
Chapter 4
A Hybrid CRF/HMM for One-Shot
Gesture Learning

Selma Belgacem, Clement Chatelain and Thierry Paquet

Abstract This chapter deals with the characterization and the recognition of human
gestures in videos. We propose a global characterization of gestures that we call the
Gesture Signature. The gesture signature describes the location, velocity, and orien-
tation of the global motion of a gesture deduced from optical flows. The proposed
hybrid CRF/HMMmodel combines the modelling ability of hidden Markov models
and the discriminative ability of conditional random fields. We applied this hybrid
system to the recognition of gesture in videos in the context of one-shot learning,
where only one sample gesture per class is given to train the system. In this rather
extreme context, the proposed framework achieves very interesting performance
which suggests its application to other biometric recognition tasks.

4.1 Introduction

A gesture is a short human body motion, in the range of seconds, achieved pri-
marily with arms to generally perform an action. In some situations of disability or
constrained environment, the gesture is the only possible mean of communication
between humans or between the human being and the machine. In the latter case, the
machine identifies gestures using computer vision techniques.

Gesture analysis field includes several themes: characterization, tracking, recog-
nition, segmentation, spotting, etc. As part of our study, we focus on gesture charac-
terization and recognition. Gesture characterization involves extracting information
from the data in the aim to discriminate the classes of gestures. Gesture characteri-
zation is a necessary step for gestures recognition.

In the case of continuous sign language, recognition must integrate articulated
gestures, it must combine segmentation and classification as well. Segmentation
consists in determining the limits of gestures in the sequence of video frames. Clas-
sification consists in assigning a label belonging to a given vocabulary of gestures to
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each sequence of video frames that compose a specific gesture. As stated by Sayre
[30], segmentation and classification are two tasks that must be performed simulta-
neously. The classification task must also integrate knowledge a priori on data such
as the vocabulary of gestures, gesture duration, the recording environment, etc. The
segmentation step has to face the variability of the duration of gestures, while the
classification step has to face the variability of instances of a same gesture.

Agesture is a set ofmovements performedmainlywith hands. It canbe represented
in a simplified three-dimensional space consisting of its two-dimensional projection
and its variation through time. In addition, the recognition system must be robust to
recording environment variations. Indeed, the recording conditions are not usually
identical between two sequences representing the same gesture. We can observe
changes in brightness, backgrounds, colours, objects, etc. Note that the appearance
of the involved human may also change (clothes, skin colour, height, etc.).

Markovmodels are widely applied to the recognition and segmentation of sequen-
tial data. They model the temporal dependencies in sequences. They are based on the
Markovian assumption that account for the short-term dependencies only, omitting
the long-term dependencies in the model.

Although introducing some simplification in the model, generative MarkovMod-
els such as hidden Markov models (HMM)[27] allow to introduce a temporal struc-
ture between classes that account for high-level knowledge such as a languagemodel.
Some other Markov models such as conditional random fields (CRF) [17] are more
oriented toward the local discrimination of patterns. In this work, we propose to
combine the advantages of these two types of Markov models to provide a hybrid
system. We will show that this hybrid system allows the integration of knowledge
while being robust to different sources of variability.

Gestures are characterized using an original global description that account for
shapes and motions in the video frames. This method describes the location, the
velocity and the direction of the motion, based on the optical flow velocity informa-
tion.

This system was tested using the “Gesture Challenge 1–2” dataset proposed by
ChaLearn 2011–2012 [11]. The subject of this competition is one-shot gesture learn-
ing [11, 40]. We will show later that the lack of training data is another problem that
the Markov models are able to solve to a certain extent.

In Sect. 4.2 of this chapter, we present an overview of the gesture recognition
applications in the literature, especially the hybrid models combining HMM with
other classification methods. In Sect. 4.4, we show the principle of our hybrid model
CRF/HMM and explain its interest. Then, in Sect. 4.5, we describe our gesture char-
acterization model. In Sect. 4.4.2.1, we explain how we adapted our hybrid system to
the one-shot learning context, in order to cope with the lack of training data. Finally,
we will present in Sect. 4.6, the experimental protocol and the evaluation results of
our system and its properties.
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4.2 Related Works to Gesture Recognition

During the last decade, many studies have been devoted to gesture recognition, and
especially in order to design automatic systems that would recognize the sign lan-
guage. Such systems would allow deaf people to better communicate with machines
or with other humans. For example, Vogler and Metaxas [36], Agris et al. [37] and
Ong et al. [25] designed a parallel HMM model for signed sentences recognition.
They distinguished gesture descriptors such as position, orientation and distance to
facilitate the learning process of the HMM and optimize the use of these descriptors.
This decomposition is manifested by the generation of one HMM for each descriptor
and for each sub-unit of the model.

