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Notation

Let Rd be the space of d-dimensional column vectors of real numbers. For x 2 R
d

we write x D .x1; x2; : : : ; xd/, and we denote the transpose of x by xT . Let h�; �i be
the usual inner product on R

d, i.e., if x; y 2 R
d then hx; yi D xTy D Pd

iD1 xiyi. Let

j � j be the usual norm on R
d, i.e., if x 2 R

d then jxj D phx; xi D
qPd

iD1 x2i . Let

S
d�1 D fx 2 R

d W jxj D 1g, and let Cd be the space of d-dimensional column vectors
of complex numbers. For z 2 C

d we write <z to denote the real part of z and =z to
denote the imaginary part of z. Let Rd�d be the collection of all d � d-dimensional
matrices with real entries, and for A 2 R

d�d let trA be the trace of A. Let B.Rd/ and
B.Sd�1/ denote the Borel sets on R

d and S
d�1, respectively.

If � is a probability measure on .Rd;B.Rd//, we write O�.z/ D R
Rd eihx;zi�.dx/

for z 2 R
d to denote its characteristic function, and we write X � � to denote that

X is a random variable taking values in R
d with distribution �. Further, we write

X1;X2; : : : ;Xn
iid� � to denote that X1;X2; : : : ;Xn are independent and identically

distributed random variables taking values in R
d, each with distribution �. For two

random variables X and Y , we write X
dD Y to denote that X and Y have the same

distribution.
For a sequence of random variables X1;X2; : : : , we write d-lim Xn to denote

the limit in distribution. We also use the more standard notations
d! and

p! to
denote, respectively, convergence in distribution and convergence in probability. For

sequences of probability measures, we write
w! to denote weak convergence, and

for sequences of Radon measures, we write
v! to denote vague convergence.

We write ID.A;M; b/ to denote the infinitely divisible distribution on R
d with

Gaussian part A, Lévy measure M, and shift b. We write N.b;A/ to denote the
Gaussian distribution on R

d with mean vector b and covariance matrix A, and
we write S˛.�; b/ to denote the infinite variance ˛-stable distribution on R

d with
spectral measure � and shift b. We write TSp

˛.R; b/ to denote the p-tempered ˛-stable
distribution on R

d with Rosiński measure R and shift b, and we write ETSp
˛.A; �; b/

to denote the extended p-tempered ˛-stable distribution on R
d with Gaussian

part A, extended Rosiński measure �, and shift b. Several parametric families of

xi



xii Notation

tempered stable distributions are introduced in Chapter 6. These are denoted by
STLFp

˛.c�; cC; `�; `C; b/, TWp
˛.c; `; b/, TW˛.c; `; b/, PTp

˛.c�; cC; ��; �C; b/, and
GTp

˛.c�; cC; ��; �C; `�; `C; b/.
If A is a collection of subsets of some space E, we write �.A / to denote the

� -algebra generated by A , i.e., the smallest � -algebra that contains A . If f and g
are real-valued functions, c 2 f0;1g, and k 2 R, we write

f .t/ � kg.t/ as t ! c

to denote

f .t/=g.t/ ! k as t ! c:

Note that this is somewhat nonstandard notation in the case when k D 0. When
dealing with infinity we adopt the conventions that

1=1 D 0 and 1=0 D 1:

For x; y 2 R we write x ^ y to denote the minimum and x _ y to denote the
maximum. Further, we define logC x WD log .1 _ x/. For a set H we denote the
indicator function on H by 1H . This means that 1H.x/ D 1 if x 2 H and 1H.x/ D 0 if
x … H. We also write 1x2H to denote this. For a 2 R

d we write ıa to denote the Dirac
delta measure at a. This means that for any Borel set H, we have ıa.H/ D 1H.a/.
We denote the gamma function by � .x/. When x > 0 we have

� .x/ D
Z 1

0

e�ttx�1dt:

Further, we extend the gamma function to any x 2 R with x ¤ 0;�1;�2; : : : by the
relation

� .x C 1/ D x� .x/:

If P is a probability measure on the measurable space .˝;F /, we write EP

to denote the expectation with respect to P. Further, when there is no chance of
ambiguity, we write E instead of EP.



Chapter 1
Introduction

It has been observed that infinite variance stable distributions provide a good fit to
data in a variety of situations. However, the extremely heavy tails of these models
are not realistic for most real-world applications. In practice, there are all kinds
of obstacles limiting the size of random phenomena. This has led researchers to use
models that are similar to stable distributions in some central region, but with lighter
tails. Tempered stable distributions are a rich class of models that capture this type
of behavior. They have been shown to provide a good fit to data in a number of
applications including actuarial science [36, 37], biostatistics [1, 39, 59], computer
science [16, 74, 75], mathematical finance [17, 46, 50, 60], and physics [14, 55].
Discussions of the mechanisms by which such models appear in applications are
given in [19, 35], and [34], see also Chapter 7 in this brief.

The idea of using models that are “stable-like” in the center but with lighter
tails seems to have originated in the physics literature with the influential paper
of Mantegna and Stanley [52]. That paper introduced the class of truncated Lévy
flights.1 These models start with a stable distribution and then truncate its tails.
More formally, let f .x/ be the density of a one-dimensional infinite variance ˛-stable
distribution and let T > 0 be a truncation level. We define a truncated Lévy flight
(TLF) with truncation level T to be a probability measure with density

fT.x/ D cTf .x/1jxj�T ;

where cT is a normalizing constant. If T is very large, then the models corresponding
to the densities f .x/ and fT.x/ may be statistically indistinguishable even for very

1Lévy flights are random walks, where the step sizes are independent and identically distributed
draws from an infinite variance ˛-stable distribution, see [52]. The term “truncated Lévy flight”
was also originally used to refer to a random walk, but has now come to refer to the underlying
distribution.

© Michael Grabchak 2016
M. Grabchak, Tempered Stable Distributions, SpringerBriefs
in Mathematics, DOI 10.1007/978-3-319-24927-8_1
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2 1 Introduction

large datasets. However, the tail behavior of these models is vastly different. Stable
distributions have an infinite variance, while TLFs have all moments finite.

Although these models capture the basic idea of modifying the tails of stable
distributions to make them lighter, they have a number of limitations. First, unlike
stable distributions TLFs are not infinitely divisible,2 which means that the rich
theory of infinitely divisible distributions cannot be used to analyze their behavior
and that we cannot define Lévy processes with such marginal distributions. Another
issue, one which has major ramifications for risk estimation, is that it is essentially
impossible to estimate the truncation parameter T from a finite dataset, yet different
values of T give vastly different estimates of risk. Aside from these considerations,
it is generally desirable to allow for more flexible tail behavior than what is allowed
by these models.

With issues such as these in mind, Koponen [48] suggested a different approach
to modifying the tails of stable distributions to make them lighter. The idea begins
by observing that an infinite variance ˛-stable distribution is infinitely divisible with
no Gaussian part and a Lévy measure3 given by

L.dx/ D c�jxj�1�˛1x<0dx C cCx�1�˛1x>0dx;

where c�; cC � 0. Noting that the tails of the Lévy measure are intimately related
to the tails of the distribution, the idea is to modify the tails of the Lévy measure
to make them lighter and yet to keep the Lévy measure virtually unchanged in
some central region. For this reason Koponen [48] introduced an infinitely divisible
distribution with a Lévy measure given by

M.dx/ D c�jxj�1�˛e�jxj=`�1x<0dx C cCx�1�˛e�x=`
C1x>0dx; (1.1)

where c�; cC;� 0 and `�; `C > 0. Clearly, if `� and `C are very large, then the
Lévy measure will be close to that of the corresponding ˛-stable distribution in the
center and, potentially, quite far into the tails. However, ultimately, the tails of such
a Lévy measure will decay exponentially fast. This leads to exponential decay in the
tails of the corresponding probability measure as well.

Infinitely divisible distributions with no Gaussian part and a Lévy measure given
by (1.1) have come to be known as smoothly truncated Lévy flights (STLF).
However, in the financial literature they are also sometimes referred to as the CGMY
model (named after Carr, Geman, Madan, and Yor, the authors of [17]) or the
KoBoL model (named after Koponen, the author of [48], and Boyarchenko and
Levendorskiı̆, the authors of [15]). It should be mentioned that a number of special
classes of STLFs had previously appeared in the literature. These include the inverse
Gaussian (see, e.g., [71]) and some of its extensions given in [1, 39, 77], and [58].

2This is because infinitely divisible distributions cannot have a bounded support, see Theorem 24.3
in [69].
3Background on infinitely divisible distributions and Lévy measures is given in Section 2.2.



1 Introduction 3

However, in these cases, the models were introduced not from the perspective of
modifying the tails of a stable distribution, but from other considerations.

Despite the usefulness of STLFs, they have a number of limitations. For one
thing they have exponential tails, which are too restrictive for many applications. In
particular, there is evidence that the distributions of financial returns have regularly
varying tails (see, e.g., [21]), yet this type of behavior cannot be captured by STLFs.
Further, the class of STLFs is not closed under aggregation, i.e. the sum of two
independent STLFs is not, in general, an STLF.

To deal with these limitations Rosiński [65] introduced the class of tempered
˛-stable distributions. The idea comes from considering the sum of n STLFs. Let
X1; : : : ;Xn be independent random variables such that the distribution of Xi is that
of an STLF with Lévy measure given by (1.1) and parameters ci�; ciC; `i�; `iC. We
assume that all of the Xis have the same parameter ˛. The distribution of the sumPn

iD1 Xi is infinitely divisible with no Gaussian part and a Lévy measure given by

M.dx/ D jxj�1�˛
 

nX

iD1
ci�e�jxj=`i

�

!

1x<0dx C x�1�˛
 

nX

iD1
ciCe�x=`i

C

!

1x>0dx

D jxj�1�˛
Z 1

0

e�jxjtQ�.dt/1x<0dx C x�1�˛
Z 1

0

e�xtQC.dt/1x>0dx;

where Q�.dt/ D Pn
iD1 ci�ı1=`i

�

.dt/ and QC.dt/ D Pn
iD1 ciCı1=`i

C

.dt/. This can

easily be generalized by considering other forms for the measures Q�.dt/ and
QC.dt/. Further, this approach can be extended to d-dimensions by allowing a
different measure Qu.dt/ for each direction u 2 S

d�1, where S
d�1 is the unit sphere

in d-dimensions. Specifically, noting that the Lévy measure of a d-dimensional
˛-stable distribution is given by

L.B/ D
Z

Sd�1

Z 1

0

1B.ru/r�1�˛dr�.du/; B 2 B.Rd/;

where � is a finite measure on S
d�1, Rosiński [65] defined the class of tempered

˛-stable distributions as infinitely divisible distributions with no Gaussian part and
a Lévy measure of the form

M.B/ D
Z

Sd�1

Z 1

0

1B.ru/q.r; u/r�1�˛dr�.du/; B 2 B.Rd/; (1.2)

where the function q, called the tempering function, is assumed to be of the form

q.r; u/ D
Z 1

0

e�rtQu.dt/

for some measurable family of Borel measures fQugu2Sd�1 .



4 1 Introduction

In [27], the wider class of p-tempered ˛-stable distributions (TSp
˛), where p > 0

and ˛ 2 .�1; 2/, was introduced. Here the tempering function is assumed to be of
the form

Z 1

0

e�rptQu.dt/:

The parameter p controls the amount of tempering, while ˛ is the index of stability
of the corresponding stable distribution. Clearly, the case where ˛ � 0 no longer
has any meaning in terms of tempering stable distributions, however it allows the
class to be more flexible. In fact, within certain subclasses, the case where ˛ � 0

has been shown to provide a good fit to data, see, e.g., [1] or [17]. Rosiński’s class
corresponds to the case when p D 1 and ˛ 2 .0; 2/. Tempered infinitely divisible
distributions defined in [9] are another subclass corresponding to the case when
p D 2 and ˛ 2 Œ0; 2/. If we allow the distributions to have a Gaussian part, then we
would have the class J˛;p defined in [51]. This, in turn, contains important subclasses
including the Thorin class (when p D 1 and ˛ D 0), the Goldie-Steutel-Bondesson
class (when p D 1 and ˛ D �1), the class of type M distributions (when p D 2 and
˛ D 0), and the class of type G distributions (when p D 2 and ˛ D �1). For more
information about these classes see the references in [6] and [3].

An important feature of p-tempered ˛-stable distributions is that their associated
Lévy processes are multiscaling, i.e. their behavior in a short time frame may be
very different from their behavior in a long time frame. This is in contrast to ˛-stable
Lévy processes, which have the same type of behavior at all time scales.

Multiscaling behavior is observed in many applications. For example, evidence
of multiscaling behavior in human mobility is given in [26, 61, 64], and [16], while
evidence of multiscaling behavior in animal foraging patterns is given in [43] and
the references therein. Another important example comes from financial modeling,
where it has been observed that very frequent returns (at say the half-hour level) are
often well approximated by infinite variance stable distributions. However, returns
tend to exhibit aggregational Gaussianity and at large aggregation levels (say at the
weekly level) they are well approximated by the Gaussian, see [21] or [35].

The main topic of this brief is the study of p-tempered ˛-stable distributions
and the multiscaling behavior of their associated Lévy processes. Toward this end
we begin in Chapter 2 by reviewing some background topics. In Chapter 3 we
formally introduce p-tempered ˛-stable distributions and discuss many properties.
It turns out that the class TSp

˛ is not closed under weak convergence. In Chapter 4
we introduce the closure of this class and characterize weak convergence in it. In
Chapter 5 we characterize the multiscale properties of p-tempered ˛-stable Lévy
processes. Then in Chapters 6 and 7 we give some examples and applications. In
particular, in Chapter 6 we explore a number of parametric classes of p-tempered
˛-stable distributions, and in Chapter 7 we discuss applications to mathematical
finance and to mobility models. Further, we discuss a theoretical mechanism by
which p-tempered ˛-stable distributions appear in applications.



Chapter 2
Preliminaries

In this chapter we bring together background material on several topics that will be
important in the sequel.

2.1 Basic Topology

In this section we review some basic concepts from topology. For more details see,
e.g., [13] or Chapter 7 in [8]. We begin by defining a topological space.

Definition 2.1. Let E be a set. If T is a collection of subsets of E such that

1. ;;E 2 T ,
2. T is closed under finite intersections, and
3. T is closed under arbitrary unions,

then T is called a topology, .E;T / is called a topological space, and the sets in
T are called open sets. The complement of an open set is called a closed set. If, in
addition, for any a; b 2 E with a ¤ b there are A;B 2 T with a 2 A, b 2 B, and
A \ B D ;, then we say that the space is Hausdorff.

For any topological space .E;T / the class of Borel sets is the � -algebra
generated by T and is denoted by B.E;T /. Thus B.E;T / D �.T /. When
the collection T is clear from context we sometimes write B.E/ D B.E;T /.
In particular, when working with R

d we generally assume that T are the usual open
sets. In this case B.Rd;T / are the usual Borel sets, which we denote by B.Rd/.
Any measure on the space .E;B.E// is called a Borel measure on .E;T / or just a
Borel measure when the space is clear from context.

If A � E, then the interior of A (denoted Aı) is the union of all open sets
contained in A, and the closure of A (denoted NA) is the intersection of all closed

© Michael Grabchak 2016
M. Grabchak, Tempered Stable Distributions, SpringerBriefs
in Mathematics, DOI 10.1007/978-3-319-24927-8_2
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6 2 Preliminaries

sets containing A. Note that Aı � A � NA. We write @A D NA n Aı to denote the
boundary of A. We conclude this section by recalling the definition of a compact
set.

Definition 2.2. Let .E;T / be a Hausdorff space and let A � E. If for any collection
T0 � T with A � S

T0 there is a finite subcollection T1 � T0 with A � S
T1,

then A is called a compact set. If A is such that its closure is compact, then A is
called relatively compact.

2.2 Infinitely Divisible Distributions and Lévy Processes

In this section we review some important results about infinitely divisible distri-
butions and their associated Lévy processes. Comprehensive references are [69]
and [21]. A probability measure � on R

d is called infinitely divisible if for any
positive integer n there exists a probability measure �n on R

d such that if X � �

and Y.n/1 ; : : : ;Y
.n/
n

iid� �n then

X
dD

nX

iD1
Y.n/i :

We denote the class of infinitely divisible distributions by ID. The characteristic
function of an infinitely divisible distribution � on R

d is given by O�.z/ D
expfC�.z/g where

C�.z/ D �1
2

hz;Azi C ihb; zi C
Z

Rd

�

eihz;xi � 1 � i
hz; xi
1C jxj2

�

M.dx/; (2.1)

A is a symmetric nonnegative-definite d � d matrix, b 2 R
d, and M satisfies

M.f0g/ D 0 and
Z

Rd
.jxj2 ^ 1/M.dx/ < 1: (2.2)

We call C� the cumulant generating function of �, A the Gaussian part, b the
shift, and M the Lévy measure. The measure � is uniquely identified by the Lévy
triplet .A;M; b/ and we will write

� D ID.A;M; b/:

The class of infinitely divisible distributions is intimately related with the class of
Lévy processes. These processes are defined as follows.

Definition 2.3. A stochastic process fXt W t � 0g on .˝;F ;P/ with values in R
d is

called a Lévy Process if X0 D 0 a.s. and the following conditions are satisfied:
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1. (Independent increments) For any n � 1 and 0 � t0 < t1 < � � � < tn < 1, the
random variables Xt0 ; Xt1 � Xt0 ; : : : ;Xtn � Xtn�1 are independent.

2. (Stationary increments) XsCt � Xs
dD Xt for any s; t � 0.

3. (Stochastic continuity) For every t � 0 and � > 0 lims!t P .jXs � Xtj > �/ D 0.
4. (Càdlàg paths) There is ˝0 2 F with P.˝0/ D 1 such that for every ! 2 ˝0,

Xt.!/ is right-continuous in t � 0 and has left limits in t > 0.

Since a Lévy process fXt W t � 0g has the càdlàg paths property it follows that,
with probability 1, lims#t Xs D Xt and lims"t Xs exists. We define Xt� WD lims"t Xs

and we write �Xt D Xt � Xt� to denote the jump at time t. The connection between
Lévy processes and infinitely divisible distributions is highlighted by the following
result, which is given in Theorem 7.10 of [69].

Proposition 2.4. 1. If � is an infinitely divisible distribution on R
d, then there is a

Lévy process fXt W t � 0g with X1 � �.
2. Conversely, if fXt W t � 0g is a Lévy process on R

d, then for any t � 0 the
distribution �t of Xt is infinitely divisible and O�t.z/ D Œ O�1.z/�t.

3. If fXt W t � 0g and fX0t W t � 0g are Lévy processes on R
d with X1

dD X01, then
fXt W t � 0g and fX0t W t � 0g have the same finite dimensional distributions.

In the context of Lévy processes, the Lévy measure has a simple interpretation.
Specifically, if fXt W t � 0g is a Lévy process with X1 � ID.A;M; b/, then

M.B/ D E Œ#ft 2 Œ0; 1� W �Xt ¤ 0;�Xt 2 Bg� ; B 2 B.Rd/: (2.3)

In other words, M.B/ is the expected number of times t 2 Œ0; 1� at which the Lévy
process has a jump (i.e., Xt � Xt� ¤ 0) and the value of this jump is in the set B. See
Sections 3.3–3.4 in [21] for details.

An important subclass of infinitely divisible distributions is the class of stable
distributions. A probability measure � on R

d is called stable if for any n and any

X1; : : : ;Xn
iid� � there are an > 0 and bn 2 R

d such that

X1
dD an

nX

kD1
Xk � bn: (2.4)

It turns out that, necessarily, an D n�1=˛ for some ˛ 2 .0; 2�. We call this parameter
the index of stability and we refer to any stable distribution with index ˛ as
˛-stable. Comprehensive references are [68] and [78].

Fix ˛ 2 .0; 2� and let � be an ˛-stable distribution. If ˛ D 2, then � D
ID.A; 0; b/ is a multivariate normal distribution, which we denote by � D N.b;A/.
If ˛ 2 .0; 2/, then � D ID.0;L; b/ where

L.A/ D
Z

Sd�1

Z 1

0

1A.ur/r�1�˛dr�.du/; A 2 B.Rd/;
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for some finite Borel measure � on S
d�1. We call � the spectral measure of the

distribution and we write � D S˛.�; b/. All ˛-stable distributions with ˛ 2 .0; 2/

and � ¤ 0 have an infinite variance and are sometimes called infinite variance
stable distributions.

One reason for the importance of stable distributions is that they are the only
possible limits of scaled and shifted sums of iid random variables. Specifically, let

X1;X2; � � � iid� � for some probability measure � and define Sn D Pn
iD1 Xi. If there

exists a probability measure � and sequences an > 0 and bn 2 R
d such that for

Y � �

.anSn � bn/
d! Y; (2.5)

then � is a stable distribution. When this holds we say that � (or equivalently X1)
belongs to the domain of attraction of � (or equivalently of Y). When � is not
degenerate its domain of attraction is characterized in [23] for the case d D 1 and in
[67] and [54] for the case d � 2. We now give a related fact, which further explains
the importance of stable distributions.

Lemma 2.5. Fix c 2 f0;1g. Let fXt W t � 0g be a Lévy process and let Y be
a random variable whose distribution is not concentrated at a point. If there exist
functions at > 0 and bt 2 R

d with

.atXt � bt/
d! Y as t ! c (2.6)

then Y has an ˛-stable distribution for some ˛ 2 .0; 2�.
Proof. Fix N 2 N. Let Y.1/;Y.2/; : : : ;Y.N/ be iid copies of Y and let fX.n/t W t � 0g,

n D 1; 2; : : : ;N, be independent Lévy processes with X.n/1
dD X1. From (2.6) it

follows that

d-lim
t!c

.aNtXNt � bNt/ D Y:

The fact that Lévy processes have independent and stationary increments gives

d-lim
t!c

.atXNt � Nbt/ D d-lim
t!c

NX

nD1

�
at
�
Xnt � X.n�1/t

� � bt
�

D d-lim
t!c

NX

nD1

�
atX

.n/
t � bt

	
D

NX

nD1
Y.n/:

Since Y is not concentrated at a point, neither is
PN

nD1 Y.n/, and by the Convergence
of Types Theorem (see, e.g., Lemma 13.10 in [69]) there are constants cN > 0 and
dN 2 R

d such that

NX

nD1
Y.n/

dD cNY � dN ;

which implies that Y has a stable distribution by (2.4). ut
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2.3 Regular Variation

Regularly varying functions are functions that have power-like behavior. Compre-
hensive references are [11, 23, 62], and [63]. For c 2 f0;1g and 	 2 R, a Borel
function f W .0;1/ 7! .0;1/ is called regularly varying at c with index � if

lim
x!c

f .tx/

f .x/
D t	:

In this case we write f 2 RVc
	. If f 2 RVc

	, then there is an L 2 RVc
0 such that

f .x/ D x	L.x/. If h.x/ D f .1=x/, then

f 2 RVc
	 if and only if h 2 RV1=c�	 : (2.7)

If f 2 RVc
	 with 	 > 0 and f .x/ D inf fy > 0 W f .y/ > xg, then

f 2 RVc
1=	 (2.8)

and f is an asymptotic inverse of f in the sense that

f .f .x// � f .f .x// � x as x ! c:

When c D 1 this result is given on page 28 of [11]. The case when c D 0 can
be shown using an extension of those results and (2.7). We now summarize several
important properties of regularly varying functions.

Proposition 2.6. Fix c 2 f0;1g and 	 2 R. Let f ; g; h W .0;1/ 7! .0;1/.

1. If f 2 RVc
	, then

lim
t!c

f .t/ D


1=c if 	 < 0
c if 	 > 0

:

2. If f is a monotone function and there are sequences of positive numbers 
n and
bn such that bn ! c, limn!1 
n=
nC1 D 1, and if for all x > 0

lim
n!1
nf .bnx/ DW �.x/ (2.9)

exists and is positive and finite, then there is a 	 2 R such that �.x/=�.1/ D x	

and f 2 RVc
	.

3. Let f 2 RVc
	 and assume that h.x/ ! c as x ! c. If for some k > 0 we have

g.x/ � kh.x/ as x ! c, then f .g.x// � k	f .h.x// as x ! c.
4. If k > 0, 	 > 0, and f ; g 2 RVc

	, then

f .t/ � kg.t/ as t ! c
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if and only if

f .t/ � k�1=	g .t/ as t ! c:

Proof. For the case c D 1 Parts 1–3 are given in Propositions 2.3 and 2.6 in [63].
Extensions to the case c D 0 follow from (2.7). Part 4 is an immediate consequence
of Part 3 and the asymptotic uniqueness of asymptotic inverses of regularly varying
functions, see Theorem 1.5.12 in [11]. ut

Another useful result is Karamata’s Theorem, a version of which is as follows.

Theorem 2.7. Fix c 2 f0;1g and let f 2 RVc
	 for some 	 2 R. If 	 � �1 and

R x
0

f .t/dt < 1 for all x > 0, then

lim
x!c

xf .x/
R x
0

f .t/dt
D 	C 1: (2.10)

If 	 � �1 and
R1

x f .t/dt < 1 for all x > 0, then

lim
x!c

xf .x/
R1

x f .t/dt
D �	 � 1: (2.11)

Proof. For c D 1 this follows from Theorem 2.1 in [63]. Now assume that c D 0.
To verify (2.10) let g.x/ D x�2f .1=x/ and note that (2.7) implies that g 2 RV1�2�	.
By change of variables we have

lim
x!0

xf .x/
R x
0

f .t/dt
D lim

x!1
x�1f .1=x/
R 1=x
0

f .t/dt
D lim

x!1
xg.x/

R1
x g.t/dt

D lim
x!1

xg.x/
R1

x g.t/dt
D 	C 1;

where the final equality follows by (2.11) for the case c D 1 and the fact that
�2 � 	 � �1. The proof of (2.11) is similar. ut

We will also work with matrix-valued functions. While regular variation of
invertible matrix-valued functions is defined in [5] and [54], we need a different
definition to allow for the non-invertible case.

Definition 2.8. Fix c 2 f0;1g, 	 2 R, and let A� W .0;1/ 7! R
d�d. If trA� 2 RVc

	

and there exists a B 2 R
d�d with B ¤ 0 and

lim
t!c

At

trAt
D B

we say that A� is matrix regularly varying at c with index 	 and limiting matrix
B. In this case we write A� 2 MRVc

	.B/.

In the above definition, we can allow scaling by a function other than trA�.
However, this choice is convenient for our purposes. One way to interpret matrix
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regular variation is in terms of quadratic forms. It is straightforward to show that
A� 2 MRVc

	.B/ means that there exists an L 2 RVc
0 such that for any z 2 R

d

hz;Atzi � hz;Bzit	L.t/ as t ! c: (2.12)

We also need to define regular variation for measures. Assume that R is a Borel
measure on R

d with

R.jxj > ı/ < 1 for any ı > 0: (2.13)

Note that this condition holds for all probability measures and all Lévy measures.

Definition 2.9. Fix 	 � 0 and c 2 f0;1g. A Borel measure R on R
d satisfy-

ing (2.13) is said to be regularly varying at c with index 	 if there exists a finite,
non-zero Borel measure � on S

d�1 such that for all D 2 B.Sd�1/ with �.@D/ D 0

lim
r!c

R
�
jxj > rt; x

jxj 2 D
	

R.jxj > r/
D t	

�.D/

�.Sd�1/
: (2.14)

When this holds we write R 2 RVc
	.�/ and we refer to � as a limiting measure.

Clearly, the measure � is unique only up to a multiplicative constant. For D 2
B.Sd�1/ define

UD.t/ D R.jxj > t; x=jxj 2 D/; t > 0: (2.15)

When �.D/ > 0, �.@D/ D 0, and R 2 RVc
	.�/

lim
r!c

UD.rt/

UD.r/
D lim

r!c

UD.rt/

USd�1 .r/

USd�1 .r/

UD.r/
D t	

�.D/

�.Sd�1/
�.Sd�1/
�.D/

D t	;

and hence

UD 2 RVc
	: (2.16)

In particular, we have USd�1 2 RVc
	. Now take L.t/ D USd�1 .t/=

�
t	�.Sd�1/

�
, and

note that L 2 RVc
0 . Combining this with (2.14) gives the following.

Lemma 2.10. R 2 RVc
	.�/ if and only if there is an L 2 RVc

0 such that for all
D 2 B.Sd�1/ with �.@D/ D 0

UD.t/ � �.D/t	L.t/ as t ! c: (2.17)

The next result will be fundamental to the discussion in Chapter 5.
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Proposition 2.11. Fix c 2 f0;1g, 	 � 0, let � ¤ 0 be a finite Borel measure on
S

d�1, and let R be a Borel measure on R
d satisfying (2.13).

