
Joachim Fischer · Markus Scheidgen
Ina Schieferdecker · Rick Reed (Eds.)

 123

LN
CS

 9
36

9

17th International SDL Forum
Berlin, Germany, October 12–14, 2015
Proceedings

SDL 2015: Model-Driven
Engineering
for Smart Cities



Lecture Notes in Computer Science 9369

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7411

http://www.springer.com/series/7411


Joachim Fischer • Markus Scheidgen
Ina Schieferdecker • Rick Reed (Eds.)

SDL 2015: Model-Driven
Engineering
for Smart Cities
17th International SDL Forum
Berlin, Germany, October 12–14, 2015
Proceedings

123



Editors
Joachim Fischer
Humboldt-Universität zu Berlin
Berlin
Germany

Markus Scheidgen
Humboldt-Universität zu Berlin
Berlin
Germany

Ina Schieferdecker
Fraunhofer FOKUS
Berlin
Germany

Rick Reed
Telecommunications Software Engineering
Windermere
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-24911-7 ISBN 978-3-319-24912-4 (eBook)
DOI 10.1007/978-3-319-24912-4

Library of Congress Control Number: 2015950001

LNCS Sublibrary: SL5 – Computer Communication Networks and Telecommunications

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



Preface

The System Design Languages Forum (SDL Forum), held every two years, is an inter-
national conference that provides an open arena for participants from academia and
industry to present and discuss recent innovations, trends, experiences, and concerns in the
field of system design languages and modeling technologies. Originally focussing on
the Specification and Description Language— standardized and further developed by the
International Telecommunications Union (ITU) over a period of nearly 40 years — the
SDL Forum has broadened its topics in the course of time.

The SDL Forum conference series is run by the SDL Forum Society, a non-profit
organization founded in 1995 by language users and tool providers to promote the ITU
Specification and Description Language and related system design languages, includ-
ing, for instance, Message Sequence Charts (MSC), Abstract Syntax Notation One
(ASN.1), Testing and Test Control Notation (TTCN-3), User Requirements Notation
(URN), Unified Modeling Language™ (UML), and Systems Modeling Language™
(SysML).

The local co-organizers of the 17th edition of the SDL Forum (SDL 2015) were the
Humboldt-Universität zu Berlin and Fraunhofer FOKUS. A special focus of SDL 2015
was on model-driven engineering for smart cities: In the future, new information and
communication technologies will be integrated in more and more buildings, streets, and
institutions. The challenge will be to allow all citizens a seamless access to relevant
information, to sustainably and economically use the available resources, to master the
growing claims of networked mobility infrastructures, and to organize a modern, cit-
izen-friendly administration. Modeling the structure and behavior of these kinds of
complex systems of different domains requires adequate description, computation,
testing, and general software techniques. Thus, the use of models serves no end in itself
but should ideally allow for automatic derivation of complex software from models. In
addition, practical problems of performance, scalability, robustness, and security of
such systems come into the focus of interest.

This volume contains the papers presented at SDL 2015: 19 high-quality papers
selected from 26 submissions. Each paper was peer reviewed by at least three Program
Committee members and discussed during the online Program Committee meeting.
The selected papers cover a wide spectrum of topics related to system design lan-
guages, ranging from the System Design Language usage and evolution to model
transformations, and are grouped into six technical sessions as reflected in this volume.
The first session is devoted to smart cities and distributed systems. The papers in the
second session propose changes to the ITU-T Specification and Description Language.
Domain-specific languages are proposed in the third session papers, followed by a
number of papers tackling different issues related to goal modeling. The fifth session
includes a set of papers on use-case modeling before concluding with contributions on
model-based testing.
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SDL Forum Society

The SDL Forum Society is a not for profit organization that, in addition to running the
System Design Languages Forum (SDL Forum) conference series of events (once
every two years), also:

• Runs the System Analysis and Modelling (SAM) workshop series, every 2 years
between SDL Forum years.

• Is a body recognized by ITU-T as co-developing System Design Languages in the
Z.100 series (Specification and Description Language), Z.120 series (Message
Sequence Chart), Z.150 series (User Requirements Notation) and other language
standards.

• Promotes the ITU-T System Design Languages.

For more information on the SDL Forum Society, see http://www.sdl-forum.org.

http://www.sdl-forum.org
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Insertion Modeling and Symbolic Verification
of Large Systems

Alexander Letichevsky1, Oleksandr Letychevskyi1, Volodymyr Peschanenko2,
and Thomas Weigert3(B)

1 Glushkov Institute of Cybernetics, Academy of Sciences of Ukraine, Kyiv, Ukraine
let@cyfra.net, lit@iss.org.ua

2 Kherson State University, Kherson, Ukraine
vladimirius@gmail.com

3 UniqueSoft LLC, Palatine, IL, USA
thomas.weigert@uniquesoft.com

Abstract. Insertion modeling has been developed over the last decade
as an approach to a general theory of interaction between agents and
an environment in complex distributed multiagent systems. The original
work in this direction proposed a model of interaction between agents and
environments based on an insertion function and the algebra of behaviors
(similar to process algebra). Over the recent years, insertion modeling
has been applied to the verification of requirement specifications of dis-
tributed interacting systems and to the generation of tests from such
requirements. Our system, VRS (Verification of Requirements Specifi-
cations), has successfully verified specifications in the field of telecom-
munication systems, embedded systems, and real-time systems. Formal
requirements in VRS are presented by means of local descriptions with
a succession relation. Formalized requirements are represented in a for-
malism that combines logical specifications with control descriptions pro-
vided by the graphical syntax of UCM (Use Case Map) diagrams. This
paper overviews the main concepts of insertion modeling, presents new
algorithms developed for symbolic verification, especially a new predicate
transformer for local descriptions, and provides a formal description of
the method of generating traces from such specifications (which is the
key technology used to verify requirements and derive test suites).

Keywords: Verification · Large system development · Symbolic
techniques

1 Introduction

Insertion modeling has been developed as an approach to a general theory of
describing the interaction between agents and their environments in complex
distributed multiagent systems. The original presentation of insertion model-
ing, published in the mid-90s [12–14], relied on a model of interaction between
agents and environments based on an insertion function and the algebra of
c© Springer International Publishing Switzerland 2015
J. Fischer et al. (Eds.): SDL 2015, LNCS 9369, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-24912-4 1



4 A. Letichevsky et al.

behaviors (similar to process algebra). Insertion modeling generalizes most of
the traditional theories of interaction including CCS (Calculus of Communi-
cated Processes) [24,25], the π-calculus [26], CSP (Communicating Sequential
Processes) [7], ACP (Algebra of Communicated Processes) [2], the calculus of
mobile ambients [3] and many variations of these basic approaches.

Each of these theories can be obtained by defining an insertion function as
a parameter of a generalized insertion model. In such model we can leverage
several insertion functions (to obtain multilevel environments). This makes it
possible to combine different theories of interaction. Insertion modeling can rep-
resent abstract models of parallel computation, such as Petri nets [28] or the
actor model of Hewitt [6], as well as automata network models and different
abstractions of the object-oriented parallel programming paradigm.

Insertion modeling, as implemented by our system VRS, has been applied
to the verification of requirement specifications of distributed interacting sys-
tems [1,9,16–18] and has successfully verified applications in the field of telecom-
munication systems, embedded systems, and real-time systems.

This paper reviews the main principles of insertion modeling, and describes
formal models for requirements. It presents tools used for the verification of
requirements and for generating tests from these requirements. The formal part
of the paper presupposes familiarity with labeled transition system, bisimilarity,
and basic notions of general process theory. The mathematical foundation of
insertion modeling has been presented in [11].

2 The Elements of Insertion Modeling

Insertion modeling deals with the construction of models and studies the inter-
action of agents and environments in complex distributed multiagent systems.
Informally, insertion modeling assumes the following basic principles:

1. The world comprises a hierarchy of environments with inserted agents.
2. Environments and agents evolve over time and have observable behaviors.
3. The insertion of an agent into an environment changes the behavior of the

environment, producing a new environment into which other agents may be
inserted in turn.

4. Environments can be considered as agents which may be inserted into higher
level environments.

5. Agents and environments can model other agents and environments at differ-
ent levels of abstraction.

These principles can be formalized in terms of transition systems, behavior alge-
bras, insertion functions, and insertion machines: The first and the second prin-
ciples are commonly used in information modeling of different kinds of systems.
The third principle is intuitively clear, but has a special refinement in insertion
modeling. We consider agents as transition systems with states considered up to
bisimilarity or trace equivalence. The fourth and fifth principles establish multi-
level environments. The sixth principle will be explicated in terms of an insertion
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machine that simulates the behavior of insertion models. Such machine can be
considered as environment for models inserted into it.

A transition system (or labeled transition system) < S,A, T > consists of
a set of states S, a set A of actions (signals, events, instructions, statements,
etc.), and a transition relation T ⊂ S × A × S that relates states by actions.

Transition systems are evolving in time by changing their states, and perform
actions which are observable symbolic structures used for communication. We
use the notation s

a−→ s′ to express the fact that a transition system can evolve
from state s to state s′ performing action a. Usually transition systems are
nondeterministic and there can be several transitions leaving from a given state,
even performing the same action.

Transition systems S can have three distinguished sets of states: the set S(0)

of initial states, the set SΔ of terminal states, and the set S⊥ of divergent (or
underdetermined) states.

Sometimes it is useful to enrich the structure of labeled transition system by
adding a state label function ϕ : S → U which maps the set of states S to the
set of state labels U . We call such systems attributed transition systems.

An agent is a transition system with states considered up to some notion of
equivalence. Two main equivalence relations are of interest. The first is bisimi-
larity (first presented in [27]), the second is trace equivalence. In model checking,
trace equivalence corresponds to linear time logic, while bisimilarity corresponds
to branching time logic. Equivalence of agents characterizes their behaviors: two
systems in a given states have the same behavior if these states are equivalent.
To represent behaviors of transition systems we rely on behavior algebras.
A behavior algebra is a two sorted (two typed) universal algebra. The first (main)
sort is a set of behaviors (processes); the second is the sort of actions. The oper-
ations of a behavior algebra are prefixing a.u (where a is an action, and u is a
behavior) and nondeterministic choice u + v (an associative, commutative, and
idempotent operation on the set of behaviors). Termination constants are the
successful termination Δ, deadlock 0 (the neutral element of nondeterministic
choice), and divergent behavior ⊥. The approximation relation � is a partial
order on the set of behaviors with minimal element ⊥, and is used for construct-
ing a complete algebra by the fixed point theorem. A complete behavior algebra
F (A) over a set of behaviors A is a complete partial order with prefixing and
nondeterministic choice as continuous functions. Completeness means that every
directed set of behaviors has a minimal upper bound. Continuity means that

a.(
⊔

u∈U

u) =
⊔

u∈U

(a.u)

v + (
⊔

u∈U

u) =
⊔

u∈U

(v + u)

for any directed set U of behaviors. The construction of the algebra F (A) for an
infinite set of actions is described in detail in [11].

A basic behavior algebra, that is, an algebra generated by constants only,
allows only finite behaviors. To define infinite behaviors we use equations over
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behavior algebras. These equations have the form of recursive definitions ui =
Fi(u1, u2, . . .), i = 1, 2, . . . and define their left-hand side behaviors as the com-
ponents of a minimal fixed point. The left-hand sides of these definitions can
depend on parameters ui(x) = Fi(u, x) of different types. In a complete behav-
ior algebra each behavior has a representation (normal form)

u =
∑

i∈I

ai.ui + εu

which is defined uniquely (up to commutativity and associativity of nondeter-
ministic choice) if all ai.ui are different (εu is a termination constant). If all
behaviors on the right-hand side are recursively represented in normal form,
then u can be considered as an oriented tree, possibly infinite, with arcs labelled
by actions and some nodes marked with symbols Δ and ⊥. Any finite part of
this tree (i.e. the part of the tree which is determined by a finite set of finite
paths that start at the root and finish at a node labeled by ⊥) is called a prefix
of behavior u. Continuous functions of behaviors can be characterized by that
their values depend only on finite prefixes of their arguments.

By definition, an environment is an agent that possesses an insertion func-
tion. More precisely, an environment is a tuple < E,C,A, Ins > where E is
the set of states of the environment, C is the set of environment actions, and
A is the set of actions of agents which can be inserted into this environment,
Ins : E ×F (A) → E is an insertion function. Thus, every environment E admits
the insertion of any agent with the set of actions A. Since the states of transi-
tion systems are considered up to bisimilarity, they can be identified with their
behaviors. The main requirement for the environment is the continuity of the
insertion function. A number of useful consequences follow from this assump-
tion. For example, the insertion function can be defined as the least fixed point
of the system of functional equations in a behavior algebra.

The result Ins(s, u) of the insertion of an agent in a state u into an environ-
ment in a state s is denoted as s[u]. The state s[u] is a state of the environment
and we can use the insertion function to insert a new agent v into the envi-
ronment s[u] such that (s[u])[v] = s[u, v]. Repeating this construction we can
obtain the state of environment s[u1, u2, . . .] with several agents inserted into it.
The insertion function can be considered as an operator over the states of the
environment. If the states are identified with behaviors, then the insertion of a
new agent changes the behavior of the environment.

An environment is an agent with an insertion function. Ignoring the inser-
tion function, the environment can be inserted as an agent into a higher level
environment. We can obtain a hierarchical structure such as

s[s1[u11, u12, . . .]E1
, s2[u21, u22, . . .]E2

, . . .]
E

The notation s[u1, u2, . . .]E explicitly shows the environment E to which the state
s belongs (environment indexes are omitted if they are known from context).

Below we assume that the following identity holds: e[u, Δ] = e[u]. The
state e of the environment is called indecomposable if from e = e′[u′] it fol-
lows that e′ = e, u′ = Δ. The set of indecomposable states of environment is
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called its kernel. Indecomposable state of the environment corresponds to the
state before inserting any agent into it. If an environment has an empty ker-
nel (that is, all states are decomposable), then there is an infinite number of
agents that have originally been inserted into this environment. An environment
is called finitely decomposable, if each of its state can be represented in the form
e[u1, ..., um], where e is no decomposable. From now on, we will consider only
finitely-decomposable environments unless otherwise stated.

Attributed environments are based on some logical framework. Such
framework includes a set of types (integer, real, enumerated, symbolic, behav-
ioral, etc.), interpreted in some data domains, it includes symbols to denote
constants of these domains, and a set of typed functions and predicate symbols.
Some of these symbols are interpreted (e.g., arithmetic operations and inequali-
ties, equality for all types, etc.). Uninterpreted function and predicate symbols
are called attributes. Uninterpreted function symbols of arity 0 are called simple
attributes, the others are referred to as functional attributes (uninterpreted pred-
icate symbols are considered as a functional attribute with the binary domain of
values 0, 1). Function symbols are used to define data structures such as arrays,
lists, trees, and so on.

The basic logical language is built over an attributed environment. Usually,
it is a first order language. If necessary, this language may include some of the
modalities of temporal or fuzzy logic (e.g., if they simplify the reasoning in
specific application domains). An attribute expression is a simple attribute or
an expression of the form f(t1, ..., tn), where f is a functional attribute of arity
n, t1, ..., tn (already constructed attribute expressions or constants of suitable
types). If all expressions are constants, then the attribute expression is called a
constant expression.

In general, the kernel of an attributed environment consists of the formulas
of the basic language. Attributed environments are divided into two classes: the
concrete environments and symbolic environments.

The indecomposable state of a concrete attributed environment is a formula
of the form t1 = a1∧...∧tn = an, where - t1, ..., tn are different constant attribute
expressions and a1, ..., an are constants. Typically, such a formula is represented
as a partial mapping with domain {t1, ..., tn} and a range equal to the set of all
constants.

The states of a symbolic attributed environment are the formulas of the logic
language. We consider the definition of transition functions for both types of
environments.

Sometimes it is useful to consider an extended notion of concrete environ-
ment states with an infinite number of attribute expressions which have concrete
values. This corresponds to an infinite conjunction or a function with an infinite
domain. Such function is a mapping σ : Attr → D from the set Attr of all
constant attribute expressions to the set of their values D (taking into account
types). The mapping σ is naturally extended to the set of all expressions of a
given environment and to formulas of a given logical framework.
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The states of a symbolic attributed environment are the formulas of the logic
language. We consider the definition of a transition functions for both types of
environments.

Concrete attributed environments are useful to formalize the operational
semantics of programming or specification languages. An environment state is a
memory state (data structures, objects, network structures, channels, etc.). Pro-
grams are agents inserted into this environment. For parallel programming lan-
guages, interaction is implemented via shared memory or message passing. When
interacting via shared memory, the parallel composition of behaviors (asynchro-
nous or synchronized) plays a major role. Message passing involves the use of
special data structures in the environment for the organization of the interaction.

One of the first implementations of insertion modeling was the definition of
the operational semantics of MSC [15] by means of attributed environments rep-
resenting properties of evolving histories of a system described by MSC diagram.

3 Local Description Units

Local description units are used to specify the behavioral properties of transition
systems. When a system is presented in the form of a composition of agents and
environment, we consider the local properties of the insertion function.

We shall consider local properties of a system represented as a concrete or
symbolic attributed environment. A local description unit of an attributed envi-
ronment is a formula ∀x(α →< P > β), where x is a list of (typed) parameters,
α and β, formulas of the basic language, and P is a process (finite behavior of
the specified system). The formula α is called the precondition, and the formula
β the postcondition of the local description unit. Both the conditions and the
behavior of a local description unit may depend on parameters. A local descrip-
tion unit can be considered as a temporal logic formula that expresses the fact
that, if (for suitable values of parameters) the state of a system satisfies the pre-
condition, the behavior P can be activated and after its successful termination,
the new state will satisfy the postcondition. Local description units are anal-
ogous to Hoare triples (formulas of dynamic logic) as well as production rule
systems (widely used in the description of the behavior of artificial intelligence
and expert systems).

Postconditions may contain assignments f(x) := y where f(x) is an attribute
expression and y is an algebraic expression. Such assignment is considered as a
simple temporal logic statement which asserts that a new value of f at the
point equal to the old value of attribute expression x is equal to the old value
of algebraic expression y. Therefore the local description unit ∀z(α →< P >
(f(x) := y) ∧ β) is equivalent to ∀(u, v, z)(α ∧ (x = u) ∧ (y = v) →< P >
(f(u) = v) ∧ β).

Local description units used in the input language of the VRS system are
called basic protocols. They are the main vehicles for expressing the formal
requirements of multiagent and distributed systems. Basic protocols are expressed
in the basic language of the VRS system; the processes are represented as



Insertion Modeling and Symbolic Verification Large Systems 9

MSC diagrams. To study semantics underlying protocols several approaches were
developed. These approaches are described in [18] and in [20].

We can formulate two kinds of semantics: big step semantics and short step
semantics. Both define a transition system on the set of concrete or symbolic
states of an attributed environment. The set of actions of a big step semantics
are local description units, in a short step semantics the set of actions consists of
actions used in processes of local description units. Local description units define
operators on a set of state of environments which can be performed concurrently.
In big step semantics this concurrency is hidden, while in short step semantics
concurrency is defied explicitly. Below we shall consider only big step semantics.

To define the big step semantics of local descriptions we rely on the notion of
a predicate transformer. A predicate transformer pr is a function that maps two
formulas of the basic language to a new formula. This function is used to define
a big step transition system for a symbolic attributed environment as follows.
Let B = ∀x(α →< P > β) be a local description unit, then

s
B−→ s′ ⇔ ((s ∧ ∃xα) 
= 0) ∧ (s′ = ∃x(pr(s ∧ α, β)) 
= 0)

In pr(s ∧ α, β), the symbol x denotes a list of new simple attributes added
to the environment, and after binding this formula by an existential quantifier
it can be considered as a list of variables. If collisions appear, the symbols in the
list x must be renamed.

The main requirement for the function pr is the relation pr(s, β) |= β. A
big step transition system is deterministic which means that s′ is a function
of s, denoted by s′ = B(s). We also require that the predicate transformer is
be monotone (s → s′ ⇒ pr(s, β) → pr(s′, β)) and distributive (pr(s ∨ s′, β) =
pr(s, β) ∨ pr(s′, β)).

Example: The MESI protocol is used for the coherence control of shared mem-
ory in a multiprocessor system with local cache memories for processors. The
higher level environment is a bus with shared main memory. The next level
consists of processors with lines of cache memory. Each line (data unit) is syn-
chronized separately. It is considered as an agent at the lowest level inserted into
the environment of a processor. The states of the lines are M, E, S, and I: M means
that the content of a line is modified. E means that the data on a line is exclu-
sive and coincides with the corresponding data in the main memory. S means
that this line may be stored in other lines. I means that the line is invalid. The
actions of lines are Read and Write. The abstraction level of this model hides
details as the content of the lines and the addresses for read and write actions.
The behaviors of lines can be described by the following system of equations:

I = Read.(S+E+M) + Write.M, S = Read.S + Write.M
M = Read.M + Write.M, E = Read.E + Write.E

Local descriptions refer to a system with an undefined number of processors.
Each processor contains one line. The statement [i : q] means that line number
i is in state q. It will be written as Mesi = q. No details about the structure of
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the environment will be specified except for identity E[i : I, u] = E[u]. In other
words, the kernel of this environment is empty.

This environment is described by the following set of local descriptions:

R1:Forall i(Forall j (Mesi(j) = I) -> <Read i> (Mesi(i) = E));

R2:Forall(i,k)(Forall j (j!=k -> (Mesi(j) = I)) & (Mesi(k) = E)

& (i!=k) -> <Read(i)>(Mesi(k) = S & Mesi(i) = S));

R3: Forall (i,k) (Forall j ((j != i) -> Mesi(j) = S |/ Mesi(j) = I)

& (i!=k) & Mesi(k) = S & Mesi(i) = I -> <Read(i)>(Mesi(i) = S));

R4: Forall(i,k)(Forall j (j!=k -> (Mesi(j) = I)) & (Mesi(k) = M)

& (i!=k) -> <Read(i)>(Mesi(k) = I & Mesi(i) = M));

R5: Forall i(~(Mesi(i) = I) -> <Read i> 1);

R6: Forall i(Mesi(i) = M -> <Write i> 1);

R7: Forall i(Mesi(i) = E -> <Write i> Mesi(i) = M);

R8: Forall i(Mesi(i) = S

-> <Write i>Forall j (j!=i -> Mesi(j) = I) & Mesi(i) = M );

R9: Forall i(Forall j (Mesi(j) = I)

-> <Write i> Forall j (j!=i -> Mesi(j) = I) & Mesi(i) = M );

R10: Forall i,k(Forall j (j != k & j != i -> Mesi(j) = I) &

Mesi(i) = I & (Mesi(k) = E |/ Mesi(k) = S)

-> <Write i> Forall j (j!=i -> Mesi(j) = I) & Mesi(i) = M );

R11: Forall i,k(Forall j (j != k & j != i -> Mesi(j) = I) &

Mesi(i) = I & Mesi(k) = M

-> <Write i> Forall j (j!=i -> Mesi(j) = I) & Mesi(i) = M );

This example illustrates a method of describing an environment with an unde-
fined number of agents. Real systems will consist of a finite number of agents,
but there is no qualitative difference between a very large or an infinite number
of agents. This example further illustrates the use of universal quantifiers. Below
we will show how to define a predicate transformer with universal quantifiers.

There are many environments with similar structure at a higher level of
abstraction (for example, telecommunication systems with an undefined number
of subscribers or a smart city model with an undefined number of people or
vehicles on the street). In such situations, we need to be able to reason about a
system without assuming a specific number of subscribers, people, or vehicles.

4 Predicate Transformer

There are many functions pr that can serve as predicate transformer. The weak-
est such function is simply pr(s, β) = β. It is not a good choice, because we lost
information about the state s. Following Dijkstra’s methodology [5] we define
the strongest predicate transformer similar to the strongest postcondition for a
given precondition s after performing of postcondition β of a local description
unit, considered as an operator over the formulas of the basic language.

To refine the notion of the strongest predicate transformer consider a transi-
tion system with states of a symbolic attributed environment and postconditions
as actions: s

β−→ s′ ⇔ s′ = pt(s, β). Compare the execution of postcondition over
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a concrete and a symbolic attribute environment. Each state of a symbolic envi-
ronment s simulates the set of states of a concrete environment. This set consists
of the states σ such that σ |= s. The simulation condition can be formulated as

σ
β−→ σ′, s

β−→ s′, σ |= s ⇒ σ′ |= s′

Now define a transition relation on the set of concrete states. The state of a
concrete environment is a formula, so postconditions can be applied to concrete
states as well, but the result in general is not concrete. The natural definition
for a concrete environment is as follows:

σ
β−→ σ′ ⇔ (σ′ |= β) ∧ Ch(σ, σ′, β)

The condition Ch(σ, σ′, β) restricts the possible changes of the values of attribute
expressions after transitioning from σ to σ′ by means of the operator β. When
β is an assignment the definition of Ch is clear: only the left hand side of an
assignment can change its value. For the general case, assume that β = R ∧ C
where R is a conjunction of assignments, and C is a formula of the basic language.
By definition, the following attribute expressions can change their values: (i) left
hand sides of assignments, (ii) outermost occurrences of attribute expressions in
C which do not contain variables, and (iii) the results of substituting arbitrary
constants for variables in outermost occurrences of attribute expressions in C.

Assume that each postcondition is supplied with the set Change(β) that
includes the set of all attribute expressions obtained by the enumeration above.
Predicate Ch can be defined as Ch(σ, σ′, β) ⇔ ∀(t ∈ Attr)(t /∈ σ(Change(β)) ⇒
σ(t) = σ′(t)).

We define pt(s, β) as the strongest condition s′ that satisfies the simulation

condition. The inverse condition σ′ |= s′ ⇒ σ |= s for some σ such that σ
β−→ σ′

must be added. Finally, the strongest predicate transformer is defined as the
condition satisfying the following two properties:

(σ
β−→ σ′, s

β−→ s′, σ |= s) ⇒ (σ′ |= s′)

(s
β−→ s′, σ′ |= s′) ⇒ (∃σ(σ

β−→ σ′, σ |= s))

From this definition, the existence of the strongest predicate transformer and its
uniqueness is obvious. We shall refer to the first property as consistency and to
the second as completeness of the predicate transformer. Below we shall use the
symbol pr for the strongest predicate transformer.

A strongest predicate transformer pt exists, but is is not obvious how it
should be expressed leveraging a symbolic attributed environment. In [21], the
formula pt(s, β) was defined as a first order formula of the basic language when
s contains only existential quantifiers and β is a quantifierless formula. Here we
generalize this result to arbitrary first order formulas.

To compute pt(s, β) for the state s of a symbolic attribute environment and
postcondition β = R∧C, where s and C are first order formulas, and R = (r1 :=
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t1, r2 := t2, ...) = (r := t) is a parallel assignment the following four cases need to
be considered: Case 1 corresponds to when only simple attributes are contained
in the set Change(β); case 2 restricts the set Change(β) to attribute expressions
without variables; case 3 allows variables bound by external universal quantifiers
of C, and case 4 allows only variables bounded by external universal quantifiers
of the formula s in Change(β). Consider a set Unch(s, β) along with Change(β).
This set consists of the outermost occurrences of attribute expressions in s which
are not in Change(β).

Represent the sets Change(β) and Unch(s, β) by lists Q = (q1, q2, ...) and
Z = (z1, z2, ...). If an element of the list Q contains a variable, no substitution is
needed. Mark the occurrence of a variable by the quantifier that binds it. Con-
sider a list X = (x1, x2, ...) of variables and establish a one-to-one correspondence
with the expressions from the list Q.

Using the notation ϕ = subs(v : s(v) := t(v)|P (v)) for substitution, where
v is a list of variables, the result ϕ(E) of the application of a substitution ϕ to
expression E is obtained by simultaneous replacement of all outermost occur-
rences of expressions of the form s(v) such that v satisfies the condition P (v)
to t(v). Substitution without matching is denoted by subs(si := ti|i ∈ I) and
similarly refers to outermost occurrences.

Theorem 1. If all attributes in the list Q have arity 0, and ϕ = subs(qi =
xi|i = 1, 2, ...), then

pt(s, β) = ∃x(ϕ(s) ∧ (r = ϕ(t))) ∧ C.

Consistency. Let σ
β−→ σ′, s

β−→ s′. We must prove σ′ |= s′ = pt(s, β). From
σ′ |= β ⇒ σ′ |= C. To prove ∃x(ϕ(s) ∧ (r = ϕ(t))) it is sufficient to take the
values of Change(β) for x in σ and apply the semantics of assignments.

Completeness. Assume s
β→ s′ and σ′ |= pt(s, β). We must prove that there

exists a concrete state σ such that σ
β→ σ′ and σ |= s. From σ′ |= pt(s, β) it

follows that there exist constants ci, i = 1, 2, ... such that σ′ |= μϕ(s) ∧ (r =
μϕ(t)) ∧ C, where μ = subs(xi = ci|i = 1, 2, ...). Define σ so that σ(qi) =

ci, σ(ri) = μϕ(ti) and σ(g) = σ′(g), g /∈ Change(β), Consequentially, σ
β−→ σ′

and σ |= s.

Theorem 2. If attribute expressions in the lists Q and Z do not contain vari-
ables, then pt can be expressed by a first order formula.

When an attribute expression has an arity greater than 0, substitutional-
ity of equality holds: if u = v then f(u) = f(v). It is obvious that if f(u) ∈
Change(β), f(v) ∈ Unch(s, β) but (u = v) then f(v) can be changed and must
be contained in Change(β). Eventually, we consider all equalities and disequal-
ities of arguments of such attributed expressions.
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Let M = {(u, v)|f(u) ∈ Q, f(v) ∈ Z}. Enumerating all subsets of the set M
as (J1, J2, ...), we can obtain all combinations of equalities and disequalities:

Ei =
∧

(u,v)∈Ji

(u = v) ∧
∧

(u,v)∈M\Ji

(u 
= v)

Let ϕi = ξi + ϕ, where ξi = subs(v : f(v) := xj |f(v) ∈ Z, (u, v) ∈ Ji, f(u) =
qj), and substitution ϕ is defined as above. The sum of two substitutions is a new
substitution which applies one of them to the outermost occurrences of attribute
expressions. It is obvious that only one of two substitutions can be applied to a
given attribute expression.

The strongest predicate transformer is defined by the following formulas:

pt(s, β) = ∃x(p1 ∧ p2 ∧ ...)

pi = (E′
i → si ∧ Ri ∧ C)

E′
i = ϕi(Ei), si = ϕi(s), Ri = (r(ϕi(u)) := ϕi(t))

Some of the formulas p1, p2, ... may be not satisfiable. In this case, transition
s

β−→ s′ is undefined, that is, the state s is deadlock state. Further, some of
p1, p2, ... may be identically true and can be deleted from the conjunction.

Theorem 2 for the definition of pt above is slightly more general than the
result proven in [21].

Consistency. Let σ
β−→ σ′, s

β−→ s′, and σ |= s. The conditions E′
i are mutually

exclusive and their disjunction is identically true. We can select i such that E′
i is

valid on σ′. Identified attribute expressions can be considered as simple attributes
and the proof continues as in Theorem 1.

Completeness. s
β→ s′ and σ′ |= pt(s, β). Take the value of x such that all

conditions p1, p2, ... are valid on σ′. Select i such that σ′ |= E′
i is true. Therefore

σ′ |= si∧Ri∧C. Identifying attribute expressions according to E′
i we can consider

them as simple attributes and the proof continues as in Theorem1.

Theorem 3. Let C = ∀yC ′ in prenex normal form. Assume that no attribute
expression from the list Q has variables other than variables from list y and
assume attribute expressions from the list Z have no variables at all. Then

pt(s, β) = ∃x∀y(p1 ∧ p2 ∧ ...)

pi = (E′
i → si ∧ Ri ∧ C ′).

Consistency. Let σ
β−→ σ′, s

β−→ s′, and σ |= s. We have σ′ |= ∀yC ′. Consider
an arbitrary symbolic constant for y and continue as above.

Completeness. Take the value of x such that ∀y(...) is true. Consider an arbi-
trary value for y, select i such that E′

i is true. Continue as in the previous
Theorem, considering y as a symbolic constant.
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Theorem 4. Let s = ∀ys′, C = ∀zC ′, both in prenex normal form. Let no
attribute expression from the list Z have variables other than the variables from
the list y and let no attribute expression from the list Q have variables other
than the variables from the list z. Let s′

i = ϕi(s′).

pt(s, β) = ∃x∀y∀z(p1 ∧ p2 ∧ ...)

pi = (E′
i → s′

i ∧ Ri ∧ C ′).

Consistency. Let σ
β−→ σ′, s

β−→ s′, and σ |= s. We have σ′ |= ∀yC ′. Take
arbitrary symbolic constants for y. Continue as above.

Completeness. Take the value of x such that ∀y∀z(p1 ∧ p2 ∧ ...) is true. Take
an arbitrary value for y and select i such that E′

i is true. Continue as in the
previous theorem, considering y as a symbolic constant.

Transitions of local descriptions are computed as follows: Reduce the
conjunction s∧α of the state of the environment and the precondition of a local
description B = ∀x(α →< P > β) to prenex normal form. Let this normal
form be ∃zu. Compute v = pr(u, β) if u and β satisfy one of three conditions
of Theorems 1–4. The variables of list z are considered as attributes. The result
will be B(s) = ∃x∃zv.

Example: Returning to the verification of the MESI protocol, the initial state
of MESI is the symbolic state Forall i(Mesi(i)=I). The application of local
descriptions generates an infinite number of states. Proof the following safety
property Sf:

Exist i((Mesi(i) = E) & Forall(j:int)(j!=i-> (Mesi(j) = I))) |/

Exist i((Mesi(i) = M) & Forall(j:int)(j!=i-> (Mesi(j) = I))) |/

Exist i((Mesi(i) = S) & Exist k((k!=i)&(Mesi(k)=S) &

Forall j((Mesi(j) = I) |/ (Mesi(j) = S)))) |/

Forall i(Mesi(i)=I)

To apply the inductive method, one must prove that Sf is true in the initial
state and is preserved by each local description. In VRS, this can be proven
using static verification.

To prove that a system, defined by means of a set of local descriptions, is
free of dead locks, we use an abstraction to model the infinite state system by
a finite state system. For MESI, this abstraction is introduced in the insertion
function. Consider the following identity: E[i : S, j : S, k : S] = E[i : S, j : S]
where i, j, k are different. Usually i, j, k are bound by existential quantifiers, so
it is not important which of them will be omitted. After this abstraction the
system will be a finite state system and safety can be proven after generating all
states.
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5 Generic Trace Generator (GTG)

Local descriptions appear as the result of formalizing requirements. They can be
applied to the environment states (concrete or symbolic) as operators. But it is
not sufficient to use only local descriptions to completely specify a model. When
constraints on the sequence of application of local descriptions are not defined,
this may lead to the consideration of undesirable histories and traces. We define
a succession relation on the set of local descriptions. This relation can be intro-
duced by the definition of additional control attributes and conditions limiting
the conditions of application of local descriptions on these attributes. An inconve-
nience of this description is the need for the partition of the basic attributes and
auxiliary control attributes. Moreover, the local descriptions themselves become
more complicated. The VRS system uses the graphical UCM notation [8] to
specify this succession relation.

We combine the language of local descriptions with UCM. UCM is used for
the definition of succession relation between the set of local descriptions and for
the expressing the partial order of the evaluation of local descriptions.

Local descriptions give a specification of UCM responsibilities; the system of
UCM maps is used as a multilevel environment for a system of local descriptions.
A restricted set of UCM constructs is used in our models and includes start and
end points, responsibilities, and-fork and and-join, or-fork and or-join, and stubs.
The semantics of this combined specification language is described in [22].

The insertion function used is the following:

U
B−→ U ′, S B−→ S′

S[U ] B−→ S′[U ′]
P

U is the state of the system, S is the state of UCM control part, B is a local
description which can be applied in state S[U ], condition P defines the applica-
bility of a local description B in the state of a model S[U ].

Verification and Testing. The VRS system considers two types of verification
problems. The first one is the verification of requirements and programs; the
second one is the generation of tests.

The language implemented in VRS supports attributes of numeric and sym-
bolic types (free terms), arrays (functions with restricted arguments), lists, and
functional data types. The deductive system supports the proof of the asser-
tions in a first-order theory (an integration of theories of integer and real linear
inequalities, enumerated data types, uninterpreted function symbols and queu-
ing theory). As the deductive system can successfully prove or refute only some
classes of formulas, during verification sometimes failures can be obtained on
intermediate queries. In practice, such failures are quite rare and in most cases
do not affect the final outcome. The MSC notation with insertion semantics [15]
is used to model processes.

The main tools of VRS are concrete and symbolic trace generators, and static
verification tools, which include checking the completeness and consistency of
local descriptions and checking of safety properties.
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The system has successfully been applied in a number of practical projects
in the areas of telecommunications, embedded systems, telematics, etc. Projects
with up to 10,000 requirements formulated as local descriptions were formalized,
with up to 1000 attributes.

Strategies of Generic Trace Generator. A generic insertion machine has
been developed and is adapted to proofing problems. This adaptation is con-
trolled by a set of parameters defining the strategy of generating traces.

The main parameters are reference points, the algorithm of selection of the
next step, coverage criteria, and conditions of when to stop generation.

Reference points are defined by standard rules or are selected by user. For
example the set of all responsibilities can be chosen as the set of reference points.
This set is sufficient when we solve the reachability problem. In this case, trace
equivalence is used to define the equivalence of states. When generating traces
for testing, bisimilarity must be used as equivalence criterion and the set of
reference points must include also branching points (forks and joints).

The following UCM elements can be used as reference points: Start, end,
forks, joins, responsibilities, and entry and exit to stubs. Reference points are
used to abstract generated traces. Only the passing through reference points is
observable, while transitioning through intermediate states is hidden.

The state of trace generation is data structure which contains all traces gener-
ated up to this point. Traces are represented by a tree with nodes corresponding
to the choice points. The leafs of this tree are reference points which can be
further extended. The next step generation algorithm selects one of the these
points and tries to reach the next reference point. Criteria to choose the next
step could be the shortest path or the path nearest to the end point.

The trace tree can be used derive test cases using various coverage criteria.
An example of such a criterion is to cover all transitions between all pairs of
reference points.

6 Conclusions

Tools for the verification and model-based testing have been presented; these
tools are formally based on insertion modeling. The main reasoning mechanism is
a predicate transformer for symbolic modeling of distributed multiagent systems.
We have described and proven properties of the predicate transformer.
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Abstract. A Service Level Agreement (SLA) is a contract between a
service provider and a customer that defines the expected quality of
the provided services, the responsibilities of each party, and the penal-
ties in case of violations. In the cloud environment where elasticity is an
inherent characteristic, a service provider can cater for workload changes
and adapt its service provisioning capacity dynamically. Using this fea-
ture one may provide only as many resources as required to satisfy the
current workload and SLAs, the system can shrink and expand as the
workload changes. In this paper, we introduce a model-based SLA mon-
itoring framework, which aims at avoiding SLA violations from the ser-
vice provider side while using only the necessary resources. We use UML
models to describe all the artifacts in the monitoring framework. The
UML models not only increase the level of abstraction but they are also
reused from the system design/generation phase. For this purpose, we
develop metamodels for SLAs and for monitoring. In the monitoring
framework, all abstract SLA models are transformed into an SLA com-
pliance model which is used for checking the compliance to SLAs. To
avoid SLA violations as well as resource wasting, dynamic reconfigura-
tions are triggered as appropriate based on the predefined Object Con-
straint Language (OCL) constraints using thresholds.

Keywords: Monitoring · Elasticity · SLA violation avoidance · Model
driven engineering · OCL constraints

1 Introduction

A Service Level Agreement (SLA) is a contract between a customer and a service
provider that aims at describing the level of service quality and the obligations
of each party in the agreement. An SLA violation occurs when any of the parties
fails to meet their obligations [14]. A violation may be associated with a penalty.

During the operation of a system its workload changes dynamically, which
results in variable resource usage. To increase revenue, instead of allocating a
fixed amount of resources, providers try to allocate only as much as required
to satisfy the current customer needs and adapt subsequently to the workload
c© Springer International Publishing Switzerland 2015
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changes. This could be challenging as one would like to provision resources not
too early or too much to avoid the waste of resources, and not too late or inade-
quately to avoid SLA violations. To accurately adapt the system at runtime, the
system should be monitored: The metrics or events of interest are collected and
after evaluation actions are triggered to modify the managed system accordingly.

Figure 1 gives an overall view of our SLA management framework. In this
framework, the system is scaled according to the workload variations while avoid-
ing SLA violations. For this, the system configuration and the related elasticity
rules are generated offline during the design phase and determine the configu-
ration changes needed to scale up/down (adding/removing resources of a node)
and in/out (removing/adding a node). In this framework, all the SLAs, their cor-
responding measurements and the thresholds are combined into an SLA compli-
ance model. The validation of the SLA compliance model may generate triggers
for scaling down and/or in the system to save resources when the workload
decreases or for increasing the resources when workload goes up to avoid SLA
violations. The monitoring system feeds the framework with the measured data.
The thresholds are related to the maximum and the minimum capacity of the
current system configuration and are used to check if the system needs recon-
figuration. Accordingly, the values for the thresholds are re-evaluated with each
reconfiguration of the system. To map the measured data to SLA parameters
and to generate the triggers for the reconfiguration OCL [10] constraints have
been defined. When a trigger is generated the appropriate elasticity rules are
invoked to reconfigure the system with the minimum required resources. In this
short paper we target primarily, but not limited to, component based systems
deployed on a number of virtual machines typical for cloud computing. Further-
more, we focus on the modeling aspects and the use of OCL constraints to trigger
dynamic reconfiguration.

Monitoring System

Measured 
Data

System 
Threshold

SLA Models

...

SLA_1SLA_1
SLA_1

. .
.

SLA_1SLA_1
SLA_n

. .
.

Elasticity 
Rules

SLA Compliance Model

Configuration

Reconfigures

OCL

Reconfiguration

Fig. 1. SLA compliance management and dynamic reconfiguration
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In this short paper, we introduce the principles of our approach for SLA
compliance monitoring and dynamic reconfiguration. The rest of the paper is
organized as follows. In Sect. 2, the metamodels for SLA and SLA compliance
are presented. Section 3 explains how OCL constraints are used to generate
dynamic reconfiguration triggers. We discuss the related work in Sect. 4 and
conclude in Sect. 5.

2 Modeling for SLA Compliance Management

To manage the compliance to SLAs, the running system needs to be monitored,
data has to be collected and the SLAs checked periodically. We adopt a model
driven approach not only to facilitate the understanding, design and maintenance
of the system [9], but also to reuse the models generated during the system
design phase such as the system configuration, and to build on existing tools. We
define our metamodels using Papyrus [5]. The Atlas Transformation Language
(ATL) [6] is used to combine all SLA models into an SLA compliance model. In
this section, we introduce the metamodels for SLA and for SLA compliance.

2.1 SLA Metamodel

The SLA metamodel is shown in Fig. 2. Each SLA has an ID and is an agreement
between a provider and a customer. A third party may also participate to verify
the agreed Service Level Objectives (SLO) and play the monitoring role [7]. An
SLA is applicable for a specific time duration and has a cost. This cost can be
a constant value or it can be a function based on the usage of the services. An
SLA includes some service functionalities that the provider agrees to provide
with specific Quality of Service (QoS). An abstract stereotype SlaParameter
captures the different types of QoS the customer and the provider agree on.
The agreed values are represented by maxAgreedValue and minAgreedValue in
the figure. For example, the maxAgreedValue in the SLA parameter DataRate
represents the maximum number of requests per second the customer may send
for the specific service.

The monitoring system measures each metric (MeasuredMetric) at a prede-
fined frequency. Customers may also want to specify how often the SLA parame-
ters are monitored and checked. This customization is represented by SlaMetric
stereotype. However, it should be compatible with the capability of the moni-
toring system. In other words, the frequency agreed on in the SLA must be less
or equal to the frequency of measurements of the monitoring system.

2.2 SLA Compliance Metamodel

An SLA compliance model is the combination of all SLA models, part of the
configuration model and the measurements obtained from the monitoring sys-
tem. The main reason for merging all SLA models into one model is that we
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want to be able not only to avoid violations in each individual SLA but also to
trigger elasticity rules which are related to all customers resource usage.

The SLA compliance metamodel is shown in Fig. 3. The same service with the
same or different SLA parameters is generally offered to multiple customers. The
MeasuredMetric stereotype represents the value the monitoring system measures
per service for each customer or per node of the system. When an SLA parameter
related to a service is not respected, the BelongsTo relation indicates which SLA
has been violated.
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The monitoring system collects raw metrics. Some of these metrics (e.g. ser-
vice up/down time) and the SLA parameters perceived by the customers (e.g.
availability of service) are not at the same level. To bridge the gap between the
measured values and SLA parameters, OCL constraints have been defined as
mapping rules. The attribute mappedValue represents the value of such mapped
measurements. A service may be a composition of different service functionali-
ties, which may be mapped similarly or measured at the composite level.

The attribute goal of an SLA parameter specifies the parameters optimiza-
tion goal. For some SLA parameters, like availability, the optimization goal is
maximization while for others like response time, the goal is minimization. We
categorize our OCL constraints for SLA violation avoidance based on these opti-
mization goals. When a new SLA parameter is introduced and taken into con-
sideration, there is no need for new OCL constraints as long as its optimization
goal fits into one of the aforementioned categories.

3 Dynamic Reconfiguration

In the proposed framework, OCL constraints are used to trigger dynamic recon-
figuration. The OCL constraints are defined on a number of attributes: The
attribute currentCapacity in the ServiceFunctionality stereotype specifies the
maximum workload (e.g. requests/second) the system in its current configura-
tion can handle for a specific service. The attribute systemCapacity is defined
at the design phase as the maximum system capacity for the service. This is
the maximum capacity the system can be expanded to without major changes
(e.g. upgrade/re-design). As mentioned earlier to avoid SLA violations and trig-
ger reconfiguration, we use thresholds. Some of the thresholds are related to
all customers (aggregate) resource usage while others are related to individual
SLAs.

– maxCurrentThreshold and minCurrentThreshold : For each service, the sys-
tem is dimensioned dynamically with a currentCapacity to handle a certain
workload. In order to avoid SLA violations, i.e. workload exceeding current-
Capacity, we define a maxCurrentThreshold point (with maxCurrentThresh-
old < currentCapacity) at which the system capacity is increased by scaling
it up/out to a new currentCapacity and for which a new maxCurrentThresh-
old is defined. Therefore, the relation workload < maxCurrentThreshold must
be respected. Not to waste resources we also define a minCurrentThreshold
where we scale down/in the capacity of the system to a lower capacity (i.e. the
relation workload > minCurrentThreshold must be respected). We use OCL
constraints to define these restrictions. As a result the violation of the defined
OCL constraints triggers the scaling of the system. In this paper, we assume
that the service workload is distributed evenly in the system.

– slaThreshold : Some SLA parameters like service availability are set on a per
customer basis. Therefore, to avoid SLA violations, we need to watch the SLAs
separately using a slaThreshold for each SLA. These parameters behave simi-
larly with respect to violation. Some of them like availability and throughput
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for which a higher value is preferable (i.e. the attribute goal is equal to Maxi-
mize) will be violated by a service provider when in the SLA compliance model,
the experienced quality is less than the slaThreshold (i.e. the relation mapped-
Value > slaThreshold must be respected all the time if goal=Maximize); while
for others like response time, the violation happens from the service provider
side when the measured response time is greater than the slaThreshold (i.e. the
relation mappedValue < slaThreshold must be respected if goal=Minimize).
Again, we use OCL constraints to define these restrictions. By violation of
these OCL constraints, triggers will be generated to avoid SLA violations.

The following thresholds are related to the node resource utilization:

– maxThreshold and minThreshold : To avoid SLA violations because of node
limitations, e.g. the load on a node exceeding its capacity, we define the max-
Threshold point at which we allocate more resources to the node (e.g. virtual
machine, hyper scale system) or add more nodes to the system (i.e. the relation
load < maxThreshold should be respected). To avoid the wasting of resources,
the minThreshold is used to reduce the node resources, for example, by remov-
ing a node or decreasing the virtual resources of a virtual machine. The addi-
tion/removal of resources to/from the node increases/reduces the capacity of
the node and therefore new thresholds are defined. The maxThreshold and
minThreshold are vectors where different types of node resources (e.g. CPU,
RAM, etc.) are taken into account.

To obtain the SLA compliance model from the individual SLA models, we use
model transformation. As the number of SLA models varies over time, SLAs may
be added or removed, we use different model transformations. For the addition,
the initial SLA compliance model is obtained directly from the first SLA model
by transformation that creates all the model elements. Subsequent SLA models
are added incrementally using another transformation which takes into account
the already existing elements of the SLA compliance model. Similarly, when an
SLA is removed, the elements related to only this SLA should be removed from
the SLA compliance model together with their measurements. This is achieved
with a different transformation that takes the SLA to be removed and the SLA
compliance model as input and generates a new SLA compliance model. In the
current prototype implementation the addition and removal of SLAs are done
offline.

4 Related Work

There are a number of works that define languages for modeling SLAs. Most
of the languages are for a specific domain. For example in [14,15], the authors
define SLAng suitable for network services. Others like [7,12] focus on web ser-
vices. QML [4] allows customers to define the SLA parameters to be measured
for monitoring purposes. Since a customer defined parameter may not be observ-
able for a specific system and an agreement needs a common understanding of
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parameters between parties, this can result in inconsistency with the monitoring
systems capability. In our proposal, not only do we allow customers to customize
their SLAs but we also make sure that this customization is compatible with the
capabilities of the monitoring system.

In [2], a metamodel for SLA description and monitoring is proposed but it
is not clear how the compliance to SLAs is checked. In [11], a timed automata
is used to detect violations with respect to response time. The work in [14] is
closely related to this paper. In [14], to detect SLA violations, different OCL
constraints for different SLA parameters have been defined. However, to add
a new parameter to an SLA a new OCL constraint for the violation detection
has to be added as well, which is not the case in our framework. In [14], SLA
compliance is the only goal, while in our case we want to achieve this goal with
the minimum amount of resources needed for the workload at any given time
and to grow/shrink the system according to the workload variations.

Monitoring and scaling of cloud systems based on the demand has been exten-
sively investigated. However, only a few works have looked into SLA compliance
at an abstract level. In [3], a framework for monitoring SLAs is proposed. It
consists of three components: a monitoring system for providing measurements,
LoM2HiS for mapping monitored data to parameters in the SLAs, and a knowl-
edge database which uses past experience to solve current SLA related issues.
This framework is suitable for the infrastructure layer of the cloud. Similarly, [1]
focuses on the infrastructure level only but nothing is done at the other lay-
ers to respond to application level workload variations. In our framework both,
infrastructure and application, levels are handled. On the other hand, [8,13] for
instance do not take SLAs into account.

5 Conclusion and Future Work

Service providers aim at increasing their revenue by operating a system with
the minimum amount of resources necessary to avoid SLA violation penalties.
For this purpose, there is a need for an SLA management and dynamic recon-
figuration framework that scales the system (up/down and in/out) according to
the workload changes while avoiding SLA violations. In this paper, we proposed
such a framework. It is model driven, it is at the right level of abstraction. OCL
constraints are written for categories of parameters and are not specific for each
parameter, which eases future extension. More important, the proposed frame-
work reuses models developed at the system design stage. This work is at an
early stage, more investigations are required, for instance, to generate the elas-
ticity rules automatically and to handle the correlation of the generated triggers.
We also need to investigate the challenging issue of SLA compliance model evo-
lution at run time, i.e. addition and removal of SLA models while the system
is in operation. The performance of such a model based framework needs to be
assessed as well.

Acknowledgments. This work has been partially supported by Natural Sciences and
Engineering Research Council of Canada (NSERC) and Ericsson.
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Abstract. Interconnected smart devices constitute a large and rapidly
growing element of the contemporary Internet. A smart thing can be as
simple as a web-enabled device that collects and transmits sensor data
to a repository for analysis, or as complex as a web-enabled system to
monitor and manage a smart home. Smart things present marvellous
opportunities, but when they participate in complex systems, they chal-
lenge our ability to manage risk and ensure reliability.

SDL, the ITU Standard Specification and Description Language, pro-
vides many advantages for modelling and simulating communicating
agents – such as smart things – before they are deployed. The poten-
tial for SDL to enhance reliability and safety is explored with respect to
existing smart things below.

But SDL must advance if it is to become the language of choice for
developing the next generation of smart things. In particular, it must
target emerging IoT platforms, it must support simulation of interac-
tions between pre-existing smart things and new smart things, and it
must facilitate deployment of large numbers of similar things. Moreover,
awareness of the potential benefits of SDL must be raised if those benefits
are to be realized in the current and future Internet of Things.

Keywords: Internet of things ·Modelling · Simulation ·Testing · Safety ·
Reliability · Engineering practice

1 Introduction

Smart things are everywhere, and new smart things are being created and
deployed all the time. Together, they form the Internet of Things (IoT), defined
by Atzori and others as ‘a collection of things that are able to interact with each
other and co-operate with their neighbours to reach common goals’ [1]. Smart
c© Springer International Publishing Switzerland 2015
J. Fischer et al. (Eds.): SDL 2015, LNCS 9369, pp. 27–41, 2015.
DOI: 10.1007/978-3-319-24912-4 3



28 E. Sherratt et al.

things present wonderful opportunities, but when they participate in the com-
plex system that is the Internet of Things, they challenge our ability to manage
risk and ensure reliability.

Some smart things from the contemporary Internet of Things are described
below. The potential for SDL to improve processes for developing things like
these is explored, and recommendations are made for more closely aligning
SDL [10] with the professional engineering practices and processes that will
ensure the quality of the next generation of smart things. This is likely to be of
interest both to those seeking a viable technology that will serve as a backbone
for communication within the IoT, and also to the established SDL community
to raise awareness and stimulate discussion about future evolution of SDL to
meet the needs of the people who are already bringing the IoT into being.

2 SDL and the IoT

The Internet of Things is real, current and vulnerable. Novelty and complexity
are essential characteristics of the IoT, but novelty and complexity also present
direct challenges to reliability and security [18]. However, although the IoT is
complex, individual smart things need not be complex, and are often developed
by hobbyists or children. That is, even if a new smart thing or network of smart
things is not very complex in itself, complexity explodes when new things are
deployed amongst all the other things that populate the IoT. Moreover, the
behaviour of a new thing in the IoT might well be affected by the pre-existing
IoT population, which is likely to include smart things whose behaviour is unpre-
dictable or hostile or both.

Although the challenges of novelty and complexity are difficult, they are
not insurmountable. According to the Royal Academy of Engineering and The
British Computer Society, the global communications backbone has very high
availability – approximately two hours total system downtime in 40 years avail-
ability [18]. Much of that success can be attributed to mature engineering
processes for adding new devices, protocols etc. to the telecommunications net-
work. Modelling and simulation are central to those processes, as is adherence
to standards such as the ITU Z.100 family of standards [10].

A few of the many smart things to be found in the contemporary IoT are
briefly considered below, and the potential for SDL to enhance their benefits
and limit their vulnerabilities is considered.

2.1 National Plant Phenomics Centre

EPPN, the European Plant Phenotyping Network, is an EU project that offers
access to 23 different plant phenotyping facilities at seven different institutions
in five countries. One of these seven institutions is the National Plant Phe-
nomics centre in Aberystwyth1, which provides access to phenotyping platforms
1 http://www.plant-phenomics.ac.uk/en/.

http://www.plant-phenomics.ac.uk/en/
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that support research involving computer scientists, engineers and biologists to
address how genetics and environment bring about the physical characteris-
tics that constitute plant phenotypes. Current projects supported at the cen-
tre include predicting responses of food and fuel crops to future climates and
development of robust standards for phenotyping experiments and environmen-
tal modelling.

At the heart of the National Plant Phenomics centre is a robotic greenhouse
that enables controlled temperature, watering and nutrient regimes. Plants are
automatically transported through the greenhouse on a conveyor system com-
prising over 800 individually RFID tagged carriages, and through five imaging
chambers that allow different kinds of images – normal digital photographs,
infrared images and fluorescence – to be obtained for further analysis.

This environment collects data that can be accessed via the Internet, but as
most of its communications are internal, its vulnerability is limited.

SDL could have been used to good effect to model communications within
the robotic greenhouse, thus limiting the potential for error within the system.
It could also be used to model how data is made available for external process-
ing, and to simulate – and prevent – situations that might lead to data loss or
corruption.

2.2 Walls Have Ears

Internet enabled television sets are a common consumer device, providing access
to more content than was available with the previous generation of TV sets.
However, with greater interactivity comes greater vulnerability.

For example, concern was raised in The Daily Beast 2 regarding privacy of
data captured by the voice control facilities available on some Samsung smart
TV sets.

In a similar vein, My friend Cayla 3 is a doll that provides enhanced inter-
action by connecting with the public Internet. No data captured by Cayla is
currently retained, and no analytics carried out, but nonetheless, the potential
to capture and analyse such data is present.

Had SDL been used in the development of these smart things, the potential
for data leakage could have been made explicit by simulation and could then
have been controlled.

2.3 Field Robotics

In the realm of Field Robotics, sensors are mounted on an autonomous robot
that can navigate and survive in an unconstrained environment – sea, land, air,
extra-terrestrial – where data is collected and transmitted to a base for further
2 http://www.thedailybeast.com/articles/2015/02/05/your-samsung-smarttv-is-

spying-on-you-basically.html.
3 http://myfriendcayla.co.uk/.

http://www.thedailybeast.com/articles/2015/02/05/your-samsung-smarttv-is-spying-on-you-basically.html
http://www.thedailybeast.com/articles/2015/02/05/your-samsung-smarttv-is-spying-on-you-basically.html
http://myfriendcayla.co.uk/
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analysis. In other words, it is a typical smart thing that collects and uploads data
for analysis and combination with other data to provide useful information.

