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Abstract HumanNeuroMusculoSkeletal systems (NMSSYs) are very complex and
have redundant anatomical degrees of freedom (DOFs) at muscles and joints. These
features enable them to easily perform dexterous tasks since the childhood. NMS
SYs have attracted many researchers from different scientific domains such as neu-
rophysiology, robotics, biomechanics, and neuro-rehabilitation engineering because
of its multi-task functionalities. Humans can perform hundreds of tasks and dynam-
ically interact with external environments in a very efficient way without thinking
about the complexity of the motor task. Thinking about twirling a coin or writing
tasks, the many complex operations needed to perform such actions rise important
questions like “do we really perform very complex computations to control our mus-
culoskeletal system?” or “how do we control our musculoskeletal system to perform
such actions?” and “what is the main contribution of our biomechanical structure in
the motor control task?”. Recently, scientists have paid more attention not only to
the neural commands but also to the biomechanical properties of NMS Sys and their
role in simplifying the motor control tasks. Muscles are the main building blocks in
our biomechanical systems. They can be continuously co-activated to produce and to
coordinate movements maintaining the stability. Muscle-tendon actuators have been
physically modeled, based on Hill-Type model, to study their non-linear behaviors
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and characteristics. Those models were then integrated with neuron models to pro-
vide a better understanding of the local control mechanism of a motor unit (e.g.
spinal cord motor neuron and muscle-tendon actuator). Motor unit behaviors are
observed through the muscle activity: the physiological process of converting an
electrical stimulus to a mechanical response. This process is fundamental to muscle
physiology, whereby the electrical stimulus is usually an action potential and the
mechanical response is contraction. The transformation from Electromyographic
(EMG) signal to muscle activation is not trivial and can occur through several steps.
Muscle activation dynamics is the physiological process described by those steps. In
general, the control of NMS models can be achieved also by combining together the
EMG signals to retrieve muscle synergies. Apparently, humans use different motor
control strategies to command their actions, some already exist in the Central Ner-
vous System (CNS) with their birth and many others are developed and/or adapted
during their life and gained experiences. However, both views of control strategies
suggest a task dependency of the neural control. More details on description of
muscle co-activation patterns based on the two views of the task dependent motor
control strategies are provided in this chapter which will give an insight not only on
a higher level of neural control but also at a lower level control of muscles in the
CNS. Computational musculoskeletal models can provide an accurate knowledge
of the physiological loading conditions on the skeletal system during human move-
ments and allow quantifying factors that affect musculoskeletal functions, thus it
can significantly improve clinical treatments in several orthopedics and neurological
contexts. Every patient is different and possesses unique anatomical, neurological,
and functional characteristics that may significantly affect optimal treatment of the
patient. Therefore, personalized computational models of NMS systems can facili-
tate prediction of patient-specific functional outcome for different treatment designs
and provide useful information for clinicians. Personalize computational models can
be derived by generic models or subject-specific models with different levels of
subject-specific details. In this chapter, we describe NMS systems in a bottom-up
fashion. First we provide a deep insight on muscle contraction dynamics and mus-
culoskeletal system properties. Then we discuss how a musculoskeletal system is
locally driven by neuromuscular controls. Afterwards, we define how central motor
commands are mapped through muscle synergies into low level controls. We discuss
the two visions on the motor control strategies that CNS might use to perform motor
control tasks and some related aspects inspired from neurorehabilitation studies and
motor control experiments. Finally, we describe the importance and application of
personalized subject-specific musculoskeletal modeling in neurorehabilitation.

Keywords Neuromusculoskeletal modeling ·Muscle-driven simulations ·Muscle-
tendon activation · Model calibration and validation · Motor control · Muscle
synergies · Muscle co-contraction
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1 Musculo-Tendon Models and Parameters

The CNS generates neural commands to activate the muscles in order to control the
human body movements. Subsequent forces produced by muscles are transmitted
through tendons to the skeleton to perform a motor task. Thus, muscles and ten-
dons are the interface between the CNS and the articulated body segments. A firm
understanding of the properties of this framework is important to scientists in order
interpret kinesiological events in the context of coordination of the body, and to
engineers in order to design prosthetic, orthotic, and functional neuromuscular stim-
ulation systems that helps to restore lost or impaired motor function. Biomechanical
models have been used in several studies to predict muscle forces and joint torques
along with human body motion. One of the first muscle’s mathematical models was
proposed by Hill [74]. Gordon et al. [66] refined such model by incorporating the
dependence between changes in muscle force as function of muscle lengths and con-
traction speeds. Zajac extended the Hill’s model introducing a muscle-tendon model
[136], which is known as Hill-type muscle force model.

Hill-type muscle model is an important component of most of the adopted mus-
culoskeletal models, yet it requires specific knowledge of several muscle and tendon
properties. These include the Optimal Muscle Fibre Length (OMFL), the length at
which the muscle can generate maximum force, and the Tendon Slack Length (TSL),
the length at which the tendon starts to generate a resistive force to stretch. Both of
these parameters extremely influence the force-generating behaviour of a muscu-
lotendon unit and vary with the size of the person. However, these properties are
difficult to be directly measured in vivo and are often estimated using the results of
cadaver studies, which do not account for differences in subject size [129]. The diffi-
culty associated to the directmeasurement of important variables, including the forces
generated by muscles, is one of the main limitations related to the use of experiments
only. As argued by Delp et al. [41], a theoretical framework is needed, in combi-
nation with experiments, to investigate the principles that govern the coordination
of muscles during normal movement, to determine how neuromuscular impairments
contribute to abnormal movement, and to predict the functional consequences of
treatments. A dynamic simulation of movement that integrates models describing
the anatomy and physiology of the elements of Neuromusculoskeletal (NMS) sys-
tem and the mechanics of multijoint movement provides such a framework [41].
Muscle-driven simulations rely on computational models of musculotendon dynam-
ics. These models are commonly subdivided into two classes: cross-bridge models
[49, 72, 135] andHill-typemodels [50, 131]. Although cross-bridgemodels have the
advantage of being derived from the fundamental structure of muscle, they include
many parameters that are difficult to measure and rarely used in muscle-driven sim-
ulations involving many muscles. For this reason and due to the fact that they are
widely used in muscle-driven simulations thanks to their computational efficiency
[2, 8, 13, 71, 78, 86, 118, 121, 137, 138], we focus here on Hill-type models.
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1.1 Architecture of Muscle Tissue

Musculotendon actuators are assumed to be massless, frictionless, extensible strings
that attach and wrap around bones and other structures [97]. Muscle are considered
to be a collection of equally long coplanar fibers arranged in parallel, where all fibers
are oriented either in the direction of the tendon or at an acute angle, also known as
Pennation Angle (PA), α > 0, to the tendon [136]. A common assumption is that
muscle maintains a constant volume and the distance between the aponeurosis of
origin and insertion is constant. The major effect on musculotendon function is that
α increases as fibers shorten. Thus, muscle fibers shorten in a direction that is not
colinear with the direction in which tendon stretches.

