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      Sterols in Microalgae                      

     John     K.     Volkman    

1             Introduction 

 Sterols are tetracyclic triterpenoids biosynthesized by all 
eukaryotic organisms (Desmond and Gribaldo  2009 ). A gen-
eralized structure with carbon atoms numbered is shown in 
Fig.  1 . Sterol distributions in microalgae display a wide 
range of structures refl ecting subtle differences in the sterol 
biosynthetic pathway used by different organisms (e.g. Goad 
et al.  1974 ; Volkman  1986 ,  2003 ,  2005 ; Volkman et al.  1998 ; 
Nes  2011 ). In some cases the presence of specifi c sterols fol-
lows taxonomic classifi cations quite closely. In other classes, 
a wide range of structures can be found (Table  1 ) either 
because the taxonomic grouping is actually polyphyletic or 
the alga accumulates sterols produced at different stages in 
the biosynthetic pathway perhaps due to a defect in later bio-
synthetic steps.

    Sterol biosynthesis occurred very early in the history of 
life on Earth (Kodner et al.  2008 ), and the presumed last 
common ancestor of the eukaryotes likely had a large panel 
of enzymes for sterol biosynthesis (Desmond and Gribaldo 
 2009 ). These biosynthetic pathways have continued to evolve 
over geological time and thus one might expect to see certain 
“unusual” or rare sterols in particular algal classes due to 
specifi c changes in one or more of the many genes needed 
for sterol biosynthesis. 

 This review provides characteristic features of the sterol 
distributions in each of the major microalgal classes and 
builds on previous reviews by this author (Volkman  1986 , 
 2003 ,  2005 ; Volkman et al.  1998 ). However, a diffi culty 
immediately arises as to which taxonomic scheme to use. 
Ideally this should refl ect the evolution of the different algal 
classes, but a consensus is not yet available. There are 15 
traditionally recognized phyla in microalgae and most of the 

papers cited in this review have assigned species based on 
this classifi cation. These 15 phyla are: Cyanophyta (cyano-
bacteria, also referred to as blue-green algae in the older lit-
erature), Rhodophyta (red algae), Euglenophyta (euglenoids), 
Cryptophyta (cryptomonads), Pyrrophyta (dinofl agellates), 
Raphidophyta (raphidophytes), Chrysophyta (chrysophytes, 
golden-brown algae), Xanthophyta (=Tribophyta, yellow- 
green algae), Chlorophyta (green algae), Eustigmatophyta 
(eustigmatophytes), Phaeophyta (brown algae), Prasinophyta 
(prasinophytes), Bacillariophyta (diatoms), Glaucophyta 
(glaucophytes). 

 Undoubtedly these classifi cation schemes will continue to 
be refi ned as new gene sequence data become available. 
While it would have been more satisfying to structure the 
paper around an agreed taxonomic scheme that refl ects the 
evolution of microalgal classes, this has not been possible. 
The taxonomy of many microalgal groups is in a state of fl ux 
and it is not uncommon to see some species transferred to 
completely different classes and species names being changed 
several times. Accordingly the data are structured according 
to the major phyla and where possible assigned to different 
algal classes within each phylum. Revised taxonomic assign-
ments have been used based on those presented in AlgaeBase 
(Guiry and Guiry  2015 ), with a reference back to the original 
classifi cation used in the paper cited where there has been a 
revision. The chapter  “  Systematics, Taxonomy and Species 
Names: Do They Matter?    ” of this book (Borowitzka  2016 ) 
also provides the names and current taxonomically accepted 
affi liation of all taxa mentioned in the present chapter.  

2     Sterol Biosynthesis 

 Sterols are an end-product of the cyclization of the C 30  iso-
prenoid 2,3-oxidosqualene. 

 Cyclisation either produces lanosterol as in animals, 
fungi, and some algae and bacteria or cycloartenol as in 
higher plants and most algae (Fig.  2 ). Many plants also 
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  Fig. 1    A generalized structure 
of a sterol showing numbering 
of carbon atoms and positions of 
alkyl substituents and double bonds       

   Table 1    Systematic and trivial names for sterols found in microalgae   

 Sterol C. no.  Structure  Systematic name  Trivial name 

 27:0  IIb  5α-cholestan-3β-ol  5α-cholestanol 

 27:1  Ib  Cholest-5-en-3β-ol  Cholesterol 

 27:1  Ia  27-Nor-(24S)-cholesta-5,22E-dien- 3β-ol  Occelasterol 

 27:2  Ic  Cholesta-5,22E-dien-3β-ol  22-dehydrocholesterol 

 27:2  Id  Cholesta-5,24-dien-3β-ol  Desmosterol 

 28:0  IIe  24α-methyl-5α-cholestan-3β-ol  Campestanol 

 28:1  Ie  24α-methylcholest-5-en-3β-ol  Campesterol 

 28:1  Ie  24β-methylcholest-5-en-3β-ol  5-ergostenol 

 28:1  IIIe  24β-methyl-5α-cholest-7-en-3β-ol  7-ergostenol 

 28:2  If  24α-methylcholesta-5,22E-dien-3β-ol   epi Brassicasterol or diatomsterol 

 28:2  If  24β-methylcholesta-5,22E-dien-3β-ol  Brassicasterol 

 28:2  Ih  23-methylcholesta-5,22E-dien-3β-ol  None 

 28:2  Ig  24-methylcholesta-5,24(28)-dien-3β-ol  24-methylenecholesterol 

 28:2  IVe  24β-methyl-cholesta-5,7-dien-3β-ol  5,7-ergostadienol 

 28:2  IIIf  24β-methyl-5α-cholesta-7,22E-dien- 3β-ol  7,22-ergostadienol 

 28:3  IVf  24β-methyl-cholesta-5,7,22-trien-3β-ol  Ergosterol 

 29:0  IIi  24α-ethyl-5α-cholestan-3β-ol  Sitostanol 

 29:1  Ii  24α-ethylcholest-5-en-3β-ol  Sitosterol 

 29:1  Ii  24β-ethylcholest-5-en-3β-ol  Clionasterol 

 29:2  Ij  24α-ethylcholesta-5,22E-dien-3β-ol  Stigmasterol 

 29:2  Ij  24β-ethylcholesta-5,22E-dien-3β-ol  Poriferasterol 

 29:2  Ik  24α-ethylcholesta-5,24(28)E-dien-3β-ol  Fucosterol 

 29:2  Il  24α-ethylcholesta-5,24(28)Z-dien-3β-ol  Isofucosterol 

 29:2  IIIj  24β-ethyl-5α-cholesta-7,22E-dien- 3β-ol  Chondrillasterol 

 29:3  IVj  24β-ethylcholesta-5,7,22-trien-3β-ol  7-dehydroporiferol 

 30:1  Im  22,23-methylene-23,24- dimethylcholest- 5-en-3β -ol  Gorgosterol 

 30:0  Vn  4α,23,24-trimethyl-5α-cholestan-3β-ol  Dinostanol 

 30:1  Vo  4α,23,24-trimethylcholest-22E-en-3β- ol  Dinosterol 

 30:1  Vj  4α-methyl,24-ethyl-5α-cholest-22E-en-3β-ol  – 

 31:1  Fig.  2   4,4,14α-trimethyl-9,19-cyclo-5α- cholest-24-en-3β-ol  Cycloartenol 

 30:2  Fig.  2   4,4,14α-trimethyl-5α-cholesta-8,24-dien-3β-ol  Lanosterol 
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 convert 2,3-oxidosqualene to pentacyclic triterpenes such as 
α- and β-amyrin while bacteria generally synthesize cyclic 
triterpenes such as hopenes by cyclization of squalene rather 
than oxidosqualene (Buntel and Griffi n  1994 ; Volkman 
 2005 ). For a comprehensive review of the biosynthesis of 
cholesterol and other sterols, primarily in higher plants and 
fungi, and the enzymes involved the reader is referred to the 
review by Nes ( 2011 ).

   In microalgae, sterol biosynthesis can give rise to sterols 
having C 26  to C 31  carbon atoms and structural variations 
including 4,4-dimethyl substituents, a 4-methyl substituent or 
no methyl group at C-4 (so-called 4-desmethylsterols that 
comprise the majority of sterols in microalgae) (reviewed by 
Volkman  2003 ,  2005 ). Addition of one to four methyl substitu-
ents to the side-chain provides a wide variety of structures 
including 24-methyl, 24-methylene, 24-ethyl, 24-ethylidene, 
24- n -propyl, 24-isopropyl, 23,24-dimethyl, 22,23-methylene 
(cyclopropyl) and 23-methyl sterols (Fig.  3 ). 

 Further variety is provided by the different locations for 
the double bonds including Δ 5 , Δ 7 , Δ 8(9) , Δ 8(14) , Δ 22 , Δ 5,7 , 
Δ 5,22 , Δ 5,24 , Δ 7,22 , Δ 5,24(28) , Δ 8(14),24(28)  and Δ 5,7,9(11)  amongst oth-
ers. Structures of the main variants are shown in Fig.  3 . 
Double bonds are generated by hydrogen transfers to pro-
duce different isomers. Early in the sterol biosynthesis path-
way the double bond position is at Δ 8 , which is subsequently 
isomerized to Δ 7 . Introduction of a second double bond at 
C-5 leads to Δ 5,7  sterols and reduction of the Δ 7  double bond 
gives rise to the Δ 5  sterols (Dempsey  1965 ; Doyle et al. 
 1972 ) (Fig.  4 ), which dominate the sterol distributions in 

most microalgae. Side-chain alkylation can occur at any of 
these stages giving rise to C-24 alkylated sterols with unusual 
double bond positions in the ring system.

    The presence of particular sterols in an alga can often be 
understood by considering them as products of the many 
different steps involved in sterol biosynthesis. The biosyn-
thesis of sterols will not be covered in detail here and the 
reader is referred to other papers outlining the key steps 
(e.g. Goad et al.  1974 ; Chappell  2002 ; Nes  2011 ; Miller 
et al.  2012 ; Xue et al.  2012 ). While sterol synthesis is 
undoubtedly very ancient, some steps may have evolved 
more recently. 

