerged in the field of acoustic event detection and showed very
promising results. The detection and classification of acoustic events is
an important task for many practical applications like video understand-
ing, surveillance or speech enhancement. In this paper a novel approach
for online acoustic event detection is presented that builds on top of
the Bag-of-Features principle. Features are calculated for all frames in a
given window. Applying the concept of feature augmentation additional
temporal information is encoded in each feature vector. These feature
vectors are then softly quantized so that a Bag-of-Feature representa-
tion is computed. These representations are evaluated by a classifier in
a sliding window approach. The experiments on a challenging indoor
dataset of acoustic events will show that the proposed method yields
state-of-the-art results compared to other online event detection meth-
ods. Furthermore, it will be shown that the temporal feature augmenta-
tion significantly improves the recognition rates.

1 Introduction

The detection and classification of acoustic events is an important task for many
practical applications. In analysis of multimedia content, the classification of
objects, visual actions or movements and sounds can be combined for the under-
standing high level semantic events in videos [9]. It is also possible to do this
multimedia event classification based on acoustic features alone [13]. Live appli-
cations include the analysis of acoustic events in various environments. Surveil-
lance in cluttered scenes can be improved by an acoustic analysis in order to
detect unexpected scenarios that are not visually recognizable (e.g. screams or
glass breaking) [2,5]. Another application is meeting analysis and multi-modal
interaction [20]. A slightly different field are outdoor applications like mobile
robots for security, urban planning [21,26] or wildlife observations where the
goal is to determine the presence of certain animals by acoustic features [10,27].
The task is difficult because of the diversity of the acoustic events. A single event
is usually comprised of a variety of individual sounds, e.g. chair movement can
produce knocking and rubbing sounds, handling paper can include rustling and
c© Springer International Publishing Switzerland 2015
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knocking on the table and so on. Human laughter or speech are fundamentally
different depending on the individual person. It is desirable for a classification
method of acoustic events to handle these variabilities and generalize from single
instances to the broad range of sounds within an event class.

In order to capture the temporal variability of different sounds, HMMs are
widely used. However, the Viterbi decoding requires a full sequence in order to
predict the past [4]. Consequentially, most HMM approaches work offline and
assign event classes to time points for a past sequence of events. Thus they
commonly only address the task of offline analysis.

There are several methods for online classification and detection of acoustic
events. The basic method is to use a GMM to model each category, as is done in
speaker identification. The mean and variance of the feature vector are modelled
as Gaussians. This is also known as the Bag-of-Frames approach to acoustic
classification [1,6]. Extensions of this approach include the use of a background
model [24]. Lately, methods that build on the Bag-of-Features principle have
emerged in the field of acoustic event detection [2,13,16]. Acoustic features such
as MFCCs are extracted for each frame and clustered in order to build a set
of representatives. The occurrences of these representatives in a short time win-
dow are then counted and the resulting histogram is used for classification. A
very similar approach is the so called superframe, where a histogram over a
pre-classification is used instead [14,15]. Given the task at hand, these represen-
tatives are often referred to as an audio or acoustic word. One advantage of the
Bag-of-Features models is that due to their simplicity and fast computation it
is easy to employ them for online analysis.

The basic Bag-of-Features approach employs unsupervised hard vector quan-
tization in order to derive a codebook by which to quantize the input [13]. This
strategy is not always optimal for acoustic classification. It is rather advanta-
geous to follow the GMM approach of using soft quantization by assuming a
Gaussian distribution of the feature vectors and perform the training in a super-
vised manner [16], which is termed Bag-of-Super-Features.

These approaches discard any temporal information within the analysis win-
dow by treating all frames with disregard of temporal order. One way to rein-
troduce temporal information is to use a pyramid scheme [11]. The short time
windows that are used for classification are well suited for a subdivision as pro-
posed by the pyramid scheme [16]. In contrast to the pyramid scheme there are
approaches in computer vision that propose directly including this information
at feature level [8,17]. This is sometimes referred to as feature augmentation.

In [17] features are augmented with continuous x, y coordinates that encode
the position of a feature within an image. This directly builds on the encoding
abilities of the Fisher Vector approach. Given a set of features, a GMM is esti-
mated in order to compute a set of representatives, e.g. visual or, here, acoustic
words. These represent the global distribution of the samples. For the encod-
ing, each feature is assigned to the visual/acoustic words based on the GMM
posteriors. Then, the differences of the local distribution with respect the global
distribution of the acoustic words are encoded the mean and covariance deviation
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vectors of the feature vector and the visual/acoustic word. While this allows to
append continuous coordinates and yields a very detailed encoding compared to
a hard or soft quantization, it also requires enough samples in order to robustly
estimate the local distributions. Given the low number of frames in a time win-
dow this is hardly possible in acoustic classification and event detection.

In [8] quantized x, y coordinates that roughly encode the position of a feature
within an image are appended. This approach preserves a tiling structure similar
to the pyramid scheme and does not estimate the local feature distributions. The
augmentation of the features with quantized coordinates causes the clustering
step in the Bag-of-Feature computation to form different codebooks for different
regions of an image or a time window. It could be shown that these adaptive
codebooks cover the information contained in each tile better than a global
codebook and allow for reducing the dimensionality of the representation.

In this paper it will be shown that the detection and classification of acoustic
events based on Bag-of-Super-Features representations of acoustic words can be
improved by augmenting the features with a temporal component. The evalua-
tion will show that a tiling with adaptive codebooks as proposed in [8] outper-
forms plain Bag-of-Features methods as well as pyramid schemes in recognition
rates while at the same time having a lower dimensionality. Furthermore, the
evaluation will show the influence of parameters such as window length and code-
book size on the Bag-of-Super-Features approach and finally a comparison with
recent methods will show that the proposed approach achieves state-of-the-art
results.

2 Method

For the acoustic event detection and classification, a single microphone or beam-
formed signal is processed in short time windows of w seconds. An overview of
the processing method is shown in Fig. 2. For a given window i, a set of fea-
ture vectors Yi = (y1 . . .yK) is calculated for all K frames in this window. All
features in this set are augmented with additional temporal information with
respect to t he window. These features are then softly quantized by a GMM
that has been trained in a supervised manner so that a Bag-of-Features repre-
sentation is computed. Finally, a multinomial maximum likelihood classifier is
applied.1

2.1 Features

For sound and especially speech processing, the mel frequency cepstral coeffi-
cients (MFCCs) are one of the most widely used features. The input signal is
filtered by a triangular mel frequency filter bank. In the computational model-
ing of the human hearing process [25], ERB-spaced gammatone filterbanks are

1 A video of the proposed method applied in our lab can be found at:
https://vimeo.com/134489154.

https://vimeo.com/134489154 
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Fig. 1. Overview of the method: Given a window containing an acoustic signal, MFCCs,
GFCCs and a loudness feature are computed. The resulting feature vector is augmented
by a quantized time coordinate with respect to the window. A GMM is applied for
clustering the features of each class in order to learn a supervised codebook. Finally,
all features are quantized and the resulting histogram is classified by a multinomial
maximum likelihood classifier.

used. From that the gammatone frequency cepstral coefficients (GFCCs) were
derived [19]. The filterbank of the MFCCs is replaced by linear phase gamma-
tone filters. The basic feature vector is comprised of regular MFCCs, GFCCs
and the perceptual loudness derived from the A-weighted magnitude spectrum.
A basic whitening step is performed by subtracting the mean and dividing by
the standard deviation of the traning data.

2.2 Feature Augmentation

It has been shown that adding time information is able to improve the recognition
rates of acoustic event detection and classification [16]. This idea is highly related
to the encoding of spatial information in the vision domain [11]. In contrast to
the popular pyramid approach, in the following, the time information is directly
encoded at feature level [8].

Therefore, quantized time coordinates t are appended to the feature vector.
Given a fixed window of w seconds in length, it is subdivided into N tiles of equal
size so that the time is quantized into a value of [1, .., N ]. Thus the augmented
feature vector consists of 13 MFCCs m, 13 GFCCs g, loudness l and a temporal
index t:

yk = (m1, . . . , m13, g1, . . . , g13, l, t)
T (1)

Note that when quantizing these features by a vector quantizer or a GMM
in order to compute a Bag-of-Features representation this generates adaptive
codebooks for each tile. This is a major difference to the spatial pyramid app-
roach where the same codebook is used for each tile. Furthermore, the size of
the codebook V determines the size of the overall feature representation whereas
the size of the feature representation grows with each tile in the pyramid scheme
[8,11]. In this approach only tiling is used and the upper levels of the pyramid
are discarded as they usually do not carry much information (cf. [8]).
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2.3 Bag-of-Super-Features

After augmenting the feature vectors with temporal information, a Bag-of-
Features approach is applied. Hence, a codebook of acoustic words is estimated
from the training set. Most Bag-of-Features approaches use clustering algo-
rithms, e.g. k-means, on the complete training set to derive a codebook and
later assign each feature to a centroid by hard quantization.

However, disregarding the labels in the clustering step can lead to mitigation
of significant differences. A remedy for this effect is to build codebooks of size
Z for all C classes Ωc separately and then to concatenate them into a large
super-codebook. This method is referred to as a Bag-of-Super-Features (cf. [16])
in analogy to the super-vector construct used in speaker identification [22].

Here, the expectation-maximization (EM) algorithm is applied to all fea-
ture vectors yk for each class Ωc in order to estimate Z means and deviations
μz,c, σz,c for all C classes. All means and deviations are concatenated into a
super-codebook v with V = Z · C elements

vj=(c·Z+z) = (μz,c, σz,c) (2)

where the index j is computed from the class index c and the Gaussian index
z as j = c · Z + z. Using this super-codebook, a soft quantization of a feature
vector yk can be computed as

qk,j(yk, vj) = N (yk|vj) /
∑
j′

N (yk|vj′) . (3)

Then, a histogram b can be computed over all K frames of an input window Yi,
where the occurrences of an acoustic word vj in the window Yi are estimated by

bi(Yi, vj) =
1
K

∑
k

qk,j(yk, vj) . (4)

These histograms can then be used as a feature representation of the window Yi

and as an input for a classifier.

2.4 Classification

The probability of an acoustic word vj to occur in a given class Ωc is estimated
using a set of training windows Yi ∈ Ωc for each class c by Laplacian smoothing:

P (vj |Ωc) =
α +

∑
Yi∈Ωc

bi(Yi, vj)

αV +
∑V

u=1

∑
Ym∈Ωc

bm(Ym, vu)
, (5)

where α is weighting factor for the smoothing (in practice α = 0.5 showed good
results). Hence, the probability is estimated by the fraction of the acoustic word
vj to occur in any window of class c with respect to all acoustic words occurring
in any window class c. Rather than using a prior classification step to eliminate
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silence and background noise, as done in several systems (cf. [23]), the rejection
class Ω0 is trained with recordings where no event occurred.

Since all classes are assumed to be equally likely and have the same prior,
maximum likelihood classification is used. The posterior is estimated using the
relative frequency of all acoustic words

P (Yi|Ωc) =
∏

vj∈v

P (vj |Ωc)bi(Yi,vj) . (6)

For the classification of a single window Yi the maximum probability is chosen
for deriving a label that is assigned to this window.

2.5 Detection

Due to the simplicity and rapid computation of this approach it can easily be
adapted to event detection. Here, a sequence of acoustic events is given.

The classification window is applied as a sliding window that is moved for-
ward for one frame k at a time. The recognition result is used for the frame that
is centered in the window so that context information is available for a short
time before and after the frame. As the window has a length of w sec, there is
a processing delay of w/2 sec. As the implementation is running in real time,
this delay is of high interest. In the experiments it will be shown that a delay of
300ms is sufficient for practical purposes.

3 Evaluation

The proposed method has been evaluated on the very challenging office
live task of the DCase (Detection and Classification of Acoustic Scenes and
Events) challenge [6]. The temporal feature augmentation is compared with a
Bag-of-Super-Features approach without feature augmentation and the pyramid
scheme. Parameters with respect to temporal processing, like the windows size
and tilings, as well as the influence of the codebook size are evaluated. The
approach is then compared to the state of the art methods. In order to test for
significant differences between classifiers and parameter configurations, a ran-
domization test (N = 1e5) has been performed [7]. This method was chosen
since it does avoid any distribution assumption.

3.1 D-Case Office Live Dataset

The dataset of this task is comprised of a variety of indoor sounds that could
occur in an office or comparably a meeting room scenario. There are 16 sound
classes alert, clearthroat, cough, doorslam, drawer, keyboard, knock, laughter,
mouse, pageturn, pendrop, phone, printer, speech, switch, keys and additionally
silence that have to be detected. The dataset provides a training set of segmented
sequences for each of the 16 classes with a total length of 18 min and 49 s. Fur-
thermore, there are three scripted test sequences which are publicly available
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with a total length of 5 min and 21 s. For each of these sequences two annota-
tions are available. Since there is no training data for the silence/background
class, the silence portions from the other two scripts were used to train the clas-
sifier for each script. The task is to detect the acoustic events in these sequences
and classify them correctly. Hence, for different methods the precision and recall
with respect to the number of frames that are correctly recognized are computed
and the F-score is evaluated. All experiments were repeated 50 times using dif-
ferent codebooks each time over all sequences and annotations, yielding a total
of 300 runs. Note that the differences in the scripts lead to a larger variance as
the results for each script differ by about 3 %.

3.2 Temporal Processing

For the detection of acoustic events, two parameters are of interest with respect
to the temporal processing. The first one is the length of the window w in
seconds, the second one is the spatial setup within this window, i.e. the number
of tiles. The F-scores of different window lengths and tilings for the temporal
feature augmentation and the temporal pyramid scheme, as proposed in [16],
are shown in Table 1. For the pyramids an additional max pooling step has been
computed on top of the tilings. All parameter combinations have been evaluated
using Z = 30, i.e. a super-codebook size of V = 30 · 17.

It can be seen that for both methods, the best results are achieved by using
a window length of 0.6 s. Furthermore, a baseline method with no spatial infor-
mation has been evaluated with different window lengths as well. Again the
best classification performance of 55.0 ± 3.1% has been achieved with a win-
dow length of 0.6 s. The results also show that the adaptive codebooks that are
computed for each tile by the feature augmentation approach allow for a more
fine grained analysis. The best results are achieved by using 6 or 8 tiles, while
the pyramid scheme shows the best result with only two tiles.

Table 1. F-scores [%] and standard deviation for pyramids and temporal feature aug-
mentation for different window lengths and tilings. The results are averaged over all
three scripts, both annotations and 50 codebook generations using Z = 30.

tilings
w 2 4 6 8 10 12

te
m

p
o
ra

l 0.3 50.6±3.9 50.8±3.5 50.8±3.4 50.6±3.3 50.7±3.4 50.6±3.4
0.6 53.8±3.0 55.3±2.6 55.7±3.1 55.7±3.0 55.4±2.8 55.5±2.7
0.9 51.7±5.9 53.5±4.2 55.2±4.5 55.3±4.6 55.1±3.9 55.2±4.2
1.2 50.0±5.3 52.0±3.7 53.1±4.6 54.2±4.4 54.1±3.9 54.1±3.6
1.5 43.1±9.1 48.3±6.3 49.9±6.4 51.1±6.2 51.8±5.8 52.0±5.1

p
y
ra

m
id

0.3 50.3±3.6 50.1±3.5 50.0±3.5 49.7±3.5 49.5±3.4 49.6±3.4
0.6 54.9±3.1 54.7±2.8 54.6±2.8 54.4±2.7 54.4±2.8 53.9±2.9
0.9 54.6±3.9 54.2±3.8 54.0±3.9 53.8±4.0 53.6±4.1 53.5±4.2
1.2 54.3±3.6 54.3±3.5 53.9±3.4 53.9±3.3 53.6±3.3 53.4±3.3
1.5 50.7±5.4 50.6±5.1 50.2±5.0 50.1±5.0 49.7±5.0 49.4±5.0
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Using the best configuration for each augmentation scheme, the permutation
test has been performed. This revealed that the temporal augmentation signifi-
cantly (p < 0.01) outperformed the pyramid and the unaugmented classification.
It also showed that the pyramid did not outperform the unaugmented version.

3.3 Codebook Size

Different codebook sizes of Z = 20, 30, 40, 60, 90, 120 were evaluated for
the pyramid approach, the temporal feature augmentation and a Bag-of-Super-
Features approach without temporal information. For all methods the best per-
forming temporal processing configurations are used. Hence, a window size of
0.6 s is used for all three approaches. For the pyramid two tiles and for the
acoustic words with temporal feature augmentation six tiles are computed.

While for the augmented features the size of the overall feature representa-
tion is equal to the super-codebook size V = C · Z, the concatenation in the
pyramid scheme further increases the size of the final representation. Hence, a
temporal pyramid with N tiles at the bottom and one top layer has a final
feature representation of the size (N + 1) · V .

In Table 2 the results are shown. It can be observed that small codebooks of
30 or 40 acoustic words per class yields good results and that the performance
deteriorates with an increasing codebook size. The best performance is achieved
using temporal feature augmentation and a codebook size that uses 40 centroids
per class (i.e. a super-codebook size of V = 680).

3.4 Comparison with State-of-the-art

For comparison, some state-of-the-art methods were re-implemented and used in
combination with the MFCC-GFCC features. Additionally, published results for
the D-Case office live development set were used for comparing the performance.

Re-implemented methods. The Bag-of-Frames method [1], the Bag-of-Audio
words method [13] and a Bag-of-Features approach using Fisher encoding and
a linear SVM (cf. [3]) were evaluated. The Bag-of-Frames estimates one GMM
per class. It achieves the best performance with a codebook size of Z = 30 per
GMM. The Bag-of-Audio words uses hard vector quantization with V = 1000 as
originally proposed and an SVM with a histogram intersection kernel. As Fisher

Table 2. F-scores [%] and standard deviation for pyramids and temporal feature aug-
mentation for different codebook sizes. Best performing temporal configurations are
used. Results are averaged over all three scripts, both annotations and 50 codebooks.

Classifier \ Z 20 30 40 60 90 120

feature augmentation 54.3±2.8 55.7±3.1 55.9±3.5 54.8±4.4 51.5±4.9 48.0±4.8
pyramid 54.3±3.2 54.9±3.1 55.1±3.2 54.5±4.0 52.2±4.6 48.9±4.7
w/o temp processing 54.4±2.7 55.0±3.1 54.8±3.3 54.1±4.1 51.6±5.0 48.0±4.9
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0 20 40 60

NMF baseline [6]
Fisher LinSVM [3]

SVM MFCC [12]
BAW [13]
GMM [1]
BoSF [16]

BoSF Pyramid [16]
BoSF Temporal *
BG-FG GMM [24]

F [%]

literature figures

re-implemented

proposed

Fig. 2. Comparison of different classifiers and literature values on the D-Case office live
development set with the proposed approach * as F-scores [%]. The re-implemented
results are averaged over all three scripts, both annotations and 50 codebook gener-
ations. The best parameter configuration for each classifier was chosen (Color figure
online).

encoding usually uses smaller codebooks, the best performance was achieved
with a codebook size of Z = 5 and encoding the mean and covariance devi-
ation vectors. Detailed results are shown in Fig. 2 in blue. The Bag-of-Audio
words achieved an F-score of only 47%, which is most likely due to the unsu-
pervised codebook learning. Also the Fisher approach yields an F-score of only
26%. This clearly demonstrates that short time windows do not cover enough
frames in order to robustly estimate the local distributions around each centroid
of the codebook. With an F-Score of 56% the temporal augmentation outper-
formed the well known Bag-of-Audio-Words method. The difference was proven
significant (p < 0.01) by the permutation test.

Results from the literature. When comparing these results with the ones pub-
lished for the D-Case office live development set, shown in Fig. 2 in gray, it can
be seen that the temporal augmentation outperforms most live detection meth-
ods. Note however, that it is difficult to accurately compare to these results as
the protocol might deviate with respect to the number of runs or even more
importantly scripts or annotations used in the evaluation. The offline HMM
based results are not shown since the task of online detection is investigated.
Typically, the best performing offline HMM approaches achieve a 20% higher
F-score (cf. [18]). The best performing online method is the GMM based app-
roach using a separate background model [24]. With an F-score of 56.3% it is
well in the range of our proposed method. However, the authors state that it is
not robust to noise.

3.5 Result Discussion

Figure 3 shows the class-wise F-Score over all sequences. The most difficult cat-
egories include switch and mouse, which usually last only a few ms and are
therefore very difficult to detect in an online detection approach that relies on
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Fig. 3. Classwise F-Score on D-Case Develpment set sequences using the proposed
method.

ground truth

0 5 10 15 20 25 30 35 40 45 50 55
time in s

detection result

alert clearthroat cough doorslam drawer keyboard knock
laughter mouse pageturn pendrop phone printer speech switch
keys silence

Fig. 4. Example detection results for the first 60 s of sequence 01 of the D-Case office
live development set using the proposed method with temporal feature augmentation
using six tiles over a window size of 0.6 s and a codebook size of Z = 40.

some context. In most cases those are mistaken for silence. Longer lasting (e.g.
printing) or very distinctive acoustic events (e.g. knocks or coughs) are more
easily recognized. An exemplary result on the first 60 s of a sequence is shown
in Fig. 4.

4 Conclusion

In this paper a novel method for online acoustic event detection has been pro-
posed. It builds on the Bag-of-Features principle and integrates feature augmen-
tation with a temporal component and a supervised codebook learning step.

The experiments on a challenging indoor dataset of acoustic events show that
the proposed method yields state-of-the-art results compared to other online
event detection methods. Furthermore, it could be shown that the feature aug-
mentation yields significant improvements over a basic Bag-of-Features approach
and the well known pyramid scheme, while at the same time reducing the dimen-
sionality of the representation. The results show that for practical purposes a
processing delay of only 300ms allows for the integration of enough context to
robustly recognize acoustic events.
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Abstract. While head pose estimation has been studied for some
time, continuous head pose estimation is still an open problem. Most
approaches either cannot deal with the periodicity of angular data or
require very fine-grained regression labels. We introduce biternion nets, a
CNN-based approach that can be trained on very coarse regression labels
and still estimate fully continuous 360◦ head poses. We show state-of-the-
art results on several publicly available datasets. Finally, we demonstrate
how easy it is to record and annotate a new dataset with coarse orienta-
tion labels in order to obtain continuous head pose estimates using our
biternion nets.

1 Introduction

The estimation of head poses is an important building block for higher-level
computer vision systems such as social scene understanding, human-computer
interfaces, driver monitoring, and security systems. For many of these tasks, a
continuous head pose angle is arguably more useful than few discrete orientation
classes as yielded by most current head pose systems [4,8,34].

While many face pose and gaze estimation methods have been covered in
the literature, the task of regressing head pose is distinctly different in that it
also handles people not facing the camera, resulting in poses spanning the full
360◦ spectrum. Thus, head pose estimators need to be able to cope with the
periodicity of angular data, i.e. the fact that 361◦ corresponds to 1◦ and, for a
head pose of 0◦, a prediction of 359◦ is no worse than a prediction of 1◦. Face pose
and gaze estimators can conveniently sidestep this difficulty by constraining the
prediction range to non-periodic intervals such as [−90◦, 90◦]. Another difficulty
in learning a head pose regressor lies in obtaining enough training data with
accurate regression labels [6,11]. All publicly available datasets, except [5], are
either restricted to coarse orientation bins, or to the range of front-facing poses
[2,6,9,10,14,15].

A multitude of approaches [25,32] has been proposed which solve only one
of the two aforementioned problems: either they cannot cope with periodic-
ity [24,26,34], or they need fine-grained regression data [16,33,35]. Since none
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of this is satisfactory, we propose a principled approach to solve both problems
simultaneously.

Our approach is based on convolutional neural networks (CNNs), for which
we propose a novel output layer embedding an angle into two dimensions, coupled
with a fitting cost function. It is able to handle fully periodic, continuous regres-
sion while only requiring coarse, discrete class-labels as training data, which are
easily obtainable from video recordings. We call our approach biternion nets.
Before demonstrating the effectiveness of the biternion output layer, we validate
our CNN architecture on several publicly available datasets and show that it
yields state-of-the-art results.

In summary, our contributions are threefold: (1) We present a CNN archi-
tecture that outperforms state-of-the art results on several public head pose
datasets. (2) We propose a novel combination of output layer and cost func-
tion to elegantly solve the problem of periodic orientation regression, which we
call biternion nets. (3) We show that we can learn continuous head-pose regres-
sion from discrete training labels. To demonstrate this, we present continuous
regression results obtained from a biternion net trained on data recorded and
annotated in less than two and a half hours.

2 Related Work

Head pose estimation has been a very active research field for the past
20 years [25,32]. Over time, authors have developed many different methods to
approach this problem. The probably most popular direction is the functional
mapping of images to a feature space where classifiers or regressors can directly
be applied. These mappings range from simple gradient-based features [7,21,24],
over covariance features [34], to learned functional mappings [4,26,33]. These
approaches often result in a manifold embedding of the images [26,34]. However,
if training data is sparse, it is hard to ensure the quality of these manifolds [19].
Another approach is to find facial landmarks, such as eye and mouth locations,
and use these to determine the pose of a face [9]. It is also possible to use track-
ing information to get a good prior for the head pose [7,10]. Here, interactions
between the body pose and the head pose can be exploited [5,8]. Several of these
techniques have also been used for objects such as cars or chairs [18,28,33].

While some of these approaches work on high resolution images [2,10,12,14],
the majority of them is based on low resolution images [5,24,26,34]. With the
recent availability of cheap RGB-D sensors, depth information has also been
used to improve head pose estimation [12].

The high activity within this field has resulted in a large number of different
datasets for head pose estimation [1,2,5,6,9,10,14,15,34], most of which are face
pose rather than head pose datasets and often only contain sparse head poses
and fairly coarse orientation labels. As we are interested in continuous head pose
estimations, most of these datasets are not suitable for our experiments.

Based on the available datasets, most approaches focus on coarse face poses,
while only few head pose estimation approaches and datasets exist [5,34,35].
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Wu and Toyama [35] estimate gradient distributions from 1024 different view-
points and match new views to the nearest viewpoint to determine the pose.
Benfold and Reid [5] use the walking direction obtained from unsupervised peo-
ple tracking in a video sequence to train a regression forest for the head pose.
Tosato et al . [34] use covariance features to classify head poses into a small set
of orientation bins.

CNNs have also been used for orientation estimation before. Qi [28] fine-
tunes a large pre-trained CNN to classify the orientation of chairs using a large
amount of rendered chairs with precise labels. However, using CNNs pre-trained
on ImageNet for low-resolution head pose estimation makes no sense due to
the significantly different filter resolution, type of data, and learning task. Most
similar to our approach is the one by Osadchy et al . [26], which also uses a CNN
for continuous head pose estimation. They learn a face manifold on (non-public)
data with regression labels, which enables them to jointly detect and estimate
the pose of faces. In contrast to us, they focus on using face pose data to improve
face detection and do not address the periodicity problem.

Some approaches also aim at solving the periodicity problem [16,18,33]. How-
ever, their approaches are typically based on nearest-neighbor matching or kernel
density estimation, meaning that they require dense orientation labels for train-
ing. All three of the above approaches use fine grained face datasets [1,14] and
it is unclear how well they could perform for head pose estimation.

To the best of our knowledge, only Huang et al . [19] aim at learning con-
tinuous regressors from a discrete face pose dataset. They learn a mixture of
local tangent subspaces that are robust to regression regions with bad coverage
in the training set. Their representation is based on HOG features and they use
high resolution images. It is questionable whether their approach can deal with
head poses, as HOG features are not very expressive for the back of a head.
Furthermore, they do not evaluate how continuous their regression really is.

In conclusion, based on existing approaches, the task of continuous periodic
head pose estimation is still unsolved. Here our approach comes into play.

3 CNNs for Head Pose Estimation

Throughout this paper, we work in the framework of deep convolutional networks
and stochastic, gradient-based optimization. In this section, we present the spe-
cific network architecture we use for all experiments, changing only the output
layer and cost function to match the task at hand. We then apply it to multiple
publicly available datasets, consistently outperforming current state-of-the-art
methods on those datasets.

3.1 The Network Architecture

We use a moderately deep, batch-normalized [20], VGG-style network architec-
ture [30] consisting of six convolutional layers with 24, 24, 48, 48, 64 and 64
feature channels, respectively, followed by a single hidden layer of 512 units,
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and train it for a fixed duration of 50 epochs in all our experiments. For all
details about the network and the training procedure, please refer to the sup-
plementary material. We implemented the network in Theano [3] using IPython
notebook [27]. All numbers reported within this paper are averages over five runs.
While we will show that this architecture already performs very well, it is likely
possible to reduce the error even further by using deeper networks with more
careful regularization and a bag of other well-known tricks [13,17,23,29,36]. We
do not further go down that road, since the goal of this section is simply to
demonstrate the suitability of CNNs in general, and our architecture in partic-
ular, for predicting head poses on low-resolution images.

3.2 Experimental Validation

We use the collection of datasets provided by Tosato et al . [34] to validate our
approach. First, we show results on those datasets that treat pose estimation
as a classification task in Table 1. These datasets contain very rough pose bins,
such as Front, Back, Left and Right, with the addition of FrontLeft and
FrontRight for HIIT and HOCoffee, and Background for the 5-class version of
the QMUL dataset.

In this case, the network’s output layer is a softmax-layer and the cost being
optimized is the negative log-likelihood. While the accuracies obtained by state-
of-the-art methods are already high, we show that our CNN architecture achieves
a significant improvement as it reduces the error by about a third across all
datasets.

Table 1. Class-average accuracies on the four classification datasets from [34]. The
sample counts refer to the provided train/test splits. We obtain state-of-the-art results
on all datasets.

HIIT HOCoffee HOC QMUL

# Samples 12 000/12 007 9522/8595 6860/5021 7603/7618 9813/8725

# Classes 6 6 4 4 4 + 1

Tosato et al . [34] 96.5 % 81.0 % 78.69 % 94.25 % 91.18 %

Lallemand et al . [21] - - 79.9 % - -

Our CNN 98.70% 86.99% 83.97% 95.58% 94.30%

We next turn to the datasets with continuous regression labels. Statistics
about the datasets are shown in Table 2, together with our results. The IDIAP
Head Pose dataset, which stems from a video recording of few people in a meet-
ing room, has a very restricted range of angles; specifically, 94% of the pan
angles lie within the rather narrow, front-facing range of [−60◦, 60◦]. For this
experiment, the output of our network is computed by a fully-connected layer
with three outputs and the cost function is the mean absolute deviation. This
simple approach to pan-tilt-roll regression outperforms the state-of-the art in all
three dimensions. Please note that with a linear output layer and the MAD cost
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Table 2. A comparison to two regression datasets from [34]. The first number is the
mean absolute angular deviation, the second its standard deviation across test-samples.
We obtain state-of-the-art results on all datasets.

IDIAP Head Pose CAVIAR-c CAVIAR-o

# Samples 42 304/23 991 10 660/10 665 10 802/10 889

Pose range pan tilt roll pan pan

[-101,101] [-73,23] [-46,65] [0, 360] [0, 360]

Tosato et al . [34] 10.3◦±10.6◦ 4.5◦±5.3◦ 4.3◦±3.8◦ 22.7◦±18.4◦ 35.3◦±24.6◦

Ba & Odobez [2] 8.7◦±9.1◦ 19.1◦±15.4◦ 9.7◦±7.1◦ - -

Our CNN 5.9◦±7.2◦ 2.8◦±2.6◦ 3.5◦±3.9◦ 19.2◦±24.2◦ 25.2◦±26.4◦

function, the network does not learn the pan, tilt and roll angles jointly; they
merely share a common feature representation.1

The CAVIAR dataset comes in both a clean version containing only fully-
visible heads, and an occluded version containing only partially-occluded heads.
While they do come in the full range of angles, almost 40% of the training
samples lie within ±4◦ of the four canonical orientations. A major downside of
this dataset is that most images have been upscaled to 50-by-50 pixels from their
original size of, on average, 7-by-7 pixels. We still perform the comparison for
the sake of completeness, and our network manages to beat the current state-of-
the-art on such a difficult dataset.

These experiments show that the network architecture we use forms a solid
basis by itself and we can now use it to further investigate continuous, periodic
orientation regression.

4 Periodic Orientation Regression

None of the datasets in the previous section really uncover a crucial problem for
full head-orientation regression: periodicity. We can demonstrate that this is a
real problem by adding 360◦ to all negative pan values of the IDIAP dataset.
With this semantically identical dataset, the exact same (naive) network used
in the previous section becomes very unstable and only reaches errors of 12.9◦,
4.5◦ and 5.3◦ for pan, tilt and roll, respectively.

For memory-based models such as k-NN and kernel-methods, periodicity only
plays a role during the voting part of the algorithm, where it can easily be solved
by a modulo operation. But this kind of model suffers from the inherent need of
fine-grained training data, hence our focus on parametric models.

For parametric models such as CNNs, periodicity may cause problems in two
different ways: (1) The cost function to be optimized is unaware of the fact that
a prediction of 359◦ for a ground truth orientation of 0◦ should incur the same
loss as 1◦. Unfortunately, simply applying a mod operator to the output of the

1 This becomes evident by computing the derivatives of the cost w.r.t. the parameters:
the tilt and roll terms are absent from the derivative w.r.t. the pan and vice-versa.
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network results in a discontinuous error function that can no longer be optimized
robustly. (2) A regression output which results from a matrix-vector product,
such as performed in most parametric models, is an inherently linear operation,
while we ideally want a circular output.

Our biternion approach solves both of these problems in an elegant way.

4.1 Von Mises Cost Function

The first problem of discontinuity in the cost function can be addressed by
turning to the von Mises distribution [22], which is a close approximation to the
normal distribution on the unit circle:

pVM(ϕ | μ, κ) =
eκ cos(ϕ−μ)

2πI0(κ)
. (1)

Equation (1) defines its probability density function, where ϕ is an angle, μ is
the mean angle of the distribution, κ is inversely related to the variance of the
approximated Gaussian, and I0(κ) is the modified Bessel function of order 0,
which is a constant for fixed κ. Since it leverages the cosine function to avoid
any discontinuity, it is well-suited for gradient-based optimization and we can
derive the following cost function by inverting and scaling it accordingly:

CVM(ϕ | t;κ) = 1 − eκ(cos(ϕ−t)−1). (2)

In the cost formulation, we call t the target value and κ is a simple hyperpara-
meter that controls the tails of the loss function.

4.2 Biternion Representation for Orientation Regression

While the von Mises cost presented above solves the first issue, the fundamen-
tal problem of predicting a periodic value using a linear operation persists.
Also, ‖y‖ = 1Inspired by the quaternion representation often found in com-
puter graphics, we propose a natural alternative representation of an angle by
the two-dimensional vector consisting of its sine and cosine y = (cos ϕ, sin ϕ),
which we call the biternion representation. Surprisingly, the only use of a sim-
ilar encoding we found in the related literature is that by Osadchy et al . [26],
who also embed angles into a similar, albeit different, higher-dimensional space.
Unfortunately, their approach does not solve the periodicity problem since it
uses the discontinuous atan2 function.

The biternion representation immediately suggests the use of the continuous,
cyclic cosine cost widely used in the NLP literature [31]:

Ccos(y | t) = 1 − y · t
‖y‖ ‖t‖ . (3)

Implementing a biternion output-layer in any framework for neural networks
is relatively straightforward, since all that is needed is a fully-connected layer
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and a normalization layer. For clarity, Eq. 4 gives the operation performed by a
biternion-layer during the forward pass, where W ∈ R

n×2 and b ∈ R
2 are the

learnable parameters from the fully-connected layer:

fBT(x;W,b) =
Wx + b

‖Wx + b‖ (4)

The derivative of the normalization, necessary for the backward pass, can then
be stated as

∂xi

x
‖x‖ = ∂xi

x√∑
j x2

j

=

∑
j �=i x2

j(∑
j x2

j

) 3
2

=

∑
j �=i x2

j

‖x‖3 . (5)

Notice how (1) the normalization in the biternion layer makes sure the output
values are learned jointly and (2) the normalization terms in Ccos can subse-
quently be omitted.

Finally, the ensembling of multiple biternion predictions, as needed by some
augmentation techniques, can simply be performed by averaging the vectors,
since the average of unit vectors is again a unit vector, a fact also used by
Hara et al . [16].

Biternions are Restricted Quaternions. We now show that biternions corre-
spond to unit-quaternions restricted to a single reference axis of rotation. Let Qϕ

be the quaternion
(
ax sin(ϕ

2 ), ay sin(ϕ
2 ), az sin(ϕ

2 ), cos(ϕ
2 )

)
representing a rota-

tion of ϕ around the axis a and Qθ the quaternion representing a rotation of θ
around the same axis. A quaternion representing the immediate rotation from
Qϕ to Qθ can be computed as Qϕ

Qθ
, which corresponds to:
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Using the fact that ‖a‖ = 1, the last entry of the quaternion—which
encodes the cosine of half the angle represented by the quaternion—simplifies to
cos(ϕ

2 ) cos( θ
2 )+sin(ϕ

2 ) sin( θ
2 ) = cos(ϕ−θ

2 ). The other entries can similarly be sim-
plified, resulting in a quaternion representing a rotation of the angle from ϕ to θ
around the same axis a. This shows that biternions can be seen as quaternions
around a fixed reference axis a and the cosine cost corresponds to the amplitude
of the direct rotation between the predicted and the target biternions.

Relationship to the von Mises Cost. By comparing CVM and Ccos, it is
visible that they do not compute the same expression, i.e., the biternion-layer
coupled with the cosine cost does not optimize the von Mises cost. The von
Mises cost for the biternion layer can be written as:

CVM,BT(y | t) = 1 − eκ(y·t−1). (6)

Notice the similarity to Eq. 3; the main difference is the presence of e, which
“pushes down” the error around the target value, in effect penalizing small mis-
takes less strongly.
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4.3 Experimental Results

In order to investigate the relative usefulness of the von Mises cost and the
biternion representation for periodic regression, we now turn to the TownCentre
dataset [5]. This dataset contains heads of tracked pedestrians in a shopping
district, annotated with head pose regression labels. The prior distribution of
the pose angle is shown in the middle of Fig. 1. For all experiments, we train
on 7920 heads of 3960 persons and evaluate on 774 heads of 387 random but
different persons. The results can be seen in Table 3.

Table 3. Quantitative regression
results for the TownCentre dataset [5].

Method MAE

Linear Regression 64.1◦±45.0◦

Naive Regression 38.9◦±40.7◦

Von Mises 29.4◦±31.3◦

Biternion 21.6◦±25.2◦

Biternion+Von Mises 20.8◦±24.7◦

Benfold&Reid [5] 25.6◦ / 64.9◦

As a first baseline, we train a shal-
low linear regressor on raw pixel values.
We then train a deep CNN using a naive
regression output and cost, as described in
Sect. 3.2. While the depth of the architec-
ture allows it to perform much better, it is
still plagued by the two problems of cyclic
regression. Using the von Mises cost solves
the first problem in the cost function; this
reduces the error by a significant amount, showing that the more appropriate
cost function indeed does aid optimization. Following this, we evaluate the per-
formance of a biternion net both with the cosine cost and the von Mises cost.
As can be seen, the expressive power of the biternion layer solves both problems
encountered in periodic regression and produces the best results.

It should be noted that we cannot fairly compare to most of the related work
for various reasons: the results in [8] have been computed on only 15 persons,
which is far from representative for this dataset. Chamveha et al . [7] use a
tracker and scene-specific orientation priors. Even the numbers from Benfold
and Reid [5] are not a fair comparison since they use walking direction as a
prior. The first of their numbers in Table 3 is achieved by a regressor which has
seen all persons and their walking direction during training2, while the second
of their numbers has not seen any of the persons since it has been trained on a
different dataset.

5 Continuous Regression from Discrete Training Labels

We have shown that biternion nets are well-suited to fully-periodic head pose
regression. We now turn to the third contribution of this paper, namely the
ability to perform continuous head pose regression using only discrete pose
labels for training. To simulate discrete pose labels, we discretize the contin-
uous annotations of the TownCentre dataset. By varying the number of discrete
bins, we generate multiple datasets on which we train various approaches using
only the centers of the bins as training labels. We then evaluate the predictions
made by these approaches by computing their mean angular deviation w.r.t.
the full regression annotations of the test set. All results are reported in Table 4.

2 Their setup is justified for their task, but makes a fair comparison impossible.
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Table 4. Regression results from different approaches for different discretizations. Here
infinity represents no discretization. Note that the Biternion layer handles the discrete
labels very well, both with the cosine and the von Mises cost.

Class Class center Class Naive Von Mises Biternion Biternion +

bins interpolation regression Von Mises

3 37.2◦±32.8◦ 35.5◦±30.4◦ 45.5◦±39.7◦ 36.6◦±34.5◦ 32.1◦±28.1◦ 32.2◦±28.8◦

4 34.9◦±30.5◦ 31.7◦±29.3◦ 43.0◦±40.6◦ 33.4◦±32.2◦ 27.1◦±27.3◦ 26.9◦±27.4◦

6 26.1◦±28.4◦ 24.1◦±27.6◦ 38.3◦±38.5◦ 31.8◦±33.1◦ 22.1◦±25.5◦ 22.7◦±26.7◦

8 24.5◦±28.6◦ 22.6◦±28.0◦ 40.6◦±39.7◦ 30.2◦±32.3◦ 21.8◦±24.9◦ 21.3◦±25.2◦

10 23.8◦±27.5◦ 21.9◦±26.9◦ 37.6◦±38.3◦ 28.8◦±30.8◦ 21.4◦±24.6◦ 21.8◦±25.5◦

12 23.6◦±29.4◦ 22.2◦±28.8◦ 39.0◦±38.2◦ 29.7◦±31.5◦ 21.4◦±25.3◦ 21.8◦±25.3◦

∞ - - 38.9◦±40.7◦ 29.4◦±31.1◦ 21.6◦±25.2◦ 20.8◦±24.7◦

We first apply two classification-based baselines, followed by all regression-based
approaches introduced in Sect. 4.

In order to train a regressor using discrete pose labels, a first rather simplistic
approach commonly found in the literature is to train a classifier which outputs
the class center as prediction. For probabilistic classifiers, a natural extension of
this approach is to output the argmax of a quadratic interpolation of the class
with the highest posterior probability and its neighboring classes. On average,
this improves the results by about 2◦.

CNNs compute a continuous function of their input and, during training,
each sample pulls the parameters of the CNN slightly into a direction leading to
a better prediction of its pose. This intuition suggests that it should be possible
for CNNs to learn a continuous mapping from images to pose angles even when
only given very rough pose labels. This is shown in the last four columns of
Table 4. As can be seen, this idea hardly works at all in the naive regression
case and is only somewhat improved by the von Mises cost. Biternion nets, on
the other hand, have no difficulty being trained this way and in fact outperform
the class-based approaches with any number of realistically annotable classes,
whether the cosine or the von Mises cost is used

Unfortunately, looking only at numbers representing an average error over a
large amount of images does not reflect the real advantage of biternion nets over
the classifier approach. For this reason, we plotted heatmaps of the predictions

Softmax 4 Softmax 8 Ground truth Biternion 8 Biternion 4

Fig. 1. Prediction distributions for softmax and biternion output layers trained on
different discretizations. The classification results include the interpolation.
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made by a CNN classifier with quadratic interpolation and the predictions made
by a biternion net in Fig. 1. These heatmaps clearly show that, while the class-
interpolation approach and biternion nets give similar scores, the predictions
of the biternion nets are vastly superior because they are more continuous and
similar to the distribution of the ground-truth angles.

5.1 Practicality

To show the potential of our approach, we recorded a small dataset using a
common smartphone camera and annotated it with eight class labels. For this,
we recorded 24 people in our lab and asked them to rotate on the spot. We
then manually cropped a square region in the resulting videos containing their
head and rescaled it to 50 × 50 pixels to make it compatible to our network
architecture. In our scenario, the image sequence of a single person can easily be
annotated based on temporal constraints. We split up the full annotation task
into two annotation runs of four classes. First we annotate Front, Left, Back
and Right, followed by the same annotation with boundaries shifted by 45◦.
We select temporal regions in the video through their start and end frames and
mark any such region as one class. The resulting pair of annotations can then
easily be merged into an eight-class annotation. The whole process, including
the cropping of the head regions and the annotation itself, was done by a single
person and took no longer than two and a half hours.

We train a biternion net on the resulting dataset except for one person, which
we set aside for qualitative evaluation. We only train this network for five epochs
since the number of people in this dataset is orders of magnitude smaller than
in all previous datasets. We then let the biternion net predict the head pose of
the left-out person for each frame individually. The result, which can be seen in
Fig. 2, clearly shows that the network estimates a fairly smooth sinusoidal pose
across the two turns the person made, despite having been trained on only eight
discrete pose annotations.

Fig. 2. Qualitative results. The purple line shows the sine of the predicted orientation
angle across two full turns. For each head, the purple mark shows the orientation as seen
from above. Results are equally spaced and not cherry-picked, more densely sampled
results can be seen in the supplementary material.
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6 Conclusion

In this paper, we have introduced biternion nets, a CNN based approach. We
have validated our architecture on several public datasets and have shown that
our biternion layer is essential for continuous periodic orientation regression.
Our obtained results redefine the state of the art on all used datasets. We fur-
thermore show that, using biternion nets, it becomes possible to collect data
with discrete and coarse orientation labels, which can be annotated quickly and
cheaply, in order to train a continuous and precise head pose regressor. This
suggests that fine-grained regression annotations are no longer necessary for
continuous orientation estimation. The work in this paper was funded by the
EU projects STRANDS (ICT-2011-600623) and SPENCER (ICT-2011-600877).
Code is available at http://github.com/lucasb-eyer/BiternionNet.
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Abstract. Physics-based modeling is a powerful tool for human gait
analysis and synthesis. Unfortunately, its application suffers from high
computational cost regarding the solution of optimization problems and
uncertainty in the choice of a suitable objective energy function and
model parametrization. Our approach circumvents these problems by
learning model parameters based on a training set of walking sequences.
We propose a combined representation of motion parameters and phys-
ical parameters to infer missing data without the need for tedious opti-
mization. Both a k-nearest-neighbour approach and asymmetrical prin-
cipal component analysis are used to deduce ground reaction forces and
joint torques directly from an input motion. We evaluate our methods by
comparing with an iterative optimization-based method and demonstrate
the robustness of our algorithm by reducing the input joint information.
With decreasing input information the combined statistical model regres-
sion increasingly outperforms the iterative optimization-based method.

1 Introduction

The central endeavour in many biomechanical studies is to determine joint
forces and torques, which act at and across a joint, respectively [6,9,11]. These
forces summarize all active forces effecting a joint, e.g., exerted by tendons, lig-
aments and neighboring bone segments. The clinical standard to calculate joint
torques is through inverse dynamics, based on the measurement of ground reac-
tion forces (GRF) and joint positions by means of force plates and a motion
capture (MoCap) system [18]. Despite being frequently used, the results of this
approach have to be treated carefully, because various error sources exist which
sometimes have non-negligable effects. Especially the length of estimated lever
arms is highly sensitive to marker placement uncertainties and the chosen model
for body segment parameters [10,16].

An alternative method for torque estimation is physical modeling of the
human body and simulation of dynamical development via forward dynamics.
There already exists a variety of physics-based models for human gait with differ-
ing complexity. A relatively simple approach is to model body parts by rigid seg-
ments that are linked by joints associated with spring torques. These mass-spring
models qualify to describe the human walk adequately without the drawback of a
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 169–180, 2015.
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high dimensional parameter space. The simulation of movement can be achieved
via forward dynamics, i.e. by integrating the equations of motion (EOM) and
simultaneously optimizing model parameters to extremize an objective function
(often defined as some form of energetic effort). This method has the advantage
of directly accessible joint torques, implemented in the EOM, but provokes high
computational cost due to the integration. The closer the model gets to reality,
i.e. the higher the degree of freedom (DOF) becomes, the larger the computa-
tional cost. The iterative minimization of an objective function without prior
knowledge of model parameters is referred to as optimization-based method in
the following.

Our approach aims to adopt the benefits of physics-based motion analy-
sis while simultaneously avoiding high computational cost by means of machine
learning techniques. Methods like principal component analysis for pattern recog-
nition have already been used to analyse and snythesize human motion by Troje
et al. in 2002 [14]. We propose a statistical model that combines the physical
parameters of a two dimensional mass-spring model based on [3] with corre-
sponding gait characteristics following this approach.

The data driven learning of physical parameters allows us to include style
dependent properties of walking into our framework. These properties comprise
subject specific preferences to burden some joints more than others, which is an
information usually lost when minimizing a general energy function. Simulations
were executed on a training set of MoCap data from Troje et al. [14] to estimate
a subspace from the physical and motion parameters. This combined represen-
tation, termed combined statistical model (CSM) in the following, enables us
to directly infer force patterns from motion data without further optimization.
Consequently, we achieve a massive reduction of computation time of force and
torque estimation compared to optimization-based methods. The computation
time of the regression with our CSM lies in the order of seconds. In contrast to
that, the optimization-based method we applied for comparison requires com-
putation times of up to several hours. Within the scope of our CSM we propose
two different direct regression methods, namely a k-nearest-neighbours (k-NN)
approach and asymmetrical principal component analysis (aPCA) [1]. We eval-
uate our methods by comparing GRFs and joint positions to ground truth data
and knee torques to calculations via inverse dynamics.

To summarize, our contributions are as follows:

– We introduce a combined statistical model for human motion and correspond-
ing physical parameters.

– The model allows us to estimate missing data in real-time.
– Finally, we analyze different regression methods for force and torque estima-

tion.

2 Related Work

The incorporation of physics-based models into the analysis and synthesis of
movement offers the benefit of physical validity. Typical errors like the sliding of
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feet on the ground or the simulation of unstable motions can be avoided. Tech-
niques for motion generation and analysis divide into controller-based methods
[13,15,21] and optimization-based methods [4,5,8,20].

In 1971 Chow and Jacobson introduced an optimization-based approach to
simulate human gait [5]. Since then, optimization techniques have been widely
used by researchers on the basis of increasingly complex skeletal and muscoskele-
tal models. Fleet et al. [4] used a 12-segment articulated body model to estimate
joint torques and contact dynamics. Their results show consistently estimated
torques for walking and running over a wide spread of subjects. The estimated
ground reaction forces (GRF) are a good approximation of the ground truth
data concerning the mean value, but differ regarding temporal development.

Xiang et al. [20] used a large-scale physical model in order to predict gait
patterns. They applied a predictive dynamics approach to approximate joint
angles and torques, minimizing the dynamic effort (sum of integrated squared
joint torques). Furthermore, GRFs were calculated inversely. The predicted val-
ues are in overall similar to experimental data, though calculated GRFs display
noticeable difference concerning shape from data available in the literature.

General issues of optimization-based generation of motion with a large degree
of freedom (DOF) model are high computational cost and the need for numer-
ous constraints on the model parameter space. Moreover, the minimization of
an energy function to optimize walking parameters is a convenient tool for the
synthesis of natural looking gaits in general, but often fails to predict subject spe-
cific walking styles. Liu et al. [8] adressed this problem by introducing Nonlinear
Inverse Optimization to estimate physics-based style parameters from motion
capture (MoCap) data. They used learned parameters for the synthesis of new
motion in the respective style. Wei et al. [17] combined statistical motion priors
with physical constraints in order to generate physically-valid human motion.
These last two approaches aim at the generation of physically realistic motion
but do not analyze the consistency of simulated force patterns with ground truth
data.

In contrast to the existing works, we propose a framework, that encompasses
geometrical properties, motion information and physical parameters in a com-
bined statistical model. Relevant advantages of our method towards state-of-the-
art methods are robustness in the case of incomplete input information and low
computational cost. The combined parametrization enables us to deduce missing
data, such as forces or joint trajectories, in real-time.

3 The Physics-Based Statistical Model

The generation of a statistical model that combines motion characteristics with
a physical representation requires parameter learning on a training set S. For
this purpose, MoCap data from Troje et al. [14] was used. The dataset contains
walking sequences of 115 male and female subjects with varying weight (from
44.4 kg to 110 kg), height (from 1.52 m to 1.96 m) and age (from 13 years to
59 years).



172 P. Zell and B. Rosenhahn

3.1 Motion Model

Walking can be considered as a time series of postures p and is represented
similiarly to [14] as a linear combination of principal component postures with
sinusoidal variation of coefficients,

p(t) = p0+p1 sin(ωt)+p2 sin(ωt+Φ2)+p3 sin(2ωt+Φ3)+p4 sin(2ωt+Φ4) . (1)

p0 is the mean posture and (p1,p2,p3,p4) are principal components, called
eigenpostures in the following. ω is the fundamental frequency describing the
gait and (Φ2, Φ3, Φ4) are phase delays. In this framework, a posture consists of
15 three-dimensional joint positions, resulting in a 45-dimensional vector p. The
complete motion parametrization is represented by

u = [p0, p1, p2, p3, p4, ω, Φ2, Φ3, Φ4]T . (2)

3.2 Physical Model

Our physical gait model is an extension of a two dimensional mass-spring-model
of the lower extremeties and the torso by Brubaker et al. [3]. Our modifications
are additional body segments (head and arms) with appropriate springs, a toe-
off force, and nonlinear force characteristics for a spring that acts on the stance
shank. The linear toe-off force FTO is active during a finite timespan ΔtTO at
the beginning of a gait step (half of a gait cycle) and accelerates the center of
mass (COM) of the rear shank. The force is set to

FTO = ι(1 − t

ΔtTO
)[− sin(φS2 + α), cos(φS2 + α)]T , (3)

where ι indicates the initial magnitude and α defines the deviation of the force
direction from the orientation of the rear shank segment, given by φS2.

Motivated by research on nonlinear spring design [12], we use a nonlinear
spring torque that acts on the stance shank to improve the simulation of natural
knee flexion and to cover a greater variety of gait patterns. More precisely we set
the spring’s resting angle φ(0) to a fourth order polynomial over the x-position
of the whole body’s COM xCoM resulting in the torque

τ = −κ
(
φS1 − φ(0)(q,σ)

)
− dφ̇S1, (4)

φ(0)(q,σ) = φ(0) +
4∑

k=1

ckxk
CoM (q,σ) . (5)

The parameters κ and d are spring stiffness and attenuation constant, respec-
tively and the angle φS1 describes the orientation of the stance shank. The vector
q defines the configuration of the model in the form of segment angles and σ
describes the subject-dependent geometry, i.e. segment lengths. The temporal
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state of the physical model is given by the pair (q(t), q̇(t)) and can be deter-
mined by integrating a set of equations of motion, resulting in the dynamic state
function

(q(t), q̇(t)) = D(t, q0, q̇0,θ,σ) , (6)
where (q0, q̇0) indicates the initial state and θ includes all modeled force para-
meters, i.e. spring and toe-off force parameters.

A detailed analysis of the effects, that these enhancements have on the simu-
lated gait patterns exceeds the scope of this paper and remains for future work.
The focus of this publication lies on the inclusion of statistic knowledge to esti-
mate forces and joint torques.

3.3 Combined Representation

To combine the physical properties with the information about a subject’s
motion, single gait steps taken from the MoCap walking sequences are approx-
imated using the physical model. The approximation process can be divided
into two parts: First, subject-specific body parameters and angular dynamics
are estimated from MoCap data. Afterwards, effective torques and forces are
approximated via model simulation.

In the first step, the distance between two dimensional cartesian model and
MoCap joint coordinates rmodel and rMoCap, respectively, is minimized by opti-
mizing body segment lengths and angles over a timespan of several steps,

(q(t),σ) = arg min
q,σ

{ ∑
j

∣∣∣rMoCap,j(t) − rmodel,j(q(t),σ)
∣∣∣2

}
. (7)

We calculate angular velocities and accelerations by means of finite differences
and define the consequent states (q(t), q̇(t))targ as target for the following model
simulation. These target states need to be temporally aligned. For this purpose,
heel strike times have to be known and are assumed to take place at time points
which exhibit a local maximum in step length.

In the second step of the approximation process we search for physical model
parameters, that create a motion which has minimal distance to the target
motion. In other words, we simulate a step of the model by evaluating func-
tion D from Eq. (6) for a set of key times {tk}k and minimize the sum of
squared approximation errors. The times tk lie within the estimated timespan
Ts for single support of the gait step because our physical model does not include
a double support phase.

Since our main interest lies in generating realistic force patterns, we also
constrain the model simulation to yield GRF values Fsim within the vicinity of
ground truth data Ftrue. The values are normalized, i.e. divided by the total
body mass M , for comparability. The optimization problem is formulated as
follows,

(q0, q̇0,θ) = arg min
q0,q̇0,θ

{ ∑
k

∣∣∣D(tk, q0, q̇0,θ,σ) − (q(tk), q̇(tk))targ
∣∣∣2

}
,

s.t. |Fsim(q(tk), q̇(tk), q̈(tk),σ) − F̄true(tk)| ≤ ηk , (8)
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with thresholds ηk. We calculate the effective normalized GRF via

Fsim(q, q̇, q̈,σ) =
∑

i

mi

M
(ai(q, q̇, q̈,σ) − g) , (9)

where ai is the linear acceleration of segment i and g is the gravitational accel-
eration vector with magnitude g = 9.81m/s2.

The optimization problems in Eqs. (7) and (8) are solved by the interior-point
algorithm. The resulting physics-based model parameters are

v = [q0, q̇0, θ,M ]T , (10)

with appended total body mass M which is known from the training set.
Based on the combined parametrization of u and v, it is possible to infer joint

torques from joint trajectories and vice versa. We do not perform the reverse
regression, since joint torques are typically not available as ground truth data,
but instead infer joint trajectories from the GRF. For this objective, we define a
set of GRF features f . The behaviour of Fx(t) is approximately linear. Therefore,
we use the slope of Fx(t) as a feature. For Fy(t) we choose the magnitudes at the
two maximum points and the minimum point. This results in a four-dimensional
feature vector. In the training set, no ground truth data on GRF vectors exists,
which is why we learn the GRF parameters f by the use of our simulated values
Fsim.

Along with the motion representation from Eq. (2) and the physical para-
meters from Eq. (10) this yields a combined description of walking in form of a
285-dimensional subject specific vector ws = [uT

s ,vT
s ,fT

s ]T . We obtain a para-
metrization for the whole training set by writing the vectors ws into the columns
of a matrix W :

W =

⎡
⎣u1 ... u115

v1 ... v115

f1 ... f115

⎤
⎦

︸ ︷︷ ︸
115 subjects

∈ R
229 (motion Eq. (2))

∈ R
52 (physical model Eq. (10))

∈ R
4 (GRF features)

(11)

4 Missing Data Estimation

4.1 Direct Regression

The combined statistical model encompasses geometrical properties, dynamical
behaviour and the physical basis of a walking subject. All of these features con-
tribute to the characteristics of a gait pattern and their mutual dependency
can be used to infer missing data from an incomplete parameter set. We apply
two different regression methods: k-nearest-neighbour (k-NN) regression and an
asymmetrical projection into the principal component space (aPCA), as intro-
duced by [1] for the reconstruction of occluded facial images. Motivated by sparse
representation methods [7,19], our algorithm first performs a classification of the
input data concerning predefined motion features, which divide the training set
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into five pairs of disjoint subclasses. The focus lies on lower body dynamic, e.g.
the knee-flexion at different points of the gait cycle. We classify regarding object
to class distances of the known part of the parameter set, as suggested by [2].
The intersection of the best matching classes is defined as sample space for the
following regression. For the k-NN regression, we set k equal to the number of
vectors w covered by this reduced subject set and iteratively reduce k, if the
infered joint torque magnitudes surpass a fixed threshold.

4.2 Iterative Optimization

In order to emphasize the advantage of a combined statistical model, we com-
pare the performance of our regression methods to an alternative iterative
optimization-based approach, in which we optimize Eqs. (7) and (8) to approxi-
mate the motion and calculate suitable forces. In the case of incomplete motion
input, i.e. incomplete joint trajectories, we augment Eq. (8) to include a penalty
function E(q, q̇,θ) in order to account for the missing joint position information.
The energy function is based on dynamic effort,

E(q, q̇,θ) =
1
T

∫ T

0

(
αF 2

TO +
∑

j

βjτ
2
j

)
dt . (12)

We empirically set the weights to α = 0.1, βj = 0.001 for stance leg, spine
and neck joints and βj = 0.0001 for swing leg and arm joints. This way, a high
penalty is placed on the toe-off force and on the stiff joint torques. We refer to
this optimization-based method as OPT.

5 Experiments

We compare the performance of the methods for missing data estimation regard-
ing the deviation of estimates from ground truth data. For this purpose, we
measured joint trajectories and GRF vectors of three different test subjects.
Recording motion and force data was synchronized and done by a Vicon
T-series MoCap system and AMTI force plates, respectively. The laboratory
setup is depicted in Fig. 2. The force plate system measures magnitude and
direction of GRF vectors, which we compare to estimated two dimensional val-
ues, resulting from Eq. (9). Furthermore we determine knee extensor and flexor
torques of the stance leg via inverse dynamics. The results are compared to sim-
ulated model torques τK1. We use symmetric mean absolute percentage error
(SMAPE) as measure for the deviation of estimated magnitudes and first deriv-
atives from ground truth values. The sum of the resulting SMAPE values is
used as error measure ε. We include first derivatives in this measure in order to
increase the weight of shape discrepancies.

5.1 GRF and Knee Torque Estimation

In the first part of the evaluation process our aim is to find the best approxima-
tion of the GRF and the stance knee torque given the full motion parametrization
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u and with an incomplete set of motion parameters, respectively. Starting with
missing left hand trajectory, we successively remove the trajectories of the left
elbow, ankle and knee, so that at the final stage the entire motion information
of limbs on the left-hand side is unknown. The number of missing input joint
trajectories is denoted by N . The results for one example subject can be seen
in Fig. 1. The depicted estimates are based on complete input information in
(a) and missing joint information on the full left-hand side in (b). Associated
SMAPE values εF and ετ of GRF and knee torque estimates, as well as compu-
tation times tc, are listed in Table 1.

As expected the best approximation of ground truth data is achieved by the
optimization-based method OPT with zero missing input trajectories. In this
case the full joint information is used and no additional energy minimization
affects the result. As the input information is reduced the CSM methods increas-
ingly outperform OPT. Especially the k-NN approach shows consistently low
SMAPE values. The error measure for the estimated knee torque even decreases
with increasing N . Which can be explained by the low number of test sub-
jects combined with the inaccuracy of the inverse dynamics calculation of joint
torques, meaning that the corresponding errors coincidentally compensate the
errors resulting from missing joint information. Consequently the comparison of
GRFs has a higher value and should be the decisive measure for the evaluation
of a method.

The computation times of the CSM methods are in the order of seconds for
k-NN and deci-seconds for aPCA, respectively. In contrast to that, OPT requires
computation times of several hours, highly depending on the initialization of the
optimization parameters.

5.2 Joint Trajectory Estimation

We consider the reverse inference process in a second experiment. Now we want
to estimate joint trajectories based on input GRF data. For this experiment
we only apply our k-NN algorithm, since it outperformed the other methods
in the previous experiment. Furthermore the optimization of joint positions to

Table 1. SMAPE values εF and ετ for GRF and knee torque estimates based on the
regression methods described in Sect. 4 with related computation times tc. N indicates
the number of missing input joint trajectories.

k-NN aPCA OPT

N εF ετ tc [s] εF ετ tc [s] εF ετ tc [s]

0 1.504 1.624 2.994 1.726 2.019 0.881 1.483 1.420 8103

1 1.504 1.586 2.117 1.780 2.052 0.934 1.811 1.851 4358

2 1.496 1.582 2.112 2.005 2.083 0.913 1.890 1.793 3096

3 1.524 1.562 2.583 1.606 2.169 0.619 1.843 2.069 3229

4 1.528 1.565 2.538 1.594 2.072 0.669 1.911 2.188 2092
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Fig. 1. Comparison between different regression and optimization methods concerning
estimated GRF components Fy, Fx and knee torques τK1. Positive values correspond to
flexor torques. The results are based on full joint trajectory information (in a)) and on
partial information with N = 4 (in b)), respectively. In the case of GRF components,
the black line illustrates ground truth data and in the case of joint torques, it represents
torques calculated via inverse dynamics. The corresponding evaluation can be found
in Table 1.

approximate a target GRF is a highly under-determined problem. Hence, app-
roach OPT would need to be enhanced with multiple constraints on the motion
and comparability could not be guaranteed. In addition to the motion feature
classification, we reduce the subspace to walkers of matching height to ensure
compliant y-positions of the estimated joints.

We deduce the motion vector u from GRF features f and the subjects mass
M and height H via k-NN regression of the input vector [M,H,f ]T . The results
for one example subject are shown in Fig. 3 in form of two-dimensional joint
trajectories of the head, the hip, the left knee and the left ankle. Black lines rep-
resent ground truth positions and colored lines the estimated values. The mean
joint position discrepancy over the time equals 5.6 cm. It is worth mentioning,
that the mean position error of the arm joints is 36 % higher than that of the
remaining joints. By implication, we can assume that the arm movement has
only a minor influence on the GRF. Figure 4 illustrates the estimated posture of
the subject at several time points. Animations of the corresponding motion and
the ground truth movement are provided as supplementary material.

6 Discussion

The experimental results demonstrate the benefit of a combined statistical repre-
sentation. The method is robust to missing input information and the estimated
results approximate the ground truth data as well as our extended physical
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Fig. 2. A subject walking
across the force plates in
our laboratory setup
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Fig. 3. Two-dimensional joint trajectories. Black
lines illustrate ground truth positions and dotted
colored lines the corresponding estimates via CSM
(Color figure online).

Fig. 4. Frames of the estimated motion based on GRF features f . The blue arrow
represents the GRF vector and the red discs represent knee joint torques (Color figure
online).

model allows. The best results for the case of complete input joint information
are achieved by means of the iterative optimization-based method OPT, but as
soon as we reduce the available information, our k-NN approach outperforms
the other methods. Considering the computational effort of the evaluated meth-
ods, the CSM causes a significant reduction of computation time from hours
to the order of seconds, compared to the iterative optimization-based method.
The fact that gradient-descent algorithms generally require a good initial guess
of the parameters is not taken into consideration, since we provide our learned
parameter space as a set of initial points for the optimization in OPT.

In addition to force estimation, the CSM also enables us to infer a motion
from ground reaction force data and subject parameters based on a small set of
four features.
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Abstract. Inferring 3D objects and the layout of indoor scenes from a
single RGB-D image captured with a Kinect camera is a challenging task.
Towards this goal, we propose a high-order graphical model and jointly
reason about the layout, objects and superpixels in the image. In contrast
to existing holistic approaches, our model leverages detailed 3D geome-
try using inverse graphics and explicitly enforces occlusion and visibility
constraints for respecting scene properties and projective geometry. We
cast the task as MAP inference in a factor graph and solve it efficiently
using message passing. We evaluate our method with respect to several
baselines on the challenging NYUv2 indoor dataset using 21 object cat-
egories. Our experiments demonstrate that the proposed method is able
to infer scenes with a large degree of clutter and occlusions.

1 Introduction

Robotic systems (e.g., household robots) require robust visual perception in
order to locate objects, avoid obstacles and reach their goals. While much
progress has been made since the pioneering attempts in the early 60’s [33], 3D
scene understanding remains a fundamental challenge in computer vision. In this
paper, we propose a novel model for holistic 3D understanding of indoor scenes
(Fig. 1). While existing approaches to the 3D scene understanding problem typ-
ically infer only objects [16,17] or consider layout estimation as a pre-processing
step [25], our method reasons jointly about 3D objects and the scene layout. We
explicitly model visibility and occlusion constraints by exploiting the expres-
sive power of high-order graphical models. This ensures a physically plausible
interpretation of the scene and avoids undercounting and overcounting of image
evidence.

Following [17,25,38], our approach also relies on a set of 3D object proposals
and pursues model selection by discrete MAP inference. However, in contrast
to previous works, we do not fit cuboids to 3D segments in a greedy fashion.
Instead, we propose objects and layout elements by solving a set of “inverse
graphics” problems directly based on the unary potentials in our model. This
allows us to take advantage of the increasing availability of 3D CAD models
and leads to more accurate geometric interpretations. We evaluate the proposed
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 183–195, 2015.
DOI: 10.1007/978-3-319-24947-6 15
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Fig. 1. Illustration of our Results. Left-to-right: Inferred objects, superpixels
(red=explained), reconstruction (blue=close to red=far) and semantics with color code
(Color figure online).

method in terms of 3D object detection performance on the challenging NYUv2
dataset [38] and compare it to [25] as well as two simple baselines derived from
our model. Our code and dataset are publicly available1.

2 Related Work

3D indoor scene understanding is a fundamental problem in computer vison
and has recently witnessed great progress enabled by the increasing perfor-
mance of semantic segmentation and object detection algorithms [6,10] as well
as the availability of RGB-D sensors. Important aspects of this problem include
3D layout estimation [15,36], object detection [35,39], as well as semantic seg-
mentation [14,32]. A variety of geometric representations have been proposed,
including cuboids [17,25,46], 3D volumetric primitives [8,47], as well as CAD
models [1,24,35,39]. While the problem has traditionally been approached using
RGB images [1,8,23,36,46] and videos [42], the availability of RGB-D sensors
[30] and datasets [38] nourish the hope for more accurate models of the scene
[12,16,18,47]. Towards this goal, a number of holistic models have been proposed
which take into account the relationship between objects (often represented as
cuboids) and/or layout elements in the scene [4,22,37,45]. While CRFs provide
a principled way to encode such contextual interactions [43], modeling visibil-
ity/occlusion rigorously is a very challenging problem [37,41].

The approach that we present is particularly related to several recent works
which model the 3D scene using geometric primitives (e.g., cuboids) [17,25].
Despite their promising performance, these works ignore some important aspects
in their formulation. In [25], a pairwise graphical model is employed to incorpo-
rate contextual information, but visibility constraints are ignored, which leads
to overcounting of image evidence. In [17], undercounting of image evidence is
addressed by enforcing “explained” superpixels to be associated with at least one
object. However, occlusions are not considered (e.g., an object which explains a
superpixel might be occluded by another object at the same superpixel), which
can lead to implausible scene configurations. Besides, semantic labels and related
contextual information are ignored.

1 http://www.cvlibs.net/projects/indoor scenes/.

http://www.cvlibs.net/projects/indoor_scenes/
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While 3D CAD models have been primarily used for object detection
[24,35,39,48], holistic 3D scene understanding approaches typically rely on sim-
pler cuboid models [17,25]. In this work, we leverage the precise geometry of
CAD models for holistic 3D scene understanding. The advantages are two-fold:
First, we can better explain the depth image evidence. Second, it allows for
incorporating visibility and occlusion constraints in a principled fashion.

3 Joint 3D Object and Layout Inference

We represent indoor scenes by a set of layout elements (e.g., “wall”, “floor”,
“ceiling”) and objects (e.g., “chairs”, “shelves”, “cabinets”). Given an RGB-D
image I partitioned into superpixels S, our goal is to simultaneously infer all
layout and object elements in the scene. In particular, we reason about the type,
semantic class, 3D pose and 3D shape of each object and layout element. Towards
this goal, we first generate a number of object and layout proposals given the
observed image I (see Sect. 3.4), and then select a subset of layout elements and
objects which best explain I and S via MAP inference in a CRF.

More formally, let L and O denote the set of layout and object proposals,
respectively. Each proposal ρi = (ti, ci,mi, ri, zi) (i ∈ L ∪ O) comprises the
following attributes: the proposal type ti ∈ {layout, object}, its semantic class
ci ∈ {mantel, . . . , other}, a 3D object model indexed by mi ∈ {1, . . . , M}, the
image region ri ⊂ I which has generated the proposal, as well as a set of pose
parameters zi which characterize pose and scale in 3D space. For each proposal,
the semantic class variable ci takes a label from the set of classes corresponding
to its type ti ∈ {layout, object}. We pre-aligned the scene with the camera
coordinate axis using the method of Silberman et al. [38] and assume that layout
elements extend to infinity. Thus, for ti = layout, mi indexes a 3D plane model,
and zi comprises the normal direction and the signed distance from the camera
center. For ti = object, mi indexes one of the 3D CAD models in our dataset or
a 3D cuboid if no CAD model is available for an object category. Furthermore,
zi comprises the 3D pose (we only consider rotations around the up-vector). and
scale parameters of the object, i.e., zi ∈ R

3 × [−π,+π) × R
3
+.

We associate a binary random variable Xi ∈ {0, 1} with each layout/object
proposal ρi, taking 1 if scene element i is present and 0 otherwise. To impose
visibility/occlusion constraints and avoid evidence undercounting, we also asso-
ciate a binary random variable Xk (k ∈ S) with each superpixel k to model
if the superpixel is explained (Xk = 1) or unexplained (Xk = 0). A valid
scene configuration should explain as many superpixels as possible while at the
same time satisfying Occam’s razor, i.e., simple explanations with a small num-
ber of layouts and objects should be preferred. We specify our CRF model on
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X = {Xi}i∈{L∪O∪S} in terms of the following energy

E(x|I) =
∑
i∈L

φL
i (xi|I)︸ ︷︷ ︸
layout

+
∑
i∈O

φO
i (xi|I)︸ ︷︷ ︸
object

+
∑
k∈S

φS
k (xk)︸ ︷︷ ︸

superpixel

+
∑

i∈L∪O,k∈S
ψS
ik(xi, xk|I)︸ ︷︷ ︸

occlusion/visibility

+
∑
k∈S

κk(xck)︸ ︷︷ ︸
occlusion/visibility

+
∑
i,j∈O

ψO,O
ij (xi, xj)︸ ︷︷ ︸
object-object

+
∑

i∈L,j∈O
ψL,O
ij (xi, xj)︸ ︷︷ ︸
layout-object

(1)

where xck = (xi)i∈ck denotes a joint configuration of all variables involved in
clique ck. The unary potentials φL

i and φO
i encode the agreement of proposal i

with the image, and φS
k adds a penalty to the energy function if superpixel k is not

explained by any object or layout element. The pairwise potentials ψS
ik and the

high-order potentials κc ensure consistency between the scene and superpixels
while respecting visibility and occlusion constraints. Contextual information such
as relative pose or scale is encoded in ψO,O

ij and ψL,O
ij .

3.1 Unary Potentials

We assume that each proposal ρi originates from a candidate image region ri ⊂ I
which we use to define the layout and object unary potentials in the following.
Details on how we obtain these proposal regions will be specified in Sect. 3.4.

Layout Unary Potentials: We model the layout unary terms as

φL
i (xi|I) = wL (

hL(ρi) + bL)
xi (2)

where wL and bL are model parameters that adjust the importance and bias
of this term and hL(ρi) captures how well the layout proposal fits the RGB-D
image. More specifically, we favour layout elements which agree with the depth
image and occlude as little pixels as possible, i.e., we assume that the walls,
floor and ceiling determine the boundaries of the scene. In particular, we define
hL(ρi) as the difference between the count of pixels occluded by proposal ρi and
the number of depth inliers wrt. all pixels in region ri.

Object Unary Potentials: Similarly, we define the object unary terms as

φO
i (xi|I) = wO (

hO(ρi) + bO)
xi (3)

where hO(ρi) captures how well the object fits the RGB-D image: We consider
an object as likely if its scale (last 3 dimensions of zi) agrees with the scale of
the 3D object model si, its rendered depth map agrees with the RGB-D depth
image and its re-projection yields a region that maximizes the overlap with the
region ri which has generated the proposal. We assume a log-normal prior for
the scale si, which we learn from all instances of class ci in the training data.

Superpixel Unary Potentials: For each superpixel k we define

φS
k (xk) = wS(1 − xk) (4)
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where wS ≥ 0 is a penalty assigned to each superpixel k which is not explained.
This term encourages the explanation of as many superpixels as possible. Note
that without such a term, we would obtain the trivial solution where none of
the proposals is selected. Due to the noise in the input data and the approxima-
tions in the geometry model we enforce this condition as a soft constraint, i.e.,
superpixels may remain unexplained at cost wS , cf. Fig. 1.

3.2 Visibility and Occlusion Potentials

To ensure that the selected scene elements and superpixels satisfy visibility and
occlusion constraints we introduce the potentials κk and ψS

ik.

High-Order Consistency Potentials: κk(xck) is defined as:

κk(xck) =
{∞ if xk = 1 ∧ ∑

i∈L∪O xi = 0
0 otherwise (5)

Here, the clique ck ⊆ {k} ∪ L ∪ O comprises the superpixel k and all proposals
i ∈ L ∪ O that are able to explain superpixel k. In practice, we consider a
superpixel as explained by a proposal if its rendered depth map is within a
threshold (in our case 0.2 m) of I for more than 50% of the comprised pixels.
Note that Eq. 5 ensures that only superpixels which are explained by at least
one object can take label xk = 1.

Occlusion Potentials: Considering κk(xck) alone will lead to configurations
where a superpixel is explained by objects which are themselves occluded by
other objects at the same superpixel, thus violating visibility. To prevent this
situation, we introduce pairwise occlusion potentials ψS

ik between all scene ele-
ments i ∈ L ∪ O and superpixels k ∈ S

ψS
ik(xi, xk|I) =

{∞ if xi = 1 ∧ xk = 1 ∧ “i occludes k”
0 otherwise (6)

where “i occludes k” is true if for more than 50% of the pixels in superpixel k the
depth of the rendered object i is at least 0.2 m smaller than the corresponding
depth value in I. In other words, we prohibit superpixels from being explained
if one or more active scene elements occlude the view.

3.3 Context Potentials

We also investigate contextual cues in the form of pairwise relationships between
object and layout elements as described in the following.

Object-Object Potentials: The pairwise potential between object i and j is
modeled as the weighted sum

ψO,O
ij (xi, xj) =

∑
t∈{p,s,ovlp}

wtψt
ij(xi, xj) (7)
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where ψt
ij is a feature capturing the relative pose, scale or overlap between

object i and object j. We encode the pose and scale correlation between objects
conditioned on the pair of semantic classes. For the pose, let distij(zi, zj)
and rotij(zi, zj) denote the distance and the relative rotation (encoded as
cosine similarity) between object i and j, respectively. For each pair (c, c′)
of semantic classes, we estimate the joint distribution ppc,c′(distij , rotij) from
training data using kernel density estimation (KDE). The relative pose poten-
tials between a pair of objects are then defined by the negative log-likelihood
ψp
ij(xi, xj) = − xi xj log ppci,cj (distij(zi, zj), rotij(zi, zj)). Similarly, we consider

scale by the negative logarithm of the relative scale distribution between seman-
tic classes ci and cj as ψs

ij(xi, xj) = −xi xj log psci,cj (sij). Here, the relative
scale sij is defined as the difference of the logarithm in scale and psci,cj (sij) is
learned from training data using KDE. To avoid objects intersecting each other,
we further penalize the overlapping volume of two objects

ψovlp
ij (xi, xj) = xi xj

(
V (ρi) ∩ V (ρj)

V (ρi)
+

V (ρi) ∩ V (ρj)
V (ρj)

)

where V (ρ) denotes the space occupied by the 3D bounding box of proposal ρ.

Layout-Object Potentials: Regarding the pairwise potential between layout
i and object j, we consider the relative pose and volume exclusion constraints
in analogy to those for the object-object potentials specified above:

ψL,O
ij (xi, xj) = wpψp

ij(xi, xj) + wovlpψovlp
ij (xi, xj) (8)

Here, ψp
ij denotes the log-likelihood of the object-to-plane distance and ψovlp

ij

penalizes the truncation of an object volume by a scene layout element.

3.4 Layout and Object Proposals

As discussed in the previous sections, our discrete CRF takes as input a set of
layout and object proposals {ρi}. We obtain these proposals by first generating
a set of foreground candidate regions {ri} using [3,13] and then solving the
“inverse graphics problem” by drawing samples from the unary distributions
specified in Eqs. 2 and 3 for each candidate region ri.

Foreground Candidate Regions: For generating foreground candidate
regions, we leverage the CPMC framework [3] extended to RGB-D images [25].
Furthermore, we use the output of the semantic segmentation algorithm of [13]
as additional candidate regions. While [3] only provides object regions, [13] addi-
tionally provides information about the background classes wall, floor and ceiling.
In contrast to existing works on RGB-D scene understanding which often rely
on simple 3D cuboid representations [17,25], we explicitly represent the shape
of objects using 3D models. For indoor objects such data becomes increasingly
available, e.g., searching for “chair”, “sofa” or “cabinet” in Google’s 3D Ware-
house returns more than 10, 000 hits per keyword. In our case, we make use of
a compact set of 66 models to represent object classes with non-cuboid shapes.
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Proposals from Unary Distributions: Unlike [17,25], we do not fit the
tightest 3D cuboid to each candidate region for estimating the proposal’s pose
parameters as this leads to an undesirable shrinking bias. Instead, we sam-
ple proposals directly from the unary distributions specified in Sect. 3.1 using
Metropolis-Hastings [9,26], leveraging the power of our 3D models in a genera-
tive manner. More specifically, for each layout candidate region, we draw samples
from pL(zi,mi) ∝ exp

(−φL(zi,mi|I)
)

and for each object candidate region we
draw samples from pO(zi,mi) ∝ exp

(−φO(zi,mi|I)
)
. Here, the potentials φL

and φO are defined as the right hand sides of Eqs. 2 and 3, fixing xi = 1. Note
that for proposal generation φL and φO depend on the pose and model para-
meters while those arguments are fixed during subsequent CRF inference. By
restricting zi to rotations around the up-axis we obtain an 8-dimensional sam-
pling space for objects. For layout elements the only unknowns are the normal
direction and the signed distances from the camera coordinate origin.

We randomly choose between global and local moves. Our global moves sam-
ple new pose parameters directly from the respective prior distributions which
we have learned from annotated objects in the NYUv2 training set [12]. Modes
of the target distribution are explored by local Student’s t distributed moves
which slightly modify the pose, scale and shape parameters. For each candidate
region ri we draw 10, 000 samples using the OpenGL-based 3D rendering engine
librender presented in [11] and select the 3 most dominant modes.

3.5 Inference

Despite the great promise of high-order discrete CRFs for solving computer
vision problems [2,43], MAP inference in such models remains very challeng-
ing. Existing work either aims at accelerating message passing for special types
of potentials [7,20,27,31,40] or exploits sparsity of the factors [19,21,34]. Here,
we explore the sparsity in our high-order potential functions (cf., Eq. 5) and
recursively split the state space into sets depending on whether they do or do
not contain any special state as detailed in the supplementary material. The
class of sparse high-order potentials which can be handled by our recursive
space-partitioning is a generalization of the pattern-based potentials proposed
in [21,34]. In contrast to [21,34], our algorithm does not make the common
assumption that energy values corresponding to “pattern” states are lower than
those assigned to all other states as this assumption is violated by the high-order
potential in Eq. 5. For algorithmic details, we refer the reader to the supplemen-
tary material.

4 Experimental Results

We evaluate our method in terms of 3D object detection performance on the
challenging NYUv2 RGB-D dataset [38] which comprises 795 training and 654
test images of indoor scenes including semantic annotations. For evaluation, we
use the 25 object and layout (super-)categories illustrated in Fig. 1 and leverage
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Table 1. 3D Detection Performance on 21 Object Classes of NYUv2. The first part
of the table shows results for [25], our baselines and our full model (FullModel-CAD)
when evaluating the full extent of all 3D objects (i.e., including the occluded parts)
in terms of the weighted F1 score (%). The second part of the table shows F1 scores
when evaluating only the visible parts. See text for details.

the manually annotated 3D object ground truth of [12]. We extract 400 super-
pixels from each RGB-D image using the StereoSLIC algorithm [44], adapted
to RGB-D information and generate about 100 object proposals per scene. The
parameters in our model (wL = 1, bL = 0, wO = 1.45, bO = 1.3, wS = 1.3,
wp = ws = 0.001, and wovlp = 100) are obtained by coordinate descent on the
NYUv2 training set and kept fixed during all our experiments.

Evaluation Criterion: We evaluate 3D object detection performance by com-
puting the F1 measure for each object class and taking the average over all
classes, weighted by the number of instances. An object is counted as true pos-
itive if the intersection-over-union of its 3D bounding box with respect to the
associated ground truth 3D bounding box is larger than 0.3. This threshold is
chosen smaller than the 0.5 threshold typically chosen for evaluating 2D detec-
tion [5] as the 3D volume intersection-over-union criterion is much more sensitive
compared to its 2D counterpart.

Ablation Study: In this section, we evaluate the importance of the individual
components in our model. First, we compare our method when using CAD mod-
els vs. using only simple Cuboid models as object representation. As illustrated
in Table 1, we obtain a relative improvement in F1 score of 42.2% when using
CAD object models in our full graphical model (FullModel-CAD vs. FullModel-
Cuboid), highlighting the importance of accurate 3D geometry modeling for this
task. Next, we compare our full model with versions which exclude the occlu-
sion (NoOcclusion) or context (NoContext) terms in our model. From Table 1,
it becomes evident that the occlusion term is more important than context,
improving the F1 score by 9.1%. Adding the contextual relationship improves
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Fig. 2. 3D Object Detection. From left-to-right: Performance of full model wrt. number
of proposals and wrt. number of superpixels. Precision-recall curves of the baselines wrt.
the full model when using 3D CAD models and cuboid primitives (Color figure online).

performance by 3.2%. Finally, Fig. 2 displays the 3D detection performance of
our model with respect to the number of proposals (first subfigure) and super-
pixels (second subfigure) evaluating objects to their full extent (blue) or only
the visible part (red) by clipping all bounding boxes accordingly.

Baselines: In this section, we quantitatively compare our method against a
recently published state-of-the-art algorithm [25] and two simpler baselines
derived from our full model: For our first baseline (Base-Det), we simply
threshold our unary detections at their maximal F1 score calculated over the
training set. Our second baseline (Base-NMS) additionally performs greedy non-
maximum-suppression, selecting only non-overlapping objects from the proposal
set. As our results in Table 1 show, our method yields relative improvements
in F1 score of 149.4% and 27.2% wrt. Base-Det-CAD and Base-NMS-CAD,
respectively. Furthermore, the third and fourth plot of Fig. 2 show the perfor-
mance of the baselines in terms of precision and recall when varying the detection
threshold.

We further compare our method to [25] as their setup is most similar to
ours and their code for training and evaluation is available. As [25] is only able
to detect the visible part of objects and has been trained on a ground truth
dataset biased towards cuboids, we re-train their method on the more recent
and complete NYUv2 ground truth annotations by Guo et al. [12] clipped to the
visible range and report results for different number of proposals (8, 15, 30).
For a fair comparison, we evaluate only the visible parts of each object (visible,
lower part of the table). On average, we double the F1 score wrt. [25]. The
differences are especially pronounced for furniture categories such as bathtub,
bed, table, cabinet, sofa and chair, showing the benefits of leveraging powerful
3D models during inference. Furthermore, we note that the performance of [25]
drops with the number of proposals while the performance of our method keeps
increasing (Fig. 2), which is a favorable property considering future work at larger
scales. For completeness, we also show the performance of [25] on the unclipped
bounding boxes (first rows of Table 1).

Qualitative Results: Figure 3 visualizes our inference results on a number
of representative NYUv2 test images. Each panel displays (left-to-right) the
inferred object wireframe models, virtual 3D renderings and the correspond-
ing semantic segmentation. Note how our approach is able to recover even
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Fig. 3. Inference Results. Each subfigure shows: Object wireframes, rendered depth
map and induced semantic segmentation.

complex shapes (e.g., chair in row 1, right column) and detects heavily occluded
3D objects (e.g., bathtub and toilet in row 5, right column). The two lower rows
show some failure cases of our method. In the top-left case, the sink is detected
correctly, but intersects the volume of the containing cabinet which is removed
from the solution. For most other cases, either the semantic class predictions
which we take as input are corrupt, or the objects in the scene do not belong to
the considered categories (such as person, piano or billiard table). However, note
that even in those cases, the retrieved explanations are functionally plausible.
Furthermore, flat objects are often missed due to the low probability of their
volume intersecting the ground truth in 3D. Thus (and for completeness) we
also provide an evaluation of the objects projected onto the 2D image (similar
to the one carried out in [25]) in our supplementary material.

Runtime: On average, our implementation takes 119.2 s for generating propos-
als (∼6, 000 samples/second via OpenGL), 7.9 s for factor graph construction
and 0.7 s for inference on an i7 CPU running at 2.5 GHz.
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5 Conclusion

In this paper, we have proposed a model for 3D indoor scene understanding from
RGB-D images which jointly considers the layout, objects and superpixels. Our
experiments show improvements with respect to two custom baselines as well as
a state-of-the-art scene understanding approach which can be mainly attributed
to two facts: First, we sample more accurate 3D CAD proposals directly from
the unary distribution and second, the proposed model properly accounts for
occlusions and satisfies visibility constraints. In the future, we plan to address
more complete scene reconstructions, e.g., obtained via volumetric fusion in order
to increase object visibility and thus inference reliability. Furthermore, we plan
to extend our model to object based understanding of dynamic scenes from
RGB/RGB-D video sequences by reasoning about 3D scene flow [28,29].
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Abstract. Man-made objects, such as chairs, often have very large
shape variations, making it challenging to detect them. In this work
we investigate the task of finding particular object shapes from a single
depth image. We tackle this task by exploiting the inherently low dimen-
sionality in the object shape variations, which we discover and encode
as a compact shape space. Starting from any collection of 3D models,
we first train a low dimensional Gaussian Process Latent Variable Shape
Space. We then sample this space, effectively producing infinite amounts
of shape variations, which are used for training. Additionally, to support
fast and accurate inference, we improve the standard 3D object cate-
gory proposal generation pipeline by applying a shallow convolutional
neural network-based filtering stage. This combination leads to consider-
able improvements for proposal generation, in both speed and accuracy.
We compare our full system to previous state-of-the-art approaches, on
four different shape classes, and show a clear improvement.