For gesture sequences recognition, the use of global parallel HMM models is
common in the literature [13, 16, 25, 36–38]. HMM models have also been used
with a very small number of training examples [13, 16, 38, 40]. This paper addresses
the lack of data problem, which is a major problem in the field of machine learning.
Konecny et al. [16], Jackson [13] and Weiss [38] proposed a global HMMmodel for
gesture sequences recognition using single-instance learning databases. The global
model is a set of left–right interconnectedHMM’smodelling each gesture. From each
state of each HMM, it is possible to remain in that state or to jump to a subsequent
internal or external state. In the model proposed by Jackson [13], each frame of the
gesture video is represented by a state. This model remains complex due to the large
number of states involved.

The idea of combining HMM with other classification scheme is not new. Such
hybrid framework is intended to introduce a better discrimination between classes,
than generative models can do. One of the first combination scheme was proposed in
the 1990s by the integration of neural networks to HMM’s [34]. Such combination is
prevalent in the literature in various fields. This type of hybrid models was applied
to speech recognition [14, 21, 24, 29, 32, 41], handwriting recognition [3, 9, 15,
19, 20, 22, 33] and gesture recognition [6]. HMM models have also been combined
with SVM models for handwriting recognition [8] and with dynamic programming
methods for gesture recognition [28]. We noticed that the application of these hybrid
models to gesture recognition is recent and not much studied in the literature.

To our knowledge, the only work addressing CRF and HMM combination is the
work of Soullard et al. [31], based on the work of Gunawardana et al. [10]. In this
work, the authors constrain the learning step of a hidden CRF by initialising it with
the parameters of a pretrained HMM. This method ensures the convergence of the
hidden CRF learning step and shows the difficulty of learning convergence of such
models. The idea of our approach is different and is inspired from neuro-Markovian
approaches. The principle of these approaches is to replace the HMM data model,
consisting of a mixture of Gaussians, by a discriminative model that classifies local
observations. This model is traditionally composed of a neural network which pro-
vides local a posteriori probabilities of each class associated to each local observation
in the sequence. In this work, we propose the use of a CRF in order to perform this
discriminative layer. The CRF layer will discriminate local observations and provide
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local class posteriors to the HMM layer. These local posteriors are then combined
during the HMM decoding stage that integrates more global information embedded
in the HMM transition model (known as the language model). According to the prin-
ciple of our hybrid model, the HMM learning step and the CRF learning step are
performed separately. Details of the new hybrid model we propose are presented in
Sect. 4.4.

4.3 Markovian Models

4.3.1 Hidden Markov Models (HMM)

The Hidden Markov Models (HMM) [2] are probabilistic generative statistical mod-
els used for sequence recognition. Their principle is to generate observations based
on some hidden states. The joint probability p(y1:T , x1:T ) (Eq. 4.1) for the observation
sequence x1:T and the hidden state sequence y1:T is derived from the particular gener-
ative graphical model depicted on Fig. 4.1. This simple graphical model is obtained at
the expense of two restrictive assumptions: each observation xt depends only on the
current hidden state YT (thus assuming observations to be conditionally independent
between each other) and each hidden state YT depends only on the previous state yt−1
(for an order 1 Markov model). Finally, these assumptions lead to the factorization
of Eq.4.1.

p(y1:T , x1:T ) = p(y1)p(x1|y1)
T∏

t=2

p(yt |yt−1)p(xt |yt) (4.1)

Through the inference phase, the most likely sequence of hidden states Y∗ that
describes the given sequence of observations X is determined. Viterbi algorithm [35]
is used to find this best sequence.

The graphical data modelling with a HMMmodel is very interesting. This model
is used to guide the decoding process by preserving the structural consistency over
time. This model makes it possible to integrate high-level a priori knowledge such
as syntactical information or duration. Another advantage of HMM’s is that they do
not require having labelled frames, as the EM-based training process is able to infer
local labels from global label given at gesture level.

Fig. 4.1 Graphical
representation of a HMM:
each observation xt depends
only on the hidden state yt
and each hidden state yt
depends only on the previous
state yt−1
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Generative models such as HMM use Gaussian mixtures to approximate the data
distribution.When training data are too few, modelling becomes poor and inadequate
which is a major drawback of HMM’s. However, discriminative models can remedy
this problem.We present in the next section a discriminant sequentialMarkovmodel:
CRF. This model was proposed by Lafferty et al. [17]. It has some advantages that
can address HMM problems.

4.3.2 Conditional Random Fields (CRF)

Conditional random fields (CRF) [17] are discriminative Markov models known for
their classification ability. They have been designed in order to model the decision
process of labelling a sequence. Therefore, they account for the a posteriori proba-
bility of a particular sequence of labels. As depicted in Fig. 4.2, at each time step,
a label depends on the previous label (Markov assumption) and may depend on the
whole observation sequence X. Making no requirement about the conditional inde-
pendence of the observation data. The graphical representation of a CRF model is a
linear undirected graph with a HMM similar structure. Weights associated to each
arc are no longer probabilities but potential functions reflecting the adequacy (or the
link) between the two nodes.

