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Preface

Biometrics is the science of recognizing individuals on the basis of their physical
(such as face, fingerprint, and iris) or behavioural traits (such as voice and gait). It
holds a lot of promise over traditional password-based systems, such as PIN and
password, therefore revolutionizing the way authentication is done. Biometric
applications include border crossing, national civil registry, smartphone security,
mobile payment and access to restricted facilities.

Continual improvements in accuracy, transaction speed, affordability of bio-
metric systems and technologies have increased their ease of use and
cost-effectiveness. While biometric technology continues to be adopted, an intrinsic
characteristic of the technology is that system error rate simply cannot attain
absolute zero in real-world applications. The main cause for mismatch errors is the
variable acquisition conditions in semi- and uncontrolled environments, due to
changes in pose, illumination, human–sensor interactions, occlusions, expressions,
ageing, etc.

In addition to complex operational environments that change over time, bio-
metric systems are typically designed a priori using limited and unbalanced data
and without any knowledge of underlying data distributions. Therefore, biometric
models may be often poor representatives of the biometric trait to be recognized,
and should be adapted over time in response to new or changing input features,
quality of the input data samples, change in sensor/matching algorithm and envi-
ronments. Several innovative techniques have recently emerged to adapt the
biometric system over time. These systems are collectively termed as adaptive
biometric systems.

Recently, adaptive biometrics has gained much attention from the research
community, and is expected to continue this momentum because of its key pro-
mulgated features. First, with this system, one no longer needs to collect a large
number of biometric samples during enrollment. Second, it is no longer necessary
to re-enroll or re-design the biometric system (classifier) from scratch in order to
cope up with changing environments. This convenience can significantly reduce the
cost of maintaining a biometric system. Third, the actual observed intraclass
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variations like aging can be incorporated into the system. In fact, biometric vendors
such as BIOsingle (fingerprint) and Recogsys (hand geometry) have incorporated
the automated adaptation mechanism into their technologies. However, there are
many challenges and research issues to be solved such as the possibility of cor-
ruption of biometric models or template galleries with impostor intrusion due to the
overlap in their respective genuine and impostor score distribution, the informative
patterns, the stopping criteria of adaptive biometric system, etc.

Overall, this book aims to present a clear understanding of, recent advances and
challenges to promote the field of adaptive biometric systems. Further, this book is
a collection of numerous techniques to biometric system adaptation under unified
taxonomy. Furthermore, adaptation procedures specified in this field are applicable
to any pattern recognition system. This book is suitable for final-year undergraduate
students, postgraduate students, engineers, researchers and academicians in the field
of computer engineering who are engaged in various disciplines of system sciences,
information security and identity businesses. We are indebted to a number of
individuals in academic circles who have contributed in different, but important,
ways to the preparation of this book. In particular, we would like to extend our
appreciation to Arun Ross, Walter Scheirer, Reza Derakhshani, Massimo Tistarelli,
Phalguni Gupta, Aurobindo Chatterjee, Gian Luca Marcialis, Norman Poh, Vinay
Budhraja, Vijeta Rattani, Zahid Akhtar, Hunny Mehrotra, Davide Ariu, Biagio
Freni and Ruggero Donida Labati. The objective of this book is also to engage
researchers from academia and industry on the state-of-the-art biometric research
and technology, and the potential problems in real applications.
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Chapter 1
Introduction to Adaptive Biometric Systems

Ajita Rattani

Abstract Biometric person recognition poses a very challenging pattern recognition
problem because of large variability in biometric sample quality encountered during
testing and a restricted number of enrollment samples for training. Furthermore, bio-
metric traits can change over time due to aging and change of lifestyle. Effectively,
the noise factors encountered in testing cannot be represented by the limited train-
ing samples. A promising solution to training data deficiency and ageing is to use
an adaptive biometric system. These systems attempt to adapt themselves to follow
the change in the input biometric data. Adaptive biometrics deserves a treatment on
its own right because standard machine-learning algorithms cannot readily handle
changing signal quality. The aim of this chapter is to introduce the concept of adap-
tive biometric systems in terms of taxonomy, level of adaptation, open issues and
challenges involved.

1.1 Introduction

While the biometric technology continues to improve, an intrinsic characteristic of
the technology is that the system error rate simply cannot attain the absolute zero
[1, 2]. The major cause for biometric recognition errors is the compound effect of
the inherent scarcity of training samples during the enrollment phase as well as the
presence of substantial sample variations during the operational phase. The large
sample variation is caused by the vulnerable nature of data acquisition process and
the external changing acquisition conditions [1, 3–5]. Moreover, the system is also
expected to match biometric samples acquired by different devices that could give
significantly different levels of quality [6]. Apart from this, being biological tissues
in nature, biometric traits can be altered either temporarily or permanently, due to
ageing [7–10], diseases, or treatment to diseases [3, 4].
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2 A. Rattani

With all the above adverse factors, a biometric system cannot be expected tomain-
tain its performance over a long period of time and cope up with all possible sources
of variation. A number of solutions have been proposed to reduce the impact of
sample variation, namely multi-biometrics, feature invariance and signal restoration
schemes, use of computer graphic techniques to simulate age progression/regression,
and recently, adaptive biometric systems.

Although multibiometrics [11] can improve the robustness of a biometric system,
this solution cannot account for genuine changes in biometric traits due to the lapse
of time or ageing. Feature invariance and signal restoration schemes aim to render
biometric feature robust to noise. For instance, in face recognition, a number of tech-
niques have been developed to normalize face images against lighting via illumina-
tion normalization [12], against pose or expression change via affine transformation,
and against the presence of glasses by glass-removal algorithms. However, due to
the large number of possible sources of variations, attempting to normalize against
one factor at a time could introduce artefacts. This is most notable for extreme pose
correction. However, more importantly, the procedure does not account for biometric
trait change due to ageing and lifestyle-related changes.

Computer graphic techniques have also been used to synthesize a novel view of
a given biometric sample. For instance, invariance to facial ageing can be achieved
by simulating the effect of ageing in personal faces [3, 6, 13, 14]. Although photo-
realistic images can be simulated, these methods by no means take into account
the complex underlying ageing process, which is a function of a person’s lifestyle
and health status. Furthermore, the synthesis process often relies on an initialization
process that can sometimes be prone to estimation error if not manually corrected.

Recently, adaptive biometrics have been introduced as a solution to track the
changes as well as to learn the intra-class variation of biometric samples by allowing
the underlying biometric reference, which can be a template or a model,1 to be
updated using operational data. Unlike a traditional system, an adaptive biometric
system has an additional module called adaptation or updating module. The aim of
thismodule is to continuously adapt the system to the intra-class variation of the input
data as a result of (1) changing acquisition conditions and (2) age and lifestyle-related
changes. These two strategies of adaptation are called condition and age adaptation,
respectively.

As the update process is invoked multiple times, several references will be gener-
ated. This requires a reference management strategy. One strategy is to maintain only
a single large common reference that embeds all the information [14]. This is called
the super-template approach. Another strategy is to update the existing reference by
replacing or appending the newly acquired input sample to the template set. This
strategy is commonly used for model-based reference; it involves re-estimating or
updating the model parameters.

1A template refers to the biometric sample used for enrollment. The term “model” refers to statistical
representation derived from one or more biometric samples. In order for our discussion to cover
both types of methods, we shall adapt the standard vocabulary, that is, “biometric reference” or
simply reference. A reference is subsequently used for comparing a biometric test/query sample to
obtain a similarity score.
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Among the above solutions, adaptive biometrics is arguably the most recent solu-
tion being explored. The unique advantage of this approach is that the actual observed
variation can be incorporated into the reference. Nevertheless, adaptive biometrics
has high future prospects because of its key promulgated advantages. First, with an
adaptive biometric system, one no longer needs to collect a large number of bio-
metric samples during enrollment. Second, it is no longer necessary to re-enrol or
re-train the system (classifier) from scratch in order to cope up with the changing
environment [6].

The aim of this chapter is to introduce the concept of adaptive biometric systems
in terms of taxonomy, level of adaptation, open issues and challenges involved. Next,
we discuss the attributes of existing adaptive biometric systems.

1.2 Attributes of the Existing Adaptive Biometric systems

In an attempt to categorize adaptive biometric systems, the most logical way to pro-
ceed is to define a number of key attributes [3, 4, 15]. These attributes are explained
below:

1. Supervised versus Unsupervised: In the supervised adaptation scenario, a
(human) supervisor is available to label the input data [11]. In contrast, in an
unsupervised scenario, the label of the data (whether being a match or not) is
unknown to the system. The system attempts to infer the label and only those
samples whose labels can be inferred confidently are used to adapt the refer-
ence [6]. It is expected that supervised adaptation always results in the most
optimistic performance, that is, the best achievable performance compared to an
unsupervised one. Figures1.1 and 1.2 illustrate an example of supervised (input
samples are labeled by the supervisor) and unsupervised learning (where the
input samples are automatically labeled by the biometric system).

2. Static versus video based: The type of data used for adaptation can also make
a difference. In particular, in a video-based biometrics, one can exploit the fact
that the person whose biometrics is being sampled remains the same for the
entire video sequence, since each consecutive pair of images in the sequence
are a fraction of the second apart from each other. This is the identity constancy
property [4, 14]. In comparison, one cannot exploit this property from static
images that are obtained from a biometric sensor because only one image is
sampled in a single acquisition session. Consequently, this is a harder problem
as the identity constancy property cannot be exploited. This manuscript focuses
on the static image-based adaptive biometric systems.

3. Level of adaptation: In addition to the adaptation at the reference (template or
model) level, the process of adaptation can also take place at the score or decision
level. In [16], biometric sample quality is used to adapt the matching score so as
to render the final accept/reject decision independent of the sample quality. The
rationale behind adaptive score-level normalization is that the distributions of
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Fig. 1.1 Illustration of
supervised adaptation
scheme in which the input
samples are labeled by the
supervisor. The positively
labeled samples are used to
adapt the biometric system,
taken from [6]

match (genuine) and non-match (impostor) score are dependent on the condition
of acquisition. Adaptation at the decision level adapts the decision module to the
changing conditions.