Challenges include power management, securing the robot and its sensors
against potentially hostile physical environments, and ensuring that both hard-
ware and embedded software function reliably and correctly, as illustrated, for
example by a glacier-surveying remote-controlled sailing robot [14].

SDL could have supported the development of communications for controlling
the boat, and for collecting the sensor data. The effects of physical problems on
communications could also have been modelled and simulated using SDL.

Similar applications of SDL include the communications infrastructure of
smart cities described in the keynote address [5], and a smart bicycle, for use
in training, that was developed using SDL [13]. These applications illustrate
the benefits of simulation and automated code generation in the development of
reliable smart things, as well as the versatility and usefulness of SDL.

SDL has also been used to model and interact with a factory in a virtual
reality scenario. This virtual representation is particularly interesting since the
IoT will use Virtual Reality to interact with all the smart devices [7].

However, SDL does not directly support the physical engineering processes
that result in physical devices, and a complete process involving design and
fabrication of physical things as well as programming their behaviour would
require fusion of SDL with appropriate support for computer aided design and
manufacturing.

2.4 Smart Living

Smart homes promise many things, from intelligent control of lighting and heat-
ing, through smart appliances to ambient support for people with disabilities,
including age-related disabilities. But this promise is not without corresponding
threats. Smart appliances and power management systems threaten privacy, and
their failure or unexpected behaviour could lead to the kind of dystopian vision
presented by Hecht [8].

In this section we review the Smart Home concept and how SDL can help
to provide a holistic solution that encompasses the many different facets and
components of the problem.

When we think about a Smart Home, we envisage a house where we can
control almost everything, from the windows, to the doors, to the bathroom; or
perhaps we think of the various cameras that allow us to see what happens inside
or outside our home, with all the legal issues this implies. However, a Smart
Home cannot be understood in isolation from the question of sustainability.
Usually sustainability is limited to immediate environmental considerations, but,
with present-day availability of information, a broader view of sustainability
becomes possible. For example, we can take into consideration the origin of the
different materials and the environmental and social implications of different
construction solutions when we develop a building (or an urban area). This helps
us to address not only the environmental aspect of sustainability, but also the
social and the economic impacts. Moreover, interconnection of different smart
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devices enhances the possibility to observe the social effects of urban design with
a view to improving future designs.

Since sustainability is one of the main challenges for legislators, ever more
clear and specific rules are being applied to new architectural designs. For exam-
ple, 2010/31/EU European Directive on the Energy Performance of Buildings
(EPBD)4 aims to speed up energy saving policies in the building sector in order
to achieve a 20 % reduction of energy consumption in the European Union.
Among many other measures, Article 9 of the directive stipulates that from
December 31, 2020 new buildings must be nearly zero in energy consumption,
and from December 31, 2018 for occupied buildings and/or public property build-
ings. In relation to this measure, the board recommends that Member States
establish intermediate objectives in 2015 and gradually adopt the goals until
2020 to ensure compliance with the objectives set.

Regulation also applies to renovation and refurbishment of buildings, where
all methods must be based on a cost benefit analysis, in order to achieve optimal
levels of profitability and sustainability.

The energy that we can use in a building, the origins of this energy and
the impacts on the society must all be considered in a Smart Home. In order
to obtain this information, a Smart Home includes many devices that enable
gathering of a huge amount of information. Differences between devices, methods
and protocols make reuse of the devices, protocols and even information difficult.
But since reuse is one of the key aspects of sustainability, and sustainability is
a key aspect of a Smart Home, this is an issue that must be addressed.

Monitoring the Building. On one hand, from the point of view of the use of
the building, or on the other, from the point of view of the design or refurbish-
ment of the house, the interconnection of different hardware and software makes
it difficult to extend and reuse the solutions. Now many different alternatives
currently exist; some of the current alternatives that exist of the communication
protocols used in this area are:

1. KNX [11], standardized on EN 50090, ISO/IEC 14543. KNX is an OSI-based
network communications protocol mainly intended for the continuous moni-
toring of buildings. KNX was created from the convergence of three previous
standards: the European Home Systems Protocol (EHS), BatiBUS, and the
European Installation Bus (EIB or Instabus).

2. BACnet [9] is a communications protocol for building automation and control
networks. It is an ASHRAE, ANSI, and ISO 16484-5 standard protocol.

3. Modbus [16] is a serial communications protocol originally published by Mod-
icon (now Schneider Electric) in 1979 for use with its programmable logic
controllers (PLCs). Simple and robust, it has since become a de facto stan-
dard communication protocol, and it is now a commonly available means of
connecting industrial electronic devices

4 http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1434227774810\&uri=
CELEX:32010L0031.

http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1434227774810&uri=CELEX:32010L0031
http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1434227774810&uri=CELEX:32010L0031
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4. There are many other alternatives such as LonWorks, Home Automation,
BACnet, DOLLx8, EnOcean INSTEON, Z-Wave, Intelligent building, Light-
ing control system, OpenTherm, Room automation, Smart Environments,
Touch panel.

These protocols are used on monitoring devices provided by various different
manufacturers; for example, Schneider Electric, elvaco, Carlo Gava, Panasonic,
among many others. This represents a huge disparity of elements that must be
considered in the needed integration of information on a Smart Home. Also, and
due to the huge opportunities that the Smart Home concept offers to the com-
panies, big corporations are now able to offer complete development platforms
to integrate several devices, offering a complete solution for the IoT.

SDL for the Smart Home. Because Smart Home technology makes use of
different communication protocols, different devices and different development
platforms, it is absolutely essential to create an abstraction layer that supports
the definition and formalization of the multiple processes that must be taken
into account in a smart home, or as an extension of this, in a smart city.

SDL can be used not only to define the communication mechanism between
the different actors involved in the Smart Home processes, but also the mod-
elling processes that help in the planning and refurbishment of the house. The
Abstract State Machine semantics of SDL means that it can define both the
communication architecture of the current Smart house elements, and also the
complete behaviour and life cycle assessment (LCA) [15] between all the actors
and elements that participate in the life of the building [6]. As a specification
language targeted to the description of distributed systems, SDL is very suitable
for defining communication elements at many levels of abstraction. This com-
bination makes SDL a perfect language to define, in a holistic way, the main
processes that govern the behaviour (both current and future) of a building or
residential area.

While it is true that SDL does not directly address security in the sense of
attacks on a system of communicating agents, it is perfectly possible to model
malicious as well as desired agents in a system, and to simulate the behaviour of
desired agents in the presence of malign agents. SDL models involving multiple
environmental agents could be used to model threats without cluttering the
model of the desired system.

Moreover, the unambiguous nature of the language, its graphical syntax and
the clear semantics, make SDL a strong candidate to work in heterogeneous
environments, with multidisciplinary teams that want to define a holistic view
of a Smart Home.
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3 Three Challenges

3.1 Making a Smart Thing Is Easy - Ensuring It Behaves Reliably
in the Wild Is Not

As a whole, the Internet of Things is characterised by novelty and complexity –
factors well known to challenge physical as well as software engineering [18].

However, individual smart things can be created relatively easily by children
or young teenagers who are familiar with Minecraft5, if they have access to
a consumer-grade 3-d printer and some basic components. Even without 3-d
printing, smart wearables based on Adafruit or Lilypad components are fun to
make and use.

But this means that making safety- or business-critical smart things entails
taking account of the other smart things that occupy the environment into which
the new things must fit. In other words, the emergence of additive manufacturing
and its domestic 3-d printing counterpart, together with the ready availabilty
of microcontrollers, single-board computers and other components, has made it
possible for any individual or organization to design, fabricate and program new
kinds of smart thing, leading to an environment of interconnected smart devices
some of which are likely to be badly-constructed or even malicious.

For these reasons, new communicating smart devices are threatened not only
by inherent flaws in their own design, but also by flaws in the design of all the
other devices that inhabit the Internet of Things. Modelling and simulation with
SDL would help expose vulnerabilities before new devices are deployed and so
improve security as well as reliability.

So, as we come to depend on ambient interconnected devices, better engineer-
ing processes and practices will be essential. SDL supports excellent engineering
practices and processes by providing a precise way to specify communications, by
enabling automated testing of distributed systems, and by supporting simulation
before deployment.

3.2 New IoT Platforms

One of the major events that occurred recently in the IoT world, was the
announcement of Brillo and Weave at the 2015 Google I/O conference [17].
Brillo6, an Android derivate that covers just the lower levels, aims to become
the underlying operating system for the Internet of Things, with a developer
preview coming in the third quarter of this year.

Brillo represents an alternative to Microsoft’s Windows 10, an OS that can be
executed virtually on any device (from servers to RaspberryPi devices7. Windows
10, viewed as an IoT OS, offers the possibility to connect many different kinds
of device such as may be found in a Smart Home.
5 https://minecraft.net/.
6 https://developers.google.com/brillo/.
7 https://www.raspberrypi.org/windows-10-for-iot/.

https://minecraft.net/
https://developers.google.com/brillo/
https://www.raspberrypi.org/windows-10-for-iot/
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It is clear that these will not be the only platforms to develop infrastructures
for IoT. Canonical is taking a direction similar to that of Microsoft, announcing
that in 2016 Unity8 will be integrated in Ubuntu desktop8.

This brings into focus a trend in IoT platforms war, where two major kinds
of IoT related technology are crystallizing.

One side there are IoT platforms supported by large industrial players such
as the emerging Brillo-Weave platform supported by Google and the Intel R© IoT.
These platforms are addressed to third parties, yet their underlying technology
is controlled by a single industrial actor.

On the other side, there are open IoT platforms. The emergence of such plat-
forms is supported by public funding (see H2020 - ICT 30) and facilitated by
the existence of standardised technologies, such as Machine-to-Machine commu-
nications (M2M) and Network Functions Virtualisation (NFV) standardised by
the European Telecommunications Standards Institute.

Given the opaque nature of the industrial offerings and their projected dis-
semination, we suggest that efforts towards building open IoT platforms should
be supported. Let us consider how SDL fits with respect to the above mentioned
standards.

The main M2M assets are

– Unified access to data from any application domain.
– Management of Privacy (Access Rights) adapted to the Application needs.
– Management of security levels adapted to the Application needs.
– Suited for IP networks, yet agnostic to underlying communication

technologies.

Although not primarily targeted to the IoT, Network Functions Virtualisa-
tion (NFV) is a standard relevant to the IoT. Among its principles the more
pertinent with regard to the IoT seem to be

– The need for Inter-Domain Interfaces
– Generic functional blocks
– Multiplicity, Composition, and Decomposition

Originally designed to model telecom systems, SDL has also proved success-
ful in addressing the needs of other application domains [5]. SDL can already
support most of the concepts listed above; for example, SDL can deal with data
management and with interfaces. However, it would need extensions for dealing
with security and it would need adjustments to improve handling of multiplicity
and dynamism.

The following section looks in more detail at the challenges of deployment,
in particular the challenge of multiplicity, and describes how SDL rises to those
challenges.
8 http://news.softpedia.com/news/Canonical-Details-Plans-for-Unity-8-Integration-

in-Ubuntu-Desktop-462117.shtml.

http://news.softpedia.com/news/Canonical-Details-Plans-for-Unity-8-Integration-in-Ubuntu-Desktop-462117.shtml
http://news.softpedia.com/news/Canonical-Details-Plans-for-Unity-8-Integration-in-Ubuntu-Desktop-462117.shtml
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3.3 Deployment Issues

One of the main characteristics of IoT systems is that one of the sub-systems is
usually instantiated a huge number of times. For example in a Smart Grid system
the meters are sub-systems that are instantiated many times. Literally millions
of them are deployed and any problem discovered on site is extremely costly
for the operator to solve. Even though it is not always exactly the same sub-
system that is instantiated, most of the main characteristics of the meters are the
same. In the Smart Grid example, it could be that all meters will transmit the
electrical consumption, some meters might do it every day, where some others
might do it every month. Another characteristic is that the different sub-systems
are physically separated entities that need to communicate with each other. The
means of communication between the different sub-system are numerous but
they all have the characteristics of a telecommunication protocol.

SDL has from its inception enabled precise description of telecommunica-
tion protocols. Static interface description is covered by ASN.1 data types with
encoding and decoding rules, and dynamic aspects by the behaviour description
of each protocol layer. These static and dynamic elements of an SDL specifica-
tion are perfectly adapted to the description of exchanges between the differ-
ent sub-systems in an IoT system. By extension, the application on top of the
telecommunication protocols can also be described from a functional point of
view. Because SDL is an executable language it is possible to verify the behav-
iour of the overall IoT system with an SDL simulator independently of any
type of implementation. Functional variants of the IoT sub-system can be dealt
with using object orientation in SDL. The common behaviour is described in a
super-class, and the possible variants are described in different sub-classes.

Building up a system combining a mix of the different variants or several
instances of the same sub-system is then very straight forward. Based on this
concept, Humboldt University zu Berlin [3] has developed a deployment sim-
ulator of an SDL-RT9 system based on the ns3 network simulator. This work
was initially done to simulate an early warning earthquake detection system.
The system is composed of hundreds of sensors deployed geographically and the
information from the sensors is gathered and analyzed in one hub. PragmaDev
has integrated and extended this work to automatically simulate the deployment
of SDL or SDL-RT systems on numerous nodes.

The generic SDL architecture is used to define the different sub-systems
(Fig. 1), an SDL-RT deployment diagram is used to define how many and where
the nodes are deployed, and a csv file describes the scenario of events on each
distributed node (Fig. 2).

Load Testing. The deployment simulator described above and illustrated in
Fig. 3 is perfect from a functional point of view. But one of the most common
IoT issues is limitation of the load that can be carried by the means of commu-
nication. If too many messages are sent at the same time it is quite possible that
9 http://www.sdl-rt.org.

http://www.sdl-rt.org
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Fig. 1. The SDL architecture describes the different sub-systems: bClient and bServer

some or all of them get lost. These limitations can be described in the underlying
network simulator but do not appear directly in the SDL model. It would be
interesting and useful to be able to describe in the model a set of characteristics
that integrate these limitations and to have the validation tools explore all the
possible problems that might occur due to large numbers of deployed instances.

Interleaved Test Cases. The deployment simulator is a very powerful tool
that is perfect for the early warning earthquake application. But from a func-
tional point this simulator uses a csv file that describes only one scenario for
all the possible nodes. Only a unique sequence among the different nodes is
described that way. Usually, before the deployment, a set of test cases is written
to test a single node of one of the sub-systems. The issue is to verify that having
several instances of this node does not imply alteration of its functionalities.
Each test case should be able to pass on one node independently of the execu-
tion of another test case on another node. In theory this leads to verification
of any combination of the different test cases work on the deployed system and
that creates a combinatoric explosion due to the number of possible interleaving
combinations.

Work is currently on-going to identify blocks of messages that create interac-
tions between the instances and to run a reduced number of relevant interleaved
combination of the test cases.

4 What Is Needed to Make SDL the Language of Choice
for IoT Systems?

The examples presented in previous sections highlight typical aspects of IoT
systems development, validation and deployment, and illustrate the benefits of
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Fig. 2. The deployment diagram describes how many instances of each sub-system is
deployed. One instance of bServer and three of bClient.

SDL. The SDL model of communicating agents fits the IoT systems model, and
the formal semantics of SDL, with its associated data modelling capabilities,
enables comprehensive validation of IoT sub-systems functionality by simulation
and testing. Deployment of IoT systems designed in SDL is also currently well
supported.
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Fig. 3. Deployment simulator interface with live and post-mortem traces.

– the SDL semantics for modelling, simulation and deployment reduces the like-
lihood of error in deployed systems and also exposes potential data leakage.
The use of SDL would have improved the robotic greenhouse system, and the
TV and doll applications, through simulation and testing, which would make
the potential privacy issues explicit already in the design phase.

– SDL allows to model aspects of power management, insofar as modelling and
simulation can expose wasteful communications and handling of unreliable
data sensor as described in the field robotics examples. SDL also has the
features necessary to specify and develop autonomous self-monitoring adaptive
systems.

– SDL allows the system design at different levels of abstractions and hence is
useful both for detailed system design of a Smart Home system using several
protocols as well as a building maintenance management system. In addition
SDL also supports design of IoT systems using more protocols to implement
the overall functionality of the system.

– SDL supports development targeting emerging platforms and new devices. It
has proved its worth in protocol development and is sufficiently flexible to
allow targeting of new devices.

– SDL offers support for well-established good engineering practices, including
model simulation, automated testing and deployment. This increases reliabil-
ity and reduces vulnerability of deployed systems.

– SDL allows simulations that involve large numbers of smart devices, and so
addresses the need for scalability.
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However, the IoT systems considered above also serve to identify areas where
SDL needs improvement in order to fully support the design and development
of such systems

– SDL tools are unlikely to compete with the small environments used by hob-
byists with arduinos etc., not because these environments provide simulation
and modelling, but rather because safety and reliability are not high-priority
requirements amongs these developers. So instead of expecting all creators of
smart things to use SDL and to follow sound engineering practice, creators of
secure, reliable smart things should use SDL to reduce inherent vulnerability
in the things they produce and to increase their resilience to external agents
that pose a threat whether because of poor design or malicious intent.

– While SDL supports development targeting emerging platforms, new IoT plat-
forms mean that if SDL is to be used successfully for IoT system development,
tools must be developed that map SDL models to these platforms. In partic-
ular, SDL should be mapped to open and freely-available platforms.

– The impact of deployment of an IoT system in contexts with numerous of other
systems making use of the same communication resources causing potential
delays and loss of messages is supported in SDL only to a limited degree. SDL
may be extended with features to specify possible loss and delay of signals
based on the load on a communication path.

– SDL semantics enables modelling of an environment populated by multiple
agents. This provision should be explored and developed to facilitate develop-
ment of secure networks of smart things, both with respect to privacy of data
communicated between parts of an IoT system and protection against attacks
to access data or to affect the system functionality.

– An emerging trend in the IoT is to design and ‘print’ a new device using
additive manufacturing (3-d printing) techniques with suitable CAD software.
SDL does not interface directly with CAD systems. For the future, it would be
good to extract models of the implied SDL agent from designs of new devices.
SDL would allow such models could be replicated, simulated and studied in a
Virtual Reality populated by other smart devices.

Apart from these technical considerations, there is also an urgent need to raise
awareness of the potential benefits of SDL for IoT systems development. For exam-
ple, SDL is not mentioned in the 2011 survey [2], though this does include ns-2,
which was used in conjunction with SDL [12]. Also there is no mention of SDL
in [4]. Unless this situation is changed, it is highly likely that much that is already
well established SDL will be re-invented, delaying development of the professional
practices that will form the core of any effort to create a safe, reliable IoT.

5 Conclusion

We have looked at a variety of elements of the emerging Internet of Things and
identified the role of SDL in supporting the engineering practices that will enable
creation and deployment of safety and business critical smart things. We have
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also identified the need to improve SDL’s capacity to model the behaviour of
smart things when communications channels are heavily loaded, either because
many instances of things are deployed in a smart system, or because different
systems must co-exist in a crowded IoT environment. Security and privacy are
also not adequately expressible in SDL as it stands.

But perhaps the greatest challenge lies in raising awareness of SDL amongst
the people who will create and deploy the next generation of smart things.
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Wagner, P., Scheidgen, M., Zubow, A., Eveslage, I., Sombrutzki, R., Juraschek, F.:
From earthquake detection to traffic surveillance – about information and commu-
nication infrastructures for smart cities. In: Haugen, Ø., Reed, R., Gotzhein, R.
(eds.) SAM 2012. LNCS, vol. 7744, pp. 121–141. Springer, Heidelberg (2013)

6. Fonseca i Casas, P., Fonseca i Casas, A., Garrido-Soriano, N., Casanovas. J.: Formal
Simulation Model to Optimize Building Sustainability. Adv. Eng. Softw. 69, 62–74
(2014). doi:10.1016/j.advengsoft.2013.12.009

7. Fonseca i Casas, P., Pi, X., Casanovas, J., Jové, J.: Definition of virtual real-
ity simulation models using specification and description language diagrams. In:
Khendek, F., Toeroe, M., Gherbi, A., Reed, R. (eds.) SDL 2013. LNCS, vol. 7916,
pp. 258–274. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38911-5

8. Hecht, J.: The internet of **** things. Nat. Phys. 10(7), 538–538 (2014)
9. ISO 16484–1:2010: Building Automation and Control Systems (BACS) - Part 1:

Project Specification and Implementation, ISO 2010
10. ITU-T: Z.100 Series for SDL 2010, International Telecommunications Union 2011–

2015
11. KNX Association: System Specifications (2014). http://www.knx.org/en-us/knx/

technology/specifications/index.php
12. Kuhn, T., Geraldy, A., Gotzhein, R., Rothländer, F.: ns+SDL – the network sim-

ulator for SDL systems. In: Prinz, A., Reed, R., Reed, J. (eds.) SDL 2005. LNCS,
vol. 3530, pp. 103–116. Springer, Heidelberg (2005)

13. Kuhn, T., Gotzhein, R., Webel, C.: Model-driven development with SDL – process,
tools, and experiences. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 83–97. Springer, Heidelberg (2006)

http://dx.doi.org/10.1016/j.advengsoft.2013.12.009
http://dx.doi.org/10.1007/978-3-642-38911-5
http://www.knx.org/en-us/knx/technology/specifications/index.php
http://www.knx.org/en-us/knx/technology/specifications/index.php


SDL - The IoT Language 41

14. Neal, M., Blanchard, T., Hubbard, A., Chauché, N., Bates, R., Woodward, J.: A
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Abstract. Complex Event Processing (CEP) systems find matches of a
pattern in a stream of events. Patterns specify constraints on matching
events and therefore describe situations of interest. Formulating patterns
is not always trivial, especially in smart environments where a large
amount of events are continuously created. For example, a smart home
with sensors that can tell us if someone is flipping on a light switch to
indicate how he would like his breakfast in the morning. Our work deals
with the problem of mining patterns from historical traces of events.

Keywords: Complex event processing · Data Mining · Smart environ-
ments

1 Introduction

Our environment is already equipped with a lot of sensors delivering informa-
tion, and it keeps on growing. Smartphones are detecting our positions, the
current temperature is measured at multiple locations and sensor nodes detect
movement using accelerometers. The sum of those events can describe more com-
plex situations. For example a passing car can be described by combining the
accelerometer values of sensor nodes near a road. Lots of cars on one road can
lead to a traffic jam. With the information that it is a sunny and warm Fri-
day afternoon the roads leading to swimming pools and recreation areas can be
prioritized by smart traffic lights and navigation systems.

Formulating patterns that describe situations of interest is not always trivial.
Even domain experts may not be able to precisely describe all causalities that
lead to it. For example, how does the pattern for a car detection from accelerom-
eter values look like? Our work deals with the problem of automatically mining
event patterns from historical traces of events.

2 Related Work

Cook and Wolf [3] showed three methods for discovering models of software
processes from event-based data. One uses neural networks, the second one uses
an algorithmic approach and the third one uses a Markovian approach. All mined
models only rely on the timestamp and the type of the involved events. Other
attributes of events are not considered.
c© Springer International Publishing Switzerland 2015
J. Fischer et al. (Eds.): SDL 2015, LNCS 9369, pp. 42–45, 2015.
DOI: 10.1007/978-3-319-24912-4 4
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“The goal of process mining is to extract information about processes from
transaction logs.”[5] The transaction logs consist of events having a timestamp
and some given attributes like the reference to an activity. The result is an
ordering of activities for example expressed in terms of a Petri net. There exists
work that extends this mining approach but the detection of trends in the data,
like an increase of a numerical value in the events, is not handled.

Margara et al. address the same research goal of mining event patterns from
historical traces. [6] Although they also allow for events having attributes and
constraints on attributes, the mined constraints are only associated to event
types. Different constraint combinations for events of the same type in a pattern
are not handled. Their work does not support this due to the fact that they
do not mine an order. The result only includes information about certain event
types that are followed by other event types. This is not sufficient to for example
mine trends from the data.

3 Background

We define an event e as a tuple e = (E, t,A1 = a1, ..., An = an), where E is the
event type, A1 = a1, ..., An = an are the attributes of the event with Ai being
the attribute names and ai the attribute values, and t represents the occurrence
time of the event. For t we assume a totally ordered and discrete time domain.
The type of an event specifies the attributes of an event and their types.

An event pattern for event pattern matching is defined as a triple P =
(V,Θ, τ) where V =< v1, ..., vk >, k ≥ 1, is a sequence of event variables,
Θ = {θ1, ..., θc}, c ≥ 0, is a set of constraints over the variables in V , and τ
is the duration of the pattern.

Each event variable ve ∈ V binds an event and is used to state the order
of the incoming events. Θ is a set of conditions over the event variables that
express constraints on the values of event attributes which must be satisfied
by the matching events. They can further be distinguished into property con-
straints and relationship constraints. Property constraints have the form ve.A φ
C, where ve.A refers to an attribute of a matching event, C is a constant, and
φ ∈ {=, <,≤, >,≥} is a comparison operator. Relationship constraints have the
form ve.Ai φ vf .Aj and therefore are used to describe relationships between two
attributes of matching events. τ is the maximal allowed time span between the
first and last matching event.

The following example demonstrates an event pattern: P1 = (< a, b >,Θ, 1h).
The sequence of event variable states that two events are contained in this pat-
tern. The maximal time span is 1 hour. The constrains are Θ = {a.Type = “Ev”,
b.Type = “Ev”, a.V alue > 21, a.V alue < b.V alue}. The event variable a is used
for three constraints, the event type needs to be “Ev”, its attribute Value needs
to be greater than 21 and its attribute Value needs to be less than the attribute
Value of b. The event type of event variable b also needs to be “Ev”.

Our work concentrates on the problem of event pattern mining from historical
traces. A historical trace is a sequence T =< e1, ..., eh > where < e1, ..., eh >,
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Table 1. Two example historical traces

Traces Events

h1 (“Ev”, 10, Val=21.7), (“Ev”, 15, Val=23.3), (“Ev”, 25, Val=26.1)

h2 (“Ev”, 11, Val=21.7), (“Ev”, 37, Val=27.4)

h ≥ 1, is a sequence of events. The events are ordered by their occurrence time t.
We only use historical traces where the situation of interest occurs. The situation
of interest could for example be a dangerous situation like a fire outbreak where
the temperature increases rapidly in a room. Table 1 shows two fictional example
historical traces h1 and h2.

4 Event Pattern Mining

The problem of event pattern mining can be described as finding an event pattern
from a given set of traces, that detects all situations of interest in a stream of
events as matches. This involves finding an order of event variables, constraints,
and a pattern duration.

We mine parts of a pattern by extracting them from each historical trace and
only keep those that appear in every historical trace. For example the event types
that occur in every historical trace of Fig. 1 is the set {“Ev”}. One trace having
a second event type would not change the result. Instead of extracting the event
types we introduce the concept of an event instance in the mining process as a
core component. An event instance is an event with a selection of its attributes
set to a constant value. We define it as I = (E,E.Ai = ci, ..., E.Aj = cj),
{Ai, ..., Aj} ⊆ {A1, ..., An}, where E is the event type, E.Ai is the name of an
attribute of E and ci is a constant value. Using event instances instead of event
types allows to distinguish orders of incoming events of the same type.

Figure 1 shows the high level architecture of the proposed event pattern min-
ing system. The first step involves mining all relevant event instances. Relevant
here means that it occurs in all historical traces. For the example in Table 1
these are i1 = (“Ev”, Ev.V al = 21.7) and i2 = (“Ev”).

With a given set of relevant event instances the event instance order stating
the sequence of event variables of the event pattern can be mined. Based upon the
relevant event instances a transformation from the historical traces to the input
format of sequential pattern mining algorithms introduced in [1] is performed.
The output of the sequential pattern mining algorithm is a list of all possible
orders occurring in all traces. For the example in Table 1 this is the sequence
< i1, i2 >. Each mined sequence is handled separately for the next steps and
results in a new pattern as output for the whole system.

The third step is an event instance matching. Each event instance in the
mined order gets references to the events in the traces it can be applied to. An
event instance applies to an event if all attribute values of the event instance
are equal to the attribute values of the event. We also require all previous event
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Fig. 1. High level architecture for mining event patterns

instances in the order to already have at least one applying event in the trace. The
resulting data structure is used by the next step to mine the constraints Θ of the
pattern. One relationship constraint for the example in Table 1 is i1.V al < i2.V al.

The output of the system is one or more patterns. Using all example results
described above the following pattern can be mined: P1 = (< a, b >,Θ, τ) with
Θ = {a.Type = “Ev”, a.V al = 21.7, b.Type = “Ev”, a.V al < b.V al}.

Model to text transformations are used on the mined patterns. The targeted
formats are existing event pattern matching languages such as Esper [4] and
SES [2]. The learned patterns can then be evaluated and used in CEP systems.

5 Conclusion

In our work we develop an algorithmic approach that mines event patterns from
historical traces of events. All attributes of the events are considered and can be
part of the resulting pattern. Orders of events as well as trends in the data are
mined. These are key differences to existing methods in this research area.

Future work includes a detailed evaluation of this approach and also consid-
ering historical traces where the situation of interest does not occur. Existing
event pattern matching languages differ in their expressiveness and offer different
operators for the patterns. We plan to mine for example aggregation operators,
like the sum of attribute values over multiple events.
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Abstract. The Specification and Description Language (SDL) is a
widespread language for the development of distributed real-time sys-
tems. One of its major advantages is its tool support, which enables
the automatic generation of SDL implementations and the simulative
evaluation of SDL systems in early development phases. However, SDL
simulations often suffer from low accuracy, since they can not consider
relevant non-functional aspects like execution delays of the target plat-
form. In this paper, we present a novel approach improving the accuracy
of simulations with SDL. It is based on the simulator framework FERAL
and the simulation of SDL implementations on Hardware-in-the-Loop
(HiL), thereby enabling both pure functional and performance evalua-
tions of SDL systems. Besides providing a survey of SDL simulations
with FERAL, this paper proposes a development process based on vir-
tual prototyping, supporting step-wise system integration and tests of
SDL systems by reducing the abstraction level of simulations gradually.
To demonstrate this process and the significance of accurate simulations,
results of a case study with an inverted pendulum are presented.

Keywords: SDL · Simulation · FERAL · Virtual prototyping ·
Hardware-in-the-Loop · Distributed systems · Networked control
systems · Inverted pendulum

1 Introduction

The Specification and Description Language (SDL) [17] is a standardized lan-
guage for the development of distributed systems, such as found in the domains
of real-time systems and networked control systems. It is often applied in con-
junction with model-driven development processes and also suitable for complex
systems due to support for reuse and modularity. Due to extensive tool sup-
port, implementations for various software and hardware platforms can be gen-
erated from one SDL specification. Thereby, consistency between specification
and implementation is ensured, and development effort is reduced significantly.

To evaluate SDL specifications, SDL tools like PragmaDev RTDS [22] or
IBM Rational SDL Suite [14] come along with simulators enabling a step-wise
inspection of an SDL system’s behavior. If SDL is applied for reactive systems or
in systems controlling a physical entity, this type of simulation is not sufficient
c© Springer International Publishing Switzerland 2015
J. Fischer et al. (Eds.): SDL 2015, LNCS 9369, pp. 49–64, 2015.
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and more advanced methods are required to consider the environment of the
systems, for instance, by means of a physical model of the controlled object. In
our previous work [7,8], we introduced a modular simulator framework called
FERAL (Framework for the Efficient simulator coupling on Requirements and
Architecture Level), which supports virtual prototyping of SDL systems. Since
FERAL incorporates several general and domain-specific simulators with differ-
ent levels of abstraction like ns-3 or Matlab Simulink, the integration of SDL
into FERAL enables the functional evaluation of SDL specifications in com-
plex scenarios with simulated physical environments and communication media.
Classical co-simulation approaches, such as Modelisar [3], are often limited to
time-triggered simulation models. In comparison, FERAL provides generic con-
cepts and interfaces to couple simulators with different models of computation
and communication (e.g., time-triggered, event-triggered, and data flow).

Though with FERAL’s support of simulator coupling and virtual prototyp-
ing, testing becomes possible in early development phases and in conjunction
with specialized simulators, non-functional aspects like execution delays are still
neglected. However, they may have a major impact on the behavior of a deployed
system and may hence jeopardize time constraints. In particular with SDL, the
early and accurate assessment of non-functional aspects needs specific attention
due to the non-deterministic resolution of SDL’s concurrent runtime model in
SDL implementations and the related serialization of transition executions [6].
Since this non-determinism makes the behavior of an SDL system highly depen-
dent from the runtime environment of the SDL implementation on the target
platform, it is reasonable to test SDL systems with the same runtime environ-
ment and on the same platform as the final release.

In this paper, we present an approach to improve the significance of SDL
simulations concerning performance and compliance with real-time properties by
considering non-functional aspects of SDL implementations. It is based on the
simulator framework FERAL and newly devised extensions to support Hardware-
in-the-Loop (HiL) simulations, which are generally defined as closed-loop simu-
lations, in which some of the subsystems are realized by physical replicas [11].
In our approach, the physical replicas – also called DUTs (Devices Under Tests)
– are target platforms, on which SDL implementations are executed, whereas
other components like communication media are simulated virtually. Unlike sim-
ulations with specialized platform simulators (e.g., Avrora for AVR microcon-
trollers), simulations with HiL do not require detailed hardware models, which
are usually costly w.r.t. simulation effort and, particularly, a challenging task for
modern platforms due to their complexity.

Besides providing a survey of HiL simulations with FERAL, this paper
presents guidelines regarding virtual prototyping and the step-wise reduction
of the level of abstraction in simulations. These guidelines are applied in a sce-
nario with an inverted pendulum, in which controller, sensors, and actuators are
interconnected by a simulated wireless communication medium. By increasing
the fidelity gradually – and, finally, executing the controller node on HiL – we
illustrate not only the importance of accurate simulations, but also show the
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advantages of imprecise simulations that state an adequate measure regarding
first functional evaluations with decreased complexity and costs.

The remainder of this paper is structured as follows: In Sect. 2, the simula-
tor framework FERAL is introduced together with the potential of simulating
SDL systems on HiL, virtual prototyping, and the step-wise reduction of the
abstraction level in simulations. Afterwards, Sect. 3 presents a case study with
an inverted pendulum and simulation results. Section 4 provides a survey on
related work. Finally, Sect. 5 draws conclusions.

2 The Simulator Framework FERAL

In this section, we introduce the simulator framework FERAL (Sect. 2.1) and
extensions to support SDL (Sect. 2.2). Furthermore, guidelines to simulate net-
worked systems with different levels of abstraction are outlined (Sect. 2.3).

2.1 Outline

FERAL is a modular, Java-based, and platform-independent framework [7,8]
and incorporates several general and domain-specific simulators. One of its objec-
tives is virtual prototyping for the early evaluation of design alternatives. By sup-
porting various simulators and models with different abstraction levels, FERAL
supports continuous testing of networked systems during different development
phases and enables the functional and non-functional evaluation of various com-
munication technologies.

In FERAL, two types of simulation components are distinguished: Functional
Simulation Components (FSCs) modeling the behavior of (networked) nodes
(e.g., a controller) and Communication-based Simulation Components (CSCs)
simulating communication between FSCs (e.g., a CAN bus). In addition, FERAL
supports bridges and gateways to interconnect different FSCs and CSCs and to
simplify their exchange. FSCs can, for instance, be native components written
in Java or Matlab Simulink models. CSCs can be simulated by a simulator for
abstract Point-to-Point (PtP) media (short PtP CSC), by specialized bus simu-
lators for CAN and FlexRay, or by ns-3 – thereby supporting various communi-
cation technologies like IEEE 802.3 (Ethernet) and IEEE 802.11 (WLAN). Data
transfer between FSCs, CSCs, bridges, and gateways is realized by simulator
messages, which are sent via ports of the simulation components. They represent
the endpoints of links, enabling an arbitrary interconnection between simulation
components. An example simulation topology from a previous adaptive cruise
control scenario is given in Fig. 1 for illustrative purpose. The execution of sim-
ulation components is controlled by directors of FERAL, where both time- and
event-triggered execution semantics are supported and can even be nested.

2.2 Simulation of SDL Models

To integrate SDL systems into FERAL and to support SDL FSCs, an existing
SDL tool chain consisting of IBM’s Rational SDL Suite [14], the SDL-to-C++
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Fig. 1. Example simulation scenario with FERAL.

code generator ConTraST, the SDL runtime environment SdlRE [23], and the
SDL environment implementation SEnF has been extended. With these exten-
sions, SDL specifications can automatically be transformed to SDL implementa-
tions, which are able to run under control of FERAL and to interact with other
FSCs and CSCs. In total, two variants of SDL-based FSCs have been realized:
Library-based SDL FSCs and HiL SDL FSCs.

Library-based SDL FSCs incorporate SDL models by loading their imple-
mentations in the form of shared libraries. Since FERAL is written in Java but
generated SDL implementations are in C++, an additional wrapper with the
Java Native Interface (JNI) has been introduced to bridge the language bar-
rier. Though execution times of transitions and the SDL runtime environment
are not considered in this integration variant since FERAL has full control over
time progress, library-based FSCs are sufficient for functional evaluations of the
SDL system’s behavior in early development phases and quantitative assessments
of simulated communication technologies.

The second integration variant (HiL SDL FSCs) executes the automatically
derived implementation of the SDL model on a physically independent device,
which is in our specific case a platform called Imote2 [19]. The Imote2 is a sen-
sor node that is equipped with an ARM-based CPU running up to 416 MHz,
256 KB SRAM, 32 MB SDRAM, and 32 MB flash. With HiL simulations, execu-
tion delays and platform-specific timings are taken into account and performance
evaluations of the SDL system become possible.

The interplay between the simulator core of FERAL and the SDL model
running on an Imote2 is illustrated in Fig. 2. On the side of the FERAL core,
the SDL FSC is represented by a proxy, which is responsible for transmitting
commands and simulator messages to and from the SDL system on the HiL. In
a similar way, a stub is introduced in the implementation of the SDL environ-
ment (SEnF) on the HiL side that (de-)serializes messages and commands and
interfaces the SDL model.

The communication between proxy and stub is via a hardware gateway, which
communicates with the proxy by TCP/IP and with the stub by a serial line. By
introducing dedicated gateways, the node interconnecting the Imote2 can be
physically different from the node running the simulator core, thereby enabling
a spatial separation of simulator and HiL, simplifying the simultaneous simula-
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Fig. 2. Interrelation between FERAL and SDL FSCs running on HiL.

tion of multiple SDL FSCs, and improving scalability. Messages and commands
between proxy and stub are encoded with ASN.1 [16] and suffixed with check-
sums. To handle message losses, acknowledgments and timeouts are incorporated
additionally. An overview of the most important types of messages is provided
by Table 1. In this regard, the first listed message type (RebootNode) has been
introduced to reset the hardware platform and to enable multiple independent
simulation runs in series.

The biggest difference between library-based and HiL SDL FSCs is regarding
time progress in the SDL system. While transition executions are instantaneous
and time progress is fully controlled by the simulator with library-based SDL
FSCs, time increases linearly during an SDL system’s execution with HiL simu-
lations, depending on the speed of the hardware and the workload of the system.
In more detail, the time of the SDL system is managed as follows: Before exe-
cuting the system, the simulation time of FERAL and the hardware clock of the
Imote2 node get synchronized, thereby setting the system time of the SDL model

Table 1. Message types for the communication between proxy and stub.

Message type Direction Description

RebootNode FERAL → HiL Request to restart the Imote2

InputPortNames FERAL ← HiL List of names of reception ports

OutputPortNames FERAL ← HiL List of names of transmission ports

SetSignals FERAL → HiL Delivery of signals destined for the SDL FSC

Run FERAL → HiL Request to execute an SDL transition

Terminated FERAL ← HiL Information about the end of execution

GetSignals FERAL ← HiL Delivery of signals sent by the SDL FSC

ACK FERAL ↔ HiL Confirmation of a correct message reception
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to the current simulation time. Afterwards, one transition of the SDL system is
executed in real time with the time of the SDL system increasing with the same
rate as the physical time. After executing the transition, the hardware clock is
frozen, so that there is no further time progress in the SDL system.

To transfer messages between SDL FSCs and other simulation components,
FERAL’s port concept is adopted in the SDL environment implementation SEnF
by means of virtual device drivers. PtP CSCs supported by FERAL are, for
instance, reflected by a virtual driver with the name ptp. Depending on the
types of SDL signals that are declared in the specification of the SDL system,
corresponding virtual drivers are instantiated during the initialization of the sys-
tem, where each virtual driver creates one input port and one output port. Their
names are fixed and reflect the name of the driver (e.g., ptp rx for the input port
to a PtP medium). After initialization, the created port structure is copied to
the proxy of the SDL FSC (cf. messages InputPortNames and OutputPortNames
in Table 1). As result, all ports created in the SDL implementation are also pro-
vided by the proxy of the SDL FSC and can be used to connect the SDL system
executed on the Imote 2 with other simulation components by means of their
names.

To convert simulator signals into SDL signals (and vice versa), correspon-
dent functions are introduced in the implementation of the SDL environment.
Simulator signals sent by other simulation components to the SDL system are
immediately delivered by FERAL to the SDL system, converted into SDL sig-
nals, and buffered in the SDL environment until the system is executed next.
In a similar way, SDL signals generated by transitions of the SDL system and
sent to the SDL system’s environment are buffered until the end of execution
of the system, when they are converted into simulator signals and forwarded to
interconnected simulation components.

After executing an HiL SDL FSC, the time of the SDL system generally
precedes the simulation time, since in our SDL implementation, SDL transitions
are executed in a non-preemptive way and usually last considerably longer than
the duration of a simulation step. To get semantically correct results despite
this mismatch, SDL’s integration into FERAL utilizes the simulator framework’s
support of directors with differing time granularity [9]. In particular, following
measures are applied: First, after execution is complete, the simulator is informed
about the time of the SDL system (cf. message Terminated in Table 1). Second,
the SDL system is not again executed until the simulation time catches up to
the time of the SDL system. Third, signals sent by the SDL system to another
component are not available immediately but delayed until the destination’s
simulation time is up to the SDL time to avoid signals from the future.

2.3 Developing Distributed Systems with Virtual Prototyping

For complex distributed systems, it is reasonable to build up a system step-wise
with increasing complexity. Our approach is the application of virtual prototyp-
ing, where system development starts with the definition of an abstract simula-
tion system, consisting of a set of interacting FSCs and CSCs. In the next step,
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the abstract simulation system is instantiated by assigning behavior models (e.g.,
SDL systems) and by choosing concrete simulators for the FSCs and CSCs. This
results in a concrete simulation system, which is executable by FERAL.

In early development phases, the simulated behavior models are abstract
functional models with reduced complexity. In later phases, they are refined and
extended step-wise until they are functionally complete and ready to be deployed
to their target platform. Each refinement step of a behavior model can be seen
as the definition of a new concrete simulation system. Since FERAL enables
the interaction of FSCs (with behavior models) on different abstraction levels,
each concrete simulation system remains executable and can, therefore, be used
for functional evaluations. Hence, errors in the behavior of the models can be
identified early and gradually, and also regression tests become possible.

When developing systems by step-wise reducing the level of abstraction, the
last step of integration – i.e., switching from simulation to target platform – usu-
ally is most difficult and tedious. We identified two main reasons for this, which
are not necessarily independent: First, by switching to the target platform, a
real physical environment and no longer a simulated model of the physical world
has to be handled. Hence, reproducibility of test runs is not guaranteed because
of disturbances. Furthermore, debugging becomes harder, since it is usually not
possible to pause and resume a physical process. Second, platform-specific exe-
cution delays occur, which may influence the behavior of the system and the
timings. This non-functional aspect has not been covered in earlier develop-
ment phases, yet its effects may sum up, since every node is affected (possibly
in a different way). To better support the last integration phase, we developed
extensions for FERAL to enable an SDL system’s execution on HiL, thereby
combining realistic timing behavior with a simulated (physical) environment.

Though the incremental development approach seems not to be viable regard-
ing the problems of the integration phase, it has several advantages compared
to direct development and testing on the (embedded) target platform, which
is very time-consuming and troublesome. In particular, it enables a step-wise
decrease of the abstraction level of behavior models and the simulated envi-
ronment, for instance, by applying one integration step in which only com-
munication delays are introduced. Additionally, this approach allows to first
focus on functional aspects, before considering platform-specific performance
aspects. Since each step leaves an executable simulation system, tests and func-
tional/performance evaluations can be performed early and even automatic tests
are realizable, which is hard to achieve when dealing with a real physical environ-
ment. Therefore, chances with a virtual prototyping-driven development process
are good to detect errors and even conceptional defects early during development,
when solutions are comparatively cheap. However, we do not deny that some
functional aspects may suffer from performance issues detected in later develop-
ment steps and HiL simulations, and need adjustments, e.g., control parameters.

Reasonable abstraction levels must be defined individually and depend on the
complexity of the scenario and influencing factors, such as communication and
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execution delays. In the next section, we present appropriate abstraction levels
for a distributed control system in our case study with an inverted pendulum.

3 Case Study – the Inverted Pendulum

In this section, results of a case study are presented to demonstrate the power
of step-wise system refinement and the importance of accurate simulations. The
scenario comprises an inverted pendulum, which is a standard example of a con-
trol system commonly found in control theory and realized in the form of a
distributed networked system. After describing the setup of the scenario and the
applied refinement steps in Sects. 3.1 and 3.2 presents results of several simula-
tion runs, which have been performed with FERAL and the different levels of
abstraction.

3.1 Scenario Description

The target of the inverted pendulum system is to balance the rod of the pen-
dulum vertically with its mass pointing upwards and to preclude it from top-
pling by moving a cart on which the rod is mounted with a pivot point. In our
scenario, the physics and behavior of the pendulum are given by a Simulink
model1, whereas sensor, actuator, and controller nodes are specified with SDL
and allow executions with different abstraction levels. The conducted topologies
are presented in Fig. 3 and contain a simulated communication medium, which
interconnects all nodes and is refined during the development of the system. In
order to obtain sensor values and to influence the movement of the cart, the
sensor and actuator nodes are connected to the model of the pendulum. They
provide the input and sink, respectively, for the controller node, which hosts
a PID controller computing new manipulated variables periodically based on
the sensor values of the pendulum’s actual deflection and the actual speed and
position of the cart.

Figure 4 shows an overview of the SDL system of the controller, which follows
a classical layer architecture. Except for the application layer, the SDL systems
of sensor and actuator nodes are similar. On the controller node, the applica-
tion layer (block instance app) is realized by the block type PIDController,
implementing the PID control algorithm for the inverted pendulum. To abstract
from the communication on lower layers, the application communicates via the
middleware NCS-CoM [12], which offers service-based interfaces to provide and
access distributed functionalities in the network. NCS-CoM has also been devel-
oped in SDL and allows to abstract from the concrete location of services, i.e.,
from the nodes where data or functionalities are hosted. Thus, NCS-CoM pro-
vides transparent access to all services, whether they are executed remotely or
1 First, we designed a mathematical model of the physics and behavior of the inverted

pendulum based on differential equations. To enable simulations, this mathematical
model has been transformed into a Simulink model. We have chosen Simulink, since
its semantics is particularly suited to represent such kind of models.
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Fig. 3. Simulated network topology of the inverted pendulum scenario.

locally on the same node. In this regard, a service registry is introduced in NCS-
CoM to find available services, to register new ones, and to subscribe to existing
ones. In the inverted pendulum scenario, this registry stores corresponding ser-
vices of the sensor and actuator nodes, which are accessed by the controller via
the NCS-CoM middleware.

On the MAC layer, the SDL system provides two alternatives, which are
realized as block types and implement the same interface (see also Fig. 4): A
simple event-triggered MAC protocol (EVENT MAC) and an advanced TDMA-
based protocol (TDMA MAC). They can be exchanged easily by just modifying the
block instantiation. For first functional tests, the development of the inverted
pendulum system starts with the simple event-triggered MAC layer. This MAC
layer will be replaced later by the final TDMA-based MAC layer, which ensures
deterministic guarantees and collision-free transmissions via exclusive slot reser-
vations. Figure 5 shows the corresponding configuration of the message schedule
for this protocol, where time is divided into macro slots, which are further sub-
divided into synchronization and reserved transmission slots. In this scenario,
each macro slot has a duration of about one second and starts with a synchro-
nization (synch slot). Afterwards, periodical transmission slots with a duration
of 10 ms and an interval of 30 ms are reserved for each node (sensor, controller,
and actuator).

Applying virtual prototyping, the inverted pendulum system has been devel-
oped and evaluated with a total of four abstraction levels:

– Level 0: This level performs functional evaluations of the control algorithm and
the middleware NCS-CoM. It executes all nodes by library-based SDL FSCs,
thereby neglecting execution delays, which would accumulate on real hard-
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Fig. 4. SDL system of the controller node.

Fig. 5. Message schedule of controller, sensor, and actuator node.

ware. Communication is via the event-triggered MAC layer (cf. SDL block type
EVENT MAC) and a reliable PtP communication medium of FERAL, enabling
simultaneous transmissions without propagation delays and collisions. With
this high level of abstraction, the designer can focus on the functionality of
the middleware, such as registration, subscription, and provision of services.
Furthermore, results of simulations can serve as a basis to select a suited
controller type and to derive a first set of control parameters.

– Level 1: This level replaces the event-triggered MAC layer by the TDMA-
based MAC layer (cf. SDL block type TDMA MAC). With this abstraction level,
developers can concentrate on functional tests of the MAC protocol and its
interaction with NCS-CoM by using scenario-specific message characteris-
tics as test input. Though the communication medium is still the simulated
PtP medium, first communication delays introduced due to the TDMA-based
message scheme are considered now, thereby enabling first estimates w.r.t.
their influence on the quality of control and the stability of the pendulum.

– Level 2: On this level, the simulated PtP communication medium is replaced
by the model of a wireless communication channel, which is provided by ns-3
in the form of a CSC of FERAL. In this regard, ns-3 has been extended in
previous works with a simulation model of the CC2420 transceiver [15], which
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corresponds to the transceiver of the Imote 2. Thereby, this abstraction level
enables accurate simulations of the communication, considering transceiver-
specific delays (e.g., switching delays or transmission delays), propagation
delays, and limitations (e.g., communication range or destructive interfer-
ences). Hence, the impact of theses factors on the quality of control can be
evaluated.

– Level 3: This abstraction level executes the SDL system of the controller node
no longer as library-based SDL FSC but on an Imote2 as HiL. Thereby, exe-
cution delays introduced by the real target platform and their influence on
quality of control are assessed. In particular, execution times of the SDL run-
time environment and the selection of transitions and their execution on the
specific platform are considered now, thereby providing accurate simulation
results and realistic statements about the behavior of the deployed system.

3.2 Results

Simulation runs were performed for each of the four aforementioned abstraction
levels. In each simulation run, the same start conditions hold, consisting of a
four degree deflection of the inverted pendulum from the unstable equilibrium,
a non-moving cart, and a rotation speed of the rod of zero. Furthermore, the
actual manipulated variable controlling the motor of the cart was set to zero.

Figure 6 shows the results of the respective simulation runs. The deflections
of the inverted pendulum from the unstable equilibrium, as measured by the
simulated sensor, are plotted as dashed lines, whereas the solid lines show the
manipulated variables (voltage) used to operate the actuator of the cart. These
variables are calculated by the controller in order to stabilize the pendulum,
i.e., to minimize the deflection. The discrete steps in their progression reflect
the control cycle of 60 ms, which is used by the PID controller to update the
manipulated variables.

Figure 6(a) plots the simulation results with abstraction level 0. Although,
the control algorithm causes some overshoots, the deflection of the pendulum
is reduced to nearly zero fast. From that point on, the controller keeps the
pendulum near its unstable equilibrium by applying minimal but continuous
corrections. The generated curve progression of the manipulated variable is very
smooth, thus avoiding fitful changes of load. Though, the parameters of the PID
controller are not perfect (overshoots, not using the full range of the manipu-
lated variable), they seem to be sufficient to stabilize the pendulum. Therefore,
the same parameters are applied during all refinement steps and the impact of
reduced abstraction levels on quality of control is evaluated in the concrete case.

The simulation results with abstraction level 1, where the event-triggered
MAC protocol is replaced by the final TDMA-based MAC protocol, are plotted
in Fig. 6(b). Compared with abstraction level 0, the amplitudes of the overshoots
during the control process are higher and the decay of oscillation caused by the
overshoots is slower. Thus, the control quality is obviously decreased due to the
accruing communication delays. However, the applied control parameters still
work, since the deflection slowly decreases over time and does not build up.
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(a) Level 0: Library-based FSC, event-
triggered MAC, PtP CSC.
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(b) Level 1: Library-based FSC, TDMA-
based MAC, PtP CSC.
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(c) Level 2: Library-based FSC, TDMA-
based MAC, ns-3 CSC.
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(d) Level 3: HiL FSC, TDMA-based MAC,
ns-3 CSC.

Fig. 6. Deflection of the pendulum with different levels of abstraction.

On abstraction level 2, the abstract PtP communication medium is replaced
by the model of a real communication medium provided by ns-3, which sim-
ulates wireless communication with CC2420 transceivers with realistic delays.
Since the TDMA-based MAC protocol prevents collisions, all nodes are in com-
munication range, and there is no interference on the simulated wireless channel,
the simulated communication remains reliable. As shown in Fig. 6(c), the over-
shoots during the control process are increased (amplitude and duration) by the
additional delays, thereby demonstrating a decrease of the quality of control
compared to abstraction level 1. However, the controller still is capable to slowly
reduce the oscillation and to stabilize the pendulum, which is indicated by the
decreasing amplitude of the overshoots.

On abstraction level 3, the controller is executed on the target platform
Imote 2, whereas all other FSCs (sensor, actuator, physical model of the inverted
pendulum) and CSCs are still simulated by FERAL. The arising impact on
control quality caused by platform-specific execution delays are illustrated by
Fig. 6(d) and shows an extensive deterioration. Here, the overshoots build
up to an oscillation with increasing amplitude causing the pendulum to tilt
significantly and to topple in the end. This shows that the chosen control para-
meters are not suitable to stabilize the pendulum when running on the target
platform.

This example illustrates that simple functional simulations (such as in
abstraction level 0) are not sufficient for complex real-time systems, since they
may abstract from aspects having a relevant impact on the overall behavior.
Here, the additional functional and non-functional delays finally lead to a func-
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tional failure of the developed networked control system. Although, the last
abstraction level reveals a defect, the step-wise reduction of the abstraction level
turned out to be useful in this case study, since the refinement allowed to focus
on different aspects during system development and facilitated the detection
and repair of errors. In the case study, abstraction level 0 was introduced to
inspect, improve, and test the functionalities of the middleware and the con-
trol algorithm. Abstraction level 1, on the other hand, helped to evaluate the
TDMA-based MAC protocol and its interaction with the middleware, whereas
we could concentrate on timing errors caused by transceiver-specific delays in
combination with the configuration of the MAC protocol with abstraction level
2. Finally, abstraction level 3 enabled to review the speed of the target platform
and the efficiency of the SDL implementation, and to identify the bottleneck in
our scenario.

4 Related Work

Since simulations in general and simulations of SDL system for the purpose of
functional evaluations are a very broad topic, the following survey of related
work is limited to performance simulations of SDL, incorporations of SDL into
simulator frameworks, and HiL simulations.

In [18], a profiling tool for SDL is presented, whose dynamic analyses eval-
uate the computational effort of an SDL system by simulating the system and
counting the number of executions of particular constructs. These executions are
weighted with platform-specific execution times. With the objective to make SDL
simulations more implementation-related, [5] removes the gap between SDL’s
concurrent execution semantics and serialized executions on real hardware plat-
forms. For this purpose, SDL processes are mapped to nodes representing operat-
ing system processes with priorities and executed under control of newly devised
observers of ObjectGEODE [24]. Though both approaches improve the confi-
dence in an SDL system’s execution, they still suffer from inaccurateness, since
not all relevant delays (e.g., caused by scheduling overhead) are considered.

W.r.t. the incorporation of SDL into simulator and development frame-
works, there are two related works: The first one is the simulator framework
PartsSim [2], a component-based simulator, which incorporates several special-
ized simulators like ns-2. By supporting the simulator Avrora, PartsSim enables
performance evaluations of SDL systems running on AVR platforms. A second
framework with SDL support is TASTE [21], which combines domain-specific
modeling techniques like SDL, Simulink, and SCADE. To validate the behavior
and performance of generated systems, several tools are provided to monitor
performance aspects, to generate message traces, and to perform schedulability
analyses. Though, TASTE also supports the inclusion of real hardware to access
sensors or actuators, the execution of SDL systems on HiL is not supported.

The roots of HiL simulations are found in military and civil avionics.
Buford et al. report in [10] that the U.S. Army Aviation and Missile Com-
mand started developing HiL simulation and test capabilities for their missile
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defense and tactical missile program around 1960. Compared to tests within the
real physical environment, HiL simulations, whether in missile or plane devel-
opment, provide a non-destructive, less cost intensive, and threat-free option
for testing. With the growing complexity of embedded systems and their safety
criticality, HiL simulations became an enabling technology for developing and
testing embedded devices [11]. Today, HiL simulations are common in an exten-
sive range of industries, such as aerospace, avionics, automotive, and nuclear
industries [20].

In the automotive domain, HiL simulations are often used to test ECUs
(Electronic Control Units) in complex simulated environments such as engine
management [4] and brake control systems [13]. In both mentioned references,
the environment – like the engine and brake system – is modeled in Simulink. The
second approach additionally relies on a commercial car model. Most commercial
solutions – such as the HiL tools provided by MathWorks, dSpace, OPAL-RT,
or Vector – only support a limited number of CASE-tools (usually Simulink or
SCADE) to model the environment. The exchange of inputs and outputs with
the DUT is either realized by special hardware, interpreting and providing analog
as well as digital signals [13], or uses the XCP [1] protocol for calibration. This
solution requires a special runtime environment on the DUT, memory maps of
the software, and hardware support for the chosen transport protocol.

