
Chapter 3
Tempered Stable Distributions

In this chapter we formally define tempered stable distributions and discuss many
properties. These distributions were first introduced in [65]. From here the class
was expanded in several directions in [9, 51, 66], and [27]. Our discussion mainly
follows [27].

3.1 Definitions and Basic Properties

Fix ˛ 2 .0; 2/, let � be a finite Borel measure on S
d�1, and recall that the Lévy

measure of an ˛-stable distribution with spectral measure � is given by

L.A/ D
Z
Sd�1

Z 1

0

1A.ru/r�˛�1dr�.du/; A 2 B.Rd/: (3.1)

Now, fix p > 0 and define a new Lévy measure of the form

M.A/ D
Z
Sd�1

Z 1

0

1A.ru/q.rp; u/r�˛�1dr�.du/; A 2 B.Rd/; (3.2)

where q W .0;1/ � S
d�1 7! .0;1/ is a Borel function such that, for all u 2 S

d�1,
q.�; u/ is completely monotone and satisfies

Z 1

0

r1�˛q.rp; u/dr < 1;

Z 1

1

r�1�˛q.rp; u/dr < 1; (3.3)

and

lim
r!1 q.r; u/ D 0: (3.4)
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16 3 Tempered Stable Distributions

The conditions in (3.3) guarantee that this is a valid Lévy measure, while the fact
that (3.4) holds implies that the tails of M are lighter than those of L. This implies
that the tails of the associated infinitely divisible distribution are lighter as well.

The complete monotonicity1 of q.�; u/means that, for each u 2 S
d�1, the function

q.r; u/ is infinitely differentiable in r and

.�1/n @
n

@rn
q.r; u/ � 0: (3.5)

In particular, this implies that q.�; u/ is a monotonely decreasing function for each
u 2 S

d�1. By (3.4) and Bernstein’s Theorem (see, e.g., Theorem 1a in Section
XIII.4 of [23] or Remark 3.2 in [6]) it follows that there exists a measurable family2

fQugu2Sd�1 of Borel measures on .0;1/ with

q.rp; u/ D
Z
.0;1/

e�rpsQu.ds/: (3.6)

From here it follows that, so long as Qu ¤ 0, we have q.rp; u/ > 0 for all r > 0.
Note that, under the given conditions on the function q, (3.2) defines a valid

Lévy measure even for ˛ outside of the interval .0; 2/. However, since q.�; u/ is a
decreasing function for each u 2 S

d�1, when ˛ � 2 condition (3.3) holds only with
q � 0. For this reason, we only consider the case ˛ 2 .�1; 2/. This leads to the
following definition.

Definition 3.1. Fix ˛ < 2 and p > 0. An infinitely divisible probability measure �
is called a p-tempered ˛-stable distribution if it has no Gaussian part and its Lévy
measure is given by (3.2), where � is a finite Borel measure on S

d�1 and q W .0;1/�
S

d�1 7! .0;1/ is a Borel function such that for all u 2 S
d�1, q.�; u/ is completely

monotone and satisfies (3.3) and (3.4). We denote the class of p-tempered ˛-stable
distributions by TSp

˛ .

We use the term tempered stable distributions to refer to the class of all
p-tempered ˛-stable distributions with all ˛ < 2 and p > 0.

Remark 3.1. Under appropriate integrability conditions, one can define Lévy mea-
sures of the form (3.2) with p � 0. The case p D 0 corresponds to the class of
˛-stable distributions and only makes sense for ˛ 2 .0; 2/. The case p < 0 has
significantly different behavior from the case p > 0 and will not be considered here.

Remark 3.2. From Theorem 15.10 in [69] it follows that p-tempered ˛-stable
distributions belong to the class of self-decomposable distributions if and only if
q.rp; u/r�˛ is a decreasing function of r for every u 2 S

d�1. This always holds when

1A general reference on completely monotone functions is [72].
2The measurability of the family means that for any Borel set A the function f .u/ D Qu.A/ is
measurable.
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˛ 2 Œ0; 2/, but it may fail when ˛ < 0. Thus, when ˛ 2 Œ0; 2/, p-tempered ˛-stable
distributions possess all properties of self-decomposable distributions. In particular,
if they are nondegenerate, then they have a density with respect to Lebesgue measure
in d-dimensions and when d D 1 they are unimodal.

In Definition 3.1, the case when ˛ � 0 no longer corresponds to the idea of
modifying the tails of a stable distribution. Nevertheless, such distributions serve
to make the class richer and more robust. It should be added that, even in the case
when ˛ 2 .0; 2/ we may no longer have a Lévy measure that looks much like that of
an ˛-stable distribution. For that to hold, we would need the function q to be close
to 1 in some region near zero. This leads to the following definition.

Definition 3.2. Fix p > 0 and ˛ < 2. Let � be a p-tempered ˛-stable distribution
with Lévy measure M. If M can be represented in the form (3.2) where

lim
r#0

q.r; u/ D 1 for every u 2 S
d�1; (3.7)

then � is called a proper p-tempered ˛-stable distribution.

Proper p-tempered ˛-stable distributions with ˛ 2 .0; 2/ are the ones that
correspond to the original motivation of modifying the tails of stable distributions
to make them lighter.

Remark 3.3. In [9, 65], and [27] proper p-tempered ˛-stable distributions are
defined to be ones where M is of the form (3.2) and (3.7) holds. However, it
may happen that q does not satisfy (3.7), but that there is a Borel function c W
S

d�1 7! .0;1/ such that q0.r; u/ D q.r; u/=c.u/ satisfies (3.7). In this case we
can take � 0.du/ D c.u/�.du/ and write M as (3.2) but with q0 and � 0 in place of q
and � . In this case we still want to consider M to be a proper p-tempered ˛-stable
distribution. For this reason we need the somewhat more subtle formulation given
in Definition 3.2.

Remark 3.4. Assume that q.r; u/ satisfies (3.6). The Monotone Convergence The-
orem implies that q.r; u/ satisfies (3.7) if and only if (3.6) holds with Qu being a
probability measure for every u 2 S

d�1.

Remark 3.5. When ˛ 2 .0; 2/ and p > 0, the class of proper p-tempered ˛-stable
distributions belongs to the class of Generalized Tempered Stable Distributions
introduced in [66].

It is somewhat artificial to work with the family of measures fQugu2Sd�1 and
the measure � separately. Ideally, we would like to combine these into one object.
Toward this end, let Q be a Borel measure on R

d given by

Q.A/ D
Z
Sd�1

Z
.0;1/

1A.ru/Qu.dr/�.du/; A 2 B.Rd/; (3.8)
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and note that Q.f0g/ D 0. Now define a Borel measure R on R
d by

R.A/ D
Z
Rd
1A

�
x

jxj1C1=p

�
jxj˛=pQ.dx/; A 2 B.Rd/; (3.9)

and again note that R.f0g/ D 0. To get the inverse transformation we have

Q.A/ D
Z
Rd
1A

�
x

jxjpC1

�
jxj˛R.dx/; A 2 B.Rd/: (3.10)

From here it follows that

Q.Rd/ D
Z
Rd

jxj˛R.dx/: (3.11)

We now write the Lévy measure M in terms of R. By (3.2) and (3.6) for any
A 2 B.Rd/ we have

M.A/ D
Z
Sd�1

Z
.0;1/

Z 1

0

1A.ru/r�˛�1e�rpsdrQu.ds/�.du/

D
Z
Sd�1

Z
.0;1/

Z 1

0

1A.ts
�1=pu/t�1�˛e�tp dts˛=pQu.ds/�.du/

D
Z
Rd

Z 1

0

1A

�
t

x

jxj1C1=p

�
t�1�˛e�tp dtjxj˛=pQ.dx/;

where the second equality follows by the substitution t D rs1=p. From here (3.10)
gives

M.A/ D
Z
Rd

Z 1

0

1A.tx/t
�1�˛e�tp dtR.dx/; A 2 B.Rd/: (3.12)

This is the form of the Lévy measure that tends to be the most convenient to work
with.

This representation raises several questions: If we are given a measure of the
form (3.12), under what conditions will it be a Lévy measure? When it is a Lévy
measure, is it necessarily the Lévy measure of a p-tempered ˛-stable distribution?
Is there a one-to-one relationship between the measures M and R? The answers are
provided by the following.