4. Self- versus co-training: In the case of semi-supervised adaptation, the system
will need to infer the label from the operational data. Two commonly used
strategies are self-training and co-training [17]. In self-training, the algorithm
uses highly confidently classified input samples to update the reference [3, 4,
18–21]. An offline self-training procedure may also use a label propagation
scheme [22] to determine whether or not the operational samples should be
used for adaptation. In Co-training, the mutual and complementary help of two
biometrics is used to adapt the reference. According to [15, 18], co-training
can better capture input samples with much more significant variation, hence,
resulting in better performance than self-training.

5. Online versus offline adaptation: The availability of computer memory can also
determine the type of adaptation. When the memory size is limited, one resolves
to employing an online adaptation strategy in which case the system updates its
parameter as soon as an input sample has been successfully authenticated and
deemed suitable for adaptation (online) [20, 23].When a large buffer or memory
is available, the adaptation process can be delayed until a later point in time or
when the buffer is full. We refer to this adaptation strategy as offline [15, 21,
22].

6. Quality versus non-quality based adaptation: Recent advancement in the bio-
metric community shows that quality has considerable impact on the system per-
formance for various traits like fingerprint, iris, face, etc. [14]. Quality measures
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Fig. 1.2 Illustration of
self-adaptive scheme in
which the biometric system
adapts itself to the intra-class
variation of the system, taken
from [6]

are an array of measurements quantifying the degree of excellence or confor-
mance of biometric samples to some predefined criteria known to influence the
system performance. However, it is only recently that biometric sample qual-
ity has been considered for adaptive biometric systems [15, 18]. Quality-based
adaptation requires maintaining a different set of updated models for each type
of condition. Since a query sample is always acquired under a particular condi-
tion, the inference (matching task) requires the identification of the condition.
The inference problem can be formulated using a Bayesian framework [22]. In
this manuscript, the resultant system is called a condition-adaptive system.

1.3 Open Issues and New Research Directions

Adaptive biometrics is a challenging topic. Although template update methods in
adaptive biometrics have shown to be promising, some open issues still need to be
addressed for their effective implementation. In particular, the existence, if any, of
the tradeoff between performance enhancement and gallery size is maintained due to
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updating. Worth mentioning, all the template update methods are prone to impostors
introduction and the attraction of more samples of it may gradually lead to creep-in
of identity, when the genuine person loses its identity. Figure1.3 shows an example
of mis-classification error leading to creep-in of identity problem.

Studies [3, 24] have reported that even with the operation of update procedures at
stringent threshold condition, the introduction of impostors cannot be avoidable. As
apart from factors like incorrect estimation of threshold or basic FAR of the system,
these methods are much prone to impostors introduction due to the presence of
difficult clients, wolves and lambs, according to the Doddingtons zoo [24]. Wolves
are clients having the ability to imitate others irrespective of stringent threshold
conditions while lambs are clients vulnerable to impostors attack and the presence
of these characteristic clients result in impostor introduction. To model the early
stoppage of impostor introduction due to these client is still an open issue [4].

Existing studies suggest that mis-classification errors result in degradation in the
performance of adaptive biometric systems. In other words, adaptive biometric sys-
tems considering impostor attacks result in lower performance gain in comparison to
those using only genuine samples for adaptation. This is on account of updating using
impostors as a result of intrinsic failure of the system, i.e., false accept rate (FAR);
thus increasing the vulnerability to template security and undermining the integrity
of the adaptive biometric systems. To this front, modelling and early stoppage of
impostor attack into the updated template set is an important research direction to
be pursued. Avoiding impostor intrusion into the updated template set will allow
commercial vendors to adopt auto-update procedures in their commercial biometric
products.

Further, there is a need for a robust adaptation scheme incorporating optimum
labelling procedure for the input samples. This is supported by our findings related
to supervised versus semi-supervised methods for adaptation where the supervised
scheme generalizes better than the semi-supervised one. This indicates that the use
of confidently classified input samples (as used by most of the existing automated
systems based on semi-supervised learning) may not be an efficient strategy for

Initial template First impostor 
(wolf) 

Other wolves 
are added 

Fig. 1.3 Mis-classification error by the adaptive biometric system, leading to creep-in of identity
problem, taken from [24]
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adaptation. These results emphasize the need for more robust adaptation schemes
that are capable of identifying genuine samples with substantial variations without
increasing the vulnerability to impostor intrusion [3, 4, 15].

1.4 Conclusion

In this chapter, we introduced the concept of adaptive biometrics, discussed the
taxonomy for summarizing the current state of the art and highlighted the open issues
and challenges involved. Although adaptive biometric systems have shown to be a
promising solution, some open issues still need to be addressed for their effective
implementation. In particular, the existence of the tradeoff between performance
enhancement and gallery size maintained due to updating. Worth mentioning, all
the adaptive methods are prone to impostors introduction and the attraction of more
samples of it may gradually lead to creep-in of identity, when the genuine person
loses its identity. The problem of impostor introduction has been stated in [15].
Reference [24] has reported that evenwith operation of update procedures at stringent
threshold condition, the introduction of impostor cannot be avoidable. As apart from
factors like incorrect estimation of threshold or basic FAR of the system, these
methods are much prone to impostors introduction due to the presence of biometric
menagerie, i.e., wolves and lambs according to the Doddington zoo [24] concept.
Wolves are users having the ability to imitate others irrespective of stringent threshold
conditions while lambs are users vulnerable to impostors attack and the presence of
these characteristic users result in impostor introduction. Tomodel the early stoppage
of impostor introduction due to these difficult users is still an open issue. The adaptive
methods introduced in this chapter and the open issues discussed, are applicable to
any adaptive pattern recognition system in general.
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Chapter 2
Context-Sensitive Self-Updating
for Adaptive Face Recognition

C. Pagano, E. Granger, R. Sabourin, P. Tuveri, G.L. Marcialis
and F. Roli

Abstract Performance of state-of-the-art face recognition (FR) systems is known to
be significantly affected by variations in facial appearance, caused mainly by changes
in capture conditions and physiology. While individuals are often enrolled to a FR
system using a limited number of reference face captures, adapting facial models
through re-enrollment or through self-updating with highly confident operational
captures has been shown to maintain or improve performance. However, frequent
re-enrollment and updating can become very costly, and facial models may be cor-
rupted if misclassified face captures are used for self-updating. This chapter presents
an overview of adaptive FR systems that perform self-updating of facial models
using operational (unlabelled) data. Adaptive template matching systems are first
revised, with a particular focus on system complexity control using template man-
agement techniques. A new context-sensitive self-updating approach is proposed to
self-update only when highly confident operational data depict new capture condi-
tions. This allows to enhance the modelling of intra-class variations, while mitigating
the growth of the system by filtering out redundant information, thus reducing the
need to use costly template management techniques during operations. A particular
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implementation is proposed, where highly confident templates are added according
to variations in illumination conditions detected using a global luminance distortion
measures. Experimental results using three publicly available FR databases indicate
that this approach enables to maintain a level of classification performance compara-
ble to standard self-updating template matching systems, while significantly reducing
the memory and computational complexity over time.

2.1 Introduction

Automated face recognition (FR) has become an important function in a wide-
range of security and surveillance applications, involving computer networks, smart-
phones, tablets, IP cameras, etc. Capturing faces in still images or videos allows to
perform non-intrusive authentication in applications where the user’s co-operation
is either impossible (video-surveillance in crowded environments) or to be limited
(continuous authentication). For example, in the context of controlled access to crit-
ical information on computer network systems, the face modality may allow for
a continuous and non-intrusive authentication [1]. After initial login, a FR system
may enroll the authenticated user using facial images captured from the computer’s
built-in camera, and design a facial model.1 The user’s identity may then be peri-
odically validated using facial images captured over time without requiring active
co-operation (i.e. password prompt).

However, limited user co-operation as well as uncontrolled observation environ-
ments often make FR a challenging task. It is well known that the performance of
state-of-the-art FR systems may be severely affected by changes in capture condi-
tions (e.g. variations in illumination, pose and scale), as well as individual physiology
[2, 3]. Moreover, such systems are usually initialized with a limited number of high-
quality reference face captures, which may generate non-representative facial models
(not modelling all possible variations) [4].

To account for such intra-class variations, several solutions have been investigated
in the literature over the past decade. They can be organized into the following two
categories:

1. Development of discriminative features that are robust to environmental changes
[5, 6]. These techniques usually aim to develop facial descriptors insensitive to
changes in capture conditions, to mitigate their effects on the recognition process.

2. Storage (or synthetic generation) of multiple reference images to cover the dif-
ferent capture conditions that could be encountered during operations [7, 8].

However, these approaches assume that FR is a stationary process, as they only rely
on information available during enrolment sessions. In addition, depending on the

1Depending on the classification system, a facial model may be defined as either a set of one or
more reference face captures (template matching) or a statistical model estimated from reference
captures (statistical classification).
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application, a single enrolment session is often considered as multiple ones are not
always possible [9]. This prevents to integrate new concepts2 that may emerge during
operations as capture conditions and individuals physiology evolve over time (for
example due to natural lighting conditions and ageing).

To address this limitation, adaptive biometric systems have been proposed in the
literature [11], inspired by semi-supervised learning techniques for pattern recogni-
tion [12]. These systems are able to adapt facial models (sets of templates or classifier
parameters) by exploiting (either on-line or off-line) faces captured during system
operations. Common approaches in adaptive biometrics fall under self-updating and
co-updating, depending on whether they rely on a single or multiple modalities.
They usually either: 1) add novel captures to individual specific galleries [13], or 2),
fuse new input data into common templates referred to as super-templates, contain-
ing all information [14, 15] for each modality (for example, virtual facial captures
constructed with patches from operational data).

This chapter focuses on self-updating techniques with template matching sys-
tems for FR. These methods update template galleries using faces captured during
operations that are considered highly confident, i.e. that produce very high match-
ing scores (surpassing a self-updating threshold) [16]. Advantages and drawbacks
of self-updating have been widely investigated [16, 17]. While these methods have
been show to significantly improve the performance of biometric systems over time,
an updating strategy only relying on matching score values may add redundant tem-
plate to the galleries. This can significantly increase system complexity over time
with information that do not necessarily improve performance, and also eventually
reduce its response time during operations. To bound this complexity, template man-
agement methods (e.g. pruning) have been proposed in literature [16–18]. While
clustering-based methods showed the most promising results, they remain compu-
tationally complex and thus not suited for seamless operations, if self-updating is
performed frequently.