To our knowledge, there is no previous work about HiL simulations with SDL.
Different to the discussed works, FERAL can in addition to physical models also
simulate distributed systems consisting of many and dissimilar FSCs and CSCs
as environment for the DUT. Thus, not only Simulink is supported to model
the environment but all integrated simulators and techniques of FERAL. Since
FERAL and the DUTs exchange data and control messages via a simple serial
connection, no special hardware is needed. Because all functions required by HiL
simulations with SDL have been integrated into a complete SDL tool chain, no
manual effort is required to interconnect a DUT with the simulator core.

5 Conclusions

In this paper, we present an approach to increase the significance of SDL simula-
tions and to enable the use of SDL in conjunction with virtual prototyping. The
approach is based on the integration of SDL models into FERAL, a simulator
framework for complex networked systems, and the execution of SDL systems
in simulations with HiL. In total, the integration of SDL into FERAL renders
possible both pure functional and reproducible performance evaluations of SDL
specifications within the context of large networked systems and in combination
with simulated physical environments. Besides providing an outline of necessary
extensions of FERAL, this paper presents guidelines regarding the development
of complex systems with virtual prototyping and the step-wise reduction of the
level of abstraction. The application of these guidelines is illustrated in a case
study with an inverted pendulum system.
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In the case study, we demonstrate the advantages of step-wise system refine-
ment, which enables to direct the focus on particular aspects during system devel-
opment. By means of simulation runs with different levels of abstraction, newly
developed functionalities can be tested early and faults can be removed cost-
efficiently. Results of the simulation runs in the case study disclose the impor-
tance of accurate performance evaluations and the impact of non-functional
influencing variables (e.g., communication and execution delays). In this regard,
simulations with HiL revealed that pure functional evaluations of SDL systems
are not sufficient due to the significant overhead of the runtime environment
and non-negligible execution times, which demand evaluations of SDL systems
on their target platform and with the real runtime environment. In summary,
the case study demonstrates that simulations with HiL state a practical alterna-
tive to tests with the full system build-up and that they represent an adequate
trade-off between costs and accuracy of results.

Our future work includes extensions of FERAL to support further simulators
and hardware platforms to be utilized in simulations with HiL. Furthermore,
improvements of the SDL integration into FERAL are planned to reduce the
step size between different abstraction levels. Thereby, sources of overhead in
SDL implementations and bottlenecks can be identified more precisely.
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Abstract. The Specification and Description Language (SDL) is a for-
mal specified and standardized modeling language, which is mainly used
to specify protocols as well as distributed systems. The two algorithms
‘Resolution by Container’ and ‘Resolution by Context’ are specified for
name resolution of identifiers in SDL specifications. In this paper, prob-
lems that were identified during an implementation of the ‘Resolution
by Context’ algorithm are discussed. In addition, possible enhancements
to remedy the identified problems are presented.

Keywords: SDL-2010 · Name resolution · Concrete syntax

1 Introduction

The Specification and Description Language (SDL) is a formal specified and
standardized modeling language, which is mainly used in the telecommunica-
tion sector to specify protocols as well as distributed systems. A new version of
the SDL standard series was published (under the acronym SDL-2010) in 2011
as ITU-T Recommendations Z.100–Z.107. The standard series for SDL is com-
plemented by the ITU-Td Rec. Z.109 [3] that defines a profile for the Unified
Modeling Language (UML) making it possible to specify an SDL specification
in terms of a UML model. In addition to Z.100 [1], revised versions of the formal
specifications were published in 2015 as Annex F1–F3 [4–6].

The SDL-UML Modeling and Validation (SU-MoVal) framework [7] is a pro-
totypical implementation of the SDL-UML profile as specified in Z.109. The
framework provides an editor for a textual notation, which supports SDL state-
ments and expressions. Among other features, the editor supports syntax high-
lighting, syntax completion, syntax analysis etc. After the textual notation is
entered into the editor, it is transformed to corresponding SDL-UML model ele-
ments. Before this transformation, identifier names for SDL entities have to be
resolved in an appropriate manner. However, name resolution is also required for
advanced editor services, such as syntax analysis etc. These services need to have
a high-performance, because results shall be displayed to the user immediately.

During the implementation of the ‘Resolution by Context’ algorithm a few
drawbacks concerning its specification in Z.101 [2] and also its formal specifica-
tion in Z.100 Annex F2 [5] were identified.
c© Springer International Publishing Switzerland 2015
J. Fischer et al. (Eds.): SDL 2015, LNCS 9369, pp. 65–80, 2015.
DOI: 10.1007/978-3-319-24912-4 6
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The first identified drawback concerns the formally specified algorithm that
returns invalid results in particular cases. In consequence, identifier names can
be resolved to wrong entity definitions.

The second drawback concerns a combinatorial explosion of the specified
algorithm that is also inherited by its formal specification. In consequence, a
first standard compliant implementation of this algorithm had a poor perfor-
mance (processing takes up to 30 s) so that editor services, e.g. syntax analysis,
could not be used efficiently. Even if this problem has a negative impact on the
required processing time for name resolution, it does not affect the correctness
and completeness of the algorithm. However, when considering an automatic
generation of editors resting on formal language specifications, the performance
issue of algorithms should become more important, otherwise corresponding code
had to be implemented manually.

In this paper, both before mentioned problems are analysed and possible
solutions are proposed. The rest of this paper is structured as follows. Related
work is discussed in Sect. 2. In Sect. 3, a short introduction to the formalisms of
SDL is given. Afterwards, in Sect. 4 the drawbacks are analyzed in detail and
possible solutions are proposed in Sect. 5. Finally, a conclusion is given in Sect. 6.

2 Related Work

The formal semantics of SDL-2000 and data type related aspects are treated in
[8,9,13], but these works do not cover the identified drawbacks of the ‘Resolution
by Context’ algorithm, which are the topic of the present paper. In another
paper [12], the challenges and problems concerning the implementation of a
parser for the concrete syntax of SDL-2000 are discussed. But this work does
not address the validation of the static semantics and therefore also the problems
treated in the present paper are not discussed. Furthermore, the generation of
a compiler for SDL resting on the formal language definition of SDL-2000 is
discussed in [10]. The different steps and requirements to generate a compiler
are analyzed and discussed in detail, but the topic of a combinatorial explosion
and the problem with no valid results of the ‘Resolution by Container’ algorithm
are not mentioned in this work.

Apart from the already mentioned work, also a few more recent works address-
ing a meta-model or an UML profile based formalization of SDL exists, e.g. [7,11].
Even if the concrete syntax and semantics are covered by these works, the poten-
tial problems with name resolution on concrete syntax level are not treated.

The two works mentioned above, address issues concerning the implemen-
tation of parsers or compilers for the concrete notation of SDL, but they have
not identified problems with the standardized algorithm for name resolution by
context. In addition, also the other works have not covered this topic. In con-
trast, the present paper identifies two existing problems for the ‘Resolution by
Context’ algorithm and proposes possible solutions for them.
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3 Formalisms of the Specification and Description
Language

A brief introduction to the formal syntax specification of SDL is given in the
first part of this section. Details concerning both algorithms for name resolution
are discussed in the second part.

3.1 Formal Syntax Specification

In the recommendations Z.101–Z.107, the concrete syntax of the textual and
graphical notation of SDL is specified in terms of an extended Bakus-Nauer-
Form (BNF). The syntax production rules contained in these documents are
also used in a modified variant in Z.101 Annex F2 [5], which defines the static
semantics of SDL on concrete and abstract syntax level. For this purpose, a set
of constraints and transformations rules are defined, which are specified by using
a first-order predicate logic. The formalisms for this predicate logic are defined
in Z.101 Annex F1 [4].

Even if the formal specifications of both algorithms for name resolution are
specified by using these formalisms, due to space restrictions no detailed intro-
duction can be given here. Hence, interested readers should consult the Annex
F1 document.

3.2 Algorithms for Name Resolution at Concrete Syntax Level

In general, an SDL specification can be considered as a hierarchical tree struc-
ture consisting of different kinds of nested entity definitions, e.g. agent type
definitions, and behavior specifications. In total, 24 different kinds of entities are
defined for SDL [2]. As in the case of other programming languages, an identifier
is used in an SDL specification to refer to a particular entity definition in that
tree structure. Therefore, an identifier consists of an optional qualifier and a
name part. The qualifier defines the path from the root node (a system agent or
package) of the tree to the context where an entity is defined. Definition contexts
of entities are also referred to as scope units, which are particular kinds of SDL
entities. In total, 15 different kinds of scope units are specified, which means that
not every entity kind can own other entity definitions. However, an identifier can
only refer to an entity that is visible according to the visibility rules of SDL [2].
Furthermore, entities that are defined in the same scope unit must be unique so
that they can only have the same name, when they differ in their entity kinds or
signatures, which are only present for operations and literals. A literal signature
consists of the literal name and the data type that owns this signature, whereas
an operation signature consists of the operation name, its parameter types and
its result type. Usually, in SDL specifications only the name parts of identifiers
are specified so that associated qualifiers have to be resolved by an appropriate
algorithm. For this purpose, the two algorithms ‘Resolution by Container’ and
‘Resolution by Context’ are defined.
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Resolution by Container. This algorithm is used for the resolution of iden-
tifiers that refer to entities that do not represent an operation or a literal. If the
optional qualifier of an identifier is present, the name resolution starts in the
scope unit that is identified by the qualifier. Otherwise, the next enclosing scope
unit of an identifier is used as entry point for the name resolution. After the start-
ing scope unit was identified, the resolution by container algorithm tries to bind
an identifier to an entity definition in a particular order. Therefore, a matching
entity definition is searched within different parts of the current scope unit. If
no matching entity definition could be found, the name resolution proceeds with
the next enclosing scope unit.

Resolution by Context. For the resolution of identifiers that refer to entities
of kind operator, method or literal, the ‘Resolution by Context’ algorithm is
used. In contrast to ‘Resolution by Container’, scope units are not taken into
account by this algorithm. Instead, the ‘context’ in which an identifier occurs
is used for the name resolution. Therefore, the following kinds of context are
defined:

– Assignment statement
– Decision area/statement
– An SDL expression that is not part of any other expression.

In the formal definition of the static semantics for SDL [5], the ‘context’ is defined
as follows:

Context0 =def< assignment > ∪ < decision > ∪ < expression > (1)

Since identified problems of the ‘Resolution by Context’ algorithm are discussed
in the subsequent sections, the detailed processing steps of the algorithm as
specified in Z.101 [2] are cited here:

1. For each <name> occurring in the context, find the set of <identifier>s,
such that the <name> part is visible, having the same <name> and partial
<qualifier> and a valid entity type for the context taking renaming into
account.

2. Construct the product of the sets of <identifier>s associated with each
<name>.

3. Consider only those elements in the product, which do not violate any static
sort constraints taking into account also those sorts in packages that are not
made visible in a <packageuseclause>. Each remaining element represents
a possible, statically correct binding of the <name>s in the <expression>
to entities.

4. When polymorphism is present in <assignment> (for example, in the support
of object-oriented data), the static sort of an <expression> is not always
the same as the static sort of the <variable> on the left hand side of the
assignment, and similarly for the implicit assignments in parameters. The
number of such mismatches is counted for each element.
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5. Compare the elements in pairs, dropping those with more mismatches.
6. If there is more than one remaining element, all non-unique <identifier>s

shall represent the same operation signature; otherwise in the context it is not
possible to bind the <name>s to a definition.

In the subsequent paragraphs, a few essential definitions and operations that
are specified in the formal definition of the static semantics for SDL [5] are intro-
duced. That is because especially for processing steps (1)–(3) this information
is required for a detailed discussion of identified problems.

In general, all above cited processing steps of the algorithm are implemented
by the operation resolutionByContext0() in the formal language definition.
The result of processing step (1) is represented as a set of so called Binding
items for each operator, method or literal name occurring in a resolution context.
Furthermore, each Binding item in the result set is defined as a tuple consisting
of the identifier name and one of the associated (visible) entity definitions. All
required computations are performed by the possibleDefinitionSet0() oper-
ation.

Binding0 =def< name > × < EntityDefinition > (2)

The set of all possible combinations of (identifier) names and associated entity
definitions is computed in step (2) of the algorithm. This is implemented by the
possibleBindingListSet0() operation in the formal language definition. The
result of this operation is represented as a set of BindingList items. Each
of these items is a sequence of Binding items and represents possible entity
definitions for the operator, method and literal identifiers of a resolution context.

BindingList0 =def Binding0∗ (3)

4 Problems of the Resolution by Context Algorithm

As already mentioned in the introduction of the present paper, some problems
concerning the ‘Resolution by context’ algorithm where identified during the
implementation of the textual notation editor for the SU-MoVal [7] framework.
The problems can be divided into two groups. The first group concerns problems
of the algorithm specified in Z.101 [2], whereas the second group concerns the
formal specification of the algorithm [5].

4.1 Problems of the Specified Algorithm

For the ‘Resolution by Context’ algorithm as specified in Z.101 a major drawback
concerning a combinatorial explosion exists. The drawback can be classified into
a general problem and a problem that occurs in the context of decision state-
ments.
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General Combinatorial Explosion Problem. In step (2) of the algorithm,
a set of possible binding lists for all combinations of (identifier) names and asso-
ciated entity definitions is computed. Thereafter, all those binding lists that
violate static sort constraints are removed in step (3). After these computations,
a set of possible result binding lists is available, which is used for the remain-
ing computations of the Resolution by Context algorithm. The total number of
possible binding lists can be calculated as the product of the number of visible
entity definitions EntityDefs for each identifier (i) in a resolution context. The
following formula is used for this purpose:

NumOfPossibleBL =
n∏

i=1

EntityDefsi (4)

Since the number of possible binding lists is computed as a product, identi-
fier names with a great number of associated entity definitions have a significant
impact to the total number of possible binding lists. Especially, particular infix-
operators (e.g. “<=”) that are implicitly defined for all literal data types are
present in large numbers. But also large numbers of operation and literal identi-
fiers in a resolution context increase the total number of binding list enormously.
The most important disadvantage of large numbers of possible binding lists is
an negative impact to the required processing time for the validation of static
constraints in step (3) of the algorithm. That is because the processing time is
directly proportional to the number of binding lists to be processed. In order to
make the discussed problem of a combinatorial explosion more descriptive, con-
sider the subsequent code example that is an assignment to a Boolean variable.
The expression on the right-hand side includes 5 literal and operation identifiers
that have to be resolved by the algorithm.

boolVar = intVar <= 10 and intVar >= 0

In Table 1, the total number of possible binding lists is calculated for different
numbers of visible literal data types, which includes the predefined data types
of SDL and different numbers of user-defined literal data types. As shown in
Table 1, an increasing number of literal data types induces an increasing number

Table 1. Possible binding lists for different numbers of user defined data types

User def. types “<=” 10 “and” “>=” 0 Binding lists

0 7 5 4 7 5 4900

1 8 5 4 8 5 6400

2 9 5 4 9 5 8100

3 10 5 4 10 5 10000

4 11 5 4 11 5 12100

5 12 5 4 12 5 14400
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of visible ‘‘<=’’ and ‘‘>=’’ infix-operators (see columns 2 and 5), whereas
the numbers of the remaining identifiers is kept constant.

Combinatorial Explosion for Decision Statements. Apart from the gen-
eral combinatorial explosion as discussed before, a similar issue exists for the
‘Resolution by Context’ for a <decision area> in the graphical notation or its
corresponding textual notation, which is a <decision statement>. For simplic-
ity, the term ‘decision statement’ is used for both notation kinds in the follow-
ing discussion. The combinatorial explosion for a decision statement can occur,
because all operation and literal identifiers that are contained in its <question>
and all its answers (<range condition>) have to be taken into account during
the resolution process. Before discussing the problem in more detail, consider
the subsequent code example that is a decision statement in textual notation:

decision (intVar) //The <question>
{

(=1): statement 1 // 1.Answer part

(=2): statement 2 // 2.Answer part

...
else: else statement

}
As shown by the given example, a decision statement can consist of an arbi-

trary number of answer parts and an optional else part. A range condition can
be specified in terms of a closed range or an open range. Without going into
details, both kinds of range conditions contain <constant expression>s, which
are very often literal identifiers. Only these parts are taken into account for the
name resolution.

The total number of possible binding lists for a resolution context that is a
decision statement can also be calculated with the already introduced formula.
Based on the given code example, the total number of binding lists is calculated
for a different number of present answer parts and the results are shown in
Table 2. Since the decision question of the given example consists of an Integer
variable, it has not taken into account for the calculation. In consequence, the
total number of binding lists depends only on the number of literals that are
present in the range conditions. Furthermore, it is supposed that each literal
could be resolved to one of five predefined literal data types, which are: Integer,
Real, Time, Duration or Natural. As shown in Table 2, the number of answer
parts increases linear while the number of binding lists increases exponentially.

Table 2. Possible bindings lists in dependency of decision answers

Answer parts 1 2 3 4 5 6

Binding lists 5 25 125 625 3125 15625
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4.2 Problems of the Formal Specification

Since the formal specification [5] of the algorithm for ‘Resolution by Context’
rests on the textual specification in Z.101 [2], the problem concerning a combi-
natorial explosion is also inherited. Hence, this issue is not discussed here once
again. But apart from this, a further problem of the formal algorithm specifica-
tion was identified during the implementation of the SU-MoVal [7] framework.

Identified Problem. As discussed in Sect. 3.2, for ‘Resolution by Context’
three different context kinds are defined. However, the problem discussed in this
section only occurs for a resolution context that is of kind <expression>. That
is because the formal specification of the resolution algorithm does not properly
take into account the rules that are defined for processing step (3). In particular,
the violation of static sort constraints for binding lists cannot be verified in an
appropriate manner. In consequence, invalid results are returned for identifiers
occurring in expressions that specify a default initialization or that represent
actual context parameters of statements.

An Example. In order to discuss the identified problem and its impact more
pragmatically, consider the following signal definition and an output statement
that makes use of it:

signal SigA (Integer);
output SigA (varA + 1);

The given signal SigA owns one formal parameter that is of kind Integer.
Apart from other constraints defined in [2], the corresponding actual context
parameter (the expression varA + 1) of the given output statement must be
sort compatible to the Integer sort. When ‘Resolution by Context’ is applied
to this actual context parameter, the resolution context is of kind <expression>.
Furthermore, the infix-operator ‘‘+’’ and the literal ‘1’ have to be resolved by
the algorithm.

Affected Operations in the Formal Definition. The identified problem of
the formal specification is caused by the isSatisfyStaticCondition0() oper-
ation and associated operations that are invoked in the body of this operation.
These operations implement the main part of step (3) of the resolution algo-
rithm. In particular, they are used in order to verify if a possible binding list
(bl) violates any static sort constraints for a given resolution context (c).

isSatisfyStaticCondition0(bl:BINDINGLIST0, c:CONTEXT0): BOOLEAN=def
case c of

|<assignment>=>isSatisfyAssignmentCondition0(bl, c)
|<decision>=>isSatisfyDecisionCondition0(bl, c)
|<expression>=>isSatisfyExpressionCondition0(bl, c)

otherwise False endcase
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As shown in the code snipped above, in the case of an <expression> con-
text, the isSatisfyExpressionCondition0() operation is invoked in order to
validate static sort constraints that are related to expressions. Depending on
the expression kind, a further operation is invoked or corresponding constraint
validations are directly computed in the body of this operation. A code fragment
of the operation that depicts this circumstance is shown below.

isSatisfyExpressionCondition0(bl:BINDINGLIST0, exp: <expression>)
:BOOLEAN =def

case exp of
|<create expression>=>isSatisfyCreateCondition0(bl, exp)
...
|<binary expression>=>

let opDef = getDefinitionInBindingList0(exp.s-implicit, bl) in
let fpl = opDef.operationParameterSortList0 in

fpl.length = 2∧
isSortCompatible0(getStaticSort0

(exp.s-<expression>, bl), fpl[1])∧
isSortCompatible0(getStaticSort0

(exp.s2-<expression>, bl), fpl[2])∧
isSatisfyExpressionCondition0(bl, exp.s-<expression>)∧
isSatisfyExpressionCondition0(bl, exp.s2-<expression>)

endlet
endcase

If the actual context parameter varA + 1 (a binary expression) of the given
example is passed to the isSatisfyExpressionCondition0() operation, corre-
sponding static sort constraints are directly validated by this operation.
In particular, the sort compatibility of the two operators varA and ‘1’ of the
binary expression will be verified, but the required sort compatibility of the
return result of the expression is not validated. In consequence, not
only the ‘‘+’’infix-operator name of the Integer data type is accepted as a
valid operator name, but also any other operator with an equal name regardless
its sort compatibility. Due to the discussed behavior, the formal specification of
the ‘Resolution by Context’ algorithm considers each possible binding list as a
valid binding list. Hence, wrong resolved identifiers for operator, method and
literal entities can be returned by the algorithm. This problem does not only
exist for the discussed example, but also for any other kind of expression. That
is because also for these expressions any existing sort compatibility constraints
of surrounding statements are disregarded.

5 Proposed Solution

Possible solutions for the drawbacks identified in Sect. 4 are proposed in this
section. All proposed solutions rest on the reworked algorithm for ‘Resolution
by Context’ that is implemented by the textual notation editor of the SU-MoVal
framework [7].
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5.1 Elimination of the Combinatorial Explosion Problem

A solution for eliminating the discussed problems concerning a combinator-
ial explosion of the algorithm for ‘Resolution by Context’ that is specified in
Z.101 [2] is discussed in this section.

General Combinatorial Explosion. As stated in Sect. 4.1, the root of the
problem with a general combinatorial explosion rests in steps (2) and (3) of
the algorithm. Since the required computation time for validating static sort
constraints in step (3) depends on the total number of possible binding lists,
a possible solution for the identified drawback should reduce the total number
of binding lists that have to be taken into account. That is because it is pre-
sumed that the static sort constraints that are validated in step (3) cannot be
reworked or optimized. However, in step (1) of the current algorithm only the
identifier name and the entity kind are considered for collecting possible entity
definitions. In consequence, also invalid entity definitions are taken into account
for calculating the set of possible binding lists. Since for all expressions and
statements of SDL a static sort compatibility or equality of sorts is required [2],
this circumstance could be regarded in step (1) to reduce the amount of possible
entity definitions for a particular identifier name. Hence, the number of possible
binding lists computed in step (2) would be decreased and in consequence also
the required computation time for step (3).

Proposed Enhancement. In order to avoid a combinatorial explosion, it is
proposed to extend the definition of processing step (1) for the ‘Resolution
by Context’ algorithm with an additional rule taking sort compatibility into
account. The definition could be reworked as follows (the additional rule is bold
printed):

For each <name> occurring in the context, find the set of <identifier>s,
such that the <name> part is visible, sort compatibility to surrounding
expressions or statements is taken into account , having the same
<name> and partial <qualifier> and a valid entity type for the context taking
renaming into account.

When implementing the proposed enhancement for step (1) of the algorithm,
the set of expected static sorts must be carried forward to directly enclosed
sub-terms of a statement or expression during the collection of possible entity
definitions for an identifier.

Result Evaluation. In order to evaluate that the proposed enhancement for
the ‘Resolution by Context’ algorithm is able to avoid a combinatorial explo-
sion, the already introduced code example of Sect. 4.1 is used for this purpose.
The number of possible binding lists for different numbers of user-defined data
types by applying the proposed enhancement is shown in Table 3. A compari-
son between the numbers of possible binding lists obtained by the standardized
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Table 3. Number of possible binding lists for the enhanced resolution algorithm

User def. types “<=” 10 “and” “>=” 0 Binding lists

0 4 5 4 4 5 1600

1 4 5 4 4 5 1600

. . . . . . . . . . . . . . . . . . 1600

Fig. 1. Possible binding lists for the enhanced and the standardized algorithm

algorithm (dashed line) and those obtained by the enhanced version (solid line)
is shown in Fig. 1.

As it can be determined from the results, the number of binding lists will
keep constant even if the number of user-defined data types increases. That is
because when taking type compatibility into account, not only the number of
literals will keep constant, but also the number of operators. This is obtained by
carrying forward the set of expected static sorts during the collection of possible
entity definitions for an identifier.

Combinatorial Explosion for Decision Statements. The already proposed
enhancement for a general combinatorial explosion cannot prevent all kinds of
combinatorial explosions that can occur for a resolution context that is of kind
decision statement. In particular, the proposed enhancement has only an effect
for cases where the <question> of a decision statement does not contain an
identifier that has to be resolved by ‘Resolution by Context’. For instance, this
is the case for the decision question intVar of the given example in Sect. 4.1,
because it is a variable access with only one possible static sort, which is the
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predefined Integer sort. In such a case, the static sort of the decision question
can be unambiguously determined by applying the ‘Resolution by Container’
algorithm, whereas this is not possible for a decision question consisting of an
operator application or a method application or a literal value. For these kind
of decision questions, instead of only one possible static sort, potentially a set of
different static sorts has to be taken into account during the resolution process.
That is because more than one visible operator or method with a matching
identifier name could be present for a resolution context. In consequence, the set
of possible binding lists can also increase in such a situation.

Proposed Enhancement. A success key of the proposed solution to prevent a
combinatorial explosion occurring in a resolution context that is of kind deci-
sion statement is to split up the context into several parts. In detail, it is pro-
posed to introduce a so-called sub-context for the ‘Resolution by Context’ of
a decision statement. Such a sub-context consists of the <question> and the
<range condition> of a decision answer. In consequence, the number of sub-
contexts for a decision statement is equal to the number of decision answers.
The proposed approach can be applied, because according to the semantics for a
range condition specified in Z.101 [2], each range condition of a decision answer
represents the invocation of a particular Boolean operator that implements the
required computations. In addition, the invocation results of these operators are
independent of each other. The advantage of the proposed approach is that the
number of possible binding lists for a decision statement will be made inde-
pendent from the number of present decision answers. Hence, the usage of sub-
contexts restricts the number of identifier names, which have to be resolved with
‘Resolution by Context’ at one time, to an absolute minimum. In addition to
the already proposed extension, it is proposed to rework the definition for step
(1) of the ‘Resolution by Context’ algorithm as follows (proposed extensions are
bold printed):

For each <name> occurring in the context or in the sub-context of a deci-
sion statement , find the set of <identifier>s, such that the <name> part is
visible, sort compatibility to surrounding expressions or statements is
taken into account , having the same <name> and partial <qualifier> and
a valid entity type for the context taking renaming into account.

Result Evaluation. For the evaluation of the proposed enhancement of the algo-
rithm for ‘Resolution by Context’ a slightly modified variant of the example given
in Sect. 4.1 is used here. Hence, consider the following code snippet representing
an SDL decision statement.

decision (intVar + 1)
{

(=1): statement 1 // 1.Answer part

...
}
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Fig. 2. Possible binding lists for the proposed and the standardized algorithm

In contrast, to the already introduced example, the decision question of the
example used here consists of an operator application for the“+” infix-operator.
In consequence, within the decision question two identifiers (an operator and
a literal) have to be resolved. Furthermore, one additional literal identifier is
present for each additional decision answer. The numbers of possible binding
lists obtained by the currently standardized algorithm (dashed line) and the
numbers obtained by the proposed version (solid line) are shown in Fig. 2. As
evident, the numbers of binding lists obtained by the proposed algorithm are
increasing linear. That is caused by splitting up the resolution context for a
decision statement into different sub-contexts that are independent from each
other. Hence, the number of possible binding lists can be calculated as a sum,
whereas the number of binding lists for the standardized algorithm is calculated
in terms of a product.

5.2 Rework of the Formal Specification

A possible rework of the formal definition of the ‘Resolution by Context’ algo-
rithm [5] is proposed in this section. The proposal addresses all issues identified
in Sect. 4.

Solution to Avoid Combinatorial Explosion. As discussed in Sect. 4.2, the
problems of the algorithm for ‘Resolution by Context’ identified in Sect. 4.1 are
also inherited by its formal specification [5]. Hence, a possible rework of the cor-
responding functions of the formal specification is proposed subsequently. Due
to space restrictions and the complexity of necessary reworks, this can only be
described informally here. In order to rework the formal specification in an appro-
priate manner, the solutions for avoiding a combinatorial explosion proposed in
Sect. 5.1 have to be taken into account here. In general, the new definition for
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step (1) of the algorithm requires taking into account the sort compatibility to
surrounding expressions or statements during the computation of possible bind-
ing lists. Since this computation is implemented by the getBindingListSet0()
operation of the formal specification, this operation has to be reworked.

getBindingListSet0(c: Context0): BindingList0-set =def
let nameList = c.nameList0 in
let possibleBindingListSet =

nameList.possibleBindingListSet0 in
let possibleResultSet = {pbl∈ possibleBindingListSet:

isSatisfyStaticCondition0(pbl, c)} in
let resultSet =

{r∈ possibleResultSet: ∀r‘∈ possibleResultSet: r ¬ r’
⇒ mismatchNumber0(r, c)≤ mismatchNumber0(r’, c)} in

if |resultSet| = 1 then resultSet
elseif |resultSet| = ∅ then 

else 

endif

endlet

In order to take sort compatibility into account, the collection of relevant
identifier names and the computation of the possible binding lists shall be com-
bined. Therefore, the beginning of the getBindingListSet0() function body
has to be reworked as follows:

getBindingListSet0(c: Context0): BindingList0-set =def
let possibleBindingListSet =

c.possibleBindingListSet0 in ...

As shown by the code snippet above, instead of passing a name list to the
getBindingListSet0() operation, the current resolution context (c) shall be
passed. That is because this operation shall be reworked in such a way so that the
initial static sort is determined from the resolution context. In detail, the initial
static sort for the three different resolution context kinds shall be determined as
follows:

– Assignment statement: The static sort that serves as starting point for
computing possible binding lists shall be derived from the variable, which is
the target of the assignment.

– Decision area/statement: In the case of an decision statement resolution
context, the initial static sort for computing possible binding lists shall be
derived from the <question> of a decision.

– SDL expression (not part of any other expression): If an expression specifies
an actual parameter of a statement (e.g. output statement), the required initial
static sort has to be derived from a corresponding formal parameter. Apart
from this, if an expression specifies the default initialization for a data type
definition, the enclosing data type definition has to be used as the initial static
sort.
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When the initial static sort is determined, the possible binding lists could
be derived by a new recursive operation that traverses an expression in a top-
down manner. For the first invocation of this operation, the already determined
initial static sort is passed as argument to this operation. Afterwards, during
a recursive call of this operation, the expected static sorts shall be propagated
to nested expressions. Then this information is used to refuse all visible entity
definitions that are not sort compatible to the propagated static sorts.

Solution to Avoid Incorrect Results for Expression Contexts. A prob-
lem directly concerning the formal specification of the ‘Resolution by Con-
text’ algorithm is discussed in Sect. 4.2. The identified problem concerns invalid
results that can occur for a resolution context that is of kind expression. In
particular, this is caused by the isSatisfyStaticCondition0() operation that
implements step (3) of the algorithm. That is because the required static sort
for expressions is not validated by this operation. However, no rework of the
isSatisfyStaticCondition0() operation is required when the solution for a
combinatorial explosion as proposed above is implemented. That is because only
sort compatible entity definitions are taken into account for computing possi-
ble binding lists, which are used as input for this operation. In consequence,
the missing static sort constraints are already validated before invoking the
isSatisfyStaticCondition0() operation and therefore no invalid results can
occur.

6 Conclusion

Even if the initial standardization activities concerning the formalization of SDL
goes back to the beginning of the last decade, the problems discussed in this
paper are also inherited by the revised version of SDL. Since the formal specifi-
cation of the ‘Resolution by Context’ algorithm can return invalid results in the
case of resolution contexts that are of kind expression (see Sect. 4.2), the impact
of this problem is classified as high. Hence, the author of this paper suggests to
fix the formal specification [5] as proposed in the second part of Sect. 5.2.

The problem of a combinatorial explosion mainly affects SDL tool vendors,
because this problem does not have an impact to the soundness and complete-
ness of the standardized algorithm. However, also for this problem it should
be considered to rework the related parts of Z.101 [2] as well as of the formal
specification [5] as proposed in Sect. 5.1. That is because if a tool vendor uses a
model-driven development (MDD) approach for the generation of an SDL editor,
the generated code would not be fixed manually.
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Abstract. Specific modelling technologies for digital hardware design
are typically the synthesizable, cycle-accurate register-transfer level
descriptions (VHDL or Verilog RTL) or bit-accurate transaction level
models (SystemC TLM). Given nowadays complexity of circuits such
as System-on-a-Chip (SoC) for multimedia embedded systems, and of
the embedded software interacting with the SoC, there is a need for a
higher abstraction level that would ease mastering the interaction, start-
ing from initial conceptual stages of a product development. The Spec-
ification and Description Language (SDL) modelling technology allows
to describe functional models independently from their implementation.
This paper describes a work done by STMicroelectronics and PragmaDev
to experiment the use of SDL high level functional description in a typ-
ical simple hardware/ software interaction scenario involving interrupts
handling.

Keywords: Interrupts · Modelling · Hardware · Functional

1 Introduction

RTL (VHDL or Verilog) is the abstraction level for describing hardware for syn-
thesis, TLM for fast simulation of hardware, and C is the typical programming
language for coding interrupts routine. Since it is possible to simulate RTL or
TLM, and as C is portable on many different platforms, a usual approach is
to co-simulate the hardware and the software. In [1] the authors can test the
final C code together with the hardware at a relatively early stage provided the
models exist. But the abstraction level is very low and it is actually executing
the real implementation, rather than a description, of both the hardware and
of the software. TLM as presented in [8] makes models available earlier than
RTL and do simulate orders of magnitude faster, but still is usually modelled
using interfaces (ports, registers) with a bit-true description (typically from IP-
Xact XML), which is often not available in the very early stages of a new SOC
architecture study, when the system architect is performing what-if analysis.

The UML Profile for MARTE [2] has introduced the InterruptResource
stereotype. As often seen with UML, a number of notations, usually stereo-
types which are basically comments on elements, are available but there are no
c© Springer International Publishing Switzerland 2015
J. Fischer et al. (Eds.): SDL 2015, LNCS 9369, pp. 81–88, 2015.
DOI: 10.1007/978-3-319-24912-4 7
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execution semantics nor action language. Therefore, a MARTE diagram is basi-
cally a documentation of the organisation of an interrupt. Some UML extension
for representing interrupts exists, however modelling simulatable UML does lead
to complex graphical representation compared to our goal; work is still ongoing
towards some simplification.

In [4] a way to represent interrupts in SystemC is currently proposed for
standardisation in Accellera, but its intent is bit-true modelling, with similar
concepts as RTL (level or edge interrupt, active high or low, etc.) hence is too
detailed for earlier phases of architecture study.

In [9] the authors use the general concept of transfer event as a generalization
of an interrupt behaviour in order to facilitate testing on the final hardware of
pre-emption and nesting side effects.

In all the previous literature, no way is proposed to model an interrupt easily
and at early, what-if system definition stage, that is before bit-true modelling
stage of an SoC (or digital processing system) project; and with simulation
capability.

Also note that a solution for interrupts should also address more generally
the case of an event that is occurring in an asynchronous manner compared to
the planned or protocol-driven scheduling of the behaviour of the system.

2 Hardware Modelling Requirements

Today there are established languages for hardware modelling and simulation:
SystemC (C++ based) for modelling at transaction-level (TLM), and VHDL or
Verilog for register-transfer level (RTL) at level of signals and clocks which are
needed as input to hardware synthesis to gates and then silicon. The positioning
of some hardware modelling languages is shown in Fig. 1.

Architects nowadays need to model complex digital processing systems, such
as SoC’s, and simulate these models to perform what-if analysis for function-
ality and performance studies, before and after hardware-software partitioning.
Models need to be easy to modify within a couple of hours, for quick loops in
the architecture study. Requirements for an architect-level modelling language
do include:

– the ability to represent the various aspects of a system functionality;
– the possibility to simulate, and the existence of related tools to control the

execution and analyse the trace during or after simulation;
– the simplicity for architects to represent their system and have it understood

or even reused by customers, designers, developers;
– the need for the language to be standardised, to ensure interoperability of

models across tools used by partners, customers, suppliers and also mid/long-
term secure investment in modelling efforts.

SystemC/TLM is more suited to bit-true validation, and RTL for signal and
clock-level verification, both in later phases of a product development.

For architects various system description languages exist; some of them are
overviewed in the introduction.
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Fig. 1. ESA system level modelling in SystemC [3]

3 SDL

ITU-T Specification and Description Language [6] models are based on an asyn-
chronous semantic of execution. Messages are exchanged between agents in the
model through implicit message queues. Even synchronous mechanisms such as
shared variables are actually based on an exchange of messages. The main ben-
efit of an SDL model is that it is executable and therefore verifiable using a
dynamic approach. This is particularly useful in asynchronous systems in which
a lot of parallelism generates a huge number of possible execution paths.

Hardware description at RTL level is naturally synchronous for clock-based
designs. The flow of information from one component to the next is synchronized
by a hardware clock. Above RTL, at TLM and SDL levels, behaviour descrip-
tions are not based on clocks. Rather, system level synchronizations need to be
described and in particular asynchronous events such as interrupts. Therefore it
is interesting to investigate how an SDL model can describe an interrupt, and
how tools can simulate its behaviour.

4 A Pragmatic Approach

The SDL architecture is made of Agents called from top to bottom System,
Blocks, Processes, and Procedures. A process is basically a state machine and a
number of state machines describe the behaviour of a block. SDL procedures aim
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at factorizing some behaviour. They can be called with parameters, have a return
value, and can contain states. What is very specific to SDL procedures is that
they can manipulate their parent variables. Therefore SDL process variables can
be modified by a procedure called by the process, and this has some similarity
with what happens during an interrupt. A procedure call without any parameter,
nor return value, nor states, is actually an SDL concept suitable to represent
an interrupt. Except we need to find a way, when in simulation, to have it
callable anytime, including in the middle of an SDL transition. As verifying this
possibility could be useful and because the required amount of work was quite
reasonable, PragmaDev has implemented in its SDL Simulator a new command
that allows to call a procedure at any time during the execution of a transition. In
practice the user stops execution wherever he wants, typically via a breakpoint,
and calls the procedure to simulate the interrupt handler execution.

In Fig. 2, a simple example transition is shown in which the sum and the
factor of two parameters are calculated and sent back. The goal is to use the
latest values available from a real time sensor, at the time of computation of
each formula.

Fig. 2. A simple transition
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Fig. 3. The interrupt handler procedure

A procedure called interrupt handler is defined in the process and its behav-
iour is described in Fig. 3.

The only thing the procedure does is to modify the value of b. As explained
previously the b actually refers to the parent’s b, therefore the procedure will
modify the b manipulated in the process transition.

The default behaviour of the transition is displayed as an MSC trace [5] in
Fig. 4.

During simulation the user steps in the transition and decides when to trigger
the transition [7]. In Fig. 5, the selected symbol is the next one to be executed.

Fig. 4. Default behaviour of the example in Fig. 2
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Fig. 5. The next step to be executed by the simulator

Calling the interrupt handler procedure at this moment of the execution will
produce the trace in Fig. 6.

The value of the second parameter of the s result message has been modified,
demonstrating the values of the variables have been modified in the middle of
the transition.

5 Expected Results

The ability to model behaviours triggered by events that are occurring anytime
during the planned, protocol-driven inter-subsystems behaviours of a system, is
one of mandatory conditions for adoption by system architects of a new way of
modelling and simulating future products.

SDL supported by RTDS, fulfils the requirements of a higher level mod-
elling than TLM or RTL, meaning rapid creation of models, with fairly simple
schematics, while enabling simulation for what-if analysis of system architecture.

The experiment described above does provide a way to extend SDL and make
it suited for modelling a wider range of system types. It will be worth testing
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Fig. 6. Interrupted behaviour of the transition shown in Fig. 2

the scalability of the approach by working with system architects on full-scale
system model.

Another next step is to allow an increase of the coverage of system simulation
execution paths, by providing a way to script the occurrence of the asynchronous
event (e.g. interrupt) at various places in the system behaviour. This would
make such models useful to system validation engineers, by providing a range of
architect-valid expected simulation executions, which can be used as reference
for TLM or RTL simulation traces (execution branches, state variable values) in
later stages of the product development.

Upon the adoption of the modelling methodology by architects and validation
engineers, one should consider refining this concept and proposing standardis-
ation of such an extension to SDL, as a standard-based modelling paradigm is
better for interoperability and portability than a tool-specific feature.

6 Conclusion

This paper has shown how SDL could be used to describe interrupts from a
functional point of view. Based on the original SDL execution semantics, a
very pragmatic and simple solution has been developed in an industrial tool
(RTDS V4.6) to support the concept. User acceptance includes ease of modelling
by architects, and re-usability of traces by design engineers. Depending on the
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feedback from more users on real use cases, this approach will be further improved
and developed.
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Abstract. In the LanguageLab language workbench, we build on a
component-based approach to language specification that facilitates the
specification of all aspects of a computer language in a consistent man-
ner, taking into account best practices in meta-modelling and language
design. The workbench allows operation on a suitable abstraction level,
and also focuses on user-friendliness and a low threshold to getting
started, in order to make it useful for teaching of meta-modelling and
language design and specification. The platform is open for third party
language modules and facilitates rapid prototyping of DSLs, re-use of lan-
guage modules, and experiments with multiple concrete syntaxes. The
platform also allows interested parties to develop LanguageLab modules
that can further add to the features and capabilities of the LanguageLab
platform.

Keywords: Meta-modelling · Language workbenches · DSL Develop-
ment Environments

1 Introduction

The rising abstraction level of modern general-purpose computer languages and
the introduction of model-driven development contribute to the efficiency of
software development. However, limitations in the current state of the art in
language specification, restrict the application of model-driven development for
language development.

The problem handled in this article, concerns lowering the threshold for
beginners and students in meta-model-based language specification as well as
making the job easier for language developers, primarily by making it possible
for the language modeller to operate on a higher level of abstraction. A major
concern is following and supporting best practices in meta-modelling and lan-
guage design.

In meta-model-based language design, a major challenge is to be able to
operate on an adequate level of abstraction when designing a complete computer
language. If the abstraction level is too low, the language developer will spend
too much time on unnecessary details. There are several different technologies,
meta-languages and tools in use for defining different aspects of a language, that
may or may not satisfy the needs of a DSL developer.
c© Springer International Publishing Switzerland 2015
J. Fischer et al. (Eds.): SDL 2015, LNCS 9369, pp. 91–105, 2015.
DOI: 10.1007/978-3-319-24912-4 8
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Based on experiences from teaching, conversations with students and from
case studies [4], we have concluded that it is useful to develop a simple
metamodel-based language development platform, that attempts to remove some
of the complexity of the more popular existing tools, to better support the stu-
dent in learning the basic principles of computer language handling. It should
have a consistent and logical architecture that facilitates language specification,
and it should let the student operate on a suitable level of abstraction, and
facilitate making and modifying small example languages.

The rest of this article is structured as follows: Sect. 2 covers state of the
art in language specification, Sect. 3 covers the design and implementation of
LanguageLab, and Sect. 4 provides some simple LanguageLab use cases for illus-
tration. Section 5 discusses the results and contributions of the work, and finally
Sect. 6 provides a summary.

2 State of the Art in Language Specification

This section covers relevant parts of the state of the art and related work in
language specification, with particular emphasis on the meta-model architecture
and the language workbench approach.

A description of a modelling language, whether it is a domain specific lan-
guage (DSL) or a general purpose language, usually involves several different
technologies and meta-languages. Traditionally, we are familiar with the distinc-
tion between the syntax and the semantics of a language. The syntax specifies
the structure of sentences in the language, while the semantics assign a meaning
to the sentences.

In [1], a language definition is said to consist of the following aspects: abstract
Syntax (Structure), Constraints, concrete Syntax (Presentation) and Semantics
(Behaviour). In addition, the aspects Mapping and Extensibility are identified,
where the last one is not handled in this article, and mapping is considered a
part of Semantics.

Structure defines the constructs of a language and how they are related. This
is also known as abstract syntax. Constraints bring additional restrictions
on the structure of the language, beyond what is feasible to express in the
structure itself.

Presentation defines how instances of the language are represented. This can
be the definition of a graphical or textual concrete language syntax.

Behaviour explains the dynamic semantics of the language. This can be a trans-
formation into another language (denotational or translational semantics),
or it defines the execution of language instances (operational semantics).

A language workbench is a term commonly taken to mean a platform primar-
ily intended for rapid and user friendly development of DSLs, where all aspects
of designing the language are supported within the tightly integrated platform,
including generation of editors and support for execution or code generation.
The term was defined first by Martin Fowler in 2005 in his article “Language
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Workbenches: The Killer-App for Domain Specific Languages?” [2], but similar
integrated language development platforms existed before that.

There are several language workbenches and workbench-like language devel-
opment IDEs available. Evolving from compiler-compilers and parser generators
like lex and yacc, the first workbenches to appear date at least as far back as
1995 when LISA (based on attribute grammars) was introduced [8].

Among workbenches and workbench-like language development environ-
ments should also be mentioned the ASF+SDF Meta-Environment [9], Mon-
tiCore, IBM Safari, DLTK (Dynamic Language Tool Kit), Actifsource, Meta
Programming System (MPS) [12], MetaEdit+ [10], Rascal (the successor of the
ASF+SDF Meta-Environment) [7], Spoofax [6] and Intentional Domain Work-
bench [5]. There are also several Eclipse plugins that can cooperate to form a
language workbench-like environment. While many of these are work in progress,
the best of the currently available language workbenches represent a big step for-
ward towards a unified environment that provides the language developer with
the high-level tools needed to specify and create complete computer languages.

Language workbenches typically provide specific meta-languages for describ-
ing language aspects. Currently, structure, constraints and text syntax are stan-
dard, while transformations and execution semantics are still open. Moreover,
static semantics issues like typing and identifier resolution are often not han-
dled specifically. All platforms admit that they do not provide a complete set
of meta-languages, and they open up for implementation languages like Java
to enable complete language description. This is a valid approach for achieving
a complete platform, but fails when the interest is in concepts and dedicated
meta-languages.

In the OMG four-layer meta-model architecture, every model element on
each layer is strictly an instance of a model element of the layer above.

It is common to use meta-models to specify the structure of a language, using
existing meta-languages like MOF and Ecore, but they are not expressive enough
to handle language aspects like presentation and behaviour.

The approach to the meta-model architecture within the modelling lab at the
University of Agder, is based on the premise that all aspects of a language should
be defined specifically by using suitable meta-languages on the level above, as
described in [11]. We see meta-languages as offering interfaces that languages
on the level below can use, as shown in Fig. 1.

Thereby, we apply the notion that models can freely be promoted or demoted
between levels depending on the intended use, and models in the meta-model
architecture are relative to each other based on the relationship between them.

2.1 Introducing the LanguageLab Workbench

In [4], we argue that students of model-driven language design are easily demo-
tivated by complex tools, or too many different tools. There is therefore a need
for a student-friendly, transparent and easy to use integrated meta-modelling
platform for use in teaching. This platform should allow the student to work
on a suitable level of abstraction, avoid unnecessary complexity, and facilitate
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Fig. 1. The architecture used by the modelling lab at University of Agder.

best practices in meta-modelling and language design. Based on experiences
from teaching meta-modelling and compiler theory, LanguageLab is designed as
a complete environment for experiments with meta-model-based language spec-
ification. Its implementation is currently in the state of an evolving prototype
that supports the most basic functionality including creation of structure, tex-
tual presentation and instantiation semantics.

3 LanguageLab Design and Implementation

The LanguageLab language workbench aims to allow the DSL developer to oper-
ate on a suitable level of abstraction for all relevant language aspects, and facili-
tates making and modifying small languages for use in teaching. In this section,
the design and implementation of LanguageLab is described.

3.1 Language Modularity and Instantiation

The most fundamental functionality of the platform is to allow instantiation
of modules. When modules are used as languages for defining new modules,
they are also called meta-modules. A meta-module supports structure, allowing
creation of instances based on its instantiation semantics. A suitable presentation
can be defined providing an editor that allows for a more user-friendly creation
of modules. Then, constraints can be defined on the elements of the module.
Finally, a module can have behaviour semantics in terms of transformations or
in terms of execution. The definition of meta-modules is done using appropriate
meta-meta-modules.

Note that it is also possible to load more than one meta-module for the same
language aspect, to provide e.g. different views of the language (usually one
presentation meta-module will provide one editor) and/or support for different
language features, like e.g. expressions or inheritance.

When a module defining the structure of a language has been developed based
on the basic meta-modules, it can be promoted, or “moved up” a level in the
meta-modelling hierarchy, by loading it as a meta-module and using its available
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interface, to offer the structural elements of the language. If a corresponding
presentation module for the language has been created, this editor can then be
loaded. When a new module (language instance) has been created based on these
meta-modules, one may want to execute it. If execution semantics is available
(e.g. from a meta-module supporting behaviour), one can again “move up” the
created module, and execute it.

Figure 2 shows how a meta-meta-language for structure can be defined using
different meta-meta-modules including a version of itself, following the pattern
shown in Fig. 1.

Fig. 2. The LanguageLab architecture used for defining a meta-module.

3.2 LanguageLab User Interface

The two main elements of the Language Lab Graphical User Interface are, from
top to bottom:

• Language Level contains the loaded meta-modules. Each meta-module
exists in a separate tab.

• Model level contains the module being developed. The module is an instance
of the meta-modules loaded on the language level. The model level always
includes the platform view (providing a simple tree structure) of the module
being developed. Optionally, it may contain editors in separate tabs, if the
loaded meta-modules support it.

In addition, there is an optional lower interface view, for displaying the inter-
face of a module in case it is used as a meta-module (see Sect. 4.3).

Presentation. Figure 3 shows the two main parts of the LanguageLab GUI.
The upper part is for meta-modules, and in this case it contains a meta-module
interface for structure. The lower part is for showing the module being built
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Fig. 3. LanguageLab user interface.

from elements of the loaded meta-module(s). In this case, it is a simple PetriNet
language module. In this illustration, the language instance is shown in the built-
in system tree view, the so-called runtime state information tree view, on the left
side. The BasicStructure language meta-module also contains a textual editor
(BasicStructureEditor), allowing to display and edit the structure textually.

LanguageLab allows users to switch between different presentation views
of a language instance, that are automatically synchronised with the internal
representation. Note that the view must be in a consistent state for successful
synchronisation to take place.

Behaviour. Modules may contain operations, that will be displayed as buttons
in the toolbar when the modules are loaded as meta-modules. For example, the
meta-modules in Fig. 4 contain two functions, genLowerInterface and makeSem.

When executing an operation, its semantics as defined in the correspond-
ing meta-module is used. This is further described in Sect. 4.2. Transformation
operations can be defined by using a transformation language meta-module.

Textual code generators can be implemented based on the editor support
of LanguageLab, and may be done either as template-based systems where the
code generation is one-way, i.e. the generated code is read-only, or it may take
the form of a full editor that allows for editing the generated code and have the
changes applied to the original language instance.
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Fig. 4. Combining elements from different meta-modules.

3.3 Module System

It is possible to combine elements from different meta-modules, e.g. for covering
different language aspects, as shown in Fig. 4. Here, elements from two different
meta-modules are used for defining one module; the BasicMapping module is
defined using itself as well as BasicStructure as meta-modules.

3.4 Implementation

LanguageLab is very abstract and only relying on its available meta-modules.
However, at some point all this functionality has to be provided. This is done
using the concept of an abstract machine. The LanguageLab platform imple-
ments an abstract machine catering for types, objects, operations, and editors.
The LanguageLab platform machine is defined using EMF and implemented in
Java. The implementation language is hidden to the LanguagLab user.

The starting point for the LanguageLab application is an Eclipse/EMF-based
tree-view editor, generated from an Ecore model of the proposed LanguageLab
module format. The EMF-based editor plugins were extended with a front-end
carrying a full graphical user interface, implemented as a standalone Eclipse
RCP application, enabling the language developer to use it independently of
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Eclipse. Although RCP applications do not carry the weight of the full Eclipse
workbench, they can still build on all available features of Eclipse, such as the
JFace widget toolkit, the plug-in architecture of Eclipse, and EMF, allowing a
relatively rapid development of the LanguageLab platform.

Fig. 5. The Language Lab Ecore model - Part 1: Module.

As shown in the LanguageLab module internal structure Ecore diagram frag-
ment in Fig. 5, the Module may contain RequiredInterfaces from used meta-
modules, and may itself provide a ProvidedInterface where the types that
are supported by the module are defined. The interface consists of Types that
can have Attributes; supporting basic built-in types: llBoolean, llString,
llInt. Reference refers to typed objects. If the module provides an interface,
it may also contain operations and editors to be used by other modules. The
RTStateInfo is further described in the Runtime part shown in Fig. 6. This part
supports instances of Types included in the module; Objects, ObjectReferences
and ObjectAttributes. The RTStateInfo also contains Notifications to be
used e.g. by constraint modules.

Operation elements come in three variants; CodeOperation (Java class
files), ConstraintOperation (for use by constraints meta-modules) and
MapOperation (used for e.g. instantiation semantics), and grammar-based edi-
tors are supported by the type Editor.

This implements the architecture described in [11] by allowing a module
to both use interfaces from meta-modules as well as offer interfaces for other
modules to use. This facilitates not only one module per language aspect, but also
other variants such as modules supporting particular language features that can
be used as building blocks, as a starting point for creating a partly customised
DSL with some stock features.
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Fig. 6. The Language Lab Ecore model - Part 2: Runtime.

4 LanguageLab in Use

In this section, concrete examples of LanguageLab usage are presented,
including how to use it for creating a simple module based on an existing
meta-module, how to execute the module, and finally how to create a new meta-
module. Figure 7 shows the relation between the different modules and meta-
modules described in this section; BasicStructure (meta-module for structure),
PetriNet (a PetriNet meta-module), MyPetriNet (an instance of the PetriNet
meta-module) and RT MyPetriNet (runtime-instance of MyPetriNet).

4.1 Creating a Module

In this example, we will show how to create a simple module based on an exist-
ing meta-module in LanguageLab. The example language is a PetriNet language
meta-module. From this meta-module, we will be able to create a PetriNet spec-
ification module with places, transitions and arcs.

We start by creating a new module MyPetriNet. After a new module is
created, meta-modules can be loaded. Note that if we want to use a module as
a meta-module, we may load it as a meta-module from the interface menu. For
this to be meaningful, the lower interface of the module has to be populated (see
Sect. 4.3).

Instances of Place and Transition can be created using the Petri net editor.
When an instance is created in the editor, it will show up in the runtime state
view as well, as shown in Fig. 8.

We then call the operation prepareToRun from the toolbar button to prepare
the module for execution, and finally save the module for later use. This opera-
tion creates a runtime structure for MyPetriNet as well as execution semantics
given as operations init, step, and run.

In Fig. 9, we show how the prepareToRun function can be defined by using
the BasicMapping meta-module.
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Fig. 7. The (meta-) modules used in this section.

Fig. 8. Creating module elements in the textual editor.
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Fig. 9. A runtime element mapping definition for PetriNet.

Fig. 10. Runtime view.
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Fig. 11. Generating a lower interface based on language module semantics.

4.2 Executing a Module

The execution requires a new module RT MyPetriNet with the MyPetriNet
loaded on the language level, i.e. as a meta-module. The runtime variables in the
current state are shown in the runtime state view; and in the displayed example,
also in a system level text editor. The execution is controlled using the operations
init, step and run.

LanguageLab shows the execution state in the runtime state view, with access
to values of runtime variables, as shown in Fig. 10.

4.3 Creating a New Language with LanguageLab

Using the BasicStructure meta-module, we define the structure of PetriNet in
the same way as we defined the MyPetriNet module above, adding Place and
Transition, with the appropriate attributes.

Figure 11 shows how the BasicStructure module may be used to define the
structure of the PetriNet language and generate a lower interface offering place
and transition elements that can be used by other modules, thereby allowing it
to be used as a meta-module.

Textual or graphical presentations, constraints, and execution or transfor-
mation semantics may also be added as needed. For example, Fig. 12 shows the
grammar that defines the PetriNet language text editor used in Fig. 8.
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Fig. 12. Specification of the textual editor for the PetriNet language.

5 Discussion

The proposed architecture solves the challenge of consistent and logical handling
of all language aspects, and lays a foundation for a fundamental re-thinking of
the traditional meta-model architecture. One might initially think that this app-
roach would break interoperability with other tools and technologies in the meta-
modelling world, but in practice, the strict levels thinking is not a fundamental
property of most of these tools and platforms, but rather an issue that comes up
in relation to documentation and explanation of their architecture. Therefore,
although variants of the traditional four level architecture of OMG have support
from a great selection of language development tools and are very unlikely to
be going away soon, the inherent ease of interoperability with any level-based
architecture makes the proposed solution very flexible and competitive.

The LanguageLab prototype demonstrates the feasibility of the architecture
and shows that the proposed module format and the built-in tree view allows us
to create basic language modules and use these for defining language instances.
For proving the platform, a complete set of language modules is not needed,
rather it is necessary to show the feasibility of using the prototype to make more
advanced language modules. The three basic meta-meta-modules BasicStruc-
ture, BasicMapping, and BasicEditor are defined using themselves with complete
bootstrapping. Comparing the currently implemented features of LanguageLab
with existing Language Workbenches may lead to unfavourable results as Lan-
guageLab is still in the early stages of development, particularly when it comes to
availability of meta-languages and editors. However, the openness, extensibility
and simplicity of the design make it particularly suited for use in teaching.

When it comes to the decisions taken about the implementation of the Lan-
guageLab prototype, one could also have chosen other frameworks to build it on,
e.g. MPS, or it could have been developed as a more platform-independent Java
application or a web-application. Familiarity with Java, the Eclipse platform
and its plug-ins for model-driven language development made a RCP applica-
tion built on top of an EMF editor a rather clear choice. However, it has been
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an important goal that the architecture itself should be free of bindings to any
platform, and could in principle be implemented in many different ways, not
only the one that was chosen for implementing the prototype.

As LanguageLab is becoming increasingly functional, it will be tested on a
group of Master-students at University of Agder, where it is planned to take
over the role from Eclipse as the platform of choice for teaching language design.
Experiences from this test will be taken into account in the further development
of the platform.