The length at which active muscle force peaks, L M
0 , is called OMFL. Notice that

the shortest length at which passive muscle tissue develops force is L M
0 . Given the

OMFL and the corresponding PA, α0, at which the muscle develops the Maximum
Isometric Force (MIF); the relationship between PAandMuscle Fiber Length (MFL),
L M , can be expressed as the following [62]:

sin(α) = L M
0 sin(α0)

L M
(1)

cos(α) =
√
1 − sin2(α) =

√√√√1 −
(

L M
0 sin(α0)

L M

)2

(2)

For muscles with a small PA, the PA will have little effect on the force in the mus-
culotendon unit. However, a large PA (i.e. greater than 20◦) can have a significant
effect on muscle force. PA can be directly derived from Eq.1, at time t :

α(t) = sin−1

(
L M
0 sin(α0)

L M (t)

)
(3)

A muscle can be represented by n motor units being controlled by n nerve axons
originating from the CNS, each with its own control ui (t). The muscle fibers of
each motor unit i collectively develop a motor unit force F M

i , which is most likely
assumed to sum with the other motor unit forces to produce the net muscle force
F M . This assumption allows us to represent musculotendon actuators with a wide
range of architectures with a single dimensionless model [14].

1.2 Hill-Type Muscle-Tendon Model

The general arrangement for a muscle-tendon model has a muscle fiber in series
with an elastic or viscoelastic tendon (Fig. 1). The muscle fiber has a contractile
component in parallel with an elastic component [25]. The Hill-type muscle model
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Fig. 1 Schematic of muscle-tendon unit showing muscle fibre in series with the tendon

is used to estimate the force that can be generated by the contractile element of the
muscle fiber, using a Force-Length-Velocity (FLV) relation controlled by muscle
activation. The general form of the function is given by:

F M (t) = f (l) f (v)a(t)F M
0 (4)

where F M (t) is the time varying muscle fiber force; f (l) is the normalized length
dependent fiber force; f (v) is the normalized velocity dependent fiber force; a(t) is
the time varying muscle activation; and F M

0 is the MIF. Commonly, Hill’s equation
[74] is modified and used as an expression [16, 131], although nothing precludes the
use of other expressions [73].

Muscles could be imagined having an active part which generates force when
activated, like a motor, and an in-parallel passive part that applies a resistive force
when stretched beyond a resting length, like a rubber band [25]. Sometimes a muscle
elastic element, distinguishable from tendon elasticity is included in series with the
active part, which is due to the contractile elements [136]. These yield a MIF when
the sarcomeres are at an OMFL (i.e. when there is optimal overlap of the actin and
myosinmyofilaments).When themuscle length is above that optimal length, it cannot
generate as much force because there is less actin-myosin overlap which reduces the
force-generating potential of the muscle.

1.2.1 Force-Length Relation

The static property of muscle tissue is defined by its isometric Force-Length curve
(FLc). This property can be studied when activation a(t) and fiber length L M are
constant. Full activation (a(t) = 1) occurs when muscle tissue has been maximally
excited (u(t) = 1). Conversely, muscle tissue that has been neither neurally nor
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electrically excited for a long time is said to be passive (u(t) = a(t) = 0) [136].MIF,
F M
0 , is assumed to be proportional to Physiological Cross-Sectional Area (PCSA),

where PCSA is defined as the ratio between muscle volume and OMFL:

PCSA = V olume

L M
0

(5)

Typically, the volume of a muscle is calculated from its weight multiplied by the
density of muscle tissue: 1.06g/cm3 [100]. The proportionality constant relating
F M
0 to PCSA represents the Maximum Muscle Stress (MMS) [62].
The difference in force developed when muscle is activated and when muscle is

passive is called Active Muscle Force (AMF), F M
A .

F M
A = f A(l)Fm

0 a(t) (6)

where a(t) is accounted for since the level of muscle activation determines the MIF
produced by the muscle.

The muscle force-length is also coupled to the level of activation [70]. Lloyd
and Besier [88] incorporated this coupling between activation and OMFL into the
muscle-tendon model using the following relationship:

L M
0 (t) = L M

0 (λ (1 − a(t)) + 1) (7)

The percentage change in OMFL defines how much the OMFL shifts to longer
lengths, at time t and activation a(t).

Mathematically, it is often more helpful to consider the force-length relationship
in dimensionless units. Zajac [136] represented this property in terms of Normalized
Muscle Force (NMF), F̃ M , and Normalized Muscle Fiber Length (NMFL), L̃ M .

F̃ M = F M/F M
0 (8)

L̃ M = L M/L M
0 (9)

As depicted in Fig. 2, the effective operating range of muscle begins at roughly
0.5L M

0 and ends at 1.5L M
0 ; muscle cannot generate active force beyond these lengths.

Furthermore, when muscle is stretched to lengths greater than 1.2L M
0 , it generates a

significant amount of Passive Muscle Force (PMF), F M
P . It is due to the elasticity of

the tissue that is in parallel with the contractile element. Passive forces are very small
when themuscle fibers are shorter than their OMFL, and rise greatly thereafter [117].

F M
P = fP (l)F M

0 (10)
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Fig. 2 Normalized forcelength relationship for muscle. Thick dark lines indicate maximum acti-
vation, whereas the light thin lines are lower levels of activation

The total normalized muscle force is the sum of the active and passive components,
which can be scaled to different muscles to provide total isometric muscle force,
F M , by:

F M =
[

F M
A + F M

P

]
cos(α)

= [ f A(l)a(t) + fP (l)] F M
0 cos(α) (11)

It is also worth noting the importance of the fiber lengths operating rangewith respect
to the required excursion of a muscle. Brand et al. [22] defined muscle excursion as
the difference between the maximum physiological length, LMT

max , and the minimum
physiological length, LMT

min , of the muscle: the extreme lengths of a musculotendon
actuator when a joint is moved through its full range of motion. For muscles with a
large excursion, one can expect the value of L M

0 to be relatively large; conversely,
for muscles with a small excursion, the value of L M

0 should be relatively small.
Unfortunately, the relationship between OMFL and musculotendon excursion has
been shown to vary widely among muscles, and it cannot be used to define the value
of L M

0 precisely. As discussed in [62], also the value of TSL, LT
s , affects the relation

between OMFL and musculotendon excursion. If we assume that the total length,
LMT, of a musculotendon actuator is given by the sum of muscle length, L M , and
tendon length, LT , then the tendon length will affect the length of the muscle when
the actuator is at LMT

min and LMT
max . If tendon is assumed to be sufficiently stiff so that

a change in its length is negligible compared to a change in muscle length, then all
variation in musculotendon length, LMT, can be attributed to a change in muscle
length. On the other hand, if an actuator has minimum and maximum physiological
lengths which are both relatively large, then one can expect the value of TSL, LT

s , to
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be large and the value of OMFL, L M
0 , to be small. Conversely, if LMT

min is relatively
small, then LT

s should be small and L M
0 should be large. It is clear that L M

0 , LT
s ,

LMT
min , and LMT

max are all related.