1. If R 2 RVc
	.�/ and q � 0 with 0 < q C j	j, then for any � > 0 there exists a

function at > 0 with limt!c at D 1=c such that

lim
t!c

taq
t R

�

jxj > r=at;
x

jxj 2 D

�

D ��.D/r	 (2.18)

for all r 2 .0;1/ and all D 2 B.Sd�1/ with �.@D/ D 0.
2. If there exists a function at > 0 with limt!c at D 1=c such that for all r 2 .0;1/

and all D 2 B.Sd�1/ with �.@D/ D 0 (2.18) holds for some q � 0 and some
� > 0, then R 2 RVc

	.�/.
3. If R 2 RVc

	.�/ and q � 0 with 0 < q C j	j, then (2.18) holds for some function

at > 0 with limt!c at D 1=c if and only if at � K1=.j	jCq/=V .t/ where K D
��.Sd�1/ and V.t/ D tq=R.jxj > t/. Moreover, in this case, a� 2 RVc

�1=.qCj	j/.

Proof. Fix D 2 B.Sd�1/ with �.@D/ D 0. We begin with the first part. Assume that
R 2 RVc

	.�/ and let at � K1=.j	jCq/=V .t/, where V and K are as in Part 3. Note
that a� 2 RVc

�1=.qCj	j/ and thus that limt!c at D 1=c. By Proposition 2.6 we have

r	
�.D/

�.Sd�1/
D lim

s!c

R
�
jxj > rs; x

jxj 2 D
	

R.jxj > s/

D lim
t!c

aq
t R
�
jxj > r=at;

x
jxj 2 D

	

aq
t R.jxj > 1=at/

D lim
t!c

V.1=at/a
q
t R

�

jxj > r=at;
x

jxj 2 D

�

D K�1 lim
t!c

V.K1=.j	jCq/=at/a
q
t R

�

jxj > r=at;
x

jxj 2 D

�

D K�1 lim
t!c

V.V .t//aq
t R

�

jxj > r=at;
x

jxj 2 D

�

D 1

��.Sd�1/
lim
t!c

taq
t R

�

jxj > r=at;
x

jxj 2 D

�

as required. To show the second part assume that (2.18) holds for some q � 0, some
� > 0, and some function at > 0 satisfying limt!c at D 1=c. We have

lim
s!c

R
�
jxj > sr; x

jxj 2 D
	

R.jxj > s/
D lim

t!c

taq
t R
�
jxj > r=at;

x
jxj 2 D

	

taq
t R.jxj > 1=at/

D �.D/

�.Sd�1/
r	:
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We now turn to the third part. Assume that at > 0 is such that limt!c at D 1=c
and that a� satisfies (2.18) for all r 2 .0;1/ and all D 2 B.Sd�1/ with �.@D/ D 0.
In particular, this means that limt!c taq

t R .jxj > 1=at/ D ��.Sd�1/, or equivalently
that V.1=at/ � t=K as t ! c. Combining this with Proposition 2.6 gives

lim
t!c

at

K1=.j	jCq/=V .t/
D lim

t!c

K�1=.j	jCq/V .t/
1=at

D lim
t!c

V .t=K/

V .V.1=at//
D lim

t!c

V .t=K/

V .t=K/
D 1;

which concludes the proof. ut
When R 2 RV1	 .�/ we sometimes say that R has regularly varying tails. In

this case we refer to j	j as the tail index. The following result helps explain these
definitions.

Proposition 2.12. Let � ¤ 0 be a finite Borel measure on S
d�1 and let R be a Borel

measure on R
d satisfying (2.13). If R 2 RV1	 .�/ for some 	 � 0, then for any ı > 0

Z

jxj�ı
jxj
R.dx/



< 1 if 
 < j	j
D 1 if 
 > j	j :

Proof. When 
 � 0 the result follows immediately from the fact that R sat-
isfies (2.13). Now assume that 
 > 0 and fix ı > 0. By Fubini’s Theorem
(Theorem 18.3 in [10])

Z

jxj�ı
jxj
R.dx/ D

Z

jxj�ı

Z jxj

0


u
�1duR.dx/

D ı
R.jxj � ı/C
Z 1

ı


u
�1R.jxj � u/du D I1 C I2:

Clearly, I1 < 1. From (2.16) it follows that R.jxj � u/ D u	L.u/ for some
L 2 RV10 . Proposition 1.3.6 in [11] implies that for any � > 0 there exists a ı� > ı
such that for all u > ı� we have u�� < L.u/ < u� . When 
 > j	j fix � 2 .0; 
 � j	j/
and note that

I2 �
Z 1

ı�


u
�1�j	j��du D 1:

When 
 < j	j fix � 2 .0; j	j � 
/ and note that

I2 �
Z ı�

ı


u
�1R.jxj � u/du C
Z 1

ı�


u
�j	jC��1du < 1:

This completes the proof. ut



Chapter 3
Tempered Stable Distributions

In this chapter we formally define tempered stable distributions and discuss many
properties. These distributions were first introduced in [65]. From here the class
was expanded in several directions in [9, 51, 66], and [27]. Our discussion mainly
follows [27].

3.1 Definitions and Basic Properties

Fix ˛ 2 .0; 2/, let � be a finite Borel measure on S
d�1, and recall that the Lévy

measure of an ˛-stable distribution with spectral measure � is given by

L.A/ D
Z

Sd�1

Z 1

0

1A.ru/r�˛�1dr�.du/; A 2 B.Rd/: (3.1)

Now, fix p > 0 and define a new Lévy measure of the form

M.A/ D
Z

Sd�1

Z 1

0

1A.ru/q.rp; u/r�˛�1dr�.du/; A 2 B.Rd/; (3.2)

where q W .0;1/ � S
d�1 7! .0;1/ is a Borel function such that, for all u 2 S

d�1,
q.�; u/ is completely monotone and satisfies

Z 1

0

r1�˛q.rp; u/dr < 1;

Z 1

1

r�1�˛q.rp; u/dr < 1; (3.3)

and

lim
r!1 q.r; u/ D 0: (3.4)

© Michael Grabchak 2016
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The conditions in (3.3) guarantee that this is a valid Lévy measure, while the fact
that (3.4) holds implies that the tails of M are lighter than those of L. This implies
that the tails of the associated infinitely divisible distribution are lighter as well.

The complete monotonicity1 of q.�; u/means that, for each u 2 S
d�1, the function

q.r; u/ is infinitely differentiable in r and

.�1/n @
n

@rn
q.r; u/ � 0: (3.5)

In particular, this implies that q.�; u/ is a monotonely decreasing function for each
u 2 S

d�1. By (3.4) and Bernstein’s Theorem (see, e.g., Theorem 1a in Section
XIII.4 of [23] or Remark 3.2 in [6]) it follows that there exists a measurable family2

fQugu2Sd�1 of Borel measures on .0;1/ with

q.rp; u/ D
Z

.0;1/
e�rpsQu.ds/: (3.6)

From here it follows that, so long as Qu ¤ 0, we have q.rp; u/ > 0 for all r > 0.
Note that, under the given conditions on the function q, (3.2) defines a valid

Lévy measure even for ˛ outside of the interval .0; 2/. However, since q.�; u/ is a
decreasing function for each u 2 S

d�1, when ˛ � 2 condition (3.3) holds only with
q 	 0. For this reason, we only consider the case ˛ 2 .�1; 2/. This leads to the
following definition.

Definition 3.1. Fix ˛ < 2 and p > 0. An infinitely divisible probability measure �
is called a p-tempered ˛-stable distribution if it has no Gaussian part and its Lévy
measure is given by (3.2), where � is a finite Borel measure on S

d�1 and q W .0;1/�
S

d�1 7! .0;1/ is a Borel function such that for all u 2 S
d�1, q.�; u/ is completely

monotone and satisfies (3.3) and (3.4). We denote the class of p-tempered ˛-stable
distributions by TSp

˛ .

We use the term tempered stable distributions to refer to the class of all
p-tempered ˛-stable distributions with all ˛ < 2 and p > 0.

Remark 3.1. Under appropriate integrability conditions, one can define Lévy mea-
sures of the form (3.2) with p � 0. The case p D 0 corresponds to the class of
˛-stable distributions and only makes sense for ˛ 2 .0; 2/. The case p < 0 has
significantly different behavior from the case p > 0 and will not be considered here.

Remark 3.2. From Theorem 15.10 in [69] it follows that p-tempered ˛-stable
distributions belong to the class of self-decomposable distributions if and only if
q.rp; u/r�˛ is a decreasing function of r for every u 2 S

d�1. This always holds when

1A general reference on completely monotone functions is [72].
2The measurability of the family means that for any Borel set A the function f .u/ D Qu.A/ is
measurable.
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˛ 2 Œ0; 2/, but it may fail when ˛ < 0. Thus, when ˛ 2 Œ0; 2/, p-tempered ˛-stable
distributions possess all properties of self-decomposable distributions. In particular,
if they are nondegenerate, then they have a density with respect to Lebesgue measure
in d-dimensions and when d D 1 they are unimodal.

In Definition 3.1, the case when ˛ � 0 no longer corresponds to the idea of
modifying the tails of a stable distribution. Nevertheless, such distributions serve
to make the class richer and more robust. It should be added that, even in the case
when ˛ 2 .0; 2/ we may no longer have a Lévy measure that looks much like that of
an ˛-stable distribution. For that to hold, we would need the function q to be close
to 1 in some region near zero. This leads to the following definition.

Definition 3.2. Fix p > 0 and ˛ < 2. Let � be a p-tempered ˛-stable distribution
with Lévy measure M. If M can be represented in the form (3.2) where

lim
r#0

q.r; u/ D 1 for every u 2 S
d�1; (3.7)

then � is called a proper p-tempered ˛-stable distribution.

Proper p-tempered ˛-stable distributions with ˛ 2 .0; 2/ are the ones that
correspond to the original motivation of modifying the tails of stable distributions
to make them lighter.

Remark 3.3. In [9, 65], and [27] proper p-tempered ˛-stable distributions are
defined to be ones where M is of the form (3.2) and (3.7) holds. However, it
may happen that q does not satisfy (3.7), but that there is a Borel function c W
S

d�1 7! .0;1/ such that q0.r; u/ D q.r; u/=c.u/ satisfies (3.7). In this case we
can take � 0.du/ D c.u/�.du/ and write M as (3.2) but with q0 and � 0 in place of q
and � . In this case we still want to consider M to be a proper p-tempered ˛-stable
distribution. For this reason we need the somewhat more subtle formulation given
in Definition 3.2.

Remark 3.4. Assume that q.r; u/ satisfies (3.6). The Monotone Convergence The-
orem implies that q.r; u/ satisfies (3.7) if and only if (3.6) holds with Qu being a
probability measure for every u 2 S

d�1.

Remark 3.5. When ˛ 2 .0; 2/ and p > 0, the class of proper p-tempered ˛-stable
distributions belongs to the class of Generalized Tempered Stable Distributions
introduced in [66].

It is somewhat artificial to work with the family of measures fQugu2Sd�1 and
the measure � separately. Ideally, we would like to combine these into one object.
Toward this end, let Q be a Borel measure on R

d given by

Q.A/ D
Z

Sd�1

Z

.0;1/
1A.ru/Qu.dr/�.du/; A 2 B.Rd/; (3.8)
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and note that Q.f0g/ D 0. Now define a Borel measure R on R
d by

R.A/ D
Z

Rd
1A

�
x

jxj1C1=p

�

jxj˛=pQ.dx/; A 2 B.Rd/; (3.9)

and again note that R.f0g/ D 0. To get the inverse transformation we have

Q.A/ D
Z

Rd
1A

�
x

jxjpC1
�

jxj˛R.dx/; A 2 B.Rd/: (3.10)

From here it follows that

Q.Rd/ D
Z

Rd
jxj˛R.dx/: (3.11)

We now write the Lévy measure M in terms of R. By (3.2) and (3.6) for any
A 2 B.Rd/ we have

M.A/ D
Z

Sd�1

Z

.0;1/

Z 1

0

1A.ru/r�˛�1e�rpsdrQu.ds/�.du/

D
Z

Sd�1

Z

.0;1/

Z 1

0

1A.ts
�1=pu/t�1�˛e�tp dts˛=pQu.ds/�.du/

D
Z

Rd

Z 1

0

1A

�

t
x

jxj1C1=p

�

t�1�˛e�tp dtjxj˛=pQ.dx/;

where the second equality follows by the substitution t D rs1=p. From here (3.10)
gives

M.A/ D
Z

Rd

Z 1

0

1A.tx/t
�1�˛e�tp dtR.dx/; A 2 B.Rd/: (3.12)

This is the form of the Lévy measure that tends to be the most convenient to work
with.

This representation raises several questions: If we are given a measure of the
form (3.12), under what conditions will it be a Lévy measure? When it is a Lévy
measure, is it necessarily the Lévy measure of a p-tempered ˛-stable distribution?
Is there a one-to-one relationship between the measures M and R? The answers are
provided by the following.

Theorem 3.3. 1. Fix p > 0 and let M be given by (3.12). M is the Lévy measure
of an infinitely divisible distribution if and only if either ˛ 2 R and R D 0 or
˛ < 2,

R.f0g/ D 0; (3.13)
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and
Z

Rd

�jxj2 ^ jxj˛�R.dx/ < 1 if ˛ 2 .0; 2/;
Z

Rd

�jxj2 ^ Œ1C logC jxj��R.dx/ < 1 if ˛ D 0; (3.14)

Z

Rd

�jxj2 ^ 1�R.dx/ < 1 if ˛ < 0:

2. Fix p > 0, ˛ < 2, and let M be given by (3.12). If R satisfies (3.13) and (3.14),
then M is the Lévy measure of a p-tempered ˛-stable distribution and it uniquely
determines R. Moreover, M is the Lévy measure of a proper p-tempered ˛-stable
distribution if and only if

Z

Rd
jxj˛R.dx/ < 1: (3.15)

Proof. We begin with Part 1. By (2.2) M is a Lévy measure if and only if M.f0g/ D
0 and

R
Rd .jxj2 ^ 1/M.dx/ < 1. Assume R ¤ 0, since the other case is trivial. For

any ˛ 2 R

M.f0g/ D
Z

Rd

Z 1

0

1f0g.tx/t�˛�1e�tp dtR.dx/ D
Z

f0g

Z 1

0

t�1�˛e�tp dtR.dx/;

which equals zero if and only if R.f0g/ D 0.
Now assume that

R
Rd .jxj2 ^ 1/M.dx/ < 1. We will show that this implies that

˛ < 2 and that R satisfies (3.14). Fix � > 0 and note that

1 >

Z

jxj�1
jxj2M.dx/ D

Z

Rd
jxj2

Z jxj�1

0

t1�˛e�tp dtR.dx/

�
Z

jxj�1=�
jxj2

Z �

0

t1�˛e�tp dtR.dx/ � e��p
Z

jxj�1=�
jxj2R.dx/

Z �

0

t1�˛dt:

Since R ¤ 0, for this be finite for all � > 0 it is necessary that ˛ < 2. Taking � D 1

gives the necessity of
R
jxj�1 jxj2R.dx/ < 1. Observing that

1 >

Z

jxj�1
M.dx/ D

Z

Rd

Z 1

jxj�1
t�1�˛e�tp dtR.dx/

�
Z 1

1

t�1�˛e�tp dt
Z

jxj�1
R.dx/C e�1

Z

jxj�1

Z 1

jxj�1
t�1�˛dtR.dx/
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gives the necessity of
R
jxj�1 R.dx/ < 1 and

R
jxj�1

R 1
jxj�1 t�1�˛dtR.dx/ < 1. When

˛ < 0 we are done. When ˛ D 0 we have

Z

jxj�1

Z 1

jxj�1
t�1�˛dtR.dx/ D

Z

jxj�1
log jxjR.dx/;

and when ˛ 2 .0; 2/ we have

Z

jxj�1

Z 1

jxj�1
t�1�˛dtR.dx/ D 1

˛

Z

jxj�1
.jxj˛ � 1/R.dx/;

which together with the necessity of
R
jxj�1 R.dx/ < 1 gives (3.14).

Now assume that ˛ < 2 and that R satisfies (3.14). We have

Z

jxj�1
jxj2M.dx/ D

Z

Rd
jxj2

Z jxj�1

0

t1�˛e�tp dtR.dx/

�
Z

jxj�1
jxj2R.dx/

Z 1

0

t1�˛e�tp dt C
Z

jxj>1
jxj2

Z jxj�1

0

t1�˛dtR.dx/

D p�1�
�
2 � ˛

p

�Z

jxj�1
jxj2R.dx/C .2 � ˛/�1

Z

jxj>1
jxj˛R.dx/;

which is finite. Now let D D supt�1 t2�˛e�tp and note that

Z

jxj�1
M.dx/ D

Z

Rd

Z 1

jxj�1
t�1�˛e�tp dtR.dx/

� D
Z

jxj�1

Z 1

jxj�1
t�3dtR.dx/C

Z

jxj>1

Z 1

jxj�1
t�1�˛e�tp dtR.dx/

D :5D
Z

jxj�1
jxj2R.dx/C

Z

jxj>1

Z 1

jxj�1
t�1�˛e�tp dtR.dx/

C
Z 1

1

t�1�˛e�tp dt
Z

jxj>1
R.dx/;

which is finite since the second integral is bounded by
R
jxj>1

jxj˛�1
˛

R.dx/when ˛ ¤ 0

and by
R
jxj>1 log jxjR.dx/ when ˛ D 0.

We now turn to Part 2. First we show that M is, necessarily, the Lévy measure
of a p-tempered ˛-stable distribution. From R define Q by (3.10) and note
that Q.f0g/ D 0. By a straightforward extension of Lemma 2.1 in [6], Q has a
polar decomposition, i.e. there exists a finite Borel measure � on S

d�1 and a
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measurable family of Borel measures fQugu2Sd�1 on .0;1/ such that Q.A/ DR
Sd�1

R
.0;1/ 1A.ru/Qu.dr/�.du/ for A 2 B.Rd/. Define q.s; u/ WD R

.0;1/ e�srQu.dr/
and note that (3.14) implies that for every ˛ < 2

1 >

Z

Rd

�jxj2 ^ jxj˛�R.dx/ D
Z

Rd

�jxj�.2�˛/=p ^ 1�Q.dx/

D
Z

Sd�1

Z

.0;1/
�
r�.2�˛/=p ^ 1�Qu.dr/�.du/;

which means that for � a.e. u the function q.s; u/ is finite for every s > 0. For
A 2 B.Rd/ we have

M.A/ D
Z

Rd

Z 1

0

1A.xt/t�1�˛e�tp dtR.dx/

D
Z

Rd

Z 1

0

1A.txjxj�1�1=p/t�1�˛e�tp dtjxj˛=pQ.dx/

D
Z

Sd�1

Z

.0;1/

Z 1

0

1A.tur�1=p/t�1�˛e�tp dtr˛=pQu.dr/�.du/

D
Z

Sd�1

Z

.0;1/

Z 1

0

1A.us/s�1�˛e�sprdsQu.dr/�.du/

D
Z

Sd�1

Z 1

0

1A.us/q.sp; u/s�1�˛ds�.du/; (3.16)

which means that this is the Lévy measure of a p-tempered ˛-stable distribution.
Now to show the uniqueness of R. Assume that two measures R1 and R2

satisfy (3.12), (3.13), and (3.14). For each i D 1; 2 define Qi by (3.10), let fQi
ugu2Sd�1

and � i be a polar decomposition of Qi, and define qi.s; u/ WD R
.0;1/ e�srQi

u.dr/.
From (3.16) it follows that we can decompose M into polar coordinates in two ways.
First as fq1.sp; u/s�1�˛dsgu2Sd�1 and �1 and second as fq2.sp; u/s�1�˛dsgu2Sd�1

and �2. By the uniqueness of polar decompositions (see Lemma 2.1 in [6]) there
exists a Borel function c.u/ such that 0 < c.u/ < 1,

�1.du/ D c.u/�2.du/;

and

c.u/q1.sp; u/s�1�˛ds D q2.sp; u/s�1�˛ds for �1 a.e. u:

By Theorem 16.10 in [10] and the continuity in s of qi.s; u/ for i D 1; 2 this implies
that for �1 a.e. u

c.u/q1.sp; u/ D q2.sp; u/; s > 0
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which can be rewritten as
Z 1

0

e�sptc.u/Q1
u.dt/ D

Z 1

0

e�sptQ2
u.dt/; s > 0 for �1 a.e. u:

Since Laplace transforms uniquely determine measures we have c.u/Q1
u.�/ D Q2

u.�/
for �1 a.e. u. Thus for any A 2 B.Rd/

Q1.A/ D
Z

Sd�1

Z

.0;1/
1A.ru/Q1

u.dr/�1.du/

D
Z

Sd�1

Z

.0;1/
1A.ru/c.u/Q1

u.dr/
1

c.u/
�1.du/

D
Z

Sd�1

Z

.0;1/
1A.ru/Q2

u.dr/�2.du/ D Q2.A/:

By (3.9) this implies that R1.A/ D R2.A/ as well.
We now consider the case of proper p-tempered ˛-stable distributions. Let Q

be given by (3.10). From Remark 3.4 it follows that Q corresponds to a proper
p-tempered ˛-stable distribution if and only if there is a polar decomposition of Q
into fQugu2Sd�1 and � such that Qu is a probability measure for each u 2 S

d�1 and
� is a finite Borel measure on S

d�1. Such a polar decomposition of Q exists if and
only if Q is finite. From here the result follows by (3.11). ut
Definition 3.4. Fix ˛ < 2, p > 0, and let � 2 TSp

˛ . Then � D ID.0;M; b/ for some
b 2 R

d and some Lévy measure M, which can be written in the form (3.12) for a
unique measure R. We call R the Rosiński measure of � and we write TSp

˛.R; b/ to
denote this distribution.

An important property of p-tempered ˛-stable distributions is that they are closed
under shifting, scaling, and convolution. Specifically, from (3.12) and (2.1) we get
the following.

Proposition 3.5. Fix ˛ < 2 and p > 0. 1. If X � TSp
˛.R; b/ and a 2 R, then

aX � TSp
˛.Ra; ba/, where

Ra.A/ D
Z

Rd
1Anf0g.ax/R.dx/; A 2 .Rd/

and

ba D ab C
Z

Rd

Z 1

0

�
ax

1C a2t2jxj2 � ax

1C t2jxj2
�

t�˛e�tp dtR.dx/

D ab C a.1 � a2/
Z

Rd

Z 1

0

xjxj2
.1C a2t2jxj2/.1C t2jxj2 /t

2�˛e�tp dtR.dx/:
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2. If X1 � TSp
˛.R1; b1/ and X2 � TSp

˛.R2; b2/ are independent and b 2 R
d, then

X1 C X2 C b � TSp
˛.R1 C R2; b1 C b2 C b/;

where R1 C R2 is the Borel measure defined by .R1 C R2/.B/ D R1.B/C R2.B/ for
any B 2 B.Rd/.

For proper p-tempered ˛-stable distributions we can recover the representation
of the Lévy measure given by (3.2) as follows.

Proposition 3.6. Fix ˛ < 2, p > 0, and let M be the Lévy measure of a proper
p-tempered ˛-stable distribution with Rosiński measure R. M can be represented
by (3.2) with q.r; u/ satisfying (3.7) and

�.B/ D
Z

Rd
1B

�
x

jxj
�

jxj˛R.dx/; B 2 B.Sd�1/: (3.17)

If, in addition, ˛ 2 .0; 2/, then the Lévy measure of an ˛-stable distribution with
spectral measure � is given by

L.B/ D
Z

Rd

Z 1

0

1B .tx/ t�˛�1dtR.dx/; B 2 B.Rd/:

Proof. Let Q be derived from R by (3.10). Remark 3.4 implies that there is a
finite Borel measure � on S

d�1 and a measurable family of probability measures
fQugu2Sd�1 such that Q can be represented in terms of � and fQugu2Sd�1 as in (3.8)
and that M can be represented by (3.2) where q.r; u/ D R

.0;1/ e�srQu.dr/. From
here it follows that q.r; u/ satisfies (3.7) by the Monotone Convergence Theorem
and the fact that Qu is a probability measure for each u 2 S

d�1. Further, for any
A 2 B.Sd�1/

Z

Rd
1A

�
x

jxj
�

jxj˛R.dx/ D
Z

Rd
1A

�
x

jxj
�

Q.dx/

D
Z

A

Z

.0;1/
Qu.ds/�.du/ D �.B/:

The second part follows from the first and the fact that for any A 2 B.Rd/

L.A/ D
Z

Sd�1

Z 1

0

1B.su/s�˛�1ds�.du/

D
Z

Rd

Z 1

0

1B.sx=jxj/s�1�˛dsjxj˛R.dx/

D
Z

Rd

Z 1

0

1B.tx/t
�˛�1dtR.dx/;

where the third equality follows by the substitution t D s=jxj. ut
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3.2 Identifiability and Subclasses

In Theorem 3.3 we saw that for fixed p > 0 and ˛ < 2 there is a one-to-one
relationship between the Rosiński measure R and the Lévy measure M. We may
further ask whether all of the parameters are jointly identifiable. Unfortunately, the
answer is negative. In fact, even for fixed p > 0, the parameters ˛ and R are not
jointly identifiable. However, for fixed p > 0, in the subclass of proper tempered
stable distribution, they are jointly identifiable. On the other hand, for fixed ˛ < 2,
even in the subclass of proper tempered stable distributions, the parameters p and
R are not jointly identifiable. These facts will be verified in this section. We begin
with a lemma.

Lemma 3.7. Fix ˛ < 2, p > 0, and let M be the Lévy measure of a p-tempered
˛-stable distribution with Rosiński measure R ¤ 0.

1. The map s 7! s˛M.jxj > s/ is decreasing and lims!1 s˛M.jxj > s/ D 0.
2. If ˛ 2 .0; 2/, then

lim
s#0

s˛M.jxj > s/ D 1

˛

Z

Rd
jxj˛R.dx/

and if ˛ � 0, then

lim
s#0

s˛M.jxj > s/ D 1:

3. If ˛ < 0, then

lim
s#0

s˛M.jxj < s/ D 1

j˛j
Z

Rd
jxj˛R.dx/

and if ˛ 2 Œ0; 2/, then for all s > 0

M.jxj < s/ D 1:

Proof. We begin with the first part. Since

s˛M.jxj > s/ D s˛
Z

Rd

Z 1

sjxj�1
t�1�˛e�tp dtR.dx/

D
Z

Rd

Z 1

jxj�1
t�1�˛e�.st/p dtR.dx/; (3.18)

the map s 7! s˛M.jxj > s/ is decreasing. For large enough s, the integrand
in (3.18) is bounded by 1t>1=jxjt�1�˛e�tp , which is integrable. Thus by dominated
convergence lims!1 s˛M.jxj > s/ D 0.
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For the second part, by (3.18) and the Monotone Convergence Theorem

lim
s#0

s˛M.jxj > s/ D
Z

Rd

Z 1

jxj�1
t�1�˛dtR.dx/:

Thus if ˛ 2 .0; 2/, then

lim
s#0

s˛M.jxj > s/ D 1

˛

Z

Rd
jxj˛R.dx/;

and if ˛ � 0, then

lim
s#0

s˛M.jxj > s/ D 1:

We now show the third part. If ˛ 2 Œ0; 2/, then for all s > 0

M.jxj < s/ D
Z

Rd

Z sjxj�1

0

t�1�˛e�tp dtR.dx/

�
Z

Rd
e�.s=jxj/p

Z sjxj�1

0

t�1�˛dtR.dx/ D 1;

and if ˛ < 0, then

lim
s#0

s˛M.jxj < s/ D lim
s#0

s˛
Z

Rd

Z sjxj�1

0

t�1�˛e�tp dtR.dx/

D lim
s#0

Z

Rd

Z jxj�1

0

t�1�˛e�.st/p dtR.dx/

D
Z

Rd

Z jxj�1

0

t�1�˛dtR.dx/ D 1

j˛j
Z

Rd
jxj˛R.dx/;

where the third line follows by the Monotone Convergence Theorem. ut
Combining Lemma 3.7 with (3.15) gives the following.

Proposition 3.8. In the subclass of proper tempered stable distributions with
parameter p > 0 fixed, the parameters R and ˛ are jointly identifiable.

However, in general, the parameters ˛ and p are not identifiable. This will
become apparent from the following results.

Proposition 3.9. Fix ˛ < 2, ˇ 2 .˛; 2/, and let K D R1
0

sˇ�˛�1e�sp
ds. If � D

TSp
ˇ.R; b/ and
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R0.A/ D K�1
Z

Rd

Z 1

0

1A.ux/u�ˇ�1 .1 � up/.ˇ�˛/=p�1 duR.dx/;

then R0 is the Rosiński measure of a p-tempered ˛-stable distribution and � D
TSp

˛.R0; b/.