In this chapter, a survey of state-of-the-art techniques for adaptive FR using self-
updating is presented, along with the key challenges facing these systems. An exper-
imental protocol involving three real-life facial datasets (DIEE [19], FIA [20] and
FRGC [21]) is proposed to evaluate the benefits and drawbacks of a self-updating
methodology applied to a template matching system, with a particular focus on the
management of system complexity. To address this challenge, a context-sensitive
self-updating technique is proposed for template matching systems, combining a
standard self-updating procedure and a change detection module. With this tech-
nique, only operational faces that were captured under different capture conditions
are added to an individual’s template gallery. More precisely, the addition of a new
capture into the galleries depends on two conditions: (1) it’s matching score is above
the self-updating threshold (highly confident capture), and (2), the capture contains
new information w.r.t. the samples already present in the gallery (i.e. captured under
different conditions). This strategy allows to benefit from contextual information

2A concept can be defined as the underlying data distribution of the problem under specific operating
conditions [10].
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available in operational captures to limit the growth in system complexity. With this
technique, one can avoid frequent uses of costly template management schemes,
while still enhancing intra-class variation in facial models with relevant templates.
A particular implementation of this proposed technique is considered for a basic
template matching system, where changes are detected in illumination conditions.

The rest of this chapter is organized as follows. Section 2.2 provides a general
survey of self-updating algorithms in the context of adaptive biometric systems.
Then, Sect. 2.3 introduces the new context-sensitive self-updating technique based
on the detection of changes in capture conditions, and Sect. 2.4 presents the proposed
experimental methodology. Finally, experimental results are presented and discussed
in Sect. 2.5.

2.2 Self-Updating for Face Recognition

2.2.1 A General Face Recognition System

Figure 2.1 presents a generic system for the recognition of faces in images (stills or
video frames) captured from a camera. It is composed of four modules: segmentation,
feature extraction, classification and decision. In addition, facial models of the N
enrolled individuals are stored into the system, to be used by the classification module
to produce matching scores for each individual.

During operations, faces are isolated in the image using the segmentation mod-
ule, which produces the regions of interest (ROIs). Then, discriminant features are
extracted from each ROI (e.g. eigenfaces [22] of local binary patterns [23]) to pro-
duce the corresponding pattern d = (d[1], . . . , d[F]) (with F the dimensionality of
the feature space). This pattern is then compared to the facial model of each enrolled
individual i by the classifier, which produces the corresponding matching scores
si(d), (i = 1, . . . , N).

The facial models are usually designed a priori using one or several reference
patterns, from which the same features have been extracted, and their nature depends
on the type of classifier used in the system. For example, with a template matcher, a
facial model of an individual i can be a gallery of one or several reference patterns

Facial
Models

Classification Decision
Feature

Extraction and
Selection

input ROI
pattern

d
identity

Facial
capture
(ROI)Segmentation

(face detection)
camera

scene

matching
scores

si(d)

Fig. 2.1 General FR system trained for N individuals
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ri,j (j = 1, . . . , J), in which case matching scores for each operational pattern d
would be computed from distance measures to these patterns. Classification may also
be performed using neural networks (e.g. multi-layer perceptrons [24] and ARTMAP
neural networks [25]) or statistical classifiers (e.g. nave Bayes classification [26]),
in which case the facial models would consist of parameters estimated during their
training using the reference patterns ri,j (e.g. neural networks weights, statistical
distribution parameters, etc.).

Finally, the decision module produces a final response according to the application.
For example, an identification system for surveillance may predict the identity of the
observed individual with a maximum rule, selecting the enrolled individual with
the highest matching score, while a verification system for access control usually
confirms the claimed identity by comparing the corresponding matching score to a
decision threshold.

2.2.2 Adaptive Biometrics

As mentioned earlier, the performance of FR systems can be severely affected by
changes in capture conditions. Intra-class variations can be observed in the input data
as a consequence of changes in capture conditions (scene illumination, facial pose
angle w.r.t. the camera, etc.) or individuals physiology (facial hair, ageing, etc.). Such
diversity is difficult to represent using the limited amount of reference captures used
for initial facial model design. To address this limitation, adaptive biometric systems
have been proposed in the literature, providing the option for continuous adaptation
of the facial models using the operational data [9, 16].

Adaptation can be either supervised or unsupervised, depending on the labelling
process of the operational data. In semi-supervised learning [27], the facial model of
each individual enrolled to the system is updated using operational data labelled as
the same individual by the classification system. For example, a gallery Gi of refer-
ence patterns may be augmented with highly confident operational input patterns d
matched to the facial model of individual i. While this enables to refine facial models,
the performance of such systems is strongly dependent on their initial classification
performance. In addition, the integration of mislabelled captures could corrupt facial
models, thus affecting the accuracy of the system for the corresponding individuals
[16, 19].

An adaptive biometric system can also perform supervised adaptation, where
the operating samples used to update the system are manually labelled, or obtained
through some re-enrolment process [16]. While supervised adaptation may repre-
sent an ideal scenario with an error-free labelling process, human intervention is
often costly or not feasible. Depending on the application, the ability to perform
semi-supervised adaptation may be the only viable solution, which has lead to the
development of various strategies to increase the robustness of such systems.

These techniques can be categorized as self-update [14, 15] and co-update tech-
niques [16, 28] depending on whether a single or multiple modalities are considered
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for the update of facial models with highly confident patterns. This chapter focuses
on self-updating methods for FR, where facial models are defined by galleries of
reference patterns.

2.2.3 Self-Updating Methods

In the context of FR systems, self-updating methods update the facial models using
only highly confident operational captures, i.e. with matching scores surpassing a
very high threshold, to prevent possible corruptions due to misclassification.

2.2.3.1 General Presentation

To illustrate this principle, it is applied to a template matching system, presented
in Fig. 2.2. In this system, inspired by [29], the facial model of each individual i is
designed by storing initial reference patterns from a labelled dataset into a gallery
Gi = {ri,1, ri,2, . . .} (in this case, the terms pattern and template are used indiscrimi-
nately). To simplify the notation, the remainder of this section will omit the subscript
i and only consider one individual, as this methodology can be extended to many
with individual specific galleries and thresholds.

Algorithm 1 Self-update algorithm for adapting template galleries.
Inputs: - G = {r1, . . . , rJ } // Gallery with initial templates

- D = {d1, . . . , dL} // Unlabelled adaptation set

Outputs: - G ′ = {r1, . . . , rJ ′ }, J ′ ≥ J // Updated Gallery

1: Estimate updating threshold γ u ≥ γ d from G
2: G ← G ′ // Initialization with previous state
3: for l = 1, . . . , L do // For all samples dl ∈ D
4: for j = 1, . . . , J do // For all references rj ∈ G
5: sj(dl) ← similarity_measure(dl, rj) // Prediction score for each reference
6: end for
7: S(dl) ← max

j∈[1,J]{sj(dl)} // Maximum fusion of scores

8: if S(dl) ≥ γd then
9: Output positive prediction
10: if S(dl) ≥ γ u then
11: G ′ ← G ′ ∪ dl // Add the sample which similarity surpasses γ u to the gallery
12: end if
13: end if
14: end for

Algorithm 1 presents a generic algorithm for self-updating a template gallery G
with several reference patterns rj (j = 1, . . . , J). During operations, the system is



2 Context-Sensitive Self-Updating for Adaptive Face Recognition 15

input ROI
pattern

d l

rejectSegmentation
(face detection)

Template
gallery

reference
patterns

r i,j

facial
capture

ROI

matching
scores

si,j (d l) accept
Feature

extraction
Template
matching

Decision
Si(d l) ≥ γ i

d 

yes
Sample selection

Si(d l) ≥ γ i
u

Fig. 2.2 A FR system based on template matching that allows for self-update

presented with an unlabelled data set D of L facial captures. For each sample dl,
similarity measures to each reference rj in the galley are used to compute the set of
matching scores sj(dl) (j = 1, . . . , J). Then, the final score S(dl) is computed as
a combination of sj(dl) (e.g. the maximum fusion rule), and positive prediction is
output if it surpasses the decision threshold γ d . Finally, the sample selection module
relies on a stricter updating threshold γ u (usually γ u ≥ γ d), updating the gallery G
with dl if S(dl) ≥ γ u, i.e. if the prediction has a high degree of confidence.

2.2.3.2 Challenges

While self-updating methods have been shown to improve system accuracy over
time, the adaptation of facial models using operational data might be detrimental,
and the selection of the updating threshold is critical [16]. To prevent a decline
in classification performance, the use of a strict updating threshold may enable to
reduce the probability of updating facial models with misclassified patterns
[13, 15, 30]. However, it has been argued that updating with only highly confi-
dent patterns may result in the addition of redundant information in the galleries,
and thus a marginal gain in performance at the expense of a considerable increase in
system complexity [16].

In addition, operational samples with more drastic changes are less likely to gen-
erate classification scores surpassing the updating threshold, preventing the classi-
fication system to assimilate this new information. To address this limitation, co-
updating methods have been proposed to benefit from complementary biometric
systems [16, 28]. Each system is initialized with reference templates from a dif-
ferent source (or different features extracted from the same source), and performs
classification of operational input data. In the same way as self-updating techniques,
each system selects highly confident samples based on an updating threshold, but
this information is also shared with other systems. If the classification score of one
system surpasses its updating threshold, the others will also consider the correspond-
ing samples as highly confident, and perform adaptation. This enables to increase
the probability of updating with different but genuine operational data, by relying on
the supposition that a drastic change on one source is not necessarily observed on
others. A recent model has been proposed to estimate optimal amounts of samples
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and iterations to improve system’s performance under specific updating constraints
[31]. This model has shown to be effective under the stringent hypothesis of 0 % false
alarm rate for the updating threshold of both systems. While co-updating is usually
applied with multiple biometric traits, it could also be applied in, for example, a FR
scenario involving multiple cameras. In this situation, relying on multiple points of
view could mitigate the effect of disruptions such as motion blur that would be less
likely to affect every camera at the same time.