1.2.2 Force-Velocity Relation

Muscle tissue is subject to a constant tension when it’s fully activated. It first shortens
then stops (i.e. isometric contraction). The length at which shortening terminates
corresponds to the length at which such a force can be sustained in steady-state
[136]. From a set of length trajectories, obtained by subjecting muscle to different
tensions, a Force-Velocity relation can be constructed for any length L M , where
0.5L M

0 < L M < 1.5L M
0 . Finally, at OMFL, L M

0 , a Maximum Shortening Velocity
(MSV), vM

0 , can be defined from the Force-Velocity curve (FVc). At this velocity,
muscle cannot sustain any tension, even when fully activated.

The shape of the FVc determines the mechanical power output that active muscle
delivers. During shortening, muscle delivers power (power output is positive), with
peak power output occuringwhenmuscle shortens at about 0.3vM

0 [136]. The shape of
FVc during lengthening is very important during computer simulation of movement.
Common assumption are that (Fig. 3):

1. The FV relation scales with length and activation in one of two ways: either the
velocity-axis intercept remains constant under all conditions or decreases with
a(t) and L M );

2. No discontinuity in slope at F M
0 exists, even though experiments and cross-bridge

theory suggest one;
3. The FVc at any instant is unaffected by preceding events, even though it is known

that prestretched muscle tissue subsequently shortens faster.

Fig. 3 The Active Force-Length-Velocity (FLV) surface of muscle is defined by the muscle’s
Optimal Fiber Length (OFL), Maximum Shortening Velocity (MSV), and Maximum Isometric
Force (MIF). Active muscle force generation can be constrained to this surface and scaled by the
level of muscle activation. Force-Length and Force-Velocity curves are highlighted in gray
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MSV, vM
0 , is commonly defined as the number of OMFL per second, and it is treated

as a constant. However, it could be varied depending on the relative fiber mixes in
muscles. Yamaguchi et al. [134] listed the fiber mixture percentages to be considered
as common starting point, but it is well known that people do have different fast-
twitch to slow-twitch fiber ratios. A detailed discussion about the ways in which
the force-length and force-velocity relationships could be most readily combined for
shortening muscle can be found at [25].

Given a value of L M , PA is calculated using Eq.3. Subsequently, since themuscle-
tendon length, LMT, is a known input of the model (it is directly related to the
musculotendon kinematics), the tendon lenght is computed as follows:

LT = LMT − L M cos(α) (12)

Once tendon length is established, also tendon force, FT , can be determined (see
Sect. 1.3). Given the total muscle force (Eq.11), the corresponding normalized veloc-
ity dependent fiber force, f (v), can be computed as follows:

f (v) = FT − fP (l)F M
0 cos(α)

f A(l)a(t)F M
0 cos(α)

(13)

Once f (v) is calculated, we can solve for fiber velocity, vM .

1.3 Tendon Model

Tendons are commonly defined as a external portion to muscle passive elements that
act like rubber bands. Tendons do not carry any load their length is below the TSL
and generates a force proportional to the stretch distance if their length is above TSL.
Given the tendon length, LT , tendon strain (i.e. tendon stretch relative to its resting)
can be defined as follows:

εT = LT − LT
s

LT
s

(14)

Data suggest that the same strain is experienced throughout internal and external
tendon. It is also convenient to assume that the Stress-Strain properties of external
and internal tendon are the same, where the Tendon Stress, σ T , is defined by the
ratio of tendon force, FT , to Tendon Cross-Sectional Area (TCSA), as follows:

σ T = FT

TCSA
(15)

Notice that the tendon force varies with the strain only when the tendon length is
greater than the TSL, otherwise the tendon force is zero. Hence, tendon behavior
can be modeled through a generic Force-Strain curve (FSc). As depicted in Fig. 4,
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Fig. 4 Mechanical properties of tendon

the tendon tangent modulus of elasticity (i.e., the slope of the tendon stress-strain
curve) increases with strain at low strains, and then is constant at higher strains until
failure. Zajac [136] observed from the literature that the strain in tendon is 3.3%when
the muscle generates MIF, corresponding to a nominal value for σ T

0 of 32 MPa.

1.4 Musculo-Skeletal Kinematics

Once the muscle-tendon force is computed, it is important to compute the corre-
sponding contribution to joint moment. This requires knowledge of the muscle’s
moment arm, r , which can be shown to be a function of the muscle’s length [95].
To compute both the length and the moment arm for a musculotendon unit, a muscu-
loskeletal model is required.Musculotendon kinematics estimations can be produced
by a software that model the geometry of the bones, the complex relationships asso-
ciated with joint kinematics, and the musculotendon paths wrapping around points
and surfaces [41]. This is based on obstacle detection and may cause discontinuities
in the predicted musculotendon kinematics [61]. On the other hand, it is desirable
that musculotendon kinematics equations are continuously differentiable to enable
the computation of analytical Jacobians for the forward simulation of the muscu-
loskeletal system [2, 113].

Sets of differentiable polynomial regression equations have been proposed to esti-
mate LMT and r from nominal values of both parameters corresponding to combina-
tions of discrete joint angles or Generalized Coordinates (GCs) [95]. This required
gathering data sets on both LMT and r and manually identifying the best-performing
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equations that depended on themuscle, number of GCs, and the fittedmusculotendon
parameter. This necessitated computing and storing coefficients for all equations for
LMT and r for each muscle before use. Alternatively, continuously differentiable
multidimensional cubic splines can be used, but are yet to be examined as a means
to estimate musculotendon kinematics. In [113] a single spline function per muscle
was used to estimate LMT and r .

2 From EMG Signals to Muscle Activation

This section covers some issues related to the neural controls for a NMS systems and
models. In NMS simulation environments, the neural control signal or muscle activa-
tion level defines the input of the forward dynamics used to study the human motion.
This physiological command indeed specifies the amplitude and the timing of the
subject’s muscle activation. It can be obtained directly from experimentally mea-
sured electromiographic (EMG) signals (EMGs control strategy) or from a synergy
analysis (synergies control strategy). Both the control strategies require recording
EMG signals from a set of subject’s muscles, then a pre-processing of data to obtain
a neural control signals utilized in the subsequent steps. EMG pre-processing aims to
cut off different non-physiologic signal components due to the acquisition process,
such as motion artifacts and 50Hz noise. It also includes the low pass filtering, to
match muscle characteristics, and the optional EMG normalization procedure.

In synergies control strategies, the muscle synergies are first calculated. The main
idea behind this method is to express the experimental EMG signals as a weighted
sum of a limited number of muscle synergies. This analysis aims to reduce the
dimensionality and the redundancy of the human motor system.

