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    Abstract     The tumor microenvironment (TME) represents a milieu that enables 
tumor cells to acquire the hallmarks of cancer. The TME is heterogeneous in com-
position and consists of cellular components, growth factors, proteases, and extra-
cellular matrix. Concerted interactions between genetically altered tumor cells and 
genetically stable intratumoral stromal cells result in an “activated/reprogramed” 
stroma that promotes carcinogenesis by contributing to infl ammation, immune sup-
pression, therapeutic resistance, and generating premetastatic niches that support 
the initiation and establishment of distant metastasis. The lungs present a unique 
milieu in which tumors progress in collusion with the TME, as evidenced by regions 
of aberrant angiogenesis, acidosis and hypoxia. Infl ammation plays an important 
role in the pathogenesis of lung cancer, and pulmonary disorders in lung cancer 
patients such as chronic obstructive pulmonary disease (COPD) and emphysema, 
constitute comorbid conditions and are independent risk factors for lung cancer. The 
TME also contributes to immune suppression, induces epithelial-to-mesenchymal 
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transition (EMT) and diminishes effi cacy of chemotherapies. Thus, the TME has 
begun to emerge as the “Achilles heel” of the disease, and constitutes an attractive 
target for anti-cancer therapy. Drugs targeting the components of the TME are mak-
ing their way into clinical trials. Here, we will focus on recent advances and emerg-
ing concepts regarding the intriguing role of the TME in lung cancer progression, 
and discuss future directions in the context of novel diagnostic and therapeutic 
opportunities.  
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1         The Tumor Microenvironment: An Overview 

 The TME has been recognized as a major contributor to tumor  progression and 
metastasis   [ 1 – 4 ]. The TME is heterogeneous in composition, and concerted hetero-
typic reciprocal interactions between genetically altered tumor epithelial cells and 
intratumoral stromal cells regulate major hallmarks of cancer including angiogen-
esis, infl ammation, immune suppression, epithelial-to-mesenchymal transition 
(EMT), and metastasis [ 1 ,  3 ]. Importantly, strategies that target the TME are being 
considered in  cancer prevention    [ 5 – 7 ]. 
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 The  stromal cells   recruited to the tumor beds are “educated” and “reprogramed” 
by the paracrine activity of tumor epithelial cells to acquire an “activated” protu-
morigenic  phenotype   [ 8 – 10 ]. Examples of tumor-activated stromal cells include 
macrophages (classically activated M1 to alternatively-activated M2 phenotype) 
[ 11 ,  12 ], neutrophils (N1 to N2 conversion) [ 11 ], fi broblasts (conversion to acti-
vated cancer-associated fi broblasts (CAFs)) [ 13 ], endothelial cells [ 14 ] and immune 
cells [ 15 ]. These activated stromal cells promote tumor growth and have begun to 
emerge as attractive targets for anti-cancer therapy [ 1 ,  5 ,  16 ,  17 ]. 

 The “ angiogenic switch”   is a critical step in tumor growth and in the progression 
of micrometastasis to lethal macrometastasis [ 1 ,  18 ,  19 ]. The molecular players and 
mechanisms underlying the angiogenic switch have been intensely investigated, and 
a variety of pro-angiogenic factors and angiogenic inhibitors that play critical roles 
during the angiogenic switch have been identifi ed and characterized. Insights from 
these investigations have led to the development of various pro- and anti- angiogenic 
therapies that are currently tested in clinical trials or are already in clinical use. 
Inhibition of  angiogenesis   by neutralizing antibodies against vascular endothelial 
growth factor (VEGF) is effective at reducing progression of certain tumors despite 
having little effect on most tumor cells [ 7 ]. In addition to endothelial cells, the infl am-
matory cells, particularly cells of the myeloid lineages (monocytes, macrophages, 
and neutrophils) and CAFs progressively accumulate in tumors, where they establish 
an infl ammatory protumorigenic TME [ 12 ,  20 ].  Infl ammation   is now accepted as an 
underlying or enabling characteristic that contributes to key hallmarks of cancer, and 
non-steroidal anti-infl ammatory drugs have shown a reduction in cancer risk [ 21 ,  22 ] 
and may prevent distant metastasis [ 23 ].  Myeloid cells   also secrete VEGF, basic 
fi broblast growth factor (bFGF), platelet-derived growth factor (PDGF), placental 
growth factor (PIGF), and Bv8, that contribute to vascular remodeling during tumor 
progression [ 24 ,  25 ]. Myeloid cells also secrete proteases such as urokinase-type 
plasminogen activator (uPA) and matrix metalloproteinases (MMPs), which degrade 
extracellular matrix (ECM) components to release VEGF and other sequestered 
mitogenic factors that facilitate endothelial migration and tumor invasion [ 26 ]. 

  Tumor-associated macrophages (TAMs)         accumulate in regions of hypoxia [ 27 ] 
and support multiple aspects of tumor progression [ 28 ]. Studies from breast cancer 
and glioblastoma have shown that TAMs promote invasive cellular phenotypes [ 29 ], 
through a  paracrine signaling loop   that involves tumor-derived colony-stimulating 
factor 1 (CSF-1) and macrophage-derived epidermal growth factor (EGF) [ 30 – 32 ]. 
TAMs also secrete proteases, such as cysteine cathepsins, which support tumor pro-
gression and confer therapeutic resistance [ 33 ,  34 ]. The therapeutic potential of tar-
geting TAMs has been demonstrated in breast cancer and in glioblastoma [ 6 ,  34 ,  35 ]. 

 The  stromal cells   also generate infl ammatory conditions that contribute to tumor-
igenesis [ 20 ,  36 ,  37 ]. The infl ammation-responsive Ikappa B kinase (IKK)-beta and 
its target nuclear factor kappa B (NF-κB) have important tumor-promoting func-
tions within malignant cells and infl ammatory cells (macrophages, lymphocytes) 
[ 38 ]. From a clinical perspective, a strong tumor-associated infl ammatory response 
can be initiated by cancer therapy. For example,  radiation and chemotherapy   cause 
massive necrotic death of cancer cells and surrounding tissues, which in turn trigger 
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an infl ammatory reaction. Therapy-induced infl ammation may have tumor-promot-
ing functions [ 39 ,  40 ], or may enhance the cross-presentation of tumor antigens and 
subsequent induction of an anti-tumor immune response [ 41 ]. 

 Cells and molecules of the immune system are a fundamental component of the 
TME. The tumor-infi ltrating immune cells constitute two distinct compartments 
mediating the innate and adaptive immune responses. The  innate immune system      
consists of phagocytes including neutrophils, mast cells/macrophages (CD68 + ), den-
dritic cells (DC), natural killer NK cells (CD56 +  CD3 – ), and NK T cells (CD56 +  CD3 + ), 
and mainly serves as the fi rst-line defense against both foreign pathogens and trans-
formed cells. However, the tumor “reprogramed” innate immune system stimulates 
tumor growth by promoting tumor angiogenesis, invasion, and metastasis; whereas the 
adaptive immune system tends to repress tumor growth. The  adaptive immune system      
is mediated by two major T lymphocyte subsets; cytotoxic T cells (CTL) (CD8 + ) and 
helper T cells (Th) (CD4 + ), and B cells (CD20 + ). The adaptive immune system is the 
second-line defense, acting via antigen-specifi c molecules and requiring clonal expan-
sion following the recognition of foreign antigens. However, in the TME, cancer cells 
often induce an immunosuppressive microenvironment, which favors the development 
of immunosuppressive populations of immune cells, such as myeloid-derived suppres-
sor cells (MDSCs) and regulatory T cells (Treg). Understanding the complexity of 
 immunomodulation   by tumors is important for the development of immunotherapy, 
and among the most promising approaches to activating therapeutic antitumor immu-
nity is the blockade of immune checkpoint pathways [ 42 ]. 

