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Preface

This volume contains the papers presented at Symbiotic 2015: the International
Workshop on Symbiotic Interaction held during October 7–8, 2015 at the TU Berlin.

Symbiotic 2015 was the fourth edition after the first held at the University of Padova
during December 3–4, 2012, the second held on December 12, 2013, at Goldsmiths,
University of London, and the third held at the University of Helsinki during October
30–31, 2014. For Symbiotic 2015, we solicited 23 high-quality submissions in three
categories: papers, posters, and demos. The workshop gathered a long list of important
scholars in many disciplines (see Program Committee list), and each anonymous paper
was reviewed by three members. We accepted 11 full papers and eight short papers.

We believe that Symbiotic will continue to grow and attract more interest from
disparate fields with the aim of investigating future relationships between computers
and humans. Symbiotic 2015 was sponsored by the MindSee Project (http://mindsee.
eu/) and was partially funded by the European Community (FP7 – ICT; Grant
Agreement 611570).

August 2015 Benjamin Blankertz
Giulio Jacucci

Anna Spagnolli
Luciano Gamberini
Jonathan Freeman

http://mindsee.eu/
http://mindsee.eu/
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EEG Filtering Optimization
for Code–Modulated Chromatic Visual Evoked
Potential–Based Brain–Computer Interface

Daiki Aminaka, Shoji Makino, and Tomasz M. Rutkowski(B)

Life Science Center of TARA at University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki, Japan

tomek@bci-lab.info

http://bci-lab.info/

Abstract. We present visual BCI classification accuracy improved
results after application of high– and low–pass filters to an electroen-
cephalogram (EEG) containing code–modulated visual evoked poten-
tials (cVEPs). The cVEP responses are applied for the brain–computer
interface (BCI) in four commands paradigm mode. The purpose of this
project is to enhance BCI accuracy using only the single trial cVEP
response. We also aim at identification of the most discriminable EEG
bands suitable for the broadband visual stimuli. We report results from a
pilot study optimizing the EEG filtering using infinite impulse response
filters in application to feature extraction for a linear support vector
machine (SVM) classification method. The goal of the presented study
is to develop a faster and more reliable BCI to further enhance the sym-
biotic relationships between humans and computers.

Keywords: Brain–computer interface · ERP · EEG classification ·
cVEP

1 Introduction

A brain computer interface (BCI) is a symbiotic device which facilitates human–
machine interaction without dependence on any muscle or peripheral nervous
system actions [7]. BCI employs human neurophysiological signals for a straight
brainwave–based communication of a human with an external environment. Par-
ticularly, in the case of patients suffering from locked–in–syndrome (LIS) [4],
amyotrophic lateral sclerosis (ALS) or coma, BCI could help them to communi-
cate or complete various daily tasks (type letters or control their environments
using Internet of Things technologies, etc.). The BCI shall create a feasible option
for such patients to communicate with their families, friends or caretakers by
using their trained and properly classified brainwaves only [7].

A code modulated visual evoked potential (cVEP) is proposed in this paper
as a brain–computer interface (BCI) paradigm. The cVEP is a natural response
to a visual stimulus generated with specific code–modulated, and also enhanced
c© Springer International Publishing Switzerland 2015
B. Blankertz et al. (Eds.): Symbiotic 2015, LNCS 9359, pp. 1–6, 2015.
DOI: 10.1007/978-3-319-24917-9 1



2 D. Aminaka et al.

with color modulation, sequences [2,3] while the user gases at the light source.
The cVEP–based BCI is a stimulus–driven paradigm which does not require a
long training, as compared to the imagery–driven paradigm [7].

Usually, cVEP’s advantage is in its faster classification time comparing to
other types of visual–BCIs using steady state visual evoked potentials (SSVEPs)
or P300 responses. Theoretically a single classification interval could take less
than 387.5 ms in our experiments, but actually the cVEPs have to be averaged
to remove EEG noise, which multiplies the above mentioned minimum period.
Usually the averaging procedure can take longer time, for example 1.9375 sec-
onds as in our previous study based on five cVEPs’ averaging [1], which limits
this paradigm’s advantage. In this paper, we present results of classification
improvement after application of high– and low—pass filtering of EEG to create
the faster cVEP–based BCI. A linear support vector machine (SVM) classifier
is applied in the presented cVEP–based BCI research project.

The cVEPs used in this project are induced by four RGB light–emitting
diodes (LEDs). We also utilize the higher flashing carrier frequency of 40 Hz
(which is amplitude modulated with the proposed m− sequences) comparing to
the classical setting of 30 Hz (limited to compare results with classical computer
displays usually with 60 Hz refreshing rate) [2]. There are maximum of five con-
secutive positive pulses (continues light) and minimum of one positive/negative
pulse of the LEDs in this experiment settings. If cVEP’s frequency features would
be evoked similarly as in a case of SSVEP, the steady–state response suppose
shall appear in EEG frequency bandwidths of 6 ∼ 30 Hz or 8 ∼ 40 Hz according
to our hypothesis. In other words, low–pass filtering with a cutoff frequency of
30 Hz or 40 Hz shall do the best job to remove unnecessary higher frequencies
from EEG. Moreover, we propose to use chromatic green–blue stimuli [6] as a
further extension in our project. We also compare our results with the classical
monochromatic (white–black) set–up.

From now on the paper is organized as follows. In the following section we
describe materials and methods used in this study. Next, results and discussion
are presented. Conclusions together with future research directions summarize
the paper.

2 Materials and Methods

The experiments reported in this paper were performed in the Life Science Cen-
ter of TARA, University of Tsukuba, Japan, and they were approved by the
ethical committee of the Graduate School of Systems and Information Engi-
neering at University of Tsukuba, Tsukuba, Japan (experimental permission
no. 2013R7). The subjects agreed voluntarily to participate in the study. The
visual stimulus generating LEDs were driven by square waves delivered from
ARDUINO UNO micro–controller board. We used m− sequence encoded flash-
ing patterns [3] to create four commands of the cVEP–based BCI. The binary
pseudorandom string m − sequence with a length of 31 bits was used as follows
[0100100001010111011000111110011]. The special feature of the m − sequence,
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Fig. 1. The user seating in front of a frame with four visual stimulation chromatic LEDs
used in this study. The picture was included with a permission of the photographed
user.

which has been useful for the cVEP–based BCI paradigm design, was an unique
autocorrelation function. The autocorrelation function had only a single peak at
the m − sequence′s period. It was thus possible to introduce a circular shift of
the m−sequence denoted by τ , to create a set of another sequences with shifted
autocorrelation functions, respectively. In this study, the shifted time length has
been defined as τ = 7 bits. Three additional sequences have been generated
using shifts of τ , 2 · τ and 3 · τ , respectively. During the online cVEP–based BCI
experiments the four LEDs continued to flash simultaneously using the time–
shifted m − sequences as explained above. Two m − sequence period lengths
have been tested to investigate whether they would affect the cVEP response
discriminability. The conventional full m − sequence period of T = 516.7 ms, as
in case of a conventional computer display with a refresh rate of 60 Hz (referred
here as “a low flashing frequency”) and the proposed T = 387.5 ms (referred as
“a high flashing frequency”) have been tested. The LED–based visual stimulus
generator is presented in Figure 1. During the cVEP–based BCI EEG experi-
ments the users were seated on a comfortable chair in front of the LEDs (see
Figure 1). The distance between user’s eyes and LEDs was about 30 ∼ 50 cm

Table 1. EEG signals recording conditions

Number of users 9 (8 males and 1 female)

Average age of users 26.4 years old (standard deviation of 7.0 years)

Single session length 8 and 11 s

m − sequence length T 516.7 and 387.5 ms

m − sequence shifts τ 116.7 and 87.5 ms

EEG amplifier g.USBamp by g.tec with wet active g.LADYbird electrodes

Electrode locations O1, O2, Po3, Po4, P1, P2, Oz and Poz

Reference and ground Left earlobe and FPz

Sampling frequency 512 Hz

Notch filter Butterworth 4th order stopping 48 ∼ 52 Hz

Band–pass filter Butterworth 8th order with a passband of 5 ∼ 100 Hz
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Fig. 2. The mean accuracy results of SVM–based classification after high–pass filtering.
There are four results depicted for each user, namely from green–blue high carrier
frequency (blue lines); low carrier frequency (green lines); white–black high carrier
frequency (orange lines); low carrier frequency (red lines), respectively. Square markers
show the maximum accuracies. Four horizontal lines, or dots, at the bottom of each
panel depict the significant differences of classification accuracies between the non–
filtered (raw EEG signals, of which accuracies are not shown here) and the filtered
cVEPs (p < 0.05 of Wilcoxon–test). The theoretical chance level of the experiments
was of 25%.

(chosen by the users for a comfortable view of the all LEDs). A notch filter was
applied to remove power line interference of 50 Hz from EEG together with a
band–pass filter to remove eye blinks and muscle–originating noise. Details of
the EEG experimental set up are summarized in Table 1. To avoid user’s eye
blinks, each trial to gaze at a single LED was separated with pauses. The 60
cVEPs were collected for each of four LED flashing targets. An OpenViBE [5]
bio–signal data acquisition and processing environment, together with in–house
programmed in Python extensions, were applied to realize the online cVEP–
based BCI paradigm. In the data acquisition phase, user gazed at four LEDs
as instructed. The cVEPs to top LED were firstly collected for the classifier
training and other were used for testing. The triggers indicating the onsets of
the m− sequences were sent to the amplifier directly from the ARDUINO UNO
micro–controller to mark the beginning of each cVEP response. A linear SVM
classifier was used in this study to identify which of the flickering patterns the
user was gazing at. The cVEP response processing and classification steps were
as follows: (i) for training purpose, the EEG cVEP responses to the top flashing
LED (m–sequence with τ = 0) were defined as Y (t) and another three cVEPs
(responses to bottom, right and left LEDs as shown in Figure 1) were created
by circular shifting of the original Y (t) by τ , 2 · τ and 3 · τ respectively; (ii)
high–pass Butterworth IIR filters were applied to EEG with cutoff frequencies



EEG Filtering Optimization for Chromatic cVEP–Based BCI 5

Fig. 3. The mean accuracy results of SVM–based classification after low–pass filtering.
There are four results depicted for each user, namely from green–blue high carrier
frequency (blue lines); low carrier frequency (green lines); white–black high carrier
frequency (orange lines); low carrier frequency (red lines), respectively. Square markers
show the maximum accuracies. Four horizontal lines, or dots, at the bottom of each
panel depict the significant differences of classification accuracies between the non–
filtered (raw EEG signals, of which accuracies are not shown here) and the filtered
cVEPs (p < 0.05 of Wilcoxon–test). The theoretical chance level of the experiments
was of 25%.

of a and b Hz, where a ∈ {6, 7, . . . , 100} Hz; (iii) four–class linear SVM classifier
was trained using 60 filtered cVEPs for each flashing target, respectively; (iv)
high–pass filters were applied similarly as in (ii) to EEG for testing dataset with
60 filtered cVEPs to four target m − sequences linear SVM evaluations; (v) the
above steps (ii)–(iv) were applied for the frequencies a = 5, 6, . . . , 100 Hz. The
above procedure steps (i)–(v) were also repeated by switching testing and train-
ing cVEPs to the top LED. Finally, four experiment types were conducted for
each user by employing: the conventional low frequency; the proposed high fre-
quency; and in each of the above setting in the two color modes with white–black
and green–blue flashing LEDs.

3 Results

Results of the conducted cVEP–based BCI paradigm experiments are summa-
rized in Figures 2 and 3. The accuracies were calculated for cVEPs induced
by four types of stimulations as mentioned in previous section. The theoretical
chance level of all experiments was of 25%. In the case of Figure 2, the mean
high–pass filter cutoff frequency of four maximum classification accuracies for
each user was of 5.58 Hz (standard deviation of 2.22 Hz). The significant differ-
ences of the above accuracies, as tested with pairwise Wilcoxon–test, between
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non–filtered and filtered cVEPs (p < 0.05) were observed as shown in form of
horizontal lines in at the bottom of each panel in Figure 2. We next applied
low–pass filtering to EEG for identifying the higher frequency features, which
resulted with BCI classification accuracies as shown in Figure 3. Except for sub-
ject #1, the results have shown that low–pass cut–off frequencies within a range
of 10 ∼ 30 Hz scored the best for all the stimulation types. The mean cutoff fre-
quency of four maximum classification accuracies for each user was of 20.58 Hz
(standard deviation of 14.32 Hz). There were significant differences among non–
filtered and filtered result (p < 0.05), as evaluated with Wilcoxon–test, yet the
frequencies values we user–dependent as shown in Figure 3.

4 Conclusions

The proposed LED flashing and cVEP response–based BCI paradigm with the
chromatic (green–blue) stimulus has been discussed in this paper. We tested and
optimized high– and low–pass filters for cVEP–based BCI accuracy improvement
using linear SVM classifier. The conducted experiments verified the optimal filter
bandwidth for the proposed cVEP feature extraction within the mean range of
5.58 ∼ 20.58 Hz (which shall round up to 6 ∼ 21 Hz taking into account the
exact frequency steps used in the study). We originally hypothesized that the
low–pass filleting at 30 or 40 Hz cutoff frequencies shall do the good job for cVEP
unrelated noise removal, but the results of the presented experiments have shown
that much lower cutoff frequencies of about 21 Hz are also feasible. For the future
research, we plan to investigate further details of frequency features of cVEP,
which is a broadband signal due to it’s square wave pseudo–random components.
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Abstract. Functional near-infrared spectroscopy (fNIRS) has become
increasingly accessible in recent years, which allows this relatively low-
cost and portable brain sensing modality for the application of brain-
computer interfaces (BCI). Although there is a growing body of research
on fNIRS-based BCI utilising users’ covert psychophysiological activity,
there is comparably less research on active BCI, where users engage in
thinking strategies with the explicit intention of controlling the behaviour
of an interactive system. We draw on four empirical studies, where partic-
ipants received real-time neurofeedback (NF) of left-asymmetric increase
in activation in their dorsolateral prefrontal cortex (DL-PFC), which
has previously been identified as a correlate of approach-related moti-
vational tendencies. We discuss methodological considerations and chal-
lenges, and provide recommendations about brain-signal selection and
integration, NF protocol design, post-hoc and real-time applications of
NF success criteria, continuous visual feedback, and individualised feed-
back based on the variations of the brain-signal in a reference condition.

Keywords: Prefrontal asymmetry · Functional near-infrared spec-
troscopy · (Affective) brain-computer interfaces · Neurofeedback

1 Introduction

The development of affective brain-computer interfaces (BCI) is a relatively
recent trend [11], which has the potential to support new interactive systems,
human-robot interaction [9], and cultural [14] or entertainment applications. One
of the main challenges faced by affective BCI, especially if compared with BCI
based on motor areas, is to identify a clear mapping between a target affective
state and a BCI signal. This could be obtained from knowledge about the neural
localisation of affective states: however, such knowledge is particularly elusive,
as suggested by a recent review [15].

However, research in psychophysiology has identified a possible neural cor-
relate for a specific affective dimension, known as approach/withdrawal [4], in
the form of asymmetric activity in the prefrontal cortex (PFC). Approach/with-
drawal behaves as a high-level affective dimension, and has been shown to play
an important role in motivational processes, reward expectation, risk taking and
c© Springer International Publishing Switzerland 2015
B. Blankertz et al. (Eds.): Symbiotic 2015, LNCS 9359, pp. 7–20, 2015.
DOI: 10.1007/978-3-319-24917-9 2
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depression. It has originally been explored through EEG studies, which have
defined asymmetry scores that can characterise this asymmetry. These behave
as individual traits but are also subject to dynamic variations: furthermore,
they can be controlled through neurofeedback (NF), as originally demonstrated
by Rosenfeld and colleagues [19]. The potential use of prefrontal asymmetry
to support affective BCI has been discussed in various reviews [17], although
without reporting specific implementations.

Early work on using prefrontal asymmetry for BCI was based mostly on
EEG signals. Wehbe et al. [27] reported passive measurement of EEG prefrontal
asymmetry during computer gameplay; however, they claimed to be using it
as a measure of arousal rather than approach. Karran et al. [14] explored the
role of the PFC in subjects’ aesthetic experiences. Our previous work explored
EEG-based NF in the alpha band, with simultaneous fMRI analysis over NF
epochs [12]. It confirmed that the affective strategies through which users con-
trolled PFC alpha asymmetry corresponded to asymmetric activity in prefrontal
regions (across areas BA9 and BA10), with no differences observed in pre-motor
areas. These experiments are difficult to interpret any further, due to the small
number of subjects, and the finding that the supine position is known to impair
the ability of subjects to properly express approach [4]. In further experiments
carried out in laboratory conditions, subjects achieved success rates of up to
73% with minimal training [7]. However, signal quality and stability during NF
epochs remains an issue, and a limiting factor.

We posit that functional near-infrared spectroscopy (fNIRS) can provide an
alternative, offering better signal quality and better resistance to motion arte-
facts, while also improving spatial resolution for the target brain areas. This is
also supported by the finding that areas relevant to approach/withdrawal include
the dorsolateral prefrontal cortex (DL-PFC) [25], whose localisation is accessible
to fNIRS. Sitaram et al. [23] were amongst the first to suggest that signals based
on metabolic activity could be equally suited to BCI than electrical signals. We
were also inspired by recent experiments by Zotev et al. [28], which reported
PFC-NF with both EEG and real-time fMRI. Finally, Naseer and Hong [18]
have also reviewed recent uses of fNIRS for NF.

In this paper, we discuss methodological aspects of deploying fNIRS to imple-
ment BCI based on prefrontal asymmetry, under a NF paradigm. These are based
on several experiments, one published [5] and the others accepted for publication
or under review, during which we explored various settings for controlling app-
roach, in affective contexts as diverse as empathy, anger or motivation. Rather
than reproducing these studies here, we shall concentrate on specific elements
of methodology, some common to all studies, such as optode selection and sig-
nal definition, and some more specific, such as the definition of baseline, control
tasks compared to NF epochs, and calculations of statistical significance, both
online and post hoc.
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2 Brain-Signal Acquisition, Selection and Integration

We used fNIRS to operationalise BCI input based on asymmetric functional
activation in the DL-PFC. Although the spatial resolution of fNIRS falls short
that of fMRI and is limited to scanning the outer cortex, it has a number of
advantages, such as lower susceptibility to motion artefacts and lower cost, that
make it appropriate for application in BCI [3]. We followed the recommendation
of Solovey et al. [24] for the use of fNIRS in HCI settings. We used an fNIR400
Optical Brain Imaging Station by Biopac Systems, with a 16-channel sensor
with fixed 2.5cm source-detector separation (see [20] for channel locations). Data
were collected with 2Hz sampling rate. This fNIRS device measures intensity
changes in two wavelengths (730nm and 850nm) over time to calculate the change
in oxygenated (HbO) and deoxygenated (HbR) haemoglobin concentration (in
units of µMol/L) using the modified Beer-Lambert Law [1]. In order to provide
real-time feedback based on brain activity measured by fNIRS, there is a need to
select a single metric: HbO, HbR, or HbT (total haemoglobin; the sum of HbO
and HbR). We conducted a pilot study to inform this decision.

The pilot study used a no-feedback paradigm including an approach task
(watching pictures of delicious food under the instructions to imagine reach-
ing out for the food and eating it) and a withdrawal task (watching pictures
of spiders under the instructions to imagine escaping from the situation)1. We
compared the metrics of HbO, HbR, and HbT to assess how well they are able
to discriminate between the tasks. Based on literature co-authored by the devel-
oper of the fNIRS system used in our experiments (e.g., Ruocco et al. [20]),
on literature applying HbO to affect-related manipulation in the DL-PFC [26],
and to approach/withdrawal-related experimental manipulation [16], and based
on our pilot study, we elected to use HbO for real-time application; we based
post-hoc analyses on the same metric for consistency.

The haemodynamic response measured by fNIRS takes several seconds [3].
We took two approaches to accommodate for this approximately 7s delay: we
either (a) simply removed the first 14 data points (corresponding to 7s sampled
at 2Hz) of each epoch on each channel, or we (b) also included the 14 data points
after the completion of the epoch (i.e., windowing; see Sarkheil et al. [22] for a
similar approach).

The complexity of measured changes in blood oxygenation associated with
the differential functional activation of the DL-PFC needs to be reduced to afford
effective BCI input. This consists in deriving a single asymmetry metric from the
continuous flow of oxygenation data from the input channels [8]. We averaged
HbO values over the four leftmost and four rightmost channels (located over
the left and right DL-PFC, respectively), then subtracted average Right from
average Left. This metric reflects the inter-hemispheric difference in HbO change

1 Pilot subjects (N = 4) confirmed positive attitude towards the food items and neg-
ative towards spiders. We additionally included an approach condition involving the
same spider pictures with instructions to imagine approaching the spiders in protec-
tive clothing and swatting them.
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in micromolar units (µMol/L). Note that this measure is relative to a baseline
[2], and more importantly, it lacks an absolute zero point, as opposed to, for
example, alpha-power asymmetry in EEG-based NF [6]. This has important
practical consequences in defining and quantifying NF success. For example, as
this operationalisation of asymmetry yields interval-level data, a ratio of task/no-
task signals for defining and quantifying success (e.g., [22]) cannot be applied.

3 Protocol Design Considerations

There is a growing body of research on fNIRS-based NF [18]; however, fMRI-
based NF research can also effectively inform fNIRS study design due to the
comparability of the haemodynamic signal measured by the two neuroimaging
modalities (see [3] for a comparison). We sought inspiration from fMRI-based
studies [22,28] to inform study design, because of their relevance to the target
mental activity (affective regulation), experimental task (up-regulation of activ-
ity in a target area using thinking strategies), and feedback operationalisation.

Protocols for experiments and interaction design for active BCI need to be
tailored for supporting a feedback strategy and applying a success criterion,
depending on the tasks the participants are required to carry out for interacting
with the system. The length of individual epochs (short time periods with a
specific task) and blocks (a sequence of epochs), and that of the entire protocol
(number of blocks), needs to be manageable for participants, while it also needs
to provide a sufficient quantity of data for the purpose of research and applica-
tion. These considerations place constraints on how much data is to be collected,
and how data collection can be structured in a way that it is most manageable
for participants.

With regards to the length of each block and the overall number of blocks,
the two main considerations are (a) the participants’ ability to maintain focus
on the mental activity, and (b) the amount of data necessary to support the use
of the success criterion. To address (a), we asked participants to provide sub-
jective difficulty ratings of each task involved in the experiments, and we also
conducted post-use interviews to gather qualitative data about their interaction
with the system. Regarding (b), when using a statistical success criterion, dis-
cussed in detail in the following section, we advise conducting a power analysis
to determine the number of observations required within each epoch to detect
an effect with a given magnitude (some data may need to be discarded in the
filtering process).

These considerations are inherently related to how feedback is provided and
NF success is defined. In the following sections, we illustrate the approach we
took to addressing these challenges through two sets of experiments.

4 Criterion for Neurofeedback Success

We applied a statistical criterion to determine NF success. Specifically, we char-
acterised NF success as a statistically significant increase in left-asymmetry dur-
ing a NF epoch, compared to either (a) a baseline or (b) a reference epoch.
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Since statistical significance depends on the sample size, or in the present case,
the number of observations in a time-series we refer to as an epoch, we also
calculated different effect-size measures (r and Cohen’s d) to characterise the
magnitude of NF success. We also implemented real-time, automated determi-
nation of NF success as well as post-hoc testing. Additionally, we explored if
applying a non-parametric approach (bootstrapping) delivers practical benefits.
We discuss the advantages and disadvantages of these approaches in the fol-
lowing sections through two sets of experiments. We describe the experimental
protocols designed to support the application of the statistical success criterion,
with variations along the following properties:

– Success evaluated against zero asymmetry or asymmetry during a reference
epoch;

– Success evaluated real-time or post-hoc;
– Treatment of delay (trimming or windowing);
– Threshold characterisation and feedback mapping (fixed or personalised).

4.1 Evaluating NF Success Against Baseline

With the fNIRS system we applied, baseline is measured over 10s, against which
the asymmetry scores collected during a NF epoch can be compared, without the
need for a reference epoch. Since this baseline measurement consists in collecting
light-intensity data on each channel as a reference for calculating oxygenation
changes [1], the asymmetry metric we derive from the channels is zero for the
baseline. Therefore, we determined NF success using the baseline criterion by
performing a one-sample t-test on the asymmetry scores collected during the
NF epoch against the test value zero. Performing this one-sample t-test [10] is
computationally simple and can be implemented real-time by calculating the t
value upon the completion of the NF epoch by dividing the mean of observed
asymmetry values by the estimate of the standard error (Fig. 1a), which is then
compared to a critical value to determine NF success.

We conducted two experiments using this success criterion (Fig. 2). In Exper-
iment 1a, success was determined real-time, based on unfiltered data, using a
parametric criterion, delay was treated by trimming, while threshold and map-
ping for the feedback channel were fixed (i.e. the same for each subject and each
experimental trial). By comparison, in Experiment 1b, success was determined
post-hoc, based on filtered data, using a distribution-free criterion, delay was
treated by windowing, while threshold and mapping were also fixed.

Experiment 1a used 33s long NF epochs that contained 66 observations (2Hz
sampling frequency), therefore we applied the t critical value for p = .05 (two-
tailed) with 65 degrees of freedom (df) for each block: tcrit(65) = 2.00. The
experimental software logged asymmetry values during the NF epoch, calcu-
lated the t value, and if it was larger than 2, the block was deemed successful.
The experimental software did not test the parametric assumption of normality;
however, post-hoc analyses using bootstrapping resampling method resulted in
accepting the same epochs as successful.



12 G. Aranyi et al.

Fig. 1. Equations used in real-time implementation of NF success, where x is the mean
of observed values, the test value µ0 is zero, SD is the standard deviation, n is the
number of observed values, and df is degrees of freedom. NF and Ref are the mean
of asymmetry values during NF and the reference epoch, respectively.

Fig. 2. Block design for Experiments 1a and 1b, where NF success is evaluated against
baseline. Note that in 1b, an inter-trial interval (ITI) is added to the end to allow for
windowing; baseline in 1b is measured during the reference task (see text), decreasing
block length.

We argue that the computationally more demanding bootstrapping method
should be favoured for post-hoc analysis, but in cases where real-time determi-
nation of NF success is important, the simple parametric criterion is sufficient.
Experiment 1a also used the magnitude of the NF signal in a successful epoch
as graded input to a computer system (mapped to the differential weighting of a
search algorithm [5]). This was achieved by characterising the magnitude of NF
success by calculating the effect-size measure r (Fig. 1b). Note that this calcula-
tion is not computationally demanding; therefore, it can be applied in real-time
too. The effect-size measure r is interpreted the same as the correlation coeffi-
cient, it mitigates the difficulty of comparing fNIRS signals across subjects and
blocks [21], and since its value is constrained between 0 and 1, it is convenient
for mapping to graded input.

Another advantage of calculating an effect-size measure when a statistical
criterion is applied to determine NF success is that it allows for evaluating the
sensitivity of the set-up to detect changes in the asymmetry signal by quantifying
the magnitude of increase in asymmetry the applied statistical criterion can
detect. For example, in Experiment 1a, the smallest effect-size associated with a
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Fig. 3. Examples of continuous visual feedback in (a) Experiment 1a and (b) Experi-
ment 2a.

successful block was r = .28, which demonstrates that we could reliably detect
medium effect-sizes with 33s long NF epochs. Issues related to low power (i.e.
asymmetry increases but it is not detected) can be mitigated by increasing the
number of observations in an NF epoch, either by increasing its length or the
sampling frequency.

Threshold for providing feedback during the NF epoch (i.e., the minimum
reinforced signal magnitude) and mapping the magnitude of the left-asymmetry
signal to feedback was fixed in both experiments, that is, each subject in each
trial received feedback using a set of pre-defined parameters. The visual feedback
channel in both experiments was a downward-pointing red triangle symbolising a
light beam, which could be narrowed by up-regulating left-asymmetry (Fig. 3a).
This feedback was conceptually related to the experimental context, which
involved speeding up an algorithmic search process using a BCI [5]2. As dis-
cussed above, the threshold was zero (i.e., no increase from baseline). We defined
the maximum value for feedback empirically in a pilot study (1.1µMol/L), using
a similar design under a no-feedback paradigm. Asymmetry values between the
threshold and maximum were mapped linearly to the width of the light beam
(updated with the same 2Hz frequency of the signal acquisition), which allows
for providing continuous feedback. We successfully applied a similar feedback
mapping strategy before in EEG-based NF [7].

A disadvantage of comparing asymmetry scores to a simple baseline to deter-
mine NF success is related to the difficulty of interpreting the increase in asym-
metry during the NF epoch. As mentioned above, we measured a 10s baseline
before each NF epoch, which defined the asymmetry as zero for the start of NF.
However, the appropriateness of this baseline is predicated on the assumption
that the asymmetry signal is at neutral level when the baseline is taken. Should
the baseline be measured when there is high left-asymmetry, the reference-point
zero at the start of NF would represent a state of already high left-asymmetry,
making it difficult to detect left-asymmetry increase during NF.

2 In short, this experiment used PFC left-asymmetry as an indicator of approach-
related motivational tendency, whose value was mapped to speeding up the behaviour
of a search algorithm.
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To overcome this, we designed data-collection blocks in Experiment 1a in
the following way. Each block consisted of three epochs: NF, Count and Rest
(Fig. 2a). Baseline for an NF epoch was measured in the last 10s of the preceding
Rest epoch, where subjects were instructed to look at a grey screen and relax.
An epoch with a mental counting task was included after each NF epoch to
distract subjects’ attention from the thinking strategy used during NF and to
promote asymmetry converging to baseline before baseline for the next block
would be taken. We elected to use a mental counting task (counting backwards
from a given number by increments of a given integer), because it is theoretically
unrelated to left-asymmetry and it is one of the most commonly used prefrontal
activities for fNIRS-based BCI [18].

In Experiment 1b, we modified the block design by excluding the Rest epoch
and measuring baseline for the next block in the last 10s of the Count epoch
following NF (Fig. 2b). This reduced block length, allowing for including more
blocks in the same protocol. Furthermore, including the counting task during
baseline measurement is a more strict control of subjects’ mental activity than
the rest instructions. Additionally, Experiment 1b did not use the NF signal for
graded input to modify the behaviour of a system; therefore we determined NF
success post-hoc using bootstrapping (1000 samples, 95% confidence intervals)
on filtered data: we applied sliding-window motion artefact detection (SMAR),
raw data were low-pass filtered using a finite impulse response (FIR) filter with
order 20 and 0.1Hz cut-off frequency [1].

In summary, determining NF success by comparing to baseline allows for a
simple block structure, but the baseline may not reflect a meaningful reference
point to determine NF success if thought processes are not controlled during
baseline measurement. Including a reference task for baseline may alleviate this,
but other potential issues remain, for example, the perceptual differences of the
stimulus subjects receive during baseline and NF, and having to rely on the same
(pre-defined) criteria across blocks and subjects to provide feedback. In the next
section, we discuss how including a reference epoch may improve study design.

4.2 Evaluating NF Success Against a Reference Epoch

As discussed above, although comparing an NF epoch to baseline for defining
success is simple and time efficient, it is still useful to include a reference task
either to promote up-regulated left-asymmetry to converge to baseline between
blocks (Experiment 1a), or to control thought processes during baseline (Exper-
iment 1b). However, both leave the data collected for the reference task under-
analysed. A step forward to better utilising the collected data is to include the
reference task in a separate epoch that is directly compared to the NF epoch.
We implemented this in two experiments.

In Experiment 2a (Fig. 4a), success was determined real-time, based on data
filtered for extreme values, using a parametric criterion, delay was treated by
trimming, while threshold and mapping for the feedback channel were individu-
alised (for each subject and each experimental trial). By comparison, in Exper-
iment 2b (Fig. 4b), success was determined post-hoc, on filtered data, using a
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Fig. 4. Experiments 2a and 2b, where NF success is evaluated against a reference
epoch. Note that in 2b, an inter-trial interval (ITI) is added to the end to allow for
windowing. Feedback range in the NF epoch is determined using the distribution of
asymmetry values during the reference epoch in each block to allow for individualised
feedback.

distribution-free criterion; delay was treated by windowing, with individualised
threshold and mapping. Both Experiments 2a and 2b applied the same visual
stimulus across reference and NF epochs (but the visual stimulus was different
across the experiments). The epochs were matched for length. Subjects rated
the perceived difficulty of both the counting and NF tasks; statistical analysis
revealed no significant difference in subjective difficulty, indicating that the two
tasks were adequately matched. Baseline was measured at the start of each block
under instructions to rest, but we defined NF success as a statistically significant
increase in asymmetry from the reference epoch to the NF epoch.

A notable advantage of this approach to determining NF success is that it
provides a control condition within the block; therefore, increase in asymmetry
in this case can be readily attributed to change in mental activity. Furthermore,
the asymmetry signal does not need to be at neutral level when the baseline
is measured, because the success criterion only considers difference between the
two epochs matched in length and stimulus.

Experiment 2a applied a real-time success criterion: the experimental soft-
ware conducted an independent-samples t-test upon the completion of both
epochs. Although the asymmetry values were collected from the same subject
within the same block (with the same baseline), an independent-samples design
is appropriate here, because the subject of analysis is the two population of
asymmetry scores. The t value was calculated using unfiltered data; however,
the experimental software removed outliers in each epoch (values outside three
standard deviations from the mean) for the calculation, which can effectively
remove noise resulting from movement artefacts [2]. Since effective epoch-length
was 15s (trimmed), which contained at least 29 observations for each epoch
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sampled at 2Hz, the software used the t critical value of 2.05 with 28 degrees of
freedom for p (two-tailed) = .05 as a threshold for success.

Conversely, Experiment 2b applied a post-hoc success criterion, where the
t-test was calculated on filtered data (40s effective epoch length, windowed).
In addition to the SMAR and FIR filters described in the previous section, we
applied linear detrending on data from each channel [1]. Significance testing was
conducted using a distribution-free approach.

In Experiments 1a and 1b, we used a ‘one-size-fits-all’ model for providing
feedback, based on an empirically determined threshold for maximum feedback
that was the same of each participant within each block. This approach promotes
comparability of asymmetry values across blocks and subjects, but it does not
consider individual differences, which can be quite substantial [21]. However, by
analysing the distribution of asymmetry scores in a reference epoch, it is possible
to devise personalised feedback within each block, taking into consideration the
normal fluctuation of the asymmetry signal during a reference task. We recom-
mend using a reference task (e.g., mental counting) for baseline if a simple set-up
is preferred or there is an emphasis on collecting a large number of blocks from
each participant. Otherwise, it is preferable to use a reference epoch with similar
perceptual properties as the NF task, but including a different mental activity;
this provides experimental control within a block, and allows for the application
of individualised feedback to promote decreasing noise and increasing NF success.
We implemented this in Experiments 2a and 2b in the following way.

We defined threshold for providing feedback during the NF epoch based on
the asymmetry values collected during the reference epoch within the same block
(Fig. 5). The threshold was defined as the mean of asymmetry values during the
reference epoch plus 1.28 times their standard deviation3. Assuming normally
distributed asymmetry values, this threshold would result in reinforcing only the
top 10% of asymmetry values in the reference epoch. This approach to determine
threshold is consistent with the original one of Rosenfeld et al. [19] for EEG-
based frontal-asymmetry NF.

We provided continuous feedback, based on real-time changes in the mag-
nitude of the asymmetry signal. For example, in Experiment 2a, the feedback
channel was the image transparency of a virtual character (Fig. 3b), who was
previously identified as mischievous, and the experimental subjects could make
his image disappear from a virtual scene by expressing anger towards him,
thereby up-regulating left-asymmetry [13]. Crossing the threshold during NF was
mapped to 10% transparency of the virtual character, while reaching an empiri-
cally determined maximum asymmetry was mapped to 100% transparency, effec-
tively removing the virtual character from the scene. The maximum asymmetry
value for mapping was defined as the threshold plus the variation range of the
asymmetry values during the reference epoch. Visual transparency was mapped
linearly between the threshold and maximum value, updated with the same 2Hz
frequency of the collection of asymmetry values.

3 Outliers were removed by the experimental software to avoid extreme values, likely
reflecting movement artefacts, exerting an unduly influence on the threshold.
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Fig. 5. Calculation of threshold (minimum) and maximum asymmetry values for linear
mapping to continuous feedback. Note that the minimum feedback value is set to 10%.

This approach of using a reference epoch to determine feedback range pro-
motes NF success by tailoring the feedback mechanism to the individual subject
by considering her own signal variation, with the additional benefit of determin-
ing the range of noise in the signal for which no feedback should be provided.
Note that in this approach the reference epoch necessarily precedes the NF
epoch.

Additionally, we calculated the Cohen’s d effect-size measure to quantify the
magnitude of NF success, which is characterised as the difference between mean
asymmetry during the two epochs divided by the pooled standard deviation. This
was also calculated real-time in Experiment 2a (Fig. 1c). The d value reflects the
distance between the distribution of asymmetry values between the reference and
NF epoch within the same block, which can be readily interpreted. For example,
average d in successful blocks in Experiment 2a was 2.40, which corresponds to
an average 23% overlap in asymmetry scores between NF and reference epochs,
and there is a 96% chance that an asymmetry value picked randomly from the NF
epoch will be larger than a randomly picked asymmetry value from the reference
epoch. Calculating these measures can be useful for illustrating the magnitude of
asymmetry up-regulation in NF. Although the magnitude of oxygenation changes
can differ substantially across subjects and blocks, this approach relies on the
distribution of observed asymmetry values within blocks, therefore data collected
from different individuals at different times are comparable.

5 Summary of Recommendations

We presented two sets of experiments where we applied variations on proto-
col design to support fNIRS-based PFC-asymmetry NF for active BCI. In this
section, we briefly summarise the key points and present recommendations for
protocol design. Table 1 illustrates these points through a comparison of two
experiments.

Protocol Length. NF demands focused attention and concentration (but it is also
rewarding and interesting), which leads to fatigue over time: approximately 40s
long epochs and 2min per block are manageable, provided there is enough rest
between the blocks. A total protocol length of approximately 10min is comfort-
able, where fatigue towards the end that does not significantly impair the quality
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Table 1. Summary of the key points inllustrated through contrasting two experiments.