Theorem 3.3. 1. Fix p > 0 and let M be given by (3.12). M is the Lévy measure
of an infinitely divisible distribution if and only if either ˛ 2 R and R D 0 or
˛ < 2,

R.f0g/ D 0; (3.13)
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and
Z
Rd

�jxj2 ^ jxj˛�
R.dx/ < 1 if ˛ 2 .0; 2/;

Z
Rd

�jxj2 ^ Œ1C logC jxj�� R.dx/ < 1 if ˛ D 0; (3.14)

Z
Rd

�jxj2 ^ 1� R.dx/ < 1 if ˛ < 0:

2. Fix p > 0, ˛ < 2, and let M be given by (3.12). If R satisfies (3.13) and (3.14),
then M is the Lévy measure of a p-tempered ˛-stable distribution and it uniquely
determines R. Moreover, M is the Lévy measure of a proper p-tempered ˛-stable
distribution if and only if

Z
Rd

jxj˛R.dx/ < 1: (3.15)

Proof. We begin with Part 1. By (2.2) M is a Lévy measure if and only if M.f0g/ D
0 and

R
Rd .jxj2 ^ 1/M.dx/ < 1. Assume R ¤ 0, since the other case is trivial. For

any ˛ 2 R

M.f0g/ D
Z
Rd

Z 1

0

1f0g.tx/t�˛�1e�tp dtR.dx/ D
Z

f0g

Z 1

0

t�1�˛e�tp dtR.dx/;

which equals zero if and only if R.f0g/ D 0.
Now assume that

R
Rd .jxj2 ^ 1/M.dx/ < 1. We will show that this implies that

˛ < 2 and that R satisfies (3.14). Fix � > 0 and note that

1 >

Z
jxj�1

jxj2M.dx/ D
Z
Rd

jxj2
Z jxj�1

0

t1�˛e�tp dtR.dx/

�
Z

jxj�1=�
jxj2

Z �

0

t1�˛e�tp dtR.dx/ � e��p
Z

jxj�1=�
jxj2R.dx/

Z �

0

t1�˛dt:

Since R ¤ 0, for this be finite for all � > 0 it is necessary that ˛ < 2. Taking � D 1

gives the necessity of
R

jxj�1 jxj2R.dx/ < 1. Observing that

1 >

Z
jxj�1

M.dx/ D
Z
Rd

Z 1

jxj�1
t�1�˛e�tp dtR.dx/

�
Z 1

1

t�1�˛e�tp dt
Z

jxj�1
R.dx/C e�1

Z
jxj�1

Z 1

jxj�1
t�1�˛dtR.dx/
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gives the necessity of
R

jxj�1 R.dx/ < 1 and
R

jxj�1
R 1

jxj�1 t�1�˛dtR.dx/ < 1. When
˛ < 0 we are done. When ˛ D 0 we have

Z
jxj�1

Z 1

jxj�1
t�1�˛dtR.dx/ D

Z
jxj�1

log jxjR.dx/;

and when ˛ 2 .0; 2/ we have

Z
jxj�1

Z 1

jxj�1
t�1�˛dtR.dx/ D 1

˛

Z
jxj�1

.jxj˛ � 1/R.dx/;

which together with the necessity of
R

jxj�1 R.dx/ < 1 gives (3.14).
Now assume that ˛ < 2 and that R satisfies (3.14). We have

Z
jxj�1

jxj2M.dx/ D
Z
Rd

jxj2
Z jxj�1

0

t1�˛e�tp dtR.dx/

�
Z

jxj�1
jxj2R.dx/

Z 1

0

t1�˛e�tp dt C
Z

jxj>1
jxj2

Z jxj�1

0

t1�˛dtR.dx/

D p�1�
�
2 � ˛

p

� Z
jxj�1

jxj2R.dx/C .2 � ˛/�1
Z

jxj>1
jxj˛R.dx/;

which is finite. Now let D D supt�1 t2�˛e�tp and note that

Z
jxj�1

M.dx/ D
Z
Rd

Z 1

jxj�1
t�1�˛e�tp dtR.dx/

� D
Z

jxj�1

Z 1

jxj�1
t�3dtR.dx/C

Z
jxj>1

Z 1

jxj�1
t�1�˛e�tp dtR.dx/

D :5D
Z

jxj�1
jxj2R.dx/C

Z
jxj>1

Z 1

jxj�1
t�1�˛e�tp dtR.dx/

C
Z 1

1

t�1�˛e�tp dt
Z

jxj>1
R.dx/;

which is finite since the second integral is bounded by
R

jxj>1
jxj˛�1
˛

R.dx/when ˛ ¤ 0

and by
R

jxj>1 log jxjR.dx/ when ˛ D 0.
We now turn to Part 2. First we show that M is, necessarily, the Lévy measure

of a p-tempered ˛-stable distribution. From R define Q by (3.10) and note
that Q.f0g/ D 0. By a straightforward extension of Lemma 2.1 in [6], Q has a
polar decomposition, i.e. there exists a finite Borel measure � on S

d�1 and a
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measurable family of Borel measures fQugu2Sd�1 on .0;1/ such that Q.A/ DR
Sd�1

R
.0;1/

1A.ru/Qu.dr/�.du/ for A 2 B.Rd/. Define q.s; u/ WD R
.0;1/

e�srQu.dr/
and note that (3.14) implies that for every ˛ < 2

1 >

Z
Rd

�jxj2 ^ jxj˛�
R.dx/ D

Z
Rd

�jxj�.2�˛/=p ^ 1� Q.dx/

D
Z
Sd�1

Z
.0;1/

�
r�.2�˛/=p ^ 1� Qu.dr/�.du/;

which means that for � a.e. u the function q.s; u/ is finite for every s > 0. For
A 2 B.Rd/ we have

M.A/ D
Z
Rd

Z 1

0

1A.xt/t�1�˛e�tp dtR.dx/

D
Z
Rd

Z 1

0

1A.txjxj�1�1=p/t�1�˛e�tp dtjxj˛=pQ.dx/

D
Z
Sd�1

Z
.0;1/

Z 1

0

1A.tur�1=p/t�1�˛e�tp dtr˛=pQu.dr/�.du/

D
Z
Sd�1

Z
.0;1/

Z 1

0

1A.us/s�1�˛e�sprdsQu.dr/�.du/

D
Z
Sd�1

Z 1

0

1A.us/q.sp; u/s�1�˛ds�.du/; (3.16)

which means that this is the Lévy measure of a p-tempered ˛-stable distribution.
Now to show the uniqueness of R. Assume that two measures R1 and R2

satisfy (3.12), (3.13), and (3.14). For each i D 1; 2 define Qi by (3.10), let fQi
ugu2Sd�1

and � i be a polar decomposition of Qi, and define qi.s; u/ WD R
.0;1/

e�srQi
u.dr/.

From (3.16) it follows that we can decompose M into polar coordinates in two ways.
First as fq1.sp; u/s�1�˛dsgu2Sd�1 and �1 and second as fq2.sp; u/s�1�˛dsgu2Sd�1

and �2. By the uniqueness of polar decompositions (see Lemma 2.1 in [6]) there
exists a Borel function c.u/ such that 0 < c.u/ < 1,

�1.du/ D c.u/�2.du/;

and

c.u/q1.sp; u/s�1�˛ds D q2.sp; u/s�1�˛ds for �1 a.e. u:

By Theorem 16.10 in [10] and the continuity in s of qi.s; u/ for i D 1; 2 this implies
that for �1 a.e. u

c.u/q1.sp; u/ D q2.sp; u/; s > 0
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which can be rewritten as
Z 1

0

e�sptc.u/Q1
u.dt/ D

Z 1

0

e�sptQ2
u.dt/; s > 0 for �1 a.e. u:

Since Laplace transforms uniquely determine measures we have c.u/Q1
u.�/ D Q2

u.�/
for �1 a.e. u. Thus for any A 2 B.Rd/

Q1.A/ D
Z
Sd�1

Z
.0;1/

1A.ru/Q1
u.dr/�1.du/

D
Z
Sd�1

Z
.0;1/

1A.ru/c.u/Q1
u.dr/

1

c.u/
�1.du/

D
Z
Sd�1

Z
.0;1/

1A.ru/Q2
u.dr/�2.du/ D Q2.A/:

By (3.9) this implies that R1.A/ D R2.A/ as well.
We now consider the case of proper p-tempered ˛-stable distributions. Let Q

be given by (3.10). From Remark 3.4 it follows that Q corresponds to a proper
p-tempered ˛-stable distribution if and only if there is a polar decomposition of Q
into fQugu2Sd�1 and � such that Qu is a probability measure for each u 2 S

d�1 and
� is a finite Borel measure on S

d�1. Such a polar decomposition of Q exists if and
only if Q is finite. From here the result follows by (3.11). ut
Definition 3.4. Fix ˛ < 2, p > 0, and let � 2 TSp

˛ . Then � D ID.0;M; b/ for some
b 2 R

d and some Lévy measure M, which can be written in the form (3.12) for a
unique measure R. We call R the Rosiński measure of � and we write TSp

˛.R; b/ to
denote this distribution.