2.1     Side-Chain Biosynthesis 

 The sterol distributions of most microalgae are characterized 
by a high proportion of sterols that are alkylated in the side- 
chain with either a methyl group, ethyl group (two methyl 
transfers), or rarely a propyl group at C-24 (e.g. Goad et al. 
 1974 ; Raederstorff and Rohmer  1984 ; Patterson  1994 ). 
Other variants include the 23,24-dimethyl side-chains found 
in the 4-methylsterols of dinofl agellates (e.g. Withers  1987 ) 
and in the 4-desmethylsterols of some diatoms and hapto-
phytes (e.g. Volkman et al.  1993 ; Rampen et al.  2009b ). 
These alkylations are brought about by S-adenosyl-L- 
methionine (AdoMet = SAM) sterol methyltransferases 
(SMTs: e.g. Nes  2003 ; Nes et al.  2003 ). SMTs do not occur 
in animal systems (Nes  2000 ). Goad et al. ( 1974 ) describe 
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  Fig. 2    The fi rst products in sterol 
biosynthesis are either cycloartenol 
as found in higher plants and many 
microalgae or lanosterol as produced 
mostly by animals, fungi and some bacteria       
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six different mechanisms by which alkyl groups might arise 
in the side-chains of sterols. Nes and co-workers have pro-
posed an active-site model, which they term the “steric- 
electric plug” model to describe C-24 alkylation (reviewed 
by Nes  2003 ; Nes et al.  2003 ). These pathways are complex 
and show phylogenetic groupings. 

 Work by Dennis and Nes ( 2002 ) showed that the SMT 
from  Glycine max  expressed in  Escherichia coli  cells cataly-
ses the step-wise conversion of cycloartenol to 24(28)-meth-

ylenecycloartanol and then to a mixture of stereochemically 
related Δ 24(28)Z -ethylidene-, Δ 24(28)E -ethylidene- and Δ 25(27) -
24β-ethylcyclosterols. Campesterol (24α-methylcholesterol) 
and dihydrobrassicasterol (24β-methylcholesterol), typical 
C 28  sterols in higher plants, are biosynthesized from desmo-
sterol via 24-methylenecholesterol and 24- methyldesmosterol. 
The typical plant C 29 -sterol, sitosterol (24α-ethylcholesterol), 
is produced from 24-methylenecholesterol via isofucosterol 
and 24-ethyldesmosterol.  
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(highly unusual sterols are not shown). R = sterol side-chain       

HO

R

H

R

HO HO

R

Δ7 Δ5,7 Δ5

  Fig. 4    Stages in the formation of Δ 5  
sterols from Δ 7  sterols in microalgae       

 

 

J.K. Volkman



489

2.2     C-24 Stereochemistry 

 The stereochemistry of the alkyl substituents in the side- 
chain can be α- or β- oriented depending on the biosynthetic 
pathways by which the side-chain is alkylated. Different 
algal classes usually produce sterols with either 24α or 24β 
stereochemistry, but only rarely do both occur (e.g. in some 
diatoms; Gladu et al.  1991b ). For example, the C 28  and C 29  Δ 5  
unsaturated sterols of vascular plants generally have the 24α 
confi guration as do the C 28  sterols of most diatoms (Maxwell 
et al.  1980 ; Nes and Nes  1980 ; Gladu et al.  1991b ). In con-
trast, green algae and dinofl agellates biosynthesize sterols 
with the 24β confi guration (Goad et al.  1974 ; Bohlin et al. 
 1981 ; Goad and Withers  1982 ; Miller et al.  2012 ). 

 Note that due to the IUPAC-IUB JCBN sequence rules, 
24α corresponds to 24R when the side-chain is saturated, but 
it becomes 24S when a Δ 22  double bond is present (Fig.  1 ). 
The side-chain α- and β- nomenclature is not related to that 
which is used to describe the orientation of methyl substitu-
ents on the ring system (see Goad and Akihisa  1997  for fur-
ther explanation). 24β-Sterols (which are common in green 
algae) arise from Δ 25(27)  sterols. Reduction of Δ 24(28)  sterols 
can give rise to either 24α or 24β sterols (Goad et al.  1974 ). 
Fungi apparently use this pathway exclusively for the pro-
duction of 24β epimers. 

 The majority of published data on algal sterols has been 
obtained by GC–MS analysis with reliance on relative reten-
tion data (e.g. Itoh et al.  1982 ) and reference mass spectra to 
identify specifi c isomers (e.g. de Leeuw et al.  1983 ; Jones 
et al.  1994 ; Gerst et al.  1997 ; Volkman et al.  1997 ). While 
GC–MS is a sensitive technique and very useful for identify-
ing small amounts of sterols in complex mixtures it does not 
provide information on the confi guration at C-24 (Gerst et al. 
 1997 ; Giner et al.  2008 ). The epimers can be separated on 
very long, polar glass capillary columns (Maxwell et al. 
 1980 ; Thompson et al.  1981 ; Ikekawa et al.  1989 ), but analy-
sis times are very long and to date the method has not been 
widely exploited. HPLC techniques are also now available 
(Chitwood and Patterson  1991 ), but are also rarely utilized. 
Unambiguous assignment of C-24 stereochemistry can be 
obtained by NMR (e.g. Wright et al.  1978 ; Chui and Patterson 
 1981 ; Goad and Akihisa  1997 ; Miller et al.  2012 ), but this 
requires isolation and purifi cation of each sterol within the 
complex mixtures found in most microalgae. 

 Identifi cation of the stereochemistry at C-24 can indicate 
which of the many sterol pathways operates in that alga. Such 
data combined with information from incubation with [CD 3 ]-
methionine and labeled mevalonate can be powerful tools for 
studying sterol biosynthesis in microalgae (Goad et al.  1974 ). 
Several algal species, including a diatom, two prymnesio-
phytes and two cryptophytes, have been shown to produce 
24α-methylcholesta-5,22E-dien-3β-ol ( epi brassicasterol; 
Rubinstein and Goad  1974 ; Maxwell et al.  1980 ; Goad et al. 

 1983 ). Green algae on the other hand mainly contain 24β ste-
rols. In some cases both epimers can be found (Raederstorff 
and Rohmer  1984 ) as in an unidentifi ed alga believed to be a 
chrysophyte (Kokke et al.  1984 ); 24α-ethylcholest-5-en-3β-ol 
comprised 10.2 % of 4- desmethyl sterols compared with 3.0 
% for the 24β epimer. 

 C-24 stereochemistry is not always consistent within a 
single taxonomic grouping. For example, Gladu et al. 
( 1990 ) examined nine strains of phytoplankton which 
contain 24-methylcholesta-5,22E-dien-3β-ol as their prin-
cipal sterol. The two strains provisionally identifi ed as 
 lsochrysis  (a haptophyte) contained brassicasterol 
(24β-methylcholesta- 5,22E-dien-3β-ol); whereas all other 
species examined (two haptophytes, two rhodophytes and 
two diatoms) contained primarily  epi brassicasterol 
24α-methylcholesta-5,22E-dien-3β-ol).  

2.3     Biochemical Forms of Sterols 

 The methods used in most studies of sterols in microalgae do 
not provide information about the chemical form in which 
the sterol exists since the extracts are usually saponifi ed and 
any steryl esters are converted to the free sterols. In most 
microalgae, the sterols mainly exist in a non-esterifi ed (i.e. 
free) form but this is not always the case. For example, Véron 
et al. ( 1996 ) studied the sterols of seven unicellular algae 
including representatives from the Prasinophyceae, 
Haptophyceae, Eustigmatophyceae, and Bacillariophyceae 
(as then defi ned). All synthesized free sterols and esterifi ed 
forms (steryl esters, acyl steryl glycosides, and steryl glyco-
sides), but free sterols predominated in fi ve of the species. In 
contrast, the eustigmatophyte  Nannochloropsis oculata  and 
the diatom  Thalassiosira pseudonana , contained mostly 
esterifi ed sterols whereas in the diatom  Chaetoceros calci-
trans  glycosylated forms represented over 60 % of total ste-
rols. The pennate diatom  Haslea ostrearia  synthesized large 
amounts of steryl glycosides consisting mainly of the uncom-
mon sterol 23,24-dimethylcholest-5-en-3β-ol.  

2.4     Effects of Environmental Condition 
on Sterol Compositions 

 Minor differences in the relative proportions of sterols with 
culture age and growth state have been observed (Ballantine 
et al.  1979 ), but it comparatively rare for sterol distributions 
to change dramatically with changes in environmental condi-
tions in contrast to fatty acid compositions. Sterol composi-
tions thus are usually good chemotaxonomic tools for 
studying microalgal relationships and biochemistry. Sterol 
concentrations per cell or dry weight, however, can be 
affected. For example, Mercer et al. ( 1974 ) found no change 
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in sterol composition with culture age in three species of 
xanthophytes, but noted that aeration increased the choles-
terol content. A detailed review of this topic is not possible 
here, but some leading references are provided to guide the 
reader. 

 Piepho et al. ( 2010 ) studied the sterol content in freshwa-
ter green algae  Desomodesmus communis  ( as S. quadri-
cauda ) and  Chlamydomonas , the cryptophyte  Cryptomonas 
ovata  and the diatom  Cyclotella meneghiniana , and found 
that sterol contents increased signifi cantly with increasing 
light in three out of four species and that sterol content 
decreased with increasing light at low phosphorus supply. 
Piepho et al. ( 2012 ) observed that sterol concentrations were 
higher at 25 °C than at 10 °C in  D. quadricauda  and  C. 
meneghiniana , but were not affected by temperature in  C. 
ovata . Temperature and phosphorus supply interacted to 
affect sterol concentrations in  C. meneghiniana  presumably 
due to the bioconversion of 24-methylene-cholesterol to 
24-methylcholesta-5,22E-dien-3β-ol. Jo et al. ( 2004 ) found 
the same major sterols in autotrophically grown and hetero-
trophically grown  Tetraselmis suecica , but the proportions of 
these and total amounts varied with culture age.   

3     Sterols in Cyanobacteria 

 The suggestion that cyanobacteria (blue-green algae) contain 
sterols has been much debated. Some early studies suggested 
that their presence was due to contamination since on 
repeated purifi cation the amount of sterols declined (Ourisson 
et al.  1987 ) and others have obtained similar data (Volkman, 
unpublished data; Summons et al.  2001 ). However, there are 
more than a dozen reports of sterols being found in cyano-
bacteria (summarized by Volkman  1986 ,  2003 ). These 
include simple mixtures in which cholesterol and 
24-ethylcholest-5-en-3β-ol predominate, but Δ 7  and Δ 5,7 - 
sterols including ergosterol have also been reported (De 
Souza and Nes  1968 ). In almost all cases the amounts of ste-
rols isolated are quite small (Hai et al.  1996 ). Summons et al. 
( 2001 ) suggested that the sterols present in cyanobacterial 
cultures are derived from contaminating yeasts and fungi. 
The balance of evidence seems to indicate that cyanobacteria 
do not synthesize sterols although a few eubacteria can syn-
thesize sterols that are not alkylated in the side-chain 
(reviewed by Volkman  2005 ).  