Theprobability of a state sequenceY = y1:T knowing the sequenceof observations
X = x1:T is computed by:

p(Y |X) = 1

Z(X)
exp

(
T∑

t=1

K∑

k=1

λkfk(yt−1, yt, X, t)

)
, (4.2)

where Z(X) is a normalization term.
fk , ∀k ∈ [1, K] are the feature functions. There are two types of feature func-

tions: feature functions of transitions between successive states representingMarkov
dependencies and observation feature functions. λk is the fk function weight. The
weights λk , ∀k ∈ [1, K] are the parameters to be optimized during the CRF training
procedure.

As opposed to HMM, CRF are not able to model high-level information such
as a language model or syntactical rules. They are local classifiers in a sequential
process. Thus, the high-level knowledge must be introduced in postprocessing as

Fig. 4.2 A representation of
the graphical structure of the
linear CRF
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an additional step of filtering in order to guaranty the structural labelling consis-
tency. The HMM’s generative framework has this ability of coping with high-level
structuring information.

Finally, if we compare the advantages and disadvantages of CRF and HMM, we
find a certain complementarity between the two models. Therefore, we propose to
combine these two models in a hybrid framework that we present in the next section.

4.4 Hybrid CRF/HMM Model

4.4.1 Overview of the CRF/HMM Model

In this section, we present our hybrid CRF/HMM system for gesture recognition. It
combines the discriminative ability ofCRFwith themodelling ability ofHMM.Com-
bining the two models is performed in an easy and straightforward way derived from
the literature. The discriminative CRF stage provides local class posterior probabili-
ties that are fed to the HMM stage that account for more global constraints regarding
the label sequence. Figure4.3 shows the proposed hybrid system.

Following this model, the HMM probability p(y1:T , x1:T ) (see Eq.4.3) depends
on the posteriors computed using the CRF.

p(y1:T , x1:T ) = p(x1|y1)p(y1)
T∏

t=2

p(xt |yt)p(yt |yt−1) (4.3)

However, p(xt |yt) is a likelihood,while theCRFoutputs posteriors p(yt |xt). There-
fore, p(xt |yt) is computed from p(yt |xt) using Bayes’ rule:

Fig. 4.3 The graphical model CRF/HMM
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p(xt |yt) = p(yt |xt)p(xt)

p(yt)
(4.4)

As every gesture class are considered to be equally likely, p(yt) is a constant
∀t ∈ N. The aim of the decoding process is to find the state sequence y1:T that
maximizes p(y1:T , x1:T ). As the observation probability p(xt) is time independent,
p(xt) is not involved in the maximization of p(xt |yt). Hence, the maximization of
p(xt |yt) turns toward the maximization of p(yt |xt).

Given that the CRF are able to take into account the whole observation sequence
to compute the posteriors of each class, one can state that p(yt |xt) = p(yt |x1:T ). Let
us recall that y1:T and x1:T are noted Y and X.

This is computed within the CRF using the forward-backward algorithm [1],
where the forward probability αt and the backward probability βt are computed
using the following recurrences:

αt(i) = p(x1x2 . . . xt, yt = si) =
Ns∑

j=1

αt−1(j)ψt(si, sj, ol), (4.5)

βt(i) = p(xt+1xt+2 . . . xT , yt = si) =
Ns∑

j=1

βt+1(j)ψt+1(si, sj, ol), (4.6)

where

ψt(si, sj, ol) = exp(
K∑

k=1

λkfk(yt = si, yt−1 = sj, xt = ol)) (4.7)

and si, sj are hidden state that belong to S , and ol is an observation that belong to
O . Finally, following the forward-backward procedure, we have:

p(X) =
Ns∑

j=1

αT (j) =
Ns∑

j=1

β1(j) =
Ns∑

j=1

αt(j)βt(j), (4.8)

p(yt = si|X) = p(yt = si, X)

p(X)
= αt(i)βt(i)

∑Ns
j=1 αt(j)βt(j)

= γt(i). (4.9)

4.4.2 Training the CRF/HMM Model

We chose to achieve a separated training of HMM and CRF. The HMM training
provides the transition matrix between gesture states. Transition models are learned
separately for each gesture class and gathered into a global model for decoding
gesture sequences. This model is described in Sect. 4.4.4.
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As CRF do not benefit from an embedded training stage like HMM, it is necessary
to build a frame-labelled learning dataset. This is achieved using the initial HMM
model of gesture trained on the dataset that are used in a forced alignment mode
that provides the desired frame labelling. Then, the CRF learns a single model for
every gestures, considering as many classes in the model as there are sub-gestures.
The number of sub-gestures is equal to the number of states in the HMM model
of gesture.

4.4.2.1 CRF/HMM Adaptation to One-Shot Learning

In this section, we focus on the learning of the recognition system using a unique
sample per class. These learning conditions are interesting since the annotation efforts
are extremely reduced in this case. Furthermore, using a single sample per class allows
to speed up the learning process.