Finally, the muscle activation dynamics represent the contribution of the neural
control on the activation of each muscle. Once again this processing step is common
to both the strategies.

2.1 EMG Pre-Processing

Electromyography is the study of muscle function through the analysis of the electri-
cal signals from the muscles [136]. EMG signals are emitted before muscle contrac-
tion and can be detected through superficial non-invasive electrodes. Furthermore,
the EMG signal is the result of all the motor unit action potentials occurring during
the contraction. This activity, measured at a given electrode location, is expressed by
an electric signal (in the order of millivolts) either positive and negative.

EMG signals recording could be affected by unpredictable variables such as:
the placement of the electrodes on the subject muscle, the skin characteristics, the
amount of tissue between the electrodes and the muscles, the cross talk from nearby
muscles, muscle fatigue, the electrodes and amplifier quality and durability through
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the acquisition process, the electrical and magnetic noise, etc. The influence of these
external factors must be removed, or at least smoothed, before computing the muscle
activation [25]. This pre-processing phase can be addressed in different ways.

The first operation is to remove any DC offset and low frequency noise that can
be due to the use of low quality amplifiers or electrodes, or due to the movement of
the electrodes themselves. This can be done through a high-pass filter with a cutoff
frequency in the range of 5–30Hz, depending on the type of filter and electrodes used.
A good strategy is to implement a digital zero-phase delay filter (e.g., forward and
backward pass 4th order Butterworth filter). This way filtering does not shift EMG
signals in time. The next step is to visually inspect each obtained signal to check the
presence of 50Hz electromagnetic interference. For the affected trials a 50Hz notch
filter (usually of order 10) should be used. Then the signal must be rectified based
on its the absolute value for each sample to obtain a rectified EMG signal.

2.1.1 EMG Normalization

EMG signals are extremely sensitive to a large number of external factors that can
not often be controlled in clinical settings. A very comprehensive review of this
problem is available in [38]. EMGs normalization aims to reduce this variability
facilitating the comparison of EMG signals across muscles, subjects, or acquisition
session from same subject [38, 83]. A concise and precise analysis of the importance
of EMG normalization can be found in [83] with a discussion of the dangers of
misinterpreting the signals when this step is not preformed correctly.

The general procedure for the EMGs normalization requires to divide the EMG
from a specific task by the EMG from a reference contraction or event of the same
muscle. Recent papers [28, 32, 33, 38, 77] partially discussed the benefits and
limitations of different normalization methods within a more general analysis while
a more complete review and critical comparison of normalization strategies can be
found in [29]. According to the available results, a standard normalization procedure
is still far from being defined.

One of the most used strategies, suggested also by the Journal of Electromyogra-
phy and Kinesiology (JEK), is the MaximumVoluntary Contraction (MVC) normal-
ization. This strategy divide each EMG signal by the reference one recorded during
anMVC task. Similarly, the SENIAM project [96] suggests to use as denominator in
the normalization process the EMG from a reference contraction, and uses MVC as
an example. Both strategies refer to static MVC although it could also be dynamic.
However, non of them provides a guideline to define the best strategy depending on
a specific objective. Either JEK and SENIAM advised electromyographers to report
information about the joint angles of the subject during the MVC acquisition. The
main benefit of using MVC as normalization method is the possibility to under-
stand the level of activation of the muscle during the task in terms of percentage of
the MVC. However, electromyographers should pay high attention that subjects are
reaching their true maximum contraction during the MVC acquisition, otherwise the
results could be uninterpretable.
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Anotherwidely used strategy concerns a division by the peak of theEMGrecorded
during the task or the acquisition. This approach does not need to perform ad-hoc
trials. However, most of researches indicate that this method reduces inter–subject
variability and has poor intra-subject reliability. Therefore it is better to avoid the use
of this strategy to compare EMGs among different trials, muscles or individuals.

2.1.2 Muscle Filtering Effect

The normalized and rectified EMG signals should be low pass filtered to match the
muscle filtering effect. Indeed, although the electrical signals that pass through the
muscle have components over 100Hz, the forces that the muscle generates is at much
lower frequency. There are many mechanisms in muscle that require this filtering:
calcium dynamics, finite amount of time for signals propagation along the muscle,
and muscle and tendon viscoelasticity. The cutoff frequency typically used is in the
range of 3–10Hz.

This step is the last one in the pre-processing of the raw EMG signals. The output
of this process can be used to directly evaluate muscle activation or elaborated to
extrapolate muscle synergies.

2.2 Muscle Synergies

The concept of muscle synergy was proposed for the first time by Bernstein in 1967
[17]. The idea is that the CNS uses this strategy to reduce the redundancy in themotor
control task of musculoskeletal system with multiple degrees of freedom. Recent
interpretations suggest that afferent signals and supra spinal descendingmotor control
commands interact, select, and correctly activate a low-dimension set of muscle
synergies through time modulated activation coefficients. Synergies can be thought
as neural networks produced at corticospinal levels, specifying an invariant profile
of activation for the motoneurons innervating a set of muscles [31]. The result is a
weighted distribution of the neural drives to different muscles. Experimental results,
obtained both in humans and animals, support the hypothesis that biomechanical
tasks reflect a synergistic muscle control. Moreover, there is evidence that different
biomechanical conditions, such as speed and load, share the same synergies [30, 76].

Different studies have used low-dimensional sets of multi-impulse curves within
musculoskeletal models of the human lower extremity assessing the mechanical role
of muscles during human locomotion [4, 93, 102] and the conceptual idea of muscle
synergies in relation to the biomechanics of human and animalmovement [58, 79, 94,
123, 137]. Since the multi-muscular EMG patterns observed during motor behaviors
have a lower dimensionality with respect to the number of muscles and associ-
ated motor units (MTUs) [19, 37], the same excitation patterns can be expressed
using a low-dimensional set of muscle synergies. Hence, a low-dimensional con-
troller of single-impulse synergies could be designed to be generic to subjects
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and motor tasks, but sufficiently selective to drive a subject-specific musculoskeletal
model of the human lower extremity [112]. In this same work, the static behav-
ior and simplified structure of the generic synergies have been compensated using
the experimental joint kinematics as an error correction factor. This approach pro-
vides a musculoskeletal model of human locomotion which can be operated in an
open-loop forward dynamics way without using numerical optimization to match the
experimental joint moments, reducing the computational cost. Moreover, since the
musculoskeletal is calibrated on a specific subject, it can estimate movement-specific
joint moment even if driven by subject-generic and task-generic synergies. In this
scenario no EMG recordings are needed for the model operation, allowing its use
in the development of neurorehabilitation technologies simplifying the human-robot
interface.

