
Chapter 2
Preliminaries

In this chapter we bring together background material on several topics that will be
important in the sequel.

2.1 Basic Topology

In this section we review some basic concepts from topology. For more details see,
e.g., [13] or Chapter 7 in [8]. We begin by defining a topological space.

Definition 2.1. Let E be a set. If T is a collection of subsets of E such that

1. ;;E 2 T ,
2. T is closed under finite intersections, and
3. T is closed under arbitrary unions,

then T is called a topology, .E;T / is called a topological space, and the sets in
T are called open sets. The complement of an open set is called a closed set. If, in
addition, for any a; b 2 E with a ¤ b there are A; B 2 T with a 2 A, b 2 B, and
A \ B D ;, then we say that the space is Hausdorff.

For any topological space .E;T / the class of Borel sets is the �-algebra
generated by T and is denoted by B.E;T /. Thus B.E;T / D �.T /. When
the collection T is clear from context we sometimes write B.E/ D B.E;T /.
In particular, when working with R

d we generally assume that T are the usual open
sets. In this case B.Rd;T / are the usual Borel sets, which we denote by B.Rd/.
Any measure on the space .E;B.E// is called a Borel measure on .E;T / or just a
Borel measure when the space is clear from context.

If A � E, then the interior of A (denoted Aı) is the union of all open sets
contained in A, and the closure of A (denoted NA) is the intersection of all closed

© Michael Grabchak 2016
M. Grabchak, Tempered Stable Distributions, SpringerBriefs
in Mathematics, DOI 10.1007/978-3-319-24927-8_2

5



6 2 Preliminaries

sets containing A. Note that Aı � A � NA. We write @A D NA n Aı to denote the
boundary of A. We conclude this section by recalling the definition of a compact
set.

Definition 2.2. Let .E;T / be a Hausdorff space and let A � E. If for any collection
T0 � T with A � S

T0 there is a finite subcollection T1 � T0 with A � S
T1,

then A is called a compact set. If A is such that its closure is compact, then A is
called relatively compact.

2.2 Infinitely Divisible Distributions and Lévy Processes

In this section we review some important results about infinitely divisible distri-
butions and their associated Lévy processes. Comprehensive references are [69]
and [21]. A probability measure � on R

d is called infinitely divisible if for any
positive integer n there exists a probability measure �n on R

d such that if X � �

and Y.n/
1 ; : : : ; Y.n/

n
iid� �n then

X
dD

nX

iD1

Y.n/
i :

We denote the class of infinitely divisible distributions by ID. The characteristic
function of an infinitely divisible distribution � on R

d is given by O�.z/ D
expfC�.z/g where

C�.z/ D �1

2
hz; Azi C ihb; zi C

Z

Rd

�

eihz;xi � 1 � i
hz; xi

1 C jxj2
�

M.dx/; (2.1)

A is a symmetric nonnegative-definite d � d matrix, b 2 R
d, and M satisfies

M.f0g/ D 0 and
Z

Rd
.jxj2 ^ 1/M.dx/ < 1: (2.2)

We call C� the cumulant generating function of �, A the Gaussian part, b the
shift, and M the Lévy measure. The measure � is uniquely identified by the Lévy
triplet .A; M; b/ and we will write

� D ID.A; M; b/:

The class of infinitely divisible distributions is intimately related with the class of
Lévy processes. These processes are defined as follows.

Definition 2.3. A stochastic process fXt W t � 0g on .˝;F ; P/ with values in R
d is

called a Lévy Process if X0 D 0 a.s. and the following conditions are satisfied:
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1. (Independent increments) For any n � 1 and 0 � t0 < t1 < � � � < tn < 1, the
random variables Xt0 ; Xt1 � Xt0 ; : : : ; Xtn � Xtn�1 are independent.

2. (Stationary increments) XsCt � Xs
dD Xt for any s; t � 0.

3. (Stochastic continuity) For every t � 0 and � > 0 lims!t P .jXs � Xtj > �/ D 0.
4. (Càdlàg paths) There is ˝0 2 F with P.˝0/ D 1 such that for every ! 2 ˝0,

Xt.!/ is right-continuous in t � 0 and has left limits in t > 0.

