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Abstract. Classification of prostate tumor regions in digital histology
images requires comparable features across datasets. Here we introduce
adaptive cell density estimation and apply H&E stain normalization into
a supervised classification framework to improve inter-cohort classifier
robustness. The framework uses Random Forest feature selection, class-
balanced training example subsampling and support vector machine
(SVM) classification to predict the presence of high- and low-grade
prostate cancer (HG-PCa and LG-PCa) on image tiles. Using annotated
whole-slide prostate digital pathology images to train and test on two
separate patient cohorts, classification performance, as measured with
area under the ROC curve (AUC), was 0.703 for HG-PCa and 0.705 for
LG-PCa. These results improve upon previous work and demonstrate
the effectiveness of cell-density and stain normalization on classification
of prostate digital slides across cohorts.

Keywords: Machine learning · Digital pathology · Tumor prediction ·
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1 Introduction

A variety of clinical and research applications would benefit from computer
aided methods for accurate and reliable tumor classification in whole mount
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histology images. Current fields of research include computer aided methods to
classify tumor location [3] and correlation studies assessing histology ground-
truth data with multi-parametric MRI (mpMRI) [1,5].

Computer-aided interpretation of prostate H&E histopathology images relies
heavily on color information. However, the chromatic appearance of digi-
tal whole-slide imagery is subject to many sources of variability, such as
manufacturer-dependent staining agents for dying the tissue, institute-dependent
staining protocols and hardware-dependent scanning conditions [8]. Stain nor-
malization using color deconvolution, in which RGB pixel data is transformed
into stain-specific color channels, helps overcome this obstacle. Fixed stain vec-
tor values have been determined for a range of histology stains, including H&E
[10], more recent publications proposed image-specific stain vectors [2,6,7].

The use of color and texture-based features for predicting LG-PCa and HG-
PCa on whole slide images is desired due to the efficiency and simplicity of
feature extraction on such large images. However, a recent study [4] reported
unsatisfactory results (AUC=0.632 for HG-PCa, 0.486 for LG-PCa) when train-
ing a classifier on cohort and testing on another, suggesting the need for stain-
normalized color and texture features, as well as more descriptive measures such
as cell density [9].

In this work we aimed to improve on the cross-cohort classifier performance
from [4] by (1) including a cell density feature into the classification framework
and (2) by applying stain normalization as proposed in [7] prior to color and
texture feature extraction in order to account for variations in H&E staining
(Fig. 1).

2 Methods

Datasets. Three H&E-stained datasets were used in this work. The first, avail-
able as a supplement to [11], has nuclei annotations and served as the ground-
truth for developing and quantifying the optimized cell density estimation. It
consisted of 36 H&E image-tiles of 600x600 pixels from multiple human tissue
sites with a resolution of 0.23 m per Pixel (MPP).
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Fig. 1. Flowchart of normalization and cell density within classification framework
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Table 1. Number of tiles from annotated regions for each image, with number of
annotated detailed ROIs in parentheses.

Sample Non-Cancer LG-PCa HG-PCa Sample Non-Cancer LG-PCa HG-PCa

A01 14939 (17) 924 (5) 1444 (10) B01 855 (6) 646 (9) 11 (4)
A02 14770 (14) 63 (3) 668 (18) B02 2073 (49) 1 (1) 36 (11)
A03 25673 (8) 0 (0) 319 (3) B03 0 (0) 4516 (2) 0 (0)
A04 6499 (7) 900 (4) 866 (16) B05 6337 (15) 95 (12) 80 (10)
A05 9668 (6) 445 (4) 221 (4) B06 16569 (18) 159 (18) 458 (20)
A06 1898 (7) 951 (4) 290 (3) B07 1026 (15) 411 (15) 14 (3)
A07 0 (0) 775 (9) 453 (3) B08 14167 (20) 114 (24) 0 (0)
A08 2462 (13) 845 (7) 719 (3) B09 2335 (13) 174 (10) 34 (5)
A09 8969 (9) 800 (3) 0 (0) B10 12525 (23) 286 (15) 106 (13)
A10 11159 (7) 39 (1) 914 (4)
A11 10684 (5) 450 (1) 2190 (12)
A12 5622 (16) 1273 (2) 1087 (2)
A13 1310 (1) 800 (8) 94 (3)
A14 3613 (7) 608 (2) 0 (0)

Cohort A 117266 (117) 8873 (53) 9265 (81) Cohort B 55887 (159) 6402 (106) 739 (66)

The second and third dataset, called Cohort A and Cohort B and previ-
ously described in [4], consisted of post-resection prostate H&E digital slides.
Cohort A consisted of 14 H&E prostate histopathology whole slide images from
one pathology center, taken at 400x magnification and stored with 0.238 MPP.
Cohort B was composed of 9 H&E prostate histopathology whole slide images
taken at 200x magnification and stored with 0.504 MPP from a different pathol-
ogy center. Each cohort was annotated by a different expert pathologist.