Finally, system complexity is a critical issue for template matching systems in live
FR. The ability to operate seamlessly depends on the computational complexity of
the recognition operation, which is usually directly related to gallery sizes. Several
template management strategies have been proposed to limit complexity in self-
updating systems. In [18], template replacement strategies have been experimented
to perform self-update in a constrained environment, where the maximum number
of templates in a gallery is fixed by the user. When the maximum size is reached,
several criteria have been experimented to determine which obsolete template can be
replaced, such as FIFO, LFU and clustering algorithms. Among them, the clustering
algorithm MDIST showed the most promising results, reducing the number of impos-
tors samples by maintaining a gallery with very close samples. While these methods
enable to compromise between system performance and complexity, they remain
computationally costly, and may interfere with seamless long-term operations. Once
the maximum gallery size is reached, such process would have to be performed
for each new highly confident template, thus increasing system response time. To
reduce these occurrences, operational data containing redundant information should
be filtered out during operations. This would limit the self-updating process to only
operational templates with relevant information, i.e. templates improving intra-class
variability in facial models.

2.3 Self-Updating Driven by Capture Conditions

This chapter introduces a new self-updating method that efficiently self-updates facial
models based on capture conditions. This methodology is illustrated using a template
matching system performing self-updating, as presented in [29]. As discussed in the
previous sections, such methodology can significantly improve the overall classifica-
tion performance through a better modelling of intra-class variations , specifically in
applications exhibiting significant variations in capture conditions (e.g. continuous
authentication using webcams). However, updating the galleries with only highly
confident inputs may not always provide new and beneficial information, as those
samples are usually well-classified by the system, which could lead to an unnecessary
increase in system complexity (e.g. the number of reference patterns stored in the
galleries) [16]. While this complexity can be mitigated with template management
techniques [18], frequent gallery filtering may interfere with seamless operations
over time.
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To address this limitation, this section proposes a context-sensitive self-updating
technique that integrates a template filtering process during operations. It is designed
to ensure that only highly confident data captured under novel conditions are added
to template galleries, thus limiting the growth in memory complexity with redundant
samples. In fact, in FR, intra-class variations in facial appearance are often related
to changes in capture conditions (e.g. environmental illumination, facial pose, etc.)
[2, 3], and such information can be detected during operations. Following this intu-
ition, when a highly confident ROI pattern surpasses the updating threshold, non-
discriminative information related to capture conditions are extracted to evaluate
whether it has been captured under different conditions that of the reference tem-
plates already stored in the gallery. If not, the pattern is discarded, and the gallery is
not augmented.

2.3.1 Framework for Context-Sensitive Self-Update

The diagram of a general template matching system that employs the new context-
sensitive technique is presented in Fig. 2.3. It augments the system presented in
Fig. 2.2 with an additional decision module to detect changes in capture conditions.

In the same way than standard self-updating systems, when presented with a unla-
belled data set D = {d1, . . . , dL}, this system first selects highly confident samples
to perform adaptation of the template gallery Gi, i.e. the set D ′ = {dl′ |Si(dl′) ≥ γ u

i }.
Then, an additional test is performed on these samples, only to select a final subset
captured under novel capture conditions. To extract additional non-discriminative
information, the individual galleries are augmented with the input ROIs Ri,j from
which the reference patterns ri,j are extracted. The augmented galleries are stored as
Gi = {{Ri,1, ri,1}, {Ri,2, ri,2}, . . .}. This additional measurement enables to max-
imize the intra-class variation of the galleries, while mitigating their growth by
rejecting redundant information. For example, contextual information such as envi-
ronmental illumination or facial pose w.r.t. the camera can be measured on ROIs, to
be compared with ROIs in the galleries.
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Fig. 2.3 A template matching system that integrates context-sensitive self-updating
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2.3.2 A Specific Implementation

As a basic example of the framework presented in Fig. 2.3, a particular implementa-
tion is proposed. It relies on the detection of changes in illumination conditions.

2.3.2.1 A Template Matching System

For classification, a standard template matching system is considered. For each indi-
vidual i, a dedicated facial model is stored as a template gallery Gi = {{Ri,1, ri,1},
{Ri,2, ri,2}, . . . , {Ri,Ji , ri,Ji}}, as well as user-specific decision γ d

i and updating γ u
i

thresholds.
For each input ROI isolated through segmentation, the corresponding pattern dl

is extracted using a Multi-Bloc Local Binary Pattern (LBP) [23] algorithm. Features
for block sizes of 3 × 3, 5 × 5 and 9 × 9 pixels are computed and concatenated with
the grayscale pixel intensity values, and PCA is used to reduce the dimensionality to
F = 32.3 The matching score for each individual i is then computed as follows:

Si(dl) = 1

Ji
.

Ji∑

j=1

si,j(dl) = 1

Ji

Ji∑

j=1

[√
F − dEucl(dl, ri,j)

]

√
F

(2.1)

where dEucl(dl, ri,j) is the Euclidean distance between input pattern dl and template
ri,j (with j = 1, . . . , Ji) and Ji the total number of templates in Gi. The match-
ing scores si,j(dl) are here computed as the normalized opposite to the distance
dEucl(dl, ri,j) (a score of 1 is achieved for a null distance). The final matching score
Si(dl) is obtained from the combination of these scores using the average fusion rule.

Finally, the system outputs a positive prediction for individual i if Si(dl) ≥ γ d
i ,

and selects dl as a highly confident face capture for individual i if Si(dl) ≥ γ u
i .

2.3.2.2 Detecting Changes in Capture Conditions

In Fig. 2.3, for each individual i, the input ROIs Dl corresponding to highly confident
operational captures are compared to the reference ROIs Ri,j (j = 1, . . . , Ji) stored
in the galleries, and asses whether the capture conditions are novel enough to justify
an increase in complexity. The universal image quality index Q [32] is considered
to measure the distortion between Dl and each reference ROI Ri,j. This measure is a
particular case of the structural similarity index measure (SSIM) presented in [33].
It can be written as a product of the three factors—loss of correlation, luminance
distortion and contrast distortion:

3This value has been determined experimentally as an optimal trade-off between accuracy and
computational complexity using a nearest neighbour classifier with Euclidean distance.
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Q(Ri,j, Dl) = σRi,j,Dl

σRi,j · σDl

· 2R̄i,j · D̄l

R̄
2
i,j + D̄

2
l

· 2σRi,j · σDl

σ 2
Ri,j

+ σ 2
Dl

(2.2)

where R̄i,j and D̄l are the average images, σRi,j and σDl their variances, and σRi,j,Dl

the covariance.
To accommodate spatial variations in image distortion, statistical features for

Eq. 2.2 may be measured locally. A local quality index Q(Ri,j[k], Dl[k]) is thereby
calculated, where Dl[k] (Ri,j[k]) corresponds to a window of Dl (Ri,j) sliding from
the top-left corner to the bottom-right corner for a total of K steps. These local
measurements can then be combined into the global quality index GQ following:

GQ(Ri,j, Dl) = 1

K

K∑

k=1

Q(Ri,j[k], Dl[k]) (2.3)

In this chapter, the proposed template filtering strategy is implemented through
a detection of changes in ROI illumination conditions only. For that intent, the sec-
ond term of the quality index Q (see Eq. 2.2) is considered, to compute the global
luminance quality (GLQ) following:

GLQ(Dl, Ri,j) = 1

K

K∑

k=1

LQ(Ri,j[k], Dl[k]) = 1

K

K∑

k=1

2.D̄l[k]. R̄i,j[k]
D̄l[k]2 + R̄i,j[k]2

(2.4)

where the local luminance quality measurements LQ measure the proximity of the
average luminance between each window. Highly confident captures Dl are then used
to update the gallery Gi if and only if

1

Ji

Ji∑

j=1

GLQ(Dl, Ri,j) ≥ γ c
i (2.5)

with γ c
i the capture condition threshold, computed as the average GLQ between all

the references captures in Gi.

2.4 Simulation Methodology

This section presents several experimental scenarios involving three real-world FR
databases. The proposed simulations emulate realistic FR applications of different
orders of complexity, with variations in capture conditions. The objective is to observe
and compare the performance of new and reference self-updating techniques under
different operation conditions, and within a basic template matching system described
in Sect. 2.3.2.
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Table 2.1 Summary of the three experimental scenarios

Dataset Scenario # enrolled
individuals

# enrolment
sessions

# ROIs per
batch

Sources of
variation

DIEE Continuous
authentication

49 6 10 Illumination,
expression

FIA Video-
surveillance

10 3 69 Illumination,
expression,
pose,
resolution,
ageing,
scaling, blur

FRGC Wide-range
identification

187 16 22 Illumination,
expression,
ageing

2.4.1 Face Recognition Databases

Three publicly available FR databases are considered for simulation. To standardize
the experimental protocol, each database is separated into six different batches for all
individuals. These scenarios are summarized at the end of Sect. 2.4.1, in Table 2.1.

2.4.1.1 Multi-Modal Dipartimento di Ingegneria Elettrica Ed Elettronica

The multi-modal Dipartimento di Ingegneria Elettrica ed Elettronica4 (DIEE) dataset
[19] regroups face and fingerprint captures of 49 individuals. In this study, only facial
captures are considered. For each individual, 60 facial captures have been acquired
over 6 sessions at least 3 weeks apart, with 10 captures per session. The collection
process spaned over a period of 1.5 years.

For simulations, the facial captures or each individuals are separated into six
batches corresponding to the capture sessions. ROIs have been extracted with a
semi-manual process [34]: an operator first selected the eyes in each frame, and
the cropped region was then determined as the square of size 2d ∗ 2d (d being the
distance between the eyes), with the eyes located at the position (d/2, d/4) and
(3 · d/2, d/4). In this process, faces have been rotated to align the eyes to minimize
intra-class variations [35], and then normalized to a size of 70 × 70 pixels.

This dataset was explicitly collected to evaluate the performance of self-update and
co-training algorithms. Over the 6 sessions, gradual changes can be observed in facial
pose, orientation and illumination (see examples in Fig. 2.4). While these changes
generate visible differences in facial captures, the position of the individuals and
their distance to the camera are controlled. For this reason, this dataset represents the

4Department of Electrical and Electronic Engineering.
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Fig. 2.4 DIEE dataset. An example of randomly chosen facial captures for two individuals

easiest problem in this study, simulating an application of continuous authentication
of individuals over a computer network.