Exp. 1a Exp. 2b

Reference epoch No Yes (counting)
Threshold 0 asymmetry Dynamic (M + 1.28 · SD)
Maximum Fixed (1.1) Dynamic (min+range)
Statistical test Parametric Bootstrapping
Success test Real-time Post-hoc
Filtering No Yes (FIR, SMAR, detrending)
Delay treatment Remove 7s Windowing

Practice 3 blocks 1 block
Number of blocks 6 8
Number of subjects 11 10
Success rate1 73% 70%
1 Indicates the percentage of subjects achieving NF success in

at least half of the completed experimental blocks [5,7].

of data (analysis revealed that NF success was not significantly less likely towards
the end of the protocol in the studies). A shorter block length is generally prefer-
able, which allows for including more blocks in a protocol. Based on post-use
interviews with 42 subjects who participated in our experiments, we advise to
determine the length and number of blocks so that data collection fits within
approximately 15–20min with instructions, practice, set-up and calibration.

Compensate for Delay in the Haemodynamic Response. This can be achieved by
simply removing initial observations in an epoch or bywindowing. Simple removing
may be considered a safer solution when it is important to make sure that each
data point was collected when feedback was present, but windowing helps to better
utilise the collected data by boosting statistical power with increased sample size.

Using a Reference Task. We recommend using a reference task (e.g., mental
counting) for baseline if a simple set-up is preferred or there is an emphasis
on collecting a large number of blocks from each participant. Otherwise, it is
preferable to use a reference epoch with similar perceptual properties as the
NF task; this provides experimental control within a block, and allows for the
application of individualised feedback.

UsingaStatistical SuccessCriterion.Rather than relying solely on statistical signif-
icance, we advise to quantify NF success (e.g., by calculating effect-size measures).
If the NF signal also serves as input and a real-time success criterion is required, a
parametric approach is sufficiently robust, but simple data-screening should still
be applied (e.g., removing outliers). Otherwise, a post-hoc success criterion should
be preferred onfiltereddata andusing adistribution-freemethod.Conduct a power
analysis to inform the necessary length for the NF epoch.

Continuous, Real-Time Feedback. Feedback can be provided with the same fre-
quency as the input signal is collected. With an empirically determined thresh-
old and signal range, the feedback can reflect continuous variations of the input
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signal, as opposed to a limited set of categories. We recommend using a feedback
channel that is conceptually or perceptually related to the NF task. Participants
can accommodate delay in the feedback, but they need to be informed in advance
to expect some delay. Additionally, we found it useful to instruct participants
that some jitter may be also present in the feedback; however, this was not prob-
lematic enough to introduce smoothing to reduce fluctuations in the NF signal
(e.g., moving average [6,28]).
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Abstract. The neuroelectrical and the eye-movements activities were collected 
in a group of 27 healthy subjects during their visit of a fine arts gallery display-
ing twenty paintings of Titian. Evaluation of the appreciation of the paintings 
was performed by using the neuroelectrical approach-withdrawal index (AW). 
AW index was estimated for two groups of ten paintings of Titian: one group 
was related to religious matter while the second was related to portraits. In addi-
tion, it was compared the population AW indexes estimated in the first 10 
seconds of the observation across all the selected paintings with the AW index  
estimated in the last 40 seconds of the observation. The number and the total 
duration (in seconds) spent on the eye fixations performed by the subjects  
during the observation of the paintings was also analyzed. 

Results showed that the AW index was significantly higher during the ob-
servation of portraits than during the observation of the religious subjects 
(p<0.007). Interestingly, the grand average AW index estimated in the first 20 
seconds of the observation of the paintings remains highly correlated with the 
AW index evaluated for the second part of the data (from 20 s to one minute) 
for all the 20 paintings examined (r = 0.82, p<0.0001). The number of eye fixa-
tions in the first 10 seconds of observation of the paintings that were most ap-
preciated are significantly higher than the number of eye fixations for paintings 
that subjects did not like (p<0.019). Moreover, the total time spent on fixations 
for paintings that were liked by the subjects was significantly higher than the 
time spent on paintings that were not liked (p<0.036). Taken together, such re-
sults seem to suggest that the neuroelectrical correlates of the perception of 
“good” or “bad” paintings are generated in our brain within the first 10-20  
seconds from the initial exposition of the subject to the painting. 

Keywords: Neuroaestethic · EEG · Eyetracker · Titian 



22 F. Babiloni et al. 

1 Introduction 

The study of the cerebral perceptions related to fine art experiences has been started 
more than a decade ago by S. Zeki [1]. To now, the major part of the studies related to 
the neuroaesthetic discipline have been performed by using the hemodynamic corre-
lates of brain activity through the functional Magnetic Resonance Imaging (fMRI), as 
reviewed in [2]. Only few studies have been performed by using the neuroelectrical 
correlates of brain activity during the fine arts perception [3–5]. Many of such studies 
put the subjects in front of a reproduction of the fine arts painting or sculpture on a 
computer screen, while only few are using real masterpieces as stimuli. Until few 
years ago, the possibility to collect cerebral activity from freely moving subjects was 
almost impossible from a technical point of view, due to the limitations on the acqui-
sition hardware and the absence of efficient artifacts removing procedures. Nowa-
days, a body of methodologies able to collect and to analyze cerebral activity and eye-
movements fixations during the execution of freely movements of subjects in open 
spaces has been developed [6–7]. Thus, it appears possible to gather cerebral activi-
ties even during the appreciation of real masterpieces in an art gallery.  

In particular, we investigated the cerebral and eye movement activities correlated 
to the appreciation of paintings during a visit of a real art gallery in Rome. In fact, 
cerebral activity linked to the appreciation or rejection of the sensory inflow related to 
generic picture’s observation has been index in literature by the unbalance of the EEG 
power spectra (EEG PSD) in the alpha band over the prefrontal areas [8–10]. In par-
ticular, it was demonstrated as a greater left prefrontal activity in the EEG PSD sug-
gests a propensity to an engage with the sensory stimulus provided while a relatively 
greater right prefrontal activity suggests a modality of disengage from the stimulus 
proposed [8–9]. While the unbalance of the EEG PSD over the prefrontal cortices 
returns an index of the approach-withdrawal attitudes of the subject in front of the 
stimuli, the information about the modality of the painting exploration are not easily 
determined unless an eye-tracking device is used. By recording the eye-movements of 
the participants during the observation of the paintings, we were interested in the 
analysis of their scanning patterns during the observation of paintings they like when 
compared to the paintings they did not like. 

2 Methodology  

2.1 Experimental Design 

The experiment has been performed at the “Scuderie del Quirinale”, which is one of 
the major art galleries in Rome. The gallery hosted a collection of paintings from 
Titian (1488–1576). Twenty paintings were selected as stimuli for the subjects, ten 
related to portraits and ten related to religious matter. The twenty paintings selected 
for the analysis are presented in Fig. 1. During the experiment the gallery was closed 
to visitors. Ten of the selected paintings were related to a religious matter and ten 
were related to portraits of man or woman. 



 A Neuroaesthetic Study of the Cerebral Perception and Appreciation of Paintings 23 

Twenty-seven healthy subjects (37.04±9 years, 14 males) were involved in the ex-
periment. Informed consent was obtained from each subject after the explanation of 
the study, which was approved by the local institutional ethic committee. The experi-
ment was conducted following the principles outlined in the Declaration of Helsinki 
of 1975, as revised in 2000. All the subjects underwent the same experimental proce-
dure related to the acquisition of their EEG and eyetracking activities. In fact, before 
the visit each subject remained for one minute with the open eyes in a rest position.  
 

 

Fig. 1. The 20 masterpieces of Titian that have been presented to the subjects during the visit of 
the art gallery. The numbers on the paintings describe the visit sequence performed by all the 
investigated subjects.  

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20
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Successively, all the subjects spent one minute observing a text explaining the content 
of the exposition on the wall of the gallery. This last sequence was taken as the EEG 
baseline for the successive analysis. For all the subjects the visit of the gallery con-
sisted in the same sequence of painting’s observation.  Each one of the twenty paint-
ings selected for the visit was observed for one minute by each subject. 

This procedure was adopted in order to assure that all the subjects observed the se-
lected paintings in the same temporal sequence. The naturalistic vision of the painting 
was performed in silence by the subjects, which were also asked to minimize their 
head and muscular movements in front to it. Fig. 2 shows the typical setup of the EEG 
and the eye-tracking recording device mounted on the subject.  

 

Fig. 2. The typical setup for the recordings employing the international 10–20 system for the 
electrode montage and the ASL eyetracker device. The mobile EEG and eyetracker devices was 
worn by the subjects without any relevant physical efforts. 

Figure 3 shows the free observation of the subject in front of a particular master-
piece involved in the experiment. The subject was free to adjust his/her optimal dis-
tance from the painting for the best possible perception. 

After 1 minute of free vision, the experimenter asked the subject to rate the paint-
ing observed according to his/her perceived pleasantness (ranging from 1, ugly, to 10, 
beautiful) and then guided him/her to the next painting.  
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Fig. 3. The collection of the brain activity during the aesthetic observation of the painting “An-
nunciazione” by Titian. Note the EEG cap and the eye-tracking device mounted on the cap for 
the monitoring of the eye movements. EEG and eye tracking data were stored on the portable 
devices carried by the subjects in a little portable bag. 

2.2 EEG Recordings and Signal Processing 

The aim of this section was to describe the succession of signal acquisition and 
processing steps performed to estimate the approach/withdrawal (AW) index related to 
the appreciation or the rejection of each investigated painting of Titian in the analyzed 
population. In addition, it was also investigated the cerebral activity related to the apprec-
iation or rejection of the paintings by each subject formed in the first 20 seconds of the 
naturalistic vision. To this purpose, the average value of the AW index estimated in the 
first 20 second of the vision of the painting was referred in the following as AW20. Such 
index was contrasted with the AW index averaged along the successive 40 seconds, 
called AW60 (from 21 seconds to the 60 seconds of the observation of the painting).   

The following acquisition and analysis steps were then performed: 1) the collected 
EEG data were subjected to artifact removal by applying Independent Component 
Analysis (ICA) procedure supervised by an EEG expert. Usually up to two compo-
nents related to the blink and eye movement artifacts were removed from the ICA 
space in each subject; 2) the gathered EEG data collected during the gallery visit  
were transformed in AW z-score values, by taking into account the cerebral activity 
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collected during the baseline; 3) values of AW, AW20 and AW60 z-scores were 
computed for each subject and for each painting analyzed; 4) the grand average of the 
AW, AW20 and AW60 z-score values for each painting was then computed;   

EEG was gathered by a portable 19-channel system (BEmicro, EBneuro, Italy). 
The international 10–20 system was used as guide for the electrode placement. The 
Fpz channel has been used as reference. Electrode impedances were below 5kΩ. In-
dependent Component Analysis (ICA) was applied to the EEG to detect and remove 
components due to eye movements, blinks and muscular artefacts. The ICA procedure 
employed was supervised by an EEG expert and it was applied on every subject’s 
data. Usually up to two components were removed from the ICA space since they are 
related to the blink and eye movement artifacts. The Individual Alpha Frequency 
(IAF) has been calculated for each subject in order to define the frequency bands of 
interest according to the method suggested in the scientific literature [11].  

In particular, the Individual Alpha Frequency value was given by the frequency 
band (IAF-4, IAF+2) where the values are given in Hz. EEG traces were then seg-
mented to extract and analyze the cerebral activity during the observation of the se-
lected paintings. Each EEG trace has been band pass filtered in order to isolate the 
spectral components in the alpha band from the whole EEG spectrum. The filtered 
traces have been used to calculate the Global Field Power [GFP; 12]. We used the 
frontal electrodes to compute the GFP indexes in this study, by selecting the elec-
trodes F7, F3, Fp1, Fz, Fp2, F4, F8 of the International 10–20 montage. Such selec-
tion was performed to evaluate the Approach/Withdrawal Index (AW index).  

The formula that defines the AW index is the following:  

AW = GFPα_right - GFPα_left            (1) 

where the GFPα_right and GFPα_left stand for the GFP calculated among right (Fp2, 
F4, F8) and left (F7, F3, Fp1) electrodes, in the alpha band, respectively. The AW 
index was then normalized returning a z-score values across all the experiment for 
each subject. In fact, such index has been defined by taking into account the frontal 
EEG asymmetry’s theory by Davidson and coworkers [9, 13]. After, the values of the 
z-score AW index across the time spent in the observation of each painting were av-
eraged, returning a single value of AW for each subject and for each painting. These 
AW values were also grand-averaged across the subjects, to return an average AW 
value for each painting investigated.  

The AW evaluation was also estimated by taking into account the EEG data from 
the first 20 seconds (AW20) as well as the data from the 20th second to the end of 
observation for each paint (AW60).  

2.3 Eye-Tracker Analysis 

The eye-tracker device employed (ASL technologies, USA) returned information 
about the displacement of the eye gaze for each subjects during the observation of the 
twenty paintings analyzed. In particular, the number and the total duration in seconds 
of the eye fixations were taken as indexes of the scanning behavior of the subject 
during the one minute of free observation of the painting. A eye fixation was defined 
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when the eye gaze of the subject remains stable in a square of 40x40 pixels of the 
target for a period of about 240–280 ms during a free scene viewing. Fixations were 
related to the focus of the attention during the scanning of a presented stimulus. In-
formation on fixation pattern was also corroborated by the estimation of the total time 
in seconds spent on fixations by the subjects on the naturalist vision of the paintings. 
Fixations were collected for each subject and for all the paintings during the first 10 
seconds and for the entire duration of the observation allowed (60 seconds).   

2.4 Statistical Analysis 

Behavioral. Each subject at the end of each observation of the painting returned a 
verbal score ranging from 1 to 10. An ANOVA with the main factors CONTENT (at 
two levels; Religious, Portrait) and PAINTING (at ten levels) was performed by using 
the explicit score as dependent variable.  

EEG. The statistical analysis on EEG is aimed to understand if : 

1) the AW index estimated in the acquired sample population differs between the 
paintings related to the portraits when compared to the those of religious content; 

2) there is a difference in the appreciation generated by the subjects in the first 20 
seconds of the observation of the painting when compared to the second part 
of such free observation. This comparison is addressed by the use of the 
AW20 and AW60 indexes and the correlation analysis across all the paintings 
considered. 

An analysis of variance (ANOVA) has been performed on the AW values with the 
main factors CONTENT (with the two levels Portrait and Religious) and PAINTING 
(with ten levels) at the 5% significance level. 

The grand averages of the AW20 and AW60 index for all the paintings evaluated 
were subjected to the correlation analysis (through the estimation of the Pearson coef-
ficient). This was made to assess if the values of the appreciation or rejection of the 
paintings by the population that were formed in the first 20 seconds of the naturalistic 
vision were similar to those estimated in the last 40 seconds of the painting’s view.  

Eye-fixations. The statistical analysis performed on the eyetracker data was related to 
the hypothesis that the number of fixations and the time spent on such fixations could 
differ between paintings that the subjects like most from the paintings that the sub-
jects did not like. To this aim, the number of eye fixations and the total time in  
seconds spent in fixations on each painting was evaluated for each subject. In each 
subject, the painting that received the best score and the painting that receive the low-
est verbal score were selected. For these particular couple of paintings, the number of 
fixations along different time length of observation (10 and 60 seconds) and the total 
time spent on fixations were estimated. A paired Student’s t-test was then performed 
separately on each one of these variables (e.g. the number of fixations at 10 and 60 
seconds and the total time spent on fixations). Protection against the multiple execu-
tion of several univariate t-tests was adopted by using the False Discovery Rate pro-
cedure (FDR), at a 5% significance level.   
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3 Results 

3.1 Behavioral Results 
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The ANOVA performed on AW index values returned a significant value for the 
factor CONTENT (F = 9.95; p<0.005) and for the interaction CONTENT x 
PAINTING (F = 2.64; p<0.007), being then the AW values of the Portrait level great-
er than the Religious level.   

The correlation between AW20 and AW60 indexes was high (r = 0.82) and statisti-
cally significant (p < 0.0001).   

3.3 Eye Fixations Related to the Paintings Observation 

In the first 10 seconds, a higher number of fixations have been produced during the 
observation of the paintings that the subjects like most when compared to the fixa-
tions generated for the observation of paintings that the same subjects did not like. 
Such difference is statistically significant according to the paired Student’s t-test, with 
a p < 0.019. Also, the total time spent in the fixations for the first 10 seconds of these 
observations is greater for the painting the subjects like most when compared to the 
paintings the subject did not like. This difference was statistically significant accord-
ing to the paired Student’s t-test, with a p<0.036. Interestingly, this statistical differ-
ence in the number of fixations between pleasant and less pleasant paintings vanished 
when the time period allowed for the observation of the painting reached one minute 
(p = 0.54). In this condition, there is no difference between the number of fixations 
received by the paintings that the subjects like or reject most. 

4 Discussion 

This paper provided evidences of specific scalp prefrontal activity correlated to the 
evaluation of a series of real paintings by Titian during a visit in a fine art gallery.  
Previously, general sensory or motor stimuli induced by the observation of paintings 
have been investigated [1–5]. In addition, it was also described the involvement of 
medial orbitofrontal cortex as assessed by hemodynamic measurements during the 
perception of artistic artifacts [2]. However, in the present study it must be stressed 
that the estimation of the AW index on the scalp prefrontal areas is not equivalent to 
the use of source current density methodologies, that could estimate the cortical activ-
ity from EEG measurements [14–21]. 

It might be argued that the estimation of the AW index could be affected by the oc-
currence of ocular artifacts, since it was clearly allowed to the subjects to move their 
eyes during the free observation of the paintings. However, it must be considered that 
the occurrence of the ocular artifacts have a bilateral spread toward the frontal and the 
central scalp areas. Thus, it is unlikely that such artefacts could play a role in the 
evaluation of the AW index, which is based on the unbalance between the EEG PSD 
over the left and right prefrontal scalp areas.  

Results obtained suggest that the investigated population shows a higher AW scores 
for paintings in the Portrait section when compared to the AW scores for paintings 
listed in the Religious section. This finding is in agreement with the results obtained  
in a previous similar investigation performed on the paintings of Jan Vermeer [13].  
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In such investigation, paintings related to portraits received a higher AW score than 
those related to landscapes. A possible interpretation of such results is related to the 
importance of face recognition in humans when compared to the other elements of the 
visual scene represented in the painting.   

A specific finding of this study is that the AW index estimated in the analyzed 
population during the first 20 seconds of the free observations of the paintings is  
highly correlated with the value of the AW estimated during the second part of the 
observations (r=0.82, p<0.0001). This result could be interpreted as that the scalp 
“prefrontal” aesthetic evaluation of the paintings by the subjects occurred within the 
first 20 seconds of the observation of the paintings and did not change in the succes-
sive 40 seconds.  

It might be argued that EEG autocorrelation could be responsible for the re-
occurrence of the same EEG patterns at the base of the similarity of the AW20 and 
AW60 indexes related to the free observation of the paintings. On the other hand, 
such hypothesis could be challenged at the light of the fact that the AW index is esti-
mated with respect to a baseline. Thus, it will be unlikely that a particular unbalance 
of EEG activity over the prefrontal electrodes due to the EEG autocorrelation would 
be maintained above the chance level when compared to its occurrence during the 
baseline period. If an autocorrelation would be at the base of the phenomena ob-
served, it would be present also in the baseline before the task was performed. 

The evidences returned from the eye-tracking part of the study presented a statisti-
cally significant higher number of eye fixations for the paintings the subjects liked 
most when compared to the number of eye fixations for the painting the subjects did 
not like. This result held only during the first 10 seconds of observation of the paint-
ings. In fact, the number of fixations along the entire duration of the task were similar 
between the paintings tested. In addition, also the total time spent on fixations were 
higher in the first 10 seconds of free observation for the paintings the subjects liked 
most than for the paintings the subjects did not like.  

Thus, it could be hypothesized that a high number of fixations and an increased 
time spent on such fixations characterizes the scanning pattern for paintings that sub-
jects liked most with respect to the case in which the subjects observed paintings they 
did not like. 

It may be argued that in free viewing experiments fixations could be affected by 
head movements. This fact could be a source of a major confound effect in the analy-
sis of the present eye tracking data. However, it must be stressed that it was asked to 
the subject to stay calm and avoiding head movement during the time spent on the 
observation of the painting.  

Taken together, these results suggest that the “internal” appreciation or rejection of 
the paintings was a relatively quick process in the investigated sample. In fact, such 
process appears to be supported by a high eye fixation process in the first 10 seconds 
of the observation of the paintings, also sustained by the formation of a consistent 
unbalanced scalp prefrontal activity in the first 20 seconds of the free view of the 
painting.  
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Such flow of events could be tested in a successive experiments related on how and 
when we forming inside our head the judgment about the beauty perceived by a fine 
arts painting. 
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Abstract. Modern symbiotic and adaptive HCI paradigms include real-
time algorithms capable of inferring user’s states. We present an exper-
imental interface which aims to understand the information processing
capacity of a human user and use this information to improve interaction
in a database exploration task. We collected the electrodermal activity
and pupillometry signals in tasks of increasing difficulty and used their
features to infer whether the subject was performing the task correctly or
not. By combining principal component analysis and logistic regression
methods, we successfully inferred the accuracy of users’ responses from
the signal after the response was made. This study provides a quantita-
tive framework for modelling user internal states and evaluates it in a
practical human computer interaction task.

Keywords: Human-computer-interaction · Adaptive interfaces ·
Affective computing · EDA · Pupillometry

1 Introduction

1.1 Using Physiological Signals to Infer Implicit User States

Symbiotic and adaptive interfaces open new channels of communication between
the human and the machine [4,11]. The principal aim of such interfaces is to
decode the internal states of the human user and use this information to improve
the interaction [18,20]. So far, the traditional interfaces are only capable of
reacting to explicit user input which puts a limit on the possible understanding
such system can have of its user. Between humans, on the other hand, explicit
communication constitutes only a small fraction of the actual message [14]. Being
able to decode affective and cognitive states of another person (i.e. mentalizing)
is what makes humans effective at communication and collaboration [9]. Such
states are not declared explicitly in human-human interaction and need to be
decoded from plenty of noisy sources. We aim at developing a symbiotic and
c© Springer International Publishing Switzerland 2015
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adaptive interface which is capable of inferring such implicit internal states in
order to adjust the visualisation and interaction parameters of a neuroscience
application, BrainX3 [3]. BrainX3 was developed as a part of the CEEDs project
which aims at developing an immersive mixed reality framework to support the
exploration of neuroscientific data [13]. The purpose of this interface is to infer
the information processing capacity (i.e., cognitive load) of a human user and
act accordingly to optimize the context in which the database is explored and
analysed.

Among the many individual internal states, cognitive load reflects the infor-
mation processing capacity of a person [17]. Other internal states, such as the
affective state of arousal, report (although not primarily) the degree to which
a person is capable of paying attention to a relevant task [8]. These two inter-
nal states affect the autonomic nervous system (ANS) responses [7], and can be
inferred from the pupillometric and electrodermal signals [2,6]. Pupil size was
shown to increase in cognitively demanding tasks (such as arithmetic or mem-
ory tasks) [10] while electrodermal activity (EDA) is widely used to measure
the arousal levels in response to stimuli (for instance, startle responses to fearful
stimuli) [5]. EDA is a more selective measure of internal states, reporting only
the affective ones, whereas the pupil size changes in response to both cognitive
and affective aspects of a task [19].

Using the pupillometry and EDA measurements we investigated the relation-
ship between user’s internal states and performance during the exploration of
a neuroscience database. Characterizing such relationship allows to adapt the
interface, for example reducing the display complexity in order to adjust to the
user information processing capacity. Such task can be compared to what a tutor
does when he notices that a student is not coping (or coping too well) with the
given difficulty of the assigned task. Given such analogy we named our system
the Sentient Agent, as it should monitor the internal states of the user, interpret
them and adapt the task accordingly. Here we report the result of an experiment
in which we tested two fundamental requirements of a symbiotic system. First,
whether the physiological signals accurately describe the internal states of the
participants and second, whether the signals relate to user behavior. The tonic
and event related signal analysis will address these two questions respectively.

1.2 BrainX3 Application

The context and setup of the present experiment is the BrainX3 application
(figure 1), a visualization and analysis tool aimed to assist researchers in the
development of hypotheses on regularities and principles of brain organization
and function [3]. BrainX3 is supported by the XIM-engine, a control architec-
ture that integrates and controls different sensors and effectors in the immersive
mixed reality infrastructure called eXperience Induction Machine (XIM) [16].
The data set presented in BrainX3 is the human connectome, a large network
of nodes and edges representing the structural connectivity of the human brain,
which can be analysed using different graph theoretical measures to describe and
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infer structural properties of the brain [1]. Connectome provides important infor-
mation not only on the whole brain description level. Sometimes the researcher
needs to know if particular anatomical connectivity exists, i.e. is node ‘A’ con-
nected directly to node ‘B’ or are there some intermediaries? The anatomical map
of nodes and edges can be revealing about the effective functional properties of
different brain regions and visual inspection provides the first step towards more
quantitative analysis the application provides. Given the nature of the tasks a
researcher is likely to encounter, we designed the experiment to be visually iden-
tical to the human connectome display. Therefore, for the experimental setup
we designed an artificial network where the user has to navigate from one end
to another while understanding the structural organization of the data set. Such
setup was chosen to create a controlled experiment in the context of big data
exploration, using the BrainX3 application.

Fig. 1. Computer rendering of BrainX3 within the eXperience Induction Machine
(XIM). XIM is a cave system equipped with a range of physiological and tracking
sensors. The BrainX3 display, including the 3D connectome network are projected on
the frontal screen. The user can navigate and interact with the model with hand ges-
tures or a tablet interface. This application is used to investigate the relation between
the structural organization of the brain and it’s functional properties [1].

2 Materials and Methods

2.1 Sensors

The pupil signal was recorded with a wearable eye-tracker from Pupil Labs at
a sampling rate of 30 Hz (Pupil Labs UG, Berlin, Germany). The EDA was
sampled at 100 Hz using a custom made, wearable, wireless glove sensor. The
signals were collected and time-adjusted with the experimental application using
the SSI Framework [21]. The gestures and position of the user were captured by
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a Kinect2 (Microsoft, Redmond, WA, USA). The interaction in the mixed reality
setup was controlled by the XIM-engine [16], whereas the visualization of the
virtual reality (VR) environment was developed using the Unity engine (Unity
Technologies, San Francisco, CA, USA).

2.2 Experimental Procedure

The experimental task required the participants to navigate from one side of a
network (identified as the start node) to the opposite one (end node). A synthetic
network was constructed from a repeating pattern of layers (figure 2), such that
each node was connected with two edges to the nodes inside the same layer and
with one edge to the next layer of nodes. The participant had to move from node
to node, selecting the edge to move by next. Thus, at each node, participants
could decide between three paths two take, one (correct) which was leading
towards the other end of the network and two (incorrect) leading to the same
current layer.

Participants were instructed to reach the end of the network selecting the
shortest path, thus trying to minimize the number of incorrect choices. Subjects
were informed about the structure of the network and how they should decide
the path to take. After each step (i.e. decision) subjects were provided with
feedback on form of a score on a colored bar and a distinct sound.

After a training period aimed to let the participant familiarize with the task,
Gaussian noise was added to the 3D coordinates of all the nodes making the
structure more difficult to perceive. Three levels of noise were added resulting
in 3 difficulty levels of the task. Each participant completed all difficulty levels
in a random order. Each level was composed of 12 layers and it took on average
14.48 minutes to complete them all.

3 Results

3.1 Participants Selection

51 participants recruited from the University campus participated to the study
(24 females, mean age 22.1±4.2 SD). Participants were paid 10 euros after the
experiment and signed an informed consent form. 5 participants were excluded
from the analysis of the pupil signal and other 14 subjects for the EDA analysis.
Subjects were excluded when more then 30% of the data was missing.

3.2 Signal Pre-processing

Both signals were first reconstructed through interpolation (using numpy.interp)
of the corrupted segments with the surrounding signal, and then detrended
applying a Hodrick-Prescott filter [15]. The EDA signal was not low pass fil-
tered due to the many averaging steps necessary to obtain the final time-series.
Comparing the results to the procedure including low-passing did not produce
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Fig. 2. (Left side) The structure of the artificial network. Each layer is triangular.
Each node is connected to the two other nodes inside the same triangle (i.e. layer) and
one outgoing connection to the next layer. The task of the participant is to move to
the next triangle and avoid moving around the same one. By always selecting the path
connecting to the next layer subject will move in the shortest path from one side of the
network to the end. (Right side) The same experimental network modified with noise,
making the underlying structure of the network more difficult to perceive. Gaussian
noise was added to the 3D position of each node and the connections were maintained
as in the figure on the left. The participant still has to follow the shortest path but
in this case the decision can be difficult. The highlighted paths represent the options
available to the subject, one of which is correct and two are incorrect.

any significant differences in the outcome. The aligned responses of each subject
were finally normalized and averaged separately for correct and incorrect events.
All analysis was done using python with numpy and scipy libraries.

3.3 Tonic Measure

To analyze the tonic properties [12] of the signals a time window starting one
second before and ending 5 seconds after the decision time was removed from the
signal. The remaining time series were averaged to produce the tonic measure
for comparison between the easy, medium and hard task difficulty conditions.
This method produced a repeated measure of tonic EDA and pupil signals.
Such measure should reflect the overall internal state changes for each partici-
pant, which are not related to a particular decision, but to the overall difficulty
of the task.

A repeated measures ANOVA with a Greenhouse-Geisser correction deter-
mined that mean tonic measure of the pupil signal did not statistically sig-
nificantly differed between difficulty levels (F(1.989,87.509) = 2.226, p<0.114)
(figure 3). The mean value was 75.76 (10.91 SD) in the easy, 76.32 (11.37 SD)
in the medium and 76.31 (11.07 SD) in the hard difficulty level.
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Fig. 3. The tonic activity of the pupil signal during different task difficulties. The box
plots represent within subject differences between easy, medium and high difficulties.
The horizontal line is marking zero level, which is a point of equality between the
compared tonic activities.

Fig. 4. The tonic EDA measure during different task difficulties. The box plots rep-
resent within subject differences between easy, medium and high difficulties. The hor-
izontal line is marking zero level, which is a point of equality between the compared
tonic activities.

There was no statistically significant difference in the EDA tonic measure
between the difficulty levels of the task, χ̃2(2) = .438, p = 0.804) (figure 4).
Median scores for the easy, medium and hard difficulties were 760 (617 to 951),
742 (631 to 988) and 746 (640 to 1025), respectively.
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3.4 Event-Related Measure

For the analysis of the event related responses (i.e. phasic responses) [12] a 5
seconds signal slice was selected centered on the decision time. The aligned signal
slices of each subject were then normalized and averaged separating the correct
and incorrect decisions. The event related measure was taken by comparing
averaged correct and incorrect signal slices for each participant. The standard
deviation thus represents the between-subject variability.

Fig. 5. Time course of the pupil size around the time of the decision. Blue and red lines
represent the mean signal value and shaded regions represent the standard deviation
range. The peak in the signal after the decision is the subject reaction to the feedback.

The time course of the pupil size (figure 5) show three peaks which can be
used to distinguish correct from incorrect decisions. First peak is the negative
deviation (downwards) of the incorrect time course and it occurs around 4 sec-
onds before the decision. The second peak is the positive deviation (upwards)
about 2 seconds after the decision. The last, third peak occurs about 4 seconds
after the decision. The difference between the correct and incorrect time courses
is quantitatively compared in the following section (figure 6).

For both the pupil and EDA time courses our aim was to use the signal in
order to infer whether the user made a correct or incorrect decision. In order to
compare the whole time series we used a dimensionality reduction method, the
principal component analysis (PCA), which can be used to find the axis with
the largest variance in the transformed signal. We can then use the value of each
signal projected into this axis (i.e., the principal component) as the predictor
variable in the logistic regression. Logistic regression is useful for predicting a
binary outcome, in our case a correct or incorrect decision from a set of contin-
uous variables provided by the PCA transformation.
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Fig. 6. Principal component analysis of the event-related pupil signal slices. The top
panel represents the signals reduced to the first two principal components. The blue
points represent correct signal slices and red points represent the incorrect ones. The
bottom panel represents the proportion of variance covered by the component.

A logistic regression analysis was conducted to predict the accuracy of
the subject decision using PCA components of the pupil signal as predictors
(figure 6). Testing the full model against a constant only model was statisti-
cally significant, indicating that at least some of the predictors reliably dis-
tinguished between correct and incorrect decisions (χ̃2= 64.990, p<.001 with
df = 3). Nagelkerke’s R2 of .696 indicated a moderately strong relationship
between prediction and observed outcome. Prediction success overall was 81.8%
(86.7% for correct and 76.7% for incorrect decisions). The Wald criterion demon-
strated that both the first and second principal component made a significant
contribution to prediction (p<0.05 for both components). EXP(B) value indi-
cates that when the second component is raised by one unit the odds ratio is
2 times as large and therefore the subject is twice more likely to make a cor-
rect decision. On the other hand, increasing the first component by one unit
decreased the odds that the subject will make a correct decision by 30%.

The time course of the EDA (figure 7) shows much higher variance in case of
incorrect decisions (red line) than correct decisions (blue line). The average time
course varies mostly about 3 seconds after the decision. In contrast to the pupil
signal the EDA shows no statistically significant deviation between correct and
incorrect time courses prior to the decision (see above).

The logistic regression model using the PCA transformed EDA to predict
the accuracy of the subject decision was statistically significant (χ̃2 = 8.938,
p<.05 with df = 3) (figure 8). The model explained 17.6% (Nagelkerke’s R2)
of the variance in the decision accuracy and correctly classified 61.9% of the
cases (78.1% for correct and 45.2% for incorrect decisions). The Wald criterion
demonstrated that the first principal component made a significant contribution
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Fig. 7. Time course of the EDA signal around the time of the decision. Blue and
red lines represent the mean signal value and shaded regions represent the standard
deviation range. The peak in the signal after the decision is the subject reaction to the
feedback.

Fig. 8. Principal component analysis of the event-related EDA signal slices. The top
panel represents the signals reduced to the first two principal components. The blue
points represent correct signal slices and red points represent the incorrect ones. The
bottom panel represents the proportion of variance covered by the component.

to prediction (p=0.05). EXP(B) value indicates that when the second component
is raised by one unit the odds ratio is 0.8 times smaller and therefore the subject
is 20% less likely to make a correct decision. Increasing the second component
by one unit also decreased the odds that the subject will make a correct decision
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by 25% but was on the border of not making a significant contribution to the
model (Wald test p=0.07).

We repeated the same procedure using only the time course of pupil signal
2.5 seconds prior to the decision. The model was statistically significant (χ̃2 =
7.764, p = .05 with df = 3) and explained 11.3% (Nagelkerke’s R2) of the variance
in the decision accuracy and correctly classified 62.5% of the cases (73.4% for
correct and 51.2% for incorrect decisions).

4 Discussion

Symbiotic interfaces require decoding of the human internal states which are
relevant for the goals in the HCI tasks. We have shown, how using psychophysi-
ological measures of pupil and EDA signals such decoding is possible. From the
collected signals we could classify different user responses in a task relevant for
neuroscientific database exploration. Looking at the pupil time-series (figure 5)
we identified three peaks in the negative average. First occurs about 4 seconds
before the decision, the second about 2 seconds after and the last one about
4 seconds after the decision. These peaks are the parts of the signal where the
largest difference between correct and incorrect decision can be observed and are
represented in the first three principal components of the signal, used to classify
the signal in the logistic regression model.

The strongest difference between correct and incorrect averages is visible after
the decision was made, which is not the information of primary importance to
a truly adaptive system. This visible difference is most likely attributed to the
difference in reaction the subjects had to the positive (sound and earning points)
versus negative feedback (distinct sound and loosing points). To recognize such
response the adaptive system has to know a priori what decisions are correct and
incorrect, like in the presented experiment, thus making the human effectively
redundant for the correct completion of the tasks. However, applying the same
analysis (PCA and logistic regression) on the signal slice before the decision
yielded promising results.

Being able to predict whether a human is about to make a correct or incorrect
decision prior to it actually being made is a necessary condition for a truly
adaptive system. Being capable to do so means that the system does not have to
know a priori what are the correct decisions, but can rely on a user’s model which
is predictive of the user’s performance or behavior. The model was statistically
significant (p = .05) and explained 11.3% of the variance in the decision accuracy
and correctly classified 62.5% of the cases (73.4% for correct and 51.2% for
incorrect decisions). However, given the low explanatory power of the model for
classyfing the incorrect decisions it could not yet be employed for a practical
adaptive interface.

The tonic measure of pupil size and of EDA could not distinguish between the
conditions on statistically significant grounds. Although the test of the tonic pupil
measure was on the border of statistical null effect (p =0.116) we could see that the
trend was not linear. The medium task difficulty resulted in a higher tonic activity
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than both easy and hard difficulties (figure 3), the high - medium difference is the
only one with median smaller than 0. We would expect the pupil size to linearly
increase with the task difficulty, but this was not the case. In figure 4 we reported
that the tonic EDA is little modulated by the task difficulty. The affective reactions
which the EDA measure is sensitive too might not occur in the cognitive tasks with
little affective components. Altogether these results suggest that physiological sig-
nals are not viable to describe the general state of the user, i.e. in the absence of
any specific stimulus in the context of the BrainX3 application.

Interestingly, the pupil signal was a better predictor for correct and incorrect
choices. This finding is rather surprising since we attributed the post-decision
peak in the signal as subject response to the feedback. Differences between neg-
ative and positive feedback relies more in the affective than cognitive domain
and it should be more visible in the EDA signal, which was not the case. This
result makes our explanation for the observed peak uncertain.

In conclusion, it was proven difficult to predict the accuracy of the response
using the physiological signals before the user’s choice, but possible to do so
afterwards. As a follow up, it will be interesting to investigate what happens
without providing any feedback to the user.

