
Chapter 5
Multiscale Properties of Tempered Stable
Lévy Processes

In this chapter we characterize the multiscale properties of p-tempered ˛-stable
Lévy processes. Specifically, let X D fXt W t � 0g be a p-tempered ˛-stable Lévy
process. We will show when there exist deterministic function at > 0 and bt 2 R

d

and a random variable Y not concentrated at a point such that

atXt � bt
d! Y as t ! c (5.1)

for c 2 f0; 1g. When c D 1 this is called long time behavior and when c D 0 it
is called short time behavior.

From Lemma 2.5 it follows that in both cases Y must follow some ˇ-stable
distribution. Further, by Theorem 4.12 it must have a distribution in ETSp

˛ . The only
ˇ-stable distributions in ETSp

˛ are those with ˇ 2 Œ˛; 2� if ˛ 2 .0; 2/ and those with
ˇ 2 .0; 2� if ˛ � 0. Thus, these are the only possible limiting distributions.

An important consequence of long and short time behavior is that it can be
extended to convergence at the level of processes. For h > 0 consider the time
rescaled process Xh D fXth W t � 0g. Theorem 15.17 in [41] implies that, if (5.1)

holds, then there exist processes QXh dD Xh such that for all t � 0

sup
s�t

jah QXh
s � bh � Ysj p! 0 as h ! c; (5.2)

where fYt W t � 0g is a Lévy process with Y1
dD Y . Thus, in a sense, long time

behavior corresponds to what the process looks like when we “zoom out” and short
time behavior corresponds to what the process looks like when we “zoom in” on it.
When the long and short time behavior of a process are different, the process is
multiscaling: it behaves differently in a long time frame from how it behaves in a
short time frame.
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68 5 Multiscale Properties of Tempered Stable Lévy Processes

5.1 Long and Short Time Behavior

In this section we characterize the long and short time behavior of tempered
stable Lévy processes. The proofs are deferred until Section 5.2. First note that if
fXt W t � 0g is a Lévy process with X1 � TSp

˛.R; b/, then by Proposition 3.5 for any
at > 0 and bt 2 R

d the distribution of atXt � bt is given by TSp
˛.Rt; �t/, where

Rt.A/ D t
Z
Rd

1A.atx/R.dx/; A 2 B.Rd/ (5.3)

and �t is given by

tatb C tat.1 � a2
t /

Z
Rd

Z 1
0

xjxj2
.1 C jxj2r2a2

t /.1 C jxj2r2/
e�rp

r2�˛drR.dx/ � bt:

(5.4)

We begin with the case where the limiting distribution is ˇ-stable with ˇ 2 .0 _
˛; 2/. From Proposition 3.12 it follows that all such ˇ-stable distributions belong
to the class TSp

˛ and have a Rosiński measure given by Rˇ
� as in (3.19). Note that,

by Theorem 4.12 and Remark 4.7, for the long (or short) time behavior of � to be
ˇ-stable it is necessary that

Rt
v! Rˇ

� on NRd
0 as t ! c;

where c D 1 (or c D 0). We will show that this is also sufficient and that it is
equivalent to the regular variation of R at c. For ˛ ¤ 0 a version of this result was
given in [30]. Our proof, which we defer until Section 5.2, allows for the case ˛ D 0

and is shorter and simpler.

Theorem 5.1. Fix c 2 f0; 1g, ˛ < 2, p > 0, ˇ 2 .0 _ ˛; 2/, and let � ¤ 0 be a
finite Borel measure on S

d�1. Let fXt W t � 0g be a p-tempered ˛-stable Lévy Process
with X1 � TSp

˛.R; b/ and let Y � Sˇ.�; 0/. There exist non-stochastic functions
at > 0 and bt 2 R

d such that

atXt � bt
d! Y as t ! c (5.5)

if and only if R 2 RVc�ˇ.�/. Moreover, in this case, a� 2 RVc�1=ˇ ,

at � K1=ˇ=V .t/ as t ! c; (5.6)

where K D ˇ�1�.Sd�1/ and V.t/ D 1=R .jxj > t/, and b� is such that, if �� is as
given by (5.4), then �t ! 0 as t ! c.