2.4.1.2 CMU Faces in Action

The Carnegie Mellon University Faces In Action (FIA) dataset [20] contains a set of
20 s videos for 221 participants, mimicking a passport checking scenario in both
indoor and outdoor environments. Videos have been captured in three separate
sessions of 20 s at least 1 month apart, with 6 Dragonfly Sony ICX424 cameras
(640 × 480 pixel resolution, 30 images per second). Cameras were positioned at
0.83 m of the subjects, mounted on carts at three different horizontal angles (0◦ and
±72.6◦), with two focal lengths (4 and 8 mm) each.

In this chapter, only ROIs captured during the indoor sessions, and using the
frontal camera with 8 mm focal length are considered. ROIs have been extracted
using the OpenCV implementation of Viola-Jones face and eye detection algorithm
[36]. In the same way than with DIEE, faces have been rotated to align the eyes [35],
and normalized to a size of 70 × 70 pixels. For simulations, sequences from each
session have been divided into two sub-sequences, in order to organize the facial
captures into six batches.

This dataset simulates an open-set surveillance scenario as found in face re-
identification applications. A restrained subset of 10 individuals of interest are mon-
itored, but in an environment where a majority of ROIs are capture from non-target
individuals. The 10 individuals of interest enrolled to the systems have been chosen
with two experimental constraints: (1) the individuals must be present in all capture
sessions and (2) at least 30 ROIs per session have been extracted by the face detection
algorithm.

Faces in this data set have been captured in semi-controlled capture conditions,
where the individuals entered the scene and walked to stop at the same distance from
the cameras, and talked while moving their head with natural movements until the
end of the session. In addition to variations in illumination and facial expressions,
ROIs also incorporate variations in pose, resolution (scaling), motion blur and ageing
(see Fig. 2.5).
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Fig. 2.5 FIA dataset. An example of randomly chosen facial captures for two individuals

2.4.1.3 Face Recognition Grand Challenge

The Face Recognition Grand Challenge (FRGC) dataset as been collected at Univer-
sity Notre Dame [21]. In this chapter, the still face images of this dataset are consid-
ered. They were captured over an average of 16 sessions for 222 individuals for the
training subset, and up to 22 sessions for the validation one, using a 4 Megapixels
Canon camera. Each session contains four controlled and two uncontrolled captures,
with significantly different illumination and expression.

Overall, 187 individuals have been selected for experiments, for which more
than 100 ROIs are available (around 133 in average). In the same way than with the
other datasets, six batches of the the sane size have been created for each individ-
ual, respecting the temporal relation between the capture sessions. ROIs have been
extracted in the same way than with the DIEE dataset [34], using the position of the
eyes already available in the FRGC dataset.

This dataset simulates a wide-range identification application, with multiple re-
enrolment sessions where a very limited amount of reference templates are captured.
Recurring and unpredictable changes in illumination and facial expression emerge
in the operational environment in every capture session (see Fig. 2.6).

Fig. 2.6 FRGC dataset. An example of randomly chosen facial captures for two individuals
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2.4.2 Protocol

The following three template matching systems are experimentally compared in this
chapter:

1. baseline system, performing template matching in the same way as in Fig. 2.3,
but without any adaptation of the template galleries Gi. User-specific decision
thresholds γ d

i are stored for decision.
2. standard self-updating system, updating the template galleries Gi with highly

confident ROI patterns, which scores surpass user-specific updating thresholds
γ u

i , and decision thresholds γ d
i .

3. proposed context-sensitive self-updating system, only updating the template
galleries Gi with highly confident samples that also passed the concept change
test (Eq. 2.5), using user-specific updating γ u

i , capture condition γ c
i and decision

thresholds γ d
i .

2.4.2.1 Simulation Scenario

The scenario described below is considered for each database. At each time step
t = 1, . . . , 6, and for each individual i = 1, . . . , N , the performance of the baseline
and the two self-updating systems updated with batch bi[t − 1] is evaluated on batch
bi[t]. The self-updating systems are updated, and then tested with batch bi[t + 1],
and so on. A pseudocode of the simulation process is presented in Alg. 2.

Algorithm 2 Protocol for simulations.
1: for i = 1, . . . , N do // Initialization of the galleries Gi for each individual
2: Gi ← first 2 patterns of bi[1]
3: end for
4: for i = 1, . . . , N do // Initialization of thresholds for each individual
5: Evaluate update and decision thresholds γ u

i and γ d
i using negative distribution estimation

6: Initialize change detection threshold γ c
i as the average GLQ measure between each ROI in Gi

7: end for
8: for i = 1, . . . , N do // Processing of remaining samples from bi[1]
9: Estimate genuine scores using remaining samples from bi[1]
10: Estimate impostor samples using a random selection of impostor samples
11: Update gallery
12: Update thresholds
13: end for
14: for t = 2, . . . , 6 do // Remaining data blocks
15: for i = 1, . . . , N do // Each individual
16: Estimate genuine scores using remaining samples from bi[t]
17: Estimate impostor samples using a random selection of impostor samples
18: Update gallery
19: Update thresholds
20: end for
21: end for
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For each system, the individual galleries Gi are initialized with the two first sam-
ples of the corresponding initial batches bi[1]. For context-sensitive self-updating,
corresponding ROIs are also stored to compute GLQ measures during operations (see
Eq. 2.4). Then, the initial values of the decision thresholds γ d

i are computed using
negative distribution estimation; each gallery Gi is compared to every other gallery to
generate negative scores, and a threshold γ d

i is chosen as the highest possible value
respecting an operational false alarm constraint. For the self-updating variants, the
updating threshold γ u

i is initialized in the same way, and for the context-sensitive
self-updating system, γ c

i is computed as the average GLQ measure between each
ROI in Gi.

Then, for each system, performance is evaluated using the remaining patterns
from bi[t] to compute genuine scores, and a random selection of impostor patterns
for the impostor scores. For the DIEE and FRGC datasets, impostor patterns for
each individual are randomly selected among batches from other individuals. In the
case of the FIA dataset, impostor patterns are selected from the non-target dataset
individuals during the same session. To avoid any bias in performance evaluation,
the same amount of impostor and genuine patterns are considered.

Finally, using genuine and impostor patterns, the self-updating systems galleries
are updated according to their updating strategies, and the thresholds are re-estimated
using the same methodology. This scenario is then reproduced for the remaining five
batches.

2.4.2.2 Performance Measures

For each system, performance is measured with average true positive rate (tpr) and
false positive rate (fpr) for each individual. These are, respectively, the proportion of
genuine patterns correctly classified over the total number of genuine patterns (tpr),
and the proportion of impostor patterns classified as genuine over the total number
of negative patterns (fpr). These measures depend on the decision thresholds γ d

i ,
computed during update to respect a given fpr constraint.

System complexity is also presented, as the average number of templates in the
galleries. In addition, facial model corruption due to the addition of misclassified
templates in the galleries is presented as the ratio of impostor over genuine templates.
Following Doddingtons classification [37], only the 10 galleries with the highest ratio
are presented, to focus on lamb-type individuals which are easy to imitate.

Finally, a constraint of fpr = 5 % has been chosen to compute the decision
thresholds γ d

i . In addition, for each scenario, the updating thresholds γ u
i correspond

to an ideal fpr = 0 % and a laxer fpr = 1 %. For each performance measure,
results are presented as the average and standard deviation values for every enrolled
individual, computed using a Student distribution and a confidence interval of 10 %.
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2.5 Simulation Results

2.5.1 Continuous User Authentication with DIEE Data

Figure 2.7 presents the average performance results of the baseline, self-updating
and context-sensitive self-updating techniques within the template matching system
described in Sect. 2.3.2. Results are presented for the ideal fpr = 0 % updating
thresholds for the self-updating techniques.

While all three systems present similar fpr (between 7 and 17 %) in Fig. 2.7a,
a significant differentiation can be observed in the tpr with batches five and six
(Fig. 2.7b). In fact, the introduction of batch five generates a decline in tpr perfor-
mance for the baseline system (from 43.5 ± 5.7 % down to 33.0 ± 6.5 %), that
ends at tpr = 39.3 ± 6.6 % at batch six. On the other hand, the self-updating
and context-sensitive self-updating systems exhibit a moderate decline (respec-
tively, from 47.5 ± 6.1 % to 41.3 ± 6.7 %), and end at a higher performance of
tpr = 46.3 ± 7.3 %.

Even with a fpr = 0 % updating threshold, it can be observed that this FR scenario
benefits from a self-updating strategy, as the addition of up to an average 13.7 ± 2.4
templates in the galleries (see Fig. 2.7c) enabled to increase the system’s performance.
In addition, despite the limited amount of captures (10 per session), the filtering of
the context-sensitive self-updating system enabled to maintain a comparable level of
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Fig. 2.7 Simulation results with DIEE dataset where the updating threshold is selected for fpr =
0 % a false positive rate, b true positive rate, c system complexity, d impostor ratio in the galleries
of the top 10 lambs-like individuals
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performance with a significantly lower amount of templates in the gallery, ending at
an average of 6.1 ± 0.9 templates.

Despite the relative simplicity of this scenario and the restrictive updating thresh-
old, impostor templates have been incorrectly added to the galleries during the updat-
ing process. Following Doddington’s analysis, the ratio of impostor over genuine
templates in the galleries of the top 10 lamb individuals (i.e. the individuals with
the highest ratio) is presented in Fig. 2.7d. While 95% of the galleries contain under
10 % of impostor samples, two lamb-like individuals (ID 17 and 22) stand out with
over 10 and 20 % impostor samples in their galleries.

Figure 2.8 presents the average performance results for the fpr = 1 % updat-
ing thresholds for the self-updating techniques. An overall performance increase is
shown for the self-updating methods. A higher tpr is observed throughout the entire
simulation, ending at tpr = 55.0 ± 7.7 % for self-updating, and tpr = 50.8 ± 7.0±
for context-sensitive self-updating (see Fig. 2.8b).