Proof. We begin by verifying that R0 is the Rosiński measure of some p-tempered
˛-stable distribution. Let C D maxu2Œ0;:5� .1 � up/.ˇ�˛/=p�1. We have

K
Z

jxj�1
jxj2R0.dx/ D

Z

Rd
jxj2

Z 1^jxj�1

0

u1�ˇ.1 � up/.ˇ�˛/=p�1duR.dx/

�
Z

jxj�2
jxj2R.dx/

Z 1

0

u1�ˇ.1 � up/.ˇ�˛/=p�1du

CC
Z

jxj>2
jxj2

Z jxj�1

0

u1�ˇduR.dx/

D
Z

jxj�2
jxj2R.dx/

Z 1

0

u1�ˇ.1 � up/.ˇ�˛/=p�1du

C C

2 � ˇ
Z

jxj�2
jxjˇR.dx/ < 1:

If ˛ 2 .0; 2/, then

K
Z

jxj>1
jxj˛R0.dx/ D

Z

jxj�1
jxj˛

Z 1

jxj�1
u˛�ˇ�1.1 � up/.ˇ�˛/=p�1duR.dx/

�
Z

jxj�2
jxj˛

Z 1=2

jxj�1
u˛�ˇ�1.1 � up/.ˇ�˛/=p�1duR.dx/

C
Z

jxj�1
jxj˛

Z 1

1=2

u˛�ˇ�1.1 � up/.ˇ�˛/=p�1duR.dx/

� C
Z

jxj�2
jxj˛

Z 1

jxj�1
u˛�ˇ�1duR.dx/

C
Z

jxj�1
jxjˇR.dx/

Z 1

1=2

u˛�ˇ�1.1 � up/.ˇ�˛/=p�1du;

which is finite since the first integral equals C
ˇ�˛

R
jxj�2 jxjˇR.dx/ < 1. Now assume

˛ D 0 and fix � 2 .0; ˇ/. By 4.1.37 in [2] there exists a C� > 0 such that for all
u > 0, log u � C�u� . Thus

K
Z

jxj>1
log jxjR0.dx/ � KC�

Z

jxj>1
jxj�R0.dx/;
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which is finite by arguments similar to the previous case. When ˛ < 0

K
Z

jxj>1
R0.dx/ D

Z

jxj�1

Z 1

jxj�1
u�ˇ�1.1 � up/.ˇ�˛/=p�1duR.dx/

� C
Z

jxj�2

Z 1

jxj�1
u�ˇ�1duR.dx/

C
Z

jxj�1
R.dx/

Z 1

1=2

u�ˇ�1.1 � up/.ˇ�˛/=p�1du;

which is finite since for ˇ ¤ 0 the first integral is C
ˇ

R
jxj>2

�jxjˇ � 1�R.dx/ < 1
and for ˇ D 0 it is

R
jxj>2 log jxjR.dx/ < 1. Now, let M0 be the Lévy measure of

TSp
˛.R0; b/. By (3.12) for A 2 B.Rd/ we have

M0.A/ D K�1
Z

Rd

Z 1

0

Z 1

0

1A.utx/t�1�˛e�tp u�ˇ�1 .1 � up/
ˇ�˛

p �1 dudtR.dx/

D K�1
Z

Rd

Z 1

0

Z t

0

1A.vx/tˇ�˛�1e�tpv�ˇ�1 .1 � vp=tp/
ˇ�˛

p �1 dvdtR.dx/

D K�1
Z

Rd

Z 1

0

Z 1

v

1A.vx/tp�1e�tpv�ˇ�1 .tp � vp/
ˇ�˛

p �1 dtdvR.dx/

D K�1
Z

Rd

Z 1

0

1A.vx/e�vp
v�ˇ�1dvR.dx/

Z 1

0

e�sp
sˇ�˛�1ds

D
Z

Rd

Z 1

0

1A.vx/e�vp
v�ˇ�1dvR.dx/;

where the second line follows by the substitution v D ut and the fourth by the
substitution sp D tp � vp. ut

To show a similar result for the parameter p we need some additional notation.
For r 2 .0; 1/, let fr be a probability density with fr.x/ D 0 for x < 0 and

Z 1

0

e�txfr.x/dx D e�tr :

Such a density exists, and is, in fact, the density of a certain type of r-stable
distribution, see Proposition 1.2.12 in [68]. The only case where an explicit formula
is known is

f:5.s/ D 1

2
p
�

e�1=.4s/s�3=21Œs>0�

(see Examples 2.13 and 8.11 in [69]). From Theorem 5.4.1 in [78] it follows that if
ˇ � 0, then

Z 1

0

s�ˇfr.s/ds < 1:
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Proposition 3.10. Fix ˛ < 2 and 0 < p < q. If � D TSp
˛.R; b/ and

R0.A/ D
Z

Rd

Z 1

0

1A.s
�1=qx/s˛=qfp=q.s/dsR.dx/;

then R0 is the Rosiński measure of a q-tempered ˛-stable distribution and � D
TSq

˛.R0; b/. Moreover, � is a proper p-tempered ˛-stable distribution if and only if
it is a proper q-tempered ˛-stable distribution.

This implies that, for fixed ˛, the parameters p and R are not jointly identifiable
even within the subclass of proper tempered stable distributions.

Proof. We begin by verifying that R0 is, in fact, the Rosiński measure of a
q-tempered ˛-stable distribution. We have

Z

jxj�1
jxj2R0.dx/ D

Z

Rd
jxj2

Z 1

jxjq
s�.2�˛/=qfp=q.s/dsR.dx/

�
Z

jxj�1
jxj2

Z 1

0

s�.2�˛/=qfp=q.s/dsR.dx/

C
Z

jxj>1
jxj˛R.dx/

Z 1

0

fp=q.s/ds < 1:

If ˛ ¤ 0 and ˇ D ˛ _ 0, then

Z

jxj>1
jxjˇR0.dx/ D

Z

Rd
jxjˇ

Z jxjq

0

s�.ˇ�˛/=qfp=q.s/dsR.dx/

�
Z

jxj�1
jxj2

Z 1

0

s�.2�˛/=qfp=q.s/dsR.dx/

C
Z

jxj>1
jxjˇ

Z 1

0

s�.ˇ�˛/=qfp=q.s/dsR.dx/ < 1:

If ˛ D 0, then

Z

jxj>1
log jxjR0.dx/ D

Z

Rd

Z jxjq

0

log jxs�1=qjfp=q.s/dsR.dx/

� :5

Z

jxj�1
jxj2R.dx/

Z 1

0

s�2=qfp=q.s/ds

C
Z

jxj>1
log jxjR.dx/

Z 1

0

fp=q.s/ds

C
Z

jxj>1
R.dx/

Z 1

0

s�1=qfp=q.s/ds < 1;

where the inequality uses the fact that log jxj � jxj (see 4.1.36 in [2]).
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If M0 is the Lévy measure of TSq
˛.R0; b/, then by (3.12) for any A 2 B.Rd/

M0.A/ D
Z

Rd

Z 1

0

Z 1

0

1A.s
�1=qtx/t�1�˛e�tq dts˛=qfp=q.s/dsR.dx/

D
Z

Rd

Z 1

0

1A.vx/v�1�˛
Z 1

0

e�vqsfp=q.s/dsdvR.dx/

D
Z

Rd

Z 1

0

1A.vx/v�1�˛e�vp
dvR.dx/;

where v D s�1=qt. The last part follows from (3.15) and the fact that

Z

Rd
jxj˛R0.dx/ D

Z

Rd
jxj˛R.dx/

Z 1

0

s�˛=qs˛=qfp=q.s/ds D
Z

Rd
jxj˛R.dx/:

This concludes the proof. ut
Propositions 3.9 and 3.10 give a constructive proof of the following.

Proposition 3.11. Fix ˛ < 2, p > 0, and let � 2 TSp
˛ .

1. For any q � p, � 2 TSq
˛ .

2. For any ˇ � ˛, � 2 TSp
ˇ .

We now characterize when a p-tempered ˛-stable distribution is ˇ-stable for
some ˇ 2 .0; 2/.
Proposition 3.12. Fix ˛ < 2, p > 0, and ˇ 2 .0; 2/. Let � D Sˇ.�; b/, where

� ¤ 0. If ˇ � ˛, then � … TSp
˛ . If ˇ 2 .0 _ ˛; 2/, then � D TSp

˛.R
ˇ
� ; b/ and

Rˇ� .A/ D K�1
Z

Sd�1

Z 1

0

1A.ru/r�1�ˇdr�.du/; A 2 B.Rd/; (3.19)

where K D R1
0

tˇ�˛�1e�tp dt.

Combining (3.15) with the fact that

Z

Rd
jxj˛Rˇ� .dx/ D K�1�.Sd�1/

Z 1

0

r�.ˇ�˛/�1dr D 1;

shows that no stable distributions belong to the subclass of proper p-tempered
˛-stable distributions.

Proof. If � 2 TSp
˛ , then its Lévy measure can be written as (3.2). By uniqueness

of the polar decomposition of Lévy measures (see Lemma 2.1 in [6]) there exists
a nonnegative Borel function c.u/ with � .fu W c.u/ > 0g/ > 0 such that q.r; u/ D
c.u/r.˛�ˇ/=p. This does not satisfy (3.4) when ˇ � ˛.
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Now assume that ˇ > ˛. In this case Rˇ� .f0g/ D 0 and for any 
 2 Œ0; ˇ/
Z

Rd

�jxj2 ^ jxj
�Rˇ� .dx/ D K�1�.Sd�1/
Z 1

0

.r1�ˇ ^ r
�ˇ�1/dr < 1:

Thus, by Theorem 3.3, Rˇ� is the Rosiński measure of a p-tempered ˛-stable
distribution. If M is the Lévy measure of TSp

˛.R
ˇ
� ; b/, then for any A 2 B.Rd/

M.A/ D K�1
Z

Sd�1

Z 1

0

Z 1

0

1A.rtu/t�1�˛e�tp dtr�1�ˇdr�.du/

D K�1
Z 1

0

tˇ�˛�1e�tp dt
Z

Sd�1

Z 1

0

1A.ru/r�1�ˇdr�.du/

D
Z

Sd�1

Z 1

0

1A.ru/r�1�ˇdr�.du/;

which is the Lévy measure of �. ut
Recall that a probability measure � is called compound Poisson if its character-

istic function can be written as

O�.z/ D exp


Z

Rd

�
eihz;xi � 1

	
M.dx/

�

; z 2 R
d;

where M is a finite Lévy measure. To classify when tempered stable distributions
are compound Poisson we begin with a lemma.

Lemma 3.13. Let M be given by (3.12). M is finite if and only if either R D 0 or
˛ < 0 and R is a finite measure.

Proof. Observing that

R.Rd/e�1
Z 1

0

t�1�˛dt �
Z

Rd

Z 1

0

e�tp t�1�˛dtR.dx/

� R.Rd/

�Z 1

0

t�1�˛dt C
Z 1

1

e�tp t�1�˛dt

�

gives the result. ut
This immediately gives the following.

Proposition 3.14. If � D TSp
˛.R; b/, then � is compound Poisson if and

only if either R D 0 or ˛ < 0, R is a finite measure, and b DR
Rd

R1
0

x
1Ct2jxj2 t�˛e�tp dtR.dx/.
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3.3 Tails of Tempered Stable Distributions

Since the motivation for introducing p-tempered ˛-stable distributions is to get
models with tails lighter than those of ˛-stable distributions, it is important to
understand how the tails behave. One of the easiest ways to describe the tails of
a distribution is to characterize which moments are finite. Toward this end we
present several results that were proved in [27]. Throughout this section we adopt
the convention that 00 D 1.

Theorem 3.15. Fix ˛ < 2, p > 0, and let � D TSp
˛.R; b/.

1. If ˛ 2 .0; 2/ and q1; : : : ; qd � 0 with q WD Pd
jD1 qj < ˛, then

Z

Rd

0

@
dY

jD1
jxjjqj

1

A�.dx/ �
Z

Rd
jxjq�.dx/ < 1:

2. If ˛ 2 .0; 2/, then

Z

Rd
jxj˛�.dx/ < 1 ”

Z

jxj>1
jxj˛ log jxjR.dx/ < 1:

Additionally, if q1; : : : ; qd � 0 with
Pd

jD1 qj D ˛, then

Z

Rd

0

@
dY

jD1
jxjjqj

1

A�.dx/ < 1

if and only if

Z

jxj>1

0

@
dY

jD1
jxjjqj

1

A log jxjR.dx/ < 1: (3.20)

3. If q > .˛ _ 0/, then

Z

Rd
jxjq�.dx/ < 1 ”

Z

jxj>1
jxjqR.dx/ < 1:

Additionally, if q1; : : : ; qd � 0 with
Pd

jD1 qj > .˛ _ 0/, then

Z

Rd

0

@
dY

jD1
jxjjrj

1

A�.dx/ < 1 for all rk 2 Œ0; qk�; k D 1; : : : ; d
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if and only if

Z

jxj>1

0

@
dY

jD1
jxjjrj

1

AR.dx/ < 1 for all rk 2 Œ0; qk�; k D 1; : : : ; d: (3.21)

Further, we can find explicit formulas for the moments and the mixed moments.
However, these formulas can get quite complicated. When working with infinitely
divisible distribution it is often easier to find the cumulants instead. Recall that for
any infinitely divisible distribution � the function C� given by (2.1) is called the
cumulant generating function. This name is explained by the following. Let k D
.k1; k2; : : : ; kd/ be a d-dimensional vector of nonnegative integers and let

ck D .�i/
P

ki
@
P

ki

@zkd
d � � � @zk1

1

C�.z/
ˇ
ˇ
ˇ
zD0;

whenever the derivative exists and is continuous in a neighborhood of zero. We call
this the cumulant of order k. The cumulants can be uniquely expressed in terms of
the moments, see, e.g., [73]. In particular let X � �. When ki D 1 and kj D 0 for
all j ¤ i then ck D EŒXi�, when ki D 2 and kj D 0 for all j ¤ i then ck D var.Xi/,
and when for some i ¤ j we have ki D kj D 1 and k` D 0 for all ` ¤ i; j then
ck D cov.Xi;Xj/. The following is given in [27].

Theorem 3.16. Fix ˛ < 2, p > 0, and let � D TSp
˛.R; b/. Let q1; : : : ; qd be

nonnegative integers and let qC D Pd
iD1 qi. Further, if qC D ˛ D 1, assume

that (3.20) holds and if qC > ˛, that (3.21) holds. If qi D qC D 1 for some i, then

c.q1;:::;qd/ D bi C
Z

Rd

Z 1

0

xi
jxj2

1C jxj2t2 t2�˛e�tp dtR.dx/:

If qC � 2, then

c.q1;:::;qd/ D p�1�
�

qC � ˛
p

�Z

Rd

0

@
dY

jD1
x

qj

j

1

AR.dx/:

We now turn to the question of exponential moments.

Theorem 3.17. Fix ˛ < 2, p 2 .0; 1�, and � > 0. Let � D TSp
˛.R; b/.

1. If ˛ 2 .0; 2/, then
R
Rd e� jxjp�.dx/ < 1 if and only if

R.jxj > ��1=p/ D 0:

2. If ˛ D 0, then
R
Rd e� jxjp�.dx/ < 1 if and only if

R.jxj � ��1=p/ D 0 and
Z

0<jxj�p��<1
jlog.jxj�p � �/j R.dx/ < 1:
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3. If ˛ < 0, then
R
Rd e� jxjp�.dx/ < 1 if and only if

R.jxj � ��1=p/ D 0 and
Z

0<jxj�p��<1
.jxj�p � �/˛=pR.dx/ < 1:

Further, from Theorem 4 in [27] it follows that if p > 1 and there exists an � > 0
such that

Z

jxj>1
ejxj�Cp=.p�1/ jxj�˛=.p�1/R.dx/ < 1; (3.22)

then
Z

Rd
e� jxj�.dx/ < 1 for all � � 0: (3.23)

However, the tails cannot be too light and if R ¤ 0, then

Z

Rd
e� jxj log jxj�.dx/ D 1 for all � > 0:

When the exponential moments exist, we can evaluate them. Specifically, if � D
TSp

˛.R; b/ and z 2 C
d is such that

R
Rd ehx;<zi�.dx/ < 1, then Theorem 25.17 in

[69] implies that
R
Rd jehx;zij�.dx/ < 1 and that

R
Rd ehx;zi�.dx/ is given by

exp


Z

Rd

Z 1

0

�

ehx;zit � 1 � thx; zi
1C jxj2

�

t�1�˛e�tp dtR.dx/C hz; bi
�

: (3.24)

For the case p D 1 more explicit formulas will be given in Section 3.5.
Another way to analyze the tails of a probability measure is to ask when they

are regularly varying. First consider the case where � D TSp
˛.R; b/ with ˛ 2 .0; 2/.

Theorem 3.15 implies that
R
Rd jxj��.dx/ < 1 for all � 2 Œ0; ˛/, and hence, by

Proposition 2.12, � cannot have regularly varying tails with tail index j
 j < ˛.
However, other tail indices are possible. The following result from [27] characterizes
this.

Theorem 3.18. Fix ˛ < 2 and p > 0. Let � D TSp
˛.R; b/ and let M be the Lévy

measure of �. If 
 < .�˛/ ^ 0, then

� 2 RV1
 .�/ ” M 2 RV1
 .�/ ” R 2 RV1
 .�/:

Moreover, if M 2 RV1
 .�/, then for all D 2 B.Sd�1/with �.@D/ D 0 and �.D/ > 0

lim
r!1

R .jxj > r; x=jxj 2 D/

M .jxj > r; x=jxj 2 D/
D p

�
� j
 j�˛

p

	 :
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Now recall that for ˇ 2 .0; 2/ a probability measure � belongs to the domain
of attraction of a ˇ-stable distribution with spectral measure � ¤ 0 if and only if
� 2 RV1�ˇ.�/. See, e.g., [67] or [54] although they make the additional assumption
that the limiting stable distribution is full. This leads to the following.

Corollary 3.19. Fix ˛ < 2, p > 0, let � D TSp
˛.R; b/, and let � ¤ 0 be a finite

Borel measure on S
d�1. If ˇ 2 .0_˛; 2/, then � belongs to the domain of attraction

of a ˇ-stable distribution with spectral measure � if and only if R 2 RV1�ˇ.�/.

3.4 Tempered Stable Lévy Processes

Fix ˛ < 2 and p > 0. A Lévy process fXt W t � 0g is called a p-tempered
˛-stable Lévy process if X1 � TSp

˛.R; b/. In this section we discuss properties
of such processes.

Proposition 3.20. Let fXt W t � 0g be a Lévy process with X1 � TSp
˛.R; b/, and

assume that R ¤ 0.

1. The paths of fXt W t � 0g are discontinuous a.s.
2. The paths of fXt W t � 0g are piecewise constant a.s. if and only if ˛ < 0, R is a

finite measure, and b D R
Rd

R1
0

x
1Ct2jxj2 t�˛e�tp dtR.dx/.

3. If ˛ < 0 and R is a finite measure, then, almost surely, jumping times are
infinitely many and countable in increasing order. The first jumping time has
an exponential distribution with mean 1=a, where a D R.Rd/p�1� .j˛j=p/.

4. If ˛ � 0 or R is an infinite measure, then, almost surely, jumping times are
countable and dense in Œ0;1/.

Proof. Part 1 follows by Theorem 21.1 in [69]. Part 2 follows by Theorem 21.2
in [69] and Proposition 3.14. Parts 3 and 4 follow by Theorem 21.3 in [69] and
Lemma 3.13. ut

A useful index that determines many properties of Lévy processes was introduced
by Blumenthal and Getoor [12]. It is defined as follows.

Definition 3.21. Let fXt W t � 0g be a Lévy process with X1 � ID.0;M; b/. The
number

ˇ D inf





 > 0 W
Z

jxj�1
jxj
M.dx/ < 1

�

is called the Blumenthal-Getoor index.

From the definition of a Lévy measure, it is clear that the Blumenthal-Getoor
index is a number in Œ0; 2�.
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Lemma 3.22. Fix p > 0, ˛ < 2, and let fXt W t � 0g be a Lévy process with
X1 � TSp

˛.R; b/. If R ¤ 0, then the Blumenthal-Getoor index of this process is

ˇ D ˛ _ r; (3.25)

where

r D inf





 > 0 W
Z

jxj�1
jxj
R.dx/ < 1

�

:

This follows immediately from the following.

Lemma 3.23. Fix ˛ < 2, p > 0, let R be the Rosiński measure of a p-tempered
˛-stable distribution, and let M be the corresponding Lévy measure. If R ¤ 0, then
for any q 2 .�1; 2/

Z

jxj�1
jxjqM.dx/ < 1 ” ˛ < q and

Z

jxj�1
jxjqR.dx/ < 1:

Proof. First assume that
R
jxj�1 jxjqM.dx/ < 1 and choose r > 0 such that

R.jxj � r/ > 0. We have

1 >

Z

jxj�1
jxjqM.dx/

�
Z

jxj�r
jxjq

Z jxj�1

0

tq�˛�1e�tp dtR.dx/

� e�r�p
Z

jxj�r
jxjqR.dx/

Z r�1

0

tq�˛�1dt;

which implies that ˛ < q and
R
jxj�1 jxjqR.dx/ < 1. Now assume that ˛ < q and

R
jxj�1 jxjqR.dx/ < 1. We have

Z

jxj�1
jxjqM.dx/ D

Z

Rd
jxjq

Z jxj�1

0

tq�˛�1e�tp dtR.dx/

�
Z

jxj�1
jxjqR.dx/

Z 1

0

tq�˛�1e�tp dt C
Z

jxj>1
jxjq

Z jxj�1

0

tq�˛�1dtR.dx/

�
Z

jxj�1
jxjqR.dx/

Z 1

0

tq�˛�1e�tp dt C .q � ˛/�1
Z

jxj>1
jxj˛R.dx/;

which is finite. ut



36 3 Tempered Stable Distributions

Combining Lemma 3.22 with (3.15) tells us that the Blumenthal-Getoor index
of a proper p-tempered ˛-stable Lévy processes with ˛ 2 .0; 2/ is ˛. It may be
interesting to note that ˛ is also the Blumenthal-Getoor index of any ˛-stable Lévy
process, see, e.g., [12]. We now discuss several properties that are characterized by
this index.

Let X D fXt W t � 0g be a Lévy process with X1 � TSp
˛.R; b/ and let ˇ be given

by (3.25). From [12] it follows that, with probability 1,

lim sup
t!0

t�1=
 jXtj D

 1 if 
 < ˇ
0 if 
 > ˇ

:

Now, fix 0 � a < b < 1, 
 > 0, and define

V
 .XI a; b/ D sup
nX

jD1
jXti � Xti�1 j
 ;

where the supremum is taken over all finite partitions a D t0 < t1 < � � � < tn�1 <
tn D b of the interval Œa; b�. This is called the �-variation of X. From [12] and [56]
it follows that for any 0 � a < b < 1 with probability 1

V
 .XI a; b/


 D 1 if 
 < ˇ
< 1 if 
 > ˇ

: (3.26)

Finiteness of 
 -variation gives useful results about how one can define stochastic
integrals with respect to these processes. It is well known that if a process has finite
1-variation, then one can define a Stieltjes integral with respect to it. When the
1-variation is infinite, under certain assumptions about the finiteness of 
 -variation
for some 
 > 0, one can define generalizations of Stieltjes integrals, see [22] for
details.

We sometimes refer to 1-variation as simply variation. Thus (3.26) and
Lemma 3.22 imply that a p-tempered ˛-stable Lévy process has finite variation
if and only if ˛ < 1 and

R
jxj�1 jxjR.dx/ < 1. In particular, in light of (3.15), all

proper p-tempered ˛-stable Lévy processes with ˛ < 1 have finite variation. We
now turn to a related concept.

A one-dimensional Lévy process, which is nondecreasing almost surely is
called a subordinator. Such a process necessarily has finite variation. Further, by
combining the above discussion with Theorems 21.5 and 21.9 in [69] we can fully
characterize when a p-tempered ˛-stable Lévy process is a subordinator.

Proposition 3.24. Let fXt W t � 0g be a one-dimensional Lévy process with
X1 � TSp

˛.R; b/ with R ¤ 0. The process is a subordinator if and only if ˛ < 1,
R..�1; 0// D 0,

R
.0;1/

xR.dx/ < 1, and b � R
.0;1/

R1
0

x
1Ct2x2

t�˛e�tp dtR.dx/.

Remark 3.6. A Lévy process is a subordinator if and only if the distribution of
Xt has its support contained in Œ0;1/ for every t. Further, if fXt W t � 0g
is a subordinator with X1 � TSp

˛.R; b/ and R ¤ 0 then, by Theorem 24.10
in [69], the support of the distribution of Xt is given by Œt�;1/, where � D
b � R

.0;1/
R1
0

x
1Ct2x2

t�˛e�tp dtR.dx/.
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We conclude this section by discussing when the distribution of a proper
p-tempered ˛-stable Lévy process (with ˛ 2 .0; 2/) is absolutely continuous with
respect to the distribution of the ˛-stable Lévy process that is being tempered.
Our presentation follows [66] closely. Let ˝ D D.Œ0;1/;Rd/ be the space of
mappings !.�/ from Œ0;1/ into R

d that are right-continuous with left limits. Let
X D fXt W t � 0g be the collection of functions from ˝ into R

d with Xt.!/ D !.t/.
Assume that ˝ be equipped with the � -algebra F D �.Xs W s � 0/ and the right-
continuous natural filtration .Ft/t�0 where Ft D T

s>t �.Xu W u � s/. In this case
X is called the canonical process. The distribution of this process is completely
determined by a probability measure P on .˝;F /. Let PjFt denote the restriction
of P to the � -algebra Ft.

Theorem 3.25. Fix ˛ 2 .0; 2/ and p > 0. In the above setting, consider two
probability measures P0 and P on .˝;F / and let X D fXt W t � 0g be the canonical
process. Assume that, under P, X is a Lévy process with X1 � TSp

˛.R; b/, where R
satisfies (3.15).3 Derive � from R by (3.17) and let q.u; r/ be as in Proposition 3.6.
If, under P0, X is a Lévy process with X1 � S˛.a; �/, then

1. P0jFt and PjFt are mutually absolutely continuous for every t > 0 if and only if

Z

Sd�1

Z 1

0

Œ1 � q.rp; u/�2r�˛�1dr�.du/ < 1 (3.27)

and

b � a D
Z

Rd

Z 1

0

x

1C jxj2t2 t�˛.e�tp � 1/dtR.dx/: (3.28)

2. If P0jFt and PjFt are not mutually absolutely continuous for some t > 0, then
they are singular for all t > 0.

3. If (3.27) and (3.28) hold, then for every t > 0

dPjFt

dP0jFt

D eUt ; P0 a:s:

where

Ut D lim
�#0

8
<

:

X

fs2.0;t�Wj�Xsj>�
log q

�

j�Xsjp; �Xs

j�Xsj
�

Ct
Z

Sd�1

Z 1

�

Œ1 � q.rp; u/�r�˛�1dr�.du/

�

;

3 This implies that X1 has a proper p-tempered ˛-stable distribution.
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and the convergence is uniform in t on any bounded interval, P0 a.s. Further,
fUt W t � 0g is a one-dimensional Lévy process defined on the probability space
.˝;F ;P0/. It satisfies U1 � ID.0;MU; bU/, where

MU.A/ D
Z

Sd�1

Z 1

0

1Anf0g.logŒq.rp; u/�/r�˛�1dr�.du/; A 2 B.R/

and

bU D �
Z 0

�1

�

ey � 1 � y

1C jyj2
�

MU.dy/:

Note that Proposition 3.6 implies that q.rp; u/ 2 .0; 1�, and hence that MU

satisfies MU.Œ0;1// D 0.

Proof. By Remark 3.5 all proper p-tempered ˛-stable distributions with ˛ 2 .0; 2/

belong to the class of generalized tempered ˛-stable distributions. For these,
analogues of Parts 1 and 2 are given in Theorem 4.1 of [66]. In [66] the analogue
of (3.27) is actually

Z

Sd�1

Z 1

0

.1 � Œq.rp; u/�1=2/2r�˛�1dr�.du/ < 1:

As observed in [65], this is equivalent to (3.27) since for any x 2 Œ0; 1�
:25.1 � x/2 � .1 � p

x/2 � .1 � x/2;

and q.rp; u/ 2 Œ0; 1� for all r and u. For any Lévy process, an analogue of Part 3
is given in Theorem 33.2 of [69]. To specialize it to our situation we just need to
apply (3.2). ut

Under additional conditions, representations of the process Ut in terms of
certain extensions of 
 -variation can be given, see [24]. As pointed out in [65]
condition (3.27) fails when the function q.rp; u/ decreases too quickly near zero.
In other words when there is too much tempering near zero. This is illustrated by
the following.

