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1 Introduction

Patients who have suffered impairment of their neuromotor abilities due to a disease
or accident have to relearn to control their bodies. For example, after stroke the ability
to coordinate the movements of the upper limb in order to reach and grasp an object
could be severely damaged. Or in the case of amputees, the functional ability is
completely lost. Early rehabilitation interventions are aimed to help patients reduce
the impairment’s impact on their lives, and help them recover in a way that allows
them to regain some ability and independence during activities of daily living. It
is highly recognized that a rehabilitation intervention should be well-guided, well-
focused, and repetitive. This is in a way the same kind of strategy used when learning
a new skill, such as playing an instrument or a sport.
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This is why it is important for people working in rehabilitation to study and under-
stand the mechanisms of human motor control and learning. This knowledge have
helped to shape current rehabilitation methods, as well as to develop technologies
andmachines that assist impaired people to improve their quality of life and integrate
faster into society.

Understanding motor control and learning even for a simple movement (e.g.,
reaching for a glass) is a very big endeavor due to the many variables that comes
into play. David Marr [80] identified three levels of abstraction that could be used
for the study of motor control [97]. Certainly, these levels are not independent from
each other, but they could used to organize all the vast amount of details that have to
be taken into account in motor control and learning.

The first level is the computational theory level, which relates to an abstract
description of what the systems is supposed to achieve and why, and that results
in operations defined only by the constrains that need to be satisfied. Therefore,
this level could be regarded as a mathematical formulation of the movement plan,
and it should take into account the different variables, restrictions, difficulties, and
outcomes that would arise when the movement has started. The second level is the
algorithmic level, which describes the behavioral and cognitive states that are used
in real time during the movement. In order words, it specifies how the first level
would be accomplished. There are often several possible algorithms that can be used
to achieve a desired movement and the choice will depend on the characteristics of
each algorithm. For example, a person could decide to grasp a cup from different
angles (e.g., from the top or from the side) depending on his initial posture or the state
of the cup (e.g., fill or empty). The algorithm could even change once the movement
has started due to novel states (e.g., external perturbation or obstacles). The final
level is the implementation level, which describes how algorithms are physically
implemented (e.g., by contracting muscles or using a prosthetic hand).

In this chapter, we would like to present a general overview of the computation
and the algorithmic levels by discussing the most relevant motor control and learning
theories that have been put forward in recent years. Furthermore, we would like to
discuss how these theories are currently being applied on rehabilitation technologies.

The chapter is divided into two different parts. The first will provide a general
overview of relevant and recent theories of motor control and learning. On the second
part of the chapter, we will describe two practical applications that make use of this
theories in order to improve the control and development of neuroprostheses and
hand prostheses rehabilitation.

2 Theories of Motor Control

Imagine that in a sunny day you are thirsty, and you decide to drink a glass of water.
Although you are able to perform this action relatively easily, a variety of challenges
have to be takled in order to accomplish the required task.Whichmuscle contractions
will allow you to reach the glass, grasp it and bring it to the mouth, eventually
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satisfying your thirst? How does your central nervous system (CNS) compute this
solution? These and other similar questions have been arousing scientists’ curiosity
for centuries,whohave proposed several theories to explain the control of coordinated
movements. This section provides a general overview of these works.

There are several issues that make the generation of movements a very difficult
problem. First of all, the musculoskeletal system is inherently redundant. Each point
in space can be reached with many different joint configurations. Similarly, joint
torques can be obtained by an infinity ofmuscle forces,which in turn can be generated
by several muscle activation patterns. Redundancy allows us to perform motor tasks
flexibly and robustly; however, it rises the question on how motor commands are
selected. The question of how the CNS “chooses” among all the possible solutions
to a motor task is a long standing riddle in motor neuroscience, referred to as the
“redundancy problem” or “Bernstein problem” [11]. Second, our sensing and motor
systems are corrupted by noise [30]. This feature, along with the unpredictability of
the environment, add uncertainty to our perception of the world and to the result of
our actions.Moreover, neural pathways introduce delays.Hence, sensory information
carries past information, and motor command will be executed in the future. How
does the CNS account for these delays in order to, for example, react to a sudden
change of the world? Finally, the nonlinearities of the neuromusculoskeletal system
have to be taken into account for effective motor planing and execution.

2.1 Optimal Control

Theoretically, redundancy enables to perform the same action in very different ways.
Yet experimental observations have shown that individuals seem to employ the same
strategy to solve a given task, i.e., movement features are shared across subjects.
As an example, during simple point-to-point reaching movements hand trajectories
appear consistently straight and characterized by bell-shaped velocity profiles, inde-
pendently of movement direction and amplitude [84]. The fundamental principle
underlying this phenomenon is unknown; however, a largely accepted idea in the
scientific community is that movements are selected because they optimize certain
aspects of behavior [115]. This view allows scientists to explain similarity across
subjects in terms of fundamental principles, but it poses the challenge of identifying
the behavioral aspect that is actually optimized. The main criticism to this approach
is indeed that it might always be possible to find an optimization criteria that explains
the behavior at hand.

To interpret motor skills in terms of optimization principles, it is necessary to
model the body, and to propose a cost function to be minimized. The model rep-
resents the evolution of the body variables (e.g., joint angles, end-effector position,
muscle kinematic) as a function of the state and the motor commands (e.g., joint
torques, muscle force, muscle activation); the cost function formalizes the behav-
ioral aspect that is hypothetically minimized. The idea is to find the control policy
(i.e., a mapping between time or state of the body to motor commands) that leads to
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a successful completion of a desired motor task, and that minimizes the cost func-
tion. If simulations of the model under the computed control policy approximate the
movements experimentally observed, then it is suggested that the CNS selects such
movements because they minimize the proposed cost.