Since a Lévy process fXt W t � 0g has the càdlàg paths property it follows that,
with probability 1, lims#t Xs D Xt and lims"t Xs exists. We define Xt� WD lims"t Xs

and we write �Xt D Xt � Xt� to denote the jump at time t. The connection between
Lévy processes and infinitely divisible distributions is highlighted by the following
result, which is given in Theorem 7.10 of [69].

Proposition 2.4. 1. If � is an infinitely divisible distribution on R
d, then there is a

Lévy process fXt W t � 0g with X1 � �.
2. Conversely, if fXt W t � 0g is a Lévy process on R

d, then for any t � 0 the
distribution �t of Xt is infinitely divisible and O�t.z/ D Œ O�1.z/�t .

3. If fXt W t � 0g and fX0t W t � 0g are Lévy processes on R
d with X1

dD X01, then
fXt W t � 0g and fX0t W t � 0g have the same finite dimensional distributions.

In the context of Lévy processes, the Lévy measure has a simple interpretation.
Specifically, if fXt W t � 0g is a Lévy process with X1 � ID.A; M; b/, then

M.B/ D E Œ#ft 2 Œ0; 1� W �Xt ¤ 0; �Xt 2 Bg� ; B 2 B.Rd/: (2.3)

In other words, M.B/ is the expected number of times t 2 Œ0; 1� at which the Lévy
process has a jump (i.e., Xt � Xt� ¤ 0) and the value of this jump is in the set B. See
Sections 3.3–3.4 in [21] for details.

An important subclass of infinitely divisible distributions is the class of stable
distributions. A probability measure � on R

d is called stable if for any n and any

X1; : : : ; Xn
iid� � there are an > 0 and bn 2 R

d such that

X1
dD an

nX

kD1

Xk � bn: (2.4)

It turns out that, necessarily, an D n�1=˛ for some ˛ 2 .0; 2�. We call this parameter
the index of stability and we refer to any stable distribution with index ˛ as
˛-stable. Comprehensive references are [68] and [78].

Fix ˛ 2 .0; 2� and let � be an ˛-stable distribution. If ˛ D 2, then � D
ID.A; 0; b/ is a multivariate normal distribution, which we denote by � D N.b; A/.
If ˛ 2 .0; 2/, then � D ID.0; L; b/ where

L.A/ D
Z

Sd�1

Z 1

0

1A.ur/r�1�˛dr�.du/; A 2 B.Rd/;
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for some finite Borel measure � on S
d�1. We call � the spectral measure of the

distribution and we write � D S˛.�; b/. All ˛-stable distributions with ˛ 2 .0; 2/

and � ¤ 0 have an infinite variance and are sometimes called infinite variance
stable distributions.

One reason for the importance of stable distributions is that they are the only
possible limits of scaled and shifted sums of iid random variables. Specifically, let

X1; X2; � � � iid� � for some probability measure � and define Sn D Pn
iD1 Xi. If there

exists a probability measure � and sequences an > 0 and bn 2 R
d such that for

Y � �

.anSn � bn/
d! Y; (2.5)

then � is a stable distribution. When this holds we say that � (or equivalently X1)
belongs to the domain of attraction of � (or equivalently of Y). When � is not
degenerate its domain of attraction is characterized in [23] for the case d D 1 and in
[67] and [54] for the case d � 2. We now give a related fact, which further explains
the importance of stable distributions.

Lemma 2.5. Fix c 2 f0; 1g. Let fXt W t � 0g be a Lévy process and let Y be
a random variable whose distribution is not concentrated at a point. If there exist
functions at > 0 and bt 2 R

d with

.atXt � bt/
d! Y as t ! c (2.6)

then Y has an ˛-stable distribution for some ˛ 2 .0; 2�.