  MDSCs         are a heterogeneous population of immature myeloid progenitors, and 
precursors of macrophages, granulocytes and dendritic cells [ 43 ,  44 ]. In general, 
MDSCs from cancer patients express the common myeloid markers CD33 and 
CD11b, display heterogeneous expression of CD14 (monocytic) and CD15 (granu-
locytic) markers, but lack mature myeloid or lymphoid markers such as HLA-DR 
[ 45 ,  46 ]. Clinical correlation studies in breast, colorectal, pancreatic, esophageal, 
and gastric cancer patients demonstrated that MDSC levels confer an independent 
prognostic factor for survival [ 47 ,  48 ]. Since MDSCs the major regulators of the 
immune response due to their ability to suppress both the cytotoxic activities of natu-
ral killer (NK) and NKT cells, and the adaptive immune response mediated by CD4 +  
and CD8 +  T cells [ 44 ,  49 ,  50 ], this cell type has generated much attention. While the 
mechanism of NK cell inhibition is currently not well understood, multiple path-
ways are responsible for MDSC- mediated T cell suppression including: (1) produc-
tion of Arginase 1 (ARG1), which depletes L-Arginine from the microenvironment, 
and (2) production of nitric oxide synthase 2 (NOS2). Both pathways block transla-
tion of the T cell CD3 zeta chain, inhibit T cell proliferation, and promote T cell 
apoptosis [ 51 ]. Not much is known regarding upstream regulators of these suppres-
sive mediators. However recent studies have demonstrated the importance of  key 
signaling pathways   such as PI3K, Ras, JAK-STAT, and TGFβ—STAT3 signaling 
[ 52 ,  53 ]. In mice, MDSCs have been defi ned as CD11b +  Gr1 +  cells and can be sub-
divided into granulocytic (CD11b +  Ly6G +  Ly6C low ) or monocytic (CD11b +  Ly6G –
 Ly6C hi ) [ 54 ]. The mechanisms by which MDSCs are generated and contribute to 
immune suppression is being exploited for developing anti-MDSC agents [ 55 ]. 
Approaches to inhibit MDSCs include use of phosphodiesterase (PDE) inhibitors, 
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nitroaspirins, synthetic triterpenoids, COX2 inhibitors, ARG1 inhibitors, anti-glycan 
antibodies, CSF-1R antagonists, IL-17 inhibitors, and histamine-based approaches. 
In another approach, MDSCs differentiate by using all-trans retinoic acid (ATRA), 
vitamins A or D3, or IL-12 [ 56 ]. Some  compounds  , such as ATRA, PDE5 inhibitors, 
nitroaspirins (e.g. NCX-4016), or tyrosine kinase inhibitors, are being tested in clini-
cal trials to mediate suppression of MDSCs, and improve the effi cacy of immune 
modulating therapies (immune checkpoint inhibitors or cancer vaccines). Notably, 
pre-clinical evidence suggests that cancer vaccines are more effective in tumor-bear-
ing mice that have been depleted of MDSCs.  

2     TME in Lung Cancer Prognosis 

 Lung cancer is the leading cause of cancer-related deaths worldwide [ 57 ]. Lung can-
cer is generally classifi ed into two histopathological subtypes,  small-cell lung carci-
noma (SCLC)      and  non–small cell lung carcinoma (NSCLC)        . NSCLC accounts for 
80% of all lung malignancies, and the overall 5-year survival of patients with this 
disease remains approximately 15% [ 58 ]. A major research focus in lung cancer has 
been directed to cancer cell intrinsic properties [ 59 – 61 ], which has led to the discovery 
of important driver mutations and the development of targeted therapies, such as the 
receptor tyrosine kinase (RTK) inhibitors gefi tinib/erlotinib (EGFR inhibitors) and 
crizotinib (EML4-ALK inhibitor) [ 62 – 64 ]. However, these treatments benefi t only a 
small proportion (15–20%) of patients harboring these driver mutations, and acquired 
resistance to these therapies presents a major impediment to the effective treatment of 
NSCLC patients with these mutations [ 65 – 67 ]. More recent studies have begun to 
elucidate the prognostic and pathophysiological role of the TME in lung cancer. 

 Many studies have examined the contribution of tumor epithelial molecular mark-
ers for prognosis and guidance of cancer therapy, yet only a few have focused on the 
analysis of the tumor-associated stroma for the identifi cation of prognostic and pre-
dictive markers in cancer therapy. More recent studies have begun to  demonstrate the 
prognostic role of  TME   in cancer with the promise to advance discovery of prognos-
tic and predictive molecular markers for patient management and cancer therapy. For 
example, stromal gene signatures have been shown to predict clinical outcome and 
resistance to therapy in breast cancer [ 68 ,  69 ], and fi broblast- derived transcriptional 
signatures were associated with cancer progression and poor outcome in human 
breast and lung cancer [ 70 ,  71 ]. In patients with stage I NSCLC, the presence of 
CAFs is a poor prognostic indicator typically associated with nodal metastases and a 
higher risk of recurrence [ 72 ]. Interestingly, a specifi c 11-gene expression signature 
in CAFs stratifi ed NSCLC patients into low and high-risk groups, and was associated 
with survival [ 71 ]. Similarly, prognostic gene signatures from bulk NSCLC tissue 
analysis included prominent stromal genes such as glypican 3, ICAM-1, laminin B1, 
L-selectin, P-selectin, and SPARC [ 73 ,  74 ]. High numbers of  circulating endothelial 
cells (CECs)         and high levels of soluble CD146 (sCD146) in the plasma have been 
shown to correlate with poor prognosis and may be useful for the prediction of clini-
cal outcome in patients undergoing surgery for NSCLC [ 75 ]. 
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 Recently, several groups have demonstrated that the immune fraction of the 
TME has prognostic value in lung cancer. Elevated numbers of MDSCs have been 
associated with poor clinical outcomes [ 76 ,  77 ]. Similarly, leukocyte infi ltrates, par-
ticularly increased numbers of neutrophils, were signifi cantly associated with a 
worse outcome in patients with  bronchioalveolar carcinoma   [ 78 – 80 ].  Tumor- 
infi ltrating mature dendritic cells   have been suggested to identify patients with 
early-stage NSCLC who have a high risk of relapse [ 81 ,  82 ]. High density of stro-
mal CD56 +  NK cells was shown to be an independent factor associated with 
improved prognosis in resected NSCLC [ 81 ].  TAMs         are abundant components of 
NSCLC, and clinical data correlating the apoptotic index and/or macrophage densi-
ties and polarization status (M1/M2) with outcome in NSCLC patients has been 
recently reviewed [ 83 ]. The number of macrophages in NSCLC stroma is an inde-
pendent predictor of survival time in NSCLC patients [ 84 ]. Similarly, mast cells 
[ 85 ], cytotoxic T cells [ 86 ], and helper T cells [ 87 ] have been reported as potential 
prognostic factors following resection in patients with NSCLC. Recently, tumor-
infi ltrating FOXP3 +  Treg cells were positively correlated with intratumoral COX-2 
expression and were associated with a worse recurrence-free survival (RFS), espe-
cially among patients with node- negative NSCLC [ 88 ].  Stromal CD99 expression   
has been described as a novel prognostic marker in human NSCLC [ 89 ], and 
humoral immune response immunoglobulin kappa C (IGKC) expression in tumor-
infi ltrating plasma cells was shown to have prognostic value in NSCLC [ 90 ].  

3     TME in Lung Cancer Progression and Metastasis 

 The stroma in NSCLC is heterogeneous, comprised of many different populations 
of cells,  including   bone marrow-derived immune and infl ammatory cells, fi bro-
blasts, and endothelial  cells   (Fig.  1 ). The contribution of these cell types to tumor 
growth is illustrated below.

3.1        Cancer-Associated Fibroblasts (CAFs)         

 As is the case for many solid tumors, the TME of human NSCLC often demonstrates 
signifi cant desmoplasia, which is characterized by stromal changes depicted by the 
presence of activated stromal fi broblasts [ 91 – 93 ]. In addition, several mouse explant 
studies have suggested a pro-tumorigenic role for tumor-derived lung fi broblasts in 
NSCLCs [ 94 – 96 ]. CAFs, which differ morphologically and functionally from nor-
mal fi broblasts (NFs), exhibit similar activities with wound-activated fi broblasts, 
suggesting that the supportive and reparative roles of activated fi broblasts in wound 
healing contribute to the pro-tumorigenic activities of CAFs. The origin of CAFs is 
not clear, yet it is likely that they arise from a reprogramming of tissue resident fi bro-
blasts [ 97 ] as well as differentiate from BM cells recruited to the tumor [ 98 ]. 
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 CAFs have been reported to support tumor progression, metastasis, and chemo-
therapy  resistance by a wide variety of mechanisms, including direct paracrine support 
of cancer cells via the secretion of growth factors, cytokines, and chemokines, through 
pro-angiogenic effects, as well as by remodeling the extracellular matrix [ 99 – 102 ]. 