A variety of cost functions have been proposed as models of movements selec-
tion processes. Initially, to explain the kinematic regularities observed by Morasso
[84], Flash and Hogan [38] theorized the so-called minimum jerk model, where the
square of the third derivative of the end-effector position (i.e., jerk) is minimized,
obtaining straight trajectories and bell-shaped velocity profiles. Later, scientists have
started to focus on dynamical aspects of the motor system. Uno et al. [119] proposed
that the rate of change (with respect to time) of joint torque was minimized instead
of the third derivative of end-effector position. Since these variables are related by
an nonlinear mapping, these cost functions render different solutions. More recently
different research groups formalized amodel based onminimizing the squaredmotor
commands [25, 60, 116]. This measure does not reflect energy consumption, instead
it should be viewed as an abstract notion of “effort” [50]. One of the criticisms to all
thesemodels has been that they do not include the inherent noise of the sensory-motor
systems. A fundamental characteristic of motor noise is that its standard deviation
scales with the amplitude of motor commands, i.e., signal-dependent noise [62].
To take this observation into account, Harris and Wolpert [53] proposed that the
process of motor planning minimizes endpoint variance, hence maximizing move-
ment accuracy. The minimum endpoint variance model was able to predict eye and
arm movements [53, 54]; however, it was less accurate than the minimum effort
model in predicting the distribution of forces generated by each finger to produce a
total desired force goal [89].

2.2 Optimal Feedback Control

The optimality models described so far provide control policies that do not react to
execution errors. In mathematical terms, they are functions of time only (i.e., feed-
forward). On the other hands, we are able to adjust our movements at the occurrence
of unexpected events. One possibility to address this limitation could be to introduce
a fast feedback loop that, upon disturbances, tries to push the state of the system to
a previously planned desired trajectory. However, this strategy is very inflexible (as
it assumes a single strategy to solve a motor task, i.e., the planned trajectory), and it
might lead to suboptimal solutions (for example, it could increase the effort to solve
a task). A less trivial possibility is provided by the framework of optimal feedback
control [12, 103, 116]. An optimal feedback control law is a policy that minimizes
a given cost function, and specifies the optimal motor command for each state of the
body and time of execution. In the field ofmotor neuroscience,many researchers have
proposed a cost function that takes into account task accuracy and effort [116]. As a
results, the controller reacts to perturbations that are task-relevant and ignores devi-
ations of task-unrelated variables, as opposed to following a preplanned trajectory.
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This strategy is also referred to as minimum intervention principle [75]. These pre-
dictions are confirmed by several experimental observations [25, 40, 49]. However,
optimal control theories have recently been challenged by novel results that suggest
a habitual rather than optimal execution of motor tasks [24, 77].

2.3 Internal Models

One of the assumptions of optimal feedback control models is that precise sensory
information is instantly available. This assumption is unrealistic, because noise as
well as delays affect the sensory-motor system. To overcome this issue, it has been
proposed that the CNS computes online estimates of the current sensory information
by taking into account previousmotor commands and (out-of-date) sensory readings.
This is hypothetically achieved by means of two mechanisms: forward models and
sensory integration.

Forward models are computational entities that instantiate models of the neu-
romuscular system and the environment, and predict the sensory consequences of
motor commands. The brain could then take decisions based on such predictions
(hence used as fast feedback loops) without having to wait for the actual delayed
sensory readings. The idea that the CNS employs such a mechanism has been ini-
tially proposed to explain how the brain corrects movements that are executed so
quickly that sensory feedback cannot be used, i.e., saccadic eye movements [106].
Recently, Xu-Wilson et al. [126] have shown that, unlike healthy subjects, patients
with cerebellar damages cannot compensate the variability of motor commands in
saccades. Since there is an evidence that forward models are implemented in the
cerebellum [90], this results suggest that healthy people employ forward models to
predict the consequences of saccadic motor commands and readily correct predicted
errors.

Internalmodels havebeen investigated also inmovements affected by long-latency
sensory feedback.To this end, the classical experimental paradigmconsisted in apply-
ing force disturbances bymeans of a robotic device [105]. The authors of these studies
observed that after an adaptation period, subjects were able to compensate for the
applied disturbance, and concluded that internal models were continuously updated
in order to predict the sensory consequences of the motor commands in the altered
environment (see Sect. 3). Flanagan et al. [36] arrived to similar conclusions by
showing that subjects were able to predict grip forces during object manipulation
[35, 37]. Ariff et al. [5] observed that saccades anticipated the final position of the
hand during reaching movements without visual feedback in healthy people. If the
arm movement was perturbed by an external force field (i.e., changing the dynamics
of the environment), subjects were initially not able to predict the final hand loca-
tion, but they regained this capability after learning. The authors of this work con-
cluded that saccades rely on predictions, and that the internal forward model can be
adapted to account for changes in the environment [88]. Miall et al. [83] showed that
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perturbations on the cerebellum by transcranial magnetic stimulation (TMS) pulses
during arm movements led to delayed estimate of the position of the limb.

The elements required by the CNS to compute forward sensory predictions are the
motor commands and an estimate of the current body state. It is hypothesized that the
CNS keeps a copy of the descendingmotor signals, called efference copy. Estimating
the current body state involves the integration of various sensory modalities, which
might carry different noisy information. This process has been explained with the
framework of Bayesian integration. In this context, previous sensory predictions are
used to compute a prior probability of the current state, which is then combined to the
actual sensory information, obtaining a posterior probability. The latter represents
the current belief about state of the body and the environment. These ideas have
been tested experimentally by assessing the capability of human subjects to estimate
positions [67], forces [66], and velocities [112] using sensory information currupted
by noise.