4     Sterols in the Phylum Rhodophyta 

 The division or subphylum Rhodophyta contains both micro-
algae and macroalgae, generally termed red algae. Most 
members are marine macroalgae, but unicellular marine 
 coccids are known including  Porphyridium ,  Rhodosorus  and 

 Rhodella . Unicellular red algae that form mucilaginous colo-
nies are considered primitive. The taxonomy has been 
through a number of changes. The Bangiophyceae, as defi ned 
traditionally, is paraphyletic and taxonomic identifi cation of 
species has been diffi cult because of a lack of distinct mor-
phological features, and the presumed morphological plas-
ticity of the species. It has since been merged with the 
Floridophyceae to form the Rhodophyceae. 

 Most macrophyte red algae contain primarily C 27  sterols 
with cholesterol predominant (e.g. Palmerno et al.  1984 ), 
although several species contain large amounts of cholesta- 
5,24-dien-3β-ol (desmosterol) (Gibbons et al.  1967 ). Only a 
few red macroalgae contain traces of C 28  (e.g. 
24-methylcholesta-5,22E-dien-3β-ol) and very rarely C 29  
sterols. This is in sharp contrast to the sterol distributions 
found in microscopic red algae which, while often domi-
nated by cholesterol, can also show high contents of C 28  
4-desmethyl sterols and occasionally biosynthetically “prim-
itive” 4-methyl sterols. 

4.1     Class Bangiophyceae 

 The sterols of the macroalgae  Pyropia / Porphyra  are domi-
nated by cholesterol (60 %) whereas  Stylonema alsidii  (as 
 Goniotrichum elegans ) contains both 24-methylcholesta- 
5,22E-dien-3β-ol and cholesterol (Brothers and Dickson 
 1980 ). Sterol analyses of microalgae in this class appear not 
to have been reported.  

4.2     Class Porphyridiophyceae 

 The microalga  Porphyridium cruentum  contains 
24-methylcholesta-5,7,22-trien-3β-ol (ergosterol) and 
cholesta-5,22-dien-3β-ol (Beastall et al.  1971 ). In contrast, 
other species of  Porphyridinium  contain unusual 4-methyl 
Δ 8 -unsaturated sterols including 4α-methyl-5α-cholesta-
8,22-dien-3β-ol, 4α,24-dimethyl-5α-cholesta-8,22-dien- 
3β-ol, 4-methylcholest-8-en-3β-ol and 
4,24-dimethylcholest-8-en-3β-ol (Beastall et al.  1974 ), per-
haps due to the lack of a Δ 8  to Δ 7  isomerase. Duperon et al. 
( 1983 ) showed that  Porphyridinium  sp. contains free sterols, 
steryl glycosides and acylated steryl glycosides.  

4.3     Class Florideophyceae 

 Desmosterol was the major sterol found in three samples of 
the macroalga  Palmaria  ( Rhodymenia )  palmata  (82 %, 97.2 
% and 60.4 %) while cholesterol (92.3 %) predominated in a 
fourth (Idler et al.  1968 ). There was also signifi cant variation 
in the principal sterol of two samples of the macroalga 
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 Devaleraea ramentacea  (as  Halosaccion ramentaceum ). 
One contained predominantly cholesterol (85.4 %), the other 
desmosterol (81.8 %).  

4.4     Class Stylonematophyceae 

 The major sterol in the microalgae  Rhodosorus  sp. (CS-210) 
and  Rhodosorus lens  (=  R. salina ?) is the C 28  sterol 
24-methylcholesta-5,22E-dien-3β-ol (Gladu et al.  1990 ; 
Dunstan et al.  2005 ) as found in some cryptomonads, dia-
toms and haptophytes.  Rhodosorus  sp. (CS-210) contains in 
addition small amounts of cholesterol (2 %) and various Δ 7 - 
sterols including the rare 4-methyl-5α-cholest-7-en-3β-ol 
(5.8 %) and 4-methyl-5α-cholesta-7,22-dien-3β-ol (12.3 %).   

5     Sterols in the Phylum Chlorophyta 

 The Viridiplantae comprises the green algae and their descen-
dants the land plants. One clade, the Chlorophyta, comprises 
the early diverging prasinophytes, which gave rise to the core 
chlorophytes. The other clade, the Streptophyta, includes the 
charophyte green algae from which land plants evolved. 
Many uncertainties about the evolution of this phylum per-
sist, including the branching orders of the prasinophyte lin-
eages, the relationships among core chlorophyte clades 
(Chlorodendrophyceae, Ulvophyceae, Trebouxiophyceae and 
Chlorophyceae), and the relationships among the strepto-
phytes (Leliaert et al.  2012 ). As a consequence, it is diffi cult 
to classify some of the reported sterol distributions of various 
species due to changes in their taxonomic assignments. 

 The Chlorophyta contain chlorophylls  a  and  b  and store 
starch inside the chloroplast. There are thought to be between 
9,000 and 12,000 species. Green algae became ecologically 
important about 600–800 Ma ago (Knoll et al.  2007 ; Kodner 
et al.  2008 ), possibly in response to increases in Fe content in 
the ocean (Canfi eld et al.  2008 ). Morphological analogues of 
the Ulvaphyceae have been found in Spitsbergen sediments 
700–750 Ma (Butterfi eld et al.  1994 ). Green algae are 
thought to be responsible for the high abundance of C 29  ster-
anes seen in some Cambrian sediments and crude oils (e.g. 
Kodner et al.  2008 ). However, when one examines the sterols 
of modern groups of green alga the situation is much more 
complex. Many chlorophytes contain mixtures of Δ 7 , Δ 5,7  
and Δ 7,22  sterols (Holden and Patterson  1982 ), but a few con-
tain mainly Δ 5 -unsaturated sterols. In the latter group, 
24-methylcholest-5-en-3β-ol and 24-ethyl-cholesta-5,22E- 
dien- 3β-ol usually predominate with moderate amounts of 
24-ethylcholest-5-en-3β-ol. 

5.1     Class Chlorophyceae 

 This class is primarily freshwater and includes genera such 
as  Chlamydomonas ,  Pyramimonas ,  Scenesdemus  and 
 Oedogonium .  Chlamydomonas  contains more than 600 spe-
cies and has been shown to be polyphyletic (Proschold et al. 
 2001 ) which makes assessment of the early sterol literature 
diffi cult. It has been proposed that species in clades other 
than that containing  C. reinhardtii  must be transferred to 
other genera (Proschold et al.  2001 ). 

 Miller et al. ( 2012 ) have shown that the green alga 
 Chlamydomonas reinhardtii  synthesizes cycloartenol and 
converts it to ergosterol and 24-ethyl-5α-cholesta-7,22-dien- 
3β-ol (7-dehydroporiferasterol) (both having a C24 β-alkyl 
group) through a highly conserved sterol C24-methylation- 
C25-reduction pathway that is distinct from the acetate- 
mevalonate pathway that produces fungal lanosterol and 
thence to ergosterol by the Δ 24(28) -olefi n pathway. 

 Volkman et al. ( 1994 ) identifi ed the major sterols in 
 Pyramimonas cordata  as 24-ethyl-cholesta-5,24(28)Z-dien- 
3β-ol (88.5 %) with a small amount of the 24(28)E isomer 
(0.8 %) and an unusual dihydroxylated C 29  sterol 
24-ethylcholesta-5,28(29)-dien-3β,24-diol (saringosterol) 
probably formed by oxidation of the major sterol. 

  Dunaliella minuta  is unusual in that under stationary 
phase conditions it produces mainly C 27  sterols (Ballantine 
et al.  1979 ).  Dunaliella salina  has been reported to produce 
C 27  sterols at high salinities (4 M) (Kelly  2009 ) although C 29  
sterols are more commonly associated with this species 
(Peeler et al.  1989 ). 

 The freshwater species  Desmodesmus communis  ( as 
Scenedesmus quadricauda ) contains only Δ 7  sterols 
24-methyl-5α-cholest-7-en-3β-ol, 24-ethyl-5α-cholesta-
7,22-dien-3β-ol and 24-ethyl-5α-cholest-7-en-3β-ol 
(Cranwell et al.  1990 ). In contrast, freshwater  Eudorina 
unicocca  contains 5 sterols: 24-methylcholesterol (32 %), 
cholesterol (27 %), 24-ethylcholesta-5,22E-dien-3β-ol (22 
%), 24-ethyl-5α-cholest-7-en-3β-ol and 24- methylcholesterol 
(4 %) (Cranwell et al.  1990 ). This species is unusual in that 
it contains both Δ 5  and Δ 7  sterols.  

5.2     Class Ulvophyceae 

 Very few data are available for microalgal members of 
this class of green algae. The freshwater species  Ulothrix 
zonata  contains a complex mix of sterols with 
24- methylenecholesterol (41 %), 24-methylcholesterol (23 %), 
24- ethylcholesta-5,24(28)Z-dien-3β-ol (16 %) and 24-ethyl- 
cholesterol (12 %) as major sterols (Cranwell et al.  1990 ).  
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5.3     Class Mamiellophyceae 

 This class is primarily marine and includes the smallest 
eukaryotic algal genus  Micromonas  which contains a single 
species,  M. pusilla , which is the dominant photosynthetic 
picoeukaryote in some marine ecosystems (e.g. Throndsen 
 1976 ). Unlike many marine algae, it is distributed widely in 
both warm and cold waters. Under the light microscope it is 
easily mistaken for a rapidly swimming bacterium. Based 
on pigment analysis,  Micromonas  shows affi nities with the 
Mamiellales group of the Prasinophyceae, but it lacks the 
characteristic scales of this group. Note that some still clas-
sify this genus in the Prasinophyceae. The sterols of 
 Micromonas pusilla  (strain CS-98) and a tropical strain 
 Micromonas  aff.  pusilla  (CS-170) were reported by 
Volkman et al. ( 1994 ) who found the same suite of 4 major 
sterols, but in very different proportions. The major sterol 
in CS-98 was isofucosterol (71.7 %), but in CS-170 this 
was only 19.4 % of total sterols. The second most abundant 
sterol in CS-98 was 24-methylenecholesterol (15.9 %), but 
this was the major sterol in CS-170 (54.4 %). This differ-
ence seems to refl ect a greater extent of alkylation of the 
24(28) double bond in CS-98. Both strains contained an 
unusual dihydroxylated C 29  sterol 24-ethylcholesta-
5,28(29)-dien-3β,24-diol (saringosterol; 3.1 % of total ste-
rols in CS-98 and 14.2 % in CS-170). It seems likely that 
saringosterol is formed from enzymatic oxidation of 
28-isofucosterol.  