5.1 Long and Short Time Behavior 69

We now turn to the case when ˛ 2 .0; 2/ and the limiting stable distribution has
the same index of stability as the one being tempered. In this case, instead of the
Rosiński measure or the extended Rosiński measure, we prefer to work with

�1.dx/ D jxj˛R.dx/;

which we call the modified Rosiński measure. Theorem 3.3 implies that this is
a finite measure if and only if R is the Rosiński measure of a proper p-tempered
˛-stable distribution.

Theorem 5.2. Fix c 2 f0; 1g, ˛ 2 .0; 2/, p > 0, and let � ¤ 0 be a finite Borel
measure on S

d�1. Let fXt W t � 0g be a p-tempered ˛-stable Lévy Process with
X1 � TSp

˛.R; b/ and let Y � S˛.�; 0/. There exist non-stochastic functions at > 0

and bt 2 R
d such that

atXt � bt
d! Y as t ! c (5.7)

if and only if �1 2 RVc
0.�/, where �1.dx/ D jxj˛R.dx/. Moreover, in this case,

a� 2 RVc�1=˛ with

at � K1=˛=V .t/ as t ! c; (5.8)

where K D �.Sd�1/ and V.t/ D t˛=�1.jxj > t/, and b� is such that, if �� is as given
by (5.4), then �t ! 0 as t ! c.

Combining this with facts about the domains of attraction of infinite variance
stable distribution given in, e.g., [30] we get the following result, which extends
Theorem 3.18.

Corollary 5.3. Fix ˛ 2 .0; 2/, p > 0, and let � D TSp
˛.R; b/. If M is the Lévy

measure of � and �1.dx/ D jxj˛R.dx/, then

� 2 RV1�˛.�/ ” M 2 RV1�˛.�/ ” �1 2 RV10 .�/: (5.9)

It turns out that when c D 0 and X1 has a proper p-tempered ˛-stable distribution
the result of Theorem 5.2 always holds. In this case Theorem 3.3 implies that �1 is
a finite measure, and hence �1 2 RV0

0 .�/ with

�.B/ D
Z
Rd

1B

�
x

jxj
�

�1.dx/ D
Z
Rd

1B

�
x

jxj
�

jxj˛R.dx/; B 2 B.Sd�1/:

In this case

V.t/ � t˛=K as t # 0

and by Proposition 2.6

at � t�1=˛ as t # 0:
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Thus Theorem 5.2 implies that if Y � S˛.�; 0/, then for properly chosen bt

lim
t#0

�
t�1=˛Xt � bt

� d! Y as t # 0: (5.10)

This is not surprising because by Remark 3.5 all proper p-tempered ˛-stable
distributions with ˛ 2 .0; 2/ belong to the class of generalized tempered stable
distributions, and, for this class, results analogous to (5.10) are given in [66].

We conclude this section by turning to the case where the limiting distribution is
Gaussian, i.e. where it is a ˇ-stable distribution with ˇ D 2.

Theorem 5.4. Fix c 2 f0; 1g, ˛ < 2, p > 0, and let B ¤ 0 be a symmetric
nonnegative-definite matrix. Let fXt W t � 0g be a p-tempered ˛-stable Lévy process
with X1 � TSp

˛.R; b/ and let

At D
Z
jxj�t

xxTR.dx/: (5.11)

There exist non-stochastic functions at > 0 and bt 2 R
d such that

atXt � bt
d! N.0; B/ as t ! c (5.12)

if and only if A� 2 MRVc
0.B=trB/. Moreover, in this case, a� 2 RVc�1=2 and

at � K�1=2=V .t/ as t ! c; (5.13)

where K D R1
0

s1�˛e�sp
ds=trB and V.t/ D t2=

R
jxj�t jxj2R.dx/, and b� is such that,

if �� is as given by (5.4), then �t ! 0 as t ! c.

Note that in the case
R
Rd jxj2R.dx/ < 1 dominated convergence implies that

A� 2 MRV10 .B=trB/ where B D R
Rd xxTR.dx/. Combining Theorem 5.4 with facts

about the domain of attraction of the multivariate Gaussian given in [29] gives the
following.