Optimal feedback control, internal models, and Bayesian integration can been
assembled in a unified computational framework, depicted in Fig. 1, that arguably
represents the most comprehensive view of motor control [104].

Fig. 1 A unified view of motor control theories. Motor commands are generated according to an
optimal feedback control policy, which embeds the requirements of the task. Body and environment
react to these commands, and move to a different state. The sensory system measures the new state
but, due to time delays in the neural pathways, it provides “out-of-date” measurements. Optimal
feedback control, however, needs updated, rather than delayed, feedback information in order to
generate optimal motor commands. Such an updated information is provided by a fast-state esti-
mator, which integrates the sensory measurements (that possibly arrive from a variety of sensory
streams) with a prediction of the sensory consequences of motor commands; hypothetically, this
integration is performed according to the Bayessian framework. Predicted sensory consequences
are generated by a forward model. This scheme has been adapted with permission from Shadmehr
and Krakauer [104]
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2.4 Equilibrium Point Hypothesis

Analternative to themodels discussed so far is the so-called equilibriumpoint hypoth-
esis (EPH) [32, 33]. This hypothesis assumes that the CNS controls body parameters
rather than variables directly related to the task, and that movements emerge from the
physical interaction between the appropriately tuned body dynamics and the envi-
ronment. In particular, it is hypothesized that descending motor commands adjust
parameters of the tonic stretch reflex in order to produce a desired equilibrium point
of the limb [31]. Thus, the EPH exemplifies the main idea of the dynamical pattern
theory of motor control, i.e., movements are emergent properties [102, 114].

To understand the EPH it is necessary to spend a few words on its key ingredient,
the tonic stretch reflex. This is defined as a sustainedmuscle contraction in response to
slow stretching [72]. When a muscle is slowly stretched by an external load, initially
it produces an opposing force due to its passive elastic properties. If themuscle length
overcomes a certain threshold, the subsequent activity of muscle spindles leads to
the recruitment of a group of motor neurons, which causes the muscle to contract
producing an active force that opposes the stretch. This force increases nonlinearly
with the amount of stretch. For a given constant load, the muscle stabilizes at a given
length called equilibrium point.

In the context of the EPH, the position of a limb results from the equilibriumpoints
of the muscles around its joints. In order to generate voluntary movements, the brain
sends descending commands that modify the threshold of the tonic stretch reflex arcs.
As a result, new equilibrium positions are defined, and the limb moves accordingly.
This idea has a few implications that are worth discussing. First, muscle activation
is not directly controlled by descending motor commands, rather it results from the
tonic stretch reflex. In other words, for a constant motor command (which defines
the threshold of the reflex), different muscle activations as well as limb positions can
be obtained depending on the external load. Second, there is no need to estimate the
body state to compute appropriate motor commands. Indeed under an assumption
of stability, the body will move toward the equilibrium point independently on its
initial condition.

The problem of motor coordination is not solved by the EPH. A great number of
variables, in this case the parameters of the stretch reflexes across muscles, should
be coordinated in order to accomplish the desired task. How does the CNS solve
such a redundancy? To this end, the uncontrolled manifold hypothesis (UMH) has
been suggested as a general principle of coordination that could be applied at any
level of details of the CNS. The idea is that the controller tries to keep the values of a
group of task-related “elemental variables” (e.g., joint angles, muscles forces, muscle
activations, thresholds of tonic stretch reflexes), named structural unit or synergy,
within a subspace corresponding to successful task achievement (the uncontrolled
manifold). Thus, the controller does not specify a single task solution (as in the case
of optimal control), rather it facilitate variability within the uncontrolled manifold.
In principle, this is the same behavior of an optimal feedback controller, which only
reacts to deviations on task-related dimensions (see Sect. 2.2). The UMH and the
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notion of structural units have been used to explain postural control [42, 71, 74, 123]
and manipulation [22, 73, 108, 127].

Usually, scientists who support the EPH are rather skeptical about the idea that the
CNS learns and use internal models. Instead, they are more inclined to think that no
heavy computations are performed, and that movements emerge from the interaction
between body and environment. As a matter of fact, however, there is the need for
the CNS to compute how to modify the parameters of the tonic stretch reflex in order
to accomplish a desired task. Thus, a mapping between motor commands (i.e., reflex
thresholds) and output variables (i.e., an internal model) might still be needed.

3 Motor Learning

Humans show a remarkable capacity to learn a variety of motor skills, whether
it is adapting to changes in our environment, acquiring new skills, or improving
existing skills. A lot of progress has been made on motor learning over the last few
decades; however, researchers have a fair understanding of motor learning only of
a narrow range of tasks, including simple reaching task in which different types of
perturbations are applied. One of the exciting challenges ahead includes bridging the
knowledge on simple movements to ‘real-world’ motor learning, and translating this
knowledge to neurorehabilitation paradigms.

Motor learning is a broadly defined term referring to improvement in motor per-
formance through practice [69]. It is believed that motor learning consists of multiple
processes, of which motor adaptation and skill acquisition are considered to be the
main processes in the literature [64, 69]. Motor adaptation is commonly defined
as the response of the motor system to perturbations, such as changes in the envi-
ronment, to regain a former level of performance in the new, changed environment
[106]. Skill acquisition is considered to be a process in which task performance is
improved beyond the baseline, mostly in the absence of perturbations. Researchers
posit that skill acquisition is manifested by reduced motor variability and achieving
higher levels of performance without a reduction of speed [69, 94, 109].