 A number of different mechanisms have been specifi cally reported for the pro- 
tumorigenic activity of CAFs in NSCLC. A paracrine crosstalk between fi broblasts 
and NSCLC cells involves IL-6 and TGFβ-enhanced EMT and tumor progression 
[ 97 ,  103 ]. Cross-species functional characterization of mouse and human lung 
CAFs identifi ed a secreted gene signature, and functional studies identifi ed impor-
tant roles for cardiotrophin-like cytokine factor 1 (CLCF1)-Ciliary Neurotrophic 
Factor Receptor (CNTFR) and interleukin (IL)-6–IL-6R signaling in promoting 
growth of NSCLCs [ 104 ]. A paracrine network was described, involving Insulin- 
like growth factor-II (IGFII)/IGF1 receptor (IGF1R)-Nanog signaling pathway by 
which CAFs contributed to cancer stem cell enrichment in NSCLC [ 105 ]. 
Importantly, this paracrine signaling predicted overall and relapse-free survival in 
stage I NSCLC patients. Similarly, pulmonary fi broblasts induced EMT and stem 
cell potential in NSCLC [ 106 ]. Fibroblast-derived hepatocyte growth factor (HGF) 
was shown to induce EGFR-tyrosine kinase inhibitor (TKI) resistance in NSCLC 
with EGFR-activating mutations [ 107 ,  108 ]. 

  Fig. 1    Infi ltration of  BM hematopoietic cells   in the adenocarcinoma and matched adjacent lung. 
( a ) H&E staining of lung tissue from an adenocarcinoma patient (×20 magnifi cation). ( b ) 
Representative immunofl uorescence image of tumor and matched adjacent non-neoplastic lung of 
adenocarcinoma patient stained for epithelial cells (EpCAM + ,  red ) and BM-derived hematopoietic 
cells (CD45 + ,  green ). DAPI ( blue ) was used to label cell nuclei       
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 The lack of a  single   pro-tumorigenic activity likely refl ects the heterogeneity of 
CAFs within a tumor. Although there are several markers of CAFs (e.g. α-smooth 
muscle actin (αSMA), fi broblast-activating protein (FAP), and fi broblast-specifi c 
protein (FSP)), no distinct single marker of CAFs exist, and none of the commonly 
used markers for CAFs are unique to CAFs [ 94 ]. Compounding this heterogeneity of 
 CAFs   within a tumor is the heterogeneity of CAFs among different tumors. It is 
likely that specifi c cancer cells require distinct support from CAFs. For example, in 
a recent study, metabolic reprogramming in NSCLC-CAFs was shown to correlate 
with increased glycolytic metabolism of the tumor, indicating tumor-specifi c spe-
cialization of CAFs [ 109 ].  

3.2      Endothelial Cells   

  Endothelial cells   that form the vasculature have key functions in providing nutrients 
and oxygen to the tumor. However, emerging studies have begun to describe 
“angiocrine” regulation as a major endothelial function in cancer [ 110 ]. Vascular 
endothelial cells actively participate in and regulate the infl ammatory response in 
both normal and diseased tissues [ 111 ], and emerging data suggests that endothelial 
cells directly infl uence tumor behavior [ 18 ,  112 ]. In NSCLC, the degree of tumor-
associated angiogenesis correlates with disease progression and predicts unfavorable 
survival outcome [ 113 ]. In particular, high vascularity at the tumor periphery has 
been correlated with tumor progression [ 114 ]. However, high steady state vessel 
density in the lung has imposed challenges in accurate identifi cation and 
quantifi cation of neoangiogenic microvessels in the tumor tissue. Notably, some 
NSCLCs do not display an angiogenic phenotype and these tumors are invasive, 
exploiting the pre-existing alveolar vessels for growth [ 115 ,  116 ]. 

 In a recent study, endothelial-derived angiocrine signals were shown to induce 
regenerative lung alveolarization. Particularly, activation of VEGFR2 and FGFR1 in 
pulmonary capillary endothelial cells induced MMP14 expression that unmasked 
EGF receptor ligands to enhance alveologenesis [ 117 ]. Lung endothelial cells also 
control lung stem cell differentiation, as bone morphogenetic protein 4 (BMP4)-
BMPR1A signaling triggers calcineurin/NFATc1-dependent expression of throm-
bospondin-1 (Tsp-1) in lung endothelial cells to promote alveolar lineage-specifi c 
bronchioalveolar stem cell differentiation [ 118 ]. Using a mouse model of lung  ade-
nocarcinoma  , it was shown that  perlecan  , a component of the ECM, secreted by 
endothelial cells in a paracrine fashion blocked proliferation and invasiveness of 
lung cancer by impacting pro-infl ammatory pathways [ 112 ].  

3.3      Hypoxia   in Lung Cancer 

  Hypoxia   is typically present in solid tumors, like lung cancer, and is known to 
enhance tumor progression and therapy resistance [ 119 ]. The effects of hypoxia are 
largely mediated by the  hypoxia-inducible factors (HIFs)      HIF-1α and HIF-2α, as 
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they activate the transcription of genes implicated in tumor angiogenesis, cell 
survival, and resistance to chemotherapeutic drugs [ 120 ]. The overexpression of 
HIF-1α confers cellular resistance to the EGFR-blocking mAb cetuximab in 
epidermoid carcinoma cells. In addition, knocking down HIF-1α substantially 
restores cellular sensitivity to cetuximab-mediated antitumor activities [ 121 ]. These 
fi ndings suggest that HIF-1α expression is associated with the therapeutic responses 
of cancer cells to EGFR-targeted therapies. More recently, the involvement of 
hypoxia in the resistance to EGFR- TKIs  , such as gefi tinib and erlotinib, in NSCLC 
with an EGFR-sensitive mutation was shown to be mediated by TGFβ [ 122 ]. The 
hypoxic  microenvironment   is an important stem cell niche that promotes the 
persistence of cancer stem cells (CSCs) in tumors. Importantly, hypoxia was shown 
to increase the population of lung CSCs resistant to gefi tinib in EGFR mutation-
positive NSCLC by activating IGF1R [ 123 ].  

3.4     Infl ammation 

 Chronic lung  infl ammation   has been associated with an increased risk of lung can-
cer.  Carcinogens   including asbestos, cigarette smoke, and other pollutants are 
known to cause a chronic infl ammatory state, which in turn promotes tumorigenesis 
[ 20 ]. Moreover, pulmonary disorders such as COPD/emphysema and pulmonary 
fi brosis, which are associated with greater risk for developing lung cancer, are char-
acterized by copious infl ammation [ 124 – 126 ]. It remains unclear whether infl am-
mation affects the incidence of driver oncogenic mutations. However, infl ammation 
has been shown to enhance tumor progression. Lipopolysaccharide ( LPS)        , a potent 
endotoxin eliciting chronic lung infl ammation, signifi cantly increased the risk of 
carcinogen-mediated lung tumorigenesis in mice through K-ras gene activation by 
point mutations [ 127 ]. Recently, it was demonstrated that mucin 1 (MUC1) contrib-
utes to smoking-induced lung cancers that are driven by infl ammatory signals from 
macrophages, and a signaling pathway involving PPAR-γ, ERK, and MUC1 resulted 
in TNFα secretion in macrophages [ 128 ]. 