These two datasets included annotated ROIs, refered to as detailed in the
results, of homogeneous high-grade, low-grade and benign tissue patterns used
here to define training and testing data for various supervised classification sce-
narios. Tile and region counts for these detailed ROIs are shown in Table 1.
For Cohort B, we also have clinical ROIs from the original glass slides which
delineate tumor and non-tumor regions more generally, and we refer to these in
the results as clinical ROIs.

H&E Color Deconvolution and Stain Normalization. In order to mitigate
the effects of H&E stain variation between our datasets we included a color nor-
malization method based on [7]. The normalization process involves identification
of image-specific stain-vectors, stain deconvolution, and finally normalization to
a target appearance in RGB space.

For the stain vector identification, the RGB values of the image in question
were first converted to optical density (OD) [10]. The transformation is calcu-
lated as OD = −log10(I) where I holds the RGB intensity values of each pixel,
normalized to [0 1]. After identifying the image-specific stain vectors V accord-
ing to [7], the deconvolution was realized using the equation C = V −1OD on
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Fig. 2. Two images from Cohort A (left, middle left) and two images from Cohort B
(middle right, right). Top row shows original staining, bottom row shows normalized
staining.

all OD-tuples, where the three-channel matrix C contains the intensity in every
pixel for each of the stains (i.e. H, E and a vector orthogonal to H and E). The
results of color deconvolution were used in the cell density algorithm.

Finally, the normalized images Inorm were computed using Inorm =
e−Vtarget∗C , where Vtarget denotes the stain-matrix containing the desired
appearance. The effect of the normalization can be seen in Fig. 2. The previously
heterogeneous appearances of different images are transformed to a commonly
used uniform appearance, applying a standard H&E vector Vtarget from [10].
Normalized images were used for subsequent color and texture feature extrac-
tion (Fig. 1).

Cell Density Estimation. The parameters used in [9] had been empirically
tuned to images from Cohort B using a subset of representative benign and
tumor tiles. Here, we aimed to determine the parameters more objectively to
ensure they were suitable for application across data from multiple centers rather
than biased towards one particular center. The optimization was conducted via a
grid-search of the parameter space, using the multiple-site dataset from [11] with
per-nucleus annotations to quantify the respective outcome. The five parameters
were: (1) the radius r1 of an object to be accepted as a nucleus candidate in the
radial symmetry transform (2) the roundness constraint α, which lies between
0, allowing an arbitrary shape and 4, allowing only strictly round shapes (3) the
minimum intensity gradient threshold γ for pixels contributing to the symmetry
measurement (4) the region radius r2 of the non-maxima suppression (NMS ) and
(5) a threshold t below which local maxima are ignored as a maximum candidate
for the NMS.

The final parameters were chosen considering two metrics: (1) an adjusted
recall measure (Recall + FalsePositives

TruePositives+FalseNegatives ) of close to 1.5, and (2) a
high F2-scores (similar to the F-score, but weighting recall twice as important
as precision).
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A B C

Fig. 3. Nuclei identification on a sample image from Cohort B: (A) original ROI (B)
using fixed value deconvolution and empirically determined parameters according to
[9] (C) using the proposed adaptive deconvolution and optimized parameters.

Classification Framework. Our approach to whole-slide classification comes
from [3], and our training scenarios are the same as [4]. Here we use stain normal-
ization prior to calculating color channel histogram and gray level co-occurrence
texture features for each tile, and we also include cell density in the feature vec-
tor. Images were divided into non-overlapping tiles of approximately 127 m, and
for each tile cell density (kcd = 1) co-occurence texture features (kco = 21) as well
as histogram-based features (khist = 6) for each of the six channels of the RGB
and CIEL*a*b* colorspaces were calculated, for a total of (k = 163) features
per tile. Expert annotations were used to assign a class label to each training
tile based on the underlying tissue class. For each classification scenario, a Ran-
dom Forest based feature selection was performed, and the 15 highest ranking
features based on Gini-importance were chosen to build a training model. After
feature selection, 2-D Gaussian filters (σ = 2.4, 2.8) were applied to generate
smoothed feature maps for inclusion into training models.

For each classification model, up to 3000 tiles were randomly sampled, with
the constraint that each ROI from the training images was represented in the
training set. Classifiers were trained using radial basis function support vector
machines (RBF-SVMs) with C = 2−2 and γ = 2−9. For each training scenario,
multiple models were generated and used as an ensemble for pooling predictions
on the test sets. For each query image, predictions always based on training
models that did not include that image. In total, we ran 5 training scenarios: 01
and 02 used only data from Cohort A, 04 and 05 used only data from Cohort B,
and 03 used data from both cohorts. Classifier performance is reported as area
under the ROC curve (AUC) for each cohort of images.