The goal of this section is to provide an overview on motor learning. Note that
excellent reviews are already available describing the substantial progress of our
understanding of the mechanisms of motor learning over the last decades (e.g., see
Refs. [69, 106, 125]). Here, we give a short overview of the most important aspects
of thesemechanisms as a background for the other sections and chapters of this book.

3.1 Motor Adaptation

Motor adaptation has been investigated extensively using error-based learning para-
digms, such as visuomotor rotations or force fields [105, 106]. In these paradigms,
participants experience aperturbation resulting in adiscrepancybetween thepredicted
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Fig. 2 A visuomotor rotation is a commonly used error-based learning paradigm. a Participants
are asked to make movements with their hand so that a cursor moved from a starting position to a
target. In the baseline condition, hand and cursor movement are congruent. In the adaptation phase,
a visual rotation is imposed (45 degrees counterclockwise in this case) on the cursor movement;
e.g., whenmoving the hand straight forward, the cursor wouldmove at an angle. Studies have shown
that participants gradually learn to move their hand in a way that compensates for the rotation, such
that the cursor moves to the target again. b This figures shows a typical adaptation curve. When
the rotation is introduced, the error at the end of the reaching movement initially is large, followed
by a gradual decline of endpoint errors with increasing number of movements. At some point, the
movement error is similar to the baseline, indicating that the participant is adapted to the visual
rotation. Adapted from [82, 106]

and executed hand trajectories; for instance, due to a perturbation in visual informa-
tion (visuomotor rotations), or to perturbing forces (force field paradigms) [69, 106],
see Fig. 2 for an short description of a visuomotor learning paradigm. Adaptation is
the process that reduces the systematic error induced by the perturbation, and it is
believed to occur through trial-by-trial adjustments of an internal model (the forward
model) that maps motor commands onto predicted sensory outcomes. By doing so,
error-based learning keeps movements well calibrated and correct for systematic
biases [106].

3.1.1 Error as a Learning Signal

The learning signal driving adaptation in error-based learning is, as the name implies,
the error signal between a desired and actual action, as well as the particular way
the desired action was missed [106, 125]. The error signal is believed to adapt the
motor commands, such that the error decreases in consecutive movements [106].
Wolpert and colleagues reported that in order to adapt to perturbations, the nervous
system also estimates the gradient of the error with respect to each motor command
component [125]. This means that the motor system needs to have an idea of how
components of the motor command attribute to the error, and subsequently how the
motor system can reduce the error. Wei and Körding posited that the sensorimotor
system might adapt to errors in a nonlinear fashion [124]. They suggested that the
sensorimotor system must weigh the information, in this case the error, provided by
the uncertainty the information has in the signal. The ideal strategy, they argue, is
therefore nonlinear, where small errors are compensated in a linear fashion and large
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errors would be disregarded. Errors that fall within the expected variance will be
adapted for in a fairly linear way, whereas participants showed nonlinear and non-
specific adaptation to single trials containing error signals that exceeded expectation
[41, 124].

3.1.2 Different Processes of Motor Adaptation

Temporal processes Smith and colleagues [111] proposed a model in which two
parallel temporal processes drive motor adaptation: (1) a fast-acting process that
learns and forgets quickly and (2) a slow-acting processes that learns and forgets
more slowly. This model is able to explain complex features of motor learning such
as spontaneous recovery of learning, savings (relearning of a perturbation or skill
is faster than the initial learning), anterograde learning (the ability of a previously
learned force field task to reduce the learning rate of a different subsequent task)
and even patterns of 24-hour retention [61, 110]. More recent studies suggested that
additional learning processes also need to be present to fully explain the temporal
evolution of motor adaptation. Lee and Schweighofer [76] proposed a model with
a single fast process combined with multiple slow processes, that could explain
different types of adaptation tasks. An advantage of such a multi-rate learning model
is that it can account for different temporal changes of the sensorimotor system, such
as fatigue or injury [76, 125].

Model-based and model-free processes It is likely that multiple processes occur
during motor learning, which are often classified as model-based learning processes
(e.g., adaptation of the internal model) or model-free learning processes (e.g., use-
dependent plasticity and reinforcement learning). For instance, studies have shown
that several (model-free) processes occur besides error-based learning (adaptation):
use-dependent plasticity [28, 56, 121] and reinforcement learning [56].

It has been shown that repeating amovement in a particular direction does not only
reduce movement variability, but also creates a bias toward that direction in future
movements [121]. This repetition-induced bias has been termed as use-dependent
plasticity [69]. A couple of studies showed that when performing a reaching task in
a perturbed environment, adaptation and use-dependent plasticity occur simultane-
ously [28, 56]. Huang and colleagues used a modified visuomotor rotation paradigm
to show that participants, when adapting to the visuomotor rotation, create a bias
toward the adapted movement direction [56].

In addition, Huang and colleagues [56] hypothesized that, during a visuomotor
rotation adaptation task, hitting a target is a form of implicit reward driving a rein-
forcement process whereby successful error reduction is associated with the motor
commands. They also showed that the model-free reinforcement learning process
is independent of model-based learning (adaptation). Combining the model-based
adaptation process with the reinforcement process leads to faster relearning (i.e.,
savings).
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3.1.3 Structural Learning

Structural learning is a framework to explain the learning-to-learn phenomenom [14,
15]. Structural learning can be considered as learning certain features of a learning
task, such that learning of similar tasks is facilitated. Braun and colleagues found
support for structural learning by having participants perform reaching movements,
during which random visuomotor rotations were imposed. The participants then
adapted to a constant visuomotor rotation. They found that being exposed to the
random visuomotor rotations facilitated learning in the constant rotation [14]. Braun
et al. suggested that training with the random rotations allowed the participants to
extract relevant features, or structures, of the task; all tasks were rotations. Structural
learning is also consistentwithin theBayesian framework, in that it would correspond
to learning new prior distributions on the parameters of the perturbation [9, 10, 34].