Overall the sensing architecture of the XIM engine is capable of decoding user
states, however the challenge of symbiotic adaptive interfaces is to develop real
time algorithms capable of classifying user states in the same way it is possible
in offline analysis.

Overall these results suggest that the more specific the interaction is defined
the greater the predictive power of the psychophysiological signals. We ground
this conclusion in finding observable differences in the event related properties
of the signals but not in the tonic ones. Therefore the path for the symbiotic
interfaces seems tied to the development of concrete and practical applications,
rather then a general solution for many HCI tasks. BrainX3 is an application
that provides the context for developing a symbiotic interface aiding neuroscience
research but has yet to be tested on a real neuroscientific task.
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ware framework to support the development of interactive applications that uses
conscious and unconscious reactions in immersive mixed reality. In: Proceedings of
the 2014 Virtual Reality International Conference, p. 26. ACM (2014)

17. Paas, F., Tuovinen, J.E., Tabbers, H., Van Gerven, P.W.: Cognitive load measure-
ment as a means to advance cognitive load theory. Educational Psychologist 38(1),
63–71 (2003)

18. Pantic, M., Pentland, A., Nijholt, A., Huang, T.S.: Human computing and
machine understanding of human behavior: a survey. In: Huang, T.S., Nijholt, A.,
Pantic, M., Pentland, A. (eds.) ICMI/IJCAI Workshops 2007. LNCS (LNAI),
vol. 4451, pp. 47–71. Springer, Heidelberg (2007)

19. Setz, C., Arnrich, B., Schumm, J., La Marca, R., Troster, G., Ehlert, U.: Discrimi-
nating stress from cognitive load using a wearable EDA device. IEEE Transactions
on Information Technology in Biomedicine 14(2), 410–417 (2010)
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Abstract. In this paper the use of neurophysiological indexes for an objective 
evaluation of mental workload, during an ecological Air Traffic Management 
(ATM) task, has been proposed. 

Six professional Air Traffic Controllers from the Italian ENAV (Società Na-
zionale per l’Assistenza al Volo) have been involved in this study. They had to 
perform an ecological Air Traffic Management task by using the eDEP soft-
ware, a validated simulation platform developed by EUROCONTROL. In order 
to simulate a realistic situation, the task was developed with a continuously va-
rying difficulty level, i.e. starting form an easy level, then increasing up to a 
harder one and finishing with an easy one again. During the whole task for each 
subject the electroencephalographic (EEG) signals were recorded in order to 
compute the neurophysiological workload index, and at the same time the sub-
jective perception of the mental workload by using the Instantaneous Self-
Assessment (ISA) technique. Thus, the EEG-based workload index, estimated 
by means of machine learning approach, by one side, and the subjective as-
sessed workload index by the other side, have been compared in terms of corre-
lation and difficulty levels discrimination. By the results it emerged: i) a high 
positive and significant correlation between the two measures, and ii) a signifi-
cantly discriminability of the task different difficulty levels by using the EEG-
based workload indexes, according to the ISA results. 

In conclusion, this study validated the EEG-based mental workload index as 
an efficient objective evaluation method of the cognitive resources demand in a 
real operative scenario, and moreover as an index able to monitor its variations. 

Keywords: EEG · EOG · Machine learning · Mental workload ·  
Self-assessment · ATM · ATCO · eDEP 
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1 Introduction 

In specific working environments where safety is paramount big issue, the human 
factor could be the risk reason less controllable and, at the same time, the main 
cause of danger. This is often because of an underestimation of the actual mental 
workload of the operator. In fact, as cognitive workload increases, maintaining 
task performance within an acceptable range becomes harder. High cognitive 
workload may demand more cognitive resources than those available in the human 
brain, resulting into performance degradation and errors commission [1]. The use 
of objective measures of mental workload based on biomarkers has been proposed 
for the evaluation of different systems design to allocate the workload, to minimize 
errors due to overloads or to intervene on the systems in real-time before the oper-
ators performing critical tasks become overloaded [2]. For example, few studies 
investigated neurophysiological indexes about the user states in safety-critical 
applications, such as driving, industrial environments or security surveillance. 
With respect to driving assistance applications, recent studies have explored the 
use of psychophysiological measures in a driving simulation for assessing driving 
performance and inattentiveness, as well as for robust detection of user intention 
before the braking onset [3–8].  

In this regard, another example of operative environment where lack of perfor-
mance or overloads may be fatal is the aviation context. Nowadays, the 80% of air-
plane incidents is still due to human - factors and, as the air - traffic keeps growing 
exponentially, the impact of new tools able to assess the interaction human – machine, 
in terms of cognitive resources, is becoming very important. In fact, there are evi-
dences that the failure to perceive correctly the mental demands of a flight task, has 
been a causative factor in several aircraft accidents. This is true also for other opera-
tors critically involved in the air traffic managing (i.e. Air Traffic Control Officers, 
ATCOs). Both pilots and ATCOs categories of workers have to generate a continuous 
high quality performance with potential catastrophic results in occasion of error oc-
currence.  

Focusing on the ATCOs, they have to perform a variety of tasks, including moni-
toring air traffic, anticipating loss of separation between aircraft, and intervening to 
resolve conflicts and minimize disruption to flow (for an extensive compilation of the 
tasks and goals of en-route control, see [9]). The ATCO's behavior could be measured 
through several human factor tools, such as the explicit measurement of errors per-
formed during the task, or by using questionnaires related to the perception of the 
severity of the task executed and so forth, such as for instance the NASA-TLX or the 
SWAT questionnaires. Each of these methods has pros and cons, but there is not a 
standard one generally accepted [10], therefore the need of an objective measure be-
comes more important. Moreover, for their inherently subjective nature, none allows 
to have an objective and reliable measure of the actual cognitive demand in a real 
environment. Instead of only measuring secondary physiological effects, the EEG  
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methods will offer a direct insight into the operator's state in complement to the com-
mon physiological measurements, as discussed above. There are many evidences that 
have underlined the correlation between the increase of the cognitive effort and the 
decision making in a strategy selection process during a complex task and the increase 
of the Electroencephalogram (EEG) Power Spectral Density (PSD) in the theta fre-
quency  band [4–7 Hz] over the frontal and occipital brain areas. In addition, it was 
also noted a corresponding decrease of the EEG PSD in the alpha frequency band  
[8–12 Hz] over the centro-parietal and parietal brain areas [3–6].  

In a previous work [11, 12], it has been defined an algorithm able to evaluate the 
mental workload of novice ATCOs by using neurophysiological signals, during the 
execution of ATM task under different difficulty levels. Each difficulty level has been 
maintained constant for several minutes in order to keep the experimentation as con-
trolled as possible. The results showed that the neurophysiological measure was able 
to evaluate the mental workload of the operator for each difficulty level. 

On the basis of the previous results, the aim of this work was to test the reliability 
of the algorithm also during more ecological settings, where the difficulty of the task 
changes continuously. In this way, we have tested if the algorithm was able to track 
the fluctuation of the operators’ mental workload within the operative task. In order to 
validate the results, the neurophysiological measure has been compared with the sub-
jective measure of the mental workload, collected by the Instantaneous Self-
Assessment (ISA) technique. 

2 Methodology  

2.1 Experimental Protocol and Task 

Six professional ATCOs (49 ± 3.2 years) from ENAV S.p.A. (Società Nazionale per 
l'Assistenza al Volo, Italy) have been involved in this experimentation, in particular 
they have been asked to manage air-traffic under two different difficulty levels 
(EASY and HARD), using the ATM simulator eDEP (Early Demonstration & Evalu-
ation Platform). 

The eDEP software has been developed by EUROCONTROL, with the aim to 
produce a low-cost-lightweight, web-enabled ATM simulator platform, offering an 
ideal environment for research and advanced concept projects to rapid prototype ap-
plications [13]. A specific experimental protocol has been defined with the aim to 
highlight the investigated cognitive phenomena, that is the mental workload experi-
enced by the subjects during the execution of the task.  

In Fig. 1, a picture of the experimental setting during the task. The air-traffic task 
lasted about 37 minutes, during which the task difficulty varied between the two le-
vels (EASY and HARD).  

Since the eDEP software simulates a real scenario, the difficulty during the whole 
task varied continuously, thus, there were not constant difficulty conditions, but a  
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Fig. 2. Profile of the difficulty level, varying during the experimental task on the eDEP platform. 

2.3 Neurophysiological Signals Acquisition and Analysis 

Neurophysiological signals have been recorded by the digital monitoring BEmicro 
system (EBNeuro system). The 13 EEG channels (FPz, F3, Fz, F4, AF3, AF4, P3, Pz, 
P4, POz, O1, Oz and O2) and the EOG channel have been collected simultaneously 
with a sampling frequency of 256 (Hz). All the EEG electrodes have been referenced 
to both the earlobes, and the impedances of the electrodes have been kept below 10 
(kΩ). The bipolar electrodes for the EOG have been positioned vertically above and 
below the left eye. The acquired EEG signals have been digitally band-pass filtered 
by a 4th order Butterworth filter (low-pass filter cut-off frequency: 30 (Hz), high-pass 
filter cut-off frequency: 1 (Hz)). The EOG signal has been used to remove eyes-blink 
artifacts from the EEG data by using the Gratton method [15]. For other sources of 
artifacts, specific procedures of the EEGLAB toolbox, based on threshold methods 
have been used [16].  

After the artifact rejection, the EEG signals have been segmented in epochs of 2 
seconds, 0.125 (ms) shifted. The PSD has then been estimated, for each epoch and for 
each EEG channel, by using the Fast Fourier Transform (FFT) in the EEG frequency 
bands, defined for each subject by the estimation of the Individual Alpha Frequency 
(IAF) value [17], correlated with the mental workload variations, therefore the theta 
[IAF-6 ÷ IAF-2] (Hz) and alpha [IAF-2 ÷ IAF+2] (Hz) bands. Furthermore, the PSD 
has been calculated using a Hanning window of the same length of the considered 
epoch (2 seconds length, is that 0.5 (Hz) of frequency resolution. Thus, with this  
frequency resolution, and considering the investigated frequency range equal to  
[IAF-6 ÷ IAF+2] (Hz), there was 17 PSD values for each channel. 
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2.4 EEG-Based Workload Index 

A Stepwise Linear Discriminant Analysis (SWLDA, [11–12]) has been used to select 
the most relevant spectral features, within a features domain consisted of 221 values 
(13 ch * 17 PSD values), to discriminate the mental workload of the subjects within 
the different experimental conditions (EASY and HARD). In particular, the per-
formed SWLDA used αENTER = .05 and αREMOVE = .1, as probabilistic criterion for 
including and excluding features of the SWLDA itself. Once identified such spectral 
features, the SWLDA assigns to each one specific weights (wi train), plus a bias (btrain), 
such that the SWLDA discriminant function (ytrain(t)) takes the value 1 in the hardest 
condition and 0 in the easiest one. This step represents the training phase of the clas-
sifier. Later on, the weights and the bias determined during the training phase have 
been used to calculate the linear discriminant function (ytest(t)) over the testing dataset 
(testing phase). Finally, a moving average of 8 seconds (8MA) has been applied to the 
ytest(t) function in order to smooth it out by reducing the variance of the measures, and 
we defined it as EEG-based workload index (WEEG). 

Here below are reported the training SWLDA discriminant function (1, where  
fi train(t) represents the PSD matrix of the training dataset at the time sample t, and of 
the ith feature), the testing one (2, where fi test(t) is as fi train(t) but related to the testing 
dataset) and the equation of the EEG-based workload index, WEEG (3). ∑              (1) 

 ∑             (2) 
 8                     (3) 
 

In order to have a more accurate resolution in terms of task difficulty variation, the 
dataset related to each subject has been segmented in 9 parts of 4 minutes each, so 
that we gathered 4 EASY runs (E1, E2, E3, E4), 4 HARD (H1, H2, H3 and H4) runs 
and another EASY run (E5). At this point, for each subject we have used the algo-
rithm described above to train the classifier with one couple of EASY and HARD 
runs and to test it over the remaining eDEP difficulty conditions of the same subject. 
In order to appropriately choose this couple of conditions, we considered that i) the 
Controllers could need few minutes (i.e. E1 and E2) to become confident with the 
eDEP interface, so that we have used the E3 as easy condition in the training dataset; 
ii) for the hard condition we have taken into account that the eDEP scenario’s profile 
has been designed as a “reverse – U”, so that we expected that the hardest condition 
would be in the middle. Therefore, the H3 run has been chosen as hard condition in 
the training dataset. 

2.5 Performed Analyses 

Two kinds of statistical analysis have been performed in this study. In the first one, 
we estimated the Pearson’s correlation coefficient between the ISA scores and the 
WEEG measures for each run (i.e. E1, E2, E4, H1, H2, H4, E5). The E3 and H3 runs  
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The t-tests showed that the ISA scores related to the EASY and HARD conditions 
were significantly different (p < .05). Consistently, the overall EEG workload index 
calculated over the HARD conditions was significantly higher than the index calculated 
over the EASY tasks (p < .05). Figure 6 shows the results of the application of such t-
tests on the different experimental conditions analyzed. The red columns are associated 
to the values of the analyzed indexes related to the hard working conditions while the 
green columns are associated to the values of the indexes related to the easy working 
conditions. It could be appreciated as both the use of EEG workload index as well as 
ISA are able to significantly distinguish the easy and the hard working conditions. 

4 Discussion 

Professional ATCOs have been involved in this study, where a neurophysiological 
workload measure (WEEG) has been tested while the ATM operators performed an 
ecological air traffic control task. The ATCos have not been trained to use the eDEP 
platform before the experiments and, even if eDEP is a professional ATM simulator, 
during the first parts of the task (EASY1 and EASY2) they needed information and 
instructions to learn how to use correctly its interface. This aspect has been confirmed 
both by the ISA (Fig. 3) and by the EEG workload index (Fig. 4). In fact, during the 
E1 and E2 runs subjects showed higher workload perception (ISA) and physiological 
increment (WEEG) of the workload than during the next EASY runs. Furthermore, as 
the eDEP scenario’s profile has been designed as a “reverse – U”, both the ISA score 
and the mental workload (WEEG) index showed the same shape, confirmed by a high 
and significant correlation index (R = 0.9; p = 0.006).  

In conclusion, both the workload perception (ISA) and the neurophysiological 
(WEEG) measures showed a significant discriminability (p<.05) between the difficulty 
levels (EASY and HARD).  

Our previous studies [5, 6, 11, 12, 19] showed the possibility to track the mental 
workload of the user even online, during simulated tasks in laboratory settings. In 
those studies, the difficulty of the task has been maintained constant for each experi-
mental condition.  

The results of the actual study confirmed that the neurophysiological workload 
measure can be used as a reliable index of the mental workload experienced by an 
operator also in ecological working scenario, where the difficulty of the task has not a 
discrete, but a continuous, profile. With the aim of confirming these results, further 
experiments will be performed over a bigger experimental sample size of ATCos, and 
probably with a greater resolution in terms of difficulty levels, in order to ensure that 
the estimated index is actually related to the experienced brain workload.  

5 Conclusions 

An algorithm able to track the mental workload of the user by using its brain activity, 
while performing an ecological operative task has been proposed in this study. 
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Results showed that the neurophysiological workload index (WEEG) i) showed a 
high significant correlation with the perceived workload (ISA) and ii) was able to 
discriminate significantly two different difficulty levels, according to the ATCOs  
self-assessment. 

We can then conclude that neurophysiological measures could provide objective 
evaluation of cognitive phenomena, e.g. the mental workload, both in real-time (on-
line) and in ecological environments. In fact, questionnaires or rating scales might not 
fit real operative settings, where the operators (e.g. ATCOs) have to be focused exclu-
sively on the task and they could not pay attention to secondary task(s), with the aim 
to provide data about their cognitive state, probably increasing the final task  
demand and operating in dangerous condition (under or over-load zone). 
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Abstract. This paper is concerned with how people interact with an emergent 
form of technology that is capable of both monitoring and affecting the psycholo-
gy and behaviour of the user. The current relationship between people and com-
puter is characterised as asymmetrical and static. The closed-loop dynamic of 
physiological computing systems is used as an example of a symmetrical and 
symbiotic HCI, where the central nervous system of the user and an adaptive 
software controller are engaged in constant dialogue. This emergent technology 
offers several benefits such as: intelligent adaptation, a capacity to learn and an 
ability to personalise software to the individual. This paper argues that such bene-
fits can only be obtained at the cost of a strategic reconfiguration of the relation-
ship between people and technology - specifically users must cede a degree of 
control over their interaction with technology in order to create an interaction that 
is active, dynamic and capable of responding in a stochastic fashion. The capacity 
of the system to successfully translate human goals and values into adaptive res-
ponses that are appropriate and effective at the interface represents a particular 
challenge. It is concluded that technology can develop lifelike qualities (e.g. com-
plexity, sentience, freedom) through sustained and symbiotic interaction with hu-
man beings. However, there are a number of risks associated with this strategy as 
interaction with this category of technology can subvert skills, self-knowledge and 
the autonomy of human user. 

Keywords: Symbiosis · Physiological computing · Intelligent adaptation 

1 Introduction 

The last three decades have seen huge innovation with respect to how we interact with 
computers. Communication via command lines was succeeded by WIMP interfaces and 
natural modes of communication via gestures and speeches are currently common fea-
tures of desktop technology. Brain-computer interfaces represent the next frontier in 
human-computer interaction (HCI), where the neurological foundation of perception 
and action are utilised directly as a form of input control. Despite advances with respect 
to the available forms of input control, the basic communication dynamic of the human-
computer dyad remains curiously fixed - the human ‘speaks’ and the computer ‘listens 
and obeys.’ Technology inhabits the passive role of slave-system that responds rigidly 
to a steady stream of directives from a human master, who directs actions towards a 
desired goal.  
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The distinction between the active role of the user and the passive function of the 
machine is starkly defined by the rigid turn-taking structure of contemporary HCI. 
This flow of information between person and machine has been depicted as two mo-
nologues rather than a genuine dialogue [1]. The way in which people interact with 
technology has also been described as asymmetrical with respect to the flow of infor-
mation [2]. In other words, the person is free to interrogate the operational state of the 
computer (e.g. memory usage, Wi-Fi speed etc.) whereas the latter remains essentially 
blind to the psychological status of its user. By contrast, when technologies commu-
nicate with one another, information exchange can be symmetrical because each enti-
ty may freely probe and cross-examine all operational aspects of the other. The 
asymmetry that characterises interaction between humans and computers is distin-
guished by the absence of awareness on the part of the machine, which relegates a 
technological agent to the role of a passive and inert participant. In the absence of any 
ability to perceive or interpret the inner world of the user, the computer has minimal 
capacity for inference, anticipation, learning or any other quality that would liberate 
technology from its role as a slave-system. 

The evolution of symmetrical forms of HCI are key to the creation of ‘smart’ tech-
nologies, which possess autonomy and intelligent adaptation [1]. This development 
should be considered within a general context of symbiosis between people and tech-
nology. Symbiosis may be described simply as two unlike organisms “living togeth-
er” [3] in a relationship that may be mutualistic (i.e. both parties 
benefit), commensalistic (i.e. one benefits but the other is neither harmed or 
helped), or parasitic (i.e. one benefits with harm inflicted on the other).  

If we define technology in the broadest sense, from the humble pencil to a nuclear 
power station [4], there are obvious benefits of technological forms for humanity as a 
species. Technology extends and augments our human limitations, a shovel allows the 
person to dig more effectively and efficiently, the motor car offers greater speed of 
transportation than travelling by foot [5]. Binoculars, telescopes and microscopes 
extend the range of visual perception and create a flexible, orthotic range [6] for hu-
man senses that greatly exceeds our “natural” limitations. The emergence of mobile 
devices combined with Internet connectivity and enhanced data storage augment our 
finite cognitive capabilities with respect to the storage and retrieval of information 
[7]. All these enhancements are achieved by “redistributing” task or information-
processing demands between the human being and technological aids. It has been 
argued that the human brain has two important qualities that forge and fortify reliance 
on technology [8]. The brain is opportunistic in that it seeks to invent technological 
tools wherever there is potential for a significant improvement of efficiency and ef-
fectiveness. The brain is also a malleable organ, capable of co-opting technological 
tools seamlessly into existing behaviour and representations of self - and then creating 
a second and even third layers of tools to further bolster our human efficiency and 
effectiveness [5].  

The relationship between symbiotic species may be described as obligate or facul-
tative [9]. The former describes a state of co-dependence where each entity depends 
entirely upon the other for its continued survival. A facultative relationship represents 
those instances where two species can but not obliged to live together in order to sur-
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vive. Whilst humans are currently the primary creators of technology, it would be a 
mistake to regard our relationship with technology as anything but an obligate form of 
mutualism. Individuals may attempt to (unsuccessfully) relinquish technological tools 
(see [5] Ch. 10), but technology is so entwined with human existence that any attempt 
to live without technological aids would force the human recipient to endure the kind 
of harsh living conditions that characterised feudal life 800 years ago [6]. It is also 
doubtful whether humans would be even capable of eradicating technology from our 
world if one considers the logistic barriers to that ill-advised endeavour [5]. Hence, 
we find ourselves in the contradictory position of being both master and slave to tech-
nology [5]. Rather than bemoaning our collective dependency on gadgets and com-
puters, perhaps the most realistic course of action is to embrace this obligate relation-
ship to further exploit human symbiosis with machines, as we have already been 
doing for several centuries. In the words of Hancock [6]: “Our ecology is technology. 
If we are to achieve our individual and collective goals, it will be through technology” 
(p. 66). 

Our relationship with technology as a species is constructed upon an obligate form 
of symbiosis where humans rely on machines to extend our senses and capabilities - 
and technologies depend on human need and ingenuity in order to provide them with 
form and function. Despite this inter-dependence, the way in which we interact with 
machines remains asymmetrical with autonomy within HCI residing purely with the 
human user. This paper will outline the potential of physiological computing to both 
facilitate symmetrical forms of HCI and enhance our symbiotic relationship with 
technological systems. If technology can develop in this direction, the relationship 
between users and machines evolves towards a close, collaborative interaction that 
has profound implications for future technologies and its human users. 

2 A Closed-Loop Perspective on Human-Machine Symbiosis 

Human-machine symbiosis can describe the relationship between machine and person 
that occurs within a shared space or task [10]. A recent review defined human-
machine symbiosis in terms of a computer that was capable of both monitoring and 
affecting the cognitions, emotions and behaviours of the user [11]. This description is 
identical to the closed-loop logic of physiological computing systems [12, 13] where 
signals from the brain and body of the user are converted to control inputs in order to 
facilitate intelligent adaptation at the interface. Physiological computing systems are 
constructed around a biocybernetic loop [14] where data from brain activity and the 
autonomic nervous system are collected, analysed and classified for input into an 
adaptive controller, which triggers actions at the interface.  

2.1 Monitoring the User 

Data from the brain and body are particularly appropriate for monitoring the psycho-
logical state of the user; in addition, these data have the advantages of being: quantifi-
able, continuously available, sensitive to unconscious activity and implicit, i.e. no 
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overt response is required from the user [15]. In the case of physiological computing, 
the dynamic state of the user is inferred on the basis of spontaneous activity from the 
brain and the body [13, 16]. Analyses of these data yield a digital and quantified re-
presentation of the user state, which is made constantly available to the system. It is 
important to note that this representation of the user state is achieved via analogy as 
opposed to a literal re-representation of embodied experience [17]. The first step to-
wards human-computer symbiosis is a simplification and quantification of embodied 
human experience into sparse information patterns that are digestible and reconcilable 
with a closed-loop mechanism of control and communication [18]. This act of ab-
straction is necessary in order to integrate the dynamic psychological state of the user 
within a cybernetic control loop.  

There is a peculiar duality to this digital representation of self that acts as a point of 
origin within the biocybernetic loop. Whilst data from the brain and body are not a 
literal representation of the self or experience, they are derived from activity within 
the central nervous system and evoke both a degree of identification and biophilia 
[19], i.e. a preference for living systems. On the other hand, this quantified represen-
tation of self simultaneously evokes a technophilic proclivity for tools and technolo-
gies [5] and a reflexive perspective on self, i.e. the person becomes “an observing 
system observing itself observing” [17] (p. 144). By endowing a symbiotic computing 
system with the capacity to both monitor and represent the user, the loop creates a 
contradictory entity that (from a human perspective) is both self and other - the data 
are representative of the self but viewed from the objective perspective of another. It 
is important that users are fully informed in this respect. In other words, the measures 
upon which the quantification of state ought to be clearly defined and the user de-
serves a degree of education about the sensitivity and fallibility of this process. The 
user should understand that the process of measurement is neither perfectly sensitive 
nor absolutely representative due to the inherent limitations of measuring brain and 
body outside of the laboratory. This is important because users should not harbour 
unrealistic expectations about the fidelity of this representation or degree of personal 
insight that may be obtained via interaction with a biocybernetic system. 

The capacity to monitor the user is the first challenge for symmetrical HCI, the 
next question is how the closed-loop mechanism should work with that user represen-
tation in order to create intelligent adaptation at the interface.  

2.2 The Machine with an Agenda 

The adaptive controller is the core element within the biocybernetic loop. This com-
ponent receives information about the state of the user and translates these data into a 
range of appropriate responses at the interface. The adaptive controller encompasses a 
set of rules to describe how target state a is linked to an adaptive response x at the 
interface; for fuller technical description, see [16]. 

Aside from its technical substance, the adaptive component represents the means 
by which the system exerts a specific influence on the state or behaviour of the user. 
A number of biocybernetic loops have been created to serve different application 
domains, from mental workload classification [20], affective computing [21] and 
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entertainment [22] to attention training [23]. In each case, the closed-loop model re-
quires a target state to be defined and adaptations at the interface are designed to ei-
ther induce/sustain a ‘desirable’ target state or reduce/ameliorate any target state 
deemed to be “undesirable.”  

For mental workload monitoring, the loop is designed to sustain a moderate level 
of mental workload and to avoid instances of high workload in order to preserve per-
formance and safety. An affective computing system may be designed to detect a 
negative emotional state, such as frustration, and to trigger adaptive responses at the 
interfaces designed to reduce this emotion. An adaptive computer game would adjust 
gaming parameters in real-time to avoid the player becoming bored or disengaged. 
The definition of a psychological state to be achieved or avoided is common theme to 
all closed loop systems, and is especially relevant to symbiotic systems. 

The closed loop system is governed by goal-directed logic. Unlike the inert and 
passive technology of today, this symmetrical interaction is characterised by a degree 
of agency on the part of the machine and a requirement for the human to cede a de-
gree of control to the system. A user can decide whether or not to engage with the 
technology, but once the interaction has been initiated, the system can respond in a 
stochastic (as opposed to a deterministic) fashion. This is a small but significant shift 
in the relationship between people and computers. 

Given that symmetrical HCI requires the human to relinquish a degree of control 
over the interaction, it is important to define the agenda of the machine to be effec-
tive, reliable and not lead to unforeseen circumstances. The introduction of agency or 
intentionality on the part of a machine shifts attention from the ‘how’ to the ‘why’ of 
technology because “the quintessential bottom line is that technology must be used to 
enfranchise not to enslave.” [6] (p. 60). A closed loop system with intentionality must 
be used to materialise human goals and human values [24].  

The formulation of human values within the closed-loop system remains a signifi-
cant challenge. Illich [24] forwarded the case for convivial tools as technologies that 
create an opportunity for users to enhance and enrich the contribution of autonomous 
individuals. But how to recast this vague notion of conviviality within the precise 
semantics that are required by an adaptive controller within closed-loop control? In 
the first instance, a directive to promote engagement during an adaptive game may 
have unintended negative side effects for the player, e.g. spend too long playing the 
game, suffer from fatigue and sleeplessness. Even if these caveats are captured within 
the rules of the system, there are other hurdles to be faced with respect to materialisa-
tion of goals and values. Precise definition of goals and values may differ enormously 
between different members of the user population. In addition, there may be a number 
of stakeholders aside from the user who are directly or indirectly affected by the di-
rectives of the system, e.g. user’s line manager & colleagues, user’s family, system 
designer, corporation who supplied technology etc. There is also the potential for 
ambiguity or conflict because the definition of a goal for the loop may differ at the 
levels of individual, society and nation [6]. For example, a closed-loop system de-
signed to improve productivity in a company could enfranchise the board of directors 
whilst enslaving their employees. It may be unrealistic to expect technology to en-
compass convivial goals per se, but rather we should seek to build conviviality into 



62 S. Fairclough 

technological tools by carefully defining the context and operating conditions under 
which technology is used [5].  

The use of technology to explicitly enshrine and define our human values presents 
a number of significant challenges, as well as considerable opportunities to use tech-
nology as a vehicle to enshrine and develop a humanist agenda - in the words of Ar-
thur [4] “we trust in nature but we hope in technology” (p. 246).  

3 First- and Second-Order Adaptation 

The biocybernetic loop encompasses a process of monitoring the user and translating 
those data into intelligent adaptation at the interface. This procedure requires a set of 
rules whereby target state a triggers adaptive response x, however, this relationship is 
not an exclusive and there may be a range of potential responses that are appropriate 
once a specific target state has been recognised by the system. A detection of frustra-
tion could trigger an offer of help or the suggestion of a rest break or an alteration of 
current music to a calming playlist. The rules that translate detection into an adaptive 
response may draw from a repertoire of possibilities, all of which could conceivably 
result in a desired effect on the user. In addition, some users may favour certain cate-
gories of adaptive response from the repertoire over others.  

It is the convention to think of closed-loop systems in terms of one discrete cycle 
of monitoring and adaptation. In this case, a single cycle may describe how the detec-
tion of frustration is translated into the appearance of help information at the inter-
face. This is a first-order process of adaptation wherein the loop detects and responds 
to a target state in the short-term. Once this adaptation has been activated, it is possi-
ble for the system to detect those changes in user state, which occur as a direct conse-
quence of that adaptive response. If help is offered in order to alleviate frustration, the 
continual process of monitoring will indicate whether this response successfully 
achieved its goal. If no such change occurs, or if frustration actually increased, the 
adaptive controller must select a different response from its repertoire, such as select-
ing a playlist of calming music. Once the calming music has been activated for a short 
period, the system can perform a third check to assess whether frustration has been 
alleviated as expected. This process is called second-order adaptation or reflexive 
adaptation [25] because the loop monitors the consequences of its own intervention 
on the state of the user. This second-order level of adaptation fulfills two functions, it 
is a self-check (that the original adaptive response was effective) and represents an 
opportunity for a closed-loop system to collate information about user preferences 
based a long-term process of repeated interaction. 

It is easy to understand how this second-order process of adaptation can facilitate ma-
chine learning over a sustained period of use. In order for the system to function, it must 
accumulate a database that describes those adaptive responses found to be effective for a 
particular user and those that are not. Therefore, the system is installed and initiated with 
a large number of potential adaptations, and through a process of sustained interaction 
coupled with second-order processing, all items in the adaptive repertoire are tagged with 
a value, which directly affects the probability of selection for that specific user. Second-
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order adaptation describes a generative process of individualisation where software is 
customised on the basis of its repeated interactions with a particular user. Second-order 
adaptation also represents a level of human-machine symbiosis where the technology is 
able to learn about the effects of its own actions. 

The evolving lifecycle of this reflexive technology has been described as a process 
of mutual adaptation with three main phases [25, 26]. The initial encounters between 
the adaptive system and the user are characterised by a process of improvisation. The 
system responds to the user in a generic fashion using default adaptations with no 
prior knowledge of individual preferences. Adaptation may be perceived by the user 
to be erratic and occasionally inappropriate. As the user spends more time interacting 
with the system, second-order adaptation should improve the timeliness and quality of 
the responses made by the system. This second phase of reciprocal coupling is cha-
racterised by enhanced performance as the adaptive repertoire of the system is tai-
lored to the individual. This is the phase wherein the system constructs a stable model 
of user preferences based on repeated interactions. If we look further ahead in time, in 
terms of years and decades, it is reasonable to expect that any stable model of prefe-
rences will have limited longevity as the user acquires higher levels of skill or habi-
tuates to popular responses or experiences cognitive changes due to ageing. The third 
phase of co-evolution describes a process of updating the existing model of user pre-
ferences as the system adjusts to long-term changes over several years. This cycle of 
monitoring, adaptation and reflexive adaptation represents perhaps the ultimate ex-
pression of user-centred software design. 

A process of reflexive adaptation may also have some bearing on the problem of 
formalising convivial goals within a technological system described in the previous 
section. These difficulties were recognised over fifty years ago by Norbert Weiner 
[27]; his solution was to build cycles of self-correction into the loop by inserting regu-
lar interventions from a human arbitrator within the learning process of the cybernetic 
loop. This strategy was suggested as a safeguard to ensure that the actions of the ma-
chine did not significantly depart from the preferences and values of the human being. 
The capacity of the biocybernetic loop to interact with the human central nervous 
system continuously and over a sustained period of time captures the essence of this 
idea - provided that implicit data from the brain and body are sufficiently nuanced to 
intercede on behalf of the person; however, there are concerns about the test-retest 
reliability of psychophysiological measures in the field [28]. For this strategy to act as 
a proxy for the human arbitrator, much depends on the sensitivity and reliability of the 
data used to represent the user, if these data are inconsistent then the possibilities for 
machine learning in the long-term are fundamentally compromised. 

4 Technology for Life 

The development of symmetrical HCI via the biocybernetic loop reconfigures the 
relationship between people and computers. Our earlier characterisation where the 
human “speaks” and the computer “listens” remains relevant, but with the additional 
caveat that the computer can now “speak back.” This machine with an agenda is ac-
tive and dynamic as opposed to the passive and static technologies that we currently 
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use on a daily basis. A nascent form of closed-loop control offers the prospect of 
smart technology, capable of intelligent adaptation and personalisation, but at the 
price of subverted human autonomy. This change does not mean simply that the tradi-
tional roles of human and machine are recomposed, by converting the user into a pat-
tern of information that is operated upon within a closed-loop, the loop obscures the 
boundary between human and computer. Within this conception, human and machine 
function as a single “cooperative intelligent entity” [29] - a cybernetic organism that 
is capable of learning based on previous interaction to create a flexible repertoire of 
adaptive responses. 

We have already described how technology can supplement our human capacities 
and capabilities. Consider the inverse of that position - how can humans develop the 
capacities, proficiencies and potential of technology? According to Kelly [5], the 
developmental trajectory of technology is characterised by universal tendencies to-
wards: complexity, diversity, freedom, mutualism, sentience and evolvability. These 
inclinations are accelerated by the concepts described in this paper. The closed-loop 
logic of symmetrical HCI requires the additional complexity of monitoring and 
representing the human user. The capacity of the loop to facilitate learning in the 
longer-term creates the potential for greater diversity within the same piece of soft-
ware, i.e. software co-evolves with the individual user, begetting a generative process 
where different patterns of development are possible within the same technology. The 
loop is a machine with an agenda and this agenda imbues technology with the free-
dom to make mistakes and to learn from those mistakes in order to make better choic-
es in future. The loop is a human-machine hybrid that deepens the degree of coopera-
tion, dependency and mutualism between person and computer. The process of 
second-order adaptation permits technology to reflect on the effects of its own ac-
tions, thus creating a rudimentary form of sentience. Most importantly, the process of 
monitoring and adaptation allows technology to develop advanced capabilities by 
learning directly from repeated interaction with human users. Several authors have 
described a process of bootstrapping [5, 8] whereby humans supplement their skills 
and capabilities via technology, we may now contemplate a future where closed-loop 
technology uses sustained interaction with people as an engine to boost capabilities 
and accelerate its own evolutionary development.  

One hopes that such exciting and provocative developments occur in a convivial 
spirit, thus maximising the potential and possibilities for all human life. However, 
living so closely with technology has the potential to create several significant prob-
lems for our species. There is the obvious issue of control or rather uncontrollability 
when a person submits to interaction with technology within a closed-loop. By relin-
quishing total control over technology, there is the potential to undermine human 
agency; in the words of Wiener [18]: “When human atoms are knit into an organisa-
tion in which they are used, not in their full rights as responsible human beings, but as 
cogs and levers and rods, it matters little that their raw material is flesh and blood” (p. 
185). There is also the problem of data privacy, intrusion and misrepresentation via 
the process of monitoring within the loop [30]. It has already been emphasised that 
representation of self within the loop is an analogous creation rather than a literal re-
representation of thoughts, moods and experiences. The act of interacting with this 
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analogous representation, which is both self and other, has the potential to simulta-
neously alienate the individual and could even create feelings of disembodiment [8]. 
Like all systems that automate or semi-automate, symmetrical HCI has the potential 
to de-skill the individual [31], whether that person is driving a car or playing a com-
puter game.  

The long-term relationship between humanity and technology has been characterised 
as an infinite game [5] and the purpose of an infinite game is not to win but to keep 
playing. The burgeoning complexity of our relationship with machines emphasises how 
any attempt to sustain human beings in the sovereign position of a master who retains 
ultimate control over his technological creation are doomed to failure [6]. We must 
explore new trajectories of interaction with technology, which maximises opportunities 
for both humans and machines as a single intelligent cooperative entity. 

5 Summary 

Our historical relationship with technology has been characterised by the use of tools be-
ing used to extend human capabilities and capacities. We are currently entering a period 
where symmetrical HCI via physiological computing will lead to greater mutualism be-
tween people and computers. It is argued that emerging technology will demonstrate 
greater intelligence during interactions with people by monitoring and affecting user psy-
chology. In addition, these ‘smart’ technologies will be capable of anticipating the needs 
of the individual and personalising responses; they will respond in an active and stochastic 
pattern. In order to reap these benefits, humans must submit themselves to implicit moni-
toring by technology, allow complex and embodied internal states to be reduced to sparse, 
analogous representations, and cede a degree of control to the computer.  