A common approach tomuscle synergies identification is based on aNon-negative
Matrix Factorization (NMF) technique [82]. A good practice when using this tech-
nique is pre-process the datawith the peak normalization strategy for EMGamplitude
(Sec. EMG Normalization) where the peak is evaluated across all the available tasks.
Then, a normalization in time follows [65, 76]. Finally, a m × n matrix is created,
where m is the number of recorded muscles and n is the number of trial frames per
the number of trials per the number of subjects.

The NMF is applied to the matrix with a number of non-negative factors identified
together with their associated weightings. The extracted, experimental non-negative
factors are linearly combined with their associated weightings to produce an m × n
matrix of reconstructed EMGs and then compared to the original EMG matrix. The
NMF is iterated within an optimization procedure adjusting the non-negative factors
until they minimize the least squared error between experimental and reconstructed
EMG data. In this procedure the dimensionality of the non-negative factor set is
increased until the accuracy of the reconstructed EMG data reach a pre-defined
threshold. This is assessed by means of the Variation Accounted For (VAF) index,
which is defined as:

VAF = 1 − SSE/TSS (16)

where SSE (sum of squared errors) represents the unexplained variation and TSS
(total sum of squares) is the total variation of the EMG data. A minimal VAF value
of 80% is a good choice for the threshold to consider the reconstruction quality as
satisfactory [65].

Several other algorithms can be used to identify muscle synergies combination. In
[126] these algorithms have been compared on both simulated and experimental data
sets with the main goal of investigating their ability to identify the set of synergies
from a common data set. The obtained results are quite similar for all the algorithms
with no significant differences in performances or accuracy.
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2.3 From EMG to Neural Activation

In order to account for the time varying features of the EMG signals, a detailedmodel
of muscle activation dynamics should be considered. In this paragraph, we will refer
with the term EMGs (e(t)) both to the pre-processed EMGs and to the synthetic EMG
retrieved from the weighting of the muscle synergies.

The next processing steps are indeed common to both the control strategies. The
first proposal for modeling the neural activation dynamics was the following first-
order linear differential equation [25, 136]:

d u(t)

d(t)
+

[
1

τact
· (β + (1 − β)e(t))

]
· u(t)

1

τact
e(t) (17)

where τact is the time delay associated to the activation dynamics and β is a constant
that can vary in the range (0, 1). This modeling approach captures very well the
activation dynamics but requires to be solved numerically for a discrete signal, using
a numerical integration approach, such as Runge-Kutta algorithm. Therefore, a more
efficient model is required.

A critically damped linear second order differential equation has been used with
quite good results [98]. An approximated version of this differential equation have
been proposed [25, 110]:

u(t) = αe(t − d) − β1u(t − 1) − β2u(t − 2) (18)

where d is the electromechanical delay and the coefficients α, β1 and β2 define the
second order dynamics. The electromechanical delay have been shown to be in a
range from 10 to 100ms [25, 36]. The selection of these four parameter is critical for
the stability of the equation. Therefore the following relationships must be verified:

β1 = γ1 + γ2 (19)

β2 = γ1 × γ2 (20)

|γ1| < 1 (21)

|γ2| < 1 (22)

Another condition that must be verified ensure the unitary gain of the equation:

α − β1 − β2 = 1 (23)

Through the combination of previous constrains only the three parameters d, γ1, and
γ2 are required to fully describe the transformation.
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2.4 From Neural Excitation to Muscle Activation

This paragraph illustrates how the nonlinear relation between the neural excitation
u(t) and the muscle activation a(t) can be modeled. A possible explanation for this
non-linearity can be found in the size principle, i.e. the size of the recruited motor
units is related to the force that has to be expressed.

Several studies have shown that the effect of this nonlinearity is significant only
at lower excitation (up to 30–40% of the maximum). For this reason, a first attempt
to model this relation, presented in [133], uses a power function in the first 30–40%
and a linear function for the remainder. The power function is expressed as:

EMG = a · FORCEb (24)

where the authors referred with EMG to the neural excitation u(t) and as FORCE to
the muscle force (linearly related to the muscle activation a(t)).

Both of them indicated in capital letters to underline that are normalized to their
maximum value. The coefficients a and b were computed basing on experimental
measurements. However, this approach has twomain disadvantages: the need to eval-
uate two parameters and the not-smoothed connection between the two expression.

Another approach correct these disadvantages is proposed in [25, 91]. This solu-
tion uses a logarithmic function for the first 30% and a linear expression for the
reminder:

a(t) = d ln(c u(t) + 1) 0 ≤ u(t) ∼ 0.3

a(t) = m u(t) + b ∼ 0.3 ≤ u(t) < 1 (25)

where the coefficients d, c, m, and b can be simultaneously solved and therefore
reduced to a single parameter A, which characterizes the amount of nonlinearity,

Fig. 5 Changes in the neural
excitation u(t) to muscle
activation a(t) curve
depending on the nonlinear
shape factor A
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varying from 0 to approximately 0.12. A simpler formulation, [25, 88, 90, 92] is the
following:

a(t) = eA u(t) − 1

eA − 1
(26)

The coefficient A in Eq.26 is named nonlinear shape factor and it is allowed to vary
from 0 to −3 where A = −3 indicates a linear relationship as shown in Fig. 5. The
value of A is determined through the usage of the calibration procedure.

3 Differences in Task-Dependent Central Control Strategies
for Same or Similar Joint Biomechanics

Neuromuscular control in humans is still unknown due to the high complexity of
our neuro-musculoskeletal systems and its high motor redundancy [23, 81, 111].
Humans learn and adapt different dexterous tasks in an interactive manner with
external environments taking advantage of their past knowledge of motor actions
and their biomechanical structure. [18, 116, 130]. Many elements in the human
body dynamically cooperate to perform tasks planned in the brain. Task parameters
are planned in different areas in the brain, known as central control unit, to create a
motor program that contain the necessary centralmotor command to perform the task.
The central motor commands are then transmitted through the brain stem and spinal
cord to alpha-motor neurons which are known are local controllers of the muscular
system Fig. 6. Motor neurons in spinal cord drive the muscle contraction to actuate
skeletal segments that in turn generate the desire motion and dynamic properties
(i.e. forces and torque). Sensory signals are sent to local and central control units
during the action execution to modulate the dynamic properties in the biomechanical
system.

Scientists suggest that humans centrally control their movements in feed forward
system and locally in feedback system [34, 75, 108], also known as open-loop

Fig. 6 Basic neural circuit
describing the closed-loop
control structure of a single
muscle
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Fig. 7 Basic scheme of neuro-musculoskeletal systems. Blue arrows represent the motor informa-
tion while green arrows stand for the sensory and feedback information

and closed-loop systems respectively as illustrated in Fig. 7. This basic motor con-
trol scheme describes different control levels and sensory information modalities
integration in the CNS taking into account the delays caused by the sensory-motor
loops that are crucial for some motor actions.