While results with self-updating are higher in this application, it is important to
note that improvements come at the expense of a doubled average gallery size (see
Fig. 2.8c), as well as an increase in the impostor ratio (see Fig. 2.8d), 20 % of the
galleries are composed by more than 10 % impostor templates). Comparing these
ratios with the the previous ones (in Fig. 2.7), it is apparent that this increase is
not connected to specific lamb-type individuals, but to all the enrolled individuals.
This underlines the importance of updating thresholds, specifically for long-term
operations where the impostor ratio would be likely to grow exponentially as the
facial models become corrupted.
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Fig. 2.8 Simulation results with DIEE dataset where the updating threshold is selected for
fpr = 1 % a false positive rate, b true positive rate, c system complexity, d impostor ratio in
the galleries of the top 10 lambs-like individuals
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Fig. 2.9 Simulation results with FIA dataset where the updating threshold is selected for fpr = 0 %
a false positive rate, b true positive rate, c system complexity, d impostor ratio in the galleries of
the top 10 lambs-like individuals

2.5.2 Video-Surveillance with FIA Data

Figure 2.9 presents the average performance results for the fpr = 0 % updating
thresholds for the self-updating techniques. In this scenario, involving more sources
of variations in capture conditions than the DIEE dataset (see Table 2.1), the benefits
of a self-updating strategy are more significant, as the self-updating systems exhibit
a significantly higher tpr during the entire simulation (see Fig. 2.9b). From batch
two to six, the self-updating systems are stable close to tpr = 60 % (both ending
at 53 ± 20 %), while the baseline system remains close to tpr = 40 % (ending at
38.1 ± 17.2 %).

As a consequence of the more complex nature of a semi-controlled surveillance
environment as well as the higher number of facial captures, performance improve-
ments come at the expense of significantly larger galleries than with the DIEE dataset
(see Fig. 2.9c), ending at an average of 188 ± 83 templates for self-update, and
97 ± 35 templates for context-sensitive self-update. It can still be noted that the
filtering strategy of the context-sensitive self-update technique enables to maintain a
comparable level of performance, for gallery sizes approximately two times smaller.

Among 10 individuals of interest, 2 lamb-like individuals (ID 4 and 8) can be
identified, with an impostor ratio over 20 % (see Fig. 2.9d). Despite the added com-
plexity of a semi-constrained environment, the higher number of faces captured in
video streams enables a better definition of facial models of target individuals dur-
ing the first batch. This explains that impostor templates have only be added to two
difficult lamb-type individuals, and not all the galleries.
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Fig. 2.10 Simulation results with FIA dataset where the updating threshold is selected for
fpr = 1 % a false positive rate, b true positive rate, c system complexity, d impostor ratio in
the galleries of the top 10 lambs-like individuals

In Fig. 2.10b, it can be observed that a more relaxed fpr = 1 % constraint for
the updating threshold did not have a significant impact on the performance of self-
updating systems. However, the average gallery size of the self-updating technique
increased to end at 268 ± 71 templates, while the context-sensitive self-updating
technique enabled to remain at a lower size of 109 ± 38 templates (see Fig. 2.10c),
comparable to the fpr = 0 % threshold results (see Fig. 2.9c). This observation reveals
that a majority of the new templates added with the fpr = 1 % thresholds contained
redundant information, that was already present in the galleries. This underscores
the benefits of the context-sensitive self-updating technique when operating with
videos, where higher quantities of templates may be selected for self-updating. By
reducing the number of updates, this technique enables to mitigate the growth in
computational complexity of the prediction process as well as the need to use a
costly template management system, without impacting system performance.

Impostor ratios in Fig. 2.10d show a significant increase for individual ID 8, which
ends at 80 %. This confirms the rapid addition of impostor templates to the galleries in
long-term operations. In this video-surveillance scenario, where more facial captures
are presented to the system (compared to the DIEEE scenario), the gallery of lamb-
like individual four is updated with a larger amount of impostor templates at the
beginning of the simulation. This gallery then keeps attracting impostor templates
over time, which reduces the pertinence of the facial model.



2 Context-Sensitive Self-Updating for Adaptive Face Recognition 29

1 2 3 4 5 6

0.05

0.055

0.06
(a) (b)

(c) (d)Batch of data

fp
r

Baseline
Self−update
Contex−sensitive self−update

1 2 3 4 5 6

0.21

0.22

0.23

Batch of data

tp
r

1 2 3 4 5 6
0

10

20

Batch of data

# 
of

 te
m

pl
at

es
 in

 th
e 
ga

lle
ry

  6  37  46  51  56  67  77  92 101 134
0

0.05

0.1

1% individuals over 10%

Individual ID

im
po

st
or

 r
at

io

Fig. 2.11 Simulation results with FRGC dataset where the updating threshold is selected for
fpr = 0 % a false positive rate, b true positive rate, c system complexity, d impostor ratio in
the galleries of the top 10 lambs-like individuals

2.5.3 Unconstrained Face Recognition with FRGC Data

Figure 2.11 presents the average performance results for the fpr = 0 % updating
thresholds for the self-updating techniques. It can be observed in Fig. 2.11b that this
scenario represents a significantly harder FR problem, as all three systems perform
below tpr = 23 % during the entire simulation. In addition, despite the increase in
average gallery size up to, respectively, 18.8 ± 2.7 and 10.8 ± 1.5 templates for
the self-update and context-sensitive self-update techniques (see Fig. 2.11c), only a
marginal performance gain can be observed. The two self-updating systems end at
tpr = 22.1 ± 1.4 % and tpr = 21.9 ± 1.4 %, while the baseline case exhibits a
tpr = 21.5 ± 1.4 %.

A bigger impact can be observed in Fig. 2.12b, presenting tpr performance of
the three systems for the fpr = 1 % updating threshold. From batch two to six, the
two self-updating cases present significantly higher tpr performance, both ending
at tpr = 25.6 ± 1.5 %. However, as in the previous scenarios, this performance
gain comes at the expense of a significantly higher system complexity. Both systems
with self-update end with, respectively, 82.4 ± 5.2 and 41.6 ± 2.0 templates in the
galleries (see Fig. 2.12c). The average impostor ratio also increased significantly, as
18 % of the galleries contain more than 10 % impostor templates (see Fig. 2.12d),
while only 1 % of the galleries were in this situation with the fpr = 0 % updating
threshold.

Results are related to the nature of the scenario presented in Sect. 2.4.1.3. The
multiple enrolment sessions (up to 16), where small numbers of ROI were captured
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Fig. 2.12 Simulation results with FRGC dataset where the updating threshold is selected for
fpr = 1 % a false positive rate, b true positive rate, c system complexity, d impostor ratio in
the galleries of the top 10 lambs-like individuals

(6 ROIs), favour the presence of genuine captures that are different enough to fail
the updating threshold test. Fewer than 20 templates per individuals have been added
to self-updating galleries with far = 0 % self-updating threshold (see Fig. 2.11c),
despite the presence of more than 100 genuine samples in batches. In addition, the
systems are initialized with the first capture session, where only four controlled
stills are available to build the facial model before processing uncontrolled cap-
tures in future sessions. This prevents the generation of representative facial models,
that either reject a majority of genuine templates, or accept a significant amount of
impostor templates depending on the updating threshold (see Fig. 2.12d).

Despite the improved performance achieved using self-updating techniques, this
dataset raises the limitations of using a self-updating system relying on a two-
threshold update strategy in complex environments, with limited reference data and
uncontrolled variations in capture conditions.

2.5.4 Summary and Discussions

In all experimental results, the following general observations have emerged:

1. Both self-updating techniques generate a significant and stable performance boost
over time.

2. The template filtering strategy of the proposed context-sensitive self-updating
technique significantly reduces system complexity. The galleries are approxi-
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mately two times smaller than a standard self-updating system, without impacting
performance.

3. Using a less stringent constraint of fpr = 1 % for the updating threshold does not
always have an impact on the performance boost, but always increases system
complexity as well as the number of impostor templates in the galleries.

While these observations remain valid for each scenario, a more precise analy-
sis reveals potential limitations of these approaches depending on the represented
application.

In a semi-controlled FR application with limited changes mainly caused by illu-
mination and expression (DIEE dataset), benefits of a self-updating techniques are
quite clear. In fact, despite the increase in the number of impostor samples in the
gallery, a significant performance boost can be observed when a more relaxed updat-
ing threshold is selected.

In the case of a video-surveillance scenario involving a higher amount of impostor
individuals not modelled by the system (FIA dataset), a more relaxed updating thresh-
old did not show any performance improvement, despite a doubled average gallery
size for the self-updating technique (while the context-sensitive self-update tech-
nique prevented any increase in average gallery size). While the overall performance
was not lowered, the gallery of one specific individual was severely affected, ending
with around 80 % of impostor samples. In such scenario, involving multiple causes
of variation (face angle, resolution, motion blur, etc.) as well as a greater amount of
impostor individuals, manual intervention may be necessary at regular intervals, to
ensure that the gallery of some specific individuals (lambs) are not getting corrupted
over time.

Finally, in the more complex scenario represented by the FRGC dataset, the per-
formance gain observed with the self-updating techniques was considerably lower,
even with the less stringent updating threshold of far = 1 %. In this scenario, sys-
tems are presented with significantly different samples in early operations (after the
fourth image), as opposed to the DIEE and FIA scenarios (with, respectively, 10 and
around 30 samples for a first session). In such application, a manual intervention
may be required at the early stages of operations, to ensure that the facial models
are initialized with enough representative templates to be able to keep updating over
time.

2.6 Conclusion

Despite the advances in feature extraction and classification techniques, face recog-
nition in changing environments remains a challenging pattern recognition problem.
Changes in capture condition or individuals physiology can have a significant impact
on a system performance, where initial facial models are often designed with a limited
amount of reference templates, and frequent re-enrolment sessions are not always
possible. Adaptive classification techniques have been proposed in the past decade
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to address this challenge, relying on operational data to adapt the system over time.
Among them, self-updating techniques have been proposed for automatic adaptation
using highly confident captures labelled by the system. While this enables to auto-
matically benefit from a considerable source of new information without requiring
a costly manual updating process, these systems are particularity sensitive to their
internal parameters. A trade-off between assimilation of new information and pro-
tection against the corruption of facial models with impostor templates has to be
considered, as well as a limitation of system complexity over time. While template
management techniques can be used to limit system complexity, they remain costly
and may interfere with seamless operations.