5.4     Class Chlorodendrophyceae 

 This class includes freshwater and marine species and now 
includes the marine fl agellate  Tetraselmis  (previously 
assigned to the Prasinophyceae). Patterson et al. ( 1993b ) 
examined 11 isolates of  Tetraselmis  and found only 3 sterols. 
The principal sterol in eight isolates was either 
24- methylenecholesterol or 24-methylcholesterol, both C 28  
sterols, with the latter identifi ed as the 24α-isomer campes-
terol in each case. In the other three isolates, cholesterol was 
the principal sterol, which is highly unusual for a green alga, 
together with smaller amounts of 24-methylene-cholesterol 
and campesterol. 

 Volkman ( 1986 ) and Volkman et al. ( 1994 ) reported 
the sterol composition for  Tetraselmis chui  and found a sin-
gle major sterol (>96 %) identifi ed as 24-methylcholesterol. 
In contrast, Ballantine et al. ( 1979 ) found a much greater 
variety of sterols in  Tetraselmis tetrathele  which included 
24-methylcholesterol (34 %) and 24-methylcholesta-5,22- 
dien- 3β-ol (57.7 %). Similar data were reported by Lin et al. 
( 1982 ) for another species  Tetraselmis suecica  where the 
proportions of these two sterols were 48.1 % and 50.9 % 
respectively. 

 Jo et al. ( 2004 ) examined the sterol dynamics of a 
strain of  Tetraselmis   suecica  grown both autotrophically 
and heterotrophically. Six major sterols were found 
in the photoautotrophically grown cells: cholesta-5,22-
dien-3β-ol, 24-methylcholesterol, cholesterol, 
24-methyl-cholesta-5,22- dien- 3β-ol, 24-methylcholesta-
5,24-dien-3β-ol, and 24-ethylchlolesta-5,24-dien-3β-ol in 
decreasing order of abundance. The total amounts of ste-
rols after 1 week of culture were quite similar as was the 
composition, but total amounts declined in weeks 2 and 3 
and 24-methylcholesterol became the major sterol. Similar 
changes were found when the cells were grown 
heterotrophically. 

 The effect of culture renewal rate (RR) on sterol amounts 
in  T. suecica  was studied by Fabrégas et al. ( 1997 ). The 
major sterol 24-methylcholesterol ranged from 137 fg cell −1  
with a 10 % RR to 40 fg cell −1  with a 40 % RR and 
24- methylenecholesterol ranged from 403 fg cell −1  with a 10 
% RR to 80 fg cell −1  with a renewal rate of 50 %.  

5.5     Class Trebouxiophyceae 

 The Trebouxiophyceae contains the three orders: 
Chlorellales, Prasiolales and Trebouxiales.  Botryococcus 
braunii  is perhaps the best known member of this class of 
microalgae.  Chlorella  was formerly assigned to the 
Chlorophyceae but most species have now been assigned to 
the Trebouxiophyceae, although Huss et al. ( 1999 ) have pro-
posed that only four species should be kept in the genus 
 Chlorella  within the Trebouxiophyceae, i.e.  C. vulgaris ,  C. 
lobophora ,  C. sorokiniana  and  C. kessleri  (=  Parachlorella 
kessleri ). Since the description of the type species  Chlorella 
vulgaris , more than a hundred “Chlorella” species have been 
established in the literature (Goers et al.  2010 ), but most 
have been assigned to other genera. 

 Extensive data on the sterols in  Chlorella  species have 
been published by Patterson and coworkers (Patterson 
 1967 ,  1969 ,  1974 ; Dickson et al.  1972 ; Dickson and 
Patterson  1973 ; Patterson et al.  1974 ,  1992 ). These data 
were collated and expanded by Holden and Patterson 
( 1982 ) who analysed the sterols in 35 species. From these 
data they were able to group the algae into six categories 
according to their sterol distribution. Group Ia contained Δ 5  
sterols including cholesterol, 24β-ethylcholesta-5,22-dien-
3β-ol (poriferasterol), 24β-methylcholesterol (5-ergo-
stenol) and 24β-ethylcholesterol (clionasterol), all with 24β 
stereochemistry. The two isolates in Group 1B contained a 
related composition, but the major product was 
24β-methylcholesterol (69–73 % of total sterol) and signifi -
cant amounts of the C 29  homolog of ergosterol, 
24β-ethylcholesta-5,7,22-trien-3β-ol (7-dehydroporiferas-
terol), was also found. Group II contained Δ 7  sterols 

J.K. Volkman



493

 presumably due to the lack of genes needed for the intro-
duction of the Δ 5  double bond. The major sterol was the C 29  
sterol, 24β-ethylcholesta-7,22-dien-3β-ol (chondrillas-
terol). Group IIIa contained double bonds at both Δ 5  and Δ 7  
presumably due to the lack of a Δ 7  reductase in some spe-
cies. These isolates lack the ability to introduce a second 
alkyl group at C-24 resulting in the production, exclusively, 
of the C 28  sterols ergosterol with lesser amounts of its 
mono- and diunsaturated derivatives. Group IIIb was simi-
lar, but these species are able to introduce a second alkyl 
group at C-24, producing the C 29  homologue of ergosterol, 
24β-ethylcholesta-5,7,22-trien-3β-ol, plus 24β-ethyl-5α- 
cholesta-7,22-dien-3β-ol and 24β-ethyl-5α-cholest-7-en-
3β-ol (7-chondrillastenol). The presence of C 29  sterols in 
ergosterol-synthesizing organisms is a rare occurrence. The 
last type of sterol biosynthetic pattern, Group IIIc, was 
encountered in only one strain of  Chlorella . This contained 
unique Δ 8  and Δ 8,22  sterols along with ergosterol, 
24β-methylcholesta-5,7-dien-3β-ol (5,7-ergostadienol), 
and 24β-methyl-5α-cholest-7-en-3β-ol (7-ergostenol) as 
originally published by Patterson et al. ( 1974 ). These 
grouping align well with the various stages in the sterol 
biosynthetic pathway and this would seem to be a useful 
way to categorize sterol patterns. However, the taxonomic 
status of some of these strains is uncertain and it remains to 
be seen whether they match closely with modern views on 
 Chlorella  taxonomy. 

  Chlorella autotrophica  (now  Chlorella vulgaris  var. 
 autotrophica ) contains a complex mixture of C 28  and C 29  
sterols with Δ 7 , Δ 5,7  and Δ 5,7,9(11)  nuclear double bond 
systems (Patterson et al.  1992 ). This alga also contained 
the rare tetraunsaturated sterols, 24-methylcholesta-
5,7,9(11),22- tetraen- 3β-ol and 24-ethylcholesta-5,7,9(11),22-
tetraen-3β-ol. 

 Akihisa et al. ( 1992 ) identifi ed ergosterol (51 %) and 
7-dehydroporiferasterol (30 %), as the principal sterols of 
 Chlorella vulgaris . They also identifi ed the unusual 
24β-methyl-Δ 9(11) -sterols, 24β-methyl-5α-cholest-9(11)-en- 
3β- ol and 14α,24β-dimethyl-5α-cholest-9(11)-en-3β-ol, and 
the same two 24β-alkyl-Δ 5,7,9(11),22 -sterols, 24β-methylcholesta-
5,7,9(11),22E-tetraen-3β-ol (9(11)-dehydroergosterol) and 
24β-ethylcholesta- 5,7,9(11),22E-tetraen-3β-ol found in 
 C. autotrophica . 

 More recent work by Goers et al. ( 2010 ) has confi rmed 
that sterol composition is a reliable chemotaxonomic marker 
within several groups of  Chlorella  and found high contents 
of ergosterol in nine species, all from the Chlorellaceae. 
More distant relatives within the Trebouxiophyceae or repre-
sentatives of the Chlorophyceae did not contain ergosterol. 
The sterols in  Mucidosphaerium  ( Dictyosphaerium )  pulchel-
lum  were reported by Cranwell et al. ( 1990 ). The major ste-
rol was cholesterol (90 %) with a small quantity of 
24-ethylcholesterol (8 %).  

5.6     Class Prasinophyceae 

 Prasinophytes can be important constituents of the phyto-
plankton in oceanic waters. Volkman et al. ( 1994 ) reported 
sterol compositions for  Pyramimonas cordata , and 
 Pycnococcus provasolii  and found relatively simple distribu-
tions of Δ 5 -sterols. The major sterols were 
24- methylenecholesterol (which also occurs in diatoms), 
24-methylcholesterol and 24-ethylcholesta-5,24(28)Z-dien- 
3β-ol (28-isofucosterol). They proposed that 
24- methylcholesterol may be a useful marker for these 
microalgae. Minor amounts of C 30   n -propylcholestane were 
produced after hydrogenation of the sterol mixture indicat-
ing the presence of C 30  sterols that were not characterized. 

 Patterson et al. ( 1992 ) found that an un-named strain of 
 Pyramimonas  contained only 24-methylenecholesterol as a 
major sterol component (99 %) together with a trace of cho-
lesterol. In marked contrast,  Pyramimonas grossii  contained 
a complex mixture of C 28  and C 29  sterols with Δ 7 , Δ 5,7  and 
Δ 5,7,9(11)  nuclear double bond systems. Sterols were found 
both with and without the C-22 side chain double bond; 
ergosterol and 24β-ethylcholesta-5,7,22-trien-3β-ol 
(7- dehydroporiferasterol) were the principal sterols. Rare 
tetraene sterols, 24-methylcholesta-5,7,9(11),22-tetraen- 
3β-ol and 24-ethylcholesta-5,7,9(11),22-tetraen-3β-ol were 
found in  P. grossi  as in  Chlorella vulgaris  var.  autotrophica  
and  Dunaliella tertiolecta  (Patterson et al.  1992 ).   