Muscles are themain components in any biomechanical system to generate forces.
They are unidirectional force generators and canonly contract, therefore they canonly
pull. Based on that fact, our joints are always actuated by at least two muscles known
as agonist and antagonist muscles to bi-directionally control the joint movement like
flexion and extension or abduction and adduction in digits. Muscles are activated
when a neural signal arrives from an alpha motor neuron through its axons to a target
muscle fiber. A large number of muscles can be activated simultaneously to produce
a movement and consequently perform a task. Pointing toward an object with the
index finger or reaching tasks are typical examples to describe the problem [120]. In
robotics, three coordinates of the fingertip in the operational space need to be planned
corresponding to three equations, but the number of joints and muscles participating
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in such a task is much higher which means that the number of unknown variables
(Degrees of freedom) is higher than the number of equations [35]. In consequence,
the motor control task can have an infinite number of neural solutions of joint angles
and muscle forces. The motor control task could have different neural solutions
among different people or even for the same person when solving it several times
[69, 81, 109].

Some motor control researchers believe that this motor control redundancy prob-
lem is solved at the neural level by our CNS by optimizing (typically minimizing)
a cost function (i.e. muscle energy, total muscle force) to select a neural solution
[21, 25, 27, 109, 124, 125]. Static and dynamic optimization methods are usually
used to describe this hypothesis and estimate the neural solutions. Other researchers,
[52, 56, 80, 103, 105], believe that there are no computations ofmechanical variables
done at the neural level and the CNS cares only about the overall task performance
and matching the task requirements beside of the detailed muscle activation charac-
teristics (i.e. recruitment frequency of motor units). An example of this view is the
Equilibrium Point hypothesis (EP), originally developed by Feldman in 1960, will be
described inmore details in this chapter. EP hypothesis is based on the idea of control
with thresholds for activation of neuronal pools, it assume that all the mechanical
variables (i.e. joint stiffness, muscle and join forces, muscle activity “EMG”, etc.)
are not directly planned in the CNS, but they emerge when reducing the difference
between a referent configuration pre-programmed by the CNS and the actual one.

Muscle redundancy at a joint allows humans to perform isometric or isotonic tasks.
A person can produce a constant net joint moment but different muscle activation
patterns in static and dynamic tasks [122]. This leads to a variation in co-contraction
levels of agonist-antagonist muscles with the net muscle activity with no change on
the net jointmoment.However, themain contribution ofmuscle co-contractions in the
motor control task is still under-investigation. In this chapter, we presented two neural
control frameworks, muscle activation control and equilibrium point control, that
account for the muscle co-contraction control and its dependency on the control task.

3.1 Muscle Activation Control

Almost all the motor control hypotheses agree that the CNS controls the muscle
contraction locally by alpha motor neurons located in the spinal cord [53, 84, 104]
or the brain stem (for facial and neck muscles). Those neurons receive projections of
central commands that describe the task parameters (desired spatial pose “position
and orientation”, velocity, total force... etc.) pre-programmed in the cortical areas of
brain and reflex signal for fast movement. Muscle activation control models assume
that the CNS pre-compute some unknown variables (i.e. mechanical parameters,
muscle activation patterns, ... etc.) based on the task and biomechanical properties
and actual state of the neuro-musculoskeletal system [88, 132].
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3.1.1 Task-Dependent Muscle Activation Patterns
for Static and Dynamic Tasks

Several studies have shown high evidence that the muscle activity patterns are task-
dependent [24, 63, 67, 122]. Tax and his colleagues hypothesis suggested that central
activation of motor units is different in the control of movement and isometric con-
tractions. They compared the activation behavior of motor units in force task with
two conditions of movement task, imposed movements and intended movements.
They found that the CNS recruits the motor units during isometric contractions sim-
ilarly during imposed movement contractions and differently during slow isotonic
voluntary movements.

Ghez and his colleagues developed another hypothesis, called pulse-step control,
suggesting that the CNS controls movements and isometric contractions by scal-
ing muscle activation patterns. This assumption hypothesize that the projection of
task parameters received by alpha-motor neurons is a sequence of a short-lasting
pulse and long-lasting step. The hypothesis was then updated by the authors con-
sidering the pulse and step commands are separated in the CNS. During isotonic
movements (movement task), the pulse amplitude would control the acceleration
rate and its duration would define the movement amplitude (e.g. the trajectory of
an effector). The step component of the sequence would control the co-contraction
level of agonist-antagonist muscle to stop the movement at the final position. During
isometric contractions (force task), the pulse amplitude would control the produc-
tion rate of force and its duration would indirectly define the peak force (e.g. time
profile of force). The step part of the command would stop the force production and
therefore define the final steady-state force.

Buchanan and his colleagues tested muscle activation patterns in humans when
performing two different static tasks, isometric (force control; when joint angles are
fixed and joint torque is allowed to vary) and isoinertial (position control; when joint
torque is fixed and joint angles are allowed to vary) tasks. In their study, they aimed
to see if there is a difference in muscle activation patterns (e.g. muscle synergies)
even though the joint angles and torques are identical. Their hypothesis suggests that
the difference in synergic activations occur not only between static isometric and
dynamic isotonic tasks but also between static isometric and isoinertial tasks. This
switch in the central control strategy depends on the control task (i.e. force control
for isometric tasks or position control for isoinertial tasks).

3.1.2 Muscle Co-Activation Patterns

As we showed in the previous paragraph, muscle co-contraction patterns vary not
only with the length and force but also with the load characteristics (e.g. isometric,
isotonic or elastic load) on the joint or its stability condition [39, 68].

De Serres and his colleagues have found a little effect of a stable load (constant
or elastic) and a big effect of unstable load on the co-contraction of wrist flexor
and extensor muscles. The muscle co-contraction was dramatically greater for the
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unstable load than the stable load. They also tested the effect ofmuscle co-contraction
on the stretch reflex response and found a major effect for a stable load than for an
unstable load. In consequence, the joint stiffness was more dramatically affected for
a stable load than an unstable load. They concluded that the muscle co-activation
patterns (e.g. muscle synergies) of the central control, and therefore the muscle co-
contraction, are different depending on the load stability condition. They found no
evidence of a significant contribution of phasic stretch reflexes in the joint stiffness
although their results showed that magnitude of reflex response increases with the
co-contraction level. Hence, they concluded that the stretch reflex modulation is
independent from the tonic muscle activation control and dependent on the load
stability.

Heiden andher colleagues explored the co-contractionpatterns inKneeOsteoarthri-
tis (OA) patients. They have shown that the level of muscle activation varies with the
loading and the reduction of pain and adduction moments. Their study stated that the
levels of net muscle activation increased during loading and early stance to possibly
alter the stabilization and articular loading of knee joint. They found a significant
difference in muscle activation strategies between OA patients and healthy subjects.
OA patients utilize a directed co-contraction strategy to exhibit greater lateral muscle
activation during loading, early stance and mid-stance while heathy subjects utilize
it to predominantly exhibit medial muscle activation during the same tasks. Some
studies showed that the increment of the co-contraction level does not increase the net
moment (net moment = constant) but the net muscle activity [89]. They also observed
that OA patients increase the level of net muscle activity and laterally directed co-
contraction even as the same joint moment and posture while heathy subjects utilizes
lower co-contraction levels. This result suggest that OA patients use this mechanism
to reduce the pain resulted from external knee adduction moments. It is also worth
noting that no difference in co-contraction level or net muscle activity was observed
between control and stroke groups in late stance.