The one-shot learning framework has been quite extensively used for gesture
analysis and recognition [13, 16, 38–40]. These system are generally made up of a
standard recognition method that has been adapted to the one-shot learning frame-
work. We now describe the adaptation of our models (HMM and CRF) to one-shot
learning.

To model the feature space, the HMM relies on Gaussian mixtures estimated
on the learning database. When considering a very reduced number of samples,
the Gaussian distribution parameters are very difficult to estimate, especially the
variance. Therefore, first we limited the mixture to one Gaussian per gesture class.
Second, the variance is computed on every gesture class in order to increase the
amount of data and improve the estimation. Doing that, each gesture class has the
same variance. Although these two tricks are a limitation of the initial method, the
experiments showed the interest of such an adaptation.

In its initial form, the CRF method is mathematically able to deal with either dis-
crete or continuous features; however, since the CRF classification stage is derived
from a logistic regression, it is more adapted to discrete features than continuous.
This is even more true when the number of samples is small. Therefore, we turned
toward the use of a feature quantization procedure. It allows to efficiently tune the
parameters linked to each discrete feature value. Notice that some recent develop-
ments have introduced hidden CRFmodels in order to cope with continuous features
[26]. But such a framework would require more data than possible in the one-shot
learning context.

The quantification is achieved using a uniform scalar quantifier that maps each
continuous feature into Nq discrete features, according to the following equation:

Q : [−Vmax,Vmax] −→ [−Nq,Nq]
x �−→ x×Nq

Vmax
.

(4.10)

We empirically tuned the value Nq in order to reach the best recognition perfor-
mance using a validation procedure. We found that Nq = 16 was the best value.
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4.4.3 Structure and Parametrization of the CRF/HMM Model

As for a standard HMM, the HMM of our hybrid structure is made of states describ-
ing each gesture. Although the gesture duration can be modelled through the state
autotransitions, it is known that a better modelization can be achieved by setting a
variable number of states per gesture. We experimentally checked that this strategy
outperforms the performance of the same system with a fixed number of states per
gesture. The number of states of each gesture i is determined automatically depend-
ing on its frame length fg(i). The theoretical number of frames per state, denoted
fs, is one hyperparameter of the system.We denote the number of states of a gesture
model i; Nei = fg(i)/fs. As we already mentioned, we limit the data model to have
only one Gaussian per state.

The CRF part of our hybrid model has a standard linear structure, as shown in
Fig. 4.3. The CRF training leads to a single model that discriminates all the gestures
of the dataset. As explained in the previous section, the CRF formulation allows to
consider an observation window, including the current observation and a neighbour-
ing context to be determined. To adapt the system to the gesture duration variability,
we chose a variable size fw of the observation window CRFwind. fw is statically
estimated on the learning databases. In order to avoid overfitting the CRF, a regular-
ization term has been empirically tuned to a value of 1.5.

4.4.4 Decoding Using the CRF/HMM Model

The gesture sequence to recognize may contain an arbitrary number of gestures, in
an arbitrary order. Therefore, the model should evenly switch between the gesture
models. This can be modelled by gathering all the gesture model within a global
sequence model, as shown in Fig. 4.4. In this model, each line represents an isolated
gesture, with a variable number of state. This global model allows to describe any
arbitrary gesture sequence with equiprobable gesture transition probabilities.

Fig. 4.4 The recognition
model of gesture sequences
using HMM. egi

j represents
the state j of the gesture i
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4.5 Global Gestures Characterization

Gestures characterization requires velocity descriptors and shape descriptors as well.
Considering that signers can wear clothes in different colours and have different skin
colours; colour descriptors are not included in our characterization model.

In this section, we present a set of motion descriptors deduced from optical flows
velocities. We call this set of descriptors Gesture Signature (GS). We also propose
to include shape descriptors extracted with histogram of oriented gradients (HOG).
Such descriptors will account for shape descriptors.

4.5.1 Characterization with Optical Flows: Gesture Signature

Optical flows describe local velocities at the pixel level. They are known for their
robustness to brightness changes [4]. They are invariant to colours and object distor-
tion. Optical flows are able to describe simultaneously all movements in the scene
without any segmentation. Therefore, this method seems adequate to simultaneously
extract a maximum of information on body motion, while being robust to variability
of colour, shape and brightness. In what follows, we propose a feature vector whose
components are combinations of velocity values computed with optical flows.

Hand movements are usually located on the left and the right part of the image,
so it is advantageous to divide the image into two vertical sections as shown in
Fig. 4.5. Thus, the description of the movement is better localized and motions are
characterized in these two distinct regions.

Each part of the image is described by a gesture signature which consists of nine
descriptors derived frompositive andnegative horizontal componentsV+

X andV−
X , and

nine descriptors derived from vertical components V+
Y and V−

Y . These components

Fig. 4.5 The directions of
the optical flow components
(image from a
ChaLearn database video)
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are derived from optical flows at each pixel of the image at position p (Fig. 4.5).
Obviously, for each pixel p, two of these four values are null; one pixel can have only
one direction according to the x-axis and one direction according to the y-axis.