Proof. Fix N 2 N. Let Y.1/; Y.2/; : : : ; Y.N/ be iid copies of Y and let fX.n/
t W t � 0g,

n D 1; 2; : : : ; N, be independent Lévy processes with X.n/
1

dD X1. From (2.6) it
follows that

d-lim
t!c

.aNtXNt � bNt/ D Y:

The fact that Lévy processes have independent and stationary increments gives

d-lim
t!c

.atXNt � Nbt/ D d-lim
t!c

NX

nD1

�
at

�
Xnt � X.n�1/t

� � bt
�

D d-lim
t!c

NX

nD1

�
atX

.n/
t � bt

	
D

NX

nD1

Y.n/:

Since Y is not concentrated at a point, neither is
PN

nD1 Y.n/, and by the Convergence
of Types Theorem (see, e.g., Lemma 13.10 in [69]) there are constants cN > 0 and
dN 2 R

d such that

NX

nD1

Y.n/ dD cNY � dN;

which implies that Y has a stable distribution by (2.4). ut
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2.3 Regular Variation

Regularly varying functions are functions that have power-like behavior. Compre-
hensive references are [11, 23, 62], and [63]. For c 2 f0; 1g and � 2 R, a Borel
function f W .0; 1/ 7! .0; 1/ is called regularly varying at c with index � if

lim
x!c

f .tx/

f .x/
D t�:

In this case we write f 2 RVc
�. If f 2 RVc

�, then there is an L 2 RVc
0 such that

f .x/ D x�L.x/. If h.x/ D f .1=x/, then

f 2 RVc
� if and only if h 2 RV1=c�� : (2.7)

If f 2 RVc
� with � > 0 and f .x/ D inf fy > 0 W f .y/ > xg, then

f 2 RVc
1=� (2.8)

and f is an asymptotic inverse of f in the sense that

f .f .x// � f .f .x// � x as x ! c:

When c D 1 this result is given on page 28 of [11]. The case when c D 0 can
be shown using an extension of those results and (2.7). We now summarize several
important properties of regularly varying functions.

Proposition 2.6. Fix c 2 f0; 1g and � 2 R. Let f ; g; h W .0; 1/ 7! .0; 1/.

1. If f 2 RVc
�, then

lim
t!c

f .t/ D



1=c if � < 0

c if � > 0
:

2. If f is a monotone function and there are sequences of positive numbers 	n and
bn such that bn ! c, limn!1 	n=	nC1 D 1, and if for all x > 0

lim
n!1	nf .bnx/ DW 
.x/ (2.9)

exists and is positive and finite, then there is a � 2 R such that 
.x/=
.1/ D x�

and f 2 RVc
�.

3. Let f 2 RVc
� and assume that h.x/ ! c as x ! c. If for some k > 0 we have

g.x/ � kh.x/ as x ! c, then f .g.x// � k�f .h.x// as x ! c.
4. If k > 0, � > 0, and f ; g 2 RVc

�, then

f .t/ � kg.t/ as t ! c



10 2 Preliminaries

if and only if

f .t/ � k�1=�g .t/ as t ! c:

Proof. For the case c D 1 Parts 1–3 are given in Propositions 2.3 and 2.6 in [63].
Extensions to the case c D 0 follow from (2.7). Part 4 is an immediate consequence
of Part 3 and the asymptotic uniqueness of asymptotic inverses of regularly varying
functions, see Theorem 1.5.12 in [11]. ut

Another useful result is Karamata’s Theorem, a version of which is as follows.

Theorem 2.7. Fix c 2 f0; 1g and let f 2 RVc
� for some � 2 R. If � � �1 and

R x
0 f .t/dt < 1 for all x > 0, then

lim
x!c

xf .x/
R x

0
f .t/dt

D � C 1: (2.10)

If � � �1 and
R1

x f .t/dt < 1 for all x > 0, then

lim
x!c

xf .x/
R1

x f .t/dt
D �� � 1: (2.11)

Proof. For c D 1 this follows from Theorem 2.1 in [63]. Now assume that c D 0.
To verify (2.10) let g.x/ D x�2f .1=x/ and note that (2.7) implies that g 2 RV1�2��.
By change of variables we have

lim
x!0

xf .x/
R x

0
f .t/dt

D lim
x!1

x�1f .1=x/
R 1=x

0
f .t/dt

D lim
x!1

xg.x/
R1

x g.t/dt
D lim

x!1
xg.x/

R1
x g.t/dt

D � C 1;

where the final equality follows by (2.11) for the case c D 1 and the fact that
�2 � � � �1. The proof of (2.11) is similar. ut

We will also work with matrix-valued functions. While regular variation of
invertible matrix-valued functions is defined in [5] and [54], we need a different
definition to allow for the non-invertible case.