Corollary 3.26. Fix ˛ 2 .0; 2/ and p > 0. Let P0, P, and fXt W t � 0g be as in
Theorem 3.25. If p � ˛=2, then P0jFt and PjFt are mutually singular for all t > 0.

Proof. By Remark 3.4 we can write q.rp; u/ D R
.0;1/ e�rpsQu.ds/ for some

measurable family of probability measures fQugu2Sd�1 . Since 1 � e�x � x
1Cx for

any x � 0 (see, e.g., 4.2.32 in [2]) it follows that
Z

Sd�1

Z 1

0

Œ1 � q.rp; u/�2r�˛�1dr�.du/

D
Z

Sd�1

Z 1

0

�Z

.0;1/
.1 � e�rps/Qu.ds/


2
r�˛�1dr�.du/
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�
Z

Sd�1

Z 1

0

�Z

.0;1/
rps

1C rps
Qu.ds/


2
r�˛�1dr�.du/

�
Z

Sd�1

�Z

.0;1/
s

1C s
Qu.ds/


2
�.du/

Z 1

0

r2p�˛�1dr;

which equals infinity when p � ˛=2. From here the result follows by Part 2 of
Theorem 3.25. ut

3.5 Exponential Moments When p D 1

A representation for the exponential moments of p-tempered ˛-stable distributions
is given by (3.24). In this section we derive significantly simpler formulas for the
case4 where p D 1. Throughout this section we use the principle branch of the
complex logarithm, i.e. we make a cut along the negative real axis. This implies that
for z 2 C with <z > 0 we have log.z/ D log jzj C i arctan.=z=<z/, where arctan
refers to the branch of the arctangent whose image is

���
2
; �
2

�
. We begin with a

lemma.

Lemma 3.27. Fix ˛ < 2, p D 1, and � D TS1˛.R; b/. Let X � �, let S be the
support5 of R, and fix z 2 C

d. When ˛ 2 .0; 2/ we have

E
ˇ
ˇ
ˇehz;Xi

ˇ
ˇ
ˇ < 1 (3.29)

if and only if supx2S <hz; xi � 1. When ˛ � 0 a sufficient6 condition for (3.29) is
supx2S <hz; xi < 1.

Proof. We will need the following fact from 6.1.1 in [2]. When ˛ < 0 and w 2 C

with <w > 0 we have
Z 1

0

e�wtt�˛�1dt D w˛� .�˛/: (3.30)

By Theorem 25.17 in [69] (3.29) is equivalent to
R
jxj>1 ehc;xiM.dx/ < 1 where

c D <z and M is the Lévy measure of �. When c D 0 this always holds so assume
that c ¤ 0. By (3.12) we have

4The only other case where reasonable representations are known is when p D 2 and ˛ 2 .0; 2/.
In this case [9] gives formulas in terms of confluent hypergeometric functions.
5This means that S is the smallest closed subset of Rd with R.Sc/ D 0.
6In light of Theorem 3.17, it is clear that this is not a necessary condition when ˛ � 0.
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Z

jxj>1
ehc;xiM.dx/ D

Z

S

Z 1

jxj�1
ehc;xite�tt�1�˛dtR.dx/

D
Z

S\Œjxj�1=.2jcj/�

Z 1

jxj�1
ehc;xite�tt�1�˛dtR.dx/

Z

S\Œjxj>1=.2jcj�/

Z 1

jxj�1
ehc;xite�tt�1�˛dtR.dx/

DW I1.˛/C I2.˛/:

Let K WD sup
t�2jcj

e�t=2t2�˛ and note that for every ˛ < 2 we have

I1.˛/ �
Z

jxj�1=.2jcj/

Z 1

jxj�1
et=2e�tt�1�˛dtR.dx/

� K
Z

jxj�1=.2jcj/

Z 1

jxj�1
t�3dtR.dx/ D :5K

Z

jxj�1=.2jcj/
jxj2R.dx/ < 1:

Thus, finiteness of the exponential moment is determined by I2.˛/. Define � D
supx2Shc; xi. We begin with the case ˛ 2 .0; 2/. If � � 1, then

I2.˛/ �
Z

S\Œjxj>1=.2jcj�/

Z 1

jxj�1
e� te�tt�1�˛dtR.dx/

�
Z

jxj>1=.2jcj/

Z 1

jxj�1
t�1�˛dtR.dx/ D ˛�1

Z

jxj>1=.2jcj/
jxj˛dtR.dx/ < 1:

On the other hand, if � > 1, then there is an � > 0 and a Borel set S� � S \ Œjxj >
1=.2jcj/� with R.S�/ > 0 such that for every x 2 S� we have hx; ci � 1 C �. This
implies that

I2.˛/ �
Z

S�

Z 1

jxj�1
ehc;xite�tt�1�˛dtR.dx/

�
Z

S�

Z 1

2jcj
e.1C�/te�tt�1�˛dtR.dx/

D R.S�/
Z 1

2jcj
e�tt�1�˛dt D 1:

Now assume that ˛ � 0 and � < 1. For ˛ < 0 we can use (3.30) to get

I2.˛/ �
Z

jxj>1=.2jcj/

Z 1

0

e�t.1��/t�1�˛dtR.dx/

D .1 � �/�j˛j� .j˛j/
Z

jxj>1=.2jcj/
R.dx/ < 1;
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and for ˛ D 0 we get

I2.0/ �
Z

jxj>1=.2jcj/

Z 2jcj

jxj�1
t�1dtR.dx/C R

�

jxj > 1

2jcj
�Z 1

2jcj
e�t.1��/t�1dt

D
Z

jxj>1=.2jcj/
log .2jcjjxj/R.dx/C R

�

jxj > 1

2jcj
�Z 1

2jcj
e�t.1��/t�1dt < 1;

which completes the proof. ut
We now give the main result of this section.

Theorem 3.28. Fix ˛ < 2, p D 1, � D TS1˛.R; b/, and let X � �. Let S be the
support of R and fix z 2 C

d such that either a) supx2S <hz; xi < 1 or b) =z D 0,
supx2S <hz; xi � 1, and ˛ 2 .0; 2/. In both cases (3.29) holds and we have:

1. If
R
Rd jxj�.dx/ < 1, then

Eehz;Xi D exp


Z

Rd
 ˛.hz; xi/R.dx/C hz; b1i

�

; (3.31)

where

b1 D b C
Z

Rd

Z 1

0

x
jxj2

1C jxj2t2 t2�˛e�tdtR.dx/ (3.32)

and

 ˛.s/ D
8
<

:

� .�˛/Œ.1 � s/˛ � 1C ˛s� ˛ ¤ 0; 1

� log.1 � s/ � s ˛ D 0

.1 � s/ log.1 � s/C s ˛ D 1

: (3.33)

In particular this holds when 1 < ˛ < 2, or

˛ D 1 and
Z

jxj>1
jxj log jxjR.dx/ < 1;

or

˛ < 1 and
Z

Rd
jxjR.dx/ < 1:

2. If ˛ < 1 and
R
jxj�1 jxjR.dx/ < 1, then

Eehz;Xi D exp


Z

Rd
 0
˛.hz; xi/R.dx/C hz; b0i

�

; (3.34)
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where

b0 D b �
Z

Rd

Z 1

0

x

1C jxj2t2 t�˛e�tdtR.dx/ (3.35)

and

 0
˛.s/ D



� .�˛/Œ.1 � s/˛ � 1� ˛ ¤ 0

� log.1 � s/ ˛ D 0
: (3.36)

In particular, this holds if � is a proper TS1˛ distribution with ˛ < 1.

In the above we take �1.1/ D 1, which is the limiting value of the function �˛.s/
in both s and ˛. A simple way to ensure that the assumption of Theorem 3.28 holds
is as follows. Fix � > 0. If R.jxj > ��1/ D 0, then for any z 2 C

d with j<zj < �

we have supx2Sh<z; xi � supx2S jh<z; xij � supx2S j<zjjxj < �=� D 1. The vectors
b1 and b0 given above have the following interpretations. When

R
Rd jxj�.dx/ < 1

we have b1 D R
Rd x�.dx/, and when ˛ < 1 and

R
jxj�1 jxjR.dx/ < 1 the vector b0 is

the drift.

Proof. Our proof will use the following. If t 2 .0; 1/, s 2 C, and ˛ � 1, then

j.est � 1 � st/t�˛�1e�tj �
1X

nD2

jstjn
nŠ

t�˛�1e�t

D t1�˛e�tjsj2
1X

nD2

jstjn�2
n.n � 1/.n � 2/Š

� e�tjsj2
1X

nD2

jstjn�2
.n � 2/Š

D et.jsj�1/jsj2: (3.37)

Lemma 3.27 implies that we can use (3.24) to get a representation for the
exponential moment. We begin with the case

R
Rd jxj�.dx/ < 1. In this case b1

is definable as a vector in R
d and from (3.24) it follows that

Eehz;Xi D exp


Z

Rd

Z 1

0

�
ehx;zit � 1 � hx; zit

	
t�1�˛e�tdtR.dx/C hz; b1i

�

D exp


Z

S

Z 1

0

�
ehx;zit � 1 � hx; zit

	
t�1�˛e�tdtR.dx/C hz; b1i

�

:

Fix x 2 S. For simplicity of notation let s D hx; zi and note that, by assumption,
when ˛ � 0 we have <s < 1 and <.1 � s/ > 0 and when ˛ 2 .0; 2/ we have
<s � 1 and <.1 � s/ � 0. When ˛ < 0 we can use (3.30) to get
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Z 1

0

.est � 1 � st/e�tt�˛�1dt D
Z 1

0

.e�.1�s/t � e�t � se�tt/t�˛�1dt

D � .�˛/Œ.1 � s/˛ � 1C ˛s�:

When ˛ D 0 we can use l’Hôpital’s rule7 to get

Z 1

0

.est � 1 � st/e�tt�1dt D
Z 1

0

lim
˛"0
.est � 1 � st/e�tt�˛�1dt

D lim
˛"0

Z 1

0

.est � 1 � st/e�tt�˛�1dt

D lim
˛"0

� .�˛/Œ.1 � s/˛ � 1C ˛s�

D lim
˛"0

� .1 � ˛/Œ.1 � s/˛ � 1C ˛s�

�˛

D lim
˛"0

.1 � s/˛ � 1C ˛s

�˛
D � log.1 � s/ � s;

where we can interchange limit and integral using dominated convergence. Specif-
ically, for ˛ 2 .�1; 0/ if t 2 .0; 1/, then (3.37) gives a bound that is integrable on
.0; 1/ and if t � 1, then

j.est � 1 � st/t�˛�1e�tj � e�t.1�<s/ C .1C jsjt/e�t;

which is integrable on Œ1;1/ since <s < 1.
Now assume that ˛ 2 .0; 1/. For any v;w 2 C with w satisfying <w > 0 and v

satisfying either <v > 0 or v D 0 integration by parts and (3.30) give

Z 1

0

�
e�vt � e�wt

�
t�1�˛dt D � .�˛/.v˛ � w˛/; (3.38)

which implies

Z 1

0

.est � 1 � st/e�tt�˛�1dt D
Z 1

0

.e�.1�s/t � e�t/t�˛�1dt � s
Z 1

0

e�tt.1�˛/�1dt

D � .�˛/Œ.1 � s/˛ � 1C s˛�:

7We can use l’Hôpital’s rule because the denominator is real. However, in general, l’Hôpital’s rule
may fail for complex valued functions of real numbers, see [18].
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Now assume that ˛ 2 .1; 2/. For any v;w 2 C with w satisfying <w > 0 and v
satisfying either <v > 0 or v D 0 integration by parts and (3.38) give

Z 1

0

�
e�vt � e�wt C .v � w/t

�
t�1�˛dt D � .�˛/.v˛ � w˛/;

which implies

Z 1

0

.est � 1 � st/e�tt�˛�1dt D
Z 1

0

.e�.1�s/t � e�t � st/t�˛�1dt

Cs
Z 1

0

.1 � e�t/t.1�˛/�1dt

D � .�˛/Œ.1 � s/˛ � 1C s˛�:

Now consider the case ˛ D 1. By l’Hôpital’s rule

Z 1

0

.est � 1 � st/e�tt�2dt D
Z 1

0

lim
˛"1
.est � 1 � st/e�tt�˛�1dt

D lim
˛"1

Z 1

0

.est � 1 � st/e�tt�˛�1dt

D lim
˛"1

� .�˛/Œ.1 � s/˛ � 1C s˛�

D lim
˛"1

� .2 � ˛/
.˛ � 1/˛ Œ.1 � s/˛ � 1C s˛�

D .1 � s/ log.1 � s/C s;

where the second line follows by dominated convergence. Specifically, for ˛ 2
.:5; 1/ if t 2 .0; 1/, then (3.37) gives a bound that is integrable on .0; 1/, and for
t � 1 we have

j.est � 1 � st/t�˛�1e�tj � e�t.1�<s/t�:5�1 C .1C jsj/e�t;

which is integrable on Œ1;1/ since <s � 1.
We now turn to the case when

R
jxj�1 jxjR.dx/ < 1 and ˛ < 1. In this case b0 is

definable as a vector in R
d and (3.24) implies that

Eehz;Xi D exp


Z

Rd

Z 1

0

�
ehx;zit � 1

	
t�1�˛e�tdtR.dx/C hz; b0i

�

:

The fact that
R1
0

�
ehx;zit � 1� t�1�˛e�tdt has the required form can be shown in a

similar way to the previous part. The conditions to guarantee
R
Rd jxj�.dx/ < 1

follow from Theorem 3.15, while the fact that
R
jxj�1 jxjR.dx/ < 1 for all proper

TS1˛ distribution with ˛ < 1 follows by Theorem 3.3. ut
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Note that the assumption of Theorem 3.28 always holds when <z D 0. This gives
the following representation for the characteristic function.

Corollary 3.29. Fix ˛ < 2, p D 1, and let � D TS1˛.R; b/.

1. If
R
Rd jxj�.dx/ < 1, then

O�.z/ D exp


Z

Rd
 ˛.ihz; xi/R.dx/C ihz; b1i

�

; z 2 R
d;

where b1 is given by (3.32) and  ˛ is given by (3.33).
2. If ˛ < 1 and

R
jxj�1 jxjR.dx/ < 1, then the characteristic function is given by

O�.z/ D exp


Z

Rd
 0
˛.ihz; xi/R.dx/C ihz; b0i

�

; z 2 R
d;

where b0 is given by (3.35) and  0
˛ is given by (3.36).

Now consider the case when X � TS1˛.R; b/ is a one-dimensional random
variable with R..�1; 0// D 0. In this case the support, S, of R satisfies S � Œ0;1/.
Thus for all z 2 R with z � 0 we have supx2S.zx/ < 1 and we can use Theorem 3.28
to get the following representation for the Laplace transform.

Corollary 3.30. Fix ˛ < 2, p D 1, let � D TS1˛.R; b/ be a 1-tempered ˛-stable
distribution on R with R..�1; 0// D 0, and let X � �.

1. If EjXj < 1, then

EŒe�zX� D exp


Z

.0;1/
 ˛.�zx/R.dx/ � zb1

�

; z � 0;

where b1 is given by (3.32) and  ˛ is given by (3.33).
2. If ˛ < 1 and

R
jxj�1 jxjR.dx/ < 1, then

EŒe�zX� D exp


Z

.0;1/
 0
˛.�zx/R.dx/ � zb0

�

; z � 0;

where b0 is given by (3.35) and  0
˛ is given by (3.36).



Chapter 4
Limit Theorems for Tempered Stable
Distributions

In this chapter we discuss the weak limits of sequences of p-tempered ˛-stable
distributions. It turns out that this class is not closed under weak convergence. To
see this note that the class has elements with a finite variance (see Theorem 3.15)
and is closed under shifting, scaling, and taking convolutions (see Proposition 3.5).
Thus, by the central limit theorem, there are sequences in this class that converge
weakly to Gaussian distributions. However, Gaussian distributions were explicitly
excluded from the class. Further, as we will see, we also need to include ˛-stable
distributions, which do not belong to this class by Proposition 3.12. Thus, to get
closure under weak convergence we need to extend the class.

4.1 Extended Tempered Stable Distributions

In this section we define a class of distributions, which, as we will show, is the
smallest class that contains TSp

˛ and is closed under weak convergence. To do this
we must allow for a Gaussian part and remove the assumption that (3.4) holds. We
will see that removing this assumption is equivalent to allowing for an ˛-stable part.

Definition 4.1. Fix ˛ < 2 and p > 0. An infinitely divisible probability measure �
is called an extended p-tempered ˛-stable distribution if its Lévy measure is given
by (3.2) where � is a finite Borel measure on S

d�1 and q W .0;1/�S
d�1 7! .0;1/ is

a Borel function such that for all u 2 S
d�1 q.�; u/ is completely monotone and (3.3)

holds. We denote the class of extended p-tempered ˛-stable distributions by ETSp
˛ .

Remark 4.1. When ˛ � 0 (3.4) is necessary for (3.3) to hold. Thus, whenever ˛ � 0

an ETSp
˛ distribution is just a TSp

˛ distribution with a Gaussian part.

Remark 4.2. For ˛ < 2 and p > 0, the class of distributions in TSp
˛ but allowing for

a Gaussian part was introduced in [51] under the name J˛;p. By Remark 4.1 when
˛ � 0 we have J˛;p D ETSp

˛ . However, when ˛ 2 .0; 2/ we have J˛;p ¨ ETSp
˛ .
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Remark 4.3. From (3.5) it follows that the sum of completely monotone functions
is completely monotone, which implies that the class ETSp

˛ is closed under taking
convolutions.

By Bernstein’s Theorem (see, e.g., Theorem 1a in Section XIII.4 of [23] or
Remark 3.2 in [6]) the complete monotonicity of q.�; u/ implies that there is a
measurable family fQugu2Sd�1 of Borel measures on Œ0;1/ such that

q.r; u/ D
Z

Œ0;1/
e�rsQu.ds/: (4.1)

Note that unlike (3.6) we now allow Qu to have a point mass at 0. By the Dominated
Convergence Theorem, it follows that

lim
r!1 q.r; u/ D Qu.f0g/: (4.2)

Thus, by Remark 4.1, when ˛ � 0 we have Qu.f0g/ D 0 for every u 2 S
d�1. Letting

q1.r; u/ D
Z

.0;1/
e�rsQu.ds/ (4.3)

gives

q.rp; u/ D q1.r
p; u/C Qu.f0g/: (4.4)

The Lévy measure of a distribution in ETSp
˛ can now be written as

M.B/ D
Z

Sd�1

Z 1

0

1B.ru/q1.r
p; u/r�˛�1dr�.du/

C
Z

Sd�1

Z 1

0

1B.ru/r�˛�1drQu.f0g/�.du/; B 2 B.Rd/: (4.5)

Note that M is the sum of the Lévy measure of a p-tempered ˛-stable distribution
and (when ˛ 2 .0; 2/) an ˛-stable distribution with spectral measure Qu.f0g/�.du/.
If R is the Rosiński measure of the p-tempered ˛-stable part, then

M.B/ D
Z

Rd

Z 1

0

1B.rx/r�1�˛e�rp
drR.dx/

C
Z

Sd�1

Z 1

0

1B.ru/r�1�˛drQu.f0g/�.du/; B 2 B.Rd/: (4.6)

Remark 4.4. A distribution is an element of ETSp
˛ if and only if it can be written as

the convolution of a Gaussian distribution, an element of TSp
˛ , and (when ˛ 2 .0; 2/)

an ˛-stable distribution.
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Note that M is defined in terms of two measures R.dx/ and Qu.f0g/�.du/. To
make it easier to work with, we would like to combine these into one measure.
Since R is already defined on all of Rd and Qu.f0g/�.du/ requires a sphere, it makes
sense to put it on a sphere at infinity. To do this we need to define an appropriate
compactification of Rd.

4.2 Interlude: A Compactification of Rd

In this section we develop a compactification of R
d with a sphere at infinity

and discuss vague convergence of Radon measures on this space. This will be
fundamental for deriving weak limit theorems for distributions in the class ETSp

˛ .

4.2.1 Definitions

Let Rd
0 D R

dnf0g and note that for x 2 R
d
0 we have x D jxj x

jxj . Thus we can uniquely

identify every element of Rd
0 with an element of .0;1/ � S

d�1. Let NRd
0 D .0;1� �

S
d�1 and NRd D NRd

0 [ f0g. For simplicity of notation define I
d�1 D f1g � S

d�1. For
u 2 S

d�1 we write 1u D f1g � fug and for D � S
d�1 we write 1D D f1g � D.

We introduce the functions � W NRd 7! S
d�1 [ f0g and # W NRd 7! Œ0;1� as follows.

Let �.0/ D #.0/ D 0. If x 2 NRd
0, then x D frg � fug and we define �.x/ D u and

#.x/ D r. For simplicity, we sometimes write jxj WD #.x/. When x 2 I
d�1 we have

jxj D 1 and we adopt the convention jxj�1 D 1=jxj D 0. Let
NR

C! and
R

d

! denote,
respectively, the usual convergence on Œ0;1� and on R

d. If x; x1; x2; � � � 2 NRd
0, we

write xn ! x or limn!1 xn D x when #.xn/
NR

C! #.x/ and �.xn/
R

d

! �.x/.
Let �0 be the topology induced by this definition of convergence (i.e., let �0 be

the class of subsets of NRd
0 such that A 2 �0 if and only if for any x 2 A and any

x1; x2; � � � 2 NRd
0 with xn ! x there is an N such that for all n � N, xn 2 A). In this

topology compact sets are closed sets that are bounded away from 0.1 We denote
the Borel � -algebra on ( NRd

0; �0/ by B. NRd
0/, i.e. B. NRd

0/ D �.�0/.
To define convergence of a sequence in NRd, we first define convergence to a

point x ¤ 0 as in the previous case. For x1; x2; � � � 2 NRd we write xn ! 0 or

limn!1 xn D 0when #.xn/
NR

C! 0. Note that if x; x1; x2; � � � 2 NRdnId�1 then xn ! x if

and only if xn
R

d

! x. Let � be the topology induced by this definition of convergence,
and let B. NRd/ D �.�/ be the Borel � -algebra on NRd with this topology. In this
space the compact sets are just the closed sets.

1A set A is said to be bounded away from 0 if 0 is not in the closure of A, i.e. 0 … NA.
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For notational convenience, we identify Borel measures on NRd
0 with Borel

measures on NRd that place no mass at zero. Likewise, we identify Borel measures
on R

d with Borel measures on NRd that place no mass on I
d�1.

4.2.2 Vague Convergence

Although we are mainly interested in vague convergence of measures on R
d and its

compactifications, we will need several results from the general theory. Let E be a
set equipped with a topology T . Throughout, we assume that .E;T / is a locally
compact Hausdorff space with a countable basis. By locally compact we mean that
every x 2 E is contained in a relatively compact open set, and by countable basis
we mean that there exists a countable collection of open sets fGng such that every
open set G can be written as a finite or countable union of elements in fGng. By
Theorem 7.6.1 in [8] this implies that E is a Polish space and is thus metrizable as
a complete and separable metric space. As usual, we denote the Borel � -algebra by
B.E/ D �.T /. A Borel measure on E is called a Radon measure if it is finite on
any compact subset of E. We denote the space of all Radon measures on E by M.E/.

Definition 4.2. If �;�1; �2; � � � 2 M.E/, we say that f�ng converges vaguely to

� on E and write �n
v! � on E if for any continuous, real-valued function f on E

vanishing outside of some compact set

lim
n!1

Z

E

f .x/�n.dx/ D
Z

E

f .x/�.dx/: (4.7)

When working with vague convergence, the following definition is useful.

Definition 4.3. Let � be a Borel measure on E. A set B 2 B.E/ is called a
continuity set of � if �.@B/ D 0.

One of the most important results about vague convergence is the so-called
Portmanteau Theorem. Its proof is given in, e.g., [62].

Proposition 4.4. Let �;�1; �2; : : : be a sequence in M.E/. The following are
equivalent:

1. �n
v! � on E;

2. �n.B/ ! �.B/ for all relatively compact continuity sets B of �;
3. lim supn!1 �n.K/ � �.K/ and lim infn!1 �n.G/ � �.G/ for all compact sets

K and all open, relatively compact sets G;
4. for all relatively compact continuity sets B of � and all measurable functions f ,

which are continuous and bounded on B,
R

B f .x/�n.dx/ ! R
B f .x/�.dx/.

Condition 2 of Proposition 4.4 is often the easiest to use, but showing conver-
gence on all relatively compact continuity sets may still be quite difficult. It turns
out that in many cases it suffices to show convergence only on certain simpler
collections of sets.
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Proposition 4.5. Let �;�1; �2; : : : be a sequence in M.E/ and let A � B.E/ be
a class of relatively compact open sets satisfying:

1) A is closed under finite intersections, and
2) any relatively compact open set is a countable union of elements of A .

If

lim
n!1�n.A/ D �.A/

for every A 2 A , then �n
v! �.

Proof. If A;B 2 A , then by condition 1) A \ B 2 A and

�n.A [ B/ D �n.A/C �n.B/ � �n.A \ B/

! �.A/C �.B/ � �.A \ B/ D �.A [ B/:

By induction it follows that for any m 2 N if A1;A2; : : : ;Am 2 A then

lim
n!1�n

 
m[

iD1
Ai

!

D �

 
m[

iD1
Ai

!

:

Now, let G 2 B.E/ be a relatively compact open set. By condition 2) there is a
sequence A1;A2; � � � 2 A with G D S1

iD1 Ai. Thus, for any � > 0 there exists an
m 2 N such that

�.G/ � � � �

 
m[

iD1
Ai

!

:

It follows that,

�.G/�� � �

 
m[

iD1
Ai

!

D lim
n!1�n

 
m[

iD1
Ai

!

� lim inf
n!1 �n

 1[

iD1
Ai

!

D lim inf
n!1 �n .G/ ;

and hence

�.G/ � lim inf
n!1 �n .G/ :

Now, let K 2 B.E/ be a compact set. Since E is locally compact, there exists
an open cover of K made up of relatively compact sets. Further, by condition 2)
there is an open cover of K made up of sets in A . Since K is compact this means
that there is a finite cover of K made up of elements of A . In other words, there
exist an m 2 N and A1;A2; : : : ;Am 2 A such that K � Sm

iD1 Ai DW A. Since A
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is a finite union of sets in A and A \ Kc is a relatively compact open set we have
limn!1 �n.A/ D �.A/ and lim infn!1 �n.A \ Kc/ � �.A \ Kc/. Thus observing
that K D A n .A \ Kc/ gives

lim sup
n!1

�n.K/ D lim sup
n!1

Œ�n.A/ � �n.A \ Kc/�

� lim sup
n!1

�n.A/ � lim inf
n!1 �n.A \ Kc/

� �.A/ � �.A \ Kc/ D �.K/:

From here the result follows by Part 3 of Proposition 4.4. ut
It is not difficult to see that . NRd; �/ and . NRd

0; �0/ are locally compact Hausdorff
spaces with a countable basis. On NRd the class of Radon measures, M. NRd/, consists

of all finite Borel measures. Further, if �;�1; �2; � � � 2 M. NRd/, then �n
v! � on NRd

if and only if

lim
n!1

Z

NRd
f .x/�n.dx/ D

Z

NRd
f .x/�.dx/ (4.8)

for all continuous real-valued function f on NRd. On NRd
0 the class of Radon measures,

M. NRd
0/, consists of all Borel measures that are finite on any subset that is bounded

away from 0. Thus all Lévy measures and all Rosiński measures are Radon measures

on NRd
0. Further, if �;�1; �2; � � � 2 M. NRd

0/, then �n
v! � on NRd

0 if and only if (4.8)
holds for all continuous, real-valued functions f vanishing on a neighborhood of
zero.

The following result is a version of Helly’s Selection Theorem; it is given in a
somewhat more general form in [62].2

Proposition 4.6. Let �1; �2; : : : be a sequence of Borel measures on NRd with

sup
n
�n. NRd/ < 1:

There exist a subsequence f�nk g and a finite Borel measure � on NRd such that

�nk

v! � on NRd.

We now give a useful characterization of vague convergence on NRd for the special
case when none of the measures place mass on I

d�1. Let Cb be the class of Borel
functions mapping NRd into R, which are continuous and bounded on NRd n I

d�1. We
make no assumption about their behavior on I

d�1.

2Specifically, Propositions 3.16 and 3.17 in [62] imply that M. NRd/ is vaguely relatively compact
and metrizable as a complete and separable metric space. From here the result follows from the fact
that relative compactness and sequential relative compactness are equivalent in metrizable spaces,
see, e.g., pages 4–5 in [13].
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Lemma 4.7. Let �;�1; �2; : : : be finite Borel measures on NRd with �.Id�1/ D 0

and �n.I
d�1/ D 0 for n D 1; 2; : : : . In this case �n

v! � on NRd if and only ifR
NRd f .x/�n.dx/ ! R

NRd f .x/�.dx/ for all f 2 Cb.