For a given direction, these nine descriptors consist of four movement loca-
tion descriptors, two movement velocity descriptors and three movement orienta-
tion descriptors. Although these features are simple, they are complementary and
describe precisely the gesture changes since location, velocity and orientation are
the main components of a gesture.

Table4.1 shows the 18 features set.
The eight horizontal and vertical location features are related to inertia centre

coordinates. They represent the vertical and horizontal positions of velocity centres
with respect to the global movement of the considered portion of the image.

There are four features of movement velocity and strength. The first descriptor
gives an energy information of the movement. It is inversely proportional to the
quadratic mean of the moving pixels velocities. For normalization reasons, we use
the inverse of this quadratic mean. The second descriptor gives information about
the motion amplitude. It is the median of the moving pixels velocities. The median
integrates information about the linear momentum, where the mass is replaced in our
case by the number of moving pixels. The median also reduces the noise effect. V∗

X
and V∗

Y components are the medians of a threshold velocity vector which is computed
with optical flows. Values of the threshold are given below.

SVX =
∑Ns

px
p=1 |VX(p)|
Ns
px

SVY =
∑Ns

px
p=1 |VY(p)|
Ns
px

The six movement orientation features are statistics on pixels moving in the same
direction, positive or negative. The first two descriptors characterize the amount of
pixels moving in the same direction. The third descriptor characterizes the dominant
direction of themovement. Those three descriptors characterize the relationship or the
symmetry between the two main movement groups whose orientations are opposite.
Figure4.6 shows the interest of these descriptors and illustrates the symmetry infor-
mation. Thus, by analysing the variation of these three descriptors, we can deduce
the type of associated movement. Hence the importance and the complementarity of
these three orientation descriptors.

4.5.2 Characterization with HOG

For a complete gesture characterization, we add global contour features extracted
with a classic shape descriptor; histograms of oriented gradients (HOG). To apply
this descriptor, we resumed the implementation of Dalal et al. [7]. nine directions are
used to quantify gradients inclination angles calculated on the image. According to
the work of Dalal et al. [7], detecting people with these nine orientations is efficient.
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Table 4.1 The eight movement location features, the four motion velocity features and the six
movement orientation features

Descriptor Horizontally Vertically

Location Average Abscissa of
pixels moving in the
positive direction
(AAP)

1
Iw

×
∑N+

px
p=1 |V+

X (p)|xp

∑N+
px

p=1 |V+
X (p)|

1
Iw

×
∑N+

px
p=1 |V+

Y (p)|xp

∑N+
px

p=1 |V+
Y (p)|

Average ordinate of
pixels moving in the
Positive direction
(AOP)

1
Ih

×
∑N+

px
p=1 |V+

X (p)|yp

∑N+
px

p=1 |V+
X (p)|

1
Ih

×
∑N+

px
p=1 |V+

Y (p)|yp

∑N+
px

p=1 |V+
Y (p)|

Average Abscissa of
pixels moving in the
negative direction
(AAN)

1
Iw

×
∑N−

px
p=1 |V−

X (p)|xp

∑N−
px

p=1 |V−
X (p)|

1
Iw

×
∑N−

px
p=1 |V−

Y (p)|xp

∑N−
px

p=1 |V−
Y (p)|

Average ordinate of
pixels moving in the
negative direction
(AON)

1
Ih

×
∑N−

px
p=1 |V−

X (p)|yp

∑N−
px

p=1 |V−
X (p)|

1
Ih

×
∑N−

px
p=1 |V−

Y (p)|yp

∑N−
px

p=1 |V−
Y (p)|

Velocity Global velocity
inverse (GVI)

√
Npx∑Npx

p=1 (VX(p))2

√
Npx∑Npx

p=1 (VY(p))2

Maximum velocities
median (MVM)

1
SVX

× |V∗
X| 1

SVY
× |V∗

Y|

Orientation Proportion of the
pixels moving in the
positive direction
(PPP)

PPPX = N
V+
X

px
Npx

PPPY = N
V+
Y

px
Npx

Proportion of the
pixels moving in the
negative direction
(PPN)

PPNX = N
V−
X

px
Npx

PPNY = N
V−
Y
px
Npx

Dominant orientation
(DO)

DOX = N
V+
X

px −NV
−
X

px
Npx

DOY = N
V+
Y

px −NV
−
Y
px

Npx

In HOG, these nine directions are weighted by the corresponding gradients norms
in the image computing cells. It applies sliding window self-superposition, generat-
ing redundant histograms and a very large HOG feature vector (with size equal to
3780). To alleviate this vector, we used the average operator on two levels. The first
simplification level is based on the HOG visualization algorithm proposed by Jurgen
Brauer.1 The idea of this algorithm is to average the redundant histograms on image