Definition 2.8. Fix c 2 f0; 1g, � 2 R, and let A� W .0; 1/ 7! R
d�d. If trA� 2 RVc

�

and there exists a B 2 R
d�d with B ¤ 0 and

lim
t!c

At

trAt
D B

we say that A� is matrix regularly varying at c with index � and limiting matrix
B. In this case we write A� 2 MRVc

�.B/.

In the above definition, we can allow scaling by a function other than trA�.
However, this choice is convenient for our purposes. One way to interpret matrix
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regular variation is in terms of quadratic forms. It is straightforward to show that
A� 2 MRVc

�.B/ means that there exists an L 2 RVc
0 such that for any z 2 R

d

hz; Atzi � hz; Bzit�L.t/ as t ! c: (2.12)

We also need to define regular variation for measures. Assume that R is a Borel
measure on R

d with

R.jxj > ı/ < 1 for any ı > 0: (2.13)

Note that this condition holds for all probability measures and all Lévy measures.

Definition 2.9. Fix � � 0 and c 2 f0; 1g. A Borel measure R on R
d satisfy-

ing (2.13) is said to be regularly varying at c with index � if there exists a finite,
non-zero Borel measure � on S

d�1 such that for all D 2 B.Sd�1/ with �.@D/ D 0

lim
r!c

R
�
jxj > rt; x

jxj 2 D
	

R.jxj > r/
D t�

�.D/

�.Sd�1/
: (2.14)

When this holds we write R 2 RVc
�.�/ and we refer to � as a limiting measure.

Clearly, the measure � is unique only up to a multiplicative constant. For D 2
B.Sd�1/ define

UD.t/ D R.jxj > t; x=jxj 2 D/; t > 0: (2.15)

When �.D/ > 0, �.@D/ D 0, and R 2 RVc
�.�/

lim
r!c

UD.rt/

UD.r/
D lim

r!c

UD.rt/

USd�1 .r/

USd�1 .r/

UD.r/
D t�

�.D/

�.Sd�1/

�.Sd�1/

�.D/
D t�;

and hence

UD 2 RVc
�: (2.16)

In particular, we have USd�1 2 RVc
�. Now take L.t/ D USd�1 .t/=

�
t��.Sd�1/

�
, and

note that L 2 RVc
0. Combining this with (2.14) gives the following.

Lemma 2.10. R 2 RVc
�.�/ if and only if there is an L 2 RVc

0 such that for all
D 2 B.Sd�1/ with �.@D/ D 0

UD.t/ � �.D/t�L.t/ as t ! c: (2.17)

The next result will be fundamental to the discussion in Chapter 5.
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Proposition 2.11. Fix c 2 f0; 1g, � � 0, let � ¤ 0 be a finite Borel measure on
S

d�1, and let R be a Borel measure on R
d satisfying (2.13).

1. If R 2 RVc
�.�/ and q � 0 with 0 < q C j�j, then for any � > 0 there exists a

function at > 0 with limt!c at D 1=c such that

lim
t!c

taq
t R

�

jxj > r=at;
x

jxj 2 D

�

D ��.D/r� (2.18)

for all r 2 .0; 1/ and all D 2 B.Sd�1/ with �.@D/ D 0.
2. If there exists a function at > 0 with limt!c at D 1=c such that for all r 2 .0; 1/

and all D 2 B.Sd�1/ with �.@D/ D 0 (2.18) holds for some q � 0 and some
� > 0, then R 2 RVc

�.�/.
3. If R 2 RVc

�.�/ and q � 0 with 0 < q C j�j, then (2.18) holds for some function

at > 0 with limt!c at D 1=c if and only if at � K1=.j�jCq/=V .t/ where K D
��.Sd�1/ and V.t/ D tq=R.jxj > t/. Moreover, in this case, a� 2 RVc

�1=.qCj�j/.