Proof. Assume that �n
v! � on NRd, let H D fT 2 .0;1/ W �.jxj D T/ D 0g,

and fix f 2 Cb. This means that there is a K such that jf .x/j � K for all x 2 R
d.

Without loss of generality assume that f .x/ � 0. From the Portmanteau Theorem
(Proposition 4.4) it follows that for any T 2 H

lim
n!1

Z

jxj�T
f .x/�n.dx/ D

Z

jxj�T
f .x/�.dx/:

Thus, by the Monotone Convergence Theorem and the fact that �.Id�1/ D 0

lim inf
n!1

Z

NRd
f .x/�n.dx/ � lim

H3T"1
lim

n!1

Z

jxj�T
f .x/�n.dx/

D lim
H3T"1

Z

jxj�T
f .x/�.dx/ D

Z

NRd
f .x/�.dx/:

Further, since�.Id�1/ D 0, for any ı > 0 there is a Tı 2 H with�.jxj > Tı/ � ı=K.
Thus

Z

NRd
f .x/�n.dx/ �

Z

jxj�Tı

f .x/�n.dx/C K�n.jxj > Tı/

!
Z

jxj�Tı

f .x/�.dx/C K�.jxj > Tı/

�
Z

NRd
f .x/�.dx/C ı:

Since this holds for all ı > 0, lim supn!1
R
NRd f .x/�n.dx/ � R

NRd f .x/�.dx/, and
hence

lim
n!1

Z

NRd
f .x/�n.dx/ D

Z

NRd
f .x/�.dx/:

The other direction follows from the definition of vague convergence on NRd. ut
We now recall a standard result about convergence of infinitely divisible dis-

tributions in terms of vague convergence of their Lévy measures. The following
is a variant of Theorem 3.1.16 and Corollary 3.1.17 in [54]. Here and throughout
convergence of matrices should be interpreted as pointwise convergence of the
components.
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Proposition 4.8. Let �n D ID.An;Mn; bn/. If �n
w! �, then � D ID.A;M; b/.

Moreover, �n
w! � if and only if Mn

v! M on NRd
0, bn ! b, and

lim
�#0

lim
n!1

�

An C
Z

jxj��
xxTMn.dx/

�

D A: (4.9)

The result remains true if (4.9) is replaced by

lim
�#0

lim inf
n!1

�

An C
Z

jxj��
xxTMn.dx/

�

D lim
�#0

lim sup
n!1

�

An C
Z

jxj��
xxTMn.dx/

�

D A: (4.10)

Many of the situations that we are interested in have a limiting distribution with
a specific structure that we can exploit. In such cases we can use the following.

Lemma 4.9. Let �1; �2; : : : be a sequence of Radon measures on NRd
0, and let � be

a Radon measure on NRd
0 such that �.jxj D a/ D 0 for every 0 < a < 1 and

�.A/ D
Z

Sd�1

Z

.0;1�
1A.xu/�.dx/�.du/

for some finite Borel measure � on S
d�1 and some Borel measure � on .0;1� that

is finite outside any neighborhood of 0. Then �n
v! � on NRd

0 if and only if

�n .jxj > t; �.x/ 2 D/ ! � .jxj > t; �.x/ 2 D/ (4.11)

for every t 2 .0;1/ and every D 2 B.Sd�1/ with �.@D/ D 0.

Proof. If �n
v! � on NRd

0, then Part 2 of Proposition 4.4 implies that (4.11) holds.
Now assume that (4.11) holds. Let A be the class of measurable sets such that
A 2 A if and only if A is bounded away from 0 and �n.A/ ! �.A/. If A;B 2 A
and A � B, then

�n.B n A/ D �n.B/ � �n.A/ ! �.B/ � �.A/ D �.B n A/;

and hence B n A 2 A . By assumption sets of the form

˚
x 2 NRd W jxj > t; �.x/ 2 D

�
(4.12)

for D 2 B.Sd�1/ with �.@D/ D 0 and t 2 .0;1/ are elements of A . Thus so are
sets of the form

˚
x 2 NRd W a � jxj > b; �.x/ 2 D

�
;
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where D 2 B.Sd�1/ with �.@D/ D 0 and 0 < b < a � 1. Moreover, by continuity
from above, for t 2 .0;1/

lim sup
n!1

�n .jxj D t; �.x/ 2 D/ � lim
�#0

lim sup
n!1

�n .t � jxj > t � �; �.x/ 2 D/

D lim
�#0

� .t � jxj > t � �; �.x/ 2 D/ D 0;

which means that all sets of the form
˚
x 2 NRd W a > jxj > b; �.x/ 2 D

�
; (4.13)

where D 2 B.Sd�1/ with �.@D/ D 0 and 0 < b < a < 1 are elements of A .
Let A 0 be the class of sets that includes the empty set and all sets of the

form (4.12) and (4.13) with D of the required form. We claim that A 0 satisfies the
assumptions of Proposition 4.5. It is immediate that A 0 is a collection of relatively
compact open sets and is closed under finite intersections. Thus Assumption 1) is
satisfied. Assumption 2) follows from the facts that NRd

0 is separable and that for any
open set G and any x 2 G there is a set A 2 A 0 such that x 2 A � G. Thus, since
for any A 2 A 0 we have �n.A/ ! �.A/, the result holds by Proposition 4.5. ut

4.3 Extended Rosiński Measures

We now return to our discussion of the Lévy measures of extended p-tempered
˛-stable distributions. Recall that the Lévy measure of such a distribution can be
given by (4.6). In this section we will put it into a form that is often easier to work
with. First, let � be a Borel measure on NRd such that if B 2 B. NRd/ then

�.B/ D

8
ˆ̂
<

ˆ̂
:

R
Rd 1B.x/

�jxj2 ^ jxj˛�R.dx/
C R

Sd�1 1B.1u/Qu.f0g/�.du/ if ˛ 2 .0; 2/
R
Rd 1B.x/

�jxj2 ^ Œ1C logC jxj��R.dx/ if ˛ D 0
R
Rd 1B.x/

�jxj2 ^ 1�R.dx/ if ˛ < 0

: (4.14)

Note that �.f0g/ D 0 and that for ˛ � 0 we have �.Id�1/ D 0. Note further that
by (3.14) � is a finite measure and thus � is a Radon measure on NRd. We call it the
extended Rosiński measure of the corresponding p-tempered ˛-stable distribution.
From � we get R back by

R.dx/ D

8
<̂

:̂

�jxj2 ^ jxj˛��1 �j
Rd .dx/ if ˛ 2 .0; 2/

�jxj2 ^ Œ1C logC jxj���1 �j
Rd .dx/ if ˛ D 0

�jxj2 ^ 1��1 �j
Rd .dx/ if ˛ < 0

; (4.15)

where �j
Rd is the restriction of � to R

d.
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Remark 4.5. Let � be any finite Borel measure on NRd with �.f0g/ D 0. For any
p > 0 and ˛ 2 .0; 2/, � is the extended Rosiński measure of some distribution in
ETSp

˛ . If, in addition, �.Id�1/ D 0, then for any p > 0 and ˛ < 2, � is the extended
Rosiński measure of some distribution in ETSp

˛ .

Note that � is uniquely determined by R.dx/ and Qu.f0g/�.du/, which, in turn,
uniquely determine the Lévy measure, M, of the corresponding ETSp

˛ distribution.
Moreover, M uniquely determines R.dx/ and Qu.f0g/�.du/. To see this note that
by (4.2) M can be uniquely decomposed into the sum of a Lévy measure of a
p-tempered ˛-stable distribution and that of an ˛-stable distribution. Theorem 3.3
showed that R is uniquely determined by the Lévy measure of the p-tempered
˛-stable part and Remark 14.4 in [69] says that Qu.f0g/�.du/ is uniquely deter-
mined by the Lévy measure of the ˛-stable part. This leads to the following.

Proposition 4.10. For a fixed ˛ < 2 and p > 0, the extended Rosiński measure
� is uniquely determined by the Lévy measure of the extended p-tempered ˛-stable
distribution.

Definition 4.11. A distribution in ETSp
˛ with Gaussian part A, extended Rosiński

measure �, and shift b is denoted by ETSp
˛.A; �; b/.

We conclude this section by giving a representation for the Lévy measure of a
distribution in ETSp

˛ in terms of its extended Rosiński measure. Fix � 2 ETSp
˛ with

Lévy measure M given by (4.6), and let f be any Borel function, which is integrable
with respect to M. If ˛ < 0, then

Z

Rd
f .x/M.dx/ D

Z

NRd

Z 1

0

f .tx/t�1�˛e�tp dt
1

1 ^ jxj2 �.dx/; (4.16)

if ˛ D 0, then
Z

Rd
f .x/M.dx/ D

Z

NRd

Z 1

0

f .tx/t�1e�tp dt
1

jxj2 ^ Œ1C logC jxj� �.dx/; (4.17)

and if ˛ 2 .0; 2/, then
Z

Rd
f .x/M.dx/ D

Z

Sd�1

Z 1

0

f .tu/t�1�˛dtQu.f0g/�.du/

C
Z

Rd

Z 1

0

f .tx/t�1�˛e�tp dtR.dx/

D
Z

Id�1

Z 1

0

f .t�.x//t�1�˛e�.t=jxj/p dt�.dx/

C
Z

Rd

Z 1

0

f .t�.x//t�1�˛e�.t=jxj/p dtjxj˛R.dx/

D
Z

NRd

Z 1

0

f .t�.x//t�1�˛
e�.t=jxj/p

1 ^ jxj2�˛ dt�.dx/: (4.18)
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4.4 Sequences of Extended Tempered Stable Distributions

We now characterize the weak limits of extended p-tempered ˛-stable distributions.

Theorem 4.12. Fix ˛ < 2, p > 0, and let �n D ETSp
˛.An; �n; bn/. If �n

w! �, then

� D ETSp
˛.A; �; b/. Moreover, �n

w! � if and only if �n
v! � on NRd

0, bn ! b, and

lim
�#0

lim
n!1

�
An C H�

n

� D A; (4.19)

where

H�
n D

Z

jxj<p�
xxT

jxj2
Z �jxj�1

0

t1�˛e�tp dt�n.dx/: (4.20)

The result remains true if (4.19) is replaced by

lim
�#0

lim inf
n!1

�
An C H�

n

� D lim
�#0

lim sup
n!1

�
An C H�

n

� D A: (4.21)

Remark 4.6. The extended Rosiński measure does not contribute to the Gaussian
part if and only if

lim
�#0

lim sup
n!1

trH�
n D lim

�#0
lim sup

n!1

Z

jxj<p�

Z �jxj�1

0

t1�˛e�tp dt�n.dx/ D 0: (4.22)

Since for any � 2 .0; 1/
Z

jxj<�
�n.dx/

Z 1

0

t1�˛e�tp dt � trH�
n �

Z

jxj<p�
�n.dx/

Z 1

0

t1�˛e�tp dt;

(4.22) holds if and only if

lim
�#0

lim sup
n!1

�n.jxj < �/ D lim
�#0

lim sup
n!1

Z

jxj<�
jxj2Rn.dx/ D 0: (4.23)

Remark 4.7. When ˛ � 0 the condition �n
v! � on NRd

0 is equivalent to the condition

Rn
v! R on NRd

0 and

lim
N!1 lim sup

n!1

Z

jxj>N
log jxjRn.dx/ D 0; if ˛ D 0 (4.24)

lim
N!1 lim sup

n!1
Rn.jxj > N/ D 0 if ˛ < 0: (4.25)
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When ˛ 2 .0; 2/ and �n.I
d�1/ D 0 for every n then the limit does not have an

˛-stable part if and only if

lim
N!1 lim sup

n!1

Z

jxj>N
jxj˛Rn.dx/ D 0: (4.26)

In this case, the condition �n
v! � on NRd

0 is equivalent to the condition Rn
v! R on

NRd
0 and (4.26) holds.

To facilitate the proof of Theorem 4.12, we begin with several lemmas.

Lemma 4.13. Fix ˛ < 2 and p > 0. If s 2 R with jsj � 1, then

Z 1

0

.cos .ts/ � 1/ t�1�˛e�tp dt � �11
24

s2
Z 1

0

t1�˛e�tp dt: (4.27)

Proof. Since cos.x/ � 1 we have

Z 1

0

.cos .ts/ � 1/ t�1�˛e�tp dt �
Z 1

0

.cos .ts/ � 1/ t�1�˛e�tp dt

�
Z 1

0

�
s4t4

24
� s2t2

2

�

t�1�˛e�tp dt

� �11
24

s2
Z 1

0

t1�˛e�tp dt;

where the second line follows by the Taylor expansion of cosine and the remainder
theorem for alternating series. ut
Lemma 4.14. Let f�ng be as in Theorem 4.12.

1. If �n
w! � for some probability measure �, then sup �n. NRd/ < 1.

2. If �n
v! � on NRd

0 for some finite measure �, then supn �n.jxj � �/ < 1 for any
� > 0.

3. If (4.21) holds, then there exists an � > 0 such that sup �n.jxj < �/ < 1.

Proof. We begin with the first part, assume that �n
w! � and get Rn from �n

by (4.15). Combining (2.1) and (3.12) with Lemma 4.13 implies that for jzj � 1

j O�n.z/j � exp


Z

jxj�1

Z 1

0

.cos .thx; zi/ � 1/ t�1�˛e�tp dtRn.dx/

�

� exp




�11
24

Z 1

0

t1�˛e�tp dt
Z

jxj�1
hx; zi2Rn.dx/

�

;

where the first inequality follows by the fact that we can write �n as the convolution
of a Gaussian, an element of TSp

˛ , and (when ˛ 2 .0; 2/) an ˛-stable distribution. By
Proposition 2.5 in [69] j O�n.z/j ! j O�.z/j uniformly on compact sets, and there exists
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a b > 0 such that j O�.z/j > b on a neighborhood of zero. Thus, for large enough n
and all z in this neighborhood with jzj � 1 we have

b < exp




�11
24

Z 1

0

t1�˛e�tp dt
Z

jxj�1
hx; zi2Rn.dx/

�

;

which implies that for all such z we have supn

R
jxj�1hx; zi2Rn.dx/ < 1. Clearly, if

this holds on a neighborhood of zero, it must hold for every z 2 R
d. Now observe

that jxj2 D Pd
iD1 x2i D Pd

iD1hx; eii2, where ei 2 R
d such that ei has zeros in all

coordinates except for a 1 in the ith position. It follows that

sup
n

Z

jxj�1
jxj2Rn.dx/ D sup

n
�n .jxj � 1/ < 1:

By Proposition 4.8, � is infinitely divisible. Let Mn be the Lévy measure of �n

and let M be the Lévy measure of �. Let f1 be a nonnegative, continuous, bounded,
real-valued function vanishing on a neighborhood of zero with f1.y/ D 1 for jyj � 1.
When ˛ 2 .0; 2/ by (4.18)

Z

Rd
f1.x/Mn.dx/ �

Z

Id�1

Z 1

1

t�1�˛dt�n.dx/

C
Z

1>jxj�1

Z 2

1

t�1�˛e�.t=jxj/p dt�n.dx/

� ˛�1�n
�
I

d�1�C e�2p 2˛ � 1
˛2˛

�n.1 > jxj � 1/

� e�2p 2˛ � 1
˛2˛

�n.jxj � 1/:

Similarly, when ˛ D 0 by (4.17)

Z

Rd
f1.x/Mn.dx/ D

Z

Rd

Z 1

0

f1.xt/t�1e�tp dt
�n.dx/

jxj2 ^ .1C logC jxj/

� e�ep
Z

jxj�1

Z e

jxj�1
t�1dt

�n.dx/

1C log jxj D e�ep
�n .jxj � 1/ ;

and when ˛ < 0 by (4.16)

Z

Rd
f1.x/Mn.dx/ D

Z

Rd

Z 1

0

f1.xt/t�1�˛e�tp dt
1

1 ^ jxj2 �n.dx/

� �n.jxj � 1/

Z 1

1

t�1�˛e�tp dt:

Proposition 4.8 implies that the left side converges to
R
Rd f1.x/M.dx/ in all three

cases. Thus, since
R
Rd f1.x/M.dx/ < 1, we have supn �n .jxj � 1/ < 1.
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The second part follows immediately from Proposition 4.4. The third part follows
from the fact that (4.21) implies that there exists an � > 0 such that

1 > lim sup
n!1

trH�
n D lim sup

n!1

Z

jxj<p�

Z �jxj�1

0

t1�˛e�tp dt�n.dx/

� lim sup
n!1

Z p�

0

t1�˛e�tp dt
Z

jxj<p�
�n.dx/;

and hence supn �n.jxj < p
�/ < 1. ut

Lemma 4.15. Let f�ng be as in Theorem 4.12 and let Mn be the Lévy measure of
�n. If sup �n. NRd/ < 1, then

lim
�#0

lim
n!1

�

An C
Z

jxj��
xxTMn.dx/

�

D lim
�#0

lim
n!1

 

An C
Z

jxj<p�
xxT

jxj2
Z �jxj�1

0

t1�˛e�tp dt�n.dx/

!

; (4.28)

whenever at least one of the limits exists. The result remains true if we replace
limn!1 by lim infn!1 or lim supn!1.

Proof. We give the proof for the case when ˛ 2 .0; 2/ only, as the other cases are
similar. We can write

Z

jxj��
xxTMn.dx/ D

Z

Id�1

Z �

0

�.x/Œ�.x/�T t1�˛dt�n.dx/

C
Z

1>jxj�1

Z �jxj�1

0

xxT t1�˛e�tp dtjxj�˛�n.dx/

C
Z

1>jxj�p�

Z �jxj�1

0

xxT t1�˛e�tp dtjxj�2�n.dx/

C
Z

jxj<p�

Z �jxj�1

0

xxT t1�˛e�tp dtjxj�2�n.dx/

DW In;�
1 C In;�

2 C In;�
3 C In;�

4 :

Set C WD supn �n. NRd/ < 1 and note that

lim
�#0

lim sup
n!1

trIn;�
1 � lim

�#0
C
�2�˛

2 � ˛ D 0;

lim
�#0

lim sup
n!1

trIn;�
2 �

Z

1>jxj�1
jxj2�˛

Z �jxj�1

0

t1�˛dt�n.dx/ � lim
�#0

C
�2�˛

2 � ˛ D 0;



4.4 Sequences of Extended Tempered Stable Distributions 61

and

lim
�#0

lim sup
n!1

trIn;�
3 � lim

�#0
lim sup

n!1

Z

1>jxj�p�

Z p�

0

t1�˛dt�n.dx/

� lim
�#0

C
�1�˛=2

2 � ˛ D 0:

From here the result follows immediately. ut
Proof (Proof of Theorem 4.12). Throughout this proof let Mn denote the Lévy
measure of �n.

Assume that�n
w! �. By Proposition 4.8� is infinitely divisible with some Lévy

triplet .A;M; b/ such that bn ! b, Mn
v! M on NRd

0, and (4.9) holds. Combining this
with Lemmas 4.14 and 4.15 gives (4.19) which implies (4.21). It remains to show
that there is an extended Rosiński measure � such that � D ETSp

˛.A; �; b/ and

�n
v! � on NRd

0.
By Lemma 4.14, sup �n. NRd/ < 1. Thus, Proposition 4.6 implies that there is a

finite Borel measure Q� on NRd and a subsequence f�njg with �nj

v! Q� on NRd. Let � be
a finite Borel measure on NRd with

�.A/ D Q� .A n f0g/ ; A 2 B. NRd/:

Note that �.f0g/ D 0 and that �nj

v! � on NRd
0. Let f be any continuous nonnegative

function on NRd such that there are �;K > 0 with f .x/ D 0 whenever jxj � � and
f .x/ � K for all x 2 NRd. For x 2 NRd define

g˛.x/ D

8
ˆ̂
<

ˆ̂
:

R1
�

f .�.x/t/t�1�˛ e�.t=jxj/p

1^jxj2�˛ dt ˛ 2 .0; 2/
R1
�jxj�1 f .xt/ t�1 e�tp

jxj2^Œ1ClogC jxj�dt ˛ D 0
R1
�jxj�1 f .xt/t�1�˛ e�tp

jxj2^1dt ˛ < 0:

: (4.29)

We will show that

lim
j!1

Z

NRd
g˛.x/�nj.dx/ D

Z

NRd
g˛.x/ Q�.dx/: (4.30)

Assume for the moment that this holds. Observing that g˛.0/ D 0 gives

Z

Rd
f .x/M.dx/ D lim

j!1

Z

Rd
f .x/Mnj.dx/ D lim

j!1

Z

NRd
g˛.x/�nj.dx/

D
Z

NRd
g˛.x/ Q�.dx/ D

Z

NRd
g˛.x/�.dx/;
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which implies that M is the Lévy measure of an extended p-tempered ˛-stable
distribution with extended Rosiński measure �. This proves that the class ETSp

˛ is
closed under weak convergence. Moreover, since, by Proposition 4.10, � is uniquely

determined by M, �n
v! � on NRd

0.
We now complete the proof of this direction by showing that (4.30) holds. By the

definition of vague convergence on NRd it suffices to show that for each ˛ the function
g˛ is bounded and continuous. When ˛ 2 .0; 2/ the facts that

R1
�

t�1�˛dt < 1 and

that f .�.x/t/ e�.t=jxj/p

1^jxj2�˛ is uniformly bounded for x 2 R
d and t � � show that g˛ is

bounded and, by dominated convergence, it is continuous on NRd. When ˛ < 0,

1Œt>�jxj�1�f .xt/t�1�˛
e�tp

jxj2 ^ 1 � Ke�tp
�
t�1�˛ C t1�˛��2

�
;

which is integrable on Œ0;1/. Thus g˛ is bounded, and by dominated convergence
it is continuous on NRd. When ˛ D 0, by Lemma 4.7, it suffices to show that g˛ is
bounded and continuous only on R

d, so fix x 2 R
d. If jxj � 1, then

1Œt��jxj�1�f .xt/t�1e�tp jxj�2 � 1Œt�0�K��2te�tp ;

which is integrable with respect to t. If jxj > 1 fix ı 2 .0; jxj � 1/ and let x0 be such
that jx0 � xj < ı. Then 1 < jx0j < jxj C ı and

1Œt>�jx0j�1�f .x0t/t�1e�tp
�
1C log jx0j��1 � 1Œt��.jxjCı/�1�Kt�1e�tp ;

which is integrable with respect to t. Thus, by dominated convergence g0 is
continuous on R

d. To show that g0.x/ is bounded, note that if jxj � 1 then, as
before,

g0.x/ � K��2
Z 1

0

te�tp dt < 1;

and if jxj > 1 then

g0.x/ � K Œ1C log jxj��1
Z �e

�jxj�1
t�1dt C K

Z 1

�e
t�1e�tp dt

D K C K
Z 1

�e
t�1e�tp dt:

We now turn to the other direction. Assume that bn ! b, (4.21) holds, and
�n

v! � on NRd
0. We need to show that �n

w! �, where � D ETSp
˛.A; �; b/. Let

M be the Lévy measure of �. Lemma 4.14 implies that sup �n. NR/ < 1. Thus

combining (4.21) with Lemma 4.15 gives (4.10). To show that Mn
v! M on NRd

0 we
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will show that every subsequence has a further subsequence that does this. Let fnkg
be any increasing sequence in N. By Proposition 4.6 there is a subsequence fnkjg
and a finite Borel measure Q� on NRd such that �nkj

v! Q� on NRd. Clearly, �j
NR

d
0

D Q�j
NR

d
0

,

where �j
NR

d
0

and Q�j
NR

d
0

are the restrictions, respectively, of � and Q� to NRd
0. Let f be a

continuous nonnegative function on NRd satisfying the same assumptions as in the
previous direction, and define g˛ by (4.29). Observing that g˛.0/ D 0 gives

Z

Rd
f .x/Mnkj

.dx/ D
Z

NRd
g˛.x/�nkj

.dx/

!
Z

NRd
g˛.x/ Q�.dx/ D

Z

NRd
g˛.x/�.dx/ D

Z

Rd
f .x/M.dx/;

where the convergence follows by arguments similar to the previous direction. ut

4.5 Closure Properties

In this section we show that ETSp
˛ is, in fact, the smallest class that contains TSp

˛ and
is closed under weak convergence.

Proposition 4.16. Fix ˛ < 2 and p > 0.

1. If � D N.0;A/, then there is a sequence f�ng in TSp
˛ with �n

w! �.
2. If ˛ 2 .0; 2/ and � D S˛.�; 0/, then there is a sequence f�ng in TSp

˛ with

�n
w! �.

3. The class ETSp
˛ is the smallest class that contains TSp

˛ and is closed under weak
convergence. Moreover, this class is closed under taking convolutions.

Proof. First observe that

lim
s!0

eihx;zirs � 1 � ihx;zisr
1Cjxrj2s2

s2
D �1

2
hx; zi2r2:

Let R D N.0; cA/, where c D �R1
0

r1�˛e�rp
dr
��1

. Let X D .X1; : : : ;Xd/
T � R and

define

Rn.B/ D n2
Z

Rd
1B.xn�1/R.dx/; B 2 B.Rd/:

By (3.14) this is the Rosiński measure of some distribution in TSp
˛ . If �n D

TSp
˛.Rn; 0/, then the cumulant generating function of �n satisfies
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C�n.z/ D
Z

Rd

Z 1

0

�

eihx;zir � 1 � ihx; zir
1C jxj2r2

�

r�1�˛e�rp
drRn.dx/

D n2
Z

Rd

Z 1

0

�

eihx;zir=n � 1 � ihx; zir=n

1C jx=nj2r2
�

r�1�˛e�rp
drR.dx/

! �1
2

Z

Rd
hx; zi2R.dx/

Z 1

0

r1�˛e�rp
dr

D �1
2

dX

iD1

dX

jD1
zizjEŒXiXj�c

�1 D �1
2

hz;Azi D C�.z/;

where C� is the cumulant generating function of � and the third line follows by
dominated convergence. This implies that the first part holds. For the second part let

R.B/ D
Z

Sd�1

Z 1

0

1B.ut/e�tt�˛dt�.du/; B 2 B.Rd/;

and note that

�.B/ D
Z

Rd
1B

�
x

jxj
�

jxj˛R.dx/; B 2 B.Sd�1/:

Let

Rn.B/ D n�˛
Z

Rd
1B.xn/R.dx/; B 2 B.Rd/:

By (3.14) this is the Rosiński measure of some distribution in TSp
˛ . If �n D

TSp
˛.Rn; 0/, then the cumulant generating function of �n satisfies

C�n.z/ D
Z

Rd

Z 1

0

�

eihx;zir � 1 � ihx; zir
1C jxj2r2

�

r�1�˛e�rp
drRn.dx/

D n�˛
Z

Rd

Z 1

0

�

eihx;zirn � 1 � ihx; zirn

1C jxnj2r2
�

r�1�˛e�rp
drR.dx/

D
Z

Rd

Z 1

0

�

eihx;zit=jxj � 1 � ihx; zit=jxj
1C t2

�

t�1�˛e�.tjxj�1n�1/p dtjxj˛R.dx/

!
Z

Rd

Z 1

0

�

eihx;zit=jxj � 1 � ihx; zit=jxj
1C t2

�

t�1�˛dtjxj˛R.dx/

D
Z

Sd�1

Z 1

0

�

eihu;zit � 1 � ihu; zit
1C t2

�

t�1�˛dt�.du/ D C�.z/;
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where the third line follows by the substitution t D rnjxj and the fourth by
dominated convergence. The third part follows from the first two, Theorem 4.12,
and Remark 4.3. ut
Definition 4.17. For ˛ < 2 and p > 0, a random variable is said to have an
elementary p-tempered ˛-stable distribution on R

d if it can be written as Ux,
where x 2 R

d is a nonrandom vector and U � ID.0;M; b/ is an infinitely divisible
random variable on R with b 2 R and M.dt/ D c1Œt>0�t�1�˛e�tp dt, for some c > 0.

For 
 2 R, we have

Eei
U D exp




c
Z 1

0

�

ei
t � 1 � i
t

1C t2

�

t�1�˛e�tp dt C i
b

�

: (4.31)

Thus for z 2 R
d

Eeihz;Uxi D exp




c
Z 1

0

�

eihz;xit � 1 � ihz; xit
1C t2

�

t�1�˛e�tp dt C ihz; xbi
�

D exp


Z

Rd

Z 1

0

�

eihy;zit � 1 � ihy; zit
1C jyj2t2

�

t�1�˛e�tp dtR.dy/C ihz; xb0i
�

;

where R.dy/ D cıx.dy/ and b0 D b C cx.1 � jxj2/ R1
0

1
.1Cjxj2t2/.1Ct2/

t2�˛e�tp dt.