6     Sterols in the Phylum Charophyta 

6.1     Class Conjugatophyceae 

 Few data are available for this class. Cranwell et al. ( 1990 ) 
analysed the sterols in the two desmids  Cosmarium biocula-
tum  and  Xanthidium subhastiferum . Both contained three 
main sterols: 24-methylcholesterol, 24-ethylcholesterol and 
24-ethylcholesta-5,22E-dien-3β-ol, which are the same three 
sterols found in higher plants.   

7     Sterols in the Phylum Dinophyta 

7.1     Class Dinophyceae 

 Dinofl agellates (Dinophyceae) are generally considered to 
be the major source of 4-methyl sterols in aquatic environ-
ments (e.g. de Leeuw et al.  1983 ; Volkman  2003  and refs 
therein), but they are also potential contributors of 
4- desmethyl sterols. In most species, 4-methyl sterols pre-
dominate (e.g. Leblond and Chapman  2002 ), but exceptions 
are known (e.g. Teshima et al.  1980 ). Complex mixtures of 
sterols are usually found (Withers et al.  1979 ; Wengrovitz 
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et al.  1981 ; Piretti et al.  1997 ; Amo et al.  2010 ), and many 
species contain unusual sterols having Δ 7  or Δ 8  double bonds 
(e.g. Hallegraeff et al.  1991 ) and unusual patterns of side- 
chain alkylation such as 23,24-dimethyl substitution 
(Leblond and Lasiter  2012  and refs therein). 

 The major sterol in many dinofl agellates is the 4-methyl 
sterol dinosterol (4α,23,24-trimethyl-5α-cholest-22E-en-
3β-ol; Fig.  5 ) which has no double bond in the ring system 
and an unusual 23,24-dimethyl side-chain alkylation 
(Shimizu et al.  1976 ; Boon et al.  1979 ). Because of its speci-
fi city as a dinofl agellate marker it has been widely used for 
paleoclimate studies (e.g. Boon et al.  1979 ; Makou et al. 
 2010 ; Castaneda et al.  2011 ). Methods to isolate purifi ed 
dinosterol and other sterols from dinofl agellates for struc-
tural or isotopic analysis are now available using reverse 
phase and normal phase HPLC (Atwood and Sachs  2012 ). 
Although dinosterol appears to be a reliable biomarker for 
dinofl agellates, it should be noted that some dinofl agellates 
do not contain this sterol at all (Teshima et al.  1980 ; Kokke 
et al.  1981 ; Goad and Withers  1982 ).

   Recently Leblond et al. ( 2010 ) published a review of the 
sterols and steroid ketones in dinofl agellates and related 
these to taxonomic assignments based on 18 rDNA phylog-
eny. These authors compiled a database from 102 published 
analyses of dinofl agellates which contained 58 distinct iden-
tifi ed sterols and steroid ketones. Data on both sterols and 
18S rDNA were available for 82 of the 102 strains. These 
data were clustered into six groups:

    1.    Mainly  Karenia  and  Karlodinium  species containing 
4-desmethyl sterols with Δ 8(14),22  diunsaturation such as 
4α,24-dimethyl-5α-cholesta-8(14),22-dien-3β-ol and 
27-nor-4α,24-dimethyl-5α-cholesta-8(14),22-dien-
3β-ol;   

   2.    Mainly  Amphidium  species containing 4α-methyl-5α- 
cholest-8(14)-en-3β-ol and 4α,24-dimethylcholesta- 
8(14),24(28)-dien-3β-ol. Note that both groups 1 and 2 
are distinguished by sterols having a Δ 8(14)  double bond 
which is uncommon in other dinofl agellates;   

   3.    This grouping contained  Polarella glacialis , 
 Protoceratium reticulatum ,  Lingulodinium polyedra  and 
 Gymnodinium simplex . Major sterols were cholesta-
5,22Z-dien-3β-ol, 24-methylcholesta-5,22E- dien- 3β-ol, 
and 4α,24-dimethyl-5α-cholestan-3β-ol;   

   4.    This contained  Akashiwo sanguinea  and prominent 
sterols 24-methylcholest-5α-cholest-22E-en-3β-ol, 23,24-
dimethyl-5α-cholest-22E-en-3β-ol and 4α,24-dimethyl-
5α-cholestan-3β-ol;   

   5.    This contained genera such as  Alexandrium ,  Prorocentrum , 
and  Symbiodinium . Major sterols were cholesterol and 
4α , 23 ,24 - t r ime thy l -5α - cho l e s t -22E-en -3β -o l 
(dinosterol);   

   6.    This contained  Alexandrium ,  Gymnodinium ,  Heterocapsa , 
 Pfi esteria ,  Pyrocystis  and  Thoracosphaera . Prominent 
sterols were 4α,24-dimethyl-5α-cholestan-3β-ol, 
4α,23,24-trimethyl-5α-cholestan-3β-ol (dinostanol) and 
dinosterol.    

HO
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  Fig. 5    Comparison of structures 
of two C 30  sterols: ( a ) dinosterol 
(4α,23,24-trimethyl-5α-cholest-
22E- en-3β-ol) as found in many 
dinofl agellates and structurally 
isomeric 4α-methyl,24-ethyl-5α- 
cholest-22E-en-3β-ol ( b ) as found 
in haptophytes from the 
   Pavlovophyceae     . Also shown 
is the structure of a dihydroxylated 
4-methyl sterol termed a pavlovol 
( c ) that appear to be unique to the 
   Pavlovophyceae            
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  Several of these groupings matched well with DNA-
based phylogeny, but note that some genera occur in two 
groups as do some sterols. Volkman et al. ( 1999b ) examined 
the sterols of four species of the dinofl agellate genus 
 Prorocentrum  and found over 20 sterols which varied con-
siderably in abundance between the species. LeBlond et al. 
( 2010 ) found that all  Prorocentrum  species were closed 
related by 18S rDNA analysis, but based on their sterols 
they were distributed in both clusters 5 and 6. All contained 
23,24-dimethylcholesta- 5,22E-dien-3β-ol, dinosterol and 
dinostanol. Those in cluster 5 also produced cholesterol not 
found in cluster 6 while those in cluster 6 produced 24-meth-
ylenecholesterol not found in cluster 5. Similarly,  Pyrocystis 
lunula  and  Pyrocystis noctiluca  (= Pyrocystis pseudonocti-
luca ), although closely related by 18 S rDNA analysis had 
quite different sterol distributions with dinosterol abundant 
in  P. noctiluca  but absent from  P. lunula  (Dahmen and 
Leblond  2011 ). 

 Sterols containing a cyclopropyl ring in the side-chain 
such as gorgosterol are known from various marine ani-
mals, particularly coelenterates and a few dinofl agellates 
(Withers  1987 ). Some species of  Gonyaulax  contain large 
amounts of cholesterol but there does not appear to be a 
single distribution of 4-desmethyl sterols which character-
izes these algae. 

  Karenia brevis  has been shown (Leblond and Chapman 
 2002 ) to possess two major sterols, (24S)-4α,24-dimethyl- 
5α-cholesta-8(14),22-dien-3β-ol (abbreviated ED in their 
work) and its 27-nor derivative (NED). These novel struc-
tures are also found in  Karenia mikimotoi  and  Karlodinium 
micrum  (= Karlodinium venefi cum ), two dinofl agellates 
closely related to  K. brevis  (Leblond and Chapman  2002 ). 
They are also found as minor components of the more com-
plex sterol profi les of other members of the  Gymnodinium / P
eridinium / Prorocentrum  (GPP) taxonomic group (Leblond 
and Chapman  2002 ). 

 A predominance of the 4-methyl and 4-desmethyl Δ 8(14)  
sterols and a lack of dinosterol was reported by Mooney 
et al. ( 2007 ) for species in the Karenaceae. Unusual sterols 
included 23-methyl-27-nor-24-methylcholesta-8(14),22- 
dien- 3β-ol ( Karenia papilionacea , 59–66 %); 27-nor-(24R)-
4α ,24-dimethyl-5α -choles ta-8(14) ,22-dien-3β -o l 
(brevesterol;  Takayama tasmanica  84 %,  Takayama helix  71 
%,  Karenia brevis  45 %,  Karlodinium  sp.? 40 %,  Karenia 
mikimotoi  38 %); and 4α,24-dimethyl-5α-cholesta-8(14),22- 
dien- 3β-ol (gymnodinosterol;  K. mikimotoi  48 %,  Karenia 
umbella  59 %,  Karlodinium venefi cum  71–83 %). In 
 Takayama  species, fi ve steroid ketones were identifi ed, 
including for the fi rst time the 3-keto form of brevesterol and 
gymnodinosterol. Steroid ketones have also been reported in 
 Scrippsiella trochoidea  (Harvey et al.  1988 ),  Prorocentrum  
spp. (Volkman et al.  1999b ) and  Crypthecodinium cohnii  
(Withers et al.  1978 ).   

8     Sterols in the Phylum Haptophyta 

 Haptophytes usually contain from one to fi ve major sterols, 
and commonly cholesterol or 24-methylcholesta-5,22E- 
dien- 3β-ol predominates (Volkman et al.  1981 ). Moderate 
amounts of the C 29  sterols 24-ethylcholesterol and 
24-ethylcholesta-5,22E-dien-3β-ol are found in several spe-
cies (Conte et al.  1994 ). 

8.1     Class Coccolithophyceae 

 Well known examples of this class include the coccolitho-
phorids  Emiliania huxleyi  and  Gephyrocapsa oceanica . Both 
are major sources of organic matter in marine ecosystems 
and can form large blooms easily visible to satellites due to 
shedding of their coccolith scales. The sterol distributions of 
both species are very simple and are dominated (>90 %) by 
24-methylcholesta-5,22E-dien-3β-ol (Volkman et al.  1980b , 
 1995 ). The principal sterol in  Pleurochrysis carterae  and an 
unidentifi ed haptophyte strain CCMP1215 was also shown 
to be 24-methylcholesta-5,22E-dien-3β-ol by Ghosh et al. 
( 1998 ). In  E. huxleyi , the stereochemistry at C-24 has been 
shown to be 24α (Maxwell et al.  1980 ) as found also in the 
sterols of  Pleurochrysis carterae  which contains stigmas-
terol (24α-ethylcholesta-5,22E-dien-3β-ol) and  epi brassicas-
terol (Gladu et al.  1990 ).  Chrysotila lamellosa  (=  Ruttnera 
lamellosa ) also contains 24α-methylcholesta-5,22E-dien- 
3β-ol ( epi brassicasterol) as well as signifi cant amounts of 
Δ 5 - and Δ 5,22 -C 29  sterols (Rontani et al.  2004 ). Goad et al. 
( 1983 ) identifi ed 24α-methylcholesta-5,22E-dien-3β-ol as 
the major sterol of the marine haptophyte  Isochrysis 
galbana . 