 Infl ammation has also been described in the generation of lung metastasis from 
 extrapulmonary neoplasms  . Clinical studies suggested a correlation between smok-
ing and an increased risk of lung metastasis in patients with breast cancer [ 129 ,  130 ] 
and esophageal cancer [ 131 ]. In addition, infl ammation caused by smoke inhalation 
in mice was also correlated with increased incidence of lung metastasis [ 132 ]. Data 
on autoimmune arthritis showed that lung infl ammation in arthritic mice, character-
ized by neutrophil and mast cell infi ltration, as well as increase in circulating  levels   
of pro-infl ammatory cytokines, was associated with enhanced lung metastasis [ 133 , 
 134 ]. Recently, several mechanisms explaining the metastasis-promoting effects of 
infl ammation have been elucidated. LPS-induced acute lung infl ammation dramati-
cally increased breast cancer cell metastasis to lung via a ubiquitin/CXCR4- 
dependent mechanism [ 135 ]. Systemic LPS-induced infl ammation led to elevated 
levels of  E-selectin expression   in lung tissue and enhanced lung metastasis of breast 
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cancer cells [ 136 ]. Induction of lung infl ammation by specifi c NF-κB activation in 
airway epithelial cells increased lung metastasis via a macrophage-dependent 
mechanism [ 137 ]. Bladder cancer cells expressing the proteoglycan versican metas-
tasize to the lungs via a mechanism involving increased lung CCL2 chemokine 
expression and macrophage infi ltration [ 138 ]. The recruitment of CCR2 (the recep-
tor for chemokine CCL2)-expressing monocytes/macrophages to the metastatic site 
in response to CCL2 enhances breast tumor metastasis to lungs [ 139 ]. Lewis lung 
carcinoma (LLC)          cells express versican and subsequently activate TLR2: TLR6 
complexes on myeloid cells, inducing TNFα secretion and thus enhancing LLC 
metastatic growth [ 140 ]. Another study showed that CD11 +  Gr1 +  Ly6C high  myeloid 
progenitor cells express versican in the premetastatic lung, leading to stimulation of 
mesenchymal-to-epithelial transition of metastatic tumor cells, increasing cell pro-
liferation and accelerating metastasis [ 8 ]. Furthermore, these pre-metastatic niches 
are characterized by the induction of chemoattractants such as, S100A8, growth 
factors, ECM proteins including fi bronectin, and ECM-modifying proteins like 
lysyl oxidase [ 141 – 144 ], creating a permissive microenvironment for metastasis 
[ 145 ]. Importantly, S100A8/A9 expression in the pre-metastatic niche in turn 
induces expression of serum amyloid A (SAA) 3, which through the Toll-like recep-
tor 4 (TLR4)    leads to the activation of NF-κB signaling and further amplifi cation of 
infl ammatory responses, accelerating lung metastasis [ 146 ].  

3.5     Immune Cells 

 Tumors utilize various mechanisms to evade destruction by the immune system. 
One of the key immunomodulatory mechanisms is via immune checkpoint path-
ways, which play a key role in regulating T-cell responses. Under normal circum-
stances, the immune checkpoints are important to maintain self-tolerance by 
preventing autoimmunity and protecting the tissue from damage when the immune 
system is activated. The expression of immune checkpoint proteins are usually 
exploited by the tumor cells to develop resistance mechanisms. 

3.5.1      T-Cells      

 Tumor-infi ltrating lymphocytes (TILs) are often found in the TME, suggesting an 
immune response against the tumor. Among the TILs, CD8 +  cytotoxic T lympho-
cytes (CTLs) are directly capable of killing tumor cells, whereas CD4 +  T helper 
lymphocytes (Th) are a heterogeneous cytokine-secreting class of T lymphocytes. 
Th1 subtypes activate CTLs, whereas Th2 lymphocytes stimulate humoral immu-
nity. Besides the Th1 and Th2 subsets, the CD4 +  regulatory T lymphocyte (Treg) 
subset suppresses effector T lymphocytes. In cancer, Tregs preferentially traffi c to 
tumors, as a result of chemokines produced by tumor cells and microenvironmental 
macrophages. While active immunotherapy such as adoptive T cell-transfer 
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represents one promising therapeutic approach in lung cancer, more recently, 
immune checkpoint blockade has received tremendous attention as a potential ther-
apy in solid tumors including lung cancer. The two major immune checkpoint inhib-
itory pathways involve the programmed cell death-1, PD-1/ PD-L1 pathway and the 
cytotoxic T-lymphocyte antigen-4, CTLA-4 pathway [ 147 ]. PD-1 is a surface recep-
tor  member   of the B7-CD28 superfamily. It is expressed on many cell types, includ-
ing activated T cells, B cells, NK cells, and host tissues. PD-1 binds with its ligand 
PD-L1 (B7-H1, CD274) on antigen presenting cells (APCs), and this interaction 
inhibits downstream NF-κB transcription and downregulates interferon (IFN)-γ 
secretion, resulting in T-cell tolerance.  Similarly  , PD1 can also interact with PD-L2 
on dendritic cells, and PD-L2 also has effective inhibitory activity upon T cells. 
CTLA-4 is expressed on the surface of activated cytotoxic T cells, and it competes 
with the costimulatory molecule CD28 for mutually shared ligands, B7-1 (CD80) or 
B7-2 (CD86), and these interactions inhibit the antitumor activity of T-cells. 

 Recent understanding of the functioning of the immune system and its relation to 
tumor evasion have led to the development of novel agents that have promising 
results in the treatment of NSCLC. These agents include immune checkpoint inhibi-
tors such as anti-PD-1 antibodies (nivolumab and MK-3475), anti-PD-L1 antibody 
(MPDL3280A, MEDI4736), and CTLA-4 inhibitors (tremelimumab and ipilim-
umab), as well as vaccines.  

3.5.2      γδ T Cells   

  γδ T cells   contribute to lymphoid antitumor surveillance and bridge the gap between 
innate and adaptive immunity [ 148 ]. γδ T cells constitute 1%–5% of peripheral 
blood T lymphocytes and recognize phosphoantigens via polymorphic γδ T-cell 
antigen receptors (TCR), and develop strong cytolytic and Th1-like effector 
functions [ 149 ]. Therefore, γδ T cells are attractive candidate effector cells for 
cancer immunotherapy, as they can secrete cytokines abundantly and exert potent 
cytotoxicity against a wide range of cancer cells. Clinical trials have been  conducted   
to evaluate the safety and effi cacy of γδ T-cell-based immunotherapies for non-
Hodgkin’s lymphoma, multiple myeloma, and solid tumors. In lung cancer, the 
therapeutic impact of adoptive immunotherapy with expanded γδ T-cells is being 
assessed [ 150 ,  151 ], and in  one   study, remission of lung metastasis following 
adoptive immunotherapy using activated autologous γδ T-cells in a patient with 
renal cell carcinoma was observed [ 152 ].  

3.5.3     Myeloid-Derived Suppressor  Cells      

 Increase in the number of  MDSCs   induces a strong immunosuppressive activity in 
cancer patients [ 153 – 155 ]. In a mouse model of lung cancer, MDSC depletion 
increased APC activity and augmented the frequency and activity of NK and T cell 
effectors that led to impaired tumor growth, enhanced therapeutic vaccination 
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responses, and conferred immunological memory [ 156 ,  157 ]. Immune suppressive 
MDSCs, defi ned as Lin − HLA-DR − CD33 +  and CD14 − CD11b +  CD33 +  [ 158 ] were 
increased in patients with lung cancer. Analysis of 89 patients with NSCLC showed 
an increase in both frequency and absolute number of MDSCs in the peripheral 
blood and indicated an association with metastasis, response to chemotherapy, and 
progression-free survival [ 159 ].    

4     TME of Premetastatic Niche in the Lung 

 The  lung   is one of the most frequent sites of metastasis from extrapulmonary neo-
plasms including breast and colon cancer. As early as 1889, Steven Paget proposed 
his “seed” and “soil” hypothesis establishing the concept that primary tumors 
metastasize to specifi c organs which harbor a receptive microenvironment [ 160 ]. 
More recently, experimental support for this hypothesis has been provided by stud-
ies showing that primary tumors release specifi c cytokines such as VEGF, SDF-1, 
TGFβ, and TNFα, which systemically initiate premetastatic niches. These premeta-
static niches are characterized by the accumulation of BM-derived cells, and selec-
tive induction of organ-specifi c chemoattractants, growth factors, and ECM-related 
proteins, which provide permissive local microenvironments for recruiting the 
incoming tumor cells, leading to the initiation and establishment of micrometastases 
[ 145 ]. Pioneering studies by Lyden and colleagues have shown that the premeta-
static niche is comprised of BM-derived VEGFR1 +  hematopoietic progenitor cells, 
which express VLA-4 (also known as integrin α4β1), and that tumor-specifi c growth 
factors upregulate fi bronectin, a VLA-4 ligand in resident fi broblasts, suggesting a 
possible mechanism by which the permissive niche recruits incoming tumor cells 
[ 143 ,  161 ]. Similarly, Hiratuska et al. have demonstrated that tumor-secreted factors 
including VEGF-A, TGFβ, and TNFα induce expression of chemoattractants, such 
as S100A8 and S100A9 by lung endothelial cells and Mac1 +  myeloid cells [ 143 , 
 161 ], that facilitate the homing of tumor cells to the premetastatic sites, via induc-
tion of serum amyloid A3 (SAA3). Notably, SAA3 stimulated NF-κB signaling in 
the macrophages via TLR4 and facilitated metastasis [ 146 ], suggesting the thera-
peutic potential of blocking SAA3-TLR4 for the prevention of pulmonary metasta-
sis. Giaccia and colleagues have shown that  lysyl oxidase (LOX)      secreted by 
hypoxic tumors accumulates in the lungs and supports premetastatic niche forma-
tion. LOX remodels ECM by crosslinking collagen IV, which recruits CD11b +  
myeloid cells that cleave collagen by secreting MMP2, enhancing the invasion and 
recruitment of BM cells and metastasizing tumor cells. LOX inhibition prevents 
CD11b +  cell recruitment and metastatic growth. CD11b +  cells and LOX were also 
shown to colocalize in biopsies of human metastases [ 142 ,  162 ,  163 ]. 