3.1.4 Neural Correlates of Adaptation

Although the notions of different learning processes are intriguing, it is still not
completely known how the brain performs all these hypothesized actions. Evidence
suggests that the cerebellum plays an important role in trial-by-trial error-based
learning [8, 26, 29, 117]. More specifically, some studies posit that the cerebellum
computes the prediction error-driving adaptation [99, 113]. Patients with cerebellar
lesions showed substantial impairment in fast adaptation across different tasks [26,
117]. Brain stimulation studies found that enhanced cerebral activity using transcra-
nial direct current stimulation resulted in faster adaptation [44, 47, 100]. Where
different types of adaptation are neurally stored remains an open question [125].

3.2 Skill Learning

Whereas in error-based learning, the motor system aims to reduce the error to zero, it
does not systematically improve performance beyond baseline, a feature that is con-
sidered to be crucial in skill acquisition [82, 94, 109, 125]. Unlike adaptation, skill
acquisition is studied for tasks where often no perturbation is present. Although dif-
ferent learning processes, such as reinforcement learning, are likely to play important
roles in skill acquisition, they are not aswell understood compared to themechanisms
underlying error-based learning.

3.2.1 Reinforcement Learning

To achieve an increase in performance, such as a reduction in error variability, rein-
forcement learning can help to find a solution to a movement problem. Reinforce-
ment learning is driven by a reward signal; for instance, the information about the
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relative success and failure of a movement [41, 125]. In contrast to the error signal
in error-based learning, a reward signal does not give information about the direction
of required behavioral change [125]. Therefore, reinforcement learning tends to be
slower than error-based adaptation. However, when a complex sequence of actions
is necessary to achieve a goal, reinforcement learning can be used to explain what
actions led to success and which led to failure, whereas error-based learning might
be less successful.

3.2.2 Speed-Accuracy Trade-Off

Recent research has defined skill acquisition as a shift in the speed-accuracy trade-off
function (SAF) [94, 109]. Reis and colleagues argue that defining skill acquisition
as a shift in SAF is necessary, otherwise it is not clear how to relate changes in speed
and accuracy to a change in skill. For instance, one could reduce execution speed
and obtain a higher accuracy by “moving” along the same SAF, which would not
reflect a change in skill.

Furthermore, Shmuelof et al. posit that a crucial concept regarding skilled per-
formance is that successful execution and the trajectory kinematics associated with
this execution are distinct. This is the case because only the task success is explic-
itly required, whereas there may be multiple kinematics that reach the desired goal
[109]. In an experiment where subjects were instructed to follow a curved path with-
out perturbation using wrist motions, the authors examined changes in the SAF and
trajectory kinematics during learning. They found that practicing in restricted speeds
led to a global shift of the SAF. Improved performance largely resulted from reduced
trial-to-trial variability and increased movement smoothness. The authors propose
that motor skill acquisition can be characterized as a slow reduction in movement
variability, which is consistent with previous studies [85, 86] but distinct from faster
model-based learning, which reduces error in adaptation paradigms.

3.2.3 Skill Learning and Optimality

Optimal feedback control (OFC), as described in Sect. 2.2, could be used to study
skill learning [27, 69]. Although OFC has not been used to describe the learning
process itself yet, it has been used to explain how we learn to control complex
objects with internal degrees of freedom [87], see Fig. 3. For these tasks, there is
no simple one-to-one mapping from the hand state to the state of the object (i.e.,
there are uncontrolled degrees of freedom). During training, participants interacted
with the objects and showed improvements in meeting an accuracy criterion even
though they had to move faster (i.e., shift in SAF, which is considered to be an
improvement in skill). The hand kinematics after training could be described by OFC
using a relatively simple cost function. The authors assumed that during training,
the participants adapted to the complex dynamics in accordance with a model-based
optimization of the cost function [87]. One could speculate that only themodel-based
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Fig. 3 Optimal feedback control could be used to study motor skill learning. as Schematic rep-
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a start position to a target within a prescribed time window. The hand and object were connected
through the complex dynamics of a mass-damper-spring system. b The recorded hand trajectory
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hand and object to the target. Nagengast et al. concluded that the simulated hand trajectory fits the
measured hand trajectory well. c The measured object trajectory and simulated object trajectory
describe a relatively straight line from the start to the target. As mentioned before, the simulated
object trajectory described the measured object trajectory well. Adapted from [87]

optimization part would lead to skill acquisition; however, since the training was
not the focus of Nagengast’s study, insufficient data were available. Krakauer and
Mazzoni suggested that two processes could occur during training, leading to better
performance: convergence to the optimal policy, or improved execution of the control
itself. Either of these processes could lead to a shift in SAF [69] and to reductions
in movement variability [85, 86].

4 Application to Upper Limb Prosthesis Users

“Neurorehabilitation is based on the assumption that motor learning principles can
be applied to motor recovery after injury, and that training can lead to permanent
improvements in motor function in patients with motor deficits”. Considering this
statement of [63], the reconstruction of upper limb prosthesis user joint functions
appears as a special case of neurorehabilitation.