1 Introduction

Object detection has recently undergone significant advances, thanks to progress
in GPU design [23], deep convolutional neural networks (ConvNets) [14,27,38],
and big image recognition dataset [10] collected by e.g. Amazon Mechanical
Turk. However, man-made objects, such as chairs, often have very large shape
variations, making them still challenging to detect. On the other hand, there
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Fig. 1. System overview. Given a set of 3D shapes, we learn a low dimensional latent
shape space using GP-LVM (3D Model Manifold). We then generate shapes from this
space and render them from a number of random 3D poses. We use these to train a
three layer proposal pipeline, based on SVM and ConvNets.

is a large number of CAD models available in 3D Warehouse. In this work we
want to thoroughly analyse how to leverage this significantly large CAD model
collections for the task of finding particular object shapes in a single depth image.

Most object detection approaches have focused on the 2D domain, with 3D
being considered only recently, in works such as [3,16,34]. Gupta et al. [16] is
an example of using a standard ConvNet pipeline. The authors use manually
annotated RGB-D data from the NYU dataset to train a deep convolutional
neural network for feature extraction and classification. At inference time, they
classify only the proposed object locations returned from the accurate (but slow)
proposal generator of [2]. An alternative approach is presented in [3,34], where
the authors take a collection of 3D CAD models which they use to generate
synthetic depth maps. Gupta et al. [15] used a convolutional neural network to
predict the coarse pose of the object and then align the CAD models to the
objects through a model fitting. In that work, however, object proposals are
found using an exhaustive standard sliding window proposal generator.

A hallmark of current 3D object detection work is the focus on the clas-
sification/feature discovery phase. Finding object location proposals still uses
standard 2D strategies, such as selective search or sliding window. In contrast,
in this paper we explicitly tackle the problem of proposal generation, and exploit
the inherently lower appearance variance of the 3D domain to provide a method
that is both faster and more accurate than the current state of the art. Inspired
by the work of Karpathy et al. [19], we show how to use a compact 3D shape
space in detecting those objects with high shape variations.

In the 2D (RGB) domain, objects have often a large appearance variance,
due to colour, texture and varying lighting conditions. These, however, do not
manifest themselves in the 3D depth domain, which has enabled works like [31]
to use primarily synthetic data for training. Inspired by such methods, we do not
assume the existence of a large quantity of manually labelled training data, but
instead interpolate between manually constructed 3D models, using a variance-
preserving approach. We start from a collection of 3D models, obtained from
the Trimble Google 3D warehouse. We use these to train a low dimensional
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latent space using the Gaussian Process Latent Variable Models (GL-LVM, [26])
method. Such spaces capture the intrinsic variance of the training data and have
been used previously as shape priors for 3D tracking and reconstruction in [30]
and semantic SLAM in [9]. Next we generate 3D shapes back from these spaces
and finally render them into multiple 2.5D depth-only projections.

A second requirement for a proposal generator is fast and accurate inference.
With this in mind, we train a cascaded object proposal method, comprising of
two layers. The first is a traditional “objectness” proposal generator such as
BING [7] or edgeBox [40], which are the fastest ones. We use this to generate
a large number (over 1000) of low accuracy proposals, very quickly, at over
1000 fps. The last layer then is designed to filter out the noise and retain only a
small number (about 100) of very accurate proposals. This is constructed using
a shallow ConvNet and a linear SVM classifier.

As shown in Fig. 1, the output of this cascade is a set of proposals that can be
classified by any downstream classifier, e.g. ConvNet [16,27]. This work therefore
proposes a novel method for finding object location proposals, specific to the
3D depth domain. Using our test data, as outlined in the results section, the
standard 2D selective search method result in an accuracy of 56.3%, using 100
proposals, while ours has an accuracy of 82.9%. Furthermore, whereas selective
search required over 2.6 s per frame, our approach needs 0.88 s, giving a relative
speed up of almost 3×. The improvement in accuracy and speed comes as a
result of our two main contributions:

– We leverage the generative abilities of GP-LVM shape spaces, coupled with a
random pose rendering stage, to generate effectively infinite amounts of shape
variance-maintaining training data.

– We improve the standard 3D object category proposal pipeline, by integrating
a proposal generator with a shallow ConvNet-based filtering stage. This leads
to considerable improvements in both speed and accuracy of the proposal
generation.

2 Related Work

We review related approaches for proposal generation, along with methods that
use synthetic data for depth-based inference.

Object proposal methods have been developed to find a small number (e.g.
1,000) of category-independent bounding box candidates that are expected to
cover all objects in an image [1,12]. Such pruning methods are extremely effec-
tive in object detection, as demonstrated in recent state-of-the-art approaches
[14]. One category of object proposal methods [6,11] uses rough segmentations
to generate the object candidates. While such methods successfully reduce the
search space for category-based classifiers, they are computationally very expen-
sive, requiring 2–7 min. to process a single image. Alexe et al. [1] developed an
efficient method that integrates several objectness cues to predict the object
candidates. Zhang et al. [39] proposed a cascaded ranking SVM approach with
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orientated gradient features to generate the object proposals. More recently,
Uijlings et al. [38] proposed a selective search method that achieves higher recall
prediction. The method, when integrated with an SVM classifier, has been
demonstrated to achieve state-of-the-art performance in object detection.
Recently, Cheng et al. [7], proposed a very fast cascaded SVM method that
generates object proposals at over 300 fps. Zitnick et al. [40] use edge detec-
tion to generate reliable and relative fast proposals. Arbeláez et al. [2] develop
a multiscale combinatorial grouping method which can provide very accurate
segmentation proposals. Krähenbühl et al. [22] use a method to identify criti-
cal level sets in geodesic distance transforms computed for seeds placed in the
image, based on which they generate a lot of reliable segmentation proposals.

Synthetic data has been used for object detection in two primary ways. One
is to learn multi-view priors for object detectors from 3D models [21,29]. The
other is to use transfer learning [8] to train a detector using the 3D model
data in the 3D domain and use it in 2D images. Generating realistic RGB data
from 3D models, however, is very difficult, as it requires realistic 3D shapes,
textures, poses, and lighting. Related approaches have been used, for example,
in model-based hand 3D tracking by [24,35,37]. Fortunately, in the context of
depth images, rendering realistic synthetic depth is comparatively much easier,
as it only requires realistic 3D models and pose. Such an approach was used
successfully in detection based human pose estimation by [31].

Song et al. [34] and Aubry et al. [3] developed exemplar-based 3D object
detectors trained on 3D CAD datasets. Our approach differs from theirs, as
they explore 3D object detection with a sliding window whereas we propose a
data-driven object category proposal generator. Our approach is complementary
to Gupta et al. [16], who use the region-based convolutional neural network [14]
framework to learn rich features for 3D object detection, and have achieved very
high accuracy in 3D object detection. We leverage publicly available 3D CAD
models to improve both the speed and quality of the object category proposal
generators, which is the bottleneck of their system.

Another defining feature of our approach is the use of dimensionality reduc-
tion for variance-maintaining shape interpolation. This has been used before for
e.g. 3D tracking and reconstruction, in e.g. [9,30], but, to our knowledge, has not
yet employed in object proposal generation. Dimensionality reduction in detec-
tion has so far primarily targeted training data preconditioning, by removing
unnecessary variance from local descriptors in e.g. [5,20,33], thereby leading to
improved final results.

In this work we follow [31] and use synthetic depth generated from a collection
of 3D models to train a detector. We learn low dimensional GP-LVM shape
manifolds. We then sample the explicit shape manifolds to generate low variance
3D shapes, which we use to synthetically generate several depth images from
multiple views. These are next used to train a fast SVM object category proposal
generator method, similar to [7].
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3 Algorithm

We propose an algorithm for generating category proposals for single view depth
images, that is specialised in handling a particular shape family such as e.g.
chairs, monitors, toilets, or sofas. The algorithm runs in three main stages: start-
ing from a set of object models, we construct a corresponding shape manifold to
model the in-category variations (Sect. 3.1); we then sample the extracted man-
ifold to create representative shapes that are then used to synthetically produce
depth images (Sect. 3.2); and finally we use the synthetic depth images to train
a cascaded proposal generator (Sect. 3.3).

3.1 Constructing a 3D Shape Manifold

We learn Gaussian Process Latent Variable Models (GP-LVM, [25]) shape spaces
[9,30], using the pipeline outlined in Fig. 2. In Sect. 4, we show how the access to

Fig. 2. 3D Parametrised Manifold: given an unorganised 3D chair model collection
we build shape descriptors and learn low dimensional embeddings which we use to
remove unnecessary shape and training dataset variance.

Fig. 3. Example Latent Shape Space: Each row shows a two dimensional latent
space of 3D shapes (left) and samples from it (right). Warmer colours indicate higher
variance, colder colours lower variance and the red dots point out the latent points
corresponding to the training data. Red shapes are generated by the latent space and
have the green shapes as ground truth. Blue shapes are interpolated by the latent
space, with no correspondence in the training data (Color figure online).
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parametrised shape manifolds improves the object category proposal generation,
leading to a performance that is superior to several state-of-the-art alternatives.

We assume a given set of training 3D models from the Google Warehouse.
These are then aligned (using ICP), voxelised to a volumetric representation,
embedded inside 3D signed distance functions, and compressed using the 3D
discrete cosine transform.

We next apply GP-LVM on the DCT-SDF descriptor to find a low dimen-
sional shape embedding space. GP-LVM is a nonlinear and probabilistic dimen-
sionality reduction technique. It is used to represent a set of N high dimensional
observations X = [x1, . . . ,xN ] with a set of corresponding low dimensional points
Y = [y1, . . . ,yN ], where the dimensionality of Y is (much) smaller than that of
X. In our case the observation variables are the DCT compressed SDF volumes,
so we can write:

yi = DCT3D(SDF(Mi)) Mi = He(IDCT3D(yi)) (1)

where Mi is the volumetric representation of the i-th 3D shape, He is the smooth
Heaviside function, SDF computes a signed distance function, and DCT/IDCT
are the forward and reverse discrete cosine transforms. Figure 3 shows an example
2D latent space embedding 3D shapes of chairs. We use 256 × 256 × 256 3D
volumes and 40×40×40 3D DCT harmonics, for a 64000D final shape descriptor.

Finding a GP-LVM embedding is done by maximising the probability of the
observation data Y jointly given the latent variables X and the hyperparameters
of a Gaussian Process (GP) [25] mapping Y into X. This probability is formally
written as:

P (Y|X) =
N∏
i=1

N (yi|0,K) (2)

where K is the covariance matrix of the GP with the following nonlinear kernel:

K(xi,xj) = κ(xi,xj) = θ1e
− θ2

2 ||xi−xj ||2 + θ3 + θ4δij (3)

with θ1−4 being the GP hyperparameters, δij Kronecker’s delta function and
κ(·, ·) the GP covariance function. This model generates 3D shapes yi from
latent variables xi as Gaussian distributions:

yi|X ∼ N (μi, σ
2
i ) (4)

μi = κ(xi,X)K−1Y (5)

σ2
i = κ(xi,xi) − κ(xi,X)K−1κ(xi,X)T . (6)

Identifying unusual shapes when using a GP-LVM shape space simply amounts
to generating all training shapes back from the latent space and sorting them by
variance, with the lowest variance corresponding to the most typical 3D models.

3.2 Depth Rendering and Data Synthesis

Real world objects have different shapes and can be placed in different poses,
with different camera viewpoints. This leads to a very large possible appearance
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Fig. 4. Shallow ConvNet model architecture. This figure presents our inference
process during inference time. We adapted successful network configuration described
in [28] for this task.

space, whose variability we need to deal with. Following Shotton et al. [31], we
build a randomised depth image rendering pipeline based on the extracted 3D
model manifold. Thus we generate a large number of depth images, from different
viewpoints and with the object in different poses and displaying intrinsic shape
variations. When rendering the depth images (the shapes Mi described above are
converted to meshes), we randomly sample the set of 3D appearance parameters
using a heuristic approximation of the variability we expected to observe in the
real world. Also, in order to make our data more realistic, we use the intrinsic
parameters used in NYU V2 data.

3.3 Cascaded Object Category Proposal Generator

Our depth-based object category proposal generator draws inspiration from
recent object proposal generators, such as BING [7], EdgeBox [40], and ConvNet-
based object detection approaches, such as [14]. We suggest a two-layer struc-
ture. The first layer follows the object proposal generator. At inference time,
these produce a large number of detections very quickly (at over 1000 fps). Pre-
cision however can often be quite low. The second layer is then designed to
remove some false positives and so reduce the number of proposals needed for
an accurate detection from e.g. 1000 to e.g. 100, with little to no loss of recall.
This layer is implemented using a shallow ConvNet.

Unlike in RGB images, the object contour information is very salient in
depth images. One way to detect such contours is to use gradient convolution
filters. This led us to adapt the 64D normalised gradients feature used for 2D
RGB object category proposal estimation in [7], to our depth-only scenario. In
our proposed framework, we can also use a more accurate proposal generator
approach, such as EdgeBox [40].

Refining the Object Category Pool. The first stage of our proposal gener-
ating cascade is very fast, but often leads to low quality proposals. In order to
refine the proposal pool, we use a shallow 4-layer ConvNet and a following linear
SVM, as shown in Fig. 4.

We trained the ConvNet first on the ImageNet dataset and next fine-tuned
it on the NYU V2 depth training data and the synthetic data generated from
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the GP-LVM low dimensional latent space. Using both real and artificial exam-
ples prevents the network from overfitting. Compared to the standard deep net-
works [18] used in the ImageNet object detection task, our network is shallower
than the deep networks [18,36], while having lower accuracy, is faster at run-
time, making it better suited for the task at hand.

4 Experiments

We evaluate our method on the NYU V2 [32] dataset using four categories of
objects (chairs, sofas, toilets and TV). The remainder of this section is split
into four parts: (i) Sect. 4.1 describes our experimental setup; (ii) Sect. 4.2 shows
that using our variance-preserving synthetic data and random view rendering
improves accuracy; (iii) Sect. 4.3 shows that the extra ConvNet filtering further
improves accuracy.

4.1 Experimental Setup

Dataset. The NYU V2 dataset [32] contains 1449 RGB and depth images with
pixel-level segmentation annotations. We split data set according to the standard
NYU V2 train/test split to obtain 495 training and validation images, and 404
testing images.

To train our latent space and classifiers we also use 3D models downloaded
from the Google 3D Warehouse. We select 374 chairs, 42 TV, 36 sofas, and 24
toilets 3D CAD models. After passing through the latent space filtering, we use
them to render the depth images, 37400 for the chair class, 25200 for TV, 21600
for sofa, and 14400 for toilet. Here we considered 600 different random pose
and viewpoint configurations, which excluded the top and bottom viewpoints,
as these are rarely seen in indoor scenes.

Evaluation Criteria. We use standard DR-#WIN accuracy measure [1], which
quantifies detection rate (DR) given #WIN proposals. A proposal covers an
object if the strict VOC [13] criterion is satisfied, i.e. if int-union> 0.5.

Implementation. Our approach is implemented based on the Caffe [17] library.
We fine-tune the network-in-network model [28] on the NYU V2 dataset and
the synthetic data. The learning step size is 5000, the momentum is 0.9, and
the weight decay is 0.0005. Using a NVIDIA Titan Black GPU, the per frame
inference processing is 0.88 s per frame, with a pool of 1000 category proposal
candidates from BING1.

4.2 Synthetic Data

We first investigate the effect of the number of rendered depth images on the clas-
sification result. As shown in the Fig. 5, we observe the clear trend that adding
1 https://github.com/bittnt/Objectness.

https://github.com/bittnt/Objectness
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Fig. 5. Logarithmic plot measuring the DR#100 (50 % Intersection-over-union) accu-
racy when we double the amount of synthetic data (i.e. sofa: 43200 (red), 21600 (black);
TV: 50400 (red), 25200 (black); chair: 74800 (red), 37400 (black); tiolet: 28800 (red),
14400 (black).). The extra data leads to much higher accuracy when using fewer pro-
posals. As the number of proposals increases the extra training points do not help
much, as the BING discrimination ability saturates (Color figure online).

more synthetic renderings into the training set helps boost the performance of
the approach.

We next investigate the effect of the data preconditioning (i.e. the number
of GP-LVM dimensions and variance of the 3D shapes) on the classification
result. Not all object 3D models are realistic and not all 3D shape details are
important in the classification. The GP-LVM shape manifold allows us to remove
both unusual shapes and unnecessary intra-shape variance from the training
data. To showcase this feature we used 374 3D chair shapes to train 3, 4, 5,
6 and 7 dimensional GP-LVM shape spaces. The results are shown in Tables 1
(left and right) and 2. In Table 1 (left) we show the results obtained from the
original training set (i.e. not compressed with GP-LVM) and when learning a
5D GP-LVM latent space and training with (i) the top 100, 150 and 200 shapes
with the lowest variance, and (ii) the full training set. Initially, as the number
of training shapes increases (between 100 and 150 models) accuracy improves.
At some point between 150 and 200 though unusual shapes start being added
to the training set, which decreases the accuracy. In Table 1 (right) we vary the
number of dimensions used for the trained GP-LVM spaces from 3 to 7. The same
trend as in Table 1 (left) can be observed. Initially (when using between 3 and 5
dimensions) we add useful shape variance to the training set which improves the
final accuracy. When more than 5 dimensions are used (and that includes the full
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uncompressed training set) we add unnecessary variance to the training set thus
decreasing accuracy. Finally, in Table 22, we use the chair class and 1000 BING
proposals to evaluate our method of shape generation (BING + GPLVM) against
(i) BING + the alternative shape generation method of ShapeSynth [4] and (ii)
other methods for proposal generations that do not use synthetic data: BING
[7], OBN [1], CSVM [39], SEL [38], and random guessing. OBN, CSVM and
BING are trained on the NYU V2 training set whereas SEL does not require
any data. BING + ShapeSynth and BING + GPLVM are trained on the NYU
V2 training data and the sampled ShapeSynth or GPLVM synthetic shapes.
Our method outperforms all the other proposal generators. Of particular note is
that BING + GP-LVM outperforms BING + ShapeSynth, in spite of ShapeSynth
usually generating much more realistic looking shapes. This result complements
the experiment from Table 1 and shows that sampling only low variance shapes
from the manifold is beneficial.

Table 1. Effect of data preconditioning. Left - accuracy results obtained when
training on the chair category with the original dataset not compressed with GP-LVM
and when using a 5D low dimensional GP-LVM space and training with (i) the top 100,
150 and 200 shapes with the lowest variance (ii) the full training set. Right - accuracy
obtained when generating data from 3–7D low dimensional spaces and selecting the
top 150 shapes with the lowest variance. #DIM indicates the number of latent space
dimensions and #SAM the number of samples from each latent space.

BING-GPLVM BING-GPLVM

#DIM(#SAM) DR-#1000W #DIM(#SAM) DR-#1000W

5–100 88.7 3–150 88.0

5–150 89.7 4–150 89.6

5–200 89.2 5–150 89.7

5–374 88.4 6–150 89.3

Original-374 87.8 7–150 89.2

4.3 ConvNet Filtering Layer

In Fig. 6 we compare selective search, BING + GP-LVM and BING + GP-LVM +
ConvNet, when using only 100 proposals, and all four object classes. The best
results are obtained when using our full approach (BING + GP-LVM + ConvNet),
with BING + GP-LVM following with 59.2 % respectively, and selective search
being the last with 56.3 %. Of course both selective search would reach higher
accuracy with more proposals, as shown before. However, no method other than
BING + GP-LVM + ConvNet is able to reach this level of accuracy with just 100
proposals. We also note that per-frame processing with our full approach was
0.88 s, whereas for selective search it was 2.6 s.
2 Experiments are carried out on a machine with a Intel Xeon E5-2687w(32 Cores).
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Table 2. Quantitative results on different proposal estimation approaches.
We compared different approaches on the chair category using the NYU V2 depth image
dataset. We follow the standard evaluation criteria, which is the detection rate over
1000 object proposals [1]. The best result are obtained when using BING+ GP-LVM.

Method Random
Guess

OBN
[1]

CSVM
[39]

SEL [38] BING [7] BING-
ShapeSynth
[4]

BING-
GPLVM
our app-
roach

DR-#1000W 42.0 83.0 84.5 85.9 85.6 88.5 89.7

Time (s) N/A 2.10 1.20 2.6 0.0009 0.0009 0.0009

Fig. 6. DR#100 Comparison. We compare three methods, selective search (which
we consider to be the state of the art), BING + GP-LVM, and BING + GP-
LVM + ConvNet, when using only 100 proposals, and all four object classes. Our full
approach is the most accurate, with an accuracy of 82.9 % whereas selective search
produces 56.3 %.

5 Conclusions

We presented an algorithm for generating depth-based proposals for high-
variation specific object categories. Our main message is that (i) the use of
synthetic data, sampled from variance-maintaining compact shape manifolds,
boosts the accuracy of object category proposal estimation, as it enables the
classifier to focus on the intrinsic ‘classness‘ variance and ignore unusual shape
details; and (ii) a final shallow ConvNet layer further dramatically improve the
overall accuracy. As future work, we intend to investigate the use of this proposal
generator in various applications, such as depth fusion or 3D reconstruction.
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15. Gupta, S., Arbeláez, P.A., Girshick, R.B., Malik, J.: Aligning 3D models to RGB-D
images of cluttered scenes. In: CVPR, pp. 4731–4740 (2015)
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Abstract. Generating descriptions for videos has many applications
including assisting blind people and human-robot interaction. The recent
advances in image captioning as well as the release of large-scale movie
description datasets such as MPII-MD [28] and M-VAD [31] allow to
study this task in more depth. Many of the proposed methods for image
captioning rely on pre-trained object classifier CNNs and Long Short-
Term Memory recurrent networks (LSTMs) for generating descriptions.
While image description focuses on objects, we argue that it is important
to distinguish verbs, objects, and places in the setting of movie descrip-
tion. In this work we show how to learn robust visual classifiers from the
weak annotations of the sentence descriptions. Based on these classifiers
we generate a description using an LSTM. We explore different design
choices to build and train the LSTM and achieve the best performance
to date on the challenging MPII-MD and M-VAD datasets. We compare
and analyze our approach and prior work along various dimensions to
better understand the key challenges of the movie description task.

1 Introduction

Automatic description of visual content has lately received a lot of interest in
our community. Multiple works have successfully addressed the image caption-
ing problem [6,16,17,35]. Many of the proposed methods rely on Long Short-
Term Memory networks (LSTMs) [13]. In the meanwhile, two large-scale movie
description datasets have been proposed, namely MPII Movie Description (MPII-
MD) [28] and Montreal Video Annotation Dataset (M-VAD) [31]. Both are based
on movies with associated textual descriptions and allow studying the problem
how to generate movie description for visually disabled people. Works addressing
these datasets [28,33,38] show that they are indeed challenging in terms of visual
recognition and automatic description. This results in a significantly lower per-
formance then on simpler video datasets (e.g. MSVD [2]), but a detailed analysis
of the difficulties is missing. In this work we address this by taking a closer look
at the performance of existing methods on the movie description task.

This work contributes (a) an approach to build robust visual classifiers which
distinguish verbs, objects, and places extracted from weak sentence annotations;
(b) based on the visual classifiers we evaluate different design choices to train
an LSTM for generating descriptions. This outperforms related work on the

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-24947-6 17
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MPII-MD and M-VAD datasets, using automatic and human evaluation (only
on MPII-MD); (c) we perform a detailed analysis of prior work and our approach
to understand the challenges of the movie description task.

2 Related Work

Image captioning. Automatic image description has been studied in the past
[9,19,20,23], gaining increased attention just recently [6,8,16,17,22,35]. Many
of the proposed works rely on Recurrent Neural Networks (RNNs) and in partic-
ular on Long Short-Term Memory networks (LSTMs). New datasets have been
released, Flickr30k [39] and MS COCO Captions [3], where [3] also presents a
standardized protocol for image captioning evaluation. There are attempts to
analyze the performance of recent methods, e.g. [5] compares them with respect
to the novelty of generated descriptions and additionally proposes a nearest
neighbor baseline that improves over recent methods.

Video description. In the past video description has been addressed in con-
trolled settings [1,18], on a small scale [4,11,30] or in single domains like cook-
ing [26,29]. Donahue et al. [6] first proposed to describe videos using an LSTM,
relying on precomputed CRF scores from [26]. Later [34] extended this work to
extract CNN features from frames which are max-pooled over time. Pan et al. [24]
propose a framework with a visual-semantic embedding to ensure better coher-
ence between video and text. Xu et al. [37] jointly address the language genera-
tion and video/language retrieval tasks by learning a joint embedding for a deep
video model and compositional semantic language model.

Movie description. Recently two large-scale movie description datasets have
been proposed, MPII Movie Description [28] and Montreal Video Annotation
Dataset [31]. Compared to previous video description datasets, they have broader
domain and are more varied and challenging with respect to the visual content
and the associated descriptions. They also do not have any additional annota-
tions, as e.g. TACoS Multi-Level [26], thus one has to rely on the weak sentence
annotations. To handle this challenging scenario [38] proposes an attention based
model which selects the most relevant temporal segments in a video, incorpo-
rates 3-D CNN and generates a sentence using an LSTM. Venugopalan et al. [33]
propose an encoder-decoder framework, where a single LSTM encodes the input
video frame by frame and decodes it into a sentence, outperforming [38]. Our
approach for sentence generation is most similar to [6] and we rely on their
LSTM implementation based on Caffe [15].

3 Approach

In this section we present our two-step approach. The first step performs visual
recognition using the visual classifiers which we train according to labels’ seman-
tics and “visuality”. The second step generates textual descriptions using an
LSTM. We explore various design choices for building and training the LSTM.
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Fig. 1. (a–c) LSTM architectures. (d) Variants of placing the dropout layer.

3.1 Visual Labels for Robust Visual Classifiers

For training we rely on a parallel corpus of videos and weak sentence annotations.
As in [28] we parse the sentences to obtain a set of labels (single words or short
phrases, e.g. look up) to train visual classifiers. However, in contrast to [28], we
do not want to keep all of these initial labels as they are noisy, but select only
visual ones which actually can be robustly recognized.

Avoiding parser failure. Not all sentences can be parsed successfully, as e.g.
some sentences are incomplete or grammatically incorrect. To avoid loosing the
potential labels in these sentences, we match our set of initial labels to the
sentences which the parser failed to process.

Semantic groups. Our labels correspond to different semantic groups. In this
work we consider three most important groups: verbs, objects and places. We
propose to treat each label group independently. First, we rely on a different
representation for each semantic group, which is targeted to the specific group.
Namely we use the activity recognition features Improved Dense Trajectories
(DT) [36] for verbs, large scale object detector responses (LSDA) [14] for objects
and scene classification scores (PLACES) [40] for places. Second, we train one-vs-
all SVM classifiers for each group separately. The intuition behind this is to avoid
“wrong negatives” (e.g. using object “bed” as negative for place “bedroom”).

Visual labels. Now, how do we select visual labels for our semantic groups? In
order to find the verbs among the labels we rely on the semantic parser of [28].
Next, we look up the list of “places” used in [40] and search for corresponding
words among our labels. We look up the object classes used in [14] and search for
these “objects”, as well as their base forms (e.g. “domestic cat” and “cat”). We
discard all the labels that do not belong to any of our three groups of interest
as we assume that they are likely not visual and thus are difficult to recognize.
Finally, we discard labels which the classifiers could not learn, as these are likely
noisy or not visual. For this we require the classifiers to have certain minimum
area under the ROC-curve (Receiver Operating Characteristic).
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3.2 LSTM for Sentence Generation

We rely on the basic LSTM architecture proposed in [6] for video description.
At each time step an LSTM generates a word and receives the visual classifiers
(input-vis) as well as the previous generated word (input-lang) as input (see
Fig. 1(a)). We encode each word with a one-hot-vector according to its index in
a dictionary and project it in a lower dimensional embedding. The embedding is
jointly learned during training of the LSTM. We feed in the classifier scores as
input to the LSTM which is equivalent to the best variant proposed in [6]. We
analyze the following aspects for this architecture:

Layer structure. We compare a 1-layer architecture with a 2-layer architecture.
In the 2-layer architecture, the output of the first layer is used as input for the
second layer (Fig. 1b) and was used by [6] for video description. Additionally we
also compare to a 2-layer factored architecture of [6], where the first layer only
gets the language as input and the second layer gets the output of the first as
well as the visual input.

Dropout placement. To learn a more robust network which is less likely to
overfit we rely on a dropout [12], i.e. a ratio r of randomly selected units is set to
0 during training (while all others are multiplied with 1/r). We explore different
ways to place dropout in the network, i.e. either for language input (lang-drop)
or visual (vis-drop) input only, for both inputs (concat-drop) or for the LSTM
output (lstm-drop), see Fig. 1(d). While the default dropout ratio is r = 0.5, we
evaluate the effect of other ratios.

Learning strategy. By default we use a step-based learning strategy, where a
learning rate is halved after a certain number of steps. We find the best learning
rate and step size on the validation set. Additionally we compare this to a poly-
nomial learning strategy, where the learning rate is continuously decreased. This
learning strategy has been shown to give good results faster without tweaking
the step size for GoogleNet implemented by Sergio Guadarrama in Caffe [15].

4 Evaluation

In this section we first analyze our approach on the MPII-MD [28] dataset and
explore different design choices. Then, we compare our best system to prior work.

4.1 Analysis of Our Approach

Experimental setup. We build on the labels discovered by the semantic parser
of [28]. To be able to learn classifiers we select the labels that appear at least 30
times, resulting in 1,263 labels. The parser additionally tells us whether the label
is a verb. We use the visual features (DT, LSDA, PLACES) provided with the
MPII-MD dataset [28]. The LSTM output/hidden unit as well as memory cell
have each 500 dimensions. We train our method on the training set (56,861 clips)
and evaluate on the validation set (4,930 clips) using the METEOR [21] score.
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According to [7,32], METEOR supersedes previously used measures such as
BLEU [25] in terms of agreement with human judgments. METEOR also out-
performs CIDEr [32] when the number of references is small and in the case of
MPII-MD we have only a single reference.

Table 1. Comparison of different choices of labels and visual classifiers. All results
reported on the validation set of MPII-MD.

Classifiers
deniarTdeveirteRslebaLhcaorppA

Baseline: all labels treated the same way
37.6-3621TD)1(

(2) LSDA 1263 - 7.07
(3) PLACES 1263 - 7.10
(4) DT+LSDA+PLACES 1263 - 7.24
Visual labels
(5) Verbs(DT), Others(LSDA) 1328 7.08 7.27
(6) Verbs(DT), Places(PLACES), Others(LSDA) 1328 7.09 7.39
(7) Verbs(DT), Places(PLACES), Objects(LSDA) 913 7.10 7.48
(8) + restriction to labels with ROC ≥ 0.7 263 7.41 7.54
Baseline: all labels treated the same way, labels from (8)
(9) DT+LSDA+PLACES 263 7.16 7.20

Robust visual classifiers. In a first set of experiments we analyze our proposal
to consider groups of labels to learn different classifiers and also to use different
visual representations for these groups (see Sect. 3.1). In Table 1 we evaluate our
generated sentences using different input features to the LSTM. In our baseline,
in the top part of Table 1, we treat all labels equally, i.e. we use the same visual
descriptors for all labels. The PLACES feature is best with 7.10 METEOR.
Combination by stacking all features (DT + LSDA + PLACES) improves further
to 7.24 METEOR.

The second part of the table demonstrates the effect of introducing different
semantic label groups. We first split the labels into “Verbs” and all remaining.
Given that some labels appear in both roles, the total number of labels increases
to 1328 (line 5). We analyze two settings of training the classifiers. In the case of
“Retrieved” we retrieve the classifier scores from the general classifiers trained
in the previous step. “Trained” corresponds to training the SVMs specifically for
each label type (e.g. for “Verbs”). Next, we further divide the non-“Verb” labels
into “Places” and “Others”(line 6), and finally into “Places” and “Objects”(line
7). We discard the unused labels and end up with 913 labels. Out of these labels,
we select the labels where the classifier obtains a ROC higher or equal to 0.7
(threshold selected on the validation set). After this we obtain 263 labels and
the best performance in the “Trained” setting (line 8). To support our intuition
about the importance of the label discrimination (i.e. using different features
for different semantic groups of labels), we propose another baseline (line 9).
Here we use the same set of 263 labels but provide the same feature for all of
them, namely the best performing combination DT+ LSDA + PLACES. As we
see, this results in an inferior performance.
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Table 2. LSTM architectures, MPII-MD val set. Labels, classifiers as Table 1(8).

Architecture METEOR

1 layer 7.54
2 layers unfact. 7.54
2 layers fact. 7.41

(a) LSTM architectures
(lstm-dropout 0.5).

Dropout METEOR

no dropout 7.19
lang-drop 7.13
vis-drop 7.34
concat-drop 7.29
lstm-drop 7.54

(b) Dropout strategies
(1-layer, dropout 0.5).

Dropout ratio METEOR

r=0.1 7.22
r=0.25 7.42
r=0.5 7.54
r=0.75 7.46

(c) Dropout ratios
(1-layer, lstm-dropout).

We make several observations from Table 1 which lead to robust visual clas-
sifiers from the weak sentence annotations. (a) It is beneficial to select features
based on the label semantics. (b) Training one-vs-all SVMs for specific label
groups consistently improves the performance as it avoids “wrong” negatives.
(c) Focusing on more “visual” labels helps: we reduce the LSTM input dimen-
sionality to 263 while improving the performance.

LSTM architectures. Now, as described in Sect. 3.2, we look at different LSTM
architectures and training configurations. In the following we use the best per-
forming “Visual Labels” approach, Table 1, line (8).

We start with examining the architecture, where we explore different config-
urations of LSTM and dropout layers. Table 2a shows the performance of three
different networks: “1 layer”, “2 layers unfactored” and “2 layers factored” intro-
duced in Sect. 3.2. As we see, the “1 layer” and “2 layers unfactored” perform
equally well, while “2 layers factored” is inferior to them. In the following experi-
ments we use the simpler “1 layer” network. We then compare different dropout
placements as illustrated in (Fig. 2b). We obtain the best result when apply-
ing dropout after the LSTM layer (“lstm-drop”), while having no dropout or
applying it only to language leads to stronger over-fitting to the visual features.
Putting dropout after the LSTM (and prior to a final prediction layer) makes
the entire system more robust. As for the best dropout ratio, we find that 0.5
works best with lstm-dropout (Table 2c).

Next we look at different learning rates and strategies1. We find that the
best learning rate in the step-based learning is 0.01, while step size 4000 slightly
improves over step size 2000 (which we used in Table 1). We explore an alterna-
tive learning strategy, namely decreasing learning rate according to a polynomial
decay. We experiment with different exponents (0.5 and 0.7) and numbers of iter-
ations (25 K and 10 K), using the base-learning rate 0.01. Our results show that
the step-based learning is superior to the polynomial learning.

In most of the experiments we trained our networks for 25,000 iterations.
After looking at the METEOR performance for intermediate iterations we found
that for the step size 4000 at iteration 15,000 we achieve best performance overall.
Additionally we train multiple LSTMs with different random orderings of the
training data. In our experiments we combine three in an ensemble, averaging
1 More details can be found in our corresponding arXiv version [27].
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Table 3. Comparison to prior work. Human eval ranked 1 to 3, lower is better.

METEOR Human evaluation: rank
Approach in % Correct. Grammar Relev.

Best of [28] 5.59 2.11 2.39 2.08
S2VT [33] 6.27 2.02 1.67 2.06
Visual-Labels (our) 7.03 1.87 1.94 1.86

NN-upperbound 19.43 - - -

(a) Test Set of MPII-MD.

METEOR
Approach in %

33.4]83[
S2VT [33] 5.62
Visual-Labels (our) 6.36

(b) Test Set of M-VAD.

the resulting word predictions. In most cases the ensemble improves over the
single networks in terms of METEOR score (see Footnote 1).

To summarize, the most important aspects that decrease over-fitting and
lead to a better sentence generation are: (a) a correct learning rate and step
size, (b) dropout after the LSTM layer, (c) choosing the training iteration based
on METEOR score as opposed to only looking at the LSTM accuracy/loss which
can be misleading, and (d) building ensembles of multiple networks with different
random initializations. In the following section we compare our best ensemble
(selected on the validation set) to related work on the test sets of MPII-MD and
M-VAD.

4.2 Comparison to Related Work

Experimental setup. First we compare the best method of [28], the recently
proposed method S2VT [33] and our proposed “Visual Labels”-LSTM on the
test set of the MPII-MD dataset (6,578 clips). In addition to METEOR [21],
we perform a human evaluation, by randomly selecting 1300 video snippets and
asking AMT turkers to rank three systems with respect to correctness, grammar
and relevance, similar to [28]. Next we evaluate our method on the test set of
the M-VAD dataset [31] (4,951 clips) and compare it to [33] and [38]. We train
our method on M-VAD and use the same LSTM architecture and parameters as
for MPII-MD, but select the number of iterations on the M-VAD validation set.

Results on MPII-MD. Table 3a summarizes the results on the test set of
MPII-MD (see Footnote 1). While we rely on identical features and similar
labels as [28], we significantly improve the performance, specifically by 1.44
METEOR points. Moreover, we improve over the recent approach of [33], which
also uses LSTM to generate video descriptions. Exploring different strategies to
label selection and classifier training, as well as various LSTM configurations
allows to obtain best result to date on the MPII-MD dataset. Human evaluation
mainly agrees with the automatic measure. We outperform both prior works in
terms of Correctness and Relevance, however we lose to S2VT in terms of Gram-
mar. This is due to the fact that S2VT produces overall shorter (7.4 versus 8.7
words per sentence) and simpler sentences, while our system generates longer
sentences and therefore has higher chances to make mistakes. We also propose
a retrieval upperbound. For every test sentence we retrieve the closest training
sentence according to the METEOR score. The rather low METEOR score of
19.43 reflects the difficulty of the dataset.
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Approach Sentence

SMT [28] Someone is a man, someone is a man.
S2VT [33] Someone looks at him, someone turns to someone.
Our Someone is standing in the crowd,

a little man with a little smile.
Reference Someone, back in elf guise, is trying to calm the kids.

SMT [28] The car is a water of the water.
S2VT [33] On the door, opens the door opens.
Our The fellowship are in the courtyard.
Reference They cross the quadrangle below and run along the cloister.

SMT [28] Someone is down the door,
someone is a back of the door, and someone is a door.

S2VT [33] Someone shakes his head and looks at someone.
Our Someone takes a drink and pours it into the water.
Reference Someone grabs a vodka bottle standing open on the counter

and liberally pours some on the hand.

Fig. 2. Qualitative comparison of prior work and our proposed method. Examples from
the test set of MPII-MD. Our approach identifies activities, objects, and places better
than related work.

An interesting characteristic of the compared methods is the size of the out-
put vocabulary, which is 94 for [28], 86 for [33] and 605 for our method, while
it is 6,422 for the reference test sentences. This clearly shows a higher diversity
of our output. Unlike other methods ours can generate e.g. verbs as grab, drive,
sip, climb, follow, objects as suit, chair, cigarette, mirror, bottle and places as
kitchen, corridor, restaurant. We show some qualitative results in Fig. 2. Here,
the verb pour, object drink and place courtyard only appear in our output. We
attribute this, on one hand, to our diverse and robust visual classifiers. On the
other hand, the architecture and parameter choices of our LSTM allow us to
learn better correspondence between the words and the visual classifiers’ scores.

Results on M-VAD. Table 3b shows the results on the test set of M-VAD
dataset. Our method outperforms the other two in METEOR score. As we see,
the results overall agree with Table 3a, but are consistently lower suggesting that
M-VAD is more challenging than MPII-MD. We attribute this to more precise
manual alignments of the MPII-MD dataset.

5 Analysis

Despite the recent advances in the video description task, the performance on
the movie description datasets (MPII-MD and M-VAD) remains rather low. In
this section we want to look closer at three methods, SMT of [28], S2VT [33]
and ours, in order to understand where these methods succeed and where they
fail. In the following we evaluate all three methods on the MPII-MD test set.

5.1 Difficulty Versus Performance

As the first study we suggest to sort the test reference sentences by difficulty,
where difficulty is defined in multiple ways.
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Fig. 3. Y-axis: METEOR score per sentence. X-axis: test sentences 1 to 6,578 sorted by
(a) length (increasing); (b) textual difficulty (increasing); (c) visual difficulty (increas-
ing). Shown values are smoothed with a mean filter of size 500.

Sentence length and Word frequency. Some of the intuitive sentence diffi-
culty measures are its length and average frequency of its words. When sorting
the data by difficulty (increasing sentence length or decreasing average word fre-
quency), we find that all three methods have the same tendency to obtain lower
METEOR score as the difficulty increases. Figure 3a shows the performance of
compared methods w.r.t. the sentence length. For the word frequency the cor-
relation is even stronger (see Footnote 1). Our method consistently outperforms
the other two, most notable as the difficulty increases.

Textual and Visual difficulty. Next, for each test reference sentence we search
for the closest training sentence (in terms of the METEOR score). We use the
obtained best scores to sort the reference sentences by textual difficulty, i.e.
the “easy” sentences are more likely to be retrieved. If we consider all training
sentences, we obtain a textual Nearest Neighbor. We plot the performance of
three methods w.r.t. the textual difficulty in Fig. 3b. All methods “agree” and
ours is best throughout the difficulty range, in particular in the most challenging
part of the plot (right). We can also use visual features to find the k visual Nearest
Neighbors in the Training set, select the best one (in terms of the METEOR
score) and use this score to sort the reference sentences. We call this a visual
difficulty. The intuition behind it is to consider a video clip as visually “easy” if
the most similar training clips also have similar descriptions (the “difficult” clip
might have no close visual neighbours). We rely on our best visual representation
(8) from Table 1 and cos similarity measure to define the visual difficulty and
sort the reference sentences according to it, using k = 10 (Fig. 3c). Again, we
see a clear correlation between the visual difficulty and the performance of all
methods (Fig. 3c).

Summary. (a) All methods perform better on shorter, common sentences and
our method notably wins on longer sentences. (b) Our method also wins on
sentences that are more difficult to retrieve. (c) Visual difficulty, defined by
cos similarity and representation (8) from Table 1, strongly correlates with the
performance of all methods.
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5.2 Semantic Analysis

WordNet Verb Topics. Next we analyze the test reference sentences w.r.t.
verb semantics. We rely on WordNet Topics (high level entries in the WordNet
ontology), e.g. “motion”, “perception”, defined for most synsets in WordNet [10].
Sense information comes from the semantic parser of [28], thus it might be noisy.
We select sentences with a single verb, group them according to the verb’s Topic
and compute an average METEOR score for each group (see Footnote 1). We
find that our method is best for all Topics except “communication”, where [28]
wins. The most frequent verbs there are “look up” and “nod”, which are also fre-
quent in the dataset and in the sentences produced by [28]. The best performing
Topic, “cognition”, is highly biased to “look at” verb. The most frequent Topics,
“motion” and “contact”, which are also visual (e.g. “turn”, “walk”, “open”), are
nevertheless quite challenging, which we attribute to their high diversity. Topics
with more abstract verbs (e.g. “be”, “have”, “start”) get lower scores.

Top 100 best and worst sentences. We look at 100 test reference sentences,
where our method obtains highest and lowest METEOR scores. Out of 100 best
sentences 44 contain the verb “look” (including phrases such as “look at”). The
other frequent verbs are “walk”, “turn”, “smile”, “nod”, “shake”, i.e. mainly
visual verbs. Overall the sentences are simple. Among the worst 100 sentences
we observe more diversity: 12 contain no verb, 10 mention unusual words (specific
to the movie), 24 have no subject, 29 have a non-human subject. This leads to a
lower performance, in particular, as most training sentences contain “Someone”
as subject and generated sentences are biased towards it.

Summary. (a) The test reference sentences that mention verbs like “look” get
higher scores due to their high frequency in the dataset. (b) The sentences with
more “visual” verbs tend to get higher scores. (c) The sentences without verbs
(e.g. describing a scene), without subjects or with non-human subjects get lower
scores, which can be explained by dataset biases.

6 Conclusion

We propose an approach to automatic movie description which trains visual clas-
sifiers and uses their scores as input to LSTM. To handle the weak sentence anno-
tations we rely on three ingredients. (1) We distinguish three semantic groups
of labels (verbs, objects and places). (2) We train them separately, removing
the noisy negatives. (3) We select only the most reliable classifiers. For sentence
generation we show the benefits of exploring different LSTM architectures and
learning configurations. As the result we obtain the highest performance on the
MPII-MD and M-VAD datasets as shown by automatic and human evaluation.

We analyze the challenges in the movie description task using our and two
prior works. We find that the factors which contribute to higher performance
include: presence of frequent words, sentence length and simplicity as well as
presence of “visual” verbs (e.g. “nod”, “walk”, “sit”, “smile”). We observe a
high bias in the data towards humans as subjects and verbs similar to “look”.
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Future work has to focus on dealing with less frequent words and handle less
visual descriptions. This potentially requires to consider external text corpora,
modalities other than video, such as audio and dialog, and to look across multiple
sentences. This would allow exploiting long- and short-range context and thus
understanding and describing the story of the movie.
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Abstract. We present a method for efficient detection of deformed 3D
objects in 3D point clouds that can handle large amounts of clutter, noise,
and occlusion. The method generalizes well to different object classes and
does not require an explicit deformation model. Instead, deformations
are learned based on a few registered deformed object instances. The
approach builds upon graph matching to find correspondences between
scene and model points. The robustness is increased through a parame-
trization where each graph vertex represents a full rigid transformation.
We speed up the matching through greedy multi-step graph pruning and
a constant-time feature matching. Quantitative and qualitative experi-
ments demonstrate that our method is robust, efficient, able to detect
rigid and non-rigid objects and exceeds state of the art.

1 Introduction

The accurate and robust detection and localization of 3D objects in cluttered and
noisy real-world data is crucial for many robotic and industrial applications. We
present a method that is able to efficiently localize deformed 3D object instances
in 3D point clouds. For this, we solve the assignment problem through graph
matching and return a consistent set of scene-model-correspondences.

Recently, features that describe pairs of oriented 3D points were used success-
fully in 3D object recognition, rigid 3D object detection and as 3D feature point
descriptors [1–3]. Such point pairs are invariant against rigid transformations,
robust, fast to compute, and – due to their low dimension – fast to match. We
show that the set of possible point pair features that describe the deformations
of a model can be learned based on only a few training examples.

Drost et al . [3] use point pair features in a local voting scheme to find the best
matching rigid transformation between a reference model and a 3D scene. We
train their method using the point pairs of the deformed models to obtain an ini-
tial set of potentially inconsistent scene-model-correspondences. Based on this,
we use a graph matching model similar to the one proposed by Leordeanu and
Hebert [4] to assign relaxed weights to the assignment candidates based on their
overall consistency. We augment the model by using an extended correspondence
parametrization that takes 3D motion into account. Finally, a greedy dense sub-
graph extraction is performed to convert the relaxed assignment weights into
a set of consistent correspondences. In essence, the graph matching globally
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 222–233, 2015.
DOI: 10.1007/978-3-319-24947-6 18
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optimizes the correspondences by finding the largest subset of consistent scene-
model-correspondences.

The proposed method generalizes well over different object classes and
requires no explicit deformation model. Most parameters can remain constant
over a large range of objects, making the method general and easy to use. In
terms of performance, we obtain runtimes of around one second for an unopti-
mized implementation on large scenes. The method requires no feature detector
and instead uniformly samples scene and model point clouds.

Note that this work concentrates on the recovery of approximate, but consis-
tent scene-model-correspondences. Additional model and deformation dependent
refinement steps, such as deformable ICP [5] or model fitting, are not performed.
We evaluate the approach quantitatively and qualitatively on synthetic and real-
world datasets, showing its generality, performance and robustness.

2 Related Work

Chui and Rangarajan [6] approach the point correspondence problem in 2D
using their TPS-RPM framework that can deal with outliers and uses thin-
plate-splines as deformation model. However, their approach was demonstrated
on artificial 2D data only. It does not scale well to 3D data with large amounts
of clutter due to the worst-case performance of O(N3). Anguelov et al . [7] solve
the correspondence problem in 3D using a joint probabilistic model that pre-
serves local geometry. Their method shows very good results when registering
meshes of humans using a deformation model that preserves geodesic distance.
While the two preceding methods are able to register deformed variants of point
clouds, they are unable to deal with larger amounts of outliers, clutter, noise, or
occlusion. They are also limited to a single or few deformation models. Those
restrictions make the approaches unsuitable as generic 3D deformable object
detectors.

Ruiz-Correa et al . [8] propose a deformable shape detector that uses a sym-
bolic representation of shape components to represent and detect deformable
objects. Their method can deal with occlusion and noise, and generalizes well
over different deformation models in a “learn by example” way similar to our
proposed approach. However, they report runtimes of over 12 min, making their
method impractical for real-world robotic applications.

The usage of graph matching algorithms in Computer Vision has a long tra-
dition. An extensive overview is given by Conte et al . [9]. Graph matching allows
a robust localization of deformed objects and is a promising method for such a
challenge. While it has been shown extensively to work in 2D applications, its
applications in 3D are mostly limited and restricted to artificial perfect-data
scenarios (see, for example, Duchenne et al . [10]). Berg et al . [11] model the
assignment problem as an Integer Quadratic Programming (IQP) problem and
use a thin-plane spline for post-processing and outlier removal. Leordeanu and
Hebert [4] proposed a relaxation of the binary assignment problem, showing that
it’s orders of magnitudes faster and more robust than IQP. The graph structure
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in our proposed method is based on their graph, where vertices represent point-
to-point assignments, while edges connect geometrically consistent assignments.
They also show the connection between the energy optimization and the eigen-
vector problem of the adjacency matrix. However, no evaluation on deformable
3D matching was performed.

Recently, hypergraphs were used for efficient image and point cloud registra-
tion. Zass and Shashua [12] proposed to use hypergraphs to model more complex
relations between two feature sets. Chertok and Keller [13] build upon that work
and show efficient hypergraph matching for 2D images. Duchenne et al . [10] use
higher-order relations for the graph creation, showing good results in both 2D
and 3D. However, they evaluate only on perfect 3D meshes and show no quanti-
tative results in 3D. Also, their creation of the adjacency matrix is expensive and
makes their method impractical for real-world applications. Leordeanu et al . [14]
propose a new hypergraph matching algorithm, which they use to efficiently
register images that contain deformations. Lee et al . [15] extend a random walk
strategy to hyper-graphs and can include similarity measures of arbitrary orders.
They outperform other methods on 2D when matching feature points on 2D
images.

Several of the mentioned methods require feature point detectors and were
shown on 2D image data only. While robust feature point detectors in 2D are
available, 3D data often exhibits too little distinctive geometry for robust salient
point or feature point extraction. The method proposed in this paper thus uses
a all-to-all matching that does not require feature point extraction.

Several approaches deal with shape retrival, i.e., the identification of 3D point
clouds or meshes. Passalis et al . [16] use a wavelet representation of objects for
efficient shape retrieval in large databases. Mahmoudi and Sapiro [17] identify
point clouds based on the distribution of several intrinsic measurements on that
cloud, such as geodesic distances. While those approaches generalize well to rigid
and non-rigid object classes, they require the objects to be segmented, making
the approaches unsuitable to scenes with large amounts of clutter.

Drost et al . [3] detects rigid 3D objects in 3D point clouds using point-
pair features and a voting scheme with local parametrization. Hinterstoisser
et al . [18] demonstrate rigid 3D object detection using a high-performance tem-
plate matching approach in RGB-D data. While both methods show robust
results, they do not immediately generalize to non-rigid objects.

3 Method

Both model and scene are subsampled uniformly, to avoid any bias from differ-
ent point densities throughout the point clouds. In practice, we use sampling
distances between 3% and 5% of the model’s diameter. We denote mi ∈ M for
points on the sampled model and sj ∈ S for points on the sampled scene surface.
Both point clouds are oriented, i.e., each point has a normal n associated with it.
The objective is to find a deformed instance of the model in the scene by giving
consistent correspondences between scene and model points. Due to occlusion,
clutter, and noise, not every scene point has a corresponding model point and
vice versa.
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Overview. In order to find those correspondences, we build a graph G = (V,E),
where each vertex v ∈ V represents a possible correspondence between a scene
point and a model point. An edge e = (v1, v2) ∈ E indicates that some non-
rigid transformation exists such that both correspondences v1 and v2 are aligned
simultaneously. In other words, vertices that represent consistent correspon-
dences are connected. This graph model is based on [4]. If an instance of the
model is present in the scene, the graph’s vertices that connect the visible model
points to their ground-truth scene points will be connected and form a dense
subgraph of G. We will extract this subgraph using standard techniques, and
thus recover the model-scene-correspondences. We will also show how the graph
can be constructed sparsly (aiding performance) and how to extend the vertices
by adding another parameter to the correspondence (aiding robustness).

3.1 Model Generation

Feature and Database. We use oriented pairs of 3D points as features for the
matching, similar to [1–3]. Each pair (m1, m2) with normals n1 and n2 is
described by

F(m1,m2) = (|d|,∠(n1,d),∠(n2,d),∠(n1,n2)) . (1)

where d = m2 − m1. F is fast to compute, asymmetric and invariant against
rigid motions.

In the online phase, given a scene point pair, we will need to identify all
model point pairs that might be similar to the scene point pair under any trained
deformation. For this, similar to [3], we discretize F by uniformly sampling its
components and use a hash table H to store a mapping between sampled fea-
tures and lists of corresponding point pairs. This allows constant-time lookup
for similar point pairs.

Deformation Model. Real-world object classes exhibit a large variety of different
deformations. In order to be independent from any particular deformation model,
we learn the range of possible deformations based only on registered examples
M1,M2, . . . , Mn given by the user. We write mk

i ∈ Mk as position of model point
mi in the deformed example Mk. For each pair (mi,mj) ∈ M2, we first collect
all its deformations

D(mi,mj) = {(mk
i ,m

k
j ) : k = 1, . . . n} (2)

from the provided examples. We then add all features of the point pairs within
the convex hull of D to the database. Note that additionally, the discretization
of the feature vectors adds a small range of possible deformations, since variations
that do not change the discretized value do not affect the value retrieved from
the hash table.
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3.2 Vertex Parametrization

Our graph models correspondences between model and scene points. In 2D, a sin-
gle point-to-point correspondence completely captures a rigid motion, assuming
that normal vectors or gradients are available. In 3D, however, a single corre-
spondence misses one degree of freedom: After aligning a scene and a model point
as well as their normal vectors, one can still rotate around the normal vector.
Using correspondences only is thus an underparametrization of an underlying
rigid motion. For graph matching, this has the effect of aggregating vertices and
thus probably introducing undesired cliques, making it more difficult to extract
the correct correspondences.

To counter this, we explicitly include the rotation around the normal in the
vertex parametrization. Each vertex in the graph then represents not only two
corresponding points s, m, but also a rotation angle α around the normal vector.
(m, α) are also called the local parameters w.r.t. s. Together with the normals,
those parameters completely parametrize a rigid transformation T . Formally, we
follow [3] and define T as

T (s,m, α) = L(s)−1Rx(α)L(m) (3)

where L(x) ∈ SE(3) is a transformation with L(x) = 0 and L(n(x)) = (1, 0, 0)T ,
and Rx(α) is a rotation around the x-axis with angle α. The rotation angle α
is sampled in d intervals, such that each vertex can be parametrized as S ×
(M × [0; 2π]d). The number of vertices in the full graph is then |S||M |d.

3.3 Graph Creation and Local Voting Scheme

Handling a graph with |S||M |d vertices can become computationally expensive
for larger scenes. In order to improve the matching speed, we prune the graph
based on the results of the local voting scheme of [3], thus effectively removing
parts which we deem unlikely to be relevant. Figure 1 outlines the graph creation.

At its core, the local voting scheme is a Hough Transform that recovers the
best local parameters (m, α) given some fixed scene reference point s1 ∈ S, i.e.,
the parameters for which the most scene points are aligned with the model. For
this, the parameter space M × [0; 2π] is discretized using [0; 2π]d as described
above. The method then iterates over all other scene points s2 ∈ S, computes
F(s1, s2) and matches F against the hash table H. This returns a list of model
point pairs (m1,m2) for which a deformation exists such that the two point
pairs are similar. For each such matching point pair, α1 is computed by solving
(3), and a vote is cast for (m1, α1).

Contrary to [3], we perform the voting for all reference points simultanously.
For each model point pair that matches a scene point pair, we obtain the sym-
metric parameter α2 and cast a vote for reference point s2 at (m2, α2). The two
corresponding nodes of the graph, (s1,m1, α1) and (s2,m2, α2), are connected
with an edge, since they can both be fulfilled simultanously. We create a sparse
graph by adding only those vertices that have a high voting score. This removes
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H

Scene S Model M

s1

s2

m1

m2

F H(F)

v1 = (m1, α1, s1)

v2 = (m2, α2, s2)

ev1,v2

Graph G = (V, E)

Fig. 1. Graph Construction. From left to right : For each scene point pair (s1, s2),
F is computed. The hash table returns a list H(F) of all model point pairs that can
be deformed to match (s1, s2). Right : Each vertex v in the graph represents a possible
correspondence between a scene and a model point. Edges are created between vertices
that are consistent, i.e., a deformable transformation between scene and model exists
that fulfills both correspondences: For each match (m1,m2) ∈ H(F), an edge is created.

vertices and edges that are unlikely to be a part of the object. In practice, for
each scene reference point, we use the references with the highest 3% of voting
scores.

The left images in Fig. 6 show an example of the pruned graph creation. For
a full graph, each model vertex would be connected to each scene point. For our
pruned graph, only a small subset of those connections remains. As outlined in
Fig. 2, the pruning step improves the runtime of the graph matching by several
orders of magnitude.

3.4 Graph Matching

In the following, we follow the notation of [10]. The problem is to find an assign-
ment vector X ∈ {0, 1}V , where Xv is 1 if the scene and model point represented
by v correspond and 0 otherwise. This problem is relaxed, such that Xv ∈ R+,
and modeled as an energy optimization problem

X∗ = argmax
|X|=1

∑
e=(vi,vj)∈E

Xvi
Xvj

. (4)

In terms of the graph’s adjacency matrix A = (w)i,j , this becomes

X∗ = argmax
|X|=1

∑
i,j∈V

wi,jXvi
Xvj

. (5)

Note that for the normalization |X| = 1, any norm can be used, since we will
use the relative values of X only. The problem is then a scaled Rayleight quotient
problem [4,10], and X∗ is an eigenvector associated to the largest eigenvalue of A.

We solve the optimization problem through gradient descend. X0 is initialized
to all ones, the update step is

Xk+1 =
AXk

|AXk| (6)
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|S| |M | Vertices |V | Edges |E| Runtime
Dense 13106 300 135.566 98.886.050 1163.6 s
Sparse 13106 300 34.095 42.832 1.1 s

Fig. 2. Effect of matching with a sparse graph using the local voting scheme for the
scene shown in Fig. 6

This is equivalent to the power iteration that has proven convergence against an
eigenvector of the largest eigenvalue of A.

Voting Scheme Interpretation. The iteration (6) can also be seen as a repeated,
re-weighted voting scheme: In the first step, each vertex votes for all connected
vertices with a weight of 1, such that X1

v is the degree of v, i.e., the number of
connected edges. In subsequent steps, each vertex v votes again for all connected
vertices, but this time with the number of votes it received in the last round,
instead of 1. Through this feedback cycle, vertices of a strongly connected sub-
graph amplify each other, while the values of weakly connected vertices fall due
to normalization. With this interpretation, the graph pruning is equivalent to
performing the first iteration of (6) on the full graph and then removing vertices
with low scores.

3.5 Dominant Consistent Subgraph Extraction

The power iteration gives us a weighted set of vertices or scene-model-
correspondences. However, even though the correct correspondences obtain high
scores, the set is not necessarily consistent. It might contain outliers as well
as non-unique correspondences, i.e., two or more connections to a model or
scene point. In [4], a greedy approach for extracting the most dominant, consis-
tent dense subgraph was proposed. Their approach, however, is computationally
expensive and requires a strong deformation model. [10] modeled the optimiza-
tion based on the l1-norm, giving an almost binary correspondence vector, which
is easier to threshold. However, we found that this approach has a slower conver-
gence and tends to drop correct nodes. We instead use a simple greedy subgraph
extraction. Though this is somewhat of an ad-hoc solution, we found it performs
well with little computational costs.

The vertex v∗ = argmaxv∈V X∗(v) with the largest score is used as seeding
point, and the set of all vertices reachable over no more than two edges (“two
hops”) is extracted. We found that a single hop is not enough, since the desired
subgraph is not a clique, while three hops has too much a chance of introducing
incorrect correspondences. To avoid double-correspondences of scene or model
points, if a scene of model point is part of two or more extracted correspondences,
we only keep the correspondence with the highest value in X∗. Such double-
correspondences mostly connect two neighboring points of one set to a single
point in the other set, a result of the allowed deformation.
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4 Results

We evaluated the proposed approach with several quantitative and qualitative
experiments. Synthetic and real data with available ground truth was used for
the quantitative evaluation, while the qualitative experiments were performed
on a real dataset only.

Note that all parameters were kept constant over all experiments, showing
that the method’s robustness w.r.t. its parameters. Model and scene were sub-
sampled with distance 3% of the model’s diameter. For the hash table, the
distance of feature F was also quantized in steps of 5% of the model’s diam-
eter, while angles were quantized in steps of 12◦. Figure 5 (left) motivates the
choice for the distance sampling parameter, which is a tradeoff between match-
ing accuracy and matching speed. For each scene, 10 iterations of Eq. 6 were
performed.

The method was implemented in C and tested on a Core i5, 3.33 GHz. The
off-line learning phase, i.e., creation of the Hash Table H, took less than 1 min
for all objects. Feature matching required 0.05 to 2 seconds, the power itera-
tions 0.1 to 2.5 secs, depending on the complexity of the scene and the amount
of clutter. Timings for the remaining steps, such as scene sampling and greedy
dense subgraph extraction, were neglectable. We believe that an improved imple-
mentation and a better control over the number of iterations would significantly
improve the runtime.

4.1 Quantitative

Synthetic Data. A first set of experiments was performed on synthetic data,
where ground truth is available. We selected three different objects with different
surface characteristics, a clamp, a pipe joint and the Stanford Bunny [19] (Fig. 4,
left). For each object, 100 scenes were rendered with different amounts of clutter,
occlusion, and deformation (Fig. 4, right). The objects were deformed using free-
form deformation [20]. For training, 10 deformed instances of each object, which
were not part of any of the evaluation scenes, were used.

Model Precision Recall Rel. Error
Clamp 0.93 0.57 3.6%
Pipe joint 0.99 0.69 2.2%
Bunny 0.96 0.51 4.1%

Fig. 3. Average precision, recall, and relative error of the returned correspondences for
the synthetic scenes

We measure the performance of the method in terms of precision, recall, and
error of the recovered correspondences. A recovered correspondence is a true
positive if its scene point is on the object and its model point is at most 10%
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Fig. 4. Left: Objects used for the synthetic tests (clamp, bunny, pipe joint). Right:
Example scenes of the synthetic dataset, showing clutter and deformation.

away from its ground truth position. The relative error measures for each true
positive correspondence the distance of the corresponding model point to the
ground truth model point, divided by the diameter of the object.

Figure 3 shows the average results for the three objects. The recovered cor-
respondences show a very high precision, indicating that most of the recovered
correspondences were correct. The average recall is larger than 0.5, meaning that
on average more than half of the correct correspondences were recovered.
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Fig. 5. Left: Effect of changing the distance sampling parameter of the feature data-
base for an exemplary synthetic scene. Matching accuracy and robustness drops sig-
nificantly when sampling with more than 0.1, while matching time raises significantly
when sampling with less than 0.05. In practice, we use 0.05 over all our experiments.
Right: Detection results on the dataset of Mian et al . [21]. Our approach exceeds the
rigid baseline method of Drost et al . [3] and successfully detects 96.3 % (181 of 188)
of all objects, and 98.8 % (168 of 170) of objects with less than 84 % occlusion. Our
method also outperforms spin images of Johnson and Hebert [22] and the tensor voting
of Mian et al . [23].

Real Data. We evaluated our approach on the dataset of Mian et al . [23,
24]. The dataset contains 50 scenes of 5 rigid objects, obtained with a high-
precision laser scanner and with available ground truth. Figure 5 (right) shows
the detection rates w.r.t. the occlusion of the objects

Note that even though the objects are rigid, detection still benefits from using
our graph approach. This is evident from the fact that we exceed the baseline
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method of Drost et al ., which we use to initialize our graph. We also outperform
several other state of the art methods.

4.2 Qualitative

We evaluated the proposed method on a set of real-world scenarios. Over 50
scenes containing pretzels, bananas, cappys and stressballs were acquired using
both an industrial stereo sensor and a Primesense RGB-D sensor and matched
against the corresponding model. Note that since the stereo sensor does not
return an RGB-image, its scenes are visualized in 3D only.

For training, several deformed instances of each object were acquired, man-
ually segmented and registered using deformable ICP [5]. We used only 5 to
15 examples for each class for the training, showing that the method is able to
generalize from only few examples.

Figure 7 show several example scenes. Figure 6 shows on two examples how
the graph creation leads to a sparse graph (1) and how the graph matching
extracts a consistent set of correspondences from that graph (2). The effect on
the computational costs are shown in Fig. 2. Additional examples are available
in the supplementary material.

Overall, we found that the method performs very well even in cases of severe
clutter, occlusion, and noise.

Fig. 6. Graph matching examples. Left three images: (1) Initial correspondences,
created by thresholding the results of the local voting scheme. Each correspondence
is a vertex in our graph. (2) Correspondences extracted after graph matching by the
greedy subgraph extraction. Note that only a consistent set of correspondences from
the original set of correspondences remains. (3) The correspondences were transformed
into a rigid transformation. Right two images: Additional examples. The matching
was performed on the depth image only, while the RGB image was used for visualization
only. Images best viewed in color (Color figure online).
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Fig. 7. Qualitatives results on scenes acquired with a stereo sensor. Challenges include
clutter, occlusion, multiple instances and strong deformations. The rightmost scene
shows the model (bottom) and fitted result (top).

4.3 Conclusion

We presented a deformable 3D object detection scheme that generalizes well over
different object classes and requires few parameters. We showed how the combi-
nation of all possible deformations can be learned based on only a few deformed
training samples. The graph matching scheme of [4] was extended by augment-
ing the correspondences with another parameter, making them more expressive
in 3D. We prune the graph by using the method of [3] to create only a sparse
set of correspondences that are likely to be correct. Using 3D point pairs makes
the method invariant against any rigid 3D transformations. Finally, a greedy
dense subgraph extraction is used to find a consistent set of correspondences,
which can be used to obtain an approximate rigid transformation or to initialize
a deformable ICP.

Our experiments show that the proposed method is able to robustly and
quickly detect rigid and non-rigid objects in challenging 3D point clouds despite
heavy clutter and partial object occlusion. For rigid objects, we outperform
prior art.

References

1. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D
registration. In: ICRA (2009)

2. Wahl, E., Hillenbrand, G., Hirzinger, G.: Surflet-pair-relation histograms: a statis-
tical 3d-shape representation for rapid classification. In: 3DIM (2003)

3. Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: efficient
and robust 3D object recognition. In: CVPR (2010)

4. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using
pairwise constraints. In: ICCV (2005)

5. Myronenko, A., Song, X.: Point set registration: coherent point drift. PAMI 32(12),
2262–2275 (2010)

6. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registra-
tion. CVIU 89(2), 114–141 (2003)

7. Anguelov, D., Srinivasan, P., Pang, H.C., Koller, D., Thrun, S., Davis, J.: The
correlated correspondence algorithm for unsupervised registration of nonrigid sur-
faces. NIPS. 17, 33–40 (2004)



Graph-Based Deformable 3D Object Matching 233

8. Ruiz-Correa, S., Shapiro, L.G., Meila, M.: A new paradigm for recognizing 3-d
object shapes from range data. In: ICCV, pp. 1126–1133. Citeseer (2003)

9. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. IJPRAI 18(03), 265–298 (2004)

10. Duchenne, O., Bach, F., Kweon, I.S., Ponce, J.: A tensor-based algorithm for high-
order graph matching. PAMI 33(12), 2383–2395 (2011)

11. Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using
low distortion correspondences. In: CVPR (2005)

12. Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: CVPR
(2008)

13. Chertok, M., Keller, Y.: Efficient high order matching. PAMI 32(12), 2205–2215
(2010)

14. Leordeanu, M., Zanfir, A., Sminchisescu, C.: Semi-supervised learning and opti-
mization for hypergraph matching. In: ICCV, pp. 2274–2281. IEEE (2011)

15. Lee, J., Cho, M., Lee, K.M.: Hyper-graph matching via reweighted random walks.
In: CVPR, pp. 1633–1640. IEEE (2011)

16. Passalis, G., Kakadiaris, I.A., Theoharis, T.: Intraclass retrieval of nonrigid 3D
objects: application to face recognition. PAMI 29(2), 218–229 (2007)

17. Mahmoudi, M., Sapiro, G.: Three-dimensional point cloud recognition via distrib-
utions of geometric distances. Graph. Models 71(1), 22–31 (2009)

18. Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P., Lepetit,
V.: Gradient response maps for real-time detection of textureless objects. PAMI
34(5), 876–888 (2012)

19. Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proceedings
21st Annual Conference on Computer Graphics and Interactive Techniques, p. 318.
ACM (1994)

20. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In:
ACM Siggraph Computer Graphics, vol. 20, pp. 151–160. ACM (1986)

21. Mian, A.S., Bennamoun, M., Owens, R.A.: Automatic correspondence for 3D mod-
eling: an extensive review. Int. J. Shape Model. 11(2), 253 (2005)

22. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in
cluttered 3d scenes. PAMI 21(5), 433–449 (1999)

23. Mian, A.S., Bennamoun, M., Owens, R.: Three-dimensional model-based object
recognition and segmentation in cluttered scenes. PAMI 28(10), 1584–1601 (2006)

24. Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of key-
points for local feature-based 3D object retrieval from cluttered scenes. Int. J.
Comput. Vision 89(2–3), 348–361 (2010)



Posters



Line3D: Efficient 3D Scene Abstraction
for the Built Environment

Manuel Hofer(B), Michael Maurer, and Horst Bischof

Institute for Computer Graphics and Vision, Graz University of Technology,
Graz, Austria

hofer@icg.tugraz.at

http://www.icg.tugraz.at

Abstract. Extracting 3D information from a moving camera is
traditionally based on interest point detection and matching. This is
especially challenging in the built environment, where the number of
distinctive interest points is naturally limited. While common Structure-
from-Motion (SfM) approaches usually manage to obtain the correct
camera poses, the number of accurate 3D points is very small due to
the low number of matchable features. Subsequent Multi-view Stereo
approaches may help to overcome this problem, but suffer from a high
computational complexity. We propose a novel approach for the task of
3D scene abstraction, which uses straight line segments as underlying
features. We use purely geometric constraints to match 2D line segments
from different images, and formulate the reconstruction procedure as a
graph-clustering problem. We show that our method generates accurate
3D models, with a low computational overhead compared to SfM alone.

1 Introduction

Recovering 3D information from an image sequence used to be a very challeng-
ing and time consuming task. Today, thanks to freely available software such
as Bundler [24] or VisualSfM [26], even non-expert users are able to generate
accurate 3D models from arbitrary scenes within hours. Since these so-called
Structure-from-Motion (SfM) approaches operate on a sparse set of distinctive
feature points (e.g. SIFT [18] features), the resulting 3D point cloud is usually
quite sparse as well. The more important part of the SfM result are the obtained
camera poses for each input image, which enable subsequent Multi-View Stereo
(MVS) pipelines (e.g. PMVS [8] or SURE [21]) to create a (semi-) dense point
cloud.

While the first part of this two-step procedure (pose estimation via SfM) can be
computed very efficiently even for large crowd-sourced datasets [7,10], the second
part (dense reconstruction via MVS) is still computationally expensive and can
take up to several days even on modern desktop computers. Moreover, the result-
ing 3D point cloud might easily consist of millions of points and just viewing it in
a point-cloud viewer quickly becomes a very tedious task. The same holds for any
kind of automatic data analysis or post processing (e.g. meshing [17]). This is due
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 237–248, 2015.
DOI: 10.1007/978-3-319-24947-6 19
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(a)

SfM [15]

46, 572 points
runtime: 2.25 hours (b)

PMVS [8]

12, 156, 664 points
runtime: > 11 hours (c)

Line3D (proposed)

13, 489 lines
runtime: 375.63 sec

Fig. 1. Three different 3D representations of the BUILDING sequence (344 images).
(a) Sparse 3D model [15]. (b) Semi-dense point-cloud (PMVS [8]). (c) 3D line model
using Line3D. As we can see, it is hardly possible to recognize the building in the sparse
3D model, while it is clearly recognizable in both the semi-dense- and the line-based
3D model. Compared to PMVS, our method has much lower runtime- and memory
requirements.

to the nature of using point clouds as a representation of a 3D model. On the one
hand, shapes of arbitrary complexity can be described by a set of 3D points, but
on the other hand, the number of points needed to do so can quickly exceed the
capabilities of your system.

What would be desirable is an efficient way of abstracting the 3D model, so
that as much 3D information as possible can be encoded with only as much data
as really necessary. A natural choice would be to use more complex geometric
primitives as data representation, such as planes (e.g. [20]) or lines (e.g. [12]).
While this might not be sufficient for natural scenes (e.g. forests, etc.), it is
especially useful for the built environment, where most of the structures are
piece-wise planar/linear.

We propose a novel approach for the task of 3D scene abstraction, denoted
as Line3D, which makes use of straight line segments as data representation.
Our method works as an efficient SfM post-processing tool and positions itself
in between sparse and dense 3D reconstruction. We build on recent methods
[11–14], which use epipolar-guided line segment matching and formulate the 3D
reconstruction as a clustering problem. Our main contributions are the refor-
mulation of the scoring procedure of matched 2D segments in a less restrictive
way, the replacement of the simple graph-clustering procedure in [11,12] with
a more recent matrix-diffusion based method [4], as well as the computation of
affinities between potentially matching segments using a linear function of their
estimated depth and user specified regularization parameters in the pixel space.
These modifications ultimately result in more complete 3D models without neg-
atively influencing the runtime.

Figure 1 shows a comparison between a sparse-, dense-, and a line-based 3D
model for an urban scene. As we can see, our reconstruction provides a high
amount of 3D information, despite its sparsity compared to the dense model.
Moreover, running our method is only a low computational overhead, even for
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this relatively large-scale dataset. The source code of our method is publicly
available and can be downloaded from http://aerial.icg.tugraz.at.

2 Related Work

While line segments have been used for tasks such as image registration or 3D
reconstruction for a long time (e.g. [2]), in recent years image-based 3D recon-
struction has been dominated by the use of image feature-points and their invari-
ant descriptors (e.g. SIFT [18]). Only quite recently, the principles of feature-
point descriptors have been successfully ported to the task of line segment match-
ing (e.g. [28–30]), but line-based 3D reconstruction for real-world scenarios is
still rarely used. While earlier methods have severe limitations (e.g. Manhattan-
world assumption [23]), more recent approaches [11–14,16] have successfully been
deployed on challenging datasets. They all require known camera poses (e.g. by
running a conventional SfM pipeline beforehand), since pose estimation using
line segments can only be done in special scenarios (e.g. by using triplets of two
parallel and one orthogonal lines [5]), with given 3D lines [27], or when explicit
endpoint correspondences can be established [19].

Jain et al. [16] proposed a method that does not require explicit correspon-
dences between line segments from different images, which enables 3D recon-
struction under difficult lighting conditions or around highly non-planar objects
(such as power pylons), where patch-based line descriptors would fail. They
formulate the reconstruction procedure as an optimization problem, where the
unknown depth of the endpoints of 2D line segments in the images is modelled
as a random variable. They compute the most probable 3D locations for the seg-
ment endpoints by minimizing the reprojection error among several neighboring
views, and compute a final 3D model by merging individual 3D hypotheses that
are sufficiently close together. While their approach generates visually pleasant
results, the continuous optimization of the endpoint depths, in a potentially large
range, renders the method inefficient for large-scale datasets.

To overcome these issues, Hofer et al. [13,14] replaced the continuous depth
estimation with epipolar guided line segment matching, to limit the number of
possible 3D locations to a discrete set. They further replaced the greedy line-
merging from [16] with a scale invariant graph clustering formulation [12], which
can also be evaluated on-the-fly for incremental SfM applications [11].

We build up on the core principles presented in [11–14], which are appearance-
less line segment matching and global graph-clustering of corresponding seg-
ments across images. We demonstrate how the resulting 3D reconstructions can
be improved by making several adaptions to their original formulation, without
sacrificing runtime performance.

3 3D Reconstruction Using Line Segments

Given an (unordered) image sequence I = {I1, . . . , IN}, we first run an arbitrary
SfM pipeline to obtain the corresponding camera poses as well as a sparse set of

http://aerial.icg.tugraz.at
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3D points X = {X1, . . . , XK}, which is needed solely to define which images are
visual neighbors. We further define X(i) ⊂ X to be the set of 3D points which
are visible in image Ii. We require a set of 2D line segments Li = {li1, . . . , l

i
mi

} for
each image, where each segment lim simply consists of two endpoints pi

m, qi
m ∈ R

2.
The line segments can be obtained by any line segment detector, such as LSD [9]
or EDL [1].

Similar to [11,12], our method consists of several steps: (1) establishing poten-
tial correspondences between line segments from different images, (2) evaluating
these correspondences based on their support in neighboring views, (3) select-
ing the most plausible correspondence for each 2D segment as its 3D position
hypothesis, and (4) clustering 2D segments based on their spatial proximity in
3D to obtain the final correspondence set and 3D model.

3.1 Establishing Line Segment Correspondences

To generate a line-based 3D model we need to establish correspondences between
2D line segments from different images. Theoretically, this could be done by one
of the numerous line-matching approaches presented in the past (e.g. [28–30]).
However, most of these approaches are patch-based and are therefore only suit-
able for line segments located on planar surfaces. Most of the line segments in
natural images correspond to depth discontinuities, which results in line descrip-
tors describing the potentially far away background. To overcome this draw-
back, recent methods have demonstrated how correspondences can be established
and verified using purely geometric principles, without any kind of appearance
[12–14], or with color histogram-based line descriptors [3] as weak support [11].

We follow [11–14] and use epipolar matching constraints to establish a set of
potential correspondences for each line segment lim individually. Since it would
be infeasible (and unnecessary) to match all images with each other, we first
compute a set of visual neighbors Vi ⊂ {1, . . . , N}\{i} for each image Ii, by
finding its M nearest neighbors in terms of Dice’s similarity coefficient

SI(i, j) =
2 · |X(i) ∩ X(j)|
|X(i)| + |X(j)| , (1)

which sets the number of common worldpoints in relation to the total number
of worldpoints for each image (the higher the more similar).

We then match all segments in Li to all segments in Lj (if j ∈ Vi). For a
specific segment pair, lim ∈ Li and ljm̄ ∈ Lj , we compute the epipolar lines of
their endpoints in the opposite image. We then simply intersect the infinite lines
passing through the segments lim and ljm̄ with the epipolar lines, and compute the
overlap of the region between the intersection points with the original segments.
If both relative overlaps (normalized by the length of the respective segment lim
or ljm̄) are above a fixed threshold τ , we consider lim and ljm̄ to be potentially
matching (τ = 0.25 in all our experiments).

As shown in [11–14], we can transform each 2D correspondence into a 3D line
Hi,j

m,m̄ by intersecting the two planes passing through the respective
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camera centers Ci, Cj ∈ R
3, and the 2D segments. We compute two 3D line seg-

ment hypotheses (hi,j
m,m̄ and hj,i

m̄,m) for each correspondence, which are defined
as 3D line segments on Hi,j

m,m̄, whose projected endpoints coincide with the end-
points of the 2D line segments lim and ljm̄ respectively. Similar to the 2D case, a
3D line segment consists of two 3D points (hi,j

m,m̄ = {P i,j
m,m̄, Qi,j

m,m̄}). Note that
Hi,j

m,m̄ = Hj,i
m̄,m, while in general hi,j

m,m̄ �= hj,i
m̄,m (due to occlusions and imprecise

2D segment detections).

3.2 Evaluating Line Segment Correspondences

The matching procedure enables us to establish a potentially large set of corre-
spondences, most of which are of course incorrect. Since we only use weak epipo-
lar constraints, it is not possible to distinguish correct from incorrect matches
during matching. However, we can assign confidence values for correspondences
after Li has been matched with all visual neighbors. This can either be done
using gradient-based backprojection and scoring of the 3D hypotheses over mul-
tiple images [14,16] (which is time consuming), or by directly analysing their 3D
similarity to each other [11–13] (which requires some scale information). Both
methods are based on the observation that correct hypotheses of a 2D segment
always support each other (e.g. they are close together in 3D space and project
to similar locations in the images), while this does not hold for incorrect ones.

To be scale invariant and fast, we use a novel similarity measure based on
positional- and angular reprojection errors between a 3D hypothesis and 2D
segments. We assign a confidence

c(hi,j
m,m̄) =

∑
x∈Vi\{j}

max
y∈{1,...,mx}

{
A2D(Γx(hi,j

m,m̄), lxy )
}

, (2)

to a correspondence hi,j
m,m̄, where Γx projects a 3D line segment into an image Ix,

and A2D computes a truncated affinity between two 2D segments. This affinity
is defined as

A2D(l1, l2) =
{

Sa
2D(l1, l2) · Sp

2D(l1, l2) if Sa
2D(l1, l2) · Sp

2D(l1, l2) > 0.5
0 otherwise , (3)

withSa
2D being an angular similarity, andSp

2D being a position similarity defined as

Sa
2D(l1, l2) = exp

(
−∠(l1, l2)2

2σ2
a

)
Sp
2D(l1, l2) = exp

(
−dmax(l1, l2)2

2σ2
p

)
, (4)

where ∠(l1, l2) denotes the angle between the two line segments (in degrees),
and dmax(l1, l2) is the maximum normal distance between the endpoints of l1 to
the infinite line passing through l2, and vice versa. σa and σp are user specified
regularization parameters.

With this formulation we are able to determine whether a matching hypothe-
sis makes sense or not. We only keep hypotheses for further processing for which
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c(hi,j
m,m̄) > 1, which means that at least two segments from two additional images

(apart from Ii and Ij) have to support hi,j
m,m̄. We end up with a much sparser set

of correspondences, with a significantly lower number of outliers, while correct
hypotheses are only seldom removed.

3.3 Assigning 3D Locations to 2D Segments

As in [11–13], given all hypotheses hi,j
m,m̄ for a 2D segment lim, we want to estimate

its most probable 3D position, since each 2D segment can only be a projection
of one specific 3D structure. We then use this 3D information for the following
clustering procedure, as first shown in [11,12]. For each 2D segment lim we define
its 3D location as

ĥi
m = argmax

hi,j
m,m̄

{
c(hi,j

m,m̄)
}

, (5)

which is simply its 3D hypothesis with the highest confidence. We addition-
ally normalize the associated confidence c(ĥi

m) = min{1, c(ĥi
m)/2}, such that

c(ĥi
m) = 1 means a hypothesis is supported by ≥ 4 images (see Sect. 3.2). In con-

trast to [11,12], where confidences are always normalized linearly by the locally
highest confidence value (per image), we normalize by a fixed value. We have
seen that 3D segment hypotheses verified by 4 or more images are almost never
incorrect, which can also be observed for SfM point-clouds on the 3D point level.
This enables correct matches which are only found in a low number of visual
neighbor images (due to occlusions, etc.) to obtain a high confidence, despite the
potential occurrence of other correspondences from the same image which might
be occluded less often. Since this procedure is purely local, it can be easily done
even for large-scale datasets.

3.4 Clustering 2D Segments Across Images

To perform the segment clustering we need an affinity matrix W , which holds
the pairwise similarities between all potentially matching 2D segments. Since
we only need to consider segment pairs which have been matched before, this
matrix is usually very sparse. The question is how these similarities should be
computed. We could use the same metric as for the hypothesis confidence above,
by projecting 3D segments into images and evaluating the projective score (see
Eq. 3). The problem with this procedure is that the reprojection error is not
necessarily an appropriate indicator for a good correspondence, since it might
be small despite a large spatial displacement. Hence, it is desirable to compute
similarities directly in the 3D space.

To achieve this, we need some scale information. Since it is not possible to
obtain a metric 3D reconstruction from a conventional SfM pipeline (unless fur-
ther knowledge about the scene is provided, e.g. ground control points [22]), we
have to find a way to derive a scale estimate from the reconstruction. Moti-
vated by [11–13], we use user defined uncertainty thresholds in the pixel space,
which are then brought into the local 3D space of the reconstruction. Unlike
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in these approaches, where an estimate about spatial uncertainty thresholds is
made using all potential 3D line segment hypotheses (correct as well as incorrect
ones), we formulate the uncertainty estimation as a linear function of the scene
depth with respect to the underlying camera geometry, which is more robust to
outlier hypotheses.

We aim at converting an uncertainty threshold t from the pixel space into
the 3D space, for each image Ii individually. Therefore, we define zi to be the
center point of Ii, and z̃i to be zi shifted by t (in any direction). We unproject
zi from the image at a distance of 1, and obtain a 3D point Zi. We then shoot
a 3D ray through z̃i and compute the normal distance ki

t between Zi and this
ray. We use this distance as the slope of our linear uncertainty function

ui(X, t) = ki
t · ‖Ci − X‖2, (6)

where ‖Ci − X‖2 is the Euclidean distance between a 3D point X and the
camera center Ci of Ii (i.e. its scene depth along the viewing ray). In other
words, ui(X, t) assigns a spatial uncertainty to a 3D point X, with respect to a
maximally allowed reprojection error t, in the image Ii.

To avoid the possibility that the allowed spatial uncertainty grows too large
for points far away from the camera center, we analyse the configuration of the
final 3D hypotheses of all segments in Li, to obtain a depth range in which this
estimation makes sense. We therefore compute the median scene depth Di over
all final 3D hypotheses ĥi

m, by using both segment endpoints, and truncate our
uncertainty function at the median. We obtain a modified uncertainty estimator

ûi(X, t,Di) =
{

ui(X, t) if ‖Ci − X‖2 < Di

ki
t · Di otherwise , (7)

which can then be finally used to estimate similarities between clusterable 2D
segments.

To compute the pairwise segment affinities, we use two separate uncertainty
thresholds tl (lower bound) and tu (upper bound), with tl < tu. Since we always
have small inaccuracies throughout the reconstruction procedure (e.g. in the
SfM or the line segment detection), we cannot assume we will have perfect 3D
hypotheses with zero distance to each other. We therefore do not punish devia-
tions below tl, and fit a Gaussian model between tl and the cutoff value tu. For
two potentially matching 2D segments lim and ljm̄, their similarity is computed as

W (lim, ljm̄) =
1
2

(
c(ĥi

m) + c(ĥj
m̄)

)
· A3D(ĥi

m, ĥj
m̄). (8)

The similarity function A3D is defined in a similar way as for the 2D case (Eq. 3):

A3D(ĥi
m, ĥj

m̄) = Sa
3D(ĥi

m, ĥj
m̄) · min

{
Sp
3D(ĥi

m, ĥj
m̄), Sp

3D(ĥj
m̄, ĥi

m)
}

, (9)

where the angular similarity Sa
3D is equivalent to its 2D counterpart Sa

2D (Eq. 4),
and the position similarity Sp

3D is defined as

Sp
3D(ĥi

m, ĥj
m̄) = min

{
E(P̂ i

m, ĥj
m̄), E(Q̂i

m, ĥj
m̄)

}
, (10)
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with the point-to-line affinity E being computed as

E(X,h) =

{
1 if dist(X,h) < ûi(X, tl,Di)

exp
(
− (dist(X,h)−ûi(X,tl,Di))

2

2σ2
i,X

)
otherwise ,

(11)
where dist(X,h) is the Euclidean distance between a point X and a line h. The
distance regularisation parameter σi,X is derived from tl and tu, such that the
affinity E drops to 0.01 if the maximum allowed distance ûi(X, tu,Di) is reached.

The resulting affinity matrix could now be directly fed to an arbitrary graph
clustering algorithm, which takes a simple pairwise affinity matrix as an input.
Related methods [11,12] used [6] as a clustering algorithm, which delivers visually
pleasant results for the general case. To further improve the clustering result,
we deploy a more recent clustering strategy [4], which is based on diffusing the
given affinity matrix W , by implicitly considering the underlying data manifold.
Compared to [6], there is virtually no computational overhead, since the diffusion
procedure can be efficiently computed in parallel on the GPU.

The clustering result from [4] is post-processed by removing all clusters which
do not contain 2D segments from at least four different images. We estimate the
final 3D line for each remaining cluster from the 3D segments of the contained
2D residuals, as first shown in [16]. The line direction can be computed by a
Singular Value Decomposition of the scatter matrix containing all endpoints of
clustered 3D segment hypotheses, and a point on the line can easily be obtained
by computing the center of gravity among all these endpoints. We finally project
all individual segments onto the averaged 3D line, and compute a set of 3D line
segments on this line, such that each of these segments is fully covered by at
least three of the projected hypotheses. Figure 2 visualises the different steps of
the reconstruction procedure for the BUILDING sequence.