There are still open issues concerning further development of the Language-
Lab workbench into a fully functional platform. More basic LanguageLab meta-
meta-modules are needed, including constraints, graphical presentation, and
transformation. Future versions of LanguageLab will allow different presenta-
tions of a language to support preservation of extra information, elements of the
presentation that are also present in some form in other presentations, but not
in the structure, as described in [3]. This can be achieved by using a presen-
tation extra-information meta-meta-module. In addition, there are some issues
that would benefit from more research, including:

– An improved method of handling language-to-language transformation, e.g.
based on common transformation patterns.

– An improved method of handling behaviour for operational semantics, e.g.
based on common behaviour patterns in state transitions.

6 Summary

A new meta-model architecture and a language workbench named LanguageLab
has been proposed, that facilitates a modular component-based approach to
language specification. A prototype implementation of LanguageLab has been
developed as a proof of concept. When it comes to implementation of meta-
languages, the system is currently bootstrapped with simple modules for struc-
ture, textual editing and mapping. Definition of instantiation semantics is also
supported by using the mapping module. This way, LanguageLab features the
essential aspects of language design.
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Abstract. Task trees are an established method for modeling the usage
of a website as required to accomplish user tasks. They define the neces-
sary actions and the order in which users need to perform them to reach
a certain goal. Modeling task trees manually can be a laborious task,
especially if a website is rather complex. In previous work, we presented
a methodology for automatically generating task trees based on recorded
user actions on a website. We did not verify, if the approach generates
similar results for different recordings of the same website. Only if this
is given, the task trees can be the basis for a subsequent analysis of the
usage of a website, e.g., a usability analysis. In this paper, we evaluate
our approach in this respect. For this, we generated task trees for dif-
ferent sets of recorded user actions of the same website and compared
the resulting task trees. Our results show, that the generated task trees
are consistent but that the level of consistency depends on the type of
website or the ratio of possible to recorded actions on a website.

Keywords: Usage-based · Task tree generation · Task model analysis

1 Introduction

Task models are a well known way for modeling the functionality of a system
and its usage. In addition to others, they define actions users take to utilize a
systems functionality supporting a users task as well as the order of actions [19].
Especially, task models are important for the analysis of user behavior [14]. They
can be created manually, which is a laborious task causing high effort as many
executions variants of a task need to be considered to have complete task models.
This can be overcome through generating task models based on recorded user
actions. Such task models are much easier created and can aid to understand how
users use a system and to detect usability smells [4]. Furthermore, usage-based
generated task models are a reliable source of information when considering user-
centered system adaptations [3,9]. Here, usage-based generated task models can
help a system designer to adapt other system models in means of further tailoring
a system to its actual usage. Such adaptations may also be done automatically.

In previous work, we developed a methodology for generating task models
based on recorded user actions on websites [5,6]. These models are in fact task
c© Springer International Publishing Switzerland 2015
J. Fischer et al. (Eds.): SDL 2015, LNCS 9369, pp. 106–121, 2015.
DOI: 10.1007/978-3-319-24912-4 9
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trees, one of several forms of task models. In the previous work, we did not yet
evaluate if the generated task trees are consistent, i.e., if they are structurally
equal or similar for different recordings of the same website. This consistency
is a prerequisite for the representativeness of the generated task trees regarding
the usage of the system and also for the validity of the results of any subsequent
analysis or system adaptation to be performed based on these task trees [4].
The contribution of this paper is the evaluation of our work described in [5,6]
with respect to the consistency of the generated task trees. Hence, we focus on
answering the following research question:

RQ: Does the approach described in [5,6] generate the same or similar task trees
for different recordings of the same website?

To answer this question, we performed the following analysis: Initially, we
recorded users of a web application. Then, we subdivided the recorded data into
subsets of equal size. Afterwards, we generated task trees for the subsets using
our approach [5,6] and compared the resulting task trees with each other to see
if the same or similar task trees are generated for the separate subsets. To the
best of our knowledge, there is no similar work done so far by other researchers.

The paper is structured as follows. In Sect. 2, we introduce the terminology
used in this paper, the structure of the task trees generated by our approach,
as well as the generation approach itself. Then in Sect. 3, we describe how we
compare generated task trees. Afterwards, we describe the setup of our case
study and its results in Sect. 4. We discuss our results in Sect. 5 and refer to
related work in Sect. 6. Finally, we conclude on the results and give a brief
outlook on future work in Sect. 7.

2 Task Trees and Trace-Based Task Tree Generation

In this section, we describe the basic concepts and terminology established for
the task tree generation in our previous work [5,6] as used and required for
this paper. Furthermore, we provide a brief description of the task tree gener-
ation process. Our approach starts with recording actions of users on a web-
site. Actions are, e.g., clicks on links or entering text into text fields. Then, we
post-process these actions to correct platform specific recording issues, e.g., mis-
orderings of recorded actions. Afterwards, we generate task trees based on the
actions.

The generated task trees are tree structures describing the order of actions
executed by users to accomplish a certain task. The leaf nodes of a task tree
are the actions. The root node represents the overall task. The parent nodes
including the root node define the order in which their children (other parent
nodes or actions) can be executed. The execution order of the children depends
on the type of a parent node. Two types of parent nodes are important for this
paper: iteration and sequence. If a parent node is an iteration, it has only one
child which is executed several times. If a parent node is a sequence, it has several
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Fig. 1. Example for a task tree of a login process on a website (adapted from [6]).

children, which are executed in their given order. We refer to any node in a task
tree, i.e., parent node or action, as task. A more formal definition of task models
and task trees is given in [19].

An example of a task tree, which could be generated by our approach for a
typical login screen on a website, is shown in Fig. 1. The leaf nodes (light grey)
are the actions performed by the users like clicking on a user name field. The
parent nodes (dark grey) define the order in which the actions were executed.
For example, Sequence 2 defines that first the user clicked on the user name field
and then entered text into it. The parent of Sequence 2, which is an iteration
(Iteration 1 ), defines that Sequence 2 was repeated several times, i.e., users
clicked the text field, entered the user name, clicked the text field again, entered
the user name again, and so on.

Our generation process [5,6] creates task trees of the above shown structure
through a repeated application of an iteration and sequence detection on a list
of recorded actions. Initially, the recorded actions are put into an ordered list of
tasks, that we call task list. On this list, we initially perform an iteration detec-
tion. If the task list contains several subsequent identical tasks (initially only
actions) they are replaced by a new single element in the task list representing
an iteration of the repeated tasks. Through this, the task list becomes shorter
and in addition to actions also contains iterations. An example for the iteration
detection is shown in Fig. 2a and b. Figure 2a is an initial task list containing
only recorded actions. For simplification, actions are identified through letters.
The order of the action executions by the user is given through the arrows. The
initial task list contains two repetitions of Action b indicated through the dot-
ted boxes. These are replaced through an iteration having Action b as its single
child. The result of this replacement is shown in Fig. 2b.

Then, a sequence detection is applied on the task list. For this, we search for
sublists in the task list that occur multiple times. The sublist that occurs most
often and is the longest is then selected. Each occurrence of the selected sublist
in the task list gets replaced by a new single element in the task list representing
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Fig. 2. Example for a task tree generation (adapted from [5,6]).

a sequence. This sequence gets the elements of the selected sublist as its children.
Afterwards, the task list contains actions, iterations, and sequences. An example
for the sequence detection is shown in Fig. 2b and c. Figure 2b shows a task list
in which the sublist (a, Iteration 1 ) occurs twice (indicated through the dotted
boxes). This sublist occurs most often in the overall task list and is also the
longest sublist occurring that often. Hence, it is replaced through a sequence
getting the elements of the sublist as its children. The result of this replacement
is shown in Fig. 2c.

Afterwards, the iteration and sequence detection are reapplied alternately.
Through this, more and more iterations and sequences are detected and the task
list becomes shorter. In subsequent cycles, the iteration detection can also detect
iterations of sequences. Furthermore, the sequence detection can detect new
sequences having other sequences as their children. Through this, the detected
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task trees become more and more complex. The process stops if neither further
iterations nor sequences are detected. A more detailed description of the task
tree generation process is provided in [6] and [5].

3 Comparison of Tasks

The goal of this work is to assess, if our task tree generation process creates
consistent task trees on different sets of recorded actions of the same website.
Consistent means, that the same or similar task trees are generated. Only then
they are a representative model for the user behavior. For this, we developed a
heuristic for comparing task trees which we describe in this section.

Our heuristic is based on the comparison of individual tasks. For comparing
two task trees, it traverses both starting from the root task and compares the
individual tasks on the different levels of both task trees. The result of the
comparison of the root nodes of two task trees is also the result of the comparison
of both task trees. For two tasks, we consider four different levels of similarity:
identical, equivalent, similar, and distinct. Two tasks are identical if:

– both tasks are actions and represent the same action on the same element of
the website (for example, two clicks on the same button),

– both tasks are iterations and their respective children are identical, or
– both tasks are sequences and they have identical children with the same order.

Two tasks are equivalent if:

– both tasks are iterations and their respective children are equivalent,
– one task is an iteration i and the other one is an action or a sequence o and

the child c(i) of i is equivalent or identical to o (for example, an iteration of
an action is considered equivalent to the action itself), or

– both tasks are sequences and they have identical or equivalent children with
the same order.

For determining if two tasks t1 and t2 are similar, we create two ordered lists
l(t1) and l(t2) containing the leaf nodes, i.e., actions, of the respective tasks in
the order they would be executed if all iterations of the tasks were executed only
once. Two neither identical nor equivalent tasks t1 and t2 are similar if

– l(t1) and l(t2) contain the same actions in the same order.

Two tasks which are neither identical, nor equivalent, nor similar, are dis-
tinct. Based on these definitions, two identical tasks are also equivalent but two
equivalent tasks are not necessarily identical. Furthermore, two equivalent tasks
are also similar, but two similar tasks are not necessarily equivalent.

Figure 3 shows examples of task trees with identical, equivalent, and similar
tasks. For example, Iteration 1 and Iteration 3 are identical as they have an
identical child (Click on Text Field 1 ). Furthermore, Iteration 2 is equivalent
to Sequence 2 as its single child, Sequence 4, is identical to Sequence 2. Finally,
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Fig. 3. Example for equivalent (Task Tree 1 and Task Tree 3 ) and similar tasks (all).

Sequence 1 and Sequence 3 are equivalent as they both have two children and
their first and second child are equivalent (Sequence 2 and Iteration 1 ) or iden-
tical (Click on Button “Ok”). As Sequence 1 and Sequence 3 are the root nodes,
Task Tree 1 and Task Tree 2 are equivalent. An example for two similar tasks
are Sequence 3 and Sequence 5. l(Sequence 3) and l(Sequence 5) are indicated
through dotted boxes around the leaf nodes of the two tasks. Both lists contain
Click on Text Field 1, Enter text in Text Field 1, and Click on Button “Ok” in
the same order. Hence, Sequence 3 and Sequence 5 are similar. Because these
sequences are the root nodes, Task Tree 2 and Task Tree 3 are similar. Task
Tree 1 is also similar to Task Tree 3.

For comparing two sets of task trees T ′
1 and T ′

2, we first create subsets T ′
s1 ⊆

T ′
1 and T ′

s2 ⊆ T ′
2 of both sets which contain only those task trees having sequences

as root nodes. Then, we compare any t′1 ∈ T ′
s1 with any t′2 ∈ T ′

s2. If we find a
t′1 which is identical, equivalent, or similar to t′2, we call this a recall (similar to
the definition of the term as used by Buckland and Gey, 1994 [1]) of t′1 in T ′

2.
We do not compare task trees having iterations as root nodes for the following
reason. Consider two identical tasks t1 and t2, being the root nodes of the task
trees t′1 ∈ T ′

1 and t′2 ∈ T ′
2. As t1 and t2 are identical, t′1 is recalled in T ′

2. Consider
a third task tree t′3 ∈ T ′

2 whose root node is an iteration i1 of t2. Due to the
comparison rules, t1 is equivalent to i1 as t1 is equivalent or identical to the
child of i1 being t2. In such a scenario, t′1 would be recalled twice in T ′

2, once
through t′2 and once through t′3. To prevent this, and also to reduce the number
of comparisons, we only compare task trees having sequences as root nodes when
comparing two sets of task trees.

4 Case Study

To evaluate the consistency of the generated task trees, we performed a case
study. In this case study we recorded actions of users of a website over a long
period of time. Then we subdivided the recorded actions into subsets and gen-
erated task trees for each of the subsets. Finally, we used our comparison mech-
anism to check if consistent task trees were generated for the distinct subsets.
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The data used for this case study is an extended version of the data used for the
case studies in [5,6] including more recorded actions.

The case study including the comparison of task trees was done using the
framework AutoQUEST (Automatic Quality Engineering of Event-driven Soft-
ware) which also provides an implementation of the task tree generation [5,6].
AutoQUEST is a tool suite for quality assurance of event driven software [7]. In
addition to others, it supports recording of user actions on websites and based
on this diverse methods for usability analysis and usage-based testing.

4.1 Recorded User Actions

Using AutoQUEST, we recorded users of a web-based application portal at our
university. This portal is used by bachelor students to apply for the master stud-
ies. For this, they submit, e.g., their CV and important graduation certificates.
Furthermore it is used by reviewers to assess if the students match required
criteria. For the applicants and the reviewers, the portal provides two separate
views. The applicants view is an assistant like interface guiding the students
through the application process. It consists of 107 pages of which 42 are the
wizard itself. Most of the other pages are quite similar to the wizard pages as
they allow a subsequent edit of the data provided in the wizard. For example,
there is a wizard page requesting the applicants name and date of birth, and
there is a corresponding page with a similar form allowing to change the name
and date of birth. Furthermore, there are pages on the applicants view giving
an overview of all provided application data as well as for login and registration.
A screen shot of the wizard page requesting for the personal data of an applicant
is shown in Fig. 4. The reviewer view allows the reviewers to have overviews of
all applications, to look at details of individual applications, and to assess the
applications. It is more flexible than the applicants view as it has no wizard like
structure. It consists of 32 pages of which some, e.g., the login screen, are shared
with the applicants view.

Over a period of 15.5 months, we recorded users of the portal performing
1,396,163 actions. As described in our previous work [5], recorded actions were
post-processed. This post-processing includes, e.g., dropping of implicit user
actions such as changing the keyboard focus to a specific text field. These actions
can be dropped, as subsequent actions like entering text into a text field implic-
itly contain the action that the keyboard focus has been changed to the respective
text field. In addition, we performed a reordering of some actions as, due to our
recording process, the actions are not always recorded in the order in which they
are performed. For example, when leaving a text field using the tabulator key,
the recording first records the pressing of the tabulator key and afterwards the
preceding entering of a text into the text field although users first entered the
text and then pressed the tabulator key.

After the post-processing, the remaining actions based on which the task
trees were generated are 807,654 of which 147,458 were executed on the reviewer
view and 656,100 on the applicants view. 4,096 actions belonged to test sessions
covering both views which we only considered in our evaluation as part of the
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Fig. 4. Screenshot of the wizard page requesting for the personal data of an applicant
in the applicants view of the website used for the case study.

whole data set but not on their own. The actions are distributed over 16,397
user sessions, where a session begins with the opening of the website and ends
either with the closing or with a timeout. We did not determine the number
of distinct recorded users as for this non-anonymous data would have to be
recorded to identify them. But we identified different client browser instances
which may give an impression on the number of different users. The number of
client browsers are 2,757 of which 2,575 used only the applicants view and 163
only the reviewer view. More details can be found in Table 1. There, also the
number of distinct available actions per view is listed. Some actions are shared
between both views because the views also have common pages, e.g., the login
screen.



114 P. Harms and J. Grabowski

Table 1. Facts of the case study including recorded actions and generated task trees
for the overall data set and the separate views.

Overall Reviewer view Applicants view Test sessions

Recorded data

Recording period 10/13 – 02/15 11/13 – 02/15 10/13 – 02/15 11/13 – 11/14

Actions 1,396,163 245,680 1,143,334 7,149

Sessions 19,299 1,547 17,725 27

Distinct clients 2,758 162 2,574 22

Post-proc. data

Actions 807,654 147,458 656,100 4,096

Sessions 16,397 1,463 14,907 27

Distinct actions 4,445 1,740 2,754 570

Generated tasks

Sequences 26,353 4,855 21,452 –

Iterations 2,821 696 2,139 –

4.2 Generation and Comparison of Task Trees

For the evaluation, we first generated task trees for each of the considered data
sets. We call these task tree full task trees as they cover a whole data set. The
number of resulting sequences and iterations in the full task trees are shown in
Table 1.

Then, we subdivided the post-processed actions A of each data set into n
subsets As

1 . . . A
s
n ⊂ A of almost equal size s. For each of these subsets, we

generated task trees. We call the task trees generated for a subset of a data set
subset task trees. The selected subset sizes s depend on the data set and are one
of 1 %, 2.5 %, 5 %, 10 %, 20 %, 30 %, and 50 % of actions of the respective data
set. The subsets with s ≤ 20% are disjoint, i.e., no session occurs in more than
one subset. Larger subsets share sessions.

The separation of actions into subsets was done by creating subsets of user
sessions. This was required to not split user sessions into parts. As the number
of actions per session differs, a subset represented by a session subset, may
not exactly match the intended subset size. Which sessions were added to a
subset was decided randomly. We did not consider all possible permutations of
combining the sessions into subsets of almost equal size as these were too many.
Hence, our subsequent analysis is only based on a sample of possible subsets. The
details for the subsets we considered in our analysis are listed in Table 2. This
table also shows how many task trees we generated for the subsets on average.
For example, for the reviewer view we created 30 subsets with s = 1% (first row
for reviewer view). On average, these subsets consisted of 1,477 actions (standard
deviation of 10). The average number of sequences generated for these subsets
was 117.
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Afterwards, we compared the generated task trees. We performed compar-
isons of subset task trees with each other, where the subsets were of the same
size. In addition, we compared the subset task trees with the full task trees of the
respective data set. Table 2 shows how many comparisons of subset task trees
were performed either with other subset task trees or with the full task trees of
the data set. For example, for the reviewer view, we performed 15 comparisons
between the subset task trees with s = 1% and 10 comparisons of these subset
task trees with the full task trees generated for the reviewer data set. A dash
in the table indicates, that the corresponding comparisons have not been done.
This is due to the large comparison runtime caused by larger subsets.

Table 2. Information on created subsets, generated task trees, and the comparisons
done for the data sets.

Subsets Comparisons Actions Sequences Iterations

size s count subset full average dev. average dev average dev.

Overall 1% 30 15 10 8,076 0 635 34 220 21

2.5% 30 15 5 21,191 0 1,361 40 389 24

5% 20 10 - 40,383 3 2,420 49 591 31

10% 8 5 - 80,765 0 4,246 66 882 54

Reviewer view 1% 30 15 10 1,477 10 117 14 37 9

2.5% 30 15 10 3,730 201 255 28 67 14

5% 20 10 10 7,373 40 430 50 99 19

10% 10 10 5 14,746 2 771 45 163 20

20% 5 10 5 29,490 0 1,350 47 264 21

30% 6 5 - 44,237 0 1,871 45 348 21

50% 10 5 - 72,378 37 2,800 63 467 24

Applicants view 1% 30 15 5 6,561 0 529 21 186 11

2.5% 30 15 5 16,402 0 1,132 26 331 20

5% 20 10 5 32,802 3 1,985 30 506 37

10% 10 10 - 65,610 3 3,447 31 725 17

In general, the comparison of two sets of task trees T ′
1 and T ′

2 is time con-
suming. If T ′

1 contains n1 tasks trees to compare and T ′
2 contains n2 tasks trees

to compare, then n1 × n2 comparisons have to be done. In addition, a single
comparison of two task trees t′1 and t′2 has to perform several comparisons of
the individual tasks of the task trees. In the worst case, each task of t′1 will
be compared with one task of t′2. To be able to efficiently handle that many
comparisons, we implemented the comparison in a way so that we can perform
individual comparison of sets of task trees with individual starts of AutoQUEST.
Through this, we were able to run several comparisons in parallel on different
cores of a CPU or on different machines.
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After the comparisons were done, we counted the recalls to get a measure
for the consistency of the generated task trees. A recall means, that for differ-
ent subsets, the task tree generation process generates identical, equivalent, or
similar task trees. The higher the number of recalls, the more consistent are the
task trees. If the task trees have a high consistency, then we consider them as
a representative model also for other data sets and, hence, for the usage of a
website. This is a prerequisite for a subsequent usability analysis or other usage
of the generated task trees.

We considered both, the recalls of all task trees of a subset and the recalls
of the most prominent task trees of a subset. The most prominent task trees
are those covering most of the actions in a subset. To get the most prominent
task trees, we determined for all task trees generated for a subset the number of
actions they cover. Then, we created sets of task trees with the same amount of
covered actions. Afterwards, we joined the sets containing the task trees with the
highest coverage until the resulting set contains at least 20 % of the generated
task trees. As during this process a set may be joined containing more task
trees than required to achieve 20 %, the resulting set can contain more task trees
than 20 % of them. But as we performed our comparison on several subsets and,
hence, task tree sets, we have similar percentages of task trees to be considered
as the most prominent ones.

4.3 Comparison Results

The resulting average recalls of all comparisons mentioned in Table 2 are shown
as bar charts in Fig. 5. The upper bar charts represent the average recalls between
subset task trees. The lower bar charts show the average recalls of subset task
trees in full task trees. Each bar chart shows the recalls in percent (y-axis) for
a specific subset size (x-axis). For each subset size, there are two bars. The left
refers to the average recalls of all subset task trees. The right shows the average
recall of the most prominent tasks (mp) of a subset. The black part of a bar
indicates recalls of identical tasks, dark grey recalls of equivalent tasks, and
light grey recalls of similar tasks. For example, in the applicants view data set
(middle column) the recall of identical task trees (black part of bar) between
subset task trees (upper bar chart) with s = 10% (right bars) was on average
28 % for the most prominent task trees.

The recalls between subset task trees (upper bar charts) for the reviewer view
are below 25 % for all subset task trees and below 50 % for the most prominent
task trees. For the applicants view, the recalls are higher but still below 35 %
for all subset task trees and below 65 % for the most prominent task trees. The
recalls in the whole data set are below 32 % for all subset task trees and below
55 % for the most prominent task trees. The recalls of the most prominent task
trees are roughly twice as high as the recalls of all subset task trees.

The recalls of subset task trees in the full task trees (lower bar charts) are
higher (reviewer view above 60 %, applicants view above 75 %, overall above
75 %). The difference between the recall of most prominent task trees and all
task trees is not as high as for the recall between subset task trees, but still the



Consistency of Task Trees Generated from Website Usage Traces 117

F
ig
.
5
.
A

v
er

a
g
e

re
ca

ll
s

o
f
su

b
se

t
ta

sk
tr

ee
s

in
o
th

er
su

b
se

t
ta

sk
tr

ee
s

(u
p
p
er

ro
w

)
a
n
d

in
fu

ll
ta

sk
tr

ee
s

(l
ow

er
ro

w
).



118 P. Harms and J. Grabowski

recall of the most prominent task is always higher. The recall between subset
task trees increases with increasing subset size. The recall of subset task trees
in full task trees decreases with increasing subset size although the recall of
identical task trees increases with increasing subset size.

5 Discussion

Considering the partially high amount of recalls, we can conclude that our app-
roach [5,6] generates the same or similar, i.e., consistent, task trees for different
sets of recorded actions for the same website. Hence, we answer our research
question RQ with yes. But the amount of recalls and, hence, the task tree con-
sistency, is different for the distinct data sets. This may indicate a dependency
on the type of website. For example, the applicants view has an assistant like
structure being less flexible in possible action combinations than the reviewer
view. The recalls for this view are significantly higher than for the reviewers
view. Hence, we conclude that the consistency of the generated task trees is
higher, the less variable the actions can be combined on a website.

In addition, the number of recorded actions in comparison to the number of
distinct actions seems to have an effect on the consistency of the resulting task
trees. Considering this ratio for the different views (see Table 1), the data set
with the highest number of recorded actions per distinct actions is the applicants
view. This view also has the highest average recall of generated task trees. This
indicates that the more actions are recorded in comparison to distinct available
actions, the more consistent are the generated task trees. We expect this to
be caused by the fact that more recordings in comparison to available action
combinations cause more recordings of the same or similar executions of the
same user task. Hence, our approach [5,6] generates more representative task
trees the more recorded actions are available as input.

Considering the higher recall of most prominent task trees in comparison to
all subset task trees, we conclude that the most prominent task trees are also the
most consistent ones. Therefore, we also consider them as most representative.
Hence, these task trees should be focused on in a subsequent usability analysis
or other usages of the task trees. In addition, less representative task trees are
not required to be generated. Hence, the task tree generation process can be
stopped if no further task trees with a minimum of coverage of recorded actions
can be detected.

6 Related Work

Task trees are a specific form of task models describing task structures but also
user goals and objects required for task execution [19]. The task trees generated
by our approach [5,6] provide only a task decomposition and a task flow descrip-
tion. They do not provide further information. As the task trees are generated
based on recorded user actions of a fully functional website, they can be used for
a summative analysis and through this support subsequent design adaptations.
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Similar to ours, there are other approaches utilizing tree structures for task
modeling. These include TaskMODL [18], Goals, Operators, Methods, and Selec-
tion Rules (GOMS) [11], and ConcurTaskTrees [13,15]. Usually, these models are
trimmed to support a certain modeling goal. For example, GOMS models are
used to predict the efficiency of an average user performing a task. In addi-
tion, there are approaches that focus on detecting tasks in recorded user action,
e.g., Automated Website Usability Analysis (AWUSA) [17], ACT-R [10], and
Convenient, Rapid, Interactive Tool for Integrating Quick Usability Evaluations
CRITIQUE [9]. These approaches usually require labels in the recorded data to
indicate which actions represent the execution of a specific task [12]. Further-
more, approaches like Maximal Repeating Patterns (MRPs) provided statistical
data about action combinations performed by users [16]. Our approach does not
require labeled input data and provides more than just statistical information
about user actions.

The utilization of a website by users is similar to a language spoken by
users and interpreted by the website. Such a language can be modeled using
formal grammars. Task trees are quite similar to these grammars [8]. Therefore,
approaches for generating a grammar for examples of a given language, called
grammatical inference, could be applicable to generated task trees. But most of
these approaches require labeled data [2] which is not required by our approach.
To the best of our knowledge, there is no related work that evaluates the task
trees generated by our approach or by other approaches. There is work evaluating
approaches for grammatical inference. But as grammatical inference requires
labeled input data and does not directly result in the generation of task trees,
we do not cover it in this section.

7 Conclusion and Outlook

In this paper, we evaluated our approach [5,6] for usage-based generated task
trees. We generated task trees using our method for different data sets of recorded
user actions on the same website and compared the resulting task trees with
each other. Through this, we evaluated the consistency of the generated task
trees for different data sets. Our results show, that the task trees are consistent
and representative for the usage of a website. Especially the most prominent
tasks can, therefore, be used for a subsequent usability analysis. But, we also
observed that the consistency may depend on the number of recorded actions
in comparison to the number of available actions on a website as well as on the
type of website for which the task trees are generated.

In future work, we will perform further comparison analyses to address these
two issues and to determine, if these potential effects need to be considered.
We will also perform comparisons of merged task trees [5]. In addition, we will
check if our task tree generation process can be adapted in a way that only most
prominent tasks are generated. Furthermore, we will implement a different type
of comparison between subsets that will determine how many actions belonging
to a subset are executions of tasks generated for another subset.
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14. Paternò, F.: Model-based tools for pervasive usability. Interact. Comput. 17(3),
291–315 (2005). Elsevier
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Abstract. Graphical notations designed by committees in the context
of standardization bodies, like Object Management Group (OMG), are
widely used in the industry and academia. Naive users of these notations
have limited background on visualization, documentation and specifica-
tion of workflows, data or software systems. Several studies have pointed
out the fact that these notations do not convey any particular seman-
tics and their understanding is not perceptually immediate. As reported
in these studies, this lack of semantic transparency increases the cog-
nitive load to differentiate between concepts, slows down the learning
and comprehension of the language constructs. This paper reports on a
set of experiments that confirm the lack of semantic transparency of the
Unified Modeling Language (UML) as designed by OMG and compares
this standard to alternative solutions where naive users are involved in
the design of the notations to speed-up the learning of these languages
to new users.

Keywords: Visual languages · UML · Semantic transparency · Crowd-
sourcing

1 Introduction

Over the past three decades, visual languages have been gaining in popularity.
Several of these languages, such as the Unified Modeling Language (UML) have
been designed by standardization bodies involving different contributors, such as
language experts, tool vendors, (expert) users, etc. As reported in [28] these lan-
guages (that we refer to as committee-designed languages) have been developed
in a bottom-up approach by reusing existing notations and through consensus
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among the experts. As in [28,31] we believe that this is not the best approach,
especially when the target audience includes naive users.

Several observations on visual languages have been made over time. The cur-
rent development process strongly emphasizes the domain conceptualization (i.e.
building the abstract syntaxes) and often relegates the visual notations (concrete
syntaxes) and their semantic transparency as secondary products (byproducts).
However, the visual notation is the first contact of the users with the modeling
language and its semantic transparency plays a crucial role in its acceptance.
The current development process is criticized by research in diagrammatic rea-
soning, which shows that the form of representations has an equal, if not greater,
influence on cognitive effectiveness as their content [23,39]. A major incentive
for using visual notations is the widely-held belief that they convey information
more effectively than text, especially to novices [4]. Committee-designed visual
notations can sometimes be very distant from semantic concepts they represent.
As reported in [13,28,29] this lack of semantic transparency increases the cogni-
tive load to differentiate between concepts and slows down both the recognition
and the learning of the language constructs. In [9], the authors suggest that
the difficulty of understanding many of UML notations “supports the argument
that the UML may be too complex”. The authors in [13,28,29] evaluated the
visual syntax of several committee-designed languages using a set of evidence-
based principles for designing cognitively effective visual notations. The analysis
reveals some serious flaws in the notation in terms of cognitive effectiveness of
these languages, which are defined as the speed, ease and accuracy with which
a representation can be processed by the human mind [23].

In this paper, we ask a rather simple question: to design notations that are
understandable by new users, why not involve them in the notation development
process? If involving end-users in the development of software systems (e.g. par-
ticipatory design [32], user-centred design) is working well, why should this not
also be the case for graphical notations? The purpose is not to make modeling
languages understandable without learning, but to speed-up the learning and
comprehension of the language constructs and reducing misinterpretations due
to the notations complexity.

For this purpose we conducted a set of experiments on UML involving end-
users. Some of these experiments have been proposed and applied to another
language in [5]. The main difference is our comparison between the outcome of
these experiments and the standard UML notations. We have also used as input
for this comparison a set of notations created by experts in cognitive sciences
according to the Physics of Notations theory, which was not the case in [5]. On
the other hand, [5] has used the recognition experiment which was not necessary
in our process.

Because of space limitations, we selected only a set of visual elements of UML.
We believe this set represents a good sample of UML diagrams widely used and
easily understandable without deep technical background. For instance, class,
statechart and use-case diagrams are the most widely used UML diagrams by
non-experts users [38] and are included in this study. The other diagrams, which
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are created and used only by system designer experts in their domains and
without direct impact to other stakeholders are out of the scope of this study.

The goal of this paper is not to redefine the visual syntax of UML but to show
the importance of involving end-users in the design of visual notations. We show
the importance of involving end-users actively in the notations design process as
co-designers rather than as passive consumers. The broader goal of this paper
is to raise awareness about the importance of the semantic transparency in the
acceptance of a modeling language, which has historically received little attention.

2 Background and Related Research

One of the main advantages behind the use of modeling languages is their ability
to provide to their target users a set of concrete artifacts (visual notations)
that can directly express related domain abstractions (concepts) in a concise,
complete and unambiguous way [16]. According to [28], visual representations
have greater effect on understanding and performance than their content.

Existing approaches for designing visual notations consist of proposing sym-
bols and voting on them (i.e. expert consensus). For example, in UML diagrams,
symbols are conventional shapes on which iconic markers are added. However,
symbol shapes seem not to convey any particular semantics: there is no explicit
rationale to represent a Class as a rectangle, an action as a rounded rectangle
and a use case as an ellipse. The differentiation of UML notations is not per-
ceptually immediate, it is purely conventional. According to [37], to have an
unambiguous modeling language its symbols should provide cues to their mean-
ing. Semantically direct representations reduce cognitive load: their meaning can
be perceived directly or easily. This kind of representations speeds-up concepts
recognition, especially for novices [4,27]. According to [5], current visual notation
design practice is characterised by:

– An unselfconscious design approach [1]: there are no explicit principles for
designing visual notations [30].

– Lack of design rationale [24]: symbols are chosen without any evidence-based
decisions or rational justification [19].

– Small forms variations: similar geometrical shapes are used for different pur-
poses [34]. Without self-conscious design principles, the range of symbols is
limited by the imagination of the design team [30].

– Lack of involvement of the target audience: notations design decisions are
made exclusively by experts, without the involvement of the target audience.
For this reason, we propose our experimental process, which uses end-users
(target audience) suggestions as inputs into the language design process made
by experts.

2.1 Physics of Notations

On the whole, the most complete and referenced work on the assessment of visual
notations is probably the Physics of Notations theory [30] of Moody, which is
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exclusively devoted to the design, evaluation, comparison and improvement of
visual notations. In this work, Moody establishes a set of nine principles defined
from theory and empirical evidence and obtained from different disciplines such
as: cognitive and perceptual psychology, graphic design, communication theory,
cartography, etc.

Each of the principles of the Physics of Notations contains: design strate-
gies, which may contribute towards improving visual notations regarding this
principle; a different evaluation procedure or metric that can be used to com-
pare different notations, and examples of notations that satisfy or violate the
principle. These nine principles are:

1. Visual Expressiveness: use the full capacities of visual variables. The seminal
work in the graphical communication field is Jacques Bertin’s Semiology of
Graphics [21]. Bertin identified eight elementary visual variables, which can
be used to graphically encode information. These are categorized into planar
variables (the two spatial dimensions x, y) and retinal variables (features of
the retinal image).
The set of visual variables define a vocabulary for graphical communication: a
set of atomic building blocks that can be used to construct any graphical rep-
resentation. Different visual variables are suitable for encoding different types
of information (Fig. 1) The choice of visual variables has a major impact on
cognitive effectiveness as it affects both speed and accuracy of interpreta-
tion [7,25,40].

Fig. 1. Visual variables [21]

2. Semiotic Clarity : According to [14], there must be a one-to-one correspon-
dence between elements of the language and graphical symbols. The Semiotic
Clarity’s principle, maximises expressiveness by eliminating the deficit when a
domain concept is not represented by any representation and reduces ambigu-
ity by eliminating symbol overload (multiple domain concepts are represented
by one representation).
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UML visual notation violates the semiotic clarity principle. Many of the dia-
grams that need to be understandable by everyone (e.g. Structural diagrams)
contain high levels of symbol redundancy and symbol overload. For example,
of the 33 symbols commonly used on class diagram there are 5 synographs
(15 %), 20 homographs (61 %) and 2 symbol excesses (6 %).

<<interface>>
Interface

<<component>>
Component

+ Port
Component

<<component>>
+ Port

<<actor>>
Person

Class <<datatype>>
DataType InstanceSpec : Class

Note {Constraint}

Fig. 2. Zero visual distance between UML notations (homographs)

This assessment was confirmed when we proposed in [10] a framework to spec-
ify and reuse visual languages. It turned out that we can reuse up to 71 %
of UML notations, which represents a high level of redundancy in this lan-
guage and thus ambiguity. Symbols are called homographs if they have zero
visual distance (i.e. they have identical values for all visual variables) but
represent different semantic constructs (Fig. 2). Thus, in UML the major-
ity of graphical conventions used to mean different things. For example, in
Class Diagrams, the same graphical symbol can be used to represent objects,
classes, interface and attributes. Different types of relationships can also be
represented using the same graphical convention e.g. package merges, pack-
age imports and dependencies are all represented using dashed arrows. These
notations are differentiated only by textual stereotypes. However, text relies
on sequential cognitive processes, which is an inefficient way to differentiate
symbols.

3. Principle of Perceptual Discriminability : different symbols should be distin-
guishable from each other. Discriminability is a mental process that consists
of symbols segregation [36,40] from the background. Then symbols discrim-
ination from each other. This differentiation relies on variations of visual
variables between symbols [13]:
– Shape plays the main role in this process since it represents the first con-

cern on which we classify objects in the real world [2]. In UML, the nota-
tions differ on only a single visual variable (shape) and the values chosen
are very close together: all shapes are either rectangles or rectangle vari-
ants. Given that experimental studies show that rectangles and diamonds
are often confused by naive users in Entity/Relation diagrams [33].

– Some of the symbols have zero visual distance (homographs) and are differ-
entiated by labels or typographical characteristics. It is the case of most of
UML links, which have identical shapes but differentiated only by textual
stereotypes (Fig. 3). However, according to [28]: text is an inefficient way
to differentiate between symbols as it relies on slower cognitive processes.
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<<import>> <<use>> <<merge>> <<substitute>>

Package Import Usage Package Merge Substitution Dependency

Fig. 3. Symbol overload: UML homographs

– Colour is the most performant and cognitively expressive visual variable.
The human visual system can quickly and accurately distinguish between
them [40]. However, colours are prohibited in UML: The use of colours is
up to tool vendors.

4. Principle of Semantic Transparency : using visual representations whose
appearances suggest their meaning. We will focus on this principle when we
propose our experimental process. We believe that involving target audience
into design process may improve this criterion.

5. Principle of Dual Coding : enhance diagrams with textual information.
6. Principle of Complexity Management : suggest some mechanisms when dealing

with notations complexity.
7. Principle of Cognitive Integration: suggest explicit mechanisms to support the

integration of information from different diagrams.
8. Principle of Graphic Economy.
9. Principle of Cognitive Fit.

Indeed, these principles have already been used in several works to evaluate
and improve other visual committee-designed languages such as i∗ [29], Business
Process Modeling Notation (BPMN) [13] and UML [28]. In the next section, we
reuse the alternative notation proposed by [28], which is based on these nine
principles.

3 Experiments on UML Semantic Transparency

This section summarizes a set of related experiments applied to UML Visual
Syntax. The experiments and the workflow are shown in Fig. 4. A similar experi-
mental process have been proposed and applied to another language in [5]. In this
paper, we reused the Experiments 1, 2, 3 and 4 from [5]. As mentioned earlier,
the main difference is our comparison between the outcome of these experiments
and the standard UML notations. We also used as input for this comparison, a
set of notations created by experts in cognitive sciences according to the Physics
of Notations theory , which is not the case in [5]. In [5], authors have used the
recognition experiment, which is not the case in our process. As mentioned in
the introduction, we limit these experiments to a few elements of UML visual
syntax. The purpose is not to redefine the visual syntax of UML but to show
the importance of involving end-users into the design decisions made generally
by experts.

1. Symbolization experiment : naive participants (i.e. with background on
Object-Oriented paradigm but without previous knowledge on UML) gen-
erated symbols for UML concepts (drawings).
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Fig. 4. Experiments Workflow

2. Stereotyping analysis: we analysed the results of Experiment 1 and identi-
fied the most common symbols produced for each UML concept (stereotype
symbols sets).

3. Prototyping experiment : other group of naive participants (different from the
first one) analysed the drawings produced in Experiment 1 and identified the
“best” representations for each UML concept (prototype symbols set).

4. Semantic transparency experiment : another group of naive users were asked
to infer the meaning of 3 sets of symbols from their appearance alone : Pro-
totypes from Experiment 3 and two external inputs, which are the Standard
UML notation and the UML notation based on Physics of Notation Theory
(PoN) .

5. Identify “best of breed” symbols: based on the results of Experiment 4, we
identified the most cognitively effective symbols for each UML concept across
all symbol sets.

This experimental workflow combines quantitative and qualitative research
methods: Experiments 1, 2, 3 primarily use qualitative methods, while study 4
uses quantitative methods. The used data is primarily in the form of pictures
(drawings). The quantitative studies measure the interpretation/recognition
accuracy in combination with psychometric scales (for rating the cognitive diffi-
culty of tasks). More detailed data on participants artifacts, samples, results as
well as the coded data set and the statistical scripts are available in [11].

3.1 Symbolization Experiment

In this experiment, “naive” participants imagined and drew symbols for UML
concepts, a task normally reserved for experts. There were 64 participants in
this experiment, all with a background in Object-Oriented concepts. They had
no previous knowledge of modeling languages in general or UML in particular:
this was a requirement for participation in the study (inclusion criterion), to
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ensure participants were truly naive. UML regular users would not have been
suitable participants, due to their technical orientation and knowledge (i.e. the
curse of knowledge [18]).

Each participant was provided with a two-page questionnaire that consists
of a table of constructs (we chose twelve concepts, which are frequently used
in software engineering : Class, Interface, Enumeration, Instance Specification,
Component, Signal, Model, Package, Dependency, Merge, Import and Substitu-
tion), their definitions, and an empty cell in which participants were instructed
to draw the construct.

Participants were asked to draw the constructs in the order in which they
appeared. They were instructed to produce drawings that they felt most expres-
sive (conveyed better the meaning of the construct). They were instructed to
draw as simple as possible and that the quality of drawings wasn’t important:
the most important thing was to represent clearly and unambiguously the mean-
ing of the construct.

Table 1. Response rates for symbolization task

UML construct Non-Responses Reponse rate

Class 2 96.87 %

Interface 3 95.3 %

Instance spec 4 93.75 %

Enumeration 0 100 %

Component 1 98.44 %

Signal 0 100 %

Model 2 96.87 %

Package 1 98.44 %

Dependency 2 96.87 %

Merge 1 98.44 %

Import 1 98.44 %

Substitution 2 96.87 %

Average 1.58 97.5%

The participants produced a total of 749 drawings with a response rate of
97.5 % for a set of twelve UML concepts, which was a high response rate given the
known difficulty in “concretizing” [22] UML abstract concepts. Instance Speci-
fication (6.25 %), Interface (4.68 %), Class (3.13 %) and Model (3.13 %) received
the highest number of non-responses, which is more likely to be the case for
such abstract concepts. Enumeration, Signal and Package receiving less than
1 % (only 1 non-response out of 64). Table 1 summarizes the response rates.
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3.2 Stereotyping Analysis

In this step, we analysed the results of Experiment 1 and identified the most
common symbols produced for each UML concept. These defined the stereotype
symbol sets.

The analysis was conducted by three volunteers. It was done by looking at
similarity of drawings. The drawings produced in Experiment 1 were used as
input for this experiment. Three copies were made of the drawings to conduct
this task independently.

We used the judges’ ranking method [22], which is an approach for reach-
ing convergence on a set of categories. In the first step, each judge categorized
the drawings produced for each concept by sorting them into categories based
on their similarity (pattern-matching), following the approach described in [17].

Then, they compared their choices (categories) for each concept and agreed
on a common set of categories. Finally, they selected for each concept, a set that
consists of a drawing from each category (the stereotypical category), resulting
in a stereotypical set for each concept (twelve in total).

3.3 Prototyping Experiment

For each evaluated concept, the participants studied the stereotypical sets
selected in Experiment 2 and identified the “best” representation. These defined
the prototype symbol set.

Table 2. Degree of prototypy

Concept Degree of convergence

Class 24.13 %

Interface 31 %

Instance spec 38 %

Enumeration 72.4 %

Component 44.8 %

Signal 34.5 %

Model 27.6 %

Package 48.3 %

Dependency 51.7 %

Merge 31 %

Import 62 %

Substitution 58.6 %

Average 43.67%

40 naive users participated in this experiment, all undergraduate students in
computer science from multiple cultural backgrounds (different universities in
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Canada, France, Morocco, Algeria, Indonesia and Jordan). We used a different
sample population from Experiment 1 but drawn from the same underlying
population. It would not have been accurate to use the same participants as in
Experiment 1, as their judgements may have been biased by their own drawings.

We conducted this experiment using a form, which consists of a table showing
the name and the definition of each concept with the candidate drawings (repre-
sentatives from each category identified in the stereotyping study). Participants
were asked to select the most expressive drawing for each concept (regardless
on the aesthetic the drawing). The order of the concepts and the position of the
drawings were randomized in the forms to avoid sequence effects.

The output of this experiment was a set of 12 prototypical drawings (one for
each evaluated UML concept).

Table 2 shows the Degree of prototypy i.e. percentage of participants who
rated the prototype drawing as the best. For all concepts, there was a high
level of consensus among judgements of prototyping (43.67 % in average). The
highest score was for Enumeration, which achieved more than 72 % agreement,
and lowest for Class and Model, which achieved less than 30 % agreement.

3.4 Semantic Transparency Experiment

For this experiment, naive users were asked to infer the meaning of symbols
from their appearance alone. The symbols were from one of 3 symbol sets, two
designed by experts (the standard UML notation and the notation designed
following Physics of Notations principles as explained in [28]) and those designed
by naive end-users (the prototype symbols set from Experiments 3).

There were 120 participants, all undergraduate students in computer sciences
from several universities. As in studies 1 and 3, the participants had no prior
knowledge of software modeling languages or UML, so were truly naive.

There were three experimental groups (composed by 40 participants for each
of them), corresponding to different levels of input:

1. Standard UML notations: official symbols from UML specification (unself-
conscious design).

2. UML notations designed according Physics of Notations theory (self-
conscious design) called PoN in Table 3. The details of this notation are
available in [28].

3. Prototype notations of UML: the best symbols produced by naive users as
judged by other naive users.

We conducted this experiment using a multiple-choices questionnaire. One
symbol was displayed at the top of each page (representing the stimulus [29])
and the complete set of UML constructs and definitions displayed in a table
below (representing the possible responses). Participants were asked to choose
the construct they thought most likely corresponds to the symbol. In each page,
there was one correct response and 11 incorrect responses (distractors).The order
in which the stimuli (symbols) were presented (i.e. order of pages) and the order
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in which the responses (concepts) were listed were randomized to avoid sequence
effects.

Participants were instructed to work alone and not share their answers with
each other. They were asked to answer each question in order and told to choose
one and only one concept for each symbol presented. They were told that they
could choose the same concept in response to multiple symbols.

3.5 Identify Best of Breed Symbols

Based on the results of steps 4, we identified the most cognitively effective sym-
bols for each UML construct across all symbol sets.

To measure graphical symbols comprehensibility, we used the hit rates (i.e.
percentage of correct responses). The ISO standard for testing graphical sym-
bols [35] defines 67 % as the hit rate required for acceptance of public information
and safety symbols [20]. Only 9 out of 12 symbols across the 3 symbols sets met
the ISO required limit for comprehensibility.

Table 3. “Best of Breed” symbols

UML Concepts
Experiment 3 : Semantic Transparency

Best of breed symbol
Standard PoN Notations Prototype

Enumeration 30% 45% 77.5%

Component 22.5% 30% 70%

Signal 5% 35% 87.5%

Package 22.5% 20% 87.5%

Dependency 12.5% 20% 75%

Merge 27.5% 37.5% 72.5%

Import 32.5% 42.5% 77.5%

Group size 40 40 40
Hit Rate Mean 22% 33% 71.5%

Table 3 shows the best symbols across all symbol sets in terms of hit rates.
The best of breed symbol set includes 12 symbols from the prototype symbol set
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and none from the standard UML and PoN symbol sets. The mean hit rate is
71.5 %, which exceeds the ISO threshold for comprehensibility of symbols. For
space limitation, we choose to show only symbols, which have met a low level of
non-response in Experiment 1, a high degree of prototypy in Experiment 2 and
exceed the threshold of 67 % in Experiment 3.

Standard PoN Prototype
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Fig. 5. Differences in hit rate between experimental groups

The differences between groups are visually confirmed by the box and whisker
plot in Fig. 5. The boxes show confidence intervals for each group mean, while
the whiskers show minimum and maximum values. The line through the middle
of each box represents the median. Figure 5 shows a comparison of semantic
transparency results for unselfconscious and self-conscious notation design. We
can observe that the prototype symbol set exceeds largely the ISO threshold for
comprehensibility of symbols.

Using explicit design principles (self-conscious design) significantly improves
semantic transparency (supported by our hypothesis), showing that conscious
efforts to improve semantic transparency are likely to be successful. The average
hit rate for the PoN symbol set was more than 1.5 times that of the standard
UML notation, meaning that PoN symbols were more than 1.5 times as likely
to be correctly interpreted without prior explanation. Moreover, the average
hit rate for the Prototype symbol set was more than three times that of the
standard UML notation and more than twice that of the PoN notation, meaning
that Prototype symbols were by far more expressive and more often interpreted
correctly. More detailed results as well as the coded data set and the statistical
scripts are available in [11].

In this experiment, our a priori hypothesis was confirmed. We find that sym-
bols proposed and chosen by naive users are naturally based on good rules that
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can be found in theory and empirical approaches. We can thus observe that
user-comprehensible notations (Prototype set) have absolutely a better cogni-
tive expressiveness and semantic transparency than the other two symbol sets
combined.

3.6 Threats to Validity

The validity of our experiments are categorized into internal and external valid-
ity. The internal one refers to whether an experimental condition could be suf-
ficient to support the claim of the experiment or not. External validity refers to
the generalization of experiments outcomes [6].

1. Internal validity. the following factors may jeopardize internal validity:
– Selection of subjects: all participants in this study were randomly assigned

to experimental groups to avoid the selection bias. As semantic trans-
parency is culture-specific, we choose participants from different cultural
and ethnical background.

– Instrumentation: the same measurements were used in all experimental
groups to avoid the measurement bias. As we mentioned before, the exper-
iments materials were presented randomly to avoid the sequence effect.

– Statistical regression: the results may be different if we applied this study
on another subset of UML notations. However, in this study we get 300 %
of improvement, which is the same as the study [5] for another modeling
language (i∗).

2. External validity. the following factors may threaten external validity:
– To avoid the expertise bias, we used naive users in all experiments. We

considered computer science students as adequate participants as they
must know Object-Oriented concepts to draw them, but we considered
only students with no previous knowledge of modeling languages in gen-
eral or UML specifically to avoid the knowledge bias (the curse of knowl-
edge [18]).

– We used different population samples in the last experiment. It would
not have been accurate to use the same participants across the experi-
ments, as their judgements may have been biased by the drawings they
produced.

– Our study evaluated the comprehension of symbols as visual unit rather
than complete diagrams, which can represents a threat to this study.
Thus the results and their interpretation cannot be generalizable to com-
plete diagrams.

– We did not consider other principles such as the Principle of Cognitive
Fit (ease of drawing of symbols) or the Principle of Graphical Economy
(usage of the space), which are important in modeling languages design.
For example, the signal symbol may be hard to use when the sender and
the receiver are not close in the diagram.

– In this study, we used hit rates (positive values) as measurements for the
semantic transparency. However, Semantic transparency is not a binary
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state but a sliding scale (Fig. 6) defined from −1 to +1 : −1 for sym-
bols whose appearance implies an incorrect meaning (semantically per-
verse) and +1 for symbols whose appearance implies the correct meaning
(semantically transparent) [30]. Such kind of measurements need further
investigations.

Fig. 6. The semantic transparency and the semantic perversity

4 Discussion and Conclusions

Several works have evaluated the cognitive effectiveness of committee-designed
languages, such as UML, BPMN, etc., using theory and empirical evidence from
a wide range of fields. The conclusion is that radical improvement is required to
improve their cognitive effectiveness. One solution is to involve target end-users
as co-designers of these languages rather than as passive consumers as it has
been so far. In this paper, we have conducted experiments, for a subset of UML,
that have confirmed the importance of involving end-users.

Symbols designed this way increased semantic transparency by almost 300 %
compared to the standard UML notation. Reducing misinterpretations by end
users could therefore lead to significant cost savings: According to [12,26], design
errors are the source of more than half the errors and failure in software devel-
opment projects [12,15] and are the most costly errors of all, as their post-
implementation correction costs 100 times more than correcting them during
the design phase [3].

Our experimental approach is an application of the crowd-sourcing for
UML visual syntax design. This approach also called peer production or col-
lective intelligence [8] enlists a multitude of humans to help solve a problem.
One of the advantages of this approach is that it enlarges/expands the range
of notations ideas (i.e. beyond the imagination of the language design team),
rather than relying exclusively on experts to design notations, one could follow
this approach and take into the ideas of the target audience.

Acknowledgements. This work was supported by the internationalization fund of
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Ph.D. thesis, Université de Lille 1 (2013)
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Abstract. The reuse of goal models has received only limited attention
in the goal modeling community and is mostly related to the use of goal
catalogues, which may be imported into the goal model of an application
under development. Two important factors need to be considered when
reusing goal models. First, a key purpose of a goal model is its evaluation
for trade-off analysis, which is often based on propagating the contribu-
tions of low-level tasks (representing considered solutions) to high-level
goals as specified in the goal model. Second, goal models are rarely used
in isolation, but are combined with other models that impose additional
constraints on goal model elements, in particular on tasks. For example,
workflow models describe causal relationships of tasks in goal models.
Similarly, feature models describe further constraints on tasks, in terms
of which tasks may be selected at the same time. This paper (i) argues
that reusable goal models must be specified either with real-life measure-
ments (if available) or with relative contributions, (ii) presents a novel
evaluation mechanism that enables the reuse of goal models with relative
contributions, while taking into account additional constraints on tasks
in the goal model expressed with feature models, and (iii) discusses a
proof-of-concept implementation of the novel evaluation mechanism.

Keywords: Reuse · Goal modeling · Feature modeling · GRL · Goal-
oriented Requirement Language · URN · User Requirements Notation ·
Goal evaluation

1 Introduction

Software reuse is a powerful concept due to its potential benefits of increased
productivity, quality, and reliability with faster time-to-market and lower cost.
Reuse has been defined as the process of creating software systems from existing
software artifacts rather than creating them from scratch [15] and as the use of
existing software artifacts in a new context [8]. Consequently, reusable artifacts
must be unaware of the application under development (i.e., they are generic),
so that they can be used in many different contexts [19]. Furthermore, reusable
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artifacts are assembled into hierarchies of reusable artifacts to realize a desired
application [3].

The reuse of goal models [9,13,23,24] has received limited attention in the
goal modeling community and is mostly confined to the idea of goal catalogues
(e.g., security, reliability, etc.) [10], which may be imported as is into the goal
model of an application under development. Goal models are typically used to
express early requirements, helping to understand stakeholder objectives and
any trade-offs among potential solutions for the problem at hand. However, goal
models may also be used to better describe a reusable artifact, e.g., the contexts
in which the reusable artifact is applicable. Essentially, a goal model is used
to express the impacts of the reusable artifact on high-level goals and system
qualities, allowing various candidates for reuse to be evaluated. In both usage
scenarios for goal models, the reuse of said goal models results - just as for any
other reusable artifact - in model hierarchies, supporting trade-off reasoning from
small, low-level artifacts to large, system-level artifacts. Even though we moti-
vate the reuse of goal models with the second usage scenario in this paper, our
findings are relevant for both usage scenarios, because the composition mecha-
nism for reusable goal models is the same in both usage scenarios.

An important factor to take into account when reusing goal models is that
goal models cannot be considered in isolation, because additional constraints
on goal model elements (typically tasks) are often expressed in other modeling
notations. For example, workflow models may describe causal relationships of
tasks, while feature models may describe which tasks may be selected at the
same time.

A second factor to consider is the evaluation of goal models for trade-off
analysis. Often, goal models employ a propagation-based evaluation mechanism
that takes the satisfaction value of a child element and propagates it up to the
parent element based on the type and value of the link between the child and
parent. A satisfaction value can either be a real-life measurement, a qualitative
value, or a quantitative value. Commonly found types of links in goal models
are contributions, decompositions, and dependencies. The value of contribution
links may be specified by a global or relative value. We investigate, in the context
of reuse, these options for satisfaction values as well as these common link types,
and conclude that reusable goal models require real-life measurements (if avail-
able) or relative contributions. In addition, we present a novel evaluation mech-
anism that enables the reuse of goal models with relative contributions without
additional constraints and with additional constraints expressed by feature mod-
els. We consider feature models in combination with reusable goal models (i.e.,
a goal model is used to describe the impact of a feature on system qualities),
because recent advancements in Concern-Oriented Reuse (CORE) [3] and Soft-
ware Product Lines [11,20] use feature and goal modeling in combination.

The remainder of this paper presents background on goal modeling and
propagation-based evaluation of goal models in Sect. 2. Section 3 first discusses
the implications of the types of satisfaction values and links used in a goal model
in the context of reuse, before reaching the conclusion that real-life measurements
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(if available) or relative contributions should be used. Section 4 explains a novel
evaluation mechanism for goal models with relative contributions that enables
the reuse of goal models without constraints or in combination with feature mod-
els. Section 5 reports on a proof-of-concept implementation of such reusable goal
models. Section 6 summarizes related work, while Sect. 7 concludes the paper
and states future work.

2 Background on Goal Modeling

While various types of goal models exist, we focus on goal models that are eval-
uated by propagating satisfaction values of lower-level elements to higher-level
elements, as in i∗ [24], the Goal-oriented Requirement Language (GRL) [13], or
the NFR Framework [9]. We use GRL to illustrate reusable goal models in this
paper, but our findings are also applicable to other propagation-based evaluation
mechanisms for goal models. GRL is a visual modeling notation for the spec-
ification of intentions, business goals, and nonfunctional requirements (NFRs)
of multiple stakeholders as well as system qualities. GRL is part of the User
Requirements Notation (URN) [4,13], an international requirements engineering
standard published by the International Telecommunication Union in the Z.15x
series. GRL is based on i∗ (in terms of key goal concepts) and the NFR Frame-
work (in terms of evaluating goal models), but allows modeling elements to be
more freely combined than i∗.