Corollary 5.5. Fix c 2 f0; 1g, let � D TSp
˛.R; b/, and let M be the Lévy measure

of �. There exists a nonnegative definite matrix B ¤ 0 with

Z
jxj��

xxTR.dx/ 2 MRVc
0.B/ (5.14)

if and only if

Z
jxj��

xxTM.dx/ 2 MRVc
0.B/: (5.15)
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Further, if c D 1 and one of (5.14) or (5.15) holds, then there is a nonnegative
definite matrix B0 ¤ 0 (possible different from B) such that

Z
jxj��

xxT�.dx/ 2 MRV10 .B0/:

5.2 Proofs

In this section we prove the results of Section 5.1. We begin with several lemmas.

Lemma 5.6. Fix c 2 f0; 1g, let Y be a random variable whose distribution is not
concentrated at a point, let a� be a positive function, and let fXt W t � 0g be a Lévy
process with X1 � ID.A; M; b/ and M ¤ 0. Assume that there exists a deterministic
function �� taking values in R

d such that

lim
t!c

atXt � �t
d! Y:

1. If c D 0, then limt#0 at D 1 and a1=t � a1=.tC1/ as t ! 1.
2. If c D 1, then limt!1 at D 0 and at � atC1 as t ! 1.

Proof. First assume c D 0. Let ` WD lim inft#0 at and assume for the sake of
contradiction that ` < 1. This means that there is a sequence of positive real
numbers ftng converging to 0 such that limn!1 atn D `. Consider a further
subsequence ftnig such that limi!1 �tni

exists (although we allow it to be infinite).

Stochastic continuity of Lévy processes implies that Xt
p! 0 as t # 0, thus Slutsky’s

Theorem implies that

Y D d-lim
i!1 .atni

Xtni
� �tni

/
dD `0 � lim

i!1 �tni
;

which contradicts the assumption that the distribution of Y is not concentrated at a
point. Thus limt#0 at D 1.

Let CX1 .�/ be the cumulant generating function of X1. The characteristic function
of a1=tX1=t � �1=t is exp

�
1
t CX1 .a1=tz/ � ihz; �1=ti

�
. If O�Y.z/ is the characteristic

function of Y , then

O�Y.z/ D lim
t!1 exp

�
1

t
CX1 .a1=tz/ � ihz; �1=ti

�

D lim
t!1 exp

�
1

t C 1
CX1 .a1=tz/ � ihz; t

t C 1
�1=ti

�
;
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which implies that

Y
dD d-lim

t!1

�
a1=tX1=.tC1/ � t

t C 1
�1=t

�

dD d-lim
t!1

�
a1=t

a1=.tC1/

�
a1=.tC1/X1=.tC1/ � �1=.tC1/

�C a1=t

a1=.tC1/

�1=.tC1/ � t

t C 1
�1=t

�
:

Since
�
a1=.tC1/X1=.tC1/ � �1=.tC1/

� d! Y as t ! 1, the result follows by the
Convergence of Types Theorem, see, e.g., Lemma 13.10 in [69].

Now assume that c D 1. Let Mt be the Lévy measure of atXt � �t and note that
Mt.�/ D tM.�=at/. By Lemma 2.5 Y has a stable distribution. Let M0 be its Lévy
measure and note that M0.jxj D s/ D 0 for all s > 0. From here Propositions 4.8
and 4.4 imply that for any s > 0

lim
t!1 tM.jxj > s=at/ D lim

t!1Mt.jxj > s/ D M0.jxj > s/ < 1;

where the finiteness follows from the fact that M0 is a Lévy measure. This implies

that at ! 0. Now let X0 dD X1 be independent of fXt W t � 0g. By Slutsky’s Theorem

atX0
p! 0 as t ! 1 and

Y
dD d-lim

t!1 .atC1XtC1 � �tC1/

dD d-lim
t!1

�
atC1Xt C atC1X0 � �tC1

�

dD d-lim
t!1

�
atC1

at
.atXt � �t/ C atC1

at
�t � �tC1

�
:

Combining this with the fact that .atXt � �t/
d! Y as t ! 1 and another application

of the Convergence of Types Theorem gives the result. ut
Lemma 5.7. Fix c 2 f0; 1g. Let M be a Borel measure on R

d satisfying (2.2). Fix
˛; ˇ � 0 with ˛ C ˇ 2 .0; 2/ and define M1.dx/ D jxj˛M.dx/. If M1 2 RVc�ˇ.�/ for
some � ¤ 0 and