  Phaeocystis pouchetii  is a major phytoplankton species in 
polar oceans and a major food source for krill (Hamm et al. 
 2001 ). Its dominant sterol (93–100 %) is 24-methylcholesta- 
5,22E-dien-3β-ol irrespective of culture age or life stage 
(Nichols et al.  1991 ). Small amounts of cholesterol (8 %) 
were found in one strain (A1-3) and strain DE10 contained 
24-methylenecholesterol (Nichols et al.  1991 ). In marked 
contrast to the above results, Ghosh et al. ( 1998 ) showed that 
 Prymnesium parvum  contained only small amounts of ste-
rols consisting solely of cholesterol. 

 Hymenosulphate, a novel sterol sulphate with Ca-releasing 
activity has been isolated from the cultured marine hapto-
phyte  Hymenomonas  sp. by Kobayashi ( 1989 ).  

8.2     Class Pavlovophyceae 

 A number of papers have reported the unusual sterol compo-
sitions of species in the genus  Pavlova . Volkman et al. ( 1990 ) 
reported the presence of 4-methylsterols, 5α(H)-stanols, 
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4-desmethyl sterols and unusual dihydroxylated sterols called 
pavlovols (Fig.  5 ). The major 4-desmethyl sterol in each of 
the species analysed by these authors was 24-ethylcholesta-
5,22E-dien-3β-ol which occurred with smaller amounts of 
24-ethylcholesterol and in some species cholesterol. Two spe-
cies also contained signifi cant amounts of the 5α(H)-stanol 
24-ethyl-5α-cholest-22E-en-3β-ol. The major 4-methyl sterol 
was a C 30  sterol identifi ed as 4α-methyl- 24-ethyl-5α-cholest-
22E-en-3β-ol. This sterol has a similar structure to dinosterol, 
which occurs in dinofl agellates, except that the side-chain 
contains a 24-ethyl group rather than 23,24-dimethyl substi-
tution (Fig.  5 ). Minor 4- methylsterols included 4,24-dimethyl-
5α-cholest-22E-en-3β-ol and the fully saturated stanol 
4,24-dimethylcholestanol. 

 Pavlovols have a second hydroxyl group at C-4 and a C-4 
methyl group (Fig.  5 ) in the sterol ring system (e.g. Volkman 
et al.  1990 ; Gladu et al.  1991a ; Patterson et al.  1992 ; Véron 
et al.  1996 ; Rauter et al.  2005 ) and have been proposed as a 
chemotaxonomic marker for this subgroup of haptophytes 
(Volkman et al.  1997 ). Mass spectra of the TMSi-ether deriv-
atives of 4α,24-dimethyl-5α-cholestan-3β,4β-diol and 
4α-methyl,24-ethyl-5α-cholestan-3β,4β-diol found in 
 Pavlova pinguis  and 4α,24-dimethyl-5α-cholest-22E-en-
3β,4β-diol found in  Diacronema vlkianum  can be found in 
Volkman et al. ( 1997 ).   

9     Sterols in the Phylum Euglenophyta 

9.1     Class Euglenophyceae 

 This genus was established by Ehrenberg to accommodate 
those euglenoid organisms that have eyespots.  Euglena  
( Astasia )  longa , a natural mutant of  Euglena  that has lost all 
potential for photosynthesis contains cycloartenol metabo-
lites indicative of biosynthesis by a plant-type mechanism 
(Anding et al.  1971 ; Rohmer and Brandt  1973 ) since lanos-
terol was not detected (Anding et al.  1971 ). Anding and 
Ourisson ( 1973 ) reported the presence of ergosterol in both 
light-grown and dark-grown  Euglena gracilis  and an unusual 
4-methylsterol 4α,24-dimethyl-5α-cholest-8(9)-en-3β-ol has 
also been reported (Anding et al.  1971 ). 

 Brandt et al. ( 1970 ) found that free sterols predominate 
over bound sterols in light-grown green-coloured  E. gracilis  
whereas in dark-grown white cells the reverse is true. The 
free sterols of green cells consist almost exclusively of Δ 7 - 
sterols (98 %) while in white cells Δ 5 -sterols make up 31 % 
of the sterols. 

 Zielinski et al. ( 1982 ) reported that the freshwater 
 Eutreptia viridis  contained 18 different sterols including a 
novel sterol with the rare Δ 23 -unsaturation 24-ethylcholesta- 
5,7,23Z-trien-3β-ol. The free sterols were dominated by Δ 5,7 - 
diunsaturated sterols (ca. 80 %).   

10     Sterols in the Phylum Cryptophyta 

10.1     Class Cryptophyceae 

 The Cryptophyceae is a class of algae within the Pyrrhophyta 
in some systems of classifi cation. Cryptomonads are aquatic 
unicellular eukaryotes that inhabit both marine and freshwa-
ter environments. Most cryptomonads are photosynthetic 
(and are thus also referred to as cryptophytes) and possess 
plastids that are very diverse in pigmentation. Cyptomonads 
are common in freshwater systems but can also be found in 
marine and brackish habitats. Each cell is around 10–50 μm 
in size and fl attened in shape, with typically two slightly 
unequal fl agella. 

 Dunstan et al. ( 2005 ) examined the sterols of seven cryp-
tophytes. The major sterol in  Rhodomonas  spp. (CS-215, 
CS-694),  Rhodomonas salina  (CS-174, CS-24), and 
 Proteomonas sulcata  (CS-412) was 24-methylcholesta- 
5,22E-dien-3β-ol (91–99 % of total sterols) together with 
small amounts of cholesterol (1–2.7 %).  Rhodomonas macu-
lata  (CS-85) had the same two sterols, but cholesterol was 
more abundant (17.7 %).  Chroomonas placoidea  (CS-200) 
contained in addition the C 29  sterol 24-ethylcholesta-5,22E- 
dien- 3β-ol (35.5 %).   

11     Sterols in the Phylum Glaucophyta 

11.1     Class Glaucophyceae 

 Glaucophytes (or Glaucocystophytes) are freshwater algae 
that have an almost intact cyanobacterium, referred to as a 
cyanelle, as the photosynthetic organelle. Heimann et al. 
( 1997 ) reported the presence of “sitosterol” and an identifi ed 
sterol in  Cyanophora paradoxa . A more recent analysis by 
Leblond et al. ( 2011 ) found that  C. paradoxa  and  Glaucocystis 
nostochinearum  contained very simple sterol distributions 
consisting of sterols more typically found in higher plants: 
24-methylcholesterol, 24-ethylcholesta-5,22E-dien-3β-ol, 
and 24-ethylcholesterol.   

12     Sterols in the Phylum Picozoa 

 Picoeukaryotes (defi ned as cells <3 μm) are now known to be 
ubiquitous in surface waters of all oceans and are likely to be 
the most abundant eukaryotes in the sea. Most are photo-
trophic, but some are heterotrophic, especially in oligotro-
phic coastal sites. In 2007, a novel and widespread 
picoeukaryotic lineage with affi nities to cryptophytes and 
katablepharids, the “picobiliphytes” was reported from 18S 
environmental clone library sequences (Not et al.  2007 ). 
Until the work of Seenivasan et al. ( 2013 ) these heterotrophs 
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(which may be related to glaucocystophytes) had remained 
uncultured. These authors described  Picomonas judraskeda  
gen. et sp. nov., from marine coastal surface waters, and 
established a new phylum, Picozoa. No sterol data are avail-
able as yet from cultures of these ecologically important 
organisms.  

13     Sterols in the Phylum Cercozoa 

13.1     Class Chlorarachniophyceae 

 Chlorarachniophytes are marine unicellular algae that pos-
sess secondary plastids of green algal origin. Although 
chlorarachniophytes are a small group (the phylum of 
Chlorarachniophyta contains 14 species in 8 genera), they 
have variable and complex life cycles that include amoe-
boid, coccoid, and/or fl agellate cells (Hirakawa et al.  2011 ). 
They are typically mixotrophic and photosynthetic and 
have the form of small amoebae, with branching cytoplas-
mic extensions that capture prey and connect the cells 
together. The amoeboid morphology may be the result of 
secondary endosymbiosis of a green alga by a nonphoto-
synthetic amoeba or amoebofl agellate. The only sterols 
present in genera  Bigelowiella ,  Gymnochlora , and 
 Lotharella  were identifi ed as 24α-methylcholesta-5,22E-
dien-3β-ol) and one of the epimeric pair poriferasterol/stig-
masterol (24-ethylcholesta- 5,22E-dien-3β-ol) (Leblond 
et al.  2005 ).   

14     Sterols in the Phylum 
Heterokontophyta (Ochrophyta) 

 The heterokonts (or stramenopiles) are chromists with chlo-
roplasts surrounded by four membranes. There are more than 
100,000 known species. Given the diversity of species pres-
ent and wide variety of evolutionary paths involved (Leipe 
et al.  1994 ) it is not surprising that a great diversity of sterol 
patterns exist for this Phylum. 

14.1     Diatom Classes 

 Diatoms are photosynthetic secondary endosymbionts found 
throughout marine and freshwater environments, and are 
believed to be responsible for around one-fi fth of the primary 
productivity on Earth (Bowler et al.  2008  and refs therein). 
In spite of the fact that the pennate and centric lineages have 
only been diverging for 90 million years, their genome struc-
tures are dramatically different and a substantial fraction of 
genes (ca. 40 %) are not shared. 

 The sterols of diatoms have been the best studied of all the 
algal classes with data available for more than 100 species 
(e.g. Orcutt and Patterson  1975 ; Volkman  1986 ; Barrett et al. 
 1995 ; Rampen et al.  2009a ,  b ,  c ,  2010 ). Rampen et al. ( 2010 ) 
analysed the sterols of over 100 diatom strains and detected 
44 different sterols of which 11 were considered to be major 
sterols (i.e. >10 % of total sterols). Two-thirds of the species 
contained 24-methylenecholesterol, but 24α-methylcholesta- 
5,22E-dien-3β-ol ( epi brassicasterol) which is often used as a 
diatom marker was only the fi fth most common sterol. 
Cholesterol was abundant in a few species, but in  Amphora  
species 24-ethylcholesta-5,22E-dien-3β-ol predominates 
(Gladu et al.  1991b ). 