Proof. Fix D 2 B.Sd�1/ with �.@D/ D 0. We begin with the first part. Assume that
R 2 RVc

�.�/ and let at � K1=.j�jCq/=V .t/, where V and K are as in Part 3. Note
that a� 2 RVc

�1=.qCj�j/ and thus that limt!c at D 1=c. By Proposition 2.6 we have

r� �.D/

�.Sd�1/
D lim

s!c

R
�
jxj > rs; x

jxj 2 D
	

R.jxj > s/

D lim
t!c

aq
t R

�
jxj > r=at;

x
jxj 2 D

	

aq
t R.jxj > 1=at/

D lim
t!c

V.1=at/a
q
t R

�

jxj > r=at;
x

jxj 2 D

�

D K�1 lim
t!c

V.K1=.j�jCq/=at/a
q
t R

�

jxj > r=at;
x

jxj 2 D

�

D K�1 lim
t!c

V.V .t//aq
t R

�

jxj > r=at;
x

jxj 2 D

�

D 1

��.Sd�1/
lim
t!c

taq
t R

�

jxj > r=at;
x

jxj 2 D

�

as required. To show the second part assume that (2.18) holds for some q � 0, some
� > 0, and some function at > 0 satisfying limt!c at D 1=c. We have

lim
s!c

R
�
jxj > sr; x

jxj 2 D
	

R.jxj > s/
D lim

t!c

taq
t R

�
jxj > r=at;

x
jxj 2 D

	

taq
t R.jxj > 1=at/

D �.D/

�.Sd�1/
r�:
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We now turn to the third part. Assume that at > 0 is such that limt!c at D 1=c
and that a� satisfies (2.18) for all r 2 .0; 1/ and all D 2 B.Sd�1/ with �.@D/ D 0.
In particular, this means that limt!c taq

t R .jxj > 1=at/ D ��.Sd�1/, or equivalently
that V.1=at/ � t=K as t ! c. Combining this with Proposition 2.6 gives

lim
t!c

at

K1=.j�jCq/=V .t/
D lim

t!c

K�1=.j�jCq/V .t/

1=at

D lim
t!c

V .t=K/

V .V.1=at//
D lim

t!c

V .t=K/

V .t=K/
D 1;

which concludes the proof. ut
When R 2 RV1� .�/ we sometimes say that R has regularly varying tails. In

this case we refer to j�j as the tail index. The following result helps explain these
definitions.

Proposition 2.12. Let � ¤ 0 be a finite Borel measure on S
d�1 and let R be a Borel

measure on R
d satisfying (2.13). If R 2 RV1� .�/ for some � � 0, then for any ı > 0

Z

jxj�ı

jxj�R.dx/



< 1 if � < j�j
D 1 if � > j�j :

Proof. When � � 0 the result follows immediately from the fact that R sat-
isfies (2.13). Now assume that � > 0 and fix ı > 0. By Fubini’s Theorem
(Theorem 18.3 in [10])

Z

jxj�ı

jxj� R.dx/ D
Z

jxj�ı

Z jxj

0

�u��1duR.dx/

D ı� R.jxj � ı/ C
Z 1

ı

�u��1R.jxj � u/du D I1 C I2:

Clearly, I1 < 1. From (2.16) it follows that R.jxj � u/ D u�L.u/ for some
L 2 RV10 . Proposition 1.3.6 in [11] implies that for any � > 0 there exists a ı� > ı

such that for all u > ı� we have u�� < L.u/ < u� . When � > j�j fix � 2 .0; � � j�j/
and note that

I2 �
Z 1

ı�

�u��1�j�j��du D 1:

When � < j�j fix � 2 .0; j�j � �/ and note that

I2 �
Z ı�

ı

�u��1R.jxj � u/du C
Z 1

ı�

�u��j�jC��1du < 1:

This completes the proof. ut
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