1http://www.juergenwiki.de/work/wiki/doku.php?id=public%3ahog_descriptor_computation_
and_visualization.

http://www.juergenwiki.de/work/wiki/doku.php?id=public%3ahog_descriptor_computation_and_visualization
http://www.juergenwiki.de/work/wiki/doku.php?id=public%3ahog_descriptor_computation_and_visualization
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Fig. 4.6 Evolution of the descriptors PPPX and PPNX in a video from SignStream database [23].
Two curves superimposed with a presence of a peak correspond to an opposite movement of the
two hands. A strong difference between the two curves corresponds to a parallel movement of both
hands in the dominant direction. A stagnation of the two curves corresponds to fixed hands (frame
70)

cells keeping nine gradient directions in each cell. The second level of the HOG
descriptor simplification, applied in our case, is to average the gradient amplitudes
on larger image blocks that we call meta-blocks. We partitioned the image blocks
to meta-blocks. For each meta-block and for each orientation, we compute mean
amplitude in all meta-block cells. Tests were carried out using 4 and 16 meta-blocks.
We obtain then nine amplitude averages per meta-block which leads to a descriptor
of size 9×4 = 36 or 9×16 = 144. In our case, HOG are computed on the difference
of two successive images in order to characterize only moving patterns.

4.6 Experimental Protocol

In this section, we explain the experimental protocol: databases, evaluation methods,
feature vector variants and implementation tools.

4.6.1 Databases

Our recognition system has been evaluated on public databases designed for the
ChaLearn 2011–2012 competition [11]. We did not participate to this competition
but we were able to compare our system to those of the participants thanks to the
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evaluation platform proposed by the competition organizers.2 We detail the results
of this evaluation in Sect. 4.7.

ChaLearn databases aremade of three types of resources: 480 systemdevelopment
sub-databases named devel, 20 system validation sub-databases named valid and 40
systemfinal evaluation sub-databases named final. The 1–20 final sub-databaseswere
tested in the first round of the competition and 21–40 final sub-databases were tested
in the second round of the competition. This final evaluation classifies participants
in the ChaLearn competition.

Each of these sub-databases contains 47 pairs of videos. Each video pair presents
the same scene in two formats: RGB colour format and depth format. These videos
are recorded using a Kinect (TM) camera at a frequency of 10 frames per second,
with a resolution of 240 × 320 pixels. Videos of the same sub-database share the
same scenic features: same actor, same background, same recording conditions, same
theme and same gesture vocabulary. However, these scenic characteristics vary from
sub-database to another. 20 players participated in the making of these databases,
one actor per sub-database. These databases present 30 vocabularies composed of
8–15 gestures belonging to various themes such as video games, distance education,
robot control, sign language, etc.

Each sub-database includes two sets of video: a training setG and a test set S. The
training setG consists of 10 videos. Each video contains a single and isolated instance
of a gesture: one-shot learning databases. The test set S consists of 40 videos. Each
video includes a sequence of 1–5 successive gestures separated by a common break
point. Gestures organization in each test sequences is random, there is no specific
gestures grammar.

We summarize in the following subsection the various feature vectors used for
the tests.

4.6.2 Feature Vector Variants

Table4.2 presents the different variants of the feature vector c we used in our exper-
iments. We index each variant by its size l(c). l(v(GS)) is the number of gesture
signature features. l(v(HOG)) is the number of HOG features. Some variants of the
feature vector c are applied to two data formats (RGB image and depth image).

4.6.3 Evaluation Metric

The organizers of the ChaLearn competition defined a global evaluation metric on
all test sequences based on the Levenshtein distance, also called edit distance [18].
This form of global error is denoted by Lch and given by Eq.4.11.

2https://www.kaggle.com/c/GestureChallenge2.

https://www.kaggle.com/c/GestureChallenge2
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Table 4.2 Feature vector variants adopted in the experiments

Total size l(c) Descriptor

Gesture signature GS HOG

l(c(GS)) Description l(c(HOG)) Description

54 18 No image
division

36 4 meta-blocks

52 16 No median, no
image division

36 4 meta-blocks

180 36 Image division
into 2 parts

144 16 meta-blocks

360 72 Image division
into 2 parts, 2
data formats

288 16 meta-blocks, 2
data formats

72 72 Image division
into 2 parts, 2
data formats

0 HOG not applied

Lch : D −→ R

S �−→
∑

s∈S L(R(s),T (s))∑
s∈S l(T (s)) ,

(4.11)

where D is the set of test databases, S is the set of test sequences, s is the sequence
of gestures, R(s) is the system recognition result of sequence s, T is a function
giving the ground truth sequence s, L(., .) is the Levenshtein distance and l(v) gives
the size of a vector v.

We use the ChaLearn form of the error Lch to compare our recognition system
to ChaLearn participants recognition systems. However, let us emphasize that Lch

is slightly different from the classical Levenshtein distance (see Eq.4.12), which is
bounded and seems more generic. Thus, to present the main results of our various
tests, we use the classic error form.