 Some diatoms have been reported to contain large 
amounts of Δ 7 -unsaturated sterols (e.g.  Thassiosira 
pseudonana ,  Odontella  ( Biddulphia )  aurita  and  Fragilaria  
sp.; Orcutt and Patterson  1975 ), but this seems to be rare. 
Giner and Wikfors ( 2011 ) have recently reported Δ 7  sterols 
in  Ditylum brightwellii . 

 A few diatoms lack appreciable amounts of C-24 alkyl-
ated sterols. One example is  Biddulphia sinensis  (now 
 Odontella sinensis ) which contains mostly cholesta-5,22E- 
dien- 3β-ol (Volkman et al.  1980a ). In contrast  Biddulphia 
aurita  (now  Odontella aurita ) analysed by Orcutt and 
Patterson ( 1975 ) contained none of this sterol and among the 
six identifi ed sterols were the uncommon sterols 
24-methylcholest-8(9)-en-3β-ol (22.8 %) and 24-methyl-5α- 
cholesta-7,22E-dien-3β-ol (18 %). 

 One interesting report is the presence of the C 30  sterol gor-
gosterol in species from the genus  Delphineis  (Rampen et al. 
 2009c ). Figure  6  shows a chromatogram of the sterols found 
in this alga. This sterol contains a cyclopropyl group in the 
side-chain which is more commonly associated with the ste-
rols of jellyfi sh and highlights the diversity of sterol biosyn-
thesis pathways developed in these microalgae. Giner and 
Wikfors ( 2011 ) have confi rmed using NMR that the pennate 
diatom  Delphineis  sp. (CCMP 1095) contains gorgosterol, as 
well as the 27-nor C 27  sterol occelasterol.

   Volkman et al. ( 1993 ) showed that a strain of  Navicula  sp. 
(CS-146) contained small amounts of the dinofl agellate 
marker sterol dinosterol plus other 4-methyl sterols including 
4α,24-dimethyl-5α-cholest-22E-en-3β-ol (9.7–12.6 %), 
4α,24-dimethyl-5α-cholestan-3β-ol (2.0–3.4 %) and 4α,23,24-
trimethyl-5α-cholestan-3β-ol (dinostanol or its C-23/C-24 epi-
mer; 0.3–0.6 %). The 4-desmethyl sterol fraction included the 
common diatom sterol 24-methylcholesta- 5,22E-dien-3β-ol 
(20.2–30.5 %), but the major sterol was 24-ethylcholesterol 
(31.0–38.6 %) more usually associated with higher plants. 

 Sterols containing 23-methyl group rather than the more 
usual 24-methyl group are also found in diatoms. 
23-Methylcholesta-5,22E-dien-3β-ol was found in 14 out of 
106 diatom cultures studied by Rampen et al. ( 2009a ) thus 
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confi rming earlier reports of such sterols in diatoms (Barrett 
et al.  1995 ). These data confi rm that this unusual pattern of 
side-chain alkylation is not restricted to the dinofl agellates. 
Rampen et al. ( 2009b ) further showed that diatoms are a 
likely source of steroidal hydrocarbons containing 
23,24-dimethyl alkylation in sediments and petroleum since 
their precursor 4-desmethyl-23,24-dimethyl sterols were 
present in 22 of the cultures they studied. 

 Giner and Wikfors ( 2011 ) re-examined the occurrence of 
sterols with 23,24-dimethyl side-chains in diatoms. The 
centric diatom  Triceratium dubium  (=  Biddulphia  sp. CCMP 
147) contained a high proportion of 23-methylated sterols 
of which 23,24-dimethylcholesta-5,22E-dien-3β-ol was 
37.2 % of total sterols. They also showed that the sterol 
composition of  Ditylum brightwellii  (CCMP 358) is very 
complex and includes 5α(H)-stanols and Δ 7 -sterols, in addi-
tion to the predominant Δ 5 -sterols. A pair of previously 
unknown sterols, 24-ethylcholesta-5,24,28-trien-3β-ol and 
24-ethylcholesta- 24,28-dien-3β-ol, were also detected and 
their structures determined by NMR and by synthesis 
of the former sterol derived from saringosterol. Also 
detected in  D. brightwellii  was the previously unknown 
23-methyl-5α-cholesta-7,22-dien-3β-ol.  

14.2     Class Eustigmatophyceae 

 Eustigmatophytes are a small group of coccoid microalgae. 
Most are freshwater or live in soils, with the main marine 
species represented by the genus  Nannochloropsis . Their 
colour is distinctive due to the presence of the accessory pig-
ments violaxanthin and β-carotene. Eustigmatophytes con-
tain unusual long chain C 28 –C 32   n -alkyl-1,15-diols, and the 

corresponding hydroxy ketones (Volkman et al.  1992 ,  1999a ; 
Méjanelle et al.  2003 ). 

 Sterol data for this algal class are rather limited. Volkman 
et al. ( 1999a ) analysed three freshwater species  Eustigmatos 
vischeri ,  Vischeria helvetica  and  Vischeria punctata  and 
demonstrated that the sterol distributions consisted predomi-
nantly of 24-ethylcholesterol with small amounts of choles-
terol, 24-methylcholesterol, 
24-ethylcholesta-5,22E-dien-3β-ol and isofucosterol. 

 The high proportion of C 29  sterols in freshwater species is 
in marked contrast to marine species from the genus 
 Nannochloropsis  which contain a dominance of cholesterol 
(Volkman et al.  1992 ; Patterson et al.  1994 ; Méjanelle et al. 
 2003 ). Volkman et al. ( 1992 ) studied the lipids of  N. oculata , 
 N. salina  and an un-named species and found simple distri-
butions of sterols dominated by cholesterol (>75 %) together 
with small amounts of the C 29  sterols 24- ethylcholesta-5,24(28)
E-dien-3β-ol (fucosterol) and 24-ethylcholesta-5,24(28)
Z-dien-3β-ol (isofucosterol).  N. salina  also contained 
24- ethylcholesterol. The sterol composition of  N. gaditana  is 
similar with a predominance of cholesterol and lesser 
amounts of 24-ethylcholesterol (Méjanelle et al.  2003 ). 
Véron et al. ( 1996 ) showed that the sterols in  N. oculata  were 
mostly esterifi ed rather than being present as free sterols. 

 The value of sterols as a chemotaxonomic tool was dem-
onstrated by Gladu et al. ( 1995 ) who studied strain UTEX 
2341 which had previously been identifi ed as  Chlorella 
minutissima . This strain contained cholesterol as the princi-
pal sterol along with 24-methylenecholesterol, fucosterol, 
and isofucosterol which was inconsistent with any of 35 
 Chlorella  strains analyzed at that time. This fi nding and 
other data showed that the strain was actually a 
eustigmatophyte.  
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  Fig. 6    Chromatogram showing the main 
sterols present in  Delphineis  sp. CCMP 
1095. ( I ) Cholesta-5,22E-dien-3β-ol; ( II ) 
24-Methylcholesta-5,22E-dien-3β-ol; ( III ) 
23,24-Dimethylcholesta-5,22E-dien-3β-ol; 
( IV ) 22,23-Methylene-23,24-dimethylcholest- 
5-en-3β-ol (gorgosterol) with structures of the 
major sterols (From Rampen et al.,  2009c )       
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14.3     Class Synurophyceae 

 The Synurophyceae are keterokonts closely related to the 
Chrysophyceae. Both have a long “fl immer” fl agellum and a 
short “whiplash” fl agellum. Fucoxanthin is the main pigment 
responsible for their “golden brown” colouration. 
Synurophytes have bristles and scales which are taxon- 
specifi c. Silicifi ed resting stages called stomatocysts are 
unique to the Chrysophyceae and Synurophyceae and may 
be preserved in sediments facilitating their use as palaeoen-
vironmental indicators. The oldest silicifi ed scales and bris-
tles are found in Middle Eocene freshwater sediments from 
northwest Canada, but the oldest stomatocysts have been 
found in Early Cretaceous marine sediments from the 
Southern Ocean. 

 An early study by Collins and Kalnins ( 1969 ) of the ste-
rols in  Synura petersenii  (then assigned to the Chrysophyta) 
identifi ed only two sterols identifi ed as cholesterol and 
sitosterol.  

14.4     Class Chrysophyceae 

 Chrysophytes have been subject to considerable revision 
with many species moved to other classes such as the closely 
related Synurophyceae and Pelagophyceae (Jordan and 
Iwataki  2012 ). One of the fi rst lipid studies of  Ochromonas 
danica  was by Halevy et al. ( 1966 ) who found four sterols 
and identifi ed the C 28  sterol ergosterol and C 29  sterol 
24-ethylcholesta-5,22E-dien-3β-ol (reported as the 24α iso-
mer stigmasterol). Further work on  Ochromonas danica  and 
 Poteriochromonas  ( Ochromonas )  malhamensis  was carried 
out by Gershengorn et al. ( 1968 ) who found cycloartenol and 
24-methylenecycloartanol but no lanosterol thus providing 
evidence of the plant-type biosynthetic pathway used by 
these algae (Fig.  2 ). The C 29  sterol 24β-ethylcholesta-5,22E- 
dien- 3β-ol (poriferasterol) was identifi ed as the major sterol. 
Melting points were used to defi ne the stereochemistry as 
24β which is opposite to the 24α stereochemistry implied by 
the identifi cation of stigmasterol by Halevy et al. ( 1966 ). The 
C 28  sterol 24β-methylcholesta-5,22E-dien-3β-ol (brassicast-
erol) has been identifi ed in an unidentifi ed species assigned 
to the order Sarcinochrysidales (Chrysophyceae) (Rohmer 
et al.  1980 ; Kokke et al.  1984 ). 

 The sterols of  Ochromonas danica  have been identifi ed as 
ergosterol, brassicasterol, 22-dihydrobrassicasterol, clionas-
terol, poriferasterol, and probably 7-dehydroporiferasterol. 
By contrast  Poteriochromonas malhamensis  contains only 
poriferasterol as the major sterol component. 