4 Experimental Results

We demonstrate the capabilities of our algorithm on two challenging real-world
datasets, and quantitatively compare our results to the state-of-the-art [12] on

(a) Selected 3D Hypotheses (b) Final Clusters

Fig. 2. Visualisation of the reconstruction procedure. (a) Individual 3D hypotheses ĥi
m

for all segments lim. (b) Result of the graph-clustering [4] using random colors (one per
cluster).
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Ground truth
(laser scan)

Hofer et al. [12]

RMSE: 0.0598
6.61 seconds

Line3D (proposed)

RMSE: 0.0568
3.64 seconds

Fig. 3. Quantitative evaluation on the Herz-Jesu-P8 [25] dataset (Color figure online).

a publicly available dataset with ground truth. We further set our line-based
reconstructions in relation to conventional dense point-clouds, obtained from
PMVS [8], to give an idea of the pros and cons of both methods in terms of
runtime vs. level of abstraction.

The parameters are kept fixed for all datasets. We set the 2D confidence reg-
ularisation parameters to σp = 2px and σa = 5◦, and the uncertainty thresholds
to tl = 2px and tu = 6px. As a line segment detector we use LSD [9], and as
an SfM pipeline we use [15]. Our algorithm is implemented in C++ and CUDA,
making use of parallel computing whenever possible.

Figure 3 shows a quantitative comparison between our method and the method
by Hofer et al. [12] on the Herz-Jesu-P8 [25] dataset. The lines are colored by
their root-mean-square error (RMSE) to the ground truth surface. As we can see,
both approaches have a comparably high accuracy while our method manages to
reconstruct more 3D segments. Please note that not all valid 3D lines are actually
contained in the ground truth. This is especially notable on the railings at the
main entrance (colored in dark red).

Figure 4 shows qualitative results for two real-world test sequences. Please
note that the runtime for PMVS is measured in hours, while for [12] and Line3D
it is in seconds. As can be seen, both line-based approaches generate virtually
outlier-free results very efficiently, but our method in general manages to recon-
struct more 3D segments. This is mainly due to the different uncertainty- and
confidence estimation procedures, as well as the modified clustering process,
which enable 3D segments that are not visible in many images to be recon-
structed more likely. The comparison to the dense point-clouds underlines once
more how a lot of 3D information can be extracted in a very short time when
only straight line segments are used as features. Our 3D line models give the
viewer a very good impression of what is going on in the scene, but in a compact
way and requires a very short amount of computational time.

5 Conclusion

We proposed a new method to generate abstract 3D models for built environ-
ments. We have shown how a significant amount of 3D information about a
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390, 762 points
0.83 hours

1, 689 lines
50.67 seconds

2, 697 lines
55.85 seconds

PYLON, 66 images, 4320 × 3240px

12, 156, 664 points
11.34 hours

12, 565 lines
368.28 seconds

13, 489 lines
375.63 seconds

BUILDING, 344 images, 4912 × 3264px

Fig. 4. Qualitative reconstruction results. Left column: PMVS [8], Middle column:
Hofer et al. [12], Right column: Line3D (proposed method).

scene can be encoded very efficiently, by using line segments in contrast to a
large point-cloud. However, our goal was not to replace dense 3D reconstruc-
tion, but rather to provide an alternative for all scenarios in which 3D edge
information is preferred over a point-cloud.

At the moment, our method can be seen as an SfM post-processing tool,
which takes camera poses and images as an input, and returns a 3D model.
In our future work, we intend to use the obtained 3D line segments (and their
2D residuals) to refine the camera poses from the SfM. We believe that using
a combination of points and lines has the potential to improve SfM for indoor-
and urban environments, where distinctive feature-points are rare.

Acknowledgements. This work has been supported by the Austrian Research
Promotion Agency (FFG) project FreeLine (Bridge1/843450) and OMICRON elec-
tronics GmbH.
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Abstract. Recently, variational methods have become increasingly
more popular for perspective shape from shading due to their robustness
under noise and missing information. So far, however, due to the strong
nonlinearity of the data term, existing numerical schemes for minimising
the corresponding energy functionals were restricted to simple explicit
schemes that require thousands or even millions of iterations to provide
accurate results. In this paper we tackle the problem by proposing an effi-
cient linearisation approach for the recent variational model of Ju et al.
[14]. By embedding such a linearisation in a coarse-to-fine Gauß-Newton
scheme, we show that we can reduce the runtime by more than three
orders of magnitude without degrading the quality of results. Hence, it
is not only possible to apply variational methods for perspective SfS
to significantly larger image sizes. Our approach also allows a practical
choice of the regularisation parameter so that noise can be suppressed
efficiently at the same time.

1 Introduction

The recovery of the 3-D shape of an object from a single image given only infor-
mation on the illumination direction and the surface reflectance – so called Shape
from Shading (SfS) – is one of the classical tasks in computer vision. In partic-
ular in scenarios, in which huge baselines or space constraints do not allow the
use of a stereo setup with two or more cameras, monocular SfS can be a highly
appealing alternative to traditional stereo. Moreover SfS, in contrast to other
3-D shape reconstruction methods, does not rely on the presence of texture.
Hence, it is not surprising that SfS has a wide field of applications, covering
large scale reconstruction problems such as astronomy [24] and terrain recon-
struction [4] as well as small scale tasks such as dentistry [1] and endoscopy [31].
Further important applications are the reconstruction of archaeological findings
[9] and the visual inspection of manufactured parts [17].

Most of the classical methods for SfS have been developed in the context
of astronomy and are hence based on a simple orthographic projection [11,12].
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DOI: 10.1007/978-3-319-24947-6 20



250 D. Maurer et al.

However, in recent applications in endoscopy or macro photography, camera and
light source are relatively close to the photographed scene, so that the consid-
eration of a perspective camera [8,18,22] is required. The corresponding camera
model not only improves the results in such applications, it also offers a decisive
theoretical advantage compared to the orthographic model: When considering a
point light source at the optical centre and combining the resulting model with a
physically motivated light attenuation term based on a quadratic intensity fall-
off, the resulting SfS model is well-posed in the viscosity sense [23], such that
concave-convex ambiguities inherent to orthographic models [29] are dissolved to
some extent [5]. This makes explicit that the use of a perspective camera model
is very beneficial from both a practical and a theoretical viewpoint.

Taking a closer look at the underlying modelling framework, most approaches
for perspective SfS are based on the solution of a hyperbolic partial differential
equation (PDE) of Hamilton-Jacobi type; see e.g. [23,27]. While such approaches
allow the application of efficient numerical solvers such as fast marching schemes
[15,26,30], they are prone to noise and missing data. In particular, they have no
mechanisms to handle such cases, since they rely completely on the correctness
of the input data.

In this context, variational methods have proven to be very useful [13,14].
Since such methods are based on the minimisation of an energy functional that
complements a data fidelity term with a smoothness term, they do not strictly
enforce the consistency with the input data, as they also regularise by adap-
tively averaging the information. However, when it comes to numerical schemes
for the minimisation, the literature on perspective SfS is restricted so far to the
application of simple explicit schemes [2,13,14,31,32]. Explicit schemes have the
advantage that they are easy to code, but the computation of the minimiser as
steady state of an artificial time evolution typically requires thousands or even
millions of iterations to provide useful results. This slow convergence does not
only pose a problem for large image sizes. It also turns out to be problematic in
the presence of noise and missing data, since a larger amount of regularisation
typically requires a significant decrease of the time step size. As a consequence,
the number of iterations has to be increased even further which makes the appli-
cation of explicit schemes inefficient if not infeasible even for small image sizes.
Summarising: While variational methods for perspective SfS offer a high degree
of robustness under noise and missing data, their long runtimes make them
hardly applicable in practice.

Our Contributions. Using the recent model of Ju et al. [14] that extends pre-
vious work of the authors [13] by a depth parametrisation along the optical axis,
our paper contributes to the design of efficient solvers for variational perspec-
tive SfS in three ways: (i) On the one hand, we propose an efficient numerical
scheme that embeds a linearisation approach based on a lagged upwind dis-
cretisation into a Gauß-Newton like coarse-to-fine solver. Compared with the
alternating explicit scheme in [14] that already relies on a coarse-to-fine estima-
tion with the same discretisation, this solver allows to speed up the computation
by more than three orders of magnitude. (ii) On the other hand, when linearising
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the reflectance model in the data term, we propose to compute its derivatives
numerically. As a consequence, the proposed approach can be extended in a
straightforward way to more advanced reflection models such as the Oren-Nayar
model for rough surfaces [19] or the Phong model for specular reflections [21].
(iii) Finally, we demonstrate that the proposed numerical scheme is highly useful
in those cases where large parts of the input information is missing or when a
large amount of regularisation is needed, e.g. due to noise. Also significant larger
image sizes can be handled than with the alternating explicit scheme from [14].

Related Work. Since the field of variational perspective SfS is rather new, there
exist only a few works that address the problem of the efficient computation.
On the one hand, Ju et al. [14] propose to embed an alternating simplified
explicit scheme into a coarse-to-fine estimation. However, the overall convergence
is still rather slow and the algorithm needs hundreds of thousands of iterations
to provide accurate results. On the other hand, Abdelrahim et al. [2] propose to
speed up the computation by initialising the explicit scheme with the result of
a PDE-based approach. This, however, contradicts the idea of using variational
methods to render the estimation more robust, since PDE-based approaches
have no mechanisms to handle noise or missing information.

First approaches to linearise the reflectance model go back to the early works
of Pentland [20] and Tsai and Shah [28] in the context of local methods for ortho-
graphic SfS. Recently, also Barron and Malik [3] suggested to perform such a
linearisation within a joint variational approach for estimating shape, illumina-
tion, and reflectance. However, also in this case, the camera model was assumed
to be orthographic. The only linearisation approach for SfS in the context of a
perspective camera so far was proposed by Lee et al. [16]. Their method, how-
ever, was specifically designed for a triangular element surface model and did not
consider any explicit form of regularisation. Finally, none of the aforementioned
approaches considered any form of upwind schemes for discretising occurring
derivatives. While such schemes are not often used in computer vision, they are
highly important for obtaining a stable numerical method.

Organisation. In Sect. 2 we review the recent model of Ju et al. [14] as a rep-
resentative for variational perspective SfS. In Sect. 3 we then show how this
model can be discretised appropriately and minimised efficiently using a lin-
earised coarse-to-fine approach. A qualitative and quantitative evaluation of the
model and the minimisation framework is conducted in Sect. 4. Finally, Sect. 5
concludes with a summary.

2 Variational Perspective SfS

In this section, we review the variational method of Ju et al. [14] that serves as
a prototype for the development of our efficient linearisation scheme in Sect. 3.
To this end, we first derive the surface parametrisation as well as the under-
lying model assumptions and then discuss their embedding into a variational
framework.
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Surface Parametrisation and Model Assumptions. Let us start by dis-
cussing the parametrisation of the surface. Assuming a perspective camera
the unknown surface S : Ωx → R

3 can be parametrised as S (x, z(x)) =
[z x/f, z y/f,−z]�, where x = (x, y)� ∈ Ωx is the pixel position in the image
plane Ωx ⊂ R

2, f denotes the focal length of the camera and z(x) the depth
orthogonal to the image plane.

Furthermore, assuming a Lambertian reflectance model and a light attenua-
tion term that follows the inverse square law, the resulting brightness equation
reads [23]:

I =
1
r2

(N · L) , (1)

where I = I(x) is the recorded image, N is the surface normal, L = L(x) is
the direction of incoming light and r = r(x) denotes the distance from the light
source to the surface. For a point light source located in the camera centre at the
origin, this distance r as well as the direction of the incoming light L read

r(x) =
z

Q
, L(x) =

1√|x|2 + f2

⎡
⎣−x

−y
f

⎤
⎦ =

Q

f

⎡
⎣−x

−y
f

⎤
⎦ , (2)

with Q(x) = f/
√|x|2 + f2 being the conversion factor between the radial depth

r and the Cartesian depth z. Note that light rays and optical rays have opposite
direction.

Moreover, the surface normal can be computed by taking the normalised
cross-product of the partial derivatives Sx, Sy of the parametrised surface in x-
and y-direction:

N(x, z,∇z) =
Sx × Sy

|Sx × Sy| =
1
W

⎡
⎣ fzx

fzy

(∇z · x) + z

⎤
⎦ , (3)

W (x, z,∇z) =
√
f2 |∇z(x)|2 + [(∇z · x) + z(x)]2. (4)

Finally, plugging the surface normal (3) and the light direction (2) into the
brightness Eq. (1), we obtain the following constraint for perspective SfS [14]:

I(x) − Q(x)3

zW (x, z,∇z)
= 0 . (5)

Variational Model. Following [14], we embed the previous constraint as
quadratic data term into a variational framework and complement it with a
discontinuity-preserving second order smoothness term. Please note that from a
theoretical viewpoint first order data terms are not advisable for SfS, since the
data term already contains first order derivatives. Consequently, we use a second
order smoothness term based on the Hessian and compute the unknown depth
z as minimiser of the following energy
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E (z(x)) =
∫

Ωx

c(x) D(x, z(x),∇z(x))2︸ ︷︷ ︸
Data term

+ α Ψ
(
S(Hess(z)(x))2

)
︸ ︷︷ ︸
Smoothness term

dx, (6)

where D of the data term and S of the smoothness term are given by

D(x, z,∇z) =
(

I(x) − Q(x)3

z W (x, z,∇z))

)
, (7)

S (Hess(z)(x)) =
√

zxx(x)2 + 2zxy(x)2 + zyy(x)2, (8)

respectively. Here, the penaliser Ψ(s2) = 2λ2
√

1 + s2/λ2 is the Charbonnier
function [7] with the contrast parameter λ, the weight α is the regularisation
parameter that steers the amount of smoothness of the surface, and c : x ∈
Ωx ⊂ R

2 → {0, 1} is a confidence function that allows to exclude unreliable
image regions from the data term.

3 An Efficient Linearisation Approach

Let us now discuss how the minimiser of the previous energy functional in Eq. (6)
can be computed efficiently. To this end, we first approximate the spatial deriv-
atives in the data term using a similar scheme as the one proposed by [28] in
the context of non-variational orthographic SfS. In a second step, we then lin-
earise the corresponding constraint in the data term and deduce a numerical
scheme motivated by [6] that make use of two nested fixed point iterations and
a coarse-to-fine strategy.

Approximation. In order to minimise the proposed energy functional, we first
introduce approximations for zx and zy using the upwind scheme from [25].
Please note that standard finite differences schemes (e.g. central differences) are
not appropriate, due to the hyperbolic nature of the SfS data term. Employing
grid spacings hx, hy in x- and y-direction, respectively, the approximation for
zx reads

z̃x = max
(D−z,−D+z, 0

)
, (9)

D−z =
z(x, y) − z(x − hx, y)

hx
, D+z =

z(x + hx, y) − z(x, y)
hx

, (10)

where, for the simplicity of our presentation, z(·, ·) is identified with the cor-
responding grid values. Since the forward difference D+z enters Eq. (9) with a
negative sign, one has to restore the correct sign afterwards via [5,14]

zx ≈
{−z̃x if z̃x = −D+z ,

z̃x else. (11)

After approximating zy accordingly and replacing all derivatives in the data term
with the corresponding approximations, we obtain the following expression for



254 D. Maurer et al.

D that only depends on z (at the expense of including values at neighbouring
locations):

D(x, z,∇z) ≈ D(x, y, z(x, y), z(x−hx, y), z(x+hx, y), z(x, y −hy), z(x, y +hy)).
(12)

Minimisation. According to the calculus of variations [10] any stationary point
(and in particular the minimiser) of the approximated energy functional must
fulfil the associated Euler-Lagrange equation [10]. In order to write down this
equation compactly, let us introduce the following abbreviations

Dxy = D
(
x, y, z(x, y), z(x − hx, y), z(x + hx, y), z(x, y − hy), z(x, y + hy)

)
,

Dx−y = D
(
x − hx, y, z(x − hx, y), z(x − 2hx, y), z(x, y),

z(x − hx, y − hy), z(x − hx, y + hy)
)
,

Dx+y = D
(
x + hx, y, z(x + hx, y), z(x, y), z(x + 2hx, y),

z(x + hx, y − hy), z(x + hx, y + hy)
)
, (13)

with Dxy−
and Dxy+

being defined analogously. Here, the superscripts denote the
central point of the approximation. Moreover, we use the same style of notation
for the abbreviations of the confidence function c and the smoothness term S.
Then, the Euler-Lagrange equation of our approximated energy is given by

0 = cxyDxy [Dxy]z + cx
−yDx−y

[
Dx−y

]
z

+ cx
+yDx+y

[
Dx+y

]
z

+ cxy
−

Dxy− [
Dxy−]

z
+ cxy

+
Dxy+

[
Dxy+

]
z

+ α
([

Ψ ′ ((Sxy)2
)
zxx
]
xx

+ 2
[
Ψ ′ ((Sxy)2

)
zxy
]
yx

+
[
Ψ ′ ((Sxy)2

)
zyy
]
yy

)
, (14)

where [·]∗ denotes partial derivatives of the enclosed expressions. Moreover, the
derivative of the penaliser function Ψ(s2) reads Ψ ′(s2) = 1/

√
(1 + s2/λ2). Due

to the approximation of ∇z, the data term contributions ∂
∂x [D]zx

and ∂
∂y [D]zy

stated in [14] do not arise. Instead they are replaced by four terms considering
additional points in the neighbourhood. With the purpose of obtaining a linear
system of equations, we now introduce a first fixed point iteration on z, with the
iteration index k, using a semi-implicit scheme in the terms related to the data
term and an implicit scheme in the terms related to the smoothness term. Then
zk+1 can be obtained as the solution of

0 = cxyDxyk+1
[
Dxyk

]
zk + cx−yDx−yk+1

[
Dx−yk

]
zk

+ cx+yDx+yk+1
[
Dx+yk

]
zk

+ cxy−
Dxy−k+1

[
Dxy−k

]
zk

+ cxy+
Dxy+k+1

[
Dxy+k

]
zk

+ α
( [

Ψ ′ ((Sxyk+1)2
)
zk+1

xx

]
xx

+ 2
[
Ψ ′ ((Sxyk+1)2

)
zk+1

xy

]
yx

+
[
Ψ ′ ((Sxyk+1)2

)
zk+1

yy

]
yy

)
. (15)
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In the first iteration, z0 is initialised as suggested in [14]. In order to remove
the nonlinearity of the terms related to the data term we furthermore linearise
Dxyk+1 around Dxyk using a first order Taylor expansion:

Dxyk+1 = Dxyk +
[
Dxyk

]
zxyk dzxyk +

[
Dxyk

]
zx−yk dzx−yk

+
[
Dxyk

]
zx+yk dzx+yk +

[
Dxyk

]
zxy−k dzxy−k +

[
Dxyk

]
zxy+k dzxy+k.

Here, dz denotes the unknown depth increment dzk = zk+1−zk and the super-
scripts are used analogously to those of the previous terms. Accordingly, we
linearise Dx−yk+1, Dx+yk+1, Dxy−k+1 and Dx−yk+1. Thus we introduce an incre-
mental computation as in [6] and only compute the increment dz in each iter-
ation. Please note that our data term is substantially different from linearised
data terms in optical flow estimation and stereo reconstruction, since it includes
neighbouring locations. To remove the last remaining nonlinearity in Ψ ′ we intro-
duce a second fixed point iteration on dz with the iteration index l, which we
initialise with dzk,0 = 0. For the argument of the Ψ ′-function dzk,l is employed
and for the other terms dzk,l+1. After plugging the linearised expressions in
Eq. (15), we finally obtain a linear system of equations with respect to dzk,l+1.

Coarse-to-Fine Scheme. As in [6,14] we embed the first fixed point iteration
in a coarse-to-fine scheme to overcome local minima and thus better approximate
the global minimizer. To this end, we introduce the parameter η ∈ (0, 1) that
specifies the downsampling factor between two consecutive resolution levels and
the parameter κ that specifies after how many iterations k the resolution level
is adopted.

Computation. Finally, we compute the derivatives of D with respect to z
numerically. To this end, we vary the current z estimate by ±hz and re-evaluate
the D terms. This proceeding allows to compute the derivatives of D with a
standard central difference scheme. In addition the contributions of the smooth-
ness term are discretised using standard central differences. In order to solve the
sparse linear system of equations in dzk,l+1 efficiently we apply the successive
over-relaxation method (SOR). After sufficient solver iterations as well as suffi-
cient fix point iterations l we crop the computed increments dzk,lmax such that
|dzk,lmax | ≤ dzlimit and then update the depth via zk+1 = zk + dzk,lmax . This
avoids that erroneous increments misdirect the computation in case the lineari-
sation provides a poor approximation in x. Let us note that controlling the size
of updates is a standard procedure in many numerical algorithms.

4 Experimental Evaluation

To investigate the performance of our algorithm, we made use of the synthetic
test images shown in Fig. 1 that have already been used in Ju et al. [14]. For a
suitable comparison we also employ the same error measures as in their original
paper: the relative surface error (RSE) which determines how well the recon-
structed surface matches the ground truth and the relative image error (RIE)
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Fig. 1. Synthetic images. From left to right: Sombrero, Suzanne, Stanford Bunny
and Dragon.

Fig. 2. Impact of the smoothness term under increasing α using the Stanford Bunny
test image. From left to right: Input image, reprojected image with α = 1, α = 20
and α = 100.

that indicates how well the reprojected image fits the input image. For the
purpose of using a minimum number of parameters and of demonstrating that
the proposed algorithm does not need a time-consuming fine tuning we choose
a set of parameters which will be used throughout the following experiments,
namely a downsampling factor of η = 0.9, κ = 5, lmax = 9, 10 SOR iterations,
dzlimit = 0.01, hz = 10−12 and a contrast parameter of λ = 10−3. Further, the
confidence function c is set to 0 at the background pixels and otherwise set to 1.

Impact of the Smoothness Term. In our first experiment we investigate
the impact of the smoothness term under increasing values of the regularisation
parameter α. In Fig. 2 the original input image is shown as well the reprojected
images of computations with increasing α. As one can see, increasing α leads to
an estimation of a smoothed surface while details are gradually eliminated. This
is not only a very important property in the presence of noise, it also allows to
specify the level of detail of the reconstruction.

Comparison with Other Methods. In the second experiment we compare
our method with the PDE-based approach of Vogel et al. [30] with Lambertian
reflectance model (= baseline model of Prados et al. [23]) and the variational
approach of Ju et al. [14]. In order to demonstrate the advantages and shortcom-
ings of these approaches we consider the original input images as well as noisy
versions (Gaussian noise with σ = 20). The computed error measures are listed
in Table 1. It can be seen that for the original input images our new linearised
approach yields slightly higher error values, especially in the case of the Dragon.
However, except for the Dragon, the errors are below one percent. Moreover,
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Table 1. Comparison between the PDE-based method of Vogel et al. [30], the vari-
ational method of Ju et al. [14] and our approach in terms of error measures (RSE,
RIE) for the four test images without and with noise (σ = 20). The parameters of our
approach are: Sombrero (α = 0.003), Stanford Bunny (α = 0.08), Dragon (α = 0.2),
Suzanne (α = 0.04), Noisy Sombrero (α = 0.02), Noisy Stanford Bunny (α = 3),
Noisy Dragon (α = 1), Noisy Suzanne (α = 2). For the other two approaches the same
parameters have been used as in the original papers.

Vogel et al. [30] Ju et al. [14] Our method

RSE RIE RSE RIE RSE RIE

Sombrero 0.00301 0.00495 0.00318 0.00209 0.00768 0.00925

Stanford Bunny 0.00266 0.00154 0.00439 0.00007 0.00928 0.00327

Dragon 0.00422 0.00255 0.01376 0.00028 0.02904 0.02333

Suzanne 0.00253 0.00082 0.00251 0.00002 0.00696 0.00224

Noisy Sombrero 0.19530 0.27254 0.05118 0.13239 0.01542 0.03851

Noisy Stanford B. 0.10973 0.17347 0.03235 0.15279 0.01359 0.12285

Noisy Dragon 0.12240 0.19409 0.05395 0.18767 0.03391 0.17732

Noisy Suzanne 0.12134 0.16783 0.01256 0.14302 0.00826 0.12038

the results for the noisy test images show the advantage of variational methods
that include a regularisation mechanism contrary to PDE-based SfS approaches.
While the PDE-based approach produces strongly deteriorated results due to
its crucial dependence on the initialisation at singular points, both variational
approaches achieve much lower surface errors. Furthermore, our novel scheme
does not suffer from the problem that the regularisation parameter α has to
be chosen sufficiently small to allow convergence within a reasonable number of
iterations - as in the case of the alternating explicit scheme of Ju et al. [14]. This
explains why our optimal parameters do not necessarily have to coincide with
the optimal parameters of Ju et al. [14] that have been tuned for a fixed number
of 106 iterations (to keep runtimes within a day).

We repeated the noise experiment with an additional pre- and post-processing
step, respectively. While for the pre-processing a variational image denoising
method with TV-regularisation was used, we employed a similar method with
second order smoothness term corresponding to our regulariser in (6) for the
post-processing. The outcome of this experiment is shown in Table 2. Although
the approach of Vogel et al. [30] benefits significantly from both steps (in par-
ticular from denoising the input image) our variational model still yields better
results (even without the corresponding steps). This clearly demonstrates the
usefulness of the built-in regularisation of variational methods.

Reconstruction with Inpainting. Our third experiment considers the
inpainting capabilities of the smoothness term given via Eqs. (6) and (8). A sim-
ilar experiment has been carried out in [13,14]. However, the inpainted domains
were rather small in those works. The explicit schemes used there would have
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Table 2. Comparison of the method of Vogel et al. [30] and our approach under noise
when using an additional pre-processing step (image denoising) or post-processing step
(depth smoothing).

Vogel et al. [30] Our method

orig. RSE pre-p post-p orig. RSE pre-p post-p

Noisy Sombrero 0.19530 0.02008 0.19197 0.01542 0.01741 0.01538

Noisy Stanford B. 0.10973 0.01434 0.06164 0.01359 0.01470 0.01357

Noisy Dragon 0.12240 0.04623 0.08226 0.03391 0.03322 0.03390

Noisy Suzanne 0.12134 0.01245 0.06169 0.00826 0.00917 0.00824

Fig. 3. Inpainting of the Suzanne image: Deteriorated input image, reprojected image
(α = 0.5).

needed more iterations to fill in larger regions resulting in tremendous computa-
tion time. In contrast, our new approach may inpaint larger regions without
significant increase in runtime. To demonstrate this, we defined a degraded
domain for inpainting considerably larger than those in [13,14] and set the con-
fidence function to 0 in the degraded domain. As shown in Fig. 3 our reprojected
image of the reconstruction looks quite reasonable in spite of the huge amount of
missing information. In case of rather flat regions no differences to the original
image are noticeable, whereas missing regions with varying surface orientations,
as e.g. at the ear, seem to be smoothed. However, an RSE of 0.00793 shows that
the quality of the reconstruction is comparable to the RSE achieved by comput-
ing the reconstruction based on the original input image without missing regions
(RSE = 0.00696).

Table 3. Runtime comparison between Vogel et al. [30], Ju et al. [14] and our approach.

Vogel et al. [30] Ju et al. [14] Our method

Sombrero (256 × 256) 1 s 29113 s 17 s

Stanford Bunny (256 × 256) 1 s 23969 s 11 s

Dragon (256 × 256) 1 s 25350 s 12 s

Suzanne (512 × 256) 2 s 48395 s 21 s

Blunderbuss Pete (1080 × 1920) 33 s Infeasible com-

putation time

340 s
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Fig. 4. From top to bottom: Reprojected image and colour-coded depth of the
Blunderbuss Pete test image (3-D model by BenDasie). From left to right: Ground
truth, our approach + difference plots, method of Vogel et al. [30] + difference plots
(Color figure online).

High-Resolution Image. Since variational SfS approaches mainly use simple
explicit schemes, they usually require thousands or even millions of iterations
to converge. Hence, the runtime becomes a critical issue. As can be noticed in
Table 3, our approach achieves a speed up of approximately 2000 for small images
compared to the explicit approach in [14]. In particular, it allows a reasonable
computation time for high resolution images such as Blunderbuss Pete depicted
in Fig. 4, where runtimes with explicit schemes become infeasible. Moreover,
the quality is still highly competitive. As shown in Fig. 4, the reprojected image
of our approach is close to the ground truth (RIE = 0.03414), whereas the
difference plots reveal some difficulties at the cloak (RSE = 0.02930). In contrast,
the approach of Vogel et al. [30] achieves an almost perfect reprojected image
(RIE = 0.00067). With respect to the surface it shows similar errors at the cloak,
while the reconstruction at the knee and torso is better (RSE = 0.01593).

5 Conclusion

In this paper we have introduced an efficient numerical scheme for variational
perspective SfS based on a linearisation of the reflectance model. The proposed
scheme not only yields speed ups of more than three orders of magnitude com-
pared to standard explicit schemes without significantly compromising the qual-
ity of the reconstruction. It also allows to select sufficiently large values for the
regularisation parameter without compromising the runtime, which enables us
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to deal adequately and efficiently with noise and missing information. Finally,
the proposed numerical strategy is rather general such that it can be carried over
to other variational models form the SfS literature that are based on standard
explicit schemes so far.
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Abstract. We present an iterative reconstruction algorithm for binary
tomography, called TomoGC, that solves the reconstruction problem
based on a constrained graphical model by a sequence of graphcuts.
TomoGC reconstructs objects even if a low number of measurements are
only given, which enables shorter observation periods and lower radia-
tion doses in industrial and medical applications. We additionally suggest
some modifications of established methods that improve state-of-the-art
methods. A comprehensive numerical evaluation demonstrates that the
proposed method can reconstruct objects from a small number of pro-
jections more accurate and also faster than competitive methods.

1 Introduction

Limited-data tomography deals with the problem of reconstructing 3D-volumes
or 2D-images denoted by x ∈ R

N , from a small number of (noisy) projections
given by b = Ax + ν ∈ R

M . The range of applications for tomography includes
industrial [21] and medical [29] applications. In many situations it is desirable to
reduce the number of required measurements M that are represented by the rows
of the matrix A ∈ R

M×N . If M is much smaller than N , then the reconstruction
problem is ill-posed and regularization is required.

The tomography reconstruction problem can be formulated as a regularized
least squares (1) or a constrained minimization of the regularizer (2).

x∗ ∈ arg min
x∈RN

R(x) + ‖Ax − b‖22 (1)

x∗ ∈ arg min
x∈RN

R(x), s.t. b ≤ Ax ≤ b (2)

While problem (1) is searching for a solution that has a low score of the regular-
izer and good data-fidelity, problem (2) is searching in the feasible set (given by
the data-constraints) for the solution with the lowest score of the regularizer.

Early approaches such as filtered back projection (FBP) [7], deal with the
tomography problem by analytical reconstruction methods, which provides rea-
sonably accurate reconstructions in very short times, but usually require many
projection angles. The algebraic reconstruction methods (ARMs) such as ART,
c© Springer International Publishing Switzerland 2015
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SIRT or SART solve problem (1) without any regularization term R(x). They
fall into the category of row-action methods [10,11] also known as iterated pro-
jection methods for systems of linear (in)equalities. ARMs give better results
than FBP, but due to the lack of regularization usually the number of required
projections is still large.

For a further reduction of required observations, several regularization tech-
niques have been proposed depending on the prior knowledge at hand. Convex
sparsity promoting priors like �1- or total variation minimization [17], smoothness
priors [36] or box constraints conserve the convexity of the overall problem. Such
non-smooth, constrained, distributed and large-scale optimisation problems can
be addressed by proximal algorithms in an unified fixed point theoretical frame-
work [9,14] as finding solutions to monotone inclusion problems or more specifi-
cally by projections on convex sets [5,8]. In this context the alternating direction
method of multipliers [28] and in particular the Chambolle Pock Algorithm [12],
which is a decomposable method for minimizing the sum of two convex functions
subject to linear constraints, can be considered for tomographic inversion [31].
Interestingly, the ADMM framework can be adopted also when considering a
non-convex regularization term like the �0-prior as done in [32]. However several
questions concerning convergence remain open. For a sufficient uniqueness con-
dition for the �0-regularized tomographic reconstruction problem in terms of the
image gradient sparsity and the number of tomographic measurements, we refer
to [15].

A further reduction of required measurements can be obtained if the range
of x is a finite set. The tomography problems (1) and (2) with the additional
constraint that x ∈ {v1, . . . , vK}N is known as discrete tomography problem, the
subject of the present paper. A special case of this problem is binary tomography
where the set is restricted to two possible values (K = 2) for each xi, which in
practice occurs e.g. when air pockets in work pieces need to be detected without
destroying the object.

We underline that several heuristics have been designed to intervene between
consecutive steps of a non-binary iterative image reconstruction algorithm in
order to gradually steer the iterates towards a binary solution. Batenburg
et al. suggested a (Soft) Discrete Algebraic Reconstruction Technique known
as (S)DART [4,6], which is a very fast heuristic that starts from a continu-
ous reconstruction, applies a segmentation step to restrict the reconstruction to
the allowed values, and then restarts the continuous reconstruction on bound-
ary regions of the segmentation, iteratively. While this leads to good results
quite fast, it does not optimize an objective function. In another line of research
Batenburg and Sijbers [2,3] presented an algorithm for the binary tomography
problem that is based on a sequence of minimum cost flow problems. For two
projection directions (with non-overlapping rays for each direction) this method
is exact. In the general case, it is a greedy approximation.

An alternative ansatz is to reformulate problem (1) into a discrete graph-
ical model. For the binary tomography problem (1) this leads to a fully con-
nected second-order binary model [30]. The multi-label case can be reduced to
a sequence of such binary problems in a α-expansion framework [30]. As this is
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in general not sub-modular, Raj et al. [30] have suggested to use QPBO [25] to
solve a relaxation of the problem which give additional persistence certificates.
The main limitation of this approach is that the number of pairwise terms grows
quadratically with the number of pixels and the complexity of QPBO roughly
grows cubically with the number of pairwise terms in the worst case, which
caused e.g. [30] to consider only restricted projection matrices A. To overcome
this problem, Tuysuzoglu et al. [34] consider local approximations of the non-
sub-modular terms around a working point which is iteratively improved. Similar
methods have been also studied for more general graphical models [16,33].

Weber et al. [35,36] suggested to solve problem (1) by a quadratic pro-
gram. The binary constraints are enforced by iteratively increasing a non-convex
balloon-term that pushes the labels to zeros and ones. The subproblems are
solved by the difference-of-convex-function programming technique that itera-
tively and locally approximates the non-convex part of the objective by an affine
upper bound. While there is no guarantee that this method finds the global
optimum, it generally returns good results.

Gouillart et al. [18] have proposed a belief propagation algorithm for the
discrete tomography problem (1). In order to handle the higher order interactions
induced by the projection constraints, they include Lagrangian multipliers that
enforce that these constraints are fulfilled on average. However, this algorithm
only estimates the marginal distributions, which then are rounded to obtain a
discrete reconstruction.

Outside the application area of tomography, Lagrangian relaxation has been
used amongst others for multicommodity max flow [37], graphical models [26],
and graphical models with a few constraints [27]. While in [26], contrary to our
work, variable duplication is used to relax the problem, [27,37] use the same
mathematical idea as we do in the present context of discrete tomography.

Contributions. We present a novel method for solving the binary tomography
problem, which solves the dual of a relaxation of problem (2) by a sequence of
graphcut problems. The size of these problems scales linearly with the number
of primal variables and, besides the graphcut computation, only a few simple
matrix-vector operations are required. Consequently, the proposed method is
very efficient and scales up well to large data. On the other side, it is mathe-
matically sound and is the only currently available method that provides a lower
bound on the optimal objective value. Furthermore, we provide a comprehen-
sive experimental comparison of state-of-the-art methods, which was lacking so
far in the literature. We also suggest some modifications of standard methods
which improve their performance or are even necessary to make these methods
applicable in all considered scenarios.

2 Constrained GraphCuts for Binary Tomography

We consider problem (2) for K = 2. To ease the presentation, we temporarily
consider the noise-free case where b = b = b and generalize it later on. Without
loss of generality, we assume that v1 = 0 and v2 = 1. We define a grid graph
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Fig. 1. Polyhedral illustration of the constrained linear program. In the unconstrained
case (a), the optimal solution is integral. With one additional constrained (b), the LP-
solution ( ) and optimal integer solution in the constrained set ( ) are not identical.
When adding another constrained (c), the LP-solution moves in the interior of the
original polytope. By adding more constraints (d), the feasible set gets smaller and
finally the LP solution gets integral.

G = (V,E), with V corresponding to image pixels and E ⊂ V × V defining the
neighborhood system. As regularization term, we use R(x) :=

∑
uv∈E β·|xu−xv|,

so the problem at hand is given by

x∗ ∈ arg min
x∈{0,1}|V |

∑
uv∈E

β · |xu − xv|, s.t. Ax = b. (3)

Without the additional constraints Ax = b and β ≥ 0, this problem can be
solved as a linear program by relaxing the {0, 1} constraints to [0, 1] constraints
and by representing |xu −xv| linearly by means of additional auxiliary variables.
This would be even the case if additional unary terms are added [13,23]. However,
in the presence of projection constraints as part of the problem, this is no longer
true, as illustrated in Fig. 1. The relaxed linear program can then have non-
binary solutions.

In order to find efficiently a solution of the relaxed problem (3), we consider
its Lagrangian dual

max
λ

min
x∈[0,1]|V |

∑
uv∈E

β · |xu − xv| + 〈λ,Ax − b〉 (4)

= max
λ

min
x∈[0,1]|V |

∑
uv∈E

β · |xu − xv| + 〈λ,Ax〉 − 〈λ, b〉
︸ ︷︷ ︸

=:g(λ)

. (5)

By weak duality, we know that for every feasible primal x and feasible dual value
λ, the inequality (6) holds.

∑
uv∈E

β · |xu − xv| ≥ g(λ) (6)

If the optima x∗ and λ∗ exist, equality in (6) holds (strong duality). If a feasible
finite primal solution exists, then also the dual has a feasible finite solution. In
the case that no feasible primal value exists, the dual problem is unbounded.
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Fig. 2. Shows the evolution of the unary data-term A�λ during the iterations. After
71 iterations, the data term leads to a duality gap of zero. This illustrates that after a
few iterations, the data term does not change so much any more.

As a consequence, if a feasible primal solution exists, then we may solve the
dual problem instead of the primal, followed by recovering a primal solution from
the dual solution.

The most simple algorithm to optimize the dual problem (5) is iterative
subgradient ascent with a proper stepsize sequence γi. For any λ and

xλ ∈ arg minx∈[0,1]|V |
∑

uv∈E

β · |xu − xv| + 〈λ,Ax〉,

a lower bound on the optimal value is given by
∑

uv∈E β · |xλ
u −xλ

v |+〈λ,Axλ −b〉.
For the dual objective g(λ) and its subdifferential ∂g(λ), we compute a subgra-
dient by

∂g(λ) 	 Axλ − b, xλ ∈ arg minx∈[0,1]|V |
∑

uv∈E

β · |xu − xv| + 〈λ,Ax〉. (7)

The calculation of xλ can be further simplified by making use of the relation to
graphcuts [13,23], which guarantees that a binary solution exists, that is globally
optimal. This can be efficiently calculated by a graphcut (max-flow) algorithm.
As long as β > 0, the optimal solution x∗ does not depend on the value of β.
Only the optimal dual variable λ∗ will scale according to β.

An interesting observation is that by optimizing the dual objective, we iter-
atively build up a unary data term A�λ, as illustrated in Fig. 2. Due to regu-
larization, the unary terms do not have to be perfect. While a reasonable data
term is found after a few iterations, most of the iterations are required to close
the primal-dual-gap without changing the dual variables much.

The construction of a feasible primal solution is non-trivial. While general
primal construction rules exists [20], these produce an optimal and feasible solu-
tion only in the limit. More advanced methods for solving the dual, for example
bundle methods [22], have a faster convergence and also provide primal esti-
mates. However, a study of those methods is beyond the present work.

As we are interested in binary solutions anyway, we have come up with the
following framework to generate primal solutions. Each subgradient yields a
primal solution xλ. If this solution is feasible and strong duality holds, i.e.
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Algorithm 1. TomoGC (noise free case)
Require: A ∈ R

M×N , b ∈ R
M×1, β > 0, E ⊂ [N ]2

Ensure: v ≤ minx∈[0,1]N , Ax=b

∑
uv∈E β · |xu − xv| if feasible

1: initialize: i = 0, λ = [0]1×M , x̄ = [0]N×1

2: xλ ∈ arg minx∈{0,1}|V |
∑

uv∈E β · |xu − xv| + 〈λ, Ax〉
3: while (‖Axλ − b‖ > 0 and 〈λ, Axλ − b〉 �= 0) and i < imax do
4: λ = λ + γi(x

λ) · [Axλ − b]
5: xλ ∈ arg minx∈{0,1}|V |

∑
uv∈E β · |xu − xv| + 〈λ, Ax〉

6: if ‖Ax̄ − b‖ > ‖Axλ − b‖ then
7: x̄ = x
8: end if
9: i = i + 1

10: end while
11: x = x̄
12: v =

∑
uv∈E β · |xu − xv| + 〈λ, Ax − b〉

〈λ,Axλ − b〉 = 0, this is an optimal primal solution. If the optimal primal
solution is non-binary, the sub-gradients will oscillate around the non-binary
solution. But if the solution is binary and unique, the dual objective will have
the optimal primal solution as subgradient at the optimal dual point.

The pseudocode of our method is given in Algorithm1. In each iteration, we
update the dual variable in the direction of the subgradient. The non-summable
diminishing step length that ensures convergence, is defined by γi(x) =

20
(0.1·i+1)·‖Ax−b‖2

, i ∈ N.

Noisy Data Case. In the case where we have to deal with noise and b <
b, we have to replace Ax − b in Eq. 4 and Algorithm 1 by max{0, Ax − b} +
min{Ax− b, 0}. The values b and b have to be selected with respect to the noisy
measurements b and the assumed noise level such that a feasible solution exists.

3 Experiments

For our experimental evaluation, we used the binary test-datasets of Weber
et al. [35] and Batenburg and Sijbers [4]. We generated the projection matrices
with the ASTRA-toolbox [1] and simulated parallel projections within the range
of 0 and 180 degrees. The width of the sensor-array is 1.5 times the image size and
each sensor has the same size as a pixel. The entries of the projection matrix A are
given by the length of the intersection of the pixels and the rays. We restricted our
evaluation to algorithms that can deal with arbitrary projection matrices and
excluded methods that make additional assumptions such as A ∈ {0, 1}M×N .
Table 1 lists all methods that we evaluated.

As a baseline for continuous methods we considered Filtered Back Projec-
tion (FBP) [7], Simultaneous Iterative Reconstruction Technique (SIRT) [19],
and a total variation regularized reconstruction with hard projection constraints
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Table 1. Compared Methods. Methods marked with * are either novel methods or
extensions of existing methods proposed in the present work.

Shortcut Reference Label Regularization Implementation Objective

FBP [7] cont no ASTRA-toolbox -

SIRT [19] cont no ASTRA-toolbox Eq. (1)

tomoTV [15] cont TV Denitiu et al. Eq. (2)

tomoDC [36] binary Potts ours Eq. (1)

tomoFTR* [16,34] binary Potts ours Eq. (1)

tomoPB* [33,34] binary Potts ours Eq. (1)

tomoGC* Sect. 2 binary Potts ours Eq. (2)

DART [4] discrete - ASTRA-toolbox -

DART-S* [4] discrete Potts ASTRA-toolbox + TRWS -

(tomoTV) [15]. For the former two, we used the implementation available in
the ASTRA-toolbox, the latter was kindly provided by Denitiu et al..

We furthermore compared to the Discrete Algebraic Reconstruction Technique
(DART) [4]. We used the publicly available implementation of the ASTRA-
toolbox. For the continuous iterative reconstructions we used SIRT. We set the
smoothing intensity and percentage of random points to 0.1, which are the sug-
gested default values, and run DART for 20 iterations. Additionally, we suggest
a variation of the DART method by replacing the elementary nearest neigh-
bor segmentation of the DART-method by a structured segmentation that also
includes a smoothness-term. In order to be able to deal with multi-label prob-
lems, we used TRWS [24] to solve the segmentation problems. To the best of our
knowledge, this combination of DART and structured segmentation (DART-S)
has not been considered before.

For the binary case, we implemented the difference-of-convex-functions app-
roach (tomoDC) from Weber et al. [36] which is known to give good results
even with a low number of projections. We used the same parameter setting
as described in [35] and the implementation of the spectral projected gradient
(SPG) method of Mark Schmidt1 for solving the subproblems. When running
tomoDC on the large instances from [4], we observed that the method got stucked
in non-binary equilibriums due to numerical reasons. Because adding some addi-
tional noise as suggested by Weber et al. did not solve the problem, we initialized
tomoDC with the solution of FBP. This resolved all numerical problems for all
our problem instances.

In recent work Tuysuzoglu et al. [34] solve binary tomography problems by
a set of surrogate problems that approximate the original function around the
current solution. The surrogate problems are designed to be solvable by graph-
cut (max-flow) methods. If the best solution of all surrogate problems improves
the original energy, then the current solution is updated accordingly and the
1 http://www.cs.ubc.ca/∼schmidtm/Software/minConf.html.

http://www.cs.ubc.ca/~schmidtm/Software/minConf.html
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Fig. 3. Phantom 3 from Weber [35] with no noise

procedure continues, otherwise it stops. The downside of this approach is that
the selection of the surrogate problems in [34] is rather greedy and inefficient.
Inspired by this work, we recognize some relations to recent works in the area
of discrete optimization [16,33] which better indicate how to choose these surro-
gate problems. Tang et al. [33] consider all possible surrogate problems (pseudo
bounds) with respect to the free parameter, and find all possible solutions by
parametric max-flow. By using parametric max-flow a greedy selection is only
required if the number of possible solutions is too large - this can be the case
if the current solution is bad. In such a case, we simply greedy-like suppress
nearby solutions. Typically, after a few iterations, the solution is good enough
such that the number of possible solutions is small. We call this method tomog-
raphy with pseudo bounds (tomoPB). A similar approach was suggested by
Gorelick et al. [16] - originally also not applied to tomography problems. They
use also a first-order Taylor expansion as an upper bound of the original func-
tion around the working point. An additional trust region term, based on the
Euclidean distance, enforces solutions in the local region where the objective
function is approximated well. We call this method tomography with fast trust
region (tomoFTR).

A full evaluation of all test-instances is reported in the supplementary material.
Due to lack of space, we can only show here two examples and some reconstruc-
tions. Figures 3 and 5 show in the first row the original data and the sinograms
(b) which are measured with k projection angles. Figure 4 shows the ratio of
wrongly reconstructed pixels and runtime for a different number of projection
angles for two examples. In the noise free case tomoDC and tomoGC give the
best results, but tomoGC is typically one magnitude faster. As shown in Figs. 3
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Fig. 4. Exemplary plots for the runtime and pixel accuracy in the noise free and noisy
case for small number of projections. In the noise free case, tomoDC, tomoTV and
tomoGC give the best results, but tomoGC is typically one magnitude faster. In the
presence of noise tomoTV, DART and DART-S give the best results, since their greed-
iness/rounding make them robust against noise.

and 4a, those are able to obtain nearly optimal reconstructions with only 5 pro-
jections. DART-S gives a reasonable result with 5 projections, which is much
better than the original DART method with only slightly increased runtime.
FBP, SIRT, tomoFTR and tomoPB have problems with this small number of
projections and require more projections for reasonable reconstructions.

We also simulated noisy observations by adding Poisson noise to the sino-
grams (b). The reconstruction results shown in Figs. 4b and 5 are obtained with
a signal to noise ratio (SNR) of 20 db. None of the problem formulations are
designed to deal with Poisson noise, which is the most realistic approximation
of noise in tomography. DART, DART-S and tomoTV include a rounding pro-
cedure, which removes noise in a greedy way. This seemed to work better than
more sophisticated approaches, like tomoDC or tomoGC, which use a “wrong”
noise model and added some artefacts to fulfill the projection constraints. The
best results are obtained by tomoTV after rounding and DART-S, which again



TomoGC: Binary Tomography by Constrained GraphCuts 271

Fig. 5. Phantom 3 from Batenburg [4] with noise (SNRdb = 20)

gives better results compared to the original DART method. In the presence
of noise, tomoFTR got sometimes stucked in local fixed points, and tomoPB
performs better than tomoDC, but worse than tomoGC.

4 Conclusion and Future Work

We presented a new method for efficient binary reconstruction problems. In each
iteration, our method only has to perform simple matrix vector operations and
a graphcut problem of the size of the image/volume. For large-scale problems,
solving the graphcut problem becomes the limiting factor, but efficient parallel
implementations for this problem have been suggested in the recent literature.
Even without this specialized implementations, our method is by more than one
magnitude faster than competitive methods and provides additional theoretical
guarantees, which makes it appealing to be used as a sub-solver within a α-
expansion like algorithm, as suggested in [34].

For the generalization to multi-label tomography, we obtained some first
promising results by replacing graph cuts with graphical models, which is equiv-
alent in the binary case. However, in the multi-label case two additional prob-
lems have to be considered. Firstly, the discrete inference problem is no longer
tractable in polynomial time and secondly, the allowed values span a simplex
and no longer live on an one-dimensional space.

In future work, we also plan to replace naive subgradient ascent by the more
advanced bundle method with automatic stepsize choice [22]. This should give a
further speedup and non-binary primal estimates which can be used to suppress
noise similar to tomoTV.
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Abstract. The integration of surface normals is a classic problem in
computer vision. Recently, an approach to integration based on an equa-
tion of eikonal type has been proposed. A crucial component of this model
is the data term in which the given data is complemented by a convex
function describing a squared Euclidean distance. The resulting equation
has been solved by a classic fast marching (FM) scheme. However, while
that method is computationally efficient, the reconstruction error is con-
siderable, especially in diagonal grid directions. In this paper, we present
two improvements in order to deal with this problem. On the modeling
side, we present a novel robust formulation of the data term. Moreover,
we propose to use a semi-Lagrangian discretisation which improves the
rotational invariance while it allows to keep the FM strategy. Our exper-
iments confirm that our novel method gives a superior quality compared
to the previous methods.

1 Introduction

The integration of surface normals is a fundamental task in computer vision. As
an important classic example for the application of this technique let us mention
the photometric stereo process introduced by Woodham [17]. There the normal
field of the surface of a static object observed from one and the same camera
position under different lighting conditions is retrieved. Then the computed nor-
mal field has to be integrated to obtain the unknown shape in terms of the
depth map. To handle the crucial integration step, many different approaches
and methods have been developed during the last decades. As examples for clas-
sic methods let us mention here the scheme of Frankot and Chellappa relying
on the fast Fourier transform [5], the approach of Horn and Brooks based on a
variational formulation [10] which has been explored in terms of its necessary
optimality condition by Simchony et al. [15], and the more direct line-integration
method of Wu and Li [18]. As examples for modern extensions of the variational
method of Horn and Brooks let us mention here the methods of Durou and his
co-workers [2,3] and the scheme of Harker and O’Leary [7].

However, while many methods have been proposed there is still a need for
approaches that combine accuracy, numerical robustness and efficiency. In order
to explore the potential of the highly efficient fast marching (FM) algorithm
c© Springer International Publishing Switzerland 2015
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for the purpose of surface normal integration, Ho et al. [9] formulated a suitable
model in the format of an eikonal-type partial differential equation (PDE). Mak-
ing use of the equivalent formulation of surface normals in terms of correspond-
ing gradients of an unknown surface, a crucial part of this model complements
the input gradient field by the gradient field of a convex function. We denote
this part of the model of Ho et al. as the data term and the mentioned convex
function as f .

However, while some promising results for synthetic, very smooth surfaces
were presented in [9], also severe problems were reported that made the method
difficult to apply. In the paper of Galliani et al. [6] some of the fundamen-
tal problems of the original scheme of Ho et al. were solved by introducing a
well-engineered discrete formulation of the function f . This takes into account
the hyperbolic nature of the underlying eikonal-type PDE. To summarise, the
method of Galliani et al. is a computationally efficient FM scheme for the
intended purpose. However, this scheme is still based on the original model of
Ho et al. and relies on a conventional formulation of the FM scheme. The ques-
tion arises if the complete approach could be improved with respect to accuracy
and numerical robustness without compromising the efficiency of the approach.

Our Contributions. We improve upon the method of Galliani et al. in two
ways. On the modeling side we propose to substitute the squared Euclidean
distance chosen as the function f in [6,9] by the more robust absolute value
function. The intuition behind our choice is to avoid numbers in different orders
of magnitude that contribute in the data term when using the squared Euclidean
distance, and we conjecture that in this way we may reduce numerical errors.
In terms of the numerical method we propose to use a more sophisticated semi-
Lagrangian FM discretisation [1,4] that is conceptually to a high degree rota-
tionally invariant. By employing dedicated experiments we discuss the benefits
of our novel method, especially we show that our method yields superior quality
compared to the method of Galliani et al.

Paper Organisation. Section 2 gives a brief overview of previous FM based
methods. In Sect. 3 we show in detail the impact of our improvements in model
and numerics. A complementary experimental evaluation is given in Sect. 4. The
paper ends with a conclusion.

2 The Previous Models

The problem of reconstruction is to recover a surface from a given normal field
n:=n(x, y). To this regard the surface can be represented as a depth map v(x, y)
over (x, y) ∈ Ω where Ω is the computational domain. A normal field n of a
function v for every (x, y) ∈ Ω is given through

n(x, y) =
(vx, vy,−1)�√‖∇v‖2 + 1

where vx =
∂v

∂x
, vy =

∂v

∂y
. (1)

Given the components nx, ny, nz of a normal vector n, this can be made equiv-
alent to the partial derivatives of v via
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(
vx

vy

)
=

(−nx

nz−ny

nz

)
=:

(
p
q

)
. (2)

Setting g(x, y):=(p(x, y), q(x, y)), we obtain from (1) and (2) the equation

− ∇v(x, y) = g(x, y) (3)

and taking the Euclidean norm of ∇v, Eq. (3) leads directly to the following
eikonal-type equation:

‖∇v‖ =
√

p2 + q2 =: 1/F. (4)

The latter equation is a hyperbolic PDE. For PDEs of eikonal type, a solution
can be computed efficiently by the FM scheme [8,13,14,16].

Let us briefly describe the FM strategy. In order to apply this method we need
an initial point v(x0, y0) = 0. Starting from this the computed values of v(x, y)
describe the arrival time of a wavefront from the initial point to every point
(x, y) in the computational domain. The known function F (x, y) corresponds to
the speed function of the expanding wavefront. The solution of FM describes the
propagation of the wave in the order from the minimum of v to its maximum on
the domain of interest. In our application, we will consider the centre point in
our image domains as the starting point for the FM process.

The Method of Ho et al. In their work Ho et al. [9] suggest to solve the
eikonal equation for a function w of the form

w := v + λf (5)

with a parameter λ > 0 and a user-defined function f , so that the new function
w has a known minimum in (x0, y0). To obtain v one has to solve the eikonal
equation for w, where we note that ∇v and ∇f are known, and recover v from
the computed w by subtracting the known function f .

Let us give some more details. In [9] it is proposed to use the squared Euclid-
ean distance function

f := (x − x0)2 + (y − y0)2 (6)

around the point (x0, y0). To ease notation, let us locate the minimum of f at
the centre of the domain (x0, y0) = (0, 0) and write

f = x2 + y2. (7)

Keeping in mind the analytic derivative of f , the gradient of (5) with respect to
n = (p, q) leads to

∇w =
(

p + λ2x
q + λ2y

)
. (8)

With the help of the Euclidean norm we get the eikonal equation

‖∇w‖ =
√

(p + λ2x)2 + (q + λ2y)2 (9)

with the boundary condition w(0, 0) = 0. After the computation of w we obtain
the sought depth map via
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v = w − λf. (10)

Let us emphasize that the proceeding of Ho et al. as above yields a highly unsta-
ble scheme, cf. the detailed discussion and evaluation in [6]. Therefore we refrain
from showing numerical results of the corresponding method in this paper.

Improvements of Galliani et al. As elaborated in [6], the disadvantage of
the previous method is its lack of stability caused by a too simple formulation of
∇f , leading to a high sensitivity with respect to the choice of λ. The problem is,
that the analytic derivative used by Ho et al. for ∇f is identical to the central
difference

fx :=
fi+1,j − fi−1,j

2Δx
(analogous for fy) (11)

and for this the numerical scheme is not monotone. If one takes an upwind
discretisation as proposed in [12] of f as

∇f =

⎛
⎜⎜⎝

[
max

(
fi,j−fi−1,j

Δx ,
fi,j−fi+1,j

Δx , 0
)]2

[
max

(
fi,j−fi,j−1

Δy ,
fi,j−fi,j+1

Δy , 0
)]2

⎞
⎟⎟⎠ (12)

instead of the analytic expression for ∇f , then the problem can be resolved.
Let us note that the upwind discretisation as employed in (12) makes use

of the values aligned with the grid directions only. This type of discretisation
is in the work of Galliani et al. also employed for resolving the solution v. This
implies that one can expect a poor approximation of important solution features
in case these are not aligned with the grid.

3 Our Improvements

The main design drawbacks one may infer from the described construction are
twofold. First, as already commented, there may be a problem with resolving
structures not aligned with the grid. Secondly, the use of the squared Euclidean
distance for f implies that numerical inaccuracies of small size in numbers will
be put together with rapidly increasing contributions by f . Therefore, the second
objective of us will be to propose a better choice for the function f .

3.1 The Absolute Value Function

The approach of Ho et al. has two degrees of freedom, (i) the parameter λ and
(ii) the choice of the function f . By the reformulation in [6], the choice of λ is not
a true degree of freedom anymore since the resulting method is robust vs. the
variation of λ. Therefore, we study the second degree of freedom and consider a
possible function f so that w has only one minimum. We propose to change the
previous model by employing instead of the Euclidean distance function

f := ‖ · ‖1, (13)
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Fig. 1. The obstacle experiment: reconstruction of a white image with a black square for
λ = 100000. Left. Original image, image size is 256 × 256. Centre. Second quadrant
of computational domain, reconstruction by the method of Galliani et al. using the
squared Euclidean distance function. Right. Reconstruction using the absolute value
function instead.

i.e. in 2D for example f = |x| + |y| is used. This choice is similar in style as the
total variation norm often employed in image processing applications.

The Obstacle Experiment. In Fig. 1 we illustrate by a toy example the effect
of our new model. The aim is to reconstruct a white image with a single black
square located in diagonal direction from the centre. The left image in Fig. 1
shows the ground truth from which we computed an initial gradient field. The
other two images in Fig. 1 shows the lower right quadrant of this domain together
with the solutions obtained by the method of Galliani et al. and via our first
improvement, respectively.

This toy experiment addresses a difficult problem for many surface normal
integrators, namely the presence of a strong discontinuity as discussed in [2].
For the discussed methods, an important area is the region exactly behind the
obstacle. Here the squared Euclidean distance function shows its biggest weak-
ness, in contrast to the proposed L1 data function. The benefit of the latter is
quantified in Table 1, where the values of MSE and L∞ are clearly lower.

The Sombrero Experiment. Our second experiment here is concerned the
problem of rotational invariance, for which we consider the sombrero hat function
as depicted in Fig. 2 over a grid of size 201×201. Let us note, that complementary
to the previous experiment, the solution is here smooth.

In order to compare the error of computed solutions as depicted in Fig. 2 we
employed in the figure the same error scaling for both error visualisations, so that
one can see here the significant decrease in the error caused by our choice. Note
also that we observe after our first improvement still a relatively high numerical
inaccuracy along the grid diagonals. The impact of our model improvement is
also confirmed quantitatively via Table 1.

3.2 Semi-Lagrangian Discretisation

We now tackle the inaccuracy by using the traditional FM discretisation along
diagonal directions. To this end we propose to employ the semi-Lagrangian FM
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Fig. 2. The sombrero experiment: reconstruction of a rotationally invariant function
for λ = 1. Left. Sombrero function, i.e. the ground truth. Centre. Visualisation of
the absolute error of the scheme proposed in [6]. White represents a high error. Right.
Visualisation of the error after our first improvement using the L1 norm for f .

method (SL method) as described in [1,4]. While the SL method is a standard
technique in numerics, it is probably not widely used in computer vision. Thus
we now give a brief account of its principles.

The main idea behind the SL method relies on the relation between an
eikonal-type equation and the minimum time problem of control theory, see
e.g. [4] for a detailed exposition. The eikonal-type equation

F (x)‖∇w(x)‖ = 1 x ∈ R
2 \ Ω0 (14)

w(x) = 0 x ∈ ∂Ω0 (15)

with F (x) > 0, can be transformed by the Kruzkov function

k(x):=1 − e−w(x) (16)

to the following special Hamilton-Jacobi-Bellman equation of a minimum time
problem

k(x) + max
a∈B(0,1)

{−F (x)a · ∇k(x)} = 1 x ∈ R
2 \ Ω0 (17)

k(x) = 0 x ∈ ∂Ω0. (18)

Table 1. Comparison of MSE and L∞ for (left) the reconstruction in our obstacle
experiment with λ = 100000, and (right) for the sombrero experiment with λ = 1. L∞
is defined as the maximum absolute error between the ground truth and the recon-
struction.

f ‖·‖2
2 ‖·‖1

MSE 205.80 18.28

L∞ 259.904 244.754

f ‖·‖2
2 ‖·‖1

MSE 0.109 0.023

L∞ 0.707 0.689
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Thereby, a ∈ R
2 is the optimal control and it is determined in the closed unit

ball B(0, 1) in R
2. In order to vividly describe this we can say: we search the time

t to reach the target T = Ω0 from a point x in the domain R
2 \Ω0. Furthermore

the SL scheme for Hamilton-Jacobi equations on a grid G stems from a discrete
version of the Dynamic Programming Principle. The corresponding formulation
reads as

k(xi) = min
a∈B(0,1)

{βik(xi − h̃a)} + 1 − βi xi ∈ G\Ω0 (19)

k(xi) = 0 xi ∈ G ∩ ∂Ω0, (20)

with βi = e−hi , hi = h̃/Fi and F (xi) = Fi. To approximate the value of
k(xi − h̃a), we use linear interpolation. However, we search the minimum just on
∂B(0, 1) and therefore the optimisation problem is written in 2D in parametric
form with

k((xi, yi) − h̃a) (21)

where a = (cos θ, sin θ) and θ ∈ [0, π). This minimisation problem has low dimen-
sional costs since we compute the values k(xi−h̃a) through a linear interpolation
by using just the three nearest grid nodes.

Employing then the idea behind the SL method is rather simple. One has to
follow all steps of the classical FM except the computed values at the node xi.
Here we use the SL scheme and this leads to the main difference. The interpo-
lation of k(xi − h̃a) needs eight nodes around xi instead four nodes in the case
of the traditional FM scheme. This corresponds to a larger stencil using values
from all grid directions, which implies that the narrow band used in the FM
technique must include the diagonal neighbors of xi.

Let us now discuss the resulting improvements at hand of the obstacle experi-
ment and the sombrero experiment discussed in the previous paragraph. In Fig. 3
we display in an analogous fashion as in previous experiments the SL solutions.
We may observe especially a much lower error behind the obstacle and a good res-
olution along any direction on the grid with no observable alignment as intended.
These observations are confirmed again quantitatively, see Table 2.

Finally we combine both of our advantageous improvements into one method,
the results of which we depict in Fig. 4 for our toy problems. In case of the obsta-
cle problem the error is largely reduced when comparing with all the previous
methods. However, we see that it is still located behind the obstacle from the
perspective of the starting point of the integration. In the sombrero problem we
observe now again a slight error of similar shape as present in Fig. 2, but it is
reduced. Visually the plot of the error of our final method shows an state inbe-
tween the behaviour of the schemes introduced in our two individual improve-
ment steps. In Table 2 we also see that our novel scheme shows a significantly
reduced error rate compared with the method of Galliani et al., cf. Table 1.

4 Further Experiments

Complementary to our toy model problems we now study the performance of
our novel method for the reconstruction of surfaces of more complex synthetic
data as well as for data from a real-world application.
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Fig. 3. Toy experiments with the SL method with Euclidean distance function. Left.
Result for the obstacle experiment with SL method. Right. Visualisation of the error
for the sombrero experiment.

Fig. 4. Toy experiments with our novel method. Left. Obstacle experiment. Right.
Visualisation of the error for the sombrero experiment.

The Visual Experiment. Our first experiment intends to show a visual com-
parison of the scheme of Galliani et al. and our new method. To this end we
compute the derivatives in x- and y-direction of the well-known Lena test image
(not shown here) using the Sobel operator; we employ the latter because of the
higher order accuracy (compared to our methods) and good rotational invari-
ance properties. The results of the reconstruction are presented in Fig. 5 and
they confirm the qualitative results from our toy problems as we can observe
in general a better quality in the reconstruction with our novel scheme. Let us

Table 2. Comparison of MSE and L∞ for the reconstructions in the obstacle experi-
ment and the sombrero experiment (left) with the SL method, and (right) for our final,
novel scheme combining SL and L1 data function.

obstacle sombrero

MSE 85.058 0.024

L∞ 232.792 0.613

obstacle sombrero

MSE 14.019 0.0131

L∞ 223, 724 0.611
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Fig. 5. Artificial but difficult integration experiment. Left. Reconstruction of Lena
with the method of Galliani et al.. Right. Result using our novel combing L1-norm
for f and SL discretisation.

Fig. 6. Reconstruction of “Beethoven”. Top row: (a)–(c). The three input images of
Beethoven with different illumination conditions. Size of the input images is 256×256.
Bottom left: (d). Reconstruction using the method of Galliani et al.. Bottom right:
(e). Reconstruction by our novel method with L1-norm for f and SL discretisation.

note in this context of our construction criteria, that the Lena test image shows
a mixture of smooth regions and discontinuous structures in all grid directions.

Application: Photometric Stereo with Real-World Test Images. Finally
we present a computer vision application of our proposed method, namely the
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Fig. 7. Reconstruction of “Beethoven” from a frontal perspective, ordered from left to
right by (a)–(d). Reconstruction by the method from (a) [6] and (b) by our scheme,
with the centre point as starting point for surface normal integration. (c), (d). Anal-
ogously, this time using a point at the forehead as initial point for integration.

photometric stereo (PS) reconstruction of the real-world data set Beethoven
shown in Fig. 6 (a)–(c). In order to compute the normal field of the surface we
employ the recent uncalibrated PS method of Queau et al. [11]. Again we com-
pare here our method with the method from [6]. The solutions computed by both
methods are visualised in Fig. 6(d), (e). One can observe that the reconstruction
obtained via our method is smoother. The method of Galliani et al. introduces
artefacts extending from strong features of the shape as e.g. noticeable at the
alar wing of the nose.

Via a different, frontal perspective as depicted in Fig. 7(a), (b) we can confirm
the latter result. However, let us note that even with our improved method there
are still some artifacts left. Choosing a different starting point for integration of
surface normals, see Fig. 7(c), (d), we especially note the high error introduced
by the method of Galliani et al. at the nose of the Beethoven bust, as predicted
by our obstacle experiment.

5 Conclusion

We have presented a significant improvement of the FM integrator for surface
normals over previous work. We conjecture that our method can be used e.g.
for computing initial states for more accurate iterative solvers. An interesting
point in our model is that it yields better results than the method relying on
the rotational invariant L2 data function. This may be not completely intuitive.
In a future work we plan to give a detailed evaluation of this issue.
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Abstract. We present an approach for computing dense scene flow from
two large displacement RGB-D images. When dealing with large dis-
placements the crucial step is to estimate the overall motion correctly.
While state-of-the-art approaches focus on RGB information to estab-
lish guiding correspondences, we explore the power of depth edges. To
achieve this, we present a new graph matching technique that brings
sparse depth edges into correspondence. An additional contribution is
the formulation of a continuous-label energy which is used to densify the
sparse graph matching output. We present results on challenging Kinect
images, for which we outperform state-of-the-art techniques.

1 Introduction

In this work, we tackle a fundamental problem in computer vision – that is
to estimate a dense correspondence field between a pair of images. While for
some scenarios, e.g., small motion in a highly textured scene, this task is con-
sidered to be solved, there are still a number of outstanding challenges in the
general case. The particular challenge we are addressing in this work is when the
scene and/or the camera are subject to large movements. This occurs frequently
when objects move at high speed or humans perform articulated actions, such
as gesturing, walking or doing sport. Also, large displacements occur in time
lapse photography, e.g., when a camera surveils a building site or observes the
growth of a plant. Another scenario is when intermediate frames in a video
sequence have to be deleted and the task is to find a smooth transition between
the remaining frames. Unfortunately, large displacements violate the assump-
tions of most state-of-the-art scene flow estimation techniques, i.e. variational
approaches [14,17]. They achieve very high accuracy when the overall motion
is small. However, for large displacements the main problem is to estimate the
general motion of all objects correctly. The task of this work is to show how
this general motion can be recovered reliably. We here ask the specific ques-
tion of computing dense 6D scene flow between a pair of RGB-D images with
independently moving and deforming objects. This means that for each pixel
we aim at recovering the 3D translation and 3D rotation, that matches a pixel
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 285–296, 2015.
DOI: 10.1007/978-3-319-24947-6 23
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(and its local neighborhood) to the corresponding point in the other image.
To compute dense flow for large displacements, many works have proposed to
first find some sparse matches between the two frames and then, subsequently,
utilize this information to estimate a dense flow field, e.g. [6,15,29]. Distinc-
tive points can be matched using, e.g., SURF [3] or SIFT [19]. However, this
assumes that the scene contains sufficiently textured surfaces and non-repetitive
patterns. While man-made environments often violate those assumptions, they
are highly suitable for using active depth cameras, e.g., active stereo or time-
of-flight sensors [11]. These devices provide depth maps even for untextured
surfaces. In our two stage scene flow approach, instead of using sparse texture
matches only, we utilize depth edges extracted from the RGB-D images that
describe object boundaries well. However, in the presence of large motion, they
are actually not trivially described and matched. While exact edge description
suffers from occlusion and distortion effects, more robust edge descriptors often
lead to ambiguous matches. To disambiguate edge matches with robust descrip-
tors, we use a structured matching approach in the form of graph matching
that profits from non-local information to assign edge matches. The structure-
preserving properties of an underlying loopy graph allows the strong and unique
matches to guide the weak and ambiguous ones. While building the structure
graph for a moving camera in a static scene is a relatively straight forward task,
in this work we show how the depth information can be used to construct 3D
graphs that respect independently moving objects in addition to camera motion.
In the second stage, we show how dense scene flow can be obtained from graph
matching by extending the recent SphereFlow method of Hornacek et al. [15]. For
this we propose a new energy function that incorporates a left-right consistency
check as well as standard smoothness and data terms. The energy is optimized
with alpha expansion, and we demonstrate an improvement in performance with
respect to SphereFlow. To summarize, the main contributions are

– A state-of-the-art method for large displacement scene flow from RGB-D
image pairs.

– A new graph matching technique that exploits depth information.
– A new continuous-label energy for scene flow that jointly models a left-right

consistency check, as well as spatial smoothness and local appearance.

2 Related Work

Since the introduction of scene flow by Vedula et al. [26] numerous approaches
to scene flow estimation have been proposed. Many of them use multi-view video
frames as input and employ the input images to compute depth structure and
3D motion, e.g. [16,21,28]. However, with recent depth cameras, RGB-D images
have become readily available. Variational approaches to scene flow estimation
from RGB-D images, e.g. [14,17], combine pixel-wise brightness and gradient
constancy with depth velocity constraints, and additional regularization of the
3D motion, to obtain a global solution. Since they rely on iterative linearization
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or second order approximation, e.g. [9], variational approaches without appro-
priate initialization are restricted to small or moderately large motion even when
iterative warping and coarse-to-fine schemes are used. In contrast, discrete scene
flow approaches demonstrate good performance also for large motion. Hadfield
and Bowden [12] estimate scene flow with a particle based formulation, and can
deal also with large 3D motion. However, they assume constant velocity in a
multi-frame image sequence. Hornacek et al. [15] and Wang et al. [29] use a
PatchMatch based algorithm [2] with a local data term to generate 6D motion
proposals between two frames. For large displacement motion, these approaches
define currently the state-of-the-art. But they still fail in the absence of suffi-
ciently textured surfaces, as we will show. In our approach we extend the model
of [15] by a term for the left-right consistency check, which has been done before
for, e.g., variational optical flow [1].

The information of landmark matching is currently exploited in a few scene
flow approaches. Hornacek et al. [15] use sparse SURF feature matches in addi-
tion to random initialization; Quiroga et al. [20] match SURF features on each
level of the image pyramid and encourage dense scene flow to behave accord-
ingly. Similar approaches are known from the optical flow literature. For example,
Brox and Malik [6] or Weinzaepfel et al. [30] use the strength of feature matches
to support large displacement estimation while still using an image pyramid.
Leordeanu et al. [18] and Revaud et al. [22] use semi-dense matches to replace
the image pyramid. However, single feature matches are often too unreliable to
be directly included into dense motion estimation. Sellent et al. [23] use addi-
tional images to improve feature matches, while Xu et al. [31] decide on each
pyramid level anew, if and what feature matches are utilized. In our approach
we use a graph matching strategy to improve the reliability of feature matches.
Graph matching has a very wide field of applications in pattern recognition and
machine vision, see [8,10]. It provides non-local information on landmarks by
embedding them in a graph structure. In our approach we formulate the graph
structure on depth edge features. In contrast to edge or line matching in RGB
images [4,27] we can extract these features robustly. Additionally, we can use
the depth channel to build the structure of the graph by avoiding to connect
features across depth discontinuities. This is an advantage over, e.g., Zhang
et al. [33] which cannot profit from depth information for graph construction.

3 Method

Our graph matching scene flow approach proceeds in two steps. In the first
step, we determine depth edges in the two input RGB-D frames, construct the
associated graphs, and then match them. In the second step, we use the sparse
motion information obtained from the graph matching to assign dense, smooth
and consistent 6D rigid body motion to each observed pixel in both frames.

3.1 Graph Matching

For Ω,Ω′ ⊂ R
2 let I : Ω → R

4, I ′ : Ω′ → R
4 be two RGB-D images with depth

and color channel Id, Ic and 3D-to-2D mapping π : R3 → Ω. We pre-process the
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(a) (b) (c)

Fig. 1. Details of graph matching. (a) Our edge description segments are repre-
sented by their center point, average appearance descriptor that describe the foreground
region and normalized depth gradient vector. In order to compute a description seg-
ment we accumulate neighboring edge pixels whose descriptor variance is lower than
a threshold σt and whose count is between rmin = 20 and rmax = 30 pixels. (b) For
graph matching, the description segments centers are connected to form a graph. In
particular, each description segment center is connected to its N = 3 nearest neighbors
with respect to the geodesic distance of the depth map to avoid connections across
large depth changes. (c) Illustration of the geometry term Δ((p, p′), (q, q′)) for graph
matching, see Eq. (3) and text.

depth channel to fill-in the unknown depths via morphological operations and
apply a median filter to suppress noise. We extract edges in the depth map with
the Canny edge detector [7]. For each edge pixel we use the orientation of the
depth gradient to determine the foreground region around this point. We use
the SIFT descriptor with three different sizes (8, 16, 32) [19] on the foreground
region to describe the appearance of the edge point. As edges might change
length and appearance between frames we do not use this pixel-wise description
directly, but instead group edge pixels with similar appearance into description
segments, see derivation in Fig. 1(a). Each description segment is represented
by its center point which is the median of all its points, its normalized depth
gradient vector and the mean of all its pixels’ descriptors.

Based on these description segments we construct the graph structure. Let R
and R′ be the set of all descriptor segments centers in image I and I ′ respectively.
For each element in R we create graph edges to its N = 3 nearest description
segments, considering the geodesic distance of the depth map, see Fig. 1(b).
Using the geodesic distance for graph edge construction we ensure that seg-
ments are not connected over depth discontinuities, which often coincide with
object boundaries, hence motion boundaries. The set of all graph edges between
description segments centers are represented by the graph edge sets E,E′. This
gives the two graphs G = (R,E) and G′ = (R′, E′) defined on image I and
I ′ respectively. We denote by A ⊆ R × R′ the set of all potential assignments
between the two sets of description segment centers. A matching configuration
between the two graphs is represented by the binary vector x ∈ {0, 1}|A| where
for each a = (p, p′) ∈ A the entry xa = 1 means that p matches p′. Thereby
each matching configuration must satisfy a uniqueness constraint where each
description segment has at most one match. Our matching objective function is
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E(x) = λappEapp(x) + λgeomEgeom(x) + λoccEocc(x) . (1)

The energy consists of three terms, each weighted individually (here we use
λapp = 300, λgeom = 0.1, λocc = 50).

The appearance term Eapp is a unary term that measures similarity in
appearance of matched descriptor segments. We use the Euclidean distance
between the concatenated SIFT feature vectors and set

Eapp(x) =
∑

a=(p,p′)∈A

||desc(p) − desc(p′)||2 xa (2)

where desc(p) is the average descriptor of the description segment of center p.
The geometry term Egeom is a pairwise term that defines the relationship

between pairs of neighboring assignments, see Fig. 1(c). The tuples a = (p, p′)
and b = (q, q′) are in a neighbor set N when either the edge −→pq ∈ E or

−→
p′q′ ∈

E′ exist. Let Tp,p′ be the 2D translation and rotation that maps −→pvp to
−−→
p′vp′ ,

where vp = p + dp, vp′ = p′ + dp′ and dp, dp′ are the normalized depth gradient
vectors at p, p′ respectively. A geometry preserving matching should then map
neighboring description segments to description segments that satisfy a similar
transformation, i.e. Δ((p, p′), (q, q′)) = ||Tp,p′(q)−q′||2+||Tp,p′(vq)−vq′ ||2 should
be small. Thus our geometry term

Egeom(x) =
∑

(a,b)∈N

(Δ(a, b) + Δ(b, a)) xa xb (3)

penalizes differences in length between the vectors −→pq and
−→
p′q′ and inconsistency

in their rotations. Meanwhile, arbitrary consistent rotations are allowed. Note
that in [25] the pairwise term penalizes all rotations regardless of their consis-
tency with neighbors, which had in our experiments a negative effect.

The occlusion term Eocc penalizes unmatched description segments by
adding a negative value to the energy for each active assignment. In contrast
to [25], which uses a constant value, we utilize a variable value that models
the confidence of occlusion at an image location. Thereby a strong decrease in
depth at an image location Id(p) � I ′

d(p) is an indicator of occlusion with a
closer object. Using the weights wI(p) = Id(p) − min(Id(p), I ′

d(p)) and wI′(p) =
I ′
d(p)−min(Id(p), I ′

d(p)) normalized over the full image to the range [0, 1], we set

Eocc(x) =
∑

a=(p,p′)∈A

− (1 − wI(p) + wI′(p′)
2

) xa . (4)

In general, finding the global minimum of the energy function Eq. (1) is an NP-
hard problem. However, the Dual Decomposition Graph Matching developed by
Torresani et al. [25] finds a good approximative solution that is in practice often
close to the global optimum, see Sect. 4.
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3.2 Scene Flow

The result of the graph matching step is a set of sparse matches of descriptor
segments. We use this result to get a dense 6D flow field by optimizing a discrete-
domain energy. Extending the work from [15], we want the 6D scene flow g:
R

3 → R
3 from I to I ′ and g′ from I ′ to I to minimize the energy

E(g, g′) =
∑

p∈Ω∪Ω′
D(g∗

p) +
∑

(p,q)∈N4

V (g∗
p , g∗

q ) +
∑

p∈Ω,p′∈Ω′
C(gp, g

′
p′) (5)

where g∗
p ∈ {gp, g

′
p}. The data term is from [15]:

D(gp) =
∑

H∈Sp

w(p, π(H))(‖∇Ic(π(H)) − ∇I ′
c(π

′(gp(H)))‖22

+ α‖gp(H) − NN I′(gp(H))‖22 ),
(6)

which measures RGB gradient constancy and geometric consistency of the scene
flow g, for all 3D points H in a sphere Sp around the 3D back-projection of
pixel p. Here ∇Ic is the image gradient, π(H) is the projection of H onto image
plane I, NNI(H) is the nearest neighbor of H in 3D back-projection of I, α > 0
is a weighting constant and w(p, p′) = exp(−||I(p) − I(p′)||2/γ) is an adaptive
support weighting [32]. The pairwise smoothness term

V (gp, gq) = β ||gp(P̄ ) − gq(P̄ )||22 (7)

is also similar to [15]. Weighted with β > 0, it enforces smoothness by applying
the motion of pixels p and q in the 4-connected neighborhood N4 to the middle
point P̄ = 1

2 (P+Q) of their 3D back-projections P , Q. Additionally, we introduce
the term C(gp, g

′
p′) which enforces consistency between forward and backward

scene flow by penalizing the deviation from the “starting point”

C(gp, g
′
p′) =

{
||p − π(g′

p′(gp(P )))||2 if p′ = π′(gp(P ))
0 otherwise

. (8)

We minimize this energy in three phases. In the first phase, we obtain 6D
rigid body motions for all sparse matches by mapping the corresponding 3D
points and their surface normals into one-another such that the rotation is mini-
mal [15]. Afterwards, pixels without an associated sparse match are assigned the
6D motion of their geodesically closest matched point with respect to the depth
map. In the second phase, we use the PatchMatch variant of Hornacek et al. [15]
to minimize the data term D only. The smoothness term V and consistency
term C are in this phase only optimized implicitly by considering proposals
from spatial neighbors and potential matches of the forward/backward scene
flow, respectively. For the third phase, we cluster the 6D motions of the second
phase that satisfy C(gp, g

′
p′) < τ with τ = 1 into K = 50 clusters using the

K-means clustering of the corresponding Rodriguez representations. The clus-
tered 6D motions from this step serve as scene flow proposals for a global mini-
mization of the energy in Eq. (5) via alpha expansion [5]. Here each expansion
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(a) Hungarian (b) Torresani et al. [25] (c) Ours

Fig. 2. Visual comparison of graph matching results. For illustration purpose
both RGB images are super-imposed. Green means a correct match (or occlusion), blue
is an almost correct match (definition in text) and red is a wrong match. Our result is
clearly superior to the other techniques (Color figure online).

move runs QPBO [13], since the move-energy can be non-submodular. The alpha
expansion is initialized with the motions from the second phase. Note, in contrast
to [15] we optimize one global energy which includes consistency, smoothness,
and appearance. This leads to considerably improved results, see Sect. 4.

4 Experiments

We recorded a dataset of seven RGB-D image pairs with the MS Kinect V1
camera.1 Each image pair captures objects that undergo very large motion – see
examples in Fig. 2. We present both quantitative results for graph matching, as
well as qualitative evaluation of the final dense scene flow. In order to quantify
the graph matching results, we use our algorithm to build description segments
on image pairs. Then we generate ground truth matching by manually labeling
each description segment in one image with its best corresponding description
segment in the other image, or marking it as occlusion. Note that by construc-
tion, description segments centers in two images may not correspond exactly
to the same physical 3D points. Therefore, we define almost correct matches to
be those which are within the radius rmax = 30 of the correct description seg-
ments centers, see Fig. 1. Given ground truth matches, we can assign three class
labels to each description segment matched by the graph matching algorithm:
(a) correct match; (b) almost correct match and (c) wrong match. Exemplary
results are shown in Fig. 2. A full quantitative evaluation is given in Table 1.
1 Available on our web page

http://cvlab-dresden.de/research/image-matching/graphflow/.

http://cvlab-dresden.de/research/image-matching/graphflow/
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(a) (b) (c) (d)

Fig. 3. Comparison to SphereFlow [15] for the sequence Hammer and Walking.
Only the flow field of the left image is shown. (a) Original image pair. (b) Result of
SphereFlow, where black pixels are unobserved depth values. For visualization, the
magnitude of flow vectors is multiplied by 100. For these two sequences the result is
an almost constant small motion everywhere. (c) Result of SphereFlow with graph
matching points added to the pipeline of [15], before PatchMatch is applied. Only
for the Hammer sequence gives better results, where the “pink-colored motion” on the
hammer points towards the “up-right” direction (see flow color encoding). The Walking
sequence is still degenerate (d) Our result. In both cases the motion estimation looks
visually pleasing.

The percentages of correct matches are shown first, whereas the almost correct
matches are denoted in brackets. We compare our graph matching with conven-
tional nearest neighbor (SIFT) matching and Hungarian matching of the descrip-
tion segments that admits at most one-to-one matching [24]. Both methods do
not exploit any graph structure and have a considerably lower performance. We
also compare ours to the graph matching approach of Torresani et al. [25]. Both
approaches use the same appearance term and optimization method, but differ-
ent geometry and occlusion terms. In all but two cases our method outperforms
the results of Torresani et al. [25] and a gain of up to 24.4% can be observed in
the Tea scene. Finally, we evaluated the impact of our weighted occlusion term
by fixing it to a constant value, denoted by “Const. Occ.”. For nearly all scenes
variable occlusion weights result in better performance.

As our final aim is the computation of scene flow, we are not only interested
whether matches are correct or wrong, but also in the Euclidean distance between
wrong matches and correct ones. These distances are shown in Table 2. Our
approach has the smallest average error distance of all methods.

To better understand the optimization process, we finally analyze the energy
of the dual decomposition framework with respect to the computed lower bounds
for each scene, see Table 2 right. In four cases we reach global optimality while
in the other three cases the lower bound is relatively tight. Given those results
on our dataset, we conclude that our model seems to be a close approximation
to an optimal energy formulation.
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Table 1. Quantitative evaluation of the graph matching results. The per-
centages of correct matches and almost correct matches (in brackets). Our algorithm
consistently outperforms a naive approach as well as a comparable approach [25] by
up to 24.4 % for the Tea sequence. Here “Const. Occ.” means our full energy with a
constant occlusion term. Best results are marked in bold.

Sequence SIFT Hungarian [24] Torresani [25] Const. Occ Our

Board 63.3 (80.0) 70.0 (91.7) 70.0 (93.3) 85.0 (95.0) 85.0 (95.0)

Books 38.9 (64.3) 46.0 (71.4) 59.5 (80.2) 55.6 (83.3) 59.5 (83.3)

Dinner 80.0 (89.5) 86.7 (93.3) 88.6 (97.1) 87.6 (97.1) 87.6 (96.2)

Hammer 34.6 (42.0) 51.9 (65.4) 59.3 (76.5) 65.4 (76.5) 67.9 (81.5)

Party 64.6 (86.5) 57.3 (81.3) 63.5 (88.5) 66.7 (90.6) 67.7 (92.7)

Tea 54.4 (90.0) 73.3 (85.6) 55.6 (88.9) 78.9 (91.1) 80.0 (93.3)

Walking 54.2 (72.9) 66.7 (81.3) 79.2 (85.4) 83.3 (83.3) 83.3 (83.3)

Table 2. Quantitative evaluation of the graph matching results and associ-
ated optimization problem. (Left) Average Euclidean distances of wrong matches
as compared to ground truth. Overall, our matching results have equal or smaller error
compared to all other methods. (Right) Lower and upper bound of the graph matching
energy, where we reach in four out of seven cases global optimality.

Sequence SIFT Hungarian [24] Torresani [25] Const. Occ Our Lower Upper

Board 17.32 11.00 7.32 3.78 3.78 −2262.7 −2262.7

Books 47.90 36.75 15.03 7.50 6.93 −4170.6 −4103.8

Dinner 16.52 9.72 3.71 2.26 2.24 −3602.5 −3602.5

Hammer 56.77 33.62 29.75 23.11 21.81 −2101.4 −2097.8

Party 12.33 20.39 9.49 6.92 6.41 −3631.0 −3629.9

Tea 11.79 9.56 9.05 4.12 3.69 −3126.9 −3126.9

Walking 21.01 15.89 8.15 7.66 7.66 −1625.8 −1625.8

Dense 6D Scene Flow. We evaluate our method for obtaining dense scene
flow, from the graph matches, on the same RGB-D scenes as they contain large
displacements and untextured regions. Datasets with similar challenging data
and ground truth scene flow are not available. Therefore, we restrict ourselves to
qualitative evaluation. Our dataset is publicly available for future comparisons.
We compare to SphereFlow [15], which is the state-of-the-art for large displace-
ment scene flow estimation, as shown in their work. While for our scenes the
result of SphereFlow is often decent, we observed that it sometimes returns a
degenerate result where all motions are close to zero2 – see examples in Fig. 3.
The reason for such degenerate results is two-fold: First, SphereFlow [15] relies
on SURF matches that are only available in textured areas. While our graph
matching provides good matches even in the absence of texture. Second, [15]
2 Adjusting the weighting parameters of [15] did not improve the results.
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(a) time = 0 (b) time = 0.33 (c) time = 0.66 (d) time = 1

Fig. 4. Visualizing our results as a 3D point cloud from a slightly different
viewpoint. (a–d) We warp the point clouds of the left and right images to generate
intermediate images for different time points. Note that white pixels are due to missing
depth measurements. We refer to our web page for a video.

does not optimize one energy but rather does a sequence of consistency checks
before optimizing an energy with a smoothness term and a simplified data term.
In contrast, we optimize an energy that includes a consistency term, which results
in better and more stable solutions, see Fig. 3(d). Additional results can be found
on our web page.

To further evaluate the accuracy of our method, we interpolate between the
image pairs using the estimated scene flow and render intermediate frames from
a slightly different viewpoint, see Fig. 4. The resulting interpolated videos are
realistic and show smooth transition.