L : D −→ [0, 1]
S �−→ 1

|S|
∑

s∈S
L(R(s),T (s))

l(R(s))+l(T (s))

(4.12)

4.6.4 Implementation Tools

We used the OpenCV library [5] to develop image and video processing methods.
HMM gesture recognition methods have been implemented thanks to Torch library,3

while CRF gesture recognition methods rely on the CRF++ library.4

3http://torch.ch/torch3/.
4http://crfpp.googlecode.com/svn/trunk/doc/index.html.

http://torch.ch/torch3/
http://crfpp.googlecode.com/svn/trunk/doc/index.html
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4.7 Gesture Recognition Results

In this section, we present the results of our system, using different variants. We first
evaluate the effect of the quantification of continuous features for a discrete CRF in
Sect. 7.1. Then, we demonstrate the robustness of the hybrid model CRF/HMMwith
respect to the number of states and to the various feature vectors in Sect. 7.2. Finally,
we compare the recognition results of the hybrid system CRF/HMM to the classic
and adapted versions of HMM and CRF in Sect. 7.3. We conclude this section by
presenting our rank compared to participants at the ChaLearn competition.

All recognition performance results of the hybrid system CRF/HMM presented
in this section are obtained with tests performed with an adapted CRF/HMM as
explained in Sect. 4.4.2.1 unless otherwise stated. Adapted HMM and adapted CRF
recognition systems cited in this section are also adapted as explained in Sect. 4.4.2.1.

4.7.1 Evaluation of the Features Quantization for CRF

Although CRF are able to cope with continuous features, it has been shown that dis-
cretizing the feature set could increase its performance, especially when the number
of training examples is small [12].

Indeed, continuous CRF put a single weight for all values of a descriptor.Whereas
a reduced value of this descriptor does not necessarily mean that it has no importance
and a high value of this descriptor does not mean that it is really important. This way
of managing weights can be suitable to weight a score function whose values have
a monotonous importance. However, for a descriptor, distinctive ranges of values
can change from one descriptor to another. Thus, discrete CRF, which give a distinct
weight for each discrete feature value, provide more specification to features, which
subsequently increases the discrimination of classes. Therefore, discrete CRF seems
an adequate model for one-shot learning case, as we noted in the Sect. 4.4.2.1.

Figure4.7 (left) presents the CRF/HMM recognition performance in both con-
tinuous and discrete characteristics cases by varying the number of frames per state
for the HMM component. Discrete system performances clearly outperform contin-
uous system performances, which demonstrate the interest of quantification. Let us
also mention that the learning time of continuous CRF (estimated in hours) largely
exceeds the learning time of discrete CRF (estimated in minutes). This is another
advantage of discrete CRF.

4.7.2 Robustness of the CRF/HMM Approach

In this section, we analyse the influence of several parameters on our CRF/HMM
approach results: number of frames per states, gesture duration and feature vector.

http://dx.doi.org/10.1007/978-3-319-24865-3_7
http://dx.doi.org/10.1007/978-3-319-24865-3_7
http://dx.doi.org/10.1007/978-3-319-24865-3_7
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Fig. 4.7 Left CRF/HMM gesture recognition results with continuous and discrete component.
Right CRF/HMM and adapted HMM systems robustness to the variation of the number of frames
per state

4.7.2.1 Robustness to Changes in the Number of Frames per State

Figure4.7 (right) shows the recognition error L of adapted HMM and CRF/HMM
systems with respect to the number of frame per state fs. For each value of fs,
the recognition system is re-learned. One can observe that the CRF/HMM system
outperformsHMM,and that theCRF/HMMsystemprovides extremely stable results,
while the system performance of HMM is strongly variable. This is an interesting
feature since it does not require a fine hyperparameter tuning for reaching good
results.

4.7.2.2 Robustness to Changes in the Gesture Duration

The change in the number of frames per state has a direct impact on the CRF/HMM
robustness to the gesture duration variation. With a large number of frames per state,
CRF/HMM system is able to handle the temporal elasticity of a gesture. In other
words, when a gesture expands or narrows through the number of frames in the test
data, CRF/HMM system is able to align the gesture model on the data and decode
them. In addition, CRF component are able to implicitly manage narrowing and
expansion of data through their local decision which is independent from the data
global model, unlike HMMwhich are dependent on a graph-oriented model without
jumps. Thus, to manage the temporal elasticity of gestures, a simple structure of
the hybrid model with a reduced number of states can replace a complex HMM
system with jumps between states and a complete connection as adopted by some
participants of the ChaLearn competition [13, 16, 38].
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Fig. 4.8 Adapted HMM (left) and CRF/HMM (right) robustness to the variation of the feature
vector

4.7.2.3 Robustness to Changes in the Feature Vector

Figure4.8 present the variation of the errorL in terms of the number of frames per
state fs for two HMM systems (left) and for two CRF/HMM systems (right). Each
pair of systems is evaluatedwith twodifferent feature vectors.When the feature vector
size decreases, CRF/HMM keep almost the same performance. In other words, a
minimum of features is sufficient for CRFHMM,whereas for classic HMM, features
addition increases greatly the recognition performance. This recognition ability with
a reduced number of features makes features extraction task easier and faster.