Thus, Ux � TSp
˛.cıx; b0/. Further, a distribution � is the distribution of a finite

sum of independent elementary p-tempered ˛-stable random variables if and only if
� D TSp

˛.R; b/ with R concentrated on a finite number of points. We now show that
every distribution in ETSp

˛ can be approximated by such distributions.

Theorem 4.18. Fix ˛ < 2 and p > 0. The class ETSp
˛ is the smallest class of

distributions closed under convolution and weak convergence and containing all
elementary p-tempered ˛-stable distributions. In fact, � 2 ETSp

˛ if and only if there

are probability measures �1; �2; : : : on R
d with �n

w! � such that each �n is the
distribution of the sum of a finite number of independent elementary p-tempered
˛-stable random variables.

For the case p D 1 and ˛ 2 f�1; 0g this was shown in Theorem F of [6]. There
the result followed from the properties of a certain integral representation. A similar
representation for the case ˛ < 2 and p > 0 is given in [51]. However, when
˛ 2 .0; 2/ the properties of the representation are quite different, and it appears that
a proof analogous to that of [6] cannot be constructed in this case. Instead, we base
our proof on Theorem 4.12.

Proof. In light of Proposition 4.16, it suffices to show that we can approximate any
distribution in TSp

˛ . Let � D TSp
˛.R; b/ and let � be its extended Rosiński measure.

Let f�ng be any sequence of finite measures on NRd with finite supports such that

�n.f0g/ D 0, �n.I
d�1/ D 0, and �n

v! � on NRd (such measures exist by, e.g.,
Theorem 7.7.3 in [8]). By the Portmanteau Theorem (Proposition 4.4)
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lim
�#0

lim sup
n!1

�n .jxj < �/ � lim
�#0

� .jxj � �/ D � .jxj D 0/ D 0:

Thus, if �n D ETSp
˛.0; �n; b/, then �n

w! � by (4.23) and Theorem 4.12. ut
Since all elementary p-tempered ˛-stable distributions are proper, we get the

following.

Corollary 4.1. ETSp
˛ is the smallest class of distributions closed under convolution

and weak convergence and containing all proper p-tempered ˛-stable distributions.



Chapter 5
Multiscale Properties of Tempered Stable
Lévy Processes

In this chapter we characterize the multiscale properties of p-tempered ˛-stable
Lévy processes. Specifically, let X D fXt W t � 0g be a p-tempered ˛-stable Lévy
process. We will show when there exist deterministic function at > 0 and bt 2 R

d

and a random variable Y not concentrated at a point such that

atXt � bt
d! Y as t ! c (5.1)

for c 2 f0;1g. When c D 1 this is called long time behavior and when c D 0 it
is called short time behavior.

From Lemma 2.5 it follows that in both cases Y must follow some ˇ-stable
distribution. Further, by Theorem 4.12 it must have a distribution in ETSp

˛ . The only
ˇ-stable distributions in ETSp

˛ are those with ˇ 2 Œ˛; 2� if ˛ 2 .0; 2/ and those with
ˇ 2 .0; 2� if ˛ � 0. Thus, these are the only possible limiting distributions.

An important consequence of long and short time behavior is that it can be
extended to convergence at the level of processes. For h > 0 consider the time
rescaled process Xh D fXth W t � 0g. Theorem 15.17 in [41] implies that, if (5.1)

holds, then there exist processes QXh dD Xh such that for all t � 0

sup
s�t

jah QXh
s � bh � Ysj p! 0 as h ! c; (5.2)

where fYt W t � 0g is a Lévy process with Y1
dD Y . Thus, in a sense, long time

behavior corresponds to what the process looks like when we “zoom out” and short
time behavior corresponds to what the process looks like when we “zoom in” on it.
When the long and short time behavior of a process are different, the process is
multiscaling: it behaves differently in a long time frame from how it behaves in a
short time frame.
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5.1 Long and Short Time Behavior

In this section we characterize the long and short time behavior of tempered
stable Lévy processes. The proofs are deferred until Section 5.2. First note that if
fXt W t � 0g is a Lévy process with X1 � TSp

˛.R; b/, then by Proposition 3.5 for any
at > 0 and bt 2 R

d the distribution of atXt � bt is given by TSp
˛.Rt; �t/, where

Rt.A/ D t
Z

Rd
1A.atx/R.dx/; A 2 B.Rd/ (5.3)

and �t is given by

tatb C tat.1 � a2t /
Z

Rd

Z 1

0

xjxj2
.1C jxj2r2a2t /.1C jxj2r2/e�rp

r2�˛drR.dx/ � bt:

(5.4)

We begin with the case where the limiting distribution is ˇ-stable with ˇ 2 .0 _
˛; 2/. From Proposition 3.12 it follows that all such ˇ-stable distributions belong
to the class TSp

˛ and have a Rosiński measure given by Rˇ� as in (3.19). Note that,
by Theorem 4.12 and Remark 4.7, for the long (or short) time behavior of � to be
ˇ-stable it is necessary that

Rt
v! Rˇ� on NRd

0 as t ! c;

where c D 1 (or c D 0). We will show that this is also sufficient and that it is
equivalent to the regular variation of R at c. For ˛ ¤ 0 a version of this result was
given in [30]. Our proof, which we defer until Section 5.2, allows for the case ˛ D 0

and is shorter and simpler.

Theorem 5.1. Fix c 2 f0;1g, ˛ < 2, p > 0, ˇ 2 .0 _ ˛; 2/, and let � ¤ 0 be a
finite Borel measure on S

d�1. Let fXt W t � 0g be a p-tempered ˛-stable Lévy Process
with X1 � TSp

˛.R; b/ and let Y � Sˇ.�; 0/. There exist non-stochastic functions
at > 0 and bt 2 R

d such that

atXt � bt
d! Y as t ! c (5.5)

if and only if R 2 RVc�ˇ.�/. Moreover, in this case, a� 2 RVc�1=ˇ ,

at � K1=ˇ=V .t/ as t ! c; (5.6)

where K D ˇ�1�.Sd�1/ and V.t/ D 1=R .jxj > t/, and b� is such that, if �� is as
given by (5.4), then �t ! 0 as t ! c.
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We now turn to the case when ˛ 2 .0; 2/ and the limiting stable distribution has
the same index of stability as the one being tempered. In this case, instead of the
Rosiński measure or the extended Rosiński measure, we prefer to work with

�1.dx/ D jxj˛R.dx/;

which we call the modified Rosiński measure. Theorem 3.3 implies that this is
a finite measure if and only if R is the Rosiński measure of a proper p-tempered
˛-stable distribution.

Theorem 5.2. Fix c 2 f0;1g, ˛ 2 .0; 2/, p > 0, and let � ¤ 0 be a finite Borel
measure on S

d�1. Let fXt W t � 0g be a p-tempered ˛-stable Lévy Process with
X1 � TSp

˛.R; b/ and let Y � S˛.�; 0/. There exist non-stochastic functions at > 0

and bt 2 R
d such that

atXt � bt
d! Y as t ! c (5.7)

if and only if �1 2 RVc
0.�/, where �1.dx/ D jxj˛R.dx/. Moreover, in this case,

a� 2 RVc�1=˛ with

at � K1=˛=V .t/ as t ! c; (5.8)

where K D �.Sd�1/ and V.t/ D t˛=�1.jxj > t/, and b� is such that, if �� is as given
by (5.4), then �t ! 0 as t ! c.

Combining this with facts about the domains of attraction of infinite variance
stable distribution given in, e.g., [30] we get the following result, which extends
Theorem 3.18.

Corollary 5.3. Fix ˛ 2 .0; 2/, p > 0, and let � D TSp
˛.R; b/. If M is the Lévy

measure of � and �1.dx/ D jxj˛R.dx/, then

� 2 RV1�˛.�/ ” M 2 RV1�˛.�/ ” �1 2 RV10 .�/: (5.9)

It turns out that when c D 0 and X1 has a proper p-tempered ˛-stable distribution
the result of Theorem 5.2 always holds. In this case Theorem 3.3 implies that �1 is
a finite measure, and hence �1 2 RV0

0 .�/ with

�.B/ D
Z

Rd
1B

�
x

jxj
�

�1.dx/ D
Z

Rd
1B

�
x

jxj
�

jxj˛R.dx/; B 2 B.Sd�1/:

In this case

V.t/ � t˛=K as t # 0
and by Proposition 2.6

at � t�1=˛ as t # 0:
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Thus Theorem 5.2 implies that if Y � S˛.�; 0/, then for properly chosen bt

lim
t#0
�
t�1=˛Xt � bt

� d! Y as t # 0: (5.10)

This is not surprising because by Remark 3.5 all proper p-tempered ˛-stable
distributions with ˛ 2 .0; 2/ belong to the class of generalized tempered stable
distributions, and, for this class, results analogous to (5.10) are given in [66].

We conclude this section by turning to the case where the limiting distribution is
Gaussian, i.e. where it is a ˇ-stable distribution with ˇ D 2.

Theorem 5.4. Fix c 2 f0;1g, ˛ < 2, p > 0, and let B ¤ 0 be a symmetric
nonnegative-definite matrix. Let fXt W t � 0g be a p-tempered ˛-stable Lévy process
with X1 � TSp

˛.R; b/ and let

At D
Z

jxj�t
xxTR.dx/: (5.11)

There exist non-stochastic functions at > 0 and bt 2 R
d such that

atXt � bt
d! N.0;B/ as t ! c (5.12)

if and only if A� 2 MRVc
0.B=trB/. Moreover, in this case, a� 2 RVc�1=2 and

at � K�1=2=V .t/ as t ! c; (5.13)

where K D R1
0

s1�˛e�sp
ds=trB and V.t/ D t2=

R
jxj�t jxj2R.dx/, and b� is such that,

if �� is as given by (5.4), then �t ! 0 as t ! c.

Note that in the case
R
Rd jxj2R.dx/ < 1 dominated convergence implies that

A� 2 MRV10 .B=trB/ where B D R
Rd xxTR.dx/. Combining Theorem 5.4 with facts

about the domain of attraction of the multivariate Gaussian given in [29] gives the
following.

Corollary 5.5. Fix c 2 f0;1g, let � D TSp
˛.R; b/, and let M be the Lévy measure

of �. There exists a nonnegative definite matrix B ¤ 0 with

Z

jxj��
xxTR.dx/ 2 MRVc

0.B/ (5.14)

if and only if

Z

jxj��
xxTM.dx/ 2 MRVc

0.B/: (5.15)



5.2 Proofs 71

Further, if c D 1 and one of (5.14) or (5.15) holds, then there is a nonnegative
definite matrix B0 ¤ 0 (possible different from B) such that

Z

jxj��
xxT�.dx/ 2 MRV10 .B0/:

5.2 Proofs

In this section we prove the results of Section 5.1. We begin with several lemmas.

Lemma 5.6. Fix c 2 f0;1g, let Y be a random variable whose distribution is not
concentrated at a point, let a� be a positive function, and let fXt W t � 0g be a Lévy
process with X1 � ID.A;M; b/ and M ¤ 0. Assume that there exists a deterministic
function �� taking values in R

d such that

lim
t!c

atXt � �t
d! Y:

1. If c D 0, then limt#0 at D 1 and a1=t � a1=.tC1/ as t ! 1.
2. If c D 1, then limt!1 at D 0 and at � atC1 as t ! 1.

Proof. First assume c D 0. Let ` WD lim inft#0 at and assume for the sake of
contradiction that ` < 1. This means that there is a sequence of positive real
numbers ftng converging to 0 such that limn!1 atn D `. Consider a further
subsequence ftnig such that limi!1 �tni

exists (although we allow it to be infinite).

Stochastic continuity of Lévy processes implies that Xt
p! 0 as t # 0, thus Slutsky’s

Theorem implies that

Y D d-lim
i!1 .atni

Xtni
� �tni

/
dD `0 � lim

i!1 �tni
;

which contradicts the assumption that the distribution of Y is not concentrated at a
point. Thus limt#0 at D 1.

Let CX1 .
/ be the cumulant generating function of X1. The characteristic function
of a1=tX1=t � �1=t is exp

�
1
t CX1 .a1=tz/ � ihz; �1=ti

�
. If O�Y.z/ is the characteristic

function of Y , then

O�Y.z/ D lim
t!1 exp

�
1

t
CX1 .a1=tz/ � ihz; �1=ti

�

D lim
t!1 exp

�
1

t C 1
CX1 .a1=tz/ � ihz; t

t C 1
�1=ti

�

;
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which implies that

Y
dD d-lim

t!1

�

a1=tX1=.tC1/ � t

t C 1
�1=t

�

dD d-lim
t!1

�
a1=t

a1=.tC1/
�
a1=.tC1/X1=.tC1/ � �1=.tC1/

�C a1=t

a1=.tC1/
�1=.tC1/ � t

t C 1
�1=t

�

:

Since
�
a1=.tC1/X1=.tC1/ � �1=.tC1/

� d! Y as t ! 1, the result follows by the
Convergence of Types Theorem, see, e.g., Lemma 13.10 in [69].

Now assume that c D 1. Let Mt be the Lévy measure of atXt � �t and note that
Mt.
/ D tM.
=at/. By Lemma 2.5 Y has a stable distribution. Let M0 be its Lévy
measure and note that M0.jxj D s/ D 0 for all s > 0. From here Propositions 4.8
and 4.4 imply that for any s > 0

lim
t!1 tM.jxj > s=at/ D lim

t!1Mt.jxj > s/ D M0.jxj > s/ < 1;

where the finiteness follows from the fact that M0 is a Lévy measure. This implies

that at ! 0. Now let X0 dD X1 be independent of fXt W t � 0g. By Slutsky’s Theorem

atX0
p! 0 as t ! 1 and

Y
dD d-lim

t!1 .atC1XtC1 � �tC1/

dD d-lim
t!1

�
atC1Xt C atC1X0 � �tC1

�

dD d-lim
t!1

�
atC1
at

.atXt � �t/C atC1
at
�t � �tC1

�

:

Combining this with the fact that .atXt � �t/
d! Y as t ! 1 and another application

of the Convergence of Types Theorem gives the result. ut
Lemma 5.7. Fix c 2 f0;1g. Let M be a Borel measure on R

d satisfying (2.2). Fix
˛; ˇ � 0 with ˛Cˇ 2 .0; 2/ and define M1.dx/ D jxj˛M.dx/. If M1 2 RVc�ˇ.�/ for
some � ¤ 0 and

Mt.D/ D t
Z

Rd
1D.atx/M.dx/; D 2 B.Rd/;

where at � k1=.ˇC˛/=V .t/ for some k > 0 and V.t/ D t˛=M1.jxj > t/, then

lim
s!0 lim sup

t!c

Z

jxj�s
jxj2Mt.dx/ D 0:
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Further, if for some � 2 Œ0; ˇ C ˛/

Z

jxj>1
jxj�M.dx/ < 1; then lim

s!1 lim sup
t!c

Z

jxj>s
jxj�Mt.dx/ D 0

and if ˛ D 0 and
Z

jxj>1
log jxjM.dx/ < 1; then lim

s!1 lim sup
t!c

Z

jxj>s
log jxjMt.dx/ D 0:

Note that when c D 1 Proposition 2.12 implies that if M1 2 RV1�ˇ.�/, then
R
jxj>1 jxj�M.dx/ < 1 for any � < ˛ C ˇ. However, a similar result does not hold

when c D 0.

Proof. Define

U.u/ WD
Z

jxj>u
jxj˛M.dx/ and Ut.u/ WD

Z

jxj>u
jxj˛Mt.dx/ D ta˛t U.u=at/:

Note that (2.16) implies that U 2 RVc�ˇ and (2.8) implies that a� 2 RVc�1=.ˇC˛/
and hence by Proposition 2.6 limt!c at D 1=c. By Proposition 2.6 it follows that as
t ! c

t � V.V .t// � k˛=.˛Cˇ/

a˛t M1.jxj > k1=.ˇC˛/=at/
� k

a˛t U.1=at/
:

Combining this with Fubini’s Theorem gives

lim
t!c

Z

jxj�s
jxj2Mt.dx/ D lim

t!c
.2 � ˛/

Z

jxj�s

Z jxj

0

u1�˛dujxj˛Mt.dx/

D lim
t!c

�

.2 � ˛/
Z s

0

u1�˛Ut.u/du � s2�˛Ut.s/




D lim
t!c

ta˛t

�

.2 � ˛/
Z s

0

u1�˛U.u=at/du � s2�˛U.s=at/




D lim
t!c

k

"

.2 � ˛/
R s
0

u1�˛U.u=at/du

U.1=at/
� s2�˛

U.s=at/

U.1=at/

#

D lim
t!c

k.2 � ˛/a2�˛t

R s=at

0
u1�˛U.u/du

U.1=at/
� ks2�˛�ˇ

D lim
t!c

k.2 � ˛/
R s=at

0
u1�˛U.u/du

.s=at/2�˛U.s=at/
s2�˛�ˇ � ks2�˛�ˇ

D k
2 � ˛

2 � ˛ � ˇ s2�˛�ˇ � ks2�˛�ˇ;
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which approaches 0 as s ! 0. In the above the fifth equality follows by change
of variables and the seventh by Karamata’s Theorem (Theorem 2.7). The proofs
of the other parts are similar. We just need to note that by Fubini’s Theorem for
� 2 Œ0; ˇ C ˛/ and s > 0 we have

Z

jxj>s
jxj�Mt.dx/ D .� � ˛/

Z 1

s
u��˛�1Ut.u/du C s��˛Ut.s/

and for ˛ D 0 and s > 1 we have
Z

jxj>s
log jxjMt.dx/ D

Z 1

s
u�1Ut.u/du C Ut.s/ log.s/:

This completes the proof. ut
Proof (Proof of Theorem 5.1). Note that atXt � bt � TSp

˛.Rt; �t/, where Rt is
given by (5.3) and �t is given by (5.4). If (5.5) holds, then Lemma 5.6 implies that

limt!c at D 1=c and, by Theorem 4.12 and Remark 4.7, limt!c �t D 0 and Rt
v! Rˇ�

on NRd
0 as t ! c. Since, for all b � 0, Rˇ� .jxj D b/ D 0, for any D 2 B.Sd�1/ with

�.@D/ D 0 the Portmanteau Theorem (Proposition 4.4) implies that

lim
t!c

tR

�

jxj > b=at;
x

jxj 2 D

�

D lim
t!c

Rt

�

jxj > b;
x

jxj 2 D

�

D Rˇ�

�

jxj > b;
x

jxj 2 D

�

D
Z

D

Z 1

b
r�1�ˇdr�.du/

D ˇ�1�.D/b�ˇ:

Thus, by Proposition 2.11, R 2 RV1�ˇ.�/, a� 2 RV1�1=ˇ , and (5.6) holds.
Conversely, assume that R 2 RV1�ˇ.�/. Let Rt be as in (5.3) and at as in (5.6). By

Proposition 2.11, for any b > 0 and D 2 B.Sd�1/ with �.@D/ D 0

lim
t!c

Rt

�

jxj > b;
x

jxj 2 D

�

D lim
t!c

tR

�

jxj > b=at;
x

jxj 2 D

�

D ˇ�1�.D/b�˛

D
Z

D

Z 1

b
r�1�ˇdr�.du/

D Rˇ�

�

jxj > b;
x

jxj 2 D

�

:
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Since, for all b � 0, Rˇ� .jxj D b/ D 0 we can use Lemma 4.9 to get Rt
v! Rˇ� on NRd

0

as t ! 1. From here the result follows by applying Lemma1 5.7 and Remarks 4.6
and 4.7. ut
Proof (Proof of Theorem 5.2). By Proposition 2.11 �1 2 RVc

0.�/ if and only if
there is a function a� with limt!c at D 1=c such that for all s 2 .0;1/ and all
D 2 B.Sd�1/ with �.@D/ D 0

lim
t!c

ta˛t �
1

�

jxj > s=at;
x

jxj 2 D

�

D �.D/: (5.16)

When this holds a� 2 RV1�1=˛ and at is as in (5.8). Thus, it suffices to show that (5.7)
holds if and only if (5.16) holds.

Let � be the extended Rosiński measure of X1, let �Y be the extended Rosiński
measure of Y , and let Rt and �t be, respectively, the Rosiński measure and the
extended Rosiński measure of atXt � bt. For D 2 B.Sd�1/ with � .@D/ D 0 and
s 2 .0;1/ define As

D WD fjxj > s; �.x/ 2 Dg and note that �Y.@As
D/ D 0.

First assume that (5.7) holds. Lemma 5.6 implies that limt!c at D 1=c and

Theorem 4.12 implies that �t
v! �Y on NRd

0 as t ! c. By the Portmanteau Theorem
(Proposition 4.4)

lim
t!c

�t.A
s
D/ D �Y.A

s
D/ D �Y.1D/ D �.D/: (5.17)

When s � 1

ta˛t �
1
�

As=at
D

	
D ta˛t

Z

jxj>s=at

1D.�.x//jxj˛R.dx/

D
Z

jxj>s
1D.�.x//jxj˛Rt.dx/ D �t.A

s
D/;

and similarly when s 2 .0; 1/

ta˛t �
1
�

As=at
D

	
D ta˛t �

1
�

A1=at
D

	
C ta˛t �

1
�

As=at
D

	
� ta˛t �

1
�

A1=at
D

	

D �t.A
1
D/C

Z

1�jxj>s
1D.�.x//jxj˛Rt.dx/:

Now observe that by (5.17) when s 2 .0; 1/ we have

lim
t!c

Z

1�jxj>s
1D.�.x//jxj˛Rt.dx/ � lim

t!c
s�.2�˛/

Z

1�jxj>s
1D.�.x//jxj2Rt.dx/

D lim
t!c

s�.2�˛/
�
�t.A

s
D/ � �t.A

1
D/
�

D s�.2�˛/ Œ�.D/ � �.D/� D 0:

1It should be noted that the parameter ˛ means different things in Theorem 5.1 and in Lemma 5.7.
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Putting everything together implies that for any s 2 .0;1/

lim
t!c

ta˛t �
1
�

As=at
D

	
D lim

t!c
�t.A

s_1
D / D �.D/;

and (5.16) holds as required.
Now assume that (5.16) holds. By Proposition 2.11 a� satisfies (5.8) and a� 2

RVc�1=˛ . As in the previous case, for s � 1 we have

�t.A
s
D/ D ta˛t �

1
�

As=at
D

	
;

and for s 2 .0; 1/ we have

�t.A
s
D/ D �t.A

1
D/C �t.A

s
D/ � �t.A

1
D/ D ta˛t �

1
�

A1=at
D

	
C
Z

1�jxj>s
1D.�.x//jxj2Rt.dx/:

Now observe that (5.16) implies that for s 2 .0; 1/

lim
t!c

Z

1�jxj>s
1D.�.x//jxj2Rt.dx/ � lim

t!c

Z

1�jxj>s
1D.�.x//jxj˛Rt.dx/

D lim
t!c

h
ta˛t �

1.As=at
D / � ta˛t �

1.A1=at
D /

i

D �.D/ � �.D/ D 0:

This implies that for all s 2 .0;1/

lim
t!c

�t.A
s
D/ D lim

t!c
ta˛t �

1.A.s_1/=at
D / D �.D/;

and by Lemma 4.9 it follows that �t
v! �Y on NRd

0 as t ! c. Thus we have
convergence of the extended Rosiński measures. It remains to show convergence
of the shifts and Gaussian parts. The convergence of the shifts is equivalent to the
condition that �t ! 0 as t ! c. By (4.23) the limit will have no Gaussian part so
long as

lim sup
t!c

�t.jxj < 1/ D 0;

which follows immediately from Lemma 5.7. This concludes the proof. ut
To prove results for convergence to the Gaussian we need a few additional

Lemmas.

Lemma 5.8. Fix ˛ < 2, p > 0, and let fRng be a sequence of measures on R
d

satisfying (2.2). If, for any s > 0, limn!1 Rn.jxj > s/ D 0 and if for some � > 0

sup
n

Z

jxj��
jxj2Rn.dx/ < 1;
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then for any a; b; c 2 .0;1/

lim
n!1

 Z

jxj�a
xxT

Z c=jxj

0

t1�˛e�tp dtRn.dx/ � �
Z

jxj�b
xxTRn.dx/

!

D 0;

where � D R1
0

t1�˛e�tp dt.

Proof. Fix � > 0 and let C D supn

R
jxj�� jxj2Rn.dx/. By dominated convergence

limu!1
R u
0

t1�˛e�tp dt D �; which implies that there exists a u0 2 .0;1/ such that if
u � u0, then

ˇ
ˇ� � R u

0
t1�˛e�tp dt

ˇ
ˇ < �

C . Fix a0 > 0 such that a0 < minfc=u0; a; b; �g.
For any 1 � i; j � d we have

ˇ
ˇ
ˇ
ˇ
ˇ

Z

jxj�a
xixj

Z c=jxj

0

t1�˛e�tp dtRn.dx/ � �
Z

jxj�b
xixjRn.dx/

ˇ
ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ
ˇ

Z

jxj�a0

xixj

Z c=jxj

0

t1�˛e�tp dtRn.dx/ � �
Z

jxj�a0

xixjRn.dx/

ˇ
ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ
ˇ

Z

a0<jxj�a
xixj

Z c=jxj

0

t1�˛e�tp dtRn.dx/

ˇ
ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ�

Z

a0<jxj�b
xixjRn.dx/

ˇ
ˇ
ˇ
ˇ

DW A1;n C A2;n C A3;n:

Further,

A2;n � �

Z

a0<jxj�a
jxj2Rn.dx/ � �a2Rn.jxj > a0/ ! 0;

A3;n � �

Z

a0<jxj�b
jxj2Rn.dx/ � �b2Rn.jxj > a0/ ! 0;

and

A1;n �
Z

jxj�a0

jxj2
ˇ
ˇ
ˇ
ˇ
ˇ
� �

Z c=jxj

0

t1�˛e�tp

ˇ
ˇ
ˇ
ˇ
ˇ
dtRn.dx/

�
Z

jxj�a0

jxj2
ˇ
ˇ
ˇ
ˇ
ˇ
� �

Z c=a0

0

t1�˛e�tp

ˇ
ˇ
ˇ
ˇ
ˇ
dtRn.dx/

<
�

C
sup

n

Z

jxj�a0

jxj2Rn.dx/ � �;

which completes the proof. ut
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Lemma 5.9. Fix c 2 f0;1g. Let M be a measure on R
d satisfying (2.2) and let

Au D R
jxj�u xxTM.dx/. If A� 2 MRVc

0.B/ for some B ¤ 0 and

Mt.D/ D t
Z

Rd
1D.atx/M.dx/; D 2 B.Rd/;

where at � k�1=2=V .t/ for some k > 0 and V.t/ D t2=
R
jxj�t jxj2M.dx/, then the

following hold.

1. There exists a ı > 0 such that if Bıc D .0; ı/ when c D 0 and Bıc D .1=ı;1/

when c D 1, then

sup
t2Bıc

Z

jxj�1
jxj2Mt.dx/ < 1:

2. If, for � 2 Œ0; 2/,
Z

jxj>1
jxj�M.dx/ < 1; (5.18)

then limt!c
R
jxj>s jxj�Mt.dx/ D 0 for all s > 0. Moreover, when c D 1 (5.18)

holds for every � 2 Œ0; 2/.
3. If

R
jxj>1 log jxjM.dx/ < 1, then lims!1 lim supt!c

R
jxj>s log jxjMt.dx/ D 0.