5 Conclusion and Future Work

We propose to use graph matching of depth edges to estimate sparse, large dis-
placement motions between two RGB-D images. Combining this with a new
continuous-label energy for dense 6D scene flow, we are able to achieve state-of-
the-art results. In a next step we will add additional fine-tuning, e.g. gradient
descent, on top of the discrete optimization. In a broader context, this work may
inspire new directions for optical flow estimation from RGB images, since depth
edges are the locations in the image which are most challenging for correspon-
dence search, and at the same time often the most important locations when
creating new visual effects.
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Abstract. In this paper, fast techniques are proposed to achieve real
time and robust monocular visual odometry. We apply an iterative 5-
point method to estimate instantaneous camera motion parameters in
the context of a RANSAC algorithm to cope with outliers efficiently. In
our method, landmarks are localized in space using a probabilistic tri-
angulation method utilized to enhance the estimation of the last camera
pose. The enhancement is performed by multiple observations of land-
marks and minimization of a cost function consisting of epipolar geom-
etry constraints for far landmarks and projective constraints for close
landmarks. The performance of the proposed method is demonstrated
through application to the challenging KITTI visual odometry dataset.

1 Introduction

Monocular visual odometry is known as a demanding problem in robotic and
computer vision communities. The main challenge of a monocular odometry
system is that feature depths are not measurable but rather they should be
estimated. Unknown depths of features are mainly handled in literature based
on two approaches. In the first approach, camera and feature positions are con-
currently estimated in the context of extended Kalman filters. The methods
belonging to this approach are mostly known as EKF-Monocular-SLAM meth-
ods (e.g. [3,9,16]). The main focus of this approach is how to parametrize large
uncertainties of landmark positions in Gaussian forms in order to handle the
problem in EKF filters. A good survey and comparison of these methods can
be found in [15]. Among the EKF-based methods, the inverse depth parame-
terization (IDP) method [3] is known to be well established and has shown the
best performance. However, it usually diverges if cameras move in depth. The
reason is that this method localizes landmarks observed at low parallax angles
very often behind cameras (negative depth problem). Additionally, complexity
of the EKF based methods increases exponentially with respect to the number of
landmarks, which makes them inappropriate for large scale robust visual odom-
etry purposes. The second approach is based on bundle adjustment, in which a
cost function between observed and predicted measurements (feature positions
on the retina of a camera) at different camera poses is defined. Then the cam-
era poses and feature positions are estimated by the minimization of the cost
function. These methods require good initial guesses of camera poses. The initial
guesses can be obtained from the epipolar geometry or based on the assumption
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 297–307, 2015.
DOI: 10.1007/978-3-319-24947-6 24
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that the motion parameters of the camera do not change abruptly. Based on the
epipolar geometry, a 3 × 3 matrix known as the essential matrix (for calibrated
cameras) is estimated, which encodes camera motion. Essential matrices can be
estimated using the 8-point [6], the 7-point [7] and the 5-point [13] methods.

In [19], the authors used bundle adjustment to minimize a cost function
in which feature positions parametrized using IDP. This method is not real-
time and may diverge if the camera moves in depth (due to the negative depth
problem of the IDP). In [20], the 8-point method and a delayed parameterization
technique known as the parallax angle parameterization are utilized to avoid
the negative depth problem. This method essentially relies on the landmarks
observed at high parallax angles. In [12], the authors used the perspective n point
method (PnP) to estimate camera motion iteratively. The PnP method is mainly
applicable if the positions of features in space are known (for instance from a
stereo system). In case of a monocular system, it is assumed that the motion
parameters do not change noticeably in consecutive frames; therefore, features
can roughly be localized in space. Obviously, this method can only utilize features
observed at high parallax angles and highly depends on the previous estimation
of landmark positions. Hence, if the landmarks are not localized well in the
previous steps, for instance due to measurement noise or small errors in the
estimation of motion parameters, the method diverges. One common problem
among the last three mentioned methods is that they cannot detect translation
scale appropriately without using loop closure techniques. The reason is that
visual features are hardly observed at high parallax angles in multiple frames.
Consequently, the features cannot be used to detect scale drifts efficiently. Hence
in the recent years, the scale detection problem has been approached in a different
way. In case that a camera is installed on a wheeled vehicle and the height of
the camera over the ground plane is known, absolute scale of camera motion
can be determined. Geiger et al. in [5] used the 8-point method and the height
of the camera over the ground plane to come up with the method known as
libviso. Due to the usage of the 8-point method, libviso has a poor performance,
especially in the estimation of rotation matrices. Additionally, in this method,
they did not use any constraint to distinguish between the ground plane features
from other features, resulting in large drifts in scale estimation. In [17,18], Song
et al. developed multicore real time methods in which PnP is used to estimate
motion parameters. Due to the usage of PnP, the methods produce large errors
in case of bad localization of landmarks in previous steps. In another recent
work proposed in [11], the 7-point method is modified to regularize roll and
pitch angles of rotation matrices to enhance rotation estimations. This method
is relatively time consuming and the rotation estimation is not as good as the
PnP based methods.

In this paper, we propose a new visual odometry method which can handle far
and close landmarks robustly. Our contribution to the monocular visual odome-
try is fourfold. First, using an iterative 5-point method to estimate initial guesses
of motion parameters. Second, proposing a probabilistic triangulation method to
obtain uncertainties of landmark positions. Third, robust tracking of low quality
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features on ground planes to estimate scale of camera motion. Fourth, enhanc-
ing the last camera pose by minimization of a cost function containing epipolar
and projective constraints to handle far and close landmarks intuitively. In our
method, only camera poses are iteratively estimated and landmark positions are
estimated based on the probabilistic triangulation method. This technique allows
us to leverage hundreds of features in the optimization process in real time.

The paper is organized as follows: in Sect. 2, the iterative 5-point method
is discussed. The probabilistic triangulation method is presented in Sect. 3. In
Sect. 4, our method to detect scale of camera motion is proposed. Leverage of
multiple observations of features is discussed in Sect. 5. The proposed algorithm
is evaluated in Sect. 6. Section 7 concludes this paper.

2 Inter Frame Camera Motion Estimation

A typical approach to estimate camera motion parameters between two frames is
using epipolar geometry. For a calibrated camera, given a set of matched points
{(x, y), (x′, y′)}, the following equation holds:

[x′ y′ 1]E[x y 1]T = 0 (1)

where E is known as the essential matrix. Assuming that a coordinate frame is
attached to each camera pose, each point in space in the first camera frame such
as p = [px, py, pz]T will have the coordinate of p′ = [p′

x, p′
y, p′

z]
T in the second

frame obtained as follows:

p′ = R(p − t) (2)

where R is a rotation matrix encoding the rotation from the second frame to
the first frame and t = [tx, ty, tz]T is the translation of the second frame with
respect to the first frame. It can be shown that the essential matrix is related to
R and t as follows:

E =

⎡
⎣e1 e2 e3

e4 e5 e6
e7 e8 e9

⎤
⎦ = RT (3)

where T = [t]× is an antisymmetric matrix.
As Nister discussed in [13], the 5-point method is the best algebraic method

to estimate essential matrices. The good performance of the 5-point method
stems from two facts: first, it deals with degenerate cases efficiently; second, it
uses the minimal number of points to estimate essential matrices, which makes
the 5-point method more robust against outliers in the context of a RANSAC
algorithm [4]. Unfortunately, the 5-point method is complex and demanding to
apply it for real time purposes. In [8], an iterative 5-point method is proposed,
which runs in real time. Nevertheless, in this method, the possibility of more
solutions is not considered and it delivers only one solution. Additionally, in this
work, translation vectors are parametrized using two independent angles. This
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parametrization produces more degree of nonlinearity and consequently more
local minima in which the optimization process may get stuck. Here, we form
a nonlinear equation system based on the Sampson distance [7] and two more
constraints over the rotation and translation parameters. If we parametrize the
rotation matrix with a quaternion q = [q0, q1, q2, q3]T , given five matched points
such as {(xi, yi), (x′

i, y
′
i)}, i = 1...5, the equation system will be:

eT f1√
a2
1 + b21 + a′2

1 + b′2
1

= 0

...

eT fn√
a2
5 + b25 + a′2

5 + b′2
5

= 0

q20 + q21 + q22 + q23 = 1

t2x + t2y + t2z = 1 (4)

where, e = [e1, ..., e9]T , fi = [x′
ixi, x

′
iyi, x

′
i, y

′
ixi, y

′
iyi, y

′
i, xi, yi, 1]T , [ai, bi, ci]T =

E[xi, yi, 1]T and [a′
i, b

′
i, c

′
i] = ET [x′

i, y
′
i, 1]T (c and c′ are not used in Eq. 4). The

last two equations in Eq. 4 are due to the property of quaternions and the fact
that the translation vector can only be estimated up to a scale factor. The above
system of equations can be solved using the Gauss-Newton method. In iterative
methods, initial guesses of parameters determine the converged solution. Thus,
given five matched points, we obtain maximally up to 3 solutions based on the
following initial guesses: q = [1, 0, 0, 0]T , t ∈ {[1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T }.
Using the 5-point method in [13], we may obtain more solutions. However, in
practical cases where rotations are not large, the other solutions are not either
feasible or they are close to the solutions from the iterative method. Hence, the
solutions are good enough to be used in the optimization process based on the
multiple observations of landmarks.

3 Probabilistic Triangulation

We denote a camera pose at time t with respect to a global frame as Pt =
{Rt, ct}, where Rt is a rotation matrix encoding the orientation of the camera
and ct shows the position of the camera in the global frame. If a landmark with
the coordinate p = [px, py, pz]T is observed at two camera poses Pk = {Rk, ck}
and Pt = {Rt ct} (k < t), at the points (xk, yk) and (xt, yt) on the retina of
the camera, the landmark can be localized in space using triangulation. Our
triangulation method is based on the fact that the point should lie on the lines
drawn from the center of each camera pose in the directions of the observations.
As a result, the following equations hold:

p = ck + dkvk (5)
p = ct + dtvt (6)
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where vk = Rk[xk, yk, 1]T and vt = Rt[xt, yt, 1]T . dk and dt are the depths of
the landmark in the camera frames attached to each camera pose. Using the two
equations, the following linear equation system is obtained:

[vk| − vt]
[
dk

dt

]
= ct − ck = ct,k (7)

By solving the above equation system, the depth of the landmark in the kth

camera frame will be:

dk =
ν

ρ
=

(
vT

t vtvT
k − vT

k vtvT
t

)
ct,k

vT
t vtvT

k vk − (vT
k vt)2

(8)

It can be shown that if there are measurement noise or errors in the estimation
of rotation and translation parameters, ρ and ν will be joint Gaussian random
variables: [ρ, ν]T ∼ N ([ρ̄, ν̄]T , Σ). As a result, dk has the distribution of the ratio
of two dependent Gaussian random variables. It can be shown that:

p(dk|ρ) =
1√

2πσν

|ρ|
d2k

exp
(

− (ρ − ν̄dk)2

2σ2
νd2k

)
(9)

where σ2
ν is the variance of ν obtained from the marginalization of ρ from the

joint distribution of ρ and ν. The goal of probabilistic triangulation is to find
a confidence range for dk such as [dmin

k , dmax
k ] at each new observation of the

landmark. To this end, we use Eq. 9 for ρ = ρ̄ − 2σρ and ρ = ρ̄ + 2σρ and find
two positive dk at which the probability of p(dk|ρ) is equal to a small ratio of
the maximum pick of the distribution. In Fig. 1, the two distributions for ρ = 1,
σρ = 0.1, ν = 0.1 and σν = 0.1 are depicted.
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Fig. 1. Distribution of the depth parameter based on the probabilistic triangulation
method.

It can be verified that the depth distribution tends to a Gaussian distribution
in high parallax angles. In Eq. 8, the parallax angle is the angle between vt and
vk (α = acos( vT

t vk

|vt||||vk||| )). We trim the range [dmin
k , dmax

k ] based on the new
observations of the landmark such that |dmax

k −dmin
k | reduces or stays the same.

In another word, the uncertainty of a landmark position does not increase (in
analogy to Bayesian filters) as the landmarks are assumed stationary.
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4 Scale Detection

In case that a camera is installed on a wheeled vehicle parallelly to the ground
plane, scale of translations can be obtained by using the height of the camera
over the ground plane as a known parameter. Given R and t (||t|| = 1) for two
consecutive frames and the matched points {(x, y), (x′, y′)}, we use triangulation
to localize the corresponding 3D point in the first camera frame as follows:

p = d1v1 (10)

where d1 is the depth of the point in the first camera frame and v1 = [x, y, 1]T .
It can be shown that d1 is linearly proportional to the scale factor: d1 = ηs.
Thus, given the known height of the camera h, we have: s = h

yη .
To utilize the above mentioned method, it is required to track features on

typically highly homogeneous ground planes. In this regard, we extract features
at different resolutions from a rectangular region of interest in the half bottom of
both images. Then for each feature in the first frame, we find two matches in the
second frame based on the feature descriptor used in libviso [5]. An important
criterion by which many of wrong matches can be filtered is the distances of the
matched features to their corresponding epipolar lines. Using all of the matches,
different scale factors are calculated and then by applying a median filter, the
most probable scale factor is found. This method is fast and much more accurate
than the the method used in libviso.

5 Multiple Observations of Landmarks

To deal with degenerate cases and also uncertainties of scale factors, multiple
observations of landmarks should be leveraged. Hence, we optimize the current
camera pose Pt based on the multiple observations of landmarks. To this end,
we use two types of constraints: the epipolar constraint for landmarks observed
at low parallax angles as their uncertainties are far from Gaussian distributions
and the projective constraint for landmarks observed at high parallax angles.
For a landmark observed for the first time at the camera pose Pk = {Rk, ck}
with the coordinate (xk, yk), the Sampson distance is defined as follows:

Se =
eT

t,kft,k√
a2 + b2 + a′2 + b′2 = 0 (11)

where et,k = vect(Rt,kTt,k), Rt,k = RT
t Rk, Tt,k = [ct − ck]×, [a, b, c]T =

Rt,kTt,k[xk, yk, 1]T , [a′, b′, c′]T = TT
t,kRT

t,k[xt, yt, 1]T and ft,k = [xtxk, xtyk, xt,

ytxk, ytyk, yt, xk, yk, 1]T .
In case of close landmarks, we can use the projective constraint:

(xt − x̂t)T M−1(xt − x̂t) = 0 (12)



Fast Techniques for Monocular Visual Odometry 303

where xt = [xt, yt]T is the vector of the real measurement, x̂t = [x̂t, ŷt]T is the
vector of predicted measurement and M is a covariance matrix encoding the
uncertainty of the measurement. x̂t and ŷt are calculated as follows:

x̂t =
{RT

t (ck + dkRk[xk, yk, 1]T )}1
{RT

t (ck + dkRk[xk, yk, 1]T )}3
ŷt =

{RT
t (ck + dkRk[xk, yk, 1]T )}2

{RT
t (ck + dkRk[xk, yk, 1]T )}3 (13)

where {}i is the ith element of a vector. In Eq. 12, M is calculated at each frame
based on the uncertainty of the depth of the landmark. Hence to calculate M , we
insert three samples: dk, dmin

k and dmax
k in Eq. 13 and obtain three samples for

the predicted measurement. Finally, based on the three samples, M is calculated.
Now we can form a cost function which contains Sampson distances, projective
constraints and a regularization constraint as follows:

C =
n1∑
i=1

S2
e,i +

n2∑
i=1

(x̂i,t − xi,t)T M−1
i (x̂i,t − xi,t) + (yt − ŷt)T N−1(yt − ŷt)

(14)

where, n1 and n2 are the number of landmarks observed at low and high parallax
angles respectively. yt = [cx,t, cy,t, cz,t, q0,t, q1,t, q2,t, q3,t]T is a vector containing
the parameters of the last camera pose. ŷt is the initial guess of the camera pose
which is calculated based on the following motion model:

ct = ct−1 + Rt−1(qt−1)st

Rt(qt) = Rt−1(qt−1)RT (15)

where R and t are obtained from the inter frame camera motion estimation and
s comes from the scale detection module. In Eq. 14, N is a covariance matrix
obtained by the linearization of the motion model and error propagation through
the linear model. In this regard, we consider some uncertainties for the instanta-
neous motion parameters. Experimentally, we found that the variance 0.0001 for
the quaternion and translation elements works well. Additionally, the standard
deviation of s is calculated dynamically based on the difference of two consec-
utive scale factors. The last term in the cost function is essential as the cost
function could have several minima and the term regularizes the optimization
process to converge to a state near to the initial guess (in the sense of Maha-
lanobis distances). The covariance matrix is also fed to the triangulation part,
based on which the probabilistic triangulation is conducted. It should be men-
tioned that at each step the uncertainty of the previous camera pose is set to
zero as we only use N as a regularization term in a smoothing scheme not a
filtering scheme. In another word, we establish an intuitive relation between the
unknown parameters and predefine the ranges of changes for each parameter in
the optimization process. The overall method can be summarized as follows:
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1. Given the last two images, calculate inter frame motion: R and t.
2. Estimate scale of translation: s.
3. Predict the last camera pose and the covariance matrix N .
4. Minimize the cost function in Eq. 14. Use the Sampson distance for a land-

mark if dmax
k − dmin

k > Δdthreshold, otherwise use the projective constraint.
5. Run probabilistic triangulation.

6 Experimental Results

We implemented the proposed method in C++ and used the KITTI visual odom-
etry dataset for the evaluation. Concerning feature tracking, Shi-Thomasi cor-
ner features [14] with the minimum quality of 0.01 were extracted and tracked
using the Lucas-Kanade optical flow method (LK) [10]. Both of the algorithms
are implemented in OpenCV [2]. The minimum distance between features was
30 pixels and the maximum number of features was 300. For the estimation of
motion parameters between two frames, the iterative 5-point method discussed in
Sect. 2 was used. The parameters were updated in fixed number of 5 iterations.
The features were tracked maximally within 10 frames and Δdthreshold = 15.
Based on multiple observations of features, the cost function in Eq. 14 was opti-
mized with 5 iterations. With this setup, we achieved a real time performance
(10 Hz) on a PC with an Intel Xeon E31270 @ 3.40GHz CPU without using any
parallelism technique. For the evaluation, two measures are used: translation
and rotation errors. Given the real position of a camera at time t as ct and the
estimated camera position as ĉt, the average translation error is calculated as
follows:

εc =
1

Nf

Nf−1∑
t=0

‖ct − ĉt‖ (16)

where Nf is the number of frames. The average rotation error is defined as:

εR =
180
πNf

Nf−1∑
t=0

∣∣∣∣acos

(
trace(Re

t ) − 1
2

)∣∣∣∣ (17)

where Re
t = RT

t R̂t. We compared our method based on the multiple observa-
tions (MO) and only two view optimization using our iterative 5-point method
(TVO) with libviso (LV) [5], the iterative method in [8] (I5p) and a visual odom-
etry method based on the normalized 8-point method [6] and the LK tracker
(8pLK). In Table 1, the translation and rotation errors for some of the chal-
lenging training sequences of the KITTI dataset and also the average errors
for all 11 sequences are presented. Interestingly, we see that only applying our
iterative 5-point method (TVO) yields dramatically better estimations in com-
parison to the other two view based methods. In average, I5p has the poorest
performance as it neglects possibility of multiple solutions and also gets stuck in
local minima due to the way it parametrizes the essential matrix. Especially, it
performs poorly for sequences where the car often drives through sharp bends
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(due to the occurrence of degenerate cases). Interestingly, 8pLK performs better
than libviso, which signifies superiority of LK tracker over the feature match-
ing technique used in libviso as LK provides sub-pixel accuracies resulting in
less measurement noise. As expected, the multiple view observation technique
enhances the results from TVO, especially for the sequences where the ratio of
outliers is high or the number of observed features at high parallax angles is low
(for instance sequence 1). In Fig. 2, the estimated paths for the sequence 1 using
MO, TVO and LV are visualized. In this sequence, the car drives in an autobahn
and the number of landmarks observed at high parallax angles is low. As can be
seen, TVO has a poor performance when estimating the elevation of the camera
(originated from the error in the estimation of roll and pitch angles); whereas
MO is able to estimate the path well.

Table 1. Average of translation and rotation errors using different methods for the
training sequences of KITTI dataset.

Seq. Nf Method MO TVO 8pLK LV I5p MO TVO 8pLK LV I5p

Length [m] εc [m] εR [deg]

0 4541 3723.6 10.4 29.6 65.5 283.2 129.2 1.4 2.1 32.4 43.2 37.7

1 1101 2453.1 97.9 171.7 495.7 867.0 312.7 4.7 7.1 49.1 50.15 13.3

2 4661 5067.0 32.3 39.9 63.9 229.5 491.9 1.2 1.5 5.8 17.6 39.1

7 1101 694.7 25.7 89.6 123.3 115.1 99.3 2.6 3.7 4.3 40.9 22.1

Avg. 2109.2 2016.1 21.3 38.6 83.2 224.0 233.1 1.9 2.8 8.7 22.9 31.8

Fig. 2. Ground truth (G. T.) and estimated paths using different methods for the
sequence 1 of the KITTI dataset.

We also submitted our results for the test sequences to the KITTI website
under the name of FTMVO [1]. In the KITTI website, the methods are evaluated
based on the percentage of errors until 800 meters with the step of 100 meters. In
Table 2, the average of translation and rotation errors for our method and two
recent methods of state-of-the-art are presented. As can be seen, our method
outperforms the two methods MLM-SFM [17] and RCMPE+GP [11]. In [1], it
can be seen that our method also outperforms many of the stereo vision based
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Table 2. Average of translation and rotation errors for the test sequences of KITTI
dataset: our method (FTMVO), MLM-SFM (M. 1) and RCMPE+GP (M. 2).

Method FTMVO M. 1 M. 2

Tr. error [%] 2.24 2.54 2.55

Method FTMVO M. 1 M. 2

Rot. error [deg/m] 0.049 0.057 0.087

Fig. 3. Estimated (blue) and ground truth (red) paths for test sequence 14 based on
our method (left) and MLM-SFM (right) (Colour figure online).

methods. From the test sequences, the X − Z path of the first five sequences
are visualized in the KITTI website. In Fig. 3, the estimated paths using our
method and MLM-SFM for the sequence 14 are shown. The poor performance
of MLM-SFM for this sequence lies in using the PnP method which degrades
the estimations if the landmarks are badly localized in the previous frames. This
situation occurs often if the camera experiences relatively large rotations and
small translations.

7 Conclusion

An intuitive monocular visual odometry method is proposed, in which far and
close landmarks are robustly handled. Through the proposed probabilistic trian-
gulation technique, unlike the common SLAM or structure from motion methods,
we can run the optimization process only on the last camera pose and exclude
the localization of landmarks from the optimization process. Such an approach
results in speeding up the algorithm to a great extent and also robustness of
the algorithm against outliers. The performance of the method is demonstrated
based on the large and demanding KITTI dataset for visual odometry.
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Abstract. In this paper we propose a method for foreground object
segmentation in videos using an improved version of the GrabCut algo-
rithm. Motivated by applications in de-identification, we consider a static
camera scenario and take into account common problems with the orig-
inal algorithm that can result in poor segmentation. Our improvements
are as follows: (i) using background subtraction, we build GMM-based
segmentation priors; (ii) in building foreground and background GMMs,
the contributions of pixels are weighted depending on their distance from
the boundary of the object prior; (iii) probabilities of pixels belonging
to foreground or background are modified by taking into account the
prior pixel classification as well as its estimated confidence; and (iv) the
smoothness term of GrabCut is modified by discouraging boundaries fur-
ther away from the object prior. We perform experiments on CDnet 2014
Pedestrian Dataset and show considerable improvements over a reference
implementation of GrabCut.

1 Introduction

Video surveillance has become common in public spaces such as airports, subway
stations, banks, shopping centres etc. Although valuable in terms of crime pre-
vention, video surveillance raises privacy concerns when the person being filmed
is not involved in any sort of illegal activity. We consider the problem of object
detection and segmentation in videos, constrained with the target application of
pedestrian de-identification in video surveillance data, i.e. reversibly obfuscat-
ing the identity of the person in the video to make the person unrecognizable
to human observers. Finely segmenting the pedestrians instead of just consid-
ering pedestrian bounding boxes is necessary to preserve the naturalness of the
scene and enable building de-identified representations such as e.g. stick figures
or rendered 3D models of humans.

Given the target application, our goals and assumptions are as follows: (i)
we are considering a static camera, (ii) the motion in the scene is mainly due
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to pedestrians, and (iii) we wish to achieve as precise per-pixel segmentation of
humans as possible. Due to the introduced constraints, we assume that back-
ground subtraction can be used to obtain a prior on pedestrian locations. We
propose a method based on graph cuts that builds on GrabCut [19], addressing
common problems with the original algorithm that can result in poor segmen-
tation in certain cases, e.g. when parts of the object share characteristics with
parts of the background, when high contrast color changes are present in the
background near the object, or when the objects are concave. We build object
priors using a GMM-based background subtraction algorithm [27] and use them
as input for an improved version of GrabCut. We start with an assumption
that foreground/background priors can be reliably obtained using background
subtraction. In building the GrabCut Gaussian mixture model, we introduce
weighting each pixel depending on its distance from the boundary of the object
prior. When determining whether a pixel belongs to foreground or background,
we take into account the prior pixel classification along with its estimated confi-
dence. Finally, we modify the smoothness term of GrabCut to discourage bound-
aries further away from the object prior.

2 Related Work

A number of methods for pedestrian detection have been proposed in recent
years. Examples include the well-known HOG detector [7] (histograms of ori-
ented gradients), extensions [24] of the boosted cascade of Haar-like features of
Viola and Jones [23], deformable part models [10], multi-cue iterative algorithms
[15], integral channel features [8] and their extensions [2], approaches based on
convolutional neural networks [16,17,20], etc.

In spite of the progress in recent years, several review papers point out that
pedestrian detection is a hard problem [2,8,9]. As our target application area is
de-identification of pedestrians in videos, and the primary focus of this paper is
correct pedestrian segmentation, we simplify the pedestrian detection problem by
assuming a surveillance scenario with a static camera and employing background
subtraction to determine possible pedestrian locations. In the future, we plan
to factor in a dedicated detector that would be combined with the output of
background subtraction, as in e.g. the work of Harville [11].

The basic idea of background subtraction is simple: a background model is
built using frames of the video, and to determine foreground pixels in a frame the
background model is subtracted from that frame [5,6,13]. Given that experimen-
tal evidence [13] supports the notion that Gaussian mixture-based algorithms
[21,26,27] are among the top-performing background subtraction techniques, we
employ the improved adaptive Gaussian mixture model of Zivkovic [27] to detect
possible pedestrian locations to be processed by our segmentation algorithm.

Our segmentation algorithm is basedonGrabCut, proposedbyRother et al. [19]
for segmenting objects in static images. The GrabCut algorithm is semi-automatic
in the sense that the user is required to draw a rectangle around an object, spec-
ifying the area outside the rectangle as sure background and the area inside the
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rectangle as the approximation of the foreground. GrabCut formulates the seg-
mentation task as energy minimization problem and solves it by an iterative
graph cut optimization technique, as proposed by Boykov and Jolly [3]. A num-
ber of extensions of GrabCut have been proposed, e.g. [1,12,14,18].

While background subtraction often gives imprecise results and is sensitive to
lighting conditions, it can be straightforwardly combined with GrabCut, mak-
ing the process of segmentation fully automatic and eliminating the need of
human intervention. Several methods of combining motion-based foreground seg-
mentation with GrabCut have been proposed in the literature. Sun et al. [22]
note that straightforward use of the result of background subtraction as a mask
for GrabCut often gives unsatisfactory results if the static background contains
high-contrast elements. In order to fix this shortcoming, they propose an adap-
tive background contrast attenuation method. This method starts from the fact
that the background is known from background subtraction and attenuates the
contrast in the background, preserving simultaneously the contrast at the fore-
ground/background boundary.

Hernandez-Vela et al. [12] present a fully automatic spatio-temporal GrabCut
human segmentation methodology that combines tracking and segmentation.
GrabCut initialization is performed by HOG-based subject detection, face detec-
tion and skin color model. In order to improve the segmentation results in con-
cave regions (typical in images of humans), the authors refine the background
mask by adding to it the pixels that have greater probability of belonging to the
background, based on foreground and background color models. Temporal com-
ponent is also included, by favoring segmentations that are close to the results
obtained in the previous frame.

Poullot and Satoh [18] propose a method called VabCut for video foreground
object segmentation in moving camera applications. VabCut works on an exten-
sion of the RGB color domain to the RGBM, where M is the motion layer. The
motion layer is calculated after the RANSAC based frame alignment. Bounding
box and a larger super bounding box around the moving object are calculated
and only the area between these two bounding boxes is used for background
modeling, in order to avoid visual similarities between foreground and back-
ground in case of large backgrounds. Additionally, the numbers of Gaussians in
the GMMs for foreground and background models are independently optimized.

In contrast to the considered works, our method is designed to explicitly
take into account situations when high contrast changes inside the object occur,
or when background subtraction produces irregular and imprecise boundaries.
In the following section, we review the basic GrabCut algorithm, followed by a
description of our method.

3 Basic GrabCut Segmentation

In this section, we describe the original GrabCut algorithm [19] in some detail,
as it is a foundation on which our method is built.

The color image I is represented as an array z = (z1, ..., zn, ..., zN ) of N pixels
in RGB space, where zi = (Ri, Gi, Bi). The segmentation of the image is defined
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as an array α = (α1, ..., αN ), αi ∈ {0, 1}, assigning a label to each pixel of the
image, indicating if it belongs to background (αi = 0) or foreground (αi = 1).
The algorithm is semi-automatic, requiring the user to define an initial trimap
T over the image. The trimap consists of three regions: TB , TF and TU , specify-
ing pixels belonging to sure background, sure foreground, and uncertain pixels,
respectively. Most commonly, the user draws the rectangle that completely sur-
rounds the object, specifying thereby the area outside the rectangle as TB and
the area inside the rectangle as TU , while TF is initially set to ∅. Initially, αi is
set to 0 for pixels in TB and to 1 for pixels in TF ∪ TU .

Then, both foreground and background are modeled by two separate full
covariance Gaussian mixture models (GMM) of K components, parametrized as

θ = {π(α, k), μ(α, k), Σ(α, k), α ∈ {0, 1}, k = 1, ...,K}, (1)

where π are the weights of the components, μ the means and Σ the covari-
ance matrices of the model. Additionally, the array k = {k1, ..., kn, ..., kN} is
introduced, where ki ∈ {1, ...,K} indicates the component of the background or
foreground GMM (according to αi) the pixel zi belongs to.

The algorithm then formulates the segmentation task as an energy minimiza-
tion problem w.r.t. the parameter α. The energy function consists of two terms,
one enforcing consistency with the observed foreground and background color
models, and another enforcing the solidity of the object:

E(α, k, θ, z) = U(α, k, θ, z) + V (α, z), (2)

where U is the “data term” that evaluates the fit of the segmentation to the back-
ground and foreground GMMs, while V is the “smoothness term” that evaluates
the coherence of the segmentation in terms of color similarity. The data term is
defined as:

U(α, k, θ, z) =
∑
i

(− log(π(αi, ki)p(zi|αi, ki, θ)). (3)

The above expression will take on small values when most or all pixels have large
probabilities of belonging to the models of foreground and background according
to the current segmentation, while it will take on large values when this is not
the case.

The smoothness term is defined as:

V (α, z) = γ
∑

{m,n}∈C

[αn �= αm] exp(−β||zm − zn||2), (4)

where C is the set of pairs of neighbouring pixels according to 8-way connectivity,
[αn �= αm] denotes the indicator function taking values 0 or 1 if the specified
condition is false or true, and β is a robust parameter that weights the color
contrast. The authors suggest setting β = (2〈||zm − zn||2〉)−1, where 〈·〉 is the
expectation operator. The expression exp(−β||zm − zn||2) corresponds to the
contrast between the neighbouring pixels and is low if the contrast is high and
vice versa. Note that the factor [αn �= αm] allows this term to capture the
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contrast information only along the segmentation boundary. In this way, the
smoothness term penalizes the segmentations where adjacent pixels of similar
colors are labeled differently.

The minimization of the energy is performed by an iterated graph cut algo-
rithm proposed by Boykov and Jolly [3]. In each iteration a refined segmentation
is obtained, allowing more precise modeling of GMMs in the next iterations. The
iterations are repeated either until convergence or some fixed number of times.

4 Our Method

Although the original GrabCut algorithm gives very good results in many situ-
ations, it has some deficiencies. The first and obvious one is the semi-automatic
character of the algorithm, requiring certain (although minimal) user input. This
drawback can be avoided in videos in a straightforward way, by using the result
of background subtraction instead of manual initialization by the user. For exam-
ple, a bounding box can be found around the foreground areas of sufficient size
or, more appropriately, the raw results of background subtraction can be used as
an initialization seed, marking certain pixels as sure foreground or background.

However, there are sometimes other problems with the original algorithm,
resulting in imperfect and sometimes even significantly deficient segmentation.
This becomes noticable especially in more challenging scenes, where parts of the
object share characteristics with parts of the background, while other parts of
the object stand out more clearly (see e.g. Figure. 2), forcing the algorithm to
segment the object only partially and incorrectly. Another problematic scenario
is when there are high contrast color changes in the unlabeled pixels TU , leading
the algorithm wrongly to regard such high contrast transitions as the object
boundary. Furthermore, there is frequently the problem with the segmentation of
concave objects. Because every bordering pixel contributes to the energy via the
smoothness term V , the algorithm prefers shorter (i.e. convex) object boundaries.

We propose the modification of the original algorithm, taking into account
the preliminary detection of the moving objects and resulting in a significantly
improved segmentation.

We start by applying background subtraction [27] to each video frame. We
call this step a preliminary step. In more difficult video sequences, the results
of background subtraction are often noisy and disconnected. We apply morpho-
logical opening to remove noise, followed by morphological closing in order to
connect disconnected components of the single foreground object. This results in
a foreground/background mask that roughly corresponds to the desired segmen-
tation but is too imprecise to be used as a final result. This mask represents the
input into the modified GrabCut algorithm. The algorithm should find the more
precise object boundary, relatively close to the boundary found by preliminary
step, but not completely equal with it.

We propose a threefold modification of the GrabCut algorithm: (i) instead
of evenly taking into account all pixels in building foreground and background
GMMs, the contribution of each pixel is weighted depending on its distance
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from the boundary of the object found in the preliminary step; (ii) probabilities
of a pixel belonging to foreground or background, needed to compute the data
term U , are modified by taking into account the classification of the pixel in the
preliminary step, as well as by taking into account the reliability of this classifi-
cation based on the pixel’s distance from the preliminary object’s boundary; and
(iii) the smoothness term V is modified by discouraging boundaries further away
from the object’s boundary found in the preliminary step. We describe each of
these modifications in more detail in the following subsections.

4.1 Weighted Modeling of Foreground and Background GMMs

In order to estimate each pixel’s probability of belonging to foreground or back-
ground based on its color, GrabCut models both foreground and background
by a separate GMM, based on initial marking of pixels. In the original algo-
rithm, GMM models of foreground and background are fitted to the image data
by equally taking into account all the pixels initially classified as foreground or
background. However, this can be misleading in cases when there are parts of
the background relatively distant from the object but having similar appear-
ance to the object. Intuitively, the contribution of a pixel to the background
GMM should be lower the further the pixel is from the object boundary. The
appearance of such far removed parts of the background is irrelevant to the
segmentation, i.e. to finding the border between the object and its immediate
surrounding. On the other hand, the object boundary found in the preliminary
step is imprecise, so it is possible that the pixels classified as background that are
very close to the object boundary do in fact belong to the foreground. Due to this
imprecision and potential misclassification, the contribution of pixels very close
to the object boundary to the background GMM should also be downweighted.
The most weight should be given to the pixels at some (relatively small) distance
from the object boundary, but not too close to it.

Similar reasoning can be applied to the modeling of the foreground GMM,
however, because the objects are generally of a smaller size compared to the back-
ground, there is usually no need to downweight the contribution of the pixels inside
the object further removed from the boundary (i.e. pixels in the center of the
object are still relevant for the foreground GMM, unlike the distant background
pixels). But the pixels near the boundary are still unreliable and should hence be
downweighted.

We therefore propose a modification in the building of the GMM models of
foreground and background where each pixel contributes to its respective model
by a factor wi(αi, zi)zi, where wi is the weight determined by:

wi(αi, zi) =

{
κF dmin(i) for α(i) = 1
κGdmin(i) exp(−τdmin(i)) for α(i) = 0

(5)

In the above equation, dmin(i) is the distance of the i-th pixel to the near-
est preliminary boundary point (determined by applying distance transform to
the binary image obtained in the preliminary step), τ is a constant influencing
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at what distance the weight associated with background pixels will reach the
maximum and how soon will it begin to decrease (i.e. at which distances the
pixels are most relevant to the background GMM model), and κF and κB are
normalizing constants ensuring that all the weights are in the interval [0, 1].

4.2 Modifications to the Data Term

The modification described in Subsect. 4.1 helps in building better and more rel-
evant GMM models of foreground and background and thus indirectly influences
the data term of the GrabCut energy calculated based on these models. How-
ever, we propose an additional, direct modification of the data term according
to the following equation:

U(α, k, θ, z) =
∑
i

− log(Pi(αi, zi)π(αi, ki)p(zi|αi, ki, θ)), (6)

where Pi(αi, zi) represents the prior probability of each pixel belonging to fore-
ground or background (according to αi), based on the mask found in the prelim-
inary step. Note that Eq. 6 can be obtained by multiplying each term of Eq. 3
with Pi. Since the preliminary step often results in imprecise object localization,
we calculate P (αi, zi) as:

Pi(αi, zi) =

⎧⎪⎨
⎪⎩

1 for dmin(i) > D(αi)
0 for dmin(i) < D(1 − αi)
1 − dmin(i)/Dmax(1 − αi) otherwise

. (7)

The factor D(αi) is the so-called distance threshold. The distance threshold
regulates how far should the pixel be away from the preliminary object boundary
inside the foreground or background in order to consider its preliminary classifi-
cation as accurate (it is determined empirically depending on the expected error
of the preliminary step). The distance Dmax(αi) is the maximum distance of all
foreground or background pixels from the preliminary object boundary. In other
words, if the pixel is classified as foreground or background in the preliminary
step and it is sufficiently far away from the preliminary object boundary, we
set Pi of its belonging to the opposite category to 0, thus strongly favoring the
classification of the pixel according to the preliminary step. For the pixels close
to preliminary object boundary, however, to allow the posibility of their initial
misclassification, we multiply the original GrabCut color-based probability of
belonging to the opposite category by a value that decreases with the distance
of the pixel from the preliminary object boundary (last branch in Eq. 7).

4.3 Modifications to the Smoothness Term

In the original algorithm, the smoothness term V discourages placing the bound-
ary at positions where the color values of the neighbouring pixels are similar,
by increasing the energy for each boundary point by the amount that depends
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on the contrast between neighbouring pixels at that point (Eq. 4). As already
explained, this can lead to two kinds of problems. When there is an emphasized
discontinuity of color values inside the object (e.g. a pedestrian wearing a shirt
and trousers of significantly different colors) and some of the colors are much
more different from the background than others, the algorithm will wrongly “cut
through” the object and place the boundary at this discontinuity. Aditionally, if
the real object boundary is long and concave, the contribution of all its points
to the energy will be significant. This is even more the case if the contrast
between the object and background is relatively low, e.g. a pedestrian wearing
gray trousers on gray background. The algorithm will prefer shorter paths, either
through the object or by enclosing parts of the background inside the concavities.

In order to fix these kinds of problems, we propose a modification of the
smoothness term in a way that will additionally discourage both (i) placing the
border deeply inside the approximation of the object obtained in the preliminary
step (“cutting through the object”), as well as (ii) placing the border through
the background in the concave areas, further from the approximate preliminary
boundary. The proposed modified smoothness term can be expressed as:

V (α, z) = γ
∑

{m,n}∈C

[αn �= αm] exp(−β(||zm − zn||2 + λ(dmin(i) − δ0))). (8)

Equation 8 can be obtained by multiplying the original smoothnes term
(Eq. 4) by another exponential, exp(βλ(dmin(i)−δ0)), where λ and δ0 are empiri-
cally determined constants. δ0 ensures that the penalization is not high for pixels
near the preliminary object boundary, while λ serves as a normalizing factor and
makes the influence of the additional exponential comensurate with the influence
of the original smoothness term.

5 Experiments

Our method was experimentally validated on the CDnet 2014 Pedestrian Detec-
tion dataset [25] and compared to a reference implementation of GrabCut [4].

5.1 The CDnet 2014 Pedestrian Dataset

The CDnet 2014 Pedestrian Dataset is a subset of the CDnet 2014 dataset [25],
intended for change detection in dynamic sequences. The CDnet 2014 Pedestrian
Dataset consists of ten videos of pedestrians with a total of 26248 frames. Several
sequences were filmed in challenging conditions that include intermittent object
motion, shadows and bad weather. As the dataset is a compilation of sequences
from a number of sources, the image resolution varies with each sequence, with
the maximum image size of 720 × 576. Example images from each of the ten
sequences are shown in Fig. 1.
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Fig. 1. Example frames from the CDnet 2014 Pedestrian Dataset sequences.

Table 1. Average precisions, recalls and F1 measures for each of the ten sequences in
the CDnet 2014 Pedestrian Dataset.

GrabCut Ours

Sequence AP AR F1 AP AR F1

Backdoor 0.9938 0.3784 0.5481 0.9298 0.9175 0.9236

Bus station 0.9770 0.1186 0.2115 0.8569 0.5039 0.6346

Cubicle 0.9901 0.3642 0.5325 0.7339 0.7924 0.7620

Copy machine 0.9900 0.2266 0.3687 0.5847 0.3988 0.4741

Office 0.9943 0.1184 0.2116 0.7625 0.2400 0.3650

Pedestrians 1.0000 0.5917 0.7434 1.0000 0.9383 0.9681

PETS 2006 1.0000 0.4171 0.5886 1.0000 0.7169 0.8351

People in shade 0.8890 0.5364 0.6690 0.7555 0.7233 0.7390

Skate 1.0000 0.5102 0.6756 1.0000 0.6788 0.8086

Sofa 0.9659 0.1651 0.2819 0.6841 0.5449 0.6066

5.2 Experimental Results

We evaluated our method on the CDnet 2014 Pedestrian Dataset [25], comparing
it to a reference implementation of the GrabCut algorithm [19] from the OpenCV
library [4]. The run time performance of our algorithm was comparable to the
reference implementation of GrabCut. Both algorithms were initialized using
the same mask obtained by background subtraction [27] and morphologically
pre-processed. The evaluation was done on a per-pixel basis in accordance with
the guidelines for testing on the CDnet 2014 dataset [25]. We used the following
values of the proposed algorithm parameters: opening of 5 pixels, closing of 9
pixels, τ = 10. D(αi) = 0.2·Dmax(αi), λ = 20000, δ0 = 8, which were determined
experimentally. For best performance we recommend optimizing the parameters
using cross-validation.

The average precisions, recalls and F1 measures calculated over all frames
for each of the ten sequences in the CDnet 2014 Pedestrian Dataset are shown
in Table 1. In terms of F1 measure (the harmonic mean of precision and recall),
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Output comparisons for two frames from the sequence “backdoor”: (a, e) orig-
inal frames, (b, f) background ubtraction, (c, g) GrabCut, (d, h) our method.

our method outperforms the reference GrabCut implementation in all the con-
sidered sequences. The increase in the F1 measure is due to drastically improved
recall as more pixels of the object are correctly segmented. The downside is
that there are some false positives resulting in a relatively small drop of pre-
cision. Example output for two frames of the sequence “backdoor” is shown in
Fig. 2. We see that in spite of good initialization with the background subtrac-
tion mask, GrabCut performs poorly due to a significant color difference in the
clothing of the observed pedestrians. In contrast, our method succesfully seg-
ments all pedestrians. We attribute the success of our method to all the three
improvements that we outlined in Sect. 4, resulting in the background subtrac-
tion outline being smoothed and pixel contributions that depend on the position
of the pixels relative to the object prior.

6 Conclusion

We proposed a fully automatic method for segmenting pedestrians in video
sequences based on modification of the GrabCut algorithm initialized with the
mask obtained by background subtraction. In the modified version of the algo-
rithm, the more relevant GMM models of foreground and background are built
by weighting pixel contributions depending on their distance from the boundary
of the object prior, and the data and smoothness terms of the energy equation
are modified in a way that discourages placing boundaries far from the object
prior boundary. We evaluated the proposed algorithm on the CDnet 2014 Pedes-
trian Dataset and showed that our proposed algorithm significantly outperforms
the baseline implementation in all the sequences. In general, our algorithm offers
much better F1 measure rates and enables segmenting full objects regardless of
their local contrast and color changes.
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Abstract. Block-coordinate methods inspired by belief propagation are
among the most successful methods for approximate MAP inference
in graphical models. The set of unknowns optimally updated in such
block-coordinate methods is typically very small and spans only sin-
gle edges or shallow trees. We derive a method that optimally updates
sets of unknowns spanned by an arbitrary tree that is different from
one reported in the literature. It provides some insight why “tree block-
coordinate” methods are not as useful as expected, and enables a simple
technique to makes these tree updates more effective.

1 Introduction

Determining the maximum a-posteriori (MAP) assignment in graphical models
or in random fields defined over an image domain is one of the most impor-
tant tasks in computer vision and related fields. Since exact MAP inference
is intractable in general, much research has focused on effective approximate
MAP inference algorithms. In computer vision two complementary classes for
approximate MAP inference are well-established: (a) move making algorithms
aiming to improve a current label assignment such as the graph cut method [1] or
fusion moves [8], and (b) message passing algorithms indirectly seeking the MAP
assignment by optimizing a dual objective (e.g. [4,7,14]). In this work we focus
on message passing algorithms, since they have a wide applicability, and they
also have strong connections with the celebrated (min-sum) belief propagation
(BP) method [9] (see also [5,13,15]).

A class of message passing algorithms is based on a block-coordinate approach
and is known to monotonically improve the (dual) objective. Since the underlying
objective is not strictly convex (or concave), in such methods convergence to
the a true optimum is not guaranteed, and only a suboptimal limit point may
be reached. One way to escape “local minima” is by updating larger sets of
unknowns in the block-coordinate method, e.g. by updating all unknowns that
are attached to a subtree of the graph. Another argument for larger updates is
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that information about the value of states is propagated non-locally through the
graph, hence one can expect faster improvements in the objective.

In this work we derive a novel tree block-coordinate method for MAP infer-
ence via message passing. It will reveal why block-coordinate methods do in
practice not perform very well, and how to remedy that shortcoming. Finally, in
our experiments we observe that problems defined over a random field require
two passes over the image domain to reach an “almost converged” objective.

Background. This section presents some material on MAP inference, the
underlying linear programming relaxation, and dual coordinate ascent meth-
ods for fast approximate inference. A labeling or MAP inference problem is
determining the optimal label xs ∈ Ls assigned at each node s ∈ V, where the
objective is over unary and pairwise terms,

x∗ def= arg min
x

∑
s∈V

θs(xs) +
∑

(s,t)∈E
θst(xs, xt), (1)

where x = (xs)s∈V ∈ ⊗
s∈V Ls. For simplicity we restrict ourselves to at most

pairwise cliques, but all results can be generalized to higher order cliques. θ are
the potentials or costs for assigning particular states to nodes or edges. This label
assignment problem is generally intractable to solve, and one highly successful
approach to approximately solve this problem is to employ the corresponding
linear programming (LP) relaxation (see e.g. [16]),

EMAP(b) def=
∑
s,xs

θs(xs)bs(xs) +
∑
(s,t)

∑
xs,xt

θst(xs, xt)bst(xs, xt)

s.t. bs(xs) =
∑
xt

bst(xs, xt)
∑
xs

bs(xs) = 1 bst(xs, xt) ≥ 0. (2)

The unknowns {bs}s∈V and {bst}st are “one-hot” encodings of the assigned
labels, e.g. if b∗ is the optimal solution of EMAP and the relaxation is tight,
then bs(xs) is ideally 1 iff state xs is the optimal label at node s, and 0 other-
wise. The first set of constraints are usually called marginalization constraints,
and the unit sum constraint is typically referred as normalization constraint. The
primal program Eq. 2 is not optimized directly, since it turns out that the dual
program can be solved more efficiently. Note that the linear program in Eq. 2 is
not unique, and redundant non-negativity and normalization constraints can be
added to EMAP without affecting the optimal solution or value. Consequently,
different duals are solved in the literature. The particular LP dual of EMAP,
which we will use in the remainder, is given by1

E∗
MAP(λ) =

∑
s

ρs s.t. ∀xs : ρs = θs(xs) +
∑

t∈N(s)

λt→s(xs) (3)

∀xs, xt : λt→s(xs) + λs→t(xt) ≤ θst(xs, xt).

1 Since the unknowns (ρs)s∈V play only the role of auxiliary variables, we drop them
as argument to E∗

MAP to simplify the notation.
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Our convention is that the dual program is maximized. We will refer to the first
set of constraints as the balance constraint and the second set of constraints
is termed capacity constraints. W.l.o.g. we require θ ≥ 0 (pointwise) such that
λ ≡ 0 is dual feasible.

A different dual often employed in the literature (e.g. [5,11,12]) is the fol-
lowing unconstrained dual program,

JMAP(λ) =
∑

s

min
xs

{
θs(xs) +

∑
t∈N(s)

λt→s(xs)
}

+
∑

(s,t)∈E
min
xs,xt

{
θst(xs, xt) − λt→s(xs) − λs→t(xt)

}
. (4)

The reparametrized unary potentials in Eq. 3, θs(xs) +
∑

t∈N(s) λt→s(xs),
are uninformative about the value of a state xs (all reparametrized unaries
are the same), and the effective value of a state is entirely attached to the edges.
More precisely, complementary slackness tells us nothing about bs(xs) in the
primal program Eq. 2, but λ∗

t→s(xs) + λ∗
s→t(xt) < θst(xs, xt) for a dual optimal

solution λ∗ implies bst(xs, xt) = 0. This is in contrast to the program in Eq. 4,
where reparametrized unary and pairwise potentials encode the value of a state,
and algorithms to optimize JMAP search for agreement between these values.
This property has pros and cons which will be mentioned briefly in Sect. 3.

Even if Eq. 3 (and Eq. 4) is a concave maximization problem (a linear pro-
gram), optimizing E∗

MAP is not straightforward. Generic LP codes do not exploit
the very particular structure of the problem, and first order methods exhibit slow
convergence in practice due to the non-smooth objective. A successful class of
algorithms to solve E∗

MAP approximately is based on block-coordinate ascent
(e.g. [4,5,11,12,16,17]), which performs repeated optimization over a small
but varying subsets of unknowns. Different algorithms are obtained by differ-
ent choices of dual energies and subsets of optimized unknowns. One important
aspect for the success of these algorithms, that the subproblems can be solved
efficiently, typically in closed form. These algorithms usually resemble the clas-
sical belief propagation algorithm (which has few guarantees if run on cyclic
graphs) and fall under the umbrella term convex belief propagation. These algo-
rithms have in common, that the dual objective improves monotonically in each
iteration, which renders them convergent.

Dual Coordinate Ascent. We review a convex belief propagation algorithm
that is very simple to derive [17] and forms the basis for the tree block-coordinate
method in Sect. 2. This method optimizes over all variables λt→s for all edges
(s, t) in each step (i.e. all messages incoming at node s).

If we consider a particular node s and fix all unknowns other than ρs and
{λt→s}(s,t), the subproblem induced by Eq. 3 reads as

max
ρs,{λt→s}

ρs s.t. ρs = θs(xs) +
∑

t∈N(s)

λt→s(xs) (5)

λt→s(xs) ≤ min
xt

{
θst(xs, xt) − λs→t(xt)

}
.
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We define the r.h.s. of the inequality constraints as μt→s(xs),

μt→s(xs)
def= min

xt

{
θst(xs, xt) − λs→t(xt)

}
. (6)

We introduce non-negative weights wt→s such that
∑

t∈N(s) wt→s = 1 (but oth-
erwise chosen arbitrarily) and use the ansatz λt→s(xs) = μt→s(xs)−wt→sδs(xs)
for some δs(xs) ≥ 0 to obtain the equivalent problem to Eq. 5,

max
ρs,δs≥0

ρs s.t. ρs = θs(xs) +
∑

t∈N(s)

μt→s(xs) − δs(xs). (7)

The weights wt→s will play an important role in Sect. 2. Since δs(xs) ≥ 0, the
largest allowed value for ρs is given by

ρs ← min
xs

{
θs(xs) +

∑
t∈N(s)

μt→s(xs)
}

= min
xs

νs(xs), (8)

where we define νs(xs)
def= θs(xs) +

∑
t∈N(s) μt→s(xs). δs(xs) and λt→s are con-

sequently given by

δs(xs) ← θs(xs) +
∑

t∈N(s)

μt→s(xs) − ρs = νs(xs) − ρs(xs)

λt→s ← μt→s(xs) − wt→sδs(xs).

Via complementary slackness it is easy to see that if λ is dual optimal, then
νs(xs) > ρs implies bs(xs) = 0 in the primal solution of EMAP. Algorithm 1
summarizes this convex BP method. We will see in Sect. 2 that this algorithm is
equivalent to performing dual coordinate ascent with respect to both incoming
messages λt→s and reverse messages λs→t, t ∈ N(s).

2 Tree Block-Coordinate Message Passing

In this section we derive a tree block-coordinate method to optimize the dual
objective E∗

MAP (Eq. 3). The quantities μt→s and νs in Algorithm 1 are analogous
to the messages and the min-marginals, respectively, obtained by standard (min-
sum) belief propagation on a tree graph. Thus, the ansatz for a more general tree
block-coordinate update of messages will be to identify messages ms→t returned
by min-sum BP with μs→t (up to an additive constant). Let T be a collection
of trees, where each tree T ∈ T has a node set VT ⊆ V and edges ET ⊆ E . For
s ∈ VT let NT (s) be the adjacent nodes of s with respect to the tree edges.

By running belief propagation (or dynamic programming) on T we obtain
messages ms→t and mt→s for all edges (s, t) belonging to T , and the min-
marginals are given by νs(xs) = θs(xs) +

∑
t mt→s(xs). For an optimal assign-

ment x∗ = (xs)s we have the following relations connecting the BP and the dual
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Algorithm 1. Node-based message passing
Require: Arbitrary feasible λ and ρ, weights wt→s

1: while not converged do
2: loop over s ∈ V and assign for all t ∈ N(s)
3: Node update:

μt→s(xs) ← min
xt

{
θst(xs, xt) −

∑
t∈N(s)

λs→t(xt)
}

ρs ← min
xs

{
θs(xs) +

∑
t∈N(s)

μt→s(xs)

}

δs(xs) ← θs(xs) +
∑

t∈N(s)

μt→s(xs) − ρs

λt→s ← μt→s(xs) − wt→sδs(xs) (9)

4: end loop
5: end while

unknowns in Eq. 3:

ν∗ = θs(x∗
s) +

∑
t

mt→s(x∗
s) λt→s(x∗

s) = μt→s(x∗
s)

ρs = θs(x∗
s) +

∑
t

λt→s(x∗
s) = θs(x∗

s) +
∑

t

μt→s(x∗
s). (10)

Therefore, by using an ansatz
∑

t mt→s(x∗
s) =

∑
t μt→s(x∗

s) + Δs (with Δs ≥ 0)
we obtain

ν∗ − θs(x∗
s) = ρs − θs(x∗

s) + Δs,

which provides Δs = ν∗ − ρs, and consequently
∑

t μt→s(x∗
s) =

∑
t mt→s(x∗

s) +
ρs − ν∗. We distribute the “slack” Δs to the edges adjacent to s by setting
μt→s(xs) = mt→s(xs)+w′

t→s(ρs − ν∗). The non-negative weights (w′
t→s)t∈NT (s)

reside in the probability simplex satisfying
∑

t∈NT (s) w′
t→s = 1.

Further constraints on w′: With our assumed relation between mt→s and
μt→s the capacity constraint for optimal states reads as

λt→s(x∗
s) + λs→t(x∗

t ) = μt→s(x∗
s) + μs→t(x∗

t )
= mt→s(x∗

s) + ms→t(x∗
t ) + w′

t→s(ρs − ν∗) + w′
s→t(ρt − ν∗)

= ν∗ + θst(x∗
s, x

∗
t ) + w′

t→s(ρs − ν∗) + w′
s→t(ρt − ν∗),

since mt→s(x∗
s) + ms→t(x∗

t ) = ν∗ + θst(x∗
s, x

∗
t ). In general we have mt→s(xs) +

ms→t(xt) ≤ νs(xs) + θst(xs, xt), which follows from

mt→s(xs) + ms→t(xt) = mt→s(xs) + min
x′
s

⎧⎨
⎩θst(x′

s, xt) + θs(x′
s) +

∑
v �=t

mv→s(x′
s)

⎫⎬
⎭

≤ mt→s(xs) + θst(xs, xt) + θs(xs) +
∑
v �=t

mv→s(xs)

= θst(xs, xt) + νs(xs). (11)
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A symmetric reasoning reveals mt→s(xs)+ms→t(xt) ≤ νt(xt)+θst(xs, xt), which
combines to

mt→s(xs) + ms→t(xt) ≤ min{νs(xs), νt(xt)} + θst(xs, xt). (12)

Since we require that λt→s(x∗
s) + λs→t(x∗

t ) = θst(x∗
s, x

∗
t ) we obtain the following

constraint on allowed weights, ν∗ = w′
t→s(ν

∗ − ρs) + w′
s→t(ν

∗ − ρt), or

(w′
t→s + w′

s→t − 1)ν∗ = w′
t→sρs + w′

s→tρt. (13)

Note that the r.h.s. are the terms ρs and ρt reparametrized to the edge (s, t),
hence

∑
(s,t)∈T (w′

t→sρs + w′
s→tρt) =

∑
s ρs = ν∗. Similar, for the l.h.s. we have∑

(s,t)∈T (w′
t→s + w′

s→t − 1) ν∗ = (2 − 1)ν∗ = ν∗, since
∑

t∈NT (s) w′
t→s = 1 by

construction. Thus, one equation is linearly dependent. In Eq. 13 we have the
choice of fixing the weights w′ or the node contributions ρs. For numerical reasons
it turns out to be beneficial to fix ρs and determine w′ subject to the constraints.
If N = |VT | is the number of nodes in T , then we have 2(N − 1) unknowns
and N − 1 constraints from Eq. 13 (of which one is linear dependent) and N
normalization constraints. Hence, given ρs we obtain a unique assignment for w′.
Let ws be non-negative weights such that

∑
s ws = 1 and set ρs = wsν

∗. Hence,
we obtain (w′

t→s +w′
s→t −1)ν∗ = w′

t→sρs +w′
s→tρt = (w′

t→sws + w′
s→twt) ν∗, or

w′
t→s(1 − ws) + w′

s→t(1 − wt) = 1. (14)

If s is a leaf node we have w′
t→s fixed to 1 (via the normalization constraint) and

therefore w′
s→t = 1+w′

t→s(ws−1)
1−wt

= ws/(1 − wt). Thus, all weights for incoming
edges are fixed at level 1, and the incoming weight from the parent node is
determined via the normalization constraint. Overall, the weights w′ are assigned
via bottom-up traversal from the leaves to the root: for s not equal the root set

w′
t→s ← 1 −

∑
v∈ch(s)

w′
v→s w′

s→t ← 1 + w′
t→s(ws − 1)
1 − wt

. (15)

Message updates: We extend the relation between BP messages m and the
values μ,

∑
t μt→s(x∗

s) =
∑

t mt→s(x∗
s)+ρs−ν∗, to all states, i.e.

∑
t μt→s(xs) =∑

t mt→s(xs) + ρs − ν∗ for all xs. Consequently, we obtain

θs(xs) +
∑

t

μt→s(xs) = θs(xs) +
∑

t

mt→s(xs) + ρs − ν∗ = ρs + νs(xs) − ν∗.

As in the node-based message passing algorithm we use the following ansatz
(introducing non-negative weights wt→s with

∑
t∈NT (s) wt→s = 1)

λt→s(xs) = μt→s(xs) − wt→sδs(xs) = μt→s(xs) − wt→s(νs(xs) − ν∗)
= mt→s(xs) + w′

t→s(ρs − ν∗) − wt→s(νs(xs) − ν∗). (16)

Since λ assigned this way has to satisfy the capacity constraints, λt→s(xs) +
λs→t(xt) ≤ θst(xs, xt), we obtain constraints on wt→s and ws→t as follows (for
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brevity we omit the state arguments to BP messages and λ):

λt→s + λs→t = mt→s + mt→s + w′
t→s(ρs − ν∗)

+ w′
s→t(ρt − ν∗) − wt→s(νs − ν∗) − ws→t(νt − ν∗)

= mt→s + mt→s + ν∗ (w′
t→s(ws − 1) + w′

s→t(wt − 1))︸ ︷︷ ︸
=−1

− wt→s(νs − ν∗) − ws→t(νt − ν∗)
= mt→s + mt→s − ν∗ − wt→s(νs − ν∗) − ws→t(νt − ν∗)

≤ θst + min{νs, νt} − ν∗ − wt→s(νs − ν∗) − ws→t(νt − ν∗)
!≤ θst,

or min{νs, νt} − wt→s(νs − ν∗) − ws→t(νt − ν∗)
!≤ ν∗. A sufficient condition for

this inequality to hold is wt→s + ws→t ≥ 1. Note that we can choose w = w′,
since the constraint w′

t→s(1−ws)+w′
s→t(1−wt) = 1 together with 1−ws ∈ [0, 1]

and 1 − wt ∈ [0, 1] already implies w′
t→s + w′

s→t ≥ 1. In this setting the update
for λt→s simplifies to

λt→s(xs) = mt→s(xs) + wt→s(ρs − ν∗) − wt→s(νs(xs) − ν∗)
= mt→s(xs) + wt→s(ρs − νs(xs)). (17)

In the following (and in our implementation) we will always choose w = w′. The
full tree block-coordinate method for MAP inference is presented in Algorithm 2.
The statement in line 3 (“preprocess messages”, in bold) is discussed in Sect. 3.

Not Updating Messages to Leaves. If s is a leaf node in the tree T , then
by setting w = w′ and ws = 0 the new values for λt→s are essentially unchanged
after a tree block-coordinate update. Note that ws→t = 1, since s is a leaf (recall
Eq. 15). The reparametrized unary potentials at the leaf s are as follows,

θ̂s(xs) = θs(xs) +
∑
v �=t

λold
v→s(xs) = ρolds − λold

t→s(xs), (18)

For the new values λnew
t→s(xs) after the update we obtain

λnew
t→s(xs) ← mt→s(xs) + wt→s(ρs − νs(xs)) = mt→s(xs) − νs(xs)

= mt→s(xs) − θ̂s(xs) − mt→s(xs) = λold
t→s(xs) − ρolds ,

where we used the facts that ρs = wsν
∗ = 0 and νs(xs) = θ̂s(xs)+mt→s(xs) for

a leaf s. We are free to add or subtract constants from the used reparametrized
potentials, and if we subtract ρolds from θ̂s(xs), then λnew

t→s = λold
t→s for a leaf s.

In particular, this observation shows that the loop body in Algorithm 2 (which
updates only messages incoming at the root) is equivalent to jointly optimizes
over incoming and outgoing messages.
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Algorithm 2. Tree-based message passing
Require: Arbitrary feasible λ and ρ
1: while not converged do
2: loopover trees T ∈ T
3: Preprocess messages for T (Alg. 3
4: Choose weights ws ≥ 0, s ∈ VT s.t.

∑
s∈VT

ws = 1
5: Determine weights wt→s/ws→t (Eq. 15)
6: For each s ∈ T define reparamtrized unary potentials:

θ̂s(xs) ← θs(xs) +
∑

v /∈NT (s)

λv→s(xs)

7: Run min-sum BP on T using reparametrized unary potentials θ̂s

8: Obtain min-marginals νs(xs) and messages mt→s, ms→t

9: Set ν∗ ← minxs νs(xs) (using any node s)
10: Tree update: update λt→s and λs→t for all edges (s, t) in T (Eq. 17)

λt→s(xs) ← mt→s(xs) + wt→s(wsν
∗ − νs(xs))

λs→t(xt) ← ms→t(xt) + ws→t(wtν
∗ − νt(xt))

11: end loop
12: end while

Monotone TRW Algorithm. As described in [12] one can use the tree updates
of messages as a subroutine to tree-reweighted messages passing (TRW [7,14])
to obtain a monotone TRW algorithm. Message updates are performed in par-
allel for each tree T ∈ T , and the final messages are averaged (potentially using
a weighted average, i.e. convex combination). Since the constraints in E∗

MAP

(Eq. 3) are convex, the convex combination of obtained messages remains fea-
sible. Further, due to the objective being linear, the resulting dual objective is
also the (weighted) average of the objectives induced by the individual tree. As
already observed in [12], sequential application of tree updates is superior to
TRW-like parallel updates in practice.

3 Improving Tree Updates

We show that in some sense a tree block-coordinate update of messsages resem-
bles a node update for a node with very high degree: let T̆ denote the set of
internal nodes in T , then for the total weight outgoing from leaves we have

∑
(v,s):v is leaf

wv→s =
∑

(v,s):v is leaf

wv

1 − ws
≤ 1

mins∈T̆ {1 − ws}
∑

v is leaf

wv

=
1

mins∈T̆ {∑
s′ �=s ws′}

∑
v is leaf

wv ≤ 1∑
s′ is leaf ws′

∑
v is leaf

wv = 1.
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This implies that total weight coming from leaves is bounded by 1. In terms of
information propagated to the leaves the tree-BCD method is comparable to a
node update for a node with the number of leaves as its degree.

Thus, we have the following observations: (i) tree updates potentially improve
the dual objective faster and pass information non-locally, but (ii) tree updates
propagate no information to external (non-tree) edges, and very little informa-
tion to leaf edges. Hence, the expected behavior of Algorithm 2 without line 3
is a fast increase of the dual objective that levels off quickly. If the trees are
“orthogonal” in the sense that they have no edge in common (e.g. chains corre-
sponding to rows and columns in the image), then Algorithm 2 will converge to
a (likely non-optimal) objective value in a finite number of tree updates (since
reparametrized unary potentials at nodes are uninformative). Our approach to
solve this dilemma is given in line 3 of the algorithm: messages are reparame-
trized such that tree edges are as informative as possible. This is achieved by
invoking node updates (Eq. 9) with suitably chosen weights (see Algorithm 3):
weights are close to 0 for non-tree edges, and large for tree edges (such that the
normalization constraint is satisfied).

Such a preprocessing step of messages in not required for agreement seeking
approaches to optimize JMAP (Eq. 4), since both reparametrized unary and pair-
wise potentials carry the effective value of a state (see e.g. [11]). On the other
hand, this property limits how effective information can be spread through the
graph, and consequently the tree block-coordinate method proposed in [12] shows
rather slow convergence as we will demonstrate in the next section.

Algorithm 3. Message preprocessing
Require: Arbitrary feasible λ, tree T , 0 < ε � 1
1: loop over s ∈ VT

2: Choose weights wt→s, t ∈ N(s): wt→s =

{
ε if (s, t) /∈ ET

ε + 1−ε deg(s)
degT (s)

otherwise.

3: Update λt→s (Eq. 9) using {wt→s}
4: end loop

4 Results

In Fig. 1 we show the evolution of dual energies for dense stereo correspondence
problems (the standard 450 × 375 and high resolution 900 × 750 “Cones” and
“Teddy” stereo image pair [10]). The unary potentials (data term) are a Ham-
ming distance of 9×7 census-transformed patches, and the pairwise potentials are
given by the (gradient-adapted) P1-P2 penalizer [6] (with P1 = P2/2). We show
the increase of the energy with respect to CPU time for 4 methods: (i) “Sontag-
Jaakkola” is the method propsed in [12] using two spanning trees (one with hori-
zontal chains connected by a vertical one, and another tree consisting of vertical
chains linked by a horizontal one), “naive tree BCD” running Algorithm 2 without
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Fig. 1. Evolution of (dual) objective versus CPU time for dense stereo estimation.

message preprocessing (line 3) on the same trees, “tree BCD” refers to running
Algorithm 2 including message preprocessing, and “chain BCD” corresponds to
Algorithm 2 (with message preprocessing) run on “generalized” horizontal chains
(i.e. chains defined by image rows extended by edges to pixels in neighboring
rows). These chains are alternately traversed in top-to-bottom and bottom-to-top
order. As expected for trees (almost) not having any edge in common, “naive tree
BCD” converges to a suboptimal solution after two iterations, whereas all other
method continue to improve their objectives. “Chain BCD” shows the fastest con-
vergence and reaches a close to its final objective in only two passes over the images
(i.e. one downward and one upward pass with generalized chains). Hence, it is an
interesting candidate for “truncated” MAP inference that is allowed only a small
number of message updates (see e.g. [2], and the popular semi-global matching
approach [6] can be seen as instance of a one-step truncated TRW method [3]).
More details on the setup and further numerical results and visualization can be
found in the supplementary material.

5 Conclusion

In this work we present a novel tree block-coordinate method for MAP inference
via message passing. As a byproduct it allows us to have a better understanding
why tree updates of messages are less effective than expected, and how to over-
come its poor performance. Future work includes utilizing our inference method
in the context of parameter learning for structured prediction.
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Abstract. We present a novel saliency mechanism based on texture.
Local texture at each pixel is characterised by the 2D spectrum obtained
from oriented Gabor filters. We then apply a parametric model and
describe the texture at each pixel by a combination of two 1D Gaussian
approximations. This results in a simple model which consists of only
four parameters. These four parameters are then used as feature channels
and standard Difference-of-Gaussian blob detection is applied in order
to detect salient areas in the image, similar to the Itti and Koch model.
Finally, a diffusion process is used to sharpen the resulting regions. Eval-
uation on a large saliency dataset shows a significant improvement of our
method over the baseline Itti and Koch model.

1 Introduction

Texture is known to be a powerful cue in early vision [20,32] and has conse-
quently received much attention from the Computer Vision and Neuroscience
communities. The seminal work on saliency maps by Itti and Koch included an
orientation component, calculated by a bank of Gabor filters [16], and there has
been much work on texture segmentation. However, texture remains one of the
hardest feature channels to model, and most recent work on saliency focuses on
colour, contrast and local region descriptors.

In this paper, we return to the problem of texture in saliency models
by extending the Itti and Koch model. By interpreting oriented Gabor filter
responses as a local power spectrum of the image, we define a simple parametric
model in order to characterise local texture in terms of orientation, anisotropy,
scale and complexity. The model parameters are then used as features and
processed by a set of centre-surround cells, as in [16] and followed by a sim-
ple diffusion process to obtain preliminary results. Evaluation on a standard
saliency dataset shows that our texture-based saliency model outperforms other
texture-based models. It is competitive with the original Itti and Koch model,
despite only using texture. A combination of texture and colour outperforms the
baseline Itti and Koch model and achieves promising results.

Our texture model is built on top of responses of complex cells in V1 which
can be efficiently computed [30]. Consequently, it not only adds a powerful fea-
ture to saliency estimation methods, but could also serve as a plausible texture
model for early vision.
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 331–342, 2015.
DOI: 10.1007/978-3-319-24947-6 27
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Fig. 1. Overview of our texture-based saliency method. First, the input image is
processed using a bank of Gabor filters. The responses are used to obtain complex
cell responses and the edge map (top), and to obtain a stack of texture features which
are processed by a set of centre-surround cells to obtain a saliency map (bottom). The
saliency map is combined with the edge map in a diffusion filtering step to provide the
final texture-based saliency map.

2 Related Work

Much work on visual saliency is motivated by the early processing in the visual
cortex. One of the first biological models was created by Itti, Koch and Niebur
[16,18], where intensity, colour and orientation maps are processed by a bank
of centre-surround filters. This influential model shaped much of later work on
saliency and attention. Related work includes weighting of different feature maps
after identifying useful features [15] and exploring the role of saliency in overt
attention [25]. It has been noted that the original Itti and Koch model, designed
for eye movement simulation, is not well-suited for object-based salience, and
an extended model was shown to reach state-of-the-art results [8]. Similarly, eye
fixation maps were combined with traditional segmentation methods in [22].

In recent years, there has been a shift towards detecting complete salient
objects in scenes, with a large region covering most of an object. Often, an
image is segmented, and regions are labelled according to colour and lumi-
nance [1], region-based contrast [5,6] or dissimilarity between image patches
[7]. One approach attempts to learn a correct foreground object segmentation
from training images [23]. Object-based saliency is important for interfacing with
scene-understanding systems from AI [24,28] or for cognitive robotics [29], where
sequential scene processing is common.

Other approaches from Computer Vision include image regions which rep-
resent the scene in terms of visual perception [10], graph-based visual saliency
[13], and object-based saliency features [12]. There have also been attempts to
model saliency as a discriminant process [9], a regression problem [19], or using a
Bayesian surprise criterion [17]. It has been shown that hierarchical, multi-scale
processing can improve saliency on small-scale, high-contrast patterns [33].

Very few saliency methods explicitly use spatial frequency or texture. In addi-
tion to the approaches related to the Itti and Koch model, which use orientation
as one of the feature channels, there have been several approaches using the
frequency spectrum. Achanta et al. [2] used bandpass filtering to obtain uniform
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regions with sharp boundaries, but their features were still based on colour. Two
approaches extracted saliency from the frequency spectrum of the image. Hou
and Zhang introduced a method based on the global Fourier transform [14]. By
subtracting the average log-spectrum of many images from the log-spectrum of
the individual image, they obtain a spectral residual which, when transformed
back into the spatial domain, indicates salient regions which potentially corre-
spond to objects. Guo et al. [11] built on this concept, but argued that the phase,
not amplitude, of the spectrum is key to finding salient regions. They extended
this concept to the Quaternion Fourier Transform which can represent intensity,
colour and motion of each pixel. Neither of these methods is biologically plausi-
ble, or based on texture. We are not aware of any recent work on saliency which
attempts to explicitly model and compare texture.

In the rest of this paper we present a new and more biological interpretation of
the local Gabor filter responses. We describe the local texture using a parametric
model. The parameters of this model represent new features, which are then
processed using centre-surround filters.

3 Method

Our method attempts to find consistent regions which are different from their
surroundings, using centre-surround blob detection. To this end, we characterise
local texture at each pixel using a parametric model, where the four parameters
correspond to orientation selectivity (isotropic-anisotropic), dominant orienta-
tion, scale selectivity, and dominant scale (from coarse to fine). Figure 1 shows
an overview of our method. We calculate the edge map based on the responses
of complex cells. In parallel we extract four feature maps based on texture and
calculate a salience map by performing blob detection. The salience map is com-
bined with the edge map in a weighted-filtering step.

3.1 V1 Model

Our method begins by extracting responses of oriented Gabor filters at mul-
tiple orientations and scales. Gabor filters are commonly used as a model of
so-called simple cells in the early visual cortex. In our implementation, we rely
on the fast V1 model from [31], applying default parameters: 8 orientations and
7 logarithmically spaced scales. Complex Gabor filters are modelled by

Gλ,σ,θ(x, y) = exp
(

− x̃2 + γỹ2

2σ2

)
exp

(
i
2πx̃

λ

)
, (1)

where
x̃ = x cos θ + y sin θ (2)

ỹ = y cos θ − x sin θ, (3)

λ is the wavelength in pixels, and σ the receptive field size in pixels. We apply
default parameters from [31]: σ/λ = 0.56, γ = 0.5 and θ assumes 8 values,
equally spaced on [0, π).
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Responses of simple cells are obtained by convolving the image with the
complex Gabor filters:

Sλ,θ = I ∗ Gλ,θ. (4)

The moduli of simple cell responses are used to model complex cortical cells:

Cλ,θ(x, y) = |Sλ,θ(x, y)| . (5)

3.2 Local Texture Model

Since Gabor filters are bandpass filters, it is evident that the responses of all
complex cells computed at a particular position represent the frequency spec-
trum of the local region. Each filter response represents a sample in this power
spectrum. Although Gabor filtering is typically expensive, it is the first step of
any biological model, and there are optimised and GPU-accelerated solutions
[31].

Like the corresponding Gabor filters, the spectrum has two dimensions: orien-
tation (corresponding to filter orientation) and frequency (corresponding to filter
wavelength), which effectively yields a 2D matrix. This matrix is cyclic in the
orientation, i.e., a cylinder. In our model, we assume that the power spectrum
can be approximated by a 2D-separable Gaussian function. This is obviously
a very rough approximation, but we are not interested in reconstructing the
texture, only in measuring whether there is a noticeable difference between the
textures at neighbouring positions. In practice, we found that approximating the
marginals by two 1D Gaussians is simpler and also produces good results.

The processing of each 2D matrix is very simple and fast. First, the noisy
spectrum is smoothed by applying a 3× 3 lowpass block filter. Then, the 2D
array is projected (summed) into two 1D arrays: the scale array Si and the
(cyclic) orientation array Oi. In both arrays, the local maximum is detected,
yielding the “means” μs and μo, after which the standard deviations σs and σo

are computed, taking into account the periodicity of Oi. Experimental results
revealed no significant differences between using the maxima as means and using
the real means as computed by moments. Figure 2 illustrates this process.

As described above, the local power spectrum is modelled by four parameters:
the means and standard deviations in the orientation and frequency dimensions.
The mean orientation of the Gaussian μo thus encodes the dominant orientation
of the texture, and the standard deviation σo is a measure of isotropy: small
values of σo indicate a strong preference for a particular direction, while large
values mean that many different orientations are present. In terms of frequency,
μs encodes the characteristic scale of the texture, coarse vs. fine, while σs tells
us whether there is one characteristic scale or a mixture of coarse and fine scales.
Figure 3 shows the four texture features extracted from a real image.

This model is obviously not very discriminative: it does not deal with multi-
modal and non-Gaussian spectra. However, it is considerably more powerful
than just using the dominant local orientation, and the additional complexity
is minimal – Gabor filtering is far more expensive than curve fitting. The four
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Fig. 2. Our texture model. A local power spectrum is a 2D matrix where the dimen-
sions represent orientation (horizontal axis) and frequency (vertical). The spectrum
resembles a 2D Gaussian function. We can fit two 1D Gaussians to the 1D marginals of
the spectrum to obtain the means and standard deviations of orientation and frequency,
which we use as features.

Fig. 3. Our texture features extracted from a real image. Blob detection on these
feature maps is used to produce a saliency map.

parameters described above are then used with blob-detection kernels to extract
salient textured regions. Then blob extraction is applied as shown in Fig. 4.

3.3 Blob Detection

The blob detection step is the same as in [16]. The four parameters μo, σo, μs, σs

are calculated for each pixel of the image and stored in four maps with the same
dimensions as the image: Mo

μ, Ms
μ, Mo

σ and Ms
σ. The algorithm works on full-

sized images, but subsampling is possible for improving the speed of the filtering
operations.

The four maps are then processed by a bank of centre-surround Difference-
of-Gaussian filters with different sizes, as is common. In our implementation, we
use three sizes and the filters are typical “mexican hat” kernels which combine a
positive Gaussian and a negative one with a larger standard deviation. For the
three different filter sizes, the standard deviations of the positive Gaussians are
45, 90 and 180 pixels, and those of the negative Gaussians are 90, 180 and 360,
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Fig. 4. An example of texture saliency. The image on the left has a salient region
identified only by texture (average intensity and colour are the same). Blob detection
based on colour fails in this case, but blob detection based on texture features as
described in this paper detects a salient blob (right image).

respectively. The filters need to be large in order to capture large salient objects,
but this presents a problem with smaller images. We therefore apply extensive
border-replicating padding of the feature images to avoid this problem. The
resulting 12 saliency maps are summed and normalised to 0-255 to obtain the
pre-final saliency map.

3.4 Region Sharpening

Blob detection is good at identifying the centres of salient regions, but blob
boundaries are poorly defined. It may be useful for overt attention models, but
less useful for localising and segmenting salient objects. In order to sharpen
region boundaries and to create more homogeneous regions which better corre-
spond to complete objects, we apply a non-linear diffusion step. Although the
idea of diffusion in early vision is not without controversy, it has been suggested
that colouring and surface interpolation mechanisms take place in V1 [21], espe-
cially as a result of feedback from higher areas V2 and V4 [27].

We begin by taking the sum of all complex cell responses extracted at the
finest scale:

Cedge(x, y) =
∑

θ

Cλ,θ(x, y), (6)

where λ corresponds to the finest scale applied in the previous step. The combined
map Cedge resembles an edge map, where large values correspond to narrow bars
or sharp transitions between different intensity values. This map is normalised to
the range 0–1.

We then apply a weighted neighbourhood filter to each point in the saliency
map S, based on the values of its neighbours:

s(x, y) =
1
8

8∑
i∈1

wiSi, (7)
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Fig. 5. Weights used in the diffusion filtering step. We simulate the diffusion process
by repeated weighted average filtering.

where si are the 8 neighbours of the central pixel s(x, y): S1 = s(x − 1, y − 1),
S2 = s(x, y − 1), etc. (see Fig. 5 for an illustration). The weights wi depend on
the strength of the edge map Cedge at that pixel:

wi = (1 − Ci), (8)

where Ci is the value of the edge map Cedge at relative position i.
The result of this filtering is a strong influence of neighbouring pixels not

lying on an edge, and no influence of pixels located on edges. This can be seen
as a dynamical diffusion process in the early visual cortex, where neighbouring
cells (representing saliency) excite each other, but the connections are inhibited
by complex cells. In our model, we repeat the filtering process a set number of
times to approximate the equilibrium solution. A further improvement can be
obtained by extracting closed contours from the image before filtering.

The filtering process ensures that closed regions become more uniformly
salient, while outside regions become less salient. Figure 6 shows an example of
this process on a real image. It can be seen that the shape of the blob is accept-
able although it is too big because of the sizes of the Difference-of-Gaussian
filters. It is also stronger close to the edges, and some parts of the object have
low salience. The diffusion filtering on the basis of responses of complex cells at
the finest scale is able to correct the size and, because responses outside the blob
are suppressed, thresholding can be applied to obtain a binary mask. Below, the
threshold value will be used as a free parameter in quantitative evaluation.

4 Evaluation

We evaluated the texture-based saliency method on the standard saliency dataset
developed by Achanta et al. [2] The dataset consists of 1000 images, each con-
taining a single salient object, plus hand-annotated ground-truth masks.

Figure 7 shows the results of our algorithm on some of the images from the
dataset. It can be seen that our algorithm consistently highlights the salient
regions in the images. The diffusion step results in well-defined region boundaries
which correspond to entire objects.

Figure 8 (left) shows a comparison of our texture-only algorithm against
similar algorithms: the Itti and Koch baseline model on this dataset and two
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Fig. 6. Left to right: input image, the result of blob detection, edges obtained from
the responses of complex cells, and saliency corrected by diffusion filtering. Texture
saliency responds strongly to areas where texture is different from its surrounding, but
it does not uniformly cover the entire object and, due to large blob detection kernels, it
also responds outside object boundaries. Combining saliency with image edges during
the diffusion filtering step results in smoother, object-based saliency.

approaches based on texture or frequency. We plot the precision-recall curves
obtained by varying the threshold used to binarise the saliency images. Preci-
sion and recall are computed by comparing each pixel in the saliency map with
the hand-annotated ground truth map, counting all true and false positives and
negatives in all 1000 images. Our algorithm outperforms the other methods, sig-
nificantly improving the state of the art in terms of texture-based saliency. It can
be seen that our texture saliency alone can slightly outperform the classic Itti
and Koch model. This is most likely due to the selection of kernel sizes for blob
detection, since their model was designed before this dataset became popular,
and was optimised for modelling sequential saccadic eye movements. Figure 8
(right) shows a comparison with two state-of-the-art methods. We added three
colour features to our model and averaged the salience maps for this experiment.

5 Discussion

The texture parameters applied in the salience model are based on a more com-
plex model [3], but extremely simplified in order to be applicable in real-time
applications. Nevertheless, the very good results in terms of salience suggest
that further refinements may not be required if texture is going to be combined
with colour, motion and stereo disparity. More advanced texture models exist,
for example based on models of cortical grating cells on top of which the tex-
ture symmetry order could be detected (linear, rectangular, hexagonal, etc.) [4],
but this information may not be very accurate in real-world applications where
almost no textures show perfect symmetries.

There are several recent methods which obtain better results than our method
on this dataset. We stress that our work was aimed at creating novel texture-
based features and that results presented here are preliminary. Integration of
our features with state-of-the-art methods and a wider selection of features is
expected to make our model more competitive. In this paper, we concentrated
on the improvement in texture-based saliency, which is a much overlooked part
of saliency models.
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Fig. 7. Visual comparison of results on the saliency dataset. The input images are
shown in the left column. The ground truth annotations are shown in the right column.
The remaining columns, from left to right, show the results of AC [2], GB [13], IT [16],
MZ [11], SR [14], and our algorithm, before thresholding. The bottom three rows show
some difficult examples. Our algorithm responds strongly to the alternating textures
of the leaves and the wall in the bottom left corner of the sunflower image (third from
below), and fails completely with the passport image (bottom row). In the second row
from below, we also detect the rock, which is salient but not annotated.
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Fig. 8. Comparison against some state-of-the-art models. The left graph shows a com-
parison against methods which incorporate texture or frequency: the original Itti and
Koch model (IT) [16], and the spectrum-based models of Hou and Zhang (SR) [14] and
Guo et al. [11]. The right graph shows our model extended with colour against two
state-of-the-art models: Perazzi et al. (SF) [26] and the improved Itti and Koch model
VOCUS2 [8].

6 Conclusion

Although texture is considered an important cue for attention, segmentation
and object detection, only few saliency models currently exploit texture. In this
contribution, we have presented a novel texture-based method which extends
the Itti and Koch model and shows that texture can be a very useful cue for
advancing saliency models. We are not aware of any texture-based work achieving
significant results on standardised saliency datasets, so showing results using only
texture is an interesting achievement.

Evaluation on the standard dataset shows that our saliency model alone out-
performs the baseline Itti and Koch model, and that a combination of texture
and colour adds an additional boost. Unlike many popular methods which are
based on region segmentation and local descriptors, our method is biologically
motivated and could help to explain the role of texture in early saliency process-
ing, and how it can drive saccadic eye movements to objects.

Ongoing work focuses on integrating further cues such as motion and dispar-
ity, and applying the saliency model on a real-time robot.
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Abstract. We introduce a simple approach to lossless image compres-
sion, which makes use of SIMD vectorization at every processing step to
provide very high speed on modern CPUs. This is achieved by basing
the compression on delta coding for prediction and bit packing for the
actual compression, allowing a tuneable tradeoff between efficiency and
speed, via the block size used for bit packing. The maximum achievable
speed surpasses main memory bandwidth on the tested CPU, as well as
the speed of all previous methods that achieve at least the same coding
efficiency.

1 Introduction

For applications which need to process large amounts of image data such as
high speed video or high resolution light fields, the I/O subsystem can eas-
ily become the bottleneck, even when using a RAID0 or SSDs for storage. This
makes compression an attractive tool to widen this bottleneck, increasing overall
performance. As lossy compression incurs signal degradation and may interfere
with further processing, we will only consider lossless compression in the fol-
lowing. While dictionary based compression methods like lzo [18] can reach
a high bandwidth, the compression ratio of such generic compression meth-
ods is quite low compared to dedicated image compression methods. However,
research in lossless image compression has mainly been concerned with the max-
imization of the compression ratio, and even relatively fast image compression
schemes like jpeg-ls are not able to keep up with the transfer rates of fast I/O
configurations.

In this article, we present a simple lossless image compression scheme, which
makes use of the SIMD instructions of modern CPUs to achieve extremely high
performance. Our implementation allows a configurable tradeoff between speed
and compression and exceeds the memory transfer speeds of modern CPUs in its
fastest configuration, allowing incorporation of lossless compression into many
areas where compression was not feasible before. Our specific use case, which
motivated this work, is an example of such an application: recording a very large
and dense light field data set (several terabytes in size), requiring a continuous
compression bandwidth of 360 MiB/s, a rate which the used I/O configuration
was not able to guarantee on its own.
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 343–355, 2015.
DOI: 10.1007/978-3-319-24947-6 28
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Fig. 1. Bandwidth vs. compression ratio for all tested methods, showing single core
results on an Intel R© CoreTM i7-2600 CPU on the “blue sky” test sequence from the
SVT data set [12]. “BBP” denotes our method for several block sizes from 2048 to 4
bytes. An example 4xRAID0 configuration and main memory bandwidth are included
for comparison. The simdcomp method is the C implementation of [14] and can, in gen-
eral, not compress image data, but is shown for bandwidth comparison. For lzo, and
ffvhuff all configurations are shown, as well as all available presets for x264 and x265.

1.1 Applications of Lossless Image Compression

Compression is always a tradeoff of processing resources against bandwidth and
storage. While lossy compression provides high compression ratios, its applica-
tion is limited to areas where the distortion of the signal due to lossy compression
does not pose a problem. But in some cases losses are not acceptable. Examples
for this include reference data sets for image processing or sophisticated image
processing, like superresolution. In this case, lossless compression may still pro-
vide an overall performance increase due to bandwidth savings as well as reduced
storage requirements. However lossless compression provides less compression,
which reduces the gain obtained from using it. In many capture scenarios, the
required bandwidth for on the fly compression, before initial storage, imposes
a hard constraint. This is addressed by the proposed scheme, as compression
bandwidth can be adjusted to speeds that surpass memory transfer speeds, a
hard limit for any hardware configuration.

