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Abstract. In this paper the use of neurophysiological indexes for an objective 
evaluation of mental workload, during an ecological Air Traffic Management 
(ATM) task, has been proposed. 

Six professional Air Traffic Controllers from the Italian ENAV (Società Na-
zionale per l’Assistenza al Volo) have been involved in this study. They had to 
perform an ecological Air Traffic Management task by using the eDEP soft-
ware, a validated simulation platform developed by EUROCONTROL. In order 
to simulate a realistic situation, the task was developed with a continuously va-
rying difficulty level, i.e. starting form an easy level, then increasing up to a 
harder one and finishing with an easy one again. During the whole task for each 
subject the electroencephalographic (EEG) signals were recorded in order to 
compute the neurophysiological workload index, and at the same time the sub-
jective perception of the mental workload by using the Instantaneous Self-
Assessment (ISA) technique. Thus, the EEG-based workload index, estimated 
by means of machine learning approach, by one side, and the subjective as-
sessed workload index by the other side, have been compared in terms of corre-
lation and difficulty levels discrimination. By the results it emerged: i) a high 
positive and significant correlation between the two measures, and ii) a signifi-
cantly discriminability of the task different difficulty levels by using the EEG-
based workload indexes, according to the ISA results. 

In conclusion, this study validated the EEG-based mental workload index as 
an efficient objective evaluation method of the cognitive resources demand in a 
real operative scenario, and moreover as an index able to monitor its variations. 

Keywords: EEG · EOG · Machine learning · Mental workload ·  
Self-assessment · ATM · ATCO · eDEP 
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1 Introduction 

In specific working environments where safety is paramount big issue, the human 
factor could be the risk reason less controllable and, at the same time, the main 
cause of danger. This is often because of an underestimation of the actual mental 
workload of the operator. In fact, as cognitive workload increases, maintaining 
task performance within an acceptable range becomes harder. High cognitive 
workload may demand more cognitive resources than those available in the human 
brain, resulting into performance degradation and errors commission [1]. The use 
of objective measures of mental workload based on biomarkers has been proposed 
for the evaluation of different systems design to allocate the workload, to minimize 
errors due to overloads or to intervene on the systems in real-time before the oper-
ators performing critical tasks become overloaded [2]. For example, few studies 
investigated neurophysiological indexes about the user states in safety-critical 
applications, such as driving, industrial environments or security surveillance. 
With respect to driving assistance applications, recent studies have explored the 
use of psychophysiological measures in a driving simulation for assessing driving 
performance and inattentiveness, as well as for robust detection of user intention 
before the braking onset [3–8].  

In this regard, another example of operative environment where lack of perfor-
mance or overloads may be fatal is the aviation context. Nowadays, the 80% of air-
plane incidents is still due to human - factors and, as the air - traffic keeps growing 
exponentially, the impact of new tools able to assess the interaction human – machine, 
in terms of cognitive resources, is becoming very important. In fact, there are evi-
dences that the failure to perceive correctly the mental demands of a flight task, has 
been a causative factor in several aircraft accidents. This is true also for other opera-
tors critically involved in the air traffic managing (i.e. Air Traffic Control Officers, 
ATCOs). Both pilots and ATCOs categories of workers have to generate a continuous 
high quality performance with potential catastrophic results in occasion of error oc-
currence.  

Focusing on the ATCOs, they have to perform a variety of tasks, including moni-
toring air traffic, anticipating loss of separation between aircraft, and intervening to 
resolve conflicts and minimize disruption to flow (for an extensive compilation of the 
tasks and goals of en-route control, see [9]). The ATCO's behavior could be measured 
through several human factor tools, such as the explicit measurement of errors per-
formed during the task, or by using questionnaires related to the perception of the 
severity of the task executed and so forth, such as for instance the NASA-TLX or the 
SWAT questionnaires. Each of these methods has pros and cons, but there is not a 
standard one generally accepted [10], therefore the need of an objective measure be-
comes more important. Moreover, for their inherently subjective nature, none allows 
to have an objective and reliable measure of the actual cognitive demand in a real 
environment. Instead of only measuring secondary physiological effects, the EEG  
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methods will offer a direct insight into the operator's state in complement to the com-
mon physiological measurements, as discussed above. There are many evidences that 
have underlined the correlation between the increase of the cognitive effort and the 
decision making in a strategy selection process during a complex task and the increase 
of the Electroencephalogram (EEG) Power Spectral Density (PSD) in the theta fre-
quency  band [4–7 Hz] over the frontal and occipital brain areas. In addition, it was 
also noted a corresponding decrease of the EEG PSD in the alpha frequency band  
[8–12 Hz] over the centro-parietal and parietal brain areas [3–6].  