A GRL actor ( ) represents a stakeholder of a system or the system itself.
When representing stakeholders, actors are holders of intentions; they are the
active entities in the system or its environment who want goals to be achieved,
tasks to be performed, softgoals to be satisfied, and resources to be available.
A goal model is a connected graph of intentional elements (softgoal, goal, task,
resource) that optionally reside within an actor. A goal model shows the high-
level business goals and qualities of interest to a stakeholder and the solutions
considered for achieving these high-level elements. Goals and qualities are mod-
eled with GRL softgoals and GRL goals. Softgoals ( ) differentiate themselves
from goals ( ) in that there is no clear, objective measure of satisfaction for a
softgoal, whereas a goal is quantifiable. Therefore, the term satisficed is often used
to indicate that a softgoal is satisfied and that this satisfaction may be dependent
on a stakeholder’s point of view. Tasks ( ) represent solutions to goals or soft-
goals that are considered for a system. In order to be achieved or completed, soft-
goals, goals, and tasks may require resources (�) to be available. Various kinds
of links connect the elements in a goal graph. AND, XOR, and IOR decomposi-
tion links ( ) allow an element to be decomposed into sub-elements. Contribu-
tion links (→) indicate desired impacts of one element on another element, either
expressed qualitatively with labels (e.g., + or -) or quantitatively as an integer
value between −100 and 100. Finally, dependency links ( ) model relationships
between actors, i.e., one actor depending on another actor for something.

GRL supports reasoning about high-level goals, non-functional requirements,
and system qualities, through its evaluation mechanism. GRL shows the impact
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of often conflicting goals and various proposed candidate solutions to achieve the
goals. A GRL strategy describes a particular candidate solution by assigning ini-
tial qualitative or quantitative satisfaction values to a set of intentional elements
in the model, typically leaf nodes in the goal model. The evaluation mechanism
propagates the initial satisfaction values of goal model elements as specified in
a strategy to those of higher-level goal model elements based on the link types
connecting the goal model elements. Strategies can therefore be compared with
each other to help reach the most appropriate trade-offs among often conflicting
goals of stakeholders.

The evaluation mechanism calculates a satisfaction value for each existing
node based on its incoming links and the satisfaction values of the node’s chil-
dren, unless the node’s satisfaction value is defined directly by the modeler.
A satisfaction value can either be in the range of [−100, 100] or [0, 100] (we use
the latter range).

If the values in a goal model are specified qualitatively (e.g., by labels such as
Denied, Weakly Denied, None, Weakly Satisfied, and Satisfied), the evaluation
mechanism explicitly defines a mapping that determines (a) which label should
be propagated up given a child’s satisfaction value, link type, and contribution
value (if applicable), and (b) how the propagated labels of a node’s children
should be combined to yield the qualitative satisfaction value of the node (see
Fig. 1a).

Fig. 1. Qualitative values, quantitative values, and real-life measurements in goal
models

If the values in a goal model are specified quantitatively, the weighted sum
of the children’s satisfaction values is propagated across contribution links (e.g.,
[(80 × 100) + (20 × 50) + (0× −50)]/100 = 90; see Fig. 1b). The result is limited
to the allowed range of [0, 100] for satisfaction values. The evaluation of decom-
position and dependency links is out of scope for this paper (see [5] for details).

The satisfaction values in a goal model may also be specified by real-life mea-
surements with the help of Key Performance Indicators (KPI) ( ) [13]. In
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this case, KPIs are propagated upwards based on formulas [21], until the real-
life measurement is converted into a goal model satisfaction value based on a
conversion function [13] (e.g., the attack KPIs of the children are summed up for
the parent as specified by the formula, and the resulting KPI of 160 attacks for
the parent is then converted into the goal model value of 92 given a conversion
function; see Fig. 1c). A conversion function maps the real-life values onto the
allowed [0, 100] range of GRL satisfaction values, enabling the comparison of
KPIs measured in different units and other goal model elements. Essentially, the
conversion function specifies when a real-life measurement may be considered
sufficient (e.g., while a KPI measures waiting time in minutes, the conversion
function may specify that 5 min of waiting time fulfills the needs of the appli-
cation under development instead of some other duration by mapping 5 min to
the maximum GRL value of 100, i.e., satisfied).

3 Reuse Scenarios for Goal Models

A goal model may be used to describe why a reusable artifact should be chosen
over another candidate artifact, or why a variation offered by a reusable artifact
should be chosen over another offered variation. A goal model enables trade-off
analysis among these choices by capturing the impact of a choice on high-level
goals and system qualities. In this scenario, the goal model is an integral part
of the reusable artifact. When a reusable artifact is assembled with a reusing
artifact in a reuse hierarchy, the goal model describing the reusable artifact
must also be composed with the goal model of the other reusing artifact to
enable reasoning about the whole system. Consequently, the goal model is also
reused, which is the focus of this paper. Theoretically, a reusable goal model may
use any type of satisfaction value and any link type summarized in the previous
section. In this section, we argue that this is not the case and that a reusable
goal model must use real-life measurements (if available) or otherwise relative
contribution values. We refer to the modeler who builds a reusable artifact as
the designer and the modeler who uses the reusable artifact as the user.

Qualitative values: while qualitative values are useful for capturing relationships
among choices very early on when not a lot is known about a domain, they
are not appropriate for a reusable artifact, because a carefully-built, reusable
artifact is well-understood. Qualitative values do not allow nuanced differences
among reusable choices to be expressed, and are therefore not the ideal means
of expressing impact for reusable goal models. Because qualitative values are
typically quite broad (e.g., only two labels - Weakly Satisfied and Satisfied -
for positive impacts), a designer may have to classify many different choices
the same (e.g., as Weakly Satisfied). This means that the evaluation mechanism
cannot differentiate these choices anymore, making it difficult to impossible for
the user to determine the most appropriate choice.

Real-life measurements: these measurements are the opposite extreme compared
to qualitative values. Concrete, real-life measurements can guarantee consistent
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assessment and allow for a nuanced description of reusable artifacts. If such mea-
surements are available, then they should be used to describe reusable artifacts
(e.g., cost can be straightforwardly measured in $). However, it may be rather
difficult to define appropriate units of measurements for some common high-
level goals and system qualities. Security, privacy, and convenience are examples
where this is the case. In addition, even if a unit of measurement can be devised,
it may be difficult or costly to collect the required data to calculate such mea-
surements. Therefore, an alternative is needed for those cases where the use of
real-life measurements is not feasible.

Quantitative values: they are the perfect middle ground as they allow nuanced
assessments without the cost of collecting real-life measurements, and hence are
the preferred approach when real-life measurements are not feasible. However,
there are two issues that need to be taken into account before quantitative val-
ues can be used for reusable goal models. A designer of a reusable artifact must
be able to come up with reasonable quantitative values for the contributions
in the reusable goal model to describe well the reusable artifact. Furthermore,
a designer must be able to do so without making any assumptions about the
application under development, which eventually will use the reusable goal
model. As stated earlier, a reusable artifact must not know about application-
specific elements - a reusable artifact must be generic!

A designer of a reusable goal model has the choice of either using global
or relative contribution values. Consider the example shown in Fig. 2, which
shows a hierarchy with two reusable goal models with global contribution values
at the top and the same hierarchy of goals with relative contribution values
at the bottom. Application C reuses the two goal models. Reusable Artifact A
describes privacy implications of online security features, while Reusable Artifact
B describes privacy considerations of famous people interacting with the public.
The tasks shown for each reusable artifact represent the reusable solutions offered
by the reusable artifact, each with a different impact on privacy captured by
the goal model. As Application C reuses both artifacts, it undertakes a more
thorough assessment of the privacy of famous people, taking some of their online
interactions into account.

Issue One: If a designer uses global values, then the implications are that the
designer of Reusable Artifact A and the designer of Reusable Artifact B must
agree on rules regarding the assessment of contribution values to ensure consis-
tency across all goal models for a specific quality. If not, then the impact on the
quality (e.g., Privacy) may be inflated by one reusable artifact compared to the
other, which makes it impossible to combine them into a goal model hierarchy for
Privacy. For example in Fig. 2a, the designers would have to agree that Password
contributes more (i.e., 100) to Privacy than Disguise (i.e., 60). In the absence
of concrete units of measurements, an agreement is unlikely to be feasible, as
both designers would need to be aware of the details of each other’s Privacy goal
models (as well as those of any other reusable artifact impacting Privacy built
by other designers).
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Fig. 2. Global and relative contribution values in reusable goal models

Issue Two: let us examine in more detail the contribution value of Password
(Satisfied or 100; see Fig. 1a and b, respectively). The contribution value, regard-
less of whether it is a qualitative or quantitative value, indicates that choosing
Password is sufficient to achieve the parent goal, i.e., Privacy, in this case. If
it were not sufficient, then Weakly Satisfied or a value lower than 100 would
have to be chosen. However, this decision cannot be made by the designer of
the reusable goal model, as it depends on the application context. While the
Password solution may be perfectly acceptable for one context, it may not be
sufficient in another context. A generic reusable goal model cannot state that
a particular solution is sufficient, because that would mean the designer of the
reusable artifact is able to anticipate each and every use of the reusable arti-
fact. This, however, is not possible without violating the key characteristic of a
reusable artifact being generic.

At the heart of this problem is the fact that a contribution value in goal
models captures two dimensions: first, it defines the degree of impact on the
parent goal, and second, it defines the threshold for what is sufficient to achieve
the goal and what is not. In a reusable goal model, the former but not the latter
must be specified.

Note that real-life measurements with KPIs do not have this problem,
because in that case the two dimensions have already been separated. The real-
life measurement captures the degree of impact, while the conversion into a goal
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model value determines what is sufficient and what is not sufficient. Therefore,
a designer of a reusable goal model can specify the real-life measurements and
easily postpone the definition of the conversion function to the application under
development and to the user of the reusable goal model. This separation is not
possible for global contribution values where the two dimensions are combined
into one value.
Relative contribution values address these two issues. First, there is no need
to coordinate an assessment with other designers, because relative contribution
values only intend to differentiate the children of a parent goal, which are defined
locally in the reusable artifact (e.g., Password, Retinal Scan, and Fingerprint).
Therefore, the designer of Reusable Artifact A and Reusable Artifact B do not
need to know about each other. Second, a relative contribution value does not
specify which level of impact is sufficient to achieve the parent goal. A relative
contribution only states that a child contributes x times more than another child
of the same parent goal. The decision of whether a contribution is sufficient can
again be postponed to the user of the reusable artifact, who knows best what is
sufficient and what is not.

The existing GRL evaluation mechanism needs to be adapted to handle rela-
tive contribution values. As can be seen from the example in Fig. 2b, the actual
number for a relative contribution does not matter, but rather the ratio of the
relative contributions of a pair of children. Regardless of whether the relative
contributions are stated as 2/1/−1 or 4/2/−2, the resulting satisfaction value of
the parent goal should be the same, because the ratio of the relative contribution
values has not changed (see Reusable Artifact A). The existing GRL evaluation
mechanism, however, calculates two different satisfaction values (1.8 for the first
set of relative contribution values and 3.6 for the second). Clearly, the satisfac-
tion value needs to be normalized, as indicated by the larger values next to the
Privacy goals in Fig. 2b (i.e., 70, 19, and 34), before allowing the satisfaction
value to be propagated further. The normalized satisfaction value is calculated
by determining the potential maximal and minimal contribution of all children
(3 and −1 for Respect Privacy [A] and 13 and −1 for Respect Privacy [B ]), and
then mapping this range to the goal model range of [0, 100].

This normalization step also enables reusable goal models to be combined
into goal model hierarchies as illustrated in Fig. 2b with the Respect Privacy [C ]
goal in Application C. Fundamentally, relative contributions lead to a different
way of thinking about reusable goal models, based on two distinct spheres of
knowledge. The first sphere of knowledge belongs to the designer of a reusable
goal model, who focuses on understanding the impacts of the choices in the
reusable goal model and ranking them relatively. The designer is the most qual-
ified person for this ranking, as she is the domain expert for the reusable arti-
fact (e.g., the designer can determine the relative privacy implications of the
Password, Retinal Scan, and Fingerprint choices). Each designer of a reusable
artifact has her own sphere of knowledge, which is limited to the reusable arti-
fact. The user of a reusable artifact (i.e., the designer of Application C ) has a
different sphere of knowledge, which focuses on the application under develop-
ment. The user is the most qualified person for this task, because she is the
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domain expert for the application (i.e., she can determine what the relative
contributions are of the Password/Retinal Scan/Fingerprint choices versus the
Bodyguard/Disguise/High Fence choices). The user knows best how these choices
are employed in the application and therefore is in the best position to deter-
mine the relative contributions of Respect Privacy [A] and Respect Privacy [B ]
towards the application-specific Respect Privacy [C ].

4 Relative Contributions in the Context of Reuse

As motivated in the previous section, reusable goal models must use relative
contributions, and to specify them correctly the user of the reusable goal model
relies on the fact that the possible maximal/minimal satisfaction values of goal
model elements are all the same. To ensure that this is the case, the satisfaction
value of each goal model element needs to be normalized. Consequently, each goal
model element can be reused by the user. Normalization in GRL means that
the possible maximal/minimal satisfaction value for each goal model element
is always 100/0. To perform normalization, the actual minimal and maximal
satisfaction values of a goal model element need to be determined (e.g., 3 and
-1 for Respect Privacy [A] in Fig. 2b).

4.1 Reusable Goal Models Without Constraints

If there are no constraints among children of a parent goal model element, the
minimal and maximal satisfaction values for a parent p are easily calculated.
Let Ci stand for the relative contribution of child i towards the parent p, and Si

stand for the satisfaction value of child i. In that case, the actual maximal and
minimal satisfaction values for parent p are:

Smaxp =
∑

Ci>0

Ci ∗ Si

100
Sminp =

∑
Ci<0

Ci ∗ Si

100

For example, for Parent A in Fig. 3, the actual maximal satisfaction value
is 7. It is reached when all children that contribute positively, i.e., Solution 1,
2, and 5, are selected, i.e., their satisfaction values S1, S2, and S5 are 100. The
minimum is −4, which occurs when all children that contribute negatively are
selected (Solution 3 and 4 ). The maximum/minimum is 0 if there are no Ci that
are greater/less than 0, because such a maximum/minimum of 0 is always given
with all Si = 0.

A scaling factor SF and an offset OF then ensure that 7 is mapped to 100
and −4 is mapped to 0 (the offset is applied first and then the scaling factor):

SFp =
100

Smaxp − Sminp
OFp = 0 − Sminp

If the actual maximal and minimal satisfaction values for a parent are the
same, this means that the selection of its children has no influence on the eval-
uation of the parent. In this case, SF = 1 and OF = 100 – Sminp.
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4.2 Reusable Goal Models with Constraints

If there are constraints among the goal model elements, the calculation needs
to take them into account. For example, if there is an XOR constraint among
all children (i.e., exactly one child’s satisfaction value must be greater than 0
and all other ones 0), then the maximum for the parent is the maximal Ci

(i.e., 4 for Parent A) and the minimum is the minimal Ci (i.e., −3). Because
constraints may occur across any branches in the goal model (e.g., between the
left and right branch of Parent C ), the determination of the actual minimal and
maximal satisfaction values becomes much more complex. It may be the case
that a constraint does not allow both Parent A and Parent B to be maximized
at the same time. As a result, when determining the maximum satisfaction value
of Parent C it may be necessary to use the next lower maximal satisfaction value
for Parent A or Parent B, until a combination is found that does not violate a
constraint. In other words, some Si in the maximum calculation may not be 100,
but less. The same reasoning applies to the minimum calculation, where some
Si could be not 0, but more. The following paragraphs describe an algorithm
that calculates the maximum (and by analogy also the minimum) and takes
constraints into account.

In the worst case, 2n combinations have to be examined to find the maximal
satisfaction value without a violated constraint, where n stands for the num-
ber of nodes with user-defined satisfaction values (i.e., typically the leaf nodes
in the reusable goal model). The proposed, novel evaluation algorithm avoids
combinatorial explosion with a recursive, top-down approach that uses a lazy
calculation of the next highest sum. This reduces the expected calculation time
significantly, but the worst case still requires 2n combinations to be examined.
An example calculation for the maximal satisfaction value of Parent C is shown
in Fig. 3, assuming a list with all possible satisfaction values sorted from highest
to lowest for each child of Parent C (i.e., Parent A, Solution 8, and Parent B ;
see left side of Fig. 3). An entry in this list identifies the selection of Parent C’ s
grandchildren and the corresponding normalized satisfaction value for Parent
C’ s child. Each entry does not violate any constraints. In our example, there is
only one constraint shown at the top right of Fig. 3 that indicates that Solution
3 and Solution 8 cannot be used together.

The algorithm gets the next highest combinations in step I, then calculates
the potential maximal satisfaction value for each next highest combination (step
II), and checks if any constraints are violated by the best combination (step III).
If a constraint is violated, the algorithm goes back to step I. If no constraint is
violated, the algorithm has found the maximal satisfaction value for the current
parent. The algorithm proceeds by getting the minimal satisfaction value using
an analogous approach except that the list of all possible satisfaction values is
sorted from lowest to highest instead of from highest to lowest. Once both the
maximum and the minimum are known, the algorithm calculates the scaling
factor and the offset for the parent (step IV).

For example as illustrated in Fig. 3 for Parent C, the combination [1, 1, 1]
is examined in step I of the first iteration (i.e., this indicates the combination
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Fig. 3. Normalization of goal model elements (Maximal Satisfaction Value)

with the highest satisfaction value of each of Parent C’ s children (Parent A,
Solution 8, and Parent B, respectively)). The combination results in the potential
maximum of 7 (step II of first iteration), but because of the XOR constraint
between Solution 3 and Solution 8 this result is not valid (step III of first
iteration).

Therefore, the next best combinations are examined in step I of the second
iteration. These combinations are determined by going to the next best possi-
ble satisfaction value for each child in the invalid combination. Because each
child’s list is sorted from highest to lowest, the next best combinations can only
be those where the index of each child is advanced individually by one. Since
[1, 1, 1] is invalid according to the first iteration, the combinations [2, 1, 1],
[1, 2, 1], and [1, 1, 2] must be examined next. This results in the potential max-
imums of 6.64, 5.00, and 6.88, respectively, i.e., the third combination [1, 1, 2]
is the next best option (step II of second iteration). However, this combination
still includes Solution 3 and Solution 8 and hence is again invalid (step III of
second iteration).

In step I of the third iteration, the next best combinations are again exam-
ined (i.e., since [1, 1, 2] is invalid according to the second iteration, [2, 1, 2], [1, 2,
2], and [1, 1, 3] are the next combinations added to the already examined com-
binations). This results in the new potential maximums of 6.52, 4.88, and 6.75,
respectively. Considering the remaining combinations from the second iteration
(i.e., [2, 1, 1] with 6.64 and [1, 2, 1] with 5.00), the combination [1, 1, 3] with 6.75
is the next best option (step II of third iteration). This time, the combination
is valid as no constraint is violated (step III of third iteration). Therefore, the
maximal satisfaction value for Parent C is 6.75. Once the minimal satisfaction
value has also been found, the scaling factor and the offset can be calculated
(step IV).
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At that point, only the maximal and minimal satisfaction values of Par-
ent C have been determined and there is no need to calculate anything else.
However, if the goal model were bigger and the parent of Parent C requested
the next highest (or lowest) satisfaction value, then the algorithm would con-
tinue with further iterations of steps I–III to determine the next highest/lowest
satisfaction value. Therefore, the list of all possible satisfaction values as illus-
trated in Fig. 3 does not exist for each child of Parent C right from the start,
but instead only the needed combinations are calculated recursively on demand
(see shaded combinations in Fig. 3).

In summary, the normalization of the satisfaction values is a lazy algorithm
that starts at each root node of the goal model and recursively determines the
maximal/minimal satisfaction values for each node in the reusable goal model.
The recursion stops at the leaf nodes of the goal model, because the maximal
and minimal satisfaction value of 100 and 0, respectively, are known for leaf
nodes (e.g., see Solution 8 in Fig. 3).

The contributions to Parent C in the example in Fig. 3 are only positive. If
there were a negative contribution, then the algorithm would ask the correspond-
ing child for its minimal value instead of its maximal value when calculating the
maximal value for the parent (and vice versa for the minimal value of the par-
ent). Furthermore, for space reasons, only contribution links are discussed here.
However, the algorithm works also with decomposition and dependency links
without significantly increasing its complexity.

4.3 Reusable Goal Models Combined with Feature Models

While some constraints such as XOR can be modeled with goal models, more
sophisticated constraints are typically defined in dedicated models that are used
in conjunction with goal models, e.g., feature models. In this context, a feature
model [14] captures the variations, i.e., features, of a reusable artifact, identify-
ing features (�) common to all reuses of the artifact and those that vary from
one reuse to the next. Feature models capture mandatory parent-child relation-
ships ( ), optional parent-child relationships ( ), alternative (XOR) feature
groups, OR (IOR) feature groups, as well as includes and excludes integrity con-
straints.

If a feature model is used to define these additional constraints, then step III
involves the evaluation of a feature model to determine whether a constraint is
violated. This is typically done by converting the feature model and the selected
features into a propositional formula, which is then given to a SAT solver, e.g.,
as provided by the feature modeling tool FAMILIAR [1,12]. A straightforward
integration of goal and feature models therefore involves simply replacing the
constraint check described in Sect. 4.2 with a check performed by a SAT solver.
The constraint check is the only part of the algorithm that needs to be tailored to
whatever model is chosen to capture the constraints. The rest of the algorithm,
however, stays the same and constitutes an essential part of reusable goal models.

The remainder of this section describes an improvement to the above algo-
rithm for performance reasons, because calling the SAT solver is an expen-
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sive operation. The SAT solver is best used for cross-tree constraints (i.e.,
includes/excludes), because many levels of indirections potentially have to be
considered, which is difficult to do without converting the feature model into
a logic formula. OR and XOR constraints, however, are much easier to handle,
because violations can be determined by simply looking at the feature tree, hence
reducing the number of evaluations done by the SAT solver. As it turns out, the
same lazy, recursive algorithm used for calculating the minimal/maximal sat-
isfaction values in the goal model can also be used to reduce calls to the SAT
solver.

When goal and feature models are used in conjunction, the tasks in the goal
model are also features in the feature model [18]. In this case, the recursion in the
goal model stops at a parent of tasks and hands the tasks over to the recursive
algorithm for the feature model to determine their candidate contribution to
the maximal/minimal satisfaction of the parent (e.g., in Fig. 3, the children of
Parent A, i.e., Solution 1 to Solution 5 ). Note that mandatory features do not
need to be included in the goal model, because their contributions are always
the same regardless of the selected features.

Since the example in Fig. 3 showed the calculation of a maximal satisfaction
value, the following feature model example in Fig. 4 shows the calculation of a
minimal contribution of features to their parent.

Fig. 4. Contributions in feature model (Minimal Contribution of Parent A’s Children)
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For each parent, the algorithm starts with labeling the features with their
contributions to their goal model parent (step F.I; e.g., the contributions shown
for Parent A in Fig. 3 are added as labels in Fig. 4). From then on only a por-
tion of the feature model needs to be considered, i.e., the union of the paths
from the labeled features to the root feature including any siblings in OR/XOR
groups encountered on a path (step F.II), because these paths capture all rel-
evant OR/XOR constraints. The siblings are included, because the selection of
a sibling influences the minimal/maximal contribution to the parent in the goal
model (e.g., Solution 13 with contribution 0 may be selected instead of Solution
1 with contribution 4). The last step F.III uses the same lazy, recursive approach
as for reusable goal models (i.e., steps I to III).

Steps I to III are exactly the same, except that the calculation of the potential
satisfaction value is now a simplified calculation of the potential contribution
value. Because a feature is either selected or not (i.e., Si is either 100 or 0,
respectively [18]), the sum of Ci ∗ Si divided by 100 reduces itself to the sum of
Ci. Even though the labels appear at different levels in the feature model, they
can still be added up directly, because they all represent contributions at the
same level in the goal model (e.g., option [2] of Solution 1 adds up 4 and −3 of
Solution 1 and 3, respectively).

The reduction in calls to the SAT solver is achieved by considering only the
possible feature combinations as restricted by the feature model constructs and
hence performing the constraint calculation (step III) only for the root. Consid-
ered constructs are OR/XOR groups with or without a mandatory parent and
parents of optional children. E.g., an XOR group (Solution 12 ) only considers
each child, but not any combination of its children, and for an OR/XOR group
with a mandatory parent (Solution 11 ), 0 children cannot be selected.

Note that the SAT solver is only needed by the designer of the reusable
artifact to determine the offsets and scaling factors when the feature and goal
models are created. The offsets and scaling factors are then stored with the
reusable artifact. Therefore, the user of the reusable artifact does not need the
SAT solver, because the user only needs the offsets and scaling factors to evaluate
the goal model based on feature selections.

5 Proof-of-Concept Implementation

A proof-of-concept implementation of the normalization algorithm for relative
contribution values with a reduced number of calls to the SAT solver as described
in Sect. 4 is available in the TouchCORE tool [2], which combines feature and goal
modeling to build reusable artifacts called concerns in support of CORE [3]. The
three major parts of the implementation are the two lazy, recursive algorithms
for goal and feature models and a constraint checker for feature models (i.e.,
SAT solver), for which the FAMILIAR tool [1,12] has been integrated with
TouchCORE.

To evaluate the performance, we select feature and goal models with a com-
plexity that is comparable to those in reusable concerns we have previously
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specified such as Authentication, Transaction, and Workflow Engine: 50 fea-
tures; a goal model with one root goal, a maximum depth of 3, and a total of
6 subgoals. Half of the features were evenly selected from the feature model,
and then randomly assigned with a 15 % chance to contribute to each leaf goal
with a random relative contribution between 1 and 10, leading to a total of 18
goal model elements. One root goal was chosen because each root goal is evalu-
ated individually. Five different feature models are evaluated (A/C/E/G/I): one
where all links are optional links, one with all XOR links, and three with random
link types. Five additional feature models (B/D/F/H/J) are derived by adding
five random includes/excludes constraints to A/C/E/G/I. We chose to add 5
constraints because this is the maximum we ever encountered in a feature model
while building reusable concerns. For the selected feature and goal models, the
algorithm without the described improvement takes several minutes or longer to
complete.

Table 1 reports the results of the performance evaluation with execution time
now in the millisecond range. The results indicate that the algorithm execution
time is acceptable for the chosen size of feature and goal models, and hence
for realistic models of reusable concerns (note that the reported time is the
average of the last 100 out of 110 runs to discount for program startup time).
The columns detailing the combinations for the goal and feature model show
the combinations requested by a parent as well as all combinations that had
to be calculated to determine the requested combinations. The combinations
are significantly less than the 2n possible combinations, giving an indication of
the effectiveness of the recursive, lazy normalization algorithm. The figures for

Table 1. Performance Results

Measurements

Execution Calls to SAT Requested combinations Calculated combinations

time (ms) solver

Goal Feature Goal Feature

A 17.6 14 14 82 14 82

B 40.8 49 49 168 77 207

C 15.6 14 26 146 37 160

D 18.3 15 32 131 43 140

E 15.4 14 14 82 14 82

F 80.6 22 47 160 69 189

G/H 20.5 14 547 185 641 185

I/J 22.4 14 232 163 289 155

A. . .only optional links in feature model; B. . .A plus includes/excludes constraints;
C/E/G. . .randomly assigned links in feature model; D/F/H. . .C/E/G plus
includes/excludes constraints;
I. . .only XOR links in feature model; J. . .I plus includes/excludes constraints;
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the requested/calculated combinations in feature models and the actual calls to
the SAT solver give an indication of the reduction in calls to the SAT solver
thanks to the recursive, lazy algorithm for feature model. The results for models
G/H and I/J are the same because the added constraints are between different
XOR features and hence have no effect on execution time and combinations.

6 Related Work

To the best of our knowledge, reusable goal models with a propagation-based
evaluation mechanism [5] have received very little attention in the requirements
engineering community, mostly based on the notion of a goal catalogue [10].
Goal catalogues, however, are intended to be imported as a monolithic entity
into the application goal model, thus advocate a centralized approach with global
contribution values and little support for reuse hierarchies, and hence exhibit the
disadvantages discussed in Sect. 3. Quality-Based Software Reuse [16] is another
approach that is based on goal-oriented modeling, in this case combined with
aspect orientation, and explicitly addresses the need to apply reusable artifacts
in new contexts. However, this approach suffers from similar problems, as reuse
hierarchies are not taken into account. A pattern-based approach in combination
with contextual goal modeling [17] has also been suggested, but addresses only
qualitative values in goal models.

Often, goal models, quality impact models, or other models of stakeholders
are used in addition to feature models in a reuse context, but these approaches
primarily focus on the analysis of intentional models to inform the selection
of reusable features (e.g., [6,11,22]) and not on how to reuse goal models in a
different context. Feature models can also be augmented with feature attributes,
which are often used to capture qualities and non-functional requirements [7].
However, contrary to goal models, complex relationships among such attributes
are in this case not that easy to express. Concern-Oriented Reuse (CORE) [3] is
another reuse paradigm that combines feature and goal modeling. CORE intends
- contrary to other approaches - to reuse generic goal models in hierarchies, but a
specific technique for composing reusable goal models such as the one proposed
in this paper has not yet been defined.

7 Conclusions and Future Work

This paper investigates which kind of values may be used in reusable goal models
that are evaluated with a propagation-based algorithm. We argue that real-life
measurements should be used, and if not available, quantitative values with
relative contributions must be used instead.

A reusable goal model with relative contribution values must guarantee to the
user of the reusable goal model that the possible maximal/minimal satisfaction
values of all goal model elements are the same, i.e., they must be normalized. An
improved, propagation-based evaluation algorithm is presented that (i) performs
such normalization to the [0,100] range, (ii) is capable of taking constraints on
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goal model elements into account expressed with goal models or feature models,
and (iii) avoids combinatorial explosion with a recursive, top-down approach that
uses a lazy calculation of the next best combination. This reduces the expected
calculation time significantly, but the worst case still requires 2n combinations
to be examined. The feasibility of the proposed algorithm is shown with per-
formance results of a proof-of-concept implementation using TouchCORE and
FAMILIAR.

In future work, we plan to extend the presented algorithm to support con-
straints on tasks specified by other models (e.g., workflow models) and apply the
algorithm to runtime adaptation of an application based on the re-evaluation of
goal models.
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Abstract. A modelling language usually has an abstract syntax (e.g.,
expressed with a metamodel) separate from its concrete syntax. The
question explored in this paper is: how easy is it to add a textual concrete
syntax to an existing language that offers only a concrete graphical syn-
tax? To answer this question, this paper reports on lessons learned during
the creation of a textual syntax (supported by an editor and transfor-
mation tool) for the Goal-oriented Requirement Language (GRL), which
is part of the User Requirements Notation standard. Our experiment
shows that although current technologies help create textual modelling
languages efficiently with feature-rich editors, there are important con-
flicts between the reuse of existing metamodels and the usability of the
resulting textual syntax that require attention.
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language · jUCMNav · Metamodel · Textual syntax · Xtext

1 Introduction

A model is an abstraction of the reality that helps engineers and other users
focus on specific aspects of a problem or a system in order to support communi-
cation, understanding, analysis, and decision making. Modeling languages often
have a graphical and/or a textual representation, called concrete syntax. The
concepts of a modeling language are often captured with an abstract syntax, for
example in the form of a grammar or a metamodel [14]. Concrete syntaxes bring
understandability, usability, and often visualization to the concepts defined at
the abstract level.

Graphical and textual syntaxes both have strengths and limitations [25].
With diagrams, it is often easier to understand non-linear relationships (such
as graphs) and appreciate analysis results than with text. On the other hand,
textual models are often easier to create and manipulate (e.g., through intelli-
gent editors or simpler copy-pasting). It is also challenging to find appropriate
symbols and metaphors in a graphical language in order to assure a suitable cog-
nitive fit for all users. The cognitive effectiveness of notations has been explored
c© Springer International Publishing Switzerland 2015
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substantially in the past few years, based on frameworks such as Physics of
Notations [21], and illustrated on different graphical languages such as for goal
modeling [21] and scenario/process modeling [11].

Ideally, modelers should be given the choice of using among the concrete
syntaxes that best suit the tasks they have to perform, for example, a textual
syntax to create a model and a graphical syntax to communicate the model and
visualize analysis results. Several standardized languages already support textual
and graphical syntaxes (e.g., [13,15,17]), but often they have been designed
to support both from the beginning. In this paper, we are more interested in
exploring the challenges related to the addition of a textual concrete syntax to
an existing language for which only a concrete graphical syntax already exists.
This exploration is done through the design of an actual editor-supported textual
syntax for the Goal-oriented Requirement Language (GRL), a requirements-level
goal modeling language standardized as part of the User Requirements Notation
(URN) [3,16]. One challenge here is that the abstract syntax of URN is based
on a metamodel oriented towards the graphical representation of its concepts,
without consideration for a potential concrete textual syntax.

Section 2 presents work related to modeling language design, together with
background on GRL and existing tool support (jUCMNav [4,28]). Section 3 intro-
duces some of the main challenges we have observed when adding a textual syn-
tax to an existing metamodel-based graphical language, together with elements
of solutions. Section 4 presents our case study, where we created a grammar for
a Textual GRL (TGRL), together with an Eclipse-based rich editor and a trans-
formation mechanism that converts TGRL models to URN models readable
by jUCMNav. Not all modeling languages are based on metamodels and not
all language editors are using Eclipse, but our experience report does involve
metamodels and Eclipse technologies. A short discussion of lessons learned is
presented in Sect. 5, followed by conclusions and future work in Sect. 6.

2 Background

This section reviews closely-related work on modeling language design and high-
lights the background concepts on GRL and jUCMNav required to understand
the examples of challenges and solutions discussed later in the paper.

2.1 Related Work on Textual and Graphical Languages

Several languages already support textual and graphical syntaxes. Among
the languages standardized by the International Telecommunication Union -
Telecommunication Standardization Sector (ITU-T), common examples include
the Specification and Description Language (SDL) [13], Message Sequence
Charts (MSC) [15], and the Testing and Test Control Notation (TTCN-3) [17].
All are supported by many tools, some of which allowing modelers to use both
syntaxes interchangeably and transparently. TTCN-3 even offers an additional
tabular concrete syntax [18]. While SDL uses an abstract grammar as abstract
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syntax, TTCN-3 is based on a metamodel. However, these languages have devel-
oped their concrete textual syntax, concrete graphical syntax, and abstract syn-
tax more or less at the same time. With URN and GRL, there are already a
metamodel and a graphical syntax that have been in place for many years, so
adding a textual syntax is more problematic in that context.

In the Unified Modeling Language (UML) world, several textual syntaxes
have been proposed for subsets of UML, often as a means to create models and
then visualize them. Cabot as collected a list of such languages and tools [6]. We
are not really interested in these technologies as they do not allow modelers to
create instances of the UML metamodel, which would have enabled analysis and
transformations based on standard UML. These tools have their own internal
representations.

In a different and more recent approach, we find Umple, a textual language
that integrates concepts from UML class/state diagrams and patterns with
programming languages such as Java [8]. Umple models are written using human-
readable text seamlessly integrated with code. Umple models can also be visual-
ized with the UML notation. This model-is-the-code approach helps developers
maintain and evolve code as the system matures simply by the fact that both
model and code are integrated as aspects of the same system [10]. Still, Umple
uses its own metamodel, not UML’s.

2.2 Related Work on Enabling Technologies

The Object Management Group (OMG) has proposed the UML Human-Usable
Textual Notation (HUTN), a technology for automatically supporting user-
readable concrete syntaxes of models and model instances based on the MetaOb-
ject Facility (MOF) [23]. One interesting feature of HUTN is that the textual
syntax does not need to reflect exactly the structure of the metamodel. Parame-
ters can be used to create short-hands and make the syntax more readable and
usable. For example [23], one can set:

– The use of a class attribute as the class unique identifier for a given scope;
– The representation of a Boolean or enumerated attribute as a keyword;
– The use of default values for mandatory attributes (making them optional);
– The selection of an alternate name for any model element;
– Alternative representations for associations.

Unfortunately, HUTN is supported only a few tools, including the one pro-
posed by Rose et al. [27], which is part of the Eclipse Epsilon project. HUTN was
shown to be complicated to use, and resulting editors have limited capabilities.

Eclipse’s Xtext [32] is one of the enabling technologies used to produce
feature-rich editors for a textual language. Xtext usually takes a language gram-
mar as input and the corresponding metamodel is automatically built in the
background. It also allows reusing already-existing metamodels, but then there
is no flexibility in the design of the language syntax. In other words, importing
metamodels constrains the design of language. Changing the grammar changes
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the underlying metamodel, which might create some issues with transforma-
tions that use such metamodel as a source. In that context, Schmidt et al. [30]
proposed a category of refactorings for Xtext that use asymmetric bidirectional
model transformations to synchronize the various artifacts of language descrip-
tions, including transformations (based on Xtend [31]).

Other technologies for textual syntax development include EMFText from
Heidenreich et al. [12], which generates automatically default syntax from Eclipse
Modeling Framework (EMF) models, with some possibilities for syntax tailoring
before the generation of text editors. Jouault et al. [19] also proposed Textual
Concrete Syntax (TCS), a generative solution that transforms grammars into
editors and tools for model-to-text and text-to-model transformations. Both
EMFText and TCS are however far less popular and mature than Xtext, and
their development seems to have stopped several years ago.

Finally, as graphical syntaxes often include textual syntaxes for various kinds
of expressions, Scheidgen presented techniques to embed textual editors into
graphical model editors and provided a proof of concept involving Eclipse-based
technologies [29]. However, we are more interested here in generating a new
textual syntax than in embedding one in a graphical syntax.

2.3 Goal-Oriented Requirement Language (GRL)

The URN standard is composed of two complementary sub-languages: (i) GRL
for modeling the intentions of actors and systems, together with their various
relationships, and (ii) Use Case Maps (UCM) for modeling causal scenarios and
processes superimposed on a structure of components [16]. GRL core concepts
include actors, intentional elements (e.g., goals, softgoals, tasks, resources and
beliefs), links (decompositions, dependencies, weighted contributions) and indi-
cators (Fig. 1). GRL model elements are URN model elements. As such, they
can have metadata (name-value pairs) and typed URN links connecting pair of
elements; these concepts are useful to extend and tailor URN to specific domains,
in a standard way [3].

Many of the concepts of GRL have a visual representation. In URN, the
graphical language metamodel is a pure superset of the abstract syntax meta-
model. For example in Fig. 2, an actor reference (ActorRef) is the visual repre-
sentation of an actor in a GRL graph and hence possesses attributes such as a
size, a label, and a position. The actor itself has color-related attributes, which
are shared by all its references.

GRL model analysis, whether qualitative (using contribution, satisfaction,
and importance values from their respective enumerated types in Fig. 1) or quan-
titative (using integer values in specific ranges), is done through strategies. A
strategy provides initial satisfaction values to some of the intentional elements
in the GRL model, and an evaluation algorithm propagates this information
(through the GRL links) to the other intentional elements and to the actors in
order to compute their resulting satisfaction values [3,16]. As it is often difficult
to agree on the weights of contribution links in GRL models, the standard also
includes contribution changes as a mechanism to specify and group (in collection



Adding Textual Syntax to a Graphical Language: Experience with GRL 163
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Fig. 1. GRL metamodel: core GRL concepts (adapted from [16])

contexts) a local modification to the weight of a contribution link, which can be
applied to a base model before evaluating its strategies. What is important to
observe here is that strategies (not shown here) and contribution changes (Fig. 3)
do not currently have any concrete syntax, and hence these parts of a model need
to be specified through a tool’s user interface and tree-structured views, as is
currently done in jUCMNav [4].

The absence of a complete graphical syntax and of a textual syntax has
already been observed as a “sin” in the design of the GRL language [22]. In
addition, the graphical syntax has similar cognitive efficiency weaknesses as those
observed for the i* goal modeling language [21], as GRL’s syntax is based in part
on the one from i*.

2.4 jUCMNav Tool

jUCMNav is an open-source Eclipse plugin for URN modeling, analysis, report-
ing and transformation, developed since 2004. The GRL modeling and analysis
part was first provided by Roy et al. [28], and has substantially evolved since
then to support new features and newer concepts now found in the standard [16].

Given that jUCMNav was initiated before the first version of URN was stan-
dardized in 2008, and given that jUCMNav is also used as a platform for explor-
ing new language concepts that could be integrated into URN in the future (like
contribution changes were integrated in the 2012 edition of URN [16]), there
are many differences between jUCMNav’s metamodel and URN’s (see http://

bit.ly/1GCbhNa for details). For example, jUCMNav’s metamodel uses interface
classes (for reusability across its UCM and GRL editors) and packages, there are

http://bit.ly/1GCbhNa
http://bit.ly/1GCbhNa
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Fig. 2. GRL metamodel: graphical classes for actor references (adapted from [16])
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Fig. 3. GRL metamodel: contribution changes, with no graphical syntax [16]

minor mismatches in how indicators and strategies are supported, and there are
additional classes to support aspect-oriented modeling. jUCMNav however can
import and export models in the Z.151 XML-based interchange format.

3 Challenges Faced When Adding a Textual Syntax

Adding a concrete textual syntax to a metamodel-based language with an exist-
ing concrete graphical syntax involves steps in which there are technical and
non-technical challenges. The designer of the textual syntax has to define related
keywords, build a consistent structure associated with the definitions and assign-
ments, keep the metamodel of the textual language (if any) compatible with the
abstract syntax (language metamodel), select the proper technology to imple-
ment the textual language, implement a mechanism to apply specific restrictions
and rules, and finally develop a mechanism to synchronize the textual and graph-
ical syntax representations.

3.1 Choice of Keywords

Keywords of a textual language have an important role in the usability and
adoption of the language. They must be chosen from the domain vocabulary
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and be close to the language abstract syntax (assuming that the abstract syntax
constructs have meaningful names). If the textual keywords are also aligned
with the graphical syntax symbols and keywords, then this will also help the
adoption of the textual language by already-existing users while also decreasing
the learning curve. Balancing this closeness is not an easy task and usually results
in tradeoffs. The users of graphical languages work with graphical notations and
often names are hidden implicitly in the shape of notations. These hidden names
sometimes cannot be expressed by a single word, supposed to be considered as
a keyword in the textual syntax. Using the exact graphical or abstract names
may potentially result in a bulky language.

During the design of TGRL, we have faced that challenge and we decided
to consider three important criteria while defining keywords: (1) be consistent
with the abstract syntax in terms of the semantics; (2) favor usability over rigid
following of the metamodel; and (3) avoid defining keywords when possible. For
example, we defined the keyword decomposedBy for the element link decompo-
sition and did not use a specific keyword for defining evaluation elements for
strategies. Note that when discussing usability in a textual modeling language,
we do not try to compare it with that of a graphical modeling language (these
are separate problems).

In terms of process, we first defined keywords similar to concept names from
the abstract syntax. This helped us have a blueprint of the textual language
and revealed some challenges, e.g., conflicting keywords or a high number of
keywords. We then changed some keywords in order to solve conflicts, modified
them to be more human readable, and finally simplified the language by removing
unnecessary keywords.

3.2 Structure Consistency

Each defined keyword would have some structure and properties that need to be
set during the development of models. The values assigned to properties and their
structure should be kept similar, because this promotes language learnability.
For this purpose, they are several patterns that can be adapted from either
programming or modeling languages. For our language, we adopted a structure
inspired from Umple [8,10]. For example, if there are several properties needed to
be set, we use the name of the property along with its value. However, if there is
only one property, we just assign the value without requiring the property name.

3.3 Alignment of Metamodels

When keywords and structures are defined, the grammar must be implemented.
There are two general ways to do this. The first one is to use the already-existing
language metamodel and cover it with the definition of the textual language. This
approach makes the implementation process straightforward, but there might be
situation where the grammar and the metamodel, which becomes a constraint,
cannot be aligned properly without greatly affecting usability. The second app-
roach is to let the textual language build its own metamodel, à la Xtext. This
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approach allows getting the maximum benefits of having a simple and human-
readable textual syntax, but it might result in an underlying metamodel that
will require the creation of major internal model transformations from instances
of the textual metamodel to instance of the abstract syntax metamodel.

We have experienced both approaches and recognized that the first approach
results in a textual syntax that is too synthetic, especially if the language abstract
syntax was never designed with a potential concrete textual syntax in mind
(which is the case for GRL’s). Furthermore, the second approach allows having
several alternatives for a definition while it is not the case in the first approach.
For example, we could design two alternatives ways of defining element links.
The first alternative has an independent structure and needs both the link source
and the link destination to be specified while the second alternative depends on
the location in the source and just needs the destination to be specified. In our
case study (next section), we have chosen to adopt the second approach.

3.4 Technology Selection

In order to implement one of the approaches discussed in the previous section,
a suitable technology must be selected. As discussed in Sect. 2.2, there are sev-
eral technologies such as Xtext, EMFText, and TCS that can be used for these
purposes. The choice will be largely influenced by how potentially usable a tex-
tual syntax (automatically) generated from the abstract syntax can be, by the
intended usage of the textual language, and by the required quality of resulting
editor tooling.

In our study of TGRL, we have selected Xtext because it is an active project
and provides a rich editor for the language. Working with Xtext is simple and
fast, but everything has to be based on the Xtext grammar. This prevents devel-
opers from improving or “tweaking” the structure of the final metamodel.

Hence, this choice came at the cost of having to transforms Xtext-based
models (from TGRL) to the target abstract syntax (in our case, URN’s meta-
model). In such a context, such transformation can be done with model-to-model
transformations (e.g., with Java or specialized languages such as Eclipse’s ATL
Transformation Language [5]) or with model-to-text transformations targeting
serialized models (e.g., again with Java or with enhanced technologies such as
Xtend [31] or Acceleo [2]). As we had good experiences using Acceleo in the past,
we opted for this path.

3.5 Handling Restrictions and Rules

The implemented syntax comes with restrictions and rules that need to be
checked and applied continuously. These rules and restrictions come from two
main sources: the abstract syntax (and its static semantics constraints) and the
concrete syntax itself. For example, the identifier (ID) could have to follow a
specific pattern, or cyclical definitions may need to be prevented. The rules from
the abstract syntax are usually clear and already defined, but the ones from
the concrete syntax must be specified. Such rules may be used to improve the
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readability of the concrete syntax (especially if alternative representations are
supported) or keep the syntaxes compatible. Part of this validation can be sup-
ported automatically by the technology used to implement the language (e.g.,
Xtext). However, the rest must be implemented manually. For example, checking
the validity of a reference is supported by the editor provided by Xtext while
checking for duplicates of a link must be implemented manually.

3.6 Synchronizing Textual and Graphical Models

Keeping connections between the textual syntax and the graphical syntax is
important in order to fully benefit from the iterative use of both syntaxes by
modelers. Generally, there are two ways to do this: synchronously and asyn-
chronously. In the synchronous case, the transformation is done automatically
and both syntaxes are refreshed continuously so as to show a consistent rep-
resentation (in a way to the model-view-controller pattern). This is the most
desirable case but its feasibility depends on the technology employed to develop
the concrete syntaxes. If the technology used in either the textual or the graph-
ical syntaxes does not support external synchronization, then this option might
be impossible. In the asynchronous case, users work on a concrete syntax and
when one needs to have the other representation, the transformation is done
explicitly, on demand. This approach is a solution to the cases where the syn-
chronous approach in unfeasible or when synchronization is too costly in terms
of speed or memory usage.

In our case study, we used asynchronous transformations because of issues
regarding the synchronization with the technology used for graphical syntax
(e.g., jUCMNav). So far, we investigated only one transformation (from TGRL
to URN), the reverse one being left for future work. As explained in Sect. 3.4, the
current transformation is performed through a model-to-text approach imple-
mented with Acceleo, which is a pragmatic implementation of OMG’s MOF
Model to Text Language (MTL) standard. jUCMNav can read the files gener-
ated in that way, and its auto-layout mechanism can be used to visualize the
models.

4 Case Study: TGRL

4.1 TGRL Concrete Syntax

In this section, we describe a case study involving the design of a concrete tex-
tual syntax for GRL (called TGRL) with tool support (editor and automated
transformation). Any concrete syntax has general rules that are applied for all
keywords and their related structures. In our concrete textual syntax, the general
rules are as follows:

– GRL elements are usually defined through keywords using camelCase bound-
aries (e.g., a softgoal intentional element is represented by a softGoal).

– Model element properties and sub-elements are set inside curly brackets.
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– Every definition ends with a semicolon except when a pair of curly brackets
is utilized to include properties or sub-elements.

– String values are surrounded by quotation marks.
– Comments are delimited by //.

TGRL model elements have a textual identifier (ID) as well as optional
metadata (name-value pairs). Intentional elements (goals, softgoals, tasks and
resources) also have qualitative/quantitative importance values (to their contain-
ing actor). For example, Fig. 4 shows the TGRL representation of a simple GRL
model with three actors, their intentional elements, and various links. This is a
common GRL pattern where alternative ways of achieving some system function-
ality have different impacts on the concerns of stakeholders (such as users and
developers). IDs are used as names unless specified otherwise. Qualitative values
and quantitative values (between −100 and 100) can be used interchangeably.
Lists can be used for definitions and usages (e.g., see the decomposedBy relation-
ship in the example).

As in Umple [8,10], links can be specified inside one element or outside the
relevant elements, depending on the modeler’s preference. In Fig. 4, one contri-
bution is defined inside the System actor, one is defined in the User actor and
targets an element of another actor, and two other contributions are defined
outside all actors.

Note that scoping is also used to resolve potential naming issues. For example,
in the contribution link inside the System actor, task FirstOption is local but
softgoal ReuseComponents is defined elsewhere, and hence must be prefixed by
its containing actor (Developer). GRL dependency links are handled in a similar
way.

TGRL also supports contribution changes (for which there is no graphical
syntax in standard URN, see Fig. 3) and handles advanced constructs such as
contribution inclusion and value ranges. For example, Fig. 4 contains a group
(SomeOverrides) of two sets of contribution changes that make reference to two
contribution links named C1 and C2. The first set (FirstOverride) changes C1

and C2 with new quantitative and qualitative values, respectively. A tool such as
jUCMNav will substitute the targeted contributions weights with the new values
specified in this contribution set before analyzing any strategy. The second set
(SecondOverride) extends the first one (and hence inherits the make value for C2),
but now C1 is defined as a range of values that go from −40 to 0 by steps of
10 (i.e., {−40,−30,−20,−10, 0}). In jUCMNav, when such a range is specified,
the selected strategy is evaluated iteratively for all the contribution values in
that range, leading to sets of resulting evaluations for all intentional elements
and actors in the model (which is useful for sensitivity analysis). In TGRL’s
grammar, it was decided to keep the start, end, and step keywords in order to
make the meaning of the values explicit and more easily understandable.

Similarly, TGRL supports groups of evaluation strategies, with strategy
inclusion (for reuse), indicator initialization, and value ranges. Again here, TGRL
provides a concrete textual syntax for elements that do not have a graphical syn-
tax in URN.



Adding Textual Syntax to a Graphical Language: Experience with GRL 169

Fig. 4. Simple illustrative TGRL model
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Fig. 5. Overview of the TGRL editor, with content assistance

Note also at the end of Fig. 4 that URN links are also supported. In this
example, a link of a user-defined type mustUse connects the User to the System.
Again, standard URN does not have a concrete graphical for this element, and
jUCMNav relies on dialog boxes for creating such model elements (which are
not displayed on the diagrams).

4.2 TGRL Editor and Transformation to jUCMNav

As Xtext was used to implement the TGRL syntax, we were able to get a feature-
rich editor for very little effort. The Eclipse-based TGRL editor comes with
configurable syntax highlight (as shown in the code in Fig. 4), an outline view,
annotation of syntactic errors, content assistance, and code formatting. Figure 5
gives an overview of the editor.

The modeler, using Control-Space, can invoke code completion at any
moment. Not only is this available for the keywords found in the grammar, this
is also available for references to existing elements. For example, in Fig. 5, several
suggestions are provided as potential targets of an incomplete contribution link.
This greatly accelerates the coding, and also the learning of the language as one
can get suggestions at any step.

The transformation between TGRL models and URN/jUCMNav models
serialized in XML was implemented with Acceleo. While designing the TGRL
syntax, we were able to make quick iterations from changing the Xtext-based
grammar to adapting the Acceleo code and regenerating the editor and exe-
cutable transformation, often within two minutes. Our transformation does not
handle the layout of the generated GRL diagrams, but jUCMNav has several
features for creating views of a model and for automatically laying out elements.
For example, Fig. 6 shows the GRL model corresponding to the ongoing exam-
ple, as imported by jUCMNav. The evaluation of the strategy SelectFirst is also
shown, using quantitative values, and without any contribution change applied.

5 Discussion

In their original draft proposal for GRL in 2001, Liu and Yu defined a GRL
ontology with a graphical syntax, a textual syntax, and an XML interchange
format (but without a fully defined abstract syntax) [20]. The textual notation
they proposed was cognitively hard to understand and did not cover the advanced
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Fig. 6. Sample GRL model imported in jUCMNav, with a strategy evaluated quanti-
tatively

GRL features found in standard URN (e.g., indicators, strategies, quantitative
values, metadata, URN links, and contribution changes). We believe that the
syntax for GRL should be intuitive, without requiring keywords when the context
is clear (e.g., TGRL contribution weights do not require a keyword as they are
expected to be provided 99 % of the time). TGRL is the first concrete syntax to
cover all of GRL’s constructs, and in that sense it goes beyond URN’s standard
graphical syntax [16].

Rashidi-Tabrizi et al. also proposed and implemented (in jUCMNav) an
import mechanism for GRL models and strategies in a tabular concrete syntax,
as comma-separated value files [26]. This allows people knowledgeable in tools
like Excel to create GRL models without having to use jUCMNav, and then
use jUCMNav for visualizing and analyzing models (as we do). However, their
mechanism is limited to a subset of GRL (e.g., without contribution changes),
and targets a very specific type of GRL models for the laws and regulations
domain. Hence, their solution is not as generic and exhaustive as TGRL’s.

Engelen and Van Den Brand have used two techniques, named grammarware
and modelware, for the integration of textual and graphical modeling languages
by implementing a textual surface language as an alternative for activity dia-
grams in UML [7]. In the grammarware technique, a text-to-text transformation
was used while model-to-text, text-to-model, and model-to-model transforma-
tions were used in modelware. Their approach enabled them study the benefits
and drawbacks of both techniques. Other similar comparisons were done by
Gargantini et al. [9]. In our implementation, we utilized a modelware-like
approach in which we have a model-to-text transformation used to generate
jUCMNav files from TGRL models. However, more importantly, the availabil-
ity of a GRL graphical editor (jUCMNav) and of a textual editor (TGRL) now
enables us to compare both approaches quantitatively and answer usability ques-
tions in requirements engineering and system development contexts.
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The integration of textual and graphical multi-view domain-specific lan-
guages was explored by Pérez Andrés et al. [24], in which they utilized the
AToML model transformation tool. In their approach, a metamodel of the whole
language must be defined first and then subsets have to be selected for different
viewpoints. Then, a viewpoint metamodel is transformed into a textual model,
from which a parser is automatically derived and integrated with the generated
multi-view environment. This approach can be seen as a bridge between the
modelware and the grammarware approaches. This viewpoint approach might
be revisited in our context as in fact GRL is a view of URN. If a textual syntax
is eventually produced for UCM (the other sub-language of URN), it might be
interesting to evaluate whether it is beneficial to support URN models, UCM
models, and GRL models (the three views) with standalone tools. It would also
be interesting to consider providing different concrete textual syntaxes for GRL,
e.g., for goal modeling in general, or with different keywords for specific domains
such as law and regulation modeling, as needed in [26].

6 Conclusions and Future Work

In this paper, we have reported on the challenges that exist when trying to
add a usable concrete textual syntax to a rich metamodel-based language pre-
dominantly oriented towards a concrete graphical syntax. We have discussed
several alternatives for addressing challenges related to the choice of keywords,
to structure consistency, to the alignment of metamodels, to the selection of suit-
able language design technologies, to rule handling, and to the synchronization
between textual and graphical representations.

Many of these challenges were illustrated based on our case study, where we
created a textual syntax for the GRL modeling language called TGRL. In addi-
tion to the observations we have made based on our experience, this paper led to
the creation of the first textual syntax for an i* -based goal-modeling language
(as far as we know). TGRL also covers GRL fully, even concepts for which there
is no standard graphical syntax (e.g., strategies, contribution changes, and URN
links). A feature-rich, Xtext-based editor is now available for TGRL, together
with a transformation to a URN model serialized in XMI and readable by the
jUCMNav tool [1]. The availability of TGRL now enables researchers to compare
the efficiency and usability of textual and graphical syntaxes in a goal modeling
context, for different tasks and types of users.

In terms of future work, as this paper reports on only one language, it
would be important to gather additional experience on other modeling languages,
including some that are not based on metamodels. This would help identify com-
mon problems and trends across languages of different natures. It would also be
interesting to better separate concerns related to language definition and tool
integration.

On the TGRL side, further validation of the correctness and usability of this
language is needed. One important feature currently missing is the availability of
a transformation from jUCMNav to TGRL, which would enable modelers to go
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back and forth between the two representations. The support for additional well-
formedness and semantic rules in the TGRL editor would also represent a good
improvement. Another obvious step is the extension of this language to support
the whole URN standard, including UCM (where, again, several concepts do not
have a graphical syntax [11]). This could even lead to improvements to the URN
standard at ITU-T. We also envision opportunities to combine TGRL (for goals)
with Umple (for design and implementation) as they provide complementary
concepts. Finally, the study of various concrete syntaxes for GRL (or URN),
targeting different domains, is also something to explore, especially in terms of
cognitive fitness.
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Abstract. One of the main issues in software maintenance is the time
and effort needed to understand software. Software documentation and
models are often incomplete, outdated, or non-existent, in part because
of the cost and effort involved in creating and continually updating them.
In this paper, we describe an innovative technique for automatically
extracting and visualizing software behavioral models from execution
traces. Lengthy traces are summarized by filtering out low-level software
components via algorithms that utilize static and dynamic data. Eight
such algorithms are compared in this paper. The traces are visualized
using the Use Case Map (UCM) scenario notation. The resulting UCM
diagrams depict the behavioral model of software traces and can be used
to document the software. The tool-supported technique is customizable
through different filtering algorithms and parameters, enabling the gen-
eration of documentation and models at different levels of abstraction.