 In another mechanism, within the premetastatic niche, fi broblasts expressed peri-
ostin which contributed to cancer stem cell maintenance and expansion through 
Wnt signaling leading to metastasis [ 164 ]. In a similar study, metastatic tumor cells, 
by secreting tenascin C, enhanced stem cell signaling via Notch in the metastatic 
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niche [ 165 ]. In the premetastatic lung, BM-derived myeloid progenitor cells were 
shown to secrete the proteoglycan versican, which induced mesenchymal -to- 
epithelial transition (MET) of disseminated metastatic tumor cells, accelerating 
tumor outgrowth in the lungs [ 8 ,  166 ]. Notably, this tumor outgrowth was facilitated 
by BM-derived endothelial progenitor cells (EPCs), which by initiating the angio-
genic switch resulted in the progression of micro- to macrometastases [ 167 ]. The 
premetastatic niche has become an exciting area of research in the  quest   for novel 
therapeutic and prophylactic strategies against metastasis [ 168 ]. In contrast, a novel 
mechanism was recently described, whereby metastasis-incompetent tumors gener-
ate metastasis-suppressive microenvironments in the lungs by inducing the expres-
sion of a potent antiangiogenic factor,  thrombospondin 1 (Tsp-1)     , in the recruited 
BM-derived myeloid cells [ 169 ]. Tsp-1 induction is mediated by the  activity of 
prosaposin (PSAP), a protein secreted by poorly metastatic cells, which acts sys-
temically to reprogram myeloid cells into metastasis-inhibitory cells [ 169 ].  

5     The Contribution of TME to Therapeutic Resistance 

 A major research focus to determine the mechanisms of therapeutic resistance has 
largely been the analysis of tumor cells, and resistance mechanisms involving second-
ary pathway mutations or bypass  mechanisms   within the tumor cells, such as EGFR 
(T790M) mutations or MET receptor amplifi cation have been identifi ed. Importantly, 
more recent studies have begun to unravel that heterologous cell types within tumors 
can actively infl uence therapeutic response and elicit resistance [ 170 ,  171 ]. 

5.1     Contribution of TME to Resistance to  Radiation Therapy   

 Given that  lung cancer   is one of the leading causes of death from cancer worldwide, 
new and effective treatments are urgently needed [ 172 ,  173 ]. Approximately 70% of 
NSCLC patients receive radiotherapy (RT), either alone or in combination with 
other treatment modalities such as surgery or chemotherapy [ 174 ]. In patients who 
are unable to tolerate surgical resection because of medical co-morbidities, conven-
tional RT is an alternative, but with poor long-term survival of 15–30% and local 
failure of up to 50% [ 175 – 177 ]. Retrospective and nonrandomized prospective data 
suggest that further dose escalation in NSCLC may be associated with better out-
comes [ 178 – 181 ]. Additional improvement of the therapeutic ratio for  NSCLC   will 
likely come from different radiation dosing schedules. However, for patients with 
locally advanced disease, the benefi t of dose escalation beyond 60 Gy has not been 
supported by level I evidence. A recent randomized study by the Radiation Therapy 
Oncology Group (RTOG) in patients with locally advanced NSCLC showed worse 
survival rates for patients receiving 74 Gy versus 60Gy with concurrent chemo-
therapy [ 182 ]. 
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 Accurate delivery of the ionizing radiation (IR) that allows more precise deposi-
tion of dose in the tumor while progressively reducing any unwanted dose to sur-
rounding normal tissues has motivated hypofractionated radiation schedules [ 174 ]. 
 Stereotactic body RT (SBRT)         takes advantage of this favorable dose distribution 
and gained credence recently as a result of phase II studies with promising out-
comes for early-stage medically inoperable NSCLC [ 183 ]. However, lack of patho-
logical confi rmation of primary tumor control, different defi nitions of NSCLC 
control after SBRT, and serious toxicity, particularly for centrally placed tumor, 
raises concerns about the utility of dose escalation [ 184 ,  185 ]. Clinical  factors   can 
explain some of the failures, such as a large tumor and/or advanced tumor stage, but 
many failures still go unexplained, for tumors with apparently similar sizes, stages, 
grades, and delivered doses. 

 It is clear from such clinical considerations and from a wealth of experimental 
research, that biological factors also have a crucial role in determining treatment 
success. The main  biological factors   affecting outcome after RT [ 186 ] include 
intrinsic radioresistance of the tumor cells [ 187 ], the ability of the surviving cells, 
including cancer stem cells, to repopulate [ 188 ], and the extent of hypoxia. 
Sensitizing strategies commonly focus on either targeting intrinsic properties of 
tumor cells or the  vasculature  . Recently, targeting the TME has become an even 
more compelling option to impede tumor progression and augment RT responses 
[ 189 ,  190 ]. For example, the recognition that tumor infi ltration by infl ammatory 
cells and other BM-derived cells contributes to RT responses, particularly tumor 
regrowth, provides a new route to augment RT effi cacy [ 191 ,  192 ]. 

 There is considerable evidence that the microenvironment regulates many tumor 
responses to radiation, thus providing novel routes for manipulating the response to 
radiotherapy [ 193 – 195 ]. Of particular interest is the activity of TGFβ, which is a 
critical signal in cancer and plays a detrimental role to tumor responses to RT. In 
NSCLC, increased TGFβ activity correlates with tumor progression, increased 
tumor growth and angiogenesis [ 196 ]. TGFβ signaling  activation   in TME has been 
identifi ed as a key factor for chemotherapy resistance in NSCLC [ 197 ]. Although 
little is known about how TGFβ modulates the irradiated TME, given its pleiotropic 
roles in NSCLC, TGFβ inhibition may  increase   tumor cell radiosensitivity and shift 
the microenvironment to augment NSCLC response to radiotherapy. TGFβ ligands 
are enriched in the TME, where their production by stromal or tumor cells varies 
according to tumor phenotype [ 198 ]. The use of clinically viable TGFβ inhibitors in 
oncology is motivated by rationales to reduce metastasis, augment existing cancer 
therapies, and to improve tumor vaccines [ 199 ]. TGFβ signaling blockade enhances 
glioblastoma (GBM) response to chemoradiation in preclinical models [ 200 ,  201 ], 
and specifi cally inhibits GBM cancer stem cell renewal in vitro and in vivo [ 202 ]. 

 In addition to a well recognized phenomenon of the impact of TGFβ on tumor-
promoting effects and metastasis [ 203 ], TGFβ mediates an effective DNA damage 
response in epithelial cells via control of ATM kinase activity [ 204 ]. TGFβ activity 
is controlled by production as a latent complex that requires extracellular modifi ca-
tion to initiate ligand binding to ubiquitous receptors; this activation is effi ciently 
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induced by ionizing radiation, in part due to the presence of a  redox sensitive motif   
in the latency associated peptide (reviewed in [ 189 ]). As a consequence, we have 
shown that inhibiting TGFβ promotes clonogenic cell death of mouse and human 
breast cancer and GBM cells in vitro and that systemically neutralizing TGFβ 
enhances RT action in GBM and breast cancer preclinical models [ 205 ,  206 ]. Given 
that radiation-induced TGFβ is also a signifi cant factor in  lung fi brosis  , a late tissue 
toxicity that limits effective tumor control [ 207 ], the application of TGFβ antago-
nists in radiation treatment of NSCLC is clinically viable. 