Mt.D/ D t
Z
Rd

1D.atx/M.dx/; D 2 B.Rd/;

where at � k1=.ˇC˛/=V .t/ for some k > 0 and V.t/ D t˛=M1.jxj > t/, then

lim
s!0

lim sup
t!c

Z
jxj�s

jxj2Mt.dx/ D 0:
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Further, if for some � 2 Œ0; ˇ C ˛/

Z
jxj>1

jxj�M.dx/ < 1; then lim
s!1 lim sup

t!c

Z
jxj>s

jxj�Mt.dx/ D 0

and if ˛ D 0 and
Z
jxj>1

log jxjM.dx/ < 1; then lim
s!1 lim sup

t!c

Z
jxj>s

log jxjMt.dx/ D 0:

Note that when c D 1 Proposition 2.12 implies that if M1 2 RV1�ˇ.�/, thenR
jxj>1

jxj�M.dx/ < 1 for any � < ˛ C ˇ. However, a similar result does not hold
when c D 0.

Proof. Define

U.u/ WD
Z
jxj>u

jxj˛M.dx/ and Ut.u/ WD
Z
jxj>u

jxj˛Mt.dx/ D ta˛
t U.u=at/:

Note that (2.16) implies that U 2 RVc�ˇ and (2.8) implies that a� 2 RVc�1=.ˇC˛/

and hence by Proposition 2.6 limt!c at D 1=c. By Proposition 2.6 it follows that as
t ! c

t � V.V .t// � k˛=.˛Cˇ/

a˛
t M1.jxj > k1=.ˇC˛/=at/

� k

a˛
t U.1=at/

:

Combining this with Fubini’s Theorem gives

lim
t!c

Z
jxj�s

jxj2Mt.dx/ D lim
t!c

.2 � ˛/

Z
jxj�s

Z jxj
0

u1�˛dujxj˛Mt.dx/

D lim
t!c

�
.2 � ˛/

Z s

0

u1�˛Ut.u/du � s2�˛Ut.s/

�

D lim
t!c

ta˛
t

�
.2 � ˛/

Z s

0

u1�˛U.u=at/du � s2�˛U.s=at/

�

D lim
t!c

k

"
.2 � ˛/

R s
0

u1�˛U.u=at/du

U.1=at/
� s2�˛ U.s=at/

U.1=at/

#

D lim
t!c

k.2 � ˛/
a2�˛

t

R s=at

0
u1�˛U.u/du

U.1=at/
� ks2�˛�ˇ

D lim
t!c

k.2 � ˛/

R s=at

0
u1�˛U.u/du

.s=at/2�˛U.s=at/
s2�˛�ˇ � ks2�˛�ˇ

D k
2 � ˛

2 � ˛ � ˇ
s2�˛�ˇ � ks2�˛�ˇ;
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which approaches 0 as s ! 0. In the above the fifth equality follows by change
of variables and the seventh by Karamata’s Theorem (Theorem 2.7). The proofs
of the other parts are similar. We just need to note that by Fubini’s Theorem for
� 2 Œ0; ˇ C ˛/ and s > 0 we have

Z
jxj>s

jxj�Mt.dx/ D .� � ˛/

Z 1
s

u��˛�1Ut.u/du C s��˛Ut.s/

and for ˛ D 0 and s > 1 we have
Z
jxj>s

log jxjMt.dx/ D
Z 1

s
u�1Ut.u/du C Ut.s/ log.s/:

This completes the proof. ut
Proof (Proof of Theorem 5.1). Note that atXt � bt � TSp

˛.Rt; �t/, where Rt is
given by (5.3) and �t is given by (5.4). If (5.5) holds, then Lemma 5.6 implies that

limt!c at D 1=c and, by Theorem 4.12 and Remark 4.7, limt!c �t D 0 and Rt
v! Rˇ

�

on NRd
0 as t ! c. Since, for all b � 0, Rˇ

� .jxj D b/ D 0, for any D 2 B.Sd�1/ with
�.@D/ D 0 the Portmanteau Theorem (Proposition 4.4) implies that

lim
t!c

tR

�
jxj > b=at;

x

jxj 2 D

�
D lim

t!c
Rt

�
jxj > b;

x

jxj 2 D

�

D Rˇ
�

�
jxj > b;

x

jxj 2 D

�

D
Z

D

Z 1
b

r�1�ˇdr�.du/

D ˇ�1�.D/b�ˇ:

Thus, by Proposition 2.11, R 2 RV1�ˇ.�/, a� 2 RV1�1=ˇ , and (5.6) holds.
Conversely, assume that R 2 RV1�ˇ.�/. Let Rt be as in (5.3) and at as in (5.6). By

Proposition 2.11, for any b > 0 and D 2 B.Sd�1/ with �.@D/ D 0

lim
t!c

Rt

�
jxj > b;

x

jxj 2 D

�
D lim

t!c
tR

�
jxj > b=at;

x

jxj 2 D

�

D ˇ�1�.D/b�˛

D
Z

D

Z 1
b

r�1�ˇdr�.du/

D Rˇ
�

�
jxj > b;

x

jxj 2 D

�
:
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Since, for all b � 0, Rˇ
� .jxj D b/ D 0 we can use Lemma 4.9 to get Rt

v! Rˇ
� on NRd

0

as t ! 1. From here the result follows by applying Lemma1 5.7 and Remarks 4.6
and 4.7. ut
Proof (Proof of Theorem 5.2). By Proposition 2.11 �1 2 RVc

0.�/ if and only if
there is a function a� with limt!c at D 1=c such that for all s 2 .0; 1/ and all
D 2 B.Sd�1/ with �.@D/ D 0

lim
t!c

ta˛
t �1

�
jxj > s=at;

x

jxj 2 D

�
D �.D/: (5.16)

When this holds a� 2 RV1�1=˛ and at is as in (5.8). Thus, it suffices to show that (5.7)
holds if and only if (5.16) holds.

Let � be the extended Rosiński measure of X1, let �Y be the extended Rosiński
measure of Y , and let Rt and �t be, respectively, the Rosiński measure and the
extended Rosiński measure of atXt � bt. For D 2 B.Sd�1/ with � .@D/ D 0 and
s 2 .0; 1/ define As

D WD fjxj > s; �.x/ 2 Dg and note that �Y.@As
D/ D 0.

First assume that (5.7) holds. Lemma 5.6 implies that limt!c at D 1=c and

Theorem 4.12 implies that �t
v! �Y on NRd

0 as t ! c. By the Portmanteau Theorem
(Proposition 4.4)

lim
t!c

�t.A
s
D/ D �Y.As

D/ D �Y.1D/ D �.D/: (5.17)

When s � 1

ta˛
t �1

�
As=at

D

	
D ta˛

t

Z
jxj>s=at

1D.�.x//jxj˛R.dx/

D
Z
jxj>s

1D.�.x//jxj˛Rt.dx/ D �t.A
s
D/;

and similarly when s 2 .0; 1/

ta˛
t �1

�
As=at

D

	
D ta˛

t �1
�

A1=at
D

	
C ta˛

t �1
�

As=at
D

	
� ta˛

t �1
�

A1=at
D

	

D �t.A
1
D/ C

Z
1�jxj>s

1D.�.x//jxj˛Rt.dx/:

Now observe that by (5.17) when s 2 .0; 1/ we have

lim
t!c

Z
1�jxj>s

1D.�.x//jxj˛Rt.dx/ � lim
t!c

s�.2�˛/

Z
1�jxj>s

1D.�.x//jxj2Rt.dx/

D lim
t!c

s�.2�˛/


�t.A

s
D/ � �t.A

1
D/
�

D s�.2�˛/ Œ�.D/ � �.D/� D 0:

1It should be noted that the parameter ˛ means different things in Theorem 5.1 and in Lemma 5.7.
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Putting everything together implies that for any s 2 .0; 1/

lim
t!c

ta˛
t �1

�
As=at

D

	
D lim

t!c
�t.A

s_1
D / D �.D/;

and (5.16) holds as required.
Now assume that (5.16) holds. By Proposition 2.11 a� satisfies (5.8) and a� 2

RVc�1=˛ . As in the previous case, for s � 1 we have

�t.A
s
D/ D ta˛

t �1
�

As=at
D

	
;

and for s 2 .0; 1/ we have

�t.A
s
D/ D �t.A

1
D/ C �t.A

s
D/ � �t.A

1
D/ D ta˛

t �1
�

A1=at
D

	
C
Z

1�jxj>s
1D.�.x//jxj2Rt.dx/:

Now observe that (5.16) implies that for s 2 .0; 1/

lim
t!c

Z
1�jxj>s

1D.�.x//jxj2Rt.dx/ � lim
t!c

Z
1�jxj>s

1D.�.x//jxj˛Rt.dx/

D lim
t!c

h
ta˛

t �1.As=at
D / � ta˛

t �1.A1=at
D /

i

D �.D/ � �.D/ D 0:

This implies that for all s 2 .0; 1/

lim
t!c

�t.A
s
D/ D lim

t!c
ta˛

t �1.A.s_1/=at
D / D �.D/;

and by Lemma 4.9 it follows that �t
v! �Y on NRd

0 as t ! c. Thus we have
convergence of the extended Rosiński measures. It remains to show convergence
of the shifts and Gaussian parts. The convergence of the shifts is equivalent to the
condition that �t ! 0 as t ! c. By (4.23) the limit will have no Gaussian part so
long as

lim sup
t!c

�t.jxj < 1/ D 0;

which follows immediately from Lemma 5.7. This concludes the proof. ut
To prove results for convergence to the Gaussian we need a few additional

Lemmas.

Lemma 5.8. Fix ˛ < 2, p > 0, and let fRng be a sequence of measures on R
d

satisfying (2.2). If, for any s > 0, limn!1 Rn.jxj > s/ D 0 and if for some � > 0

sup
n

Z
jxj��

jxj2Rn.dx/ < 1;
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then for any a; b; c 2 .0; 1/

lim
n!1

 Z
jxj�a

xxT
Z c=jxj

0

t1�˛e�tp dtRn.dx/ � 	

Z
jxj�b

xxTRn.dx/

!
D 0;

where 	 D R1
0

t1�˛e�tp dt.

Proof. Fix 
 > 0 and let C D supn

R
jxj��

jxj2Rn.dx/. By dominated convergence

limu!1
R u

0
t1�˛e�tp dt D 	; which implies that there exists a u0 2 .0; 1/ such that if

u � u0, then
ˇ̌
	 � R u

0
t1�˛e�tp dt

ˇ̌
< 


C . Fix a0 > 0 such that a0 < minfc=u0; a; b; �g.
For any 1 � i; j � d we have

ˇ̌
ˇ̌
ˇ
Z
jxj�a

xixj

Z c=jxj

0

t1�˛e�tp dtRn.dx/ � 	

Z
jxj�b

xixjRn.dx/

ˇ̌
ˇ̌
ˇ

�
ˇ̌
ˇ̌
ˇ
Z
jxj�a0

xixj

Z c=jxj

0

t1�˛e�tp dtRn.dx/ � 	

Z
jxj�a0

xixjRn.dx/

ˇ̌
ˇ̌
ˇ

C
ˇ̌
ˇ̌
ˇ
Z

a0<jxj�a
xixj

Z c=jxj

0

t1�˛e�tp dtRn.dx/

ˇ̌
ˇ̌
ˇ

C
ˇ̌
ˇ̌	
Z

a0<jxj�b
xixjRn.dx/

ˇ̌
ˇ̌

DW A1;n C A2;n C A3;n:

Further,

A2;n � 	

Z
a0<jxj�a

jxj2Rn.dx/ � 	a2Rn.jxj > a0/ ! 0;

A3;n � 	

Z
a0<jxj�b

jxj2Rn.dx/ � 	b2Rn.jxj > a0/ ! 0;

and

A1;n �
Z
jxj�a0

jxj2
ˇ̌
ˇ̌
ˇ	 �

Z c=jxj

0

t1�˛e�tp

ˇ̌
ˇ̌
ˇ dtRn.dx/

�
Z
jxj�a0

jxj2
ˇ̌
ˇ̌
ˇ	 �

Z c=a0

0

t1�˛e�tp

ˇ̌
ˇ̌
ˇ dtRn.dx/

<



C
sup

n

Z
jxj�a0

jxj2Rn.dx/ � 
;

which completes the proof. ut
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Lemma 5.9. Fix c 2 f0; 1g. Let M be a measure on R
d satisfying (2.2) and let

Au D R
jxj�u xxTM.dx/. If A� 2 MRVc

0.B/ for some B ¤ 0 and

Mt.D/ D t
Z
Rd

1D.atx/M.dx/; D 2 B.Rd/;

where at � k�1=2=V .t/ for some k > 0 and V.t/ D t2=
R
jxj�t jxj2M.dx/, then the

following hold.