The challenge for designers of this emergent technology is to enable this transition 
in a convivial fashion to: 

1. Ensure that human user can disable the adaptive process at any time 
2. Ensure that human user can manually edit (i.e. enable/disable) the repertoire of 

adaptive responses 
3. To carefully formulate adaptive responses from the system that are compatible 

with the goals and values of the user 
4. To use second-order monitoring to ensure that adaptive responses are desirable 

from the perspective of the user 
5. Educate users with respect to the internal logic of the system in order for engend-

er trust in the technology via enhanced understanding [32] 

If these compromises can be made in a convivial fashion, machines can be permit-
ted to learn from regular interaction with the individual in order to customise res-
ponses to the preferences of the individual. The creation of an intelligent, cooperative 
entity, which arises from close coupling between human or machine, will increase 
benefits and opportunities for both parties.  
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Abstract. This paper describes an approach for improving the current
systems supporting the exploration and research of scientific literature,
which generally adopt a query-based information-seeking paradigm. Our
approach is to use a symbiotic system paradigm, exploiting central and
peripheral physiological data along with eye-tracking data to adapt to
users’ ongoing subjective relevance and satisfaction with search results.
The system described, along with the interdisciplinary theoretical work
underpinning it, could serve as a stepping stone for the development and
diffusion of next-generation symbiotic systems, enabling a productive
interdependence between humans and machines. After introducing the
concept and evidence informing the development of symbiotic systems
over a wide range of application domains, we describe the rationale of the
MindSee project, emphasizing its BCI component and pinpointing the
criteria around which users’ evaluations can gravitate. We conclude by
summarizing the main contribution that MindSee is expected to make.
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1 Symbiotic Systems Today

The last decade has witnessed a radical change in the structure and complexity
of the software used in everyday life. An ever-growing number of systems have
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started to do more than passively responding to users’ input, and we have tac-
itly come to expect an increasing amount of proactivity on the systems’ part.
When we shop online, we want the website or the search engine to recommend
articles based on our or other people’s purchase history; when we open a music
service, we expect it to suggest other artists to listen to based on our preferred
genres. We want these systems to know what we are trying to accomplish in
a specific context, and we want them to help us, support us and give us rec-
ommendations. In short, we want systems to understand us. This expectation
is mirrored, in the scientific literature, by the appearance in the vocabulary
of human-computer interaction scientists, software developers and information
technology (IT) practitioners in general of terms such as recommender engines,
adaptive technologies and symbiotic systems. The practice of representing the
interaction between humans and computers in terms of symbiosis dates back to
the 1960s. Licklider borrowed this notion from biology [1], where it refers to an
intimate association between two different organisms characterized by a constant
and mutual cooperative behavior. In the IT domain, instead, a symbiotic system
indicates a dyad composed by the user and a given technology, which is capa-
ble of adjusting rapidly (possibly in real time) to the user’s characteristics, in
order to improve the quality and efficiency of the interaction. As Jacucci, Spag-
nolli, Freeman and Gamberini [2] have stated, this involves the “combination of
computation, sensing technology, and interaction design to realize deep percep-
tion, awareness, and understanding between humans and computers” (p. 11). An
adaptive technology feature is both a hard component and a soft component [3].
The hard component relates to the device (or devices) enabling the collection
of users’ information (e.g., eye trackers, haptic gloves, speech, gesture, emotion
recognition). The soft component, in turn, comprises the software, algorithms,
decision heuristics and models that act on the user’s information and obtain the
desired adaption in the system’s interface and features.

1.1 Application Domains

This paradigm has started to appear in several application domains, ranging from
learning to mobile Internet, human-robot interaction and information retrieval.
An application in education is described by Shute and Zapata-Rivera [3]. The
authors illustrate a “four-process adaptive cycle” that starts with collecting infor-
mation on the student, using, for example, eye-tracking, haptic, speech-capture
and hand-gesture-capture devices. The system then generates and updates a
user model and relies on machine-learning algorithms to elaborate a represen-
tation of the user, inferring the user’s attentional state, the difficulty experi-
enced during the execution of a specific task, the user’s emotional state, etc.
The last two steps consist of selecting and presenting appropriate educational
material based on the user model. An example of a symbiotic system in the
domain of the mobile Internet, and specifically in location-based services,
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is provided by OUTMedia, a location-sensitive music discovery application [4].
OUTMedia includes an augmented reality (AR) interface, linking music con-
tent to specific points of interest in the city to support a dynamic adaptation
of media and environment. A user study showed that the use of OUTMedia
promotes serendipity in content discovery. In the field of human-robot interac-
tion, an interesting case is offered by wearable robots (WRs), devices conceived
to support a human limb for an unhealthy or healthy user. For instance, the
European project BioMot aims to improve adaptations between humans and
WRs by developing a symbiotic relation based on a framework that takes into
account information regarding the dynamics of human gait and the environment
[5]. This paper focuses on information retrieval and data searching in complex
scenarios as the application domain for symbiotic systems. Studies encourag-
ing and directing efforts in this vein have already appeared. The relationship
between semantic processing of words and pupil dilation is a case in point and
has been investigated by [6]. The semantic association between two words dis-
played in succession on a screen was manipulated in each experimental trial.
The results showed that faster pupil dilation was observed in trials in which the
words were semantically associated. These findings could be used in the design
of information retrieval systems, for instance to use pupil changes to implicitly
detect the relevance of the displayed information. [7] explores potential interac-
tion between eye gaze and physiological signals (e.g., EEG, EDR and fEMG)
and some aspects of information visualization. [8] proposes an interactive image
retrieval system, allowing the user to mark images as relevant or not. This pro-
cess of selection is based, through an iterative process, on the search intent of
the user. Based on this input, the system progressively displays results that are
closer to those marked as relevant. Other studies have dealt with physiological
computing methods to infer users’ internal states, of which users are not totally
aware [9]. This strategy is supported by recent studies showing that subliminal
stimulation can affect users’ decisions in selection behavior [10,11] and in naviga-
tion tasks in immersive virtual environments [12]. Thus, authors have considered
subliminal stimuli to guide the users during their interactions without burdening
their cognitive systems [13]. One kind of implicit information that can be used
in a symbiotic system is a signal of brain activity. In the next paragraph, we
will describe a brain-computer interface (BCI) and how it can be employed in
information retrieval.

1.2 BCI in Everyday Symbiotic Applications

The term brain-computer interface (BCI) was introduced in 1973 [14], identify-
ing a research domain in which techniques to extract specific information from
the brain in real time and use it as input in computerized devices are investi-
gated. A recent, widely accepted definition describes a BCI system as one that
“measures central nervous system (CNS) activity and converts it into artifi-
cial output that replaces, restores, enhances, supplements, or improves natural
CNS output and thereby changes the ongoing interactions between the CNS and
its external or internal environment”[15]. BCI research in the past was almost
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exclusively employed in medical contexts for the (partial) restoration and reha-
bilitation of lost communication functions in paralyzed patients or for motor
rehabilitation [16,17]. Clinical applications like these rely on intentional control,
because the user needs to acquire specific mental states in order to produce a
desired output, such as selecting a letter or moving a prosthesis [18,19]. Novel
approaches aim instead to exploit BCI technology’s utility for estimating implicit
information about the user’s internal state [20,21] and to envision applications
in domains besides the clinical one. Application domains include product design
[22,23], industrial workplaces [24–26], video games [27] and driving. The latter
application domain, for instance, regards the prediction of emergency braking
based on the ongoing EEG signals of the driver (see [28] for a first investiga-
tion with a simulator and [29] for a replication on real roads). More examples
and a description of possible future developments can be found in the roadmap
of brain/neural computer interaction (BNCI [30]). The actual implementation
of BCI technology to infer users’ intentions and to use implicit information in
real-world applications is still a great challenge, especially when it comes to inte-
grating implicit measures of perception with cognitive and emotional responses.
This investigation requires a feasible domain in which it is realistic to explore
and demonstrate the power of a symbiotic approach, and information seeking
represents a promising domain for this purpose. The goal of a symbiotic system
applied to information seeking would be to increase the efficiency of users’ activ-
ity by utilizing physiology-based predictions (central and peripheral physiology)
of their intentions (e.g., of the subjective relevance of informational items that
are displayed on the screen). This requires a holistic interpretation of behav-
ioral data, perception processes and cognitive responses to interface features, as
well as of emotional responses to the visualized information. In the rest of this
paper, we will describe the symbiotic system developed in the MindSee project
to support information seeking in complex databases. First, we will provide an
overview of the state-of-the-art advancement in information-seeking systems.
Against that background, we will describe the symbiotic system for information
retrieval developed as part of the MindSee project. We will then explain more
specifically the kind of BCI implemented in the MindSee system and the criteria
for the user experience evaluation.

2 State-of-the-Art Systems for Information Seeking

Current trends in information exploration aim at providing better support for
interactive search systems through query suggestion, recommendations for query
formulation, and implicit or explicit relevance feedback (RF); this includes per-
sonalization on the one hand and information visualization solutions to represent
complex information on the other hand [31]. Information visualization has also
recently gained importance in the case of open-ended exploration of information,
providing continued support and engagement resources along with 3D graphics
and gestural computing [32–34]. The increased complexity of information search
interfaces complicates the application of query-and-response paradigms and of
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relevance feedback. MindSee addresses advancements in both aspects simulta-
neously. In a simple user interface with a query field and results list, a typical
interactive information retrieval problem presumes the user’s expression of an
information need (the query). Based on this query, the system needs to search
a corpus of documents to find those matching the query, to present the results
to the user and to support the user’s reformulation of the query. However, in
many exploratory search situations, it is difficult, if not impossible, to formulate
such a query precisely. According to [35], 35% to 50% of information needs are
exploratory and spread across several individual queries, aiming to find a vari-
ety of relevant information by browsing through a large collection of documents,
rather than looking for a known document. A commonly observed search strategy
is one in which the information seeker issues a quick, imprecise query in the hope
of getting into approximately the right part of the information space, and then
locally navigates to obtain the information of interest [36,37]. The information
need can also evolve throughout the course of the search as the user gains more
information about the topic and navigates to alternative topics or more specific
subtopics. Even when the searched item is known from the beginning, instead of
jumping directly to the target, users typically navigate “with small, local steps,
using their contextual knowledge as a guide” (p. 415) [38]. As a consequence,
users are confronted with a substantial cognitive load; they must choose a way to
express their evolving information needs, to make sense of a search domain and
to position themselves in the information space [39]. One standard solution to
improve and direct the search process in an underspecified and uncertain domain
is relevance feedback. Relevance feedback provides a controlled and broken down
process to alter and improve the initial query step-by-step. It requires users to
provide feedback on whether they like or dislike the resulting documents or doc-
ument features that are initially returned by an information retrieval system for
a given query, and to use this information to alter the query itself [40]. Users’
feedback can be explicit or implicit. Explicit feedback means feedback in which
users actively choose from documents or document features. While highly effec-
tive when properly used, the selection of documents or document features can
be cognitively demeaning for users. This has been shown to lead users to easily
abandon the feedback features and reformulate the queries themselves instead
[40]. It has been suggested that for explicit feedback to be effective, it should be
a part of a natural interaction with the information retrieval system, or directly
accompanied with implicit feedback [41,42]. Implicit feedback is inferred from
user behavior, such as which documents users select, the duration of time spent
viewing a document or a piece of text within a document, or scrolling actions
[43]. Mainly, the research has concentrated on analyzing click data, i.e., the selec-
tion of web documents, and using the selection as a part of predictive modeling
to improve the web search. However, implicit feedback is highly dependent on
the quality of the signal source. In many cases, the feedback is noisy and may
even result in prohibitive system behavior. Existing feedback techniques deter-
mine content relevance only with respect to the cognitive and situational levels
of interaction, failing to acknowledge the importance of intentions, motivations
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and feelings in cognition and decision making [44–46]. Only recently, researchers
have gained interest in more advanced psychophysiological sensor measurements
[44], such as skin conductance, gaze patterns [47] and EEG [48,49], as a part of
relevance feedback. Recently, research has shown how to detect term relevance
from brain signals in an information retrieval scenario [50]. Similarly Barral et al.
[51] showed relevance detection using peripheral detection in abstract reading.
These studies demonstrate the viability of a symbiotic search scenario, although
they highlight a number of open challenges.

3 MindSee Project: Exploiting Symbiotic Systems for
Scientific Information Seeking

The main purpose of the MindSee project is to create a symbiotic system for the
exploration and retrieval of scientific literature. Its starting platform is SciNet, a
cutting-edge retrieval system that includes a database of 50 million documents
from prominent scientific databases and offers explicit feedback features (e.g.,
manual modification via mouse of the spatial organization of the displayed infor-
mation). This platform is upgraded in three ways. First, the MindSee project
aims to create a coadaptation of user and computing systems that is based on
implicit information (e.g., EEG phenomena coupled with peripheral physiolog-
ical measures). The project intends to build a system that would be able to
predict search intentions by integrating, at a multimodal level, neurophysiol-
ogy, peripheral physiology and behavioral data, and by complementing explicit
user commands with these predictions. In order to achieve its purpose, MindSee
will extend psychophysical studies on perception and cognition in the context of
free-viewing tasks, in order to identify suitable EEG features. Second, compared
to a generic digital library, in which the adoption of lengthy result lists makes
it difficult to exploit explicit relevance feedback and to assess the relevance of
most items at first glance, MindSee’s system will adjust the information output
spatially and aesthetically, according to each result’s relevance to the current
search - for instance, by changing the complexity level of the visualization or by
highlighting items that are under early attentional processing. Third, the system
presents an affective component of symbiotic interaction to guarantee a superior
user experience. This is achieved by quantifying the level of engagement, plea-
sure, stress and user emotions related to the interaction through a combination
of EEG and peripheral signals (EDA and fEMG), and using these measures to
adapt the graphic characteristics of the interface (for instance, assigning different
colors to items).

3.1 BCI in MindSee

MindSee will capitalize on recent advances in BCI based on physiological signals
combined with machine-learning approaches. The symbiosis in the MindSee sys-
tem will be mostly based on real-time analysis of the brain’s electrical activity
(electroencefalography, or EEG). Brain signals that are linked to an item that



74 L. Gamberini et al.

is currently under process could provide information about perceptual elabora-
tion and, most importantly, cognitive processing. Since the cognitive elaboration
could reflect the relevance of a specific item for the user, users’ searching intent
could be inferred by monitoring specific brain signals [52,53] and specifically the
EEG signals related to the focused items (duration of the event-related atten-
uation of the alpha rhythm, see [24]). In addition, a range of eye and pupil
measures (eye tracking, or ET, and pupillometry) can be employed to deter-
mine which item the user is currently inspecting and to relate the user’s per-
ceptual and cognitive processes to a specific item or set of items. For instance,
the pupil diameter could be useful to disclose increments in the user’s cognitive
load [54–56] or to investigate the relevance of a search result [57]. In addition,
since the responses of the pupil to specific stimuli/events provide a continuous
measure of cognitive processing, despite the fact that the user is unaware of such
variations, pupillometry could help detect the level of preconscious processing
[58]. Pupil dilation is a simple measure to acquire; the collection procedure is
totally noninvasive and is characterized by a short temporal delay, which is use-
ful since the final MindSee system should function almost simultaneously with
the ongoing user’s perceptual and cognitive processing and should adapt without
delays. The MindSee system will also take advantage of peripheral physiologi-
cal measures (electrodermal activity, or EDA, and facial electromiography, or
fEMG) in order to collect information about the arousal level and emotional
state of the user.

3.2 User Experience in Symbiotic Systems

One of the aims of the MindSee project is to determine the proper metrics for
assessing the usability of a symbiotic system. Symbiotic systems can be thought
of as consisting of two main components: one reacting to direct users’ inputs (i.e.,
their explicit behavior), and one interpreting and responding to users’ affective
and cognitive states through the online analysis of their neurophysiological data
[59]. In other words, not only does the system react to explicit behavioral input,
but it also collects users’ physiological indices as an implicit input to infer users’
cognitive and affective states [60]. The final goal is to better support users’ activ-
ity without placing a burden on their cognitive resources [61–63]. Symbiotic sys-
tems can include wearable components ensuring a greater cohesion between the
user and the environment and allowing the user to (implicitly) act on an inter-
face, even while engaged with other activities or devices [62,64]. When evaluating
the user experience, the peculiarities of symbiotic systems make it necessary to
adjust some common metrics and to add some specific ones. First, the scenario
that users have in front of them is continuously evolving, as a consequence of the
system’s response to their cognitive and affective states. Therefore some users’
intermediated goals might change as the activity proceeds, even though the over-
all goal remains the same; this can make it inappropriate to use a score system
based on predefined activity steps when evaluating accuracy [65] or efficiency.
Second, slowdowns or interruptions of an action due to a crisis in the interpre-
tation of the system’s functionalities [66] might be recognized by the system,
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which would adjust the information presented accordingly; therefore, the usabil-
ity test should evaluate not only the occurrence of a breakdown in the interaction
with the system, but also the circumstances under which the system adaptation
is helpful in resolving the breakdown. Third, relevant subjective dimensions to
consider when evaluating symbiotic systems are satisfaction, acceptance, per-
ceived sense of control, perceived utility, credibility and comfort [60], which can
be measured with self-reported techniques. In particular, satisfaction with the
system’s ability to effectively adapt to the user’s state needs to be evaluated.
However, since the user is not aware of the implicit data used by the system
and is probably only partially aware of the adaptation process, questionnaires
can only inquire about the overall impression of being relieved in their activity
and of being well understood by the system [60]. They need to be accompanied
by other kinds of data to measure the actual cognitive load (e.g., pupil dilation)
or stress (electrodermal activity, or EDA), or rely on the validation design in
order to evaluate the gain in performance due to the use of symbiotic features.
One way to make this evaluation would be to compare the user experience when
such features are active and when they are not. Finally, the system needs to be
evaluated in the way in which it fulfills ethics and data protection requirements.

4 Conclusions

We started this paper by arguing that symbiotic systems - as they have been
recently defined by Jacucci et al. [2] (symbiotic) - help meet current users’ expec-
tation that systems can understand their needs and adapt accordingly. We also
argued that information seeking is an ideal domain where symbiotic applications
can be tested in everyday life activities, since they allow one to explore the inte-
grated adaptation to the users’ implicit and explicit cognitive, perceptual and
emotional state. The MindSee project takes up this opportunity and upgrades
an existing search tool called SciNet with symbiotic features based mainly on
BCI components, but also on other kinds of implicit user input (e.g., behavioral).
With respect to the state of the art in information seeking, then, the symbiotic
strategy attempted in the MindSee project provides an advanced solution for
searching in an unfamiliar or underspecified domain by implementing implicit
feedback, allowing query refinement without asking the user to explicitly mark
the first query results. The rationale consists of relating a specific item or set of
items displayed as a search result with the user’s perceptual and cognitive pro-
cesses, namely the duration of the event-related attenuation of the alpha rhythm
in EEG signal, pupil diameter, electrodermal activity and facial electromyogra-
phy. Since the system’s ultimate ambition is to improve performance by reducing
users’ cognitive load, the actual transparency, naturalness and helpfulness of the
system must be evaluated with an appropriate combination of self-reported and
observational measures. Similarly, the acceptance of a system that uses implicit
data and an adaptation process of which the user is mostly unaware must be
measured.
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Abstract. When searching images on the web, users are often con-
fronted with irrelevant results due to ambiguous queries. Consider a
search term like ’Bill’ : Results will probably consist of multiple images
depicting Bill Clinton, Bill Cosby and money bills. Given that the user
is only interested in pictures of money bills, most of the results are irrel-
evant. We built a demo application that exploits EEG and eye-tracking
data for the disambiguation of one of two possible interpretations of
an ambiguous search term. The demo exhibits the integration of sensor
input into a modern web application.

Keywords: Human-computer interaction · Brain-computer interface ·
EEG · Eye-tracking · Information retrieval · Free viewing · ERP ·
Multivariate decoding

1 Introduction

Ambiguous search results are a common problem in web search. Although the
user may be more or less clear about what she is searching, the used search query
is often ambiguous. Just consider possible results for the query bank. Is the user
looking for the institution, a bankside or a bench (’bank’ is the German word
for bench)?

The user may give explicit feedback to resolve such an ambiguity. It would be
most straightforward to ask the user whether a result is relevant or not. In addi-
tion, the user could rephrase the search query, add keywords or answer questions
about preferences. Another approach to resolve ambiguities is gathering implicit
information about preferences from previous queries, the browsing history or
other data sources. These methods are already used by popular search engines.
Google search offers auto-completion for queries. While typing, the user can
choose among several suggestions. Search engine providers also use a plethora of
other data sources for implicit relevance feedback: The IP (e.g. the map displayed
in Google Maps is usually the users’s current location), the language settings or
information from the user’s Google account. While collecting explicit feedback
can be costly, implicit feedback usually comes at no extra cost for the user and
is unobtrusive.
c© Springer International Publishing Switzerland 2015
B. Blankertz et al. (Eds.): Symbiotic 2015, LNCS 9359, pp. 81–86, 2015.
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A new approach to deliver implicit relevance feedback is gathering data from
physiological sensors. This field became more and more of interest to research
recently. Eye-movements were used for implicit feedback in image ranking and
annotation ([5], [6]), EEG for image retrieval ([7]) and EEG coupled computer-
vision for rapid image search ([3]). Combined MEG and eye-tracking data were
used for decoding image relevance ([8]), and combined EEG and eye-tracking to
search for relevant objects in a 3D environment ([9]).

To demonstrate the feasability of online brain-computer interfacing in a prac-
tical application, we built a web application that exploits information from EEG
and eye-tracking data for an information seeking task. The application mimicks
the process of skimming ambiguous image search results. To create the look and
feel of an actual image search application, we used modern web technologies (see
section 3). The user is asked to choose one of two possible interpretation of an
ambiguous search term. Subsequently, the user is presented with a grid of 24
images, that either belong to one or the other subcategory of the search term.
The user inspects in free viewing which of the images belongs to the previously
chosen subcategory. When finished observing the results, the application pre-
dicts which subcategory the user is looking for based on EEG or eye-tracking
data. To investigate how EEG and eye-tracking features can be used to build
a model that can predict the subcategory of interest, we conducted an experi-
mental study with ten participants using the demo application. The study can
be conceived as research on how to conduct the calibration (model training) of
a user. You can calibrate and switch to the online phase within the application.
In the online phase, the application yields a prediction after every search result
screen.

2 Experimental Study

2.1 Experimental Design

Our aim was to design a demo application that resembles the procedure of an
image search application. Flickr, Google image search and the like are examples
for such an application: The user types a query and matching images are pre-
sented in a mosaic on the screen. The user then proceeds to quickly skim the
results for relevant images.

Stimuli. We imitated such a result page (we refer to the result page as search
screen) by using 24 square pictures, arranged in a grid consisting of 4 rows and 6
columns. Non-square pictures were cropped. Each picture was picked randomly
from one of the two subcategories with probability p = 11/24 and with proba-
bility p = 2/24 from the noise picture pool. All stimuli were taken from Flickr
(www.flickr.com), a service for sharing pictures aimed at amateur and profes-
sional photographers. Flickr provides access via an API to large amounts of high
quality pictures that are annotated by users (www.flickr.com/services/api/). The
shown pictures are all related to an ambiguous search term (e.g. comb) and one
of two subcategories (e.g. honey-bee-bees and chicken-rooster-red) or are picked

www.flickr.com
www.flickr.com/services/api/
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randomly from a pool of diverse pictures (noise pictures). The experiment con-
sisted of 154 search screens in total. A screen displaying the two subcategories
for subcategory choice was presented before the search screen. Ambiguities are
rarely due to lexical homonymy, but more often due to underspecified search
terms: Image search results for the search term filter yield pictures of coffee
filters, images processed by different digital filters and analogue filter lenses.

Procedure. Participants were instructed to count at a faster pace rather than
a slower and more thorough one. With these instructions we wanted to encour-
age the subjects to quickly skim the results instead of prioritizing the correct
accomplishment of the task. The participants were asked to select one of the two
subcategories before the search screen was presented. After choosing, they had
to count the pictures belonging to the chosen subcategory, while EEG and eye
movements were tracked. When finished with counting, participants had to press
space and enter the target image count on the following screen. Subsequently,
a screen with feedback was displayed to indicate if the count was correct. See
figure 1 for a mockup of the course of a single trial.

yrogetacbus   fo eciohC .1

3. Search screen

2. Fixation  cross

4. Target count input field

5. Screen for correct or false 
response

Fig. 1. Mockup of a single trial of the experimental study. The order of screens is
enumerated. Screen 1. and 4. were enlarged and cropped for better visibility.
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2.2 Analysis

Aim of the analysis was to find eye-tracking and EEG features that can predict
the attended target subcategory.

Eye-Tracking. As eye-tracking feature, we used the mean dwell time, the max-
imal fixation length, the median fixation length and the average fixation count
for target and non-target images of each search screen. These four measures were
used as features for a LDA classification to predict which of the two subcate-
gories the subject chose to count. The subcategory that the subject attended
to and whose images had to be counted are referred to as target subcategory
and otherwise as non-target subcategory. Every subcategory was used as a single
data point for training and for each subject a single classifier was trained. We
tested the classifier performance by using ten different segmentations of a ten
fold cross-validation.

EEG. The EEG data were low-pass filtered with a second order Chebyshev filter
(42 Hz passband, 49 Hz stop band), down-sampled to 100 Hz, re-referenced to
the linked-mastoids and high-pass filtered with a Butterworth filter at 0.2 Hz.

The continuous multi-channel EEG data were segmented in epochs aligned
to the onset of the longest fixation on an image. No baseline was subtracted.
Segments aligned to fixations on images are referred to as target epochs and
non-target epochs, depending whether the data were aligned to a fixation on an
image belonging to the target or non-target subcategory. We trained a classifier
using shrinkage LDA with spatio-temporal features on single epochs (see [1]).
The shrinkage parameter was calculated analytically (see [2], [4]). We used the
average activity of 50 ms intervals from 0 ms to 1000 ms after fixation onset
and 62 channels, resulting in 1240 features. The number of the longest fixations
(data points) on either target or non-target images ranged from 3083 to 5408 for
a single subject, with slightly unbalanced classes, as target images were fixated
more often than non-target images. We tested the classifier performance by using
ten different segmentations of a ten fold cross-validation. To classify which sub-
category the user attended to, the average of the classifier output over all target
and non-target epochs for a single search screen was computed. The classifier
output indicates the distance to the decision hyperplane and the sign indicates
the class membership. The subcategory with the larger average of outputs was
labeled as the target subcategory of a search screen.

2.3 Results and Limitations

Prediction of the chosen subcategory based on EEG and eye-tracking data is
possible: Performance of eye-tracking and EEG based predicition is above chance
level (50%) for every subject. Mean performance of classification based on eye-
tracking features ranged from 67% to 92% correctly classified search screens, and
from 62% to 88% correctly classified search screens for EEG features. The EEG
based classification is probably confounded by the eye-movements, and results
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Fig. 2. Every box plot represents ten different segmentations of the data, each data
point being the average of a ten fold cross-validation. Measure of performance is accu-
racy (percentage of correct classifications per search screen).

have to be taken with a grain of salt. This confound will be investigated in the
future, as well as whether the two modalities contain complementary information
such that data fusion improves the classification performance.

3 Demo Set Up

Hardware. The hardware setup consists of an eye tracker (RED 250, SensoMo-
toric Instruments, Teltow, Germany; sampling frequency of 250 Hz) attached to
a screen (resolution: 1680 x 1050 pixel, size: 47.2 cm x 29.6 cm), and two comput-
ers, one for presentation and EEG data acquisition, the other one for eye-tracking
data acquisition. Physiological signals are recorded with two amplifiers with 62
active EEG electrodes and one active electrode for electrooculography (EOG)
(BrainAmp, ActiCap, BrainProducts, Munich, Germany; sampling frequency of
1000 Hz). Linked mastoids are used for the referencing of the EEG signal.

Software. The presentation of the demo application was implemented using
HTML5 for formatting, CSS for styling and JavaScript for client-side code. The
demo application is interactive and not a static prearranged sequence of screens.
The user can calibrate and validate the eye-tracker inside the browser. Addi-
tionally, she can switch the feedback mode on and off whenever she likes. She
can also navigate between different menu screens (e.g. a screen for trial selec-
tion, a menu for training and selecting a model for feedback) in the browser.
The web server handling HTTP requests is an integrated part of Flask, an
open source web development framework. Flask also includes a templating lan-
guage (Jinja2) which combines Python like expressions and HTML to dynam-
ically generate HTML code. For eye-tracking we combined the vendor API
(iViewX SDK) with Zero-MQ (a high speed messaging library) to allow for
easy cross-platform, cross-language and interprocess communication. We used
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Wyrm (github.com/bbci/wyrm) and Mushu for EEG data-analysis and signal
acquisition.

4 Conclusion

In this study, we demonstrated that EEG and eye-tracking data can be used to
estimate the relevance of images of a user’s search. It is possible to resolve image
search result ambiguities using this implicit information.

Modern web technologies were used for the implementation of the demo
to create the look and feel of an actual web application and to approach the
endeavor of combining BCI and web technologies. Technologies that are capable
of online prediction, based on eye-tracking and EEG data, and a feedback loop
using eye-tracking data were implemented. In combination with the algorithms
developed for the prediction of relevance, we set the grounds for a modern web
application using implicit relevance prediction.

Acknowledgments. The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement n◦ 611570, and in part by the BMBF (contract 01GQ0850, BFNT).
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Abstract. Optimising communications to take account of user states is a nas-
cent, huge and growing business opportunity for the retail and advertising 
worlds. Understanding people’s behaviours, thoughts and emotions to different 
messages in different contexts at different times, can inform the strategic plan-
ning and design of systems promoting positive customer experiences and  
increasing retail sales. Using theory combined with applied insights from our 
projects, this paper highlights a number of factors (mindset, attention, focus, 
time pressure and salience) that drive ‘search’ behaviour in a dynamic retail 
based environment. The work has implications for developing symbiotic  
systems. 

Keywords: Salience · Perceptual prominence · Open · Closed · Mindset ·  
Symbiosis · Symbiotic · Human-computer · Interaction · Technology-mediated · 
Affective systems · Attention · Focus · Time pressure · Adaptive · Responsive · 
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1 Introduction 

Personally adaptive, responsive systems have an increasing presence in the advertis-
ing world and are likely to become more symbiotic in the future. Personally incenti-
vised shopping is not new - think store loyalty cards - and even recently, low tech 
examples still gain media attention. For instance, in the battle of the supermarkets in 
the UK, Waitrose has recently launched a new scheme for registered loyal shoppers. 
Loyalty customers are able to choose items on which they receive a 20 per cent dis-
count (Ruddick, 2015). It’s an interesting example because it is ‘transparent’, reliant 
on full user control and not inferred from behavioural indicators - almost an anti-
technology move, particularly where ‘trust’ in use of personal data and sense of au-
tonomy in decision making still feature high on many customers’ ethical agenda. 

In the retail world competition to grab customer attention is high, particularly with 
increased opportunities for engagement and connectivity that new media technologies 
and digital services afford. Nevertheless, failure to respect customer privacy concerns 
or getting inferences wrong can damage reputation, particularly given the impact of 
our social media, and betrays the customer hand that feeds them.  
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Research can play a valuable role in understanding how to optimise the effectiveness 
of advertising by exploring constructs relevant to the shopper ‘mindset’. Drawing from 
a variety of applied research projects that we have conducted, this paper provides a 
summary of our current thinking around the retail experience of the current and future 
consumer and provides a background to our recent experimental work.  

This work has implications for the design of future symbiotic systems in the  
retail space, including systems that support ‘search’ behaviour through the myriad 
(advertising) messages and information that we seek or are bombarded with on a daily 
basis.  

2 Mindset, Motivation and Volition 

2.1 Theory 

We assume that retail audiences vary in their ‘mindset’ towards advertisements at any 
given moment depending on a number of factors. Advertisements can be located at 
different sites/contexts, which could be indoor, in either public or personal spaces, or 
outdoor, such as on the High Street. Temporal factors (time of the day, week, month 
or year) are also important. For instance, consider how ‘porridge’ might be a more or 
less appealing purchase on a cold winter morning compared with a warm summer 
evening; or how that luxury item you desire is only attainable after payday or at a 
special time of the year. Life stage, roles and experiences will also impact on what is 
considered relevant and meaningful to the individual at different times. We vary in 
our ‘receptivity’ to a message, defined as “consumers’ conscious and unconscious 
readiness to accept, process, and respond to brand messaging.” (p.98, Dhar & Kim, 
2007). Theoretical perspectives on mindset can be drawn from a range of disciplines 
such as marketing and consumer psychology, cognitive and social psychology, and 
the psychology and neurobiology of personality. 

Gollwitzer (1990) drawing on the Rubicon model of action, described mindset in 
terms of the “phase-typical cognitive orientation that promotes task completion” 
(p.63). In this sense it is part of a motivational process, preparing the individual so 
that the stimulus presented - in this case, an advertising message - can be analysed 
resourcefully during the process, leading to successful task completion - product pur-
chase. 

Mindset can be viewed as multiple cognitive stages in the identification, pursuit, 
consummation and evaluation of goal directed action. So how might we understand 
types of mindset relevant to shopper behaviour?  

We consider that every mindset stage during the retail experience is influenced by 
the relationship between different internal (personal) and external (contextual) condi-
tions. These impact the likelihood of the shopper proceeding efficiently to the next 
stage toward the goal.  

According to Gollwitzer (1990) there are four types of mindset influencing cogni-
tive orientation. The ‘deliberative’ mindset is characterised by making the choice 
about a goal including realistic prior analysis of the information available and issues. 
Is the goal desirable and feasible?  
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Whilst he labels it ‘deliberative’, suggestive of conscious intention, there are likely 
unconscious factors at play too, and the properties of stimuli and their relationship to 
the perceiver are likely key to whether or not a potentially relevant stimulus is no-
ticed, let alone considered or acted upon. A pre-requisite factor to Gollwitzer’s ‘deli-
berative’ mindset relates to stimulus ‘salience’: what makes something stand out to 
one person rather than another, at/in a given time/context rather than another? Is an 
individual able to identify as well as think about available opportunities?  

The second, ‘implemental’, mindset that Gollwitzer describes is characterised by 
thoughts about the when, where, and how the goal should be implemented - tasks 
involved in action initiation. This seems akin to cognitive planning and coordinat-
ing/sequencing, important for effective environment-related interaction.  

For Gollwitzer, the ‘actional’ mindset is associated with monitoring the behaviour 
that is currently in execution towards an identified goal. Finally, the ‘evaluative’ 
mindset occurs post action when the individual measures the outcomes reached. Was 
it worth it? Will it be worth noticing it again in the future?  

Whilst these processes can be broken out and studied as conscious reflective sub-
jective experiences, as Gollwitzer has with the implemental and deliberative stages 
(Gollwitzer, 1990), it is also useful to note that goal directed behaviour is often subtle, 
fast and some aspects are rather automatic with much less conscious control.  

Gollwitzer’s ideas also relate to other motivational models of approach behaviour 
and reward responsivity, describing tasks of motor control, coordination and action 
relative to the position of the goal object. For instance, neurobiological substrates of 
these mindsets may have implications for development of future symbiotic systems 
that are able to identify and optimizing search results based on objective indicators of 
mindset. There is evidence that part of this motivational process is characterised neu-
robiologically by activation of the (mesocorticolimbic) dopamine pathway which 
extends to the prefrontal cortex (e.g., Schultz et al., 1997) - an area involved in reward 
motivated behaviour (e.g., see review by Balleine & Dickinson, 1998; Frith, Friston, 
Liddle & Fracowiak, 1992; Bannon & Roth, 1983) - and through regions related to 
incentive salience (e.g., nucleus accumbens). Berridge (1996) argues that dopamine 
systems play a primary role in ascribing “incentive salience to selected percepts and 
representations... which causes it to become attractive and wanted.” (p.15). 

Ability to satisfy an intention can also be explored in terms of individual differenc-
es in sensitivity to ‘significant’ contextual cues, generated in a complex internal-
external interplay. Consider basic drives like hunger and cravings, for instance be-
cause of cigarette withdrawal, combined with the availability of conditioned stimuli in 
the environment (e.g., Powell, Tait & Lessiter, 2002).  

Personality traits such as ‘impulsivity’ are relevant to consumer behaviour in this 
regard. Such constructs are measurable for instance, with psychometrically validated 
scales (e.g., EPQ-R: Eysenck & Eysenck, 1991; BIS/BAS scales Carver & White, 
1994), and the neurobiological underpinnings and psychophysiological correlates of 
these traits may have future value in symbiotic systems. The Reinforcement Sensitivi-
ty Theory of personality developed through research from the late Jeffrey Gray and 
his colleagues may have utility in this regard (e.g., see Corr, 2008 for a comprehen-
sive coverage of research exploring the Reinforcement Sensitivity Theory).  
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Gollwitzer’s theory suggests that if shoppers are more concerned with making a 
purchase and know what they’re looking for, they are operating within an action 
mindset and deliberation is not the primary focus. Gollwitzer found support for his 
hypothesis that participants placed in deliberative mindsets would show increased 
receptiveness to the available information compared with those placed in implemental 
mindsets. This has clear implications for consumer behaviour. 

Mindset has also been conceptualised in terms of the predominance of abstract 
(broad, high level, generic, far time focus) or concrete (narrow, low level, specific, 
near time focus) cognitive reference frames when consumers are contemplating pur-
chase decisions (Goldsmith, Xu, & Dhar, 2010). The Construal Level Theory (CLT) 
(e.g., Dhar & Kim, 2007) outlines a decision making stage model (awareness/goal 
pursuit, consideration-set formation/receptivity, option selection through comparison 
in context, and post choice affective evaluation) with stages similar to those outlined 
by Gollwitzer. In this theory, ‘progress’ or ‘commitment’ mindsets are also evoked 
when goal directed behaviour is evaluated. Importantly, CLT extends the notion of 
temporal distance to embrace ‘psychological distance’ which accounts for individual 
variation in perception of temporal proximity to the final goal and subgoals. Dahr & 
Kim cite research suggesting that an individual’s receptivity is optimised under par-
ticular combinations of messaging with psychological distance: when psychological 
distance is decreased, lower level construal claims increase receptivity, and when 
psychological distance is increased, higher level construal claims increase receptivity. 
It would be interesting to explore the influence of impulsivity on these relationships.  

2.2 Applied Insights: Learning from Retail Customer Experiences in Airports 

In one of our projects, a major international airport wanted to explore the types of 
mindsets of passengers passing through their airport retail spaces with a view to im-
proving the customer experience and increasing sales.  