 Recent preclinical studies support the potential for improving radiotherapy by 
use of TGFβ inhibitors (Du and Barcellos-Hoff, unpublished data). As observed for 
brain and breast tumors [ 205 ,  208 ], most murine and human lung cancer cells were 
sensitized by TGFβ inhibition prior to radiation, as measured by  in vitro clonogenic 
assays  . Using the Lewis lung cancer syngeneic subcutaneous  tumors  , tumor growth 
control was signifi cantly improved by use of TGFβ neutralizing antibodies concur-
rent with single or fractionated radiation treatment. Notably, even though irradiated 
tumors treated with TGFβ  inhibition   were signifi cantly smaller at experiment termi-
nation, hypoxia was higher and vessel density was also signifi cantly more decreased 
than that of non-irradiated, bigger tumors. Martin Brown has shown that hypoxia 
promoted mobilization of CD11b +  monocytes, which secrete the pro-angiogenic 
factor MMP9 into the TME in preclinical GBM, and blockade of this crucial event 
prevents tumor recurrence [ 207 ]. The combined treatment of radiation and TGFβ 
inhibition decreased CD11b + /MMP9 monocytes, suggesting that TGFβ is necessary 
for the recruitment of the CD11b + /MMP9 cells and tumor regrowth. 

 Given that radiation-induced immunity is critical for long term benefi t [ 209 ], we 
also studied the effect of combined treatment of fractionated radiation and TGFβ 
inhibition on the peripheral anti-tumor immune response. Analysis of monocyte 
maturation and activation markers CD11b and F4/80 in tumors suggests that distinct 
BM cells are recruited as a function of  treatment  : the F4/80 +  macrophage population 
is more differentiated, while CD11b +  cells are more immature. TGFβ inhibition 
concurrent with radiation treatment also affects systemic maturation as evidenced 
by analysis of cells from spleens of treated mice. These preliminary data suggest 
that TGFβ inhibition concurrent with fractionated radiation treatment may cooper-
ate in directing both the microenvironment and the immune system towards an anti-
tumor response, which could  lead   not only to better control of primary tumor growth 
but also to abrogation of relapse.  

5.2     Contribution of TME to Resistance to  Antiangiogenic 
Therapies   and  EGFR-TKIs      

 BM-derived cells have also been shown to provide resistance to cancer therapeutics. 
For example, BM-derived Gr1 +  myeloid cells [ 210 ] have been shown to make 
tumors refractory to anti-VEGF treatment [ 211 ], by obviating the necessity for 
VEGF signaling and reinitiating angiogenesis. In another study, administration of 
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vascular disruptive agents (VDA) or chemotherapeutics caused acute hypoxia and 
necrosis in tumors and triggered an accumulation of endothelial progenitor cells at 
the tumor leading edge to reinitiate angiogenesis [ 212 ]. This appears to be an adap-
tive response of the tumor to develop evasive resistance to potent anti-angiogenesis 
therapy. In lung cancer, the tumor-stroma cross talk was implicated in mediating 
resistance to EGFR-TKIs. For example, fi broblast-derived hepatocyte growth factor 
(HGF) was shown to induce EGFR-TKI (gefi tinib) resistance in  NSCLC   with 
EGFR-activating mutations [ 107 ,  108 ].   

6     The TME as a Therapeutic Target in Lung Cancer 

 Lung cancer is a global public health problem with an estimated 1.3 million new 
cases each year [ 213 ]. In the United States, approximately 226,160 new cases of 
lung cancer are diagnosed per year with over 160,000 deaths. Despite advances in 
treatment options, including minimally invasive surgical resection, stereotactic radi-
ation, and novel chemotherapeutic regimens, the 5-year survival rate in NSCLC 
remains at approximately 15%. Available targeted therapies such as  EGFR TKIs   
(erlotinib and gefi tinib) and  EML4-ALK inhibitor   (crizotinib) benefi t only 15–20% 
of NSCLC patients who carry specifi c drug- sensitive mutations. Even in these 
patients, acquired resistance is a major impediment to a durable therapeutic response 
[ 65 – 67 ]. Moreover, a majority of the patients with lung cancer patients do not 
exhibit an actionable molecular aberration. Therefore, traditional standard cytotoxic 
chemotherapies remain the only treatment option for the majority of advanced 
NSCLC patients, and these treatments also usually fail, resulting in an  aggressive 
metastatic relapse  . As such, there is an unmet medical need for the development of 
additional targeted therapies for lung cancer patients. In this context, more recent 
studies have begun to focus on the TME as an unexplored target for drug discovery, 
with an increased interest in evaluating anti- angiogenic, immunomodulatory, and 
anti-infl ammatory agents in the treatment of various  malignancies  , including 
NSCLC [ 214 ] (Table  1 ).

6.1        Antiangiogenic Therapies   in Lung Cancer 

 Drugs that either block tumor vascularization or interfere with the activity of growth 
factor receptors and molecular pathways that are triggered by activation of these 
receptors have already been used in clinical practice [ 215 ].  Bevacizumab     , a human-
ized monoclonal antibody against VEGF, has been approved in many countries for 
use in combination with fi rst-line platinum-based chemotherapy (carboplatin and 
paclitaxel) for the treatment of NSCLC patients with advanced stage disease [ 216 , 
 217 ]. Approvals were based upon an improvement in response rate (RR) and 
progression- free survival (PFS)    observed with the addition of bevacizumab to 
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   Table 1     Stromal therapy   in lung cancer   

 Drug  Type 
 Mode of 
action  Clinical trials  Results 

  CTLA-4 
antibodies  
(Ipilimumab) 

 Immune 
checkpoint 
inhibitor 

 Blocks 
PD-L1 
interaction 
with PD-1 
and allows T 
cells to 
perform 
antitumor 
activities 

 Phase III, NSCLC 
(NCT01285609) 

 PFS 5.7 months for 
ipilimumab + chemo 
vs 4.6 months for 
placebo + chemo 

 Phase III, SCLC 
(NCT01450761) 

   Tremelimumab  Phase II, 
Mesothelioma 

  PD-1 antibodies   Immune 
checkpoint 
inhibitor 

 Blocks 
PD-L1 
interaction 
with PD-1 
and allows T 
cells to 
perform 
antitumor 
activities 

 Phase III, NSCLC 
(NCT01673867) 

   Nivolumab  Squamous cell 
(NCT01642004) 

   MK-3475  Phase III, in 
PD-L1-positive 
NSCLC 
(NCT01905657) 

  PD-L1 antibodies   Immune 
checkpoint 
inhibitor 

 Targets the 
ligand PD-L1 
and allows T 
cells to 
perform 
antitumor 
activities 

 Phase II in 
PD-L1-positive 
NSCLC 
(NCT01846416) 

   MPDL3280A 

   MEDI4736  Phase I NSCLC 
(NCT01693562) 

  VEGF antibody  
Bevacizumab 

 Anti-
angiogenic 
therapy 

 Targets 
VEGF ligand 

 Phase III  PFS and OS positive 
with Carbo/PXL 

  VEGF trap   Anti-
angiogenic 
therapy 
(Soluble decoy 
receptor) 

 Targets 
VEGFA, 
VEGFB and 
PIGF 

 Phase III  PFS positive with 
DXI 

   Afl ibercept  OS negative 

 Endostatin  Anti-
angiogenic 
therapy-natural 
inhibitor of 
angiogenesis 

 Targets 
bFGF, VEGF 

 Phase III, in 
combination with 
chemotherapy 
(NCT00657423) 
 Phase II, in 
combination with 
chemoradiation in 
NSCLC 
(NCT01218594) 

(continued)
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chemotherapy in two large phase III studies, the North American Eastern Cooperative 
Oncology Group (ECOG) 4599 [ 218 ] and the European AVAiL [ 219 ]. The encour-
aging results with bevacizumab has led to approval of Afl ibercept (VEGF Trap), 
which is a recombinant VEGF receptor-antibody protein fusion with affi nity for 
VEGF-A, VEGF-B and placental growth factor (PlGF), which acts as a decoy 
receptor preventing angiogenesis [ 220 ].  Afl ibercept     , has been approved for meta-
static colorectal cancer, and it has been evaluated in second-line therapy of 
NSCLC. A randomized phase III trial of second-line docetaxel with or without 
afl ibercept in platinum-pretreated patients with advanced non-squamous NSCLC 