Keywords: Feature location · Software documentation · Trace summa-
rization · Use Case Map · Utility · Visualization

1 Introduction

Understanding software during maintenance activities is often very difficult due
to incomplete, outdated, or non-existent documentation. In the absence of up-
to-date documentation, programmers frequently need to extract structural and
behavioral information directly from the code. A number of techniques and meth-
ods have been developed in order to facilitate program comprehension [7,18,19],
and several others, especially focusing on the use of dynamic analysis, are com-
pared in a survey from Cornelissen et al. [8]. Feature location and comprehension
approaches [12,14,22,23,26–29] have also been investigated by many researchers,
and several others are summarized in a survey by Dit et al. [10].

In this paper, we propose a new approach to extract high-level behavioral
models of a software feature by using execution traces. A feature is defined as a
realized functional requirement of a system that can be triggered by a user, as
explained by Eisenbarth et al. [14]. A feature represents a functionality that is
defined by requirements and accessible to developers and users [10]. As execution
traces are often too lengthy for comprehension, we simplify them by filtering out
c© Springer International Publishing Switzerland 2015
J. Fischer et al. (Eds.): SDL 2015, LNCS 9369, pp. 177–192, 2015.
DOI: 10.1007/978-3-319-24912-4 13



178 E. Braun et al.

software components that are too low level to give a high-level picture of the
selected feature. We use static information to identify and remove small and sim-
ple (or uncomplicated) software components from the trace. We define a utility
method as any element of a program designed for the convenience of the designer
and implementer and intended to be accessed from multiple places within a cer-
tain scope of the program. Utilityhood is a metric defined as the extent to which
a particular method can be considered a utility. Utilityhood is calculated using
different combinations of selected dynamic and static variables. Methods with
high utilityhood values are detected and removed iteratively. By filtering out
utilities, we are left with a much smaller trace. In order to visualize reduced
traces, we selected the Use Case Map (UCM) notation [6,17], a standard sce-
nario language used to specify requirements of dynamic systems and explain their
emergent behavior. The behavioral model is then displayed as UCM diagrams,
which combine structure and sequences of activities. The abstracted diagrams
can be used as documentation that summarizes feature behavior. The approach
offers parameters that enable the selection of how much information to preserve
in the traces (Fig. 1).

Fig. 1. From source code to traces and behavioral models

Section 2 of this paper gives background on UCM with a mapping from traces,
and definitions of static and dynamic metrics used in our approach. Section 3
presents utilityhood functions used by eight algorithms for our comparative
analysis. Section 4 highlights our new automated approach (TraceToUCM) for
converting execution traces to UCMs. Sections 5 to 7 give an illustrative example,
followed by a discussion and conclusions.

2 Mapping and Metrics

This section gives a brief summary of the UCM scenario modeling notation for
reverse-engineered behavioral models, with a mapping from execution traces.
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Then, it introduces the static and dynamic information used by our utility fil-
tering algorithms.

2.1 Mapping Traces to Use Case Maps

The UCM notation is part of the User Requirements Notation (URN) [2,17],
an international standard used for the elicitation, analysis, specification, and
validation of requirements. UCM has first been suggested for trace visualization
by Amyot et al. in [1].

We chose Use Case Maps to visualize the reduced execution traces because
they are a rich requirements-level notation for showing at a glance the var-
ious control-flow possibilities in a system. Unlike Message Sequence Charts
and UML sequence diagrams, which are often used for trace visualization [27],
UCMs abstract from the inter-component communication to focus on the busi-
ness/feature logic. Using jUCMNav [21], an Eclipse-based tool for URN mod-
eling, analysis and transformations, we are however able to generate sequence
diagrams (with synthetic messages) from UCMs, enabling one to visualize the
scenarios represented in two different formats.

As in UML activity diagrams, UCMs can integrate many scenarios with oper-
ators for looping and forking/joining alternative or concurrent paths. Complex
maps can also be decomposed into sub-maps (through stubs, shown as dia-
monds). Stubs may contain multiple sub-maps, allowing for flexible integration
and exploration of scenarios that have overlapping parts. The various scenario
elements can be bound to components (shown as rectangles). The latter can
have sub-components, enabling structures to be visualized in two dimensions, in
a compact way.

Each item in a filtered execution trace is visually communicated using UCM.
To translate execution traces to UCM maps, Table 1 provides a mapping from
trace elements (in a formalized trace format [4]) to UCM notation elements. This
is an extension of a preliminary informal mapping we studied in [15].

2.2 Static Data Metrics

Static analysis examines a program’s code to derive properties that hold for
all executions [3]. The static analysis is performed without actually executing
programs. The relevant static data metrics collected here are the following:

– Method Lines of Code (MLOC): Total number of lines of code inside method
bodies, excluding blank lines and comments.

– Nested Block Depth (NBD): The depth of nested code blocks.
– McCabe Cyclomatic Complexity (McCabe): Number of flows through a piece

of code [20].

This data is collected via Metrics 1.3.6 [24], an Eclipse plug-in used to gather
static data on software (in Java) at the package, class, and method levels.
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Table 1. Mapping of trace elements to UCM elements

2.3 Dynamic Data Metrics

Dynamic analysis derives properties that hold true for one or more executions by
examination of the running program through instrumentation. This can provide
useful information about the behavior of programs for the specific input para-
meters that are entered. We use the Eclipse TPTP tracer and Java profiler [13]
to collect execution traces and CPU usage. An execution trace contains the list
of each method that was called, in order of calls, and the depth of the call tree.
We process the execution trace and derive more detailed information for each of
the method calls:

– Fan-in: Number of methods that called this method.
– Fan-out: Number of methods this method called.
– UniqueFanin (array): Unique set of methods that called this method. The

length of the array is the fan-in.
– NumberOfTimesCalledBy (array): List of all methods that this method has

been called by (contains duplicates).
– UniqueFanout (array): Unique set of methods that this method called. The

length of the array is the fan-out.
– NumberOfTimesMethodsCalled (array): List of all methods that this method

called (contains duplicates).
– TotalSegmentPresence: Total number of trace segments this method was found

in, based on Dugerdil and Jossi’s approach [11].
– PercentageOfSegmentsMethodPresentIn: Percentage of trace segments this

method was found in.
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– Depth: Depth of this method in the call hierarchy.
– BaseTime: Time taken to execute the invocation of a method.
– CumulativeCpuTime: Amount of CPU time spent in a method accumulated

from all invocations.
– CpuUsageAverage: Cumulative CPU time divided by the number of calls.

3 Utilityhood Algorithms

We use different combinations of the static and dynamic data we have collected
to develop a number of algorithms to calculate utilityhood functions (U(r)) for
each method r in the execution traces. This selection of functions is based on
preliminary experiments involving 18 Java open source systems used to deter-
mine the most promising metrics (based on correlations between metrics) from
which utilityhood should be computed [4]. Table 2 gives a summary of these
utilityhood functions, where N is the number of unique methods in the execu-
tion trace, RelativeMethodSize(r) is the size of a method r in relation to other
methods in the system, and TotalNumberOfSegments is the total number of
segments the execution trace is broken into [4].

– Algorithm 1: based on earlier work done in [15]. The higher the number of
callers a method has, the more likely that it will be eliminated as a low-level
utility class.

– Algorithm 2: based on work done by Hamou-Lhadj [16]. In this case, a fan-out
is also taken into consideration. If two methods A() and B() have the same
number of callers but B() also calls out to other methods, it will rank lower
on the utilityhood index.

Table 2. Summary of utilityhood function algorithms

Name Utilityhood function

Algorithm 1 [15] U(r) =
UniqueFanin(r)

N − 1

Algorithm 2 [16] U(r) =
UniqueFanin(r)

N
×

log(
N

UniqueFanout(r) + 1
)

log(N)

Algorithm 3 U(r) =
1

Nbd(r)×McCabe(r)×RelativeMethodSize(r)

Algorithm 4 U(r) =
fanout(r)

Nbd(r)×McCabe(r)×RelativeMethodSize(r)

Algorithm 5 [11] U(r) =
SegmentPresence(r)

TotalNumberOfSegments

Algorithm 6 [28] U(r) =
1

(UniqueFanin(r)× UniqueFanout(r))2

Algorithm 7 U(r) =
UniqueFanin(r)

(N − 1)×AverageCallHierarchy ×RelativeMethodSize(r)

Algorithm 8 U(r) =
1

CpuUsageAverage(r)×McCabe(r)×RelativeMethodSize(r)
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– Algorithm 3: we use the McCabe value, also known as cyclomatic complex-
ity [20], to measure the number of linearly independent paths through a
method. One of the hypotheses we are testing is that methods that are simple
are more likely to be utilities than methods that are more complex.

– Algorithm 4: we test our hypothesis that smaller methods are more likely to
be utilities than larger ones, and therefore methods that are designed to be
accessed from multiple places would tend to be small. We use the relative size
of a method within the whole system as a measure, instead of an absolute
size, to account for differences in programming styles, and the size of the
whole system. A method considered large in one software system might be
the smallest in another.

– Algorithm 5: based on the work of Dugerdil and Jossi [11], who developed trace
segmentation and clustering techniques to reverse-engineer software systems.
While segmenting the execution trace, they remove classes present in most
of the segments of the execution trace. They observe those classes “perform
some utility work, not specific to any functional component”. We take the
trace segmentation part of their methodology and test it here.

– Algorithm 6: based on an algorithm developed by Wang et al. [28]. They
claim that the static (syntactical) situation of a software program reflects
only inaccurately the situation of the dynamic behavior of the system, using
factors like actual number and type of procedure calls, as well as size of the
actual transferred information. They hypothesize that methods with high fan-
in or fan-out values implement the system’s main functions, and can be used
to infer the subject system’s functionality.

– Algorithm 7: we look at each method in the execution trace and calculate a
value that represents the average call hierarchy, also called average call tree
depth. The average call hierarchy is calculated by taking the depth at which
each method is called during the run, and then dividing it by the number of
different depths from which it is called. For example, if method A() is called
through Z() → Y() →A(), which is of depth 3, and also called through Z()
→X() → W() → A(), which is of depth 4, then the AverageCallHierarchy
would be (3 + 4)/2 = 3.5.

– Algorithm 8: tests the hypothesis that most complex methods with the highest
average processor (CPU) time, and with the most lines of code, are the most
important methods and should be used to include in the behavioral model of
a feature.

4 Automated Approach

We developed a tool called TraceToUCM that takes three required inputs (an
execution trace, CPU profiling information, and the metrics discussed in Sect. 2),
with optional lists of Java methods to be explicitly included or excluded in
the resulting traces, and filtering parameter information (e.g., thresholds for
each algorithm). The tool generates automatically a UCM diagram using the
mapping shown in Table 1 for each of our filtering algorithms, in addition to other
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files with intermediate or by-product information (e.g., data tables, statistics,
rankings, etc.). We also created an automatic layout function to draw all the
UCM diagrams, which helps keep the layout variable consistent between the
diagrams obtained from different utility detection algorithms.

The following is a brief summary of the main steps taken by the automatic
trace summarization tool, illustrated in Fig. 2.

1. Run the target program and collect the execution trace and CPU information
(using TPTP). Use Metrics 1.3.6 [24] for producing the various static metrics.

2. Remove methods explicitly excluded.
3. Remove duplicate loops from the trace (but preserve loop counts).
4. Remove data access methods (.get*() or .set*() with less than 2 lines of

code and a complexity index less than 2).
5. Remove small methods (with fewer than 5 lines of code) and simple methods

(that score 2 or less on the complexity index). This is kept as a separate step
from the previous one as the notion of “small method” is configurable.

6. Integrate the static data and CPU data for the methods.
7. Calculate utilityhood for all the methods using each of the 8 algorithms.
8. Filter the traces according to each utilityhood result and generate UCMs

from the resulting traces.
9. If required, re-iterate to raise or lower the level of abstraction (through the

filtering information file).
10. If required, a sequence diagram can also be generated from each UCM dia-

gram via jUCMNav.

5 Illustrative Example

We use an example to demonstrate the approach proposed in this paper. We
run one feature of the software, collect the trace, reduce the execution trace and
produce UCM behavioral models. We selected a Java application called Use Case
Editor (UCEd), version 1.6.2 [25], which is an environment for use-case-based
requirements engineering. UCEd contains tools for editing use cases, such as use-
case integration and use-case simulation. UCEd has 700 classes, 3284 methods,
and 33,004 lines of code. We run the feature “Open a project”.

We collected the execution trace and the profiling information while a file was
being opened. We also collected static information on the code using Metrics [24].
We then filtered the trace and generated UCM diagrams. Table 3 highlights the
size of the trace after each step (in a cumulative way in the top part) and then
after each algorithm (independently from one another in the bottom). We can
see that before the algorithms are applied to the trace (as alternatives), just by
removing repeated loops, access methods, as well as small and simple methods,
we have reduced the execution trace from 19,543 to 1987 lines, which already
represents a 90 % reduction in size.

The eight UCM diagrams are then generated, one per algorithm. In the first
iteration, we actually have set the filter at 40, i.e., the 40 methods ranked as
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Fig. 2. Overview of the TraceToUCM tool
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Table 3. UCEd execution trace line count (top: cumulative; bottom: alternatives)

Trace name Trace size Reduction

Uced Original 19543 0.00 %

Uced Original LoopsRemoved 7698 60.61 %

Uced AccessMethodsRemoved 3088 84.20 %

Uced Original SmallSimpleMethodsRemoved 1987 89.83 %

Uced Algorithm 1 72 99.63 %

Uced Algorithm 2 73 99.63 %

Uced Algorithm 3 53 99.73 %

Uced Algorithm 4 164 99.16 %

Uced Algorithm 5 29 99.85 %

Uced Algorithm 6 20 99.90 %

Uced Algorithm 7 61 99.69 %

Uced Algorithm 8 99 99.49 %

non-utility would be included in the trace and the UCM diagram. Figure 3 shows
the generated UCM diagram based on the top 40 methods ranked according to
Algorithm 4. The diagram is cluttered and is hard to follow, but it does show
many UCM nested components capturing classes within their packages.

We then raised the level of abstraction a bit higher 1) by using the top 20
methods instead of 40 and 2) by using UCM stubs to hide some of the low-level
details in sub-diagrams. Although stubs could in theory be used to preserve the
entire trace, enabling analysts to drill down into low-level details, we believe that
traces would still be too large for this to be practical with current UCM tools.
The result is shown in Fig. 4. This new UCM diagram is much easier to follow
than the UCM diagram in Fig. 3, but may miss important information. One can
play easily with such levels of abstraction in order to at least generate a diagram
that stands a chance of being understandable.

In order to assess which of the algorithms lead to the most understandable
and intuitive results for this trace, we showed the corresponding UCM diagrams
to two UCEd designers and asked them whether the diagrams contained the main
methods used for understanding the “Open a project” feature. Both designers
chose the UCM diagrams based on Algorithms 1 and 4, for 20 methods (e.g., the
one in Fig. 4).

The UCM models produced by the TraceToUCM tool also contain scenario
definitions, which allow one to simulate the UCM model and to transform each
execution sequence into a sequence diagram. This hence provides a different visu-
alization of the same information. Each UCM component becomes a lifeline in
the sequence diagram, but containment relationships are more difficult to under-
stand. Sequence diagrams are also general less compact than UCM diagrams
(especially with synthetic messages), but on the other hand UCM diagrams may
have more complicated layout issues, possibly with paths crossing each other.
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Fig. 3. Use Case Map model derived for the UCEd trace using the top 40 methods
(not meant to be read)

6 Discussion and Evaluation

6.1 Additional Experiments

In [4], we also report on the additional evaluation of traces obtained from two
other Java projects: jUCMNav (with 94 KLOC, and 3 developers for valida-
tion) and Umple (with 79 KLOC, and 4 developers). Again, the developers were
asked to determine which UCM diagrams were suitable for understanding spe-
cific features. Looking at the scores from the three groups of designers (including
UCEd’s), Algorithms 2 and 4 generally come ahead of the other algorithms. The
algorithms that did better than the others used method size, method complexity
and nested block depth metrics. More work needs to be done to fine-tune the
combinations of those parameters in the algorithms. Based on answers to a ques-
tionnaire, there was agreement among the designers that UCM diagrams were
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Fig. 4. Use Case Map model derived for the UCEd trace using the top 20 methods,
with stubs

suitable to represent execution traces. 7 out of 8 designers agreed (including one
who strongly agreed) and one was neutral.

We have also reverse-engineered our own TraceToUCM tool (3.4 KLOC) by
producing UCM diagrams for its main feature. These diagrams were presented
to 16 students and software engineers who were asked to pick the top three
diagrams/algorithms that they felt gave enough information to describe what
the program did. The results showed that reduced traces, visualized by using
the UCM notation, can be helpful in documenting software. We also learned
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that it may not be desirable to pick one “best” algorithm since a few of the
participants expressed they had multiple favorites.

While designing the TraceToUCM method and tool, we considered the fol-
lowing criteria, which were used to assess 11 other existing dynamic program
comprehension approaches explored in [4], including [9,12,16,22,23,28,29]. We
look at each criterion and briefly discuss how TraceToUCM measures up.

– Scalability: TraceToUCM is scalable because regardless of the target software,
the user can focus the behavioral model extraction on one feature at a time.

– Scalability for trace size: TraceToUCM can be used regardless of the input file
size. UCM supports recursive levels of nested stubs, and by using stubs we
can visualize large traces.

– Visualization: The auto-layout program that is used by jUCMNav was not
always able to provide readable layouts of the UCM diagrams. Manual inter-
vention was necessary to move overlapping component names and intertwined
paths.

– Level of prior knowledge required: No prior knowledge of the code is required
to use this technique. The user only needs to know how to run the selected
feature.

– Validation: Validation of the UCM diagrams was done with many participants
already familiar with the UCM notation, which adds some bias to our results.

– Usability: Even though all that the user needs to do is exercise the feature of
interest, collect data, and run TraceToUCM, a process that is hence mostly
automated, manual intervention is required to untangle larger UCM diagrams.
More work needs to be done to make the approach more user-friendly.

– Intrusive data collection: TraceToUCM, which builds on TPTP, has an
observer effect from the collection of CPU data and is therefore not suitable
for time-critical systems.

– Target programming language: The technique of comparing execution traces
is likely generalizable to all systems written with an object-oriented program-
ming language. However, the tool support itself is currently limited to Java
programs.

In general, TraceToUCM does better on average than the 11 other program
comprehension techniques exploiting dynamic analysis studied in [4], with some
weaknesses in terms of visualization, validation and utility, where some other
approaches have at times scored better.

6.2 Threats to Validity

There are some threats to the validity of our approach. We analyze at them with
general framework proposed by Wohlin et al. [30], which is used by grouping the
factors that limit our ability to draw valid conclusions from empirical experi-
ments into four classes: external, internal, construct and conclusion threats.

External validity is the ability to generalize the observed results to a larger
population. Important potential threats include the following: 1) Participants
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were not representative: Use Case Maps are used widely around the University
of Ottawa and therefore most of the graduate students were familiar with UCM.
This is not the case for all software engineers in general. This may make our
results difficult to generalize because the participants were more familiar with
them than the average software engineer outside of the University of Ottawa
community. 2) Programs were not representative: all of the software studies were
open source Java systems. Although care was taken to use tools that will work
with object-oriented programming languages in general, the methodology needs
to be tested with non-open source and non-Java systems.

Internal validity in our context refers to internal correctness of experiment
design and to the absence of bias. Four threats have been identified here.

1. Software error: Although care was taken to debug and verify the TraceToUCM
tool, it is not a production system and therefore could contain bugs that affect
the results of the experiment.

2. The same person, namely the first author, selected the programs to be stud-
ied, the algorithms and the subjects who were invited to participate. This
possibly introduces bias. However, to partially mitigate bias issues, all the
developers of the three systems under study were invited to participate, the
small programs were selected from an open source repository (Standard Wid-
get Toolkit examples), and the protocol was reviewed by the university’s
research ethics board.

3. We used TPTP to collect an execution trace and CPU data in two different
runs. Care was taken to make sure the runs are as identical as possible. How-
ever, when dealing in milliseconds, one can rarely guarantee trace equality,
and therefore it would be best to do the experiment using a tool that can
collect all the data in the same run.

4. In the filtering step, useful data may get thrown out by the Small and Simple
filter. A good example where this could occur would be a recursive function
that is very small. We try to mitigate this threat by keeping the methods
with the highest average CPU usage no matter what its size, complexity or
method name are. In addition, the inclusion input file (labeled I6 in Fig. 2)
can be used to ensure important methods are not filtered out even if they
score low by the filters and algorithms.

Construct validity refers to the ability of the experiments to capture the
effect being measured. We designed and explored two types of case studies to
validate whether behavioral maps of a feature can be extracted from execution
traces by filtering out utilities. We tested the use of the behavioral maps for
software comprehension (with three open source software applications) and for
software documentation (with our own TraceToUCM tool). The first type of case
study was constructed incrementally. In the first iteration (published in [15]), we
studied one system, TConfig, using one utility detection algorithm and validated
the result with its (only) designer. Using lessons learned from the first iteration,
we designed the second iteration with five algorithms (four new ones and one
from the first iteration) and also compared our algorithms with 3 algorithms
found in the literature [12,16,28]. In the first iteration, trace processing and UCM
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diagram creation were manual, which can potentially add a lot of variability to
the quality of the filtered trace and the UCM diagrams. We were able to mitigate
this risk by automating the trace processing and UCM diagram generation in the
second iteration, making the process repeatable, less error-prone and more user-
friendly and efficient. However, we were not able to eliminate the risks entirely
as jUCMNav’s auto-layout feature does not produce a UCM diagram that is free
of overlap and easy to read, and manual intervention was necessary. Therefore,
understandability of the UCM diagram may have been hampered by the layout
tool.

Conclusion validity is the ability to draw conclusions from statistical tests.
The main threat here is that our sample size for real systems is only three, with
few designers available for each (as designers with a general and deep understand-
ing of their systems are difficult to access), which prevents statistical significance
from being reached. Work needs to be done using larger collections of software
systems, where dozens of developers are available.

7 Conclusion and Future Work

This paper contributes TraceToUCM, an environment where different algorithms
targeting the filtering of utilities (exploiting dynamic, static, and CPU informa-
tion) can be implemented for comparison and evaluation. TraceToUCM also
supports the visualization of reduced traces with Use Case Maps and sequence
diagrams for software feature documentation and comprehension. A comparison
of eight filtering algorithms was performed with three real software projects and
their designers (who know the systems), and with one additional project where
people who did not know the software had to explain and rank generated UCM
diagrams. A brief comparison with other related approaches along eight criteria
highlighted the benefits, limitations, and overall good potential of TraceToUCM.

Note that this work focused on programs written in Java. Yet, there is much
legacy code written in non-Java programming languages. The study needs to be
repeated using software from different programming languages and paradigms.

Further characterization of utilities could be done as another future work
item. One could investigate how context-dependent utilities are used in different
contexts. For example, for the same piece of software, is there one fixed set of
utilities? Or do utilities change from one feature to another? Are there differ-
ences between utilities of a single trace (or feature), and utilities of many traces
(or features)?

The current approach might benefit from a more specific handling of multi-
threaded or even distributed applications, where causality needs to be recovered
from processes that have potentially different local clocks. At the moment, ele-
ments in a trace might come from concurrent threads and hence lead to increased
visualization complexity (as UCM responsibilities would alternate between com-
ponents rather than being shown as concurrent sub-sequences connected with
parallel forks) to loops that are not correctly detected (because different itera-
tions might have different orderings resulting from multiple interleaving threads).
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Improvements could be inspired from work done by Briand et al. [5] on the
reverse engineering of behavior from distributed Java applications.
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Abstract. The Test Description Language (TDL) is an emerging stan-
dard from the European Telecommunications Standards Institute (ETSI)
that targets the abstract description of tests for communicating systems
and other application domains. TDL is meant to be used as an inter-
mediate format between requirements and executable test cases. This
paper explores the automated generation of TDL test descriptions from
requirements expressed as Use Case Map (UCM) models. One genera-
tion mechanism, which exploits UCM scenario definitions, is prototyped
in the jUCMNav tool and illustrated through an example. This trans-
formation enables the exploration of model-based testing where the use
of TDL models simplifies the generation of tests in various languages
(including the Testing and Test Control Notation – TTCN-3) from UCM
requirements. Remaining challenges are also discussed in the paper.

Keywords: Model-based testing · Test Description Language · Tool ·
Use Case Map

1 Introduction

The Test Description Language (TDL) [5–8] is an emerging standard of the Euro-
pean Telecommunications Standards Institute (ETSI) created for documenting
and specifying rigorously high-level test purposes and abstract test cases. TDL
is mainly intended for communication systems but can also be used in other
application domains [16]. TDL can be effective in a model-based testing (MBT)
context [15] by:

– generating TDL test descriptions from requirements (the subject of this short
paper) or from behavioral models, and/or

– generating test cases from TDL in an executable testing language such as the
Testing and Test Control Notation (TTCN-3) [9] or some scripting language.

TDL can be used by engineers who are not specialized in standard test lan-
guages (e.g., TTCN-3), and may hence help reduce their learning curve.

TDL focuses on configurations of test components and the exchange of
abstract messages between them and the System under Test (SUT). It imports
c© Springer International Publishing Switzerland 2015
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pro-forma data type definitions and test data or test oracles definitions as tem-
plates that can be defined directly in TTCN-3. TDL supports the specification
of sequences of test events, including alternate paths and parallelism. TDL is
strictly a description language, i.e., it is not meant to be executable as is.

The goal of this paper is to explore the first type of MBT transformation
(requirements to TDL), starting with Use Case Map (UCM) scenario models
as input. The UCM language is part of the User Requirements Notation (URN)
standard and focuses on causal sequence of responsibilities superimposed on a
component structure [10]. UCM is selected here as this is a standard language
focusing on a level of abstraction compatible with TDL’s. TDL tests generated
from UCM models contribute positively and rigorously to system validation at
the requirements level.

This paper contributes an automated model-to-model transformation from
scenarios (partial orders) extracted from UCM models to TDL test descriptions.
This transformation is supported by the jUCMNav modeling environment for
URN [11]. Section 2 recalls the process of extracting scenarios from UCM models,
and a transformation of UCM scenario elements to TDL elements is highlighted
in Sect. 3. A discussion and conclusions then follow in the last two sections.

2 UCM Scenarios

As defined in [1,10], UCM models have maps that contain any number of paths
and components. Paths express causal sequences starting at start points ( )
and ending at end points ( ), which respectively capture triggering and resulting
conditions/events. Along a path, responsibilities ( ) describe required activities
to fulfill a scenario. Paths can be combined as alternatives with guarded OR-forks
( ) and merged with OR-joins ( ), while AND-forks ( ) and AND-joins
( ) depict concurrency. Loops can be modeled implicitly with OR-joins and
OR-forks. Joins and forks may be freely combined. Waiting places ( ) and timers
( ) denote locations on the path where the scenario stops until a condition
is satisfied. UCM models can be decomposed using stubs (static or dynamic

), that contain sub-maps. Components ( ) are used to specify the structural
aspects of a system. Map elements that reside inside a component are said to be
bound to it. Components, which can be of different types (not shown here), can
also contain sub-components, recursively.

UCM models can be edited, analyzed and transformed with the jUCMNav
tool [11]. One of its main features is a UCM traversal mechanism that takes as
input a model and a scenario definition (start points triggered, and initial val-
ues assigned to the model variables used in OR-fork/timer/stub conditions) and
produces as output a scenario that contains the UCM elements traversed [12].
Generated scenarios are partial orders containing sequenced and concurrent
responsibilities only; all conditions and alternatives have been resolved during
the traversal. A scenario can be used to highlight the paths traversed on the
visual model itself (e.g., in red or grey). In Fig. 1, we find a model with two
maps, five responsibilities, and two highlighted scenarios.
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Fig. 1. UCM model with a stub and a plug-in map, with two highlighted scenarios

Fig. 2. Metamodel for scenarios generated from UCM models

Fig. 3. Extract of the first scenario from Fig. 1 as an instance of Fig. 2, in XMI
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The scenario definitions in Fig. 1 both use StartPoint as the triggering start
point, and they both set an internal variable of an enumerated type with a
different value: the first uses top, while the second uses bottom. The resulting
scenarios are grouped as an instance of the scenario metamodel described in
Fig. 2, initially defined in [12] but refined in this paper to support metadata on
any model element. The metadata objects are carried over from the UCM model
and used in our transformation to TDL. The scenarios can be serialized in the
XML Metadata Interchange (XMI) format (Fig. 3).

Scenarios in this format can further be transformed into other models,
for example as Message Sequence Charts (MSCs), as supported by jUCM-
Nav [12,14]. They are also ideal for the generation of test purposes as they
naturally isolate classes of test behavior. The generation of tests from UCM and
scenario definitions was already explored for MSCs [3] and for Web-based sys-
tems tested via Fitnesse [2]. UCM scenario definitions can also specify pre- and
post-conditions and expected end points, and they can extend other scenarios
(for managing complex collections of scenarios). They can help analyze and val-
idate requirements, and they can be used as a regression test suite as the UCM
model evolves.

3 Generation of Test Purposes in TDL

In our transformation, the scenario model is used as an intermediate format
between UCM and TDL (see Fig. 4), and the corresponding traversal mechanism
already exists in jUCMNav. We also reuse the message synthesis procedure used
by Miga et al. [14] and Kealey and Amyot [12] in their transformations from
scenarios to MSCs. The second and new transformation requires a mapping of
UCM scenario elements to TDL elements, which is summarized for the main
elements in Table 1. TDL’s metamodel is available in the standard [5], and TDL
models are serializable in XMI too. The resulting TDL descriptions can further
be visualized with UML (mainly package and sequence diagrams) with the tool
prototype developed by Makedonski et al. [13].

Fig. 4. Flow of transformations from UCM to scenarios to TDL (thumbnails only)
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Table 1. Supported mapping from UCM scenarios to TDL

Use case map scenario TDL

ScenarioDef TestDescription (with Behaviour and Block)

Component ComponentInstance (with ComponentType)

Event of type Responsibility ActionReference (+ Action, Annotation, AnnotationType)

Event of type Timer Set TimerStart

Event of type Timer Reset TimerStop

Event of type Timeout Timeout

Message Interaction (+ Connection, GateInstance, GateType)

Parallel ParallelBehavior (with Block)

Mapping UCM Scenarios to TDL: The mapping and the model-to-model
transformation from UCM scenario elements (in sans-serif) to TDL elements (in
italic) is as follows.

UCM scenario ScenarioDef objects are mapped to TestDescription objects in
TDL. Each scenario is exported to a single file with the name of the ScenarioDef as
filename. A TDL “main” Block contains all the Behaviour of one TestDescription.

UCM scenario Component objects are mapped to ComponentInstance objects
in TDL. The name attribute of a Component is also used to determine the Compo-
nentType of the generated ComponentInstance. This name must follow the format
“ComponentName : ComponentType”, where ComponentName is assigned to
the name of the generated ComponentInstance and ComponentType is assigned
to its corresponding ComponentType’s name.

Responsability objects are mapped to ActionReference objects of a certain
Action . Every ActionReference must have a name and a body, converted in TDL
as AnnotationType named “STEP” and “PROCEDURE”. Each ActionReference
must be generated with one Annotation of each of these two AnnotationTypes.

UCM scenario Timer Set events are mapped to TimerStart objects in TDL.
A TimerStart must have a period that defines the duration of the timer from
start to timeout. The period is transferred from the Timer Set to TimerStart as a
Metadata that must follow this convention: name = “period” value = “timeValue
timeUnit” (e.g. “45 seconds”). Timer Reset events are mapped to TimerStop
objects, whereas Timeout events are mapped to Timeout objects.

Message objects are mapped to Interactions. For two ComponentInstance to
interact, there must be a unique Connection between the two, which is created
implicitly during the transformation. Furthermore, a GateInstance of a certain
GateType is needed as attribute of each ComponentInstance at both ends of a
Connection. A default GateType is used for every GateInstance as a scenario
Message is synthetic and abstract, and could be refined with metadata.

Parallel objects are mapped to TDL ParallelBehaviour objects contained in
the “main” Block. As the parallel parts are seen as sequences, the transformation
generates one child Block for each parallel Sequence.
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TDL Model Generation: In jUCMNav, a ScenarioSpec object is extracted
with a traversal listener from the traversal mechanism and sent to the trans-
formation algorithm that targets TDL. A TDL Package is then created as the
parent container for other TDL objects. The new jUCMNav plug-in for gener-
ating TDL test descriptions, written in Java, consists in an application of the
mapping described above. The result is a TDL model (an instance of the TDL
metamodel) serialized in the XMI interchange format specified in [7]. This allows
further generation of different kinds of representation such as the TDL graph-
ical [6] or code-like textual representations. We have chosen to generate TDL
in the exchange format to allow the use of both representations using further
transformation tools.

The TDL XMI file consists first in a number components and declarations of
elements by default, followed by a block that contains the elements of the top-
most sequence of events of the scenarios. The example is Fig. 5 was produced for
the top scenario from Fig. 1(a) and Fig. 1(c); note that the traversal mechanism
flattens the use of submaps, so resulting scenarios and test descriptions do not
have sub-scenarios. Responsibility E1 has the following scenario representation:

<children xsi:type="ucmscenarios:Event" id="25"name="E1"

instance=//@groups.0/@scenarios.0/@instances.0

type="Responsibility"/>

The above is translated into the following TDL element, which is part of a list
of elements of a TDL block, as shown in Fig. 5:

<behaviour xsi:type="tdl:ActionReference" name="E1"

action="//@packagedElements.21">

<annotation value="gEnvironment" key="//@packagedElements.5"/>

</behaviour>

4 Discussion and Future Work

We have tested our implementation using several examples from existing and
new UCM models of simple telephony examples, with a coverage of all the map-
pings from Table 1. The transformation plug-in is packaged with jUCMNav ver-
sion 5.5.0 and above [11]. Documentation, examples, and videos are available
online [4]. There is obviously a need to validate this transformation much further,
both in terms of technical correctness and usefulness. In particular, we intend
to use it in the context of an industrial project from the aerospace domain.

As we would like to eventually explore the generation of TTCN-3 test cases
from TDL descriptions generated from UCM models, one issue we are facing
is the absence of alternatives in the scenario metamodel (Fig. 2) targeted by
jUCMNav’s traversal mechanism. There exists a difference between a scenario,
which is basically a (partial-order) trace in the UCM model, and a test case that
can handle alternate test behavior, e.g., combinations of scenarios. While this
principle is correct for forward OR-forks, from a test case point of view, this
becomes incorrect when OR-fork branches return to an originating component.



Towards the Generation of Tests in the TDL from UCM Models 199

Fig. 5. Generated TDL model (serialized in XMI) for the scenario in Fig. 3

For the simplified example of a user of a plain old telephone system (POTS) seen
as a grey box (Fig. 6), the user shall receive either a connected or a busy signal
upon a connection request in a single test case. Here the two separate scenarios

Fig. 6. Alternative responses in a simple UCM model for POTS
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connected and busy are merged into a single test case containing an alternate
behavior. This feature will be addressed in future work.

5 Conclusion

In this paper, we have explored the mapping between scenarios produced from
UCM requirements models by the jUCMNav tool and abstract test descriptions
in the emerging TDL standard. We provided a free online implementation of this
transformation, which also enables visualization of the TDL tests in UML [4,11].
We determined the basic differences between such scenarios and test cases in the
handling of alternative paths that result from UCM alternatives. We conclude
that the use of scenarios for test case generation is feasible, but requires either
a different traversal mechanism with a different scenario metamodel, or post-
processing of scenarios to merge those that constitute alternate test behaviors.
Further research is also needed on when and how (e.g., with metadata) to intro-
duce concrete data in the generation of executable test cases in TTCN-3.
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Abstract. Non-functional requirements (NFR), such as availability,
usability, performance, and security are often crucial in producing a sat-
isfactory software product. Therefore, these non-functional requirements
should be addressed as early as possible in the software development
life cycle. Contrary to other non-functional requirements, such as usabil-
ity and performance, security concerns are often postponed to the very
end of the design process. As a result, security requirements have to
be tailored into an existing design, leading to serious design challenges
that usually translate into software vulnerabilities. In this paper, we
present a novel approach to describe high-level security requirements
using the Use Case Maps (UCM) language of the ITU-T User Require-
ments Notation (URN) standard. The proposed approach is based on
a mapping to UCM models of a set of security architectural tactics
that describe security design measures in a very general, abstract, and
implementation-independent way. The resulting security extensions are
described using a metamodel and implemented within the jUCMNav
tool. We illustrate our approach using a UCM scenario describing the
modification of consultants’ pay rates.

Keywords: Goal modeling · Feature modeling · GRL · URN · Goal
evaluation

1 Introduction

In the early stages of common development processes, system functionalities are
defined in terms of informal requirements and visual descriptions. Scenarios are a
well established approach to describe functional requirements, uncovering hidden
requirements and trade-offs, as well as validating and verifying requirements. The
Use Case Maps (UCM) language, part of the ITU-T User Requirements Notation
(URN) standard [14], is a high-level visual scenario-based modeling language
that has raised a lot of interest in recent years within the software requirements
community. Use Case Maps [14] can be used to capture and integrate functional
c© Springer International Publishing Switzerland 2015
J. Fischer et al. (Eds.): SDL 2015, LNCS 9369, pp. 202–217, 2015.
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requirements in terms of causal scenarios representing behavioral aspects at a
high level of abstraction, and to provide the stakeholders with guidance and
reasoning about the system-wide architecture and behavior.

Non-functional attributes such as availability, performance, and security are
often overlooked during the initial system design. Clements and Northrup [4]
have suggested that whether or not a system will be able to exhibit its required
quality attributes (NFRs) is largely determined by the selected architecture.
Hence, system architecture should address both functional and non-functional
requirements.

In order to solve commonly occurring problems in software architecture,
architectural patterns were introduced as a well-known reusable solution within
a given context [20]. Despite their popularity, architectural patterns suffer from a
number of criticisms and deficiencies. One of these weaknesses is that an architec-
tural pattern usually addresses multiple quality attributes at once [18]. To over-
come this weakness, the notion of tactics has been proposed by Bass et al. [2] as
architectural building blocks of architectural patterns, in order to achieve quality
attributes, such as availability, safety, and security. As with architectural pat-
terns, architectural tactics emerge from practice through empirical experiments
and observations.

It is well-known that software flaws are very expensive when found late in
the system development life-cycle. More specifically, security vulnerabilities left
in the released software may be catastrophic. Hence, there is a need to consider
security from the early stages of the software development process.

The widespread interest in security modeling and analysis techniques, con-
stitutes the major motivation of this paper. We, in particular, focus on the need
to incorporate security aspects at the very early stages of system development.
This work builds upon and extends our previous work on describing and assess-
ing availability requirements using the Use Case Maps language [6–10] and the
Aspect-Oriented Use Case Maps (AoUCM) [11]. This paper serves the following
purposes:

– It adopts the security tactics introduced by Bass et al. [3] as a basis for
extending the Use Case Maps language with security-related requirements.

– It describes a set of UCM-based security extensions using a metamodel. These
extensions are implemented using the jUCMNav tool through metadata mech-
anism.

– It extends our ongoing research towards the construction of a UCM-based
framework for the description and analysis of non-functional requirements in
the early stages of system development life-cycle.

The remainder of this paper is organized as follows. The next section provides
an overview of system security requirements. In Sect. 3, we present and discuss
the proposed UCM-based security annotations. An example of a UCM scenario,
describing the modification of consultants pay rates and annotated with security
information, is presented in Sect. 5. Section 6 discusses related work, the benefits,
and the shortcomings of our proposed approach. Finally, conclusions are drawn
in Sect. 7.
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2 Security Requirements

In the ITU-T recommendation E.800 [12], the term ‘security ’ is used in the sense
of minimizing the vulnerabilities of assets and resources. An asset is defined
as ‘anything of value’, while a vulnerability is defined as ‘any weakness that
could be exploited to violate a system or its data’. The ITU-T recommendation
X.1051 [13] defines Information Security as security preservation of confidential-
ity, integrity, and availability of information.

Security can be characterized in terms of confidentiality (e.g., no unautho-
rized subject can access the content of a message), integrity (e.g., message con-
tent cannot be altered), and availability (i.e., system should be available for
legitimate use). Other characteristics, such as authentication (e.g., checking the
identity of a client), authorization (e.g., checking whether a client might invoke
a certain operation), and non-repudiation (which refers to the accountability of
the communicating parties), are used to support security [1].

Bass et al. [2] have provided a comprehensive categorization of security tac-
tics) based on whether they address the detection of, the resistance to, and the
recovery from attacks. A refined hierarchy of security tactics has been presented
later in [3] by adding an additional category of tactics to deal with reacting
to attacks and by refining the existing categories. Figure 1 illustrates the four
classes of tactics, where the directed arrows show refinement relationships and
each element represents an individual tactic:

Fig. 1. Security tactics [3]
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1. Detect Attacks category consists of four tactics:

– Detect intrusion tactic refers to the ability to recognize typical attack
patterns trough monitoring and analyzing both user and system/network
activities. The detection intrusion tactic can be realized, for example,
using a comparison of network traffic (inbound and outbound) or service
requests with a set of signatures of known malicious patterns, e.g., TCP
flags, payload sizes, source or destination address, port number, etc.

– Detect service denial tactic refers to the ability to detect attempts to make
a machine or network resource unavailable (temporarily or indefinitely)
to its intended users. It can be realized, for instance, by comparing the
pattern/signature of the incoming network traffic with historic profiles of
known denial of service attacks.

– Verify message integrity tactic employs techniques such as checksums or
hash values to check the integrity of messages, resource files, and config-
uration files.

– Detect message delay tactic is intended to detect potential man-in-the-
middle (MITM) attacks, where the attacker is secretly intercepting and
possibly altering the communication between two parties who believe they
are directly communicating with each other. This tactic can be realized,
for instance, by examining the latency of the exchanged messages.

2. Resist Attacks category is divided into eight tactics:
– Identify actors tactic refers to the ability of identifying the source (e.g.,

user IDs, IP addresses, protocols, etc.) of any external input to the system.
– Authenticate actors tactic ensures that an actor (a user of a computer) is

who he claims to be. It can be realized, for instance, by using passwords,
digital certificates, and biometric identification.

– Authorize actors tactic ensures that only certain authenticated actors have
access to a resource (data or service). It can be realized, for example, by
specifying access control mechanisms.

– Limit access tactic aims to limit the access to resources such as network
connections, memory, etc. It may be achieved by blocking a host, closing
a port, or rejecting a protocol.

– Limit exposure tactic focuses on minimizing the attack surface. It does not
proactively prevent attackers from causing harm, but tries to minimize the
effect of damage. It may be achieved by having a limited number of access
points for resources, data, or services.

– Encrypt data tactic provides extra protection to persistently maintained
data beyond that available from authorization. Encryption offers protec-
tion (e.g., through VPN or SSL) for passing data over publicly accessible
communication links.

– Separate entities tactic ensures the separation of different entities within
a system (e.g., different servers attached to different networks). Sensitive
data is usually separated from nonsensitive data to reduce the attack
possibilities from those who have access to nonsensitive data.
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– Change default settings tactic forces the user to change default settings,
which will prevent attackers from gaining access to the system through
settings that are, generally, publicly available.

3. React to Attacks category consists of three tactics:
– Revoke access tactic ensures that access to sensitive resources is limited,

if an attack is underway.
– Lock computer tactic ensures that a limited access is granted to potentially

malicious parties, for example, in case of repeated failed login attempts.
– Inform actors tactic refers to the ability to notify intervening parties in

case of an ongoing attack.
4. Recover from Attacks tactics are divided into:

– Service restoration tactic ensures the recovery of the system after an
attack. It may be realized through redundant hardware. Availability tac-
tics can be deployed to achieve service restoration.

– Maintain audit trail tactic is used to trace the actions of and to identify
an attacker.

In this research, we adopt the above security tactics [3] as a basis for extend-
ing the Use Case Maps (UCM) language [14] with security annotations. These
tactics have been proven in practice for a broad applicability in different indus-
trial domains.

3 Security Modeling in Use Case Maps

UCMs expressed by a simple visual notation allow for an abstract description
of scenarios in terms of causal relationships between responsibilities ( , i.e., the
steps within a scenario) along paths allocated to a set of components. UCMs help
in structuring and integrating scenarios (in a map-like diagram) sequentially,
as alternatives (with OR-forks/joins; / ), or concurrently (with AND-
forks/joins; / ).

One of the strengths of UCMs resides in their ability to bind responsibilities
to architectural components. Several kinds ot UCM components allow system
entities ( ) to be differentiated from entities of the environment ( ). When
maps become too complex to be represented as one single UCM, a mechanism
for defining and structuring sub-maps becomes necessary. Path details can be
hidden in sub-diagrams called plug-in maps, contained in stubs ( ) on a path.
A plug-in map is bound (i.e., connected) to its parent map by binding the in-
paths of the stub with start points ( ) of the plug-in map and by binding
the out-paths of the stub to end points ( ) of the plug-in map. For a complete
description of the Use Case Maps language, interested readers are referred to
the ITU-T standard [14].

The URN standard [14] offers mechanisms in order to support the profiling
of the language to a particular domain. One such mechanism is Metadata, which
are name-value pairs that can be used to tag any URN specification or its model
elements, similar to stereotypes in UML. Metadata instances provide modelers
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with a way to attach user-defined named values to most elements found in a
URN specification, hence providing an extensible semantics to URN. A metadata
is described using a name (string) and a value (string) of the URN metadata
information instance.

In this paper, we propose to implement our security extensions within jUCM-
Nav [15], the most comprehensive URN tool available to date, using the metadata
feature. In what follows, we adopt the security tactics introduced by Bass et al. [3]
as a basis for extending the Use Case Maps language with security annotations.

3.1 UCM Attack Detection Modeling

The specification of attack detection mechanisms is a key factor in implementing
any security strategy. They are modeled and handled at the scenario path level,
by associating the type of the deployed detection method with UCM responsi-
bilities along the execution path.

The security requirements of a responsibility can be modeled using two meta-
data attributes:

1. SecCategory: Specifies the security category, if any, that the responsibility
is implementing. This attribute may take one of the following four values:
DetectAttacks, ResistAttacks, ReactAttacks, and RecoverAttacks.

2. SecTactic: Denotes the deployed security tactic. This attribute may take one
of the seventeen defined tactics. In case the value DetectAttacks is selected for
the SecCategory, one of the following four values: DetectIntrusion, DetectSer-
viceDenial, VerifyMessageIntegrity, and DetectMessageDelay may be selected.

A detailed definition of these attributes and their possible values is described
as part of the UCM security metamodel in Sect. 4.

Figure 2(a) illustrates a UCM having two parallel (implemented using a UCM
AND-fork constructor) responsibilities (i.e., RespDetectIntrusion and RespVer-
ifiyIntegrity) implementing two attack detection tactics (i.e., part of the Detec-
tAttacks category), namely, DetectIntrusion and VerifyMessageIntegrity (see
Fig. 2(b)).

Dealing with an attack (e.g., resist, react to, or recover from an attack) after
its detection is modeled using failure scenario paths as described in the following
sections.

3.2 UCM Attack Resistance, Reaction, and Recovery Modeling

Given the fact that we have adequate detection mechanisms in place to detect
potential attacks, a system may be able to resist the ongoing attack. In the
case of an unsuccessful resistance, a system may be able to react to the attack.
Finally, the system may be compromised (e.g., resources compromised, lost data,
etc.). In such a case, the system should be able to recover from the attack.

In the context of Use Case Maps, the realization of the resistance, reaction,
and recovery tactics can be assured by:
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Fig. 2. UCM attack detection modeling

– The definition of metadata attributes, attached to responsibilities, targeting
the resistance (i.e., ResistAttacks), reaction (i.e., ReackAttacks), and recovery
(i.e., RecoverAttacks) categories. Similarly to the attack detection modeling,
the resistance, reaction, and recovery can be modeled using SecCategory and
SecTactic metadata attributes.

– The definition of a hierarchical structure (using UCM static stubs) of cascad-
ing failure scenario paths. A failure scenario path starts with a failure start
point ( F ) and a guarding condition (see Fig. 3(a), (c) and (d)). The guard
condition can be initialized as part of a scenario definition (i.e., scenario trig-
gering condition) or can be modified as part of a responsibility expression.

Figure 3 illustrates a generic UCM map with a main scenario starting at
start point SP1 and executing responsibilities R1 and R2. Responsibility R1
implements the DetectIntrusion tactic, part of the DetectAttacks category. A
successful detection of an intrusion triggers a failure scenario path, by setting
the failure guard R1-AttackDetected to true. Responsibility R1 may execute the
following code:

if (R1_AttDetected)
R1-AttackDetected := true;

else
R1-AttackDetected := false;
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where R1 AttDetected is a Boolean variable that can be initialized as part of a
scenario definition.

However, the addition of metadata to responsibilities requires a change to
the standard UCM traversal mechanism because a path may have to be stopped
at a responsibility and continued at a failure start point.

The execution of the failure path leads to the execution of a plugin embed-
ded in the static stub R1-ResistReactRecover (see Fig. 3(c)) starting at start
point SP2 and executes responsibility R3 that realizes the LimitAccess attack
resistance tactic.

An unsuccessful resistance to the intrusion attack would trigger a failure path
that starts at failure start point R3-AttackResistedFailed and executes the R3-
ReactRecover stub (see Fig. 3(d) illustrates its corresponding plugin). Responsi-
bility R4 models the RevokeAccess tactic, part of the ReactAttacks category.

A failure to react to the attack triggers a failure scenario path that executes
the R4-Recover plugin. Responsibility R5 implements the Restore tactic, part
of the RecoverAttacks category. The Restore tactic is refined using availability
tactics (see Fig. 1). In general, availability focuses mainly on redundancy mod-
eling in order to keep the system available. The UCM of Fig. 3(a) illustrates two
components C1 and C2 participating in a 1+1 hot redundancy configuration. C1
is in active role, while C2 is in standby role. None of these two components is
taking part in a voting activity (i.e., Voting : false). For a detailed description
of the UCM-based availability tactics, interested readers are referred to [7].

Figure 3(e) shows the metadata corresponding to responsibilities R1, R3, R4,
R5, and components C1 and C2.

It is worth noting that a system might not implement all categories of tactics
(i.e., resist, react, and recover categories). In such a case, the UCM cascading
hierarchy may be reduced to one or two levels only. The example in Sect. 5
illustrates such a case.

4 UCM Security-Enabled Metamodel

In this section, we describe our UCM-based security extensions using an abstract
grammar metamodel. The concrete grammar metamodel, which includes meta-
classes of the graphical layout of UCM elements, is not discussed in this paper
since they have no semantic implications.

Figure 4 illustrates an excerpt of the UCM language core abstract meta-
model augmented with security and availability concepts. UCMspec serves as a
container for the UCM specification elements such as Component and Responsi-
bility. Path-related (e.g., AND-Fork, OR-Fork, etc.) and plugin binding-related
concepts are not shown because they do not impact our security and availability
extensions.
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Fig. 3. UCM modeling of attack resistance, reaction, and recovery
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components 0..* 1

0..1

component

cAvailability

PingEchoReq

ResponseTime: int

HeartBeatReq

Polling: int

11

0..*
0..*

pingSrc

poolDest

src
dest

1

0..*

src

dest

1

poolSrc

0..*

pingDest

PathNode

StartPoint
kind: FailureKind = None

FailurePoint
expression: String

Condition
expression: String startPoint

precondition

0..1 0..1

NodeConnection succ

source0..*

1

0..1

0..1

nodeConnection

condition

UCMmodelElement

UCMspec

Responsibility
expression: String

ucmspec1

0..*
responsibilities

<<enumeration>>
ComponentKind

Team
Object
Process
Agent
Actor

ResponsibilityAvailability

AvCat: AvailabilityCategory = None
Tactic:AvailabilityTactic = None
Severity: FaultSeverity = None

0..* rAvailability

responsibility
1

<<enumeration>>
AvailabilityTactic

Exception
Ping
HeartBeat
StateResynchronization
Rollback
Shadow
RemovalFromService
Transactions
ProcessMonitor
None

<<enumeration>>
ProtectionType

1+1
1:N
M:N
None

<<enumeration>>
FaultSeverity

1
2
3
None

<<enumeration>>
FailureKind

None
Failure

ResponsibilitySecurity

SecCategory: SecurityCategory = None
SecTactic:SecurityTactic = None

rSecurity0..*

<<enumeration>>
SecurityTactic

DetectIntrusion
DetectServiceDenial
VerifyMessageIntegrity
DetectMessageDelay
IdentifyActors
AuthenticateActors
AuthorizeActors
LimitAccess
LimitExposure
EncryptData
SeparateEntities
ChangeDefaultSettings
RevokeAccess
LockComputer
InformActors
MaintainAuditTrail
Restore
None

<<enumeration>>
AvailabilityCategory

FaultDetection
FaultRecovery
FaultPrevention
None

<<enumeration>>
RedundancyRole

Active
Standby

<<enumeration>>
SecurityCategory

DetectAttacks
ResistAttacks
ReactAttacks
RecoverAttacks
None

Fig. 4. Abstract grammar: UCM security-enabled metamodel
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Two new security-related enumeration metaclasses (shown in dark grey) are
introduced:

– SecurityCategory: Specifies the category of the tactic a responsibility is
implementing (e.g., DetectAttacks, ResistAttacks, ReactAttacks, and Recover-
Attacks).

– SecurityTactic: Specifies which tactic a responsibility is realizing (e.g.,
DetectIntrusion, AuthenticateActors, etc.)

An additional metaclass ResponsibilitySecurity (shown in dark grey) is intro-
duced to define the security attributes attached to a responsibility:

– SecCategory of type SecurityCategory.
– SecTactic of type SecurityTactic.

It is worth noting that one single responsibility may implement one security tac-
tic only (as described using the 0..1 relationship multiplicity in the metamodel).
A responsibility shall be refined into multiple responsibilities when there is a
need to realize more than one security tactic.

In addition, we reuse the existing set of availability tactics, defined in [7]
to model availability requirements such as component redundancy, and fault
detection, recovery, and prevention.

5 Illustrative Example: Modification of Consultants’
Pay Rates

In this section, we illustrate our proposed approach using a case study describing
the modification of consultants’ pay rates.

Changing a consultant pay rate is considered as a critical task that should
be performed by an HR employee with special privileges. In addition, this task
should be performed from inside the organization (i.e., acess the HR web site
through the local organization intranet).

The regular scenario (without security aspects), starts by accessing the orga-
nization local web page (i.e., responsibility accessOrganizationWeb), then access-
ing the HR web page (i.e., responsibility accessHRPage). In order to change
a specific consultant pay rate (i.e., responsibility modifyPayRate), the opera-
tor should first search the consultant data (responsibility searchConsultantInfo)
and if found proceeds with the modification of his pay rate, otherwise an error
message is displayed (i.e., responsibility DisplayErrorMessage). Finally, a sum-
mary of the actions performed during the session is displayed (i.e., responsibility
displaySessionSummary).

Given the regular scenario, security requirements can be added by attach-
ing metadata attributes, describing security-related information, to the system
responsibilities, and by adding corresponding failure scenario paths.

A potential attacker accessing the HR page from outside the organization
(using an intermediate proxy) may result in some delay. The detection of such
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(a) Root Map

(b) resistAccessHRPage plugin

(c) resistReactRecoverModifyPayRate plugin

(d) ReactRecoverModifyPayRate plugin

(e) RecoverPayRate plugin

Fig. 5. Modify consultant pay rate scenario
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(a) accessHRPage metadata (b) modifyPayRate metadata

(c) enterUserID metadata (d) grantAccess metadata

(e) denyAccess metada (f) restorePayRate metada

Fig. 6. Responsibilities metadata information

an intrusion can be achieved by attaching DetectAttacks metadata attribute
to responsibility accessHRPage (i.e., SecTactic = DetectMessageDelay) (see
Fig. 6(a)). Once the attack is detected, a tentative to resist it is performed,
using the failure scenario path starting at failure start point accessHRPageIn-
trusion). In order to resist to the attack, the system tries to authenticate the
user (i.e., responsibility enterUserID that realizes the AuthenticateActors tactic,
see Fig. 6(c)). No further security related actions are taken (neither reaction nor
recovery are modeled), in case the attack resistance fails.

The modification of a consultant pay rate is a critical task and requires a
protection against potential intrusions. This is achieved by attaching the Detect-
Intrusion tactic to the responsibilitymodifyPayRate. The detection of a mali-
cious intrusion, triggers a failure scenario path starting at failure start point
modifyPayRateIntrusion. The resistance to the intrusion is realized using two
responsibilities enterUserID and grantAccess realizing, the AuthenticateActors
and AuthorizeActors tactics, respectively.

An unsuccessful resistance to the intrusion, triggers a failure scenario path,
starting at failure start point authorized and executing an attack reaction
procedure. Figure 5(d), illustrates the plugin that corresponds to the static
stub ReactRecoverModifyPayRate. The responsibility denyAccess realizes the
RevokeAccess tactic, part of the ReactAttacks category. A failure to react to
the intrusion, triggers a failure scenario path starting at failure start point
denyAccess-failed and executes the plugin of the static stub RecoverPayRate.
Finally, responsibility restorePayRate realizes the Restore tactic, which also real-
izes the Rollback availability tactic (part of the FaultRecovery availability tactic).
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6 Discussion

The need to consider security aspects during the early stages of the system devel-
opment has been recognized by the requirements engineering community. Many
techniques and methods have been proposed in the literature [5,16,17,19]. Mis-
use cases [19], abuse cases [17], and security use cases [5] are security-oriented
variants of regular use cases. Unlike regular use cases that describe normal
interactions between an application and its users, misuse cases [19] and abuse
cases [17] concentrate on interactions between the application and its misusers
(i.e., potential attackers) who seek to violate its security requirements. These
interactions are harmful to the system, one of the actors, or one of the stake-
holders in the system. Security use cases [5] describe countermeasures intended
to respond these attacks.