An important property of p-tempered ˛-stable distributions is that they are closed
under shifting, scaling, and convolution. Specifically, from (3.12) and (2.1) we get
the following.

Proposition 3.5. Fix ˛ < 2 and p > 0. 1. If X � TSp
˛.R; b/ and a 2 R, then

aX � TSp
˛.Ra; ba/, where

Ra.A/ D
Z
Rd
1Anf0g.ax/R.dx/; A 2 .Rd/

and

ba D ab C
Z
Rd

Z 1

0

�
ax

1C a2t2jxj2 � ax

1C t2jxj2
�

t�˛e�tp dtR.dx/

D ab C a.1 � a2/
Z
Rd

Z 1

0

xjxj2
.1C a2t2jxj2/.1C t2jxj2 /t

2�˛e�tp dtR.dx/:
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2. If X1 � TSp
˛.R1; b1/ and X2 � TSp

˛.R2; b2/ are independent and b 2 R
d, then

X1 C X2 C b � TSp
˛.R1 C R2; b1 C b2 C b/;

where R1 C R2 is the Borel measure defined by .R1 C R2/.B/ D R1.B/C R2.B/ for
any B 2 B.Rd/.

For proper p-tempered ˛-stable distributions we can recover the representation
of the Lévy measure given by (3.2) as follows.

Proposition 3.6. Fix ˛ < 2, p > 0, and let M be the Lévy measure of a proper
p-tempered ˛-stable distribution with Rosiński measure R. M can be represented
by (3.2) with q.r; u/ satisfying (3.7) and

�.B/ D
Z
Rd
1B

�
x

jxj
�

jxj˛R.dx/; B 2 B.Sd�1/: (3.17)

If, in addition, ˛ 2 .0; 2/, then the Lévy measure of an ˛-stable distribution with
spectral measure � is given by

L.B/ D
Z
Rd

Z 1

0

1B .tx/ t�˛�1dtR.dx/; B 2 B.Rd/:

Proof. Let Q be derived from R by (3.10). Remark 3.4 implies that there is a
finite Borel measure � on S

d�1 and a measurable family of probability measures
fQugu2Sd�1 such that Q can be represented in terms of � and fQugu2Sd�1 as in (3.8)
and that M can be represented by (3.2) where q.r; u/ D R

.0;1/
e�srQu.dr/. From

here it follows that q.r; u/ satisfies (3.7) by the Monotone Convergence Theorem
and the fact that Qu is a probability measure for each u 2 S

d�1. Further, for any
A 2 B.Sd�1/

Z
Rd
1A

�
x

jxj
�

jxj˛R.dx/ D
Z
Rd
1A

�
x

jxj
�

Q.dx/

D
Z

A

Z
.0;1/

Qu.ds/�.du/ D �.B/:

The second part follows from the first and the fact that for any A 2 B.Rd/

L.A/ D
Z
Sd�1

Z 1

0

1B.su/s�˛�1ds�.du/

D
Z
Rd

Z 1

0

1B.sx=jxj/s�1�˛dsjxj˛R.dx/

D
Z
Rd

Z 1

0

1B.tx/t
�˛�1dtR.dx/;

where the third equality follows by the substitution t D s=jxj. ut
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3.2 Identifiability and Subclasses

In Theorem 3.3 we saw that for fixed p > 0 and ˛ < 2 there is a one-to-one
relationship between the Rosiński measure R and the Lévy measure M. We may
further ask whether all of the parameters are jointly identifiable. Unfortunately, the
answer is negative. In fact, even for fixed p > 0, the parameters ˛ and R are not
jointly identifiable. However, for fixed p > 0, in the subclass of proper tempered
stable distribution, they are jointly identifiable. On the other hand, for fixed ˛ < 2,
even in the subclass of proper tempered stable distributions, the parameters p and
R are not jointly identifiable. These facts will be verified in this section. We begin
with a lemma.

Lemma 3.7. Fix ˛ < 2, p > 0, and let M be the Lévy measure of a p-tempered
˛-stable distribution with Rosiński measure R ¤ 0.

1. The map s 7! s˛M.jxj > s/ is decreasing and lims!1 s˛M.jxj > s/ D 0.
2. If ˛ 2 .0; 2/, then

lim
s#0

s˛M.jxj > s/ D 1

˛

Z
Rd

jxj˛R.dx/

and if ˛ � 0, then

lim
s#0

s˛M.jxj > s/ D 1:

3. If ˛ < 0, then

lim
s#0

s˛M.jxj < s/ D 1

j˛j
Z
Rd

jxj˛R.dx/

and if ˛ 2 Œ0; 2/, then for all s > 0

M.jxj < s/ D 1:

Proof. We begin with the first part. Since

s˛M.jxj > s/ D s˛
Z
Rd

Z 1

sjxj�1
t�1�˛e�tp dtR.dx/

D
Z
Rd

Z 1

jxj�1
t�1�˛e�.st/p dtR.dx/; (3.18)

the map s 7! s˛M.jxj > s/ is decreasing. For large enough s, the integrand
in (3.18) is bounded by 1t>1=jxjt�1�˛e�tp , which is integrable. Thus by dominated
convergence lims!1 s˛M.jxj > s/ D 0.
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For the second part, by (3.18) and the Monotone Convergence Theorem

lim
s#0

s˛M.jxj > s/ D
Z
Rd

Z 1

jxj�1
t�1�˛dtR.dx/:

Thus if ˛ 2 .0; 2/, then

lim
s#0

s˛M.jxj > s/ D 1

˛

Z
Rd

jxj˛R.dx/;

and if ˛ � 0, then

lim
s#0

s˛M.jxj > s/ D 1:

We now show the third part. If ˛ 2 Œ0; 2/, then for all s > 0

M.jxj < s/ D
Z
Rd

Z sjxj�1

0

t�1�˛e�tp dtR.dx/

�
Z
Rd

e�.s=jxj/p
Z sjxj�1

0

t�1�˛dtR.dx/ D 1;

and if ˛ < 0, then

lim
s#0

s˛M.jxj < s/ D lim
s#0

s˛
Z
Rd

Z sjxj�1

0

t�1�˛e�tp dtR.dx/

D lim
s#0

Z
Rd

Z jxj�1

0

t�1�˛e�.st/p dtR.dx/

D
Z
Rd

Z jxj�1

0

t�1�˛dtR.dx/ D 1

j˛j
Z
Rd

jxj˛R.dx/;

where the third line follows by the Monotone Convergence Theorem. ut
Combining Lemma 3.7 with (3.15) gives the following.

Proposition 3.8. In the subclass of proper tempered stable distributions with
parameter p > 0 fixed, the parameters R and ˛ are jointly identifiable.

However, in general, the parameters ˛ and p are not identifiable. This will
become apparent from the following results.

Proposition 3.9. Fix ˛ < 2, ˇ 2 .˛; 2/, and let K D R 1
0

sˇ�˛�1e�sp
ds. If � D

TSp
ˇ.R; b/ and
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R0.A/ D K�1
Z
Rd

Z 1

0

1A.ux/u�ˇ�1 .1 � up/.ˇ�˛/=p�1 duR.dx/;

then R0 is the Rosiński measure of a p-tempered ˛-stable distribution and � D
TSp

˛.R0; b/.

Proof. We begin by verifying that R0 is the Rosiński measure of some p-tempered
˛-stable distribution. Let C D maxu2Œ0;:5� .1 � up/.ˇ�˛/=p�1. We have

K
Z

jxj�1
jxj2R0.dx/ D

Z
Rd

jxj2
Z 1^jxj�1

0

u1�ˇ.1 � up/.ˇ�˛/=p�1duR.dx/

�
Z

jxj�2
jxj2R.dx/

Z 1

0

u1�ˇ.1 � up/.ˇ�˛/=p�1du

CC
Z

jxj>2
jxj2

Z jxj�1

0

u1�ˇduR.dx/

D
Z

jxj�2
jxj2R.dx/

Z 1

0

u1�ˇ.1 � up/.ˇ�˛/=p�1du

C C

2 � ˇ
Z

jxj�2
jxjˇR.dx/ < 1:

If ˛ 2 .0; 2/, then

K
Z

jxj>1
jxj˛R0.dx/ D

Z
jxj�1

jxj˛
Z 1

jxj�1
u˛�ˇ�1.1 � up/.ˇ�˛/=p�1duR.dx/

�
Z

jxj�2
jxj˛

Z 1=2

jxj�1
u˛�ˇ�1.1 � up/.ˇ�˛/=p�1duR.dx/

C
Z

jxj�1
jxj˛

Z 1

1=2

u˛�ˇ�1.1 � up/.ˇ�˛/=p�1duR.dx/

� C
Z

jxj�2
jxj˛

Z 1

jxj�1
u˛�ˇ�1duR.dx/

C
Z

jxj�1
jxjˇR.dx/

Z 1

1=2

u˛�ˇ�1.1 � up/.ˇ�˛/=p�1du;

which is finite since the first integral equals C
ˇ�˛

R
jxj�2 jxjˇR.dx/ < 1. Now assume

˛ D 0 and fix � 2 .0; ˇ/. By 4.1.37 in [2] there exists a C� > 0 such that for all
u > 0, log u � C�u� . Thus