Amputees have quite differentmedical history than, for example, stroke survivors.
This is because prosthesis users have either lost one or more joints due to an accident,
or they have already had received a surgery for reconstruction that unfortunately
ended up in an amputation. Besides pain and physiological problems, prosthesis
users become substantially influenced by psychological factors, such as (i) learning
ability, (ii) cognitive skills, (iii) motor skills, and (iv) mental status (e.g., motivation,
will, stress), which are situated in their mental–body. Thus, a prosthesis user needs
time for adaptation and reorganization of the neuronal network to the new setup. It
seems that they feel and imagine their original joints and they can also move them,
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a phenomenon called phantom limb [91], and that they can even feel phantom-limb
pain [39, 101].

Reasons for amputation can be different; however, all amputees have to struggle
with the new situation: some structure of their limbs is no longer present, but their
synaptic input connections to the brain, say the neural network, is still present. Some
afferent connections are lost, where the synapses are then somehow floating, say
they are simply left open; and some efferent connections (i.e., axons from neurons
that formerly have had controlled muscles of the lost joints) also end up. Patients
have been able to perform mental finger motions right after amputation and after
several years they are still capable of controlling their forearm muscles. This has
been attributed as evidence to brain plasticity and reorganization [91].

Hence, exploiting the phantom-limb phenomenon could enable more intuitive
prosthesis control to users. They may simply try to move the phantom-limb joints as
if they used their original joints. In particular, contractions of residual muscles of the
stump can be captured by means of surface EMG electrodes, and they can be used
for the control of the prosthesis.

4.1 Prostheses of Today

Standard applications of prosthesis control use two EMG electrodes, one on the flex-
ors’ side and one on the extensors’ side of the residual part of an amputated upper
limb, either on the forearm or the upper-arm. Such a setup enables the control of at
least one degree of freedom (DOF). In order to support more DOF, a switchingmech-
anism is used to switch between available DOF. This switching mechanism can be
implemented by co-contractions or other muscle activation sequences. Although this
works in principle and it is relatively simple, the downside is that the full prosthesis
control has a low chance to be integrated over time into dedicated motor programs
by the user brain, because of the required switching actions.

In the last years, more dexterous prosthesis components and systems emerged on
themarket providingmore DOF, e.g., theMichelangelo®-HandAdvanced Prosthesis
System (Otto Bock Healthcare Products GmbH, D), the iLimbHand (Touch Bionics,
UK), the be-bionics-Hand (RSLSteeper, UK), or the Vincent Hand (Vincent Systems
GmbH, D), to name a few. An EMG controlled prosthesis consists of an inner shaft
and an outer shaft. The inner shaft carries the EMG-electrodes and fits the prosthesis
user stump very tightly in order to provide a vacuum in the socket for fixation. The
outer shaft ismade of carbon or othermaterial for protecting the prosthesis equipment
and providing the carrier for the hand component. Fitting the prosthesis to its user is
a mandatory step toward a successful prosthesis utilization.

For the control of advanced devices,more signals are required, and can be obtained
using additional electrodes. However, muscles do not work independently, because
of synergies that include groups of two or more muscles. Therefore, separability
between single muscle contractions is not naturally given and can be achieved only
approximately by intense training.
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4.2 Prosthesis Control, Machine and Human Learning

It is assumed that a prosthesis user has at least residual understanding of doing
phantom movements [91]. In addition, motor programs are assumed to work also for
voluntary controlled joint movements [43] as they work for continuously repeated
movements. The more degrees of freedom a multifunctional prosthesis provides, the
more factors of user performance become important. These factors originate from
users‘motor abilities, such as the discriminability of their EMGsignal pattern vectors
between different phantom-like and the precision of repeating them always in the
same manner.

During assessments, psychometric measures of user ability and classification per-
formance for rating user performance in laboratory [45] and real-life scenarios [4]
have been applied. When a novice prosthesis user tries to perform repetitions of the
same movement, using a certain joint and using the same contraction, it can hap-
pen that the resulting outcomes are not always the same. This observation can be
attributed to variability in motor control.

In order to face the variability of motor control, statistics and machine leraning
are often used to control robotic prostheses. To this end, it is crucial that the collected
training set provides sufficient information on the realtionship between EMG signals
and desired movements. Figure4 shows three exemplary training sets: (i) a small
training set (pictured in red), which can be obtained with minimal training effort; (ii)
a huge training set (black), which is robust to variability but it requires a very high
training effort; and (iii) a medium training set (blue), which represents a trade-off
between variability and learnability. In Fig. 4, a mean-shift1 between training and
test data D is depicted. It is possible to notice that, while there is no overlapping
between the small training set and the test set, the medium training set comprises the
test set, thus it can lead to satisfactory performances.

In conclusion, different phantom movements should result in differentiable mus-
cle contractions with no overlapping EMG patterns. This can only be achieved by
repeated training, perhaps with visual feedback to speed up the learning process.

4.3 Optimization of Training

Training amputees to use robotic prostheses should be divided in two components: (i)
training for machine learning, which identifies a mapping between EMG readings
and prosthesis joint control signals; and (ii) training for human learning, which
should train amputees to perform stable and repeatable phantom movements..

While literature focuses mainly on machine learning techniques for prosthe-
sis control, in practice, the variability of user behavior is more crucial and may
degrade completely the performance of a sophisticated machine learning solution.
Additionally, the more functionalities a prosthesis provides to the user, the more

1In practice, also covariance shift changes are possible, changing also the shape of the data [46] .
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Fig. 4 Toy example of the statistics of three training sets with different data sizes and one test
set D. The small set is out of only few training trials and a small mean-shift of the test set D
distribution leads to nonfunctional behavior. The huge set is robust against mean-shift, but needs
too much training effort. Thus, the sufficient set uses an optimized trial set and is more robust to
slightly changed distributions

precisely the user must perform required muscle contractions, in order to provide
direct control. Recall about the assumption of benefit that users should get able to
simply forget about operating a prosthesis, because direct control handling, on the
long run, should seamlessly integrate directly into the motor cortex.