2 Related Work

In the following, we briefly discuss lossless compression methods that focus on
high speed, see Fig. 1 for an overview of evaluated methods. The methods are
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ordered by the dimensionality of the compression scheme, starting with generic
1D compression algorithms. Any compression method with lower dimensionality
may be used to compress data with a higher dimensionality at reduced effi-
ciency, as correlation in the missing dimensions cannot be exploited. On the
other hand, lower dimensionality can lead to lower algorithmic complexity and
therefore higher speed. While the method discussed in this paper is a pure image
compression method, we will regard and evaluate compression from the basis of
compressing a video stream, which allows the inclusion of advanced lossless video
compression methods like AVC and HEVC which allow higher compression ratios
by exploiting the 3D correlation. Also applications for high bandwidth image
processing like light field, or high speed video capture, may allow the use of video
compression methods, making an evaluation based on video data adequate.

2.1 Dictionary and 1D Compression

General purpose compression methods like deflate (zlib/gzip) [10] or bzip2
[23] achieve good compression ratios for most types of inputs, but are quite slow,
with a maximum bandwidth of around 30 MiB/s on an off-the-shelf Intel Core
i7-2600 CPU. Faster methods, including lzo, lz4 and gipfeli [9,15,18] are
more directly based on the original LZ77 compression scheme [28] and provide a
bandwidth of up to 152 MiB/s for our configuration, see Fig. 1. This performance
has led to the utilization for lossless 4 K image transmission [11], but compared
to image based methods the compression ratio is rather poor, as dictionary based
methods are not well suited to the task of image coding. Specialized methods
adapted for specific tasks, like integer or floating point compression, provide a
much higher speed of several gigabytes per second, by using a simple bit packing
approach [8,14] and exploiting the SIMD instructions provided by modern CPU
architectures [14]. However, those methods operate on 32 bit integers or 64 bit
floating point values and are thus not directly applicable to the compression of
8 bit image data. We have developed an algorithm which uses SIMD bit packing
for the actual compression, combining it with a prediction scheme and small
block sizes, allowing efficient compression of image data. See Sect. 3 for details.

2.2 Image Compression

Dedicated lossless image compression methods like jpeg-ls [27] peak at around
25MiB/s, with modifications reaching 75MiB/s on an Intel R© CoreTM i7-920
processor at 2.67 GHz [26]. The jpeg-ls codec was standardized in 1999 and is
still widely used as the baseline for the evaluation of lossless image compression
methods. To our knowledge there are no significantly faster methods available,
even though the gap to the fastest 1D compression method [14] amounts to more
than two orders of magnitude. Later works mainly concentrate on increasing
compression efficiency at reduced speed, which is not the focus of this work.

2.3 Video Compression

State of the art video standards like HEVC, as well as its predecessor AVC, include
lossless profiles which provide high compression ratios. The ffvhuff coder from
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the ffmpeg library [3] based on HuffYUV [24], which uses the jpeg-ls predic-
tor together with simple Huffmann coding, obtains a speed of 343 MiB/s, the
highest speed for any video codec we evaluated, see Fig. 1. Another interesting
compressor is the ffv1 coder [17] at 44 MiB/s, also from ffmpeg, which com-
bines a jpeg-ls style predictor with a context adaptive entropy coder, based
on similiar principles as the one from AVC, with context adaption over several
frames. The ffv1 coder achieves a compression ratio and speed competitive to
AVC, see Fig. 1.

2.4 GPU Aided Compression

There have been various efforts to improve the performance of different com-
pression techniques by using the massively parallel computation capabilities of
modern GPUs. For 1D compression a text based method has been ported to the
GPU by Ozsoy et al. [21] demonstrating a speedup of up to 2.21x for the GPU
solution. Floating point compression based on bit packing has also been shown
to reach a speedup of 5x [20], but at the cost of a reduced compression efficiency
and in comparison to a CPU version which does not make use of SIMD for bit
packing, like implemented in [14].

An approach for GPU based predictive lossless image coding has been pre-
sented by Kau and Chen, showing a speedup of up to 5x with a combined system
utilizing GPU and CPU [13], however absolute performance is quite low at less
than 1 MiB/s. The cuj2k library, implementing jpeg2000 on the GPU provides
similar performance to a parallel jpeg2000 implementation for the CPU [2].
The work presented by Treib et al. [25], implementing a simple wavelet based
compressor, provides results with slightly worse compression than jpeg2000 but
with a compression speed of up to 700 MiB/s, which is significantly higher than
previous approaches.

The difficulties in porting standard image compression methods to the GPU
are analyzed by Richter and Simon [22], specifically for jpeg and jpeg2000.
They conclude that especially the entropy coding part proves difficult for mod-
ern GPUs, together with the codestream build-up. Their observations include
also the case where a highly optimized CPU implementation outperforms a GPU
based approach. These considerations have led us to the conclusion that a care-
fully implemented CPU image compression algorithm that takes advantage of
modern SIMD instruction sets may already provide a significant boost in lossless
compression speed. Another advantage of the CPU only implementation is that
the GPU remains free for image based processing tasks, for which it is better
suited. However, there still is the opportunity for further research to investigate
the potential of a GPU based implementation, but a CPU implementation is
needed for a thorough comparison.

3 Compression Scheme

From the above methods, we found the SIMD based integer compression method
to be the most promising approach for a fast compression scheme, due to the



High Speed Lossless Image Compression 347

Fig. 2. Flow chart illustrating the compression procedure. An input stream (a) is
processed with delta coding, frequency substitution and bit packing, see Sects. 3.2 to
3.5, producing a packed output stream (b), as well as the number of significant bits
per block (c). The number of significant bits can change slowly from block to block,
therefore (c) is fed through the same compression procedure to produce the final output
streams (d) and (e) which, together with (b), compose the compressed output.

demonstrated high performance. However, bit packing is not directly possible
with image data. A prediction scheme enables decorrelation of neighboring pixels
and allows bit packing of the residuals, see Sect. 3.2, but the scheme still has
to overcome several hurdles compared to the bit packing method using 32 bit
integers from [14]:

Less Latitude: For image data, the bit depth is normally 8 bit compared to at
least 32 bit in database indices, so each additional bit needed for the encoding
has four times the impact on the overall compression performance.

Large Block Size: While SIMD on x86 has a width of 16 bytes, the implemen-
tation in [14] uses block sizes of 128 integers, respectively 512 bytes. Image data
has a much higher variance compared to database indices, especially consider-
ing the smaller range for 8 bit data. Therefore, a smaller block size is required
for efficient image compression, resulting in an increased overhead for signaling
significant bit counts, which is especially problematic considering the greater
impact of this overhead. Also, constant per block computations like signaling
and branching depending on significant bit counts, have a higher impact on
processing times with smaller block sizes.

Missing SIMD Instructions: On x86 many instructions that are available for
processing 32 bit integers, as for example shifts, are not available in byte variants
and have to be replaced by a more expensive combination of 32 bit shift and
mask operations.

Size Increase Due to Delta Coding: In contrast to database indices, pixels in
an image are not sorted by value and deltas between consecutive pixels therefore
require one extra sign bit, increasing the compressed size by 12.5 % for naive
delta coding.

3.1 Overview

Our approach, see Fig. 2, revolves around the concept of bit packing, which is the
compression of integers by storing only the significant bits for each input value.
To facilitate vectorization and to avoid excessive overhead due to the coding of
significant bit counts, we apply bit packing to whole blocks of bytes, with larger
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Fig. 3. Illustration of the interleaved bit packing scheme. For clarity the depicted
blocks have a size of four samples with four bits each, instead of 8 bits as in the actual
implementation. Bits are represented by boxes, significant bits are colored, white blocks
have a value of zero. The packing routine distinguishes two cases: either there is enough
space to store the significant bits, as is the case with block i and i+2, or the block has to
be split between the current and next output block, as with block i+1 in the illustration.
The colored arrows denote executed operations. Please note that the operations are
always performed with the whole SIMD width and not per element.

block sizes resulting in higher performance at reduced compression efficiency. We
use a very simple prediction scheme, trading coding efficiency for higher speed:
We refer to this whole scheme as block-wise bit packing (BBP). Compared to
Huffmann or arithmetic coding, bit packing cannot adapt to the distribution of
symbols. Therefore, we employ frequency substitution in order to encode more
frequent values, i.e. values with a higher probability of occurrence, with less
significant bits, see Sect. 3.4. As bit packing results in a variable length code
which is not prefix free, and correct decoding thus requires that the number
of significant bits is known to the decoder via external means, the significant
bit lengths have to be signaled separately. The need to store the number of
significant bits is another reason, apart from vectorization, for the division into
blocks. As the block size approaches one byte, the overhead of signaling the
number of significant bits outweighs the increase in coding efficiency. To reduce
the efficiency loss at all block sizes, which occurs due to the overhead for signaling
significant bit lengths, the whole scheme is also applied to the data stream which
signals those bit lengths, exploiting the correlation between successive blocks.

3.2 Prediction in 1 Dimension

Delta coding can be regarded as the most simple form of prediction based com-
pression: each sample is predicted to have the same value as the last one, so
calculation of the residual simplifies to the calculation of the difference between
the two samples. A problem with such prediction schemes is the necessity to
calculate a prefix sum when decoding. While parallel calculation of the pre-
fix sum is possible, performance is still reduced. The integer coding by Lemire
et al. [14] avoids the problem by using a fixed offset of 16 Bytes, which the
authors report to increase the average delta by a factor of four.

In contrast to the database indexes they address, image data is correlated in
two dimensions. Normally, this is exploited to improve compression efficiency by
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using a 2D predictor, such as the median edge predictor in jpeg-ls. We exploit
the two-dimensional correlation to accelerate performance by coding the delta
between vertical pixel neighbors, followed by the packing of horizontal blocks
using SIMD. The correlation in the vertical direction provides residuals that are
smaller than the actual sample values, while horizontal correlation means that
a horizontal block tends to group samples with similar significant bit lengths,
reducing efficiency loss due to block-wise handling.

Additionally, this gives a large flexibility for the layout of the input data.
Because of the in-memory layout as continuous chunks of memory, the vertical
prediction can be implemented with simple pointer arithmetic. The address of
the previous line is calculated using the address of the current line minus a fixed
offset, which is normally the width of the image. If the input data consists of
interleaved samples, e.g. RGB images or raw Bayer patterns, then the offset may
be adjusted, so that prediction is always executed from the same sample type,
avoiding costly preprocessing steps for format conversion.

3.3 Modulo Delta Coding

As the difference between predicted and observed value may be anywhere
between -255 and 255, it cannot be coded naively inside an 8 bit range. To
avoid the necessity of expanding the coding range to 9 bit, which would halve
the effective SIMD width and waste one bit of space, we utilize modular arith-
metic over Z/256Z.

3.4 Frequency Substitution

The prediction residuals from delta coding tend to follow a two sided geometric
distribution [16,19], where small differences are very common. While small values
are well suited for bit packing, the use of non-saturated wrapping arithmetics
maps small differences, like −1, to potentially large values (255 in this case),
which requires all 8 bits for encoding. To compensate for this effect, we apply
a substitution, ordered by the minimal absolute difference: 0 stays 0, −1 ≡ 255
maps to 1, −255 ≡ 1 maps to 2, −2 ≡ 254 maps to 3, etc. This mapping is
identical to the scheme often used when mapping signed to unsigned integers in
the context of universal codes, as used by jpeg-ls and AVC when using Golomb
codes for the entropy stage, just applied with respect to the implied modulo
operation.

This mapping describes a triangle function with a slope of 2, where the first
slope maps to even values and the second slope to odd values. This function is
suitable for SIMD implementation, leading to high performance.

3.5 Block-Wise Interleaved Bit Packing

The packing uses a vertical layout, where a block of n bytes is interleaved into
a block of the same size, with unused bits remaining at the same position in
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every byte. Consecutive blocks are interleaved into the unused bits for each byte
in a block, until no unused bit remains, which leads to the write out of the
current block and allocation of the next one, see Fig. 3 for a visualisation of the
procedure. Compared to a computed jump to one of the different bit packing
routines, depending on unused and required bits, as implemented in [14], we only
branch over the block full condition and process any bit combination using the
same code, with computed shifts and masks. This single branch is the only one
within the compression loop, leading to low misprediction rates. This approach
results in a lower performance penalty for small block sizes, which are necessary
for efficient image compression.

4 Evaluation

The following sections will outline the conditions of the evaluation, which was
performed on an Intel R© CoreTM i7-2600 Processor running at 3.4 GHz.

4.1 Implementations

Our implementation for the introduced method is executed in C, making exten-
sive use of compiler intrinsics for SIMD operations as well as constant propaga-
tion and link time optimizations to realize portable, modular and easily extended
code. As SSE3 instructions, released in 2006, have become quite ubiquitous on
the x86 platform, we have targeted it in the evaluations presented in this article
(AVX, which became available in 2011, focused on floating point operations and
was therefore not considered). To allow a more detailed insight into the actual
implementation, our code – including non-vectorized C fallback and an unopti-
mized implementation for the ARM NEON SIMD extension – will be released
online under an open source license.

The implementations for the image and video compression methods were
taken from the ffmpeg library [3], except the AVC (libx264 [6]), HEVC (libx265
[1]) and jpeg2000 encoders (libopenjpeg [4]), which are provided by external
libraries, but are still integrated within ffmpeg. The implementation of Lemire
et al. [14] was also evaluated to show the performance possible when executing
pure bit packing, although no compression could be achieved on the used data
set. To test the dictionary methods the open source squash library [5] was used,
which incorporates a broad range of generic compression methods, using the
respective reference implementations.

4.2 Method

To minimize the effect of memory transfers for the fastest methods, the com-
pression was executed on chunks of 64 KiB, which allows the whole compression
to take place within the 256 KiB L2 cache of the Intel R© CoreTM i7-2600, for
which we measured a bandwidth of 25 GiB/s. Timings were obtained for each
coder, by reading the file in chunks, measuring 16 repeated runs of the coder in
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one go, to avoid the influence of the execution time of the timing syscall on the
measured bandwidth. Measuring only a single iteration resulted in a bandwidth
up to 30 % lower for the fastest coders. Note that the results of the video com-
pression methods were obtained by running ffmpeg in benchmark mode, thus
including memory transfer and management overhead. However extra measure-
ment of the pure decoding performance of ffmpeg indicate an overhead of less
than 3 % for the fastest measured video compression method.

4.3 Data Set

The results shown in Fig. 1 were obtained by executing the benchmark described
in Sect. 4.1 on the uncompressed “blue sky” test sequence from the SVT data set
[12]. The specific sequence was selected because it is easy enough as a compres-
sion challenge that all methods achieved at least minimal compression, while still
being a recording of a natural scene, containing noise and other artifacts, which
make compression more challenging than computer generated imagery. The scene
was converted to grayscale as this was the only format compatible with all tested
implementations. More complex scenes caused some coders, specifically lzo, to
fall back into a non-compressing mode with a much higher bandwidth of nearly
1.7 GiB/s, see Table 1. While such a mode is a useful fallback if compression is
not possible, such a behavior does not provide useful data for this evaluation.
Please refer to the supplemental materials for a more extensive list of benchmark
results for several different sources.

4.4 Results

A comparison of the performances of all evaluated compression algorithms can
be found in Fig. 1. Positions in the plot show the relative performance of methods
against each other, with faster methods towards the top and better compress-
ing methods to the right. The evaluation of the performance of the different
compression methods can be summarized as follows:

– Even the fastest generic compression methods are dominated by the dedi-
cated image and video compression methods, as they achieve relatively low
compression ratios without higher speed.

– Most of the methods optimized for image or video compression can provide
better compression ratios, but at a significantly lower bandwidth.

– Our implementation can provide a very high bandwidth of over 6 GiB/s, much
faster than previous methods, while it is also able to provide a compression
ratio approaching that of the previously fastest dedicated image compression
methods.

Regarding encoding speed, the closest contender to our method is ffvhuff,
which is several times slower, but achieves slightly higher compression of up to
1:2.0. The two video coders x264 and x265 produce the highest compression
at up to 1:2.48 and 1:2.68 respectively, but at a noticeable penalty in encoding
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speed. The jpeg-ls coder can not keep up with this performance but is still
notable as the relatively high compression ratio of 1:2.32 is achieved by a pure
image coder, which is unable to exploit the temporal correlation.

4.5 Minor Findings

The performance of the different compression methods depends to a varying
degree on the specific data set, please see Table 1 for benchmark results of a few
coders on different sources, more are available in the supplemental materials.
While a detailed analysis of the speed variability was out of scope for this work,
the basic pattern seems to be that the more complex a method the higher the
dependency of the performance on the input characteristics. Specifically the
relatively simple method implemented in this work, as well as the method in
[14] and ffvhuff show a moderate dependency on the input characteristics,
while most video compression methods and the dictionary based methods show
a more complex behavior. The most variability was observed by the lzo coder
for which performance varied by a factor of ten depending on the input.

Table 1. As this extract from our tests (see the supplemental material for all results)
shows, compression ratio and speed vary a lot with the content, with some correlation
between high throughput and better compression rates. The results for lzo indicate a
special mode for non-compressible input. The best results for bandwidth and compres-
sion ratio are marked in bold for each file, the fastest and slowest result for each coder
in italic. For our method block sizes of 8 and 128 bytes were selected as representative
tradeoffs, please refer to Fig. 1 for an overview of all possible block sizes and their
respective performance.

Bandwidth in MiB/s Compression Ratio

Coder File 1 File 2 File 3 File 4 File 5 File 1 File 2 File 3 File 4 File 5

BBP-8 975 992 947 1307 1022 1.31 1.71 1.38 5.16 1.51

BBP-128 3993 4236 3957 4835 4199 1.16 1.28 1.14 3.42 1.31

ffvhuff 329 343 308 479 339 1.45 1.96 1.39 3.47 1.59

x264-ultrafast 101 76 72 206 109 1.49 1.95 1.47 9.17 1.84

density 245 150 311 198 227 1.02 1.20 0.99 1.66 1.04

lzo1x 633 141 1668 334 427 1.02 1.21 1 3.69 1.04

5 Discussion and Future Work

As shown in Sect. 4.4, the performance achieved by our method is significantly
higher than any previous method. In the fastest configuration the achievable
performance surpasses the memory bandwidth, although at a considerable loss
in compression efficiency, while the simple bitpacking method of Lemire et al.
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[14] roughly doubles this performance, without achieving any compression for
the evaluated content.

While one could expect the performance of an implementation to scale well
with the SIMD width, which is effectively the level of parallism, preliminary
results for the new AVX2 extensions, operating with a SIMD width of 256 bits,
indicate a speedup of less than 40 % compared to the 128 bit wide SSSE3 imple-
mentation, suggesting that a large portion of the execution time is not spent on
pure arithmetics, but on cache misses and branch misprediction. The expected
AVX-512/AVX3 instructions will warrant further examination of this property.

In the introduced method, compression is based solely on 2D correlation.
A candidate for an efficient disparity compensation based solution could be based
on PatchMatch [7], which could be used to evaluate only few candidates per pixel
over several iterations, propagating good solutions over the frame.

Also, the high performance of the method has implications for applications
limited by main memory size or bandwidth. The compression scheme supports in-
memory compression to increase available memory as well as to increase memory
bandwidth, provided access patterns permit the decompression and processing
to execute from within the CPU caches.

6 Conclusion

This work shows how to overcome the bandwidth limitations of previous lossless
generic and image specific compression methods, while providing a reasonable
compression performance. This does not only enable lossless image compression
for applications which could not previously make use of it, but also provides
interesting possibilities for image processing tasks, regarding memory bandwidth
and utilization optimizations.

Acknowledgements. This research was financially supported by the Juniorprofes-
sorenprogramm Baden-Württemberg.
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Abstract. In this paper we present a trained diffusion model for image
inpainting based on the structural similarity measure. The proposed dif-
fusion model uses several parametrized linear filters and influence func-
tions. Those parameters are learned in a loss based approach, where we
first perform a greedy training before conducting a joint training to fur-
ther improve the inpainting performance. We provide a detailed compar-
ison to state-of-the-art inpainting algorithms based on the TUM-image
inpainting database. The experimental results show that the proposed
diffusion model is efficient and achieves superior performance. Moreover,
we also demonstrate that the proposed method has a texture preserving
property, that makes it stand out from previous PDE based methods.

1 Introduction

Image inpainting is a fundamental problem in Computer Vision (CV) with great
practical importance. Given an image with lost, deteriorated or simply unknown
regions, the task of image inpainting is to convincingly fill-up those unknown
image regions. Hence, the main goal is to produce natural-looking and visu-
ally pleasant images. Inpainting applications can be roughly divided into two
classes. First, there are inpainting applications where one considers the task
of reconstructing a set of small connected image regions. Example applications
include the restoration of old photos, damaged videos [21], or artwork [30], and
the removal of logos, superimposed text, or other unwanted objects in images, to
name but a few. The second class of inpainting applications considers the task of
restoring large regions of scattered pixels. Inpainting methods belonging to this
class are closely related to image compression methods [8,15,26]. Galić et al. [15]
for instance proposed a method for image compression based on edge-enhancing
diffusion. Liu et al. [26] proposed a framework for image compression, where the
main idea is to extract edge-based assistant information in the encoding step
and use this information to guide the inpainting in the decoding step.
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Proposed inpainting methods in the literature tend to fall into one of the
following categories. First, there are exemplar-based or patch-based methods
[5,11,40], that try to fill the inpainting regions by propagating information from
the remaining parts of the image at the patch-level. Thus those methods recon-
struct the corrupted regions by sampling and copying uncorrupted patches taken
from the same image (or from a certain dictionary). Those methods are usually
based on the self-similarity principle, i.e. one assumes that images include a lot of
repetitions of local information. It is not surprising, that the main idea of patch-
based methods can be traced back to texture synthesis techniques [12]. Due to
their non-local property, patch-based methods are well suited to inpaint large
connected image regions with texture, but most of those methods are unable
to handle densely scattered inpainting domains. One exception is the non-local
inpainting method by Facciolo et al. [14], that allows inpainting from sparse data.
The second category of inpainting methods involves either variational principles
or is Partial Differential Equation (PDE) based, noticeable examples include
[2,6,7,13,28]. Those methods have been successfully used to smoothly inpaint
small image regions. A common drawback of PDE based methods is their inabil-
ity to properly reconstruct image texture, which is clearly visible when trying
to reconstruct large inpainting domains. However, PDE based methods remain
applicable in compression-like applications, i.e. inpainting task based on sparse
data. Masnou and Morel [28] for example proposed an inpainting model based on
variational principles, where they interpolated the inpainting regions by extend-
ing the isophotes, which are lines of constant intensities. Bertalmio et al. [2]
proposed a PDE based inpainting method, that is inspired by the methodology
of art conservators, where a transport process is interlinked with an anisotropic
diffusion process. The overall idea is to fill the inpainting region such that the
isophote lines are completed. In [6] authors extended the Rudin Osher Fatemi
(ROF) image denoising model [35] to image inpainting, i.e. their variational
model is based on the Total Variation (TV) and produces inpainting result with
smallest possible isophotes. In a subsequent paper [7] a curvature driven diffu-
sion equation was introduced to realize the connectivity principle. Esedoglu and
Shen [13] proposed the so-called Mumford Shah Euler model. This model com-
bines the celebrated Mumford Shah segmentation model [29] with Euler’s elas-
tica curve model. Besides the aforementioned two categories of inpainting meth-
ods, authors also proposed methods that attempt to combine the advantages of
PDE based and patch-based methods [1,3,4,11,17,22,31]. Bugeau et al. [3] for
instance proposed a framework that combines patch-based methods with PDE
based methods by enforce coherence among neighboring pixels. Cao et al. [4]
proposed to extract level lines from a simplified version of the image to guide
the patch-based inpainting. Peter and Weickert [31] proposed a method, where
patch-based and PDE based approaches are used block wise. In [24,33,34,41]
authors investigated image statistics from natural images. Roth and Black [33]
for example proposed a framework to learn generic, expressive image priors that
capture the statistics of natural scenes. The so-called Fields of Experts (FoE) [33]
uses continuous heavy-tailed potential functions and learns the parameters of
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experts by contrastive divergence learning in high-order Markov Random Field
(MRF) models. In [36], Schmidt et al. modified the FoE model by using Gaussian
scale mixtures as potential functions. In [10], Chen et al. simplified the diffusion
coefficients and then generalized the conventional nonlinear reaction diffusion
model by using learned filters and influence functions. They showed that the
resulting energy functional of the proposed diffusion model is a generalization
of the FoE model [33]. They trained models for Gaussian denoising and JPEG
deblocking. Both models achieved a superior performance compared to the state-
of-the-art and are highly efficient as well.

Contribution. In this paper we will modify the diffusion model proposed in [10]
for the task of image inpainting. Contrary to [10], where a Peak Signal to Noise
Ratio (PSNR) based training is used, we propose a training based on the Struc-
tural Similarity Image Measure (SSIM) [39], which seems to be more suitable for
the task of image inpainting. In the experimental section we will present generic
models, that are trained based on a complete dataset, and specific models, that
are trained on the uncorrupted image regions of the image to be inpainted.
We will provide a detailed evaluation on the TUM-image inpainting database
[37,38], which will show that the proposed method is able to achieve superior
performance compared to state-of-the-art inpainting methods, and is highly effi-
cient at the same time. Further we will show that although our method falls
into the category of PDE based methods it is also capable to perform texture
inpainting to a certain extent.

2 Diffusion Model

In this section, we first present a brief overview of the trained reaction diffusion
model proposed in [10] before extending it to the task of image inpainting.

Trained reaction-diffusion model. Let Ω ⊂ R
2 be the image domain and

consider an image as a mapping u : Ω × [0,∞) → R, u = u(x, t), where t � 0
denotes the stage or the time. Then a general anisotropic diffusion model is
given as

∂tu = div(Γ (u)∇u), (1)

with the original image f : Ω → R as the initial state, i.e. u(x, 0) = f(x),
and with reflecting boundary conditions, i.e. ∂nu = 0 on the image boundary
∂Ω, where n denotes the normal to ∂Ω. Note that in Eq. (1) ∇ is taken w.r.t.
the spatial variables x and Γ (u) denotes the diffusion tensor, which is a positive
definite symmetric matrix. In the case of isotropic diffusion Γ (u) can be replaced
by a positive scalar-valued diffusion coefficient also called diffusivity.

In [10] the authors modified Eq. (1) in the following way: (i) they generalized
the ∇ operator to a set of filters represented by Kt

i, (ii) they equipped each filter
with its own diffusion coefficient represented by so-called influence functions
φt
i : RN → R

N , and (iii) they added a reaction term ψ : RN ×R
N → R

N , which
basically yields a non homogenous diffusion equation. Finally, they proposed the
following diffusion model in the discrete setting



Learning Reaction-Diffusion Models for Image Inpainting 359

ut = ut−1 −
Nk∑
i=1

Kt
i
�

φt
i(K

t
iut−1) − ψ(ut−1, f), (2)

where ut ∈ R
N denotes the vectorized representation of an image at stage t, Nk

denotes the number of filters, f ∈ R
N is the vectorized corrupted input image,

and Kt
i ∈ R

N×N is a sparse matrix representing a convolution operation with
the kernel kt

i (i.e. Kt
iu = kt

i ∗u). Note that the influence functions φt
i and filters

Kt
i vary for different stages t. Chen et al. [10] proposed to train the parameters

of the diffusion model in Eq. (2). They showed that the reaction term changes
for different applications, like Gaussian denoising, or JPEG deblocking. They
also illustrated that the model is related to the FoE [33] and to convolutional
networks [20], which are popular models in the field of computer vision and
pattern recognition.

Diffusion model for image inpainting. For the inpainting task tackled in
this paper, the given gray-valued images u are assumed to be noisefree. Hence
the proposed method only updates the gray-values inside the unknown or miss-
ing image regions A ⊂ Ω. Unlike Gaussian denoising or JPEG deblocking dis-
cussed in [10], a challenge of image inpainting is that it has no available reaction
term within the inpainting domain. Hence the proposed model relies on the
information at the boundary of the inpainting domain ∂A and on the learned
information from uncorrupted parts of the image (i.e. Ac), or from a given set
of images. Thus the main idea of the proposed model is to propagate the known
information from outside the inpainting region in a meaningful way in order to
reconstruct the values inside the unknown image regions. For this purpose we
define the following diffusion model

ut = ut−1 − m ·
Nk∑
i=1

Kt
i
�

φt
i(K

t
iut−1), (3)

where · denotes the Hadamard product (i.e. pointwise multiplication), and m ∈
R

N is a vectorized mask indicating the inpainting domain A, i.e.

m[j] =

{
1 j ∈ A,

0 otherwise,
(4)

where m[j] denotes the value at the jth position of the vector m. In order to
reduce the computational complexity the influence functions φt

i are set to be
continuous piecewise linear functions [18].

The iterative process in Eq. (3) can be summarized as follows: (i) filter the
current image ut−1 with the kernel kt

i for 1 � i � Nk, (ii) calculate the output of
the influence function φt

i and filter the result with the kernel k
t

i
1 for 1 � i � Nk,

where k
t

i is obtained by rotating kt
i by 180 degrees, (iii) sum up the Nk results

and calculate the Hadamard product with the mask m, and (iv) update ut−1

with the obtained result.
1 Kt

i
�

φt
i(K

t
iut−1) can be rewritten as k

t
i ∗ φt

i(K
t
iut−1).
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3 Learning

In this section we briefly outline the learning approach. We propose a SSIM based
learning approach to estimate the parameters Θt = {kt

i, φ
t
i} on the right-hand

side of Eq. (3) for all stages 1 � t � T . We start with a greedy training, where
we optimize the parameters at the stage t and then use the optimal parameters
to calculate the inpainted image ut. After that we optimize the parameters of
the next stage, till we reach the maximum number of stages T . The result of
the greedy training is used as an initialization for the following joint training,
where we train all stages simultaneously. Let {f j ,gj ,mj}Kj=1 denote the K train-
ing samples, where f j is the jth corrupted image with unknown values at the
inpainting regions indicated by the mask mj , and gj is the jth ground truth
image. Then the greedy training minimizes

L(Θt) =
K∑
j=1

�(uj
t ,g

j), (5)

for each stage 1 � t � T . The loss function �(uj
t ,g

j) is defined based on the
SSIM [39], which has already been used for image denoising [23,32], where it has
shown its superiority over PSNR [39]. SSIM assesses the luminance, the contrast,
and the structure of two images I1 : Ω → R

2 and I2 : Ω → R
2 on the patch level.

In this context the SSIM index of two image patches p1 and p2 is calculated as
follows

SSIM(p1,p2) =
(2μ1μ2 + c1)(2σ12 + c2)

(μ2
1 + μ2

2 + c1)(σ2
1 + σ2

2 + c2)
, (6)

where cj is a predefined constant, μj and σ2
j denote the average and the variance

of the image patch pj , j ∈ {1, 2}, and σ12 is the covariance of the two patches.
The final image measure, denoted as S(I1, I2), is obtained as the mean SSIM
index of all image patches. Note that S(I1, I2) attains its maximum of 1 only if
I1 = I2. Thus we define the loss function in Eq. (5) as

�(uj
t ,g

j) = 1 − S(uj
t ,g

j), (7)

and minimize the resulting energy. For optimization we use the L-BFGS algo-
rithm [27], which is a batch-based optimization algorithm. Using L-BFGS we
need to specify the loss function (cf. (5)) and the according gradient. The gra-
dient of Eq. (5) is obtained by applying the chain rule, i.e.

∂L(Θt)
∂Θt

=
K∑
j=1

∂�(uj
t ,g

j)
∂Θt

=
K∑
j=1

∂uj
t

∂Θt

∂�(uj
t ,g

j)
∂uj

t

, (8)

where uj
t is defined in Eq. (3). After the greedy training we continue with the

joint training, where we learn the parameters of all stages simultaneously. We
seek to minimize the loss of the last stage. Thus the energy functional for the
joint training can be formulated as
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Table 1. Quantitative inpainting results for 80 % and 90 % random missing pixels.
8
0
%

PSNR 21.5998 21.6823 22.5123 21.4210 21.8630 22.7306 22.6301
SSIM 0.7864 0.7896 0.8185 0.7781 0.8028 0.8243 0.8267
GSIM 0.7417 0.7454 0.7947 0.7451 0.7844 0.7910 0.8048

9
0
%

PSNR 20.0751 20.1172 20.4899 19.7449 20.1043 20.7618 20.6663
SSIM 0.6689 0.6721 0.7094 0.6519 0.6905 0.7128 0.7287
GSIM 0.6636 0.6660 0.7119 0.6562 0.7106 0.7072 0.7409

L(Θ1, . . . , ΘT ) =
K∑
j=1

�(uj
T ,gj) , (9)

where, similar as in (8), we use the chain rule to obtain the gradient for the jth

training sample as

∂�(uj
T ,gj)

∂Θt
=

∂uj
t

∂Θt

∂uj
t+1

∂uj
t

· · · ∂�(uj
T ,gj)

∂uj
T

for 1 � t � T. (10)

Further details on calculating the gradient can be found in the supplementary
material.

4 Experiments

When trying to evaluate inpainting algorithms one recognizes that there exists
no well-defined ground truth. This is apparent when considering inpainting prob-
lems involving large image regions, where multiple natural-looking solutions
might exist. However, in order to provide a quantitative evaluation for inpaint-
ing methods authors mainly use predefined ground truth images and compare
their methods based on the PSNR or similar measures. Within this paper we
follow this type of evaluation, and we will present a comprehensive compari-
son to state-of-the-art inpainting methods based on the TUM-image inpaint-
ing database [37,38] using the following three measures: PSNR, SSIM [39], and
GSIM [25].

We will consider two types of trained diffusion models. First, we present
generic models, that are learned on an entire dataset. The generic models are
used to restore large regions of scattered pixels (e.g. 80% and 90% random
missing pixels), and to inpaint small connected image regions. The second type
of models are specifically learned for inpainting a certain image, i.e. those models
are trained based on the uncorrupted parts of the given image. We will show
that those specific models are able to learn the texture of a given image. Thus
they are applicable for the task of texture inpainting.
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Fig. 1. Qualitative inpainting result for 80 % and 90 % random missing pixels. The
closeup views clearly show the advantage of the proposed trained diffusion (TD) model.

To optimize the involved parameters in Eq. (3) we use L-BFGS2 [27], which
minimizes the energy by iteratively approximating the inverse Hessian matrix.
For all experiments we first conduct a greedy training, where L-BFGS runs for
200 iterations in each stage. Afterwards we jointly train the parameters of all
stages. The filters kt

i are initialized with the Discrete Cosine Transform (DCT)
bases, and the influence functions are initialized as φt

i(x) = 0.01x. The joint
training is then initialized with the result of the greedy training. In the following
we will use the short notation TD(SSIM) to denote the obtained trained diffusion
model with SSIM learning. For comparison, we also apply TD(PSNR) which is
a trained diffusion model with PSNR learning.

For the generic models, the training dataset includes 400 images of size 180×
180 as in [10]. The test dataset is the TUM-image inpainting database [38],
which includes 17 images of size 640 × 480. In [38], the authors suggested four
state-of-the-art inpainting algorithms for comparison [3,16,19,40]. Algorithms
[3,19,40] cannot be used for compression type inpainting tasks. Therefore, we will
compare in this case to Laplacian, and edge enhancing diffusion-based inpainting
(EED) [15], to the learned MRF prior proposed by Chen et al. [9], to the learned

2 Used solver: http://www.cs.toronto.edu/∼liam/software.shtml.

http://www.cs.toronto.edu/~liam/software.shtml
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Table 2. Quantitative results for inpainting a small connected image region.

PSNR 35.1529 35.1700 35.5031 34.7119 35.1434 33.5746 33.1427 35.3308 35.8205 35.9084
SSIM 0.9902 0.9902 0.9907 0.9897 0.9905 0.9880 0.9864 0.9900 0.9913 0.9915
GSIM 0.9910 0.9910 0.9910 0.9909 0.9920 0.9917 0.9915 0.9919 0.9920 0.9925

Fig. 2. Qualitative results for inpainting a small connected image region.

pairwise MRF model, and to the FoE model with Gaussian scale mixtures as
experts, both proposed by Schmidt et al. [36]. For the remaining experiments we
will compare to all algorithms mentioned above if a ground truth is available.

Inpainting of 80% and 90% random missing pixels. For this experiment
we train two generic diffusion models, where we use 30 stages with 48 filters. In the
case of 80% missing pixels we use a kernel size of 7×7. Inpainting of 90% random
missing pixels is a more challenging problem, thus we allow the model to explore
more available information by increasing the kernel size to 11×11. The parameters
of the trained diffusion models are optimized in the joint training using 100 iter-
ations of L-BFGS. We evaluate the results based on the TUM-image inpainting
database [38]. Table 1 provides quantitative results in terms of the mean PSNR,
SSIM, and GSIM. We observe that the proposed TD(SSIM) model achieves the
best SSIM and GSIM results, and it is on par with the TD(PSNR) model based on
the PSNR evaluation. Figure 1 provides corresponding qualitative results, where
we also observe clearly visible qualitative improvements.
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Fig. 3. Qualitative results for texture inpainting. Besides the original image of a leaf
and the mask, that indicates the inpainting regions (blue) and the training regions
(green), the figure provides closeup views that clearly show that the TD model, that
is specifically learned for this image, is able to produce a natural-looking result close
to the result obtained with an exemplar based method (Color figure online).

Inpainting of small regions. In this experiment, we train a 30-stage generic
diffusion model with 24 filters of size 5 × 5. For the training, we randomly gen-
erate several small regions, where each region occupies about 300 connected
pixels. Quantitative result for this experiment are provided in Table 2, where
the proposed model achieves superior results compared to state-of-the-art meth-
ods. The table shows the mean PSNR, SSIM, and GSIM values for inpainting
the images of the TUM-image inpainting database [38], where the inpainting
region is defined by the mask shown in Fig. 2. We observe that the TD(SSIM)
model is able to outperform all other models, even the TD(PSNR) model based
on the PSNR evaluation. Closeup views are presented in Fig. 2, where we observe
that the proposed method better preserves the image edges than the other PDE
based image inpainting methods. The methods by Bugeau et al. [3] and Herling
and Broll [19] introduce visual artifacts, e.g. at the tire of the bike (bottom left
in the closeup views). The result of the method by Xu and Sun [40] has less
visual artifacts, but it also introduces some noise. The proposed TD model on
the other hand provides a convincing result with less artifacts.
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Inpainting of a specific texture. Now we present an experiment for texture
inpainting, where we learn the specific texture within a single given image I. The
task is to inpaint a predefined image region within the same image (e.g. the blue
regions indicated in Fig. 3). In order to train a specific diffusion model we gener-
ate K = 200 training images f j , where pixels within a mask m (Fig. 3 indicates
the training mask in green) are set to random gray values. If we initialize with
the results of linear diffusion, then we can get similar inpainted images by using
only 5 training images, cf. supplementary material. Hence we obtain the train-
ing set {f j ,gj ,mj}Kj=1 (cf. Sect. 3), where gj = I and mj = m for 1 � j � K.
Based on this training set we learn a 7 stage diffusion model with 24 filters of
size 13 × 13. Figure 3 provides some qualitative inpainting results, where only
the TD model is trained on the given image. Because of the smoothness assump-
tion and the local property of PDE based image inpainting methods, those type
of methods are in general not well suited for the task of texture inpainting.
Exemplar based image inpainting methods on the other hand are non-local and
have achieved good performance for texture inpainting [3,19,40]. Anyhow, our
experiments show that the proposed TD model is also able to perform texture
inpainting. The TD inpainting result and the exemplar based result shown in
Fig. 3 are like two of a kind.

5 Conclusion

In this paper we proposed a trained diffusion model for image inpainting. We
used a combination of a greedy training with a joint training to optimized the
parameters of the diffusion model. In the experimental section we showed that
by learning the parameters of a simple diffusion model one obtains an inpaint-
ing method, which is competitive to sophisticated and highly complex state-of-
the-art inpainting methods. The diffusion model and the learning method lay
the foundation of pleasant inpainted results. In principle, PDE based inpaint-
ing methods are known to be inapplicable for texture inpainting. However our
experimental evaluation revealed the somehow surprising result, that the pro-
posed trained diffusion model can be used for texture reconstruction. We hope
that this work raises awareness for the potential of learned PDE based methods
for image inpainting. In future work, we are interested in inpainting larger image
regions, in compression applications with lower point densities (e.g. 5%), and in
training a unified diffusion model for different image inpainting tasks.
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Abstract. Rectifying the orientation of scanned documents has been
an important problem that was solved long ago. In this paper, we focus
on the harder case of estimating and correcting the exact orientation of
general images, for instance, of holiday snapshots. Especially when the
horizon or other horizontal and vertical lines in the image are missing, it
is hard to find features that yield the canonical orientation of the image.
We demonstrate that a convolutional network can learn subtle features
to predict the canonical orientation of images. In contrast to prior works
that just distinguish between portrait and landscape orientation, the
network regresses the exact orientation angle. The approach runs in real-
time and, thus, can be applied also to live video streams.

1 Introduction

Sometimes, taking a picture can take time. Everybody in front of the lens is
smiling happily, but while the amateur photographer tries to get all lines per-
fectly horizontal struggling with the lens distortion, the subjects of interest start
to become a little uneasy. Would it not be nice, if one could just press the button
and the orientation of the picture would be corrected automatically?

The inertial sensors, which are already built into modern cameras to correct
the orientation of pictures in 90◦ steps, could potentially do the job, but this
function is usually not implemented. In this paper, we present a way to auto-
matically correct the image orientation based just on the visual data. It can be
applied as a post-processing step to pictures taken with any camera, including
older models without inertial sensors.

Orientation correction is a long standing task in document analysis [2,3,9,
13,16,21]. However, all these methods exploit the special structure of document
images, such as text layout in lines and precise shapes of letters. In the general
setting, the task is harder, since important features, such as text or picture
boundaries are not available and even image features, such as the horizon or
other dominant horizontal or vertical lines in the scene can be missing. Figure 1
shows an example, where traditional line-based approaches will most likely fail.

In such cases, the result depends on very subtle features that require some
understanding of the image content. In the last three years, deep convolutional
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Fig. 1. Automatic orientation adjustment. The rotation angle of the input image is
estimated by a convolutional network. With this information the image can be adjusted
to its canonical orientation. In this example, there are hardly any useable horizontal
or vertical lines. The existing lines are in fact confusing.

networks have been shown to be very good at learning such features. The initial
success was on classification tasks [8], but also other problems that require the
use of initially unspecified features, such as depth map prediction from single
images, have been approached successfully with convolutional networks [4].

In this paper, we train a convolutional network to predict the orientation of
an image. We consider the problem at three difficulty levels. In the easiest setting,
we assume that the rotation is at most ±30◦. The task becomes more difficult
if the rotation can be between −45◦ and +45◦, as this can lead to confusion
between horizontal and vertical lines and, consequently, to an ambiguity between
the landscape and portrait orientation. The most difficult setting is orientation
estimation without any prior knowledge about the coarse orientation, i.e., all
angles (0–360◦) are equally likely.

Training powerful, deep convolutional networks used to require a large
amount of annotated training data. Often this is a strong restriction as the col-
lection of such data can be very tedious. For the present task, however, training
data can be generated very easily in almost arbitrary amounts, since any unla-
beled set of images can serve as training set. Training samples can be generated
by just rotating these images by random angles.

We demonstrate that the proposed networks successfully learn to predict
the orientation with an average accuracy of 3◦ in the setting with ±30◦. It
outperforms baselines built upon Hough transform or Fourier transform by a
large margin. The network runs in real time on a GPU. Hence, it can also be
used to stabilize a live video stream. Experiments with a webcam show that the
network generalizes and has not learned to make use of potential artifacts that
result from the synthesized training and test set.

2 Related Work

We are not aware of work on precise estimation of the orientation of general
natural images. Existing methods either reduce the domain of application or
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they do not predict the precise angle but only classify between a restricted set
of standard orientations.

Some methods explicitly use fine structure of the image to estimate the rota-
tion. Wei et al. [20] make use of interpolation artifacts introduced by applying
rotation to digital images. However, this method would not work for images
which were not taken upright. Solanki et al. [15] estimate the rotation of printed
images by analyzing the pattern of printer dots. Clearly, this method does not
apply to images taken with a digital camera.

Horizon detection [5,10] is a special case of image orientation estimation.
However, the horizon is not visible in most photos.

In other works the continuous-valued prediction task has been reduced to
classification by restricting the rotations to multiples of 90◦. This problem can
be solved fairly efficiently [17,19].

While we are not aware of applications of neural networks to estimating ori-
entation of general images, there has been work on pose estimation with neural
networks, in particular head and face orientation estimation [12,14,18]. Interest-
ingly, the following networks trained to estimate orientation of arbitrary images
also work well for face images.

3 Experimental Setup

3.1 Data

Ideally, for training a network to predict orientation, one requires a dataset of
natural images annotated with how much their rotation angle deviates from
the upright orientation. In theory it would be possible to collect such a dataset
using a camera with a sensitive tilt sensor like an accelerometer. However, such
a procedure would be time-consuming and expensive, while being susceptible to
accelerated motions of the camera.

Hence, we rather use the publicly available Microsoft COCO dataset [1] as
training set and apply rotations artificially. This makes data collection trivial,
but the resulting data is noisy: Microsoft COCO includes tilted images and
images with undefined orientations. For the test set we discarded those images
(see examples in Fig. 2). While this procedure is infeasible for the large training
set, our results show that a network trained on these noisy data still performs
very well.

Augmentation. To prevent overfitting, we perform image augmentation, i.e., we
apply random transformations to input samples during network training on the
fly. We use translations (up to 5 % of the image width), brightness adjustment
in the range [−0.2, 0.2], gamma adjustment with γ ∈ [−0.5, 0.1] and Gaussian
pixel noise with a standard deviation in the range [0, 0.02].

Manually verified test set. Images in the COCO dataset are not always perfectly
straight. In order to precisely evaluate the performance of our method and com-
pare it to the baselines, we manually selected a subset of 1030 images from the
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Fig. 2. Examples of images that were dismissed for the test set. We discarded slanted
images, framed images and images which do not have a well-defined orientation.

COCO validation set. For these images we ensured that they are correctly ori-
ented. Moreover, we labeled test images as “easy” if they contained significant
vertical or horizontal lines, for example, buildings, horizon, walls or doors. Other
images we labeled as “difficult”. In total there are 618 “easy” images and 412
“difficult” ones. Figures 3, 5 and 6 show several example test images, both “easy”
and “difficult”.

3.2 Tasks and Networks

We consider orientation estimation at three difficulty levels: ±30◦, ±45◦, and the
full 360◦. We call the corresponding networks trained for these tasks Net-30, Net-
45, and Net-360. For all three tasks we built upon the AlexNet architecture from
Krizhevsky et al. [8] implemented in Caffe [6] and pretrained on ImageNet. This
architecture consists of 5 convolutional layers, followed by 3 fully connected lay-
ers. After each fully connected layer, a rectified linear unit is used as nonlinearity.
Additionally normalization and dropout are applied. For more details see [8].

Using ImageNet pretraining worked better than training the network from
scratch despite the good availability of training data for our tasks. It seems that
the class labels from ImageNet help learn semantic features that are useful for
the task but too difficult for the network to learn from the orientation objective.
After pretraining, all fully connected layers were initialized with Gaussian noise.
Moreover, the last prediction layer of the AlexNet was replaced by one with two
output units. We chose two output units to distinguish clockwise and counter-
clockwise rotations. The first output is to be active for positive rotations, while
the second one is active for negative rotations. Given an angle α, the desired
output vector is [max(0, α),max(0,−α)]. We trained the network with L1 loss.

We also set up a network with 4 class outputs corresponding to 0, 90, 180,
and 270◦. It is trained with a 4-way softmax output and cross-correlation loss.
This network can be used for the conventional task of distinguishing landscape
from portrait and upside-down images. We used this network to make a coarse
prediction in the 360◦ task before estimating the exact angle with the regression
architecture described above.

All of the networks were trained using the Adam optimization method [7]. The
momentum parameters we fixed as recommended in [7] to β1 = 0.9 and β2 = 0.999.
As the main learning rate we set λ = 1e−4 and then decrease it in steps until we
reach λ = 2e−7. Additionally we use a slow start, i.e. starting with a low learning
rate λ = 1e−6 and increasing it until the main learning rate is reached.
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3.3 Baseline Methods

We did not find prior work on precisely estimating the orientation of natural
images. Hence, for comparison we evaluated three simple baselines that are built
upon the “Straighten image” function in Matlab Central [11] and use two tra-
ditional computer vision techniques: Hough transform and Fourier transform.
All methods are based on dominant gradient or line orientations to straighten
the image.

In the first method, which we refer to as Hough-var, edges are detected with a
Prewitt filter. We then perform a Hough transform and compute the variance of
each column in the Hough space, that is, for each angle we compute the variance
of all values corresponding to this angle. The Hough space is folded to a range of
90◦ such that angles with the same value modulus 90 contribute to the same bin.
For the Hough space we chose a bin size of 0.5◦. The angle estimate is computed
as the angle with maximum variance.

Also the second method, Hough-pow, uses the Hough transform. We use the
Canny edge detector and then apply the Hough transform. We raise all the values
to a power α (we found α = 6 to work well in the experiments) and sum each
column. Again, after folding the space to a range of 90◦, the estimated angle is
the one for which this sum takes the largest value.

Input

Hough
pow

Net-30

GT

Fig. 3. Orientation adjustment with Net-30 and Hough-pow. Although dominant hor-
izontal and vertical lines are missing in most of these examples, the network predicts
the correct angle.
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The third method makes use of the fast Fourier transform (FFT), we hence
refer to it as Fourier. After performing FFT, we again fold the space such that
rotations with a difference of 90◦ match. For each angle, we then sum all mag-
nitudes corresponding to this angle to obtain its score. The angle with the max-
imum score determines the estimated image orientation.

4 Results

We evaluated the networks on the three subtasks and compared them quanti-
tatively to the above mentioned baselines. Additionally we show some qualita-
tive results, demonstrating strengths as well as limitations of the approach. As
an example application, we use an orientation-estimating network for real-time
video stabilization.

4.1 Fine Orientation Adjustment

We first evaluated the scenario in which the rough image orientation is known,
and only fine adjustment, in the range of [−30; 30] degrees or [−45; 45] degrees,
is needed. Table 1 shows the average error in degrees for the test set. The aver-
age error of the network is much lower than that of the three baselines. The
histograms in Fig. 4 reveal that the better performance is mainly because the
network fails far less often in hard cases when traditional line features are absent.
For Net-30, the average error for the ±30◦ range reaches the accuracy level of the
training data set. Allowing for up to ±45◦ makes the task harder, since horizon-
tal and vertical lines can now be confused. Figure 4b reveals that the accuracy
is the same for good cases, but there are more failure cases at the far end of
the histogram due to portrait vs. landscape confusion (please use zoom in the

Table 1. Average absolute errors of the estimated angles. The networks clearly out-
perform the baseline methods and achieve very good accuracies on the fine orientation
adjustment tasks. The full orientation estimation task is significantly harder. Here it
helps to first classify the coarse orientation succeeded by a fine adjustment.

Task Net-30 Net-45 Net-360 Net-rough+45 Hough-var Hough-pow Fourier

±30◦-all 3.00 4.00 19.74 19.64 11.41 10.62 10.66

±30◦-easy 2.17 2.83 19.48 17.90 8.44 7.04 8.64

±30◦-hard 4.26 5.75 20.12 22.24 15.88 15.99 13.69

±45◦-all - 4.63 20.64 19.24 16.92 13.06 16.51

±45◦-easy - 3.24 21.26 19.29 14.08 9.01 13.32

±45◦-hard - 6.71 19.70 19.15 21.16 19.13 21.28

±180◦-all - - 20.97 18.68 - - -

±180◦-easy - - 20.29 18.70 - - -

±180◦-hard - - 21.98 18.65 - - -
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Fig. 4. Error histograms for the three networks on the ±30◦, the ±45◦, and the full
orientation estimation task, as well as for the Hough-pow baseline on the ±45◦ task.
The networks fail less often than the baseline. Note that Net-30, Net-45 and Net-360
are run on progressively harder tasks.

electronic version of the paper). Figure 3 shows some examples for the orienta-
tion adjustment. Visually, the results look very good. In Fig. 5 we show cases
that caused the largest errors. The optimal rotation for most of these examples
is also hard to decide for humans.

4.2 Orientation Estimation with Full Rotations

We also evaluated the case where the given image is rotated arbitrarily between
0 and 360◦. We tested two different approaches to solve this problem. First, we
applied a network similar to those from Sect. 4.1 with two output units. Since a
direct prediction of the angle as a scalar would break continuity at one point of
the cycle, the network predicts the cosine and sine of the angle and the actual
angle is then obtained by the arc tangent. In a second approach, we predict
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Input

Hough
pow

Net-30

GT

Fig. 5. Failure cases with Net-30 (samples with particularly large errors between 14
and 38◦). For comparison we also show the Hough-pow results. Even for humans it is
hard to decide on the optimal orientation.

a 90◦ rough orientation followed by a fine orientation adjustment in the range
[−45, 45] degrees.

Table 1 reveals that the second approach performed better. In general, the
full rotation task comes with significantly larger average errors than the fine
adjustment. The histograms in Fig. 4 reveal that this is mostly due to failure
cases with very large errors. The left part of the histogram of Net-360 is still
comparable to those of the other two networks. Figure 6 shows some examples for
Net-360 including one larger failure case and one slight inaccuracy. It is worth
noting that, in order to make use of semantic information such as faces, the
network has to recognize faces although they can be upside-down in the input
image.

4.3 Video Stabilization

A single forward pass of our networks takes 45 ms at an input resolution of 280×
280 pixels on an NVIDIA GTX Titan GPU, which enables us to use it in real-time
applications like video stabilization. Our video stabilization implementation can
be used with any webcam and shows the original as well as the rectified image
live on the screen. We used Net-45 in this experiment.
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Input

Net-360

GT

Fig. 6. Results with Net-360. Top row: input image. Middle row: adjusted output.
Bottom row: ground truth. Despite large rotations, the network can often estimate
the correct angle.

(a) (b)

(c) (d)

Fig. 7. Results of real-time video stabilization with Net-45. Images come in pairs: input
on the left and the straightened image on the right. (a) and (b) demonstrate how the
angle estimation flips at 45◦, because the network expects angles between ±45◦. In (c)
and (d) the network predicts the correct orientation, even though the images do not
contain useful vertical or horizontal gradients.
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The network successfully generalizes to images captured with the webcam.
Some examples are shown in Fig. 7, and the reader is referred to the supplemen-
tary video for more examples. The fact that the network works with raw webcam
images proves that it does not make use of interpolation artifacts which appear
when artificially applying rotations. The network was trained to estimate rota-
tions not larger than 45◦, hence when presented with larger rotations, it jumps
to the 90◦-rotated image (Fig. 7(a) and (b)). Interestingly, the network works
well even in the absence of strong vertical and horizontal edges, successfully
retrieving upright images; see Fig. 7(c) and (d).

5 Conclusions

We have presented an approach based on convolutional networks that can predict
the orientation of an arbitrary natural photograph. This orientation prediction
can be used to adjust the image to its canonical orientation. The use of convo-
lutional networks is advantageous for this task, since large numbers of training
samples can be generated synthetically and the network is able to learn subtle
contextual features that allow it to estimate the correct orientation even when
straightforward features, such as vertical or horizontal lines are not present in
the image. The network runs in realtime, which allows us to apply it to live video
streams. In future work the network architecture will be optimized to run in real-
time on smaller graphic chips (such as the NVIDIA Tegra), which would make
the approach also applicable to orientation estimation in quadcopters, providing
acceleration-independent measurements besides IMUs.
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Abstract. Ablation guided by focal impulse and rotor mapping (FIRM)
is a novel treatment option for atrial fibrillation, a frequent heart arrhyth-
mia. This procedure is performed minimally invasively and at least par-
tially under fluoroscopic guidance. It involves a basket catheter compris-
ing 64 electrodes. The 3-D position of these electrodes is important dur-
ing treatment. We propose a novel model-based method for 3-D recon-
struction of this catheter using two X-ray images taken from different
views. Our approach requires only little user interaction. An evaluation of
the method found that the electrodes of the basket catheter can be recon-
structed with a median error of 1.5 mm for phantom data and 3.4 mm
for clinical data.

1 Introduction

Atrial (Afib) fibrillation is one of the most common heart arrhythmia. In par-
ticular, for persistent Afib, ablation guided by focal impulse and rotor map-
ping (FIRM) has been proposed as an alternative to traditional treatment
options [11]. To perform a FIRM-based ablation procedure, a multielectrode
basket catheter is placed first in the right atrium and then into left atrium dur-
ing the case. The basket catheter’s shape resembles an ellipsoid when imaged
under X-ray (see Fig. 1). It has eight splines, each spline comprising eight elec-
trodes. One marker electrode can be identified by its larger size. The catheter is
used to record the electrical signals in the atria. Using the Topera RhythmView
3-D electrophysiological mapping system (Topera Inc., Palo Alto, CA, USA),
the position of electrical anomalies, so-called rotors can be found. This position
is determined relative to the splines and the electrode positions of the basket
catheter and indicates endocardial substrate maintaining the arrhythmia, that
may be ablated. A method is required to remap the rotor position from its bas-
ket catheter-based coordinate system to the anatomical positions in the left and
right atrium.

c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 379–389, 2015.
DOI: 10.1007/978-3-319-24947-6 31
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Fig. 1. Basket catheter, displayed left, as seen in two X-ray views taken from different
directions. The basket catheter comprises eight splines carrying eight electrodes. Each
spline has a marker electrode highlighted with ellipses (right).

As of now, remapping and associated catheter navigation is performed using
the EnSite Velocity mapping system (St. Jude Medical, St. Paul, MN, USA).
However, the use of the EnSite system is problematic for at least two reasons.
First, current healthcare economics leave very little financial room to use a sec-
ond mapping system during an Afib ablation procedure. Second, it is known
that an impedance-based localization system such as Ensite Velocity may suffer
from electrical field distortions [6]. As an alternative to the mapping system, we
propose a method based on two X-ray images taken from different directions to
detect and reconstruct the basket catheter in 3-D. This is a challenging task as
the catheter is usually deformed by the atria. This results in a complex structure
compared with other electrophysiological catheters such as the coronary sinus
catheter and the circumferential mapping catheter [9].

1.1 Related Work

Image based 3-D catheter detection or reconstruction methods require usually
the detection of features, e.g., the center line or electrodes of the catheter. The
3-D catheter can then either be generated bottom up from these features, or,
in a top-down manner, i.e., an initialization of 3-D curve can be approximated
towards the features. Hoffman et al. [9] proposed to use a bottom up strategy
which detects the center line of a catheter in two different views first. Then it
uses epipolar geometry to reconstruct an 3-D point cloud. They also proposed
a method to find the correct order of a subset of points in the point cloud to
reconstruct the catheter. Using 3-D curve segments as the feature rather than a
3-D point cloud, Delmas et al. [5] proposed a method to estimated the optimal
ordered subset of 3-D curve segments and applied constraints to reconstruct the
catheter. Using top-down strategy, Mauri [3] proposed a method using B-snakes
to formulate the catheter detection and reconstruction as an energy minimization
problem. Unfortunately, none of these approaches can be applied to our problem
as the basket catheter has a complex structure. Furthermore, it is not always
possible to extract the basket catheter splines as the contrast can be very low.
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We present a top-down approach to reconstruct the shape of a basket catheter
in 3-D using two 2-D X-ray images acquired from different directions. For recon-
struction of the rather complex structure of the basket catheter, we propose to
use a statistical shape model. The model is adapted to the electrodes and wires
extracted in two 2-D images. Our method has been designed for the basket
catheter, but can inspire reconstruction methods for other complex catheters.

2 Method

The method to detect the basket catheter comprises three steps. In the first
step, we train the shape model of the basket catheter based on annotated ground
truth data. In the second step, we detect the electrodes and splines of the basket
catheter in the X-ray images taken from two different viewing directions. Using
these 2-D points, we reconstruct all possible 3-D electrode candidates using tri-
angulation. In this step, the user is also asked to specify the start and the end of
the basket catheter at least one of the marker electrodes. The marker electrodes
determine the order of the catheter splines. In the last step, the initialization of
the model will be performed and the model will be matched to the extracted fea-
tures in the 2-D images. A different, possibly more intuitive approach, may have
been to assign electrodes to splines followed by 3-D reconstruction. However, it
might be difficult to compute this assignment, especially if splines connecting
the electrodes are not well visible, and an exhaustive search would possibly take
too long to execute in a clinical environment.

2.1 Basket Catheter Spline Model

We describe each single spline of the basket catheter using a statistic shape
model [4]. The choice to use a shape model was motivated by the desire to
constrain the basket catheter reconstruction problem as much as possible yet
being able to use prior knowledge about the expected deformation. The model is
trained using the 3-D electrode positions of M splines which origin from several,
differently deformed catheters. We combine the basket catheter’s start point
pi1 ∈ R

3, eight electrodes pi2, . . . ,pi9 and the basket’s end point pi10 of the ith

spline in a vector x′
i

x′
i =

(
pT

i1, . . . ,p
T
ik, . . . ,pT

i10

)T
(1)

Such a description is established for each of the M basket catheter splines.
To build the statistical shape model, the data needs to be normalized first. The
normalization involves a rotation and translation in 3-D, scaling is not necessary,
as the size of the catheter is standardized. We normalized the data x′

i so that the
start point pi1 and the end point pi10 lie both on the y-axis. The middle point
between these two points is defined as origin. Furthermore, during alignment we
make sure that the eight electrodes pi2, . . . ,pi9 have minimum distance to the
X − Y plane and that their x-coordinates are positive. So, the alignment for
point pik in ith catheter spline can be formulated as

xik = RY
i Ri(pik + ti) (2)
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where xi =
(
xT

i1, . . . ,x
T
i10

)T ∈ R
30 denotes the normalized and aligned points, ti

and Ri denote the translation and rotation for normalization, and RY
i denotes

the rotation along the Y axis for alignment. Then we follow the steps from
Cootes et al. [4], calculate the mean shape x̄, the deviation dxi from the mean
and the covariance matrix Σ as

x̄ =
1
M

M∑
i=1

xi dxi = xi − x̄ Σ =
1
M

M∑
i=1

dxidxT
i (3)

By calculating an eigenvalue and eigenvector decomposition of the covariance
matrix Σ, we get unit eigenvectors vk (k = 1, . . . , 30) with corresponding
eigenvalues λk in descending order. Using the first Nm modes of variation
V = (v1, . . . ,vNm) and the corresponding weight factors b′ = (b1, . . . , bNm),
we can generate new shapes x′ of the model as

x′ = x̄ + Vb′ (4)

In the remainder of the paper, we use Nm = 3 modes of variations.

2.2 Electrode and Spline Detection

We detect the electrodes in the image I(x, y) using the determinant of the Hessian
matrix H [10] of a scale space representation

L(x, y;σ2) = I(x, y) ∗ G(x, y;σ2) (5)

obtained by a convolution with a Gaussian kernel G(x, y;σ2) of size σ. To detect
blobs of different sizes, different values of σ should be chosen. Steger [12] stated
that the center point of a bar-shaped profile with a width of 2w can be extracted
when σ ≥ w/

√
3. With prior knowledge of electrodes’ dimensions wp and the

projection geometry information of the C-arm, we can estimate a minimal scale
σmin. Let m be the perspective magnification factor of the X-ray system and sp
be pixel spacing. Based on the length wim of the electrode as it appears in the
X-ray image (in pixels), we select the scale as

σmin =
wim

2
√

3
with wim =

wp · m

sp
(6)

We use two different scales, σmin and 2σmin, to calculate the determinant of the
Hessian matrix for each pixel. Then we apply a threshold on the determinant of
the Hessian to obtain an electrode mask image. The threshold level is selected
such that a certain percentage of image pixels is extracted as the number of
image pixels covered by electrodes is roughly known in advance. We then select
the possible positions of the electrodes denoted as eAi and eBi in image A and
B. Therefore, the local maximum of the determinant of the Hessian in each
connected component of the mask image is selected as electrode center. Finally,
the user is required to mark the start point p̃A

1 , p̃B
1 and the end point p̃A

10, p̃B
10
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of the basket catheter by clicking on them in the 2-D images of plane A and B,
respectively. Additionally, either one or eight spline marker points are marked
in both views. The 3-D position of the start point p̃1, end point p̃10 and the
marker electrode(s) are obtained using triangulation.

2.3 Point Cloud Generation

We use epipolar geometry to search for correspondences between electrodes in
associated two-view images. When searching for correspondences, we introduce
some margin for acceptance. This acceptance range depends on the X-ray system
used. For a bi-plane system, the acceptance range will be only a few pixels to
compensate the blob detection error due to limited precision or residual camera
calibration error. For mono-plane systems, patient motion might occur between
the two acquisitions from different views. Therefore, we accept a higher margin
and apply additionally a motion compensation using the marked 2-D catheter
start points p̃A

1 , p̃B
1 and the marked 2-D endpoints p̃A

10, p̃B
10 of image plane A and

B, respectively. This motion compensation is applied to the projection matrix
PA associated with plane A by multiplying it with a 3-D translation matrix
T =

(
1 | (tx, ty, tz)T

)
. The T are selected such that the distance between the

projection rays from p̃A
1 and p̃B

1 and the distance between the projection rays of
p̃A
10 and p̃B

10 is minimal. For each possible point correspondence, a 3-D point is
triangulated [8].

Finally, the catheter splines are extracted using a vesselness filter [2,7]. After
applying a threshold, distance maps IAds and IBds to the splines in image A and
B, respectively, are computed.

2.4 Model Initialization and Adaption

Length Adaption. Using the 3-D start point p̃1 and the end point p̃10 marked
by the user, we perform an initialization of all single splines of the basket catheter
model. Let p̂k1(b

′) and p̂k10(b
′) be the start point and end point of kth spline

when using b′ as parameters. We select the parameter vector bk = (bk1, bk2, bk3)T

of the kth spline such that ‖p̃1 − p̃10‖ = ‖p̂1(b
′) − p̂10(b

′)‖. As this is an under-
termined problem, we propose two different ways of adding constraints. One is
called most probable model which is estimated by optimizing following equation

bk = argmin
b′

‖p̃1 − p̃10‖ − ‖p̂1(b
′) − p̂10(b

′)‖ − a0 · N (b′;0,Σ) (7)

For the second approach, we manually define a set of different ratios between
bk1, bk2 and bk3. With these extra constraints, the problem becomes determined
and can be solved. We use these parameters for all eight splines and distribute
them with equal angle spacing around the axis defined by the start point p̃1

and the end point p̃10 to get a model of the whole basket catheter. As shown
in Fig. 5, the shape of the model can be very different subject to the same start
and end point.
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Fig. 2. Different possible shapes with same start point p̃1 and end point p̃10

Rotation Initialization. Starting with this initial model, we also need to
estimate the rotation α = (α1, . . . , α8) of each single spline. In case we have
eight marker electrodes as input, the rotation for all single splines is computed
such that their distance to their respective marker electrode is minimal. With
one marker electrode input, the whole basket catheter is rotated such that the
distance of the marker electrode to its respective spline is minimal. Based on the
result, we estimate further the rotation of the other remaining splines. We define
therefore an energy-term D to describe the difference between the projected
model and the extracted features in both images as

D(b,α) =a1 ·
(∑

i

min
k

d
(
eA

i ,SA
k (bk, αk)

)
+

∑
i

min
k

d
(
eB

i ,SB
k (bk, αk)

))

︸ ︷︷ ︸
Distance of each detected electrode to projected splines of the model

a2 ·
(∑

i

min
j,k

d
(
eA

i ,pA
k,j(bk, αk)

)
+

∑
i

min
j,k

d
(
eB

i ,pB
k,j(bk, αk)

))

︸ ︷︷ ︸
Distance of each detected electrode to projected electrodes of the model

a3 ·
⎛
⎝∑

k,j

min
i

d
(
eA

i ,pA
k,j(bk, αk)

)
+

∑
k,j

min
i

d
(
eB

i ,pB
k,j(bk, αk)

)
⎞
⎠

︸ ︷︷ ︸
Distance of each projected electrode of the model to detected electrodes

(8)

where pA
kj ∈ R

2 denotes the projection of the jth electrode on the kth spline in
the image A. The projection of the complete kth 3-D spline in image A is denoted
as SA

k . Their projections in image B are denoted by pB
k,j and SA

k , respectively.
The rotation is estimated by minimizing the energy D

α = argmin
α1,...,α8

D(b, α1, . . . , α8) (9)

Outlier Reduction. The initialization described at the beginning of this
section assumes that the basket catheter is symmetrical, i.e. the parameter vec-
tor bk is the same for each spline. To cover also asymmetrical cases, we will
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Algorithm 1. Iterative Outlier Reduction and Model Estimation
1: Compute for all electrodes eA

i detected in image plane A the set C(eA
i ) of corre-

sponding electrodes in image B
2: for each iteration step t = 1 : N do
3: for each eA

i do
4: find the two splines S1

t , S
2
t for which their projection S1A

t , S2A
t in image A

is closest to eA
i

5: compute their projections S1B
t , S2B

t in image B
6: delete from C(eA

i ) the point ck which maximizes min(d(ck,S
1B
t ), d(ck,S

2B
t ))

7: end for
8: reconstruct a new 3-D point cloud using the remaining correspondences
9: estimate the model Mt with respect to the new point cloud

10: estimate the rotation αt

11: end for

use the 3-D electrode point cloud to adapt the initialization. As we have poten-
tially many outliers in the 3-D point cloud, we will perform an iterative outlier
reduction and model estimation algorithm. This Algorithm, which is described
in Algorithm 1, assigns 2-D electrodes to 3-D splines to detect and eliminate
spurious correspondences.

Image-Based Model Adaption. Finally, we adapt the model such that it
fits to both images by altering the weighting b = (bT

1 , . . . , bT
k ) and rotation

α = (α1, . . . , α8). We introduce therefore an additional energy term

R(b,α) = a4 ·
∑

k

N (bk;0,Σ)

︸ ︷︷ ︸
Model likelyhood

+ a5 ·
∑

k

IAds(S
A
k (bk, αk)) + IBds(S

B
k (bk, αk))

︸ ︷︷ ︸
Distance of projected splines to detected 2-D splines

(10)
for the final optimization of b and the rotation α

b,α = argmin
b,α

D(b,α) + R(b,α) (11)

3 Evaluation and Results

For evaluation, we used three different setups. In the first case, the basket
catheter was deformed by tape and put into a bottle. A total of 18 different exper-
iments were performed by inserting the basket catheter such that it assumed a
different shape each time. Then, a C-arm CT was acquired. As a result, 18 3-D
volumes were generated, each containing a differently deformed basket catheter.
Also, a series of associated X-ray images taken from different angles was acquired
for each volume. In each of the 18 volumes, the positions of the 3-D electrodes
were annotated and served as ground truth. For evaluation, two X-ray images,
taken from perpendicular view directions, were selected for each of the 18 basket
catheter placements. They were taken as the input for our algorithm.
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Fig. 3. The coordinates of a subset of the annotated electrodes, normalized and aligned
with mean shape of the basket catheter spline model (shown left) and the first mode
of variation (displayed right). As most of the variation spreads in the X-Y plane, we
projected the mean shape and the variation of the basket into the X-Y plane.

For the second setup, the catheter was placed into a thorax phantom. Then
we took four bi-plane image pairs with perpendicular viewing angles at different
dose settings. Unlike in the previous experiment, in this case the basket catheter
was identically deformed. We used this set to evaluate the performance of our
approach with respect to different noise levels.

We also included one clinical data set in the evaluation taken from a mono-
plane system. Here, the basket was placed in the right atrium along with other
electrophysiological catheters. The ground truth positions of the electrodes of
the basket catheter were obtained, both for the bi-plane setup and the clinical
data, by triangulation of annotated electrodes in both views.

3.1 Result of the Spline Model Training

For training of the basket catheter model, we used the 3-D electrode coordinates
annotated from the C-arm CT data sets. For evaluation using the C-arm CT
data set, a leave-one-out crossvalidation was performed. The resulting model
and the first mode of variation is shown in Fig. 3.

3.2 Basket Catheter Reconstruction Results

C-arm CT Data Set. The results of the evaluation using the C-arm CT
data sets are shown in Fig. 4. We also investigated how marking all instead of a
single spline marker electrode and outlier reduction changed our outcomes. We
found that the median error was between 1.7 mm and 1.5 mm. The maximum
errors are 24.2 mm and 32.2 mm for single marker annotation without and with
outlier reduction, respectively. The respective maximum errors when all markers
are annotated are 15.3 mm 24.1 mm. However, we did also encounter outliers
of up to 32.2 mm depending on the kind of information provided by the user.
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Fig. 4. Evaluation result of C-arm CT data with different electrode selection strategies.
The median errors are 1.7 mm and 1.6 mm for single marker annotation without and
with outlier reduction, respectively. The respective median errors when all markers are
annotated are 1.6 mm 1.5 mm. Results with an error of a 1.5 inter-quartile range above
the median error are not shown in the figure.

Fig. 5. Images of basket catheter in phantom and overlay of the reconstructed basket
catheter. The X-ray dose and image quality improved from left to right.

Fig. 6. Evaluation result with biplane X-ray data acquired at different dose levels.
Image A has the poorest SNR, image D has the best SNR.

Comparing different user interactions, we see that the result improved somewhat
when the positions of the eight marker electrodes were provided. Unfortunately,
the improvements were limited, both for knowing all marker electrodes and also
when applying outlier reduction methods.

Bi-Plane Views with Different X-Ray Dose. Figure 2 shows qualitative
results using images from the bi-plane data set, quantitative results are presented
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in Fig. 6. The result shown in Fig. 6 indicate that our method performed better
as the signal to noise ratio improved, i.e., as the X-ray dose was increased. This
experiment shows that our method can also perform well at a low SNR.

Clinical Data. In Fig. 7, we show the clinical data with the basket catheter in
the right atrium. In this case, we used single marker selection without outlier
reduction. The result is also shown in this figure. With our method, we reached
a median error of 3.4 mm and a maximum error of 12.5 mm, respectively.

Fig. 7. Left anterior oblique (LAO) 45◦ view and right anterior oblique (RAO) 30◦

view of the basket catheter in the right atrium.

4 Discussion and Conclusion

When comparing a 3-D representation of a basket catheter computed by our
method from two views to its counterpart generated using C-arm CT, we found
a median error below the clinical important threshold of 3 mm [1]. Unfortu-
nately, we also encountered large maximum errors. They were caused by heavily
deformed and twisted basket catheters in the data set, these cases are not very
clinically relevant as the basket catheters would need to be repositioned in such
a situation to obtain a signal reading that can then be reliably processed fur-
ther. The performance of outlier reduction is also restricted as in some case,
some of the electrodes are positioned where multiple splines cross. In such a
case, it is also hard for the algorithm to decide which spline the electrode should
be assigned to. This problem could be approached by using a consensus based
method in the future. In the clinical data set, however, the result was less sat-
isfactory with a median error of 3.4 mm. This error is the consequence of very
low-dose data acquisition resulting in X-ray images with a low SNR. In such a
situation our electrode detection algorithm identifies many potential electrode
positions which do not belong to the basket catheter. Any overlap of the basket
catheter with other catheters is also problematic. In such a case, some elec-
trodes of the basket catheter might not be visible and additional electrodes may
be introduced that are not associated with the basket catheter. More work on
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robust basket electrode detection is needed to improve the result. Furthermore,
the outlier reduction algorithm should be extended to assign e.g. probabilities
to point correspondences. This which might also improve the result.
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Abstract. Automatic registration of brain MR images is still a challeng-
ing problem. We have chosen an approach based on landmarks matching.
However, manual landmarking of the images is cumbersome. Existing
algorithms for automatic identification of pre-defined set of landmarks
usually require manually landmarked training bases. We propose the reg-
istration algorithm that involves automatic detection of landmarks with
the use of only one manually landmarked template image. Landmarks are
detected using Canny edge detector and point descriptors. Evaluation of
four types of descriptors showed that SURF provides the best trade-off
between speed and accuracy. Thin plate spline transformation is used
for landmark-based registration. The proposed algorithm was compared
with the best existing registration algorithm without the use of local fea-
tures. Our algorithm showed significant speed-up and better accuracy in
matching of anatomical structures surrounded by the landmarks. All the
experiments were performed on the IBSR database.

1 Introduction

Registration of magnetic resonance images (MRI) of human brain is a problem
from the field of image matching. Usually this problem is formulated in terms
of finding such a transformation of one image that makes it the most similar to
the other image. Brain MRI registration has numerous applications in practice.
For example, comparison of brain MR images of different subjects or one sub-
ject at different moments allows observing anatomical changes caused by some
pathological process. Matching an input brain MR image with an atlas, i.e. an
image along with its manual anatomical labelling, implies finding such a trans-
formation of the atlas image that makes it the most similar to the input image,
so that it is possible to transfer the labelling from the atlas to the input image.
Currently, it is the most promising approach to brain MRI segmentation into
anatomical structures [6].

The algorithms for brain MRI registration can be classified by different crite-
ria. Firstly, registration can be linear or nonlinear. Linear registration algorithms
use linear transformations, affine or rigid, and allow compensating for general
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 390–399, 2015.
DOI: 10.1007/978-3-319-24947-6 32
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Fig. 1. Example of a manually landmarked brain MR slice

differences in scale, position, etc. These algorithms are fast, but they are not
able to match anatomical structures locally. Thus, they are usually used as the
first step of the registration process. One of the most widely used algorithms of
this group is implemented as FSL FLIRT tool [21]. Another group of registra-
tion algorithms involves nonlinear transformations of the images that can locally
refine image matching result after coarse linear registration. Numerous existing
algorithms varying by the type of transformation used, image similarity metric
and regularization method are outlined and compared in the review [14]. Accord-
ing to [14], Symmetric Normalization algorithm (SyN) [4] that uses nonlinear
image transformations called diffeomorphisms, is the most accurate. Comparison
of MRI registration methods [10] confirms that the method is state-of-the-art.
However, SyN is one of the most computationally expensive methods, requiring
a lot of time and memory.

The second criterion for classification of registration algorithms splits them
into two groups: intensity-based algorithms and feature-based algorithms.

The algorithms of the first group try to find the image transformation that
optimizes some intensity-based image similarity metric. Different types of metrics
are used for that purpose, such as cross-correlation in [4,8], mutual information
in [17], sum of squared differences (SSD) in [3,22]. These registration algorithms
do not require any additional information but in some cases the result is hard
to predict. If the anatomical differences are more than average, the most critical
anatomical structures can be poorly matched.

Feature-based algorithms are less susceptible to this problem. First of all,
they try to match specific features in the images, that correspond to well-
distinguishable points with unique local neighbourhood. These features are called
landmarks or key points. In early works, the landmarks were specified manually
by an expert [11] or semi-automatically [18]. An example is shown in Fig. 1.

Manual landmarking is a tedious and time-consuming process, especially
in 3D. Because of that, recent efforts in this direction concentrate on automatic
detection of these points. Some algorithms involve automatic selection of key
points from the whole set of local features [20,23], while others are searching for
pre-defined landmark locations [12,13].
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In this work we propose an algorithm for registration of two input brain
MR images that is based on matching of the set of automatically detected land-
marks in these images. The set of landmarks to be detected is given in a manually
marked image, a template. Therefore, the algorithm does not require training
bases, like the algorithms in [12,13]. Although the algorithm was implemented
for 2D images, it can be further adapted for the 3D case. Before starting the
process of automatic detection of landmarks in the input image, the template
image, along with its landmarks, is linearly registered to the input image. For
each landmark in the template image, its corresponding landmark in the input
image is searched in a small square window among the non-zero points of the
Canny edge map by comparing point descriptors. Image registration of the two
input images by the set of key points is performed using thin plate splines trans-
formation [9].

The proposed registration algorithm was evaluated on 18 2D slices extracted
from each of the 18 brain MR images from IBSR database [2]. We evaluated
and compared the accuracy and run time of landmarks detection using patch
comparison by normalized cross-correlation (NCC) and three types of descrip-
tors: local self-similarity descriptor (LSSD) [19], SIFT [15] and SURF [5]. The
proposed algorithm was also compared with SyN [4], state-of-the-art algorithm
without the use of key points.

2 Method

2.1 Template

As it was mentioned above, the proposed algorithm requires only one manu-
ally landmarked image. This image along with its landmarks will serve as the
template for landmarks detection in each of the two input images.

We can define a template MR image, T (x), as

T : x ∈ R
2 → T (x) ∈ R, (1)

where x = (x, y) specifies a point location, and T (x) is intensity value in this
point. A set of n manually specified landmarks in the template image can be
defined as PT = {pT

1 , ...,p
T
n}, where pT

i = (x, y), i = 1, ..., n specifies the i’s
landmark location.

2.2 Preparation of the Images to the Detection of Landmarks

Two input images to be registered, I(x) and J(x), are defined similarly to (1):

I : x ∈ R
2 → I(x) ∈ R, (2)

J : x ∈ R
2 → J(x) ∈ R, (3)

where x = (x, y) specifies a point’s location, and I(x) (respectively, J(x)) is
intensity value in this point.
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Before starting the landmarks detection process, both images, I(x) and J(x),
are preprocessed by anisotropic diffusion filter [16] that removes noise, while
preserving edges. This saves meaningful anatomical information. Template image
T (x) can be preprocessed once, after it has been defined.

For each landmark pT
i in the template image its corresponding landmark

pI
i (pJ

i ) in the input image will be searched in a square window of the size
2r + 1 × 2r + 1 around the point with the same coordinates as pT

i . So the
template image T (x) should be globally matched with the input image I(x) (
J(x)). Linear registration algorithm can achieve this goal. Let’s assume that we
have two copies of the template image T (x) along with its landmark set PT . The
first copy of T (x) is linearly transformed in order to match the input image I(x).
The landmarks positions PT are changed accordingly. The second copy of T (x)
is linearly transformed in order to match the input image J(x). The landmarks
positions PT are changed accordingly.

2.3 Detection of Landmarks

Anatomical landmarks, if specified properly, usually lie on the edges of anatom-
ical structures, not in uniform regions. This allows making the algorithm faster
and, at the same time, more robust by constraining the search area with the
points having non-zero values on the edge map. Landmarks detection procedure
is described below for the input image I(x). The procedure will be the same for
the input image J(x).

Edge map is generated for the image I(x) by Canny algorithm [7], one of the
best existing edge detectors. Thus, the search area for the landmark pI

i will be
the following:

Xs = {xI = (xI , yI) : xI ∈ [xT −r, xT +r]∧yI ∈ [yT −r, yT +r]∧C(xI) = 1}, (4)

where C(xI) corresponds to the value of the Canny edge map in the point x.
In order to characterize each landmark by its local context, we use a descrip-

tor, i.e. a vector of values, computed for a point’s neighbourhood. Let D(x) be
the descriptor of a point x. So, for a landmark pT

i in the template image T (x)
its corresponding point pI

i in the input image I(x) can be found as following:

pI
i = argminxI∈Xs

||D(pT
i ) − D(xI)||. (5)

In this work, we use three different types of descriptors in order to compare
them in application to the posed problem and choose the best one.

Local Self-Similarity Descriptor (LSSD) [19] is based on computation of the
similarity metric for the considered point and every other point in the window
around it. This similarity space is represented in polar coordinates and the 80-bin
histogram is built.

Scale Invariant Feature Transform (SIFT) descriptor [15] is built for the
square patch around the point which is co-directional with the main gradient
orientation in the local neighbourhood. The patch is split into 16 equal parts, for
each of which a 8-bin histogram of gradient magnitude and orientations is built.
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This results in a vector of 128 values. The descriptor is invariant to uniform
scaling, rotation and slight intensity variations.

Speeded-up Robust Features (SURF) [5] is based on the ideas, similar to
SIFT but is faster to compute. It uses integral images and Haar wavelets. The
vector consists only of 64 values which makes it faster to match.

Besides comparison of descriptors, we also try one of the simplest methods
to compare points by their local neighbourhood that is based on computation
of normalized cross-correlation (NCC) metric for small square image patches
around these points:

NCC(A,B) =
∑M

i=1(AiBi)√∑M
i=1 A

2
i

∑M
i=1 B

2
i

, (6)

where Ai is the intensity value in the ith point of the patch in the image A, Bi

is the intensity value in the ith point of the patch in the image B, and M is the
number of points in each of the patches.

Anatomical landmarks usually belong to internal structures. However, this
is not enough for correct registration of the whole brain. In order to resolve
this issue, we introduce quasi-landmarks that belong to the bounding box of
the brain. The algorithm for their identification can be outlined as follows. On
the Canny edge map we find four points with non-zero values, i.e. lying on
the edges, with a minimum value of x (leftmost point), maximum value of x
(rightmost point), minimum value of y (bottommost point) and maximum value
of y (topmost point). These four points define the bounding box. Four points
lying in the middle of each of the edges of the bounding box are considered to
be quasi-landmarks. They are included into the landmark sets PT , P I and P J .

2.4 Image Registration

During the registration process, one of the images is transformed in order to
match the other image. The image, that is transformed, is called moving image.
The other image is called fixed image. Let I(x) be a moving image, and J(x) be
a fixed image.

According to the review of existing registration methods, state-of-the-art
algorithms start from fast coarse linear registration. So, first of all, the image
I(x) is linearly registered to the image J(x) along with its landmarks detected
in the previous step of the proposed algorithm.

After that, the images can be registered non-linearly by matching of the set
of landmarks. We have to find such a transformation t(I(x)) that minimizes the
distances between the corresponding landmarks:

t(I(x)) = argmint

n∑
i=1

||pI
i − pJ

i ||, (7)

In this work we use thin plate spline transformation [9] that was already used
previously for landmark-based registration of brain MR images [18,23].
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3 Experiments and Results

3.1 Dataset

The algorithm was evaluated on the set of real T1-weighted MR images of 18
subjects provided by the Center of Morphometric Analysis at the Massachusetts
General Hospital and available on the Internet Brain Segmentation Repository
(IBSR) [2]. Each MRI scan has 256× 256× 128 image resolution. Spatial resolu-
tion is varying from scan to scan (0.84×0.84×1.55mm3, 0.94×0.94×1.5mm3,
1.0×1.0×1.5mm3). Manual segmentation into 43 anatomical structures is pro-
vided for each MRI scan.

The experiments were performed on 18 2D slices each of which was extracted
from the middle of the corresponding brain volume (slice number varies from 49
to 53 in the coronal plane). These slices contain large number of anatomical
structures.

12 ground truth landmarks in each of the 18 slices were specified manually
by the authors of the present work for validation purpose.

3.2 Comparison of Descriptors

The proposed algorithm for landmarks detection was implemented in Matlab
and evaluated using cross-validation. 18 series of tests were performed. In the
ith series the ith slice was considered as a template, and the landmarks were
automatically detected in each of the rest 17 slices. 18 × 17 tests in total were
performed. For each detected landmark the error in pixels was computed as the

Table 1. Comparison of detection accuracy for each of 12 anatomical landmarks using
four different methods. Values in the Table are errors in pixels.

Mean Std. dev

L.no NCC LSSD SIFT SURF NCC LSSD SIFT SURF

1 2.32 2.69 1.57 1.72 2.72 3.16 2.38 2.42

2 2.05 4.49 1.74 1.78 3.04 4.50 2.63 2.61

3 5.01 5.61 3.72 3.91 5.62 5.25 4.21 4.63

4 4.21 5.14 2.61 2.73 4.50 4.55 2.97 2.66

5 1.54 3.98 1.25 1.33 2.76 4.57 2.53 2.54

6 2.58 4.77 2.21 2.25 2.48 4.05 2.19 2.20

7 3.30 4.14 3.09 2.85 3.14 3.40 2.84 2.45

8 3.07 4.88 2.35 2.18 4.32 5.32 3.35 3.15

9 2.50 3.47 2.25 1.72 3.03 3.67 3.19 2.41

10 3.21 3.54 1.89 1.86 4.00 3.47 1.45 1.36

11 3.07 5.13 2.68 2.82 3.09 4.66 3.11 3.31

12 2.71 4.52 2.59 2.60 2.71 4.25 3.24 3.03
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Fig. 2. Results example: boxes denote ground truth landmarks, asterisks denote auto-
matically detected landmarks

distance to the ground truth landmark. Search window for each landmark was
21 × 21 (r = 10). The results are presented in Table 1. An example is shown
in Fig. 2.

Another type of comparison was based on evaluation of the time consumed
for landmarks detection on PC with Intel Core i5-2410M (2.3 GHz), 4 GB RAM.
The results are shown in Fig. 3.

Fig. 3. Comparison of the algorithms by runtime

According to the experimental results SIFT and SURF descriptors provide
the best accuracy. SIFT slightly over-performs SURF in 2/3 cases (no more than
0.2 pixels), but SURF is ≈ 2 times faster. The fastest algorithm is comparison
of patches by NCC, however, it is not invariant to rotation and scaling, and it is
more sensitive to intensity variations. Thus, SURF descriptor can be considered
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Fig. 4. Registration result. From left to right: landmarks on the moving image; SyN;
proposed algorithm; ground truth labelling of the fixed image

the best one for this purpose. In most cases, landmark detection errors are within
the limits of inter-expert variability.

3.3 Evaluation of Registration

Linear registration and non-linear registration by thin plate spline transfor-
mation were performed using Insight Segmentation and Registration Toolkit
(ITK) [1]. Linear registration was performed using 2D affine transformation with
NCC as similarity metrics and gradient descent as optimization algorithm. Para-
meters are the following: Iterations = 500; MinStep = 0.001; MaxStep = 0.3.
Parameters for Symmetric Normalization (SyN) algorithm, which our method
was compared with, are the following: Iterations = 100; Standard deviation
(gaussian kernel) = 1.0; other parameters were set to default.