K
Z

jxj>1
log jxjR0.dx/ � KC�

Z
jxj>1

jxj�R0.dx/;
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which is finite by arguments similar to the previous case. When ˛ < 0

K
Z

jxj>1
R0.dx/ D

Z
jxj�1

Z 1

jxj�1
u�ˇ�1.1 � up/.ˇ�˛/=p�1duR.dx/

� C
Z

jxj�2

Z 1

jxj�1
u�ˇ�1duR.dx/

C
Z

jxj�1
R.dx/

Z 1

1=2

u�ˇ�1.1 � up/.ˇ�˛/=p�1du;

which is finite since for ˇ ¤ 0 the first integral is C
ˇ

R
jxj>2

�jxjˇ � 1� R.dx/ < 1
and for ˇ D 0 it is

R
jxj>2 log jxjR.dx/ < 1. Now, let M0 be the Lévy measure of

TSp
˛.R0; b/. By (3.12) for A 2 B.Rd/ we have

M0.A/ D K�1
Z
Rd

Z 1

0

Z 1

0

1A.utx/t�1�˛e�tp u�ˇ�1 .1 � up/
ˇ�˛

p �1 dudtR.dx/

D K�1
Z
Rd

Z 1

0

Z t

0

1A.vx/tˇ�˛�1e�tpv�ˇ�1 .1 � vp=tp/
ˇ�˛

p �1 dvdtR.dx/

D K�1
Z
Rd

Z 1

0

Z 1

v

1A.vx/tp�1e�tpv�ˇ�1 .tp � vp/
ˇ�˛

p �1 dtdvR.dx/

D K�1
Z
Rd

Z 1

0

1A.vx/e�vp
v�ˇ�1dvR.dx/

Z 1

0

e�sp
sˇ�˛�1ds

D
Z
Rd

Z 1

0

1A.vx/e�vp
v�ˇ�1dvR.dx/;

where the second line follows by the substitution v D ut and the fourth by the
substitution sp D tp � vp. ut

To show a similar result for the parameter p we need some additional notation.
For r 2 .0; 1/, let fr be a probability density with fr.x/ D 0 for x < 0 and

Z 1

0

e�txfr.x/dx D e�tr :

Such a density exists, and is, in fact, the density of a certain type of r-stable
distribution, see Proposition 1.2.12 in [68]. The only case where an explicit formula
is known is

f:5.s/ D 1

2
p
�

e�1=.4s/s�3=21Œs>0�

(see Examples 2.13 and 8.11 in [69]). From Theorem 5.4.1 in [78] it follows that if
ˇ � 0, then

Z 1

0

s�ˇfr.s/ds < 1:
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Proposition 3.10. Fix ˛ < 2 and 0 < p < q. If � D TSp
˛.R; b/ and

R0.A/ D
Z
Rd

Z 1

0

1A.s
�1=qx/s˛=qfp=q.s/dsR.dx/;

then R0 is the Rosiński measure of a q-tempered ˛-stable distribution and � D
TSq

˛.R0; b/. Moreover, � is a proper p-tempered ˛-stable distribution if and only if
it is a proper q-tempered ˛-stable distribution.

This implies that, for fixed ˛, the parameters p and R are not jointly identifiable
even within the subclass of proper tempered stable distributions.

Proof. We begin by verifying that R0 is, in fact, the Rosiński measure of a
q-tempered ˛-stable distribution. We have

Z
jxj�1

jxj2R0.dx/ D
Z
Rd

jxj2
Z 1

jxjq
s�.2�˛/=qfp=q.s/dsR.dx/

�
Z

jxj�1
jxj2

Z 1

0

s�.2�˛/=qfp=q.s/dsR.dx/

C
Z

jxj>1
jxj˛R.dx/

Z 1

0

fp=q.s/ds < 1:

If ˛ ¤ 0 and ˇ D ˛ _ 0, then

Z
jxj>1

jxjˇR0.dx/ D
Z
Rd

jxjˇ
Z jxjq

0

s�.ˇ�˛/=qfp=q.s/dsR.dx/

�
Z

jxj�1
jxj2

Z 1

0

s�.2�˛/=qfp=q.s/dsR.dx/

C
Z

jxj>1
jxjˇ

Z 1

0

s�.ˇ�˛/=qfp=q.s/dsR.dx/ < 1:

If ˛ D 0, then

Z
jxj>1

log jxjR0.dx/ D
Z
Rd

Z jxjq

0

log jxs�1=qjfp=q.s/dsR.dx/

� :5

Z
jxj�1

jxj2R.dx/
Z 1

0

s�2=qfp=q.s/ds

C
Z

jxj>1
log jxjR.dx/

Z 1

0

fp=q.s/ds

C
Z

jxj>1
R.dx/

Z 1

0

s�1=qfp=q.s/ds < 1;

where the inequality uses the fact that log jxj � jxj (see 4.1.36 in [2]).
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If M0 is the Lévy measure of TSq
˛.R0; b/, then by (3.12) for any A 2 B.Rd/

M0.A/ D
Z
Rd

Z 1

0

Z 1

0

1A.s
�1=qtx/t�1�˛e�tq dts˛=qfp=q.s/dsR.dx/

D
Z
Rd

Z 1

0

1A.vx/v�1�˛
Z 1

0

e�vqsfp=q.s/dsdvR.dx/

D
Z
Rd

Z 1

0

1A.vx/v�1�˛e�vp
dvR.dx/;

where v D s�1=qt. The last part follows from (3.15) and the fact that

Z
Rd

jxj˛R0.dx/ D
Z
Rd

jxj˛R.dx/
Z 1

0

s�˛=qs˛=qfp=q.s/ds D
Z
Rd

jxj˛R.dx/:

This concludes the proof. ut
Propositions 3.9 and 3.10 give a constructive proof of the following.

Proposition 3.11. Fix ˛ < 2, p > 0, and let � 2 TSp
˛ .

1. For any q � p, � 2 TSq
˛ .

2. For any ˇ � ˛, � 2 TSp
ˇ .

We now characterize when a p-tempered ˛-stable distribution is ˇ-stable for
some ˇ 2 .0; 2/.
Proposition 3.12. Fix ˛ < 2, p > 0, and ˇ 2 .0; 2/. Let � D Sˇ.�; b/, where

� ¤ 0. If ˇ � ˛, then � … TSp
˛ . If ˇ 2 .0 _ ˛; 2/, then � D TSp

˛.R
ˇ
� ; b/ and

Rˇ� .A/ D K�1
Z
Sd�1

Z 1

0

1A.ru/r�1�ˇdr�.du/; A 2 B.Rd/; (3.19)

where K D R 1
0

tˇ�˛�1e�tp dt.

Combining (3.15) with the fact that

Z
Rd

jxj˛Rˇ� .dx/ D K�1�.Sd�1/
Z 1

0

r�.ˇ�˛/�1dr D 1;

shows that no stable distributions belong to the subclass of proper p-tempered
˛-stable distributions.

Proof. If � 2 TSp
˛ , then its Lévy measure can be written as (3.2). By uniqueness

of the polar decomposition of Lévy measures (see Lemma 2.1 in [6]) there exists
a nonnegative Borel function c.u/ with � .fu W c.u/ > 0g/ > 0 such that q.r; u/ D
c.u/r.˛�ˇ/=p. This does not satisfy (3.4) when ˇ � ˛.
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Now assume that ˇ > ˛. In this case Rˇ� .f0g/ D 0 and for any � 2 Œ0; ˇ/
Z
Rd

�jxj2 ^ jxj�� Rˇ� .dx/ D K�1�.Sd�1/
Z 1

0

.r1�ˇ ^ r��ˇ�1/dr < 1:

Thus, by Theorem 3.3, Rˇ� is the Rosiński measure of a p-tempered ˛-stable
distribution. If M is the Lévy measure of TSp

˛.R
ˇ
� ; b/, then for any A 2 B.Rd/

M.A/ D K�1
Z
Sd�1

Z 1

0

Z 1

0

1A.rtu/t�1�˛e�tp dtr�1�ˇdr�.du/

D K�1
Z 1

0

tˇ�˛�1e�tp dt
Z
Sd�1

Z 1

0

1A.ru/r�1�ˇdr�.du/

D
Z
Sd�1

Z 1

0

1A.ru/r�1�ˇdr�.du/;

which is the Lévy measure of �. ut
Recall that a probability measure � is called compound Poisson if its character-

istic function can be written as

O�.z/ D exp

�Z
Rd

�
eihz;xi � 1

�
M.dx/

	
; z 2 R

d;

where M is a finite Lévy measure. To classify when tempered stable distributions
are compound Poisson we begin with a lemma.