Using observation and interviewing methods, we identified a range of shop design 
hurdles and barriers to passengers moving with ease through the shopping process. 
We also identified characteristics important to understanding what types of passen-
gers wanted what products/services and where. For instance, relevance of product 
availability in different spaces was basic but important. Consider the different needs 
of host country resident passengers compared with long or short term visitors at arriv-
als and departures, and those of connecting passengers with variable holding times 
between flights; the impact of security-related restrictions in the process; and impor-
tantly, the fact that the retail element is incidental and not the primary reason for be-
ing at an airport. Furthermore, the target sample was also wider than passengers: ac-
tual retail footfall comprised a significant number of airport and temporary staff as 
well as passengers.  

In this airport environment, two factors seemed particularly important to driving 
retail engagement and understanding propensity to respond to advertising/marketing 
messages.  

First, airports can be stressful environments. Indeed research by Credit Card Pro-
tection company, CPP, reported in the British Psychological Society news (2011) 
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found that 25 per cent of UK residents found such travel experiences to be as stressful 
as moving house. In one direction, there is a deadline – ‘Boarding, don’t miss your 
flight!’ - and in the other, people are wanting to move on, away from the airport and 
into the host country. There are numerous airport initiatives to improve passenger 
experience in terms of alleviating stress (e.g., the birdsong installation at Schipol air-
port: e.g., Winterman, 2013), and research has explored the restorative effects of 
watching aircraft (Ratcliffe & Freeman, in preparation). 

Whilst there are recommended airport arrival times, passengers vary hugely in the 
times they allow or indeed just find themselves in between their airport arrival and 
departure. Ultimately there is time pressure to move on, and some people appear more 
sensitive to this than others. For instance, we found that frequent flyers on business 
generally allowed very little retail dwell time for themselves. Whilst our research was 
observational, there is also likely to be a positive correlation between individual sensi-
tivity to anxiety and intended airport dwell time. 

Second, it was interesting to watch how some passengers/people in the retail spaces 
chose to use their available dwell time. Watching them either wander aimlessly along 
the guided path from security through the glitter of Duty Free, or hurry, searching for 
travel partners or flight information. A retail experience was high on the agenda for 
some, part of the ‘holiday treat’. For others, it was a definite grab and go: a quick visit to 
purchase a newspaper and a bottle or water, or grab a few last minute toiletries. Others 
still lingered and pondered, searching for final gifts for their loved ones. Airport cus-
tomers varied in their retail ‘focus’ and our observations (see Figure 1) were consistent 
with Gollwitzer’s notion that deliberative mindsets would show increased receptive-
ness to the available information compared with those placed in implemental mind-
sets. 

 

Fig. 1. Time pressure and focus applied to consumers in retail environments 
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3 Time Pressure 

3.1 Theory 

Time pressure has been explored in different research areas such as work and stress, 
decision-making, consumer behaviour, attention and visual search. Time pressure is a 
subjective judgement, with studies showing mismatches between perceptions of time 
and actual time (Stroud, 1955).  

Hawes (1980) defined time pressure as a complex, subjective experience which va-
ries across people in different ways at different times. Similarly, Iyer (1989) indicated 
that time pressure is the perceived limitation of time available for a given task. Iyer 
also noted that time pressure influences the reasoning process given the limitations of 
our cognitive capacity. Being under time pressure generates difficulties in decision 
making and research supports this idea, showing that perceived time pressure influ-
ences the elaboration of information with repercussions on cognitive processes such 
as attention and decision-making. 

Reutskaja et al. (2011), with an interest in ‘cognitive overload’ and time pressure 
on decision making, have used eye tracking and duration of fixations as indicators of 
speed of search and decision times. They found that participants were able to make 
judgements in relatively short time periods even with large choice sets, and they made 
use of different strategies when having to process information within different time 
periods. This suggests that with increased choice, complexity of stimuli, and little 
time, consumers must become more selective and brief in what they attend to. Reuts-
kaja et al. suggests that this leaves people open to marketing methods. 

Bronner (1982, cited in Iyer, 1989) studied the effect of time pressure on un-
planned purchases hypothesising that when the individual is under time pressure the 
in-store cues to grab attention are suppressed, but when the time pressure is low the 
opposite effect will occur. This suggests that in a retail context under high time pres-
sure the number of unplanned purchases will be low as will the surfacing of the need 
evoked from relevant stimuli (such as noticing discounts). Higher physical design 
salient messaging (media form/presentation) may be required to re-adjust any deficit 
in attention resulting from a high time pressure mindset. 

Other research on unplanned purchases (see Gibridge, Inman, and Stilley, 2013) 
has found that early in the shopping experience, unplanned purchases suppress other 
immediate unplanned purchases, suggesting that for high time pressure situations, 
there may be little opportunity to capitalise on more than one unplanned purchase. 
However over the course of a trip this pattern reverses which suggests that with long-
er shopping trips where time pressure is low there are more opportunities for marke-
ters to provoke multiple unplanned purchases.  

3.2 Applied Insights: Learning from Customer Experiences of Product 
Lookalikes 

In an example from our applied research, the Intellectual Property Office was keen to 
understand the impact of product lookalikes and the impact on consumer behaviour 
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and perceptions of consumer harm. Well known brands invest a lot of time and 
finance into designing their packaging and marketing. Less established competitors 
can copy some of the physical characteristics of these better known brands, potential-
ly capturing consumer attention because of the similarity and ‘fooling’ them into a 
mistaken purchase.  

In the first phase, a survey was developed which asked respondents to rate product 
trios (two own brands relative to each other and to a manufacturer brand) in twelve 
different product categories. The products, all on the market in 2010, were carefully 
selected for the study, with advice and feedback about potential examples of lookal-
ikes provided by the British Brands Group and British Retail Consortium. The re-
search team verified and controlled for properties of the product as much as possible 
in an applied context. 

Ratings were given for degree of similarity and also for perceptions of price, quali-
ty, suitability for intended use, and value for money. Multiple versions of the survey 
were developed which varied the position of the manufacturer brand relative to own 
brands in the trios. The surveys were made available online via surveymonkey.com to 
UK consumers in early 2012. The phase 1 survey received 1160 product trio question 
set responses from 330 respondents.  

We found that some own brand products whose packaging is perceived by respon-
dents to look more like that of a manufacturer brand for which it could be a substitute, 
appear to gain significant advantage in being of higher perceived quality (quality, 
suitability for intended use, expensiveness, value for money) over another own brand 
product whose packaging looks less like that of a manufacturer brand. The lookalike 
effects were evident in responses of users and non-users of the relevant product cate-
gories, although the effect seemed to be slightly more evident for non-users of a prod-
uct category. 

In a second survey using nationally representative online research panels, respon-
dents from the UK (n=1000), Germany (n=500) and America (n=500) were asked 
directly about whether they were aware of having purchased a lookalike product, 
accidentally or deliberately, and whether by doing so they considered they had been 
advantaged or disadvantaged. A majority of respondents (50+ per cent) reported pur-
chasing lookalike products accidentally at least once. Up to one quarter of the sample 
had done so a few times. It was interesting to note that as many respondents claimed it 
had advantaged as disadvantaged them. The majority of each national sub-sample also 
claimed to purchase lookalikes on purpose, at least once, particularly in Germany. 
The vast majority, around 60-75 per cent of each national sub sample, reported that 
doing so was advantageous rather than disadvantageous to them. Participants reported 
having previous positive experiences with the product which incentivised repeat be-
haviour, and rated value for money rather than highest quality being a key characteris-
tic in decision making. 

The research revealed that results varied by product category suggesting other in-
fluencing variables. For instance, some product categories have been subject to 
stronger innovation (e.g., razors) than others (e.g., vinegar). Further, some high street 
retailer own brands have become trusted brands in themselves. The research was una-
ble to control for numerous other factors that would clearly influence noticeability of 
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products (e.g., specifics in font size and other physical ‘design salience’ properties) 
but acknowledged the importance of these influences including shelf placements in 
terms of prime positioning and how positioning relative to the manufacturer brand 
may increase/decrease the lookalike effect. The reader is referred to Johnson, Gibson, 
and Freeman, 2013 (in particular, Chapter 7 and Appendix D) for details of the me-
thodology and statistical analysis for both surveys. 

4 Focus and Attention 

4.1 Theory 

Facoetti and Molteni (2000) describe focus as a process of task-oriented concentrating 
that supports the selection of relevant from irrelevant stimuli in the field of informa-
tion. As a consumer, when we know what we want to buy, there is a sharpening of 
attentional resources.  

In early research William James (1890) suggested that visual attention is composed 
of a focus, a margin and a fringe. Nearly a century later Posner (1980) proposed a 
metaphor in which attention was compared to an internal spotlight. The author tested 
the hypothesis by asking participants to click a button when a light appeared in their 
visual field. The light could occurred in different places of the field and was pre-cued 
by an arrow (pointing in the direction of the target) or by an illumination of the field 
and enhanced the efficiency of detection during the task. Research now over many 
years has explored how subtle or blatant a cue is needed to grab attention. Perhaps 
unsurprisingly there is a wealth of mixed evidence showing the effectiveness of dif-
ferent cues to influence conscious and unconscious information processing and deci-
sion making. 

Eriksen and Rohrbaugh (1970) and Eriksen and Hoffman (1972) noted that the at-
tention process is similar to a zoom lens. In this model attention is considered a 
process with limited capacity and the process of focusing is controlled by attention 
that works as a zoom lens that is set over a field of stimuli. When the focus is broad 
the lens has low power and low resolution of the details of the stimuli, but when the 
resources on focus become narrowed, the stimuli became more detailed if they are 
detectable in the visual field. The process seems to be highly functional and when the 
individual needs higher resolution for a task the zoom shifts from broad to narrow to 
screen out irrelevant stimuli and help focalization on relevant ones.  

Nideffer (1976) proposed the attentional and interpersonal style theory to under-
stand and predict conditions under which individuals would be able to perform up to 
their potential. The theory, relevant to both physical (motor skill) and mental (deci-
sion making, problem solving) performance, postulates that focus of attention moves 
along a width dimension (broad - narrow) and directional dimension (internal - exter-
nal). These two dimensions intersect and result in four attentional styles (Nideffer, 
1976): the broad-external focus is used when reactivity and awareness of the envi-
ronment is needed; the broad-internal is used to analyse and concentrate or planning; 
the narrow-internal is used for an inward check up and the narrow external when it’s 
necessary to perform specific physical and interpersonal tasks. 
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When workload increases, resources are allocated to elaborate the information, but 
if the load is too high information is less optimally processed. The higher the cogni-
tive demand the greater the effort required to sustain a level of efficacy (Grier et al. 
2003; Kahneman 1973). This suggests that determined shoppers with too much choice 
are susceptible to making less effective decisions. 

Given that much consumer activity is now online, the sense of presence - a sense of 
being there in a mediated environment; a state that results from attending to and eva-
luating incoming sensory information (Barfield et al., 1995) - is relevant to this dis-
cussion. The manipulation or measurement of presence (e.g., Lessiter, Freeman, 
Keogh and Davidoff, 2001) may have important applications in online retail space 
with regard to influencing consumer attention, focus, engagement, and proximity in 
the context of consumer mindsets. It also raises theoretical questions around manipu-
lations of mindset using task based instructions (for instance, what are the cogni-
tive/affective experiential differences in ‘being there’ compared with ‘doing there’). 
The relationships between user experience of system usability, presence and different 
mindsets is worthy of further exploration. 

4.2 Applied Insights: Validation of Focus Manipulation 

In one of our collaborative projects (see: mindsee.eu), the EEG correlates of high and 
low focus was explored (manuscript in preparation). Task instructions were used to 
experimentally manipulate participants’ focus. The instructions provided information 
about the search task with variation in the degree of specificity/ambiguity about the 
search target. Before running the study, we wanted to conduct a pilot study to validate 
that the instructions we generated for the task influenced participant mindset, as ex-
pected, in terms of subjective focus.  

In search processes, we considered that focus would vary in relation to the level of 
definition of the task at hand, the ambiguity of the search target and the cognitive 
states associated with these (e.g., uncertainty, confidence). We considered that the 
individual is in a high focus state when the target of the search task is more defined, 
more specific and therefore less ambiguous, making the user feel less uncertain and 
more confident. For instance, if I am in a high focus mindset as a shopper, I know 
exactly what purchase I want and where to buy it. 

In contrast, the user is in a low focus state when the target of the search task is less 
defined, less specific and therefore more ambiguous, making the user feeling more 
uncertain and less confident than those in the high focus condition. States of uncer-
tainty are typical of vague searches, such as those performed at the beginning of a 
search process when the object of the search is not completely defined (Kuhlthau, 
2004); the uncertainty is reduced once the object of the search becomes clearer (high 
focus). 

We hypothesised that participants in high and low focus conditions would perceive 
the task and the instructions differently in terms of: task specificity (narrow vs. 
broad), cognitive states associated with the task (e.g., confidence, uncertainty), ambi-
guity (defined vs. undefined target), and task perceived difficulty (high vs. low).  
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Using a repeated measures design, 12 participants each completed two search tasks 
(identifying and counting the number of times (a) a particular ‘shape’ and (b) a par-
ticular pattern, was present in the visual task). For each search task, participants were 
given a different instruction: one aimed to create a high focus mindset, and the other a 
low focus mindset. Mindset order (low/high focus) was counterbalanced through the 
sample as was the type of search target (shape/pattern).  

At the end of each visual search task, participants were presented with a series of 
questions about the task (performing it; the instructions; the search target) and asked 
to indicate, using a 7 point scale, which of a pair of contrasting attributes they most 
erred towards. As hypothesised, the results revealed significant differences between 
the mindsets, for instance, compared with high focus, participants in low focus mind-
sets reported feeling significantly less sure, more hesitant in their task performance, 
and found the instructions to be more ambiguous. The results indicated that the task 
instructions effectively manipulated mindset in a valid, predictable way. 

5 Other Research Applications 

An outdoor advertising agency wanted to further understand their earlier qualitative 
findings that consumer mindset influences receptivity to outdoor advertising mes-
sages. We were keen to explore whether we could effectively manipulate mindset 
using the dimensions of time pressure and focus to understand what would happen to 
participants’ ability to recognise ‘distractors’ (which could be advertising cues).  

Initially we designed a lab based experimental study to manipulate these constructs 
on an abstract rather than applied level. The work required clear conceptualisation and 
an understanding of what we meant by focus and time pressure, and what might be 
useful to remember/recognise about adverts in a shopping context. This initial study 
has since lead to a series of research projects in both commercial and academic con-
texts including the a salience scale (in development), and exploration of the physio-
logical correlates of different mindsets using measures from EEG (the pilot for the 
task instructions, summarised in 4.2 above) and eyetracking tools. These studies are 
currently in preparation for publication and will be described in detail elsewhere. 

We described above how the construct of focus was operationalised for empirical 
study. For the time pressure variable, we similarly used task instructions as the ma-
nipulation. Participants were told that the task had a fixed limited time period, or not, 
with respectively appropriate encouragement. Some of the studies we have conducted 
have evaluated correlates of mindset, and others have explored people’s receptivity to 
distractor cues following the primary task, testing their recognition of the ‘incidental’ 
objects/adverts. 

In our most recent commissioned project, we are exploring the impact of personal 
salience, familiarity (product category user/nonuser) and advert design salience 
(high/low) on a range of subjective recall, recognition and eye tracking measures to 
understand if we can predict effectiveness of advertising to different targets audi-
ences. 
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6 Discussion 

This paper (supported by the EC through the Mindsee project - G.A. #611570) has 
highlighted the potential application of a range of psychology related theories and 
constructs to better understand consumer search behaviour, specifically in re-
tail/advertising contexts. The particular constructs of interest were mindset, time pres-
sure, focus/attention and salience. Following a more academic outline of relevant 
theories, applied examples from our research commissions and other projects were 
provided. Whilst the focus here was largely on retail customer experiences, the work 
also has extended relevance to the development of various future search tools that 
understand the limitations of human information processing and work to symbiotical-
ly support users make more efficient, effective and advantageous personal decisions. 
This could include symbiotic applications that are sympathetic to the susceptibility to 
exploitation of our individual mindsets at different times, and that support personal 
control in decision making, by revealing how we might be being influenced by un-
wanted marketing. 
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Abstract. The sense of agency is the experience of initiating our actions
in order to control the external environment. This paper explores the
notion of the self and agency in the context of symbiotic computing.
Symbiotic computer systems use sensors to detect psychophysiological
markers and implicitly interpret our intentions in order to enhance our
actions in some way. Maintaining agency independence between the user
and the system is central to the symbiotic relationship. Also it is ideal to
enhance the user’s interaction without subducting control and therefore
it is pertinent to consider the sense of agency during symbiotic interac-
tions. This paper will theoretically explore the notion of self-agency in a
symbiotic setting, drawing on relevant research into the sense of agency
in psychology and neuroscience.
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1 Introduction

The sense of agency is the experience of initiating our actions in order to control
the external environment. This feeling of being the agent of our actions allows
us to know “I did that” when we’ve made actions. It has long been recognized
that supporting the user’s sense of agency is a key principle in the design of
user interfaces [1]. A hitherto unexplored challenge to this principle comes from
symbiotic interaction, a new and interdisciplinary field of computer science.

Symbiotic interaction comprises of a computer component that has the ability
to implicitly (or subliminally) detect (via sensors) the user’s psychophysiological
state [3]. This information can then be used to “better adapt output regardless
of his/her ability to explicitly refine his/her request” [3]. With this, such systems
can use psychophysiological cues to enhance the human computer interaction in
new and exciting ways. A simple example is a system that uses psychophysio-
logical data to detect when the user is tired and therefore provides assistance
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to perform a task. However whilst symbiotic systems such as these have great
promise, there is a risk that the user’s sense of agency is diminished, with the
computer automatically responding to the user’s state to facilitate task com-
pletion. This could have serious ramifications given the importance of sense of
agency for our interactions with computers. This has been recognized within the
field of physiological interaction for example “use of a physiological computing
system may blur the perception of self or act as an unwanted source of inter-
ference on self-perception. This ‘splitting’ of self-perception is certainly plausible
but difficult to evaluate or address at the current time”[2]. This highlights a
demand to evaluate and address the impact on sense of agency that may occur
with psychophysiological interaction techniques. Here we first discuss theories
and measures of sense of agency, drawing on the rapidly growing cognitive neu-
roscience literature on the topic. We then explore some of the challenges to sense
of agency posed by symbiotic interaction and how we can go about addressing
them.

2 Theories of Sense of Agency

An important consideration regarding the sense of agency and human-computer-
interaction (HCI) is how the experience comes about. Here, the neurocognitive
processes underlying the experience provide valuable insight. Multidisciplinary
research currently paints an intricate picture, where various agency cues and
indicators feed into the experience of agency [6–9]. Agency cues comprise of
external situational information surrounding an action. These external cues can
modulate beliefs about agency, for example [4] demonstrated that words which
served to prime thoughts prior to an action led participants to experience agency
for actions that they were forced to make. Moreover internal sensorimotor cues
such as the predicted sensory consequences of movement are also thought to
be agency cues (e.g. [5]). Distinct modes of interaction provide a vast range of
agency cues that also differ in extent. Thus the agency cues surrounding HCI
provide varying experiences of agency (for a review, see [11]).

2.1 Methods of Measuring Sense of Agency

A phenomenological distinction has been made between the Judgement of
Agency and the Feeling of Agency [12]. The implicit feeling of agency refers to
the pre-reflective, low-level feeling of being the agent of an action. The explicit
judgement of agency refers to the attribution of agency to oneself or another on
a conceptual level. Researchers have developed several ways of measuring the
impact that various agency cues have on the sense of agency experimentally.
The explicit judgement of agency is typically measured through verbal report
by asking participants to rate their feeling of agency during a task or simply
state whether they were the agent or not.

Measures have also been developed to probe implicit aspects of sense of
agency. Haggard and colleagues [10] found that voluntary actions and their out-
comes result in measureable changes in the perceived timings of these events.
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Here, the action and the outcome are perceived as closer together in time
(Figure 1). In the case of involuntary actions the perceived temporal interval
was found to be longer than the actual interval. This temporal phenomenon is
known as ‘intentional binding’, and taken to be an implicit metric for the sense
agency.

Intentional binding is assessed through the use of the so-called ‘Libet Clock’
[13]. This clock is presented on a computer screen. When the trial starts, a clock
hand rotates clockwise around the clock at a speed of one rotation every 2.56s.
Participants are instructed to make a self-paced action, which causes an outcome
after a fixed 250ms time interval. In the original study the action was a button-
press and the outcome was an auditory tone. Participants are asked to report
where the clock hand is pointing when the critical event occurs. The critical
event refers to the action or outcome depending on the trial condition. There
are four trial conditions that enable the intentional binding calculation to be
made. There are two baseline conditions where the action or outcome occurs in
isolation and there is no causal link between the two events. There are also two
operant conditions, where there is a causal link between the action and outcome
and participants report the time of the action or the time of the resultant tone
(depending on the condition). This intentional binding effect has been widely
replicated and has led to considerable advances in our understanding of the
sense of agency (see [14] for a review of intentional binding). Measurements of
the sense of agency provide insight into the amount of control and volition a
user feels under different conditions. Intentional binding is particularly useful in
HCI settings because it provides a measure of the degree of control experienced
by the user. This is not the case with explicit measures requiring a simple ‘yes’
or ‘no’ response.

3 The Experience of Agency in a Symbiotic Interaction

The definition of the symbiotic relationship states that it is “characterized by
goals and agency independence of humans and computers” [3] so one challenge is
to establish agency independence during the interaction. Another key question
for symbiotic computing is how the experience of agency is modulated for actions
that are assisted/mediated by technology and therefore not fully their own. Here
we explore existing research relevant to addressing some of the open questions
in symbiotic interaction pertaining to the sense of agency.

Agency Independence. This refers to the user and the system both being
separate and independent agents during the interaction. An individual’s beliefs
regarding the agent of an action is highly influential to an agentic experience.
In one study, prior causal beliefs about the agent of an action led participants
to experience less implicit sense of agency for self-generated actions that they
believed to be caused by another agent [19]. [4] found that a mistaken belief
about intentionally causing an action could be induced by simply priming indi-
viduals to think about the action just before it occurred. Visual feedback is
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Fig. 1. Intentional Binding. (a) For voluntary actions the perceived time interval
between action and outcome is shorter than the actual delay. (b) During involun-
tary actions the perceived time interval between action and outcome is longer than the
actual delay

also an important agency cue which can be manipulated to alter the sense
of agency. [17] found that deviations in the visual feedback of a moving curser
associated with joystick movement beyond 50◦ led participants to explicitly
attribute their movements to another agent irrespective of their implicit sen-
sorimotor movements. These studies demonstrate that the sense of agency is
malleable and that agency cues can counteract the sense of agency. This evi-
dence suggests that in order to establish clear explicit agency independence,
cues denoting the agency (or lack of) for the system and the users are crucial.
Agency metrics discussed above may be useful in establishing agency indepen-
dence and deepening the symbiotic relationship.

Assistance. Technological assistance introduces ambiguity to the notion of vol-
untary or involuntary actions. Whilst this question is philosophical, it is also
central to effective interface design. Furthermore, maintaining the user’s auton-
omy is key to other aspects of the interaction, such as motivation in computer
games [16]. [18] explored the sense of agency for tasks in a flight control deck with
varying degrees of computer automation. Intentional binding measures indicated
that increasing automation led participants to feel less sense of agency for the
outcome of their actions. Similarly, [15] used the intentional binding metric to
investigate the sense of agency and computer assistance during a more familiar
task - computer mouse movements. In this task participants used a mouse to
select their choice of target on a screen. An algorithm interpreted the intentions
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of the users and assisted their movement towards the target accordingly. The
results indicated that increasing computer assistance led participants to experi-
ence less agency for their actions. Moreover the results suggested that there is
a point at which assistance could be provided to the user and they would still
exhibit intentional binding. Beyond this point of assistance intentional binding
breaks down. This presents another opportunity for agency metrics to be used
in the development of a symbiotic system in order to calibrate the amount of
assistance so that it is explicit to the user and thus establish clear agency inde-
pendence. Furthermore, this calibration could enable assistance to go unnoticed
and implicit if required by the application domain.

Calibration. Neurocognitive research highlights that the sense of agency dif-
fers between individuals and therefore sense of agency metrics may also prove
useful for calibrating a system for individuals. The sense of agency is thought
to be central to mental health disorders which are characterized by delusions of
control such as schizophrenia and psychosis [21]. Other factors have been found
to modulate the sense of agency, such as cognitive load [22] and physical effort
[23]. Therefore depending on the situation people may experience the sense of
agency differently. Therefore symbiotic systems designed to assist individuals
would benefit from fine-tuning a system based on the agency requirements of
the target group. For symbiotic computing a system with a ‘one-size fits all’
strategy may not work effectively. Therefore implicit metrics such as intentional
binding may additionally be useful to periodically calibrate a symbiotic system.

4 Conclusion

In this paper we have explored symbiotic computing systems and the experi-
ence of agency in the context of assistance and agency independence. This is
an important consideration for the implementation of an effective interaction.
We conclude that the agency cues provided to the user during the interaction
may be crucial in achieving agency independence. Another concept that requires
reflection is where actions are being assisted by a symbiotic system. Assistance
in HCI settings has been found to reduce the sense of agency [15]. Moreover, we
have introduced an implicit metric for the sense of agency - intentional binding -
which we propose to be useful addressing some of the challenges in this domain.
Intentional binding is based on a temporal phenomenon, which is well known to
correlate with volition and control.

References

1. Shneiderman, B., Plaisant, C.: Designing the User Interface: Strategies for Effective
Human-Computer Interaction, 4th edn. Pearson Addison-Wesley, Reading (2004)

2. Fairclough, S.H.: Fundamentals of physiological computing. Interacting with Com-
puters 21(1), 133–145 (2009)



104 H. Limerick et al.

3. Jacucci, G., Spagnolli, A., Freeman, J., Gamberini, L.: Symbiotic interaction:
a critical definition and comparison to other human-computer paradigms. In:
Jacucci, G., Gamberini, L., Freeman, J., Spagnolli, A. (eds.) Symbiotic 2014. LNCS,
vol. 8820, pp. 3–20. Springer, Heidelberg (2014)

4. Wegner, D., Wheatley, T.: Apparent mental causation: Sources of the experience
of will. American Psychologist 54(7), 480 (1999)

5. Blakemore, S., Wolpert, D., Frith, C.: Abnormalities in the awareness of action.
Trends Cogn. Sci. 6, 237–242 (2002)

6. Wegner, D.M., Sparrow, B.: Authorship processing. In: Gazzaniga, M. (ed.) The
Cognitive Neurosciences III, pp. 1201–1209. MIT Press, Cambridge (2004)

7. Wegner, D., Sparrow, B., Winerman, L.: Vicarious agency: experiencing control
over the movements of others. J. Pers. Soc. Psychol. 86, 838–848 (2004)

8. Moore, J.W., Wegner, D.M., Haggard, P.: Modulating the sense of agency with
external cues. Conscious. Cogn. 18, 1056–1064 (2009)

9. Moore, J., Fletcher, P.: Sense of agency in health and disease: a review of cue
integration approaches. Conscious. Cogn. 21, 59–68 (2012)

10. Haggard, P., Clark, S., Kalogeras, J.: Voluntary action and conscious awareness.
Nat. Neurosci. 5, 382–385 (2002)

11. Limerick, H., Coyle, D., Moore, J.W.: The experience of agency in human-computer
interactions: a review. Front. Hum. Neurosci. 8, 643 (2014)

12. Synofzik, M., Vosgerau, G., Newen, A.: Beyond the comparator model: a multifac-
torial two-step account of agency. Conscious. Cogn. 17, 219–239 (2008)

13. Libet, B., Gleason, C.A., Wright, E.W., Pearl, D.K.: Time of conscious intention
to act in relation to onset of cerebral activity (readiness-potential). Brain 106(3),
623–642 (1983)

14. Moore, J.W., Obhi, S.S.: Intentional binding and the sense of agency: a review.
Consciousness and Cognition 21(1), 546–561 (2012)

15. Coyle, D., Moore, J., Kristensson, P.O., Blackwell, A.F., Fletcher, P.C.: I did that!
measuring users experience of agency in their own actions. In: ACM Conference
on Human Factors in Computing Systems, CHI, pp. 2025–2034 (2012)

16. Ryan, R.M., Rigby, C.S., Przybylski, A.: The motivational pull of video games:
A self-determination theory approach. Motivation and Emotion 30(4), 344–360
(2006)

17. Farrer, C., Bouchereau, M., Jeannerod, M., Franck, N.: Effect of distorted visual
feedback on the sense of agency. Behav. Neurol. 19, 53–57 (2008)

18. Berberian, B., Sarrazin, J.C., Le Blaye, P., Haggard, P.: Automation technology
and sense of control: a window on human agency. PLoS One (2012)

19. Desantis, A., Roussel, C., Waszak, F.: On the influence of causal beliefs on the
feeling of agency. Conscious. Cogn. 20, 1211–1220 (2011)

20. Negri, P., Gamberini, L., Cutini, S.: A review of the research on subliminal tech-
niques for implicit interaction in symbiotic systems. In: Jacucci, G., Gamberini,
L., Freeman, J., Spagnolli, A. (eds.) Symbiotic 2014. LNCS, vol. 8820, pp. 47–58.
Springer, Heidelberg (2014)

21. Frith, C.: The Cognitive Neuropsychology of Schizophrenia. Lawrence Erlbaum
Associates, Hove (1992)

22. Hon, N., Poh, J.H., Soon, C.S.: Preoccupied minds feel less control: Sense of agency
is modulated by cognitive load. Consciousness and Cognition 22(2), 556–561 (2013)

23. Demanet, J., Muhle-Karbe, P.S., Lynn, M.T., Blotenberg, I., Brass, M.: Power to
the will: how exerting physical effort boosts the sense of agency. Cognition 129(3),
574–578 (2013)



Toward the Development of a Neuro-Controlled
Bidirectional Hand Prosthesis

Silvestro Micera1, Jacopo Carpaneto1(B), Stanisa Raspopovic1,
Giuseppe Granata2, Alberto Mazzoni1, Calogero M. Oddo1,

Christian Cipriani1, Thomas Stieglitz3, Matthias Mueller3, Xavier Navarro4,
Jaume del Valle4, Hans Scherberger5, Luigi Raffo6, Massimo Barbaro6,

Danilo Pani6, and Paolo M. Rossini2

1 Scuola Superiore Sant’Anna, Pisa, Italy
{s.micera,j.carpaneto}@sssup.it

2 Catholic University of the Sacred Heart, Rome, Italy
3 University of Freiburg, Freiburg, Germany

4 Universitad Autonoma de Barcelona, Barcelona, Spain
5 German Primate Center, Göttingen, Germany

6 University of Cagliari, Cagliari, Italy

Abstract. The hand is a powerful tool and its loss causes severe physi-
cal and often mental debilitation. Surveys on artificial hands reveal that
30 to 50% amputees do not use their prosthetic hand regularly, due to
its low functionality. The fundamental issue is therefore to improve the
voluntarily-controlled dexterity to allow amputee to perform tasks that
are necessary for activities of daily living and that cannot yet be done
with the state-of-the-art artificial limbs. The NEBIAS project, launched
at the start of November 2013, aims at developing and clinically evalu-
ating a neuro-controlled upper limb prosthesis intuitively controlled and
felt by the amputee as the natural one.

Keywords: Neural engineering · Neural prosthetics · Bionics · Artificial
limbs · Neural interfaces

1 Introduction

Amputation is a traumatic event, which changes forever the life of the person
who suffers it in a quite dramatic way. The amputee requires an active prosthetic
device to perform several activities of daily living and in particular grasping and
manipulation functions, which are significantly affected after hand amputations.
However, the abandonment rate of currently myoelectric prostheses in favour of
body-powered or cosmetic ones is still very high [2]. The main reasons of this
tendency have to be searched in the weight, in the limited dexterity of the hand
prosthesis, and in the complete absence of sensory feedback due to the lack of rich
sensations naturally perceived when grasping an object [2]. Ideal bidirectional
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hand prostheses should involve both a reliable decoding of amputee’s inten-
tions and the delivery of sensory feedback through the residual afferent path-
ways, simultaneously and in real time [6]. Starting from previous encouraging
results [9,10] and in the framework of a EU founded research area (i.e., FP7-FET
Proactive Evolving Living Technologies), the NEBIAS project (NEurocontrolled
BIdirectional Artificial upper limb and hand prosthesiS, www.nebias-project.eu)
aims at providing an effective solution to improve the quality of life of people
who suffered a hand amputation by developing a novel generation of bionic hand
prostheses.

2 Architecture

The final demonstrator of the NEBIAS project will be composed of the following
modules (see Figure 1):

• implantable electrodes able to selectively interface the peripheral nervous
system;

• embedded electronics for recording, processing, and stimulation wirelessly
connected with the electrodes;

• artificial upper limb and dexterous hand prostheses endowed with a neuro-
morphic tactile and kinaesthetic sensory system;

• decoding and encoding algorithms to develop the bi-directional link between
the nervous system and the artificial device.

Fig. 1. Conceptual scheme of the NEBIAS neurocontrolled prosthesis.

The development of the neuro-controlled upper limb prosthesis will be
achieved by combining microtechnology and material science. It will allow, on
one side, recording of the motor-related signals governing the actions of the
amputated hand/arm for the motion control of a mechanical prosthesis, and
on the other providing sensory feedback from tactile and kinaesthetic sensors
through neuromorphic stimulation of the adequate afferent pathway within the
residual limb. Moreover, outcomes of this kind of research activity will allow the
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achievement of increased neuroscientific, clinical and technological knowledge,
guidelines for the development of the other bidirectional interfaces and neural
prostheses, as well as roadmaps for future development of hybrid bionic systems.

In the next sections, some of the highlights of the NEBIAS project at the
stage of its development are presented.

2.1 Implantable Components

Peripheral Neural Interfaces. A novel single sided intrafascicular electrode
(NEBIAS1, see Figure 2A) was designed and manufactured during the first year
of the project [8]. The design of the NEBIAS1 electrode is inspired by the design
of the TIME electrode [13]. All conductive paths and electrodes are fabricated
of Platinum/Iridium alloy (Pt/Ir) whereas the substrate is Parylene C.

Fig. 2. A: schematic view of a NEBIAS1 electrode; B: a close view of a NEBIAS1
electrode transversally implanted into three fascicles (peroneal, tibial and sural) of the
rat sciatic nerve; C: scheme of the main components of the biomimetic fingertip.

While the single conductive paths have a comparable width of 15 µm the pitch
between them is about 50 µm. The electrode has a total of 5 contacts. One is a 1
mm*0.1mmground contact that is placed outside of the nerve, the other four are 80
m in diameter with a spacing of 200 µm. Total horizontal length of the electrode is
22 mm which allows for interconnection via microflexing as well as sewing the elec-
trode to the nerve. For sewing of the electrode three metal strengthened openings
with a diameter of 250 µm are placed alongside the electrode.

NEBIAS1 electrodes were implanted in the sciatic nerve of rats (see Figure
2B) and tested by means of functional, electrophysiological, and histological tests
during 3 months follow-up [5]. In parallel, experiments with rhesus macaques are
currently performed in order to develop implantation techniques of neural inter-
faces in the upper limb, to train animals in grasping and perceptual discrimination
tasks [11], and to test decoding and encoding algorithms (see next subsections).
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Embedded Electronics. An embedded electronic device which will be the
bridge between the peripheral neural interface and the artificial limb has been
designed an it is currently under a phase of testing [3]. The embedded electronics
incorporates (i) a low-noise, low-power front-end for accurate recording of the
neural signals captured by the electrodes and safe injection of feedback stimuli
and (ii) an embedded digital signal processing architecture able to implement
decoding algorithms in real-time and to control the front-end unit.

Some of the developed processing algorithms (see next subsection) have been
ported onto an off-the-shelf low-power hybrid multicore DSP, redefining them in
order to achieve high performance on the chosen platform. For the most com-
plex algorithm, a deep analysis has been carried out to estimate the final perfor-
mance in terms of both effectiveness (classification results) and efficiency (latency
model, power analysis). The development of a custom architecture implemented
on Field Programmable Gate Arrays (FPGA), as a proof of concept of a prospec-
tive VLSI implementation, has been also pursued [4].

2.2 Artificial Hand

A novel biomechatronic prosthetic finger endowed with neuromorphic tactile sen-
sors was developed (see Figure 2C) [7]. The designed prosthetic finger integrates
the following features of the human finger, with a multi-level biomimetism: (i)
the kinematics of the finger and the shape of the fingertip, which can be rep-
resented as the aspects reproducing the bone and the muscles of the biological
finger; (ii) the deformation properties of the finger skin, reproduced with custom
artificial materials.

2.3 Algorithms

Decoding Algorithms. Two approaches have been investigated for the extrac-
tion of information(e.g., amputee’s intentions) from neural signals recorded from
residual peripheral nerves [6]. The first approach could be used in case of neural
signals recorded with multi-contact cuff electrode or in case of cumulative signals
recorded with intraneural electrodes. It is consists of (i) pre-processing to elimi-
nate the EMG low band and amplifiers high band noise, feature extraction, and
classification (by means of Support Vector Machines) [1]. The second approach
could be used in case of neural signals with spikes recorded with intraneural
electrodes. It consists of pre-processing and wavelet denoising, spike detection
and sorting, feature extraction, and classification [10].

Neuromorphic Coding of Sensory Information. The objective of the neu-
romorphic coding of sensory information is the deliver of neuromorphic inputs
into the nervous system to transmit information about the tactile stimuli [12].
This is needed to provide sensory feedback during movement of the hand neu-
roprosthesis. To this aim the following research actions are currently pursued:
to improve the understanding of the encoding of tactile stimuli features in spike
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trains at the peripheral level, to develop a system able to create proper spik-
ing outputs mimicking the firing dynamics of primate mechanoreceptors, and to
make sure that discrimination abilities are robust with respect to variations of
the mechanical dynamics of tactile experience (i.e., change in contact force or
exploration velocity).