Applying learning methods to yet untrained subjects might cause the follow-
ing problem. When the user tries to minimize their signal variability, the resulting
EMGpatternmay overlap those associated to other phantommovements. This would
require to retrain the prosthesis user to employ different patterns across movements,
which is cumbersome and should be avoided. Information on these EMG overlaps
could be exploited by a physioterapist to guide the amputee to perform distinctive
phantom movements [52].

The co-optimization of machine learning and human learning seems to be a
promising approach to solve this issue. Interested readers should refer to [4, 45].

5 Motor Learning in Rehabilitation

This section describes some rehabilitation techniques based on motor-learning prin-
ciples, given special attention on those supported by novel technologies as robots
and electrical stimulation. These rehabilitation techniques rely on the assumption
that patients with neurological lesions are able to learn by means of the plasticity of
the CNS [43]. The plasticity capacity of the CNS has been demonstrated in literature
[51], and it is currently exploited for rehabilitation after neurological injuries. In
this regard, rehabilitation techniques attempt to exploit plasticity to achieve recovery
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through different motor learning concept. Patients can be exposed to combinations
of sequences of different techniques based on their needs and their performance
history [70].

5.1 Constraint-Induced Movement Therapy

Constraint-induced movement therapy (CIMT) is a rehabilitation therapy based on
the theory of “learned nonuse.” The learned nonuse phenomenon is developed dur-
ing the early stages after stroke, as the patient begins to compensate their motor
function due to difficulty and inability to successfully carry out motor tasks using
their impaired limb [48]. This compensation increases reliance on the intact limb
hindering recovery of the impaired limb.

This rehabilitation technique has two main components and is usually given over
2weeks [70]. The first one is to restraint the less-affected extremity, the second one is
to practicewith the affected limb for 6 hours a day using shaping.Although it has been
demonstrated that chronic stroke patient can show significant motor improvements,
the use of CIMT remain controversial [70, 120]. The main arguments arise by the
facts that the restrain stage can be very frustrating and that the inclusion criteria may
lead to excluding many patients. In literature, there is not a clear position regarding
inclusion criteria about the patient stage after stroke, despite it has been used in acute,
subacute and chronic stages [120]. The generally accepted condition is that patients
must have capability of perform at least 10 degrees of finger and wrist extension.

Massive practice is the main principle behind this rehabilitation technique, in
which patients are required to use their affected arm to carry out motor activities. At
the beginning, this therapy could be frustrating specially in patient with high motor
impairment [79]. It has been also mentioned that since the restriction the movement
of the nonaffected arm yields to explore command space with the affected arm, this
technique encourages the exploration of a global optimum [58].

5.2 Robotics Rehabilitation

The development of robotic therapywas driven by the evidence that the injuredmotor
system can reorganize in the setting of motor practice (plasticity). Also, that robot-
ics devices provide the ability to automate intensive training techniques, increasing
safety for both patient and therapists, and improve user-therapy accessibility [92].
High intensity and repetitive training are the key features to promote motor learn-
ing, reduce motor impairment and enhance motor function [58, 64]. In this regard,
robotics provide a great opportunity to deliver a much higher dosage of training and
intensity [92].

It is worth noting that these devices allow scientists to carry out a rigorous vali-
dation and application of motor learning principles in neurorehabilitation [58]. Fur-
thermore, robotic platforms provide the possibility to test different motor learning
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principles through variations of control algorithms, to create many dynamic environ-
ments, and to investigate the human ability to adapt to them [93].

It is important to note that as Reinkensmeyer and Patton introduced, guidance can
impair learning because it changes the dynamics of the task to be learned [93]. They
also mentioned that guidance could be very helpful to teach skilled movements that
require coordinated motions of multiple joints while the vision must be kept on the
target object. So the usefulness of guidance for trajectory learning may depend on
the task to be learned.

Another trend widely explored regarding motor learning and robotic devices is
motor adaptation. Huang and Shadmehr [58] describe motor adaptation as a learner’s
reaction to a change in the environment. An example of a study that induced motor
adaptation consisted in performing reaching movements under perturbations intro-
duced by a planar robot (perturbation force field). These perturbations were perpen-
dicular to movement directions and proportional to movement velocity [105]. After
some movements under the perturbation force field, the learner modified its motor
response during reaching movements. This modified response is called motor after-
effect, and it has been demonstrated that the subject’s adapted response temporarily
persist as if the perturbation force was still present. This after-effect technique is
opposite to robotic guidance because it increases trajectory errors during movement,
and thus it could be also called as an error-augmentation strategy [93].

Many studies were presented that deal with motor after-effect for both upper and
lower limbs. Scheidt and Stoeckmann used the MIT-Manus to compare force field
adaptation in post-stroke and healthy subjects [98]. They found that both groups
utilize the same compensatory strategies evidencing that post-stroke patients have
the capability to adapt their motor responses as healthy subjects do, although it
may take more training. For lower limb case, Reisman et. al. carried out a study
in a split-belt treadmill with chronic hemiparesis that showed asymmetry in inter-
limb coordination during walking [95]. In the experiment, one belt sped up and
the other slowed down. Similarly to the upper limb study, patients presented after-
effects responses that improved the symmetry of their gait patterns. The last remark
concerning the after-effect is that the learner does not solely adapt to environmental
dynamics changes, but he/she is also able to anticipates the expected dynamics of
the new environment and moves according to a new set of expectations. Huang and
Shadmehr [58] mentioned that motor adaptation appears to rely on an update in the
internal representation (internal model) of the external environment, and that internal
model learned in the robotics force field paradigm could be retained over time.