Lemma 3.13. Let M be given by (3.12). M is finite if and only if either R D 0 or
˛ < 0 and R is a finite measure.

Proof. Observing that

R.Rd/e�1
Z 1

0

t�1�˛dt �
Z
Rd

Z 1

0

e�tp t�1�˛dtR.dx/

� R.Rd/

�Z 1

0

t�1�˛dt C
Z 1

1

e�tp t�1�˛dt

�

gives the result. ut
This immediately gives the following.

Proposition 3.14. If � D TSp
˛.R; b/, then � is compound Poisson if and

only if either R D 0 or ˛ < 0, R is a finite measure, and b DR
Rd

R 1
0

x
1Ct2jxj2 t�˛e�tp dtR.dx/.
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3.3 Tails of Tempered Stable Distributions

Since the motivation for introducing p-tempered ˛-stable distributions is to get
models with tails lighter than those of ˛-stable distributions, it is important to
understand how the tails behave. One of the easiest ways to describe the tails of
a distribution is to characterize which moments are finite. Toward this end we
present several results that were proved in [27]. Throughout this section we adopt
the convention that 00 D 1.

Theorem 3.15. Fix ˛ < 2, p > 0, and let � D TSp
˛.R; b/.

1. If ˛ 2 .0; 2/ and q1; : : : ; qd � 0 with q WD Pd
jD1 qj < ˛, then

Z
Rd

0
@ dY

jD1
jxjjqj

1
A�.dx/ �

Z
Rd

jxjq�.dx/ < 1:

2. If ˛ 2 .0; 2/, then

Z
Rd

jxj˛�.dx/ < 1 ”
Z

jxj>1
jxj˛ log jxjR.dx/ < 1:

Additionally, if q1; : : : ; qd � 0 with
Pd

jD1 qj D ˛, then

Z
Rd

0
@ dY

jD1
jxjjqj

1
A�.dx/ < 1

if and only if

Z
jxj>1

0
@ dY

jD1
jxjjqj

1
A log jxjR.dx/ < 1: (3.20)

3. If q > .˛ _ 0/, then

Z
Rd

jxjq�.dx/ < 1 ”
Z

jxj>1
jxjqR.dx/ < 1:

Additionally, if q1; : : : ; qd � 0 with
Pd

jD1 qj > .˛ _ 0/, then

Z
Rd

0
@ dY

jD1
jxjjrj

1
A�.dx/ < 1 for all rk 2 Œ0; qk�; k D 1; : : : ; d
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if and only if

Z
jxj>1

0
@ dY

jD1
jxjjrj

1
A R.dx/ < 1 for all rk 2 Œ0; qk�; k D 1; : : : ; d: (3.21)

Further, we can find explicit formulas for the moments and the mixed moments.
However, these formulas can get quite complicated. When working with infinitely
divisible distribution it is often easier to find the cumulants instead. Recall that for
any infinitely divisible distribution � the function C� given by (2.1) is called the
cumulant generating function. This name is explained by the following. Let k D
.k1; k2; : : : ; kd/ be a d-dimensional vector of nonnegative integers and let

ck D .�i/
P

ki
@

P
ki

@zkd
d � � � @zk1

1

C�.z/
ˇ̌
ˇ
zD0;

whenever the derivative exists and is continuous in a neighborhood of zero. We call
this the cumulant of order k. The cumulants can be uniquely expressed in terms of
the moments, see, e.g., [73]. In particular let X � �. When ki D 1 and kj D 0 for
all j ¤ i then ck D EŒXi�, when ki D 2 and kj D 0 for all j ¤ i then ck D var.Xi/,
and when for some i ¤ j we have ki D kj D 1 and k` D 0 for all ` ¤ i; j then
ck D cov.Xi;Xj/. The following is given in [27].

Theorem 3.16. Fix ˛ < 2, p > 0, and let � D TSp
˛.R; b/. Let q1; : : : ; qd be

nonnegative integers and let qC D Pd
iD1 qi. Further, if qC D ˛ D 1, assume

that (3.20) holds and if qC > ˛, that (3.21) holds. If qi D qC D 1 for some i, then

c.q1;:::;qd/ D bi C
Z
Rd

Z 1

0

xi
jxj2

1C jxj2t2 t2�˛e�tp dtR.dx/:

If qC � 2, then

c.q1;:::;qd/ D p�1�
�

qC � ˛
p

� Z
Rd

0
@ dY

jD1
x

qj

j

1
A R.dx/:

We now turn to the question of exponential moments.

Theorem 3.17. Fix ˛ < 2, p 2 .0; 1�, and 	 > 0. Let � D TSp
˛.R; b/.

1. If ˛ 2 .0; 2/, then
R
Rd e	 jxjp�.dx/ < 1 if and only if

R.jxj > 	�1=p/ D 0:

2. If ˛ D 0, then
R
Rd e	 jxjp�.dx/ < 1 if and only if

R.jxj � 	�1=p/ D 0 and
Z
0<jxj�p�	<1

jlog.jxj�p � 	/j R.dx/ < 1:
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3. If ˛ < 0, then
R
Rd e	 jxjp�.dx/ < 1 if and only if

R.jxj � 	�1=p/ D 0 and
Z
0<jxj�p�	<1

.jxj�p � 	/˛=pR.dx/ < 1:

Further, from Theorem 4 in [27] it follows that if p > 1 and there exists an � > 0
such that

Z
jxj>1

ejxj�Cp=.p�1/ jxj�˛=.p�1/R.dx/ < 1; (3.22)

then
Z
Rd

e	 jxj�.dx/ < 1 for all 	 � 0: (3.23)

However, the tails cannot be too light and if R ¤ 0, then

Z
Rd

e	 jxj log jxj�.dx/ D 1 for all 	 > 0:

When the exponential moments exist, we can evaluate them. Specifically, if � D
TSp

˛.R; b/ and z 2 C
d is such that

R
Rd ehx;<zi�.dx/ < 1, then Theorem 25.17 in

[69] implies that
R
Rd jehx;zij�.dx/ < 1 and that

R
Rd ehx;zi�.dx/ is given by

exp

�Z
Rd

Z 1

0

�
ehx;zit � 1 � thx; zi

1C jxj2
�

t�1�˛e�tp dtR.dx/C hz; bi
	
: (3.24)

For the case p D 1 more explicit formulas will be given in Section 3.5.
Another way to analyze the tails of a probability measure is to ask when they

are regularly varying. First consider the case where � D TSp
˛.R; b/ with ˛ 2 .0; 2/.

Theorem 3.15 implies that
R
Rd jxj
�.dx/ < 1 for all 
 2 Œ0; ˛/, and hence, by

Proposition 2.12, � cannot have regularly varying tails with tail index j� j < ˛.
However, other tail indices are possible. The following result from [27] characterizes
this.

Theorem 3.18. Fix ˛ < 2 and p > 0. Let � D TSp
˛.R; b/ and let M be the Lévy

measure of �. If � < .�˛/ ^ 0, then

� 2 RV1
� .�/ ” M 2 RV1

� .�/ ” R 2 RV1
� .�/:

Moreover, if M 2 RV1
� .�/, then for all D 2 B.Sd�1/with �.@D/ D 0 and �.D/ > 0

lim
r!1

R .jxj > r; x=jxj 2 D/

M .jxj > r; x=jxj 2 D/
D p

�
� j� j�˛

p

� :
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Now recall that for ˇ 2 .0; 2/ a probability measure � belongs to the domain
of attraction of a ˇ-stable distribution with spectral measure � ¤ 0 if and only if
� 2 RV1�ˇ.�/. See, e.g., [67] or [54] although they make the additional assumption
that the limiting stable distribution is full. This leads to the following.

Corollary 3.19. Fix ˛ < 2, p > 0, let � D TSp
˛.R; b/, and let � ¤ 0 be a finite

Borel measure on S
d�1. If ˇ 2 .0_˛; 2/, then � belongs to the domain of attraction

of a ˇ-stable distribution with spectral measure � if and only if R 2 RV1�ˇ.�/.

3.4 Tempered Stable Lévy Processes

Fix ˛ < 2 and p > 0. A Lévy process fXt W t � 0g is called a p-tempered
˛-stable Lévy process if X1 � TSp

˛.R; b/. In this section we discuss properties
of such processes.