In this chapter, self-updating methods have been surveyed in the context of a
face recognition application with template matching. A context-sensitive self-update
technique has been presented to limit the growth in system complexity over time, by
relying on additional information related to the capture conditions. With this tech-
nique, only highly confident faces captured under new conditions are selected to
update individual facial models, effectively filtering out redundant information. A
specific implementation of a template matching system with context-sensitive self-
update has been proposed, where changes are detected in illumination conditions.
Proof-of-concept experimental simulations using thee publicly available face data-
bases showed that this technique enables to maintain the same level of performance
than a regular self-updating template matching system, with a significant gain in
terms of memory complexity. Using additional information available in the face
captures during operations, this technique allows to reduce the size of template gal-
leries by half, effectively mitigating the computational complexity of the recognition
process over time. In applications where memory footprint has to be restricted, this
strategy would also limit the need to use costly template management techniques
during operations.

However, application-specific limitations have been observed during simulations.
When faced with recognition environments with significant variations, and a limited
pool of reference patterns for initial enrolment, self-updating systems can be very
sensitive to the initialization of their template galleries, as well as the updating
threshold. A stricter updating rule may be required to prevent updating with impostor
samples, which can significantly reduce the benefits of a self-updating strategy that
would never detect any highly confident samples. In addition, while the proposed
context-sensitive self-updating techniques enabled to significantly reduce system
complexity, it relies on the storage of input ROIs in addition to reference patterns in
the galleries, as well as an additional measurement during operations.

While self-updating techniques can significantly improve the recognition perfor-
mance of face recognition systems, their implementation should always be tailored
to the specificities of the application as well as the recognition environment. While
human intervention can be reduced with automatic strategies, it will still play a
critical role in certain applications, especially when dealing with significant varia-
tions in capture conditions. In those cases, occasional manual confirmation should
be considered, in order to maintain the system’s performance by adapting to abrupt
changes.
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Chapter 3
Handling Session Mismatch
by Semi-supervised-Based Co-training
Scheme

Norman Poh, Joseph Kittler and Ajita Rattani

Abstract Co-training-based semi-supervised learning scheme has been shown to be
a viable training strategy for handling the mismatch between training and test sam-
ples. For co-training-based multimodal biometric systems, classical semi-supervised
learning strategies such as self-training and co-training may not have fully exploited
the advantage of a multimodal fusion, notably due to the fusion module. For this
reason, this chapter discusses a novel semi-supervised training strategy known as
fusion-based co-training that generalizes the classical co-training such that it can use
a trainable fusion classifier. Experiments on the BANCA face and speech database
show that this proposed strategy is a viable approach. In addition, we also resolve
the issue of how to select the decision threshold for adaptation. In particular, we find
that a strong classifier, including a multimodal system, may benefit better from a
more relaxed threshold, whereas a weak classifier may benefit better from a more
stringent threshold.

3.1 Introduction

Biometric person authentication remains a challenging problem for two key reasons.
First, there are very few enrolment samples to train the model for a particular user.
Second, there is often significant variation between the samples used for enrolment
and those used for authenticating the user (which are the test or query samples). This
problem is sometimes referred to as a train–testmismatch.Thismismatchbetween the
enrolment and test samples, or session mismatch, is caused by a number of factors.
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The data acquisition process is vulnerable to these variations. For instance, face
images can easily be effected by changes in illumination while speech signals can be
corrupted by environmental noise such as passing cars or other people speaking [16].
Other factors include the nature of biometric traits being biological samples that can
alter temporarily or permanently, for instance, as a result of ageing, diseases, or
treatment to a disease.

An important consequence of the above factors is that a biometric reference—
which could be a template or a statistical model—cannot be expected to fully and
automatically cope with all possible sources of variation. A promising learning par-
adigm to solve the above problem is semi-supervised learning. In this paradigm, a
biometric system is initialized with correctly labelled samples and then (as a clas-
sifier) attempts to label the test samples and considers these samples as potential
training samples; the initialization is the only part that is supervised, hence, the
name semi-supervised. If the samples are labelled correctly, the system can indeed
capture the variation of the test conditions. On the other hand, if an impostor’s sample
is labelled as being genuine, the resultant system may perform significantly worse
over a period of time.While there exists a large body of literature on semi-supervised
learning [30] and concept drift dealing with general adaptive pattern recognition sys-
tems [22, 26, 28], the biometric problem deserves a dedicated treatment of its own,
considering that a biometric system is potentially rolled out in a very large scale and
may persist throughout the life time of a person.

Two well-known semi-supervised learning strategies are self-training and co-
training. In self-training, a unimodal biometric system (face or speech) attempts to
update its parameters using the highly confidently classified test samples [13]. In co-
training, the mutual and complementary help of two classifiers is utilized to adapt
the parameters (references) to the intra-class variation of the input operational data.
Commonly, highly confidently classified sample for one of the classifiers is used to
adapt the parameters of both the classifiers [16, 17, 19, 30]. However, this process
does not involve a fusion module, i.e., a module that combines two or more outputs
of the constituent biometric systems. Since a fusion module is often employed in
multimodal biometrics, it is natural to consider a fusion-based co-training scheme.
This is the main subject of study in this paper. In addition, in order to understand
the mechanics and behaviour of the strategies, we also investigated a cross-training
strategy where the inferred labels from one modality are added as training samples
for another modality. The four different schemes, namely, self-training, co-training,
cross-training (as a control), and the proposed fusion-based co-training, are shown
in Fig. 3.1.

We validate our experiments using the publicly available bimodal face and speech
BANCA database [2]. This database contains three acquisition conditions, namely
controlled, adverse and degraded conditions. With reference to the controlled con-
ditions, the adverse ones are due to acquisition in a noisy environment, whereas the
degraded ones are due to the use of a different acquisition device. The impact of
these three conditions is clearly visible in Fig. 3.2.
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Fig. 3.1 A data flow diagram of the extended view of semi-supervised learning strategies. Boxes
drawn with solid lines denote initial models, whereas those drawn with long-dashed lines denote
updated models. Boxes drawn with a short-dashed lines imply a union operator

Our contributions can be summarized as follows: First, we propose a novel co-
training-based fusion algorithm. Second, we investigate the unresolved problem of
threshold determination for adaptive systems. Third, we experimentally validate the
proposed adaptation strategy with self-training, co-training, and a control system
known as “cross-training”.

This chapter is organized as follows. Section3.1.1 presents the methodology;
Sect. 3.2, database and experiments; Sect. 3.3, results; and Sect. 3.4, conclusions.
This section presents the four schemes shown in Fig. 3.1
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Fig. 3.2 The three scenarios of the BANCA database

Algorithm 1 The self-training algorithm
• Given: labelled data L and unlabelled data U
• Loop until stop criterion satisfied:

– Train g1 using L
– Label U using g1 to obtain U∗
– Add the highly confident self-labelled samples from U∗ to L
– Remove the self-labelled examples from U

3.1.1 Methodology

3.1.1.1 Revisiting Self-training and Co-training

In self-training, a biometric system, say g1, attempts to infer labels from an unla-
belled dataset U . If the labels are inferred with sufficiently high confidence, they
are incorporated into a labelled dataset, L. The labelling process is repeated until no
more labels can be inferred by this way or stopped at a predetermined number of
iterations [3, 22]. Algorithm 1 describes this procedure more formally.

In the original co-training algorithm [3], two biometric systems, say g1 and g2,
attempt to infer labels from U independently. The confidently labelled samples are
then added to L. This procedure is described in Algorithm 2. The main difference
between Algorithms 1 and 2 is that the information between the twomodality experts
are not shared in self-training, whereas in co-training, the experts work collabora-
tively.

3.1.1.2 Fusion-Based Co-training

We observe that in the original co-training algorithm, the union of two inferred labels
by two algorithms is used simultaneously. Hence, this operation can be interpreted
as an OR fusion rule.

Rather than using the OR fusion rule, in multimodal biometrics, it is common
to use a trainable classifier such as logistic regression. In essence, the OR rule is
an example of decision-level fusion, whereas logistic regression is an example of
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Algorithm 2 The original co-training algorithm
• Given: labelled data L and unlabelled data U
• Loop until stop criterion satisfied:

– Train g1 using L
– Train g2 using L
– Label U using g1 to obtain U1∗
– Label U using g2 to obtain U2∗
– Add the highly confident self-labelled examples in U1∗

⋃U2∗ to L
– Remove the self-labelled examples from U

Algorithm 3 The fusion-based co-training algorithm
• Given: labelled data L and unlabelled data U
• Loop until stop criterion satisfied:

– Train g1 using L
– Train g2 using L
– Train f using L (with a twofold cross-validation; see text)
– Label U using f to obtain U∗
– Add the highly confident self-labelled examples in U∗ to L
– Remove the self-labelled examples from U

score-level fusion. Score-level fusion is generally better than decision-level fusion
because the former considers the confidence of expert output, as reflected by the
absolute value of the matching score. This piece of information is simply not taken
into account in decision-level fusion.

Because of the above nature, combining a strong expert with a weak expert at
the decision level is not always beneficial [19]. In comparison, the score-level fusion
can still optimally utilize the strength of both experts even with this unbalanced
performance, in the Bayes sense [26].

The fusion-based co-training algorithm is shown in Algorithm 3. The main dif-
ference in this algorithm compared to self-training and co-training is that the fusion-
based co-training requires an additional step in order to train the fusion classifier.
This step is not needed if the fusion classifier used is based on fixed rules such as
sum and product.

Since a trainable fusion classifier is used here (which is logistic regression), one
has to ensure that the data samples (scores) used to train the fusion classifier should
not be the same as those used to train the baseline experts, otherwise the resultant
trained fusion classifier will be overly optimistically biased (i.e., the expert outputs
will appear more confident than they should be).

To avoid the positive bias, one can adopt k-fold cross-validation. For instance,
let k be two. One can then partition L into two non-overlapping sets, say L1 and
L2. Then, one trains a base expert on L1 and generates scores using L2. Similarly,
one trains another base expert on L2 and obtains scores using L1. The union of the
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Algorithm 4 The cross-training algorithm
• Given: labelled data L and unlabelled data U
• Let L1=L and L2=L
• Loop until stop criterion satisfied:

– Train g1 using L2

– Label U using g1 to obtain U2∗
– Train g2 using L1

– Label U using g2 to obtain U1∗
– Add the highly confidently labelled samples from U1∗ to L1 and U2∗ to L2

– Remove the examples just labelled (i.e., U1∗ and U2∗ ) from U

resultant scores obtained from L1 and L2 are used to train the fusion classifier. In
this way, the training scores are unbiased from the fusion’s perspective.