  Poteriochromonas  ( Ochromonas )  malhamensis  was one 
of the fi rst species used to probe the biosynthetic pathways 
occurring in microalgae. For example, Knapp et al. ( 1971 ) 
were able to show that the three 24-ethylidene sterols fucos-

terol, iso-fucosterol and 24-ethyl-5α-cholesta-7,24(28)-dien- 
3β- ol could all be transformed to poriferasterol, by  P. 
malhamensis , but with varying degrees of effi ciency, 

 Billard et al. ( 1990 ) showed that the C 29  sterols 
24-ethylcholesta-5,22E-dien-3β-ol, 24-ethylcholesterol and 
fucosterol predominated in the genera  Chrydoderma , 
 Chrysowaernella ,  Chrysomeris  and  Giraudyopsis . The sta-
tus of the fi rst genus is uncertain, but the latter three are now 
classifi ed in the class Chrysomerophyceae. This is in marked 
contrast to the sterols found in  Sarcinochrysis  and 
 Nematochrysopsis  which contain the C 30  sterol 24- n - 
propylidenecholesterol (previously assigned to the 
Chrysophyceae, but now considered to be part of the 
Pelagophyceae). 

 A paleoenvironmental application by Soma et al. ( 2007 ) 
linked the profi le of 24-ethylcholesta-5,22E-dien-3β-ol in 
steryl chlorin esters (SCEs) in sediments of Lake Baikal over 
the past 28,000 years with the reported distribution of chryso-
phyte cysts during the Holocene.  

14.5     Class Chrysomerophyceae 

  Chrysomeris ramosa  contains 24-ethylcholesterol as the 
major sterol together with 24-ethylcholesta-5,22E-dien- 
3β-ol, 24-methylcholesterol and cholesterol (Billard et al. 
 1990 ), but percentage data were not provided.  Giraudyopsis 
stellifer  also contained 24-ethylcholesterol as the major ste-
rol, but other sterols included fucosterol, 24-ethylcholesta- 
5,22E-dien-3β-ol, 24-methylenecholesterol, 
24-methylcholesta-5,22E-dien-3β-ol and cholesterol (Billard 
et al.  1990 ).  

14.6     Class Pelagophyceae 

 These small unicellular algae were formerly grouped with 
Chrysophyceae and are classifi ed into two orders: 
Pelagomonadales and Sarcinochrysidales (Giner et al.  2009 ). 
These are the only algae known to date that synthesize the 
C 30  sterol 24-propylidene cholesterol. In a comprehensive 
study, Giner et al. ( 2009 ) analysed the sterol compositions of 
42 strains of pelagophyte algae including 17 strains of 
 Aureococcus anophagefferens  using a combination of GC 
and HPLC techniques.  1 H-NMR data were obtained for 17 
strains. All strains analyzed contained 
24- propylidenecholesterol. All strains from the order 
Sarcinochrysidales contained the (24E)-isomer, while all 
strains in the order Pelagomonadales contained the 
(24Z)-isomer, either alone or together with the (24E)-isomer. 
The occurrence of Δ 22  and 24α-sterols was limited to the 
Sarcinochrysidales. The fi rst occurrence of 
24-n-propylcholesta-5,22E-dien-3β-ol in an alga, CCMP 
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1410, was reported. Traces of the rare sterol 26,26-dimethyl- 
24-methylenecholesterol were detected in  Aureococcus 
anophagefferens , and the (25R)-confi guration was proposed, 
based on biosynthetic considerations. Traces of a novel ste-
rol, 24-propylidenecholesta-5,25-dien-3β-ol, were detected 
in several species. Raederstorff and Rohmer ( 1984 ) analysed 
the sterols of  Nematochrvsopsis roscoffensis  (= N. marina ) 
and also found the C 30  sterols 24(E)-24- n -propylidene-
cholesterol and 24- n -propylcholesterol.  

14.7     Class Xanthophyceae 

 There are about 600 species and 100 families of 
Xanthophyceae, but most are very rare. Common genera 
include  Botrydium ,  Tribonema  and  Vaucheria . These 
yellow- green microalgae are mostly found in fresh water or 
wet soil, but a few are marine. They can be confused with 
green algae because of their pigmentation, but they are actu-
ally secondary endosymbionts that evolved from protists 
that engulfed a microalga and assimilated its chloroplasts. 
Most xanthophytes are coccoid or fi lamentous, but some are 
siphonous. 18S ribosomal RNA gene analysis indicates that 
the Xanthophyceae is most closely related to the 
Phaeophyceae and that the class may be paraphyletic (Potter 
et al.  1997 ). 

 Mercer et al. ( 1974 ) studied the sterols of  Botrydium 
granulatum ,  Tribonema aequale  and  Monodus subterraneus  
(=  Monodus subterranea ). In each case, the major sterols 
were cholesterol and 24β-ethylcholesterol (clionasterol), 
and their proportions did not vary with age of the cultures. 
Small amounts of cycloartenol and 24-methylenecycloarta-
nol were also found in all three algae. The biosynthesis of 
clionasterol in  M. subterranea  was studied by Mercer and 
Harries ( 1975 ). Clionasterol grown in the presence of 
labelled methionine showed the participation of a 
24- ethylidene sterol intermediate in its biosynthesis. Data 
from cells incubated with labelled mevalonic acid showed 
that the 24-ethylidene sterol intermediate is reduced directly 
to clionasterol and not isomerized to a Δ 24 -sterol which is 
then reduced.  

14.8     Class Dictyochophyceae 

  Dictyocha  is the generic name for all extant silicofl agellates, 
or for species in which the basket-shaped skeleton con-
sists of a single ring with several connecting bars 
(Kristiansen and Preisig  2001 ). Few data are available for 
these microalgae. Patterson and Van Valkenburg ( 1990 ) 
analysed the sterols from cultured  Dictyocha fi bula  and 
found only 4-methyl- cholesta-5,22E-dien-3β-ol and 
24-methylenecholesterol.  

14.9     Class Raphidophyceae 

 Marine and freshwater raphidophytes form a monophyletic 
group and 18S ribosomal RNA gene sequences suggest that 
the Raphidophyceae is a sister taxon to the Phaeophyceae- 
Xanthophyceae clades, but the bootstrap value was only 40 
% (Potter et al.  1997 ). These microalgae are of interest for 
their propensity to form harmful algal blooms in both marine 
(brown pigmented species) and freshwater (green pigmented 
species) environments. The lipids of Raphidophyceae micro-
algae still remain understudied and the taxonomy is not 
clearly established. Fatty acids and pigments have been used 
as chemotaxonomic markers for these algae (Mostaert et al. 
 1998 ) as well as sterols (Nichols et al.  1987 ; Patterson and 
Van Valkenburg  1990 ; Marshall et al.  2002 ; Giner et al. 
 2008 ; Leblond et al.  2013 ). 

 Nichols et al. ( 1987 ) reported data on the sterols and fatty 
acids of the red tide fl agellates  Heterosigma akashiwo  and 
 Chattonella antiqua  (= Chattonella marina var. antiqua ) and 
this work was expanded by Marshall et al. ( 2002 ) who 
reported the sterols and fatty acids in six marine raphido-
phyte algae. The dominant sterol in  Chattonella  spp.,  H. 
akashiwo  and  Fibrocapsa japonica  was identifi ed as 
24- ethylcholesterol, but the confi guration at C-24 was not 
specifi ed at that time (Nichols et al.  1987 ; Marshall et al. 
 2002 ); a reinvestigation of the sterols of  C. marina  using  1 H 
NMR spectrometry indicated the presence of the 
24α-confi guration (sitosterol) (Giner et al.  2008 ). The 
 Chattonella  species also contained small amounts of the 
uncommon sterol cholest-8(9)-en-3β-ol (1.8–5 %).  F. japon-
ica  contained the highest proportion of 24-ethylcholesterol 
(84–92 %) with small amounts of cholesterol (5–11 %) and 
isofucosterol (24-ethylcholesta-5,24(28)Z-dien-3β-ol; ca. 2 
%; Marshall et al.  2002 ). 

 Giner et al. ( 2008 ) also analysed the sterols and fatty acid 
compositions of three harmful algal species previously clas-
sifi ed in the genus  Chattonella  (Raphidophyceae). These 
were “ Chloromorum toxicum ” (ex a North American strain 
identifi ed originally as  Chattonella  cf.  verruculosa , and 
probably a member of the Raphidophyceae; Edvardsen et al 
 2007 ),  Verrucophora farcimen  (=  Pseudochattonella farci-
men ; Dictyochophyceae), and  Verrucophora verruculosa  (= 
 Pseudochattonella verruculosa ; Dictyochophyceae).  C. toxi-
cum  contained the 24β-ethyl sterols, poriferasterol 
(24β-ethylcholesta-5,22E-dien-3β-ol) and clionasterol 
(24β-ethylcholesterol), as its major sterols. In contrast, the 
stereochemistry of the 24-ethyl sterols of  Chattonella marina  
and  Heterosigma akashiwo , was determined to be 24α and 
24β, respectively (Giner et al.  2008 ). Both  Pseudochattonella  
( Verrucophora ) strains contained the 27-nor C 27  sterol 
occelasterol as the only detected sterol. 

 Patterson and Van Valkenburg ( 1990 ) reported that 
 Olisthodiscus luteus  contained 24-ethylcholesterol, 
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24- ethylcholestanol, 24-methylcholesterol and cholesterol. 
The presence of a fully saturated stanol in microalgae is 
unusual. The only sterol analysis of a freshwater species is 
by Leblond et al. ( 2013 ) who reported sterol compositions 
for 21 isolates of the green-pigmented, raphidophyte 
 Gonyostomum semen  from Scandinavian lakes. All con-
tained the C 29  sterols 24-ethylcholesta-5,22E-dien-3β-ol and 
24-ethylcholesterol as major components together with 
smaller amounts of 24-methylcholesterol. The same three 
sterols occur in higher plants.   

15     Conclusions 

 The published literature on the sterol compositions of micro-
algae continues to increase but it is still far from comprehen-
sive. Extensive data are now available for green algae, 
diatoms and dinofl agellates from which it has been possible 
to assemble groupings of species containing common sterol 
distributions. In some cases these align with taxonomic 
groupings but in others species that are only distantly related 
can have similar compositions. Unfortunately, sterol data for 
some algal classes are still restricted to just a handful of spe-
cies and some supposed characteristics may be challenged as 
additional compositional data are obtained. It is apparent that 
some earlier sterol identifi cations are now known to be in 
error (particularly with regard to C-24 stereochemistry) and 
many sterols are more widely distributed than had been 
thought. This should not be a surprise since sterol biosynthe-
sis is an ancient microalgal trait and variations in biosynthe-
sis are to be expected over such geologically long time 
periods. As sequence data become more readily available it 
will be useful to test these sterol groupings against taxono-
mies defi ned from genetic data and to discover what changes 
in genetic makeup are responsible for variations in sterol 
compositions.     
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