Preliminary experiments were carried out microstimulating the median nerve
of 6 healthy subjects via percutaneous needle electrodes. EEG was also recorded
in order to correlate the stimulation with electrophysiological measurements at
central nervous system level. Moreover, in order to deliver neuromorphic inputs
to the nervous system a preliminary but systematic evaluation of the neuromor-
phic sensor able to convert mechanical tactile stimulation into spiking patterns
reproducing those of human mechanoreceptors was carried out.

3 Experimental Validation with Humans

The creation of a symbiotic relationship between an amputee (and his nervous
system) and an artificial hand has been recently investigated by members of the
NEBIAS project in a case-study [9]. The use of intrafascicular electrodes to link
the sensory information from the sensors embedded in the artificial hand with
the brain allowed a blindfolded and acoustically isolated amputee to feel the
stiffness and the shape of three different objects grasped with the prosthesis [9].

After two years of the project, the first demonstrator of the NEBIAS neuro-
controlled prosthesis (with all the elements portable, wearable or implanted)
will be tested in one or more transradial amputees enrolled for the study. The
patients will undergo a complete clinical and functional neuroimaging study
to verify the safety of the prosthetic system and its role in modifying cortical
reorganizations following limb amputation and lack of sensory feedback. The
feeling of naturalness and effectiveness of the bidirectional neuro-control of the
NEBIAS demonstrator will be assessed by means of SHAP and ”box and block”
tests [14]. Moreover, a measure of the afferent neural feedback ability to promote
the embodiment of the prosthesis in upper limb amputees will be evaluated
using the rubber hand illusion test. A clinical follow-up evaluation will be also
performed 2 months after the electrode removal.

4 Conclusions

NEBIAS is a highly innovative, interdisciplinary project, combining forefront
research from information technologies, smart biosensors, control theory, neuro-
science, material sciences, embedded electronics, and robotics to solve a major
social problem: the development of a prosthetic hand displaying all the basic
features of a real human hand. The successful realisation of this highly vision-
ary project requires crossing the boundaries of distinct scientific fields, merging
forefront expertise of the consortium to improve quality of life of amputees.

This short overview has presented some of the highlights of the NEBIAS
project at the stage of its development.
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Abstract. With the emergence of interest in the human-computer symbiosis al-
so rises the need to find input systems adequate to this paradigm. The present 
research aims to compare three different input systems during the interaction 
with virtual objects in a wide, immersive mixed-reality environment. The com-
mon interaction via keyboard and mouse is compared with two types of interac-
tion mediated by gestural inputs. Specifically, we compared the performance 
and the user experience of participants interacting with a virtual 3D model of a 
human brain either with keyboard/mouse, or with two different motion sensing 
devices to input commands: the Microsoft Kinect360 and the KinectOne. The 
results seem to suggest that, although participants showed a better efficiency us-
ing the keyboard/mouse, in a high immersive environment, a input system that 
exploits gestures and body movements without requiring the use of any physical 
artifact, seems to be the preferred one to use. 

Keywords: Symbiotic system · Mixed-reality · Natural interface 

1 Introduction 

In the last few years, in the Human-Computer Interaction (HCI) field, a concept has 
gained attention, that is, the human-computer symbiosis.  
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The idea of human-computer symbiosis is not novel, indeed it dates back to 1960 
when Licklider proposed the analogy to the symbiosis occurring in the biological 
world [1]. Recently, Jacucci and collaborators [2] proposed a detailed definition based 
on the recent developments in computing science. According to these authors a sym-
biotic interaction “can be achieved by combining computation, sensing technology, 
and interaction design to achieve deep perception, awareness, and understanding be-
tween humans and computers.” [2]. Other authors [3] recently proposed a taxonomy 
of human-computer interaction for the purpose of point out a range of interaction uses 
for human-computer symbiosis. 

Over the last few years several efforts to explore a symbiotic relationship between 
human and computer have been made in different domains. In the field of human-
robot interaction efforts focused to improve the compliance between wearable robots 
and user [4] and to improve the efficiency when swarms of partially autonomous and 
biologically inspired robots collaborate with human [5]. In the field of mobile inter-
net, aiming at supporting a symbiotic relationship between media content and physi-
cal places, we can find examples like OUTMedia [6], a location-based music discover 
application. In the field of information retrieval in complex scenarios, a recent study 
[7] investigated the possibility of using the pupil behavior of users as implicit input to 
improve the interaction between information retrieval systems and users. In another 
study [8], authors proposed a new type of interactive image retrieval system more 
heavily based on user’s research intent. On the technical side, recently a research 
group proposed [9] a novel tactile glove concept that delivers tactile feedback to the 
user while he moves in the space of interaction. Other works proposed novel design 
solutions for future searching interfaces [10] and information retrieval systems [11]. 
Recent research has tackled the topic concerning the use of physiological measures to 
infer user’s cognitive and affective state [12] that the system could take into account 
to adapt in real time the interaction. Interestingly, other studies [13,14,15,16] investi-
gated the possibility to introduce subliminal stimuli in interfaces to guide the user 
when he is struggling with the interaction without requiring him cognitive efforts. 
Finally, other authors [17] have engaged in developing questionnaires to measure the 
user experience (UX) related to the use of wearable devices for symbiotic systems. 

A relevant aspect to the human-computer symbiosis is the reciprocity and collabor-
ative use of resources for both computers and humans [2]. To this end, and aiming to 
create a reciprocal, deeper understanding between humans and computers, the system 
needs to be informed about intentions and internal states of humans by means of a 
confluence of both explicit (e.g. symbolic communication like written words, body 
gesture) and implicit (e.g. psychophysiology) signals [2]. On the one hand, the com-
puter can understand the human intentions by constantly monitoring both explicit 
behaviors and implicit signals that might be recognized with sensing technologies. On 
the other hand, the computer provides feedback to the human by means of both ordi-
nary (e.g. symbolic, explicit communication) and implicit (e.g. subliminal) outputs 
[13,14,15,16] establishing a wider communication loop. 

The confluence of inputs is a relevant question for the human-computer symbiosis. 
In this regard, a recent study [18] showed that, interacting with a large dataset, partic-
ipants exhibited better learning performances when they used a wide and immersive 
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environment which exploits body movements and natural gestures than when they 
interacted with the same dataset using a normal desktop PC. These findings suggested 
that the embodied interaction is advantageous for learning when interacting with large 
datasets. 

Given this, the present research aims to take a step forward by comparing the per-
formance and the UX related to three types of input system during the interaction with 
virtual objects in an immersive environment. The common interaction via keyboard 
and mouse is compared with two types of embodied interaction in a mixed-reality 
environment created with the eXperience Induction Machine (XIM) [19]. The XIM is 
an immersive space consisting of effectors (projectors and loudspeakers) and sensors 
(see the section “Setting and equipment” for a detailed description) conceived with 
the aim of studying the human-artifact interaction in condition of good ecological 
validity [19] and inspired by the ADA project, a large-scale public exhibit for the 
Swiss Expo.02 national exhibition [20]. 

As for the embodied interaction, two motion-sensing input devices were selected, 
the widely used Microsoft Kinect360, and the next version released by Microsoft, the 
KinectOne. The interaction and visualization in XIM is controlled by the XIM-engine 
[21], which is in charge on interpreting the input of sensors and change the visualiza-
tion accordingly. 

The study evaluates the interface of the BrainX3 [22,23] application, a tool de-
signed for exploration of neuroscience datasets that has been develop using the XIM 
framework. Therefore, the present study compares the performance and the UX inside 
the XIM using the BrainX3 interface, when participants utilized for interacting respec-
tively the keyboard and the mouse, or the Kinect360 or the KinectOne as input sys-
tems. Noteworthy, we conceived the interaction by means of the Kinect360 requiring 
the use of a mouse to be kept in the right hand while the interaction by means of the 
KinectOne did not require it. 

Participants were asked to perform ten tasks within the XIM using one input device 
and then to repeat the task series with each input device. As for the performance, we 
measured it in terms of time required to complete each task, and we hypothesized that 
participants would perform better with the keyboard/mouse as input system due to the 
fact that they are very accustomed to use them. As for the UX, we measured it by 
means of two questionnaires and we hypothesized that participants would express 
better evaluations of the interaction via the Kinects than with the keyboard/mouse. 
This hypothesis roots in the idea that gestural input systems, because they are natural 
systems, reduce the abstraction of input actions and also the users’ effort needed to 
input commands and express preferences. In fact, gestural inputs (e.g. take a step 
forward to zoom-in on a visual content) are designed to easily suggest their meaning, 
that is the action they allow to perform on the content. Therefore, the user is not asked 
to learn an abstract association between a particular action (e.g. pressing a specific 
keyboard key) and a particular consequent response by the system. Finally, we hy-
pothesized that the KinectOne would be preferred over the Kinect360. This latter 
hypothesis is based on the fact that, in our paradigm the Kinect360 requires the use of 
a mouse, while the KinectOne does not. Therefore, we speculated that participants 
would experience the use of the KinectOne as more natural and simple. 
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Fig. 1. The eXperience Induction Machine (XIM). 

2 Method 

2.1 Participants and Design 

Twelve undergraduate/graduate students of the University of Padua were recruited for 
this study (9 males and 3 females; mean age = 23.91; SD = 2.43; range 20-28). All 
participants had normal or corrected-to-normal vision and gave their informed con-
sent. Participants were asked to perform a series of tasks within the XIM. The input 
system was varied in a within-participant design, namely, all the participants used all 
three input systems. The order of the input systems was counterbalanced across par-
ticipants.  

2.2 Setting and Equipment  

During the experiment, the participant was the only person that remained within the 
XIM while the researchers monitored the experimental session through four video-
cameras that were mounted inside the XIM (Figure 1). The experimenters instructed 
the participant through pre-recorded vocal commands. 

In one condition the participant could interact with the system via wireless key-
board and mouse seated in a chair and with a table, while in the other two conditions 
they interacted with the system respectively via a Kinect360 plus a wireless mouse, 
and via a KinectOne standing in front of the screen.  

When using the keyboard/mouse, participants could control the cursor on the 
screen by means of the mouse. Moreover, users had to press the left button of the 
mouse in order to select a cerebral area or a button of the interface (the software will 
be presented in the next section).  
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When using the two Kinects, participants could control the cursor on the screen by 
moving the right hand with the arm stretched. The only difference between the two 
Kinects concerned the way in which the selection command was implemented. In 
fact, with the Kinect360 participants had to press the left button of the mouse they 
kept in their right hand, instead with the KinectOne they simply had to close and then 
open their right hand.  

Another relevant difference in the way participants could interact with the interface 
concerned the zooming actions. When using the keyboard/mouse, participants could 
perform the zoom in and the zoom out by pressing two keys, instead when using the 
two Kinects they had to step forward or backward respectively. 

Two PCs were utilized in the experiment. Three projectors, which allowed the in-
terface to be displayed on the interior panels of the XIM, were connected to a display 
machine. The Kinect360 and the KinectOne were connected to a sensor machine via 
USB cables. Participants were video-recorded during the experiment (i.e. four video-
cameras recorded the participants while they were interacting with the interface). 

2.3 The Interface 

The interface used was designed for interacting with neuroscience data displayed by 
the BrainX3 application, which consisted of three different parts, that is, a frontal 
panel, a right one and a left one. Figure 2 represents the panel in which the connec-
tome, that is the 3D model of the human brain, was shown. In the lower part of this 
screen, five buttons were presented. The reset button was always visible in the bottom 
left corner. By clicking on this button the model of the brain went back to the starting 
position. Whenever the cursor was placed over any area of the brain three buttons 
appeared. The remove button was used to cancel an action performed on a cerebral 
area; the bookmark button was used to highlight an area; the inject activity button was 
used to visualize the neural activity of an area. Finally, the complexity button was 
always shown in the lower right. By clicking on this button it was possible to increase 
or decrease the complexity level of the brain representation. See [23] for a complete 
description of the system interface.  
 

 

Fig. 2. The interface. 
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The left screen offered multiple representations of the area currently examined 
along the three different planes of view (sagittal, coronary and transverse), while the 
right screen represented the information about the area of the brain on which the cur-
sor was located. However, the task devised for this study did not require the partici-
pants to pay attention to the lateral screens. 

2.4 Tasks   

Participants were asked to perform 10 tasks within BrainX3 inside the XIM: (1) Mul-
tiple pointing. Participants had to place the cursor above three areas highlighted by 
the experimenter with a laser pointer in a predefined, fixed sequence. (2) Using the 
bookmark button. Participants had to select a specific cerebral area, grab the corres-
ponding circle, drag it on top of the Bookmark button and then release it. (3) Perform-
ing a horizontal leftward rotation. Participants had to horizontally rotate the brain 
until a cerebral area (highlighted by the experimenter), which was initially located 
laterally to the right, came to be positioned in the central area of the frontal panel. (4) 
Performing a horizontal rightward rotation. Participants had to horizontally rotate the 
brain in order to place a cerebral area (highlighted by the experimenter) which was 
initially located laterally to the left, in the central area of the frontal panel. (5) Per-
forming a vertical downward rotation. Participants had to vertically rotate the brain in 
order to place a cerebral area (highlighted by the experimenter) which was initially 
located in a rostral position within the brain, in the central area of the frontal panel. 
(6) Performing a vertical upward rotation. Participants had to vertically rotate the 
brain in order to place a cerebral area (highlighted by the experimenter) located in an 
inferior position within the brain, in the central area of the frontal panel. (7) Zooming 
in. Participants had to increase the size of the brain till it reached its maximum. (8) 
Zooming out. Participants had to reduce the size of the brain till it reached its mini-
mum. (9) Using the inject activity button. Participants had to activate a cerebral area 
by grabbing the corresponding circle and dropping it on the Inject Activity button. 
(10) Using the remove button. Participants had to remove a cerebral area by grabbing 
the corresponding circle and dropping it on the Remove button. 

The tasks differed in complexity based on the number of movements that needed to 
be performed to complete them.  

2.5 Measures 

Task-Related Experience. A six-item questionnaire was administered at the end of 
each task. These items aimed at measuring the UX for each combination of input 
device and task. Participants were asked to express their agreement on a 5-point Li-
kert scale with regard to the following statements: (1) The execution of the commands 
is easy; (2) The execution of the commands is pleasant; (3) The meaning of the com-
mand is intuitively associated with its function; (4) The system responds promptly to 
the command; (5) The execution of the command is complicated; (6) The cursor/brain 
on the display moves smoothly. 
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Device-Related Experience. Seven questions were asked to the participants at the 
end of the experiment. These questions evaluated the general UX by comparing the 
three input systems: (1) Which system is easier to use? (2) Which system is more 
pleasant to use? (3) Which movement was the most difficult to perform with  
the Kinect360? (4) Which movement was the most difficult to perform with the Ki-
nectOne? (5) Which movement was the most difficult to perform with the Keyboard? 
(6) Which system seemed smoother? (7) What would you change in general? 

Task Execution Time. The time to complete each task was measured and considered 
as a measure of performance. 

Video Recording. The whole experimental session was recorded in order to perform 
video analysis of the participants while executing the tasks with each input system. 

2.6 Procedure 

At the beginning of the experiment the participants filled in the informed consent that 
contained a release note for the video-recorded material. Then, they entered the XIM. 
The researchers monitored the experiment from outside the XIM.  

The participants were informed that they would have to perform various tasks 
which required them to interact with a 3D model of the human brain inside the XIM 
by using three different input systems. They were instructed to reach the starting posi-
tion that could be either a desktop at the center of the XIM (in the condition with the 
wireless keyboard and mouse) or a white line on the floor at the center of the  
XIM (in the conditions with Kinect360 and KinectOne). The order of conditions  
(i.e., the order of use of the input systems) was counterbalanced. No time limit  
was set to complete the task. At the end of each task, the participants could take a 
short break. 

For each task, pre-recorded instructions were presented to the participants, and, 
when needed, one of the experimenter was in charge of showing the area on which the 
task had to be performed, by using a laser pointer. Participants could ask to repeat the 
task instructions. The instructions pertaining to the same task could be slightly differ-
ent in accordance to the input system.  

After all tasks were completed with one device, the participants started anew  
with the subsequent input device. Therefore the same task series was repeated three 
times. 

At the end of each task, participants were presented with the 6-item task-related 
questionnaire. At the end of the whole experiment participants were presented with 
the device-related questionnaire which required them to compare the three conditions.  

The testing session lasted about one hour. 
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3 Results 

3.1 Task Execution Time  

As for the task execution time, in order to see if the input system utilized had an effect 
on the performance, a repeated-measures ANOVA with device (three levels) and task 
(ten levels) as within-participants factors was performed. The analysis revealed a 
main effect of the task, F(9,99) = 11.63, p < .001, η2

p = .51, indicating that, regardless 
of the device, the ten tasks differed in the time needed to accomplish them, showing 
that the task series included tasks of varying difficulty.   

Table 1. Marginal Means, Standard Errors and p-value of Time (in seconds) on Task, by Type 
of Sensor. * refers to the comparison between Keyboard/Mouse and Kinect360, ** between 
Keyboard/Mouse and KinectOne, and *** between Kinect360 and KinectOne. In the p-value 
column only statistically significant comparisons are reported. 

 
      Task 

 
        Keyboard/Mouse 

      (n=12) 

 
Kinect 360 
   (n=12) 

 
KinectOne 
   (n=12) 

 
p-value 

M    (SE) M    (SE) M    (SE) 

Multiple pointing 6.37 (0.31) 16.28 (1.21) 17.94 (3.12) * < .001 

** = .009 

Bookmark button 4.97 (0.20) 12.54 (1.74) 10.11 (0.67) * = .003 

** < .001 

Horizontal leftward 
rotation

9.74 (1.29) 11.67 (1.53) 11.37 (1.78) - 

Horizontal rightward 
rotation

7.91 (0.90) 12.10 (2.79) 11.23 (2.04) - 

Vertical downward 
rotation 

3.82 (0.37) 10.87 (1.20) 15.36 (2.79) * < .001 

** = .004 

Vertical upward 
rotation 

3.70 (0.39) 12.33 (1.04) 9.30 (1.35) * < .001 

** = .001 

Zoom-in 11.39 (0.17) 25.39 (2.56) 12.95 (0.43) * = .001 

** = .034 

*** = .001 

Zoom-out 10.69 (0.29) 15.21 (0.84) 27.12 (3.14) * = .002 

** = .001 

*** = .003 

Inject activity button 4.89 (0.16) 11.12 (0.84) 11.90 (2.79) * < .001 

Remove button 4.31 (0.11) 10.44 (1.02) 8.78 (0.68) * < .001 
** < .001 
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The analysis revealed also a main effect of the device, F(2,22) = 72.99, p < .001, 
η2

p = .869, indicating that, regardless of the specific task, the mean time needed by the 
participants in order to accomplish a task differed with the three input devices. The 
pairwise comparisons showed that when using the keyboard/mouse (M = 6.78, SD = 
1.03) participants completed their tasks more quickly than with both the Kinect360 
(M = 13.80, SD = 1.96; p < .001, d = 4.48) and the KinectOne (M = 13.60, SD = 2.88; 
p < .001, d = 3.15). No significant differences emerged between the Kinect360 and 
the KinectOne. 

In addition, a two-way interaction between device and task emerged, F(18,198) = 
5.94, p < .001, η2

p = .35, indicating that the three devices performed differently with 
regard to the execution time depending on the task. We therefore compared perfor-
mance task by task, finding that where there was a difference it was in favor of the 
keyboard/mouse condition. Between the two Kinect conditions there was generally no 
difference except in the zoom-in task where the KinectOne was faster than the Ki-
nect360, and in the zoom-out task where the opposite result was found. The pairwise 
comparisons are summarized in Table 1. 

3.2 Video Analysis 

A video analysis was performed on the recorded experimental sessions to identify 
action breakdowns, namely observable interruptions in the course of an action not due 
to system failures (e.g. rotation interruptions). Three circumstances in which break-
downs occurred during the task execution were observed: (1) rotation interruptions: 
the gesture with the arm was not executed correctly; (2) zoom-in interruptions: the 
participant moved outside of the field within which the Kinect can detect the body; in 
these situations the interface stopped working until the participant came back inside 
the area tracked by the Kinect; (3) cursor accuracy: the participant was not able to 
maintain the cursor stable while performing an action. 

Table 2. N. of participants experiencing each type of breakdown per condition.  

 Keyboard/Mouse Kinect360 KinectOne 

Rotation interruptions 1 5 2 

Zoom-in interruption 0 4 0 

Cursor accuracy 1 8 1 

 
Table 2 shows that a higher number of participants experienced such issues when 

they utilized the Kinect360 as input system. Instead, when using the KinectOne and 
Keyboard/mouse, a lower number of breakdowns was observed. Thus, using the Ki-
nect360 participants had difficulties chiefly under the following circumstances: (a) 
involuntary movements interpreted by the system as commands; (b) difficulty in re-
cognizing the participant if outside of the tracking volume (too close or too far from 
the device); (c) difficulty in recognizing gestures if not performed properly. 
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3.3 Questionnaires 

Task-Related Experience. Negative items were recoded so that higher scores corres-
ponded to a positive evaluation. The Kronback’s alpha of the questionnaire in the 
three conditions was high (keyboard/mouse α = .97; Kinect360 α = .98; KinectOne α 
= .98), showing consistency between the items. In order to see if the input system 
utilized had an effect on the UX, a repeated-measures ANOVA was performed with 
the device (three levels), task (ten levels), and question (six levels) as within-
participants factors.  

Table 3. Marginal Means, Standard Errors and p-value of User experience scores by Task and 
Type of Sensor (data from Task-related questionnaire). * refers to the comparison between 
Keyboard/Mouse and Kinect360, ** between Keyboard/Mouse and KinectOne, and *** 
between Kinect360 and KinectOne. In the p-value column only statistically significant 
comparisons are reported. 

 
        

        Task 

 

Keyboard/Mouse 

(n=12) 

 

   Kinect 360 

     (n=12) 

  

  KinectOne 

     (n=12) 

p-value 

M    (SE)   M    (SE)    M    (SE) 

Multiple pointing 4.33 (0.18) 3.33 (0.18) 3.81 (0.27) * = .001 

Bookmark button 4.40 (0.15) 3.51 (0.19) 3.82 (0.25) * = .002 

Horizontal leftward 

rotation 

3.98 (0.24) 4.01 (0.20) 4.00 (0.20) - 

Horizontal rightward 

rotation 

4.01 (0.22) 4.08 (0.19) 4.10 (0.19) - 

Vertical downward 

rotation 

4.29 (0.16) 3.99 (0.21) 3.71 (0.26) ** = .030 

Vertical upward 

rotation 

4.36 (0.14) 3.93 (0.22) 4.00 (0.20) - 

Zoom-in 4.33 (0.13) 4.32 (0.17) 4.40 (0.16) - 

Zoom-out 4.24 (0.11) 4.35 (0.15) 4.22 (0.18) - 

Inject activity button 4.26 (0.19) 3.85 (0.23) 4.10 (0.22) - 

Remove button 4.36 (0.18) 3.79 (0.24) 4.22 (0.19) * = .034 

*** = .009 

 
A main effect of the device emerged, F(2,22) = 3.80, p = .04, η2

p = .257, but the 
pairwise comparisons did not show any significant differences between devices. Also 
a main effect of the task emerged, F(3.663, 40.291) = 4.132, p = .008, η2

p = .27, indi-
cating that, regardless of the device or the specific question, the ten tasks differed in 
their overall evaluation.   
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A two-way interaction between device and task emerged, F(18,198) = 4.687, p < 
.001, η2

p = .30, indicating that the three devices differed in the overall evaluation of 
the UX depending on the task. However, only in four tasks out of ten there was a 
difference in the pairwise comparisons, and it was in favor of the keyboard/mouse 
condition at the expenses of the Kinect360 condition. The pairwise comparisons are 
summarized in Table 3. 

The analysis also revealed a two-way interaction between the device and the ques-
tionnaire items, F(4.069,44.758) = 6.88, p < .001, η2

p = .385, indicating that, regard-
less of the task, participants evaluated the UX differently when using different devices 
depending of the specific question. The pairwise comparisons are summarized in 
Table 4. 

Table 4. Marginal Means and Standard Errors of User Experience scores, by question and Type 
of Sensor (data from Task-related questionnaire). * refers to the comparison between 
Keyboard/Mouse and Kinect360, ** between Keyboard/Mouse and KinectOne, and *** 
between Kinect360 and KinectOne. In the p-value column only statistically significant 
comparisons are reported. 

            Item Keyboard/Mouse 

 (n=12) 

Kinect 360 

(n=12) 

KinectOne 

 (n=12) 

p-value 

M    (SE)       M    (SE)       M    (SE) 

The execution of the com-

mands is easy 

4.70 (0.12) 4.13 (0.16) 4.30 (0.16) * = .017 

 

The execution of the com-

mands is pleasant 

3.71 (0.17) 3.83 (0.27) 4.18 (0.24) - 

The meaning of the com-

mand is intuitively asso-

ciated with its function 

4.12 (0.15) 4.22 (0.18) 4.31 (0.21) - 

The system responds 

promptly to the command 

4.27 (0.19) 3.72 (0.20) 3.70 (0.20) * = .005 

** = .017 

 

The execution of the com-

mand is complicated 

1.34 (0.14) 1.95 (0.17) 1.97 (0.19) * = .014 

** = .014 

 

The cursor/brain on the 

display moves smoothly 

4.09 (0.28) 3.52 (0.21) 3.71 (0.25) * = .025 

 

Device-Related Experience. In answering the question “which system is easier to 
use” the majority of the participants (83%) evaluated the keyboard/mouse as the ea-
siest. A small number of participants (17%) evaluated the KinectOne as the easiest 
system to use. None of the participant considered the Kinect360. 

 



122 P. Negri et al. 

Noteworthy, in answering the question “which system is more pleasant to use” the 
majority of the participants (58,4%) evaluated the KinectOne as the more pleasant.  
A third of the participants (33,3%) evaluated the keyboard/mouse as the more plea-
sant. One (8.3%) of the participants considered the Kinect360 as the more pleasant. 

With regard to the questions “which movement was the most difficult to perform 
with the Kinect360 (or the KinectOne or the Keyboard/mouse)” a lower number of 
issues have been observed in the keyboard/mouse condition. In fact for this condition 
9 participants out of 12 responded “none”, whereas for the Kinects conditions they 
indicated a variety of problems (e.g. selecting a node, horizontal rotation). Relevantly, 
for the Kinect360 5 participants out of 12 responded “cursor accuracy”. 

To the question “which system seemed smoother” all participants responded “Key-
board/mouse”. 

4 Conclusions 

The re-emergence of interest in the human-computer symbiosis calls for the adoption 
of new, more adequate input systems in order to better support their interaction.     

The present research aimed at comparing three types of input systems in an immer-
sive mixed-reality environment, namely, the keyboard and mouse and two input sys-
tems based on body movements and natural gestures (the Microsoft Kinect360 and 
the KinectOne).  

As for the interaction with gestural inputs, two motion-sensing input devices were 
selected, the widely used Microsoft Kinect360, and its subsequent version, the Kinec-
tOne.  

Therefore, in the present study both performance and UX were evaluated in a 
mixed-reality environment while engaging with a neuroscience tool called BrainX3, 
which required them to interact with a 3D model of the human brain by using the 
aforementioned devices. 

Regarding the performance (measured in terms of time needed to complete each 
task), participants were faster in completing the tasks when they utilized the keyboard 
and mouse compared to both the other devices. This is in line with the basic consider-
ation that participants are more familiar with the keyboard and mouse as a command 
input system. 

Regarding the UX, we hypothesized that participants would evaluate better the in-
teraction via the Kinects, and especially via the KinectOne, compared to the interac-
tion with the keyboard/mouse. As for the results, firstly, the six-item UX question-
naire did not show differences in UX scores between the three input systems in the 
majority of tasks. When a difference emerged it regarded the comparison between the 
keyboard and mouse and the Kinect360 and favored of the former. However, it is 
important to underline that, in general, participants did not express better evaluations 
when they used the keyboard/mouse compared with the KinectOne despite the fact 
that they were more accustomed to using the keyboard/mouse. Moreover, considering 
the final questionnaire, the majority of participants evaluated the KinectOne as the 
more pleasant input system. Thus, even if the time needed to accomplish the tasks 
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was greater when using the KinectOne, the participants nonetheless judged this device 
to be the more pleasant to use during the entire experiment. This result partially sup-
ports our hypothesis that participants would express better evaluations of the interac-
tion via the KinectOne. However, we should also consider the “novelty effect”, name-
ly the possibility that participants favored the KinectOne over the keyboard and 
mouse in part due to the fact that it was a novel, and thus more stimulating and engag-
ing way to interact. 

At the same time, the video analysis showed that the number of people that expe-
rienced difficulties during the tasks execution was higher in the Kinect360 condition, 
while the number of participants that experienced difficulties when using both the 
keyboard/mouse and the KinectOne was almost equal. This could in part explain the 
worst judgment in term of preference received by the Kinect360. 

The results of the present study seem to suggest that, although participants showed 
a better efficiency when using the keyboard/mouse, in a high immersive environment 
as the XIM, an input system exploiting gestures and body movements and that does 
not require the use of any physical artifact (i.e. the mouse) seems to be the preferred 
one. Although this is what emerges from the final questionnaire, we cannot complete-
ly exclude that the preference for the KinecOne was due, at least in part, to its novel-
ty.  

In conclusion, these findings, together with those of previous studies [18] which 
demonstrated that the embodied interaction is advantageous for learning when inte-
racting with large datasets, suggest that input systems exploiting body movements 
without requiring the use of physical artifacts (i.e. keyboard and mouse) could be the 
most appropriate in symbiotic systems with large immersive spaces.  

However, future research might consider the opportunity to make the participants 
accustomed to a system that involves body movements and gestures. An appropriate 
and longer training could be implemented in order to increase the level of expertise in 
utilizing these (rather new) input systems. In fact, the common interaction paradigm 
with technology risks to be the one that results in better performances not because it is 
the best way to interact per se, but only because people are more used to it. In the 
present study we did not put in place any training before measuring the performance 
and the UX in the experimental tasks. An adequate initial training can increase the 
familiarity of the participants with the new system and can thus reduce the likelihood 
that the traditional system produces the best performance only due to the foreseeable 
positive impact of a higher expertise level on the system evaluation. 
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Abstract. The classical interaction between human and a computer or a ma-
chine relies solely on explicit behaviour (input with keyboard, mouse, gestures 
etc.). In many situations and tasks, the access to implicit information about the 
user could enhance human-computer interaction (HCI). Recent research has 
shown a number of examples of how such hidden user states could be extracted 
from signals of peripheral physiology and of the brain. While these approaches 
are still premature and not readily available for real application, further explora-
tion seems worthwhile. Here, we present an approach towards monitoring the 
level of cognitive processing. A special experimental paradigm has been de-
signed to detect event-related potentials (ERPs) of brain activity related to cog-
nitive processes using tasks in different cognitive domains. Neural correlates 
indicating different levels of cognitive processing have been singled out and the 
classifiability was quantified using multivariate decoding methods. The results 
indicate the feasibility of monitoring the depth of cognitive processing for neu-
rotechnological applications in BCI and industrial scenarios. 

Keywords: Cognitive processing · Event-related potentials (ERPs) · Classification · 
Brain-Computer Interface (BCI) · Electroencephalography (EEG) 

1 Introduction 

The interaction of a human and a machine may be enhanced if the software adapts to 
the momentary state of the user. New perspectives for such an adaptation in a seam-
less manner are opened by the presumed possibility of estimating hidden user states 
(i.e., those which cannot be observed from outside) from physiological signals.  
The applicability ranges from human-computer interaction, like information seeking, 
to industrial workplaces (e.g. operator monitoring) [1]. An interface that is aware  
of which information is more significant for the user, can adapt efficiently according 
to the user’s needs. For example, an information seeking application could display 
meaningful keywords in appropriate positions, sort the information or assign differ-
ent weights to the results of a query. In this context, it would be helpful to develop 
methods that estimate the user’s level of the cognitive processing of presented infor-
mation. Our genuine interest is in the natural fluctuations of cognitive processing [4],  
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e.g., caused by distraction, mind wandering, and variations in vigilance. However, in 
this study, we decided to take the approach of inducing different levels of processing 
by task instructions in order to have a better control and also because we experience 
in earlier studies that the natural fluctuations are not so easy to observe in laboratory 
settings. The aim of this work (which extends previous work [2]) is to find specific 
feature markers of the depth of cognitive processing, exploitable in future user state 
adaptation. In order to achieve this, we developed a specific experimental design, 
inspired by the odd-ball paradigm involving shallow and deep levels of processing in 
three cognitive domains: memory, language and visual imagery that can appear in a 
HCI system. The depth of cognitive processing refers to the degree to which informa-
tion can be processed. A shallow process represents a short-term retention of informa-
tion, e.g. color appearance and a deep process requires a more elaborated process, e.g. 
semantic correlations [3]. Discriminative neurophysiological markers are extracted 
using measures of separability applied to ERPs waveforms and further quantified by 
classification methods based on multivariate data analysis. 

2 Methods 

2.1 Experimental Setup 

The experimental design consists in a sequence of stimuli presented on a screen, with 
2500 ms stimulus onset asynchrony, using the following structure: fixation cross 500 
ms, stimulus duration 1250 ms and 750 ms of blank screen. Subjects were requested 
to stay seated, relaxed, and try to focus in the center of the screen. Each stimulus con-
sisted of a pair of images, having same color (either red, green, blue, or magenta) and 
same category (either animals, fruits, or mobility). The task varied according to 
whether the color, or color and category of the current stimulus matched the specified 
target color and category. The stimuli induced tasks involves one of the following 
three types of cognitive processing: non-targets (NT) requiring no further processing 
(neither color nor category match), shallow targets (ST) associated with a 'shallow 
level' of processing (only color matches: performing counting) and deep targets (DT) 
triggering a deep level of processing (color and category match: performing a cogni-
tive processing task as describe below and additional counting). The experiment con-
sists in 5 runs per condition, with 120 stimuli presented for each run, in a ratio of 
75:12.5:12.5 (NT:ST:DT).  

The memory condition requires the fulfillment of a task that resembles a complex 
form of a 1-back task (similar work in [5]): decide whether one of the objects of the 
current stimulus was also present in the last pair of target images (last pair with color 
and category matching with target). In the language condition, the subject had to 
compare the number of syllables of the objects presented, namely: is the number of 
syllables in the left object image, greater than the number of syllables of the right 
object? The visual imagery condition requires imagining the objects in reality and 
performing size comparisons, i.e.: is the object in the left, two times bigger than the 
one in the right? In all conditions, in case the specific question was fulfilled, 10 had to 
be added to the counting. The resulting number of the counting task was entered on a 
response keyboard at the end of the run. The brain activity was recorded using 64 
channels (Brain Products, Germany). 
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2.2 Data Analysis 

The EEG signals were off-line processed using MATLAB and EEGLAB software [6]. 
First, a low-pass filter at 50Hz and a high-pass filtered at 1 Hz frequency was applied. 
In order to clean the data of eye movements, muscle artifacts and loose electrodes, 
artifact removal was performed using Independent Component Analysis with MARA 
features [7]. The data was segmented in epochs with respect to the stimulus duration 
and baseline correction was performed using 100 ms of the pre-stimulus signal. The 
brain activity is investigated by event-related potentials (ERPs) analysis. In order to 
assess discriminative information between classes, we use as measure of separability, 
the: signed square of the point-biserial correlation coefficient, sgn r2, computed be-
tween classes of each condition. Pairwise classification was performed using a regula-
rized linear discriminant analysis with shrinkage [8] in 10 fold cross-validation. Spa-
tio-temporal features [8] were considered for classification, and performed on the first 
five time intervals selected with maximum discrimination between classes determined 
by signed r2. The search interval was considered same as the stimuli interval: 0 - 1250 
ms. The performance of the classification is assessed by the area under curve scores. 

3 Results 

3.1 Behavioral Data 

Participants' answers are assessed considering the absolute differences between their 
responses and the correct number divided by the correct number. Fig. 1 shows box 
plots for the data pooled over all runs and participants. The black asterisk indicates 
the corresponding mean values. 

We observe a slightly wider range for memory and visual imagery condition, 
meaning that answers were more far away from the correct number in comparison to 
the language case which is in line with the higher difficulty reported by the users in 
performing memory and visual imagery condition. 

 

Fig. 1. The box plots representing the relative deviation of the responses from the correct num-
ber for each condition (M – memory, L – language, VI – visual imagery) 
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3.2 Neurophysiological Data 

The data consists of brain signals recorded from 17 participants (14 right-handed) of 
which one set (right-handed) has been removed due to high noise probably caused by 
improper recording. The grand average difference between each pair of conditions is 
analyzed by the signed biserial correlation coefficient, sgn r2, and presented in Fig. 2. 
The top plots show the spatial distribution on scalp of the sgn r2 values at the intervals 
represented by the shaded areas in the underneath time plots. The highest discrimina-
tion between classes is observed in the centro-parietal area, corresponding to the ERP 
component, P300. The amplitude and duration of the P300 varies between conditions 
and reflects the different cognitive processing of the stimulus [9]. The most prominent 
difference can be observed as a positive deviation which starts around 300 ms and 
gradually decreases until about 1000 ms, depending on the condition. 

 

 

 

 

Fig. 2. Grand-average of the event-related potentials for all conditions:discrimination between 
ST – NT and DT – NT at channel CPz (thick line) and O1 (thin line), followed by DT – ST at 
channel CPz (thick) and C3 (thin), quantified by the signed biserial correlation coefficient 
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Exclusively for the language condition, we observe left lateralized scalp topogra-
phy, which is in line with the literature that reports that language areas are mostly on 
the left hemisphere [10]. Comparing the amplitude evolution of the deep level of 
processing to the shallow one, we can still observe activation in the late interval: a 
negative difference in language condition around 850ms and a positive difference, 
observable for example at 1500ms for memory and visual imagery processes. 

4 Classification 

The classification performance based on spatio-temporal features is presented in Fig. 
3 by the bar plots based on the area under the roc curve values. The grey antennas on 
top indicate the standard error of the mean, SEM. The classification performances 
were averaged over trials and subjects, giving a high overall performance above 
chance level. A performance over 0.75 was obtained between non-targets and shallow 
targets, with the highest values for the language condition. The same thread is visible 
between non-targets and deep targets, but with higher mean performance up to 0.85. 
The mean classification performance is under 0.7 between shallow and deep 
processing, which corresponds to the smaller difference of the sgn r2 in Fig. 2. 