3 Results

The optimized parameters and the updated metrics for the proposed cell density
method in comparison to [9] are summarized in Table 2. An illustration of the
nuclei detection on a sample image before and after optimization is shown in
Fig. 3.
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Classification results are shown in Table 3. Scenario 03 includes data from
both cohorts, and we see comparable AUC values for LG-PCa classification
between detailed annotations from cohorts A and B (0.854 and 0.870, respec-
tively). For HG-PCa, we note that scenario 03 performs better on Cohort B than
Cohort A (0.952 vs. 0.875). For classification of Cohort B using Cohort A for
training (Runs 01 and 02), an AUC of 0.705 and 0.657 for LG-PCa and 0.686
and 0.703 for HG-PCa is achieved. Classification of Cohort A using Cohort B
as training data (Runs 04 and 05) produces AUC values of 0.563 and 0.568 for
LG-PCa and 0.484 and 0.487 for HG-PCa.

Fig. 4(A) shows an example heat map using our ensemble results for image
B05 which was clinically annotated with a large, heterogeneous lesion (blue out-
line) which was given a score of Gleason 3+4. Fig.s 4(B) and (D) show results for
LG-PCa (yellow) and HG-PCa (blue) from scenario 02, while figures 4(C) and
(E) are from scenario 03. Scenario 02 detected regions of low-grade tumor within
the larger tumor, but completely failed to detect high-grade tumor. Scenario 03
was able to detect both low-grade and high-grade tumor regions.

4 Discussion

In this study, we have adapted the cell density algorithm of [9] by introducing
adaptive color deconvolution and by optimizing the parameters for cell detection
(see Table 2) based on a validation dataset from [11]. Our method improved the
F2-score and moved our adjusted recall metric to a desired median detection
rate of 1.5. Fig. 3 illustrates that the parameters in [9] led to a detection-bias for
nuclei near ducts, compared to the presented parameter setting, which detects
nuclei more homogeneously across multiple tissue sites. The latter promises a
more stable and reliable cell density estimation across whole slides, seeing as the
presence of ducts will not distort the local density in a ROI.

Although the cell density measure overestimates the true cell count per tile,
it presents a meaningful estimation for comparison between different tiles of a
whole-slide image. A true quantitative verification of the nuclei detection on

Table 2. Update of the parameters and quantifying metrics (MAD = Median absolute
deviation) based on the dataset from [7] with 0.23 m per pixel.

Reynolds et al. [9] proposed

Parameters

r1, radius of the object in question in px 5:8 5:8
α, roundness constraint 4 3
γ, minimum intensity gradient threshold 15 15
r2, region radius for NMS 1 2
t, minimum threshold for being a NMS candidate 1.5 1.6

Metric

Adj. Recall (Median / MAD) 1.13 / 0.20 1.55 / 0.19
F2-score (Median / MAD) 0.63 / 0.11 0.68 / 0.06
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(B) (C)

(A) (D) (E)

Fig. 4. Prediction maps of LG-PCa (B and C) and HG-PCa (D and E) for imageB05
in Cohort B, along with original annotations (A). Note that for the large tumor region
(blue ROI in A), the classification has separated the tumor into regions of HG tumor
(E, bottom left) and LG tumor (B,C). The failure to detect tumor in D indicates the
inability of the model built using Cohort A data to detect HG-tumor in Cohort B.

prostate images such as those from Cohort A and B would be beneficial, but
would require tedious manual cell counting.

Classifier performance using mixed cohorts (scenario 03) was comparable to
that from [4]. However, training with Cohort A and testing with Cohort B shows
an improvement of 21% for LG-PCa and 8% for HG-PCa, demonstrating the
impact of including stain normalization prior to texture and histogram feature
extraction.

Results for training with Cohort B and testing with Cohort A only achieved
56% and 48% AUC, respectively. This discrepancy likely arises from the dif-
ferences in annotation detail levels between the two cohorts, since ROIs were
drawn by two different pathologists. Furthermore, smaller, more specific ROIs

Table 3. Area under the ROC curve (AUC) for classification of both LG-PCa and
HG-PCa for images from Cohort A and B using both clinical and detailed ground
truth annotations.

Low-grade (LG-PCa) High-grade (HG-PCa)
Run Detailed A Detailed B Clinical B Detailed A Detailed B Clinical B

01 0.910 0.705 0.642 0.834 0.686 0.760
02 0.893 0.657 0.682 0.882 0.703 0.674
03 0.854 0.870 0.711 0.875 0.952 0.847
04 0.563 0.968 0.756 0.484 0.978 0.842
05 0.568 0.961 0.748 0.487 0.961 0.808



Prostate Tumor Classification with Stain Normalization and Cell Density 287

were drawn from cohort B in comparison to cohort A. The difference in magni-
fication may also play a role here.

5 Conclusions

Improving the reliability of whole-slide image classification is of critical impor-
tance for the adoption of this technology into pathology workflows. The results
presented here show a promising improvement in classification of LG- and HG-
PCa in whole slide H&E images when training and testing on separate cohorts.
This improvement can be attributed to the inclusion of stain normalization
for texture-based features, as well as the introduction of a cell-density feature.
Future work to perform more rigorous parameter tuning, feature extraction and
feature selection should lead to further improvements in performance.
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