3.2 Threshold Position Control

As we mentioned above, a second view on neural control of muscles, called thresh-
old (referent) position control or equilibrium point control, contrasts the muscle
activation control hypotheses. It does not consider any particular computation of the
unknown system variables at the neural level, but an emergence of those variables
when the neuro-musculoskeletal system attempts to attain a referent configuration
of an effector [53–55]. In other words, neither trajectories (i.e. trajectory of an effec-
tor, force/torque profiles, joint stiffness, etc.) nor motor commands (muscle activity
“EMG patterns”) are directly specified by neural control levels but only a referent
configuration and those mechanical variables emerge when reducing the difference
between a referent configuration pre-programmed by the CNS with the actual one.
This automatic mechanism occurs in alpha-motoneurons which reduces the error
between a central input (referent control signal) and afferent input (feedback signals,
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Fig. 8 Alpha-motoneuron is represented as a servo controller in the left-hand image. Regulation of
threshold muscle length in neurons is shown in the right hand image. The neuron works as a servo
controller to reduce the error between the actual muscle length and the control variable (lambda)
to obtain a referent configuration of the body segment pre-programmed in the brain. parameter is
projected from task parameters though muscle synergy mapping. It can be shifted by the CNS to
define a new referent configuration

i.e. muscle spindle feedback), as illustrated in Fig. 8 (motoneurons). The central input
is a projection of high level commands that describe a referent configuration. The
afferent feedback provides the CNS information about deviation of the actual (emer-
gent) position of an effector from their referent position specified by the brain. The
neuron can generate action potentials when the neural membrane potential due to the
input excitatory sources reaches a threshold according to all-or-non law. The neuron
output changes the state of an effector. The frequency of action potentials generated
by the neuron depends on all afferent excitatory signals.

EquilibriumPoint hypothesis assumes that the CNS controls themuscle activation
with thresholds for activation of neuronal pools, this neural control strategy is called
threshold position control.

Threshold position is a parameter that pre-determines where, in spatial coordi-
nates, muscles can work without pre-determining how they should work in terms
of EMG patterns, forces and kinematics. The referent signal is normally lower the
membrane threshold in healthy subjects otherwise the neuron will be always active
generating action potentials at the highest possible frequency independently of the
afferent feedback input. This is because the neuronal membrane potential is over the
threshold. Hence, the membrane potential should depend on both referent control
and feedback inputs. Based on threshold control hypothesis, the CNS regulates the
membrane potential through the referent position control level as illustrated in Fig. 8.
It is clear from the figure that a low level and a high level of referent control signal
will lead to two different referent configurations (e.g. two different muscle lengths
and forces). If the referent control level is constant, the neural membrane potential
to reach the threshold will depend on the feedback source. If the referent control
level is shifted to a higher level, the membrane potential will be closer to reach the
threshold, and therefore the neuron will need less feedback excitation to fire action
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potentials. This mechanism will produce two different muscle lengths leading to two
different configurations of the body segments or/and force production.

EP hypothesis suggests that the central control defines the set of R and C com-
mands at the joint level which delivers information about the referent configuration
intentionally planned (e.g.Θ). R command and C command are addressed as recipro-
cal and co-activation [52, 85]. These commands are then projected at the corticospinal
level to provide control variable (λ) at the muscle level addressed as the threshold
of tonic stretch reflex. This means that each muscle can have its own λ according to
its fiber length and biomechanical properties and connections, but the same R and C
command set corresponding to a referent configuration (e.g. joint angles Θ).

The transition previously described corresponds to a shift in the characteristic of
muscle force-length. For agonist-antagonist muscle actuation, R-command leads to
a unidirectional shift of the two muscle characteristics (R = sum (λ1, λ2)) while
C-command leads to an opposite directional shift of the two muscle characteristics
(C = diff (λ1, λ2)). Changes in R and C commands reflect a change joint movement
and joint stiffness respectively. Based on EP hypothesis, it may happen voluntarily
following a change in the central commands (R and/or C commands) which lead to
a change in the threshold level of the tonic stretch reflex (λ) or involuntarily (R and
C commands are constant, λ is constant) following a change in the external load as
illustrated in Fig. 9.

EP hypothesis suggests that co-contractions of agonist-antagonist muscles are
modulated through C-commands. Changes in this command reflect a variation in
the joint stiffness and damping when the musculoskeletal system is deviated from its
equilibrium states [52]. C-command can bemodulated independently of R-command
during static or dynamics task [85]. This result would suggest a multi-contribution
of C-command in joint stability and movement speed.

Fig. 9 a voluntarily movement produced by a shift in the threshold level of the tonic stretch reflex
(λ) through a change in the central commands (R and/or C commands) b involuntarily movement
produced by a change in the external load at constant intentional neural control (R and C commands
are constant, λ is constant)



132 M.A. Akhras et al.

4 Personalized Musculoskeletal Modeling

Computational musculoskeletal models can provide an accurate knowledge of the
physiological loading conditions on the skeletal system during human movements
and allow quantifying factors (e.g. muscle moment arms, joint motions) that affect
musculoskeletal function, Thus, it may significantly improve clinical treatments in
several orthopedics and neurological contexts [10, 11, 15, 44]. Musculoskeletal
models have been used to study stroke [5], spinal cord injury [9], bone fractures,
joint osteoarthritis [64], orthopedic surgical procedures such as Arthroplasty and
neurological disease such as cerebral palsy [42].

Muscle and joint contact forces duringmotion are currently notmeasurable in vivo
with non-invasive devices. Computational modeling of themusculoskeletal system is
the only practicablemethod that canprovide an approach to analyze loadingofmuscle
and joint. Computer and information technologies have recentrly advanced compu-
tational modeling to deal with important challenges in clinical biomechanics. The
development of new modeling methods and numerical simulation algorithms, which
are computationally efficient, are increasingly raising the interest in musculoskeletal
modeling and simulation among the biomechanical and medical communities.

Every patient is different and possesses unique anatomical, neurological, and func-
tional characteristics that may significantly affect optimal treatment of the patient.
Personalized computational models of the NMS system can facilitate prediction of
patient-specific functional outcome for different treatment designs and provide use-
ful information for clinicians. Personalized models may reduce the likelihood that
different clinicians will plan different treatments given the same patient data [58].
Depending on the intended clinical application, a personalized NMS model might
account for patient specific anatomical (e.g., skeletal structure and muscle lines of
action), physiological (e.g., muscle force-generating properties), and/or neurological
(e.g., constraints on achievable muscle excitation patterns) characteristics, all within
the context of a multibody dynamic model [58].