 

Fig. 3. Pairwise classification performance between classes (NT – non-targets, ST – shallow 
targets, DT – deep targets) 

5 Discussion and Conclusion 

ERP analysis points out neural markers that differ with the levels of processing. In the 
sgn r2 scalp plots we observe higher ST-NT difference in the language case, which 
might be explained by a general lower level of workload in this task (memory and 
visual imagery were reported to be more complex by participants). The classification 
results demonstrate that the levels of cognitive processing can be distinguished by 
multivariate data analysis applied to ERPs on a single-trial basis, up to 0.85 perfor-
mance. In this first approach we used a binary classification on the three cognitive 
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levels. Future developments could exploit continuous measures like regression analy-
sis. We will also consider extending the classification interval to 2000 m, since the 
sgn r2 plots show important discriminative information for the deep process also in the 
late timing which is due the fact that a deeper cognitive processing requires more time 
to be fulfilled, longer than the stimulus presentation.  

In conclusion we show that the levels of cognitive processing can be well differen-
tiated by analyzing the neurophysiological features. If the BCI-system is able to infer 
the cognitive user state, it could use this information to adapt the computer interface 
accordingly. In this regard, the concept of monitoring the level of cognitive 
processing can complement human capabilities with a non-invasive BCI system like 
for human-computer interaction applications. 
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Abstract. Two novel approaches to a direct brain–robot interface using
tactile brain–computer interface (BCI) technologies are presented in the
paper. We propose to utilize two previously developed by our team stim-
ulus driven BCI paradigms, which are based on tactile pin pressure and
full body vibrotactile modalities. The user intentions are decoded from
the brainwaves in real time and translated to a symbiotic humanoid robot
NAO navigation. A communication protocol between the BCI output and
the robot is realized in a symbiotic brain–robot communication scenario
using an user datagram protocol (UDP). Results obtained from healthy
users reproducing simple brain–robot control tasks support the research
hypothesis of the possibility to interact with robotic devices using sym-
biotic BCI technologies.

Keywords: Brain–computer interfaces · Brain–robot interfaces · Sym-
biotic brain–robot interaction

1 Introduction

A brain-computer interface (BCI) is a technology that decodes neurophysiologi-
cal signals of a user to allow a direct thought–based communication with others
or a control of external devices (e.g. a direct brain–robot interface) without any
body muscle activities [13]. The majority of BCI applications are based on a
visual [1] or auditory [2,10] modalities. However, the tactile BCI [8] seems to
offer the better communication options in comparison with visual and auditory
modalities in case of locked?-in?-syndrome (LIS) patients [5,8]. The two BCI–
based direct brain–robot interfaces reviewed in this paper are employing brain
event related responses (ERPs) to tactile modality. Namely those are the devel-
oped by our team tactile pin pressure (tpBCI) [12] and full body vibrotactile
(fbvBCI) [3] BCIs.
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We present the recently developed by our team tactile BCIs paradigms
applied for online control of a humanoid robot NAO in the brain–robot sym-
biotic configurations utilizing the UDP network protocol. Brainwave responses
in the all presented online BCIs, tested with two healthy users, are captured
with eight active EEG electrodes g.LADYbird connected to g.USBamp portable
amplifier from g.tec medical instruments GmbH, Austria. The experiments are
conducted in oddball style paradigm eliciting the P300 responses, classified next
with stepwise linear discriminant analysis (SWLDA) method [4], and not exceed-
ing four steps averaging procedures in online experiments. The users first have
to learn command mappings associated hand six pin positions, in tpBCI case, or
larger body areas for fbvBCI. The tpBCI and fbvBCI experiments are conducted
in six command robot control set up (go straight, back, left, right, sit down, and
say goodbye).

The paper from now on is organized as follows. In the following section we
describe materials and methods used in the study. Next the obtained results are
presented. Results discussion and conclusions summarize the paper.

2 Materials and Methods

The experiments reported in this paper were performed in the Life Science Center
of TARA, University of Tsukuba, Japan. All the details of the two reviewed
experimental procedures and the research targets of the BCI–based brain–robot
control paradigms were explained in detail to the participating users, who agreed
voluntarily to participated in the study. The EEG experiments were conducted in
accordance with The World Medical Association Declaration of Helsinki - Ethical
Principles for Medical Research Involving Human Subjects. The experimental
procedures were approved and designed in agreement with the ethical committee
guidelines of the Faculty of Engineering, Information and Systems at University
of Tsukuba, Tsukuba, Japan (experimental permission no. 2013R7).

2.1 Brain–robot Control with Tactile Pin–pressure BCI

In this first reviewed project the tactile stimuli were generated via the tactile pin–
pressure generator composed of nine solenoids arranged in the 3× 3 matrix [12].
There were six linear patterns of tactile pin–pressure stimuli delivered in ran-
dom order to the user fingers. Three of them were horizontal lines ordered from
the top to bottom of user?s fingers respectively. The remaining patterns were
the vertical lines in left to right positions order. The solenoids generated pin–
pressures 100 ms long each time. The users performed first short psychophysical
experiments with visual command feedback in order to familiarize themselves
with robot command mappings. The commands were sent to the robot using the
UDP network protocol with a wireless connection. The successfully classified
P300 responses to stimuli delivered to user’s hand (intended robot commands)
were delivered to the robot for an execution of pre–programmed movements.
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In the training BCI experiments, first conducted with digits one to six spel-
lings (users had to reproduce command sequences), EEG signals were captured
with from eight active wet EEG electrodes. Those were attached to the head
locations Cz, Cpz, P3, P4, C3, C4, CP5, and CP6. A reference electrode was
attached to a left earlobe and a ground electrode on the forehead at FPz posi-
tion respectively. The set up reproduced our previously published study [11].
The users put on polyethylene gloves to limit any electric interference possi-
bly leaking from the tactile stimulators. The users were also requested to limit
their eye–blinks and body movements to avoid electromagnetic and electromyo-
graphy (EMG) interferences. The EEG signals were recorded and preprocessed
by an in–house enhanced BCI2000–based application [9], using a stepwise lin-
ear discriminant analysis (SWLDA) classifier [4] with features drawn from ERP
intervals of 0 ∼ 800 ms. The trained SWLDA classifier parameters were next
applied for online BCI experiments using the BCI2000 environment. The EEG
capture sampling rate was set to 256 Hz, the high pass filter at 0.1 Hz, and the
low pass filter at 40 Hz. The ISI was 400 ms and each stimulus? duration was of
100 ms.

The NAO robot was next controlled using six pre–programmed commands
decoded and classified by the tpBCI. The commands were transmitted in form of
numbers one to six (representing the movement commands to be executed) via a
wireless network using UDP protocol. The tpBCI experimental setup is depicted
in Figure 1 and a demo video from the online direct brain–robot interfacing
experiment is available at [7].

2.2 Brain–robot Control with Full Body Vibrotactile BCI

The final reviewed research project reported in this paper was based on applica-
tion of vibrotactile generators applied to user shoulders, arms, backs and the both
legs in order to create a somatosensory response–based oddball BCI paradigm [8]
as described in detail in [3]. Active EEG electrodes were attached to the sixteen
locations Cz, Pz, P3, P4, C3, C4, CP5, CP6, P1, P2, POz, C1, C2, FC1, FC2
and FCz, as in 10/10 international system. A reference electrode was attached
to the left mastoid, and a ground electrode to the forehead at the FPz position.
The EEG signals were captured and classified by BCI2000 software [9] using
a stepwise linear discriminant analysis (SWLDA) classifier [4] applied to the
0 ∼ 800 ms ERP time range latencies. The EEG recording sampling rate was
set at 512 Hz, and the high and low pass filters were set at 0.1 Hz and 60 Hz,
respectively. The notch filter to remove power line interference was set for a
rejection band of 48 ∼ 52 Hz.

In each trial, the stimulus duration was set to 250 ms and the ISI to random
values in a range of 350 ∼ 370 ms in order to break rhythmic patterns of presen-
tation. Each online experiment comprised of 10 trials used for epochs averaging
in the classifier training sessions. In the online brain–robot control scenarios four
responses averaging set up was used for a more smooth interaction.

The vibrotactile spatial pattern stimuli (stimulated body locations used as
cues) were generated using the same MAX 6 program, and the trigger onsets
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Fig. 1. The brain–robot control example using the tactile pin–pressure BCI–based
NAO humanoid robot navigation in the brain–robot configuration. A demo video is
available online at [7].

were generated by BCI2000 EEG acquisition and ERP classification software [9].
During the training run the cues were given in form of vibrations of the target
location before each sequence. In testing phase the six robot control commands of
walking straight, back, left, right; siting down; and saying goodbye were trans-
mitted from fbvBCI to the NAO using also via wireless network using UDP
protocol.

The fbvBCI experimental setting is depicted in Figure 2. A video from the
online brain–robot interfacing experiment is available at [6].

3 Results

The two, described in the above sections, direct brain–robot interfacing tech-
niques utilizing tactile modality experiments resulted with successful online con-
trol outcomes as depicted in Figures 1 and 2. The videos documenting the pre-
sented results are available online at [6,7]. The online tpBCI accuracies in offline
training scenarios of the five users scored well above the chance level of 16%
and around 70% in six digits spelling test on average, which was an encouraging
outcome of the tested prototype. Based on the obtained accuracies we trained
the SWLDA classifier in cross–validation setting for the final brain–robot con-
trol evaluation. The users were able to control perfectly (100% accuracy scores)
the humanoid robot, as documented online [7], using six commands interfacing
set up. The six digit spelling fvbBCI–based pilot experiment classification accu-
racies resulted also above chance level of 16% of the three participating users
(67% on the average of the three participants). The above user results allowed
to train in cross–validation scenario the SWLDA classifiers for target responses
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Fig. 2. The brain–robot control using the body–tactile BCI–based NAO humanoid
navigation in the symbiotic brain–robot configuration. A demo video is available online
at [6].

classification in oddball settings for each user separately. The online direct brain–
robot interfacing using the fvbBCI experiments were performed as depicted in
Figure 2 (the documentary online video available at [6]). Also in this final BCI
case, the participating users were able to score with perfect accuracies of 100%
while controlling the humanoid NAO robot using six commands.

4 Conclusions

Two direct brain–robot interfacing scenarios have been discussed in this paper.
In order to realize the purpose, we aimed to test practical applications of two
previously developed by our team tactile BCIs. This paper reported a success-
ful implementation of the six commands–based direct and symbiotic brain–robot
BCIs in online control scenarios. We conducted experiments to verify the feasibil-
ity and user experience of the proposed two tactile BCI–based methods. Accord-
ing to the results obtained from the participating users, even if offline training
classification accuracies were not perfect (though clearly above the chance lev-
els), the users were able to improve to achieve the perfect (100% scores) during
the online robot control trials. Those final results shall contribute to the BCI–
training related brain plasticity, which will be a future target of our research.
For future research, we aim to validate the prototypes and further explore the
brain and BCI co–adaptivity with more users to additionally proof the results.
We will also aim at reduction of the brainwave acquisition and analysis time
windows for even better usability of the proposed direct brain–robot interfacing
paradigms.
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Abstract. Joint stiffness of the exoskeleton robot is one of the most
important factors to support bipedal walking. In this paper, we discuss
the robot joint stiffness tuning algorithm using the bio-mimetic learning
method called tacit learning. We experimentally showed that the pro-
posed controller can tune the joint stiffness of the exoskeleton robot by
tuning the integral gain in the controller. The walking experiment wear-
ing the exoskeleton robot suggest that the stiffness tuning is applicable
to control the walking speed.

Keywords: Exoskeleton robot · Walking support · Tacit learning

1 Introduction

In order to support humans behaviors by using exoskeleton robots, how to decode
the wearers’ motion intention is one of the most important factors. Our approach
is to synchronize the exoskeleton robot controller with the human control systems
based on the biological control principle.

We mimic the two features of biological controllers for the synchronization
between these two controllers. One of the features is the data analysis structure.
It is said that biological control systems can be modeled as bow-tie structure[1][2]
described in Fig. 1a. Bow-tie structure represents the essence of biological con-
trol systems where there are great diversity of inputs and outputs while a
smaller diversity of protocol is used to connect these diverse outputs and inputs.
The inputs here imply the sensor signals and the outputs imply the signals
to the body effectors like muscles. In the case of the patients who need pros-
thetic devices or exoskeleton robot supports, bow-tie structure is described in
Fig. 1b where some of the parts both in inputs and outputs are missing. Our idea
to synchronize the patient control systems and the exoskeleton robot controller
c© Springer International Publishing Switzerland 2015
B. Blankertz et al. (Eds.): Symbiotic 2015, LNCS 9359, pp. 138–144, 2015.
DOI: 10.1007/978-3-319-24917-9 15
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Fig. 1. a: Bow Tie Structure representing the biological control structure, b : State
when we lose parts of our bodies, c : Proposed idea of controller to adapt exoskeleton
robot motions to humans’ motions

is the placement of the robot controller at the missing points. The detail how
we place the robot controller is discussed in the next section.

Another important feature of biological control systems is the capability to
adapt their behaviors to the environment through body/environment interac-
tions. To synchronize the robot controllers with the human control systems,
the exoskeleton controller should have the same capability. The authors have
proposed the bio-mimetic learning architecture called tacit learning [3][4]. Tacit
learning can tune the roughly-defined robot behaviors to the sophisticated ones
that are adapted to the environment.

We apply these two biological features to control the lower limb exoskeleton
controllers for walking support. In this paper, we focus on the joint stiffness
tuning by tacit learning through human body-exoskeleton robot interactions. We
first discuss in Section 2 the features of bow-tie structure and how we can design
the walking support controllers based on the two biological features. The control
algorithm that tune the joint stiffness interacting with the wearer’s motions is
also discussed in Section 2. In Section 3, we show the preliminary experimental
results with healthy subjects. In Section 4, we conclude this paper.

2 Exoskeleton Controller with Bow-tie Structure

2.1 Features of Bow-tie Structure

Bow-tie structure is used to represent the feature of biological controllers where
there are great diversity of inputs and outputs while a smaller diversity of proto-
col is used to connect them. In bow-tie structure, the input signals are grounded
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Fig. 2. a:Block diagram of proposed controller b: Posture where the joint angle is
followed to the direction of gravity

on some symbols to reduce the diversity, and the output signals are created
from the symbols. When we lose a part of our bodies, we lose not only the sen-
sors and the muscles but also the processes of reducing and increasing the signal
diversities in bow-tie structure as described in Fig. 1b. To develop the robot con-
troller that can place at these missing parts of humans controller as described
in Fig. 1c, the controller must have the following two features:

1. The controller should communicate with human controller at the higher level
than the output from human controller such as EMG.

2. The controller should adapt to the both the human controller and the envi-
ronment.

The first feature is required to know the motion intention at the appropriate
level. In the previous study for the development of the forearm prosthesis[5],
for instance, we measured the shoulder and the elbow joint angles to know how
much the forearm prosthesis user want to rotate the wrist joint.

The second feature is required according to the biological feature where the
adaptation to the environment can be observed in the various level of the brains.
To synchronize to humans controller, the robot controller should be adapted to
the other parts of the brains and the environments.

2.2 Controller for Tuning Joint Stiffness

To support the walking by lower limb exoskeleton robot, we tune the joint stiff-
ness using the controller placed on the part of the bow-tie structure. In this
paper as the preliminary discussion for the walking support, we propose the
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tacit learning controller that can tune the joint stiffness as shown in Fig. 2a.
This controller can be described as follows:

τ = −kpθ − kdθ̇ − f (1)

f = kI

∫
τdt. (2)

Here, τ and θ imply the joint torque and the joint angle, respectively. kp, kd and
kI are the control gains.

In the previous study[6], we showed that this controller can create the posture
where the robot joint follow the direction of gravity as illustrated in Fig. 2b.
When we apply this controller for the exoskeleton joint, not only the gravity but
also the torque created by the wearer is worked to the joint. In this case, the
joint angle is controlled to follow the wear’s torque as shown in Fig. 2c even the
joint back-drivability is very low.

The important feature of this controller is that the rate to follow the external
torque is tuned by the gain of the integrator. When the gain becomes larger, the
joint more quickly follow the external torque, and vice versa. When the robot
joint follows the external torque quickly, we can think that the stiffness of the
joint get lower. In this paper, we experimentally show that the joint stiffness is
changed by tuning the gains of the proposed controller.

3 Experimental Results with Exoskeleton Robot

3.1 Exoskeleton Robot for Experiments

We use the exoskeleton robot H2 for the experiments as shown in Fig. 3a. H2
has 3 joints in each leg that can support the ankle, knee and hip joints in sagittal
plane. Please see Reference [7] for the detail mechanism and the control systems.
One important feature here is that the joint back-drivability is very low such that
almost 40 Nm external torque is needed to move the joint.

3.2 Results in Stiffness Tuning Experiments

First, we tested the joint stiffness turning by the proposed controller through
body/exoskeleton interactions. In this experiments, we focused on the right knee
joint motions. The movies of the experimental performances can be seen in [8].
kp = 20.0 and kd = 20.0 were used for the right knee control. Three different kIs,
0.1, 0.05 and 0.02, were used to change the stiffness. The experimental results
are shown in Fig. 3c-d and in the movies. In the case of the largest gain kI = 0.1
that implies the lowest joint stiffness, the subject moved his knee joint smoothly
with small EMG of the rectus femoris muscle. The maximum exoskeleton joint
torque was 1.0 Nm. The EMG results and the exoskeleton joint torque showed
that the joint stiffness got larger as the integral gain kI got smaller. From these
results, we can say that the controller proposed in Fig. 2b can tune the joint
stiffness through body/robot interactions.
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Fig. 3. a: Overview of Exoskeleton Robot H2, b: Overview of One joint stiffness tuning
experiment, c: EMG of rectus femoris muscle during experiments. When we used the
larger integral gain, EMG got smaller suggesting the joint stiffness got smaller. d: Knee
joint torque of H2 during the experiments. The results also showed the joint stiffness
was tuned by changing the integral gain.
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Fig. 4. Change of right knee joint torque depending of integral gain during walking
with H2

3.3 Walking with Low Stiffness

We set the same controller to the all joints of H2 and asked the subject to
walking wearing H2. Three different kIs, 0.1, 0.07 and 0.05, were used to change
the stiffness. In the case of kI=0.02 that was used in the previous one joint
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experiment, the stiffness was too high that the subject could not walk. The right
knee joint torques during walking were illustrated in Fig. 4. These results showed
that the proposed controller successfully tuned the joint stiffness by tuning the
integral gains as was the case with the one joint experiments. Another important
result from this experiment was the change of walking speed depending on the
joint stiffness. The subject walked 2.0 s for one step in the case kI=0.1 while the
subject walked 4.2 s for one step in the case of kI = 0.05. There results suggest
that the stiffness tuning would be used to tune the walking speed.

4 Conclusion

To support the motions by using exoskeleton robots, brains and the robot con-
troller should be well synchronized for the good support. In this paper, we
proposed the exoskeleton robot controller based on the two biological system
features. One feature is the data analysis mechanisms called bow-tie structure,
and the other is the behavior adaptation architecture called tacit learning. The
proposed controller can change the joint stiffness by tuning the integral gain.
We experimentally showed that the joint stiffness was changed when the wearer
created the external torque to the joint.

Obviously, the joint stiffness tuning is not enough to support the walking
of the patients. Our next step is how to use this controller to support patient
walking. As shown in the walking experiments, the walking speed was changed
by tuning the joint stiffness. If the controller can modify the stiffness as the
wearer want, the walking speed is adjusted as the wearer want even if the wearer
cannot move his leg by himself. Further discussions are needed to develop the
controller for the walking support as users want.
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Abstract. Human computer interaction (HCI) groups are more and
more often exploring the utility of new, lower cost electroencephalog-
raphy (EEG) interfaces for assessing user engagement and experience
as well as for directly controlling computers. While the potential ben-
efits of using EEG are considerable, we argue that research is easily
driven by what we term neurorealism. That is, data obtained with
psychophysiological devices have poor reliability and uncertain valid-
ity, making inferences on mental states difficult. This means that unless
sufficient care is taken to address the inherent shortcomings, the contri-
butions of psychophysiological human computer interaction are limited
to their novelty value rather than bringing scientific advance. Here, we
outline the nature and severity of the reliability and validity problems
and give practical suggestions for HCI researchers and reviewers on the
way forward, and which obstacles to avoid. We hope that this critical
perspective helps to promote good practice in the emerging field of psy-
chophysiology in HCI.

Keywords: HCI · EEG · Psychophysiology · Reliability · Validity ·
Näıve Neurorealism

1 Outline

In the following subsections, we will first briefly summarise the history of EEG
and describe the rise in use of psychophysiology in HCI. Following, we will dis-
cuss that the reduced costs of equipment as well as the increased popular appeal
of neuroscience are likely reasons behind the explosive growth of interest. How-
ever, we argue that what we term neurorealism can lead to unsubstantiated
optimism. In short, this concerns the idea that use of psychophysiological mea-
surements necessarily enables objective knowledge of the mind, and thereby must
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lead to a high degree of insight and user-control. We explain this and illustrate
the point and improve discussion by first outlining a hypothetical example of an
application scenarios: the BrainGuitar. The device is, to our knowledge, purely
fictional and merely serves here to illustrate some of the more serious caveats that
occur in the field. We explain how the known methodological aspects of reliability
and validity as pertaining to psychophysiological measurements undermine the
credibility of inference of mental states. In particular, the weak signal to noise
ratio of EEG is discussed, and how strongly this is affected by artifacts. Finally,
we provide guidelines for scientists who consider the utility of psychophysiolog-
ical measurements as well as reviewers who assess the contributions of others.

2 EEG in HCI

In 1929, Hans Berger [1] dramatically showed how EEG can enable us to non-
invasively measure human brain activity at a high temporal accuracy. Berger
was also the first to discover alpha waves, one of the most prominent features of
the EEG. Alpha waves are easily observed as a stereotypical oscillation in the
range of 8 Hz–12 Hz that can be observed over much of the scalp (for a history of
Berger’s work, see [2]). As they appear in the absence of prominent stimuli, they
are often used as an index of relaxation, or brain inactivity (however, observation
of alpha waves alone is not a sufficient condition to conclude that a reduction
of brain activity took place [3]. We will come back to the issue of performing
reverse inferences in Sec. 4.6).

Another important discovery in the field was the P300, a brain signal initially
observed in concomitance with the presentation of an unexpected stimulus. Dis-
covered in 1965 [4], it manifests itself as a large positive potential starting at
approximately 300 ms post stimulus. The P300 is currently believed to indi-
cate saliency (due to an interaction between attention and memory, under one
hypothesis [5]). Due to its characteristics (relatively high amplitude and relia-
bility), the P3 allowed researchers to develop the P3 speller, the first working
instance of a Brain-Computer Interface (BCI) [6]. This is particularly useful for
patients with serious disabilities, such as the locked-in syndrome, for whom a
BCI may be the most efficient way to communicate.

As computer technology increased in quality and availability, EEG became
more and more available across domains. The relative ease in which raw
brain-related signals can be obtained and analysed led to rapid developments.
Researchers and practitioners are now able to develop tools based on EEG and
other physiological measurements with common electronic devices. It is now, for
example, possible to implement a Brain-Controlled address book based on the
P3 speller concept even on mobile phones [7].

2.1 The Rise of Brain Informed Human Computer Interaction

In HCI, EEG is used for various purposes. Affective computing [8] and physiolog-
ical computing [9] are two intertwined branches of this field: in both, cognitive
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Fig. 1. Growing use of EEG in HCI. The graph displays the growth of published
papers in EEG, HCI and the combination thereof, showing greater growth of EEG
in HCI (EEG + HCI) than either of its constituent parts, as shown by the growing
proportion of EEG in HCI as a function of EEG papers (EEG + HCI %).

and emotional states are predicted or classified based on their physiology (in
affective computing, the emotional state is of particular interest). Both inves-
tigate how systems should adapt to detected changes in users’ own states. For
example, it has been attempted to measure task engagement by using EEG alpha
asymmetry, i.e. the difference in alpha power between the two hemispheres [10].
In this kind of research, two simultaneous assumptions are made: firstly, alpha
power correlates to reduced neural activity and, secondly, greater left than right
activity corresponds to positive emotions, and / or high motivation. Another
area worth of note is neurofeedback: this area investigates the possibility of
building systems that take advantage of “tight feedback loops”, so that users’
(or patients’, for medical applications) cognitive states in a predefined direc-
tion. For example, to remain in the domain of alpha oscillations, elderly patients
have been trained to increase their peak alpha (10 Hz–11 Hz) power, which was
found to be associated with increases in their processing speed and executive
function [11]. However, it remains a debated issue that claims regarding the suc-
cess of neurofeedback may be overblown for marketing purposes, and as many
of these systems are commercial, a conflict of interest could be present [12].

The interest of human computer interaction research in psychophysiologi-
cal data grew exponentially over the last few years. This can be easily seen in
Fig. 1, which maps the number of papers (as indexed by Google Scholar) per
year from 1988 (the first EEG brain computer interface [6]) to 2014. Of course,
scientific production in general continues to grow [13], but it is fair to say that
up until 1993, EEG was a fairly uncommon interest for HCI, with ca. 0.6% of
publications. However, it seems that the combination of HCI and EEG took off
in the subsequent years, roughly doubling in successively 1.5 (1994-1995: 24), 4
(1998-1999: 56), 3.5 (2001-2003: 138), 3 (2005-2007: 297), 3 (2009: 499) and 3
(2012: 1020) years. The same years to double from 1993 numbers for the related
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disciplines separately would be for 6, 4 and 6 years for HCI and 9 and 10 years
for EEG. In other words, the number of published studies using EEG in HCI
grows about twice as fast as HCI and three times faster than EEG in general.
Whereas use of EEG was extremely rare for HCI in 1993, (at 0.6%), it is now
merely uncommon (at 5.2%).

The degree that neuroscience has captured the imagination of the popular press
and interest of companies and academic institutions alike is thus understandable,
but should be treated with a healthy dose of scientific scepticism. We coin the
term neurorealism to describe the idea that “the brain cannot lie” and that
somehow, a subjective measure immediately becomes objective, accessible and
trustworthy because the brain is “directly” involved. The navity might stem
from the Cartesian assumption that because the brain “causes thought”, the
measurement of the brain necessarily brings one closer to “the truth”.

In HCI, this can for example lead to the idea that one simply plugs in a
brain signal and thereby improve an existing user-interface. To illustrate, let us
imagine the following, hypothethical scenario in which EEG in HCI could, but
should not, be applied:

The BrainGuitar. The guitar remains an extremely popular musical
interface. However, its bi-manual multi-touch design is characterised by
a steep learning slope that can be an obstacle to many a beginner. We
imagine a future in which, rather than relying on our hands, we can
directly control the guitar through the use of our brain. The BrainGuitar
relies on spectral analysis of EEG signals to determine whether ongoing
music is enjoyable or not. If the music produced by the BrainGuitar is not
liked, we realign the style to suit the musician’s objective taste. A user
study was carried out in which 20 practitioners, none of whom had prior
experience playing guitar, played 5-10 minutes either with BrainGui-
tar or normal, classical guitar. We prove with surveys that satisfaction
and usability are significantly better with Brain- than normal guitars.
Self-reports indicated that BrainGuitar users were surprised to discover
their subjective and objective musical taste did not always correspond,
showcasing the exploration value of the interface. Finally, we discuss the
neurofuture in which everyone can enjoy playing guitar.

In our hypothetical scenario, neurorealism is demonstrated by the invalid
assumption that because we use a neural source (possibly), the BrainGuitar is
better able to determine whether the user likes a song or not. Combined with the
intrinsic appeal of the human mind, this can easily lead to big claims of “mind
reading”, “mind controling” or “thought identification”. However, already in
the first BCI-related publication, the authors clarify [6]: “[. . .], there is no more
‘mind reading’ in the procedures we describe than there is when a person is
handed a pencil and asked to record impressions.” Mind reading is made vastly
more difficult due to concerns regarding reliability and validity.

3 NeurorealismNaïve

naïve

naïve
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4 Reliability and Validity Concerns

Reliability concerns the degree to which measurements are consistent. For exam-
ple, a measuring tape, properly handled, can reliably indicate a user’s height in
feet, meters, inches and/or centimetres. It is unlikely to give a very different
metric if the measuring is taken on a different day of the week, or by a different
person. The validity of a measurement tool concerns the degree to which it mea-
sures what it is supposed to measure. A measuring tape can be used to measure
one’s height, but not weight.

4.1 Source Localization

EEG, by contrast, is a very indirect measure: since the electrodes are placed
on the skin, rather than in the brain directly, it can only measure the electric
potential of the scalp. Electrical potentials with neuronal sources, therefore, are
picked up only after having passed other cortical areas, as well as the cere-
brospinal fluid, skull and skin, resulting in the well known problem of spatial
blurring, and poor spatial resolution of EEG [14]. Indeed, given the already weak
signals of individual sources, the only reason we can measure EEG in the first
place is because large groups of neurons fire synchronously in the same direction.
Accordingly, the topography of an EEG potential gives a poor approximation
of its neuronal source, which has given rise to various proposed solutions for
predicting scalp activity as a function of a known source (the forward problem,
c.f. [15]) and localising sources as a function of measured scalp activity (the
inverse problem, [16]).

4.2 Signal to Noise Ratio

However, as debate regarding localisation problems continues, it is still true that
human brain-related EEG has been reliably measured for more than 85 years now
[1], and related to specific cognitive functions for over half a century [17]. One of
the reasons of this gap again has to do with reliability: although Berger’s [1] alpha
activity can be easily discerned by the eyes (see Fig. 2, C), being in the range
of ca. 30µV, EEG related to specific sensory or response related events are
relatively much smaller. For instance, in the top-right panel, Fig. 2 shows what
raw EEG looks like and how much it is affected by visual events (here: focally
presented pictures of people).

It is impossible to discern any EEG related to the stimulus due to the amount
of background noise relative to the signal (i.e. the low signal to noise ratio). How-
ever, as the background noise is presumably unrelated to the event, it can be
steadily reduced by repeating the exact same conditions over and over again,
and averaging across measurements. Sutton et al. [4] thus used between 30 and
360 repetitions to create the average event related potentials used to discover
the P300 (previously mentioned in Sec. 2). Clearly, the number of data points
involved in computation over subjects, conditions, channels, timepoints and rep-
etitions was considerable and advancements in EEG benefited accordingly from
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the availability of computers in university campuses. Much has changed since
1965, but the problem of low SNR in EEG remains. Indeed, both the number
of suggested repetitions and emphasis on strong experimental control remains
similar in modern EEG [18]. Of particular concern, in this regard, are artifacts
in EEG.

4.3 Artifacts

One of the reasons that we require so many repetitions is because EEG is com-
monly contaminated with artifacts. In particular, EEG is extremely sensitive
to eye-blinks and movements, as is portrayed in Fig. 2. In the top left panel,
EEG is shown during episodes of eye movements (A) and blinks (B), resulting
in activity levels of >100µV. The traditional way to deal with such artifacts is
commonly referred to as “artifact rejection by visual inspection”, which means
that an expert looks at visualisations of the entirety of the data during or after
collection, and selects all data that is suspected of being contaminated with arti-
facts related to eye-movements and blinks, as well as head movements, muscle
activity, and so on. The top left panel, in this regard, contains problematic data
while the top right seems more normal. These days, EEG studies tend to rely
on automatic or semi-automatic classification to distinguish contaminated from
clean data, but as the latter tend to account for more variance than the former,
artifact rejection is still commonly employed. As this leads to the removal of sig-
nificant amounts of data, more repetitions are required to sustain the reliability.

Another family of methods commonly employed to enhance SNR are artifact-
correction methods. Rather than removing time-points from the data if artifacts
are suspected, these methods aim to subtract their contribution from the signal.
The classic method for doing this is via linear regression removing the correla-
tion with the electro-oculogram (EOG, [19]), which is normally collected with
electrodes placed at sites near the eyes. However, there are drawbacks to this
method – it will, for example, also remove the EEG that is collected with EOG
electrodes. For this reason, methods that decompose the EEG into components
that can be related to artifacts or uncontaminated EEG are becoming more
popular [20]. An example is provided in the central top panel of Fig. 2, showing
the top left panel as it appeared after removing EOG related components using
independent component analysis [21]. Again, the degree of activity after artifact
correction is much lower (here ca. 2 times), although it is still clearly higher than
during the “clean” interval. For this reason, we have added specific guidelines
here regarding artifacts.

4.4 Measuring Mental States or Systematic Artifacts

A common misconception is that artifacts only reduce reliability. However, arti-
facts may also be disastrous to the validity of a study. For example, the eye
movements shown in Fig. 2 strongly affect activity, but not necessarily consis-
tently across spectral frequencies. That is to say, eye movements cause extreme
power in the lowest (<8 Hz) frequencies but do not affect alpha (8 Hz–12 Hz)
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Fig. 2. Effects of artifacts on EEG measurements in time (upper panels) and frequency
(lower panels) domains. A, B, and C indicate three common types of contaminating
sources related to eye movements, eye blinks and alpha activity. The central top panel
shows how artifact correction affects the strongly contaminated top left panel. The top
right panel displays typical EEG activity during a task. The lower left panel show the
spectral power of the first (“eyes”: artifacts A and B), and second (“alpha”: C) half of
the top left panel, as well as the top-right panel (“clean” data). Finally, The lower right
panel shows the spectral power after artifact correction. Data available from www.hiit.
fi/manuel.eugster/aomm2015/.

www.hiit.fi/manuel.eugster/aomm2015/
www.hiit.fi/manuel.eugster/aomm2015/
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and beta (13 Hz–29 Hz) frequencies as much (a common finding, cf. [22]). The
higher frequencies (30–200 Hz), meanwhile, are of considerable interest for peo-
ple interested in consciousness [23], meditation [24] and neurofeedback [25] but
as illustrated in Fig. 2, and investigated closer elsewhere [26], [27], it is also
possible that eye and muscle movements cause activity within these frequency
bands. Consequently, when neuroscientists study how a cognitive function causes
differential spectral activity, they aim to control extraneous effects as much as
possible to avoid confounds that is unrelated effects that explain the observed
findings. As a result, there is little consensus regarding the relationship between
specific frequency bands and cognitive functions.

4.5 Data Analysis

Typically, the use of EEG in HCI starts with a simple application idea (here,
the BrainGuitar). The first obstacle, as discussed so far, is to map such an
idea to a sound neurophysiological paradigm. The second obstacle then, after
recording the data, is to rigorously perform the data analysis. Unfortunately,
decoding brain states is a difficult data analytic endeavour: major issues are
often very specific experimental designs, the unfavourable signal to noise ratio,
the vast dimensionality of the data, and the high trial-to-trial variability [28].
Fortunately, recent literature provides comprehensive frameworks for rigorous
statistical analysis and predictive modelling: see [29] for a tutorial on single-trial
analysis, and [30] for a general approach on evaluating prediction algorithms.

From an application point of view, the final goal of the data analysis is to
develop a predictive model which discriminates the different brain states with
the highest accuracy. In our hypothetical scenario, this is for example a classifier
predicting one of the two classes “I like the song” versus “I don’t like the song”.
Estimating the predictive power and the generalisation error of such a classifier
on the measured data is a easy source of mistakes (see [28] for a list of typical
pitfalls). Here, we want to underscore one. Neurophysiological paradigms often
rely on an imbalance of the brain states under investigation. Consequently, the
prediction problem is imbalanced and the used cross-validation scheme as well as
the performance measures have to take this into account (see [28], Section 5.6). In
the BrainGuitar example, no user had prior experience playing guitar. Therefore,
most of the observations are probably “dislikes” and only a few “likes” will be
available. A default “I don’t like this song” classifier will have a high accuracy
but no validity.

4.6 The Seductive Allure of Neurorealism

Neuroscience has brought many advances to our understanding of the brain and
mind, to the point that the expectations of its capabilities are clearly exagger-
ated. Thus, people are known to find even bad explanations more convincing if
they come wrapped in neuroscience talk [31]. One of the problems inherent in
neuroscience is that the same cognitive (or artefactual) function can map onto
various spectral frequencies (see Sec. 4.4) or brain areas, and conversely, that
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different functions may affect the same frequencies or brain areas. As a result, it
is often possible to predict activity in various brain areas (IF mental function X,
THEN brain activity Y), but the reverse inference (IF activity Y then mental
function X) is fallacious [32], and not necessarily true. Similarly, localising cog-
nitive functions to specific areas can be challenging: for example, hemispheric
activity has been linked to both emotional valence (positive / negative emo-
tions) and motivation. Simply observing greater left than right activity would
not be informative enough to conclude whether someone is highly motivated, or
in a positive mood [3]. Moreover, mappings between brain areas and functions
within the same person might not be stable over time, since specialisations in
brain areas can adapt to changes in its environment [33]. While it is debatable
(c.f. [34]) that the reverse inference can sometimes lead to valuable information,
this is not necessarily true.

In the BrainGuitar, one can argue that a correlate for “liking” a song might
be found in frontal asymmetry (but see [35]). The fallacy of reverse inference and
the näıve of the researchers is demonstrated by the surprise of the user: While
this should suggest the measurement of liking was invalid, instead they feel the
BrainGuitar revealed something beyond the knowledge of the users. Are they
sure, we should ask, if they do not pick up correlates that in themselves may
be caused by the brain, but are not equivalent to brain signals? For example,
eye movements and muscle activity are, of course, caused by brain activity, and
contaminate EEG activity, but are not brain activity themselves.

In other words, reverse inferences should be treated with great caution, and
overly positive statements such as “enjoyment was determined using EEG”
should be avoided. We urge the field (see also [36]) to tread cautiously, par-
ticularly when making strong claims in academic work and when talking to the
popular media.