1. There exists a ı > 0 such that if Bı
c D .0; ı/ when c D 0 and Bı

c D .1=ı; 1/

when c D 1, then

sup
t2Bı

c

Z
jxj�1

jxj2Mt.dx/ < 1:

2. If, for � 2 Œ0; 2/,

Z
jxj>1

jxj�M.dx/ < 1; (5.18)

then limt!c
R
jxj>s jxj�Mt.dx/ D 0 for all s > 0. Moreover, when c D 1 (5.18)

holds for every � 2 Œ0; 2/.
3. If

R
jxj>1

log jxjM.dx/ < 1, then lims!1 lim supt!c

R
jxj>s log jxjMt.dx/ D 0.

Proof. Let

U.u/ WD
Z
jxj�u

jxj2M.dx/ D trAu and Ut.u/ WD
Z
jxj�u

jxj2Mt.dx/ D ta2
t U.u=at/:

From Definition 2.8, (2.8), and Proposition 2.6 it follows that U 2 RVc
0 , a� 2

RVc�1=2, limt!c at D 1=c, and t � V.1=.at

p
k// D Œka2

t U.1=.at

p
k//��1 �

Œka2
t U.1=at/�

�1 as t ! c. Part 1 follows from the fact that

lim
t!c

Z
jxj�1

jxj2Mt.dx/ D lim
t!c

ta2
t

Z
jxj�1=at

jxj2M.dx/ D lim
t!c

U.1=at/

kU.1=at/
D 1=k < 1:

Now to show Part 2. By Fubini’s Theorem it follows that for any s > 0

Z
jxj>s

jxj�Mt.dx/ D .2 � �/

Z 1
s

u��3Ut.u/du � s��2Ut.s/:

When c D 1 the right side is finite by Lemma 2 on Page 277 in [23], and hence the
left side must be finite as well. Further, we have
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lim
t!c

Z
jxj>s

jxj�Mt.dx/ D lim
t!c

ta2
t

�
.2 � �/

Z 1
s

u��3U.u=at/du � s��2U.s=at/

�

D lim
t!c

k�1

"
.2 � �/

R1
s u��3U.u=at/du

U.1=at/
� s��2 U.s=at/

U.1=at/

#

D lim
t!c

k�1.2 � �/

R1
s=at

u��3U.u/du

U.s=at/.s=at/��2
s��2 � k�1s��2

D k�1
�
s��2 � s��2

� D 0;

where the third equality follows by change of variables and the fourth by Karamata’s
Theorem (Theorem 2.7). We now turn to Part 3. First consider the case c D 1. The
fact that log jxj � jxj (see, e.g., 4.1.36 in [2]) and the result of Part 2 gives

0 � lim
s!1 lim sup

t!1

Z
jxj>s

log jxjMt.dx/ � lim
s!1 lim sup

t!1

Z
jxj>s

jxjMt.dx/ D 0:

Now assume that c D 0. In this case at ! 1 as t ! 0 and we have

lim sup
t!0

Z
jxj>s

log jxjMt.dx/ D lim sup
t!0

t
Z
jxj>s=at

log jxatjM.dx/

D lim sup
t!0

R
jxj>s=at

log jxatjM.dx/

ka2
t U.1=at/

D lim sup
t!0

"R
jxj>1

log jxatjM.dx/

ka2
t U.1=at/

C
R

1�jxj>s=at
log jxatjM.dx/

ka2
t U.1=at/

#

DW lim sup
t!0

ŒI1.t/ C I2.s; t/� :

Define

f .u/ D a C b log juj
kU.1=u/

u�2;

where

a D
Z
jxj>1

log jxjM.dx/ and b D
Z
jxj>1

M.dx/;
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and note that, by assumption, a; b 2 .0; 1/. The fact that U 2 RV0
0 implies that

f 2 RV1�2 and thus by Proposition 2.6

lim
t!0

I1.t/ D lim
t!0

f .at/ D lim
t!1 f .t/ D 0:

Using the inequality log jxj � jxj again and Fubini’s Theorem gives
Z

1�jxj>s=at

log jxatjM.dx/ � at

Z
1�jxj>s=at

jxjM.dx/

D at

Z 1
s=at

u�2

Z
s=at<jxj�.u^1/

jxj2M.dx/du

� at

Z 1
s=at

u�2

Z
jxj�.u^1/

jxj2M.dx/du

D at

Z 1

s=at

u�2U.u/du C atU.1/

D at

Z at=s

1

U.1=u/du C atU.1/;

where the final line follows by change of variables. This implies that

I2.s; t/ �
R at=s

1
U.1=u/du

katU.1=at/
C U.1/

katU.1=at/
DW I21.s; t/ C I22.t/:

By Karamata’s Theorem (Theorem 2.7) and the fact that U.1=�/ 2 RV10 we have

lim
s!1 lim sup

t!0

I21.s; t/ D lim
s!1 lim sup

t!0

R at=s
1

U.1=u/du

k.at=s/U.s=at/
s�1 D lim

s!1
1

k
s�1 D 0:

Finally, note that the function of u given by U.1/

kuU.1=u/
is an element of RV1�1, which

implies that limt!0 I22.t/ D 0. ut
Proof (Proof of Theorem 5.4). Note that atXt � bt � TSp

˛.Rt; �t/, where Rt is given
by (5.3) and �t is given by (5.4). Before proceeding set 	 D R1

0
s1�˛e�sp

ds.
First assume that A� 2 MRVc

0.B=trB/ and that at is given by (5.13). This implies
that a� 2 RVc�1=2. Further, Lemma 5.9 implies that the assumptions of Lemma 5.8
hold. Using this lemma gives

lim

#0

lim
t!c

Z
jxj�p


xxT
Z 
=jxj

0

s1�˛e�sp
dsRt.dx/ D lim

t!c
	

Z
jxj�1=

p
K

xxTRt.dx/

D 	 lim
t!c

ta2
t

Z
jxj�1=.

p
Kat/

xxTR.dx/
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D 	 lim
t!c

K�1

R
jxj�1=.

p
Kat/

xxTR.dx/R
jxj�1=.

p
Kat/

jxj2R.dx/

D trB lim
t!c

R
jxj�1=.

p
Kat/

xxTR.dx/R
jxj�1=.

p
Kat/

jxj2R.dx/
D B:

From here the result will follow by Theorem 4.12. We just need to show that
the extended Rosiński measure goes to zero, which follows by Remark 4.7 and
Lemma 5.9.

Now assume that (5.12) holds. Theorem 4.12 implies that for every s > 0

lim
t!c

Rt.jxj > s/ D 0

and

lim

#0

lim
t!c

Z
jxj�p


xxT
Z 
=jxj

0

s1�˛e�sp
dsRt.dx/ D B: (5.19)

This means that there exist an 
0 > 0 and a ı > 0 such that

1 > sup
t2Bı

c

Z
jxj�p
0

jxj2
Z 
0=jxj

0

s1�˛e�sp
dsRt.dx/

� sup
t2Bı

c

Z
jxj�p
0

jxj2Rt.dx/

Z p
0

0

s1�˛e�sp
ds;

where Bı
c D .0; ı/ if c D 0 and Bı

c D .1=ı; 1/ if c D 1. Hence

sup
t2Bı

c

Z
jxj�p
0

jxj2Rt.dx/ < 1

and we can use Lemma 5.8, which combined with (5.19) tells us that for any s > 0

	 lim
t!c

ta2
t

Z
jxj�s=at

xxTR.dx/ D 	 lim
t!c

Z
jxj�s

xxTRt.dx/ D B:

Thus, for any s > 0,

	 lim
t!c

ta2
t U.s=at/ D trB;
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where U.t/ D R
jxj�t jxj2R.dx/. Lemma 5.6 implies that the sequential criterion for

regular variation of monotone functions (see Proposition 2.6) holds and thus that
U 2 RVc

0 . The fact that

lim
t!c

R
jxj�t xxTR.dx/R
jxj�t jxj2R.dx/

D lim
t!c

	ta2
t

R
jxj�1=at

xxTR.dx/

	ta2
t

R
jxj�1=at

jxj2R.dx/
D B

trB

shows that A� 2 MRVc
0.B=trB/ as required. ut
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