In a previous work [11, 12], it has been defined an algorithm able to evaluate the 
mental workload of novice ATCOs by using neurophysiological signals, during the 
execution of ATM task under different difficulty levels. Each difficulty level has been 
maintained constant for several minutes in order to keep the experimentation as con-
trolled as possible. The results showed that the neurophysiological measure was able 
to evaluate the mental workload of the operator for each difficulty level. 

On the basis of the previous results, the aim of this work was to test the reliability 
of the algorithm also during more ecological settings, where the difficulty of the task 
changes continuously. In this way, we have tested if the algorithm was able to track 
the fluctuation of the operators’ mental workload within the operative task. In order to 
validate the results, the neurophysiological measure has been compared with the sub-
jective measure of the mental workload, collected by the Instantaneous Self-
Assessment (ISA) technique. 

2 Methodology  

2.1 Experimental Protocol and Task 

Six professional ATCOs (49 ± 3.2 years) from ENAV S.p.A. (Società Nazionale per 
l'Assistenza al Volo, Italy) have been involved in this experimentation, in particular 
they have been asked to manage air-traffic under two different difficulty levels 
(EASY and HARD), using the ATM simulator eDEP (Early Demonstration & Evalu-
ation Platform). 

The eDEP software has been developed by EUROCONTROL, with the aim to 
produce a low-cost-lightweight, web-enabled ATM simulator platform, offering an 
ideal environment for research and advanced concept projects to rapid prototype ap-
plications [13]. A specific experimental protocol has been defined with the aim to 
highlight the investigated cognitive phenomena, that is the mental workload experi-
enced by the subjects during the execution of the task.  

In Fig. 1, a picture of the experimental setting during the task. The air-traffic task 
lasted about 37 minutes, during which the task difficulty varied between the two le-
vels (EASY and HARD).  

Since the eDEP software simulates a real scenario, the difficulty during the whole 
task varied continuously, thus, there were not constant difficulty conditions, but a  
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Fig. 2. Profile of the difficulty level, varying during the experimental task on the eDEP platform. 

2.3 Neurophysiological Signals Acquisition and Analysis 

Neurophysiological signals have been recorded by the digital monitoring BEmicro 
system (EBNeuro system). The 13 EEG channels (FPz, F3, Fz, F4, AF3, AF4, P3, Pz, 
P4, POz, O1, Oz and O2) and the EOG channel have been collected simultaneously 
with a sampling frequency of 256 (Hz). All the EEG electrodes have been referenced 
to both the earlobes, and the impedances of the electrodes have been kept below 10 
(kΩ). The bipolar electrodes for the EOG have been positioned vertically above and 
below the left eye. The acquired EEG signals have been digitally band-pass filtered 
by a 4th order Butterworth filter (low-pass filter cut-off frequency: 30 (Hz), high-pass 
filter cut-off frequency: 1 (Hz)). The EOG signal has been used to remove eyes-blink 
artifacts from the EEG data by using the Gratton method [15]. For other sources of 
artifacts, specific procedures of the EEGLAB toolbox, based on threshold methods 
have been used [16].  

After the artifact rejection, the EEG signals have been segmented in epochs of 2 
seconds, 0.125 (ms) shifted. The PSD has then been estimated, for each epoch and for 
each EEG channel, by using the Fast Fourier Transform (FFT) in the EEG frequency 
bands, defined for each subject by the estimation of the Individual Alpha Frequency 
(IAF) value [17], correlated with the mental workload variations, therefore the theta 
[IAF-6 ÷ IAF-2] (Hz) and alpha [IAF-2 ÷ IAF+2] (Hz) bands. Furthermore, the PSD 
has been calculated using a Hanning window of the same length of the considered 
epoch (2 seconds length, is that 0.5 (Hz) of frequency resolution. Thus, with this  
frequency resolution, and considering the investigated frequency range equal to  
[IAF-6 ÷ IAF+2] (Hz), there was 17 PSD values for each channel. 
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2.4 EEG-Based Workload Index 

A Stepwise Linear Discriminant Analysis (SWLDA, [11–12]) has been used to select 
the most relevant spectral features, within a features domain consisted of 221 values 
(13 ch * 17 PSD values), to discriminate the mental workload of the subjects within 
the different experimental conditions (EASY and HARD). In particular, the per-
formed SWLDA used αENTER = .05 and αREMOVE = .1, as probabilistic criterion for 
including and excluding features of the SWLDA itself. Once identified such spectral 
features, the SWLDA assigns to each one specific weights (wi train), plus a bias (btrain), 
such that the SWLDA discriminant function (ytrain(t)) takes the value 1 in the hardest 
condition and 0 in the easiest one. This step represents the training phase of the clas-
sifier. Later on, the weights and the bias determined during the training phase have 
been used to calculate the linear discriminant function (ytest(t)) over the testing dataset 
(testing phase). Finally, a moving average of 8 seconds (8MA) has been applied to the 
ytest(t) function in order to smooth it out by reducing the variance of the measures, and 
we defined it as EEG-based workload index (WEEG). 