Proof. Let

U.u/ WD
Z

jxj�u
jxj2M.dx/ D trAu and Ut.u/ WD

Z

jxj�u
jxj2Mt.dx/ D ta2t U.u=at/:

From Definition 2.8, (2.8), and Proposition 2.6 it follows that U 2 RVc
0 , a� 2

RVc�1=2, limt!c at D 1=c, and t � V.1=.at

p
k// D Œka2t U.1=.at

p
k//��1 �

Œka2t U.1=at/�
�1 as t ! c. Part 1 follows from the fact that

lim
t!c

Z

jxj�1
jxj2Mt.dx/ D lim

t!c
ta2t

Z

jxj�1=at

jxj2M.dx/ D lim
t!c

U.1=at/

kU.1=at/
D 1=k < 1:

Now to show Part 2. By Fubini’s Theorem it follows that for any s > 0

Z

jxj>s
jxj�Mt.dx/ D .2 � �/

Z 1

s
u��3Ut.u/du � s��2Ut.s/:

When c D 1 the right side is finite by Lemma 2 on Page 277 in [23], and hence the
left side must be finite as well. Further, we have
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lim
t!c

Z

jxj>s
jxj�Mt.dx/ D lim

t!c
ta2t

�

.2 � �/
Z 1

s
u��3U.u=at/du � s��2U.s=at/




D lim
t!c

k�1
"

.2 � �/
R1

s u��3U.u=at/du

U.1=at/
� s��2

U.s=at/

U.1=at/

#

D lim
t!c

k�1.2 � �/
R1

s=at
u��3U.u/du

U.s=at/.s=at/��2
s��2 � k�1s��2

D k�1
�
s��2 � s��2

� D 0;

where the third equality follows by change of variables and the fourth by Karamata’s
Theorem (Theorem 2.7). We now turn to Part 3. First consider the case c D 1. The
fact that log jxj � jxj (see, e.g., 4.1.36 in [2]) and the result of Part 2 gives

0 � lim
s!1 lim sup

t!1

Z

jxj>s
log jxjMt.dx/ � lim

s!1 lim sup
t!1

Z

jxj>s
jxjMt.dx/ D 0:

Now assume that c D 0. In this case at ! 1 as t ! 0 and we have

lim sup
t!0

Z

jxj>s
log jxjMt.dx/ D lim sup

t!0
t
Z

jxj>s=at

log jxatjM.dx/

D lim sup
t!0

R
jxj>s=at

log jxatjM.dx/

ka2t U.1=at/

D lim sup
t!0

"R
jxj>1 log jxatjM.dx/

ka2t U.1=at/

C
R
1�jxj>s=at

log jxatjM.dx/

ka2t U.1=at/

#

DW lim sup
t!0

ŒI1.t/C I2.s; t/� :

Define

f .u/ D a C b log juj
kU.1=u/

u�2;

where

a D
Z

jxj>1
log jxjM.dx/ and b D

Z

jxj>1
M.dx/;
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and note that, by assumption, a; b 2 .0;1/. The fact that U 2 RV0
0 implies that

f 2 RV1�2 and thus by Proposition 2.6

lim
t!0 I1.t/ D lim

t!0 f .at/ D lim
t!1 f .t/ D 0:

Using the inequality log jxj � jxj again and Fubini’s Theorem gives
Z

1�jxj>s=at

log jxatjM.dx/ � at

Z

1�jxj>s=at

jxjM.dx/

D at

Z 1

s=at

u�2
Z

s=at<jxj�.u^1/
jxj2M.dx/du

� at

Z 1

s=at

u�2
Z

jxj�.u^1/
jxj2M.dx/du

D at

Z 1

s=at

u�2U.u/du C atU.1/

D at

Z at=s

1

U.1=u/du C atU.1/;

where the final line follows by change of variables. This implies that

I2.s; t/ �
R at=s
1

U.1=u/du

katU.1=at/
C U.1/

katU.1=at/
DW I21.s; t/C I22.t/:

By Karamata’s Theorem (Theorem 2.7) and the fact that U.1=
/ 2 RV10 we have

lim
s!1 lim sup

t!0
I21.s; t/ D lim

s!1 lim sup
t!0

R at=s
1

U.1=u/du

k.at=s/U.s=at/
s�1 D lim

s!1
1

k
s�1 D 0:

Finally, note that the function of u given by U.1/
kuU.1=u/ is an element of RV1�1, which

implies that limt!0 I22.t/ D 0. ut
Proof (Proof of Theorem 5.4). Note that atXt � bt � TSp

˛.Rt; �t/, where Rt is given
by (5.3) and �t is given by (5.4). Before proceeding set � D R1

0
s1�˛e�sp

ds.
First assume that A� 2 MRVc

0.B=trB/ and that at is given by (5.13). This implies
that a� 2 RVc�1=2. Further, Lemma 5.9 implies that the assumptions of Lemma 5.8
hold. Using this lemma gives

lim
�#0

lim
t!c

Z

jxj�p�
xxT

Z �=jxj

0

s1�˛e�sp
dsRt.dx/ D lim

t!c
�

Z

jxj�1=pK
xxTRt.dx/

D � lim
t!c

ta2t

Z

jxj�1=.pKat/

xxTR.dx/
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D � lim
t!c

K�1
R
jxj�1=.pKat/

xxTR.dx/
R
jxj�1=.pKat/

jxj2R.dx/

D trB lim
t!c

R
jxj�1=.pKat/

xxTR.dx/
R
jxj�1=.pKat/

jxj2R.dx/
D B:

From here the result will follow by Theorem 4.12. We just need to show that
the extended Rosiński measure goes to zero, which follows by Remark 4.7 and
Lemma 5.9.

Now assume that (5.12) holds. Theorem 4.12 implies that for every s > 0

lim
t!c

Rt.jxj > s/ D 0

and

lim
�#0

lim
t!c

Z

jxj�p�
xxT

Z �=jxj

0

s1�˛e�sp
dsRt.dx/ D B: (5.19)

This means that there exist an �0 > 0 and a ı > 0 such that

1 > sup
t2Bıc

Z

jxj�p�0

jxj2
Z �0=jxj

0

s1�˛e�sp
dsRt.dx/

� sup
t2Bıc

Z

jxj�p�0

jxj2Rt.dx/
Z p�0

0

s1�˛e�sp
ds;

where Bıc D .0; ı/ if c D 0 and Bıc D .1=ı;1/ if c D 1. Hence

sup
t2Bıc

Z

jxj�p�0

jxj2Rt.dx/ < 1

and we can use Lemma 5.8, which combined with (5.19) tells us that for any s > 0

� lim
t!c

ta2t

Z

jxj�s=at

xxTR.dx/ D � lim
t!c

Z

jxj�s
xxTRt.dx/ D B:

Thus, for any s > 0,

� lim
t!c

ta2t U.s=at/ D trB;
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where U.t/ D R
jxj�t jxj2R.dx/. Lemma 5.6 implies that the sequential criterion for

regular variation of monotone functions (see Proposition 2.6) holds and thus that
U 2 RVc

0 . The fact that

lim
t!c

R
jxj�t xxTR.dx/
R
jxj�t jxj2R.dx/

D lim
t!c

�ta2t
R
jxj�1=at

xxTR.dx/

�ta2t
R
jxj�1=at

jxj2R.dx/
D B

trB

shows that A� 2 MRVc
0.B=trB/ as required. ut



Chapter 6
Parametric Classes

Tempered stable distributions form a semiparametric class of models. However, for
the purposes of specific applications one generally works with particular parametric
subclass. In this chapter we discuss several parametric families and their properties.1

We also discuss the problem of parameter estimation.

6.1 Smoothly Truncated Lévy Flights

Smoothly truncated Lévy flights form, what is perhaps, the simplest and most
heavily used class of tempered stable distributions. These models have been known
under a variety of names including classical tempered stable, KoBoL, and CGMY.
In the case p D 1 they have been discovered and rediscovered multiple times, see,
e.g., [39, 58, 77], and [48]. A detailed survey for the case when p D 1 and ˛ 2 .0; 1/
is given in [49]. We begin our discussion with the definition.

For p > 0 and ˛ < 2, a distribution TSp
˛.R; b/ on R is called a smoothly

truncated Lévy flight (STLF) if

R.dx/ D c�`�˛� ı�`�

.dx/C cC`�˛C ı`C

.dx/;

where `�; `C > 0 and c�; cC � 0. We use the notation STLFp
˛.c�; cC`�; `C; b/ to

denote this distribution. From Theorem 3.3 it follows that this is a proper p-tempered
˛-stable distribution with Lévy measure

M.dx/ D c�jxj�1�˛e�.jxj=`�

/p1x<0dx C cCx�1�˛e�.x=`C

/p1x>0dx:

1Additional parametrizations are explored in [46, 76], and [60].
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Further, when ˛ 2 .0; 2/ we can write M.dx/ D q
�
jxjp; x

jxj
	

L.dx/, where

L.dx/ D c�jxj�1�˛1x<0dx C cCx�1�˛1x>0

is the Lévy measure of the ˛-stable distribution being tempered and

q.rp; u/ D



e�.r=`�

/p if u D �1
e�.r=`C

/p if u D C1

is the tempering function.
Now fix p > 0, ˛ < 2, and let X � STLFp

˛.c�; cC`�; `C; b/. From Theorem 3.15
it follows that for every ˇ � 0

EjXjˇ < 1;

and by Theorem 3.16 the cumulants are given by

�1 D EŒX� D b C
Z 1

0

 
cC`3�˛C
1C `2Ct2

� c�`3�˛�
1C `2�t2

!

t2�˛e�tp dt;

�2 D Var.X/ D p�1�
�
2 � ˛

p

�
�
c�`2�˛� C cC`2�˛C

�
;

and for n � 3

�n D p�1�
�

n � ˛
p

�
�
c�.�1/n`n�˛� C cC`n�˛C

�
:

Theorem 3.17 implies that if p 2 .0; 1� and �0 D minf`�p� ; `
�p
C g, then

E
h
e� jXj

i 

< 1 if � < �0
D 1 if � > �0

and

E
h
e�0jXj

i 

< 1 if ˛ 2 .0; 2/
D 1 if ˛ � 0

:

Hence the distribution has exponential tails in this case. However, by (3.22)
and (3.23) whenever p > 1 we have

E
h
e� jXj

i
< 1 for all � � 0;

and the distribution has lighter than exponential tails in this case.
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Now let fXt W t � 0g be a Lévy process with X1 � STLFp
˛.c�; cC; `�; `C; b/.

Since X1 has a proper p-tempered ˛-stable distribution with a finite variance,
Theorems 5.4 and 5.2 imply that this process has Gaussian long time behavior and
when ˛ 2 .0; 2/ it has ˛-stable short time behavior.

In the remainder of this section we focus on an important subclass, which
corresponds to the case when c� D 0. In this case the parameter `� is irrelevant, and
for simplicity we denote c D cC and ` D `C. In this case the Rosiński measure is

R.dx/ D c`�˛ı`.dx/: (6.1)

We use the notation TWp
˛.c; `; b/ to denote the distribution TSp

˛.R; b/ when R is
given by (6.1),2 and we use the notation TWp

˛ to denote the class of all distributions
of this form. These distributions are closely related to the class of elementary
p-tempered ˛-stable distributions introduced in Definition 4.17. Specifically, every
elementary p-tempered ˛-stable distribution is the distribution of a random variable
of the form Ux, where x 2 R

d and U � TWp
˛.c; `; b/ for some c � 0,

` > 0, and b 2 R. Further, Theorem 4.18 implies that every p-tempered ˛-stable
distributions on R

d is the limit, in distribution, of a sequence of linear combinations
of independent random variables with distributions in TWp

˛ .
The case p D 1 is particularly important and, for simplicity, we write TW˛ D

TW1
˛ and TW˛.c; `; b/ D TW1

˛.c; `; b/. If � D TW˛.c; `; b/, then Corollary 3.29
implies that the characteristic function is given by O�.z/ D eC�.z/Cizb1 , where for
z 2 R

C�.z/ D
8
<

:

c`�˛� .�˛/Œ.1 � iz`/˛ � 1C i˛z`� ˛ ¤ 0; 1

�cŒlog.1 � iz`/C iz`� ˛ D 0

c`�1Œ.1 � iz`/ log.1 � iz`/C iz`� ˛ D 1

(6.2)

and

b1 D
Z

R

x�.dx/ D b C c`3�˛
Z 1

0

1

1C `2t2
t2�˛e�tdt: (6.3)

In the case of TW0.c; `; b/ with b D c` � c`3
R1
0

1
1C`2t2

t2e�tdt the characteristic
function reduces to

e�c log.1�iz`/ D .1 � iz`/�c; z 2 R;

which is the characteristic function of the gamma distribution with probability
density

1

� .c/`c
xc�1e�x=`1x>0:

2We use this notation in honor of Tweedie [77], who first introduced these distributions in the case
˛ 2 .0; 1/ and p D 1.
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In the case TW:5.c; `; b/ with b D �:5c`1=2� .�:5/ � c`5=2
R1
0

1
1C`2t2

t3=2e�tdt the
characteristic function reduces to

exp
˚
c`�1=2� .�1=2/Œ.1 � iz`/1=2 � 1�� D exp

n
�2c

p
�Œ
p
1=` � iz �

p
1=`�

o
;

where we use the fact that � .�1=2/ D �2� .1=2/ D �2p� . This is the
characteristic function of the inverse Gaussian distribution with probability density

ce2c
p
�=`e�x=`��c2=xx�3=21x>0;

see Section 4.4.2 in [21].
We now turn to the question of when the distribution of a Lévy process

with marginal distributions in TW˛ is absolutely continuous with respect to the
distribution of the ˛-stable Lévy process that is being tempered. First, as in the
discussion just prior to Theorem 3.25 let X D fXt W t � 0g be the canonical process
on the space ˝ D D.Œ0;1/;R/ equipped with the � -algebra F D �.Xt W t � 0/

and the right-continuous natural filtration Ft D T
s>t �.Xu W u � s/.

Fix ˛ 2 .0; 2/, c; ` > 0, and a; b 2 R. Consider two probability measures
P0 and P on the space .˝;F /. Assume that, under P, X is a Lévy process with
X1 � TW˛.`; c; b/ and that, under P0, X is a Lévy process with X1 � S˛.a; �/
where �.f�1g/ D 0 and �.f1g/ D c. Thus, under P0 the Lévy measure of X1 is
L.dx/ D cx�1�˛1x>0dx, and under P it is q.x; x=jxj/L.dx/, where q.x; 1/ D e�x=`

and q.x;�1/ D 0. Assume that

b � a D c`1�˛
Z 1

0

1

1C `2t2
t�˛

�
e�t � 1� dt; (6.4)

and note that

Z

S0

Z 1

0

Œ1 � q.r; u/�2 r�1�˛dr�.du/ D c
Z 1

0

�
1 � e�r=`

�2
r�1�˛dr < 1:

From here Theorem 3.25 implies that the measures P0 and P are mutually absolutely
continuous. From (2.3) it follows that the process X has only positive jumps P0-a.s.
thus �Xs � 0 for all s > 0 P0-a.s. From the Lévy-Itô decomposition (see, e.g.,
Proposition 3.7 in [21] or Theorem 19.2 in [69]) it follows that P0-a.s.

lim
�#0

0

@
X

fs2.0;t�W�Xs>�

�X.s/ � tc
Z 1

�

r�˛dr

1

A

D Xt � ta � tc
Z 1

0

�

1r�1 � 1

1C r2

�

r�˛dr: (6.5)
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Further, Theorem 3.25 implies that the Radon-Nikodym process is given by

Ut D lim
�#0

8
<

:

X

fs2.0;t�Wj�Xsj>�
log q

�

j�Xsj; �Xs

j�Xsj
�

Ct
Z

S0

Z 1

�

Œ1 � q.r; u/�r�˛�1dr�.du/

�

D lim
�#0

8
<

:
�`�1

X

fs2.0;t�W�Xs>�

�Xs C tc
Z 1

�

Œ1 � e�r=`�r�˛�1dr

9
=

;

D � lim
�#0

8
<

:
`�1

0

@
X

fs2.0;t�W�Xs>�

�Xs � tc
Z 1

�

r�˛dr

1

A

Ctc
Z 1

�

Œe�r=` � 1C r`�11r�1�r�˛�1dr

�

:

Applying (6.5) and dominated convergence gives

Ut D �`�1Xt C `�1ta C `�1tc
Z 1

0

�

1r�1 � 1

1C r2

�

r�˛dr

�tc
Z 1

0

Œe�r=` � 1C `�1r1r�1�r�˛�1dr

D �`�1Xt C `�1ta � tc
Z 1

0

�

e�r=` � 1C r=`

1C r2




r�˛�1dr:

Note that Theorem 25.17 in [69] implies

log EP0 Œe
�Xt=`� D tc

Z 1

0

�

e�r=` � 1C r=`

1C r2




r�˛�1dr � ta=`

and hence

eUt D e�Xt=`
1

EP0 Œe�Xt=`�
:

This means that for any Borel function F for which the expectation exists we have

EPŒF.Xt/� D EP0

�
F.Xt/e

�Xt=`
� 1

EP0 Œe�Xt=`�
(6.6)

and

EP0 ŒF.Xt/� D EP
�
F.Xt/e

Xt=`
� 1

EPŒeXt=`�
: (6.7)
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From Theorem 3.28 it follows that

EP
�
eXt=`

� D exp ftc`�˛� .2 � ˛/=˛ C tb1=`g ;

and hence

EP0

�
e�Xt=`

� D 1

EP
�
eXt=`

� D exp f�tc`�˛� .2 � ˛/=˛ � tb1=`g ;

where b1 D EPŒX1� is as given by (6.3). Noting that (6.6) and (6.7) do not depend
on the structure of the space on which the process is defined gives the following.

Proposition 6.1. Fix ˛ 2 .0; 2/. Let fXt W t � 0g be a Lévy process with X1 �
TW˛.`; c; b/ and let fYt W t � 0g be a Lévy process with Y1 � S˛.a; �/ where
�.f�1g/ D 0 and �.f1g/ D c. If a and b satisfy (6.4) and b1 D EŒX1�, then

EŒF.Xt/� D E
�
F.Yt/e

�Yt=`
�

exp ftc`�˛� .2 � ˛/=˛ C tb1=`g

and

EŒF.Yt/� D E
�
F.Xt/e

Xt=`
�

exp f�tc`�˛� .2 � ˛/=˛ � tb1=`g

for any Borel function F for which the expectation exists.

This means that we can evaluate such expectations using Monte-Carlo methods
without needing to simulate TW˛.`; c; b/ random variables. Instead, it suffices to
simulate from a stable distribution, which can be done using techniques given
in [20]. Further, Proposition 6.1 immediately gives the following.

Theorem 6.2. If � D TW˛.`; c; b/ with ˛ 2 .0; 2/, then � has a probability density

m.x/ D e�x=`g.x/ec`�˛� .2�˛/=˛Cb1=`;

where b1 is given by (6.3) and g.x/ is the probability density of the distribution
S˛.�; a/ where a is given by (6.4) and we have �.f�1g/ D 0 and �.f1g/ D c.

This result can be used to find computationally nice forms for the density m.x/.
In particular, a computationally tractable integral representation of g.x/ is given
in [57]. Further, several series expansions for g.x/ are available, see, e.g., Section 14
in [69]. In addition, this result can be used to simulate random variables with density
m.x/ using an accept-reject algorithm, see [4] or [42].
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6.2 Heavy Tails

In this section we discuss two classes of p-tempered ˛-stable distributions with
regularly varying tails. Such tails are heavier than those of the STLF models
discussed in Section 6.1, but, in general, lighter than those of ˛-stable distributions.
Models of this type are useful for a variety of applications. In particular, it is often
thought that the distributions of financial returns have regularly varying tails, see,
e.g., Section 7.3 in [21].

6.2.1 Power Tempering

In this section we focus on the class of p-tempered ˛-stable distributions with
Rosiński measures of the form

R.dx/ D c�.1C jxj/���

�11x<0dx C cC.1C x/��C

�11x>0dx; (6.8)

where c�; cC � 0 and ��; �C > ˛ _ 0. We write PTp
˛.c�; cC; ��; �C; b/ to denote a

distribution TSp
˛.R; b/ where R is as in (6.8). From (3.2) and substitution it follows

that the Lévy measure of this distribution is given by

M.dx/ D c�q.jxjp;�1/jxj�1�˛1x<0dx C cCq.xp; 1/x�1�˛1x>0dx;

where

q.r;�1/ D p�1
Z 1

0

e�ru
�
1C u�1=p

���
�

�1
u�.1C˛/=p�1du

and

q.r; 1/ D p�1
Z 1

0

e�ru
�
1C u�1=p

���
C

�1
u�.1C˛/=p�1du:

Moreover, it can be readily checked that when ˛ 2 .�1; 2/ we have
R
R

jxj˛R.dx/ <
1, and hence Theorem 3.3 implies that all such distributions are proper p-tempered
˛-stable distributions. Now, let X � PTp

˛.c�; cC; ��; �C; b/, let � D minf��; �Cg,
and fix ˇ � 0. From Theorem 3.15 it follows that

EjXjˇ < 1 if and only if ˇ < �:

When this holds formulas for the cumulants are as follows.

Proposition 6.3. Let � D PTp
˛.c�; cC; ��; �C; b/ and let � D minf��; �Cg. If m 2

N such that 1 � m < �, then the mth cumulant exists and is given by

�1 D b C
Z

R

Z 1

0

x
jxj2

1C jxj2t2 t2�˛e�tp dtR.dx/
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if m D 1 and by

�m D p�1�
�

m � ˛
p

� mX

kD0
.�1/k

 
m

k

!�
c�

�� � k
C .�1/mcC

�C � k

�

if m � 2. In particular, when � > 2 the variance exists and is given by

2p�1�
�
2 � ˛

p

��
c�

��.�� � 1/.�� � 2/ C cC
�C.�C � 1/.�C � 2/




Proof. Theorem 3.16 gives the formula for �1 when it exists and tells us that for
m 2 N with 2 � m < � we have

�m D p�1�
�

m�˛
p

��

c�
Z 0

�1
xm.1C jxj/���

�1dxCcC
Z 1

0

xm.1C x/��C

�1dx




:

Change of variables and the binomial theorem imply that

Z 0

�1
xm.1C jxj/���

�1dx D .�1/m
Z 1

0

xm.1C x/���

�1dx

D .�1/m
Z 1

0

Œ.x C 1/ � 1�m.1C x/���

�1dx

D .�1/m
mX

kD0

 
m

k

!

.�1/m�k
Z 1

0

.1C x/k���

�1dx

D
mX

kD0

 
m

k

!

.�1/k 1

�� � k
:

A similar argument gives

Z 1

0

xm.1C x/��C

�1dx D
mX

kD0

 
m

k

!

.�1/kCm 1

�C � k
;

which completes the proof. ut
We conclude this section by characterizing the tail behavior of these distributions.

We begin by noting that for r > 0 we have

R.x > r/ D cC
Z 1

r
.1C x/�1��C dx D cC

�C
.1C r/��C 2 RV1��

C

and

R.�x > �r/ D c�
Z 1

r
.1C x/�1��� dx D c�

��
.1C r/��� 2 RV1��

�

:
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Thus R 2 RV1��.�/, where � D minfv�; vCg and � is a measure on S
0 given by

�.f�1g/ D c�
c� C cC

1�
�

D�
C

C 1�
�

<�
C

and

�.f1g/ D cC
c� C cC

1�
C

D�
�

C 1�
�

>�
C

:

From here Theorem 3.18 implies that

PTp
˛.c�; cC; ��; �C; b/ 2 RV1��.�/:

Now let fXt W t � 0g be a Lévy process with X1 � PTp
˛.c�; cC; ��; �C; b/.

Theorems 5.1 and 5.4 imply that the long time behavior is �-stable if � 2 .˛ _ 0; 2/
and Gaussian if � � 2. Further, when ˛ 2 .0; 2/, Theorem 5.2 and the fact that X1
has a proper p-tempered ˛-stable distribution imply that the short time behavior is
˛-stable.

6.2.2 Gamma Tempering

Another parametric family of tempered stable distributions with heavy tails was
introduced in [76] under the name “gamma tempered stable.” A gamma tempered
stable distribution is TSp

˛.R; b/ where R is given by

R.dx/ D c�jxj���

�1e�`�

=jxjp1x<0dx C cCx��C

�1e�`C

=xp
1x>0dx

with c�; cC � 0, ��; �C > ˛ _ 0, and `�; `C > 0. It is straightforward to check
that R satisfies the required conditions to be the Rosiński measure of a p-tempered
˛-stable distribution, and, in fact, it is a proper p-tempered ˛-stable distribution for
every ˛ < 2. We denote this distribution by

GTp
˛.c�; cC; ��; �C; `�; `C; b/:

From (3.2) and substitution it follows that the Lévy measure is given by

M.dx/ D c�q.jxjp;�1/jxj�1�˛1x<0dx C cCq.xp; 1/x�1�˛1x>0dx;

where

q.r;�1/ D .r C `�/�.��

�˛/=pp�1�
�
�� � ˛

p

�
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and

q.r; 1/ D .r C `C/�.�C

�˛/=pp�1�
�
�C � ˛

p

�

:

Note that, in each direction, the function q is, up to multiplication by a constant, the
Laplace transform of a Gamma distribution. Hence the name “gamma tempering.”

Now let X � GTp
˛.c�; cC; ��; �C; `�; `C; b/, let � D minf��; �Cg, and fix

ˇ � 0. From Theorem 3.15 it follows that

EjXjˇ < 1 if and only if ˇ < �:

When this holds formulas for the cumulants are as follows.

Proposition 6.4. Let � D GTp
˛.c�; cC; ��; �C; `�; `C; b/ and let � D

minf��; �Cg. If m 2 N such that 1 � m < �, then the mth cumulant exists
and is given by

�1 D b C
Z

R

Z 1

0

x
jxj2

1C jxj2t2 t2�˛e�tp dtR.dx/

if m D 1 and by

�m D p�2�
�

m � ˛
p

��

cC`
�.�

C

�m/=p
C �

�
�C � m

p

�

C.�1/mc�`�.��

�m/=p� �

�
�� � m

p

�


if m � 2.

Proof. Theorem 3.16 gives the formula for �1 when it exists and tells us that for
m 2 N with 2 � m < � we have

�m D p�1�
�

m � ˛
p

�"

c�
Z 0

�1
xmjxj���

�1e�`�

=jxjp dx C cC
Z 1

0
xmx��C

�1e�`C

=xp
dx

#

:

Change of variables gives

Z 0

�1
xmjxj���

�1e�`�

=jxjp dx D .�1/m
Z 1

0

xm��
�

�1e�`�

=xp
dx

D .�1/mp�1`.m���

/=p�
Z 1

0

x.��

�m/=p�1e�xdx

D .�1/mp�1`�.��

�m/=p� �

�
�� � m

p

�

:
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Similarly, we have

Z 1

0

xmx��C

�1e�`C

=xdx D p�1`�.�C

�m/=p
C �

�
�C � m

p

�

;

and the result follows. ut
We conclude this section by characterizing the tail behavior of these distributions.

Let f .x/ D e�`=xp
for some ` > 0 and note that f 2 RV10 . Thus, for any � > 0

Karamata’s Theorem (Theorem 2.7) implies that

Z 1

r
x���1e�`=xp

dx � ��1r��e�`=rp
as r ! 1:

It follows that for r > 0 we have

R.x > r/ D cC
Z 1

r
x��C

�1e�`C

=xp
dx � cC��1C r��Ce�`C

=rp 2 RV1��
C

and

R.�x > �r/ D c�
Z 1

r
x���

�1e�`�

=xp
dx � c���1� r���e�`�

=rp 2 RV1��
�

:

Thus R 2 RV1��.�/, where � D minfv�; vCg and � is a measure on S
0 given by

�.f�1g/ D c�
c� C cC

1�
�

D�
C

C 1�
�

<�
C

and

�.f1g/ D cC
c� C cC

1�
C

D�
�

C 1�
�

>�
C

:

From here Theorem 3.18 implies that

GTp
˛.c�; cC; ��; �C; `�; `C; b/ 2 RV1��.�/:

Now let fXt W t � 0g be a Lévy process with X1 � GTp
˛.c�; cC; ��; �C; `�; `C; b/.

Theorems 5.1 and 5.4 imply that the long time behavior is �-stable if � 2 .˛ _ 0; 2/
and Gaussian if � � 2. Further, when ˛ 2 .0; 2/, Theorem 5.2 and the fact that X1
has a proper p-tempered ˛-stable distribution imply that the short time behavior is
˛-stable.
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6.3 Parameter Estimation

Let � � R
J for some J 2 N and assume that f�� W � 2 �g is a parametric family

of tempered stable distributions on R. Depending on the situation we may assume
that the parameters ˛ and p depend on � or that they are fixed and known. Assume

that we have a sample X1;X2; : : : ;Xn
iid� ��� for some (unknown) �� 2 �, and that

we want to use this sample to estimate ��. In this section we discuss the two most
common approaches.

The first approach is the method of cumulant matching, which is a version of the
method of moments. Assume that

Z

R

jxjJ��.dx/ < 1 for each � 2 �;

and let �1.�/; �2.�/; : : : ; �J.�/ be the first J cumulants of �� . These can be obtained
using Theorem 3.16. Let

Omj D 1

n

nX

`D1
Xj
` for j D 1; 2; : : : ;K

be the sample moments. We convert these into sample cumulants using the following
recursive formula given in [73]. Let O�1 D Om1 and let

O�j D Omj �
j�1X

`D1

 
j � 1
`

!

O�j�` Om` for j D 2; : : : ; J:

Now solve the nonlinear system of equations

�j.�/ D O�j for j D 1; : : : ; J: (6.9)

We denote the solution to this system O�CM and call this the cumulant matching
estimator. The main issue is that there is no guarantee that (6.9) has a solution, nor
that the solution (when it exists) is unique. For certain classes of STLFs the existence
and uniqueness of solutions is verified in [49]. However, more general results are not
yet known.