5 Other Psychophysiological Measurements

In this article, we tend to use EEG and psychophysiology interchangeably. This
is, on the one hand, because concerns over reliability and validity are not as strik-
ing for other physiological measurements such as electrodermal activity (EDA,
or galvanic skin response), heart rate (electrocardiogram), respiration rates, and
so on. In some cases, combining signals from these sources into a single predictor
can provide a better assessment of the users’ state than EEG alone (see [37] for
a review).

The source of these measures is rather well localised (the hand, the heart),
and the number of associated psychological constructs is limited (usually
arousal). However, even for these measures, the relationship is not as simple
as it first appears: emotionally exciting stimuli tend to show increased EDA but
slowing of heart rate, arousal (as an emotional state) tends to have increased
EDA and increased heart rate [38].

Functional near-infrared spectroscopy is another brain imaging technique
which measures the blood oxygenation level dependent (BOLD) response, sim-
ilar to fMRI[39]. This is done by making use of the different light absorption
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properties of oxygenated and de-oxygenated haemoglobin. It has been success-
fully employed to image the human brain (see for a review [40]). Although the
field remains relatively young, it is generally held that the spatial localisation of
superficial frontal sources in particular is good. Given that it is also relatively
cheap, at least compared to MRI, and easier to prepare than EEG, it is pos-
sible that the technique will be very popular with interdisciplinary disciplines
such as HCI. However, it should be stressed that knowing that, for example, the
right Brodmann Area 10 is active, does not relieve one from neurorealism:
the area has been mapped onto functions of recollection of episodes [41] and
odours [42], non-speech sounds [43], risk and reward [44]. Is the BrainGuitar
familiar, sound-making, challenging or does it simply smell familiar?

6 Consumer Devices

Consumer grade EEG devices are relatively very cheap, usually wireless and are
often easier to set up. These two qualities have created a popular sense that the
future is mind controlled in mainstream media [45–47]. This future, however, for
now largely remains science fiction. In particular, consumer grade devices (e.g.
Epoc Emotiv, Neurosky) focus on low cost materials and ease of setting up,
which will adversely affect SNR and validity. Science or clinical grade electrodes
use highly conducive materials such as silver-chloride (AgCl) and gold in order to
capture as much signal from the scalp as possible materials of which the cost can
be prohibitive for single consumers. Furthermore, anything (e.g. air, skin flakes)
between the electrodes and scalp will adversely affect SNR, for which reason
researchers often prepare the skin (by scraping, use of cleaning materials) and
use materials like conducive gel to fill in the space between electrode and scalp.
Of course, such procedures are not particularly comfortable and generally require
assistance from an extra person.

Finally, while psychophysiology experts prefer the use of many electrodes
placed at standardised, equidistant locations on the scalp both in order to
increase SNR and to enhance external validity with other research groups, this
naturally increases cost and effort. Accordingly, many consumer grade devices
use few (<16) electrodes. The Emotiv EPOC is a common, noteworthy excep-
tion at 14 channels (and two references), although the extra electrodes have a
focus on eye and facial muscle activity rather than EEG (but see [48] for a way
around). Consumer grade devices provide ready made quantified emotional and
cognitive state analysis, but the validity of these classifications cannot easily be
assessed as they tend to rest on trade-secrets and subjective reports. This, in
fact, leads to exactly the circular problem the present paper is aiming to address:
the SNR is poor and it is unclear what is measured. In sum, consumer grade
devices may well provide good fun for consumers, but for science these benefits
are likely offset by the extra costs and efforts involved if a submission is rejected.

naïve
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7 Conclusion

The use of psychophysiology in HCI has been remarkable. We have seen many
instances in which the fusion of neuroscience and HCI can create new insights
and applications. However, the popularity and näıve neurorealism can lead to an
overly optimistic idea of making psychophysiology a simple plugin of the human-
computer interaction. More importantly, we discussed issues of reliability and
validity that make claims regarding direct mind-control tenuous.

To help this exciting new field, we would like to conclude with a few questions.
From our experience, it is useful to keep these questions in mind while developing
and presenting EEG-in-HCI applications. We hope they may prove beneficial to
other researchers and reviewers.

1. How much does the quality of the apparatus involved reflect the study’s
aims?

2. How much does the conclusion reflect the known limitations of the measure-
ments?

3. Which method was used to correct and/or reject data? How many repetitions
were used in the analysis (BCI: training)?

4. Which electrode sites were used as channels and which reference(s) were
employed?

5. Do the psychophysiological markers correspond to what the authors
aim/claim to measure or could differences have been caused by correlated
variables? Is the paradigm sound?

6. Does the control condition provide a valid comparison?
7. Has the work been communicated to the press with an unbiased, factual

report, and were all communications with the press reviewed by the involved
researchers?
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Abstract. Frame-based frequency approximation methods are a pop-
ular approach to realize visual stimuli that can be used to elicit
steady-state visual evoked potentials (SSVEPs) at various frequencies
on computer screens and allows the development of multi-target Brain-
Computer Interface (BCI)-Systems. In this paper we investigate appro-
priate selection of visual stimuli for multi-target BCIs using a frequency
approximation method. Twelve sets of frequencies from different bands
and with different resolutions have been compared among each other
during an on-line BCI-task with six healthy subjects. Our results con-
firm that equidistant frequency sets are not optimal, as the results from
the sets with lower frequency ranges (<12 Hz) surpass those of the mid-
range sets, even if a higher resolution is used. Interestingly, the study
shows that SSVEPs elicited by stimuli from lower bands with a very
high frequency resolution of 0.05 Hz could still be classified with ade-
quate accuracy (around 90%). The results confirm that careful stimuli
choice has high impact on SSVEP based BCI performance.

Keywords: BCI (Brain-Computer Interface) · SSVEP (Steady-State
Visual Evoked Potential) · LCD (liquid crystal display) · Frequency

1 Introduction

Brain-Computer Interfaces (BCIs) translate brain signals, usually acquired non-
invasively using electroencephalogram (EEG), in computer commands without
using the brain’s normal output pathways of peripheral nerves and muscles [15].
Such communication technologies have the potential to help people with phys-
ical impairments, if they provided special interfaces that worked independently
of the person’s limitations. One of the BCI paradigms used for realization of
multi-target interfaces is the Steady-state visual evoked potential (SSVEP)-
based BCI which measures the brain responses to a visual stimulation at specific
constant frequencies [15]. A popular source for the visual stimuli are computer
screens. Since implementation mainly relies on software development, use of
computer screens offers flexibility for combining BCI stimulation with the con-
trolled application and makes it possible for the stimulation interface to easily be
c© Springer International Publishing Switzerland 2015
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fine-tuned during BCI development [16]. For SSVEP-based spelling applications,
the arrangement and the number of classes (simultaneously displayed stimula-
tion frequencies) influence speed and usability. The number of stable frequencies
that can be rendered on a monitor are always limited by the refresh rate since
the number of frames in a stimulation cycle needs to be a constant [3,9,13].
That is why SSVEP based spelling systems using those stable frequencies use
usually four to seven different targets [1,5,8]. Two or three successive com-
mands are needed to spell a single target character in those applications, due
to the fact that the number of target characters outnumbers the number of
visual stimuli. However, the so-called frequency approximation method, as pro-
posed by Wang et al. [14], allows the realization of visual flickers with a high
frequency resolution (e.g., 0.25Hz) and the implementation of high-speed mul-
tiple target BCI on a computer screen [2,3,9,14]. The choice of the stimulation
frequencies has impact on the BCI-perfomance. In many research articles using
multi-target SSVEP-based BCIs, equidistant stimulation frequencies are used
[3,7,14]. Effects of stimuli choice has been discussed extensively throughout the
BCI-literature [12]. The best SSVEP responses are obtained using stimulation
frequencies between 5 and 20 Hz and 15 Hz is the stimulation frequency at
which the SSVEP response is maximum [10]. Also one has to bear in mind,
that mutual influences between stimulating frequencies should be avoided. Each
pair or triple of simultaneously flickering stimuli should not harm the restriction
rules fi �= [fj + fk]/2, fi �= 2fj − fk, fi �= 2fk − fj . According to Gao et al. two
flickering targets with a frequency difference as low as 0.2 Hz can be successfully
distinguished in the SSVEP response [4]. Lately the maximal SSVEP frequency
resolution for reliable detection has been updated to 0.1 Hz [3,7]. In this paper we
investigated the question of optimal frequency selection regarding multi-target
stimulation, as an evenly divided frequency band might not be optimal for the
implementation of such multi-target BCIs. We compared the BCI performance
among frequency sets from different domains and with different resolutions.

2 Methods and Materials

2.1 Subjects

This study was carried out in accordance with the guidelines of the Rhine-Waal
University of Applied Sciences. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. Six healthy volunteer subjects with
a mean (SD) age of 25.33 (4.6) years participated in the study. One subject was
female. All subjects were students or employees of the Rhine-Waal University of
Applied Sciences and had little or no previous experience with BCI-systems.

The EEG recording took place in a laboratory room (approx. 36 square
meters) with low background noise and luminance. Spectacles were worn when
appropriate.
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Fig. 1. GUI of the BCI-system during the online experiment. The subject had to
concentrate on the box containing the number three.

2.2 Signal Acquisition

Subjects were seated in front of a LCD screen (BenQ XL2420T, resolution:
1920 × 1080 pixels, vertical refresh rate: 120 Hz) at a distance of about 60 cm.
The used computer system operated on Microsoft Windows 7 Enterprise running
on an Intel processor (Intel Core i7, 3.40 GHz). Standard Ag/AgCl electrodes
were used to acquire the signals from the surface of the scalp.

The ground electrode was placed over AFZ , the reference electrode over CZ ,
and the eight signal electrodes were placed at predefined locations on the EEG-
cap marked with PZ , PO3, PO4, O1, O2, OZ , O9, and O10 in accordance with
the international system of EEG electrode placement. Standard abrasive elec-
trolytic electrode gel was applied between the electrodes and the scalp to bring
impedances below 5 kΩ. An EEG amplifier, g.USBamp (Guger Technologies,
Graz, Austria), was utilized. The sampling frequency was set to 128 Hz. During
the EEG signal acquisition, an analogue band pass filter (between 2 and 30 Hz)
and a notch filter (around 50 Hz) were applied directly in the amplifier.

2.3 Graphical User Interface

For this study we designed a 6-target BCI-system (see Fig. 1). The graphical user
interface (GUI) is a 2×3 stimulus matrix containing the numbers 0 to 5. Each
stimulus was presented within a 144×128 pixels box and the distance between
two adjacent boxes was roughly 300 pixels. One of the boxes was surrounded by
a green frame. Each box flickered with a specific frequency. The user was told to
concentrate on the highlighted box. After correct classification, another number
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would be highlighted and the user had to shift his gaze and focus on this box.
The order in which the numbers where highlighted was randomized. When every
number was selected once, the task was completed and the flickering stopped.
If no error was made, the task was completed after six selections. After a short
break the task was repeated with the next set of frequencies. In total twelve
different frequency sets were tested. In order to reduce the information load of
the visual channel, every command classification was followed by an audio feed-
back. For SSVEP signal classification a minimum energy combination method
was used. The SSVEP classification was performed online every 13 samples (ca.
100ms) on the basis of the adaptive time segment length of the acquired EEG
data. More details about the used SSVEP detection method can be found in [11].
In order to make the system more robust we included larger time windows (8
and 16 seconds) and increased the number of time segment lengths, as discussed
in [6]. In this study the minimal classification time window was set to 2 sec-
onds. In order to implement multiple targets on the LCD-screen, a frame-based
stimulus approximation method was used. If a varying number of frames in each
cycle is used any frequency up to half of the refresh rate can be approximated
and a much higher frequency resolution can be achieved. The stimulus signal at
frequency f can be generated by the following equation:

stim(f, i) = square[2πf(i/RefreshRate)],

where square(2πft) generates a square wave with frequency f and i is the frame
index. For example, the one-second stimulus sequence for the frequency 17 Hz
on a 120 Hz refresh rate monitor is 4 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4 3 4
3 4 3 4 3 4 3 4 3 4 3 (see Fig. 2).

Fig. 2. One second stimulus sequence for the approximated frequency 17 Hz. The
black/white reversing interval for the approximated frequency 17 Hz includes 17 cycles
of varying length (three or four frames).

2.4 Experimental Setup

After signing the consent form, each subject was prepared for the EEG recording.
Each subject had to complete the task twelve times with different frequency
sets (one recording for each set). Four groups of frequency sets were used, each
containing three sets of six equidistant frequencies (see Table 1). Each selection
phase ended automatically when all numbers were selected correctly. After a
brief pause (approximately 20 seconds) the program was restarted manually and
the procedure was repeated with the next set. The entire procedure took about
40 min on average per subject.
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Table 1. Overview of the different frequency sets.

Set Frequencies [Hz] Set Frequencies [Hz] ΔHz

1 6.10 6.20 6.30 6.40 6.50 6.60 7 15.10 15.20 15.30 15.40 15.50 15.60 0.100
2 6.10 6.18 6.25 6.33 6.40 6.48 8 15.10 15.18 15.25 15.33 15.40 15.48 0.075
3 6.10 6.15 6.20 6.25 6.30 6.35 9 15.10 15.15 15.20 15.25 15.30 15.35 0.050

4 10.10 10.20 10.30 10.40 10.50 10.60 10 20.10 20.20 20.30 20.40 20.50 20.60 0.100
5 10.10 10.18 10.25 10.33 10.40 10.48 11 20.10 20.18 20.25 20.33 20.40 20.48 0.075
6 10.10 10.15 10.20 10.25 10.30 10.35 12 20.10 20.15 20.20 20.25 20.30 20.35 0.050

3 Results

BCI performance for each subject was evaluated by calculating the commonly
used ITR in bits/min, employing the formula as discussed e.g. in [15]. In the GUI
presented here, the overall number of possible choices was six. The accuracy was
calculated based on the number of correct command classifications divided by
the total number of classified commands. The overall BCI performance is given
in Table 2.

Table 2. Results for the BCI-task. ITR values in bits/min for each frequency set and
subjects are displayed. Mean values are given at the bottom of the table.

Set Nr. 1 2 3 4 5 6 7 8 9 10 11 12

IT
R

[b
it

s/
m

in
]

Subject 1 35.4 10.3 10.8 20.9 18.8 14.2 6.7 9.0 23.3 0.4 0.0 0.5
Subject 2 25.9 11.4 24.6 41.6 7.8 27.8 11.7 7.3 25.4 20.7 3.2 9.4
Subject 3 32.4 30.2 11.8 36.8 31.0 24.6 33.8 29.8 21.8 13.2 12.0 14.5
Subject 4 30.1 20.8 33.3 11.6 15.1 39.2 32.0 11.6 8.2 0.0 0.3 1.8
Subject 5 16.7 18.7 26.6 27.9 12.8 21.1 16.1 15.2 24.6 27.5 4.3 16.7
Subject 6 14.6 5.3 4.6 27.4 14.9 12.4 23.2 9.6 11.1 0.5 0.2 2.5
Mean 25.8 16.1 18.6 27.7 16.7 23.2 20.6 13.8 19.1 10.4 3.3 7.5
SD 8.5 8.9 11.1 10.8 7.9 9.8 11.0 8.3 7.4 11.9 4.6 7.1

A
cc

u
ra

cy
[%

]

Subject 1 100 75 75 86 86 86 60 67 100 25 0 29
Subject 2 86 67 100 100 60 100 67 60 100 86 46 75
Subject 3 100 100 86 100 100 100 100 100 100 86 86 100
Subject 4 86 75 100 60 67 100 100 67 67 17 26 43
Subject 5 75 86 100 100 75 100 75 86 100 100 55 100
Subject 6 75 55 50 86 75 75 86 67 75 29 23 46
Mean 87 76 85 89 77 93 81 74 90 57 53 65
SD 11 16 20 16 14 11 17 15 15 37 27 31

4 Discussion and Conclusion

It can be seen in Fig. 3 that there is a substantial difference between the BCI
performance with the different frequency sets. Subjects reached generally higher
ITR with the lower stimulation frequency sets. 50% of the subjects were not
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Fig. 3. Average ITRs for the different frequency sets.

able to control the system with the frequency sets 10, 11 and 12 (all frequencies
above 20 Hz) at all. The performance in each frequency domain is best with
the 0.1 Hz resolution set. Surprisingly, the sets with 0.05 Hz resolution (sets
3, 6, 9, 12) yielded better results than the 0.075 Hz resolution. A reason for
this could be a training effect, as the low resolution tasks were recorded last.
However, the results indicate, that the previously reported maximal frequency
resolution (≥ 0.1 Hz) for SSVEP-based BCIs [3,4,7] can be updated to 0.05 Hz.
Interestingly, the results with the sets with lower frequencies with the highest
resolution (set 3 and set 6) are still better than those of the highest frequency
set with the lowest resolution. These results confirm the assumption, that an
equidistant frequency selection for multi target BCI-systems is not optimal. The
results suggest, that the lower frequencies can be spread denser than the higher
once. So, when frequencies are spanned over a large range (e.g. from 8 to 20Hz),
selection of frequencies from a low frequency-range (below 12 Hz) with denser
resolution, while selecting lesser frequencies from a middle-frequency range (12-
30 Hz) with a sparser resolution, could yield overall a better BCI performance.
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Abstract. Although our natural visual environment is dynamic, to date
EEG studies on visual cognition are mainly based on the fixed-gaze visual
paradigms or static images as stimuli. On the other side, scenes’ dynamic
significantly influence our visual behavior, i.e., the occurrence of sac-
cadic movements, smooth pursuit and fixations. Since smooth-pursuit
eye-movements do not occur in a static scene, in this study we address
the EEG-based intention decoding in presence of smooth-pursuit eye-
movements at slow speed (∼ 2.8◦/s) using the state-of-the-art EEG
decoding methods. Our results suggest that the decoding performance
remain high (with reference to the fixed-gaze paradigm) even when sub-
jects are additionally engaged in tracking a moving object. In contrast to
the pursuit movements, the uncertainty of the change perception remains
one of the major challenges for the EEG decoding as we additionally
demonstrated in this study.

Keywords: Electroencephalography (EEG) · Event-related potentials ·
Smooth-pursuit · Visual recognition

1 Introduction

Visual cognition allows us to perform decision-based scene analyses in our daily
activities. We successfully sample task-relevant information from the scene by
employing different voluntary eye-movements such as saccades and smooth-
pursuit eye movements. Saccades represent a sudden shift of gaze ending in
the fixation, while smooth-pursuit eye-movements represent foveal tracking of
a moving object. Interestingly, in contrast to saccades the smooth-pursuit eye
movements can not be performed in absence of the moving stimulus, i.e., when
presented with a static scene.

Brain imaging experiments on visual cognition are mainly designed to isolate
certain cognitive processes. Consequently, the experiments are based on simpli-
fied stimuli and temporally-controlled sensory input. Additional advantage of
the simplified and strictly controlled paradigms is minimization of non-neural
sources of EEG artifacts, in particular ocular artifacts. While the fundamental
cognitive neuroscience knowledge advances, the simplification of the experiments

c© Springer International Publishing Switzerland 2015
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limits the knowledge transfer to real-life scenarios for brain-computer interface
(BCI) applications. The main reason is the discrepancy between the experimen-
tal setting and real-world scenarios with respect to visual behavior and parallel
cognitive processes.

The conventional visual oddball paradigm that elicit cognitive P300 visual
evoked potential in response to the target stimulus recognition is a typical exam-
ple of the fixed-gaze paradigm [5], [6]. Stimuli are rapidly presented one after
another at the same position in the screen at a constant presentation rate, while
the percentage of target stimuli in the sequence is kept low. The P300 potential
is elicited over the centro-parietal scalp region not earlier than 300 ms of tar-
get stimuli onset. Advances in eye-tracking technology established a new trend
in studying visual cognition – i.e., joint recording of neural signals and eye-
movements, that allows studying the cognitive processes in active visual tasks.
Reported results evidence that the fixation-related EEG potentials when attend-
ing the target content closely resemble the ERPs in the classical visual oddball
paradigm [3], [1], [2], [4].

In the context of real-life scenarios, we are typically faced with complex
spatio-temporal scenes as the following examples demonstrate. In a busy public
place such as a train station, while waiting for someone we inspect people enter-
ing our visual field. This requires tracking of a person until it is close enough
that we can recognize if it is the person we are waiting for. When playing a
video game we often control behavior of an avatar that navigates through the
space and interacts with the static and moving objects in the scene, a situation
which also requires overt tracking of the content in motion. Finally, similar ocu-
lar behavior occurs while watching long tracking shots in a movie, e.g., following
a character we move through the street.

Motivated by our visual behavior in complex spatio-temporal scenes, the
present study evaluates the EEG responses to the visual recognition event in
an oddball task while a subject overtly tracks a moving object at low speed
(2.8◦/s). We considered a fixed-gaze oddball task as a reference condition. In
addition, we compared the decoding performance between two cases of the stim-
ulus appearance style – an instantaneous stimulus appearance, and its transient
appearance, that introduces temporal uncertainty in the perception process.

2 Methods

2.1 Subjects and Data Acquisition

Subjects were seated in front of the screen (1680 X 1050 pixels, 60Hz) with their
head resting in a chin rest positioned at ∼ 61 cm from the screen. Six subjects
participated in the study (2 male and 4 female subjects, between 23 and 28 age
old). The EEG was recorded using a Brain Products actiCAP active electrode
system with 64 electrodes ( International 10 – 20 system), 1000 Hz. The EEG was
referenced to the linked-mastoid and filtered between 1 and 30 Hz. Single-trial
data epochs were extracted with respect to the stimuli appearance as specified
in Section 2.3.
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(a) Modified Landolt rings

800-1600ms 1300ms 800-1600ms 1300ms 800-1600ms3 s

(b) Timeline of stimuli presentation. (c) The Smooth-pursuit condition

Fig. 1. Illustration of the stimuli and experimental protocols.

2.2 Experimental Protocol

Subjects were asked to perform a visual search task, silently counting the target
stimuli in a sequence. At the end of each sequence they verbally reported the
number of recognized targets. Before each sequence, subjects were presented
with the target stimulus. We used modified Landolt rings as stimuli (Figure 1a).
A target was randomly selected from eight broken Landolt rings (each ring had
the unique gap position). The remaining seven rings were used as non-target
stimuli.

The experiment consisted of three conditions: i - Static condition (St),
in which subjects were instructed to look at the center of the screen where
stimuli sequence was presented; ii - Smooth-pursuit (Sp) condition, in which
subjects were asked to overtly track a moving stimulus (a Landolt ring). Starting
from the center of the screen a Landolt ring moves with the constant speed
(2.8◦/s) in the same direction until it bounds from a field’s edge and change
its direction (Figure 1c). The field is defined as a rectangular gray area (1260
by 735 pixels, the gray-level value: 0.7 ) centered in the screen; iii - Fading
smooth-pursuit (FSp) condition, that differs from the (Sp) condition only
with respect to the way the target/distactor stimuli appear in the scene. Namely,
while in the (Sp) condition the stimuli appear instantaneously in the scene, in
the (FSp) condition their appearance is rather a transient process of 1000ms.
Note that in all the conditions, a Landolt ring is constantly present in the screen.
Therefore, appearance of a new stimulus results in an appearance of the gap in
one of eight possible positions.

In all three conditions, the inter-stimulus interval was uniformly distrib-
uted between 800 ms and 1600 ms, while the target and non-target stim-
uli were presented for 1300ms. The timeline of stimuli presentation is shown
in Figure 1b. Experiment was organized in 10 blocks. A block contained three
runs, i.e., a search task per each condition, in a random order. Stimuli sequence
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consisted of forty stimuli, where the occurance of targets in a sequence was within
the range 20 − 30%.

2.3 Discriminative EEG Analysis

The
EEG discriminant analysis is performed independently for each experimental
condition (St, Sp and FSp). The analysis consisted of three steps. First, we esti-
mated the discrimination between target and non-target trials for each channel
and time point using signed squared biserial correlation coefficient (sgn r2) [7].
Then, we created the temporal profile of the discriminant information by apply-
ing a shrinkage LDA classifier [7] at each time point using all the EEG channels,
in a ten-fold cross-validation setting. Finally, we estimated single-trial decoding
performance using a hierarchical LDA classifier integrating spatio-temporal dis-
criminative activity over a trial [8]. The considered time intervals (from 100 ms
to 800 ms of stimulus onset) was divided in seven non-overlapping windows.

3 Results and Discussion

The grand average ERP potentials are presented separately for each experimen-
tal condition in Figure 2. One can notice a positive activity over the centro-
parietal region evoked by target stimuli peaking at 400 ms of stimulus onset
in the Static and Smooth-pursuit condition (Figure 2a-b). Similar component
is found in the Fading Smooth-pursuit condition, but temporally more spread
between 450 ms and 650 ms of stimulus onset (Figure 2c). This temporal shift
and larger span might indicate the uncertainty of the perception of stimulus over
trials due to the fading effect.

Single-trial decoding performance are comparable between the Static (St)
and the Smooth-pursuit (Sp) condition, while a decrease in performance is found
in the Fading Smooth-pursuit (FSp) condition (Figure 4). These results suggest
that smooth-pursuit eye-movements at low speed do not challenge the EEG
decoding of visual recognition if the timing of the event is known. Interestingly,
median performance of the Smooth-pursuit condition was better than in the
Static condition. This might indicate that tracking an object as a background
task increase the subjects’ engagement in the primary search task. Behavioral
responses support this idea, since more erroneous answers were reported in the
(St) condition than the (Sp) condition (see Table 1). Future work will investigate
this research question further and in particular acquire data from a large number
of participants in order to be able to test for statistical significance.

Table 1. Responses: Number of erroneous runs (mean absolute error).

Protocol/Subjects S1 S2 S3 S4 S5 S6 Sum
St 0 (0) 1 (1) 3 (1.3) 0 (0) 1 (1) 4(1) 9
Sp 0 (0) 0 (0) 0 (0) 0 (0) 1 (3) 2 (1) 3
FSp 0 (0) 2 (1) 3 (1) 0 (0) 2 (1.5) 0 (0) 7
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(b) Smooth-pursuit condition

−100 0 100 200 300 400 500 600 700 800 900 1000
−10

0

10
CPz (−) FCz (−−)

ms

μV

 

 

NonTarget−EVT
Target−EVT

 

 

μV

−10

−5

0

5

10

 

 

μV

−10

−5

0

5

10

N
o

n
T

ar
g

et
−E

V
T

T
ar

g
et

−E
V

T

(c) Fading Smooth-pursuit condition

Fig. 2. Grand average event-related potentials.
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Fig. 3. Visualization of signed r2-values.



EEG Correlates of Visual Recognition While Overtly Tracking 171

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

seconds

A
U

C

 

 

St
Sp
FSp

(a)

St Sp FSp
0.5

0.6

0.7

0.8

0.9

1

A
U

C

(b)

Fig. 4. (a) Temporal profile of discriminative activity. (b) Single-trial classification
performance.

4 Conclusion

The aim of the present study was to investigate the EEG-based decoding
performance of visual recognition during the slow-speed smooth pursuit eye-
movements. Our preliminary results indicated that the overt tracking of a mov-
ing object do not challenge the state-of-the-art EEG decoding if the precise time
of the event is known. Moreover, the results motivate further studies on potential
favorable effects which overt tracking might have on the EEG-based recognition
decoding.
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Neural Responses to Abstract and Linguistic
Stimuli with Variable Recognition Latency

Markus A. Wenzel(B), Carlos Moreira, Iulia-Alexandra Lungu,
Mihail Bogojeski, and Benjamin Blankertz

Neurotechnology Group, Technische Universität Berlin, Berlin, Germany
markus.wenzel@tu-berlin.de

Abstract. Electroencephalography (EEG) can provide information
about which words or items are relevant for a computer user. This
implicit information is potentially useful for applications that adapt
to the current interest of the individual user. EEG data were used to
estimate whether a linguistic or abstract stimulus belonged to a tar-
get category that a person was looking for. The complex stimuli went
beyond basic symbols commonly used in brain-computer interfacing and
required a variable assessment duration or gaze shifts. Accordingly, neu-
ral processes related to recognition occurred with a variable latency after
stimulus-onset. Decisions involving not only shapes but also semantic
linguistic information could be well detected from the EEG data. Dis-
criminative information could be extracted better if the EEG data were
aligned to the response than to the stimulus-onset.

Keywords: EEG · Single trial classification · Physiological computing ·
User relevance estimation

1 Introduction

Physiological sensors can capture neural processes during human-computer inter-
action and can potentially provide access to information about the user that is
otherwise not accessible. The performance of a wide range of applications could
benefit from collecting user-related information directly with neurophysiological
sensors instead of observing the user’s behaviour or asking questions. The com-
puter could, for instance, estimate which words or items are relevant for the user.
Exploiting this implicit information promises to allow completely new scenarios
where devices adapt to the current interest of the individual user.

In this study, information present in the electroencephalogram (EEG) was
used to estimate whether a stimulus was relevant for a person because it belonged
to a target category that required a particular response. The stimuli were either
words or abstract items and required a variable assessment duration or gaze
shifts, which can be expected in application scenarios out-of-the-lab. Accord-
ingly, neural processes related to recognition occurred with a variable latency
after stimulus-onset, which poses a challenge for EEG-based detection algo-
rithms. For this reason, neural processing of complex linguistic and abstract
stimuli was characterised in the present study.
c© Springer International Publishing Switzerland 2015
B. Blankertz et al. (Eds.): Symbiotic 2015, LNCS 9359, pp. 172–178, 2015.
DOI: 10.1007/978-3-319-24917-9 19
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2 Materials and Methods

2.1 Experimental Design

The experiment was a variation of the classic oddball paradigm where rare stim-
uli, that are being paid attention to, elicit a different neural response than other,
more frequently presented stimuli, that are not being focused on [1]. Abstract and
linguistic stimuli were presented on a 22-inch screen while EEG was recorded.
The subjects were asked to press either the right or the left arrow key if each
stimulus was part of an announced target category or not. The participants used
the same hand for both keys to avoid that response-related activity in the motor
cortex was discriminable between targets and non-targets. The three experi-
mental conditions covered the range from relatively complex linguistic stimuli
(Semantic, Pseudo-words) to rather simple stimuli (Abstract – Shapes):

Linguistic – Semantic (LS). Decision if a word belongs to a semantic category.
Words were selected that were part of certain semantic categories, i.e. groups of
related words. Target words belonged to a designated semantic category, while
non-target words belonged to other semantic categories. For example, the partic-
ipant had to press the target key when the current target category was ‘furniture’
and the word presented was ‘chair’, whereas the participant had to press the non-
target key if the word ‘water’ was shown. Lists of fifteen words each from ten
different categories were assembled – covering both easier categories (e.g. ‘ani-
mals’, ‘food’) and more broad or difficult ones (e.g. ‘science’, ‘time’). Depending
on the mother tongue of the participant, English or German words were used.

Linguistic – Pseudo-words (LP). Decision if a word is a pseudo-word or a real
word. Pseudo-words are words that could exist in a given language but do not
have any meaning, e.g. ”diagrant”, ”persided”, ”occation” and ”yeanings”. In
this experimental condition, targets were either pseudo-words or true words. A
list of pseudo-words was generated by picking random letters with a Markov pro-
cess using the most common words from either English or German as input [2].
The resulting pseudo-words were hand-picked to a total of 120 to avoid close
resemblances to real words in each respective language and to maintain a simi-
lar letter per word distribution to the chosen true words.

Abstract – Shapes (AS). Decision if a polygon has a specific number of corners.
Several different tetragons, pentagons, hexagons and octagons were prepared
respectively (c.f. figure 1). Polygons with a specific number of corners were the
respective targets, all other polygons were non-targets. The angles within each
polygon type were varied to enforce counting and to preclude the immediate
recognition of the shape itself from memory. Heptagons were not used because
it was difficult to discriminate them from octagons.

Each experimental session contained thirty runs, with ten runs per condition
(LS, LP and AS). In each run, 60 stimuli were presented with a 1:3 target to
non-target ratio. Before each run, the target category or shape was announced.
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Fig. 1. Examples of polygons used as stimuli.

After a preparation countdown of three seconds, the stimuli were presented one
by one in the centre of the screen for 1000 ms, preceded by a fixation cross during
500 ms. After stimulus presentation and the next fixation cross, the screen turned
blank for 500 ms. The order of the runs was randomised. Each stimulus occupied
a larger area and required the evaluation of different parts (and possibly gaze
shifts) in order to solve the task.

2.2 Data Acquisition

Three female and three male subjects participated in the experiments. The EEG
signals were recorded with 64 active electrodes (BrainAmp, ActiCap, BrainProd-
ucts, Munich, Germany; sampling frequency of 1000 Hz). The electrodes were
positioned according to the international 10–20 system, using the linked mas-
toid as reference and an electrode on the forehead as ground. One of the elec-
trodes was positioned below the left eye for electrooculography (EOG). The
study was approved by the ethics committee of the Department of Psychology
and Ergonomics of the Technische Universität Berlin.

2.3 Data Analysis

EEG Data Processing. The multi-channel EEG data were low-pass filtered for
anti-aliasing (2nd order Chebyshev, 42 Hz pass-band, 49 Hz stop-band), down-
sampled to 100 Hz, re-referenced to the linked-mastoids and high-pass filtered
to reduce drifts (FIR least square filter, 0.5 Hz). Artefacts were rejected based
on a variance criterion and the time-series were segmented into short epochs
aligned either to the onset of the stimulus or to the response of the partici-
pant. Only correct responses were considered for the further analysis. Artefact
epochs were removed based on a maximum-minimum criterion (peak difference
over 150 µV within the interval [0 ms, 1200 ms] for stimulus- and [-950 ms,
-50 ms] for response-aligned epochs). The epochs were baseline corrected by
subtracting the average signal measured during an interval of 100 ms before the
stimulus-onset (and respectively within the interval [-950 ms, -850 ms] before the
response) and averaged for target and non-target stimuli. To investigate which
channels and time points contained discriminative information between targets
and non-targets, the area under the curve (AUC) of the receiver operating char-
acteristic [3] was computed for each channel and time point.

Classification of the EEG Epochs. Target versus non-target EEG epochs (either
stimulus-aligned or response-aligned) were classified with regularized linear dis-
criminant analysis – the shrinkage parameter was determined analytically [4] [5].
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Classification performance was evaluated in 10x10-fold cross-validations using
the AUC as metric [3]. Spatio-temporal features were used for the classifica-
tions [6]: The means were computed of 50 ms intervals from stimulus-onset to
1250 ms after stimulus-onset, as well as the means of 50 ms intervals from 350 ms
before to 400 ms after the response. For the classifications, the EOG channel was
removed.

3 Results

Participants’ Behaviour. The six participants gave correct responses in over
90 % of the cases, with a slightly lower performance in the condition ‘Linguistic
– Semantic’ in comparison to the two other conditions. The latencies between
stimulus presentations and corresponding responses of the participants via key
press are presented as histograms in figure 2. In all three experimental conditions,
the latency of recognition was variable. Average latencies for targets were larger
than for non-targets (LS 759 ms/721 ms, LP 775 ms/738 ms, AS 750 ms/700 ms).
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Fig. 2. Response latency histograms for the three conditions.

EEG Epochs Aligned to Stimulus-Onset and Response. The event-related poten-
tials for the experimental condition ‘Linguistic – Semantic’ are presented in
figure 3. The statistical differences between target and non-target EEG epochs
are depicted in figure 4 for each experimental condition. Stimuli elicited late
positive components at central electrodes. The components were larger for tar-
gets than for non-targets, as it can be expected for the oddball paradigm [1].
Augmented positive components at central sites also preceded the participants’
responses to targets.

Classification of Target and Non-Target EEG Epochs. Classification performance
was above chance level (0.5) in all conditions (cf. figure 5). Alignment to the
responses resulted in a better performance than when the EEG epochs were
aligned to the stimulus-onsets.

4 Discussion

Linguistic and Abstract Stimuli. Decisions involving not only basic information
coded in simple abstract shapes but also semantic linguistic information are well
detectable from EEG data (cf. figure 5). This finding is promising for applica-
tion cases where the computer would assign a user-interest-level to each word
displayed on the screen.
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Fig. 3. Event-related potentials for the experimental condition ‘Linguistic – Semantic’
averaged across-subjects. Epoch alignment to stimulus (left) and response (right). The
time courses at electrode Cz are displayed at the top of the figure. The scalp topogra-
phies (bottom) indicate the potentials at all electrodes within the three intervals shaded
in grey in the time courses.

Fig. 4. AUC-score matrices for the three experimental conditions (columns). Epoch
alignment to stimulus (top) and response (bottom).

Fig. 5. ERP classification results of each condition for all participants. Epoch alignment
to stimulus (left) and response (right).
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EEG Epochs Aligned to Stimulus-Onset and Response. The electroencephalo-
gram reflects multiple simultaneous brain processes that are difficult to differ-
entiate. The process of interest can be extracted by averaging epochs of the
continuous signal that are aligned to a repeated event of one type (event-related
potential). Brain activity unrelated to this time point of reference is averaged
out. The characteristics of sensory processing can be uncovered by analysing the
change in the brain activity after stimulus-onset (cf. figure 3, left, and figure 4,
top). In this study, the participants responded as soon as they had recognised
whether a stimulus was a target or not. Thus, the response indicated the moment
of target recognition. Due to the complex stimuli used, the latency of recogni-
tion was variable with respect to the stimulus-onset (cf. figure 2). The alignment
of the EEG data to the subjects’ responses improved the classification perfor-
mance (cf. figure 5). Probably, response-aligned epochs were more informative
than stimulus-aligned epochs because the temporal variability of discriminative
neural activity within the epochs was reduced (cf. figure 4). However, it has to
be considered that the response latencies were larger for targets than for non-
targets, which constitutes a confounding factor for the response-locked analyses.
The response-aligned EEG epochs captured not only the EEG potential evoked
by recognition but also the EEG potential evoked by the stimulus. The time
points captured from the latter differed between classes, because the response
latencies were different on average. Accordingly, classification performance could
be improved by this factor, too.

Conclusion. For more complex decision tasks, discriminative information is
rather response than stimulus locked. However, a user response to each stim-
ulus can not be expected in ‘real-world’ scenarios. For applications without
responses, appropriate classification techniques need to be developed. Future
research will strive to improve classification performance in the absence of an
overt user response.
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