Here below are reported the training SWLDA discriminant function (1, where  
fi train(t) represents the PSD matrix of the training dataset at the time sample t, and of 
the ith feature), the testing one (2, where fi test(t) is as fi train(t) but related to the testing 
dataset) and the equation of the EEG-based workload index, WEEG (3). ∑              (1) 

 ∑             (2) 
 8                     (3) 
 

In order to have a more accurate resolution in terms of task difficulty variation, the 
dataset related to each subject has been segmented in 9 parts of 4 minutes each, so 
that we gathered 4 EASY runs (E1, E2, E3, E4), 4 HARD (H1, H2, H3 and H4) runs 
and another EASY run (E5). At this point, for each subject we have used the algo-
rithm described above to train the classifier with one couple of EASY and HARD 
runs and to test it over the remaining eDEP difficulty conditions of the same subject. 
In order to appropriately choose this couple of conditions, we considered that i) the 
Controllers could need few minutes (i.e. E1 and E2) to become confident with the 
eDEP interface, so that we have used the E3 as easy condition in the training dataset; 
ii) for the hard condition we have taken into account that the eDEP scenario’s profile 
has been designed as a “reverse – U”, so that we expected that the hardest condition 
would be in the middle. Therefore, the H3 run has been chosen as hard condition in 
the training dataset. 

2.5 Performed Analyses 

Two kinds of statistical analysis have been performed in this study. In the first one, 
we estimated the Pearson’s correlation coefficient between the ISA scores and the 
WEEG measures for each run (i.e. E1, E2, E4, H1, H2, H4, E5). The E3 and H3 runs  
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The t-tests showed that the ISA scores related to the EASY and HARD conditions 
were significantly different (p < .05). Consistently, the overall EEG workload index 
calculated over the HARD conditions was significantly higher than the index calculated 
over the EASY tasks (p < .05). Figure 6 shows the results of the application of such t-
tests on the different experimental conditions analyzed. The red columns are associated 
to the values of the analyzed indexes related to the hard working conditions while the 
green columns are associated to the values of the indexes related to the easy working 
conditions. It could be appreciated as both the use of EEG workload index as well as 
ISA are able to significantly distinguish the easy and the hard working conditions. 

4 Discussion 

Professional ATCOs have been involved in this study, where a neurophysiological 
workload measure (WEEG) has been tested while the ATM operators performed an 
ecological air traffic control task. The ATCos have not been trained to use the eDEP 
platform before the experiments and, even if eDEP is a professional ATM simulator, 
during the first parts of the task (EASY1 and EASY2) they needed information and 
instructions to learn how to use correctly its interface. This aspect has been confirmed 
both by the ISA (Fig. 3) and by the EEG workload index (Fig. 4). In fact, during the 
E1 and E2 runs subjects showed higher workload perception (ISA) and physiological 
increment (WEEG) of the workload than during the next EASY runs. Furthermore, as 
the eDEP scenario’s profile has been designed as a “reverse – U”, both the ISA score 
and the mental workload (WEEG) index showed the same shape, confirmed by a high 
and significant correlation index (R = 0.9; p = 0.006).  

In conclusion, both the workload perception (ISA) and the neurophysiological 
(WEEG) measures showed a significant discriminability (p<.05) between the difficulty 
levels (EASY and HARD).  

Our previous studies [5, 6, 11, 12, 19] showed the possibility to track the mental 
workload of the user even online, during simulated tasks in laboratory settings. In 
those studies, the difficulty of the task has been maintained constant for each experi-
mental condition.  

The results of the actual study confirmed that the neurophysiological workload 
measure can be used as a reliable index of the mental workload experienced by an 
operator also in ecological working scenario, where the difficulty of the task has not a 
discrete, but a continuous, profile. With the aim of confirming these results, further 
experiments will be performed over a bigger experimental sample size of ATCos, and 
probably with a greater resolution in terms of difficulty levels, in order to ensure that 
the estimated index is actually related to the experienced brain workload.  

5 Conclusions 

An algorithm able to track the mental workload of the user by using its brain activity, 
while performing an ecological operative task has been proposed in this study. 
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Results showed that the neurophysiological workload index (WEEG) i) showed a 
high significant correlation with the perceived workload (ISA) and ii) was able to 
discriminate significantly two different difficulty levels, according to the ATCOs  
self-assessment. 

We can then conclude that neurophysiological measures could provide objective 
evaluation of cognitive phenomena, e.g. the mental workload, both in real-time (on-
line) and in ecological environments. In fact, questionnaires or rating scales might not 
fit real operative settings, where the operators (e.g. ATCOs) have to be focused exclu-
sively on the task and they could not pay attention to secondary task(s), with the aim 
to provide data about their cognitive state, probably increasing the final task  
demand and operating in dangerous condition (under or over-load zone). 
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