Proposition 3.20. Let fXt W t � 0g be a Lévy process with X1 � TSp
˛.R; b/, and

assume that R ¤ 0.

1. The paths of fXt W t � 0g are discontinuous a.s.
2. The paths of fXt W t � 0g are piecewise constant a.s. if and only if ˛ < 0, R is a

finite measure, and b D R
Rd

R 1
0

x
1Ct2jxj2 t�˛e�tp dtR.dx/.

3. If ˛ < 0 and R is a finite measure, then, almost surely, jumping times are
infinitely many and countable in increasing order. The first jumping time has
an exponential distribution with mean 1=a, where a D R.Rd/p�1� .j˛j=p/.

4. If ˛ � 0 or R is an infinite measure, then, almost surely, jumping times are
countable and dense in Œ0;1/.

Proof. Part 1 follows by Theorem 21.1 in [69]. Part 2 follows by Theorem 21.2
in [69] and Proposition 3.14. Parts 3 and 4 follow by Theorem 21.3 in [69] and
Lemma 3.13. ut

A useful index that determines many properties of Lévy processes was introduced
by Blumenthal and Getoor [12]. It is defined as follows.

Definition 3.21. Let fXt W t � 0g be a Lévy process with X1 � ID.0;M; b/. The
number

ˇ D inf

�
� > 0 W

Z
jxj�1

jxj�M.dx/ < 1
	

is called the Blumenthal-Getoor index.

From the definition of a Lévy measure, it is clear that the Blumenthal-Getoor
index is a number in Œ0; 2�.
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Lemma 3.22. Fix p > 0, ˛ < 2, and let fXt W t � 0g be a Lévy process with
X1 � TSp

˛.R; b/. If R ¤ 0, then the Blumenthal-Getoor index of this process is

ˇ D ˛ _ r; (3.25)

where

r D inf

�
� > 0 W

Z
jxj�1

jxj�R.dx/ < 1
	
:

This follows immediately from the following.

Lemma 3.23. Fix ˛ < 2, p > 0, let R be the Rosiński measure of a p-tempered
˛-stable distribution, and let M be the corresponding Lévy measure. If R ¤ 0, then
for any q 2 .�1; 2/

Z
jxj�1

jxjqM.dx/ < 1 ” ˛ < q and
Z

jxj�1
jxjqR.dx/ < 1:

Proof. First assume that
R

jxj�1 jxjqM.dx/ < 1 and choose r > 0 such that
R.jxj � r/ > 0. We have

1 >

Z
jxj�1

jxjqM.dx/

�
Z

jxj�r
jxjq

Z jxj�1

0

tq�˛�1e�tp dtR.dx/

� e�r�p
Z

jxj�r
jxjqR.dx/

Z r�1

0

tq�˛�1dt;

which implies that ˛ < q and
R

jxj�1 jxjqR.dx/ < 1. Now assume that ˛ < q andR
jxj�1 jxjqR.dx/ < 1. We have

Z
jxj�1

jxjqM.dx/ D
Z
Rd

jxjq
Z jxj�1

0

tq�˛�1e�tp dtR.dx/

�
Z

jxj�1
jxjqR.dx/

Z 1

0

tq�˛�1e�tp dt C
Z

jxj>1
jxjq

Z jxj�1

0

tq�˛�1dtR.dx/

�
Z

jxj�1
jxjqR.dx/

Z 1

0

tq�˛�1e�tp dt C .q � ˛/�1
Z

jxj>1
jxj˛R.dx/;

which is finite. ut
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Combining Lemma 3.22 with (3.15) tells us that the Blumenthal-Getoor index
of a proper p-tempered ˛-stable Lévy processes with ˛ 2 .0; 2/ is ˛. It may be
interesting to note that ˛ is also the Blumenthal-Getoor index of any ˛-stable Lévy
process, see, e.g., [12]. We now discuss several properties that are characterized by
this index.

Let X D fXt W t � 0g be a Lévy process with X1 � TSp
˛.R; b/ and let ˇ be given

by (3.25). From [12] it follows that, with probability 1,

lim sup
t!0

t�1=� jXtj D
� 1 if � < ˇ
0 if � > ˇ

:

Now, fix 0 � a < b < 1, � > 0, and define

V� .XI a; b/ D sup
nX

jD1
jXti � Xti�1 j� ;

where the supremum is taken over all finite partitions a D t0 < t1 < � � � < tn�1 <
tn D b of the interval Œa; b�. This is called the �-variation of X. From [12] and [56]
it follows that for any 0 � a < b < 1 with probability 1

V� .XI a; b/

� D 1 if � < ˇ
< 1 if � > ˇ

: (3.26)

Finiteness of � -variation gives useful results about how one can define stochastic
integrals with respect to these processes. It is well known that if a process has finite
1-variation, then one can define a Stieltjes integral with respect to it. When the
1-variation is infinite, under certain assumptions about the finiteness of � -variation
for some � > 0, one can define generalizations of Stieltjes integrals, see [22] for
details.

We sometimes refer to 1-variation as simply variation. Thus (3.26) and
Lemma 3.22 imply that a p-tempered ˛-stable Lévy process has finite variation
if and only if ˛ < 1 and

R
jxj�1 jxjR.dx/ < 1. In particular, in light of (3.15), all

proper p-tempered ˛-stable Lévy processes with ˛ < 1 have finite variation. We
now turn to a related concept.

A one-dimensional Lévy process, which is nondecreasing almost surely is
called a subordinator. Such a process necessarily has finite variation. Further, by
combining the above discussion with Theorems 21.5 and 21.9 in [69] we can fully
characterize when a p-tempered ˛-stable Lévy process is a subordinator.

Proposition 3.24. Let fXt W t � 0g be a one-dimensional Lévy process with
X1 � TSp

˛.R; b/ with R ¤ 0. The process is a subordinator if and only if ˛ < 1,
R..�1; 0// D 0,

R
.0;1/

xR.dx/ < 1, and b � R
.0;1/

R 1
0

x
1Ct2x2

t�˛e�tp dtR.dx/.

Remark 3.6. A Lévy process is a subordinator if and only if the distribution of
Xt has its support contained in Œ0;1/ for every t. Further, if fXt W t � 0g
is a subordinator with X1 � TSp

˛.R; b/ and R ¤ 0 then, by Theorem 24.10
in [69], the support of the distribution of Xt is given by Œt�;1/, where � D
b � R

.0;1/

R 1
0

x
1Ct2x2

t�˛e�tp dtR.dx/.
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We conclude this section by discussing when the distribution of a proper
p-tempered ˛-stable Lévy process (with ˛ 2 .0; 2/) is absolutely continuous with
respect to the distribution of the ˛-stable Lévy process that is being tempered.
Our presentation follows [66] closely. Let ˝ D D.Œ0;1/;Rd/ be the space of
mappings !.�/ from Œ0;1/ into R

d that are right-continuous with left limits. Let
X D fXt W t � 0g be the collection of functions from ˝ into R

d with Xt.!/ D !.t/.
Assume that ˝ be equipped with the � -algebra F D �.Xs W s � 0/ and the right-
continuous natural filtration .Ft/t�0 where Ft D T

s>t �.Xu W u � s/. In this case
X is called the canonical process. The distribution of this process is completely
determined by a probability measure P on .˝;F /. Let PjFt denote the restriction
of P to the � -algebra Ft.

Theorem 3.25. Fix ˛ 2 .0; 2/ and p > 0. In the above setting, consider two
probability measures P0 and P on .˝;F / and let X D fXt W t � 0g be the canonical
process. Assume that, under P, X is a Lévy process with X1 � TSp

˛.R; b/, where R
satisfies (3.15).3 Derive � from R by (3.17) and let q.u; r/ be as in Proposition 3.6.
If, under P0, X is a Lévy process with X1 � S˛.a; �/, then

1. P0jFt and PjFt are mutually absolutely continuous for every t > 0 if and only if

Z
Sd�1

Z 1

0

Œ1 � q.rp; u/�2r�˛�1dr�.du/ < 1 (3.27)

and

b � a D
Z
Rd

Z 1

0

x

1C jxj2t2 t�˛.e�tp � 1/dtR.dx/: (3.28)

2. If P0jFt and PjFt are not mutually absolutely continuous for some t > 0, then
they are singular for all t > 0.

3. If (3.27) and (3.28) hold, then for every t > 0

dPjFt

dP0jFt

D eUt ; P0 a:s:

where

Ut D lim
�#0

8<
:

X
fs2.0;t�Wj�Xsj>�

log q

�
j�Xsjp; �Xs

j�Xsj
�

Ct
Z
Sd�1

Z 1

�

Œ1 � q.rp; u/�r�˛�1dr�.du/

	
;

3 This implies that X1 has a proper p-tempered ˛-stable distribution.
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and the convergence is uniform in t on any bounded interval, P0 a.s. Further,
fUt W t � 0g is a one-dimensional Lévy process defined on the probability space
.˝;F ;P0/. It satisfies U1 � ID.0;MU; bU/, where

MU.A/ D
Z
Sd�1

Z 1

0

1Anf0g.logŒq.rp; u/�/r�˛�1dr�.du/; A 2 B.R/

and

bU D �
Z 0

�1

�
ey � 1 � y

1C jyj2
�

MU.dy/:

Note that Proposition 3.6 implies that q.rp; u/ 2 .0; 1�, and hence that MU

satisfies MU.Œ0;1// D 0.