These three CRF/HMM robustness property prove that with a simple system, it
is possible to reach high recognition performance thanks to CRF and HMM advan-
tages combination and disadvantages compensation. We can see the simplicity of
the CRF/HMM system at three levels: (a) a simple model structure with a reduced
number of state without jumps nor complete connection; (b) a reduced number of
features; and (c) a training dataset reduced to an example by class.

4.7.3 Evaluation of the CRF/HMM Using the
ChaLearn Platform

We present in this subsection the recognition results of our best hybrid sys-
tem CRF/HMM on the valid and final databases, as well as our ranking in the
ChaLearn competition.

We first present a comparison of the performance of the main recognition systems
that we studied (Table4.3) on the devel databases. The 52 feature vector has been
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Table 4.3 The recognition results of various recognition systems based on HMM and CRF and
tested on 20 devel databases

System l(c) fs Error: L

classic HMM 52 6 0.36

adapted HMM 52 3 0.23

classic CRF
(continuous)

52 fg(g) 0.29

adapted CRF
(discrete)

52 fg(g) 0.28

CRF/HMM (adapted) 52 5 0.22

Table 4.4 The recognition results of our best hybrid system CRF/HMM on 20 valid databases, 20
final 1–20 databases and 20 final 21–40 databases (each database category contains about 750 total
sequences test in the order of 200 frames each)

Database category Error Ranking

L Lch

Valid 0.177193 0.348812 –

Final 1–20 (1st round) 0.147924 0.296440 7th

Final 21–40 (2nd
round)

0.122398 0.252357 7th

chosen since it provides good results while keeping a compact representation (see
Table4.2). It is identical for all the systems. The number of frames per state fs has
been optimized for each system. fg(g) represents the size of the learned gesture,
which means that every gesture is represented by a single class, subclasses that
correspond to states in the case of HMM do not exist in the case of CRF. On the
other hand, a postprocessing step is applied to the classic and adapted CRF in order
to filter their recognition results. Without this step recognition error exceeds 0.5.
Table4.3 shows that the performance of the proposed hybrid system CRF/HMM
clearly outperforms the recognition performances of other systems.

In order to rank our system in the ChaLearn 2011–2012 competition, we tested the
hybrid systemon valid and final databases provided during the competition. Table4.4
shows the hybrid system CRF/HMM recognition error values computed with both
evaluation methodsL andLch on valid and final databases. Table4.4 presents the
CRF/HMM system rank on both database categories using theLch error. It appears
that we ranked at the 7th position among 559 systems from 48 participants for both
first and second rounds. The complete list with their score (theLch error) is available
on the Kaggle website for the first5 and the second round.6 We achieved this rank
using only RGB format data.

5https://www.kaggle.com/c/GestureChallenge/leaderboard.
6https://www.kaggle.com/c/GestureChallenge2/leaderboard.

https://www.kaggle.com/c/GestureChallenge/leaderboard
https://www.kaggle.com/c/GestureChallenge2/leaderboard
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Beside the competition, for a data size equal to 750, we demonstrated with the
statistical unilateral student test that our hybrid model CRF/HMM significantly out-
performs classic models HMM and CRF. CRF/HMM also outperforms the adapted
HMM7 with a confidence level of 99% and the adapted CRF (see footnote 7) with a
confidence level of 99.5%.

These results and this study show that the CRF/HMM hybrid system is a system
that has better performance than other classic systems (HMM and CRF), is robust to
different variations, and is interesting and practical in the real-world problem such
as one-shot learning.

4.8 Conclusion

In this chapter, we proposed a new hybrid system for gesture recognition CRFHMM.
We demonstrated that this combination of Markov models benefits from each model
advantages without undergoing its drawbacks. These Markovian models have been
adapted to one-shot learning context in order to improve their recognition ability.
We also proposed a new gesture characterization model which is a gesture Signature
based on optical flows.

We demonstrated that these gesture characterization and recognition models con-
stitute a robust recognition hybrid system that opens up new perspectives for sequen-
tial Markov models. An interesting perspective of our gesture recognition work con-
cerns the gesture detection task, called the gesture spotting. Gesture spotting consists
on locating and labelling specific gestures in videos. It can be applied in video doc-
uments management contexts such as video retrieval, categorization and indexing.
Our recognition model could be adapted to the spotting task by representing false
examples through an additional class to the gestures vocabulary.

Finally, we demonstrated in this chapter Markov systems ability to model and
manage spatio-temporal variations of sequential data, including gestures. The mod-
elling evolution of the human activity contributes to the evolution of computer vision
techniques and subsequently contributes to the evolution of human–machine inter-
action systems.
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