In order to evaluate the quality of matching of anatomical structures, we
also used expert labelling of the images from IBSR database. The quality of
registration is characterized by the similarity of the moving image labelling,
transformed with the moving image, and the fixed image labelling. The result
example is shown in Fig. 4.

From Fig. 4, it can be seen that SyN matches the gyrus better, but internal
anatomical structures, if surrounded by landmarks, are much better matched by
the proposed algorithm.

As for runtime comparison for the same PC as above, both algorithms require
linear registration as the first step. It takes ≈ 0.6 s. SyN takes ≈ 5 s. The pro-
posed algorithm consists of two steps: landmarks detection takes ≈ 0.5 s and
image registration by landmarks matching with thin plate spline transformation
takes ≈ 0.04 s. In total, SyN takes ≈ 5.6 s and the proposed algorithm takes
only ≈ 1.1 s which is about 5 times faster.

4 Conclusion and Discussion

In this work, we have proposed an algorithm for brain MR image registration by
matching of automatically detected landmarks. We have demonstrated that one
manually landmarked template image is enough for automatic detection of a set



398 O.V. Senyukova and D.S. Zobnin

of well-distinguished landmarks in other images. Comparison of different types
of descriptors for landmark identification showed that SURF descriptor provides
the best trade-off between speed and accuracy.

Evaluation of image registration by the proposed algorithm showed that the
approach based on matching of the pre-defined landmark set allows matching criti-
cal anatomical locations with good speed and accuracy. On the one hand, the result
becomes more predictable for the specified locations, and on the other hand, the
algorithm does not spend extra time on trying to match the locations that are not
critical for the considered problem or cannot be matched at all. All three steps of
the algorithm, linear registration, landmarks detection and registration by thin
plate spline transformation, are so fast that the expert can get the results for 2D
images in real-time and add landmarks into the template if necessary.

One of the future work directions can be introducing of varying search window
size for handling the situations when the landmark is outside the search window.
This situations may happen in the case of significant anatomical differences or
damaged brain.

The algorithm can be further extended into 3D case. However, manual spec-
ification of landmarks is non-trivial for the 3D case. Therefore, the landmarks
for the whole brain can be specified in consequent 2D slices of the template
image. For each template slice with the landmarks, the most similar slice in the
input brain volume can be found automatically. For example, this can be done
by comparing normalized cross-correlation metrics, and the key points can be
detected in it.

Acknowledgments. The authors would like to thank Alexey V. Petraikin, M.D.
from Pirogov Russian National Research Medical University (RNRMU) for valuable
discussion.
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Abstract. 3D face transfer has been employed in a wide field of set-
tings such as videoconferencing, gaming, or Hollywood movie produc-
tion. State-of-the-art algorithms often suffer from a high sensitivity to
tracking errors, require manual post-processing, or are overly complex in
terms of computation time. Addressing these issues, we propose a light-
weight system which is capable to transfer facial features in both 2D and
3D. This is accomplished by finding a dense correspondence between a
source and target face, and then performing Poisson cloning. We solve
the correspondence problem efficiently by a sparse initial registration and
a subsequent warping, which is refined in a surface matching step using
topological projections. Additional processing power is saved by convert-
ing extrapolation problems to simple interpolation problems without loss
of precision. The final results are photorealistic face transfers in either
2D or 3D between arbitrary facial video streams.

1 Introduction

Given the high availability of consumer 3D capturing devices, there is a rising
demand for 3D video content processing. The film and gaming industry have
shown particular interest in human face transfer. The applications range from
photorealistic lip (re-)synchronization [7] over face manipulation for movies [2,4]
to videoconferencing [12], puppeteering [10,17] or virtual avatar control [5,9].

In general, the approaches can be divided into photorealistic and virtual
(avatar) approaches. However, the latter group of approaches could just as well
be adapted for photorealistic face transfer. Since the correspondences can always
be found by registering each individual face to a template or avatar, an adequate
algorithm to blend the registered result back into the target scene is basically
the only difference. Hence, we will treat both types of approaches as de-facto
equivalent.

Bouaziz and Weise et al. use a PCA face model that is subsequently refined
in order to account for personal details [5,22]. Vlasic et al. instead use a multi-
linear model to learn missing data from a sparse set of recordings [21]. Dale
et al. use FaceGen [18] and a matching algorithm of Vlasic et al. [21] in order
to find the correspondences [7]. Afterwards, they re-time the video sequences for
better lip synchronization and apply Poisson cloning, using graph cuts in order
to find an appropriate mask.
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 400–411, 2015.
DOI: 10.1007/978-3-319-24947-6 33
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Our approach mostly differs in the way we achieve dense correspondence
between the two faces. Using only sparse correspondences between the two indi-
viduals, we warp the source to the target face and refine the result in a single
non-iterative step. The type of feature transfer is flexible in that it depends on
the type of interpolation used in the warping step (e.g., shape, texture, viseme).
Finally, we apply a variant of Poisson image cloning in order to blend the warped
face back into the video sequence in a photorealistic fashion, waiving the costly
graph cuts from [7].

2 Overview

In order to guide the reader trough the following sections, we provide a brief
overview of the system. Before a source face can be transferred to a target scene,
the two faces have to be in correspondence. Once a set of sparse correspondences
is given, a dense correspondence has to be found. Usually, this problem is solved
via a registration process. Non-rigid point registration, however, is computation-
ally very costly since state-of-the-art algorithms typically require a number of
iterations to converge to a satisfactory solution.

Instead, if no additional information is used, this step is generally known
as warping. In general, the key purpose of warping is to find transformations
for every point in the source to the target, only by inter- and extrapolating
from known correspondences. Popular warping algorithms for three-dimensional
shapes include weighted nearest neighbor search and tetrahedralized inter- and
extrapolation [6]. Any warping technique can be used as long as the resulting
transformations are continuous, i.e., close points should be affected by similar
transformations. For this reason, we choose to employ tetrahedralized warping.

In order to achieve the best performance, we apply a topological projection
after the initial warping. A topological projection is particularly easy to compute
for human faces because their surface can be assumed to be nearly star-shaped.
After applying this type of projection, the projected shape is identical for both
source and target. This permits a second tetrahedralized warping step to be
implemented in terms of interpolation only, instead of both inter- and extrap-
olation. This is advantageous, given that extrapolation is much less accurate
and also more costly than interpolation. The whole registration pipeline for the
three-dimensional case is illustrated in Fig. 1.

Finally, the refined result is merged with the target by means of Poisson
image cloning, which is a mathematically elegant way to seamlessly paste the
warped face into the target scene.

3 Finding Correspondences

First of all, we require a set of corresponding points between the source Φ and
target Θ, so-called landmarks, denoted ΛΦ and ΛΘ, respectively. There are a
number of approaches dealing with automatic landmark detection. For exam-
ple, Face++ [25] uses a deep convolutional neural network in order to find such
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Fig. 1. Pipeline of the registration process. First, a sparse correspondence between two
faces is established (Sect. 3). Next, the source is warped onto the target using these
correspondences (Sect. 4). Finally, the surfaces are refined via topologial projection
(Sect. 5).

landmarks in human faces. Other approaches learn facial landmarks via struc-
tured output SVM [20] or employ exemplar-based graph matching [26]. We use
the landmarks provided by the Microsoft Kinect 2.0 face model which is based
on a fusion of an active appearance model and a 3D tracker, providing 1347
distinct landmarks per face. In general, any method being capable of finding
landmarks in a reliable way is suitable for the purpose of this paper. One advan-
tage of the Microsoft Kinect face model is that the correspondences are fairly
spread out, hence there is no need to extrapolate later on in the warping step.
Figure 2 provides a quick analysis about the required number and accuracy of
the landmarks.

4 Rigid Alignment and Warping

Because the tetrahedralized warping is not invariant to rotation, an initial rigid
alignment using the correspondences is required. Although a full rigid registra-
tion would be feasible, it is sufficient to find a least-squares approximation of a
rotation matrix R which rotates the source landmarks ΛΦ = {λΦ

i } to be aligned
with the target landmarks ΛΘ = {λΘ

i }. Assuming that ΛΦ and ΛΘ are normal-
ized to have zero mean (i.e., their centroids are in the origin), the objective to
be minimized is the following:

min
R

N∑
i

∣∣∣∣RλΦ
i − λΘ

i

∣∣∣∣2 (1)

An efficient method to compute R is via Singular Value Decomposition
(SVD) of the sum of outer products between the corresponding landmarks [19]:

[U ,Σ,V ] = SVD
( N∑

i

λΦ
i (λΘ

i )T
)

(2)
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Fig. 2. Registration error for different number of landmarks and landmark accuracies.
The results were obtained using randomly selected landmarks from 8 different faces
of the Basel face model [14], warping each to the seven ground truth correspondences
provided by the model (see Sect. 4 for details). So for each iteration, a total of 56
trials were evaluated. All of those trials were again averaged over 10 runs in order to
compensate for outliers.

R = VU T (3)

In the following, it will be assumed that the source Φ is prealigned to the
target Θ by means of this rotation matrix R.

In order to do the warping, we proceed with a Delaunay tetrahedralization
ΔΘ on the target landmarks ΛΘ and adopt the edges for the source landmarks
ΛΦ to receive the topoligically identical ΔΦ. Barycentric coordinates bΦ

i within
the respective encompassing tetrahedron DΦ

i are assigned to all source points
φi within ΔΦ. These coordinates are then used as a weight in order to inter-
polate between the landmarks and receive the warped result Ω = {ωi}. More
specifically:

ωi = DΦ
i b

Φ
i (4)

Points which lie outside of the convex hull of ΔΦ have to be extrapolated.
This can be achieved by projecting the outer points smoothly onto the convex
hull and then again perform barycentric interpolation using Eq. 4 [6]. If the land-
marks are picked adequately, the extrapolation can also be avoided completely.

5 Surface Matching via Topological Projection

After the initial warping, the source Φ and target Θ are non-rigidly aligned, where
the surfaces are interpolated from the sparse correspondence set. Using a topo-
logical projection, this intermediate result can be refined, so that the interpo-
lated surfaces are again aligned to each other. Physically, this can be interpreted
as a pressing a source surface patch into a mould of the target surface [13]. The
accurate physical model from [13], however, is computationally expensive. Other
approaches implement this type surface matching via Thin-Plate Splines [23] or



404 D. Merget et al.

X

Fig. 3. Illustration of surface matching via topological projection. The first two images
represent the prealigned source and target, respectively. Both are projected onto the
unit sphere and put into correspondence. The interpolated source coordinates are then
projected back onto the target, yielding the refined surface. The method can handle
overlap as well as missing or non-isotropic data

using game theory [1], but the approaches are not very robust to noisy real-world
data. Instead, we employ a mathematically simple approach which is inspired by
Kent et al. [11]. The basic idea can be summarized as this: The source and target
points are projected onto a common topology (e.g., sphere) before the projected
source is merged and finally projected back onto the target. The process is illus-
trated in Fig. 3.

Any topology shared between the source and target is a suitable candidate,
for example, the surface mesh which covers the known correspondences. Since
human faces are typically (nearly) star-shaped objects, the projection onto a
sphere provides the same amount of detail, while computations are kept to a
minimum. The center c of the sphere can easily be found by intersecting all
surface normal half-spaces. The center point can be precomputed relative to the
landmarks and therefore does not contribute to the complexity of the system.
Given an adequate center point c, computing the projection ρ of a point p is
straightforward:

ρ =
p − c

||p − c|| (5)

In the projected domain, the source and target are now in correspondence. In
order to propagate this correspondence back to the original shape, yet another
warping step is required. The projected points will lie on the surface of a unit
sphere around the center point c. In other words, the projected source points are
not within the convex hull of the target points (and vice versa). Consequently,
warping would be based on extrapolation only. By introducing additional, virtual
correspondences in the eight corners of the surrounding unit cube, a tetrahedral-
ized warping step can be implemented solely in terms of interpolation, thereby
reducing the computational effort considerably.
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6 Poisson Cloning and Rendering

When blending the warped result Ω into the scene in a photorealistic fash-
ion, lighting conditions and texture mismatch have to be compensated. Recent
advances in image processing propose several variants of Poisson image cloning
in order to tackle this problem [8,15,24]. Indeed, Poisson cloning is a powerful
tool in providing a smooth boundary between source and target regions, where
the cloning takes place in two dimensions. In order to apply Poisson cloning
in three dimensions without adding considerable overhead, we solve the Pois-
son equation for the interpolated 2D projection of the warped 3D point set Ω.
Afterwards, the result can be projected back to 3D.

In the original target scene, a perspective projection with respect to the
camera origin guarantees that there are no ambiguous surfaces mapped to the
same space. This is not generally the case for the warped source Ω, however,
since the original source Φ may be oriented differently than the target Θ. We
resolve possible ambiguities by a simple z-buffering approach, i.e., only those
surfaces which are closest to the camera plane are rendered. After a bilinear
interpolation in the 2D plane, the warped source Ω is ready to be rendered back
into the target scene Θ using Poisson image cloning.

Alternatively, one can choose an area-preserving map projection from the
sphere used in the refinement step to a 2D image. In this way, surface matching
and Poisson cloning are combined in a single step. This approach is especially
useful in 3D scenarios with multiple cameras, since a perspective projection
covering the whole area of interest may not exist in that case.

The Poisson equation to be solved is

min
Θ

∫∫
Γ

∣∣∇Θ − ∇Ω
∣∣2∂Γ, (6)

using the Dirichlet boundary condition

Ω|∂Γ = Θ|∂Γ (7)

w/o matching w/ matching
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Fig. 4. Registration error with and without surface matching. The results were
obtained using 50 randomly selected landmarks from 8 different faces of the Basel
face model [14], in the same way as for Fig. 2.
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and satisfying the Euler-Lagrange equation

ΔΩ = ΔΘ, (8)

where Γ is the region to be cloned [15]. Simply choosing the convex hull of the
warped source Ω as the boundary ∂Γ may result in inaccuracies due to the
possibly sparse outer regions. Hence, we predefine Γ relative to the landmark
positions ΛΘ, conserving important features (i.e., eyes, mouth and nose), thereby
truncating sparse regions near the theoretical boundary. A more elaborate but
computationally far more demanding approach by Dale et al. uses graph cuts to
find an appropriate region Γ which minimizes the gradients on ∂Γ [7].

7 Results and Discussion

Using the Basel Face Model [14], we demonstrate that the surface matching step
from Sect. 5 reduces the Root Mean Square Error (RMSE) of the warped result
by approximately 50%, irrespective of the number of correspondences used. The
results for 50 correspondences are depicted in Fig. 4.

Fig. 5. 3D surface matching using 22 landmarks of the Bosphorus database [16]. From
left to right: Source, target, warped (without matching), and using the proposed sur-
face matching. There is clearly more overlap in the matched result, indicating a good
correspondence.

Fig. 6. Warping the geometry in a 3D video sequence. The results stem from three
different pairings of 3D video captures. No further processing was applied.
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Fig. 7. Warping the geometry using Poisson cloning for 2D images. 1st to 4th column:
Source, target, warped and the cloned result. 5th and 6th column: Our approach com-
bined with the graph cuts from [7]. The approach is robust to varying head poses, light-
ing conditions and can also handle facial expression. All images are taken from video
sequences that were captured from a distance of approximately 1 m in an uncontrolled
office environment. The depicted results are fully auto-generated without manual cor-
rections. Clearly, the graph cuts outperform the simple approach, e.g., bottom row. In
many cases, however, the differences are barely noticeable.
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Fig. 8. Typical failure cases. The first two columns show the source and target face,
respectively. First row: Combining male and female faces yields unrealistic results even
in the absence of obvious errors. In this particular case, the Kinect correspondences
aggravate this effect, being slightly off. Second row: The warping from closed to open
mouth cannot be handled properly in 2D (no z-buffering). Furthermore, a slight offset
in the found correspondences results in an unproperly aligned mask which leads to
artifacts (e.g., eyebrows, hair), which can be mitigated by graph cuts. Third row:
Occlusions are not yet handled properly (Poisson cloning without mixing gradients),
even in the graph cut case.

We also apply the approach to the Bosphorus database [16]. Since the dense
correspondences are unknown in this case, the matching quality has to be eval-
uated by visual inspection. Figure 5 depicts two matched 3D faces from the
Bosphorus database. Clearly, the overlap between the shapes is much more accu-
rate after the refinement via topological projection.

Finally, Fig. 6 depicts different surface-matched warping results on 3D video
sequences captured with Microsoft Kinect 2.0.

In order to illustrate the synergy of Poisson cloning with warping, we apply
the combined approach to a set of 2D images, interpolating only the shape. In the
same way, one could also interpolate texture or other visual features in order to
obtain different results. Figure 7 shows the results of Poisson cloning applied with
an intermediate warping step. Clearly, the approach is robust to varying lighting
conditions and head poses. The warping achieves a much more realistic result com-
pared to unwarped cloning, the cloning boundary ∂Γ being much less prominent.
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Our implementation of the whole processing chain runs at approximately
1−2 fps on a notebook with an i7-4500U CPU and 8GB of RAM, where Poisson
cloning is by far the most time-consuming step (typically > 70%). On top of
that, using the graph cut technique of [7] increases the computational effort by
another factor of 3 to 4. Using an optimized and parallelized version, we are
confident that a realtime-capable implementation of our baseline is feasible, i.e.,
providing the native Kinect 2.0 time resolution of 30 fps.

The most obvious limitation of the presented appoach is the missing occlusion
handling as shown in Fig. 8. However, it is possible to extend the system by first
detecting the occluded area(s) and then using mixing gradients for the Poisson
cloning step [15]. Other problems occur when combining male and female faces.
Especially when facial features such as beards are transferred, the results may
look unnatural and artificial. This is probably due to the task itself being ill-
posed rather than the employed algorithms being inadequate. After all, this
limitation is not present for the transfer of facial expressions, for example.

8 Conclusion

We proposed a lightweight system to transfer facial features between different
2D/3D video scenes. The approach is applicable in real-world scenarios as it is
robust to head pose and irregular illumination such directed light or shadows and
does not rely on expensive hardware. The processing chain is very general and
flexible, i.e., the different steps can be easily exchanged or extended. For exam-
ple, the framework can be adapted in order to control virtual avatars instead of
photorealistic individuals, omitting the Poisson cloning step completely. Alter-
natively, one could imagine other types of objects being transferred, given that
the approach is not restricted to faces.

For future work, one could address small occlusions such as glasses by means
of mixing gradients in the Poisson equation. Furthermore, it will be interesting
to evaluate whether large occluded areas can be reconstructed, e.g., by fitting
a model [3] or by exploiting symmetries. Finding a way to flexibly determine
the boundary for the cloning which is computationally more efficient than the
approach of Dale et al. [7] is another topic that should be investigated further,
given that the results are very promising.
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surface matching. In: Proceedings of the Eurographics Symposium on Geometry
Processing. Eurographics Association (2005)

14. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for
pose and illumination invariant face recognition. In: Proceedings of the Advanced
Video and Signal-based Surveillance (AVSS). IEEE (2009)

15. Prez, P., Gangnet, M., Blake, A.: Poisson image editing. Trans. Graph. (SIG-
GRAPH) 22(3), 313–318 (2003)
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Abstract. We estimate 2D human pose from video using only optical
flow. The key insight is that dense optical flow can provide informa-
tion about 2D body pose. Like range data, flow is largely invariant to
appearance but unlike depth it can be directly computed from monocular
video. We demonstrate that body parts can be detected from dense flow
using the same random forest approach used by the Microsoft Kinect.
Unlike range data, however, when people stop moving, there is no opti-
cal flow and they effectively disappear. To address this, our FlowCap
method uses a Kalman filter to propagate body part positions and veloc-
ities over time and a regression method to predict 2D body pose from
part centers. No range sensor is required and FlowCap estimates 2D
human pose from monocular video sources containing human motion.
Such sources include hand-held phone cameras and archival television
video. We demonstrate 2D body pose estimation in a range of scenarios
and show that the method works with real-time optical flow. The results
suggest that optical flow shares invariances with range data that, when
complemented with tracking, make it valuable for pose estimation.

1 Introduction

Human pose estimation from monocular video has been extensively studied but
currently there are no widely available, general, efficient, and reliable solutions.
The problem is challenging due to the dimensionality of articulated human pose,
the complexity of human motion, and the variability of human appearance in
images due to clothing, lighting, camera view, and self occlusion. There has been
extensive work on 2D human pose estimation using part-based models [8,11,
12,19,27,29], but existing solutions are still brittle. Systems like the Microsoft
Kinect [21] address the above issues by using a specialized depth sensor that
simplifies the problem by exploiting additional information. Depth data enables
direct estimation of 3D pose while providing invariance to appearance.

What is missing is a robust solution like Kinect for the general 2D human
pose estimation problem from video; that is, one that applies to archival video
sources and can be used with devices such as cell phones and laptops that are
currently equipped only with a monocular video camera. We propose optical
flow as a key ingredient for such a solution, and demonstrate its potential with
a system called FlowCap that estimates 2D pose using only optical flow.

Our method is made possible by the following observation: Optical flow con-
tains much of the same information as range data. An optical flow field is much
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 412–423, 2015.
DOI: 10.1007/978-3-319-24947-6 34
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a b c d

Fig. 1. FlowCap overview. a. Example frame from a video sequence shot with a
phone camera. b. Optical flow computed with GPU flow [1]. c. Per-pixel part assign-
ments based on flow with overlaid uncertainty ellipses (red). d. Predicted 2D part
centroids connected in a tree (Colour figure online).

like a depth map in that the effects of appearance are essentially removed (see
Supp. Mat.). Flow captures information about the overall shape and pose of
the body and the boundary between the body and the background (Fig. 1b).
Moreover, flow has an advantage beyond range data: 2D flow also captures the
motion of body parts and we use this to good effect.

The first component of our approach follows that of Shotton et al. [21] except
we replace range data with optical flow. We train a regression forest using flow
and body part segmentations of realistic synthetic bodies in motion. As in [21] we
predict per-pixel body part assignments and identify the part centroids (Fig. 1c).

Optical flow has one key disadvantage relative to range data: When a person
is stationary, flow does not tell us where they are. It does however tell us some-
thing important – that the person is not moving. To take advantage of this, the
second component of our method adds a temporal prediction process on top of
the body part detections. We use a Kalman filter to estimate the locations and
velocities of all body parts in 2D. By estimating velocities, we are able to incor-
porate information from the optical flow into the Kalman observation model.
This improves part estimation when the person is moving as well as when they
are still. When a person stops moving, the flow is near zero and the Kalman
filter predicts the body is not moving, resulting in a stable pose estimate.

Using the HumanEva benchmark [23] we compare FlowCap with a state-of
the-art single-frame method [27] and find that, when people are moving, Flow-
Cap is more stable. We demonstrate that the accuracy of real time optical flow
estimation (GPU4Vision [26]) is sufficient for our task. We also test FlowCap on
video sequences captured outdoors, with a moving hand-held cell-phone camera,
and with archival video from television.

We do not propose FlowCap as a complete, stand-alone, system. Our app-
roach, using only flow, cannot compete with Kinect’s use of range data for accu-
racy or for 3D estimation. Rather our goal is to show that optical flow has a role
in human pose estimation and that it shares properties with depth data. Clearly
a full solution will include color data but here we demonstrate how far one can
get with flow alone. To facilitate further work, we will make our training set of
flow data available for research purposes1.
1 http://ps.is.tuebingen.mpg.de/project/FlowCap.

http://ps.is.tuebingen.mpg.de/project/FlowCap
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2 Prior Work

There is a huge literature on pose estimation in static images, video sequences,
and using depth information from many sources. We focus on 2D human pose,
which is widely studied and useful for applications such as person detection,
human tracking, activity analysis, video indexing, and gesture recognition. Here
we focus on the two areas most closely related to our method: Microsoft’s Kinect
and articulated pose estimation from optical flow.

Kinect: Kinect performs human motion capture from an inexpensive device
in a person’s home with sufficient accuracy for entertainment purposes. While
popular, range sensing devices like Kinect are still not widely deployed when
compared with traditional video cameras. Since the Kinect works only on range
data it cannot be used for human pose estimation with archival data from tele-
vision and films. Additionally, the Kinect’s IR illumination can be swamped by
natural light, rendering it useless outside.

One key to the success of Kinect is the use of regression forests [21]. Unfor-
tunately, it is not feasible to apply this method directly to regular video images
due to the huge variability in human appearance. Range data is important for
the success of Kinect for two reasons. First it provides direct observations of
scene depth, removing the ambiguities inherent in the 2D projection of people
onto the image plane of a monocular camera. Second, and just as important,
is that the range data simplifies the signal processing problem by removing the
irrelevant effects of appearance and lighting while maintaining the important
information about body structure. Our observation is that optical flow provides
similar benefits, in particular with respect to this second point.

The first step of our method uses the regression forest of [21] but replaces
depth training data with optical flow. After this we deviate from [21] because,
unlike range, when the person stops moving the flow is zero. Consequently to
know where the person is, our method requires a temporal model to integrate
information; [21] does not use a temporal model but rather, finds the person
again in every frame.

Pose from flow: There are many 2D and 3D model-based methods for estimat-
ing human pose from video that exploit optical flow (e.g. [6,17,22,24]). These
methods relate the 2D image motion to the parameters of an articulated figure.
Motion History Images [5] have also been used for pose classification.

Fablet and Black [10] use a synthetic character and motion capture data to
generate training flow fields from different views. They use PCA to construct
a low-dimensional representation of the flow and represent simple activities as
trajectories in that low-dimensional space. They use a multi-view representation
to cope with changing 3D viewpoint but do not estimate articulated pose.

Efros et al. [7] use optical flow patterns to estimate pose. They focus on
low resolution people in video, which makes the flow information limited and
noisy. Consequently they treat it as a spatio-temporal pattern, which becomes
a motion descriptor, used to query a database for the nearest neighbor with a
similar pattern and known 2D and 3D pose. They require similar sequences of
full body poses in the database.



FlowCap: 2D Human Pose from Optical Flow 415

Bissacco et al. [3] train a boosted regression method to recognize pose from
image and motion features. They do not use optical flow directly, but rather
work on image differences. Schwarz et al. [20] use flow between time of flight
range images to help differentiate body parts that occlude each other but do not
estimate body pose from flow.

Recently, several methods augment traditional 2D pose estimation with opti-
cal flow information. In [13] they use flow to help segment body parts while
jointly reasoning about pose, segmentation, and motion. In [29] they use flow
to propagate putative 2D body models to neighboring frames. This enables an
image likelihood function that incorporates information from multiple frames.
In [16] the authors train a deep convolutional neural network (CNN) to use
images and flow to estimate upper body pose. These approaches rely primarily
on non-flow image cues, with flow as an extra cue. Here we explore the question
of how far we can go with flow alone.

3 Data

Like [21] we generate training data using a realistic 3D human body model.
However, generating a good flow training set, differs from their approach. First,
the same body pose at time t can move to many different poses at t+1 resulting
in different flow fields. Consequently, the training data must cover a range of both
poses and changes in pose. Second, camera motions change the observed flow.
While we robustly estimate and remove camera motion we assume there will be
some residual camera motion and consequently build this into our training set to
improve robustness. Third, optical flow computed on real images is not perfect
and can be affected by lighting, shadows, and image texture (or lack thereof);
we need to realistically model this noise. To do so, we synthesize pairs of frames
with varied foreground and background texture, and various types of noise, and
then run a flow algorithm to compute the training flow. The training dataset
contains realistic human bodies in varying home environments performing a
variety of movements. Example training data is shown in Fig. 2a.

Body shape variation. We use a 3D body model [15] that allows us to gener-
ate 3D human bodies with realistic shapes in arbitrary poses. We use separate
body shape models for men and women and generate a wide variety of body
shapes. The model represents people in tight clothing, but future work could
add synthetic clothing and hair.

As in [21], the body model is segmented into parts, which are color coded
for visualization (Fig. 2a bottom). The training data includes the 2D projection
of these part segments and the 2D centroids of each part. Note that we use 19
parts, fewer and larger than in [21]; these provide more reliable part detection.

Body pose variation. To capture a wide range of human poses and motions we
generate training pairs of poses representing plausible human movements between
two frames. We do this in two ways. For experiments with the HumanEva dataset,
we take the motion capture data from the training set and animate bodies using
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these motions. While appropriate for the HumanEva evaluation, the set of motions
is somewhat limited. Consequently for our other experiments, we create a generic
motion dataset. We create a distribution of natural poses from a dataset of 3D
registrations like [4]. Then we sample pairs of poses and generate paths between
them in pose space. Finally, we sample points along these paths, biased towards
one of the originals, to define the pose change between frames.

Appearance variation. The performance of optical flow methods is affected by
image texture and contrast. For example, when the background is homogeneous
the estimated optical flow field may be overly smooth, blurring the foreground
motion with the background motion; this can be clearly seen in Fig. 2a. We posit
that these effects should be present in our dataset to be able to successfully
estimate human pose from real flow.

We created high resolution texture maps from 3D scans of over 30 subjects.
For each body shape, we randomly select a texture map and render the body
in a basic 3D environment with a wall, floor, some simple objects, and some
independently moving objects to simulate clutter and background motion. While
not photo-realistic, the scenes have relatively realistic lighting, blur, and noise.

Flow computation. Flow algorithms make different trade-offs between accu-
racy and speed. To evaluate whether the real-time estimation of 2D body pose is
feasible, we compare two methods using [1]: one non-real-time (3 seconds/frame)
and the other real-time but noisier. For the former we use the Huber-L1 method
from [26]. For the latter we use FAST HL1 in [1].

Scale variation. As is common in the 2D human pose literature, we train
two separate models at different scales (Fig. 2a left and right). The appropriate
model is manually picked depending on the test sequence. The first captures
upper body movement common in archival video like TV sitcoms. The second
captures the full body and is aimed at game applications like in [21]. Within
each category we generate training samples with a range of scales to provide
some scale invariance. This scale invariance is demonstrated in our experiments
with HumanEva, in which the size of the person varies substantially.

Training data summary. The HumanEva training set is composed of approxi-
mate 7, 000 training examples of the full body. We generate two generic datasets:
The upper body dataset is composed of approximately 7, 000 training examples,
while the full body dataset has approximately 14, 000.

4 Method

The goal is to sequentially estimate the 2D pose of a human body from a series
of images. As in [21], we consider two subproblems: A classification problem of
assigning a body part identifier to each pixel, and a regression problem of infer-
ring the position of the body joints. We add an additional tracking component
that is essential when using flow.
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ba

Fig. 2. a) Training data. Top row: example synthetic frames from pairs of training
frames. Middle: Estimated optical flow for each frame. Bottom: Ground truth body part
segmentations. b) Visual summary of the method. Left to right: image capture
with Kinect RGB camera, optical flow (color coded as in [2]), per pixel part labels,
part centers with uncertainty (red circles) and motion vectors (10× actual magnitude),
estimated kinematic structure of the part centers, predicted Kinect kinematic structure
using linear regression (Colour figure online).

Problem definition: Our input consists of a sequence of k + 1 images, Yi, of
dimensions m × n. For each image Yi, we estimate the optical flow field, Vi,
between Yi and Yi+1 as described in Sect. 3. To reduce the effect of camera
motion we also robustly estimate a dominant global homography for the image
pair using RANSAC. Let the flow field at every pixel, given by the homography,
be Hi. Then we define the residual flow field to be V̂i = Vi − Hi.

For every residual flow field, V̂i, our goal is to estimate the 2D locations of
j joints, Xi, of size j × 2; like [21], we use body part assignments to p parts
as an intermediary between observables and joint locations. This is achieved in
three steps. First, we estimate per-pixel body part assignments with a matrix,
Pi, of size m × n × (p + 1); labels correspond to either one of p body parts
or the background. A label matrix, Li, of size m × n is simply computed as
Li(x) = arg maxl Pi(x, l), where x = (x, y) is an image pixel location. Second,
we compute a matrix, Mi, of size p × 2 containing the 2D centroids of the body
parts in the image. Finally, the matrix, Xi, of 2D joint locations is predicted
from Mi using linear regression.

Flow difference features: Following [21], each pixel is described by a t dimen-
sional feature vector Fi(x). Here we take Fi(x) to include the flow magnitude
‖V̂i(x)‖ at the pixel and a set of t−1 flow differences, ‖V̂i(x)− V̂i(x+δx, y+δy)‖,
computed with random surrounding pixels. The maximum displacements, δx, δy

are set to 160 pixels for the full body training set and 400 pixels for the upper
body set. A full body typically occupies around 100×300 pixels. Inspired by [21],
we chose t = 200 and draw the samples δx, δy from a Gaussian distribution.



418 J. Romero et al.

Body part classification: FlowCap classifies each feature vector, Fi(x), at each
pixel into one of p+1 classes representing the p body parts and the background.
Randomized decision forests (implementation from [18]) are used to classify flow
difference features. For each training image, we randomly sample 2000 pixel
locations uniformly per part and use the associated feature vectors to train the
classifier. Six trees are trained with maximum depth so that leaves contain a
minimum of four samples. Given a flow field as input, the output of the decision
forest is a matrix Pi from which we compute the label matrix Li.

In the absence of motion, the classification, Li, is ambiguous (row 2 in
Fig. 2b). A static pixel surrounded by static pixels is classified as background.
However, the lack of motion is a strong, complementary, feature that we can
exploit in a tracking scheme. In this way, optical flow is used in two ways: first,
as a static, appearance-invariant, feature for per-frame pose estimation, and sec-
ond, as an observation of the pixel velocities for effective part tracking.

Part centroid tracking: The per-pixel part classifications are now used to
track the part positions. For simplicity, we track a single hypothesis M̂i(l) of
the centroid of each part l. Considering multiple modes is promising and left
for future work. While the most straightforward estimation of the 2D centroids
would be a weighted average according to probabilities Pi, we seek a more robust
estimation based on the following approximation of the mode

M̂i(l) =
∑
x

Pi(x, l)αx/
∑
x

Pi(x, l)α (1)

where α = 6 in our experiments. Alternatively, this could be done by retraining
the regression tree leaves to infer pixel offsets to the joint centroids, M̂i −x [21].

The modes can be very inaccurate in the absence of movement. To address
this we perform temporal tracking of the centroids (independently per part)
using a linear Kalman filter [25]. The state of the filter contains the estimation of
the position and velocity of each part centroid, Mi(l),M ′

i(l). The measurements
are the centroid estimates, M̂i(l), and the velocities, M̂ ′

i(l), which we compute
from the optical flow in a region around the current estimate. Since we are
directly observing estimations of our state, the observation model is the identity.
The states are initialized with their corresponding measurement M0(l) = M̂0(l),
M ′

0(l) = M̂ ′
0(l). The state-transition model assumes constant velocity:

Mi(l) = Mi−1(l) + M ′
i−1(l) (2)

M ′
i(l) = M ′

i−1(l). (3)

The definition of the process and measurement noise is not so straight-forward.
All noise models are considered uncorrelated. We empirically set the transition
noise standard deviations to values between 2 and 20 pixels depending on the
body part. The velocity component of the measurement noise, related to the
flow accuracy, is empirically set to standard deviations of 5 pixels. The position
component of the measurement noise QM

i depends on the accuracy of the decision
forest estimation, through its estimations of the per-part probability matrices Pi
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QM
i (l) = k2

i /
( ∑

x

Pi(x, l)
)2

(4)

where ki is a part-dependent constant, with empirical values between 40 and
100 pixels, reflecting the accuracy differences of the random forest across body
parts.

Predicting joints: Tracking results in estimations of the body part centroids,
Mi; Fig. 2b, fifth column, shows estimated part centers connected by purple
lines. For many applications, however, we want the locations of the joints in
an articulated model. One could directly learn these using the regression forest
but it is more straightforward to estimate part centers and then estimate joint
locations from these.

The relation between part centroids and joint locations is learned from the
training dataset described in Sect. 3. Joint positions are predicted linearly from
centroids, both represented in 2D. On HumanEva training data, we regress from
detected part centroids to the ground truth 2D marker locations with an L1
loss. For the other experiments we use the generic training data and train the
regression function from the ground truth part centroids to the ground truth
model joints using elastic net [28]. Figure 2b, sixth column, shows the kinematic
tree corresponding to predicted joints in turquoise.

5 Experiments

We summarize the experiments here; see supplemental video for more.

1. HumanEva. We compare FlowCap’s performance on monocular 2D human
pose estimation with [27]. This single-frame method estimates human pose based
on the image gradients. In contrast, FlowCap completely disregards the visual
appearance of a single frame, exploiting solely optical flow. The comparison is
performed on the validation set of HumanEva I [23], which contains sequences of
multiple subjects performing a variety of actions. We evaluate the methods on
video from the single color camera, C1, for sequences containing movement for
every body part, namely “Walking” and “Jog”. The motions involve significant
changes in scale and a full 360 degree change in orientation of the body.

Figure 3a shows 2D marker error, and confirms that FlowCap outperforms [27]
on this subset of HumanEva I. The method of [27] has large errors in some frames
due to misdetections on the background or large errors of the arm joints. This is
reflected in larger standard deviations. While not a comprehensive comparison,
this suggests flow can be a useful cue for 2D human pose.

2. Outdoors. While Kinect works well indoors, we captured a game-like sequence
outside using the Kinect camera (Fig. 2). The natural lighting causes Kinect pose
estimation to fail on almost every frame of the sequence. In contrast, FlowCap
recovers qualitatively good 2D pose.

3. Cellphone camera. A truly portable system for human pose estimation
would open up many applications. Figure 4a shows FlowCap run on video from
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a
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Fig. 3. a) Ground truth evaluation. Average (and std) absolute marker distance (as
in [23]) for Walking and Jog validation sequences in HumanEva for FlowCap, FlowCap
with real-time flow and [27]. b) Failure cases. Lack of representative data (e.g. long
hair), back person’s view, and multiple people.

a hand-held Samsung Nexus S mobile phone. Despite the camera-motion removal
step (Sect. 4), residual background flow is observable in the sequence. Nonethe-
less, the estimated 2D poses are qualitatively good. This is a proof of concept
since our software is not designed to run on a phone and all processing is done
off-line.

4. Television. We do not claim to have a complete solution for human pose
estimation from archival data but Fig. 4b shows a few results on the TV series
“Buffy the Vampire Slayer” and “Friends.” Results on videos with mostly-frontal
views of a single moving person are promising. Here we envision FlowCap as part
of a more complex system using multiple cues or as an initialization to a part-
based model like [27].

Running time. Here we have shown a proof of concept system. Each component
of FlowCap is either real-time now or could be realistically made real time (flow
estimation, part prediction, Kalman filtering, and pose estimation). The optical
flow method of [26] used in most of the experiments has a running time of 3
seconds in a Nvidia Quadro K4000. We also experimented with a fast version
of the flow code that runs at about 30ms/frame. Despite lower quality flow,
the results in Fig. 3a show that FlowCap performance degrades very little when
using the real-time optical flow. Flow feature extraction and the Random Forest
method are slow; currently taking on the order of ten seconds per frame in VGA
images. However, these can run in super-real-time [21]. The running times of our
Kalman Filter and of the regression to joint space are negligible.

Failure cases and future work. Although we have shown that our sys-
tem works well in a number of situations, there is still room for improvement.
Figure 3b shows that our system would benefit from improving the realism of
training data, better disambiguation between front and back poses or tracking
multiple subjects. An obvious drawback of using only flow is that our system
only tracks body parts that have moved in the past; this could be solved by
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a

b

Fig. 4. a) Smartphone FlowCap. Here the video is captured using a hand-held
phone camera. This results in overall flow due to rotation and translation of the camera.
Despite this, part estimates remain good and pose is well estimated. b) Archival
video. Results on archival data from series Friends and Buffy. Ground truth shown in
red, [27] in yellow, FlowCap part centers in white (Colour figure online).

using image-based initialization. Other future directions include a multi-camera
version [9], model-based tracking, dealing with background motions and using
multi-frame optical flow features. More sophisticated flow algorithms could also
be evaluated.

6 Conclusion

We have demonstrated how optical flow alone can provide information for 2D
human pose estimation. Like range data, it can factor out variations in image
appearance and additionally gives information about the motion of body parts.
We have also demonstrated how flow can be used to detect and track human pose
in monocular videos such as television shows. This demonstrates a simple proof
of the concept that flow offers something like the appearance invariance of depth
while being available from ordinary video. The application of the techniques
from [21] to monocular flow fields is non-obvious since our system deals with
vanishing flow when a body part is static by exploiting the lack of flow. Zero
flow is bad for pose estimation but good for tracking and we exploit this duality.
The 2D predictions are surprisingly good in a range of complex videos. Because
no special hardware is required, optical flow may be a useful component in pose
estimation, opening up more widespread applications.

While we only use optical flow as input, future work should include additional
2D image cues. Head, feet, and hand detectors could readily be incorporated as,
for that matter, depth data from a range sensor or stereo system. Alternatively,
FlowCap could be used as a complementary source of information for other
pose estimation and tracking methods. For example, we could use FlowCap to
initialize more precise model-based trackers. In addition to providing pose, we
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provide an initial segmentation of the image into regions corresponding to parts.
This evidence could readily be incorporated in to existing 2D pose trackers.
While our training flow is generated from bodies that are unclothed, we find
it generalizes to clothed people. Still, we could simulate sequences of people in
clothing (e.g. as in [14]) or use real video of clothed people with ground truth.
We could train also FlowCap for specific applications such as TV shows, sports,
or video games by constructing training sets with specific motions. Since we start
with 3D pose, it would be interesting to directly try to estimate 3D pose, and
possibly body shape, from flow (and other cues). Finally our training data could
be used to directly train a CNN to estimate pose from flow (and image data).
This is an exciting direction that our public dataset2 will help support.
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Abstract. 3D facial landmark detection is important for applications
like facial expression analysis and head pose estimation. However, accu-
rate estimation of facial landmarks in 3D with head rotations is still
challenging due to perspective variations. Current state-of-the-art meth-
ods are based on random forests. These methods rely on a large amount
of training data covering the whole range of head rotations. We present
a method based on regression forests which can handle rotations even
if they are not included in the training data. To achieve this, we mod-
ify both the weak predictors of the tree and the leaf node regressors
to adapt to head rotations better. Our evaluation on two benchmark
datasets, Bosphorus and FRGC v2, shows that our method outperforms
state-of-the-art methods with respect to head rotations, if trained solely
on frontal faces.

1 Introduction

Accurate facial landmark positions are necessary for several applications. In par-
ticular facial expression analysis and head pose estimation algorithms benefit
from robust facial landmark detections. Towards this direction most facial land-
mark estimation approaches utilize 2D image information to locate these salient
points on the face. However, 2D methods are not robust in case of texture-less
regions and illumination changes, so considering range data offers the possibility
to overcome these problems. Facial expressions, rotations and occlusions remain
challenging for facial landmark localization from range data. Applying rotational
invariant local descriptors [1,8], such as shape index or spin image histograms,
can handle these problems to some extent. These descriptors are often computa-
tionally expensive and are therefore difficult to apply in real time applications.
Recently, random forests showed promising results to estimate facial landmark
localizations in real time [4]. In order to achieve robustness to head pose changes,
these approaches need a large amount of training data which covers the range
of possible head rotations. Generating training data covering the head rotation
space is challenging and expensive. Thus, many approaches rely on synthetic
training data. However, specific characteristics of sensors are difficult to simu-
late on synthetic data. To overcome the challenge of generating training data
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 424–434, 2015.
DOI: 10.1007/978-3-319-24947-6 35
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containing all possible head rotations we present a new method. Our approach
is an extension of existing random regression forests [3,5,13] but in contrast
to existing methods it performs better for unseen rotated faces. We propose a
rotation-normalization to counter the effect of depth changes caused by head
rotations. The leaf node predictors of the regression forests are modified with a
local coordinate transformation. Additionally, we extend the depth comparison
feature in the internal nodes to perform rotational invariant. Experiments show
the robustness of our method against unseen head rotation. The remainder of
this paper is structured as follows. In Sect. 2, we discuss recent related work.
Then, in Sect. 3 we present our new approach for 3D facial landmark detection
with regression forests. The experimental Sect. 4 shows the performance of our
method in case of head rotations. Additionally, we show the robustness against
unseen individuals and facial expressions on frontal images.

2 Related Work

In general, 2D facial landmark methods can be divided into global methods and
local methods. Global methods take the whole face into account whereas local
methods rely on the localization of salient points by considering the local neigh-
borhood. In recent years, combinations became popular [11,14]. However, 2D
image based approaches are often sensitive to varying illumination and texture-
less image regions, whereas depth based methods offer the chance to overcome
these problems [15]. With the introduction of affordable depth sensors, 3D data
gained interest for facial landmark detection. Similar to 2D methods, they can
be divided into global and local methods.

Global methods often rely on a facial model that describes the position of
the facial landmarks in relation to each other. Recent approaches [1,8] generate
candidate landmarks by local shape descriptors like spin images or shape index
features. Then a global model refines the candidate landmarks to establish final
facial landmark positions. Due to the high computational cost of estimating the
shape descriptors, it remains difficult to achieve real time performance.

Local methods do not use a model to filter outliers. Instead local information
is leveraged to estimate the position of each landmark individually. One way to
achieve this is to use conditional random forests [4] because of their ability to
handle multi class problems and their ability to generalize well if a lot of training
data is available. Random forests have the advantage of computational efficiency
and therefore achieve real time performance.

Criminisi et al. summarize recent random forest approaches [2], especially for
real time applications where they show promising results. Random forests are
applied in several applications such as human pose estimation [13], hand gesture
recognition [6] and facial landmark estimation [4]. There are mainly two types
of random forests, classification forests to determine a set of discrete labels or
regression forests to estimate continuous labels.

Shotton et al. [13] present an approach using classification forests to esti-
mate joint positions in real time. Girshick et al. [5] extend this approach with
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Fig. 1. Figure (a) shows a patch (black) with two subregions (blue). In the internal
nodes the difference is compared to a threshold. In case of rotation this difference
changes. Figure (b) visualizes a displacement vector (red) pointing from a patch towards
the left outer eye. In case of rotation the oriented displacement vector to the landmark
location will change (Color figure online).

regression forests to accurately locate joint positions. It was shown that in partic-
ular for joint positions with stable surroundings such as the head and shoulder
regression forests outperform classification forests. In case of facial landmark
estimation the surrounding is stable especially around the eye and nose region,
so we use regression forests.

3 Regression Forests for Rotational Robust Facial
Landmark Estimation

Establishing a dataset with all possible rotations available remains difficult.
Especially in case of further variations, such as facial expressions, occlusion,
person independence and illumination changes, where all combinations have to
be collected. Hence, our goal is to estimate facial landmark locations of rotated
faces without having rotated views in the training data set. To achieve this, we
adapt the split function and the leaf regressors of the regression forests to han-
dle rotations. We first summarize the approach of random regression forests for
facial landmark detection, as presented by Fanelli et al. [4] and Girshick et al. [5].
Then we point out the drawbacks of this approach in case of unseen rotations
and present our modifications which are more robust to rotations of the face.

3.1 Regression Forests for Facial Landmark Estimation

A random forest is an ensemble of decision trees. A tree is built based on a
set of training samples. Each training sample consists of a rectangular patch of
depth image representing a part of the face and the displacement vectors of the
patch center points to the facial landmarks established from the ground-truth
landmark locations. Each tree consists of internal nodes and leaf nodes. The
internal nodes contain a splitting function, distributing the input samples to
the child nodes. In the leaf nodes predictions are stored. These predictions are
displacement vectors towards the facial landmark locations, estimated from the
samples that reach the leaf node in the training phase. In the following we will
describe the learning and the testing phase.
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Training. The goal of the training phase is to determine the tree parameters
and the leaf node predictors. The tree parameters are determined by a split
function and by a quality measure which is maximized while training the tree.
For each internal node in a tree, starting at the root the following steps are
executed:

1. Generate a set of random splitting functions
2. Find the best splitting function with regard to the input samples and a given

quality measure
3. Distribute the samples based on the best splitting function to the child nodes

In our general implementation we use the splitting function defined by Fanelli
et al. [4]:

(|F1|−1
∑
q∈F1

I(q)) − (|F2|−1
∑
q∈F2

I(q)) > τ (1)

where F1 and F2 are asymmetric rectangles within a training patch P and τ is a
threshold. |F1|−1

∑
q∈F1

I(q) and |F2|−1
∑

q∈F2
I(q) are the mean depth values

inside the regions F1 and F2. A set of rectangles and thresholds are randomly
generated when training a node. To evaluate the quality of a splitting function
we use the same measure for regression forests as Girshick et al. [5].

Each internal node is split until either the maximum depth is reached or the
number of examples falling into the node is smaller than a threshold. As described
by Dantone et al. [3] in the leaf nodes a final predictor vl = {μl, ωl}l=1,..,k for
each landmark l is stored by combining the training examples reaching this leaf
node. μl is the mean of the displacement vectors and ω = 1

trace(Σl)
is a weight

estimated from the variance inside the node.

Testing. Given a range scan the goal of the testing phase is to estimate the
3D location of all facial landmarks. To achieve this, patches are densely sampled
from the face area and branched through the random regression forest. For each
patch the trees provide displacement vectors to the facial landmark positions
including a weight. Displacement vectors are only considered with a weight larger
than a threshold to ignore results from leaf nodes with high variances. To obtain
estimations of the facial landmark positions the displacement vector reached in
the tree is added to the center of the patch. Doing this for all patches results in
a density map for each landmark.

To estimate the final facial feature location from these maps, clustering based
on the euclidean distance is applied. The final landmark position is then esti-
mated by applying mean shift to the cluster with the maximum number of votes.

3.2 Rotational Robust Facial Landmark Estimation

The general decision forest approach has some limitations concerning the robust-
ness to unseen rotations. As shown in Fig. 1a, at the internal nodes the depth
values of the subregions inside a patch are compared to a threshold. In case
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Fig. 2. Figure (a) shows an example patch (black) with two subregions (light blue) on
a frontal face (left) and a rotated face (right). Figure (b) visualizes the normalization
offsets (red) γ1 and γ2 dependent on the normal direction (blue) and the distance
vectors towards the subregions d1 and d2 (pink) (Color figure online)

of rotations, the depth values change which causes a modification in their dif-
ference. Furthermore, as shown in Fig. 1b, the displacement vector learned for
a specific leaf node points towards the landmark location. However, in case of
rotations the displacement vector will not point towards the correct location.

To overcome these issues, we extend the regression forest in two ways:

1. internal nodes: We add an offset to the depth values used by the splitting
function according to the normal direction

2. leaf nodes: We apply a rotation-normalization, both in the training and testing
phase. Therefore, in the training phase we transform the input displacement
vectors according to their local neighborhood. The tree training is performed
with the normalized displacement vectors. Then, in the testing phase we back
project the displacement vectors to obtain votes for the facial landmarks.

Internal Nodes. As shown in Fig. 1a, the difference of depth values changes
in case of rotations. To overcome this issue we add an offset to the depth values
of the subregions depending on the normal direction which is related to the
rotation, shown in Fig. 2.

We add offsets γ1 and γ2 to the splitting function in Eq. (1) to achieve a
rotation invariant depth comparison. The offsets are dependent on the normal
direction n and the distance vectors dj pointing towards the subregions from
the center of the patch, as shown in Fig. 2b. Our test function at the internal
nodes results in:

(|F1|−1
∑
q∈F1

I(q) + γ1) − (|F2|−1
∑
q∈F2

I(q) + γ2) > τ (2)

with:
γj = nT ∗ dj (3)

Since the normal vector is in world coordinates and the distance vectors are
in image coordinates, we transform the distance vectors into world coordinates.
To achieve this we scale the pixel distances with σx and σy, which are dependent
on the focal length f and the mean distance of the face to the sensor zface:
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Fig. 3. Figure (a) shows the training phase, where the tree is set up with projected
displacement vectors. Figure (b) shows the testing phase, votes are back projected with
the transformation (blue) (Color figure online).

dj =

⎛
⎝σx ∗ xdj

σy ∗ ydj

0

⎞
⎠ , with σx =

zface

fx
, σy =

zface

fy
(4)

with (xdj , ydj) the distance vector in pixels. The world coordinates can be
achieved directly from the point cloud. But this fails in case of missing or cor-
rupted data due to noise.

Leaf Nodes. In the leaf nodes displacement vectors are stored pointing towards
the facial landmark position. To obtain a rotation invariant displacement vector
we estimate a local coordinate transformation, which we apply in the training
and testing phase. In the following, we first explain the estimation of the local
coordinate transformation and then how we apply it in the regression trees.

The local coordinate transformation is estimated with PCA for each 3D point
separately by the principal directions of the neighboring 3D points [7,10]. To
obtain a unique coordinate transformation, we define the directions of the last
and second axes. The last axis w, which is the normal, is projected towards
the viewing direction. We project the second axis v towards the right side. The
direction of the first axis u is computed from the cross product of the first and
second. This is performed without loss of generalization for the reason that the
head is pointing towards the viewing direction and the roll rotation is limited to
90 degrees. This results in a coordinate transformation M = (u,v,w)T ∈ SO(3)

To overcome the problem with the displacement vector, as shown in Fig. 1b,
we use the local coordinate transformation. The transformation is applied in the
training phase to learn the trees in a rotational invariant way and in the testing
phase to obtain the results by backprojecting from the rotational invariant space
to the currently rotated space.
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In the training phase we apply the coordinate transformation at each patch i
as follows (see Fig. 3a): To train the tree structure patches Pi = {Ii,Mi, δ

′
i} are

used, containing depth values of the patch Ii ⊂ I, the local coordinate trans-
formation matrix Mi ∈ SO(3) and displacement vectors to k facial landmark
locations projected with the local coordinate transformation δ′

i = {δ′1
i , . . . δ

′k
i },

δ′l
i ∈ R

3 with l = 1, ...k:
δ′l

i = Mi ∗ δl
i (5)

With these input patches the trees are trained as explained in Sect. 3.1 using
the transformed offsets δ′

i in the leaf nodes. In the leaf nodes voting elements
v′

l = {μ′
l,ω

′
l}l=1,..,k for each landmark l are stored by summarizing the training

examples reaching this leaf node.
In the testing phase, patches of new range scan are extracted from the face

region and branched through the trees as explained in Sect. 3.1. In the leaf node
a patch i reaches a displacement vector v′

l pointing towards a facial landmark
normalized with regard to rotations, as shown in Fig. 3b. To obtain votes yi for
facial feature locations, the displacement vector v′

l is therefore back projected
with the current local rotation matrix Mi:

yi = xi + MT
i ∗ v′

l (6)

with xi ∈ R
3 the current patch location. Afterwards we determine the final facial

landmarks by applying the same steps as explained in Sect. 3.1: A probability
map for each landmark is generated from the obtained votes. Final landmark
locations are estimated by applying clustering and mean shift.

One issue of the local coordinate transformation is that, in case of flat regions
the transformation is not definitely determined, but random forests can compen-
sate this problem. By applying the transformation in the training phase patches
with strongly varying local rotations will generate leaf nodes with large vari-
ances. Therefore those leaf nodes will not influence the final landmark locations
since in the testing phase votes of leaf nodes with high variance are ignored.

4 Evaluation

We perform two experiments to evaluate our methods.
To demonstrate the performance of our method against unseen rotations we

use the Bosphorus dataset, where both frontal faces and faces with yaw rotations
are available. It consists of 105 different subjects taken with a structured-light
based 3D system. To evaluate our estimations we use the ground truth labels
provided with the dataset by Savran et al. [12]. For training we only use the
frontal faces whereas for testing we use the rotated faces.

Furthermore we evaluate our method on a frontal face dataset, to show that
our extension does not lose performance in case of training and testing on frontal
faces compared to state-of-the-art methods applied on frontal faces. For this
experiment we use the FRGC dataset [9], which consists of frontal range scans
with different expressions. Furthermore, we show the person independence of our
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Table 1. Percentage of correctly estimated landmark locations inside a radius of
10 mm. right eye outer corner (REOC), right eye inner corner (REIC), left eye inner
corner (LEIC), left eye outer corner (LEOC), nose tip (NT), mouth right corner (MRC),
mouth left corner (MLC), chin tip (CT)

YawRot20 YawRot30

RF RF-Ext (Our) RF RF-Ext (Our)

REOC 42.66 13.01 3.68 2.40

REIC 93.37 76.63 43.75 62.61

LEIC 49.74 82.49 6.67 62.14

LEOC 4.88 9.26 0.00 0.00

NT 86.73 93.49 34.89 66.43

MRC 33.42 22.86 4.26 7.53

MLC 14.09 24.21 1.13 4.58

CT 2.87 12.71 0.00 2.38

MEAN 40.97 41.5 12.85 25.63

method by considering the same training and test set as Perakis et al. [8] which
consists of different people in the training and test set. Here, the ground truth
landmarks are the ones provided by [8].

4.1 Head Rotations

To evaluate our method against unseen head rotations we perform our first
experiment on the Bosphorus database. We train on frontal faces and evaluate
on rotated faces. We divided the 300 frontal faces into 250 faces to train the tree
parameters and perform cross validation on the remaining 50 neutral images
to optimize the weighting threshold. We choose the fixed parameters of the
trees according to Fanelli et al. [4]. To train our trees we randomly choose 3000
patches on 200 frames out of the 250 training frames. The size of the patches
is set to 40 × 40. We trained 10 trees with a maximum depth of 20. Each tree
votes for all landmark locations in the leaf node. The threshold of the maximum
displacement length is set to 60 mm. In our first experiment we evaluated the
mean success rate on rotated faces of a standard regression forest versus our
extended regression forest.

Table 1 shows the success rate of our method against recent regression forests.
In this experiment we trained on frontal faces and evaluated on faces with yaw
rotations. All evaluations are performed with a stride of 20. Our method out-
performs recent regression forests in case of new rotations. For both methods,
the landmarks at the borders are more noisy. In case of rotation the surrounding
of the facial landmarks at the border changes significantly, unavailable features
such as the ear become visible. Whereas, the surrounding of the area in the
middle of the face stays similar. Regarding the results of the inner eye corners
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Fig. 4. Average time in ms per frame versus percentage of correctly estimated land-
mark locations inside a radius of 10 mm for strides ranging from 0 to 75. Our method
outperforms usual regression forests on faces rotated more than 30◦ while not loosing
performance.

Fig. 5. Example results of our method on rotated faces [12] and frontal faces [9]. Left:
Successful landmark localization results, right: failure cases

and the nose tip, our method outperforms regression forests significantly. These
three landmarks are enough to estimate the head pose.

Figure 4 shows the ratio of correctly estimated landmark locations versus
the time per frame in ms. The time is varied by changing the stride between
the patches branched through the tree. The evaluation is performed with an
unoptimized c++ code on 1 cpu core with 2.80GHz. This results in a runtime
of less then 50 ms per frame fixing the stride to 20.

This experiment shows that we perform better on rotated faces while not los-
ing computational time. Sample results are shown in Fig. 5. We do not compare
our method to [1] since we focus on real-time applications.

4.2 Person Independence and Facial Expressions on Frontal Faces

This experiment is performed for the sake of completeness to evaluate the robust-
ness of our method against facial expressions and person independence. Accord-
ing to the approach of Perakis et al. [8] we use the same 300 frontal faces as
training images. We divide this training set again into 250 images to set up the
tree structure and perform cross validation on the remaining 50 training images.
The tree parameters are chosen as explained in the previous experiments. To
compare our approach to the method presented by [8] we evaluated our method
on the same 975 depth images with various facial expressions.
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Table 2. Comparison of mean average error estimation in mm (std. dev.) on frontal
faces of FRGC v2 [9] to [8] and regression forests. Our method outperforms [8] and
performs comparable to regression forests on frontal faces. However our approach gen-
eralizes better on rotated faces as shown in Table 1.

Perakis et al. [8] RF RF-Ext (Our)

REOC 5.58 (3.33) 3.44 (3.58) 4.59 (5.93)

REIC 4.15 (2.35) 2.48 (1.73) 2.93 (1.93)

LEIC 4.41 (2.49) 2.49 (1.83) 3.10 (2.13)

LEOC 5.83 (3.42) 3.44 (2.20) 4.79 (6.96)

NT 4.09 (2.41) 2.64 (1.80) 2.64 (2.44)

MRC 5.56 (3.93) 3.47 (2.70) 3.97 (3.27)

MLC 5.42 (3.84) 3.54 (4.14) 4.21 (4.20)

CT 4.92 (3.74) 3.38 (2.45) 3.62 (3.82)

Mean 5.00 3.11 3.74

Table 2 shows the mean average error of our method compared to the app-
roach of [8]. Our method can handle unseen people and various facial expression
robustly. It even outperforms a state-of-the-art method and performs compara-
ble to the implementation of usual regression forest. However, on rotated faces
it outperforms recent regression forest methods.

5 Conclusion

We present a new method for facial feature localization on rotated faces based on
regression forests. In comparison to existing approaches we extend the forests by
a rotation-normalization in order to improve the landmark localization across
pose differences. Our approach generalizes better under unseen rotations for
facial landmark localization. We obtain the same performance as current state-of-
the-art approaches on frontal faces. Moreover, our method outperforms existing
real time approaches with respect to rotated faces. The important benefit is, that
rotated faces do not have to be covered by the training set. The computational
cost stays low achieving real-time performance with 20 fps.
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Abstract. This paper describes a newly enhanced technique of 2D pro-
jection transformation invariant template matching, GPT (Global Pro-
jection Transformation) correlation. The key ideas are threefold. First,
we show that arbitrary 2D projection transformation (PT) with a total of
eight parameters can be approximated by a simpler expression. Second,
using the simpler PT expression we propose an efficient computational
model for determining sub-optimal eight parameters of PT that maxi-
mize a normalized cross-correlation value between a PT-superimposed
input image and a template. Third, we obtain optimal eight parameters
of PT via the successive iteration method. Experiments using templates
and their artificially distorted images with random noise as input images
demonstrate that the proposed method is far superior to the former GPT
correlation method. Moreover, k-NN classification of handwritten numer-
als by the proposed method shows a high recognition accuracy through
its distortion-tolerant template matching ability.

Keywords: Distortion-tolerant template matching · 2D projection
transformation · Normalized cross-correlation

1 Introduction

Distortion-tolerant template matching has been intensively pursued over decades
and is required to deal with all possible translations and a variety of image
degradations [1]. Template matching in computer vision is useful for seeking a
given pattern in a given image as a “whole-to-part” image matching problem.
There have been such feature-based techniques as SIFT [2] and more recent
ones [3–5]. Also, region-based techniques guided by Lukas-Kanade’s paradigm
[6,7], have been pursued so as to handle arbitrary 2D affine transformation [8].

On the other hand, template matching in the research arena of pattern recog-
nition has been tackling a problem of distortion-tolerant “whole-to-whole” image
matching. Those representative works include the tangent distance [9], the per-
turbation method [10], and DP-based 2D warping [11].
c© Springer International Publishing Switzerland 2015
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Wakahara et al. [12] proposed the affine-invariant GAT correlation method as
one of promising techniques of distortion-tolerant template matching. Recently,
they extended the GAT correlation method to the GPT (Global Projection
Transformation) correlation method for absorbing 2D projection transforma-
tion [13]. They focused on the fact that arbitrary 2D projection transformation
(PT) with eight parameters can be decomposed into a product of affine transfor-
mation (AT) with six parameters and partial projection transformation (PPT)
with two parameters, i.e., PT = AT ◦ PPT. An efficient computational model
was presented for determining sub-optimal components of AT and PPT indepen-
dently or separately that maximize a normalized cross-correlation value between
a template and a deformed input image by either of AT and PPT. However, how
to determine a total of eight parameters of PT not separately but simultaneously
remained unsolved as a fundamental problem.

In this paper, we propose an enhanced GPT correlation technique to resolve
the above-mentioned problem. The key ideas are threefold.

First, we show that arbitrary 2D projection transformation (PT) with a
total of eight parameters can be approximated by a simpler functional form
of expression. Second, using the simpler PT expression we propose an efficient
computational model for determining sub-optimal eight parameters of PT that
maximize a normalized cross-correlation value between a PT-superimposed input
image and a template by solving a set of simultaneous linear equations via the
0-th order approximation. Third, we obtain optimal eight parameters of PT
using the successive iteration method.

Experiments using templates and their artificially distorted images with ran-
dom noise as input images demonstrate that the proposed method is far superior
to the former GPT correlation method. Moreover, k-NN based recognition exper-
iments made on the handwritten numeral database IPTP CDROM1B [14] show
that competitive matching techniques of the simple correlation, the tangent dis-
tance, and the enhanced GPT correlation achieve recognition rates of 97.07 %,
97.50 %, and 98.75 %, respectively.

2 Enhanced GPT Correlation

First, we outline the basic concept of Global Projection Transformation (GPT)
[13]. Second, we newly introduce a computational model of enhanced GPT cor-
relation to obtain sub-optimal eight parameters of PT simultaneously. Finally,
we propose to use the successive iteration method to achieve an optimal GPT
solution via a synthesis rule for updating PT components at every iteration.

2.1 Basic Formulation of Global Projection Transformation

As is well-known, 2D projection transformation (PT) has a total of eight para-
meters and is defined by

x ′ =
Ax + b

1 + cTx
,
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A =
(

a00 a01

a10 a11

)
, b =

(
b0
b1

)
, c =

(
c0
c1

)
, (1)

where all vectors are assumed to be column vectors. Also, cT denotes the trans-
pose of a column vector c, and x = (x, y)T.

In correlation-based image matching between an input image, f(x ), and a
template, g(x ), Wakahara et al. [13] proposed to maximize a normalized cross-
correlation value by applying optimal PT to f(x ). They called this technique
GPT correlation.

First, by means of definite canonicalization [15] pixel values of f(x ) and g(x )
were linearly transformed to satisfy the following normalization requirements. D
denotes the domain common to f(x ) and g(x ), and e(x ) ≡ 1.

(f, e) = (g, e) = 0 , ‖ f ‖ = ‖ g ‖ = 1, (2)

where
(f, g) ≡

∫
D

f(x )g(x )dx , ‖ f ‖ ≡
√

(f, f).

As a result, a normalized cross-correlation value between f(x ) and g(x ) was
obtained by means of an inner product on f(x ) and g(x ), i.e., (f, g).

Second, they defined a normalized cross-correlation value, CGPT(f, g), of the
form

CGPT(f, g) = max
A,b,c

JGPT(A, b, c),

JGPT(A, b, c) =
∫

D
f(x )g

(
Ax + b

1 + cTx

)
dx . (3)

Third, in order to avoid an exhaustive search for optimal parameters in (3)
they introduced a new objective function, J̃GPT(A, b, c), with a Gaussian kernel
of PT components given by

J̃GPT(A, b, c) =
∫

D

∫
D

G

(
Ax 1 + b

1 + cTx 1
− x 2

)
×

δ (d(∇f(x 1)), d(∇g(x 2))) f(x 1)g(x 2)dx 1dx 2,

G(x ) = exp

(
−‖x‖2

2W 2

)
, (4)

where d(∇f(x )) and d(∇g(x )) stand for directions of gradients of f(x ) and
g(x ) quantized with the π

4 interval, and take integers ranging from zero to eight.
The value of zero corresponds to no gradient. Also, the δ(i, j) is a kind of the
Kronecker delta of the form

δ(i, j) =
{

1 , for i = j �= 0
0 . for i �= j or i = 0 or j = 0 (5)



438 T. Wakahara and Y. Yamashita

The value of W of (4) controlled the spread of the Gaussian kernel as a
function of the disparity in gradients between the input image and the template
according to

W =
1
2

Av
x1

{
min

{x2|d(∇f(x1))=d(∇g(x2)) �=0}
‖x 1 − x 2‖

}

+
1
2

Av
x2

{
min

{x1|d(∇f(x1))=d(∇g(x2)) �=0}
‖x 1 − x 2‖

}
, (6)

where Av stands for an averaging operation.

2.2 Computational Model of Enhanced GPT Correlation

We newly propose to approximate the exact expression of PT appearing as an
argument of the Gaussian kernel of (4) to obtain its simpler functional form.

Concretely, by assuming that A is nearly equal to an identity matrix, I, and
both b and c are nearly equal to zero vectors we can obtain the approximation
of PT given by

Ax 1 + b

1 + cTx 1
− x 2 ≈ (Ax 1 + b)(1 − cTx 1) − x 2

≈ (Ax 1 + b) − x 1x 1
Tc − x 2.

∴
∥∥∥∥ Ax 1 + b

1 + cTx 1
− x 2

∥∥∥∥
2

≈ ∥∥(Ax 1 + b) − x 1x 1
Tc − x 2

∥∥2

= (a00x1 + a01y1 + b0 − c0x
2
1 − c1x1y1 − x2)2

+(a10x1 + a11y1 + b1 − c0x1y1 − c1y
2
1 − y2)2. (7)

After substituting the exact expression of PT with the above approxima-
tion we set the derivatives of J̃GPT(A, b, c) of (4) with respect to A, b, and c
equal to zero. Then, we can obtain a set of simultaneous equations as a neces-
sary condition for maximizing J̃GPT(A, b, c). Moreover, we adopt the 0th order
approximation that sets A = I, b = 0 , and c = 0 in the Gaussian kernel. As a
result, we have

0 =
∂J̃GPT

∂a00
≈ − 1

W 2

∫
D

∫
D

G(x 1 − x 2)f(x 1)g(x 2)δ (d(∇f(x 1)), d(∇g(x 2)))

× (a00x1 + a01y1 + b0 − c0x
2
1 − c1x1y1 − x2)x1dx 1dx 2,

0 =
∂J̃GPT

∂a01
≈ − 1

W 2

∫
D

∫
D

G(x 1 − x 2)f(x 1)g(x 2)δ (d(∇f(x 1)), d(∇g(x 2)))

× (a00x1 + a01y1 + b0 − c0x
2
1 − c1x1y1 − x2)y1dx 1dx 2,

0 =
∂J̃GPT

∂a10
≈ − 1

W 2

∫
D

∫
D

G(x 1 − x 2)f(x 1)g(x 2)δ (d(∇f(x 1)), d(∇g(x 2)))

× (a10x1 + a11y1 + b1 − c0x1y1 − c1y
2
1 − y2)x1dx 1dx 2,



Enhanced GPT Correlation 439

0 =
∂J̃GPT

∂a11
≈ − 1

W 2

∫
D

∫
D

G(x 1 − x 2)f(x 1)g(x 2)δ (d(∇f(x 1)), d(∇g(x 2)))

× (a10x1 + a11y1 + b1 − c0x1y1 − c1y
2
1 − y2)y1dx 1dx 2,

0 =
∂J̃GPT

∂b0
≈ − 1

W 2

∫
D

∫
D

G(x 1 − x 2)f(x 1)g(x 2)δ (d(∇f(x 1)), d(∇g(x 2)))

× (a10x1 + a11y1 + b1 − c0x1y1 − c1y
2
1 − y2)dx 1dx 2,

0 =
∂J̃GPT

∂b1
≈ − 1

W 2

∫
D

∫
D

G(x 1 − x 2)f(x 1)g(x 2)δ (d(∇f(x 1)), d(∇g(x 2)))

× (a10x1 + a11y1 + b1 − c0x1y1 − c1y
2
1 − y2)dx 1dx 2,

0 =
∂J̃GPT

∂c0
≈ − 1

W 2

∫
D

∫
D

G(x 1 − x 2)f(x 1)g(x 2)δ (d(∇f(x 1)), d(∇g(x 2)))

× [(a00x1 + a01y1 + b0 − c0x
2
1 − c1x1y1 − x2)x2

1

+ (a10x1 + a11y1 + b1 − c0x1y1 − c1y
2
1 − y2)x1y1]dx 1dx 2,

0 =
∂J̃GPT

∂c1
≈ − 1

W 2

∫
D

∫
D

G(x 1 − x 2)f(x 1)g(x 2)δ (d(∇f(x 1)), d(∇g(x 2)))

× [(a00x1 + a01y1 + b0 − c0x
2
1 − c1x1y1 − x2)x1y1

+ (a10x1 + a11y1 + b1 − c0x1y1 − c1y
2
1 − y2)y2

1 ]dx 1dx 2. (8)

Finally, by using the following notation:

v ≡
∫

D
∫

Dv(x 1,x 2)G(x 1−x 2)δ (d(∇f(x 1)), d(∇g(x 2))) f(x 1)g(x 2)dx 1dx 2∫
D

∫
DG(x 1−x 2)δ (d(∇f(x 1)), d(∇g(x 2))) f(x 1)g(x 2)dx 1dx 2

we can rewrite a set of simultaneous linear equations of eight unknown parame-
ters of (8) and find⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2
1 x1y1 0 0 x1 0 −x3

1 −x3
1y1

x1y1 y2
1 0 0 y1 0 −x2

1y1 −x1y2
1

0 0 x2
1 x1y1 0 x1 −x2

1y1 −x1y2
1

0 0 x1y1 y2
1 0 y1 −x1y2

1 −y3
1

x1 y1 0 0 1 0 −x2
1 −x1y1

0 0 x1 y1 0 1 −x1y1 −y2
1

x3
1 x2

1y1 x2
1y1 x1y2

1 x2
1 x1y1 −(x4

1 + x2
1y

2
1) −(x3

1y1 + x1y3
1)

x2
1y1 x1y2

1 x1y2
1 y3

1 x1y1 y2
1 −(x3

1y1 + x1y3
1) −(x2

1y
2
1 + y4

1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a00

a01

a10

a11

b0
b1
c0
c1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(
x1x2, y1x2, x1y2, y1y2, x2, y2, x2

1x2 + x1y1y2, x1y1x2 + y2
1y2

)T

. (9)

These simultaneous linear equations of (9) are easily solved. However, it is
to be noted that obtained eight parameters are sub-optimal ones for maximizing
JGPT(A, b, c) of (3).
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2.3 Iterative Solution for Optimal PT Components

We propose to update sub-optimal solutions of PT components so that they
should converge into optimal ones via the successive iteration method [16].

First of all, we can obtain a synthesis rule for updating PT components at
every iteration as follows.

x ′ =
Ax + b

1 + cTx
,

x ′′ =
A′x ′ + b ′

1 + c′Tx ′ =
A′

(
Ax+b
1+cTx

)
+ b ′

1 + c′T
(

Ax+b
1+cTx

) =
A′(Ax + b) + (1 + cTx )b ′

1 + cTx + c′T(Ax + b)

≡ A′′x + b ′′

1 + c′′Tx
,

∴ A′′ =
A′A + b ′cT

1 + c′Tb
, b ′′ =

A′b + b ′

1 + c′Tb
, c′′ =

c + ATc′

1 + c′Tb
. (10)

Then, we adopt a procedure of the successive iteration method given by

Step 1 : In the initial state (τ = 0), we set A(0) = I, b(0) = 0 , c(0) = 0 and
f (0)(x ) = f(x ). We calculate W (0) of (6) and J

(0)
GPT of (3) by substitut-

ing f (0)(x ) for f(x ).
Step 2 : We set τ = τ + 1. We calculate A, b, and c of (9) by substituting

f (τ−1)(x ) for f(x ). If J
(τ)
GPT ≤ J

(τ−1)
GPT , we output CGPT(f, g) = J

(τ−1)
GPT

and stop the iteration. Otherwise, we go to Step 3.
Step 3 : By using the synthesis rule of (10) we obtain updated A(τ), b(τ), and

c(τ). Also, we calculate W (τ) of (6) by substituting f (τ)(x ) for f(x ),
and go back to Step 2.

3 Experimental Results

We compare the ability of the enhanced or new GPT correlation method against
that of the former or old GPT correlation method [13] in template matching using
artificially distorted images subject to Gaussian random noise. Moreover, we
show that k-NN classification of handwritten numerals by the proposed method
achieves a high recognition accuracy.

3.1 Affine Transformation Tolerance

We take up rotation as a representative of affine transformation.
Figure 1 shows the template of “Chess board” and examples of artificially

rotated images at intervals of five degrees. Here, we added random noise with
a Gaussian distribution having standard deviation σ = 50.0 to those artificially
rotated images, where gray values take integers in [0, 255].

Figure 2 shows relations between rotation angles and correlation values
obtained by matching the template of “Chess board” with its artificially rotated
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Template −20◦ −10◦ 0◦ +10◦ +20◦

Fig. 1. Template of “Chess board” and examples of artificially rotated images

Fig. 2. Relations between rotation angles and correlation values obtained for rotated
images of “Chess board” via the simple correlation, the old GPT correlation, and the
new GPT correlation methods

images via the simple correlation, the old GPT correlation, and the new GPT
correlation methods.

From Fig. 2, it is clear that the new GPT correlation method exhibited a
higher ability of rotation tolerance than the old GPT correlation method. Also,
we can point out that both of old and new GPT correlation methods realize
noise tolerance inherent in correlation-based template matching techniques.

3.2 2D Projection Transformation Tolerance

We generated input images by applying 2D projection transformation of A = I,
b = 0 , and c0 = c1 = s × 0.001, (s = 1, 2, ..., 10) to the template of “Chess
board”. Those distorted images were also subject to Gaussian random noise.

Figure 3 shows the template of “Chess board” and examples of 2D projection
transformed images with random noise.
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Template s = 2 s = 4 s = 6 s = 8 s = 10

Fig. 3. Template of “Chess board” and examples of 2D projection transformed images

Figure 4 shows correlation values for 2D projection transformed images of
“Chess board” obtained by the simple correlation, the old GPT correlation, and
the new GPT correlation methods.

Fig. 4. Correlation values for 2D projection transformed images of “Chess board”
obtained by the simple correlation, the old GPT correlation, and the new GPT corre-
lation methods

From Fig. 4, it is found that the new GPT correlation method achieved a
higher tolerance against 2D projection transformation than the old GPT corre-
lation method.

From these results, we can say that the proposed method is very powerful in
absorbing 2D projection transformation when being applied to “whole-to-whole”
image matching.

Incidentally, the average matching time per iteration between two images
with 64 × 64 pixels was 0.24 s on a 3.40 GHz Intel Xeon E3-1240 processor.
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3.3 Recognition of Handwritten Numerals

We use the handwritten numeral database IPTP CDROM1B [14]. This data-
base contains binary images of handwritten digits divided into two groups of
17,985 samples for training and 17,916 samples for test. Incidentally, the high-
est recognition rate ever reported for this database is 99.49 % [17] obtained via
a pseudo-Bayes discriminant function and LBG clustering in 400-dimensional
feature space reduced by KL transform.

In our experiments, position and size normalization by moments [18] is first
applied to each binary image so that the center of gravity of black pixels is
located at the center of the image and the average distance of black pixels from
the center of the image is set at the predetermined value of ρ (= 6.0). Then, we
transform all of binary images into grayscale images by Gaussian filtering and
set the image size at 24 × 16 pixels.

In recognition experiments, we make a comparative study of k-NN classifi-
cation of a total of 17,916 test samples using four kinds of matching measures:
the simple correlation, the tangent distance, the GAT correlation [19], and the
enhanced GPT correlation. Here, all of 17,985 training samples are used as tem-
plates.

Table 1 shows the recognition rates of the simple correlation, the tangent
distance, the GAT correlation, and the enhanced GPT correlation in k-NN clas-
sification. The value of k was set at three.

Table 1. Recognition rates of the simple correlation, the tangent distance, the GAT
correlation, and the enhanced GPT correlation in handwritten numeral recognition.

Matching measure Recognition rates (%)

Simple correlation 97.07

Tangent distance 97.50

GAT correlation 98.71

Enhanced GPT correlation 98.75

From Table 1, it is found that the proposed method achieved the highest
recognition rate among these k-NN based template matching techniques.

However, there is a typical problem of excessive matching common to
distortion-tolerant image matching techniques.

Figure 5 shows the occurrence rates of the correlation values at intervals
of 0.01 in two cases: matching against correct categories and matching against
almost similar but incorrect or “rival” categories. Here, we counted only one
highest correlation value obtained against a correct category’s template and one
highest correlation value obtained against an incorrect category’s template for
each test sample.

From Fig. 5 and Table 1, we can see that an excellent shape matching ability
does not always exhibit a distinct improvement in shape discrimination ability.
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Fig. 5. Occurrences of correlation values of enhanced GPT correlation, GAT correla-
tion, and simple correlation

4 Conclusion

This paper proposed a newly enhanced template matching technique, the
enhanced GPT correlation, featuring 2D projection transformation (PT) toler-
ance. The key contribution of this paper to distortion-tolerant template matching
is a simple but effective computational model as expressed by a set of simulta-
neous linear equations that determine optimal eight parameters of PT attaining
a maximum cross-correlation value between a template and a PT-superimposed
input image.

Experimental results showed that the proposed method exhibited a much
higher tolerance for geometric distortion subject to random noise than the former
GPT correlation method.

Future work is to apply the proposed method to “whole-to-part” image
matching with the aim of detecting distorted objects in a complex background.
Also, it is necessary to reduce the computational cost of the proposed method.

Acknowledgments. A part of this work was supported by JSPS KAKENHI Grant
Numbers 26330207 and 26280054.
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Abstract. Traffic light detection from a moving vehicle is an important
technology both for new safety driver assistance functions as well as
for autonomous driving in the city. In this paper we present a machine
learning framework for detection of traffic lights that can handle in real-
time both day and night situations in a unified manner. A semantic
segmentation method is employed to generate traffic light candidates,
which are then confirmed and classified by a geometric and color features
based classifier. Temporal consistency is enforced by using a tracking by
detection method.

We evaluate our method on a publicly available dataset recorded at
daytime in order to compare to existing methods and we show similar
performance. We also present an evaluation on two additional datasets
containing more than 50 intersections with multiple traffic lights recorded
both at day and during nighttime and we show that our method performs
consistently in those situations.

1 Introduction

In the past decade various advanced driver assistance systems (ADAS) have
found their way into series production and today almost all car manufacturers
offer a wide variety of comfort and safety features like for example speed limit
information, adaptive cruise control and automatic emergency breaking. In addi-
tion, safety organizations like the EuroNCAP and the equivalent institutions in
other countries, traditionally performing crash tests to assess passive safety, are
developing and introducing new test procedures for active safety systems, which
further promote the usage of ADAS in commercial vehicles. While there are
multiple sensors that can be used in such systems, cameras are usually the most
universal and cheapest choice, because they have the highest spatial resolution
and are able to detect the highest variety of object types, e.g. traffic signals, lane
markings and other road users.

The position and the current state of the traffic lights in front of the vehicle is
a valuable information for many safety and comfort driver assistance functions.
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 446–457, 2015.
DOI: 10.1007/978-3-319-24947-6 37
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Traffic lights detection is needed in order to enable autonomous and highly auto-
mated driving in cities and on country roads. Furthermore, red light running is a
major safety problem, with estimated 165,000 motorists, cyclists and pedestrians
injured in the USA every year, a lot of which fatal [1,15]. Similar studies in Ger-
many [2] show that 7,356 incidents with people or property damaged happened
in 2013 because of disregarding traffic signals at intersections.

In this paper, we focus on the problem of detecting the presence and the state
of traffic lights from camera images both at day and at night. Day and night
scenes pose fundamentally different challenges for visual traffic light recognition.
At day, the structure of the traffic light is well visible, but the light source can
be difficult to detect due to the presence of many other bright image regions
especially in sunny weather. Furthermore, traffic lights are relatively small in
width compared to traffic signs or other road users, which makes the detection
at large distances difficult. In contrast, at nighttime, light sources are visible
from a very high distance, but since the traffic light box is usually not visible in
the camera image (or only at very short distances), there is no textural support
to distinguish the traffic lights from other light sources like street lamps and
advertisements. Figure 1 shows examples of such difficult situations.

Fig. 1. The same scene recorded on a sunny day and at night showing the challenges
for a traffic light detection system that needs to operate in all conditions.

The method presented in this paper is based on machine learning and can
handle both day and night situations in a unified manner, such that only the
trained classifier parameters are different for day and night, while the whole
method remains unchanged. While there is a vast amount of literature on traffic
light recognition, only very few vision methods deal with both day and night
situations [18,23]. A detailed overview of the related work is given in Sect. 2.

Our method consists of two main stages. First, we use a pixel-wise semantic
segmentation method similar to [13] to find image regions that are potential
traffic light candidates. While similar image segmentation steps, usually based
on color thresholding, are used by many other systems, we show that more
advanced machine learning methods like our semantic segmentation approach
can provide more robust candidates. In a second step, we compute multiple
color and geometric features on the regions found in the first step, which are
then used by another classifier to confirm or reject the candidates and to also
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determine the current color of the traffic light. Additionally, a tracking algorithm
is used to enforce temporal consistency.

The proposed system is evaluated on two datasets with 57 intersections
recorded both at day and at night in order to show that we can handle both
scenarios using the same approach. Furthermore, we also present our results on
the publicly available dataset of [4], which contains only daytime recordings.

Our main contribution is a unified framework for real-time traffic light detec-
tion both at day and at night based on semantic segmentation to generate traffic
lights proposals and the subsequent classifier used to confirm or reject those can-
didates based on geometric and color features.

2 Related Work

We divide the related methods in three groups based on the situations they
operate in: at day, at night or both. While there are works that rely on high-
accuracy maps as a prior for the traffic lights position in the camera image
[8,10], here we focus on purely vision based systems, because they pose unique
challenges.

2.1 Detection at Day

Most of the related works focus on traffic light detection at day. Many methods
rely only on pure image processing by applying color segmentation followed by
geometric and visual filters [3,7,11,21,22,24]. Those methods may deliver good
results if the light shape is clearly visible, but it is not clear if they can scale
well to various traffic light types and night conditions. The evaluation provided
on those methods is also very limited and sometimes only qualitative.

The methods described in [4,26] rely on template matching in addition to
image processing techniques, which increases the robustness of the system in
some situations, but they work only during the day. Both methods are evaluated
on the dataset or part of it that is introduced in [4], which we also use for the
quantitative evaluation of our method.

More powerful machine learning methods are employed by [5,12,16,20] in
order to learn the appearance of the traffic lights at day. However, at night most
parts of the traffic light are not visible, so it is not clear if those methods can be
extended to also work in all situations.

Most of the works above provide very limited evaluation based on short
sequences of couple of minutes or done only qualitatively, which makes compar-
ison of performance difficult.

2.2 Detection at Night

The big challenge for traffic light detection methods at night is to filter out light
emitting objects that are not traffic lights. Several works exist that explicitly
focus on the night detection problem either by using template matching methods
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[9,19], support vector machines classification [17] or just image processing [6].
However, due to the lack of a publicly available datasets for traffic lights detection
with night recordings, those methods are tested only qualitatively or on small
non-public datasets.

2.3 Detection at Day and Night

The methods that are most strongly related to ours are those that are designed
to deal both with day and night conditions [18,23].

The authors of [18] use a pipeline consisting of image adjustments in the
RGB space, thresholding and applying a median filter to detect traffic lights in
different weather and illumination conditions. However, the scenarios where this
method is applied are limited, because only suspended traffic lights are detected,
while at many smaller intersections, only supported traffic lights are available.

Another system designed to handle both day and night situations as well
as adverse weather conditions is presented by [23]. The authors employ a color
pre-processing step, followed by a fast radial symmetry transform to extract
candidates and a spatio-temporal consistency check to reduce false positives.
While the detection at day is quantitatively evaluated on the dataset of [4], the
night detection is evaluated only qualitatively, which makes comparison of the
performance in different situations impossible.

Our method is evaluated quantitatively both on the dataset of [4] and on two
new datasets recorded at night and at day. In this way, we are able to analyze
the performance of our method in different lighting conditions.

3 Method

The general method pipeline is illustrated in Fig. 2. A semantic segmentation
algorithm is first used to label each image pixel and find potential candidate
regions in the image. Those regions are then verified by a classifier based on
several color and geometric features, which are also used to determine the state
of the traffic light. The verification stage also includes a tracking step, which
helps to enforce temporal consistency on the traffic lights.

Semantic Segmentation Candidates Verification

Color based
pre-segmentation

Texture based
segmentation

Regions based
segmentation

Geometric and
color features
classification

Tracking for
temporal

consistency

Fig. 2. Overview of the method pipeline.
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3.1 Semantic Segmentation Based Candidates

The goal of this stage is to find regions in the image that are potential traffic
light objects. In this stage, having false positives (e.g. candidates that are not
traffic lights) is not critical, since the subsequent verification stage is designed
to filter them out. The number of false negatives, on the other hand, needs to
be low, because missed traffic lights will not be evaluated in the next steps.
Nevertheless, a segmentation method that has few false positives is desirable
since the verification stage will be both more accurate and more efficient. It is
also important to note that our goal is to design a method that will be applicable
both at day and at nighttime.

The semantic segmentation problem aims to divide the image into semanti-
cally meaningful regions. This is usually done by classifying each image pixel xi

with a label yi from a predefined set of labels L. In our case, we need only two
labels: background or traffic light candidate. Our goal here is to label
only the light spot of the traffic light and not the whole box, because in most
cases the box is not visible in the camera image at night.

We employ a three-step semantic segmentation method based on the method
of [13]. Each step follows the same approach: for every pixel we compute features
from the image and from the result of the previous steps. Each pixel is then
classified based on those features by a JointBoost [25] classifier. The three steps
are described in detail below, while in Sect. 4.3 we show how they contribute to
the final detection performance.

Color Segmentation. The first step is a simple color segmentation used to
improve the runtime of the method. Instead of tuning the color thresholds by
hand, we employ a classifier that uses only the color of the pixel in the Lab color
space as input and is biased to have few false negatives on traffic light candidates
by giving the traffic light pixels very high weight (see Fig. 3). Formally, the color

noitatnemgesroloChturtdnuorghtiwegamiaremaC

Texture segmentation Region segmentation with verified candidates

Fig. 3. Intermediate results of our method at the different stages of the pipeline. At
every step the number of traffic light candidates (in white) is reduced. The candidate
regions confirmed by the classifier in the last stage are marked in red (Color figure
online).
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classifier models the conditional probability distribution P (yi|xi) of the pixel
label yi given the pixel intensities xi. The subsequent steps ignore all pixels that
were labeled as background.