The second approach is the method of maximum likelihood. In this case, instead
of making assumptions about the finiteness of certain moments, we assume that for
every � 2 � the distribution �� has a density f� with respect to Lebesgue measure.3

The maximum likelihood estimator (MLE) is given by

O�MLE D argmax
�2�

nY

`D1
f� .X`/:

3One can, of course, perform maximum likelihood estimation even when the density does not exist,
but we do not consider that case here.
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While there are, in general, no simple formulas for the density f� , it can be evaluated
by inverting the characteristic function, see [60] and the references therein for
descriptions of numerical approaches.

We now turn to the question of consistency. From Remark 3.2 we know that
all tempered stable distributions with ˛ 2 Œ0; 2/ belong to the class of self-
decomposable distributions, and all self-decomposable distributions that are not
concentrated at a point have a density with respect to Lebesgue measure. Conditions
for the existence and strong consistency of the MLE for parametric families of
self-decomposable distributions are given in [31]. These can be used to verify
consistency of the MLE for tempered stable distributions as well. In fact, [31]
verified that the MLE is consistent for several important classes of STLFs. In
particular, the following was shown.

Proposition 6.5. Fix � 2 .0; 1/, K > �, and let� D Œ�; 2����Œ�;1/2�Œ�;K�2�R.
For � 2 � we write � D .˛; c�; cC; `�; `C; b/ and �� D STLF1˛.c�; cC; `�; `C; b/.
Within the parametric family f�� W � 2 �g the MLE is strongly consistent.

However, [31] showed that the MLE is not always consistent. In fact, if we take
� 2 .0; :5/ and replace� in the above by� D Œ0; 2���� Œ�;1/2� Œ�;K�2�R (note
that ˛ is no longer bounded away from 0), then the MLE will not be consistent. In
fact, the likelihood function will become unbounded and the MLE will not exist.



Chapter 7
Applications

In this chapter we discuss two applications of tempered stable distributions. The
first is to option pricing and the second is to mobility models. This latter application
is important in a number of fields including ecology, anthropology, and computer
science. We also discuss the mechanism by which tempered stable distributions
appear in applications.

7.1 Option Pricing

It has been observed that standard models do not do a good job of modeling the
fluctuations of financial returns. In particular, the tails of Gaussian distributions are
too light, while the tails of infinite variance stable distributions are too heavy. On
the other hand, tempered stable distributions, which have a tail behavior somewhere
between these two, seem to do a good job, see the empirical studies in, e.g., [17]
and [60]. Moreover, returns are known to exhibit multiscaling behavior where their
distributions are often well approximated by infinite variance stable distributions in
a small time frame and by Gaussian distributions in a large time frame, see, e.g.,
[35]. As we saw in Chapter 5, this is very much in keeping with the behavior of
tempered stable Lévy processes. In this section we discuss option pricing when
returns follow such models. We note that the related problem of risk estimation with
tempered stable distributions is discussed in [28, 47], and the references therein.

Consider an economy made up of a non-dividend paying stock and a money
market account with fixed interest rate r � 0. Let fSt W t � 0g be the price process of
the stock. This means that at time t the price of the stock is St. Consider a European
style option on this stock that matures at time T > 0 and has a payoff function H.
This means that at time T the option will pay H.ST/ to the holder and it pays nothing
at any other time. We are interested in finding an arbitrage-free price for this option.
For a general reference on option pricing we refer the reader to [21].

© Michael Grabchak 2016
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Let ˝ D D.Œ0;1/;R/, let X D fXt W t � 0g be the canonical process on this
space, let F D �.Xs W s � 0/, and let .Ft/t2Œ0;1/ be the right-continuous natural
filtration induced by the process X. See the discussion just before Theorem 3.25 for
details. We assume that the stock price process is of the form

St D S0e
Xt ;

where S0 > 0 is a constant. Further, we assume that the dynamics of the process
X are governed by the probability measure P on the space .˝;F /. We call P the
physical or market measure.

We assume that, under the physical measure P, the process X is a Lévy process
with X1 � TSp

˛.R; b/. This implies that the log-returns have tempered stable
distributions. An arbitrage-free price for the option exists if there is a probability
measure Q on .˝;F / that is equivalent1 to P and such that under Q the discounted
stock price process .e�rtSt/t2Œ0;T� is a martingale, i.e. that for any 0 � t � u � T we
have

e�rtSt D EQ Œe
�ruSujFt� ;

where EQ is the expectation taken with respect to Q. When this holds, we say that Q
is a risk-neutral probability measure. Such measures need not exist and when they
do exist they need not be unique. If such a measure exists, then an arbitrage-free
price for the option exists and is given by

e�rTEQ ŒH.ST/� :

Since there may be many risk-neutral probability measures there may be many
arbitrage-free prices.

Proposition 9.9 in [21] implies that a risk-neutral probability measure Q always
exists so long as, under the physical measure P, the paths of the shifted Lévy process
fXt � rt W t � 0g are not strictly increasing or strictly decreasing with probability 1.
From Proposition 3.24 it follows that sufficient conditions for this are

˛ � 1 and R ¤ 0

and

˛ < 1; R..0;1// > 0; and R..�1; 0/// > 0:

For simplicity, in the remainder of this section we assume that p D 1, ˛ 2 .0; 1/,
and that R satisfies

R..0;1// > 0; R..�1; 0// > 0; and
Z

jxj�1
jxj˛R.dx/ < 1:

We begin by checking when the physical measure is already risk-neutral.

1This means that for any A 2 F we have P.A/ D 0 if and only if Q.A/ D 0.
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Theorem 7.1. The physical probability measure P is a risk-neutral measure if and
only if R.x > 1/ D 0 and

� .�˛/
Z

R

Œ.1 � x/˛ � 1�R.dx/C b0 D r; (7.1)

where b0 is given by (3.35).

Proof. Proposition 3.18 in [21] implies that P is a risk-neutral measure if and only
if e�rEŒeX1 � D 1. Lemma 3.27 implies that EŒeX1 � < 1 if and only if R.x > 1/ D 0.
Further, when this holds, Theorem 3.28 implies that e�rEŒeX1 � D 1 if and only
if (7.1) holds. ut

A simple way to get an equivalent measure is by using an Esscher transform. Let
�C D inff� � 0 W R.x > �/ D 0g and �� D inff� � 0 W R.x < ��/ D 0g. Here we
take inf ; D 1 as usual. Set � D ����1� ; ��1C

�
and note that, by Lemma 3.27,

EŒe�X1 � < 1

if and only if � 2 �. For any � 2 � define a probability measure Q� on .˝;F / by
the Radon-Nikodym derivative process2

dQ�
jFt

dPjFt

D e�Xt

EŒe�Xt �
D e�Xt�t��

˛ .�/;

where

� �̨.�/ D � .�˛/
Z

R

Œ.1 � �x/˛ � 1�R.dx/C �b0

and b0 is given by (3.35). Theorem 3.28 implies that the characteristic function of
Xt under Q� is given by

EQ�
�
eizXt

� D EP

h
eizXt e�Xt�t��

˛ .�/
i

D etŒ��

˛ .izC�/���

˛ .�/�:

We have

� �̨.iz C �/ � � �̨.�/

D � .�˛/
Z

R

Œ.1 � .iz C �/x/˛ � .1 � �x/˛�R.dx/C .iz C �/b0 � �b0

2Although the Radon-Nikodym derivative process only defines measures on .˝;Ft/ for t �
0, it, in fact, uniquely determines a probability measure on .˝;F /. See the discussion near
Definition 33.4 in [69].
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D � .�˛/
Z

R

��

1 � .iz C �/x

1C x�

�˛
�
�

1 � �x

1C x�

�˛


.1C x�/˛ R� .dx/C izb0

D � .�˛/
Z

R

�
.1 � izx/˛ � 1�R� .dx/C izb0;

where

R� .A/ D
Z

R

1A

� x

1 � x�

	
.1 � x�/˛ R.dx/:

It is straightforward to check that

R.A/ D
Z

R

1A

�
x

1C x�

�

.1C x�/˛ R� .dx/

and
Z

R

jxj˛R� .dx/ D
Z

R

jxj˛R.dx/ < 1:

From Section 9.5 in [21] and the above discussion it follows that, under measure
Q� , the process fXt W t � 0g is a Lévy process with X1 � TS1˛.R� ; b� / where

b� D b0 C
Z

R

Z 1

0

x

1C t2x2
t�˛e�tdtR� .dx/:

Note that, in the above, b0 does not depend on � . By arguments similar to the proof
of Theorem 7.1 we get the following.

Theorem 7.2. The equivalent probability measure Q� is a risk-neutral measure if
and only if R� .x > 1/ D 0 and

� .�˛/
Z

R

Œ.1 � x/˛ � 1�R� .dx/C b0 D r: (7.2)

Although � ¤ ;, it is possible to have � D f0g. In fact, this is the case for the
distributions discussed in Section 6.2. When this holds we cannot use the Esscher
transform. However, we can use the so-called asymmetric or bilateral Esscher
transform. We begin by introducing some notation. Let

RC.A/ D R.A \ .0;1// and R�.A/ D R.A \ .�1; 0//; A 2 B.R/

and let

XCt D
X

s2Œ0;t�
�Xs1�Xs>0 and X�t D

X

s2Œ0;t�
�Xs1�Xs<0:
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From Corollary 3.1 in [21] it follows that

Xt
dD XCt C X�t C tb0;

where b0 D b � bC � b� with

b� D
Z

.�1;0/

Z 1

0

x

1C t2x2
t�˛e�tdtR.dx/

and

bC D
Z

.0;1/

Z 1

0

x

1C t2x2
t�˛e�tdtR.dx/:

Moreover, fX�t W t � 0g and fXCt W t � 0g are independent Lévy processes3 with
X�1 � TS1˛.R

�; b�/ and XC1 � TS1˛.R
C; bC/.

Set �� D Œ���1� ;1/, �C D .�1; ��1C �, and note that by Lemma 3.27 for any
�� 2 �� and any �C 2 �C we have

EŒe�
�X�

1 � < 1 and EŒe�
CXC

1 � < 1:

For any �� 2 �� and any �C 2 �C define a probability measure Q��;�C

on
.˝;F / by the Radon-Nikodym derivative process

dQ��;�C

jFt

dPjFt

D e�
�X�

t e�
CXC

t

EŒe��X�

t e��X�

t �
D e�

�X�

t C�CXC

t �t��

˛ .�
�/�t�C

˛ .�C/;

where

� C̨.�C/ D � .�˛/
Z

.0;1/
Œ.1 � �Cx/˛ � 1�RC.dx/

and

� �̨.��/ D � .�˛/
Z

.�1;0/
Œ.1 � ��x/˛ � 1�R�.dx/:

By arguments similar to the previous case we can show that under the equivalent
measure Q��;�C

the process fXt W t � 0g is a Lévy process with X1 �
TS1˛.R��;�C

; b��;�C
/, where

3This follows from properties of Poisson random measures and the fact that the jump measure of a
Lévy process is a Poisson random measure, see, e.g., Theorem 19.2 in [69] or Chapter 3 in [21].
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R��;�C
.A/ D

Z

.�1;0/
1A

� x

1 � x��
	
.1 � x��/˛ R.dx/

C
Z

.0;1/
1A

� x

1 � x�C
	 �
1 � x�C

�˛
R.dx/

and

b��;�C
D b0 C

Z

R

Z 1

0

x

1C t2x2
t�˛e�tdtR��;�C

.dx/:

Arguments similar to the proof of Theorem 7.1 give the following.

Theorem 7.3. The equivalent probability measure Q��;�C

is a risk-neutral mea-
sure if and only if R��;�C

.x > 1/ D 0 and

� .�˛/
Z

R

Œ.1 � x/˛ � 1�R��;�C
.dx/C b0 D r: (7.3)

It is straightforward to see that R��;�C
.x > 1/ D 0 always holds when �C � �1

and �� � 0. In order to find an equivalent risk-neutral measure it suffices to find
such values of �� and �C that solve (7.3). For certain parametric classes of tempered
stable distributions approaches for solving such equations and for finding other
equivalent risk-neutral measures are given in [46, 60], and [50].

7.2 Mobility Models

For many applications it is important to understand the movement of an animal or
a person through some terrain. A model for this is called a mobility model. In an
ecological context it may represent an animal foraging for food (see, e.g., [43] and
the references therein). In an anthropological context it may represent the movement
of hunter-gatherers (see [61]). In other applications it may represent the movement
of a person in his or her daily life. This last situation is particularly important for
computer science. This is due to the fact that many people carry cell phones and
other mobile devices, and, in order to develop and evaluate routing protocols for
these devices, it is imperative to be able to simulate the movements of humans in a
realistic way (see [16, 64], and the references therein).

Interestingly, in all of the situations discussed above, similar models tend to
appear. We will show that these models are well approximated by TWp

˛ distributions,
which were introduced in Section 6.1. We begin by discussing the movement of “the
walker,” which may represent a human or an animal. Assume that we observe the
location of the walker at fixed time increments � > 0. Let fXn W n D 0; 1; : : : g be
a discrete time stochastic process on R

2 such that Xn is the location of the walker at
time n�. Let Zn D Xn � Xn�1 be the increment process. If the walker did not stay
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in the same place during the ith time interval, then we can write Zi D ZijZij jZij, where

jZij represents the magnitude of the displacement and ZijZij represents the direction of
travel. We focus on modeling the distribution of jZij. Models for the distribution of
ZijZij and for the case when Zi D 0 are discussed in [16].

A common model for jZij is called a Lévy walk. Here it is assumed that the
magnitudes of displacement, i.e. the jZij’s, are iid random variables having a Pareto
distribution, i.e. having a probability density given by

f .x/ D


˛ı˛x�˛�1 x > ı

0 otherwise
; (7.4)

where ˛ 2 .0; 1/ and ı > 0 are parameters. One can allow ˛ to be any
positive number, but most empirical data suggests ˛ 2 .0; 1/, see [26, 61, 64], and
the references therein. In practice, however, movement is more complicated and the
Pareto distribution is only valid for large values of x. For this reason we only assume
that the density satisfies f .x/ D 0 for x � 0 and

f .x/ � kx�˛�1 as x ! 1: (7.5)

for some k > 0 and ˛ 2 .0; 1/.
It turns out that the actual distribution of jZij does not matter if we model the

lengths of entire flights at once. A flight is a part of the walk where the walker
keeps going in the same direction. Assume, for instance, that after the walker starts
walking at time 0, the first time that he or she stops or changes direction is at time
N�. This means that jXN j D jZ1 C Z2 C � � � C ZN j D PN

iD1 jZij, where the second
equality follows because all of the steps are in the same direction. Since a person is
likely to walk in the same direction for a relatively long time, N is likely to be quite
large and we can approximate the distribution of jXN j by its asymptotic distribution.
This asymptotic distribution is described by the theorem below, which is a version of
the central limit theorem for infinite variance distributions, see, e.g., [23] for details.

Theorem 7.4. If ˛ 2 .0; 1/, then

n�1=˛
nX

iD1
jZij d! Y;

where Y has a fully right skewed ˛-stable distribution with Laplace transform

EŒe�zY � D e�cjzj˛ , for z � 0:

Here the parameter c > 0 is a constant depending on the distribution of jZij.
This suggests that flight lengths should be well modeled by such ˛-stable

distributions. In other words, it seems that one merely needs to fit this two parameter
model to data. However, the tails of these distributions are too heavy. In practice,
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there are various geographic and physical limitations that prevent flight lengths from
getting too big. In fact, empirical data suggests that (7.5) holds for large, but not too
large values of x, see [26, 61, 64], and the references therein. This has lead to the
development of tempered Lévy walks.

A tempered Lévy walk assumes that the density of jZij satisfies f .x/ D 0 for
x � 0 and

f .x/ � ke�.x=`/p x�˛�1 as x ! 1; (7.6)

for ˛ 2 .0; 1/, k > 0, ` > 0, and p > 0. It is commonly assumed that p D 1,
but we will not do so here. If ` is very large, this means that, for medium and
somewhat large values of x, we have f .x/ � kx�˛�1, but for very large values of x
we start to feel the exponential function and the tails ultimately decay exponentially
fast. We will give a limit theorem, which will show that, in this case, the sum
jXN j D PN

iD1 jZij is well approximated by a tempered stable distribution. Toward
this end, we introduce the notation Zi.`/ D Zi to emphasize the dependence of the
distribution of Zi on the parameter `.

Theorem 7.5. If ˛ 2 .0; 1/ and `n ! 1 such that n�1=˛`n ! ` 2 .0;1/, then

n�1=˛
NX

iD1
jZi.`n/j d! Y as n ! 1;

where Y � TWp
˛.k; `; b/ and

b D k
Z 1

0

x

1C x2
e�.x=`/p x�1�˛dx:

We postpone the proof of Theorem 7.5 to Section 7.3, where it will follow from
a more general result. The value of b in the above ensures that the support of the
distribution of Y is Œ0;1/, see Remark 3.6. Note that, in the theorem, we assume
that `n ! 1, but in practice we generally have a fixed parameter ` that is not
changing. In this case, we interpret the theorem as follows. If n is large, but n�1=˛`
is “medium sized,” we can approximate the distribution of the sum by the given
TWp

˛ distribution. This suggests that such distributions should provide good models
for flight lengths. In fact [16] showed that they provide a good fit to empirical data.

7.3 How Do Tempered Stable Distributions Appear
in Applications?

In Section 7.2 we saw a theoretical explanation for why TWp
˛ distributions with

˛ 2 .0; 1/ provide good models for flight lengths in mobility models. In this section
we give more general results, which aim to explain the theoretical mechanism by
which other tempered stable distributions appear in applications. We begin with
some definitions.
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Let � be a probability measure on R in the domain of attraction of some
infinite variance ˛-stable law. For simplicity assume that �..�1; 0// D 0. For
p; ` 2 .0;1/ define a new probability measure by

�.`/p .dx/ D c`e
�.x=`/p�.dx/; (7.7)

where

c` D
�Z

Œ0;1/
e�.x=`/p�.dx/


�1

is a normalizing constant. We call this exponential tempering of �. Clearly, �.`/p

has all moments finite and belongs to the domain of attraction of the Gaussian.
However, if ` is very large, then �.`/p will be similar to � in some central region, but
the chance of a very large value will be “tempered.”

Since � belongs to the domain of attraction of an ˛-stable distribution with
˛ 2 .0; 2/ there exists a function L 2 RV10 with

�.x > t/ D t�˛L.t/:

Define

V.t/ D t˛=L.t/ and at D 1=V .t/ (7.8)

and let X1;X2; � � � iid� �. The central limit theorem for infinite variance distributions
(see, e.g., [23]) implies that there exists a sequence f�ng in R with

an

nX

iD1
.Xi � �n/

d! R˛;1;

where R˛;1 � ID.0;M1; 0/ with

M1.dx/ D ˛x�1�˛1Œx>0�dx (7.9)

is an ˛-stable random variable.
Now fix p > 0 and let f`ng be a sequence of positive real numbers such that

`n ! 1:

Define �.`n/
p as in (7.7) and set

Sn.`n/ D
nX

iD1
Xi.`n/; (7.10)

where X1.`n/; : : : ;Xn.`n/
iid� �

.`n/
p . Theorem 5 in [34] gives the following.4

4A version of this result also appears in [33]. It should be noted that we are using a slightly different
parametrization than the one used in [33] and [34].
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Theorem 7.6. 1. If an`n ! ` 2 .0;1/, then

anSn.`n/ � �n
d! R˛;` C �˛;`

where R˛;` � TWp
˛.˛; `; 0/,

�n D c`n nan

Z

Œ0;1=an�

xe�.x=`n/
p
�.dx/; and

�˛;` D
Z 1

0

x

�
1

1C x2
� 1.x < 1/

�

˛e�.x=`/p x�1�˛dx:

2. If an`n ! 1, then

anSn.`n/ � �n
d! R˛;1 C �˛;1

where

�n D c`n nan

Z

Œ0;1=an�

xe�.x=`n/
p
�.dx/;

�˛;1 D
Z 1

0

x

�
1

1C x2
� 1.x < 1/

�

˛x�1�˛dx;

and R˛;1 has the ˛-stable distribution ID.0;M1; 0/ with M1 as in (7.9).
3. If an`n ! 0, then

bnSn.`n/ � �0n
d! N.0; �2/;

where

�2 D ˛

p
�

�
2 � ˛

p

�

;

bn D n�1=2`�1n

p
V.`n/ D n�1=2`�.2�˛/=2n ŒL.`n/�

�1=2 ; and

�0n D c`n nbn

Z

Œ0;1=bn�

xe�.x=`n/
p
�.dx/:

In practice, for most applications, the parameter `n is not actually approaching
infinity. Instead it is some fixed but (very) large constant `. We can write an` D
Œn�1`˛�1=˛L0.n/ for some L0 2 RV10 . If Sn.`/ is the sum of n iid random variables

with distribution �.`/p , then Theorem 7.6 can be interpreted as follows. When n is on
the order of `˛ , the distribution is close to a TWp

˛ distribution. However, once n is
much larger than `˛ the distribution of Sn.`/ is well approximated by the Gaussian.
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A constant that determines when such regimes occur is called the natural scale and
was introduced in [35]. Thus `˛ is the natural scale for this model.5

The above discussion provides an explanation for how TWp
˛ distributions with

˛ 2 .0; 2/ appear in applications. Specifically, in applications where we model sums
of exponentially tempered random variables. As discussed in Sections 7.1 and 7.2
such models are reasonable when modeling flight lengths and log-returns.

Now recall that TWp
˛ distributions are the building blocks from which all

other tempered stable distributions are constructed. Specifically, every p-tempered
˛-stable distribution on R

d is the limit, in distribution, of a sequence of linear
combinations of independent random variables in the class TWp

˛ , see Theorem 4.18
and Section 6.1. This gives an explanation for how more general tempered stable
distributions appear in application. Alternate, but related, explanations for the
appearance of tempered stable distributions are given in [35] and [19]. We conclude
this section by using Theorem 7.6 to prove Theorem 7.5.

Proof (Proof of Theorem 7.5). In this case ˛ 2 .0; 1/ and �.dx/ D m.x/dx, where
m.x/ D 0 for x < 0 and m.x/ � kx�1�˛ as x ! 1. This means that

m.x/ D ˛x�1�˛L.x/;

where L 2 RV10 and limx!1 L.x/ D k=˛. By Karamata’s Theorem (Theorem 2.7)
it follows that

�.x > t/ D ˛

Z 1

t
x�1�˛L.x/dx � t�˛L.t/ as t ! 1:

Define an by (7.8) and note that by Proposition 2.6

an � .˛=k/1=˛n�1=˛:

We have n�1=˛`n ! ` and hence an`n ! .˛=k/1=˛` DW `0. Now define Sn.`n/

by (7.10) and note that the first part of Theorem 7.6 implies that

anSn.`n/ � �n
d! R˛;`0 C �˛;`0 :

We will show that limn!1 �n D ˛
R 1
0

x�˛e�.x=`0/p dx. Assume, for the moment, that
we already have this result. Combining it with Slutsky’s Theorem gives

n�1=˛Sn.`n/
d!
�

k

˛

�1=˛ �

R˛;`0 C �˛;`0 C ˛

Z 1

0

x�˛e�.x=`0/p dx

�

DW R0̨ ;`0

:

5It should be noted that [34] reported a slightly different natural scale. This is due to that fact that
a different parametrization was used there.
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From here note that

�˛;`0 C ˛

Z 1

0

x�˛e�.x=`0/p dx D
Z 1

0

x

1C x2
˛e�.x=`0/p x�1�˛dx

and set k0 D .k=˛/1=˛ . The characteristic function of R0̨
;`0

is given by eC.z/, where

C.z/ D ˛

Z 1

0

�
eixk0z � 1

	
e�.x=`0/p x�1�˛dx

D ˛.k0/˛
Z 1

0

�
eixz � 1� e�.x=.k0`0//p x�1�˛dx

D k
Z 1

0

�
eixz � 1� e�.x=`/p x�1�˛dx;

which is the characteristic function of TWp
˛.k; `; b/, where

b D k
Z 1

0

x

1C x2
e�.x=`/p x�1�˛dx:

It remains to verify the limit of �n. Toward this end fix � 2 .0; 1/ and note that
there exists a K� > 0 such that for all x > K� we have

.1 � �/ k

˛
� L.x/ � .1C �/

k

˛
:

It follows that for large enough n

.1 � �/kc`n nan

Z 1=an

K�

x�˛e�.x=`n/
p
dx � ˛c`n nan

Z 1=an

K�

x�˛e�.x=`n/
p
L.x/dx

� .1C �/kc`n nan

Z 1=an

K�

x�˛e�.x=`n/
p
dx:

By change of variables, dominated convergence, and the facts that an`n ! `0, c`n !
1, and na˛n ! ˛=k we have

kc`n nan

Z 1=an

K�

x�˛e�.x=`n/
p
dx D kc`n na˛n

Z 1

K�an

x�˛e�Œx=.an`n/�
p
dx

� ˛

Z 1

0

x�˛e�.x=`0/p dx;

where the integral is finite since ˛ 2 .0; 1/. Further,
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0 � ˛c`n nan

Z K�

0

x�˛e�.x=`n/
p
L.x/dx � ˛c`n nan

Z K�

0

x�˛L.x/dx

� ˛.˛=k/1=˛n1�1=˛
Z K�

0

x�˛L.x/dx ! 0;

as n ! 1. Note that the integral is finite since m.x/ is a probability density. Putting
everything together gives

lim sup
n!1

�n � lim
�#0

lim
n!1˛c`n nan

Z K�

0

x�˛e�.x=`n/
p
L.x/dx

C lim
�#0

lim
n!1.1C �/kc`n nan

Z 1=an

K�

x�˛e�.x=`n/
p
dx

D ˛

Z 1

0

x�˛e�.x=`0/p dx

and similarly

lim inf
n!1 �n � ˛

Z 1

0

x�˛e�.x=`0/p dx;

which gives the result. ut



Chapter 8
Epilogue

In this brief we discussed many properties of the class of p-tempered ˛-stable
distributions and their associated Lévy processes. Our discussion encompassed
much of what is known about these models and filled in many gaps in the literature.
However, the goal of a brief is to, well, be brief, and as such there are a number
of topics that we were unable to include. In this epilogue we discuss several such
topics and give references to the literature.

One topic of interest is the study of stochastic integral representations of
tempered stable distributions. We refer the reader to [6, 40, 51], and [32].

Another topic is the study of the class of normal tempered stable distributions.
These models are obtained as follows. Let fTt W t � 0g be a tempered stable
subordinator (see Proposition 3.24 for a characterization) and let fWt W t � 0g
be a multivariate Brownian motion independent of fTt W t � 0g. The time changed
Brownian motion

fWTt W t � 0g

is, by Theorem 30.1 in [69], a Lévy process. The marginal distributions of this
process are called normal tempered stable distributions, and are studied in, e.g.,
[7, 28, 31], and the references therein.

A third topic involves defining tempered stable processes, i.e. stochastic pro-
cesses with tempered stable finite-dimensional distributions. The best known
processes of this type are the tempered stable Lévy processes that we focused on
in this brief. While these are important and understanding their behavior helps to
understand the behavior of more general tempered stable processes, they have a
fairly simple dependence structure, which is not adequate for many applications.

One way to get models with more intricate dependence structures is to consider
stochastic integration. Specifically, consider the processes Xt D R1

0
f .s; t/dYs,

where fYs W s � 0g is a Lévy process and f .s; t/ is some deterministic function
for which the integral exists, see [70] for definitions and information about such
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integrals. One can either assume that fYs W s � 0g is a tempered stable Lévy
process or that it is another Lévy process, but one which, nevertheless, leads
to a tempered stable process. Examples of such models include tempered stable
Ornstein-Uhlenbeck-type processes studied in, e.g., [76] and [31], and fractional
tempered stable motion introduced in [38].

For certain applications, it is of interest to obtain normal tempered stable process.
This can be done by time changing a Brownian motion by a positive and increasing
tempered stable process. An example of this based on a modification of a tempered
stable Ornstein-Uhlenbeck-type process is given in [44] and an example based on
fractional tempered stable motion is given in [45].

Note that all of the tempered stable and normal tempered stable processes
discussed above start with a Lévy process. This is not necessary, but we are only
aware of one example from the literature where this is not the case. The weighted
tempered stable moving average process introduced in [25] is a tempered stable
process defined in terms of integration not with respect to a Lévy processes, but with
respect to a more general independently scattered tempered stable random measure.
It may be of interest to define other processes in this manner.

Another approach is to see what can be done in the following general setting. Let
T be an index set and let fXt W t 2 Tg be a collection of random variables such that
for any t1; t2; : : : ; td 2 T the vector .Xt1 ;Xt2 ; : : : ;Xtd / follows a tempered stable
distribution on R

d. This construction mimics that of general infinitely divisible
processes introduced in [53]. We are aware of no work in this direction, but it seems
that interesting results can be proved even at this level of generality.
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