Proof. By Remark 3.5 all proper p-tempered ˛-stable distributions with ˛ 2 .0; 2/

belong to the class of generalized tempered ˛-stable distributions. For these,
analogues of Parts 1 and 2 are given in Theorem 4.1 of [66]. In [66] the analogue
of (3.27) is actually

Z
Sd�1

Z 1

0

.1 � Œq.rp; u/�1=2/2r�˛�1dr�.du/ < 1:

As observed in [65], this is equivalent to (3.27) since for any x 2 Œ0; 1�
:25.1 � x/2 � .1 � p

x/2 � .1 � x/2;

and q.rp; u/ 2 Œ0; 1� for all r and u. For any Lévy process, an analogue of Part 3
is given in Theorem 33.2 of [69]. To specialize it to our situation we just need to
apply (3.2). ut

Under additional conditions, representations of the process Ut in terms of
certain extensions of � -variation can be given, see [24]. As pointed out in [65]
condition (3.27) fails when the function q.rp; u/ decreases too quickly near zero.
In other words when there is too much tempering near zero. This is illustrated by
the following.

Corollary 3.26. Fix ˛ 2 .0; 2/ and p > 0. Let P0, P, and fXt W t � 0g be as in
Theorem 3.25. If p � ˛=2, then P0jFt and PjFt are mutually singular for all t > 0.

Proof. By Remark 3.4 we can write q.rp; u/ D R
.0;1/

e�rpsQu.ds/ for some
measurable family of probability measures fQugu2Sd�1 . Since 1 � e�x � x

1Cx for
any x � 0 (see, e.g., 4.2.32 in [2]) it follows that

Z
Sd�1

Z 1

0

Œ1 � q.rp; u/�2r�˛�1dr�.du/

D
Z
Sd�1

Z 1

0


Z
.0;1/

.1 � e�rps/Qu.ds/

�2
r�˛�1dr�.du/
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�
Z
Sd�1

Z 1

0


Z
.0;1/

rps

1C rps
Qu.ds/

�2
r�˛�1dr�.du/

�
Z
Sd�1


Z
.0;1/

s

1C s
Qu.ds/

�2
�.du/

Z 1

0

r2p�˛�1dr;

which equals infinity when p � ˛=2. From here the result follows by Part 2 of
Theorem 3.25. ut

3.5 Exponential Moments When p D 1

A representation for the exponential moments of p-tempered ˛-stable distributions
is given by (3.24). In this section we derive significantly simpler formulas for the
case4 where p D 1. Throughout this section we use the principle branch of the
complex logarithm, i.e. we make a cut along the negative real axis. This implies that
for z 2 C with <z > 0 we have log.z/ D log jzj C i arctan.=z=<z/, where arctan
refers to the branch of the arctangent whose image is

���
2
; �
2

�
. We begin with a

lemma.

Lemma 3.27. Fix ˛ < 2, p D 1, and � D TS1˛.R; b/. Let X � �, let S be the
support5 of R, and fix z 2 C

d. When ˛ 2 .0; 2/ we have

E
ˇ̌
ˇehz;Xi

ˇ̌
ˇ < 1 (3.29)

if and only if supx2S <hz; xi � 1. When ˛ � 0 a sufficient6 condition for (3.29) is
supx2S <hz; xi < 1.

Proof. We will need the following fact from 6.1.1 in [2]. When ˛ < 0 and w 2 C

with <w > 0 we have
Z 1

0

e�wtt�˛�1dt D w˛� .�˛/: (3.30)

By Theorem 25.17 in [69] (3.29) is equivalent to
R

jxj>1 ehc;xiM.dx/ < 1 where
c D <z and M is the Lévy measure of �. When c D 0 this always holds so assume
that c ¤ 0. By (3.12) we have

4The only other case where reasonable representations are known is when p D 2 and ˛ 2 .0; 2/.
In this case [9] gives formulas in terms of confluent hypergeometric functions.
5This means that S is the smallest closed subset of Rd with R.Sc/ D 0.
6In light of Theorem 3.17, it is clear that this is not a necessary condition when ˛ � 0.
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Z
jxj>1

ehc;xiM.dx/ D
Z

S

Z 1

jxj�1
ehc;xite�tt�1�˛dtR.dx/

D
Z

S\Œjxj�1=.2jcj/�

Z 1

jxj�1
ehc;xite�tt�1�˛dtR.dx/

Z
S\Œjxj>1=.2jcj�/

Z 1

jxj�1
ehc;xite�tt�1�˛dtR.dx/

DW I1.˛/C I2.˛/:

Let K WD sup
t�2jcj

e�t=2t2�˛ and note that for every ˛ < 2 we have

I1.˛/ �
Z

jxj�1=.2jcj/

Z 1

jxj�1
et=2e�tt�1�˛dtR.dx/

� K
Z

jxj�1=.2jcj/

Z 1

jxj�1
t�3dtR.dx/ D :5K

Z
jxj�1=.2jcj/

jxj2R.dx/ < 1:

Thus, finiteness of the exponential moment is determined by I2.˛/. Define 	 D
supx2Shc; xi. We begin with the case ˛ 2 .0; 2/. If 	 � 1, then

I2.˛/ �
Z

S\Œjxj>1=.2jcj�/

Z 1

jxj�1
e	 te�tt�1�˛dtR.dx/

�
Z

jxj>1=.2jcj/

Z 1

jxj�1
t�1�˛dtR.dx/ D ˛�1

Z
jxj>1=.2jcj/

jxj˛dtR.dx/ < 1:

On the other hand, if 	 > 1, then there is an � > 0 and a Borel set S� 	 S \ Œjxj >
1=.2jcj/� with R.S�/ > 0 such that for every x 2 S� we have hx; ci � 1 C �. This
implies that

I2.˛/ �
Z

S�

Z 1

jxj�1
ehc;xite�tt�1�˛dtR.dx/

�
Z

S�

Z 1

2jcj
e.1C�/te�tt�1�˛dtR.dx/

D R.S�/
Z 1

2jcj
e�tt�1�˛dt D 1:

Now assume that ˛ � 0 and 	 < 1. For ˛ < 0 we can use (3.30) to get

I2.˛/ �
Z

jxj>1=.2jcj/

Z 1

0

e�t.1�	/t�1�˛dtR.dx/

D .1 � 	/�j˛j� .j˛j/
Z

jxj>1=.2jcj/
R.dx/ < 1;
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and for ˛ D 0 we get

I2.0/ �
Z

jxj>1=.2jcj/

Z 2jcj

jxj�1
t�1dtR.dx/C R

�
jxj > 1

2jcj
� Z 1

2jcj
e�t.1�	/t�1dt

D
Z

jxj>1=.2jcj/
log .2jcjjxj/R.dx/C R

�
jxj > 1

2jcj
� Z 1

2jcj
e�t.1�	/t�1dt < 1;

which completes the proof. ut
We now give the main result of this section.

Theorem 3.28. Fix ˛ < 2, p D 1, � D TS1˛.R; b/, and let X � �. Let S be the
support of R and fix z 2 C

d such that either a) supx2S <hz; xi < 1 or b) =z D 0,
supx2S <hz; xi � 1, and ˛ 2 .0; 2/. In both cases (3.29) holds and we have:

1. If
R
Rd jxj�.dx/ < 1, then

Eehz;Xi D exp

�Z
Rd
 ˛.hz; xi/R.dx/C hz; b1i

	
; (3.31)

where

b1 D b C
Z
Rd

Z 1

0

x
jxj2

1C jxj2t2 t2�˛e�tdtR.dx/ (3.32)

and

 ˛.s/ D
8<
:
� .�˛/Œ.1 � s/˛ � 1C ˛s� ˛ ¤ 0; 1

� log.1 � s/ � s ˛ D 0

.1 � s/ log.1 � s/C s ˛ D 1

: (3.33)

In particular this holds when 1 < ˛ < 2, or

˛ D 1 and
Z

jxj>1
jxj log jxjR.dx/ < 1;

or

˛ < 1 and
Z
Rd

jxjR.dx/ < 1:

2. If ˛ < 1 and
R

jxj�1 jxjR.dx/ < 1, then

Eehz;Xi D exp

�Z
Rd
 0
˛.hz; xi/R.dx/C hz; b0i

	
; (3.34)
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where

b0 D b �
Z
Rd

Z 1

0

x

1C jxj2t2 t�˛e�tdtR.dx/ (3.35)

and

 0
˛.s/ D

�
� .�˛/Œ.1 � s/˛ � 1� ˛ ¤ 0

� log.1 � s/ ˛ D 0
: (3.36)

In particular, this holds if � is a proper TS1˛ distribution with ˛ < 1.