The most closely related work to ours is the one by Karpati et al. [16]. The
authors have introduced the notion of Misuse Case Maps (MUCM) as a model-
ing technique that is the anti-behavioral complement to Use Case Maps, which
is used to visualize how cyber attacks are performed in an architectural con-
text. Karpati et al. [16] introduced a new set of symbols to visualize potential
attack scenarios. These symbols are used to model exploit paths, vulnerable
parts (points and responsibilities), misuser actions (using arrows specifying get-
ting/putting/deleting/destroying components), etc. Our approach is different
from the one presented in [16] with respect to two points:

– In our work, we view security requirements as assets and services that have
to be protected against possible attacks. Hence, our goal is to guard func-
tional behavior against potential threats. This is achieved by attaching secu-
rity requirements, as metadata attributes, to vulnerable responsibilities. In
addition, defense mechanisms are implemented using failure scenario paths.
We have used the security tactics to build a secure development approach
simpler and faster than methodologies based on threats modeling.

– A UCM describes with precision the functional behavior of a system. However,
we don’t know precisely how an attacker will break the system security. If such
an information is available, the vulnerabilities would have been fixed. In our
approach, we specify the types of measures (using the security tactics) that
the system should implement in order to detect, resist, react to, and recover
from an attack. Once, the threat details are available, they can be integrated
within the scenario as functional behavior.

Our proposed approach relies primarily on the security tactics introduced by
Bass et al. [3]. One possible threat to the validity of our approach is related to
the maturity of these tactics. Indeed, a tactic is considered to be a relatively
new design concept that complements the existing architectural and design pat-
terns [18]. However, we believe that these tactics provide a comprehensive cov-
erage of security means, that are general and flexible enough to accommodate
various security requirements.
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Several attempts have been proposed to revise the set of security tactics
initially introduced by Bass et al. [2]. Ryoo et al. [18] have proposed a method-
ology for revising security tactics hierarchy through derivation, decomposition,
and reclassification. However, in order to accommodate the addition of a new
tactic or the refinement of an existing one, only minor changes to the UCM
security-enabled metamodel are required.

7 Conclusions and Future Work

In this work, we have modeled security requirements at the very early stages of
the system development process, before committing to a detailed design. We have
extended the Use Case Maps language with security-related features covering
the well-known security tactics by Bass et al. [3]. The resulting extensions are
described using a metamodel and implemented into the jUCMNav tool using
the metadata mechanism, allowing for further model refinement and a smooth
move towards more detailed design models.

As a future work, we aim at evaluating empirically our approach using real-
world case studies. In addition, we plan to conduct a qualitative analysis of the
efficiency of the proposed UCM-based security requirements.
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Abstract. Modern systems are composed of many subsystems, so it is
necessary to understand how to combine them into complete functional
systems. When testing a system that includes hardware, it is important
that each selected test configuration delivers maximum information for
covering many test cases. We have developed a method and a tool for
creating a small set of effective test configurations that is based on a
systematic approach to describing and formalizing the functionality of
the whole system as well as its component into subsystems using feature
models and relational notations between them. We applied our approach
to an example point-of-sale checkout system consisting of one server and
multiple registers.

Keywords: Feature modeling · System testing · Common Variability
Language

1 Introduction

Modern systems are composed of multiple subsystems. These subsystems can-
not provide functionality in isolation. They are connected to each other and
provide functionality in a coordinated manner. Each subsystem provide a sub-
functionality or role, such as server and client, in the system. Subsystems may
have been developed as software product line in its own right defined by a vari-
ation model. A system may provide multiple subsystems for each role. In many
cases, combinations of subsystems are not well defined because of the combina-
tion of multiplicity and variation.

We focus on testing a configurable system composed of multiple subsystems
with variation. The system testing process is based on the fact that the system
is constructed by combining subsystems. The purpose of the whole system is
described by the set of system test. Each system test case needs an appropriate
configuration of the system to be meaningful. We have to ensure that we find a
set of configurations that are sufficient to execute all the system tests.

c© Springer International Publishing Switzerland 2015
J. Fischer et al. (Eds.): SDL 2015, LNCS 9369, pp. 221–237, 2015.
DOI: 10.1007/978-3-319-24912-4 16
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The theoretical maximum number of configurations is the number of all com-
binations of the various subsystems. How to combine the subsystems into these
various combinations is tacit knowledge that is held by expert developers and
not explicitly documented. Therefore, the creation of configurations for system
testing requires considerable time resources from busy expert developers. Fur-
thermore, the configurations they suggest may not cover all the test cases since
the ability to identify all required configurations normally goes beyond what a
human expert can handle. In addition, if the suggested configurations are gen-
erated for the respective test cases, the cost of physically changing the system
when running the test cases can be huge. What is needed is the smallest set of
configurations that cover all test cases.

We have developed a method for generating a small set of configurations
that cover all test cases for system testing and a tool implementing this method.
The variability of subsystems as well as the variability of the whole system are
described by variability models in the form of feature models. We describe the
relationships between the variability of the whole system and the those of the
subsystems through a dedicated relational notation. The tool provides editors of
the variability models and the relational notation with a validation checker. The
tool also provides a function for generating configurations from the models. Our
method uses the Common Variability Language (CVL) [4] as a feature model
and an SMT solver as the configuration generator.

We address following research questions:

RQ1. Can the method generate a small set of configurations that cover all test
cases?

RQ2. Can the method elicit and formalize the tacit knowledge needed for com-
bining subsystems?

RQ3. Is the execution time for the generation sufficiently low?

2 Common Variability Language

The CVL is a domain-independent language for specifying and resolving variabil-
ity. The specifications of CVL are currently being standardized [9]. We use the
VSpec model for variability representation and the resolution model for selecting
of the variability from the CVL.

2.1 VSpec

The VSpec model has a tree structure and is similar to feature models [7]. The
VSpec node types are ‘Choice,’ ‘VClassifier,’ ‘Variable,’ and ‘CVSpec’ as well as
‘Constraints.’ A Choice node corresponds to a feature and is shown as a rounded
rectangle. A solid line from the parent means that the Choice node is implied by
the parent. A dashed line means that is not implied by the parent. A VClassifier
node includes an instance multiplicity factor that shows how many instances
of it may be created. This node is shown as a rectangle with upper and lower
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limits. Choice and VClassifier nodes may have a group multiplicity factor to
specify how many choices must be selected among its children in the tree. The
group multiplicity factor is depicted as a triangle. A Variable node is shown as
an ellipse and has a primitive type, e.g., integer. A CVSpec node has a reference
to another VSpec structure. In this paper, a CVSpec node is shown as a rounded
rectangle with hatching. A VSpec node may have associated constraints which
can be described with OCL [10] or Basic Constraint Language (which is defined
inside the CVL language itself).

2.2 Resolution

The resolution model has a tree structure that mirrors that of the VSpec model
and represents selection of the variations of VSpec. The resolution node types
are ‘ChoiceResolution,’ ‘VInstance,’ and ‘ValueAssignment.’ A ChoiceResolution
node refers to a Choice node and the decision of ‘True’ or ‘False’ for that node.
A VInstance node is an instance of a VClassifier node and refer to the VClassifier
node. The number of VInstance nodes is limited by the multiplicity defined for
the VClassifier node. A ValueAssignment node refers to a Variable node and
assigns a specific value. In this paper, we use a table to combine the several
resolution models into one view for better understanding.

3 Motivating Example

To show how the tool performs its task, we introduce a running example, a
point-of-sale (POS) checkout system composed of one shop server and multiple
registers like those typically found in a supermarket.

We assume that there are two teams of developers: the shop server develop-
ment team and the register development team. Each team discusses and defines
the specifications for the products in their portion of the system. The two teams
jointly discuss the communication protocol used between the server and regis-
ters. Each product has variations and is developed as a product line in its own
right.

Figure 1a shows the register variation model defined by the register develop-
ment team using VSpec. There are four categories of variation: ‘Card Reader,’
‘Communication Protocol,’ ‘Currency,’ and ‘SelfCheckout.’ ‘Credit Card’ and
‘Bank Card’ are options of Card Reader. The Communication Protocol has two
versions: ‘Old’ and ‘New.’ New Protocol was introduced because Old Protocol
cannot cope with some of the functionalities added after it was defined. Each
register can handle only one currency. There are two possible currencies: the
Norwegian krone (NOK) and the Japanese yen (JPY). SelfCheckout means that
the register is not handled by a clerk but rather customers handle checkout
themselves. Table 1a summarizes the variations in the register products. The
rows show products of registers, the columns show the nodes of VSpec, and the
‘X’ means node selection for the product.
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Fig. 1. VSpec models

Table 1. Resolution models

The shop server development team defined the shop server variation model
shown in Fig. 1b. There are three categories of variations: ‘Transaction,’ ‘Com-
munication Protocol,’ and ‘Currency.’ These are similar to those of the register
variation model, but there are significant differences. One difference concerns
Transaction. While the register developers consider which kind of card can be
read by the register and define Credit and Bank Card variations, the shop server
developers consider which kinds of card transaction can be processed by the
shop server. They therefore define three options: ‘Credit Transaction with Credit
Card,’ ‘Debit Transaction with Bank Card,’ and ‘Banking Transaction (to with-
draw cash) with Bank Card.’ Another difference concerns the multiplicity factor
for Currency. One register cannot handle multiple currencies because physical
cash is stored in the register. The server, on the other hand, can handle multi-
ple currencies because it simply processes information about money. The final
difference is that there is no SelfCheckout concept for the shop server. Table 1b
summarizes the shop server products.

In industrial system testing processes, test cases are most often described
in natural language and are designed without much consideration for how the
system needs to be configured. We define the following 5 test cases for our
motivating example:

TestCase1. Check that shop server using New Protocol can simultaneously
communicate with registers using New protocol and registers using Old
Protocol.

TestCase2. Check Banking Transaction.
TestCase3. Check Debit Transaction for NOK.
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TestCase4. In a system that can work as Mini Bank, check that Credit Card
Transaction works correctly for all registers with Mixed protocol.

TestCase5. In a system that has more than two self lanes, check Credit Card
Transaction works correctly.

Our aim is to find the smallest set of configurations that are sufficient to
execute all these five test cases. These informal tests need to be formalized into
executable test cases. A domain specialist interviews both developer teams to
identify the relationships between the two subsystems. From the information
obtained, the domain specialist makes explicit the tacit knowledge:

1. All the registers and the shop server in a system must use the same currency.
2. A shop server using New Protocol can communicate with a register using Old

Protocol. A register using New Protocol CANNOT communicate with a shop
server using Old Protocol.

3. Banking Transactions require New Protocol communication between the reg-
ister and shop server

A novice engineer trying to create configurations for the test cases would
likely suggest invalid configurations. For Test Case 2, a novice may select the
SS-MiniBank-N and Reg-Standard-N products because SS-MiniBank-N covers
Banking Transaction and Reg-Standard-N covers Bank Card. However, Reg-
Standard-N does not use New Protocol, and the tacit knowledge 3 shows New
Protocol is required for Banking Transaction. This configuration is thus invalid
for Test Case 2.

Our motivating example shows that test cases and associated tacit knowledge
must be made explicit and formalized in order to automate the generation of
configurations.

4 Proposed Method

As described in the introduction, our proposed method uses CVL as feature
model for generating a set of configurations that cover all test cases. Various
types of information such as subsystem specifications, system structure, and
test cases are needed for the generation, and it is impractical to describe them
all together. Therefore, as shown in Fig. 2, we defined three components: the
individual subsystems, the connections, and the system.

The method comprises six processes: 1 subsystem feature analysis, 2 structure
analysis, 3 system feature analysis, 4 test case formalization, 5 relational analysis,
and 6 configuration generation. Processes 1–5 are performed manually, and we
have developed a tool to support these processes and validate their results. The
process 6 is performed by the tool automatically (Fig. 8).

4.1 Subsystem Feature Analysis

We specify the types of subsystems that compose a system. Register and shop
server in our running example are representative subsystems. For each type, the
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Fig. 2. Overview of proposed method

subsystem developers establish a VSpec model and a resolution model of the
subsystem. The developers find these models by using for example the domain
analysis method [7]. This process step focuses on each subsystem without any
consideration of the whole system.

The VSpec register model is shown in Fig. 1a, and the corresponding reso-
lution model is shown in Table 1a. The Vspec shop server model is shown in
Fig. 1b, and the corresponding resolution model is shown in Table 1b.

4.2 Structure Analysis

In the structure analysis process, how the subsystems combine into a system
is defined using a VSpec tree as the structure model. In our method the tree
can only have three node levels: a root of Choice, VClassifier children of the
root, and CVSpec grandchildren under the VClassifier children. The VClassifier
level shows how many subsystems under the VClassifier can be contained by
the system. The CVSpec refers to the type of subsystem. This process step
may cover radically different kinds of subsystems. Figure 3b shows the structure
model for the motivating example (Fig. 3a). There is one shop server and one or
more registers in the shop system.

Even though our structure model is restricted to three levels, it can describe
systems of systems. The CVSpec can refer to any system as a subsystem. If
the shop in our motivating example belongs to a supermarket chain and there

Fig. 3. POS checkout system
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Fig. 4. System of systems

is a central server that controls the individual shop systems (Fig. 4a), the top
level structure model is as shown as Fig. 4b. The ShopDef module refers to the
subsystem shown in Fig. 3b.

4.3 System Feature Analysis

A system feature model is used to analyze the variability of the system as a
whole. The VSpec is used as the system feature model. The structure model
described in the previous process also uses the VSpec for the system. How-
ever, the structure model means physical variability that describes which and
how many subsystems compose the system. The system feature model describes
features from the perspective of the whole system independently of the subsys-
tems. Creation of the system feature model ideally follows the domain analysis
method [7] in the same way as the subsystem feature analysis.

Figure 5 shows the result of the system feature analysis for our motivating
example. MiniBank means that it is possible to withdraw and deposit money into
a bank account in the shop. Selling has three methods of payment. Cash must be
supported while Credit and Debit are optional. Protocol has a new third choice,
Mixed, meaning the case in which a shop server using New Protocol is connected
to at least one register using Old Protocol plus at least one register using New
Protocol. This case represents the formalization of tacit knowledge described as
2 in Sect. 3. The tacit knowledge described as 1 is formalized as a multiplic-
ity under Currency and means that the system can handle only one currency.
VClassifier VC-Lane indicates the instance multiplicity of queues for registers.

Fig. 5. System feature model



228 D. Shimbara and Ø. Haugen

It has SelfRegister which means that the register can support SelfCheckout with
no clerk involved.

4.4 Test Case Formalization

Test cases are formalized as a system test model based on the system feature
model without considering the subsystems. The system test model is a variation
model narrowed down from the VSpec tree of the system feature model, and its
structure is a modified replica of the system feature model. A TestChoice (TC)
is created for each choice in the system feature model. The TC has a decision
property with three values: ‘True’ (T), ‘False’ (F), and ‘Don’tCare’ (*), which is
the default. When a test case is read, the choice implied by the test case is found,
and the decision value is set as ‘True’ or ‘False’ for the corresponding TC. The
system test model created for Test Case 1 of motivating example is shown in
Fig. 6a. TC-Mixed is set as ‘True,’ which corresponds to the choice Mixed in the
system feature model. TC-New and TC-Old are deduced to be ‘False’ because
of the multiplicity constraint of TC-Protocol when TC-Mixed is ‘True.’ We do
not bother to add this deduced information to the test model because this will
be sorted out eventually by the tool anyway.

For each VClassifier in the system feature model, the system test model has
a TestVClassifier (TV) node. TV is the multiplicity constraint of VInstance,
which is specified by the subtree of TV. Figure 6b shows the tree for the system

Fig. 6. System test models
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Table 2. System test models

Test Case Mini Bank Transaction Protocol Currency TV-SelfLane

Credit Debit New Old Mixed NOK JPY

1 * * * * * T * * *..*

2 T * * * * * * * *..*

3 * * T * * * T * *..*

4 T T * * * T * * *..*

5 * T * * * * * * 2..*

test model for Test Case 5. TV-SelfLane specifies more than two VInstances
and the subtree has ‘True’ for SelfRegister. This model shows that the system
for Test Case 5 should have more than two VInstances that have SelfRegister
functionality. The test cases are summarized in Table 2. Mandatory or middle
position choices are not shown.

4.5 Relational Analysis

With the processes so far, we can describe subsystem feature models, subsystem
resolution models, a system structure model, a system feature model, and test
case models. Now we need to identify a set of subsystem resolution models as
a configuration for each test case model. A subsystem resolution model is nar-
rowed from the subsystem feature model and the test case model is narrowed
from the system feature model. Therefore, the relationships between the sub-
system feature model and the system feature model are needed. In addition,
since a system includes multiple subsystems, the relationships should describe
the multiplicity differences. We thus define a notation for the relationships that
complement CVL.

The relational notations are defined using BNF:

〈relation〉 ::= 〈systemRef 〉+
〈systemRef 〉 ::= 〈systemVSpec〉 〈context〉? 〈orComp〉*
〈context〉 ::= 〈systemDefRoot〉 | 〈vclassifier〉
〈orComp〉 ::= 〈andComp〉+
〈andComp〉 ::= 〈subsystemChoice〉 〈vclassifierRef 〉*
〈vclassifierRef 〉 ::= 〈quantifier〉 〈vclassifier〉
〈quantifier〉 ::= ‘ForAll’ | ‘Exist’

The terminals of the grammar are given as follows: The 〈systemV Spec〉
points to a VSpec node in the system feature model, that is the source of
the relationship. The 〈subsystemChoice〉 points to a choice in the subsystem
feature model, that is the targets of the relationships. Multiple instances of
〈subsystemChoice〉 exist for one 〈systemV Spec〉 and take the disjunctive normal
form with compositions of 〈orComp〉 and 〈andComp〉. The 〈systemDefRoot〉
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Table 3. Relational model of choice Mixed

points to the root node of VSpec in the structure model, and the 〈vclassifier〉
points to a VClassifier in the structure model or the subsystem feature model.

In the motivating example, Choice Mixed in the system feature model has
a 〈systemRef〉, which is described in Table 3. In this example, the subscripts
‘SS’ and ‘R’ mean shop server and register. The OR-AND column shows the dis-
junctive normal form for multiple 〈subsystemChoice〉. The Mixed means that
the system includes a shop server using New Protocol, registers using New Pro-
tocol, and registers using Old Protocol at the same time. This is shown in the
〈subsystemChoice〉 column.

The 〈quantifier〉 handles multiplicity. A system includes one shop server and
multiple registers, but the simple relation do not cope with multiplicity. We thus
introduce 〈quantifier〉 that specifies ‘ForAll’ or ‘Exist’ toward the 〈vclassifier〉
in the 〈vclassifierRef〉. Table 3 shows the 〈quantifier〉 for the choice Mixed.
The choice NewSS has the ‘ForAll’ quantifier with VClassifier VC-SS, meaning
that all shop servers in the system must have NewSS . The choice NewR has the
‘Exist’ quantifier with VClassifier VC-R, meaning that at least one register in
the system has NewR. OldR is the same as NewR.

The 〈quantifier〉 in 〈vclassifierRef〉 are added in accordance with a rule
using 〈context〉. The 〈context〉 means correspondence between a VClassifier in
the system feature model and a VClassifier in the structure model or the sub-
system feature model.

We introduce relationships in our motivating example as shown in Fig. 7.
Figure 7a depicts the relationship between Mixed in the system feature model
and Old in the subsystem feature model for register. Figure 7b depicts the rela-
tionship between SelfRegister and SelfCheckout. These figures show extracts
from three VSpec trees: (1) the structure model with a focus on register,
(2) the subsystem feature model of register, and (3) the system feature model
with Mixed and SelfRegister. The 〈context〉 of the root choice in (3) is set as
the root choice in (1). The 〈context〉 of choice is inherited automatically from
the context of the parent node. Because of the inheritance, the 〈context〉 of
choice Mixed in (3) refers to choice ShopDef, and 〈subsystemChoice〉 points
to choice Old in (1). When we virtually connect the trees of (1) and (2) verti-
cally, VClassifier VC-R between 〈context〉 and 〈subsystemChoice〉 is identified
for 〈quantifier〉. The Identified VClassifiers are added to the relational model
with the ‘Exist’ or ‘ForAll’ quantifier. In other words, VClassifier VC-R is the
multiplicity difference between choice Old in (1) and choice Mixed in (3).

In contrast, the 〈context〉 of VClassifier in (3) the system feature model
is set manually to a VClassifier in (1) or (2). Figure 7 shows that there is
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Fig. 7. Context examples

correspondence in the context between VC-Lane and VC-R. This means that
the VInstance for VC-Lane needs a VInstance for VC-R. For SelfRegister, there
is no 〈quantifier〉 because 〈context〉 refers to VC-R, and there is no VClassifier
between VC-R and choice SelfCheckout.

As another example, NOK in the system feature model has relations with
‘ForAll’ quantifier to choice NOK of register and shop server. It describes the
tacit knowledge ‘All the registers and the shop server in a system must use the
same currency.’ These relational model is used for the selection of subsystems
from the system test model in the next process.

4.6 Configuration Generation

A small set of configurations covering all test cases is generated by the tool. The
configurations are resolutions of the structure model (Fig. 3b). There are five
steps in the full process. The first four steps are shown in Fig. 8 and performed
for each test case. Models with dashed lines mean models in the tool. The final
step traverses all test cases, and the smallest set of configuration models that
satisfy all test cases is selected.

Subsystem Test Model Generation. For each system test model that is
created for the system feature model, subsystem test models are generated using
the relational model. The system test model for Test Case 1 is shown in Fig. 6a,
which depicts a shop server as a subsystem. The decision of choice Mixed in Test
Case 1 is ‘True,’ and the choice Mixed has a relational to choice New in the shop
server with the ‘ForAll’ quantifier (Table 3). Therefore, a subsystem test model
for shop server is generated with choice New as ‘True,’ and the other choices as
‘Don’tCare.’ On the other hand, there are two relationships for registers with
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Fig. 8. Configuration generation

the ‘Exist’ quantifier in the relational model of choice Mixed. These relationships
mean that there is at least one register using New Protocol and at least one
register using Old Protocol in the system. Therefore, two subsystem test models
for register are generated.

Resolutions Satisfiability Checking. In this step, the tool uses an SMT
solver to identify the subsystem resolution models for each subsystem test model
generated in the previous step. The solver checks the satisfiability of each reso-
lution model for the subsystem test model. For the Test Case 1 of shop server,
SS-MiniBank-N and SS-Advance-NJ in Table 1b are suitable because these reso-
lutions have choice New. For registers, the solver identifies resolutions; the results
are shown in Table 4.

Table 4. Subsystem resolutions
for Test Case 1

Subsystem Subsystem resolutions

ShopServer with New SS-MiniBank-N

SS-Advance-NJ

Register with New Reg-Advance-N

Reg-Self-N

Reg-Advance-J

Register with Old Reg-Classic-N

Reg-Standard-N

Reg-Classic-J

Reg-Standard-J

Table 5. Generated configuration
models

ShopServer Register Test Case

SS-MiniBank-N Reg-Advance-N 1

Reg-Advance-N 2

Reg-Standard-N 3

4

SS-Advance-NJ Reg-Self-N 1

Reg-Self-N 5

Reg-Standard-N
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Candidate Generation. The tool creates all combinations of the resolutions
identified in the previous step and creates candidate configuration models for
each system test model. As shown in Table 4, Test Case 1 has three subsystem
test models, which respectively have 2, 3, and 4 subsystem resolutions. Thus,
there are 24 potential combinations.

Our tool checks the validity of the system test model in this step. If the
model is invalid, the candidate configurations are not generated for the model,
and the tool removes the model. For example, consider a system test model that
has both TC-MiniBank and TC-Old. Since there is no shop server with Banking
and Old Protocol, the tool cannot create a candidate configuration. This system
test model is judged to be invalid, and the tool removes it.

Candidate Validation. Each subsystem test model in Table 4 is independent
of the other ones. Therefore, candidate configurations created in the previous
step may violate the constraints of the system feature model. The tool creates
system resolution models for each candidate configuration and validates the sys-
tem resolution models with respect to the system feature model.

For example, consider the combination of SS-MiniBank-N, Reg-Advance-N,
and Reg-Standard-J from Table 4. Choice NOK in the system resolution is ‘False’
because the relational model for Choice NOK is defined as all registers should
have NOK. Choice JPY in the system resolution is also ‘False.’ Therefore, the
combination violates the currency constraint, i.e., a system must have only one
currency. The tool removes this combination from the candidates.

Configuration Set for All Test Cases. At this point, each system test model
(Test Cases 1–5) has configuration candidates that can run their own test case.
The tool checks whether the configuration candidates can also run other test
cases. The tool uses a greedy algorithm and an SMT solver to select the smallest
set of candidates that cover all test cases.

In the motivating example, the tool generates two configuration models that
together cover all test cases (Table 5). A row in the table shows one configuration,
the first column shows the selection of the shop server in the configuration, and
the second one shows the selection of the register. The last column shows test
cases that can be executed by the configuration.

5 Tool: CT-CVL

We developed ‘Configuration Tool with CVL’ (CT-CVL1) for use with our
method. CT-CVL is deployed as eclipse plug-ins. The tool consists of a VSpec
editor for subsystem feature models, a resolution editor for subsystem resolution
models, a VSpec editor for structure models, a VSpec editor for system feature
models, a test model editor, a configuration generator, and a results viewer for
the configuration models. Only the configuration generation process (Sect. 4.6)
1 http://modelbased.net/tools/ct-cvl.

http://modelbased.net/tools/ct-cvl
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is supported as an automatic function by the CT-CVL while the other processes
need manual operations on the editors. However, the editors have validation
functions with models that are inputted in the other editors.

The CT-CVL tool uses the Eclipse Modeling Framework [15]. The meta-
model of CVL is the same as that of the CVL 2 Tool from SINTEF [13]. There-
fore, CT-CVL is compatible with the CVL 2 Tool. In addition, we use the Graph-
ical Modeling Framework [16] for the VSpec editors. We use CVC4 [1] as the
SMT solver for checking suitability and constraints.

6 Discussion

6.1 RQ1: Can the Method Generate a Small Set of Configurations
that Cover All Test Cases?

Our tool generates configuration candidates for each test case, and each config-
uration candidate is checked for suitability against other test cases. Then, our
tool uses an SMT solver to select the smallest set from the configuration can-
didates with greedy algorithm. For the motivating example, our tool generated
51 configuration candidates and selected two configurations that covered all test
cases (Table 5).

6.2 RQ2: Can the Method Elicit and Formalize the Tacit Knowledge
Needed for Combining Subsystems?

Our method treats the subsystems, the system, and the connections between
them as separate elements. We can thus analyze the subsystems independently
without considering the whole system. For the system, we can formalize test
cases written in a natural language as system test models without considering
the subsystems. For the connections, we can formalize the tacit knowledge about
combinations between subsystems as a structure model and a relational model.
The tool can automatically generate configuration models by using these models.

In the motivating example, we assumed that three pieces of tacit knowledge
were formalized as models. The five test cases were formalized as system test
models, and the tool generated configuration models that covered all test cases.

6.3 RQ3: Is the Execution Time for the Generation Sufficiently
Low?

Our method has six processes: five done manually with tool support and one
done automatically by the tool. For the motivating example, we spent two hours
analyzing the subsystem feature models, system feature model, and relational
model by using our tool. The results of the analysis can be reused, so the time
for analysis is shorter the second time. A system test model is created for each
system testing, and it is not reusable. For the motivating example, it took ten
minutes to create a system test model from five test cases in natural language.
The ten minutes is sufficiently low.
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It took our tool 2 min 56 s to generate configurations for the motivating
example on a PC (CPU: Core i3-3217U, 1.8 GHz; Memory: 4 GB; OS: Windows8,
64 bit). During the generation, 474 problems were solved by the SMT solver, each
within a few seconds. Most of the time was spent used generating text files for
input to the solver.

As an additional experiment, we added five choices to the register, five choices
to the shop server, and five choices to the system feature model and connected
them with additional relationships that have the ‘ForAll’ quantifier. These mod-
ifications did not require adding a subsystem test model and did not change the
number of problems (474) to solve. The tool now spent 3 min 12 s. This means
that the size of each problem increased, but it did not affect the time much. In
contrast, when we added five extra test cases to this example, it took 9 min 34s,
and there were 1456 problems. An increase in the number of test cases creates
more subsystem test models and more combinations of configuration candidates.
These combinations generate more problems to solve. Therefore, the time for
generation grows exponentially with the number of test cases. The scalability of
our process and our configuration generation with respect to an increase in the
number of test cases must be investigated further in future projects.

6.4 Threats to Validity

We checked the validity of our method for only the motivating example and a few
small examples. Case studies and experiments with actual projects are needed
to fully validate our method and tool.

Configuration synthesis may generate a smaller set of configurations. Rather
than hoping that a configuration created from Test Case 1 can also satisfy Test
Cases 2–5, it would be better to find a combination operator that would combine
configurations. Thus, one configuration satisfying Test Case 1 could be com-
bined with one satisfying Test Case 2, and the synthesized configuration would
satisfy both cases. If the synthesized candidate has no constraint violations,
the set of configurations is smaller. However, configuration synthesis is difficult
because the method used for synthesization depends on the structure model. For
the motivating example, the system is composed of one shop server and multiple
registers. This case is simple, and configuration candidates that have the same
shop server can be synthesized from the union of registers. In contrast, if the
system is composed of multiple shop servers and multiple registers, we should
consider which synthesis of shop servers is suitable, union or intersection.

7 Related Research

As a test suite generation for software product line, Bürdek et al. [2] proposed
a method that achieves complete coverage with program variants. Our focus is
combinations of variations on a higher abstraction level than Bürdek program
variant. As a test design method using feature model, Olimpiew and Gomaa [11]
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proposed a method that uses a feature model to automatically create a decision
table as test specifications. This method reduces the test specifications that cover
all use case scenarios. In addition, there are methods that combine a feature
model and a pair-wise method and generate feature sets to be tested [5,12].
A test case design method using propositional satisfiability with a feature tree
has been proposed [8]. While these methods are similar to ours, they target
a single product with many variations. Cohen et al. [3] proposed combinatorial
interaction testing for configurable systems. Their model of configurable systems
has no expressions for a distinction between a system and subsystems, and the
multiplicity of subsystems. Our method focuses on testing for a configurable
system composed of multiple configurable subsystems with unique variations.

Hsu and Orso [6] proposed a framework that minimizes the number of test
cases by using a modern integer linear programming solver with various crite-
ria. This framework does not support our purpose directly. However, it may be
possible to use this framework for our configuration generation process by using
feature models as factors or criteria.

A previously proposed method uses product maps to generate configura-
tions [14]. A product map is similar to a resolution model but without a multi-
plicity descriptions like VClassifier. This method uses only subsystem features,
so it cannot describe the necessary tacit knowledge.

8 Conclusion

We focused on generating a small set of system configurations to cover all test
cases. To automate this generation, there was a need to establish a method for
formalizing informal and tacit knowledge. Overall consistency is assured through
relating the holistic view of the test engineer with the local views of the subsys-
tem designers.

For the configuration generation, we have developed a method that uses fea-
ture models for these variations with CVL and relational notations for connecting
them. We implemented this method as the CT-CVL tool that uses an SMT solver
to generate a set of configurations that cover all test cases. The system feature
models and subsystem feature models are considered separately. We connect
them with relational models. Test cases are analyzed and formalized as system
test models. The tool automatically generates a small set of configurations that
cover all test cases.

We applied this method to a motivating example of a POS checkout system.
All tacit knowledge is described explicitly in the relational models, and all test
cases are formalized as system test models. The tool generated two configurations
that covered all test cases. This motivating example is a simple example, and
the method should be validated for actual projects.
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Abstract. Product line (PL) engineering is an emerging methodology
for the development of variant-rich systems. As product lines are viable
for this purpose, testing them is complicated in contrast to non-variable
systems, as there is an increasing amount of possible products due to the
number of features. The question of which products should be chosen for
testing is still an ongoing challenge.

We present coverage criteria for sampling configurations from reusable
test cases. Such criteria are e.g. choosing as many different products
as possible so each of the test cases can be executed once. The main
contribution is an analysis of the resulting fault detection potential for
the presented criteria. The analysis is supported by an example product
line and a mutation system for assessing the fault detection capability.
From the results of this example, we draw conclusions about the different
coverage criteria.

Keywords: Testing · Reusable software · Sampling · Fault detection

1 Introduction

The purpose of testing is to decrease the risk of releasing a faulty product. In
variant-rich systems engineering, there are plenty of possible products to build
due to combinatorial explosion [15]. Hence, sampling product configurations for
the purpose of testing is a major challenge [14]. Structural approaches for sam-
pling products from the variability model have gained attention, since they scale
reasonably with the model’s size, e.g. t-wise coverage [13]. These methods demon-
strated their effectiveness on real world problems such as Eclipse [7] or automo-
tive systems [16]. However, those methods focus on the variability models and
neglect the interactions on the behavioral level.

With the advent of product line-centered test design, product configurations
can be sampled from the product line’s test cases [11]. So far, the only criterion
for which sampling was performed is minimizing the amount of configurations.
A valid reason for employing this criterion is to minimize the amount of tested
products, and subsequently test effort. However, its fault detection capability
has not yet been assessed. In particular, research indicates that testing divers
products will increase fault detection than rather testing similar products [6].
c© Springer International Publishing Switzerland 2015
J. Fischer et al. (Eds.): SDL 2015, LNCS 9369, pp. 238–251, 2015.
DOI: 10.1007/978-3-319-24912-4 17
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In this paper, we address the question whether coverage criteria for sampling
configurations from test cases affect the fault detection capability of the test
cases. We set up our experiment to reuse the same test suite for every sampling,
thus we can measure the effects of different sampling criteria in isolation. The
fault detection capability is assessed by our product line mutation framework
as proposed in [10]. We do expect the fault detection capability to be increased
under the following conditions:

(a) Sampling as much configurations as possible.
(b) Sampling large products by means of activated features.
(c) Sampling divers products.

The remainder of the article is structured as follows: Sect. 2 introduces the
fundamentals of product line-centered engineering and reusable test cases.
Section 3 presents sampling methods and Sect. 4 shows the experimental setup
and initial results achieved so far. Section 5 covers related work and finally Sect. 6
concludes the paper.

2 Product Line Testing

2.1 Model-Based Product Line Engineering

Individual customer expectations and the reuse of existing assets in a product’s
design are two driving factors for the emergence of product line engineering:
increasing the number of product features while keeping system engineering costs
at a reasonable level. In terms of software engineering, a software product line
(SPL) is a set of related software products that share a common core of software
assets (commonalities), but can be distinguished (variabilities) [15].

The definition and realization of commonalities and variabilities is the process
of domain engineering. Actual products are built during application engineering.
Here, products are built by reusing domain artifacts and exploiting the product
line variability.

Like many methodologies, PL engineering can be supported by model-based
abstractions such as feature models. Feature models offer a way to overcome
the aforementioned challenges by facilitating the explicit design of global system
variation points [8].

A feature model specifies valid product configurations and has a tree struc-
ture in which a feature can be decomposed into sub-features. Figure 1 shows an
example feature model that is reused later in this paper. A parent feature can
have the following relations to its sub-features: (a) Mandatory : child feature is
required, (b) Optional : child feature is optional, (c) Or : at least one of the chil-
dren features must be selected, and (d) Alternative: exactly one of the children
features must be selected. Furthermore, one may specify additional (cross-tree)
constraints between two features A and B: (i) A requires B: the selection of A
implies the selection of B, and (ii) A excludes B: both features A and B must
not be selected for the same product.
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Fig. 1. A feature model for the eShop example.

A feature model (FM) can also be represented as a propositional formula [1]:

FM : (F → B) → B

where F = f1, ..., fk be the set of features belonging to the PL. With this repre-
sentation a product configuration can easily be validated. The product configu-
ration pc defines which features are part of a product:

pc = F → B

A product configuration is valid, iff FM(pc) = true holds. We define the set of
all valid product configurations specified by the feature model as follows:

PC = {pc : FM → B|FM(pc) = true}
Although a feature model captures the system’s variation points in a concise

form its elements are only symbols [3]. Their semantics has to be provided by
mapping them to models with semantics. Such a mapping can be defined using
an explicit mapping model. A mapping model consists of relations from feature
model elements to domain model elements. We refer to a PL model as the triple
of feature model, mapping model, and domain model. From such a PL model,
product models or code can be resolved for a given pc.

Figure 2 depicts the mapping of feature “credit card” to a transition of the
payment process. In this case, the domain model is designed in terms of a so
called 150 % model. A 150 % model contains every element that is used in at
least one product configuration and, thus, subsumes every possible product [5].

2.2 Reusable Test Cases

Testing a PL faces two major challenges: first, the behavioral test goals must
be sufficiently covered and secondly, a meaningful subset of products should be
sampled for testing. Model-based testing of product lines allows the application
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Fig. 2. Mapping of feature Credit Card to a UML transition.

of behavioral coverage criteria as well as the usage of structural coverage criteria
like t-wise coverage of features. We distinguish testing processes for PLs into
product-centered and product line-centered testing processes (cf. Fig. 3).

In the first case, a set of configurations is selected by structural criterion
for the purpose testing, then corresponding products are resolved from the PL
model and tests are designed from the individual product models. In contrast, in
the latter process tests are designed from the PL model in the first place. Hence
products in a PL share commonalities, PL test cases are not necessarily limited
to be applicable to a single product anymore. Instead, a test case is applicable
to a set of products of at least one product.

Fig. 3. Product-centered and product line-centered test design.

This is achieved by keeping track of the features that must be selected or des-
elected for each test case. However, for some features such a decision is unneces-
sary, if a particular test case is agnostic to said feature. In this case, we mark the
feature for this test as undecided. Therefore, we introduce incomplete product
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configurations, which extend the concept of product configurations by a third
value to be assigned to a feature, here X:

pc = F → B ∪ X

Now, a test designer can create an incomplete product configuration and stores
it with the test case.

After test creation, product configurations are sampled from the incomplete
configurations by a coverage criterion. We can sample a product configuration
from an incomplete product configuration by making decisions for undecided fea-
tures whether to select or deselect them. This must be done for every undecided
feature in every incomplete configuration, until no feature is assigned undecided
anymore. From the resulting product configurations, products can be resolved
and finally the tests can be executed against their associated product. In the
next section, we present coverage criteria for sampling configurations from such
reusable test cases.

3 Sampling Configurations from Reusable Test Cases

A main challenge in product line-centered testing, is to sample product configu-
rations from the test cases’ incomplete configurations such that every test case
can be executed at least once. The products configurations are sampled with the
target to maximize the likelihood of detecting faults in the PL during testing.
Such sampling of product configurations is facilitated by coverage criteria. In the
following, we present novel coverage criteria for sampling product configurations
so that each test case can be executed once.

3.1 General Sampling

Due to the nature of feature models being representable as propositional formu-
las, the problem of sampling configurations can be viewed as boolean satisfiabil-
ity problem. Hence we search for an optimal solution to a coverage criterion, we
present the individual coverage criteria as constraint problems. As a first step,
we model the problem of sampling a product configuration from an incomplete
configuration:

Problem 1 Complete a given incomplete configuration.

Solution The first step is to declare variables for each feature in F and their
domains. The domain varies depending on the feature’s assignment:

– f = true then the corresponding variable’s domain is {1}
– f = undecided then the corresponding variable’s domain is {0, 1}
– f = false then the corresponding variable’s domain is {0}
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Finally, we define the propositional formula of the feature model as constraints
for the variables. A constraint solver is now able to make assignments to unde-
cided features and check its solution for validity against the propositional for-
mula.

The solution of Problem 1 can easily be extended to sample product config-
urations for all test cases in a test suite.

Problem 2 Complete all incomplete configurations in a test suite with m test
cases.

Solution The method to solve problem 1, can be repeated individually for every
incomplete configuration in the given test suite. Eventually, all incomplete con-
figurations of the test suite are complete.

3.2 Optimized Sampling

In the following, we define coverage criteria for sampling product configurations
from test cases.

Problem 3 Optimize the set of m-test cases for constraints. In particular:

(a) Few/Many configurations not exceeding m,
(b) Small/Large configurations by means of selected features,
(c) Divers configurations,
(d) Combinations thereof.

Solutions

(a) Optimizing the Amount of Configurations. The aim is to select either the few
or many products to execute every test case in the given test suite at least once.
The optimization problem here is to achieve a maximal or minimal number of
product configurations. We model the constraint problem as follows: A product
configuration can be interpreted as a binary number b, when we interpret selected
features as binary value “1” and deselected features as “0” respectively. Hence a
product configuration pcn with features Fn : f1, ..., fk is interpret as the number:

bn = (f1f2...fk−1fk)2

For a test suite with m test cases, we derive bn for every product configuration
pcn, where 1 ≤ n ≤ m. We collect all bi in the set Z:

Z = {b1, b2, ..., bm−1, bm}
For receiving a minimal set of concrete configurations we have to minimize

the cardinality of Z. Vice versa, we maximize the cardinality of Z, if we want to
maximize the number of configurations for testing:

max /min cost = |Z|
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In terms of optimization, we refer to the cardinality of Z as costs. The expected
costs for the criteria of maximizing or minimizing the amount of configurations
are in the range of 1 to the number of test cases m. Where costs of 1 represent
that exactly one product configuration was sampled. The upper limit of m, since
we require each test case to be assigned to only one product.

(b) Optimizing the Size of all Configurations. We define the size of a configu-
ration as the sum of all selected features. For constraint solving, we interpret
selected as numerical value “1” and deselected as “0” respectively. Therefore,
we can define the size of a product configuration pcn as follows:

sn =
∑k

i=1 fi

When we accumulate sizes of all product configurations, we can optimize
towards either a minimal or maximal overall size:

max /min cost =
∑m

n=1 sn

Where maximization achieves large product configurations and minimization
small product configurations. The costs of the smallest solution is 2 × m for
having the root feature and only one other feature enabled (2) and multiply this
by the amount of test cases m. The highest cost for solution is k × m, where
every feature k is selected in every test case m.

(c) Optimizing the Diversity of Configurations We define diversity over a set of
m test cases and k features. First we establish a relation between a single feature
i over all configurations. The goal is to have each feature as often selected as
deselected, hence we gain most different assignments.

We achieve this by calculating the diversity di of each feature fn,i, where
1 ≤ n ≤ m and 1 ≤ i ≤ k:

di =
∑m

n=1 fn,i

Next, we calculate the deviation from optimal diversity, which is m/2,
because we want a feature to be equally often selected and deselected over all
n configurations. Subsequently, the deviation of a feature fi from its optimal
diversity is calculated by |di − (m/2)|. Finally, we achieve maximal diversity by
minimizing the sum of all deviations:

min cost =
∑k

i=1 |di − (m/2)|
The minimal costs for a solution to this problem is 0 with product configurations
being maximally diversified. The highest cost are (m/2) × k, where the same
configuration is sampled for every test cases.

We note that this approach does not maximize the amount of sampled prod-
uct configurations, but their diversity. Inherently, this approach leads to solutions
with fewer unique product configurations, if the calculated diversity is higher
than for another solutions with more product configurations and less diversity.
An approach to increase the amount of product configurations is the combina-
tion of the two criteria diversity and maximization of the amount of product
configurations.
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(d) Combinations In general, all combinations of the previously defined con-
straints are valid with the exception of:

• few with many product configurations,
• small with large product configurations.

Any other combination is valid, e.g. most with large and divers configurations.
For making a preference towards one or more criteria, weights can be added to
the costs.

Of course, costs cannot be summed up directly if the optimization targets
are opposing, e.g. if large and divers should be combined, the targets are mini-
mization and maximization. In this case, a decision for an overall optimization
target must be made (min or max) and the costs of the criterion not fitting that
target must be inverted. Costs are inverted by subtracting the solution’s costs
from the expected maximal costs. The result of this subtraction are the inverted
costs.

4 Example and Evaluation

In this section, we assess the fault detection capability of an example test suite
in respect to sampled configurations. First, we introduce the example and setup,
then we present the results.

4.1 Example and Setup

We implemented the coverage criteria as presented in this paper in Java. The
constraint solving is supported by JaCoP a constraint programming library [9].
We also implemented an Eclipse plug-in to wrap the code into a GUI inter-
face. Coverage driven sampling from incomplete configuration is now part of the
SPLTestBench.

As an example to evaluate the coverage criteria on, we employ our Webshop
(eShop) PL. A customer can browse the catalog of items, or if provided, use the
search function to do so. Once the customer put items into the cart, he can check-
out and may choose from up to three different payment options, depending on
the eShop’s configuration. The transactions are secured by either a standard or
high security protocol. A cross-tree-constraint ensures that credit card payment
is only offered if the eShop also implements a high security protocol.

We model the eShop by a feature model, UML state machine model,
and a feature mapping for mapping the features onto transitions in the state
machine. The feature model, as shown previously, comprises ten features. The
state machine model consists of 13 states and 27 transitions, distributed over
three sub-machines.

Designing product line-centered tests is facilitated by automated model-based
test design as described in [11]. We employ all-transitions coverage as a test selec-
tion goal [17]. From the test generator, we receive 13 test cases with incomplete
configurations. Five of the incomplete configurations are actually disjunct.
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For assessing the fault detection capability of test suites, we proposed a PL
mutation framework in [10]. The assessment is independent of the test’s creation
method, whether being product-centered or product line-centered. For the cur-
rent experiment, we apply both of the supported types of mutation operators:
behavioral operators, which mutate the state machine model, and variability
operators, which mutate the feature mapping model.

4.2 Test Assessment for Product Line Tests

Mutation analysis (also mutation testing) [4] is a fault-based testing technique
with the intended purpose to assess the quality of tests by introducing faults
into a system and measuring the success rate of fault detection.

The process of mutation analysis inserts defects into software by creating
multiple versions of the original software, where each created version contains one
deviation. Afterwards, existing test cases are used to execute the faulty versions
(mutants) with the goal to distinguish the faulty ones (to kill a mutant) from
the original software. The ratio of killed mutants to generated mutants is called
mutation score. The main goal of the test designer is to maximize the mutation
score. A mutation score of 100 % is seldom possible, because some deviations may
lead to an unchanged system behavior, i.e. semantically equivalent mutants.

We think that mutation systems for PLs need novel mutation operators and
mutation processes. The reason for this is the separation of concerns in model-
based PPL engineering, where variability and domain engineering are split into
different phases and models. Hence of new modeling languages used in PPL
engineering, more kinds of errors can be made on the model-level than in non-
variable systems engineering. In our case, new errors occur in feature mapping
models.

Performing mutation analysis on a PPL differs from conventional mutation
systems, since a mutated PL model is not executable per se. Thus, testing cannot
be performed until a decision is made towards a set of products for testing. This
decision depends on the PL test suite itself, since each test is applicable to just
a subset of products.

In Fig. 4, we depict a mutation process for assessing PL test suites, which
addresses this issue. Independently from each other, we gain (a) a set of PL
model mutants by applying mutation operators to the PL model and identify
(b) a set of configurations describing the applicable products for testing. We
apply every configuration from (b) to every mutant in (a), which returns a
new set of product model mutants. Any mutant structurally equivalent to the
original product model is immediately removed and does not participate in the
scoring. The model mutants are then derived to product mutants and finally,
tests are executed. Our mutation scores are based on the PL model mutants,
hence we established bidirectional traceability from any PL model mutant to all
its associated product mutants and back again. If a product mutant is killed by
a test, we backtrack its original PL model mutant and flag it as killed. The final
mutation score is then calculated from the set of killed and the overall number
of PL model mutants.
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Fig. 4. Mutation Process for PLs

4.3 Results

We performed mutation analysis for the eShop’s test suite with different sam-
pling criteria and their combinations. Since the test suite stays the same for all
samplings, this procedure assesses the impact of the different sampling criteria
on the test suite’s fault detection capability. For our first experiment, we assessed
the sampling criteria individually: we apply one of the five sampling criteria on
the eShop’s test suite. In return, we gain a set of PCs (product configurations),
where each PC is assigned to one or more test cases of the test suite, but every
test case is associated to only one PC. Given the PCs and test cases, the muta-
tion system then creates mutations of the PL model and from these it derives
product mutants for every PC and eventually generates code from the models.
Finally, the test cases are assessed by executing them against the code and the
mutation score is calculated.

The resulting mutation scores for the criteria Few, Many, Small, Large,
and Diverse are presented in Fig. 5. Furthermore, the amount of PCs for every
criterion we assessed are: 1 (Few), 13 (Many), 4 (Small), 1 (Large), and 7
(Diverse).

In a second experiment, we assessed combinations of sampling criteria. This
experiment is conducted with the same procedure as the first. From the twelve
possible combinations of sampling criteria, we compare the most extreme combi-
nations:
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Fig. 5. Mutation scores for product configurations sampled in isolation.

Few+Small+Div, Few+Large+Div, Many+Small+Div, and Many+Large+Div.
In Fig. 6, we present this experiment’s results of the test assessment. The amount
of sampled product configurations for the combination are: 4 (Few+Small+Div),
4 (Few+Large+Div), 10 (Many+Small+Div), and 10 (Many+Large+Div).

4.4 Discussion

As expected, the fault detection capability of the test suite varies with the applied
coverage criterion. In particular, the highest fault detection capability of isolated
criteria are achieved by maximized amount of products (Many) and - to our
surprise - small products (Small). This appeared to be counter-intuitive, since
we expected larger products to contain more components and thus be more likely
to expose faulty behavior. Instead, large products led to testing too few products
for having a positive impact on fault detection. Though Max and Small have the
same fault detection capability in this example, Small is much more efficient
when it comes to the amount of tested products. For Small only 4 products are
selected for testing, for Max 13 products.

The highest scores in the group of combined criteria are achieved by the
following two combinations: maximized amount with small and divers prod-
ucts (Max+Small+Div) and by minimized amount with small and divers prod-
ucts (Min+Small+Div). In this case, fault detection efficiency is higher for
Min+Small+Div than for Max+Small+Div, since less products are sampled for
testing. In general, combined criteria scored equal or lower to the two top scoring
isolated criteria Max and Small, but never better.



Model-Based Product Line Testing 249

0

20

40

60

80

100

26.7

36.7

26.7

36.7

63.963.1 63.963.1

Fig. 6. Mutation scores for product configurations sampled with combined coverage
criteria.

Another finding is that the coverage criteria affect the fault detection signif-
icantly when the fault is to be found in the variability model. The highest score
for detecting faults in the variability model is 2.75 times higher than the lowest
score. In contrast, the coverage criterion’s impact on the detection of faults in the
behavioral model varies by approximately one percent and is thus considerably
insignificant.

5 Related Work

Sampling product configurations for testing is an ongoing challenge. Most work is
focused on structural coverage criteria for feature models and hence is agnostic to
the interactions in behavioral models [13,14]. Still, the test effort is high, since
feature interactions are selected for testing where no behavioral interaction is
present.

Lochau et al. present incremental test design methods to subsequently test
every specified behavior [12]. Here, configurations are sampled as needed to
achieve the next test goal. The result is a set of test cases where each is limited to
a single product configuration. In contrast, the here presented coverage criteria
for sampling configurations rely on reusable test cases.

Similar to the notion of incremental test design Beohar et al. propose spinal
test suites [2]. A spinal test suite allows one to test the common features of
a PL once and for all, and subsequently, only focus on the specific features
when moving from one product configuration to another. This is different from
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the notion of reusable test cases, where there is no such thing as progressing
through product configurations.

6 Conclusion

In this paper, we presented five novel coverage criteria for sampling product con-
figurations from a test suite consisting of reusable test cases. To our knowledge,
it is the first assessment of a single test suite with varying product configurations
so that every test case can be executed exactly once. We assessed the coverage
criteria in isolation and additionally in combination with each other. Our experi-
ment was conducted on an e-commerce shop example, modeled as a product line.
The fault detection capability of the eShop’s test suite was assessed by mutation
analysis. Faults were injected into the eShop’s behavioral model as well as into
its variability model.

We found that testing many products (Many) or rather small products by
means of enabled features (Small) increases the test’s fault detection capability in
our example. This is particularly true for faults located in the variability model.
Fault detection for faults in the behavioral model remained almost equal over
all sampling criteria. We also assessed combinations of the defined sampling
criteria. The combined criteria scored equal or lower to the two top scoring
isolated criteria Many and Small, but never better.

In future, further experiments based on larger examples and industrial case
studies are scheduled. This will provide more confidence on the current findings.
We also plan to extend the current sampling approach to allow multiple test
executions. The reasoning behind this is the following: since all sampled con-
figurations are built anyways, the effort for executing all compatible test cases,
rather than only the assigned products, might not be much higher after all.
The efficiency of this approach is dependent on the costs for building products
in respect to additional the effort for test executions and the setup/tear down
phases. Also a comparison and combination with structural coverage criteria,
like t-wise, and the criteria presented in this paper is of interest.

References

1. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

2. Beohar, H., Mousavi, M.R.: Spinal test suites for software product lines France.
In: Proceedings Ninth Workshop on Model-based Testing, MBT 2014, EPTCS, vol.
141, pp. 44–55 (2014)

3. Czarnecki, K., Antkiewicz, M.: Mapping features to models: a template approach
based on superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

4. DeMillo, R.A.: Mutation analysis as a tool for software quality assurance (1980)



Model-Based Product Line Testing 251
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Abstract. Business Process Management (BPM) applications in the
medical domain pose challenging testing problems that result from par-
allel execution of test behaviors performed by different actors. Hospitals
nowadays function with the principle of pools of personnel. Each pool
addresses a specific functionality and each member of the pool can pick
any task that is proposed to the pool. The challenge for BPM testing is
in the existence of dependencies between actors and the corresponding
test description where the stimuli sent to the BPM that is the system
under test (SUT) by one actor produces responses that affect a selected
number of other actors belonging to a pool. Unit testing of such sys-
tems has proven to be of limited efficiency in detecting faults that can
be detected only during parallel execution of test components represent-
ing actors. We propose an architecture based on the TTCN-3 model of
separation of concern and its intensive parallel test component (PTC)
concept which provides solutions that are beyond traditional telecom-
munication systems testing and which have revealed opportunities for
improving TTCN-3.

Keywords: Business processes · Testing · TTCN-3 · SOA

1 Introduction

A business process [1] is a defined collection of linked structured tasks,
activities, and decisions performed together to produce a desired set of results in
order to achieve business goals on behalf of the organization. Business Process
Management (BPM) is a generic software system that is driven by explicit
process designs to enact and manage operational business processes [18].

Business processes involve collaboration of multiple user roles in parallel
activity [5]. For example, a hospital business process may involve many par-
ticipating actors in the following roles: nurses, doctors, patients. There might
exist a dependency between these actors within the parts of the process for a
particular instance of the process, for a particular patient (e.g. a doctor will
re-assess a patient only after all tests have been completed by different nurses
and technicians); or there might be a parallel execution of a task by multiple
actors in different parts of the process across many instances of the process for
different patients (e.g. many doctors may be assessing and re-assessing different
patients at the same time).
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J. Fischer et al. (Eds.): SDL 2015, LNCS 9369, pp. 252–267, 2015.
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BPM development and testing happen in the context of Service-Oriented
Architecture (SOA), a business-centric IT architectural approach that pro-
vides agility, flexibility and reusability to respond to changing business require-
ments [10], and targets delivery of functionalities through loosely coupled services
which can be reused to fulfill business processes.

1.1 Hospital’s ‘Cancer Patient Assessment ’ Business Process Case
Study

Companies are increasingly taking their business processes online using BPM
tools and technologies which allow them to model explicitly the orchestration
and interaction of tasks performed by roles (people) and systems (web services)
that define a business process, and execute that process as a web application that
provides forms for roles to interact with and service interfaces to the underlying
SOA.

Figure 1 illustrates a Cancer Patient Assessment Center (CPA) business
process model developed using IBM BPM 8.5.5 at a large teaching hospitals
in Canada.

The process starts when a referral fax is received. The Cancer Assessment
Clerk (CAC) is responsible for opening this fax image and validating the fax.
The clerk queries the process database either by putting the Medical Record
Number (MRN) or the last name and first name of the patient. The clerk is also
responsible for moving the referral to its department, i.e. the clerk can indicate
the type of referral (thoracic/colorectal/prostate/other). Depending on the type
of referral indicated, the flow is then transferred to thoracic nurse, prostate nurse,
colorectal nurse or other registered nurse for review. If the referral is identified
to be of colorectal, prostate, or other type, the patient summary is sent to the
CAC clerk for printing and the instance ends here. In case of thoracic referral, the
flow goes to Awaiting CT if CT scan is needed. Else, the process continues with
physician review. The physician reviews the patient information and identifies
the tests needed for this patient. The step after physician review is registered
nurse (RN) contact where the contact nurse tries to contact the patient and
schedules navigation day appointment. After navigation day appointment, the
process next moves to clinical triage where the triage nurse is responsible for
choosing the ICD codes (International Statistical Classification of Diseases and
Related Health Problems) and identifies if the appointment needs to be booked
urgently. The referral then moves to consult booking phase where the booking
clerk books the available surgeon or respirologist based on the identified status
of the patient.