Texture Segmentation. In the second step, the pixels are classified based
on the texture in their surrounding area. For this we compute a feature vector
f(xi) based on the 2D Walsh-Hadamard Transform [14], which is a discrete
and computationally efficient approximation of the cosine transform and has
successfully been used for template matching [14] and semantic segmentation
[13,27]. Similarly to the other works, we compute the first 16 coefficients of the
transform separately for each Lab color channel at five scales around the pixel
of interest. We also add the 2D coordinates of the pixel to the feature vector to
encode spatial context. The classifier operating on those features can be seen as
modeling distribution P (yi|f(xi)).

While the classifier trained on texture features is already able to provide
good results, the shape of the regions may not be very robust due to small pixel
errors around the borders (see Fig. 3). This happens because the classifier takes
the decision about the class of each pixel individually and independently of the
labels of the neighboring pixels. This problem is addressed in the next step.

Region Segmentation. This step is equivalent to the neighborhood classifica-
tion stage from [13]. The region classifier considers not only the pixel of interest
itself, but also a set of related pixels called a neighborhood. While in [13] several
alternatives are proposed that deliver highly accurate results, they are based on
geodesic distance which is slow to compute. We define the neighborhood Ni of
pixel i to contain all pixels in a circle of radius 3 around each pixel, because it
is much more computationally efficient.

Every pixel j in the neighborhood Ni votes for its most probable class vj
based on the output of the classifier in the texture segmentation step P (yj =
vj |f(xj)). Those votes are then summarized in a normalized histogram hi over
the possible labels c ∈ L. Formally, we write:

hi(c) =

∑
j∈Ni

[c = vj ]
|Ni| . (1)

The normalized histogram computed in this way is used as a feature vector for the
region segmentation classifier together with the response of the pixel itself, which
means that the region classifier models the distribution P (yi|hi, P (yi|f(xi)). This
formulation allows the classifier to model local context relations, which leads to
better segmentation performance and better candidate regions (see Fig. 3).

3.2 Candidates Verification

The semantic segmentation method introduced in the previous section learns
texture features and label interactions that are characteristic for traffic lights.
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However, since the classifiers from the segmentation stage classify each pixel indi-
vidually, it is difficult to model geometric features that describe whole regions,
like for example, if the region has a circular shape. Therefore, in the verifica-
tion stage we train another classifier based on the region geometry and color
features. The classifier does not take decisions on the pixel level anymore, but
on the region level. Furthermore, we introduce a simple tracking by detection
algorithm in order to enforce temporal consistency of the detections.

Traffic Lights Classifier. Each candidate region coming from the semantic
segmentation method is classified in the classes background, green, yellow
or red traffic light. The input to the classifier is a set of 21 geometric and color
features described in Table 1. Here, we again make use of the JointBoost classifier,
which now operates on regions instead of pixels. The result of the classification is
shown visually in Fig. 3, where only the candidates that were classified correctly
are painted in the corresponding color, while the white candidates are rejected.

Table 1. Geometric and color features used for the classification of candidate regions.

Feature Values Description

Mean (RGB) 3 Mean of the region pixels computed separately for
each color channel.

Mean (Lab) 3

Std. deviation (RGB) 3 Standard deviation of the region pixels computed
separately for each color channel.

Std. deviation (Lab) 3

Image position 2 The pixel coordinates of the center of the region

Area 1 Area of the region

Orientation 1 Angle between the x-axis and the major axis of
the region

Aspect ratio 1 Aspect ratio of the two sides of the region’s
bounding box

Ratio of areas 1 Ratio of the areas of the region and its bounding
box

Y -coordinate-area ratio 1 Ratio between the region’s center y-coordinate
and its area

Solidity 1 Ratio between the areas of the region and its
convex hull

Eccentricity 1 Ratio of the distance between the foci and the
major axis length of an ellipse that has the
same second moment as the region
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Tracking. Since the verification method described above operates on individual
frames, one can often observe sporadic false detections that last only one or two
frames or detected traffic lights can be missed for several frames mainly due to
motion blur or due to LED traffic lights appearing too dark in some frames.

To deal with this problem we introduce a simple tracking by detection algo-
rithm to enforce temporal consistency. The traffic lights are detected separately
in each frame and then the detections from two subsequent frames are matched
based on the distance between them. This allows us to determine the number
of frames each traffic lights has been tracked and only traffic lights that were
already seen in at least three frames are counted as detected.

4 Results

We evaluate our method on three challenging datasets in both day and night
situations and present a comparison with two related works. Furthermore, we
evaluate the influence of the different steps of our method and its runtime.

4.1 Datasets

We use the publicly available dataset of [4] which is recorded at day in Paris
and has a length of around 17 min and manually labeled bounding boxes in
each frame. Since there is no fixed training and testing split we perform a 3-fold
cross-validation. In the rest of the section we refer to this dataset as France Day.

We also created two additional datasets in order to analyze the performance
of our method at day and nighttime. We used a 1 megapixel camera taking
images at 16 frames per second mounted behind the windscreen of a vehicle. We
defined a city route in Germany with a length of around 17 km, which contains
57 intersections with traffic lights ranging from side streets to big multi-lane
streets. The recordings were done both on a sunny day and at night. All traffic
lights have been labeled with bounding boxes around the 3 lights for the day
scenes and around the illuminated light only for the night scenes, if the light
source is bigger than 5 pixels in the camera image. We refer to these datasets as
Germany Day and Germany Night respectively. Because of the small number of
yellow traffic lights in all of the datasets, they are ignored during evaluation.

4.2 Comparison to Related Methods

Two of the related methods [4,23] have published results on the complete France
Day dataset so that we can perform a quantitative comparison.

Although the authors of [4] use precision and recall as benchmark measure,
they define a computation rule based on temporal tracks instead of frames. This
means that one physical traffic light is counted as correctly detected if it is
detected in at least one frame during its lifetime. Since our method is able to
detect 33 of the 34 traffic lights in at least one of the frames (we also consider the
partially occluded ones), the recall of our method is 97.1 %, while the authors
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of [4,23] report 97.7 % and 93.8 % respectively. Unfortunately, the authors of [4]
do not give precise description of how they compute the precision measure. For
details about the false positive detections of our method we refer to our frame
based precision in the next section.

4.3 Method Analysis

Semantic Segmentation. For the training of the semantic segmentation
method all bounding boxes are first converted into pixel-wise labels on the active
light spot of the traffic light. The performance of the three segmentation steps
is measured according to the percentage of pixels labeled correctly as back-
ground or candidate. While this does not directly translate to detection rate
for the traffic lights, because some traffic light regions could be only partially
segmented, it is a very good indicator.

From the quantitative results shown in Fig. 6 we see that with every step in
the pipeline the number of pixels labeled as traffic lights (“Coverage”) decreases
significantly, while our semantic segmentation method is able to retain almost
all of the real traffic lights (“Traffic lights”). While the Germany Day dataset
is more challenging for the simple color segmentation due to the big variety
of traffic lights and illumination conditions because of the sunny weather, the
region segmentation step achieves results similar to those of the other datasets.

Candidates Verification. The tracks based recall measure used by the authors
of the France Day dataset [4] is not suitable for many functions that need a
stable tracking of the traffic lights while approaching the intersection, like for
example red light warning or autonomous breaking. Therefore, we employ a
frame based measure of recall and accuracy, which are more natural for the
mentioned functions.

The quantitative results on all three datasets are summarized in Table 2 with
our method achieving similar performance in all scenarios. Figures 4 and 5 show
some example detections. The tracker is an essential step to reduce the amount
of false positives both at day and at night, because they tend to appear only for
short periods of time.

System Runtime. Semantic segmentation methods can be slow in general,
since they need to classify each image pixel. Our three-step semantic segmenta-
tion approach, however, filters out many of the pixels in the first step, so that the
more expensive texture analysis is performed only on the relevant image parts.

The total runtime of our method is 65 ms per frame, with the semantic
segmentation accounting for 92 % of it. All experiments were performed on a
machine with 2 Intel Xeon X5690 processors running at 3.5 GHz. The code
is written in C++ without the use of SSE instructions and is only partially
parallelized.
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Table 2. Quantitative results based on frame-wise recall and precision.

Stage France Day Germany Day Germany Night

Recall Precision Recall Precision Recall Precision

Without tracking 76.1 % 63.3 % 91.6 % 61.3 % 91.5 % 57.4 %

With tracking 71.7 % 73.2 % 84.3 % 71.5 % 84.4 % 73.8 %

Fig. 4. Results from Germany Day and Germany Night. The candidates are shown
in cyan, the confirmed detections in red or green and the ground truth with a dashed
bounding box. The last row shows typical false positive detections (Color figure online).

Fig. 5. Results from France Day [4]. The candidates are shown in cyan, the confirmed
detections in red or green and the ground truth with a dashed bounding box (Color
figure online).
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Fig. 6. Results of the 3 steps of the segmentation stage showing the percentage of all
image pixels labeled as candidates and the correctly classified traffic light pixels.
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5 Conclusion

In this paper, we presented a unified machine learning framework for traffic light
detection at different lighting conditions. The used powerful semantic segmen-
tation method is able to provide robust candidates both at day and at night
by analyzing the image structure. We also describe several geometric and color
features that are used to reject false candidates and to classify the color of the
traffic light. An additional tracking by detection step is important for enforcing
consistency of the results over time and reducing the amount of false positives.

We showed that our method runs in real-time and delivers good results on
three challenging datasets recorded in different illumination conditions and con-
taining data from more than 100 intersections with multiple traffic lights.
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Abstract. In this paper we present a method for 3D shape classifica-
tion and pose estimation. Our approach is related to the recently popular
adaptations of Implicit Shape Models to 3D data, but differs in some key
aspects. We propose to omit the quantization of feature descriptors in
favor of a better descriptiveness of training data. Additionally, a contin-
uous voting space, in contrast to discrete Hough spaces in state of the art
approaches, allows for more stable classification results under parameter
variations. We evaluate and compare the performance of our approach
with recently presented methods. The proposed algorithm achieves best
results on three challenging datasets for 3D shape retrieval.

1 Introduction

Traditionally, 2D images form the basis for the developed algorithms in object
recognition and image classification tasks. However, with the development of
low-cost consumer RGB-D cameras and 3D printers 3D data can be generated
and processed by anyone. It is likely that 3D shape databases will emerge in
the near future, where models need to be classified or retrieved. New approaches
need to take this trend into account and handle data from these new imaging
modalities.

A viable way seems to be the adaption of successful approaches from 2D data.
One of the most successful and widely used methods for visual categorization
is the bag-of-words or bag-of-keypoints approach [6]. Several extensions of this
approach to handle 3D data were proposed [16,18,24]. Algorithms based on the
bag-of-words approach usually do not use the spatial relations between features.
However, studies show that taking into account spatial relation between features
improves results [3,22].

Apart from improving classification results, a great benefit of considering
spatial relations of features lies in the ability to estimate the pose and localize
objects in cluttered scenes. This is exploited by Leibe et al. in the Implicit Shape
Model (ISM) formulation [14,15]. Recently, extensions of the ISM approach to
3D data have been proposed [13,19,20,27]. Inspired by these work we present a
novel approach for 3D shape retrieval and classification using Hough voting that
is closely related to Implicit Shape Models.
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 458–469, 2015.
DOI: 10.1007/978-3-319-24947-6 38
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In this paper we make the following contributions: Unlike approaches in
related work, we do not construct a dictionary of codewords, but rather use the
features as they are to achieve higher discriminativity. We compare the obtained
results with codebooks of different sizes to support our approach. Since in the
proposed method no codebook is created, generalization from learned shapes is
achieved by a k-NN activation strategy during classification (instead of training
as in many approaches). Further, contrary to many ISM approaches we uniformly
sample key points on input data instead of using a key point detector of salient
points. The benefits of this strategy have been shown to improve classification
rates compared to salient points [9]. Finally, we evaluate different vote weighting
strategies and additionally show that weighted votes are sufficient to accurately
estimate the pose of detected objects.

In the following Section we review related work on previous ISM extensions
to 3D data. In Sects. 3 and 4 we present our approach in detail. An extensive
evaluation on various datasets and comparison with state of the art approaches
is given in Sect. 5 and a discussion in Sect. 6. Finally, Sect. 7 concludes the paper
and gives an outlook to our ongoing and future work.

2 Related Work

Leibe et al. first introduced the concept of Implicit Shape Models (ISM) in [14].
They group key points into visually similar clusters, the so called codewords. Each
codeword is associated with vectors from positions of the clustered features to
the object’s center. These vectors are referred to as activation vectors, while
the set of codewords is called codebook. For recognition, the ISM is employed in
a probabilistic framework based on a Generalized Hough Transform [1]. Each
codeword that is matched with image descriptors casts a number of votes for a
possible object location into a voting space. Finally, object locations are acquired
by analyzing the voting space for maxima using Mean-shift mode estimation [4].

While the general scheme is the same for 3D data, feature descriptors rep-
resenting the geometry of the local key point neighborhood are applied [13,26].
Knopp et al. [13] use 3D-SURF as descriptor which allows for a scale invariant
feature representation. As a heuristic, the number of clusters is set to 10% of
the number of input features. To account for feature-specific variations, Knopp
et al. introduced a weighted voting scheme. Votes are cast into a discrete 5D
voting space (3D object position, scale and class). In a subsequent work, Knopp
et al. [12] discuss approaches to implement rotation invariant object recognition.

Contrary to Knopp et al., Salti et al. [19] claim that scale invariance does not
need to be taken care of, since 3D sensors provide metric data. In their approach
Salti et al. use the SHOT descriptor [26] and investigate which combinations of
clustering and codebook creation methods are best for 3D object classification.
Salti et al. report best results when no clustering is used and all features are
stored. Further, Salti et al. propose to omit vote weighting as it does not show
significant benefits in their experiments. Considering this results, Tombari and
Di Stefano [25] continue their work without clustering and vote weighting. In
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their proposed method Hough voting achieves promising results for 3D object
recognition with occlusion in cluttered scenes.

A more recent approach presented by Wittrowski et al. [27] uses ray voting
in Hough space. Like in other ISM adaptations to 3D a discrete voting space
is used. However, in this approach bins are represented by spheres which form
directional histograms towards the object’s center. This voting scheme proves
very efficient with an increasing number of training data.

Our previous work [20] where we use a continuous voting space confirms the
results of Salti et al. that omitting feature quantization in 3D leads to better
classification results. However, in [20] the quantization experiments were per-
formed only on a small dataset. Thus, in this work we provide further analysis
on a bigger dataset and employ a k-NN matching strategy which was not used
in [20].

3 Learning Object Representations

The main difference between the algorithm proposed here and the Implicit Shape
Model formulation from related work such as [13,20] and also bag-of-features
approaches [24] is the lack of feature clustering, to allow for a more precise
object representation.

In a first step, consistently oriented normals are computed on the models
with the method proposed by Hoppe et al. [11]. Subsequently, key points are
densely sampled and a SHOT descriptor is calculated around each key point in
the determined local reference frame. The local reference frame for feature f is
stored as rotation matrix Rf .

For each feature, a vector pointing from the feature to the object’s centroid is
stored, in the following referred to as center vector. First, the key point positions
have to be transferred from global coordinates into an object centered coordinate
frame. For this purpose a minimum volume bounding box (MVBB) of the object
is calculated as described by Har-Peled [10] and Barequet and Har-Peled [2]. The
estimated bounding box is determined by the direction between the two most
distant points of the object, pi and pj , and the minimum box enclosing the point
set. The resulting MVBB B is given by the size sB = pi − pj and the center
position pB = pi + sB

2 . The bounding box is stored with the training data and
is used later to estimate the pose of the detected object. The object’s position
is now given by pB as the center of B. The relative feature position vf

rel is then
given in relation to the object position pB by

vf
rel = pB − pf (1)

and represents the vector pointing from pf , the location on the object where
the feature was detected, to the object’s center. In order to provide rotation
invariance, each feature was associated with a unique and repeatable reference
frame given by a rotation matrix Rf . Transforming the vector vf

rel from the
global into the local reference frame is then achieved by

vf = Rf · vf
rel. (2)
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We obtain vf , the translation vector from the feature location to the object
center in relation to the feature-specific local reference frame. Thus, vf provides
a position and rotation independent representation of a feature f .

The final data pool after training contains all features that were computed
on the training models. Along with each feature, the center vector, a bounding
box B and the class c of the trained object is stored.

4 Object Classification and Pose Estimation

To classify objects, features are detected on the input point cloud in the same
manner as in the training stage. Matching detected features with the previously
trained data pool yields a list of feature correspondences. The distance between
learned feature descriptor fl and detected feature descriptor fd is determined by
the distance function d(fl, fd) = ‖fl − fd‖2. The center vectors of the created
correspondences are used to create hypotheses on object center locations in a
continuous voting space (Fig. 1).

Please note that we omitted the vector quantization step during training
to retain a higher number of features and reduce training time, since no high-
dimensional clustering needs to be performed. In the classification step, each
of the detected features is associated with the k best matching features in the
learned data pool. Thus, we effectively move the feature generalization step
from training to detection. This procedure has the advantage of a generalized
feature matching while having a broad data pool for each object class. The
degree of generalization is controlled by the parameter k and can be changed
without retraining. While this parameter is also applied in approaches from
related work, matching is performed with a clustered codebook which has a
lower descriptiveness as was shown in [19,20].

During training, the center vector vf
rel of feature f has been rotated into

the feature’s local reference frame given by the rotation matrix Rf as shown in
Eq. (2). Now the rotation is reversed by the inverse rotation matrix Rf−1 = RfT

computed from feature f on the scene, resulting in the back rotated vector v̂f
rel.

This vector is used to create an object hypothesis at position x relative to the
position pf of the detected feature f :

x = pf + v̂f
rel. (3)

Fig. 1. Features are matched with the k closest learned features. Center vectors form
hypotheses for object locations. Clusters in the voting space are detected by searching
for maximum density regions.
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To reduce the dimensionality of the voting space the object’s rotation is ignored
in this step. Further, a separate voting space for each class reduces the voting
space dimensionality to three, namely the 3D position of the hypotheses.

Optionally, each point in the voting space can be assigned a weight. However,
there is on open debate of whether or not vote weighting should be used [19]
and different strategies are applied (e.g. two weights in [13] and three weights
in [20]). In Sect. 5 we report our results on two different weighting strategies.
We compare uniform weighting (i.e. no weighting) and weighting votes by their
likelihood

ω =
1√

2πσ2
exp

(
−d(fl, fd)2

2σ2

)
. (4)

Here, fl is the learned feature descriptor and fd the detected feature descriptor.
The value σ2 is class specific and is determined during training by the sample
covariance. Given Fc, the set of features detected on all training models for a
class c, the sample mean of distances is computed by

μc =
1

M2

M∑
i=1

M∑
j=1

d(fi, fj) (5)

over all features f ∈ Fc, where M = ‖Fc‖ is the number of training features for
class c. The final value of σ2

c is then computed as the sample covariance

σ2
c =

1
M2 − 1

M∑
i=1

M∑
j=1

(d(fi, fj) − μc)2. (6)

4.1 Maxima Extraction

To avoid issues arising from discrete Hough spaces we implemented a continuous
voting space for each object class. Each voting space can be seen as a sparse rep-
resentation of a probability density function. Maxima in the probability density
function are detected using the Mean-shift algorithm described by Fukunaga and
Hostetler [8]. We use the Mean-shift formulation by Comaniciu and Meer [5] and
account for weighted votes as proposed by Cheng [4].

Given a point x ∈ R
3, the Mean-shift algorithms applies a Gaussian kernel

K to all neighboring points xi within the kernel bandwidth. Since we search
for maxima in the voting space, the data points xi are the individual votes. To
find the maximum density regions, the gradient mh,g of the probability density
function needs to be estimated. The step size is computed adaptively. Maxima
are obtained by iteratively following the direction of mh,g.

To create seed points for the Mean-shift algorithm a regular grid is super-
imposed on the data. Each cell containing at least a minimum number of data
points creates a seed point. A pruning step performs non-maximum suppression
to eliminate duplicate maxima. The final probability for the detected maximum
at xmax is given by the kernel density estimation at the maximum position in
the voting space.
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4.2 Pose Estimation

When casting votes into the Hough space the associated bounding boxes are
transferred back into the global coordinate system using the corresponding local
reference frame for the current feature. After maxima detection yields the most
likely object hypotheses all votes that contributed to a hypothesis and lie around
the maximum location within the kernel bandwidth are collected.

This results in a list of bounding box hypotheses weighted with the corre-
sponding vote weight. Estimation of the bounding box is performed by creating
an average bounding box based on the collected votes. While the size can be
averaged, computing an average weighted rotation is more complex. The rota-
tion matrix is converted into a quaternion representation. Averaging quaternions
is achieved by computing the 4 × 4 scatter matrix

M =
N∑
i=1

ωiqiq
T
i (7)

over all quaternions qi and their associated weights ωi. After computing the
eigenvalues and eigenvectors of M , the eigenvector with the highest eigenvalue
corresponds to the weighted average quaternion [17]. Together with the position
in the voting space, this quaternion defines the 6 DOF pose of the object.

5 Experiments and Results

In this paper we use the following datasets for evaluation (example objects from
each dataset are shown in Fig. 2):

1. Aim@Shape-Watertight (ASW): This dataset consists of 400 shapes in 20
different categories. The first 10 objects of each category are used for training,
the remaining 10 for testing. In [27] evaluation was performed on a partial
dataset (here denoted as ASWp) that consisted of 19 different categories.

2. Princeton Shape Benchmark (PSB) [21]: This dataset consists of 1814 shapes
and different levels of class granularity. For better comparison with other
approaches we use the class granularity named coarse 2 (7 classes), with half
of the shapes assigned for training and the other half for testing.

3. SHREC’09 (SH) [7]: This dataset from the Partial Shape Retrieval Contest
has 720 objects divided into 40 classes and used for training. Classification is
performed on 20 partial query shapes.

4. Stanford 3D Scanning Repository (SSR) [23]: 6 models from this dataset were
used to build up 45 scenes of 3 to 5 models in [26]. The models were randomly
rotated and translated, ground truth is provided. We use this dataset to
evaluate the accuracy of pose estimation of our approach.

All of these datasets are available as mesh files. We converted the meshes to
point clouds and scaled each model to the unit circle for shape classification.
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Fig. 2. Examples for the variety of different shapes in the used datasets.

5.1 Shape Classification

For shape classification, each test scene consisted of a single shape without any
clutter - a typical classification task for shape retrieval as might occur if shapes
need to be found in a database. Evaluation was performed on previously unseen
instances with a continuous and a discrete voting space. Each detected feature
was matched with the k ∈ {1, . . . 5} closest ones from the learned dataset to
simulate different degrees of generalization. In all experiments a bandwidth of
0.5 m (half the object radius), a SHOT support radius of 0.3 m as well as the
two vote weighting strategies were used (no weights and likelihood weights). The
highest ranked hypothesis per object was taken as classification result.

Table 1. Comparison of our classification results with state of the art approaches
(correct classification rate). The proposed approach outperforms previous methods on
all evaluated datasets.

Salti Wittrowski Seib Liu Toldo Knopp Proposed

et al. [19] et al. [27] et al. [20] et al. [16] et al. [24] et al. [13] approach

ASW 79% - 80.5% - - - 85.0%

ASWp 81% 82% 82.6% - - - 86.8%

PSB 50.2% - - 55% 52% 58.3% 61.7%

SH - - - - 60% 40% 70.0%

Table 1 compares our best results with approached that use the same parti-
tions in training and testing data as we do. The rightmost column shows that the
proposed method outperforms current state of the art approaches on all tested
datasets. An overview over all our results is given in Fig. 3(a)–(c). In general,
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Fig. 3. Classification rates on ASW (a), PSB (b) and SH (c) datasets and the f-score
(d), mean angle errors (e) and mean position errors (f) on SSR dataset are shown.

when classification is performed on full 3D models (ASW and PSB), the con-
tinuous voting space leads to better results. For both types of voting spaces,
not using any vote weighting achieves higher classification rates. However, with
partial shapes (SH) the results are not as clear as with full 3D models. Still, on
average the continuous voting space performs better than the discrete one. Best
classification rates were achieved with k = 4 or k = 5 on all datasets.

5.2 Pose Estimation

Pose estimation was tested on the SSR dataset. Additionally, we tested the
ability of the algorithm to classify known objects in scenes. This is a particularly
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Fig. 4. Pose estimation on scenes from the SSR dataset. Object centers are shown as
red dots inside the bounding box. The colored lines represent votes that contributed
to the detected maximum (Color figure online).

different task than shape classification. In this case several maxima need to be
considered and a meaningful threshold needs to be defined determining which
maxima should be discarded. Further, if the bandwidth parameter is set too low,
true maxima are split resulting in false positive object detections. Consequently,
in these experiments we report the f-score instead of the true classification rate.

The complete scenes were scaled to the unit circle and we set the SHOT
radius to 3 cm for these experiments. The bandwidth and bin size were set to
0.2 m and 0.4 m, respectively. The results are reported in Fig. 3(d)–(f). Example
pose estimations are shown in Fig. 4.

The resulting f-score is best for k = 1 activation, where both voting spaces
perform better with weighted votes. For all other values for k no significant
differences between the voting spaces or weighting strategies are observed.

Since vote weights are used to filter out outliers, applying likelihood weights
leads to lower angular and position errors than the not weighted counterparts
in the corresponding voting spaces. While the continuous voting space seems
to perform worse regarding the mean position error, with higher k both voting
space designs have higher errors. This is also true for the angular error, however,
the errors seem to stabilize around k = 3 for the continuous voting space, while
they continue to rise for the discrete voting space.

6 Discussion

As was shown in Sect. 5, the proposed approach achieves higher classification
rates on the tested datasets than the state of the art. These results stem from
omitting the vector quantization and instead using k-NN feature activation dur-
ing classification. Additionally, a dense key point sampling leads to a better
object representation than salient key point detection as in many approaches in
related work.

However, this huge amount of additional features comes at the price of
higher runtime during object classification. We therefore investigated the influ-
ence of codebook creation on the classification performance and runtime of the
algorithm. These experiments were performed on the Aim@Shape Watertight
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dataset. Training was performed multiple times and a different number of fea-
ture clusters were created. The number of clusters was set to 100 % (no cluster-
ing), 70 %, 50 % and 30 % of the number of all extracted features. Subsequently,
classification was performed with each of these codebooks using the parameters
that led to best classification results in Sect. 5 (SHOT radius of 0.3 m and k =
5). The results are reported in Table 2 and clearly show that smaller codebook
sizes lead to a significant loss in the ability of the algorithm to correctly classify
objects. At the same time the runtime of the algorithm also decreases. However,
the gain in runtime is not as high as one might expect from the reduction of the
codebook size. This is due to the fact that a lot of runtime is used for feature
extraction and computation, while the feature matching is performed in a very
efficient way.

Table 2. Influence of different codebooks on the classification rate and runtime on the
Aim@Shape Watertight dataset

Clustering factor Classification Classification time Relative classification

in codebook rate per object [s] time per object

1.0 (no clustering) 85 % 18.4 1

0.7 77 % 14.1 0.77

0.5 70 % 13.5 0.73

0.3 60 % 14.4 0.78

7 Conclusion and Outlook

The presented approach enables us to detect and classify objects in scenes as
well as determine their classes. This is supported by the good results obtained in
our shape classification experiments. We showed that the choice of a continuous
voting space is superior to a discrete Hough space in terms of 3D object classi-
fication. The results obtained on the three challenging shape retrieval datasets
Aim@Shape Watertight, the Princeton Shape Benchmark and SHREC’09 out-
perform current state of the art approaches. We attribute these results to the use
of the continuous voting space without feature clustering, the dense key point
sampling and k-NN matching during classification.

In estimating the object’s pose, both voting space designs perform similar.
However, when vote weighting is used to remove outliers the errors decrease
compared to not weighted votes. Specifically for the angular errors the continuous
voting space is superior to the discrete voting space for higher values of k in k-NN
activation.

It needs to be pointed out that the scenes in our evaluation consisted only
of known objects without any clutter. Our current work thus concentrates on
improving the robustness of the proposed method towards clutter and partial
models. We further plan to perform experiments with data from RGB-D cameras.
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Abstract. We address two drawbacks of image classification with large
Fisher vectors. The first drawback is the computational cost of assigning
a large number of patch descriptors to a large number of GMM compo-
nents. We propose to alleviate that by a generally applicable approximate
soft-assignment procedure based on a balanced GMM tree. This approx-
imation significantly reduces the computational complexity while only
marginally affecting the fine-grained classification performance. The sec-
ond drawback is a very high dimensionality of the image representation,
which makes the classifier learning and inference computationally com-
plex and prone to overtraining. We propose to alleviate that by regulariz-
ing the classification model with group Lasso. The resulting block-sparse
models achieve better fine-grained classification performance in addition
to memory savings and faster prediction. We demonstrate and evaluate
our contributions on a standard fine-grained categorization benchmark.

1 Introduction

In this work we address fine-grained classification (FGC), a problem where the
inter-class variance is small w.r.t. intra-class variance, i.e. the objects from differ-
ent classes may be very similar. This is a challenging task since the differences
between the categories can be subtle and may cover a very small part of the
image. For example, a discriminating feature between two bird species can be a
specific feather pattern around the eye. The more specialized the class, the less
data for learning its class model we can expect, and the more challenging learning
good class models becomes. In short, FGC relies on finding a few discriminative
features in a very large feature pool using a small amount of images annotated
only with class labels, which resembles searching for needle in a haystack.

Although large Fisher vectors have displayed state-of-the-art performance for
several FGC tasks [7], their main drawback remains computational complexity.
First, obtaining large Fisher vector representation involves costly assignment
of a large number of patches to a large number of GMM components. Second,
classifier learning and inference involves very high dimensional dense vectors.
This may pose scalability problems when the number of classes is large.

c© Springer International Publishing Switzerland 2015
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Our contributions address both of these drawbacks. In practice each patch is
assigned to a very small number of GMM components [18]. We exploit this to
build a hierarchy over GMM components by agglomerative clustering [16]. This
enables us to discard a large number of components early. GMM tree yields sig-
nificant soft-assign speed up while mostly retaining classification performance.
The technique is general since it does not require any labeled data, so it can
be used e.g. in image retrieval. Second, we propose group-sparse classification
models which are fast to train and evaluate, and have a small memory foot-
print. In addition, these models display significantly improved classification per-
formance, especially when coupled with Fisher vector intra-normalization. We
demonstrate the value of our contributions experimentally on the 14 category
subset (“Birdlets”) [5] of the Caltech-UCSD Birds 200-2011 dataset [22].

2 Related Work

Goldberger and Roweis [6] consider grouping of GMM components by an iter-
ative regroup-refit procedure similar to the k-means clustering algorithm. The
main idea is to find the grouping of original components into a smaller mixture
model such that the KL divergence between the obtained smaller model and
the original one is minimized. However, there is no guarantee that the obtained
higher-level GMM will indeed speedup the soft-assign, since many lower-level
components can be merged into a single higher-level component.

Simonyan et al. [19] used hard assignment to the closest GMM component
in order to speed up Fisher vector computation. Although this procedure speeds
up the computation of Fisher vector once the soft-assigns have been computed,
it does not reduce the complexity of the soft-assign computation which is the
most intensive part of Fisher vector computation.

Verbeek et al. [21] speed up the EM algorithm for large datasets by first
clustering the data with a kd-tree, and then performing EM steps on the clusters
instead of individual points. The combination of this approach and the one
proposed here is an interesting avenue for speeding the soft-assign for a group of
descriptors, since our contribution is able to speed up the soft-assign for a single
descriptor.

Gosselin et al. [7] speed up large Fisher vector construction by discarding the
patches whose SIFT descriptor norm is below a threshold. They show that this
does not influence significantly the classification performance, while it reduces
the computational complexity of Fisher vector computation. For the remaining
SIFT descriptors they still have to perform computationally intensive soft-assign.

Approximate nearest neighbor methods (ANN) like product quantization [9]
or locality-sensitive hashing [8] can be used to quickly short-list the components
most responsible for generating the data point. However, in our case the number
of the descriptors in the image is an order of magnitude larger than the number of
the GMM components. Therefore it is difficult to obtain a good trade-off between
feature coding time and quality of the recall of the GMM components. Addi-
tionally, ANN methods usually assume L2 distance, while the GMM soft-assign
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requires computing the likelihood of a normal distribution, which corresponds
to Mahalanobis distance.

Group-sparse classification models have been previously used for general
object classification with bag-of-visual-words histograms [13], but to the best
of our knowledge we are the first to report results of group-sparse classification
models with Fisher vectors. We have previously used sparse classification models
[11], but have not constrained them to be group-sparse. Instead, we have selected
a predefined number of top components considering the norm of the correspond-
ing part of the model vector. In this work, due to group-sparse regularizers, we
are able to directly control the trade-off between the classification performance
and the number of GMM components selected by the model.

The intra-component variant of Fisher vector normalization we use here is
related to intra-normalization used in VLAD descriptor [1]. As noted in [1], this
normalization is beneficial for reducing the influence of bursty visual elements
on the image representation.

3 Fisher Vector Image Representation

We represent images with a set of densely sampled patches at a fixed grid and
multiple scales [4]. This enables a good description of image content and invari-
ance to scale changes, but it also usually results in a fairly large number N
of patches per image. Each patch is described by a D-dimensional descriptor
x ∈ R

D invariant to local photometric and geometric transformations [14] and
coded using a generative model of patch descriptors, which is usually a Gaussian
mixture model (GMM):

p(x|Θ) =
K∑

k=1

πkN (x|μk,Σk), πk =
exp(αk)∑K
i=1 exp(αi)

. (1)

In the above equation, K is the number of components, while Θ = [πk, μk,Σk]Kk=1

are GMM parameters. The parametrization of component weights π = {πk}Kk=1

with α = {αk}Kk=1 ensures that π sum to one. To reduce the number of GMM
parameters we assume a diagonal Σk for all K components. The parameters are
learned to maximize the training data likelihood using the EM algorithm. Each
patch descriptor x is coded with a Fisher vector Φ(x) [18] that is a gradient of
the GMM log-likelihood w.r.t. the GMM parameters Θ:

Φ(x) = [· · · Φk(x) · · · ] = [· · · ∇αk log p(x|Θ), ∇µk log p(x|Θ), ∇
Σ−1

k
log p(x|Θ), · · · ]

= [· · · γk(x) − πk, γk(x)Σ−1
k (x − μk), γk(x)(Σk − (x − μk)2), · · · ].

(2)

In the Eq. (2) γk(x) = p(k|x) corresponds to the responsibility of component k
for generating the descriptor x, also known as the soft-assign of the descriptor
x to the Gaussian component k:

γk(x) =
πkN (x|μk,Σk)

p(x|Θ)
. (3)
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Assuming independence of the image patches, we obtain the Fisher vector for
the whole image X = {xi}Ni=1 as an average of patch Fisher vectors Φ(X) =∑N

i=1 Φ(xi)/N . The dimension of this representation is (2D+1)K. In the imple-
mentation we use the improved version of Fisher vector [17] which employs
normalizations that significantly improve the classification performance.

To ensure that object’s fine-grained class-specific parts remain identifiable even
after aggregation of patch Fisher vectors into the image representation a large
number of GMM components K is needed. This way a set of patch descriptors is
embedded in a highly-dimensional vector space, in which a hyperplane defined by
a linear classifier corresponds to a highly non-linear decision surface in the patch
descriptor space. Therefore large Fisher vectors enable modeling of subtle image
details, a requirement necessary for discrimination of very similar images.

4 Fast Approximated Soft-Assign Computation

Our main contribution is related to the fast computation of soft-assign Eq. (3).
For each of N patches we need to compute the Mahalanobis distances to K com-
ponents, required to compute the denominator of Eq. (3). Therefore the complex-
ity of the soft-assign computation for N patches represented by D-dimensional
vectors is O(DKN). In practice only a small fraction of components is respon-
sible for generation of a data point. This means that the Fisher vector encoding
for each data point x will be block-sparse, since for many components Φk(x) will
be zero.

We want to take advantage of this sparsity to speed up the soft-assign by
discarding the components that are not likely to be responsible for generation
of the data point. To this end we construct a hierarchy of GMM models by
iteratively merging the components of the original flat GMM. This hierarchy
enables us to concentrate, at each level of hierarchy, on a subset of top Kt most
responsible components for generating the data point. Thus at each level of the
GMM tree, the soft-assign computation for each data point requires O(DKt)
operations.

GMM Tree Construction. Since our goal is to speed-up the soft-assign we
concentrate on balanced binary trees. Clearly, this constraint produces a sub-
optimal approximation of the considered GMM with a given number of compo-
nents. However, it gives us theoretical guarantees in terms of expected speed-up,
since the number of operations to compute soft-assign is the same for each data
point, unlike [6]. We start from a large flat GMM whose soft-assign we want to
speed up, and consider its components as the leaves of the tree. At each new level
of the tree we create a new component (the parent node) by merging exactly
two components at the lower level (children nodes). To determine the best two
children nodes to merge, we first find the closest sibling of each child node in
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terms of KL divergence:

c(i) = arg min
j∈{1...K}/i

dKL(θi, θj) (4)

d(i) = dKL(θi, θc(i)). (5)

There exists a closed-form solution for KL divergence between two normal
distributions, so we can quickly determine the distances between the children
nodes. We then greedily merge the closest children nodes, by first merging the
child node i whose KL divergence d(i) to the closest sibling c(i) is the largest.
Every time we merge the children nodes into the parent node we re-compute the
closest siblings for the ones that are not yet merged. The main motivation for
this procedure is to ensure that the newly created parent nodes do not overlap.

When merging the children nodes i and j = c(i), we derive the parameters
of the parent node m following [23]:

πm = πi + πj (6)
πmμm = πiμi + πjμj (7)

πm(Σm + μ�
mμm) = πi(Σi + μ�

i μi) + πj(Σj + μ�
j μj). (8)

This construction does not produce optimal component pairings in the sense
of minimizing the KL divergence between the GMMs at the two neighboring
levels of binary tree. However, the procedure is very fast and gives very good
results, as we demonstrate in the experimental section.

Fast Assignment. We use the GMM tree to perform the soft-assignment of
patch descriptor x to the original GMM components that are the leaves of
the GMM tree. Given a selected top number Kt of components we skip first
log2(Kt)+1 levels of the tree, since at these levels the number of nodes is smaller
than Kt. At each level we expand the Kt nodes of interest into 2Kt nodes at
the next level. We subsequently select the top Kt nodes by considering the value
of numerator in Eq. (3). We continue this procedure until we reach the bottom
of the tree. The denominator of the expression Eq. (3) is then approximated by
considering only Kt components selected by the tree. This way the complexity
for each patch is reduced from O(DK) to O(DKt log2(

K
Kt

)), which significantly
speeds up the computation of Fisher vectors. This fast assignment is illustrated
in Fig. 1. The choice of Kt determines the trade-off between soft-assign speed up
and the quality of the approximation.

5 Group-Sparse Models

In order to perform FGC, we learn a linear classifier w operating on the Fisher
vector representation:

w∗ = arg min
w

M∑
i=1

�(w, Φ(Xi), yi) + λR(w), (9)
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Fig. 1. The fast assignment procedure for K = 16, Kt = 2. The likelihood for the gray
nodes is not evaluated. At each level we evaluate the likelihood of only 2Kt components
(circled) and only top Kt components are expanded (black).

where (Φ(Xi), yi)Mi=1 is the training set of M image representations and class
labels, � is the loss function, R is the regularizer, while λ determines the com-
promise between the two. To enforce block sparsity, we employ group Lasso
regularization R(w) =

∑K
k=1 ‖wk‖2, where wk is the Fisher vector block of

size 2D + 1 corresponding to the kth GMM component. We use the logistic loss
�log(w,x, y) = log(1+exp(−yw�x)) which means that the optimization problem
Eq. (9) is convex.

We assume that class-specific object parts correspond to small number of
class-specific patches that lie in compact parts of the patch descriptor space.
Fisher vector representation maps compact parts of the descriptor space into
blocks of Fisher vector representation. The learned group-sparse discriminative
model selects the GMM components corresponding to the class-specific features.
Therefore these models are well suited for FGC, especially where scalability is
needed, since the sparsity also enables fast model evaluation and small memory
requirements.

6 Experiments

Dataset. We demonstrate our contributions on the 14-class subset [5] of Caltech-
UCSD Birds 200-2011 birds dataset [22]. This subset consists of 7 classes of Vireos
(Black-capped Vireo, Blue-headed Vireo, Philadelphia Vireo, Red-eyed Vireo,
Warbling Vireo, White-eyed Vireo and Yellow-throated Vireo) and 7 classes
of Woodpeckers (American Three-toed Woodpecker, Pileated Woodpecker, Red-
bellied Woodpecker, Red-cockaded Woodpecker, Red-headed Woodpecker,
Downy Woodpecker and Northern Flicker). There are 419 train and 398 test
images, each split having around 30 images per class.

Parameters. We follow the standard Fisher vector classification pipeline: we
use dense patch sampling at four scales following the procedure from [3] and
describe the patches by SIFT [14] and color features of Perronnin et al. [17].
We used the VLFeat library [20] for computing SIFT descriptors. We reduce
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both SIFT and color features to 64 dimensions by PCA. For each feature type
we select a random subset of 500000 features from the images in the training
set and learn one GMM per feature type. We use the learned GMMs to obtain
Fisher vectors, again one per feature type. We normalize the Fisher vectors
using the power and metric normalizations, as suggested in [17]. We do not use
spatial layout coding, although it is likely that such coding (e.g. SPM [12]) could
improve classification results, especially when training data is enlarged by using
mirrored images (image flips) and random crops. All our classification models are
one vs. all logistic regression, learned with 1000 iterations of FISTA algorithm
[2] implemented in SPAMS [15].

Results. Figure 2 shows the speedup and the quality of Fisher vectors with fast
approximate soft-assign as we vary Kt. Increasing Kt gives a better approxima-
tion at the expense of a smaller speed-up. The speed-up is defined by the ratio
of the time needed to compute the original Fisher vector and the time needed
to compute its approximated version. Notice that the speedup can be very high

Fig. 2. Influence of the approximated soft-assign on the speedup and the approximation
error measured as the dot product between the original Fisher vector and the approx-
imated one. The magenta curves denote dot product between vectors (full: block-wise
L2 normalization, dotted: full L2 normalization). The cyan curve displays the speedup
achieved with top Kt components at each level of the GMM tree. Our approximation
offers a trade-off between quality and the speed-up.
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for smaller Kt because of the caching patterns employed by the CPU: the com-
ponents in the higher levels of the tree that are queried more often could be
kept the L1 cache. The quality of approximation is measured by the dot product
between the original and the approximated Fisher vector normalized with their
L2 norm. We consider the full Fisher vector normalization and the block-wise
(or intra-component [1]) normalization where we normalize Fisher vector blocks
corresponding to GMM components.

The approximated Fisher vector is different from the original vector due to
the errors in soft-assign approximation. The Fisher vector of the patch descrip-
tor can “blow up” if the GMM tree does not give a correct prediction of the
soft-assign. A couple of mis-assigned descriptors can significantly influence the
Fisher vector of the image (c.f. SIFT features with K = 1024). Block-wise nor-
malization ensures that the approximation errors influence only the Fisher vector
blocks corresponding to the components whose responsibility is mis-predicted.
This is another benefit of using blockwise normalization, in addition to reducing
the influence of bursty visual elements [1]. With Kt = 64, for all considered
cases, we obtain the Fisher vectors that are very close to original ones. Although
we concentrate on image classification, these results suggest that the approxima-
tions could also be useful for image retrieval, e.g. for construction of the VLAD
descriptor [10].

Next we show the influence of the Fisher vector approximations on classifi-
cation performance measured by mean average precision (mAP). In these exper-
iments we fix λ = 10−4 to obtain sparse models, and to ensure that only the
approximations influence the performance. Table 1 shows that classification per-
formance is not significantly influenced for a wide range of approximations. For
our best performing feature and vocabulary size (color features with K = 1024),
when using only Kt = 2 we lose only 5.5 points of mAP compared to using
Fisher vectors computed without approximations, while achieving 10x speedup.
In all following experiments we report results on the approximated Fisher vec-

Table 1. Influence of approximated soft-assign on the classification performance, with
metric intra-normalization and group Lasso regularization.

Color SIFT

K 1024 4096 1024 4096

mAP speedup mAP speedup mAP speedup mAP speedup

Kt 2 51.08 9.70 46.08 29.90 37.52 24.58 32.99 30.09

4 52.87 6.62 48.20 19.09 39.96 15.83 36.10 20.85

8 54.50 4.03 51.25 11.88 42.60 9.83 39.28 14.06

16 54.73 2.40 52.25 6.85 42.65 5.91 39.34 8.24

32 55.00 1.39 54.32 3.86 43.30 3.52 40.15 4.58

64 56.00 0.83 54.90 7.56 43.44 6.36 40.35 2.55

Full 55.59 1 54.71 1 42.58 1 41.59 1
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tors using Kt = 16, since this setting offers a good trade-off between obtained
speedup and classification performance.

We also compare our performance to the Fisher vector baseline and show how
block-wise normalization, sparsity-inducing regularization and use of approxima-
tions influence the classification performance (Table 2). Here we determine the
hyper-parameter λ by two-fold cross-validation in the range of values log10(λ) =
[−4,−7]. Our first experiment uses Fisher vectors obtained without approxima-
tions, with overall metric normalization and L2 regularization. This is the stan-
dard Fisher vector representation, used also in [7]. Intra-component L2 normal-
ization achieves remarkable effects: the classification performance is improved by
almost 10 percent points with color descriptors and 7 percent points with SIFT
descriptors. The group Lasso regularization gives additional 5 percent points
with color descriptors, while only marginally improving the classification perfor-
mance with SIFT descriptors. When we use our approximated Fisher vectors,
we obtain almost the same performance as with original Fisher vectors: mar-
ginally worse with color descriptors and marginally better with SIFT. We also
tried learning the classifier on concatenation of color and SIFT Fisher vectors,
but this resulted in slightly worse performance compared to using color features
alone (53.54 % mAP).

Table 2. Influence of Fisher vector normalization, regularization and approximated
soft-assign on the classification performance. Fast Fisher vectors were obtained with
Kt = 16.

L2 normalization Regularization Fast Color SIFT

full L2 No 41.67 35.18

intra-component L2 No 50.09 42.09

intra-component group Lasso No 55.83 42.67

intra-component group Lasso Yes 55.00 43.37

Finally, Table 3 shows per-class performance with a fixed λ = 10−4 and when
λ is cross-validated. We first notice that our performance is worse for Vireos,
and that for these 7 classes the cross-validating λ results in non-sparse models.
The classification performance for Woodpeckers is much better and almost all
cross-validated models are sparse. When we fix λ to give more weight to the
regularizer we obtain sparse models without significant drop in performance:
55.00% mAP with cross-validated λ vs. 54.73% mAP with the fixed λ. This set-
ting is especially interesting when learning models for a large number of classes,
since the obtained classification performance is almost the same, while the used
modes are 2–4 times smaller. In addition to memory savings, the sparsity enables
faster model learning and evaluation. When coupled with our approximations
for Fisher vector computation, the group-sparsity allows skipping the computa-
tion of Fisher vectors for the descriptors generated by the GMM components
discarded by the classification model.
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Table 3. Per-class analysis of influence of sparsity on classification performance when
using color features and K = 1024. The performance is measured by average preci-
sion (AP), while NNZ denotes the number of GMM components selected by the group
sparse classification model. Enforcing sparsity only slightly degrades classification per-
formance, while it yields 2-4x more compact models w.r.t. to L2 regularized models.
The best results are obtained with group-sparse models (boldface).

7 Conclusion

We have proposed an approximate algorithm for fast soft-assignment of high-
dimensional patterns to the components of a large GMM model. The proposed
algorithm brings substantial speed-ups to the recovery of global image represen-
tations based on Fishers vectors, at the price of a tolerable (or even negligible)
impact to the classification accuracy. Additionally, we have shown that a recent
method for enforcing group sparsity may improve both the classification perfor-
mance and the processing speed at the same time. Finally, we have shown that
these sparse models achieve best results when the Fisher vectors are subjected
to the metric intra-normalization, rather than the usual metric normalization
across the whole vector.

These three contributions improve the classification performance in the fine-
grained case, where only a small portion of the image allows to bring the decision
about the image class. Experiments performed on the “Birdlets” dataset confirm
substantial advantage over the baseline in terms of better performance classifica-
tion performance and faster execution. The proposed method allows to choose a
desired trade-off between the classification performance and the execution speed.
Our best performing classification models achieved improvement of 14 points of
mAP w.r.t. the baseline while offering 2× increase in the execution speed. The
most interesting direction for the future work is application of the presented
contribution to more diverse classification datasets such as PASCAL VOC.
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Abstract. The locations of the eye pupil centers are used in a wide range of
computer vision applications. Although there are successful commercial eye
gaze tracking systems, their practical employment is limited due to required
specialized hardware and extra restrictions on the users. On the other hand, the
precision and robustness of the off the shelf camera based systems are not at
desirable levels. We propose a general purpose eye pupil center estimation
method without any specialized hardware. The system trains a regressor using
HoG features with the distance between the ground-truth pupil center and the
center of the train patches. We found HoG features to be very useful to capture
the unique gradient angle information around the eye pupils. The system uses a
sliding window approach to produce a score image that contains the regressor
estimated distances to the pupil center. The best center positions of two pupils
among the candidate centers are selected from the produced score images. We
evaluate our method on the challenging BioID and Columbia CAVE data sets.
The results of the experiments are overall very promising and the system
exceeds the precision of the similar state of the art methods. The performance of
the proposed system is especially favorable on extreme eye gaze angles and
head poses. The results of all test images are publicly available.

1 Introduction

Accurate estimation of the eye pupil center locations is crucial for many applications
such as eye gaze estimation and tracking [1], human-machine interfaces [2], user
attention estimation [3], and controlling devices for disabled people [4]. There are
several types of methods for pupil center localization. One of these types uses spe-
cialized hardware such as head-mounted devices [5] or multiple near-infrared cameras
[6]. These methods estimate the center accurately but they are expensive, uncomfort-
able, intrusive, and generally require a calibration stage. Furthermore, the systems
based on active infrared (IR) illumination are less robust in daylight applications and
outdoor scenarios.

Recently, appearance based pupil center localization methods, which need only
webcam type cameras, started addressing the above problems. These techniques can
roughly be divided into three categories [7]: model-based methods [8–10],
feature-based methods [7, 11], and hybrid methods [7, 12]. The model based methods
use the holistic appearance of the eye to estimate the centers. These approaches often
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use classification or regression of a set of features or fitting of a learned model to
estimate the location of the pupil centers [7]. Hamouz et al. [8] use Gabor filters to
localize features, including eye corners and pupil centers. They generate face
hypotheses in the affine space by using feature triplets. Finally, an appearance model is
applied to pick out the best among the pre-selected face hypotheses. Markus et al. [10]
describe a method for pupil location estimation based on an ensemble of randomized
regression trees. This method employs the human body part segment classification
method of MS Kinect [13] which uses difference of random pixels around the pupil
center. Our proposed regression method, on the other hand, employs Support Vector
Regressor (SVR) technique, which is known to be precise in terms of localization of
structures [14]. Our employment of HoG [15] features also helps us take advantage of
the rich image gradient angle information around the eye regions.

Feature based methods do not use any learning. They employ eye properties to
detect candidate pupil centers from local image features (e.g. corners, edges, gradients).
Timm et al. [11] propose an approach based on the analysis of image gradients. They
define an objective function that expects the intersection of all the gradient vectors on
the pupil center. Although, this method also uses image gradients like our method, our
employment of gradient information involves model training which makes our system
more robust for head pose and eye gaze changes.

The hybrid methods collect pupil center location candidates using feature based
methods. Model based methods are employed to select the optimal values among the
candidates. Valenti et al. [7] use the curvature of isophotes as image features to design a
voting scheme for pupil localization. They later combine this information with the
extracted SIFT [16] vectors for each candidate location and match it with examples in a
database to obtain the final decision.

In this paper, we propose a new model based approach for accurate and robust pupil
center localization on images supplied from a monocular camera system. We argue that
the gradient angle information around the eye pupil region has a unique signature (see
the extracted HoGs in Figs. 1 and 3) and employing HoG technique as the basic feature
extraction tool should capture this information. Classically, HoG features are used with
binary classifiers to detect objects such as pedestrians [15], which is not suitable for
accurate pupil center detection. Instead of using binary detectors, given the HoG vector
of an image patch, we feed this information to an SVR [17] to estimate the distance
between the patch center and the pupil center. This approach eliminates overlapping
positive patches problem of binary classifiers and each image patch contributes towards
the position estimation of the pupil center. The estimated distances to the pupil center
from image patches are used in a polynomial curve fitting approach to obtain an
accurate pupil center estimation. The resulting pupil center estimation system is both
very accurate and robust against extreme head positions and eye gaze angles. We
employed the output of this work for an iterative pupil center refinement framework
and presented the general architecture of the system in a paper [18]. Note that there are
studies that employ HoG features to detect the eye regions on face image such as,
[19, 20]. Our task of pupil detection uses similar HoG features but our system is based
on regression methods that measures the distance to pupil center for each patch can-
didate which makes our system more precise.
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The rest of the paper is organized as follows: Sect. 2 describes the proposed
method; in Sect. 3 experimental results are reported and compared with the state of the
art algorithms presented in the literature; Sect. 4 draws the conclusions of our work.

2 Method

The proposed system consists of two phases: training and testing. To train the model
(Fig. 1), we use k training windows around the eye regions ðT1; T2; . . .; TkÞ. The
window sizes are chosen much larger than the eye region to make the final trained
regressor robust against eye detector errors. About 30 patches ðPn

1; P
n
2; . . .; P

n
30Þ are

randomly sampled from each Tn. The sizes of these patches are 96 � 96.
Suppose patch PO contains the pupil center at the patch center (such as Pn

2 in
Fig. 1). We like to learn a function yð:Þ such that yðf ðPOÞÞ produces maximum value
where f is a function for extracting feature vectors from the image patches. The value
of the function y decreases proportional to the Euclidian distance between the patch
center and the pupil center. For example, yðf ðPn

30ÞÞ would produce the smallest value
and yðf ðPn

2ÞÞ would produce the largest value for the patches of Fig. 1. We propose to
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Fig. 1. Training stage of the proposed method.
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learn the function y using the SVR method. To train the SVR model, we need input
patterns, which are the image features produced by the function f . In our case, the
function f produces HoG vectors for the given patch. SVR training also needs the
targets for each input pattern. To provide this target data to the SVR model, we
calculate the Euclidian distance dnr between the center of the patch Pn

r and the pupil
center. The calculated distance values are fed to an exponential function t (Eq. 1)
whose values rapidly increase around the pupil centers (see the exponential function in
Fig. 2), which makes the overall localization problem more accurate [14].

t dnr
� � ¼ ea 1�dnr

PS

� �
� 1

0

(
if dnr\PS
otherwise;

ð1Þ

where a > 0 is a constant that controls the exponential increase rate. PS is taken
proportional to the patch size and it is used for producing value of zero if the distance
dnr is larger than the patch. We observed that training a polynomial SVR model with the
target values from function t (instead of dnr ) produces much better results for the task of
pupil center detection.

The function f takes an image patch Pn
r and produces HoG vector PHn

r . Finally, the
vector Vn

r is formed by combining the input pattern PHn
r with the target tðdnr Þ. The SVR

model is trained with all Vn
r vectors, where n ¼ 1; 2; . . .; k and r ¼ 1; 2; . . .; 30. The

proposed work trains only one regressor model for both eyes by flipping the left eye
horizontally to make it act like the right eye. Based on our experiments, we observe that
using a third degree polynomial kernel for the regressor outperforms alternative
kernels.

Fig. 2. The functions to generate labels against image patches.
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Given a testing image I, first approximate face and eye positions are obtained
(Fig. 3). There are many good face and eye detectors in the literature and our method
can work with any of them such as [21]. We fix the size of the pupil center search areas
(Fig. 3, EL and ER) proportional to the detected distance between the left and right eyes.
The eye region EL is scanned to produce sliding windows S1L to SmL , where m is the
number of sliding windows in eye region EL. Each sliding window SnL is scaled to
96� 96 pixels similar to the scaling process done in the training phase. We then
produce the HoG vector SHn

L for each SnL. The vector SH
n
L is fed to the trained SVR to

produce the estimated exponential distance to the pupil center for each SnL. The same
process is repeated for the other eye region ER. A score image is formed by using the
regressor results which visually shows where the pupil centers are located (Fig. 3).

We employ a two stage approach for the scanning window process. First, we start
from the top-left corner and slide the window by skipping 5 pixels. The regressor
response is calculated for each sliding window S. The maximal response areas are then
scanned again with 1 pixel window skipping. Thus, we reduce the search time con-
siderably. For the final estimation, our method selects the best 20 positions on the score
image. Second degree polynomials are fit around these maximal points on the score
image. We calculate the zero value of the first derivative of the polynomials to find the
pupil center. Our task of estimating the pupil centers is for both eyes, thus we run a
special algorithm that finds the pupil centers of both eyes simultaneously. Out of the
best 20 positions on the score image of both eyes, we chose the best combination that
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produces best total score within a minimum and maximum Euclidian separation. As a
result, eye centers that have too close or too far positions are eliminated.

3 Evaluation

For the first set of validation experiments, we have chosen the BioID database [21],
which has a challenging set of images for pupil center estimation. It consists of more
than 1500 gray level face images of 24 subjects taken in different locations and times,
which cause variable illumination conditions. Additionally, several subjects are
wearing glasses. The eyes of some subjects are closed and sometimes there are shadow
effects around the eyes. In a few images, strong reflection on the glasses causes
invisible pupils. The image resolution (286 × 384) is equal quality of a low-resolution
camera. The centers of the both eyes are hand marked in the dataset. We use these eye
centers as the eye detection results for this experiment. The experiments are performed
using leave-3-person-out cross validation method, i.e., the system is trained with
images of 21 persons, tested with 3 persons, and this process is repeated using different
person combinations until all the images in the set are tested. This method guarantees
no person is included both in the training and testing set. We also repeated the same
experiment with 10-fold cross validation method, which might include very similar
face images in both training and testing phases.

To measure the accuracy for the estimated pupil centers, the normalized error is
evaluated. This measure was proposed by Jesorsky et al. [22] and is defined as

e� max eL; eRð Þ
d

ð2Þ

where eL and eR are the Euclidean distances between the estimated and the ground-truth
pupil centers for the left and right eyes, respectively. d is the Euclidean distance
between the ground-truth pupil centers. Approximately, an error of e� 0:25 corre-
sponds to distance between the pupil center and the eye corners, e� 0:1 corresponds to
the diameter of the iris, and e� 0:05 corresponds to the diameter of the pupil [12]. We
argue that more accurate pupil center localization methods should produce values
smaller than 0.05. Table 1 compares our normalized results with the results of other
known methods. As can be seen from the data, our method achieves best error rates for
two categories and matches the best method for the third error category. Since the other
methods did not report their cross validation details, we report our results for both
leave-3-person-out and classical 10-fold cross validation. We should note that our
search windows around the pupils are much larger than other methods to eliminate any
problems due to eye region detection errors. If the employed eye region detectors are
robust, then the search regions can be kept smaller to achieve better performance due to
reduced search space. The first two rows of Fig. 4 show some of our results on BioID
data set. The last column shows failure cases. The results of our system different data
sets are available publicity at the project page [23].

For the second set of validation experiments, we evaluate our system on the
Columbia gaze dataset, CAVE [24]. It contains high-resolution (5184 × 3456 pixels)

486 N.S. Karakoc et al.



Table 1. Comparison of the normalized error on the BioID set.

Method e� 0:05 e� 0:1 e� 0:25

Our Results (leave-3-person-out) 92.2 % 97.7 % 99.6 %
Our Results (10-fold validation) 94.7 % 98.7 % 99.7 %
Markus et al. p ¼ 31 [10] 89.9 % 97.1 % 99.7 %
Tim et al. [11] 82.5 % 93.4 % 98.0 %
Valenti et al. [7] hybrid 86.1 % 91.7 % 97.9 %

Fig. 4. First and second rows: our results on BioID, third and fourth row: our results on CAVE.
The last column shows the failure cases. Plus marks show the ground truth, cross marks show the
estimated pupil positions.
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images of 56 subjects each looking at 21 different positions that require a wide range of
eye gaze positions. In addition to different eye gaze angles, the subject heads take one
of the five head poses. We manually marked the pupil centers for 300 images, which
involve nominal and extreme eye gaze angles and head poses, and report our results for
10-fold cross validation. We also run the system of [11] with the publicly available
code on CAVE set. Table 2 compares our results with the results of [11]. Although [11]
performs worse on this dataset due to very extreme head poses and eye gaze angles, our
system takes advantage of the extra resolution to produce much better results.

For the third set of experiments, we employed a face and eye detector to find the
initial eye positions instead of the hand marked positions provided by the datasets. This
is the standard practice with the other state of the art methods. The well-known face
detection algorithm Viola and Jones [25] is used for this purpose. If the face and eye
detector is successful, then we find the pupil centers. Otherwise, we do not estimate the
pupil center. Since the face and eye detectors fail on bad images, the success rate of
pupil detectors are higher for this experiment. In test stage, leave-3-person-out and
classical 10-fold cross validation is followed like the first test strategy. As can be seen
the Table 3, better performance is achieved than the using the full dataset. Generally,
non detected face images contain the extreme head pose, profile face, or occluded
scenario. These situations mostly cause to increase detection error for the first two
experiments and decrease the error for the third experiment.

In order to show the characteristics of the proposed method on nominal and
extreme cases, we show the normalized error versus accuracy graph of the CAVE
experiments in Fig. 5. As expected our method and [11] show similar performances as
the BioID set on nominal cases. However, the performance of [11] drops significantly
for extreme cases while our results stays at good levels.

The third and fourth rows of Fig. 4 show some of our results on CAVE data set.
The last column shows failure cases. There are two main reasons for the failures whose
score images are shown in Fig. 6. First, for some cases, our score images do not

Table 2. Comparison of the normalized error on the CAVE set.

Method e� 0:05 e� 0:1 e� 0:25

Our Results (10-fold validation) 98.3 % 99.3 % 100 %
Tim et al. [11] 74.7 % 78.0 % 83.7 %

Table 3. Comparison of the normalized error on the detected face images in BioID set.

Method e� 0:05 e� 0:1 e� 0:25

Our Results (leave-3-person-out) 97.5 % 99.6 % 99.9 %
Markus et al. p ¼ 31 [10] 89.9 % 97.1 % 99.7 %
Tim et al. [11] 82.5 % 93.4 % 98.0 %
Valenti et al. [7] hybrid 86.1 % 91.7 % 97.9 %
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produce the correct positions of the eye pupils, which may indicate a training set
problem. If the training set includes more closed eye lid examples or glass subject
examples, our training could reflect the real world cases better. Second, for some cases,
although the score images produce the correct positions, our simultaneous pupil esti-
mation method fails, which suggests we may need a more sophisticated combined pupil
estimation method.

4 Conclusions

We propose an appearance based approach to estimate the eye pupil centers accurately
and robustly by using a Support Vector Regressor. Our method extracts HoG features
from the candidate eye patches and estimates the distance of the patch center to the
pupil center. The HoG features can take advantage of the gradient direction information
around the eye region especially with good resolution images. As a result, our method
is more suitable for pupil center localization for the eye gaze angle estimation. The
experiments performed on the standard datasets show the effectiveness of the proposed
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method. For the future work, we plan to make our method faster by using a steepest
ascent algorithm on the regressor function results that moves towards the pupil center.
It is also possible to make our system faster by running parallel threads for each sliding
window patch, which are independent of each other.
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Abstract. We propose a discriminative patch-level model which com-
bines appearance and spatial layout cues. We start from a block-sparse
model of patch appearance based on the normalized Fisher vector rep-
resentation. The appearance model is responsible for (i) selecting a dis-
criminative subset of visual words, and (ii) identifying distinctive patches
assigned to the selected subset. These patches are further filtered by
a sparse spatial model operating on a novel representation of pairwise
patch layout. We have evaluated the proposed pipeline in image classifi-
cation and weakly supervised localization experiments on a public traffic
sign dataset. The results show significant advantage of the combined
model over state of the art appearance models.

1 Introduction

Detecting the presence and precise locations of objects in images is a fundamental
problem in computer vision. Best results are achieved with strongly supervised
training [6,10,15,23] where object locations have to be annotated with bounding
boxes. However, the annotation process is difficult, time-consuming and error-
prone, especially when the objects are small. These problems are alleviated in
weakly supervised localization which learns from image-wide labels only.

Most previous work on weakly supervised learning for object localization fol-
lows the multiple instance learning [2,26] approach (MIL) in order to account
for the missing ground truth locations [7,8,11,30,35]. MIL iteratively trains an
instance classifier on bags of instances. A positive bag contains at least one
positive instance, while negative bags contain only negative instances. Bags cor-
respond to images, while instances in the bags are tentative object locations.

However, the localization problem can also be expressed as a search for
patches which contribute most to the image classification score. We have pre-
viously shown [21] that traffic signs can be localized by a sparse linear model
trained on non-normalized Fisher vectors (FV) of entire images. In this paper
we present two contributions which further improve these results. First, we pro-
pose to approximate the patch contribution to the normalized FV score with
the first-order Taylor expansion. This allows to improve the patch appearance
model by training it on the normalized FVs. Second, we propose a novel spatial
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 492–503, 2015.
DOI: 10.1007/978-3-319-24947-6 41
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Fig. 1. The appearance model identifies distinctive patches (enclosed in yellow rec-
tangles) assigned to selected visual words (shown in colors). The spatial model learns
consistent spatial configurations between pairs of selected visual words, e.g. between
a1 (purple) and a2 (cyan), a1 (purple) and a3 (green) and so on (Colour figure online).

representation of the pairwise patch layout. This representation captures distinc-
tive spatial configurations between the visual words selected by the appearance
model. The interplay between the two models is illustrated in Fig. 1.

2 Related Work

Most of the existing weakly-supervised localization approaches mitigate the com-
putational complexity by relying on bottom-up location proposals. Unfortu-
nately, this risks to overlook true object patches, which is especially pertinent in
traffic scenes with small objects and rich backgrounds. In our preliminary exper-
iments, a popular objectness algorithm [1] failed to produce accurate traffic sign
locations in top 2000 proposals. Due to recent success of cascaded classifiers
[27,38], strongly supervised traffic sign localization is considered solved today.
However, due to greedy training, these approaches have a limited feature sharing
potential, and none of them is able to detect all kinds of traffic signs at once.
Thus, current research and commercial products typically disregard important
classes such as the stop sign, priority road, no entry etc.

Modeling co-occurrence of visual words has been of interest ever since the
introduction of the bag-of-words (BoW) image classification paradigm [9]. Most
previous research considered unordered co-occurrence patterns of particular
visual words. The discovery of such patterns can be cast as a frequent pat-
tern mining problem, where BoW histograms are viewed as transactions while
co-occurring tuples of visual words correspond to frequent patterns [39] or item-
sets [16,41]. Many approaches attempt to discover co-occurrence patterns in
an unsupervised setting, and to use these patterns to augment the BoW rep-
resentation [16,41] or to supply weak classifiers for boosting [39]. Recent work
suggests that better performance can be obtained in a supervised discriminative
context, by employing so called jumping emerging patterns [37]. This relation
between frequent and discriminative patterns in data mining is similar to the
generative-discriminative dichotomy in computer vision classification models.

The second line of research goes beyond simple co-occurrence and attempts
to model spatial constellations of visual words. The approach by Lin et al. [24]
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uses histograms to represent the spatial layout of pairs of visual words. A major
problem with this approach is stability. Many pairs of features may be needed
to represent a given trait of an object class, since several visual words typically
fire in any discriminative image region. Due to use of histograms, this approach
may require large training datasets in order to properly model discretization
issues. The approach by Yang et al. [40] deals with these problems by choosing a
small dictionary of 100 visual words, and by considering crude spatial predicates
of proximity and orientation. Singh et al. [34] present an interesting iterative
approach for selection of discriminative visual words. In each round of learning
and for each visual word, a discriminative classifier is trained on the first fold
of training data. The classifiers are subsequently applied to the second fold,
and the positive responses are clustered to define the visual words for the next
round (this procedure is similar to the multi-fold multiple-instance learning for
weakly supervised localization [7]). Pairs of spatially correlated visual words
(doublets) are greedily discovered in the postprocessing phase, which provides a
slight increase in classification performance.

In this work, we present an approach for learning the spatial layout of visual
word pairs, which is suitable for classification and weakly supervised localization.
In contrast with [24,34,40], we perform a globally optimal selection of visual
words from a large dictionary. The selection procedure is optimal in the sense
of image classification performance over the Fisher vector representation. Our
approach does not rely on bottom-up location proposals such as segmentation
[6,7,17] or objectness [11,35]. Due to generative front-end, we have a better
sharing potential than pure discriminative approaches used in [27]. In contrast
with [21], we use block-sparsity [20], the normalized score gradient and the spatial
model of the pairwise layout.

Our appearance model is able to provide two-fold filtering of patches from the
test image. The filtering procedure discards (i) patches which are not assigned
to the selected set of visual words, and (ii) patches with a negative contribution
to the classification score. The filtered patches are further tested by the spatial
model based on [22], which improves the performance by considering pairwise
spatial relations in a local neighbourhood. Our approach is non-iterative and
therefore provides potential for combining with other approaches [16,34].

3 Selecting Discriminative Visual Words

We regard images as bags of visual words and represent them with a normalized
FV embedding built atop the generative Gaussian mixture model (GMM) of
patch appearance. Two types of FV normalizations are widely used to improve
the performance in this setup [31]. The power normalization is applied to each
dimension Xd of the FV as s(Xd) = sign(Xd)|Xd|ρ, with 0 < ρ < 1. This “un-
sparsifies” the vector X and makes it more suitable for comparison with the dot
product. The metric normalization projects the FV onto the unit hyper-sphere by
dividing it by its �2 norm. This accounts for the fact that different images contain
different amounts of background information. The �2 normalization is applied by
dividing the power-normalized FV s(X) with

√
n(X) where n(X) =

∑
d s(Xd)2.
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In our work, we use the intra-component normalization [3] where the �2
normalization is separately applied to the components of the FV corresponding
to different visual words. This accounts for the effect of “burstiness” [18] where a
few large components of the FV can dominate the similarity computed towards
another FV. In order to formally define the intra-normalized FV of the image,
we use Xk to denote the part of the FV corresponding to the k-th visual word
and write the corresponding �2 norm as n(Xk).

We train our appearance model from image-wide training labels yi as a linear
classifier w which minimizes the following regularized logistic loss function:

�(w,X,y) =
N∑

i=1

log
(
1 + exp(yi · w�Xi)

)
+ λ · R(w). (1)

In the above equation, N denotes the number of the training examples, R denotes
the regularizer, while the parameter λ represents a trade-off between the loss and
the regularization. We prefer a sparse regularizer because it (i) alleviates the high
dimensionality of the FV and (ii) performs a globally optimal feature selection
within the learning algorithm. The most commonly used choice for this purpose
is the �1 norm [29]. However this would ignore the specific FV structure induced
by the blocks that correspond to different visual words. In order to provide
better regularization, we capture this structure by using the �2,1 norm [19,42]:
R(w) = λ

∑
k‖wk‖, where k denotes visual words. This acts like the lasso at

the group level: depending on the choice of λ, all coefficients corresponding to
the particular visual word are set to zero. Note that block sparsity favours the
selection of discriminative visual words, which is especially helpful in weakly
supervised localization and fine-grained classification [20]. The main benefits
include faster execution (many patches can be discarded without applying the
model) and better performance due to reduced overfitting.

4 Gradient of the Classification Score

For the purpose of image classification, we denote the score of the full-image FV
descriptor as f(X), and the contribution of the patch x as f(X) − f(X− x). In
the case of un-normalized FV representation, the contribution of local features
to the final classification score can be easily derived. The linearity of the classifier
and the sum-pooling of the encoding of the local features makes that the scoring
and pooling can be reversed, i.e. wT · X =

∑
i w

T · xi. As a result, we obtain
the patch contribution using a simple dot product with the model [21].

On the other hand, the score of the normalized image FV corresponds to1

f(X) = w� · s(X)/
√

n(X). Due to the non-linear normalizations, the above lin-
ear decomposition of the image score into patch scores is no longer possible. The
patch contribution could be computed directly as f(X) − f(X − x). However,
that would require for each patch x to subtract it from X, apply power and
1 For the sake of simplicity, we assume the global �2 normalization n(X). We later

show the proposed reasoning also holds in the case of the intra- �2 normalization.
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�2 normalizations to the X − x, and finally to score it with the classifier and
subtract it from f(X). A computationally more efficient approach is to approx-
imate the contribution to the score by using the gradient ∇xf(X) of the score
w.r.t. the unnormalized FV x. The dot-product of the local FV with this gradient
〈x,∇xf(X)〉 then approximates the impact of a local descriptor on the final clas-
sification score. Let us now derive the gradient of the classification score w.r.t. the
non-normalized FV. The partial derivative of the score w.r.t. an element of the
non-normalized patch xd is given by ∂f(X)/∂xd = ∂f(X)/∂X · ∂X/∂xd. The
derivative of the non-normalized image FV w.r.t. the d-th element of the patch
FV corresponds to the vector with all zero elements except the d-th, which is
equal to one. Hence, the gradient w.r.t. the patch element xd is equal to the
gradient w.r.t. an image element Xd:

∂f(X)
∂xd

=
∂f(X)
∂Xd

=
ρ|Xd|ρ−1√

n(X)

(
wd − s(Xd)f(X)√

n(X)

)
. (2)

Please note that this derivative is undefined for Xd = 0. In practice, we set the
derivative to zero in this case, to ignore the impact of such dimensions.

In the case of per-component intra-normalization, the classification score is
a sum of per-component classification scores: f(X) =

∑
k fk(Xk). Since the

fk(Xk) have precisely the same form as f(X) above, we can compute the gra-
dients in the same manner, per block. Note that the gradient of the intra-
normalized FV preserves the sparsity (i.e. the zero elements) of the original
model 1. This is not the case for the global �2 normalization, where the gradient
sparsity depends on the difference between the model w and the normalized FV
multiplied with the score. A fixed set of visual words makes the gradient of the
intra-normalized FV more suitable for the construction of the spatial layout.

5 Spatial Layout Model

The proposed patch appearance model reduces the number of possible object
locations by an order of magnitude (e.g. from 100000 to 7000). Still, some of
the difficult background patches are scored positively and as such generate false
alarms (see Fig. 1). One way to address this problem is to learn a distinctive
spatial layout between the patches corresponding to different visual words. We
assume that the soft-assign distribution is sharply peaked, i.e. each local feature
is assigned to a single GMM component (see Fig. 2) [32,33]. The appearance
model identifies Kw discriminative components {ai}Kw

i=1 from the GMM vocabu-
lary of the size K, where Kw � K. For each positively scored patch p assigned
to some visual word ai, we consider a square neighbourhood upon which we
construct the spatial descriptors. The spatial features are based on displacement
vectors d(p, q) between the central patch p and neighbouring patches q. We
aggregate the spatial descriptors over the whole image and train an �1 regular-
ized model using image-wide labels. In the evaluation stage, the spatial model
is applied only to patches which are positively scored by the appearance model.
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Fig. 2. SFV derivation for the local neighbourhood around the patch p (black rectangle)
with Ks = 4. Patches assigned to different visual words are shown in different colors.
The patches p, q and v are assigned to visual words ai, aj , ak. The SFV contribution
φ(p, q) is determined as the gradient of the log likelihood of the displacement d(p, q)
with respect to the spatial GMM component (ai, aj).

We experiment with two types of descriptors: (i) spatial histograms (SH) [24],
and (ii) spatial Fisher vectors (SFV) [22]. The SHs are constructed as follows.
For each pair of the visual words, we construct a 2D histogram by discretizing
the local neighbourhood into b bins over both axes. The displacement vectors
d(p, q) are assigned to the appropriate bins, to which they contribute with the
appearance score of the patch q. The dimensionality of the 2D histogram is b2,
and since there are K2

w possible pairs, the size of the final SH is K2
w · b2.

We construct the SFVs as follows (cf. Fig. 2). For each visual word pair (ai, aj)
we assume a distinct spatial GMM with Ks components and diagonal covariance.
For each patch p assigned to ai we aggregate the weighted contributions φ(p, q)
of all neighbouring patches q assigned to aj into the SFV component Φai,aj

. We
incorporate the appearance information by weighting the contributions φ(p, q)
with the appearance score f(q). This is similar to [6] where the segmentation
masks are used to weight the Fisher vectors of the candidate windows. The final
SFV is obtained by concatenating the Φai,aj

for all (ai, aj). Each of the Φai,aj

is of dimension 5Ks, since for each of the Ks spatial Gaussians it concatenates
2D gradients for its mean and variance, as well as one dimension for its mixing
weight. The SFV dimensionality is K2

w · Ks · (2D + 1) = K2
w · Ks · 5.

6 Experiments

Dataset. We evaluate the proposed approach on a public traffic sign dataset
[5]. The dataset contains 3296 images acquired from the driver’s perspective
along local countryside roads. We focus on triangular warning signs (30 different
types). We train our classifiers using image-wide labels on the training split with
453 positive and 1252 negative images. The train and test splits are disjoint:
images containing the same physical traffic sign are assigned to the same split.
In general, the dataset contains very small objects taking approximately 1 %
of the image area making the classification and weakly supervised localization
difficult. We perform the bounding box evaluation as proposed in [14] and use
the average precision (AP) as the performance measure.
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Implementation Details. We extract dense 128-dimensional SIFT descrip-
tors over square patches being 16, 24, 32 and 40 pixels wide, with the stride
of 1/8 patch width. The descriptors are �2 normalized and projected onto a
80-dimensional PCA subspace. We train a GMM vocabulary with K = 1024
components and diagonal covariance with EM, as implemented in Yael [13]. The
resulting appearance FV is 164864-dimensional. We train our classifiers by opti-
mizing the logistic loss with block sparse regularization by proximal gradient
descent (FISTA), as implemented in SPAMS [25]. The regularization parameter
λ is determined using 10-fold cross-validation for all presented experiments.

We build local spatial layout descriptors by considering a neighbourhood 4
times larger than the corresponding reference patch. We construct the spatial
2D histograms by discretizing the patch neighbourhood into 8 bins per each
axis. As a result, for each pair of visual words, we obtain a 64 dimensional
descriptor. We construct the spatial Fisher vectors over a fixed GMM with Ks =
4 components shared across all visual word pairs. The mean and the variances
of the components match the first and second order moments of the uniform
distribution over the four quadrants of the unit square [22]. The dimensionality
of the SFV descriptor is Ks · (2 · 2 + 1) = 20 per each pair of visual words.

Classification. We apply the proposed spatial layout model through the fol-
lowing stages: (1) extract the dense SIFT descriptors and determine their Fisher
vectors, (2) apply the power normalization and �2 intra-component normaliza-
tion, (3) identify positive patches by employing the gradient of the appearance-
based classification score, and (4) aggregate the spatial layout descriptor and
score it with the spatial model. We present the obtained results in Table 1.

In the first set of experiments (rows 1–3) we consider Fisher vectors without
non-linear normalizations and evaluate models trained with different regulariz-
ers. The results show that the group-sparse model outperforms the �2 regularized
model for 7 % points (pp). In comparison with the �1 regularized model [21], the
group-sparse model is 17 times more sparse and achieves comparable AP. This
implies substantial performance advantage in terms of execution time.

In the next set of experiments (rows 4–5), we evaluate the effect of non-linear
normalizations to the performance of the group-sparse model (note that here the
power normalization is always on). The �2 global and �2-intra normalizations
produce comparable results and improve the performance for approximately 6
pp w.r.t. model without normalizations (row 3). We further observe that intra-
component normalization obtains a sparser model (7 vs. 10 components) without
any performance hit. The next two experiments (rows 6–7) explore the gradient
approximation presented in Sect. 4. Here we (i) compute the gradient of the
normalized classification score w.r.t. the raw Fisher vector, and (ii) score that
gradient with the raw Fisher vector of the image. We observe almost no penalty
of the approximation. However, we note that the global �2 normalization (row
7) does not preserve the number of non-zero visual words in the gradient of the
classification score. As a consequence, it is not suitable for constructing a spatial
layout model where we require a fixed set of selected model components.
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Table 1. Classification performance with different configurations (M: appearance
model, G: gradient of the appearance model, SH: spatial histogram, SFV: spatial Fisher
vector), FV normalizations (p: power, �2 intra: metric per component, �2 global: met-
ric across the entire vector) and regularizations (�1, �2, group: �2 inside component, �1
between components). Kw denotes the number of non-zero components of the appear-
ance model (out of 1024 total), where each component corresponds to a visual word.

Nr. Configuration FV normalization Penalty Kw AP train AP test

1 M - �2 1024 100 64

2 M [21] - �1 185 98 71.9

3 M - group 11 80 71.1

4 M p, �2 global group 10 83 76.9

5 M p, �2 intra group 7 81 76.8

6 G p, �2 global group * 83 76.9

7 G p, �2 intra group 7 81 76.7

8 G + SH p, �2 intra group 7 92 81.8

9 G + SFV p, �2 intra group 7 94 81.2

Finally, we evaluate the spatial layout model (rows 8–9). Here we require the
classification score gradient in order to be able to identify the positive patches.
We observe that the combination of the group-sparsity and spatial layout model
achieves the best classification AP (around 81 %), which is 4 pp better than
the appearance-based counterpart (row 7) and more than 9 pp better than [21]
(row 2). The group-sparse model identifies only 7 visual words, so there are only
49 possible pairs to consider in the spatial model. The spatial histograms (SH)
and spatial Fisher vectors (SFV) achieve comparable AP. However, the SFV
descriptor is more than 3 times smaller than the SH (20 vs 64 dimensions per
visual word pair), which makes it more efficient in terms of execution time.

Localization. The localization results are shown in Table 2. We first provide
a strongly supervised baseline [10] which employs HOG features in the sliding
window2. In comparison to our best weakly supervised result (row 7), the super-
vised HOG obtains a higher AP by 7 pp. However, the HOG implementation
scans the image at 64 scales, while we only extract the SIFT descriptors at 4
scales. The second set of experiments (rows 2–5) concerns the weakly supervised
appearance-only models. We identify the bounding boxes by looking at T=100
top scored patches. We construct the spatial connectivity graph according to
the patch overlap and identify the connected components. The results stress
out the importance of non-linear normalizations (rows 4 and 5) as they increase
the AP by 5 pp w.r.t. the weakly supervised baseline [21] (row 2). Further, by

2 These results are worse than [21] since here we do not use additional negative images
for training, i.e. the training dataset is the same as in other experiments.
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Table 2. Localization performance. T denotes the number of patches used to compute
the object bounding box. Kw denotes the number of non-zero model components. pmiss

denotes the miss frequency at the rightmost data point of the PR curve.

Nr. Configuration FV normalization Penalty Kw T AP test pmiss

1 S HOG [10] - l2 - - 88 0.05

2 M [21] - l1 64 100 72 0.13

3 M - group 11 100 74 0.25

4 M p, �2 intra group 7 100 77 0.11

5 G p, �2 intra group 7 100 77 0.16

6 G + SH p, �2 intra group 7 all 75 0.14

7 G + SFV p, �2 intra group 7 all 81 0.11

using the gradient approximation (row 5) instead of the direct patch contribu-
tion f(X)−f(X−x) (row 4), we obtain a comparable AP but increase the pmiss

for 5 pp. However, we shall show that the gradient requires less execution time.
In the third set of experiments (rows 6–7), we evaluate the localization per-

formance of the spatial layout models. We construct the bounding boxes by
taking a union of all patches which are positively scored by the spatial layout
model. The SH achieves somewhat worse results w.r.t. appearance-only counter-
part (row 5), but reduces the number of parameters (we do not have to choose
T ). The best performance is achieved with the SFV (row 7), where we increase
the AP by 9 pp in comparison to the baseline (row 2) and by 4 pp in compari-
son to the appearance model (row 5). Thus the SFV model outperforms the SH
model which is unable to take into account intra-bin distribution.

Figure 3 shows some localization examples. We are quite successful in detect-
ing very small (distant) objects. Most of our false alarms are caused by multiple
detections on objects which are very close to the camera.

Fig. 3. Localization results: first two images depict the successful operation of our
approach. The positively scored patches corresponding to different visual words are
shown in different colors. The second two images show examples of false alarms (Color
figure online).
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Execution Speed. All experiments have been performed on a 3.4 GHz Intel
Core i7-3770 CPU. Our Python + numpy implementation takes on average 7.4 s
per image for G + SFV (7.2 s for G and 0.2 s for SFV), which is 3 s faster than
the HOG baseline. We are currently unable to match the cascaded approaches
[12,36], but we think that our approach might scale better in the multi-class case
due to feature sharing. Significant speed-ups could be achieved by approximate
soft assign [20] or by using random decision forests as a generative model [4].
Preliminary experiments have shown that additional speed-up could be achieved
by an optimized soft-assign implementation in C. We further discuss our two
main contributions in terms of execution speed.

The gradient-based evaluation of a single patch is almost twice as fast than
the direct computation f(X) − f(X − x) (70µs vs. 160µs). The effects of this
speed-up are especially important when the appearance model is not so sparse
and the number of patches assigned to the selected components is large. An inter-
esting application area is the traffic sign localization in the multi-class case. To
the best of our knowledge, prominent commercial real-time systems still detect
only a single type of sign at a time [28] (typically the prohibition signs).

As for the choice of the spatial model, both SFV and SH take approximately
0.2 s per image. In comparison to SH, the SFV includes the computation of the
gradient w.r.t. spatial GMM. However, the SFVs can be precomputed due to (i)
the known size of the local neighbourhood, and (ii) fixed GMM shared across all
component pairs. Thus, by using SFV we improve the classification performance
while retaining the execution speed.

7 Conclusion

We have presented an approach to learn discriminative spatial relations between
pairs of visual words selected by a block-sparse appearance classifier trained on
the FV of entire images. The local spatial layout between the visual word pairs
is represented by a suitable spatial descriptor and aggregated across the image.
The recovered spatial descriptors are used to train a spatial classification model
suitable for image classification and weakly supervised object localization.

Our first contribution concerns the applicability of power and metric nor-
malizations in patch-level appearance models. Although these normalizations
invalidate the additivity of Fisher vectors, we show that excellent results can
be achieved by considering the gradient of the normalized Fisher vector score
instead of the raw linear model. Our second contribution enriches the sparse
patch-level classification model with spatial information. We show that the
second-level descriptors can be formulated as spatial Fisher vectors correspond-
ing to the pairs of selected visual words. We have evaluated the presented con-
tributions on a public traffic sign dataset. The experimental results clearly show
advantages of the normalized FV score gradient and the proposed pairwise spa-
tial layout model in image classification and weakly supervised localization.

The obtained results suggest that sparse patch-level models may be strong
enough to support weakly supervised learning of rich visual representations.
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Our future work shall explore further applications of the proposed spatial layout
representation in the multi-class scenario.
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dation under the project I-2433-2014.
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Abstract. The presence of a bias in each image data collection has
recently attracted a lot of attention in the computer vision community
showing the limits in generalization of any learning method trained on a
specific dataset. At the same time, with the rapid development of deep
learning architectures, the activation values of Convolutional Neural Net-
works (CNN) are emerging as reliable and robust image descriptors. In
this paper we propose to verify the potential of the DeCAF features
when facing the dataset bias problem. We conduct a series of analyses
looking at how existing datasets differ among each other and verifying
the performance of existing debiasing methods under different represen-
tations. We learn important lessons on which part of the dataset bias
problem can be considered solved and which open questions still need to
be tackled.

1 Introduction

Since its spectacular success in the 2012 edition of the Imagenet Large Scale
Visual Recognition Challenge (ILSVRC, [28]), deep learning has dramatically
changed the research landscape in visual recognition [20]. By training a Convo-
lutional Neural Network (CNN) over millions of data it is possible to get impres-
sively high quality object annotations [1] and detections [38]. A large number
of studies have recently proposed improvements over the CNN architecture of
Krizhevsky et al. [20] with the aim to better suit an ever increasing typology of
visual applications [16,30,38]. At the same time, the activation values of the final
hidden layers have quickly gained the status of off-the-shelf state of the art fea-
tures [27]. Indeed, several works demonstrated that DeCAF (as well as Caffe [6],
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Overfeat [32], VGG-CNN [3] and other implementations) can be used as power-
ful image descriptors [3,14]. The improvements obtained over previous methods
are so impressive that one might wonder whether they can be considered as a
sort of “universal features”, i.e. image descriptors that can be helpful in any
possible visual recognition problem. The aim of this paper is to contribute to
answering this question when focusing on the bias of existing computer vision
datasets.

The main causes and consequences of the dataset bias have been pointed out
and named in [34]. The capture bias is related to how the images are acquired
both in terms of the used device and of the collector preferences for point of view,
lighting conditions, etc. The category or label bias is due to a poor definition of
the visual semantic categories and to the in-class variability: similar images may
be annotated with different names and the same name can be assigned to visually
different images. Finally, each collection may contain a distinct set of categories
and this causes the negative bias. If we focus only on the classes shared among
them, the rest of the world will be defined differently depending on the collection.
All these bias aspects induce a generalization problem when training and testing
a learning algorithm on images extracted from different collections. Previous
work seemed to imply that this issue was solved, or on the way to be solved,
by using CNN features [6,37]. However, the evaluation is generally restricted
to controlled cases limited to specific visual domain shift [6,18] or with images
extracted from the testing collection available at training time [26,37].