Personalized computational models can be derived by generic models or subject-
specific models with different levels of subject-specific details.

4.1 Generic Models

The existing musculoskeletal models in use have some limitations. Several stud-
ies have used generic musculoskeletal models derived from average adult anatomy
[51, 106]. In addition, many software packages for biomechanical analysis of mus-
cle function are based on biomechanical studies of cadaveric specimens, and use
the musculoskeletal geometry of a healthy, average-sized adult male with normal
musculoskeletal geometry [9, 43, 44]. These generic models apply variations in sub-
ject size by scaling [46, 57, 87], based on three-dimensional positions of markers
placed on selected anatomical landmarks andmeasured during a static, standing trial.
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The lower-limb Delp model [44, 45] has been widely adopted for a variety of biome-
chanical investigations. This generic model is based on several experimental studies,
and has been altered and refined to different purposes [6, 101]. But dataset incon-
sistency and limitation of in vivo measurements make some difficulties in the iden-
tification of model parameters. And the use of generic models in representation of a
wide population may not be robust.

Two critical tasks in process of using personalizedmodels are Calibration andVal-
idation [58]. Since generic models are constructed from detailed anatomic measure-
ments performed on cadaver specimens, a model personalization/calibration process
is needed. Four proposed model calibration steps that should be performed in whole
or in part to transform a generic model into a personalized model include geomet-
ric calibration, kinematic calibration, kinetic calibration and neurologic calibration.
Validation of clinical predictions is the other major challenge faced by personal-
ized models will ultimately require randomized controlled trials, where outcomes
are compared between patients whose treatments were planned with a personalized
model and those whose treatments were not [58].

In fact personalized models have the greatest potential to impact clinic practice,
but generic models can still provide significant clinical benefits. Generic models
were used to simulate bone deformities [10], risk of bone fracture [128], and tendon
transfer surgeries [46]. However, a recent study has proved that such models provide
inaccurate analysis of muscle function even for a healthy adult male [115].

A growing concern is being raised about the accuracy of scaled-generic models,
since the musculoskeletal system is very intricate and large anatomical variations
exist among individuals, scaled-generic models may not be able to fit to all vari-
ability of musculoskeletal geometry and tissue properties among individuals. This
is particularly when the case of study is a pathological musculoskeletal condition.
A recent study has proved that such models provide inaccurate analysis of muscle
function even for a healthy adult male, this studies showed significant differences in
muscle moment arm lengths, musculotendon lengths and gait kinematics calculated
with subject-specificmodels created fromMRI and scaled-genericmodels [114]. The
musculoskeletal geometry determines moment arm and thereby the moment about a
joint produced by a given musculotendon force. A study showed how variability of
muscle attachments affects muscle moment arms (MALs) [48]. Also the effects of
bone geometry on the moment-generating capacity of the muscles has been shown
[45]. Thus, the different musculoskeletal geometry due to size or pathology can also
affect the accuracy of results derived from generic models.

Since the results of simulations are often sensitive to the accuracy of the func-
tionalmusculoskeletalmodel, individualizedmusculoskeletalmodelsmay be a better
alternative.
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4.2 Subject-Specific Models

Despite the growing concern on the use of scaled-generic model to investigate skele-
tal load, A few studies performed using different levels of subject-specific details
[58, 127]. Few attempts have been made to create subject-specific models for skele-
tal load predictions, and it not clarified to which extent it is important to obtain
different subject-specific parameters. Personalization process involve tissue geome-
tries reconstructions, calculation of tissue inertial properties, definition of location
and orientation of joint axes fromanatomical landmarks, definition ofmusculotendon
architecture. In addition to importance of validation problem of model predictions, it
is difficult to collect all necessary data in the research and clinical practice. Another
problem is the lack of valuable methods and frameworks to create subject-specific
models and simulations. Developing these kind of methods requiring extensive effort
with skilled expertise and time. The musculoskeletal geometry for a specific subject
can be extracted fromMRI or CT-scan images with a good accuracy and low level of
invasiveness and it can be used to study in vivo the complex geometric relationships
among the muscles, bones, and other structures. The level of subject-specific detail
also involves additional measurements, e.g., body motion, ground reaction forces,
muscle activity, which can be obtained through technologies for human movement
analysis such as stereophotogrammetry, 3D fluoroscopy, EMG, force platforms.

As it ismentioned, one problem is about lack of valuablemethods and frameworks
available. The other problem is about availability of required data, collecting these
data are dependent on mentioned technologies and cannot be always collected in the
research and clinical practice and this arises time- and cost-related problems.

Important research has been performed to incorporate more accurate MR-based
models of musculotendon geometry into multibody musculoskeletal models
[12, 15, 20], however it is time-consuming and requires extensive imaging protocols
to capture the muscle and joint geometry at different limb positions. Subject-specific
musculoskeletal modelling also addresses the problem of image segmentation, which
consists of extracting anatomical structures from medical image data such as MRI.
Semiautomatic or fully automatic segmentation methods are fast but inaccurate since
muscle distinction is often difficult or impossible to assess with currently used meth-
ods. Thus, muscles volumetric representations are most often and most accurately
acquired by defining muscle contours manually.

4.3 Software for Personalized Musculoskeletal Modeling

Personalized musculoskeletal modeling and biomechanical load analyzing are
increasingly performed by using commercial, freeware and in-house custom-built
software. And also several generic models are available for the biomechanical com-
munity. As an example, OpenSim is a freely available musculoskeletal modeling
and simulation application and libraries specialized for modeling, simulating,
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and analyzing the neuromusculoskeletal system [41]. OpenSim provides muscu-
loskeletal modeling elements such as biomechanical joints, muscle actuators, liga-
ment forces, compliant contact, and controllers; and tools for fitting generic models
to subject-specific data, performing inverse kinematics and forward dynamic sim-
ulations. It performs an array of physics-based analyses to delve into the behavior
of musculoskeletal models by employing multibody system dynamics codes. Mod-
els are publicly available and are often reused for multiple investigations because
they provide a rich set of behaviors that enables different lines of inquiry (Fig. 10)
[41, 119].

It is also possible to add subject-specific information to biomechanical models
using these modeling and simulation environments. However the software users and
developers have to necessarily set up specific modeling frameworks that involve
an important pre-processing phase to create the models. Depending on the level of
subject specific details, this process needs a skilled expertise to process imaging data,
define the features of the multibody systems, create models and simulation setups
in the appropriate file formats, and particularly develop codes to create efficient
modeling frameworks.

Fig. 10 Screenshot from OpenSim. Models of different musculoskeletal structures, including the
lower extremity, upper extremity, and neck, can be loaded, viewed and analyzed [41]
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