1.2 The Challenges of Testing Business Processes

The research presented here has been performed in collaboration with a large
teaching hospital in Canada that is implementing BPM for their process. This
allowed us to study a real case and especially fathom the differences between
manual testing that was the prevailing testing approach and automated testing.
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Fig. 1. CPA business process model

Even more interesting was the finding that at least 50 % of test cases failed both
for manual testing in the field and automated testing in the lab. After analysis
of the detailed logs provided by the test execution tool TTworkbench [17], most
of the failures could be attributed to the handling of complex parallel behav-
iors of actors. Representing the behavior of members of a pool of actors in a
hospital is difficult with traditional testing methods, because of the sequential
characteristics of programming languages like Junit [16] that make it difficult
to represent all the variations that result from the interleaved nature of the
behaviors of actors. The use of threads in general purpose languages (GPL) to
isolate an actor’s behavior is a natural solution but requires complex low level
programming to coordinate. The TTCN-3 testing language [6] supports paral-
lel thread directly with considerable high-level constructs that simplify parallel
testing [2,3]. The main purpose of this paper was to establish a clear pattern for
a TTCN-3 test suite for BPM testing. This pattern can then be used in model
based test case generation.
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1.3 Limitations of Traditional Business Processes Testing
Approaches

Typically, the quality assurance team tests the business process in the same way
it would test any other web application. Often, there is ad hoc testing of the
system by testers manually interacting with forms in the manner they assume
the different roles. Unfortunately, this type of ad hoc testing focuses on test-
ing an application for a single task, from the point of view of a single user
whereas the orchestration of tasks across many users and software systems can
be quite complex for an online business process. Available tools are not systemat-
ically leveraged to verify the complexity of multi-role, multi-server orchestration
for BPM [11]. IBM’s BPM Testing Asset tool was used to generate the test
scripts based on business process model. The testing asset tool generated sele-
nium scripts and offered additional capabilities to identify possible paths in a
business process. However this capability was immature and difficult to use. The
paths launched by timers were eliminated and in addition, the test script tem-
plates had to be manually edited to specify timing constraints. Also, there was
no way to coordinate and verify correct roles’ behavior when many scenarios
were run in parallel.

Unit testing is at first consideration easy to implement with open source
tools such as JUnit [9] and various derivatives such as DBUnit or Selenium [13].
However they lead testers to poor designs with little or no re-usability of code as
shown in [14] because of lack of separation between behavior and coding/decoding
or test oracle verification activities. An excerpt of a Java coded JUnit test of
BPM implementation follows:

public void Test1() throws Exception {
JSONObject bpdArgs = new JSONObject();
JSONObject results = bpmClient.runBPD(BPD ID,

PROCESS APP ID, bpdArgs);
int processId =

results.getJSONObject("data").getInt("piid");

results = bpmClient.getInbox();
JSONObject searchPatientTask = utils.findTask(results,

processId, "CAC FaxPreparation");

Assert.assertNotNull(searchPatientTask);

int searchPatientTaskId =
searchPatientTask.getInt("taskId");

results = bpmClient.startTask(searchPatientTaskId);
...
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Fig. 2. Differences in parallelism

Handling Parallelism. In Fig. 2, the classic telecommunications testing model
supported by TTCN-3, supports for a given test component to send a stimuli
and receive one or several responses potentially in interleaved fashions [4,12].
Here the important fact is that it is the same component that sends the simulus
that also receives the responses.

However in BPM, because there can be pools of actors for a given role,
the stimulus sent by a component such as the submission of a form can result
in responses to any component associated to a member of a pool and consists
essentially in updating the list of available tasks to be performed. In a hospital
environment this is achieved by refreshing the web pages of the actor’s browsers.
More important is the fact that a task can be executed by only one actor at a
time. Thus, this provides opportunities for race conditions and the associated
errors they cause.

2 TTCN-3 Model

Testing a BPM could use a classic black box testing approach. However, the BPM
itself is composed of at least two nested layers. A Web application is the first
layer that a user or a tester interacts with. The web application itself addresses
mostly the user interface where users can fill in forms to be submitted and display
the results of a form submission. The real logic to be tested resides in the nested
layer of the BPM engine itself. The BPM architecture gives us the opportunity
to make a choice for the purpose of a test. Faults of such a system can result
from any of these two nested layers but moreover, the source of a fault could be
hard to distinguish. We have decided to use a grey box approach to focus on the
detection of faults of the BPM engine itself, thus ignoring the web application
layer entirely. Another consideration is the fact that BPM API produces clearly
identifiable results as returned values to a function invocation while web pages
contain mostly formatted content where data can only be identified by its value
that is changeable and open to interpretation.
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2.1 Separation of Concerns

The following section is meant to help non-TTCN-3 experts to understand the
differences between the concrete test implementations like JUnit and TTCN-3
and especially show the benefits of abstraction. TTCN-3 was originally designed
for testing telecommunication systems. There, codecs are used to format mes-
sages to be sent and extract information from formatted messages that are
received which are easily separated from protocol behavior. Similarly, the mech-
anism for communication with a SUT to send and receive messages can also
be separated from the protocol behavior. This results in re-usability of codecs
and transport layer protocols and moreover renders the test behavior descrip-
tion considerably more readable. While this could be achieved easily with GPL,
TTCN-3 provides a clear and re-usable model to do so. In the case of BPM test-
ing, a similar approach to separation of concerns means separating the behaviors
of individual actors and roles (a pool of actors) from the actual REST BPM
framework APIs. In our case, we found that data typing at the abstract level
is an efficient way to drive REST API method invocations as messages sent to
the test adapter that in turn uses its data to populate the parameters of REST
API method invocations and this rather than TTCN-3 procedure oriented com-
munication possibility. This provides better chances of re-usability compared to
mapping REST API to TTCN-3 procedures when using different BPM tools
and consequently their corresponding API. In our case this required defining a
data type that carries the information of a task to execute by the REST API as
follows:

type record TaskExecutionRequestType {
TaskType task

}

Where a task is itself represented by the following data type

type record TaskType {
charstring instanceId,
charstring taskId,
charstring activityName,
charstring assignedTo

}

A typical actor’s test behavior (e.g. the Cancer Assessment Clerk) can be
abstracted and isolated into a function as four basic steps of login in, receive a
list of tasks to choose from, choose a task to execute, execute the chosen task,
get some form to fill in, submit the filled form, receive an updated list of tasks to
execute for the next cycle of similar activities. The abstract description of these
steps in TTCN-3 is achieved as follows:

function cacTest ClerkBehavior(template BPMloginType
loginInfo, integer ranking) runs on PTCType {
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...
map(self:bpmPort, system:system bpmPort);
bpmPort.send(loginInfo);
alt {

[] bpmPort.receive(cac fax preparation task t)
-> value listOfTasks {setverdict(pass);}

[] bpmPort.receive { setverdict(fail); }
}

updateTaskList();
task := getTask(listOfTasks, "CAC FaxPreparation",

ranking);
bpmPort.send(TaskExecutionRequestType: { task } );
alt {

[] bpmPort.receive(cac search mrn exec response t)
-> value execResponse {setverdict(pass);}

[] bpmPort.receive {setverdict(fail); stop;}
}
...

In TTCN-3, the keyword receive means match the test oracle template indi-
cated as a parameter against data that has been received from the SUT. In the
concrete layer test adapter written in the standard XTRI style [8], the abstract
task description is passed as an abstract value from which concrete values need
to be extracted in order to invoke the necessary REST API methods in a similar
way to JUnit testing but in a parametric and thus re-usable way. For example,
the above abstract behavior line that sends a task execution request as follows:

bpmPort.send(TaskExecutionRequestType: { task } );

will result in the abstract value of the selected task to be executed to be passed
on to the concrete layer’s test adapter standard method xtriSend() as follows:

TriStatus xtriSend(final TriComponentId componentId,
TriPortId tsiPortId, Value sutAddress, Value value){

A switching on the actual data type of the abstract value will narrow down the
activity as follows:

if(value.getType().getName().
equals("TaskExecutionRequestType")) {

A first step consists in extracting the concrete values from the abstract value
using standard TTCN-3 API [7], here the actual value of the task Id to be
executed:

RecordValue taskExecutionValue = (RecordValue) value;
RecordValue taskValue = (RecordValue)
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taskExecutionValue.getField("task");
CharstringValue taskIdValue = (CharstringValue)

taskValue.getField("taskId");
String taskId = taskIdValue.getString();
int taskIdInt = Integer.parseInt(taskId);

Finally, once this concrete data is obtained, the task can be started on the
corresponding bpmClient instance that is kept in a table with association to the
TTCN-3 component Ids (not shown here). This constitutes the actual stimulus
to the SUT:

JSONObject results = bpmClient.startTask(taskIdInt);

The results of the above method invocation are parsed by the codec side
of the test adapter and a corresponding abstract object is built and sent to the
abstract layer’s message queue for matching with a test oracle using the standard
enqueue() method:

xtriEnqueueMsg(tsiPortId, sutAddress, componentId,
execResponseValue);

Race Conditions. One of the major challenges of BPM testing consists in
specifying the task that needs to be executed (the stimulus). Tasks have a spe-
cific name. However using a task name is actually ambiguous because there may
be many tasks with the same name presented to the user as shown for example
in Fig. 3. Tasks can only be differentiated with task ids that are the only infor-
mation used by the REST API to execute a task. These tasks ids are dynamic
and generated by the BPM, thus by definition not predictable and not known to
the tester at test scripting time. Thus, we need a way to select a task and avoid
race condition where two users would pick the same task to execute. We have
used two approaches in order to solve this problem. They are described below
as part of the discussion on parallelism.

2.2 Handling Parallel Test Components Dependency

The originality of BPM applications testing is in parallelism that is implemented
naturally with the TTCN-3 concept of parallel test component (PTC). However,
parallelism in BPMs is different because of dependencies among PTCs. There
are three kinds of test component dependencies in BPM testing:

– sequential, parallel and overlapping

Sequential Dependencies. Sequential dependencies result from the mere fact
that a given actor needs to wait until another actor upstream performs a given
task as shown in Fig. 4. Each actor is represented by a PTC that starts a partic-
ular behavior that is appropriate for a given test case. This type of sequencing
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Fig. 3. Race situation

is easy to represent in TTCN-3 by starting the behavior of the dependent PTCs
in sequence and moreover forcing the subsequent PTC to wait until the pre-
vious PTC completed its behavior using the component.done construct that is
blocking any further downstream PTC to start its behavior. In the following
example, the nurse cannot start working before the clerk has requested a task
to be performed by a clerk in the system.

testcase clerk Clerk Nurse dependency test case()
runs on MTCType system SystemType {

var PTCType clerk1 := PTCType.create("clerk1");
var PTCType nurse1 := PTCType.create("nurse1");

clerk1.start(clerkBehavior(clerk1 login t, 1));
clerk1.done;
nurse1.start(nurseBehavior(nurse1 login t, 1));
nurse1.done;
setverdict(pass);

}

Fig. 4. Sequential dependencies
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Parallel Dependencies. Parallel dependencies result from the fact that a given
task can be performed by a pool of actors in a hospital environment. For example,
tasks to be performed by nurses can be picked by any nurse on duty that is
qualified for the specific type of medical treatment that a given case requires. In
this case, we use the TTCN-3 PTC done keyword for all members of a given pool
to let the members of the next dependent pool to start their own behaviors. The
following is a full example of seven different pools of two actors each interacting
both sequentially and in parallel:

testcase cac scenario 4 2UsersHappyPath()
runs on MTCType system SystemType {

... // PTCs declarations not shown
cacclerk1.start(cac ClerkBehavior(...,1));
cacclerk2.start(cac ClerkBehavior(..., 2));
cacclerk1.done; cacclerk2.done;

thoracinurse1.start(cac ThoracicNurseBehavior(..., 1));
thoracinurse2.start(cac ThoracicNurseBehavior(..., 2));
thoracinurse1.done; thoracinurse2.done;

reviewPhysician1.start(cac ReviewPhysicianBehavior(...,1));
reviewPhysician2.start(cac ReviewPhysicianBehavior(...,2));
reviewPhysician1.done; reviewPhysician2.done;

contactNurse1.start(cac ContactNurseBehavior(..., 1));
contactNurse2.start(cac ContactNurseBehavior(..., 2));
contactNurse1.done; contactNurse2.done;

contactNurse2.start(cac ContactNurseNavBehavior(..., 1));
contactNurse1.start(cac ContactNurseNavBehavior(..., 2));
contactNurse1.done; contactNurse1.done;

triageNurse1.start(cac TriageNurseNavBehavior(..., 1));
triageNurse2.start(cac TriageNurseNavBehavior(..., 2));
triageNurse1.done; triageNurse2.done;

bookingClerk2.start(cac BookingClerkNavBehavior(..., 1));
bookingClerk1.start(cac BookingClerkNavBehavior(..., 2));
bookingClerk2.done; bookingClerk1.done;

setverdict(pass);}

Here, the problem to be addressed is to avoid that several actors try to
execute the same task on the same patient at the same time. For nurses, this
would result in several nurses administering the same medication which of course
is highly undesirable and could have life threatening consequences. For surgeons,
the case is even more obvious since two surgeons cannot perform the same surgery
neither at the same time and neither in sequence. Thus in our test suite, we
need to handle the concept of an actors pool based on role. This means that
every member of a pool will see all the tasks assigned to the pool until one of
its members picks a given task and executes it. In that case, the executed task
should no longer be available to the other members of the pool. Here the problem
consists in updating the list of tasks that a given member can see and thus choose
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from. These lists of tasks are obtained in TTCN-3 through the classic stimuli and
response paradigm. In our case this occurs when a member logs in to the system.
In this case, the member gets a list of tasks to choose from. In other cases, this
can also be the result of the execution of a task when several tasks of different
kinds are required for a given treatment. Again, the concept of pool here still
holds as the various tasks for a given treatment can be performed by different
members of the pool. A given actor is not assigned to a particular patient during
the lifecycle of a hospitalization. This is a task centric rather than patient centric
system. The easy solution to this problem is to verify if the tasks list has not
changed in the meantime before picking and executing a task. In the following
example we illustrate how to achieve this tasks list update.
The list of tasks is implemented as a PTC variable as follows:

type component PTCType {
port BMPportType bpmPort;
var template TaskListType listOfTasks;

}

First we have a receive event that puts the current tasks list in a given state and
stores it to the PTC variable listOfTasks:

bpmPort.send(loginInfo);
alt {

[] bpmPort.receive(cac fax preparation task t)
-> value listOfTasks {...}

}

Second, in order to illustrate the fact that another member may have already
picked a task during the delay between the previous response and the actual
picking and execution of a task, we place a tasks list update mechanism before
the actor picks a task from the list of tasks and executes it. Here the function
getTask() extracts a task with the name “CAC FaxPreparation” from the list
of tasks previously obtained and stored in the PTC variable listOfTasks either
through the previous state or the updated state. In addition, a ranking mech-
anism of PTCs allows avoiding racing conditions that would not be caught by
this update mechanism.

updateTaskList();
task := getTask(listOfTasks, "CAC FaxPreparation", rank);
bpmPort.send(TaskExecutionRequestType: { task } );

The update mechanism consists in a function that tries to receive a new
tasks list from the BPM. However, this receive statement is blocking by defini-
tion. Thus, if no new tasks list has been received, this would block the system
unnecessarily. In TTCN-3, the easy way to avoid this situation is to create an
alternative with a timer’s timeout. The timer can be set to a very small value as
its only function is to avoid blocking. If a message has indeed arrived, TTCN-3
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will execute the receive statement first and thus eliminate naturally the timeout
alternative because of the top down execution attempt of TTCN-3 alt constructs.

function updateTaskList() runs on PTCType{
timer waiter;
waiter.start(0.01);
alt {
[] bpmPort.receive(TaskListType:?)

-> value listOfTasks
{ waiter.stop; setverdict(pass); }

[] waiter.timeout{}
}

}

However, all of this works in conjunction with activities in the concrete layer’s
test adapter. Normally, it would be the web application that triggers this update.
Thus, we need to simulate this activity by having the test adapter inspect all
active BPM clients, check their in boxes and enqueue the updated task lists
to the associated PTCs instances. However, we need to tell the test adapter
which PTCs belong to which pool. This is achieved via administrative messages
between the abstract test case and the test adapter. The test adapter then uses
this information to maintain lists of pools and their members. This could be
improved by adding the concept of pool to the TTCN-3 language PTC create
construct such as:

nursePTC 1 := PTCType.create("nurse1", "nurses");

Overlapping Dependencies. Overlapping dependencies occur when two par-
allel actors have more than one sequential dependency during the execution of
their behaviors. In Fig. 5, user 2 depends on the execution of task T1a and T1b
of user 1 before it can execute its own tasks T3a and T3b. further downstream,
user 1 depends on user 2’s execution of these tasks to be able to perform task
T2a and T2b and so on.

This type of configuration can be handled naturally using the same sequenc-
ing of PTCs execution as shown for the sequential dependencies case above. The
difference is that different behaviors need to be started for the different phases of
activity of a given PTC combined with a ptc.done statement for each phase. For
example, this is the case of a physician that assesses a patient both before and

Fig. 5. Overlapping dependencies
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after they go into surgery. However, in order to achieve this staggered behav-
ior execution, the PTC needs to be declared with the TTCN-3 alive feature as
follows:

var PTCType contactNurse1 :=
PTCType.create("contactnurse1") alive;

2.3 Maximizing the Benefits of Parallel Test Components Execution

In TTCN-3, parallel test components (PTCs) are implemented by the execution
tool as threads. While this concept is very powerful, the only problem is that
each thread will attempt to execute its behavior as system resources are available
which naturally could mean immediately. The benefits of parallel execution of
roles behavior should normally be to verify that any combination of sequencing
of test events configuration does not cause the SUT to fail as shown in Fig. 6.
Leaving the PTCs to execute their behaviors freely may lead to bad test case
coverage. For example, a strict sequence of behaviors where one PTC’s behavior
executes only after another has completed its execution will be highly unlikely.
This problem can be solved by introducing coordination messages to force a
BPM to wait until a given state of another PTC has been reached. However,
this approach could result in bad coverage too if the tester forgot to address
specific interleaving configurations. Also, coordination messages are tedious to
manage and are a form of un-flexible hard coding. Instead, we have experimented
with the insertion of random delays between test events that combined with
repeated executions of the test cases (see Fig. 6) has shown to provide a better
test coverage but also truly mimic actors behaviors.

This approach enabled the discovery of faults in the BPM logic as shown for
example in Fig. 1 that no one suspected could exist. Such random delays can be
implemented using an external function generateRandomNumber() to determine
the sleep time of a PTC using timers.

Fig. 6. Effect of random spacing of events
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function randomDelay() {
timer delayer;
var float waitTime := generateRandomNumber() * 2.0;
delayer.start(waitTime);
delayer.timeout;

}

However, this solution is potentially not optimal as timers can consume sys-
tem resources. Instead, another solution would be to use the concrete PTC imple-
mentation as a thread and its corresponding sleep() method. This would require
a change in the TTCN-3 execution tool that needs to be addressed by TTCN-3
tool providers.

Also, for BPM testing, random delays between events appeared preferable
to coordination messages because coordination messages are static and require
duplicating behavior logic. With random delays between test events, the overall
behavior as sequences of events remains constant while the execution of events
becomes dynamic over time and allows discovering faults resulting from different
interleaving of events patterns. Future work would include statistical methods
applied to logs that can in turn be used to appraise the resulted test coverage.

2.4 Handling Delayed Responses from the SUT

In the course of testing, we have noticed that sometimes the BPM would respond
with unpredictable delays that can be attributed mostly to differences in load.
Thus, the list of tasks available to an actor would not be updated as expected.
This would result in mismatched test oracles as in the following alternative where
a response is not corresponding to the stimulus but instead to an unrelated
update of the list of tasks available to a pool:

bpmPort.send(click next searchPatient button t
(valueof(execResponse.coach), task.taskId));

alt {
[] bpmPort.receive(cac fax preparation task t)

-> value listOfTasks {setverdict(pass);}
[] bpmPort.receive {setverdict(fail); }

}

The above alt construct can be modified by inserting an alternate receive state-
ment of TaskListType data type in second position. This statement however
would be combined with a repeat construct that enables receiving the expected
response later:

[] bpmPort.receive(TaskListType: ?)
-> value listOfTasks { repeat; }
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3 Conclusion

Business Process Management applications in the medical domain pose chal-
lenging testing problems that result from parallel execution of test behaviors
performed by different actors, especially given the practice of creating pools
of actors to fulfill particular roles. Addressing such problems using traditional
unit testing languages is complex and error prone given the need to coordinate
and validate all possible interleaving combinations, as well as dealing with race
conditions.

We have proposed an architecture based on the TTCN-3 model of separa-
tion of concerns and its intensive parallel test component (PTC) concept to
provide solutions to these issues. We successfully used a case study of a Cancer
Patient Assessment process to demonstrate the benefits of the proposed app-
roach. In doing so, we used time-based random delays to coordinate interleaving
and avoid unintended race conditions in the test framework. This ensured a
natural maximization of test coverage. However, this solution is potentially not
optimal as our use of timers for random delays can consume system resources.
Instead, another solution would be to use the concrete PTC implementation as a
thread and its corresponding sleep() method. This would require a change in the
TTCN-3 execution tool that needs to be addressed by TTCN-3 tool providers.
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Abstract. In this paper, we present a method that learns a determinis-
tic finite state machine from the conformance test logs of a telecommuni-
cation protocol; then that machine is used as test model for performance
testing. The learning process is in contrast to most theoretical methods
automatic; it applies a sequential pattern mining algorithm on the test
logs, and uses a recently proposed metric for finding frequent and signif-
icant transition sequences. The method aims to help and speed up test
model design, and at the same time it may not provide an exact solution,
the equivalence of some states may not be proven. In the paper, we show
the results of experiments on random machines, and issues and consid-
erations that arise when the method was applied to 3GGP Telephony
Application Server test logs.

Keywords: Test model · Sequential pattern mining · FSM Learning

1 Introduction

Creating test cases for functional testing and traffic scenarios for load testing are
complex and manual tasks are carried out possibly independently in different
groups of the same enterprise. The tasks themselves require the studying of
system documentation, the analysis of SUT traces and lots of discussions with
the stakeholders. This requires significant amount of time and resources.

The aim of this paper is to show a method that can help creating test per-
formance test cases from conformance test logs. As functional testing precedes
performance testing and functional test cases cover most transitions, logs of test
execution can be a starting point for generating a test model. Note that the test
logs may contain both valid and invalid behaviour in form of steps of passed
and failed functional test cases. As load test tools like TitanSim by Ericsson use
FSMs to describe entity behaviour, the test model to be created is expressed in
a language describing FSMs. The machine generated may not be complete and
may contain inadequately restored transitions, nevertheless, test engineers only
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need to complete or refine such machines to be able to start performance testing,
human interaction is required only to start the process and after the termination
to minimize the output machine.

1.1 Related Work

In the problem of learning an automaton [9], one can supply inputs to a black
box implementation machine and observe its outputs. Most existing approaches
suppose assume that there exists an oracle, who is able to tell at any time to the
learning algorithm whether the machine learnt at the current iteration cycle is
equivalent to the black box machine, and if not, provide a distinguishing counter-
example. Angluin’s pioneering method [2] introduces an observation table that
consists of a prefix-closed event sequence, a postfix-closed event sequence and
a mapping function that concatenates a prefix, an input event string and a
postfix, and decides if the concatenated event sequence can be produced by the
machine. The learner algorithm incrementally augments the observation table
with the counter-examples provided by the oracle, and maintains its closed and
consistent properties. The procedure is terminated when no counter-examples
are returned. This algorithm requires the black box machine to have the reliable
reset ability. Rives and Schapire proposed an improvement to Angluin’s method,
their algorithms can find a homing sequence in an unknown automaton [13] that
can be used to reset the machine. In [10], Li et al. modify Angluin’s method, they
modify the observation table such that only input events are considered in the
event sequences, and the output of the mapping function are output events. Their
second improvement is that instead of using an oracle for teaching they propose
to test the system with a test suite generated on the learnt machine by means
of a certain test generation strategy, and if a discrepancy is found, then that
test case can be considered as the counter-example. This method can be fully
automatic, however it includes a test generation and a test execution phase that
can be very time consuming. The same authors proposed another improvement
in [14], they proposed an algorithm that is able to learn parameterized finite
state machines with finite domain input and output parameters, and input guard
conditions with a certain set of restrictions. A similar method is introduced in [6]
by Howar et al., they incrementally refine the input alphabet with parameters to
eliminate nondeterminism in the learnt machine. Hungar et al. propose in their
papers to take reactive system specific modeling aspects improving the mapping
function into account [7] such as the separation of input and output symbols,
not continuing prefixes that have been evaluated positively or negatively, an
input event determines the output events, and no input event is applied until
all outputs have been determined. In [5], they propose that learning a model of
a system developed incrementally should use the previous versions learnt as an
input, and improve those models with the new knowledge. Barringer et al. present
a framework in [4] that decomposes the machine learnt into parallel components.
Algorithms for learning deterministic finite state machines have been reviewed
in [3,12]. Though these methods run in polynomial time and learn the exact
black box machine, they require too much intervention from an oracle, that is,
from one or more engineers.



270 G. Adamis et al.

1.2 Our Contribution

In this paper, we assume that we cannot a directly access the black box imple-
mentation machine, however we do have access to test logs of that implemen-
tation, and that log contains all input and output events that appear on its
interface. This problem is not equivalent to the machine learning problem, how-
ever, they share a lot of similarities. In their paper, Rivest and Schapire state
that “learning by passively observing the behavior of the unknown machine is
apparently infeasible” [13]. Though the complexity of this problem is exponen-
tial, the progress in the field of data mining research in the last decade makes a
revision possible. In data mining theory, several algorithms have been proposed
to find transactions that appear frequently in a specified order in database logs.
Such an algorithm is used for finding common behavior patterns of users who
browse a web portal, or for finding clinical course patterns based in health-care
databases. One of the first sequential pattern mining algorithm is GSP proposed
by Srikant and Agrawal [15] which is used in this paper. It is based on the pattern
of the famous apriori algorithm [1].

We propose an unsupervised algorithm for reconstructing incompletely spec-
ified deterministic finite state machines. The black box machine is not required
to have reliable reset. In our approach, GSP is used for building frequent I/O
event set sequences incrementally. In each iteration cycle, it tries to append all
possible I/O sets to the end of each frequent prefix found so far, and keeps only
those new sequences, which occur more frequently in the observation set than
a user defined threshold. Then, we build prefix trees from the set of observa-
tion sequences, and perform incomplete Mealy machine minimization procedure
where we make use of the information extracted from GSP. We assume that the
black box machine is the same state partition after each frequent subsequence, if
the observable I/O event sets after that subsequence are compatible. The event
sequences used are neither prefix, nor postfix closed, hence omitting the front or
the tail event from a frequent subsequence, allows the identification of functional
dependencies among states, i.e. the next state relations.

As we passively observe the system, we may not learn the unexplored part
of the state space of the black box machine, and the reconstructed machine
is not reduced, and may not be strongly connected. However, the number of
states of the transition system constructed from the observation sequences can
be reduced close to the number of the original states. After the termination of
our algorithm, pieces of information are available on the compatibility of strongly
connected states and not strongly connected states, which can easily be decided
with a human eye in front of a visual user interface. Just like most data mining
algorithms, GSP is not P-space, however after the identification of the frequent
subsequences the rest of the method can run in polynomial time of the size of
the I/O alphabet if we take a heuristics on the subsequences into account.

The paper is organized as follows. After a brief overview and the introduction
of notations regarding finite state machines, we describe the GSP algorithm in
Sect. 2. In Sect. 3, we specialize GSP so that it can detect state partitions, and
show how a FSM states and transitions can be reconstructed. Experimental
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results on random machines and on the 3GGP Telephony Application Server
and arising issues are shown in Sects. 4 and 5. Finally, Sect. 6 summarizes the
paper.

2 Preliminaries

2.1 Finite State Machines

A Mealy finite state machine is a quintuple M = (S, I,O, λ, δ), where S is the
finite and nonempty set of states, I is the finite and nonempty set of input events,
O is the finite and nonempty set of output events, and δ : S × I → S is the next
state function, and λ : S × I → O is the output function. Both δ and λ can
be generalized to accept the input sequence x = x1, . . . , xk such that with the
index j = 1, . . . , k δ(sj , xj) = sj+1, and the final state is δ(s1, x) = sk+1, and
λ(sj , xj) = yj , and the produced output sequence is λ(s, x) = y = y1, . . . , yk.

The strongly connected property of M means that all states are reachable
from all other states, formally ∀s, s′ ∈ S : ∃x ∈ I∗ : δ(s, x) = s′.

Machine M is deterministic if ∀s, s′, s′′ ∈ S, i ∈ I, o, o′ ∈ O : δ(s, i) = s′

and δ(s, i) = s′′ and λ(s, i) = o and λ(s, i) = o′, then o = o′ and s′ = s′′.
Machine M is incompletely specified if for a state s ∈ S and input i ∈ I, δ(s, i)
and λ(s, i) are undefined. In this case, we adopt the completeness assumption,
and let δ(s, i) = s and λ(s, i) = ε, where ε means the lack of observable output
events.

In machine M , states s, s′ ∈ S are equivalent if ∃i ∈ I : δ(s, i) = s′′, λ(s, i) =
o and δ(s′, i) = s′′′, λ(s′, i) = o, where o ∈ O and s′′, s′′′ ∈ S are equivalent. If
for any s, s′ ∈ S s and s′ are not equivalent in M , then M is said to be reduced.
States s, s′ ∈ S of the incompletely specified M are said to be compatible, if ∀i ∈
I : ∃δ(s, i) and ∃δ(s′, i), then λ(s, i) = o = λ(s′, i) and δ(s, i) = s′′, δ(s′, i) = s′′′,
where o ∈ O and s′′, s′′′ ∈ S are compatible.

2.2 GSP

Before introducing the GSP algorithm itself, we define the terms sequential pat-
tern and occurrence.

A sequential pattern is a sequence constructed from the elements of superset
Ξ with the concatenation operator, each element of set Ξ is a set of symbols itself.
Let A ∈ Ξ∗ and B ∈ Ξ∗ be two sequences such that A = X1,X2, . . . , Xk and
B = Y1, Y2, . . . , Ym where X ∈ Ξ is indexed with an integer 1 . . . k and B ∈ Ξ is
indexed with an integer 1 . . . m. The sequence A is said to occur in sequence B,
if and only if there exists a sequence of integers 1 <= i1 < i2 < · · · < ik <= m
such that X1 ⊆ Yi1, X2 ⊆ Yi2, . . . , Xk ⊆ Yik.

The GSP proposed by Srikant and Agrawal [15] can discover such sequential
patterns in database transaction sets. A database transaction (Ξ∗ in the defi-
nition above) consists of a sequence of queries (Ξ), which are ordered by their
execution timestamps. An element of Ξ is a set itself, which means that a query
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accesses several attributes of a relation in the database. This algorithm intends
to find the sequences of queries that appear in all transactions in the same order.
Note that GSP does not require that ik − i1 = k, there may be a finite number
of Ξ elements inserted in B that are not present in A.

The input of GSP is a set of database transactions, and a threshold value
given by the user. The output is a set of Ξ∗ sequences, which are considered to be
frequent, if their occur more frequently than the user defined minimum support
threshold would require. The minimum support is a percentage, the number of
occurrences divided by the total number of possible sequences.

Algorithm 1. Finding frequent itemsets with GSP
input : T = {T1, T2, . . . , Tm}, Ti ∈ Ξ∗, i = 1 . . . m; μ ∈ [0, 1)
/* The input is a set of transactions and a threshold value */

output: F = {F1, F2, . . . , Fn}, Fj ∈ Ξ∗, j = 1 . . . n
/* The output is a set of frequent itemsets */

1 data(i, j, k, F0, FC, FC)

/* Initialization */

2 k := 1; F0 =
⋃|Ξ|

f=0 Tif , Tif ∈ Ξ, i = 1 . . . m; F = F0;

3 while true do
4 FC := ∅;
5 foreach i, i = 1..|F |, length(Fj) = k do
6 foreach j, j = 1..|F |, length(Fj) = k do
7 FC := merge(Fj , Fi);
8 if occur(FC , T ) > μ then FC := FC ∪ {FC};

9 end foreach

10 end foreach
11 if FC = ∅ then return F ;
12 F := F ∪ {FC};
13 k := k + 1;

14 end while

The GSP algorithm is based on the apriori algorithm, but takes the ordering
of sets into account, and instead of growing sets, it merges frequent sequences of
the previous iteration if those are the same after removing the head of the one
and the tail of the other. This is based on the principle that all subsequences of
a frequent sequence are frequent.

The inputs are the set of transactions T , and the minimum support threshold
μ. The attribute set used can be derived from T . The output is the frequent
itemset F . Three loop variables are used in the body of the algorithm along
with the set F that contains attributes derived from T . The set F containing
the frequent sequences to be returned that is initialized to F0, and the set
FC containing the sequences in the current iteration cycle. In the body of the
procedure, an infinite loop is formed, where the FC set of current transactions
is first initialized to an empty set. Then, each element of the actual output set
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F with length k is merged with another element of the same length only if after
removing the head transaction of one and the tail transaction of the other the
remaining sequence of transactions are the same. In such cases, the resulting
candidate sequence is the common sequence appended with in the front with
the head transaction and in the back with the tail transaction. Note, that for
k = 2, the common sequence is empty, so all combinations are generated. Then,
it is checked if any element of this newly generated sequence set occurs more
frequently in the transaction sets than the μ input threshold, and if it does,
that sequence is added to FC. If FC is empty, then the procedure returns the
frequent itemset F , otherwise it appends FC to F , increments the maximum
length loop variable k, and runs the main loop again.

The complexity of the algorithm is exponential as the worst case number
of frequent itemset is |Ξ|M , where M is the cardinality of Ti with the second
largest size. Hence, this algorithm does never run in real-time systems, just only
in back-offices.

3 Unsupervised FSM Reconstruction

In this paper, we reconstruct the model of an implementation in a black box that
is assumed to be originally a deterministic, incompletely specified, strongly con-
nected, reduced Mealy finite state machine. The Mealy machine reconstructed
is deterministic, but most probably has neither of the remaining properties. The
reconstruction in unsupervised, so the test engineer does not need to have access
to the implementation itself, only to conformance test logs, therefore the recon-
struction is an automatic process.

In the rest of this section, we propose a way for using GSP to identify frequent
event sequences, and show how those can be used to find state partitions of a
black box machine in a prefix tree constructed from a large set of observation
sequences.

3.1 Initial Considerations

We assume that the observation sequences in the test logs are “long enough”,
which means practically with an example from telecommunications that they do
not terminate immediately when for instance a call set up is completed, just only
when the call is already terminated or even beyond that. The rationale behind
this assumption is that such long sequences are required for setting up relations
between state clusters of the reconstructed machine. Without this, the strongly
connected property even for a subset of the state set of the output machine can
not be met.

If we have a single sequence that is (however) quasi infinitely long , because
of a continuous observation of a system that is in operation, then the sequence
is split at random points into a set of sequences such that each one still remains
long enough.
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It is helpful information, if we can assume that all sequences start from the
same state in the black box machine, i.e., there is an initial state, however, this
is not a necessary condition. In the case of conformance test logs, we can rely
on this property. In general, we allow the observation sequences to start at any
time independently from the current state of the black box machine.

The fundamental idea behind our approach is that before and after a frequent
sequence the black box machine is in the same state partitions respectively. It is
essential to note that the length of frequent sequences has an important role. This
assumption only holds if the frequent sequence is “long enough”, where this time
long enough means that they are assumed to be longer than the longest sequence
in the separating family of sequences of the black box machine. As this length
information can not be determined at runtime, this must be provided by an oracle
before the execution of the algorithm. In general, if we take the completeness
assumption into account, the maximum length of separating sequences should be
inversely proportional to the size of the I and O sets of the black box machine.
Another important note is that the assumption on the state partition before a
frequent sequence is weaker than the assumption on the state partition after.

3.2 Specialization of GSP

We specialize GSP for finding frequent subsequences in observation sequences of
a black box machine the following way. From the set of observation sequences,
we extract the sets I and O. Because of the reactive nature of the Mealy state
machines, we can use the input determinism principle of [5], and partition each
sequence along input events such that one input event is followed by one output
event, or more generally arbitrary number of output events. From these parti-
tions, we construct sets, where each set contains exactly one element from the set
input events I and a subset of the output events O, and we add each of these sets
to Ξ, which is the set of different I/O behaviors that can be observed. Then, we
transform all sequences in T to be Ξ∗ instead of (I ∪ (O ∪{ε}))∗. Thereafter, let
T = (N, Ξ, E) be an input/output transition system. Its graph representation is
a directed edge labelled forest with |T | roots and no branches, the kth sequence
Xk = Xk1, . . . , Xkl,Xki ∈ Ξ∗ is mapped such that (nk,i−1,Xki, nk,i) ∈ E, and
nk,i−1, nk,i ∈ N , for all i = 1 . . . l.

We reinterpret the input parameter minimum support μ as well, we say that a
sequence is supported, if it appears in the execution logs at least a certain number
of times, that is, instead of relative occurrence, we use an absolute number for the
minimum number of occurrences. We introduce an additional input parameter
ν, which represents the minimum length for the frequent subsequences to be
returned. This is also an important heuristic parameter that should be set such
that it is greater than the length of longest sequence suspected in the separating
family of sequences of the black box machine.

As we intend to restore an FSM, when searching for frequent subsequences
we must require an exact match between the two Ξ elements compared from the
two sequences to be able to talk about the same transition in an FSM. While
GSP does not require observed events to be successors, in this case not only
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the order of Ξ elements has importance, but those must appear strictly one after
another in the sequences of T . Hence, we reinterpret the term occurrence as well.
Let A ∈ Ξ∗ and B ∈ Ξ∗ be two sequences such that A = X1,X2, . . . , Xk and
B = Y1, Y2, . . . , Ym where X ∈ Ξ is indexed with an integer 1 . . . k and B ∈ Ξ is
indexed with an integer 1 . . . m. The sequence A is said to occur in sequence B,
if and only if there exists a sequence of integers 1 <= i1 < i2 < · · · < ik <= m
such that X1 = Yi1, X2 = Yi2, . . . , Xk = Yik and ik − i1 = k.

Algorithm 2. Finding frequent subsequences in observation sequences of
a black box FSM
input : T = {T1, T2, . . . , Tm}, Ti ∈ Ξ∗, i = 1 . . . m; μ ∈ N; ν ∈ N

/* The input is a set of observed sequences, minimum occurrence,

minimum length */

output: F = {F1, F2, . . . , Fn}, Fj ∈ Ξ∗, j = 1 . . . n
/* The output is a set of frequent subsequences */

1 data(i, j, k, F0, FC, FC)

/* Initialization */

2 k := 1; F0 =
⋃|Ξ|

f=1 Tif , Tif ∈ Ξ, i = 1 . . . m; F = F0;

3 while true do
4 FC := ∅;
5 foreach i, i = 1..|F |, length(Fi) = k do
6 foreach j, j = 1..|F |, length(Fj) = k do
7 FC := merge(Fj , Fi);
8 if occur(FC , T ) > μ then FC := FC ∪ {FC};

9 end foreach

10 end foreach
11 if FC = ∅ then return F, length(Fj) ≥ ν;
12 F := F ∪ {FC};
13 k := k + 1;

14 end while

Algorithm 2 is changed compared to Algorithm 1 at several points. The
domain of μ is changed to natural numbers, and an additional integer input
parameter ν is introduced. Here, the occur function returns the absolute number
of occurrences, instead of relative, it searches for the pattern given as the first
parameter in the set of sequences given as the second parameter, and returns
the number of times the pattern is found. And finally, only the elements of F
with at least ν length are returned in line 11.

The complexity of Algorithm 2 is not changed with the specialization, it is
still exponentially proportional to the length of the longest input sequence. The
algorithm returns a set of sequences that can be organized into a prefix pyramid.
Increasing the minimum support narrows the top of the pyramid, and increasing
the minimum length cuts the bottom of the pyramid.
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3.3 State Candidate Identification

The inputs of procedure of this subsection are the set of frequent subsequences
F , the set of observation sequences T , a user defined threshold τ on the number
of prefix trees to be generated, and the user defined value ν is reused. The
former user input has significance in improving the confidence of this heuristic
approach, and the latter one is used for reducing its complexity. The output of
the procedure is a superset Π that is a partition of nodes of transition systems
constructed from T , where nodes in each partition are assumed to be in the same
state partition of the black box machine.

First, we create prefix trees from the set of sequences T the following way. We
select the subsequence maxi(occur(Fi,T)), i = 1, . . . , |T |, and cut each Tj ∈ T
after the first occurrence of the Fi subsequence, only if occur(Fi,Tj) > 0. If not
present, then Tj is excluded from building the prefix tree. If we know that all
sequences in T begin from the initial state of the black box machine, then only
one prefix tree is constructed from the beginning of the sequences with cut after
an ε sequence. This prefix tree contains all sequences, and one state is exactly
identified.

The prefix tree for the cut after the subsequence Fi is a quadruple PTFi =
(ΣFi , ΘFi ,Ξ, σ0), where ΣFi is the set of nodes of the tree, σ0 ∈ ΣFi is the
root node of the tree. ΘFi ⊆ ΣFi × Ξ × ΣFi is the set of edges of the tree
labelled with an element of the Ξ set. We define a mapping γFi : N → ΣFi

between the nodes of the transition system and the prefix tree. For the case of
the cut sequence Tj ∈ T , let γFi(nj,f ) = σ0 initially, where f is the position
of the cut, and ∀k = f, . . . , l if γF1(nj,k) = σn and γF1(nj,k+1) = σn+1 and
θ = (σn,Xjn, σn+1) 	∈ ΘFi , then θ is added to ΘFi .

After the construction of the prefix tree, for each node of the tree we collect
the set of possible next events by applying the labeling function a : ΣFi →
Ξ′,Ξ′ ⊆ Ξ that assigns a subset of Ξ to node σk ∈ ΣFi such that if there is a
sequence X = X1, . . . , Xn,Xi ∈ Ξ and ∀i < k : ∃(σi,Xi+1, σi+1) ∈ ΘFi and
∃(σk,Xk+1, σk+1) ∈ ΘFi , then Xk+1 ∈ a(σk).

Let the output of the partitioning with regard to the cut after the Fi frequent
subsequence be the set ΠFi = {ΠFi

1 , . . . , ΠFi
n }, where ΠFi

k ⊆ N is a partition
of nodes of the T transition system and

⋃
k ΠFi

k = N and ∀1 ≤ k, l ≤ n :
ΠFi

k ∩ ΠFi

l = ∅. The elements of N are partitioned by adopting the definition
of compatibility such that γ(ni) = σi, γ(nj) = σj , where σi, σj ∈ ΣFi are in
the same partition ΠFi

k if a(σi) = a(σj) and ∀Xk ∈ a(σi) if ∃(σi,Xk, σ′
i) and

∃(σj ,Xk, σ′
j) and a(σ′

i) = a(σ′
j) holds as well. If ni and nj are compatible, then

they are assumed to be in the same state partition of the black box machine.
If it is known before applying the procedure of this section that all observation

sequences start from the same initial state, then the one partitioning without
any cut is sufficient. If the initial state of the observation sequences is unknown,
then let us repeat the procedure for a certain subset of frequent subsequences
Fi ∈ F , where the number of Fi subsequences to be used is provided by the
user. If there is a contradiction between any pair of partitions of any cuts such
that ΠFi

k 	= Π
Fj

l and ΠFi

k ∩ Π
Fj

l 	= ∅, then both ΠFi

k and Π
Fj

l are atomized into
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partitions with singleton elements from N . Finally, let the output state partitions
be Π =

⋃
i ΠFi , which means that only those nodes in N are put in the same

partitions, which are confirmed to equivalent by all prefix trees independently
from the cuts.

If the Fi subsequences are “long enough”, then the node partitions contain
singleton elements, and we can define the set of states as S = Π, that is, the set
of node partitions are mapped to state set of the black box machine. In general,
it is true that the number of states restored this way is greater than the real
number of states in the black box.

The space and time complexities of the construction of the prefix tree are
proportional to |T | and LT = maxi(length(Ti)), while the time cost of cutting
the sequences is proportional to LT and LF = maxj(length(Fj)). The complex-
ity of the minimization of an incompletely specified Mealy state machine has
been proven to be NP-hard [11], and this can be extended for checking the com-
patibility of any pairs of nodes of our prefix tree due to the recursion condition
on the next nodes. The finite size of the prefix tree puts only an upper bound on
the number of conditions on the next nodes to be evaluated, which is worst case
(|I|)d, where d is the level of the recursion that cannot be greater than LT , and in
each node of the prefix tree there can be at most |I| next nodes. As a user input
ν is available on the suspected length of the longest sequence in the separating
family of sequences of the black box machine, it is possible to use that heuristic
value to limit the recursion to that level. This means that for each pair of nodes
of PT the cost of compatibility check is (|I|)ν . As (|T |LT )2 pairs of nodes have
to be checked, and checking the equality of two Ξ′ sets returned by function a
is worst case (|I| + |O|)2, the resulting complexity is O(|T |LT |I|ν+2|O|2).

3.4 Reconstruction of Transitions

The final step of our method reconstructs machine M∗ = (S∗, I, O, δ∗, λ∗) from
the inputs Π, T and F . The transitions from a state s∗ = π are determined by
a(γ(π)) = Ξ′ ⊆ Ξ. According to the definition, ∃i ∈ Ξ′ such that i ∈ I, hence,
for each element of Ξ′, it is possible to define a δ∗(s∗, i) and a λ∗(s∗, i). The
former can be extracted from T , by searching for the edge (n,Xk, n′), where
n ∈ π and i ∈ Xk, and then s′∗ = π′ where n′ ∈ π′. The latter is λ∗(s∗, i) = o,
if ∃o ∈ Ξ′ : o ∈ O, otherwise λ∗(s∗, i) = ε using the completeness assumption.

From each pair Fi, Fj ∈ F , we can construct the x1, x2 ∈ I∗ input sequences
and the y1, y2 ∈ O∗ output sequences, and if x1 = i11, . . . , i1k and x2 =
i21, i11 . . . , i1k, . . . , i.e., x2 contains x1 after a one event long prefix, and if σ1 and
σ2 are two nodes in a prefix tree with the same cut, and there is an edge sequence
from σ1 that is labelled with the sequence Fi and there is an edge sequence from
σ2 that is labelled with the sequence Fj , then in machine M∗ there must be a
transition between s∗

1 = π1, σ1 ∈ π1 and s∗
2 = π2, σ1 ∈ π1 with the input i21 and

the output o21. For example, consider a random machine with four input from
a to d, and four output from 0 to 3. If two frequent sequences are c/0 c/0 b/1,
then there is a transition from the state that corresponds to c/0 with b/1 input
and output events to the state that corresponds to c/0 b/1.
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Table 1. Observation table for random machine

a/0 a/1 a/2 b/0 b/1 c/0 c/2 c/3 d/0 d/2

b/1 - - c/3 d/2 a/0 b/0 - b/0 c/0 - - - b/0 c/0

a/1 b/1 c/3 d/2 b/0 c/0

d/0 a/1 - - - a/1 b/0 - a/2 b/0 - - - -

c/0 d/0 c/0 d/2

The method in the previous paragraph gives trivial dependencies and transi-
tions. As the second stage of reconstruction of transitions, we rely on Angluin’s
observation table method. As a preliminary step, we associate each Fi ∈ F
with the set of possible next input and output event pairs a(ΣFi) = Ξ′ that
are observable in the logs. If the set is non-deterministic, i.e. it contains the
same input event paired with more than one output events, then the frequent
sequence Fi corresponds to a state partition, and ignore that frequent sequence
from the rest of the procedure. Then, we construct an observation table so that
each row of the table corresponds to a frequent sequence Fi ∈ F , and each col-
umn of the table corresponds to a pair of input and output events. Note that
we do not create a column for every pair of input and output event, only for the
ones that appear in the logs. Then, we each Fi concatenate with each possible
follow-up input/output pair, and check for the set of possible pairs of input and
output events a(ΣFi.ξ) = Ξ′′ for each ξ ∈ Ξ′. If there exists a(ΣFj ) = Ξ′′ in
the associations, then there is a transition from the state that corresponds to Fi

to the state that corresponds to Fj with the input and output ξ. For example,
consider the same random machine, and let its observation table be shown in
Table 1. Both frequent sequences correspond to a deterministic state partition.
There are three transitions from the state that corresponds to b/1 to the state
that corresponds to d/0 a/1 with both the b/0 and the c/0 and the d/2 events,
because both d/0 a/1 b/0 and d/0 a/1 c/0 are defined. This also indicates a pos-
sible equivalency between the states corresponding to frequent sequences b/0 a/1
and d/0 a/1.

In general, it is possible that the output machine is not strongly connected,
and is practically never reduced. The strongly connected property can not be
met, if the transition connecting two unconnected subsets of the state set can
only be mapped from edges close to the leaf nodes of all prefix trees. This phe-
nomenon is behind the appearance of redundant nodes, if a frequent sequence
appears near the end of an observation sequence, then there is insufficient infor-
mation on the set of possible next events, and that node can not be made com-
patible with any other nodes, hence a new partition is created.

4 Experiments on Random FSMs

In the small set of experiments shown in this section, a random FSM generator
is used for testing the proposed method. Its output is an incompletely specified,
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Table 2. Properties of random FSMs and random walk sequences used in the experi-
ments

|S| |I| |O| Density |T |
Machine 1 5 4 4 0.6 30

Machine 2 5 4 4 0.6 100

Machine 3 5 4 4 0.6 200

Machine 4 5 4 4 1.0 30

Machine 5 5 4 4 1.0 100

Machine 6 5 4 4 1.0 200

Machine 7 10 4 4 0.3 30

Machine 8 10 4 4 0.3 200

strongly connected Mealy FSM based on the input parameters number of states,
number of inputs, number of outputs and transition density. The transition den-
sity is a value in (0, 1), which multiplied by the number of inputs determines the
mean number of transitions in a state before the machine is made strongly con-
nected. The observation sequences are generated with a random walk starting
from a random state.

In Table 2 below, from the second to the fifth columns represent the num-
bers of states, input events, output events and density of the black box machine
respectively. The sixth column shows the number of traces generated. The length
of the random walk sequences is set to 4|S| transitions as experience show that
it should be at least 3 times the number of states. The value of μ is set to 2,
ν is set to 3, and κ is 1, which mean respectively that each subsequence must
appear at least twice to be considered to be frequent, each frequent subsequence
must contain at least three input events and only one prefix tree is generated. In
performance testing, the data flow has little significance, therefore the number
of states is selected so that it reflects the number of control states in a telecom-
munication protocol, which is usually between 5 and 10. The increase of number
of the input and output events makes states easier to identify, so the same low
number is used in the experiments.

Table 3 shows the evaluation of the restored machines. Its rows correspond
to the rows of Table 2. The first column is the number of states of the restored
machine before any manual minimization, the second column indicates if the
restored machine is strongly connected. The third and fourth columns show
the size of the restored state machine, the number of states and the number
of transitions. The fifth and sixth columns show the number of errors in the
restored and minimized machine. The last two columns show the user time and
the memory allocated for the process. The results have been obtained on a PC
with 2.4GHz Intel Core i5 processor and 8GB RAM.

The experiments show that if we have long enough observation logs, it is
possible to reconstruct the states and transitions of a black box system under
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Table 3. Results of a set of experiments on random FSMs and random walk sequences

|Π| Connected States Transitions Transition faults Output faults Time Memory

6 Yes 5 17 4 7 2 s 0.5 MB

16 Yes 5 18 1 5 2 s 1.3 MB

15 Yes 5 18 0 0 2 s 3.3 MB

8 Yes 8 22 4 4 2 s 0.5 MB

14 Yes 5 20 0 0 2 s 1.5 MB

21 Yes 5 20 0 0 2 s 2.9 MB

16 No 16 13 12 2 3 s 2.9 MB

33 Yes 10 33 1 0 133 s 6.2 MB

test. The number of states in the output machine increases with the number or
length of observation sequences, but remains in all cases close to the order of the
number of states in the black box machine. The memory consumption and the
time requirement increases heavily as the number of input events grows.

5 Experiment on IMS Telephony Application Server

The test logs analyzed in the experiment are the conformance test logs of an
IMS SIP Application Server, a Telephony Application Server (TAS). Altogether
3.3 GB logs of 1051 partly manual test cases have been processed. The manual
execution has a significance as that part of the test cases are not optimal, so those
may visit parts of the state space that a systematically generated test case would
not have done. The TAS implementation can be accesses via multiple interfaces:
besides SIP, via HTTP, TCP, UDP, DNS and MSRP (Message Session Relay
Protocol). In the level of abstraction we used, we distinguished 83 messages
based on the type of the protocol used, and the type field of the payload. Message
exchange in the tests was always instantaneous, i.e., there was no delay between
a request and a response message. Including timeout triggered interactions in
the system under test, 80 different message exchanges (pairs of request and
response messages) were observed. The total number of sequences was 16281,
the longest one with 829 message exchanges; the average length of sequences
was 11.28 message exchanges.

5.1 Frequency Versus Relevance

The method we proposed in Sect. 3 works best when the distribution of the
message exchanges in Ξ is uniform. However in the case of test logs, it is skew
because of the systematic test case generation. As test engineers use the same
sequences of transitions along the edges of a spanning tree to reach a certain state
of the state machine, those transitions occur more frequently in the elements of
Ξ∗. This means that spanning tree transitions are frequent, and may suppress
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a transition traversed only once. Hence we use a recent method proposed in [8],
which proposes to use relevance rather than frequency. The transition visited
once should have similar relevance value as any spanning tree transition.

The relevance measure ρ is calculated for a prefix A = X1,X2, . . . , Xk where
Xi ∈ Ξ, i = 1 . . . k and a postfix B = Y1, Y2, . . . , Yl where Yi ∈ Ξ, i = 1 . . . l,
and it is associated with the sequence C = X1,X2, . . . , Xk, Y1, Y2, . . . , Yl. Let
f(A,B) denote the number of times B appears directly after A in the sequence
database. Let F̃ (A) denote the number of sequences A occurs in, and let F (A)
denote the number of sequences A does not occur in. Let i(A,B) denote the
number of times something else than B appears directly after A in the sequence
database. Let |A| and |B| denote the lengths of sequences A and B respectively.
Then, the relevance of C is calculated as follows

ρ(C) =

{
0 if F (A) = 0 or f(A,B) = 0

|A||B|F (A)

F̃ (A)

f(A,B)
i(A,B) otherwise

(1)

As we use GSP for candidate generation, the new sequence contains only one
more transition, i.e., the length of B is always 1. After having calculated the
relevance of all C that can be generated from prefix A, we scale relevance values
with prefix A into the range [0, 1].

As the test cases in the logs do not always return a pass verdict, the fail ver-
dict can be used to indicate an exclusion with regard to a sequence of message
exchanges and a successor message exchange that fails. In such cases the rele-
vance of all prefixes that end directly before the transition that fails concatenated
with the transition that fails is set to zero.

5.2 Efficiency of the Method

The experiment was carried on a PC with 2.4 GHz Intel Core i5 processor and 8
GB RAM. The total execution time was 27 hours with a single threaded imple-
mentation, the memory requirement was 790 MB. The application identified 61
frequent sequences, of which 15 had a relevance value over 0.1. The state candi-
date identification process found that these relevant sequences correspond to 10
unique states at the abstraction level defined by the set of messages used, and
the states have been found unique and valid with a manual check. The frequent
sequences with relevance below 0.1 were mostly found to be loops. Restoring
transitions was much easier than in the case of random state machines as most
of the interfaces of this TAS implementation define stateless communications
and the transitions represent loops around the detected control states.

Nevertheless, we consider this experiment inconclusive because of two rea-
sons. One is the unconvincing separation of data and control portions at the
level of input/output message definition, which resulted in the low number of
states. Further studies are required for the evaluation of state detection ability
of the method. The source of the second problem is the multiple interfaces with
stateless protocols, which is addressed in the next subsection.
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5.3 State Machine Decomposition

In the experiment above we allowed one interface to be activated “at the same
time”, it is however possible to give an alternative generalization of GSP for
state machine learning. Allowing multiple interfaces leads to race conditions at
the composite machine level, but it also allows to reconstruct state machines per
interface, which can help us in reducing the number of loop transitions around
control states of stateful interfaces.

From Sect. 3.2 on, we have used A = X1,X2, . . . , Xk as the sequence of
transitions of the state machine, where each Xi is a pair of an input event and
an output event, and the subsequence relation has been defined so that Xk = Yik.
GSP is more general than that, it allows Xi to be a set of input/output pairs.

Reconstructing decomposed machines takes place at two levels. For each
interface, a state machine can be reconstructed from the sequences that appear
on that interface. The second level is the composite machine, for which we pro-
pose the following specialization of GSP. Let A and B be defined just like in
Sect. 3.2, however let Xk be the set of most recent input/output pairs parsed
from the test logs until the second occurrence of an interface, the second event
pair on the same interface is not included. Then we can use the original defini-
tion of GSP, where A is a subsequence of B, or in other words A occurs in B,
if and only if there exists a sequence of integers 1 <= i1 < i2 < · · · < ik <= m
such that X1 ⊆ Yi1, X2 ⊆ Yi2, . . . , Xk ⊆ Yik and ik − i1 = k. This way the state
of the composite machine can be defined with the total ordering of last activa-
tions of parallel interfaces. This further increases the execution cost of machine
reconstruction, as instead of equality checks we have to perform subset relation
checks.

6 Conclusion

In this paper, we proposed a method that is able to reconstruct the control
flow of a protocol as a Mealy finite state machine based on passive observation
sequences. The main improvement over existing methods is that engineers are
required to touch the system twice, once to start, and at the end to manually
correct the machine learnt on a visual user interface, so users do not need to
guide the learning process. The main drawbacks are the high time complexity,
so this should run overnight, and the fact that a high level of user intuition may
be necessary for the minimization process and making the machine strongly
connected.

After some small scale experiments on random machines, the experiment on
3GPP TAS shows too that the proposed method is able to reconstruct a valid
state machine if the test logs are many and long enough. However, the usability
of that state machine strongly depends on the abstraction of the input and
output alphabets selected for the learning process. Further studies are required
to confirm the correctness of the reconstruction process. Input and output event
partitioning, which means the introduction of input and output parameters as
in [6,14], seems to be plausible in theory, however must be handled with care
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based on this industrial experience. Another extension of our approach with
significance from the industrial perspective is to take the multiple interfaces of
the black box system into account, this further increases the complexity, and
requires further research as well.
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