In this work we revisit and scale up the dataset bias analysis, making two
contributions:

1. we asses the performance of the DeCAF CNN features on the most compre-
hensive experimental setup existing for dataset bias. We build on the setting
proposed in [33], consisting of a cross-dataset testbed over twelve different
databases.

2. we propose a new measure to quantify the ability of a given algorithm to
address the dataset bias. As opposed to what was proposed in [34], our mea-
sure takes into account both the performance obtained on the in-dataset task
and the percentage drop in performance across datasets.

Our experiments evaluate the suitability of CNN features for attacking the
dataset bias problem, pointing out that: (1) the capture bias is class-dependent
and can be enhanced by the CNN representation due to the influence of the
classes on which the neural network was originally trained; (2) the negative bias
persists regardless of the representation; (3) attempts of undoing the dataset
bias with existing ad-hoc learning algorithms do not help, while some previ-
ously discarded adaptive strategies appear effective; (4) fine-tuning the CNN
network does not fit in the dataset bias setting and if näıvely forced does not
seem beneficial.

The picture emerging from these findings is that of a problem open for
research and in need for new directions, able to accommodate at the same time
the potential of deep learning and the difficulties of large scale cross-database
generalization.
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2 Evaluation Protocol

We describe here the setup adopted for the experiments and we introduce the
measures used to evaluate the cross-dataset generalization performance.

Datasets and Features. We focus on twelve datasets, created and used before
for object categorization, that have been recently organized in a cross-dataset
testbed with the definition of two data setups [33]:

– sparse set. It contains 105 Imagenet classes [5] aligned to 95 classes of Cal-
tech256 [15] and Bing [35], 89 classes of SUN [36], 35 classes of Caltech101
[10], 17 classes of Office [31], 18 classes of RGB-D [21], 16 classes of Animals
with Attributes (AwA) [22] and Pascal VOC07 [8], 13 classes of MSRCORID
[25], 7 classes of ETH80 [23], and 4 classes of a-Yahoo [9].

– dense set. It contains 40 classes shared by Bing, Caltech256, Imagenet
and SUN.

The testbed has been released together with three feature representations:

– BOWsift: dense SIFT descriptors [24] extracted with the protocol defined
for the ILSVRC2010 contest [29] and quantized into a BOW representation
based on a vocabulary of 1000 visual words;

– DeCAF6, DeCAF7: the mean-centered raw RGB pixel intensity values of
all the collection images (warped to 256× 256) are given as input to the CNN
architecture of Krizhevsky et al. by using the DeCAF implementation [6]. The
activation values of the 4096 neurons in the 6-th and 7-th layers of the network
are considered as image descriptors.

In our experiments we use the L2-normalized version of the feature vectors and
adopt the z-score normalization for the BOWsift features when testing domain
adaptation methods. We mostly focus on the results obtained with the DeCAF
features and use the BOWsift representation as a reference baseline.

Evaluation Measures. We analyze both the in-dataset (training and testing on
samples extracted from the same dataset) and the cross-dataset (training and
testing samples belonging to different collections) performance. We use Self
to specify the in-dataset performance and Mean Other for the average cross-
dataset performance over multiple test collections.

In [34] cross dataset generalization was evaluated through the percentage
drop (% Drop) between Self and Mean Others. However, being a relative
measure, it loses the information on the value of Self which is important if we
want to compare the effect of different learning methods or different representa-
tions. For instance a 75 % drop w.r.t. a 100 % self average precision has a different
meaning than a 75 % drop w.r.t. a 25 % self average precision. To overcome this
drawback, we propose here a different Cross-Dataset (CD) measure defined as

CD =
1

1 + exp−{(Self−Mean Others)/100} .
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CD uses directly the difference (Self −Mean Others) while the sigmoid func-
tion rescales this value between 0 and 1. This allows for the comparison among
the results of experiments with different setups. Specifically CD values over 0.5
indicate a presence of a bias, which becomes more significant as CD gets close
to 1. On the other hand, CD values below 0.5 correspond to cases where either
Mean Other ≥ Self or the Self result is very low. Both these conditions indi-
cate that the learned model is not reliable on the data of its own collection and
it is difficult to draw any conclusion from its cross-dataset performance.

3 Studying the Sparse Set

Dataset Recognition. One of the effect of the capture bias is that it makes any
dataset easily recognizable. We want to evaluate whether this effect is enhanced
or decreased by the use of the CNN features. To do it we run the name the
dataset test [34] on the sparse data setup. We extract randomly 1000 images
from each of the 12 collections and we train a 12-way linear SVM classifier that
we then test on a disjoint set of 300 images. The experiment is repeated 10 times
with different data splits and we report the obtained average results in Fig. 1.
The plot on the left indicates that DeCAF allows for a much better separa-
tion among the collections than what is obtained with BOWsift. In particular
DeCAF7 shows an advantage over DeCAF6 for large number of training samples.
From the confusion matrices (middle and right in Fig. 1) we see that it is easy to
distinguish ETH80, Office and RGB-D datasets from all the others regardless of
the used representation, given the specific lab-nature of these collections. DeCAF
captures better than BOWsift the characteristics of A-Yahoo, MSRCORID, Pas-
cal VOC07 and SUN, improving the recognition results on them. Finally, Bing,
Caltech256 and Imagenet are the datasets with the highest confusion level, an
effect mainly due to the large number of classes and images per class. Still, this
confusion decreases when using DeCAF.

These experiments show that the idiosyncrasies of each data collection become
more evident when using a highly accurate representation. However, the dataset
recognition performance does not provide an insight on how the classes in each
collection are related among each other, nor how a specific class model will gen-
eralize to other datasets. We look into this problem in the following paragraph.
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Fig. 1. Name the dataset experiment over the sparse setup with 12 datasets. The title
of each confusion matrix indicates the feature used for the corresponding experiments.
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Class-Specific cross-dataset generalization test. We study the effect of the
CNN features on the cross-dataset performance of two object class models: car
and cow. Four collections in the sparse set contain images labeled with these
object classes: PascalVOC07 (P), SUN (S), ETH80 (E), and MSRCORID (M).
For the class car we selected randomly from each dataset two groups of 50
positive/1000 negative examples respectively for training and testing. For the
class cow we considered 30 positive/1000 negative examples in training and 18
positive/1000 negative examples in testing. We repeat the sample selection 10
times and the average precision results obtained by linear SVM are presented in
Table 1.

Coherently with what deduced over all the classes from the name the dataset
experiment, scene-centric (P,S) and object-centric (E,M) collections appear sep-
arated among each other. For the first ones, the low in-dataset results are mainly
due to their multi-label nature: an image labeled as people may still contain a
car and this creates confusion both at training and at test time. The final effect
is a cross-dataset performance higher than the respective in-dataset one. This
behavior becomes even more evident when using DeCAF than with BOWsift.

Although the name the dataset experiment indicated almost no overall con-
fusion between E and M, the per-class results on car and cow show different
trends. Learning a car model from images of toys (E) or of real objects (M)

Table 1. Binary cross-dataset generalization for two example categories, car and cow.
Each matrix contains the object classification performance (AP) when training on one
dataset (rows) and testing on another (columns). The diagonal elements correspond to
the self results, i.e. training and testing on the same dataset. We report in bold the
CD values higher than 0.5.
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does not seem so different in terms of the final testing performance when using
DeCAF. The diagonal matrix values prominent with BOWsift are surrounded
by high average precision results for DeCAF. On the other hand, recognizing a
living non-rigid object like a cow is more challenging. An important factor that
may influence these results is the high level nature of the DeCAF representation:
they are obtained as a byproduct of a training process over 1000 object classes
[6] which cover several vehicles and animal categories. The class car is in this
set, but cow is not. This intrinsically induce a category-specific bias effect, which
may augment the image collection differences. Overall the DeCAF features pro-
vide a high performance inside each collection, but the difference between the
in-dataset and cross-dataset results remains large almost as with BOWsift.

We also re-run the experiments on the class cow by using a fixed negative
set in the test always extracted from the training collection. The visible increase
in the cross-dataset results indicate that the negative set bias maintain its effect
regardless of the used representation.

From the values of %Drop and CD we see that these two measures may
have a different behavior: for the class cow with BOWsift, the %Drop value for
E (92.6) is higher than the corresponding value for M (82.0), but the opposite
happens for CD (respectively 0.57 and 0.61). The reason is that CD integrates
the information on the in-dataset recognition which is higher and more reliable
for M. Passing from BOWsift to DeCAF the CD value increases in some cases
indicating a more significant bias.

On the basis of the presented results we can state that the DeCAF features
are not fully solving the dataset bias. Although similar conclusions have been
mentioned in a previous publication [18], our more extensive analysis provides
a reliable measure to evaluate the bias and explicitly indicate some of the main
causes of the observed effect: (1) the capture bias appears class-dependent and
may be influenced by the original classes on which the CNN features have been
trained; (2) the negative bias persists regardless of the feature used to represent
the data.

Undoing the Dataset Bias. We focus here on the method proposed in [19] to
overcome the dataset bias. Our aim is to verify its effect when using the DeCAF
features. The Unbias approach has a formulation similar to multi-task learning:
the available images of multiple datasets are kept separated as belonging to
different tasks and a max-margin model is learned from the information shared
over all of them. We run the experiments focusing on the classes car, cow, dog
and chair, reproducing a similar setup to what previously used in [19] and using
the original implementation of the Unbias method provided by the authors. For
the class car we consider two settings with three and five datasets, while we use
five datasets for cow and chair and six datasets for dog. One of the datasets is
left out in round for testing while all the others are used as sources of training
samples1.

1 More details about the method and the experimental setup can be found in the
supplementary material.
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Fig. 2. Percentage difference in average precision between the results of Unbias and
the baseline All over each target dataset. P,S,E,M,A,C1,C2,OF stand respectively for
Pascal VOC07, SUN, ETH80, MSRCORID, AwA, Caltech101, Caltech256 and Office.
With O (in black) we indicate the overall value: average percentage difference over all
the considered datasets.

We compare the obtained results against those produced by a linear SVM
when All the training images of the source datasets are considered together. We
show the percentage relative difference in terms of average precision for these two
learning strategies in Fig. 2. The results indicate that, in most cases when using
BOWsift the Unbias method improves over the plain All SVM, while the opposite
happens when using DeCAF7. As already suggested by the results of the cross-
dataset generalization test, the DeCAF features, by capturing the image details,
may enhance the differences among the same object category in different collec-
tions. As a consequence, the amount of shared information among the collections
decreases, together with the effectiveness of the methods that leverage over it. On
the other hand, removing the dataset separation and considering all the images
together provides a better coverage of the object variability and allows for a higher
cross-dataset performance.

In the last column of Fig. 2 we present the results obtained with the class cow
together with the average precision per dataset when using DeCAF7. The table
allows to compare the performance of training and testing on the same dataset
(Self) against the best result between Unbias and All (indicated as Other).
Despite the good performance obtained by directly learning on other datasets,
the obtained results are still lower than what can be expected having access to
training samples of each collection. This suggests that an adaptation process
from generic to specific is still necessary to close the gap. Similar trends can be
observed for the other categories.
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4 Studying the Dense Set

Dataset Recognition. A second group of experiments on the dense setup allows
us to analyze the differences among the datasets avoiding the negative set bias.
We run again the name the dataset test maintaining the balance among the 40
classes shared by Caltech256, Bing, SUN and Imagenet. We consider a set of 5
samples per object class in testing and an increasing amount of training samples
per class from 1 to 15. The results in Fig. 3 indicate again the better perfor-
mance of DeCAF7 over DeCAF6 and BOWsift. From the confusion matrices it
is clear that the separation between object- (Bing, Caltech256, Imagenet) and
scene-centric (SUN) datasets is quite easy regardless of the representation, while
the differences among the object-centric collections become more evident when
passing from BOW to DeCAF.

Since all the datasets contain the same object classes, we are in fact repro-
ducing a setup generally adopted for domain adaptation [11,13]. By identifying
each dataset with a domain, we can interpret the results of this experiment as
an indication of the domain divergence [2] and deduce that a model trained on
SUN will perform poorly on the object-centric collections and vice versa. On
the other hand, a better cross dataset generalization should be observed among
Imagenet, Caltech256 and Bing. We verify it in the following sections.
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Fig. 3. Name the dataset experiment over the dense setup with 4 datasets. The title
of each confusion matrix indicates the feature used for the corresponding experiments.

Cross-dataset generalization test. We consider the same setup used before
with 15 samples per class from each collection in training and 5 samples per
class in test. However, now we train a one-vs-all multiclass SVM per dataset.
Due to its noisy nature we exclude Bing here and we dedicate more attention to
it in the next paragraph.

The average recognition rate results over 10 data splits are reported in Table 2.
By comparing the values of %Drop and CD we observe that they provide oppo-
site messages. The first suggests that we get a better generalization when pass-
ing from BOWsift to DeCAF7. However, considering the higher Self result,
CD evaluates the dataset bias as more significant when using DeCAF7. The
expectation indicated before on the cross-dataset performance are confirmed here:
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Table 2. Multiclass cross-dataset generalization performance (recognition rate). The
percentage difference between the self results and the average of the other results per
row correspond to the value indicated in the column % Drop. CD is our newly proposed
cross-dataset measure.

the classification models learned on Caltech256 and Imagenet have low recognition
rate on SUN. Generalizing between Caltech256 and Imagenet, instead, appears
easier and the results show a particular behavior: although the classifier on Cal-
tech256 tends to fail more on Imagenet than on itself, when training on Imagenet
the in-dataset and cross-dataset performance are almost the same. Of course we
have to remind that the DeCAF features were defined over Imagenet samples and
this can be part of the cause of the observed asymmetric results.

Noisy Source Data and Domain Adaptation. Until now we have discussed
and demonstrated empirically that the difference among two data collections
can originate from multiple and often co-occurring causes. However the standard
assumption is that the label assigned to each image is correct. In some practical
cases this condition does not hold, as in learning from web data [4]. Some state-
of-art domain adaptation methods seem perfectly suited for this task (see Fig. 4
top part) and we use them here to evaluate the cross-dataset generalization
performance when training on Bing (noisy object-centric source domain) and
testing on Caltech256 and SUN (respectively an object-centric and a scene-
centric target domain).

The obtained results go in the same direction of what was observed previously
with the Unbias method. Despite the presence of noisy data, selecting them
(landmark) or grouping the samples (reshape+SA, reshape+DAM) do not seem
to work better than just using all the source data at once. On the other hand,
keeping all the source data together and augmenting them with target samples
by self-labeling [33] consistently improves the original results. One well known
drawback of this strategy is that progressively accumulated errors in the target
annotations may lead to significant drift from the correct solution. However,
when working with DeCAF features this risk appears highly reduced as can be
appreciated by looking at the recognition rate obtained over ten iterations of
the target selection procedure and considering the comparison against BOWsift
(small plots in Fig. 4).

Fine-Tuning. As indicated in Sect. 2 the DeCAF CNN features were obtained
from an initial pre-trained network whose parameters remain untouched. Fine-
tuning the network before using it for recognition on a new task is an alternative
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Fig. 4. Top: schematic description of the used domain adaptation methods. Bottom:
Results of the Bing-Caltech256 and Bing-SUN experiments with DeCAF7. We report
the performance of different domain adaptation methods (big plots) together with the
recognition rate obtained in 10 subsequent steps of the self-labeling procedure (small
plots). For the last ones we show the performance obtained both with DeCAF7 and
with BOWsift when having originally 10 samples per class from Bing.

strategy which demonstrated good results in transfer learning [26,37]. To com-
plete our analysis we clarify here that this fine-tuning process does not fit in the
dataset bias setting.

A network pre-trained on a dataset D is generally fine-tuned on a new dataset
D′ when the final task is also tested on D′. Thus the scheme (train, fine-tune, test)
corresponds to (D,D′,D′). For dataset bias, the condition is instead (D,D′,D′′):
here D′ and D′′ are different collection and no labeled data from D′′ is avail-
able at training time. The advantage of fine-tuning consists in making the net-
work specific for D′ [3], which in our setting can worsen the bias with respect
to D′′. By using the Caffe CNN implementation we fine-tuned the Imagenet
(D) pre-trained network on the dense set, specifically on Caltech256 (5046 train
images) and SUN (3015 train images), reserving respectively 1500 and 1300
images as test samples. The in-dataset and cross-dataset experimental results are:
(Caltech256(D′), Caltech256(D′)) = 86.4 %; (Caltech256(D′), SUN(D′′)) = 25.7 %;

(SUN(D′), Caltech256(D′′)) = 37.5 %; (SUN(D′), SUN(D′)) = 41.1 %. Compared
with what presented in Table 2 these results show the advantage of fine-tuning
in terms of in-dataset recognition rate. However they also indicate that the fine-
tuning process does not remove the cross-dataset bias (86.4 % > 25.7 %; 41.1 % >

37.5 %) and that using the wrong dataset to refine the network can be detrimental
(86.4 % > 37.5 %; 41.1 % > 25.7 %).
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5 Conclusions

In this paper we attempted at positioning the dataset bias problem in the CNN-
based features arena with an extensive experimental evaluation. At the same
time, we pushed the envelope in terms of the scale and complexity of the evalua-
tion protocol, so to be able to analyze all the different nuances of the problem. We
focused on DeCAF features, as they are popular CNN-learned descriptors, and
for the impressive results obtained so far in several visual recognition domains.

A first main result of our analysis is that DeCAF not only does not solve
the dataset bias problem in general, but in some cases (both class- and dataset-
dependent) they capture specific information that, although otherwise useful,
induce a low performance in the cross-dataset object categorization task. The
high level nature of the CNN features add a further hidden bias that needs to
be considered when comparing the experimental results against standard hand-
crafted representations. Moreover, the negative bias remains, as it cannot intrin-
sically be removed (or alleviated) by changing feature representation. A second
result concerns the effectiveness of learning methods applied over the chosen
features: nor a method specifically designed to undo the dataset bias, neither
algorithms successfully used in the domain adaptation setting seem to work
when applied over DeCAF features. It appears as if the highly descriptive power
of the features, that determined much of their successes so far, in the particular
dataset-bias setting backfires, as it makes the task of learning how to extract
general information across different data collection more difficult. Interestingly,
a simple selection procedure based on target self-labeling leads to a significant
increase in performance. Finally, a third outcome derives from the fine-tuning
experiments. Although standardly used for transfer learning, fine-tuning does
seem beneficial to remove the dataset bias. Together with the failure of existing
adaptive approaches, this questions whether methods effectively used in transfer
and domain adaptation settings should be considered automatically as suitable
for dataset bias, and vice versa.

How to leverage over the power of deep learning methods to attack the dataset
bias problem in all its complexity, well represented by our proposed experimental
setup, is open for research in future work.
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Abstract. Convolutional neural networks have recently shown excellent
results in general object detection and many other tasks. Albeit very
effective, they involve many user-defined design choices. In this paper we
want to better understand these choices by inspecting two key aspects
“what did the network learn?”, and “what can the network learn?”. We
exploit new annotations (Pascal3D+), to enable a new empirical analysis
of the R-CNN detector. Despite common belief, our results indicate that
existing state-of-the-art convnets are not invariant to various appearance
factors. In fact, all considered networks have similar weak points which
cannot be mitigated by simply increasing the training data (architectural
changes are needed). We show that overall performance can improve
when using image renderings as data augmentation. We report the best
known results on Pascal3D+ detection and view-point estimation tasks.

1 Introduction

In the last years convolutional neural networks (convnets) have become “the
hammer that pounds many nails” of computer vision. Classical problems such as
general image classification [17], object detection [12], pose estimation [4], face
recognition [28], object tracking [20], keypoint matching [10], stereo matching
[40], optical flow [9], boundary estimation [38], and semantic labelling [21], have
now all top performing results based on a direct usage of convnets. The price
to pay for such versatility and good results is a limited understanding of why
convnets work so well, and how to build & train them to reach better results.

In this paper we focus on convnets for object detection. For many object
categories convnets have almost doubled over previous detection quality. Yet, it
is unclear what exactly enables such good performance, and critically, how to
further improve it. The usual word of wisdom for better detection with convnets
is “larger networks and more data”. But: how should the network grow; which
kind of additional data will be most helpful; what follows after fine-tuning an
ImageNet pre-trained model on the classes of interest? We aim at addressing
such questions in the context of the R-CNN detection pipeline [12] (Sect. 2).

Previous work aiming to analyse convnets have either focused on theoreti-
cal aspects [2], visualising some specific patterns emerging inside the network
[18,22,29,31], or doing ablation studies of working systems [1,3,12]. However, it
remains unclear what is withholding the detection capabilities of convnets.
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 517–528, 2015.
DOI: 10.1007/978-3-319-24947-6 43
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Contributions. This paper contributes a novel empirical exploration of R-
CNNs for detection. We use the recently available Pascal3D+ [37] dataset, as
well as rendered images to analyze R-CNNs capabilities at a more detailed level
than previous work. In a new set of experiments we explore which appearance
factors are well captured by a trained R-CNN, and which ones are not. We con-
sider factors such as rotation (azimuth, elevation), size, category, and instance
shape. We want to know which aspects can be improved by simply increasing
the training data, and which ones require changing the network. We want to
answer both “what did the network learn?” (Sect. 5) and “what can the network
learn?” (Sects. 6 and 7). Our results indicate that current convnets (AlexNet
[17], GoogleNet [33], VGG16 [30]) struggle to model small objects, truncation,
and occlusion and are not invariant to these factors. Simply increasing the train-
ing data does solve these issues. On the other hand, properly designed synthetic
training data can help pushing forward the overall detection performance.

1.1 Related Work

Understanding Convnets. The tremendous success of convnets coupled with
their black-box nature has drawn much attention towards understanding them
better. Previous analyses have either focused on highlighting the versatility of
its features [26,27], learning equivariant mappings [19], training issues [5,16],
theoretical arguments for its expressive power [2], discussing the brittleness of
the decision boundary [14,34], visualising specific patterns emerging inside the
network [18,22,29,31], or doing ablation studies of working systems [1,3,12].

We leverage the recent Pascal3D+ annotations [37] to do a new analysis
complementary to previous ones. Rather than aiming to explain how does the
network work, we aim at identifying in which cases the network does not work
well, and if training data is sufficient to improve these issues. While previous work
has shown that convnets are increasingly invariant with depth, here we show that
current architectures are still not overall invariant to many appearance factors.

Synthetic Data. The idea of using rendered images to train detectors has
been visited multiple times. Previous works include photo-realistic video game
renderings [39], wire-frame renderings [24,32] focusing on object boundaries, or
augmenting the data by subtle deformations of the positive samples [7,25]. Most
of these works focused on DPM-like detectors, which can only make limited use
of large training sets [41]. In this paper we investigate how different types of
renderings (wire-frame, materials, and textures) impact the performance of a
convnet. A priori convnets are more suitable to ingest larger volumes of data.

2 The R-CNN Detector

The remarkable convnet results in the ImageNet 2012 classification competition
[17] ignited a new wave of neural networks for computer vision. R-CNN [12]
adapts such convnets for the task of object detection, and has become the de-
facto architecture for state-of-the-art object detection (with top results on Pascal
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VOC [8] and ImageNet [6]) and is thus the focus of attention in this paper.
The R-CNN detector is a three stage pipeline: object proposal generation [36],
convnet feature extraction, and one-vs-all SVM classification with bounding box
regression. We refer to the original paper for details of the training procedure
[12]. Different networks can be used for feature extraction (AlexNet [17], VGG
[3], GoogleNet [33]), all pre-trained on ImageNet and fine-tuned for detection.
The larger the network, the better the performance. The SVM gains a couple of
final mAP points compared to logistic regression used during fine-tuning (and
larger networks benefit less from it [11]).

In this work we primarily focus on the core ingredient: convnet fine-tuning
for object detection. We consider fine-tuning with various training distributions,
and analyse the performance under various appearance factors. Unless otherwise
specified reported numbers do not include the bounding box regression.

3 Pascal3D+ Dataset

Our experiments are enabled by the recently introduced Pascal3D+ [37] dataset.
It enriches PASCAL VOC 2012 with 3D annotations in the form of aligned 3D
CAD models for 11 classes (aeroplane, bicycle, boat, bus, car, chair, diningtable,
motorbike, sofa, train, and tv monitor) of the train and val subsets. The align-
ments are obtained through human supervision, by first selecting the visually
most similar CAD model for each instance, and specifying the correspondences
between a set of 3D CAD model keypoints and their image projections, which
are used to compute the 3D pose of the instance in the image. The rich object
annotations include object pose and shape, and we use them as a test bed for
our analysis. Unless otherwise stated all presented models are trained on the
Pascal3D+ train set and evaluated on its test set (Pascal VOC 2012 val).

4 Synthetic Images

Convnets reach high classification/detection quality by using a large parametric
model (e.g. in the order of 107 parameters). The price to pay is that convnets need
a large training set to reach top performance. We want to explore whether the
performance scales as we increase the amount of training data. To that end, we
explore two possible directions to increase the data volume: data augmentation
and synthetic data generation.

Data augmentation consists of creating new training samples by simple trans-
formations of the original ones (such as scaling, cropping, blurring, subtle colour
shifts, etc.), and it is a common practice during training on large convnets [3,17].
To generate synthetic images we rely on CAD models of the object classes of
interest. Rendering synthetic data has the advantage that we can generate large
amounts of training data in a controlled setup, allowing for arbitrary appearance
factor distributions. For our synthetic data experiments we use an extended set
of CAD models, and consider multiple types of renderings (Sect. 4.1).
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Fig. 1. Example training samples for different type of synthetic rendering.

Extended Pascal3D+ CAD Models. Although the Pascal3D+ dataset [37]
comes with its own set of CAD models, this set is rather small and it comes
without material information (only polygonal mesh). Thus the Pascal3D+ mod-
els alone are not sufficient for our analysis. We extend this set with models
collected from internet resources. We use an initial set of ∼ 40 models per class.
For each Pascal3D+ training sample we generate one synthetic version per model
using a “plain texture” rendering (see next section) with the same camera-to-
object pose. We select suitable CAD models by evaluating the R-CNN (trained
on Pascal 2007 train set) on the rendered images, and we keep a model if it gen-
erates the highest scoring response (across CAD models) for at least one training
sample. This procedure makes sure we only use CAD models that generate some-
what realistic images close to the original training data distribution, and makes
it easy to prune unsuitable models. Out of ∼ 440 initial models, ∼ 275 models
pass the selection process (∼ 25 models per class).

4.1 Rendering Types

A priori it is unclear which type of rendering will be most effective to build or
augment a convnet training set. We consider multiple options using the same set
of CAD models. Note that all rendering strategies exploit the Pascal3D+ data
to generate training samples with a distribution similar to the real data (similar
size and orientation of the objects). See Fig. 1 for example renderings.

Wire-Frame. Using a white background, shape boundaries of a CAD model
are rendered as black lines. This rendering reflects the shape (not the mesh)
of the object, abstracting its texture or material properties and might help the
detector to focus on the shape aspects of the object.

Plain Texture. A somewhat more photo-realistic rendering considers the mate-
rial properties (but not the textures), so that shadows are present. We considered
using a blank background, or an environment model to generate plausible back-
grounds. We obtain slightly improved results using the plausible backgrounds,
and thus only report these results. This rendering provides “toy car” type images,
that can be considered as middle ground between “wire frame” and “texture
transfer” rendering.
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Fig. 2. mAP of R-CNN over appearance factors. Pascal3D+.

Texture Transfer. All datasets suffer from bias [35], and it is hard to identify
it by hand. Ideally, synthetic renderings should have the same bias as the real
data, while injecting additional diversity. We aim at solving this by generating
new training samples via texture transfer. For a given annotated object on the
Pascal3D+ dataset, we have both the image it belongs to and an aligned 3D
CAD model. We create a new training image by replacing the object with a new
3D CAD model, and by applying over it a texture coming from a different image.
This approach allows to generate objects with slightly different shapes, and with
different textures, while still adequately positioned in a realistic background
context (for now, our texture transfer approach ignores occlusions). This type
of rendering is close to photo-realistic, using real background context, while
increasing the diversity by injecting new object shapes and textures.

As we will see in Sect. 7, any of our renderings can be used to improve detec-
tion performance. Still the level of realism affects how much improvement is
obtained.

5 What Did the Network Learn from Real Data?

In this section we analyze R-CNNs detection performance in an attempt to
understand what have the models actually learned. We first explore models per-
formance across different appearance factors (Sect. 5.1), going beyond the usual
per-class detection performance. Second, we dive deeper and aim at understand-
ing what have the network layers actually learned (Sect. 5.2).

5.1 Detection Performance Across Appearance Factors

To analyze the performance across appearance factors we split each factor into
equi-spaced bins. We present a new evaluation protocol where for each bin only
the data falling in it are actually considered in the evaluation and the rest are
ignored. This allows to dissect the detection performance across different aspects
of an appearance factor. The original R-CNN [12] work includes a similar analysis
based on the toolkit from [15]. Pascal3D+ however enables a more fine-grained
analysis. Our experiments report results for AlexNet (51.2 mAP) [17], GoogleNet
(56.6 mAP) [33], VGG16 (58.8 mAP) [30] and their combination (62.4 mAP).

Appearance Factors. We focus the evaluation on the following appearance
factors: rotation (azimuth, elevation), size, occlusion and truncation as these
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Fig. 3. Average cluster entropy versus number of clusters K; at different layers, for
different appearance factors. Pascal3D+ test data.

factors have strong impact on objects appearance. Azimuth and elevation refer
to the angular camera position w.r.t. the object. Size refers to the bounding
box height. Although the Pascal3D+ dataset comes with binary occlusion and
truncation states, using the aligned CAD models and segmentation masks we
compute level of occlusion as well as level and type of truncation. While occlusion
and truncation levels are expressed as object area percentage, we distinguish
between 4 truncation types: bottom (b), top (t), left (l) and right (r) truncation.

Analysis. Figure 2 reports performance across the factors. The results point to
multiple general observations. First, there is a clear ordering among the models.
VGG16 is better than GoogleNet on all factor bins, which in turn consistently
outperforms AlexNet. The combination of the three models (SVM trained on
concatenated features) consistently outperforms all of them suggesting there is
underlying complementarity among the networks. Second, the relative strengths
and weaknesses across the factors remain the same across models. All networks
struggle with occlusions, truncations, and objects below 120 pixels in height.
Third, for each factor the performance is not homogeneous across bins, suggest-
ing the networks are not invariant w.r.t. the appearance factors.

It should be noted that there are a few confounding factors in the results.
First such factor is the image support (pixel area) of the object, which is strongly
correlated with performance. Whenever the support is smaller e.g. small sizes,
large occlusions/truncations or frontal views the performance is lower. Second
confounding factor is the training data distribution. For a network with a finite
number of parameters, it needs to decide to which cases it will allocate resources.
The loss used during training will push the network to handle well the most com-
mon cases, and disregard the rare cases. Typical example is the elevation, where
the models learn to handle well the near 0◦ cases (well represented), while they
fail on the outliers: upper (90◦)and lower (−90◦) cases. We explore this aspect
in Sect. 6 by investigating performance under different training distributions.

Conclusion. There is a clear performance ordering among the convnets which
all have similar weaknesses, tightly related to data distribution and object area.
Occlusion, truncation, and small objects are clearly weak points of the R-CNN
detectors (arguably harder problems by themselves). Given similar tendencies
next sections focus on AlexNet.
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5.2 Appearance Vector Disentanglement

Other than just the raw detection quality, we are interested in understanding
what did the network learn internally. While previous work focused on specific
neuron activations [13], we aim at analyzing the feature representations of indi-
vidual layers. Given a trained network, we apply it over positive test samples,
and cluster the feature vectors at a given layer. We then inspect the cluster
entropy with respect to different appearance factors, as we increase the number
of clusters. The resulting curves are shown in Fig. 3. Lower average entropy indi-
cates that at the given layer the network is able to disentangle the considered
appearance factor. Disentanglement relates to discriminative power, invariance,
and equivariance. (Related entropy based metric is reported in [1], however they
focus on individual neurons).

Analysis. From Fig. 3a we see that classes are well disentangled. As we go from
the lowest conv1 layer to the highest fc7 layer the disentanglement increases,
showing that with depth the network layers become more variant w.r.t. category.
This is not surprising as the network has been trained to distinguish classes. On
the other hand for azimuth, elevation and shape (class-specific disentanglement)
the disentanglement across layers and across cluster number stays relatively con-
stant, pointing out that the layers are not as variant to these factors.

Conclusion. We make two observations. First, convnet representations at higher
layers disentangle object categories well, explaining its strong recognition perfor-
mance. Second, network layers are to some extent invariant to different factors.

6 What Could the Network Learn with More Data?

Section 5 inspected what the network learned when trained with the original
training set. In this section we explore what the network could learn if addi-
tional data is available. We will focus on size (Sect. 6.1), truncations and occlu-
sions (Sect. 6.2) since these are aspects that R-CNNs struggle to handle. For each
case we consider two general approaches: changing the training data distribu-
tion, or using additional supervision during training. For the former we use data
augmentation to generate additional samples for specific size, occlusion, or trun-
cation bins. Augmenting the training data distribution helps us realize if adding
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Fig. 5. Varying truncated and occluded training data distribution

extra data for a specific factor bin helps improving the performance on that par-
ticular bin. When using additional supervision, we leverage the annotations to
train a separate model for each bin. Providing an explicit signal during training
forces the network to distinguish among specific factor bins. The experiments
involve fine-tuning the R-CNN only as we are interested in convnet modelling
capabilities.

6.1 Size Handling

More Data. Figure 4 shows the results with different object size training distrib-
utions. The “original” bars correspond to the results in Fig. 2. “Up & downscale”
corresponds to training with a uniform size distribution across bins by up/down-
scaling all samples to all bins. As upscaled images are blurry, “downscale only”
avoids such blur, resulting in a distribution with more small size samples than
larger sizes. Results in Fig. 4 indicate that data augmentation can provide a few
mAP points gain for small objects, however the network still struggles with small
size, thus it is not invariant w.r.t. size despite the uniform training distribution.

Bin-Specific Models. The right side bars of Fig. 4 show results for bin-specific
networks. Each bar corresponds to a model trained and tested on that size range.
Both augmentation methods outperform the original data distribution on all size
bins (e.g. at 195 pixels, “up & downscale” improves by 5.2 mAP). In “comb size”
we combine the “up & downscale” size specific models via an SVM trained on
their concatenated features. This results in superior overall performance (54.0
mAP) w.r.t. the original data (51.2 mAP with SVM).

Conclusion. These results indicate that (a) adding data uniformly across sizes
provides mild gains for small objects and does not result in size invariant models,
suggesting that the models suffer from limited capacity and (b) training bin-
specific models results in better per bin and overall performance.

6.2 Truncation and Occlusion Handling

More Data. Figure 5a shows that generating truncated samples from non-
truncated ones, respecting the original data distribution, help improve (1.5 mAP
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Table 1. Pascal3D+ results

points) handling objects with minimal truncation; but does not improve medium
or large truncation handling (trends for top, left and right are similar).

Bin-Specific Models. Similar to the “more data” case, training a convnet for
each truncation case only helps for the low truncation cases, but is ineffective
for medium/large truncations. Similar to truncations, Fig. 5b shows that special-
ising a network for each occlusion case is only effective for the low occlusions.
Medium/high occlusions are a “distraction” for training non-occluded detectors.

Conclusion. These results are a clear indication that training data do not help
per-se handling these cases. Simply adding data or focusing the network on sub-
tasks seems insufficient. Architectural changes to the detector seem required to
obtain a meaningful improvement.

7 Does Synthetic Data Help?

We have seen that convnets have weak spots for object detection, and adding
data results in limited gains. As convnets are data hungry methods, the question
remains what happens when more data from the same distribution is introduced.
Obtaining additional annotated data is expensive, thus we consider the option of
using renderings. The results are summarised in Table 1a. Again we focus on fine-
tuning convnets only. All renderings are done using a similar data distribution
as the original one, aiming to improve on common cases.

Analysis. From Table 1a we observe that using synthetic data alone (0:1 ratio)
under-performs compared to using real data, showing there is still room for
improvement on the synthetic data itself. That being said, we observe that even
the arguably weak wire-frame renderings do help improve detections when used
as an extension of the real data. We empirically chose data ratio of 1:2 between
real and synthetic as that seemed to strike good balance among the two data
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sources. As expected, the detection improvement is directly proportional to the
photo-realism (see Table 1a). This indicates that further gains can be expected as
photo-realism is improved. Our texture transfer approach is quite effective, with
a 4 mAP points improvement. Wire-frame renderings inject information from the
extended CAD models. The plain texture renderings additionally inject material
and background information. The texture transfer renderings use Pascal3D+
data, which include ImageNet images too. If we add these images directly to the
training set (instead of doing texture transfer) we obtain 50.6 mAP (original to
ImageNet images ratio is 1:3). This shows that the increased diversity of our
synthetic samples further improve results. Plain textures provide 2 mAP points
improvement, and texture transfer 4 mAP points. In comparison, [11] reports 3
mAP points gain (on Pascal VOC 2012 test set) when using the Pascal VOC 2007
and the 2012 data. Our gains are quite comparable despite relying on synthetic
renderings.

Conclusion. Synthetic renderings are an effective mean to increase the overall
detection quality. Even simple wire-frame renderings can be of help.

8 All-in-One

In Table 1b we show results when training the SVM on top of the concatenated
features of the convnets fine-tuned with real and mixed data. We also report
joint object localization and viewpoint estimation results (AAVP [23] measure).
As in [23], for viewpoint prediction we rely on a regressor trained on convnet
features fine-tuned for detection.

We observe that the texture renderings improve performance on all models
(e.g. VGG16 58.8 to 61.9 mAP). Combining the three models further improves
detection performance achieving state-of-the-art viewpoint estimation. Adding
size specific VGG16 models (like in Sect. 6.1) further pushes the results, improv-
ing up to 5 mAP on small/medium sized objects. Adding bounding box regres-
sion, our final combination achieves 67.2 mAP, the best reported result on
Pascal3D+.

9 Conclusion

We presented new results regarding the performance and potential of the R-
CNN architecture. Although higher overall performance can be reached with
deeper convnets (VGG16), the considered state-of-the-art networks have sim-
ilar weaknesses; they underperform for truncated, occluded and small objects
(Sect. 6). Additional data does not solve these weak points, hinting that struc-
tural changes are needed. Despite common belief, our results suggest these mod-
els are not invariant to various appearance factors. Increased training data,
however, does improve overall performance, even when using synthetic image
renderings (Sect. 7).

In future work, we would like to extend the CAD model set in order to cover
more categories. Understanding which architectural changes will be most effec-
tive to handle truncation, occlusion, or small objects remains an open question.
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Abstract. Word spotting is an effective paradigm for indexing doc-
ument images with minimal human effort. Here, the use of the Bag-
of-Features principle has been shown to achieve competitive results on
different benchmarks. Recently, a spatial pyramid approach was used as
a word image representation to improve the retrieval results even fur-
ther. The high dimensionality of the spatial pyramids was attempted
to be countered by applying Latent Semantic Analysis. However, this
leads to increasingly worse results when reducing to lower dimensions.
In this paper, we propose a new approach to reducing the dimensionality
of word image descriptors which is based on a modified version of the
Isomap Manifold Learning algorithm. This approach is able to not only
outperform Latent Semantic Analysis but also to reduce a word image
descriptor to up to 0.12 % of its original size without losing retrieval
precision. We evaluate our approach on two different datasets.

Keywords: Word spotting · Manifold learning · Isomap · Multidimen-
sional scaling · Bray Curtis distance · Document image analysis

1 Introduction

The automatic transcription of handwritten documents is a challenging task for
automated systems. In contrast to machine printed character recognition, it is
still considered an unsolved problem and has attracted major interest in the
research community. Standard OCR methods perform poorly on these kinds of
documents as the variability in characters is much higher than in a machine
printed context. Additionally, a large number of handwritten documents are
from ancient times thus exhibiting different kinds of degradation such as fading
ink or noise.

In order to overcome the limitations of OCR systems, different approaches
have been proposed with Keyword spotting or simply word spotting being one
of the most prominent for automatic document indexing. In Query-by-Example
(QbE) word spotting the user supplies a query word image to the system and a
list of potentially relevant word images is returned from the document collection.
The major advantage here is that only a very small amount of annotated query
word images is needed thus reducing manual labeling work.
c© Springer International Publishing Switzerland 2015
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As QbE word spotting is essentially a form of image retrieval, most word spot-
ting approaches have made use of well established computer vision techniques.
Here, the use of local descriptors in a Bag-of-Features approach has been proven
to be well suited for this task. As the visual words used here exploit no spatial
knowledge, spatial pyramids and Fisher vectors were used to regain a certain
amount of spatial information [4,10]. As the visual vocabulary is generally much
bigger in word spotting than in other image retrieval applications, the resulting
spatial pyramids and Fisher vectors are very high dimensional [2,4,10]. This fact
has been accounted for by using Latent Semantic Analysis (LSA) to embed the
word image descriptors into a lower dimensional space [10]. However, the result-
ing representations almost always lead to a loss in retrieval precision. Moreover,
satisfying results were only achieved when projecting into still high-dimensional
spaces (roughly 1500 dimensions).

Based on a metric evaluation to find the dissimilarity measure best suited
for comparing spatial pyramid representations of word images, we present a new
approach for reducing their dimensionality by modifying the well known Isomap
algorithm. This algorithm belongs to the family of manifold learning techniques.
It uses a non-linear function to obtain the low-dimensional data thus allowing
for more complex projections than LSA. The modified version is able to deal
with high-dimensional histograms in a sparsely sampled space. We evaluate the
presented method on two different datasets.

2 Manifold Learning

The objective for dimension reduction techniques is to find a low-dimensional
representation of the original data. The main assumption in manifold learning
is that the original data lies on or close to a manifold which is embedded in a
high-dimensional space and has a lower intrinsic dimensionality. When applying
dimensionality reduction by manifold learning, the projected data is referred to
as the embedding.

There exists a vast amount of different unsupervised manifold learning algo-
rithms which can be classified into two classes. Local techniques, such as Locally
Linear Embedding (LLE) [9] and Local Tangient Space Alignment (LTSA) [13],
find the embedding by preserving local neighborhood structures of the supplied
data. Global techniques, such as Isomap [12], aim at keeping global structures
of the data thus keeping geometrically close points together while maintaining
a bigger distance between geometrically distant data points. In the following,
we will concentrate on the Isomap algorithm as it can be exploited in numerous
ways in the context of word spotting. It is an unsupervised paradigm thus posing
no need for annotated word images. Additionally, there exists an extension for
Isomap called Landmark Isomap [11] which allows for a computationally effi-
cient approximation of the Isomap embedding when faced with a large amount
of data.

The backbone of the Isomap algorithm is the use of Multidimensional Scal-
ing (MDS). MDS solves the inverse distance problem: given a set of pairwise
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distances between unknown points in a d-dimensional space, find the location
of the points. Given a matrix D of pairwise distances between n data samples,
MDS starts by double centering the matrix of squared distances D2:

B = −1
2
HD2H, (1)

H = In − 1
n
1n1T

n , (2)

where In is the n × n identity matrix and 1n1T
n the n × n matrix of all ones.

Essentially, the double centering removes the column and row mean of D2.
Afterwards, the eigenvalues λi and their corresponding eigenvectors vi are

extracted from B. The eigenvalues are then sorted in descending order. With λ1

being the biggest eigenvalue and λd being the smallest, the embedding E is then
generated as follows:

E =

⎛
⎜⎜⎜⎝

√
λ1 · vT

1√
λ2 · vT

2
...√

λd · vT
d

⎞
⎟⎟⎟⎠ . (3)

E is of shape d × n and each column represents the d-dimensional embedding
for a specific data point.

In classical MDS the pairwise dissimilarities are Euclidean distances. In
Isomap these distances are replaced by an approximation of the geodesic dis-
tances along the manifold: for each data sample the k nearest neighbors are
calculated and connected to form a neighborhood graph. The distance between
two data samples is now its shortest path distance along the graph.

Data samples that have not been used for the initial embedding computation
can easily be projected into the embedding space for MDS as well as Isomap.
This process is referred to as out-of-sample embedding [5]. Let d denote the
column vector of distances from a new data sample x to all samples used for
embedding (geodesic distances in the case of Isomap) and m the mean of each
column in D2, then the embedding e for x is obtained by computing

e =
1
2
E#

(
m − d2

)
, (4)

where

E# =
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2
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532 S. Sudholt and G.A. Fink

3 Method

Using LSA leads to noticable performance drops when applied in a word spot-
ting scenario. We believe the main reason for this to be that the singular value
decomposition used in LSA assumes an Euclidean metric on the input data.
This distance measure has already been shown to not perform well on histogram
representations [6].

Based on this observation, we propose the use of a dimensionality reduction
technique that does not assume an Euclidean metric on the input data. While
the use of a manifold learning approach appears to be a well suited solution
here, we will show that it performs poorly on this task as well. The main reason
for this is that the standard manifold algorithms expect real valued data. We
will show that treating the histogram representations as residing in R

n leads to
an insufficient approximation of the geodesic distances and subsequently to bad
embeddings. Thus, we propose to combine Isomap and a local metric which is
suitable for spatial pyramid representations.

The standard metric for histogram comparison in word spotting has been
the Cosine distance [2,3,10]. For other image retrieval tasks, such as [6], the L1
and L2 norms are used. Other discrete distributions, i.e. Local Binary Pattern
(LBP) histograms [1], are often times compared by the χ2 distance. Given two
histograms a and b the χ2 distance is obtained by

χ2(a,b) =
∑
i

(ai − bi)2

ai + bi
(6)

where ai and bi are the i-th elements of the respective histograms.
Though the χ2 distance leads to good results, this metric is not well suited

for spatial pyramid comparison in a word spotting scenario. Opposed to LBP
histograms, spatial pyramids are very sparse quite frequently which leads to
multiple zero-divisions when applying the χ2 distance metric. This problem is
accounted for by the Bray Curtis distance:

BC(a,b) =

∑
i

|ai − bi|∑
i

ai + bi
. (7)

Here, no zero-division occurs when assuming that one of the histograms com-
pared contains at least one non-zero entry. To the best of our knowledge, the
BC distance has not been used in a computer vision context before.

As will be shown in the following section, the Bray Curtis distance emerges as
most suitable metric for spatial pyramid comparisons on the tested benchmarks.
Thus, we use this metric instead of the Euclidean distance to compute nearest
neighbors and their approximate geodesic distance. Subsequently, we will term
our approach Bray Curtis Isomap (BC-Isomap).

The pipeline for our method is outlined in Fig. 1. First, a spatial pyramid is
extracted for each word image. Afterwards, a nearest neighbor graph is extracted
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Fig. 1. The figure displays the pipeline of our BC-Isomap method.

from the spatial pyramids where the nearest neighbor distance is calculated
with the Bray Curtis distance metric. MDS is used on the geodesic distances
computed from the graph to find an embedding that preserves these distances.
The embedded representations are then used to perform word spotting. Please
note that after embedding the word image representations reside in an Euclidean
space. Thus the Euclidean distance has to be used in order to perform word
spotting.

4 Experiments

4.1 Datasets and Implementation Details

For the following experiments we are going to use two datasets. The first is the
George Washington dataset (GW) [7]. It consists of a 20 page excerpt from a
bigger collection of letters by George Washington and his associates. The corre-
sponding ground truth contains 4860 words. As the writing style does not exhibit
large variations, it is widely considered a single writer scenario [4,8]. Sample
word images from the George Washington database can be seen in Fig. 2a. We
follow the evaluation protocol used in [3] and [4] with minor modifications: each
segmented word image is used once as a query to retrieve a ranked list of the

Fig. 2. Sample word images for the (a) George Washington dataset and (b) Bentham
validation dataset.
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remaining word images. Words which appear only once in the dataset are not
used as queries. In order to generate a spatial pyramid representation for each
word, SIFT descriptors are extracted in a dense grid with a step size of 5 pixels
and a descriptor size of 40 × 40 pixels. The descriptors are then clustered into a
visual vocabulary of size 4096. This descriptor and quantization parametrization
has already been shown to produce competitive results [8,10]. A two level spatial
pyramid is then constructed from the quantized descriptors with a global Bag-of-
Features histogram in the first level and a left and right partition in the second
level as is done in [10]. While in [10] each partition is weighted by the amount of
partitions on the corresponding level, we found that weighting by the square of
partitions gives slightly better results. This way, the spatial pyramid’s bins with
finer resolution are weighted higher than those with a coarser resolution.

The second dataset is the validation subset of the Bentham benchmark used
in the 2015 Keyword Spotting for Handwritten Documents competition which
was conducted as part of the 2015 International Conference on Document Analy-
sis and Recognition1. It consists of 95 dedicated query word images and 3234
test word images. A subsample of the test words can be seen in Fig. 2b. Just as
with the GW dataset, we densely extract SIFT descriptors at a single scale and
pool them into spatial pyramids. In a preliminary experiment we found descrip-
tor sizes of 24 × 24 at a step size of 2 pixels to work well. Additionally, smaller
visual vocabularies generally performed better than larger ones. Here, we found
codebooks of size 1024 to work the best. The spatial pyramid itself has two levels
with the first level being split into a 2 × 3 grid and the second level into a 2 × 9
grid.

As a baseline, we extract the spatial pyramids from the word images of each
dataset, perform a tf-idf transform and reduce the dimensionality of the resulting
representation with LSA. The resulting lower dimensional representations are
then compared using the Cosine distance metric. For each query q the Average
Precision (AP) is calculated by

AP (q) =

s∑
i=1

P (q, i) · rel(q, i)

s∑
i=1

rel(q, i)
, (8)

where rel(q, i) is an indicator function that evaluates to 1 if the element at i is
relevant w.r.t. q and 0 otherwise, P (q, i) represents the precision of the retrieval
list for query q when cut off at i elements and s is the length of the retrieval
list. Please note that the retrieval list is not cut off at any point which leads to
a recall of 100%.

The mean Average Precision (mAP) then evaluates to the mean of all queries.

1 http://transcriptorium.eu/∼icdar15kws/data.html.

http://transcriptorium.eu/~icdar15kws/data.html
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4.2 Standard Isomap

The first experiment evaluates the practicability of the standard Isomap to
reduce the dimensionality of the spatial pyramids. Figure 3 shows the results
for this approach with an exemplary parametrization compared to reducing the
dimensionality with LSA. As already hinted at in Sect. 3, this manifold learn-
ing approach performs poorly compared to LSA which holds true for all para-
metrizations tested (please refer to the supplemental material for a complete
evaluation). The major reason for this is the nature of the data: using a 12 288
dimensional spatial pyramid for the GW dataset and a 24 756 spatial pyramid for
the Bentham dataset, both input spaces are sparsely sampled. The path lengths
along the nearest neighbor graphs appear not to be a good approximation of the
geodesic distance as the underlying manifold is not sampled densely enough.

Fig. 3. The figure displays the different mAP values when applying standard Isomap
and LSA to the two datasets. The dotted black line indicates the mAP without any
dimension reduction.

4.3 Distance Metric Evaluation

In the second experiment, we will provide evidence for our claim that the BC
distance is the metric best suited for word spotting on our benchmarks.

Figure 4 shows the mAP for the two datasets when applying no dimension
reduction and sorting the retrieval list according to the individual metrics. As
expected, the L1 and L2 norm fall short of the results obtained by the Cosine
distance on both datasets. However, the BC distance is able to outperform all
other metrics which were evaluated.

4.4 Bray Curtis Isomap

In the third experiment, we apply the proposed BC-Isomap to the spatial pyra-
mid representations and conduct word spotting on the embedding representa-
tions. Additionally, we use the BC distance metric in combination with MDS to
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Fig. 4. The figure displays the mAP values when sorting the retrieval lists by the
specified metrics for the two datasets (no dimension reduction is applied).

embed the word image descriptors. We will dub this combination Bray Curtis
MDS (BC-MDS). In order to give a fair comparison between the baseline and
the proposed method, we will compare the representations obtained with LSA
with the BC distance metric as well.

Figure 5 compares the retrieval results of the low-dimensional representations
obtained from LSA, BC-MDS and BC-Isomap. As can be seen in the figure,
the LSA results are the worst on both datasets for smaller dimensions. LSA is
only able to outperform the BC-Isomap results on the GW dataset when the
dimensionality gets higher. For the Bentham dataset it can only outperform the
manifold learning approach when the parameter k is set to very small values.
LSA is not able to achieve better results on either dataset when compared to
BC-MDS for any embedding dimension. On both datasets BC-Isomap is able to
obtain higher mAP values when the dimensionality is low but gets outperformed
by BC-MDS with a rising number of dimensions. Please note that the plots
for BC-Isomap in Fig. 5b stop at dimension 450. This is due to the eigenvalue
decomposition yielding negative results after the first 450 eigenvalues (see Eq. 3).

Table 1 lists the mAP results for LSA, BC-MDS and different BC-Isomap
parametrizations when setting the dimensionality of the embedding to 0.4% of
the original spatial pyramid dimension. For the George Washington benchmark,
the mAP is improved by an absolute value of 18.29% when comparing BC-
Isomap to LSA and still 4.86% compared to no dimension reduction. While for
the Bentham validation dataset the retrieval precision of the standard spatial
pyramid could not be surpassed, the LSA results were improved by 41.29%.

4.5 Discussion

The results presented in the previous section show that both BC-MDS and BC-
Isomap are superior to LSA when applied to spatial pyramids in a word spotting
scenario. For the George Washington dataset, the modified Isomap algorithm is
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Fig. 5. The figure displays the different mAP values for different neighborhood sizes k
when reducing to a certain dimension for (a) the George Washington dataset and (b)
the Bentham validation dataset. The dotted black line indicates the mAP without any
dimension reduction. Please note that the BC-Isomap plots in (b) stop at 450 dimen-
sions as this was the maximum dimension for embedding (the eigenvalue decomposition
yielded negative eigenvalues for larger dimensions).
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able to achieve the same mAP values compared to no dimension reduction at
an embedding dimensionality of 16. This is 0.12% of the original representation
size. The manifold learning approach is also fairly robust with respect to its
parameters (Fig. 5a, please refer to the supplemental material for a complete
evaluation of k = 300 to k = 2300).

For the Bentham dataset, the retrieval precision of BC-MDS converges to
the mAP value of the plain spatial pyramids with increasing dimensionality
(Fig. 5b). When reducing to smaller dimensions, BC-Isomap outperforms the
other two approaches. As with the George Washington benchmark, the para-
meters are fairly stable to even a medium amount of change (Table 1, Fig. 5b).
While neither dimension reduction technique is able to achieve the same mAP
value compared to using no dimension reduction, it should be noted that using
a 24 576-dimensional word image representation to obtain the best mAP possi-
ble is more of an academic than a practically applicable solution. The Bentham
validation set contains merely 3234 segmented word images and is only a small
subset of the overall Bentham collection which contains 60 000 manuscripts and
an estimated 30 000 000 words. Performing word spotting with the standard spa-
tial pyramid would become virtually impossible on this task.

Table 1. mAP values when reducing to 0.4 % of the original size

Method GW Bentham

mAP @ dim. 50 mAP @ dim. 100

No Dim. Reduction 67.99 72.63

LSA 54.56 24.23

BC-MDS 70.22 58.19

BC-Isomap k = 500 72.85 61.07

BC-Isomap k = 900 72.64 57.50

BC-Isomap k = 1300 71.92 61.82

BC-Isomap k = 1700 70.97 65.52

5 Conclusion

In this paper, we presented Bray Curtis Isomap which is an extension of the
Isomap manifold learning algorithm. This extension is able to deal will high-
dimensional histogram representations in a sparsely sampled input space such
as spatial pyramids. These representations occur quite frequently in a word spot-
ting context. The resulting low-dimensional embedding is able to outperform the
commonly used Latent Semantic Analysis on the George Washington and Ben-
tham datasets. We contribute this improvement to the use of the Bray Curtis
distance metric. Opposed to the Euclidean distance metric used in LSA, BC-
Isomap bases its embedding on the BC distance which is a metric specifically
designed for histogram representations. Additionally, the non-linear projection
is able to uncover more complex structures than its linear counterpart.
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Abstract. Convolutional neural networks (CNNs) have recently become
the state-of-the-art tool for large-scale image classification. In this work
we propose the use of activation features from CNNs as local descriptors
for writer identification. A global descriptor is then formed by means of
GMM supervector encoding, which is further improved by normalization
with the KL-Kernel. We evaluate our method on two publicly available
datasets: the ICDAR 2013 benchmark database and the CVL dataset.
While we perform comparably to the state of the art on CVL, our pro-
posed method yields about 0.21 absolute improvement in terms of mAP
on the challenging bilingual ICDAR dataset.

1 Introduction

In contrast to physiological biometric identifiers like fingerprints or iris scans,
handwriting can be seen as a behavioral identifier [31]. It is influenced by factors
like schooling or aging. Finding an individual writer in a large data corpus is
formally defined as writer identification. Typical applications lie in the fields of
forensics or security. However, writer identification recently also raised interest
in the analysis of historical texts [3,10].

The task can be categorized into (a) online writer identification, for which
temporal information of the text formation can be used, and (b) offline writer
identification which relies solely on the handwritten text. The latter can be fur-
ther categorized into allograph-based and textural -based methods [4]. Allograph-
based methods rely on local descriptors computed from small letter parts (allo-
graphs). Subsequently, a global document descriptor is computed by means of
statistics using a pretrained vocabulary [5,9,10,15,28]. In contrast, textural-
based methods rely on global statistics computed from the handwritten text,
e. g., the ink width or angle distribution [3,8,12,21,28]. Both methods can be
combined to form a stronger global descriptor [4,25,29].

In this work we propose an allograph-based method for offline writer iden-
tification. In contrast to expert-designed features like SIFT, we use activation
c© Springer International Publishing Switzerland 2015
J. Gall et al. (Eds.): GCPR 2015, LNCS 9358, pp. 540–552, 2015.
DOI: 10.1007/978-3-319-24947-6 45
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features learned by a convolutional neural network (CNN). This has the advan-
tage of obtaining features guided by the data. In each additional CNN layer the
script is indirectly analyzed on a higher level of abstraction. CNNs have been
widely used in image retrieval and object classification, and are among the top
contenders on challenges like the Pascal-VOC or ImageNet [19]. However, to the
best of our knowledge CNNs have not been used for writer identification so far.
A reason might be that typically the training and test sets of current writer
identification datasets are disjoint making it impossible to train a CNN for clas-
sification. Thus, we propose to use CNNs not for the classification task but to
learn local activation features. Subsequently, the local descriptors are encoded to
form global feature vectors by means of GMM supervector encoding [5]. We also
propose to use the Kullback-Leibler kernel, instead of the Hellinger kernel, on
top of mean-only adapted GMM parameters. We show that this combination of
activation features and encoding method performs at least as well as the current
state of the art on two public datasets Icdar13 and Cvl.

2 Related Work

Allograph-based methods rely on a dictionary trained from local descriptors.
This dictionary is subsequently used to collect statistics from the local descrip-
tors of the query document. These statistics are then aggregated to form the
global descriptor that is used to classify the document. Jain and Doerman
proposed the use of vector quantization [14] as encoding method. More recent
work concentrates on using Fisher vectors for aggregation [9,15]. While Fiel and
Sablatnig [9] propose to use solely SIFT descriptors as the local descriptor, Jain
and Doermann [15] suggest to fuse multiple Fisher vectors computed from dif-
ferent descriptors. In contrast, we will rely on the findings of Christlein et al. [5].
They showed that a very well known approach in speaker recognition, namely
GMM supervector encoding, performs better than both Fisher vectors and VLAD
encoding.

CNNs have been widely used in the field of image classification and object
recognition. In the ImageNet Large Scale Visual Recognition Challenge for exam-
ple, CNNs are among the top contenders [19]. In document analysis, CNNs have
been used for word spotting by Jaderberg et al. [13], and for handwritten text
recognition by Bluche et al. [2]. However, to the best of our knowledge, they
have not been used in the context of writer identification.

Compared to regular feed forward neural networks, convolutional neural net-
works have fewer parameters that need to be trained due to sharing the weights of
their filters across the whole input patch. This makes them easier to train, while
not sacrificing classification performance for a smaller sized network. Instead of
using a CNN for direct classification, one can choose to use a CNN to extract
local features by interpreting the activations of the last hidden layer as the fea-
ture vector. Bluche et al. [2] propose to use features learned by a CNN for word
recognition in conjunction with HMMs, and show that the learned features out-
perform previous representations. Gong et al. [11] employ a similar approach
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for image classification. Their local activation features are computed by calcu-
lating the activation of a pretrained CNN on the image itself, and on patches
of various scales extracted from the image. The activations for each scale are
then aggregated using VLAD encoding. The final image descriptor is formed by
concatenating the resulting feature vectors from each scale.

3 Writer Identification Pipeline

Our proposed pipeline (cf. Fig. 1) consists of three main steps: the feature extrac-
tion from image patches using a CNN; the aggregation of all the local features
from one document into one global descriptor; and the successive normalization
of this descriptor. A pretrained CNN and a pretrained GMM are required for
feature extraction and encoding, respectively.
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Fig. 1. Overview of the encoding process. The two main steps are the feature extraction
using a pretrained CNN, and the encoding step, where the local features are agreggated
using a pretrained GMM.

3.1 Convolutional Neural Networks

In our pipeline the CNN is only used to calculate a feature representation of a
small image patch, but not for directly identifying the writer. The training of the
CNN, however, has to be performed by backpropagation, which requires labels
for the individual patches. Therefore, during the training phase, the last layer
of our network consists of 100 SoftMax nodes, representing the writer IDs of
the Icdar13 training set. After the training, this last layer is discarded and the
remaining layers are used to generate the feature representation for the image
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Fig. 2. Schematic representation of the used CNN. C1 and C2 are convolutional layers
(red connections). P1 and P2 are max pooling layers (blue connections). The last three
layers are fully connected (gray connections). After training only the part of the net
inside the dashed box (activation features) is kept. The activations of the hidden layer
become the local descriptor for the image patch (Colour figure online).

patches. The architecture of the CNN we use is shown in Fig. 2, where the dashed
box marks the part of the CNN that is kept after the training procedure.

The CNN consists of 6 layers in total. The first layer is a convolutional
layer, followed by a pooling layer. In the convolutional layer, the input patch is
convolved with 16 filters. The pooling layer is then used to reduce the dimensions
of the filter responses by performing a max pooling over regions of size 2 × 2 or
3×3. The two subsequent layers follow the same principle: a convolutional layer
with 256 filters is followed by a pooling layer. These first four layers constitute
the convolutional part of the network. The output of the second pooling layer
is next transformed into a 1-D vector which is fed into a layer of hidden nodes.
For all of these layers rectified linear units (ReLU) are used as nodes. The last
layer then consists of 100 nodes with a SoftMax activation function. They are
used for classification during the training.

The training set consists of patches extracted from the Icdar13 training
set that are centered on the contour of the writing. For each of the 100 writers,
Icdar13 contains four images, two of Greek handwritten text and two of English
handwritten text. We further divided this set into a training and test set, by using
patches from the first English and Greek text for training, and patches from the
second English and Greek text for testing the trained convolutional network.
The training and test set consist independently of 4 million image patches of
size 32 × 32. The image patches are not preprocessed in any manner.

The training is performed by using the CUDA capabilities of the neural net-
work library Torch [6]. All the CNNs are trained using the Torch implementation
of stochastic gradient descent (SGD) with a learning rate of 0.01 for 20 epochs.
For the first five epochs of training a Nesterov momentum m = 0.9 is used to
speed up the training process.
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3.2 GMM Supervector Encoding

Given the local activation features, we need to aggregate them to form one
global descriptor for each document. For this task we use a variant of the GMM
supervector approach of Christlein et al. [5].

In the training step a Gaussian mixture model (GMM) is trained as the
dictionary from a set of ZCA-whitened activation features. This dictionary is
subsequently used to encode the local descriptors by calculating their statis-
tics with regard to the dictionary. The K-component GMM is denoted by λ =
{wk, μk, Σk |k = 1, . . . , K}, where wk, μk and Σk are the mixture weight, mean
vector and diagonal covariance matrix for mixture k, respectively. The parame-
ters λ are estimated with the expectation-maximization (EM) algorithm [7].

Given the pretrained GMM and one document, the parameters λ are first
adapted to all activation features extracted from the document by means of a
maximum-a-posteriori (MAP) step. Using a data-dependent mixing coefficient
they are coupled with the parameters of the pretrained GMM. This leads to
different mixtures being adapted depending on the current set of activation fea-
tures [23]. Given the descriptors X = {xt,xt ∈ RD, t = 1, . . . T} of a document,
first the posterior probabilities γt(k) for each xt and Gaussian mixture gk(x) are
computed as:

γt(k) =
wkgk(xt)∑K
j=1 wjgj(xt)

. (1)

Since the covariances and weights give only a slight improvement in accu-
racy [5], we chose to adapt only the means of the mixtures, thus, reducing the
size of the output supervector and lowering the computational effort. The first
order statistics are computed as:

μ̂k =
1
nk

T∑
i=1

γt(k)xt , (2)

where nk =
∑T

t=1 γt(k). Then, these new means are mixed with the original
GMM means:

μ̃k = αkμ̂k + (1 − αk)μk , (3)

where αk denotes a data dependent adaptation coefficient. It is computed by
αk = nk

nk+τ , where τ is a relevance factor. The new parameters of the mixed GMM

are then concatenated forming the GMM supervector: s =
(
μ̃�

1 , . . . , μ̃�
K

)�. This
global descriptor s is a KD dimensional vector which is eventually used for
nearest neighbor search using the cosine-distance as metric.

3.3 Normalization

While contrast-normalization is an often used intermediate step in CNN train-
ing [1], we employ ZCA whitening to decorrelate the activation features followed
by a global L2 normalization. We will show that the accuracy of the GMM
supervector benefits greatly from this normalization step.
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Additionally, our GMM supervector is normalized, too. Christlein et al. sug-
gested to normalize the full GMM supervector (consisting of the adapted weight,
mean and covariance parameters) using power normalization with a power of 0.5
prior to a L2 normalization [5]. Effectively this results in applying the Hellinger
kernel. In contrast, we employ a kernel derived from the symmetrized Kullback-
Leibler divergence [30] to normalize the adapted components:

μ̊k =
√

wkσ
− 1

2
k μ̃k , (4)

where σk is the vector of the diagonal elements of the covariance matrix Σ of the
trained Gaussian mixture k. This implicitly encodes information contained in the
variances and weights of the GMM, although only the means were adapted in the
main encoding step. The normalized supervector becomes s̊ =

(
μ̊�

1 , . . . , μ̊�
K

)�.

3.4 Implementation Notes

For the computation of the posteriors, we set all but the ten highest posterior
probabilities computed from each descriptor to zero. Consequently, we compute
the adaptation only for the data having non-zero posteriors. This has the effect
of reducing the computational cost with nearly no loss in accuracy. Similar to
the work of Christlein et al. [5], we used 100 Gaussian mixtures, but raised the
relevance factor τ to 68 which was found to slightly improve the results.

4 Evaluation

4.1 Datasets

We use two different datasets for evaluation: the Icdar13 benchmark set [20]
and the Cvl dataset [18]. Both are publicly available and have been used in
many recent publications [5,9,15].

ICDAR13 [20]. The Icdar13 benchmark set is separated into a training set
consisting of documents from 100 writers and a writer independent test set con-
sisting of documents from 250 writers. Each writer contributed four documents.
Two are written in Greek, and two are written in English. This provides for a
challenging cross-language writer identification.

CVL [18]. The Cvl dataset consists of 310 writers. The dataset is split in
a training set and a test set without overlap of the writers. The training set
contains 27 writers contributing seven documents each. The test set consists of
283 writers who contributed five documents each. One document out of the five
(seven) documents is written in German, the others in English. Note that we
binarized the documents using Otsu’s method.
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4.2 Metrics

To evaluate our experiments we use the mean average precision (mAP) and the
hard TOP-k scores. Both are common metrics in information retrieval tasks. Given
a query document from one writer, an ordered list of documents is returned, where
the first returned document is regarded as being the closest to the query docu-
ment. The mAP then is the mean of the average precision (aP) over all queries.
aP is defined as

aP =
∑n

k=1 P (k) · rel(k)
#relevant documents

. (5)

Given the ordered list of documents for a query document, the aP averages over
P (k), the precision at rank k, that is given by the number of documents from
the same writer in the query up to rank k divided by k. rel(k) is an indicator
function that is one if the document retrieved at rank k is from the same writer
and zero otherwise.

The hard TOP-k scores are determined by calculating the percentage of
queries, where the k highest ranked documents were from the same writer, e. g.,
the hard TOP-3 denotes the probability that the three best ranked documents
stem from the correct writer.

4.3 Convolutional Neural Network Parameters

With the CNN architecture fixed to two convolutional and one hidden layer there
are two main parameters that are essential for the performance of the trained
activation features: the filter size, and the number of hidden nodes in the last
layer, i. e., the size of the output descriptor. We conducted some preliminary
experiments using the Icdar13 training set to determine the optimal parame-
ters for the chosen network architecture. We evaluated two different setups of
the filter and pooling sizes for the convolutional layers. The values for the two
configurations A and B are shown in Table 1a. Comparing the two configura-
tions shows that, B uses larger filters and pooling sizes and should therefore
be more insensitive to translations of the patches. For both filter sizes we also
evaluated the effect of the output feature size by using three different numbers
of hidden nodes in the last layer: 64, 128, and 256.

For these preliminary experiments we used VLAD encoding [17] instead
of GMM supervectors due to its faster computation time. VLAD is a non-
probabilistic version of Fisher vectors which hard-encodes the first order sta-
tistics, i. e., sk =

∑
xt∈X̃(xt − μk), where X̃ refers to the set of descriptors for

which the cluster center μk is the closest one. The dictionary can be efficiently
computed by using a mini-batch version of k-means [26]. We report the average
mAP over the results of 10 VLAD-encoding runs.

Besides the network configurations, Table 1 shows the classification accuracy
obtained with the CNN including the classification layer on the test set after
20 epochs of training in part (b) and the averaged mAP of 10 runs of VLAD
encoding in part (c). Interestingly, the results for both evaluation approaches
are almost complementary. The CNN alone reaches the best results for smaller
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Table 1. Evaluation of different CNN configurations on the Icdar13 training set

Filter configuration C1 P1 C2 P2

A 5 × 5 2 × 2 5 × 5 2 × 2
B 7 × 7 2 × 2 5 × 5 3 × 3

(a) Convolutional and pooling layer configurations of the CNN

Filter size
No. hidden nodes

64 128 256

A 38.18% 49.25% 54.99%
B 40.26% 45.57% 53.53%

(b) Classification accuracy using the
classification layer of the CNN

Filter size
No. hidden nodes
64 128 256

A 0.937 0.926 0.895
B 0.948 0.929 0.910

(c) Averaged mAP of VLAD encoding

filters and a large number of hidden nodes, while the VLAD encoding prefers
larger filters and a smaller size of the activation features vector (i. e., number of
hidden nodes). A possible explanation might be that, for a larger number of hid-
den nodes the activations of the hidden layer are less descriptive for discerning
between writers because the connections between the hidden and the classifica-
tion layer take over that part. In contrast, for a small number of hidden nodes,
the descriptiveness of the activations of the hidden layer seems to be higher,
making them more suitable for use as features independent from the classifica-
tion layer of the CNN. It should also be noted that the classification accuracy
of the CNN is already quite impressive considering that the classification is per-
formed using only a single patch of size 32 × 32 for 100 different writers/classes.
Since configuration B shows the highest mAP, this configuration of the CNN is
used for all of the following experiments.

4.4 Performance Analysis

We now investigate the influence of the individual steps in our pipeline. We
replace the CNN activation features by other local descriptors. We also examine
the influence of applying ZCA- and PCA-whitening to the CNN activation fea-
tures. Lastly, we evaluate the replacement of the GMM supervectors with other
encoding methods.

Table 2a compares the learned activation features with SURF and RootSIFT.
Both have been used successfully for offline writer identification by Jain and
Doermann [15] and Christlein et al. [5], respectively. Interestingly, SURF per-
forms better than RootSIFT. However, our proposed activation features outper-
form both descriptors by 0.14 and 0.18 mAP, respectively.

Table 2b shows the effect of decorrelating the activation features using PCA
and ZCA whitening (CNN-AFpwh + SVm,kl vs. CNN-AFzwh + SVm,kl) and the
comparison with the other encoding methods. CNN-AFzwh+SVwmc,ssr+l2 is using
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Table 2. The influence of different parts of the pipeline on the Icdar13 test set

Method mAP

RootSIFT + SVwmc,ssr+l2 [5] 0.671
RootSIFT + SVm,kl 0.680
SURF + SVm,kl 0.718
CNN-AF + SVm,kl 0.860

(a) Comparison of different local descrip-
tors

Method mAP

CNN-AFpwh + SVm,kl 0.880
CNN-AFzwh + SVm,kl 0.886
CNN-AFzwh + SVwmc,ssr+l2 0.877
CNN-AFzwh + FV 0.866

(b) Influence of different whitening and
encoding methods

GMM supervectors as proposed by Christlein et al. [5] and CNN-AFzwh + FV
uses Fisher vectors as proposed by Sanchez et al. [24]. The SV encoding by
Christlein et al. adapts all components (weights, means, covariances) while the
FV encoding uses the means and covariances. Both methods use power nor-
malization (power of 0.5) followed by l2 normalization instead of the KL-kernel
normalization.

The decorrelation of the features brings an improvement of 0.02 mAP, with
ZCA giving slightly better results than PCA. The decorrelated score with the
proposed method also outperforms the two other encoding methods.

4.5 Comparison with the State of the Art

Tables 3a and 4 show the results achieved with the complete pipeline on the
Icdar13 and Cvl test sets, respectively. We compare with the state of the
art1 and SURF descriptors encoded with GMM supervectors, cf. Table 2. Since
the Cvl training set is too small to compute a comparable GMM, we used the
GMM and ZCA transformation matrix estimated on the Icdar13 training set
for evaluating the pipeline on the Cvl dataset. On both datasets the proposed
pipeline using CNN activation features outperforms the previous methods in
terms of mAP. The increase in performance is particularly evident on the com-
plete Icdar13 test set, where our method achieves an absolute improvement of
0.21 mAP. This is significantly better than the state of the art [5] (permutation
test: p � 0.05). On the Cvl dataset we achieve comparable results to the state of
the art (permutation test: p = 0.11). However note that a) the Icdar13 dataset
is much more challenging due to its bilingual nature, and b) that we have not
trained explicitly for the CVL dataset. Thus, our results show that the features
learned from the ICDAR training set can generally be used for other datasets,
too. We believe that the results could be further improved if the Cvl training
set would be incorporated into the training of the CNN activation features.

Table 3b shows the results for evaluating the Greek and English subsets of the
Icdar13 test set independently. Again, the proposed method further improves
the already high scores of the previous methods.
1 The methods [12,15] did not provide results on the full Icdar13 dataset.
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Table 3. Hard criterion TOP-k scores and mAP evaluated on Icdar13 (test set)

TOP-1 TOP-2 TOP-3 mAP

CS [14] 0.951 0.196 0.071 NA
SV [5] 0.971 0.428 0.238 0.671
SURF 0.967 0.551 0.273 0.718
Proposed 0.989 0.832 0.613 0.886

(a) Complete Icdar13 test set

Greek English
TOP-1 mAP TOP-1 mAP

Δ-n H. [12] 0.960 NA 0.934 NA
Comb. [15] 0.992 0.995 0.974 0.979
SURF 0.950 0.965 0.956 0.964
Proposed 0.996 0.998 0.976 0.981

(b) Icdar13 language subsets

Table 4. Hard criterion and mAP evaluated on Cvl

TOP-1 TOP-2 TOP-3 TOP-4 mAP

FV [9] 0.978 0.956 0.894 0.758 NA

Comb [15] 0.994 0.983 0.948 0.829 0.969

SV [5] 0.992 0.981 0.958 0.887 0.971

SURF 0.986 0.973 0.948 0.836 0.958

Proposed 0.994 0.988 0.973 0.926 0.978

5 Conclusion

The writer identification method proposed in this paper exploits activation fea-
tures learned by a deep CNN, which in comparison to traditional local descriptors
like SIFT or SURF yield higher mAP scores on the Icdar13 and Cvl datasets.
On the Icdar13 test set, an increase of about 0.21 mAP is achieved with this
new set of features. We show in our experiments that the retrieval rate is strongly
influenced by the design choices of the CNN architecture. The local activation
features are encoded using a modified variant of the GMM supervectors app-
roach. However, we adapt only the means of the Gaussian mixtures in the aggre-
gation step. Subsequently, the supervector is normalized using the KL-kernel.
By implicitly adding information contained in the weights and covariances of
the mixtures in the normalization step, the performance is increased while at
the same time halving the dimensionality of the global descriptor.

For future work, we would like to explore larger and more complex CNN
architectures and recent discoveries like the benefit of Lp-pooling [27] instead of
max pooling and normalization of activations after convolutional layers of the
network. There is also still room for improvement in the encoding step of the
local descriptors, where democratic aggregation [16] or higher order VLAD [22]
could further improve the writer identification rates.
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Abstract. In recent years, superpixel algorithms have become a stan-
dard tool in computer vision and many approaches have been proposed.
However, different evaluation methodologies make direct comparison dif-
ficult. We address this shortcoming with a thorough and fair comparison
of thirteen state-of-the-art superpixel algorithms. To include algorithms
utilizing depth information we present results on both the Berkeley Seg-
mentation Dataset [3] and the NYU Depth Dataset [19]. Based on quali-
tative and quantitative aspects, our work allows to guide algorithm selec-
tion by identifying important quality characteristics.

1 Introduction

The term superpixel was introduced by Ren and Malik in 2003 [16] and is used
to describe a group of pixels similar in color or other low-level properties. The
concept of superpixels is motivated by two important aspects [16]: firstly, pixels
do not represent natural entities but are merely a result of discretization; and
secondly, the high number of pixels in large images prevents many algorithms
from being computationally feasible.

Superpixels have actively been used for a wide range of applications such
as classical segmentation [16,17], semantic segmentation [6], stereo matching
[30] or tracking [26] and numerous superpixel algorithms have been proposed.
However, keeping an overview of the different approaches and their suitability for
specific applications is difficult. This is caused by varying experimental setups
and metrics used for evaluation [12]. Furthermore, only few publications are
devoted to a thorough comparison of existing algorithms.

In this paper, we address this shortcoming and present an extensive com-
parison of thirteen state-of-the-art superpixel algorithms. In Sect. 2 we discuss
important related work regarding the comparison of superpixel algorithms and
subsequently we survey existing superpixel algorithms. In Sect. 3 we discuss rel-
evant datasets and introduce our benchmark in Sect. 4. Finally, in Sect. 5, we
present a qualitative and quantitative comparison of the superpixel algorithms,
before concluding in Sect. 6.
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2 Related Work

There are only few publications devoted to the comparison of existing superpixel
algorithms in a consistent framework: to the best of our knowledge these are
[2,12,18]. However, these publications cannot include several recent algorithms
(for example [13,23,27]). Meanwhile, authors tend to include a brief evaluation
intended to show superiority of their proposed superpixel algorithm over selected
existing approaches (for example [8,13,23,23,25,27]). However, these results are
not comparable across publications.

2.1 Superpixel Algorithms

Table 1 gives an overview of all evaluated superpixel algorithms. We categorize
the algorithms according to criteria we find important for evaluation and algo-
rithm selection. Roughly, the algorithms can be categorized as either graph-based
approaches or gradient ascent approaches [2]. Furthermore, we distinguish algo-
rithms offering direct control over the number of superpixels as well as algorithms
providing a compactness parameter. Overall, we evaluated thirteen state-of-the-
art superpixel algorithms including three algorithms utilizing depth information.
We also note that there are additional superpixel algorithms [4,11,14,17,20,28]
for which evaluation was not possible due to the lack of open source code.

Table 1. Overview of all evaluated superpixel algorithms ordered by year of publica-
tion. In Row 3, we categorize the algorithms in either graph-based approaches (gb) or
gradient ascent approaches (ga) [2]. Furthermore, in Row 4, we note the programming
language of the evaluated implementations as it may influence the runtime reported in
Sect. 5.2 (M refers to MatLab). We distinguish algorithms offering direct control over
the number of superpixels (Row 5), algorithms providing a compactness parameter
(Row 6) and algorithms using depth information (Row 7).

NC FH QS TP SLIC CIS ERS PB CRS SEEDS TPS DASP VCCS

Ref [16] [5] [24] [7] [1] [25] [8] [29] [10] [23] [22] [27] [13]

Year 2003 2004 2008 2009 2010 2010 2011 2011 2011 2012 2012 2012 2013

Cat gb gb ga ga ga gb gb gb ga ga gb ga ga

Impl C/M C++ C/M C/M C++ C++ C++ C++ C++ C++ C/M C++ C++

Sup ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Comp ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓

Depth ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

3 Datasets

As popular dataset for image segmentation and contour detection, the Berkeley
Segmentation Dataset [3], referred to as BSDS500, consists of 500 natural images
of size 482 × 321 (200 training images, 100 validation images, 200 test images).
The provided ground truth segmentations, at least five per image, have been
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obtained from different persons and reflect the difficult nature of image segmen-
tation.

In contrast to the natural images of the BSDS500, The NYU Depth Dataset
[19], referred to as NYUV2, comprises 1449 images of different indoor scenes (we
chose 200 validation images and 400 test images including most of the scenes).
For all images, pre-processed depth images are provided. As these images have
been undistorted and aligned with the color images, we crop the original images
of size 640 × 480 to 608 × 448 pixels. In addition, following Ren and Bo [15],
we remove small unlabeled regions and combine class and instance labels to
guarantee connected ground truth segments. Overall, difficult lighting conditions
and cluttered scenes contribute to the difficulty of the NYUV2.

4 Benchmark

We use an extended version of the Berkeley Segmentation Benchmark, intro-
duced by Arbeláez et al. [3], to evaluate superpixel algorithms. Among other
metrics, the benchmark includes Boundary Recall (Rec) and Undersegmenta-
tion Error (UE) [7,12] as primary metrics to assess superpixel algorithms.

Boundary Recall is part of the Precision-Recall Framework [9] originally used
to evaluate contour detectors. Treating region boundaries of a superpixel segmen-
tation as contours, Boundary Recall represents the fraction of boundary pixels
correctly detected by the superpixel algorithm. As superpixels are expected to
adhere to boundaries, high Boundary Recall is desirable.

Undersegmentation Error, as originally proposed by Levinshtein et al. [7],
measures the “bleeding” of superpixels with respect to a ground truth segmen-
tation. We implemented the corrected formulation proposed by Neubert and
Protzel [12] computing an error in the range of [0, 1]. Low Undersegmentation
Error is preferable as each superpixel is expected to cover at most one ground
truth segment.

5 Evaluation and Comparison

In addition to the superpixel algorithms introduced in Sect. 2.1, we include a
2D and 3D re-implementation of SEEDS, called reSEEDS and reSEEDS3D,
respectively. Further details can be found in [21].

Our comparison is split into a qualitative part, examining the visual quality
of the generated superpixels, and a quantitative part based on Boundary Recall,
Undersegmentation Error and runtime. To ensure a fair comparison, the para-
meters have been chosen to jointly optimize Boundary Recall and Undersegmen-
tation Error using discrete grid search. Parameter optimization was performed
on the validation sets while comparison is performed on the test sets.
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5.1 Qualitative

The visual appearance of superpixels is determined by compactness and reg-
ularity – properties that may also have strong influence on possible applica-
tions. Figures 1 and 2 present results on the BSDS500 and NYUV2, respectively,
obtained after parameter optimization. We note that these images are intended
to be as representative as possible, however, generated superpixel segmentations
may vary across different images.

Fig. 1. Superpixel segmentations obtained for an example image from the BSDS500.
From left to right, top to bottom: original image, NC, FH, QS, TP, SLIC, CIS, ERS,
PB, SEEDS, reSEEDS, TPS and CRS. Approximately 600 superpixels have been gen-
erated for the whole image.

Fig. 2. Superpixel segmentations obtained for an example image from the NYUV2.
From left to right, top to bottom: original image, NC, FH, QS, TP, SLIC, CIS, ERS,
PB, SEEDS, reSEEDS, TPS, CRS, reSEEDS3D, DASP, VCCS. Note that reSEEDS3D,
DASP and VCCS use depth information for superpixel segmentation. Approximately
840 superpixels have been computed for the whole image.

Both FH and QS produce highly irregular superpixels. However, they are
able to capture small details and all important boundaries. Furthermore, note
that QS produces more superpixels in highly textured areas. In contrast, TP gen-
erates highly compact superpixels at the expense of missing several boundaries.
CRS and ERS produce irregular superpixels with good boundary adherence and
are more visually appealing than superpixels generated by FH or QS. While PB
shows reasonable results on the BSDS500, producing irregular and small super-
pixels, results on the NYUV2 appear to be unfinished and of poor quality. Simi-
larly, TPS produces unfinished superpixel segmentations on both datasets. Both
SLIC and CRS provide a compactness parameter which has been traded off for
boundary adherence during parameter optimization. Thus, the generated super-
pixels are irregular and not compact, especially on the NYUV2. The original
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implementation of SEEDS produces highly irregular superpixels capturing the
majority of boundaries. Our implementation, reSEEDS, shows similar behavior.

Intuitively, depth information allows to adapt superpixels to the underlying
three-dimensional structure. While DASP is able to resemble this structure at
least in parts, VCCS produces highly irregular superpixels. This may be due
to the fact that DASP adapts the number of superpixels according to depth,
whereas VCCS directly operates within the point cloud and merely the back
projection is shown. As result, the generated superpixels occur irregular and
voxelization (see [13]) is still visible. Compared to DASP, reSEEDS3D generates
slightly less irregular superpixels with better boundary adherence.

5.2 Quantitative

The quantitative comparison is based on Boundary Recall and Undersegmenta-
tion Error, averaged over the test sets, as a function of the number of super-
pixels. As shown in Fig. 3, FH performs excellent on both datasets and is only
outperformed by VCCS. However, as VCCS operates within point clouds, these
results are hardly comparable. In addition, FH is closely followed by approaches
such as QS, SLIC, CRS and ERS. Our implementation of SEEDS, reSEEDS, is
able to keep up with FH, while consistently outperforming the original imple-
mentation. Unfortunately, as shown by reSEEDS3D, depth information may not
necessarily improve performance. This is supported by the poor performance
of DASP. In addition, our implementation of SEEDS demonstrates that any
ranking extracted from Fig. 3 is possibly challenged by revising existing imple-
mentations. This also justifies a qualitative comparison as performed in Sect. 5.1.
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Fig. 3. Comparison of thirteen superpixel algorithms with respect to Boundary Recall
(Rec) and Undersegmentation Error (UE) on the test sets of the BSDS500 (left) and
the NYUV2 (right). Note that for visualization purposes only a small part of the range
of both metrics is shown.



560 D. Stutz

500 1,500
0.9

0.92

0.94

0.96

0.98

1

Superpixels

Rec

500 1,500

0.08

0.1

0.12

0.14

0.16

Superpixels

UE

500 1,500
0

0.2

0.4

Superpixels

t

FH
SLIC ∗
SLIC
SEEDS ∗
SEEDS
reSEEDS ∗
reSEEDS
reSEEDS3D
DASP
VCCS

Fig. 4. Comparison of the runtime t in seconds of superpixel algorithms requiring less
than 0.5 s per image on the NYUV2. SLIC, SEEDS and reSEEDS may be optimized
with respect to runtime by decreasing the number of iterations. These optimized ver-
sions are indicated by an ∗.

Another important aspect of superpixel algorithms is runtime (measured
using a 64bit machine with Intel Core i7-3770@3.4GHz, 16GB RAM and without
GPU acceleration or multi-threading). Iterative algorithms such as SLIC and
SEEDS may be optimized with respect to runtime by decreasing the number of
iterations. Figure 4 compares these optimized versions to algorithms requiring
less than 0.5 s on the NYUV2 (images of size 608×448). The optimized versions
of SLIC, SEEDS and reSEEDS, indicated by an ∗, show significantly reduced
runtime while providing similar performance in terms of Boundary Recall and
Undersegmentation Error. The drop in performance is lowest for reSEEDS –
Boundary Recall even increases – which simultaneously shows the lowest runtime
with ∼0.05 s per image. We also observe low runtimes for FH and DASP.

6 Conclusion

Several algorithms provide both excellent performance and low runtime. Fur-
thermore, including additional information such as depth may not necessar-
ily improve performance. Therefore, additional criteria are necessary to asses
superpixel algorithms. In particular, we find that visual quality, runtime and
the provided parameters are among these criteria. Clearly, visual appearance
is difficult to measure appropriately, however, it may have serious impact on
possible applications. Furthermore, low runtime is desirable when using super-
pixel algorithms as pre-processing step, especially in real-time settings. Finally,
parameters should be interpretable and easy to tune and algorithms providing a
compactness parameter are preferable. In addition, as the number of superpix-
els can be understood as a lower bound on performance, we prefer algorithms
offering direct control over the number of superpixels.

In conclusion, while many algorithms provide excellent performance with
respect to Undersegmentation Error [7,12] and Boundary Recall [9], they lack
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control over the number of superpixels or a compactness parameter. Further-
more, these impressive results with respect to Boundary Recall and Underseg-
mentation Error do not necessarily reflect the perceived visual quality of the
generated superpixel segmentations.
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