Rehabilitation training must be executed to achieve lasting and generalizable gain
ofmotor capabilities. Themain idea behind generalization is that training task X must
lead to improved performance in task Y and Z . Baraduc and Wolpert [6] performed
experiments of reaching and point to a target from the same starting point using index
fingers but with different initial arm configurations, and concluded that in robotic
neurorehabilitation is important to train patients across differentmovement directions
to learn a task . Wang and Sainburg [122] discovered that training under clockwise
force dynamic perturbations in one arm can generalize to the other arm with counter
clockwise perturbations. Hemminger et al. [21] concluded that adaptation to force
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dynamics can transfer only from the dominant to the nondominant arm . Regarding
force field rate variation, gradual user adaptation to a force field promotes larger and
longer lasting after-effects than sudden changes in the force field [65].

It is also important to remember that a variable training schedule is better than
a continuous schedule as it promotes retention and generalization [68]. In the work
presented by Aboukhalil et al., they conclude that motor retention is higher when
training sessions are temporally distributed over a period of time [2]. Huang and
Krakauer also affirmed that minutes or even hours between training sessions may
facilitate consolidation of motor memories [57]. Addressing these principles, robotic
therapies must be programed to combine two or more tasks in one session rather than
training only one task.

Robotic rehabilitation is an ideal tool to both test and eventually implement reha-
bilitation paradigms to aid motor recovery after stroke and other central nervous
system diseases [58]. Furthermore, it enables to deliver automated and predefined
training session. However, in order to promote motor skill acquisition and retain it
beyond the training session, motor control principles should be taken into account.

5.3 Triggered-Based Functional Electrical Stimulation
on Rehabilitation

Instead of using a robot to drive the limb of a patient by applying external mechani-
cal forces, neuromuscular electrical stimulation (NMES) therapy facilitates exercise
execution leaded by the participant’s own muscles. NMES relies on short electrical
pulses with the aim of recruiting motor neurons that generate muscle activations
and hence produce movements. The intensity of the electrical pulses sets the total
charge transferred to the muscle. The amount of charge driven to muscles depends
on pulse shape, amplitude, width and the frequency [78]. The use of NMES has
arisen as a research cooperation between disciplines like neurophysiology, engineer-
ing, and rehabilitation and others, that have promoted their development and use for
rehabilitation purposes [16].

In literature, two applications based on electrical stimulations formotor relearning
can be distinguished: cyclic NMES and neuroprosthetics. Cyclic NMES was defined
as continuous or periodic muscle stimulation through electrical pulses. While the
term neuroprosthetics involve an artificial system bypassing the neural system to
restore lost body functions by providing functional movement patterns using elec-
trical stimulation [59]. During cyclic NMES patients are passive, and they are not
required to perform any cognitive effort, in the form of either initiation of muscle
contraction, interpretation of afferent signals, or functionality of motor task [107].
Whereas in neuroprosthetics applications, alternative motor pathways are recruited
and activated to assist the damaged efferent pathways of the central nervous system
[19]. In this second strategy, repetitive movement training is performed in the context
of functional behavioral tasks [16, 107].



244 C. Alessandro et al.

The most popular way to perform user-triggered NMES is based on electromyo-
graphy (EMG) signals. EMG-triggered stimulation consists in monitoring the activ-
ities of one or more muscles, and triggering NMES when the corresponding EMG
signals overcome a predefined threshold. This technique is usually used in patients
with residual motor function, where motor neural connections are still working, in a
way that voluntary commands generate strong enough EMG signals that can be dis-
tinguished from its baseline activity. A step forward to this approach was presented
in [1], where the stimulation was modulated in proportion to the voluntary EMG, so
that a closed-loop EMG-controlled system resulted in both clinical improvement of
the paretic upper extremity and cortical modulation in patients after stroke. When
neural connections are too weak and the muscle baseline signal is indistinguishable
from the activation stage, electroencephalography (EEG) signal could be used [55].
In this case, patients’ intentions can be detected by monitoring cortical brain activi-
ties, which then trigger the electrical stimulation to assist the movement. Two motor
learning principles are coupled during voluntary NMES-triggered therapies: repeti-
tion and sensorimotor integration [70]. Furthermore, triggered NMES has also been
coupled with randomized practice schedule, testing the hypothesis that contextual
interference will aid recovery [19], and with bilateral coordination training [18].

Controversial results were found in literature regarding the benefits of cyclic
NMES compared with a neuroprosthetics. On the one hand, De Kroon and IJzer-
man have not detected significant differences regarding the functional outcome [23].
On the other hand, Bolton et al. have mentioned that neuroprosthetics generated
higher improvements compared with cyclic NMES [13]. Despite this discrepancy,
it is globally accepted that functional improvement is enhanced when stimulation is
associatedwith voluntary attempts [16]. Cauraugh et al. explained that improvements
obtained in stroke patients after neuroprosthetic therapy can be explained in terms of
the sensorimotor integration theory. In particular, neuroprosthetics movements pro-
duce proprioceptive feedback, an afferent signal that returns to the somatosensory
cortex, completing the sensorimotor cycle. The voluntary efferent output as well
as the afferent input may assist in organizing the distorted signals arising from the
damaged brain area [17]. Indeed, proprioceptive feedback has a critical role in motor
planning by updating an internal model of the state [70]. For additional details on
triggered NMES studies, the reader can refer to [16, 18, 59, 107].

In order to enhance patients’ recovery, some motor learning principles must be
taken into account during the use of neuroprosthetics devices. These considerations
include task repetition, novelty of activity, concurrent volitional effort, and high
functional content [107].
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