Table 1 (continued)

 Drug  Type 
 Mode of 
action  Clinical trials  Results 

 Pazopanib  TKI, 
Antiangiogenic 

 Targets 
c-KIT, 
FGFR, 
PDGFR and 
VEGFR 

 Phase II/III in 
NSCLC patients 
who have received 
fi rst line therapy 
(NCT01208064) 
 Phase II in 
Refractory small 
cell lung cancer 
(NCT01253369) 

 Motesanib  TKI, 
Antiangiogenic 

 Targets 
VEGFR-1, 2, 
3, PDGFR, 
RET, kit 

 Phase III  PFS positive with 
Carbo or PXL 
 OS negative 

 Sorafenib  TKI, 
Antiangiogenic 

 Targets, 
VEGFR-2, 3 
and 
PDGFR-b 

 Phase III, 
Advanced NSCLC 
in combination 
with chemo 

 PFS and OS 
negative with chemo 
 Monotherapy 
pending 

 Cediranib  TKI, 
Antiangiogenic 

 Targets 
VEGFR- 1,2, 
3, c-kit, Flt-3 

 Phase III, 
Advanced NSCLC 
in combination 
with chemo 

 PFS pending with 
DXI 
 OS pending with 
DXI 

 Vandetanib  TKI, 
Antiangiogenic 

 Targets 
VEGFR-2, 
VEGFR-3, 
RET, EGFR 

 Phase III, in 
advanced NSCLC 
in combination 
with chemo 
(NCT00312377) 

 PFS positive with 
DXI 
 OS negative with 
DXI 

 Nintedanib  Antiangiogenic  Targets 
VEGFR, 
FGFR, 
PDGFR 

 Phase III ( 
LUME-Lung-1) 

 PFS positive with 
DXI 
 OS not signifi cant 

  References: (1) Hilbe W, Manegold C, Pircher A. Targeting angiogenesis in lung cancer—Pitfalls 
in drug development. Transl Lung Cancer Res 2012;1(2):122-128. (2)   http://www.cancer.gov/
clinicaltrials/results/type/lung     

  DXl  docetaxel,  PXL  paclitaxel,  Carbo  carboplatin,  TKI  tyrosine kinase inhibitor  
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failed its primary endpoint of overall survival, despite higher response rates and 
progression free survival in the experimental arm [ 221 ]. 

 Other promising anti-angiogenic agents include small molecule TKIs targeting 
the VEGF receptor (VEGFR).  Motesanib     , a selective oral inhibitor of VEGF recep-
tors- 1, 2, and 3, platelet-derived growth factor receptor (PDGFR), and c-Kit was 
tested in a randomized phase II trial in combination with carboplatin/paclitaxel as 
frontline therapy for patients with advanced NSCLC, and results showed that RR, 
PFS, and OS were comparable in those patients receiving either motesanib or beva-
cizumab [ 222 ]. However, an international randomized phase III trial with carbopla-
tin/paclitaxel either alone or in combination with motesanib in patients with advanced 
NSCLC showed no improvement in overall survival compared with  placebo; despite 
an improvement in PFS and overall response [ 223 ,  224 ]. Another phase III trial eval-
uated the addition of the multi-kinase inhibitor (including VEGFR2) sorafenib to 
chemotherapy in patients with advanced non-squamous NSCLC. Again, despite a 
slight but statistically signifi cant improvement in PFS, there was no improvement in 
OS, the trial’s primary end-point [ 225 ]. A recently reported phase III trial assigned 
patients with advanced NSCLC who failed fi rst-line therapy to docetaxel with and 
without nintedanib, a multi-angiogenic kinase inhibitor (VEGFR1-3/FGFR1-3/
PDGFR/FLT3).  Nintedanib      in combination with docetaxel was associated with sig-
nifi cant improvement in PFS and OS especially in patients with adenocarcinomas 
[ 226 ]. This is the fi rst and only trial to demonstrate an improvement in OS using a 
targeted agent in the second-line setting. Finally, a phase III placebo-controlled trial 
of carboplatin and paclitaxel with and without the vascular disrupting agent vadi-
mezan (ASA404) as fi rst-line therapy for patients with advanced lung cancer did not 
meet the specifi ed primary and secondary endpoints of OS and PFS [ 227 – 229 ]. 
Results  from   recently completed and ongoing phase III trials will determine if these 
newer antiangiogenic agents will be incorporated into clinical practice [ 230 ].  

6.2      Anti-infl ammatory Therapies      in Lung Cancer 

 Compared to advances with antiangiogenic therapies, success with anti- infl ammatory 
treatments have been less impactful. Previous clinical trials have indicated that 
long-term use of aspirin or other NSAIDs decreases the incidence of colorectal, 
esophageal, breast, lung, and bladder cancers [ 231 ]. While initial studies had 
focused on various broad-spectrum NSAIDs (which non-specifi cally inhibit both 
COX-1 and COX-2), more recent studies have examined COX-2 specifi c agents, 
such as celecoxib [ 125 ].  Signifi cant   pre-clinical and clinical data support the impor-
tance of COX- 2   in the development and progression of NSCLC. Despite this, a 
protective effect of NSAIDs was not observed on lung cancer development in either 
the general or high-risk COPD populations [ 232 ]. Moreover, clinical trials of 
COX-2 inhibition in NSCLC have been disappointing [ 233 ]. The lack of clinical 
benefi t in the Cancer and Leukemia Group B (CALGB) 30203 trial may be that 
COX-2 inhibition would be of value in COX-2-overexpressing tumors, emphasizing 
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the need for a prospective, randomized trial that selects patients for therapy on the 
basis of COX-2 expression [ 234 ]. CALGB 30801 is a randomized phase III double-
blind trial evaluating selective COX-2 inhibition in COX-2-expressing advanced 
NSCLC. However, given the gastrointestinal (GI) toxicity and non-specifi c activity 
of NSAIDs, and the cardiotoxicity of specifi c COX-2 inhibitors, the use of such 
agents continues to remain controversial [ 235 ]. 

 Two recent studies have shed light on the future therapeutic potential of the 
NF-κB-mediated infl ammatory pathway in lung cancer. Logsdon and colleagues 
found that in the presence of oncogenic Ras, infl ammatory stimuli initiate a positive 
feedback loop involving NF-κB that further amplifi es Ras activity to pathological 
levels [ 236 ]. Because a large proportion of lung cancer patients possess Ras muta-
tions, disruption of this positive feedback loop may be an important strategy for 
cancer prevention. In another study, using mouse models of lung cancer, Verma and 
colleagues found that therapies targeting the enzyme IKK2 (involved in infl amma-
tion) and Timp1, which help activate the body’s infl ammatory  response  , may effec-
tively treat certain lung cancers [ 237 ].  

6.3     Immune Checkpoint Inhibitors in Lung  Cancer   

 Utilizing the immune system to eliminate cancer holds great potential, and therefore 
understanding the complexity of immunomodulation by tumors is important for the 
development of  immunotherapy  . A large numbers of different factors have been 
implicated in the inhibition of tumor-specifi c immune responses. These include 
regulatory T cells (Treg), MDSCs, various soluble factors and cytokines, and inhibi-
tory molecules expressed by immune and tumor cells. As such, various strategies are 
being developed to enhance anti-tumor immune responses, including DC-based vac-
cines and antagonists of inhibitory signaling pathways to overcome ‘immune check-
points’. The immune checkpoint pathway is a series of cell-cell interactions that 
inhibit  effector T cells   from being overactive under normal conditions [ 147 ,  238 ]. A 
major arm of the immune checkpoint pathway consists of the T cell surface receptor 
 CTLA-4     .  CTLA-4   is an inhibitory receptor expressed upon activation of a cytotoxic 
T cell, competing with the co- stimulatory receptor CD28 for their shared ligands 
CD80 and CD86 on antigen- presenting cells (APCs) [ 239 ]. Lung cancer can co-opt 
this mechanism to evade immune surveillance by stimulating abnormal expression 
of CTLA-4 on T-cells, leading to T cell anergy. The monoclonal antibodies, treme-
limumab and ipilimumab, which inhibit CTLA-4, are being tested for the treatment 
of lung cancer. Although tremelimumab treatment did not enhance PFS in a phase II 
trial, objective radiological responses in 5% of participants was observed using 
tremelimumab. Ipilimumab treatment, on the other hand, showed slight improve-
ment in immune-related progression-free survival (irPFS) in NSCLC patients when 
administered in a phased manner with platinum- based chemotherapy [ 240 ]. 
Interestingly,  ipilimumab treatment   showed high activity in squamous carcinomas 
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[ 241 ]. These results prompted the phase III trial, testing ipilimumab in squamous 
NSCLC using the phased ipilimumab schedule [ 147 ]. 