In the above we take 
1.1/ D 1, which is the limiting value of the function 
˛.s/
in both s and ˛. A simple way to ensure that the assumption of Theorem 3.28 holds
is as follows. Fix 	 > 0. If R.jxj > 	�1/ D 0, then for any z 2 C

d with j<zj < 	

we have supx2Sh<z; xi � supx2S jh<z; xij � supx2S j<zjjxj < 	=	 D 1. The vectors
b1 and b0 given above have the following interpretations. When

R
Rd jxj�.dx/ < 1

we have b1 D R
Rd x�.dx/, and when ˛ < 1 and

R
jxj�1 jxjR.dx/ < 1 the vector b0 is

the drift.

Proof. Our proof will use the following. If t 2 .0; 1/, s 2 C, and ˛ � 1, then

j.est � 1 � st/t�˛�1e�tj �
1X

nD2

jstjn
nŠ

t�˛�1e�t

D t1�˛e�tjsj2
1X

nD2

jstjn�2

n.n � 1/.n � 2/Š

� e�tjsj2
1X

nD2

jstjn�2

.n � 2/Š
D et.jsj�1/jsj2: (3.37)

Lemma 3.27 implies that we can use (3.24) to get a representation for the
exponential moment. We begin with the case

R
Rd jxj�.dx/ < 1. In this case b1

is definable as a vector in R
d and from (3.24) it follows that

Eehz;Xi D exp

�Z
Rd

Z 1

0

�
ehx;zit � 1 � hx; zit

�
t�1�˛e�tdtR.dx/C hz; b1i

	

D exp

�Z
S

Z 1

0

�
ehx;zit � 1 � hx; zit

�
t�1�˛e�tdtR.dx/C hz; b1i

	
:

Fix x 2 S. For simplicity of notation let s D hx; zi and note that, by assumption,
when ˛ � 0 we have <s < 1 and <.1 � s/ > 0 and when ˛ 2 .0; 2/ we have
<s � 1 and <.1 � s/ � 0. When ˛ < 0 we can use (3.30) to get
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Z 1

0

.est � 1 � st/e�tt�˛�1dt D
Z 1

0

.e�.1�s/t � e�t � se�tt/t�˛�1dt

D � .�˛/Œ.1 � s/˛ � 1C ˛s�:

When ˛ D 0 we can use l’Hôpital’s rule7 to get

Z 1

0

.est � 1 � st/e�tt�1dt D
Z 1

0

lim
˛"0
.est � 1 � st/e�tt�˛�1dt

D lim
˛"0

Z 1

0

.est � 1 � st/e�tt�˛�1dt

D lim
˛"0

� .�˛/Œ.1 � s/˛ � 1C ˛s�

D lim
˛"0

� .1 � ˛/Œ.1 � s/˛ � 1C ˛s�

�˛

D lim
˛"0

.1 � s/˛ � 1C ˛s

�˛
D � log.1 � s/ � s;

where we can interchange limit and integral using dominated convergence. Specif-
ically, for ˛ 2 .�1; 0/ if t 2 .0; 1/, then (3.37) gives a bound that is integrable on
.0; 1/ and if t � 1, then

j.est � 1 � st/t�˛�1e�tj � e�t.1�<s/ C .1C jsjt/e�t;

which is integrable on Œ1;1/ since <s < 1.
Now assume that ˛ 2 .0; 1/. For any v;w 2 C with w satisfying <w > 0 and v

satisfying either <v > 0 or v D 0 integration by parts and (3.30) give

Z 1

0

�
e�vt � e�wt

�
t�1�˛dt D � .�˛/.v˛ � w˛/; (3.38)

which implies

Z 1

0

.est � 1 � st/e�tt�˛�1dt D
Z 1

0

.e�.1�s/t � e�t/t�˛�1dt � s
Z 1

0

e�tt.1�˛/�1dt

D � .�˛/Œ.1 � s/˛ � 1C s˛�:

7We can use l’Hôpital’s rule because the denominator is real. However, in general, l’Hôpital’s rule
may fail for complex valued functions of real numbers, see [18].
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Now assume that ˛ 2 .1; 2/. For any v;w 2 C with w satisfying <w > 0 and v
satisfying either <v > 0 or v D 0 integration by parts and (3.38) give

Z 1

0

�
e�vt � e�wt C .v � w/t

�
t�1�˛dt D � .�˛/.v˛ � w˛/;

which implies

Z 1

0

.est � 1 � st/e�tt�˛�1dt D
Z 1

0

.e�.1�s/t � e�t � st/t�˛�1dt

Cs
Z 1

0

.1 � e�t/t.1�˛/�1dt

D � .�˛/Œ.1 � s/˛ � 1C s˛�:

Now consider the case ˛ D 1. By l’Hôpital’s rule

Z 1

0

.est � 1 � st/e�tt�2dt D
Z 1

0

lim
˛"1
.est � 1 � st/e�tt�˛�1dt

D lim
˛"1

Z 1

0

.est � 1 � st/e�tt�˛�1dt

D lim
˛"1

� .�˛/Œ.1 � s/˛ � 1C s˛�

D lim
˛"1

� .2 � ˛/
.˛ � 1/˛ Œ.1 � s/˛ � 1C s˛�

D .1 � s/ log.1 � s/C s;

where the second line follows by dominated convergence. Specifically, for ˛ 2
.:5; 1/ if t 2 .0; 1/, then (3.37) gives a bound that is integrable on .0; 1/, and for
t � 1 we have

j.est � 1 � st/t�˛�1e�tj � e�t.1�<s/t�:5�1 C .1C jsj/e�t;

which is integrable on Œ1;1/ since <s � 1.
We now turn to the case when

R
jxj�1 jxjR.dx/ < 1 and ˛ < 1. In this case b0 is

definable as a vector in R
d and (3.24) implies that

Eehz;Xi D exp

�Z
Rd

Z 1

0

�
ehx;zit � 1

�
t�1�˛e�tdtR.dx/C hz; b0i

	
:

The fact that
R 1
0

�
ehx;zit � 1� t�1�˛e�tdt has the required form can be shown in a

similar way to the previous part. The conditions to guarantee
R
Rd jxj�.dx/ < 1

follow from Theorem 3.15, while the fact that
R

jxj�1 jxjR.dx/ < 1 for all proper

TS1˛ distribution with ˛ < 1 follows by Theorem 3.3. ut
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Note that the assumption of Theorem 3.28 always holds when <z D 0. This gives
the following representation for the characteristic function.

Corollary 3.29. Fix ˛ < 2, p D 1, and let � D TS1˛.R; b/.

1. If
R
Rd jxj�.dx/ < 1, then

O�.z/ D exp

�Z
Rd
 ˛.ihz; xi/R.dx/C ihz; b1i

	
; z 2 R

d;

where b1 is given by (3.32) and  ˛ is given by (3.33).
2. If ˛ < 1 and

R
jxj�1 jxjR.dx/ < 1, then the characteristic function is given by

O�.z/ D exp

�Z
Rd
 0
˛.ihz; xi/R.dx/C ihz; b0i

	
; z 2 R

d;

where b0 is given by (3.35) and  0
˛ is given by (3.36).

Now consider the case when X � TS1˛.R; b/ is a one-dimensional random
variable with R..�1; 0// D 0. In this case the support, S, of R satisfies S 	 Œ0;1/.
Thus for all z 2 R with z � 0 we have supx2S.zx/ < 1 and we can use Theorem 3.28
to get the following representation for the Laplace transform.

Corollary 3.30. Fix ˛ < 2, p D 1, let � D TS1˛.R; b/ be a 1-tempered ˛-stable
distribution on R with R..�1; 0// D 0, and let X � �.

1. If EjXj < 1, then

EŒe�zX� D exp

�Z
.0;1/

 ˛.�zx/R.dx/ � zb1

	
; z � 0;

where b1 is given by (3.32) and  ˛ is given by (3.33).
2. If ˛ < 1 and

R
jxj�1 jxjR.dx/ < 1, then

EŒe�zX� D exp

�Z
.0;1/

 0
˛.�zx/R.dx/ � zb0

	
; z � 0;

where b0 is given by (3.35) and  0
˛ is given by (3.36).
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