  PD-1       pathway   is a major immune checkpoint by which tumors suppress lympho-
cyte function within the TME. PD-1 is a surface receptor on activated T cells, B 
cells, and NK cells. It binds to its ligands PD-L1 and PD- L2   on the surface of APCs 
or dendritic cells, leading to T cell anergy. Cancers can co-opt this pathway and 
aberrantly express PD-L1 on their cell surface, leading to T cell inactivation. It has 
been reported that sarcomatoid and adenocarcinoma subtypes of lung cancer express 
PD-L1, and its expression correlated with poor prognosis [ 242 ,  243 ]. 

 Antibody blockade of PD-1 with its ligands (B7-H1/PD-L1 and B7-DC/PD-L2) 
showed promising activity in several malignancies [ 42 ]. In particular, blocking anti-
bodies against PD-1 and PD-L1 have shown clinical activity in NSCLC [ 244 ,  245 ]. 
 Nivolumab     , a monoclonal antibody targeting PD-1, as been shown to restore cyto-
kine secretion and proliferation of CD8 +  T cells within lung tumors [ 246 ]. A phase I 
trial of Nivolumab showed a response rate of 17% in previously treated patients with 
advanced NSCLC, with responses persisting for a median duration of 17 months 
[ 244 ,  247 ]. As with any type of therapy, a main consideration for the implementation 
of an immunotherapy regimen is toxicity. For instance, Ipilimumab in combination 
with chemotherapy exhibited 14% to 17% higher incidence of all-cause grade 3/4 
adverse events (AE) compared to chemotherapy alone [ 248 ]. Furthermore, a fatal 
side effect that occurs in a small proportion of patients following anti-CTLA-4 anti-
body treatment is hypophysitis, infl ammation of the pituitary gland [ 249 ].  Nivolumab 
treatment   exhibited 9% rate of treatment- related grade 3/4 AE [ 250 ], with three drug-
related deaths due to pneumonitis [ 147 ]. Nivolumab treatment in combination with 
platinum-based chemotherapy yielded an objective response rate of 33% and a grade 
3/4 AE rate of 49% [ 147 ]. A current phase I trial is testing the combination of 
nivolumab with ipilimumab for SCLC [ 147 ]. Another antibody targeting PD-1 is 
MK-3475. A phase I trial in 38 NSCLC patients showed an objective response rate 
of 24%, with a median PFS of 9.7 weeks and median OS of 51 weeks. 53% of 
patients had drug-related AEs, most of which were mild. Another approach to target-
ing the PD-1/PD-L1 pathway is using antibodies that target PD-L1 on cancer cells. 
One such antibody, MPDL3280A, yielded a 23% overall response rate, with only 
11% drug-related grade 3–4 AEs in a phase I trial that included 85 patients with 
NSCLC [ 147 ]. 

 Another avenue  being   explored to block tumor-driven immunosuppression is 
based on NK cell activity.  NK cells   express killer cell immunoglobulin-like recep-
tors (KIRs) that downregulate NK cytotoxic activity, in response to HLA class I 
molecules on target cells. A higher incidence of the suppressive KIR2DL3 and its 
ligand HLA-C2 is observed in NSCLC [ 251 ] leading to reduced NK activity and 
protection of cancer cells from NK-mediated killing. A monoclonal antibody to 
KIR,  Lirilumab   (IPH2102), has demonstrated effi cacy in combination with 
nivolumab in preclinical models. A trial combining nivolumab with lirilumab in 
human solid tumors, including 32 NSCLC patients is being conducted, as well as a 
trial combining  lirilumab   with ipilimumab [ 147 ].  
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6.4     MDSC as a Therapeutic Target in Lung  Cancer   

  MDSCs   have prognostic importance in multiple solid tumors. Emerging data has 
begun to support the utility of circulating MDSCs as a predictive marker for cancer 
immunotherapy and for predicting clinical response to systemic chemotherapy in 
patients with advanced solid tumors [ 252 ]. An increase in the number of MDSCs 
evokes strong immune suppressive activity in cancer patients [ 153 – 155 ], and greatly 
 limits   the effi cacy of immune therapy. In a randomized phase II clinical trial of 
advanced stage SCLC, depletion of MDSCs with ATRA substantially improved the 
immune response to vaccination, suggesting that this approach can be used to 
enhance the effect of immune interventions in cancer [ 253 ]. These studies are 
consistent with the demonstration that targeting MDSCs augments antitumor 
 activity   against lung cancer in mice [ 157 ].   

7     Future Directions 

 Analysis of TME in lung cancer is a relatively new area of investigation. Therefore, 
major efforts are required to identify individual stromal components and unravel 
heterotypic reciprocal crosstalk signaling pathways between the stroma and tumor 
cells in NSCLC. This is a major challenge given the high heterogeneity of genetic 
and epigenetic alterations present in the tumor, differences in host genetic back-
ground, as well as tissue-specifi c responses. Understanding the  cellular and molecu-
lar mechanisms   underlying these processes will provide novel avenues leading to the 
discovery of biomarkers for disease stratifi cation, molecular diagnosis and progno-
sis, and devising therapeutic strategies against lung cancer. Over 10 years ago, it was 
suggested that treatments options for NSCLC other than chemotherapy needed to be 
investigated [ 254 ]. So far, only one phase III clinical trial showed survival benefi t of 
combining an anti-angiogenic agent to standard platinum-based chemotherapy in 
patients with advanced stage NSCLC. Selected groups of patients responded to  anti-
angiogenic therapies   that result in tumor shrinkage and disease stabilization; how-
ever, in aggregate, antiangiogenic therapy has not yet had a major clinical impact in 
most of the trials conducted so far [ 215 ]. Many clinical benefi ts are short-lived; 
while numerous trials have shown an increase in survival of patients treated with 
antiangiogenic therapy, the increase for many has been a matter of months [ 255 ]. 
Several possibilities have been suggested to explain why anti-angiogenic trials have 
not yielded signifi cant benefi t in NSCLC. For example, lack of predictive biomark-
ers continues to be a major hurdle in the selection of adequate patient cohorts that are 
most likely to benefi t. In fact, some studies have alluded to a possible link between 
antiangiogenic therapy and increased metastasis in multiple tumor types [ 256 ,  257 ]. 

  Immunotherapy      has been heralded as a new era of lung cancer therapy. Blocking 
PD1-PDL1 or CTLA-4 immune checkpoints has resulted in striking and durable 
responses, with global overall response rates of 20% to 25% as monotherapy in 
metastatic NSCLC. In order to increase response rates, it has been suggested that 
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identifying patients who might respond to immunotherapy would be particularly 
useful, as correlations between PD-L1 expression and EGFR mutation, and PD-1 
expression and KRAS mutations has been observed (D’Incecco et al. Journal of 
Thoracic Oncology 2014). Notably, activation of the  PD-1 pathway   was shown to 
contribute to immune escape in mutant EGFR-driven lung tumors in mice, and 
blockade of this escape pathway improved survival [ 258 ]. These fi ndings support 
further investigation of anti-PD-L1 or anti-PD-1 agents in combination with various 
targeted therapies, including epigenetic therapy. While immune checkpoint inhibi-
tors such as  ipilimumab   (anti-CTLA-4 antibody) have been approved for the treat-
ment of melanoma, they have yet not been approved for lung cancer. However, 
several classes of new drugs appear to be active in various ongoing clinical trials, 
and their impending approval for use in lung cancer is presumed. At present, several 
new therapeutic agents are being tested in more than 600 clinical trials in patients 
with advanced NSCLC, and based on early phase data exhibiting potential, some of 
these new agents have the capacity to translate to phase III trials, and eventually 
benefi t patients.     
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