3.1.1.3 Cross-training

Since the difference between self-training and co-training is principally due to
whether or not information is exchanged, it is instructive to study how this infor-
mation is exchanged. A possible intermediate way of information exchange is to
retrain one classifier using the labels inferred by another classifier. This gives rise to
the cross-training algorithm, as shown in Algorithm 4.

3.2 Database and Experiments

3.2.1 Database

We shall use the BANCA database [2], because it is a multimodal biometric database
and for both modalities, simulated authentication sessions were recorded under con-
trolled, adversed, and degraded conditions, as shown in Fig. 3.2. The clear distinction
in the sample quality is ideal for conducting controlled experiments in our case. This
database contains videos of 52 subjects reading text-prompted sentences as well as
answering short questions. The subjects are divided into two groups of 26 subjects,
which is designed for a twofold cross-validation experiment.

A consequence of this BANCA database setting is that the face verification prob-
lem becomes extremely challenging, compared to the speaker verification problem.
This is because in both the adverse and degraded conditions, the noise due to the
environmental conditions affecting the speech modality, which consists of indoor
recordings, is still relatively unimportant in comparison with the face modality.
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A novel aspect concerning the usage of this database, unlike precedent efforts
in [11] or [10], is that video sequences are actually used here, rather than still images
extracted from the video sequence.

3.2.2 BANCA Protocols

The BANCA database contains 12 sessions, recorded under 3 conditions. Sessions
1–4 were recorded under the controlled conditions; 5–9, degraded conditions; and
11–12, adverse conditions. The BANCA database comes with its own experimental
protocols known as “P” (for partitioned) and “G” (for general), which are applicable
to experiments with training (also known as the enrolment set in biometrics) and test
datasets. However, in experiments involving adaptation, it is important to designate
another set of data for adaptation. For this reason, we have modified P and G pro-
tocols slightly, leading to an adaptive protocol as shown in Table3.1. The first line
in Table3.1 shows the number of examples for each client in each partition of data.
The second line shows the exact session numbers used to constitute the respective
partition of data as well as the conditions under which the data (video) sample is
obtained (controlled, adverse or degraded).

In order to calculate the number of samples for each partition of the data, one
multiplies the numbers in rows “# match samples” and “# non-match samples” of
Table3.1 by 26, because there are 26 enrollment subjects in each group of subjects,
recalling that the 52 subjects have been divided into two groups with balanced gender
composition.

The enrollment data partition normally does not contain non-match samples.How-
ever, the numbers indicated here (with †) are the number of samples used for training
the background model or for feature extraction (e.g., principal component analysis);
they come with the BANCA English database.

The experiments are designed to compare five adaptive settings: (1) no adaptation,
which serves as a baseline; (2) self-training; (3) cross-training; (4) fusion-based co-
training; and, finally (5) supervised adaptation, which establishes the upper bound of
the achievable performance. The training set of the non-adaptive system consists of
only the enrollment partition of the data; the adaptive partition of data is not used at
all. On the other hand, for the supervised training, the data consists of the enrollment
and adaptive partitions of the data, i.e., the combined sessions {1, 5, 9}, are used
to train the system. This corresponds exactly to the original BANCA protocol. In
all five settings, the test partition is reserved uniquely for evaluating the system
performance. Each of these settings is evaluated on the unimodal face, unimodal
speech, and bimodal fusion systems.

When performing verification on the BANCA database, errors were measured in
Half Total Error Rate (HTER) HTER = FRR+FAR

2 , where FRR is the ratio of true
clients that were falsely rejected and FAR is the ratio of impostors that were falsely
accepted.
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3.2.3 Baseline Systems

The face and speaker verification baseline systems (also referred to as experts)
are Bayesian classifiers whose class-conditional densities are approximated using
Gaussian Mixture Models (GMMs) with the maximum a posteriori adaptation [24].
This is a long-standing state-of-the-art classifier for the speaker verification, but since
then, it has also been successfully used for the face verification problem [4]. The face
verification problem can benefit from this approach, mainly thanks to parts-based
local feature descriptors, which represent an face image by a set of overlapping or
non-overlapping blocks of image. For each block of image, its texture is described
using a local feature descriptor.

Let X ≡ {xi|i = 1, . . . , N} be a sequence of N feature frames and each feature
frame be denoted by xi (for the i-th frame). For the face modality, a feature frame is a
vector containing the DCT coefficients of a block of image. For the speech modality,
a feature frame contains mel-scale cepstral coefficients. These features are a short-
term representation of spectral envelopes filtered by a set of filters motivated by the
human auditory system.

Let p(x|ωo) be the likelihood function of the world or background model and
p(x|ωj) be the model for the claimed identity j ∈ {1, . . . , J}. In parts-based face
or speaker verification, both p(x|ωo) and p(x|ωj), for any j, are estimated using a
GaussianMixtureModel (GMM) [24]. Theworldmodel is first obtained from a large
pool of sequences {X} contributed by a large and possibly separate population of users
(possibly from an external database than the one used for enrollment/testing). Each
client-specificmodel is then obtained by adapting the worldmodel upon presentation
of the enrollment data of a specific user/client.

If the score y is greater than a pre-specified threshold, one declares that the query
data X belongs to the model j. Hence, this will result in an acceptance decision.
Otherwise, one rejects the hypothesis and hence rejects the identity claim.

The speaker verification classifier used here differs from the face one in the fol-
lowing ways. First, the variability across sessions are removed, thanks to a standard
technique called factor analysis [24]. This technique is applied to all training and test
data prior to building a (client-specific) GMM model.

3.2.4 Threshold Determination

Before showing the result, there is another crucial aspect: threshold determination.
One simple strategy is to use all possible thresholds. For this purpose, we choose
three levels of threshold: a “relaxed”, a “moderate” and a “stringent” threshold for
adaptation.

A principled way of determining the three levels of threshold by their confidence
is to map the threshold onto a probabilistic scale, e.g., the probability being a client
given the expert output (say y):
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confidence (y) = P(C|y)

After this mapping process, also known as score calibration, we simply compare
confidence (y) with the adaptation threshold, Δadapt . If confidence (y) exceeds the
threshold, then the corresponding sample is added to the labelled setL. Thus, the three
levels of threshold can be taken as {0.25, 0.50, 0.75}, respectively, for the relaxed,
moderate and stringent thresholds, respectively.

Throughout our experiments, the posterior probability is estimated via logistic
regression, which is trained on the held out group (i.e., when testing the BANCA
G1 group of users, the data of G2 is used for training). The logistic regression is
expressed by

P(C|y) = 1

1 + exp(−(w1y + w0))

where y is the output of the unimodal system (face or speech). For the bimodal fusion,
we use

P(C|y) = 1

1 + exp(−(w2y2 + w1y1 + w0))

instead, where yi is expert output i and wi is its associated weight. The weight
parameters are estimated using the expectation maximization principle. The realized
algorithm is known as “gradient-ascent” [24].

3.3 Results

The experiments are divided into two parts: unimodal (face and speech) systems and
bimodal fusion. For each case, we shall plot only the half total error rate (HTER) and
pooled DET curves (over G1 and G2 groups of subjects). For the assessment here,
the threshold used here minimizes the equal error rate on the development dataset.

3.3.1 Unimodal Systems

Wewill explain the different face systems tested, as it is clear that the speech systems
can be explained in exactly the same way.

• Face baseline: this is the original non-adaptive system; it effectively assumes that
the adaptive partition of data simply does not exist.

• Face self-train: this is a self-training system that attempts to infer labels from
the adaptive partition of data. The inferred data samples are used to augment the
original enrollment partition of data for training.

• Face co-trained by speech: this is a cross-training setting where a face system is
trained by the labels obtained from the speech system.
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• Face co-trained by fusion: This system is trained by the labels obtained from the
fusion system–logistic regression in our case.

• Face supervised: this is a supervised system, where the labels of the adaptive
partition of data are known; this represents the lowest achievable error rates on
this dataset.

The speech systems are obtained in a similar way. For example, “speech system
co-trained by face” refers to the speech system that is trained by samples in the
adaptation set whose labels are inferred by the face system.

The results of each of the face and speech systems are shown in Fig. 3.3 usingDET
curves and their corresponding HTER points are shown in Fig. 3.4. Each shows the
DET curves of the five systems, along with three levels of calibrated threshold (by its
confidence), for the face and speech modality separately. We observe the following:

• The self-training speech system benefits from the relaxed threshold (0.25).
• On the other hand, the self-training face system benefits from the more stringent
threshold (0.75).

• The speech system that is co-trained by face degrades significantly in performance,
compared to the baseline non-adaptive system.

• On the other hand, the face system benefits from co-training by the speech system.
• The fusion-based co-training performs most optimally with the relaxed threshold
(0.25).

These observations are all consistent in supporting the case that fusion-based co-
training is better than cross-training (face cross-trained by speech or speech cross-
trained by face).

It is interesting to observe that the self-training strategy degrades the face system
but improves the speech system. This suggests that an already strong (good) system
is likely to benefit from self-training, whereas a weak system may further degrade in
performance with self-training due to the inclusion of wrongly labelled samples.

3.3.2 Multimodal System

Figure3.5 presents the DET curves of the different multimodal systems. The figure
again reveals a similar trend, except that the difference of performance between the
supervised system and the best performing co-training system (at 0.25 adaptation
threshold) is significantly larger here.
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Fig. 3.3 DET curves of (a)
face and (b) speech adaptive
experiments. In the legend,
“c.b.” stands for co-trained
or cross-trained. “F-LR”
stands for Fusion using
Logistic Regression (LR).
Therefore, “Face c.b.
Speech” reads “Face
cross-trained by Speech” and
“Face c.b. F-LR” reads “Face
co-trained by Fusion using
Logistic Regression”. The
HTER of these DET curves
is summarized in Fig. 3.4.
(The figure is best viewed in
colour)
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Fig. 3.4 HTERof (a) face and (b) speech systems.Note the scale difference in theX-axis, indicating
that the speech system is several times better than the face system for this dataset
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figure is best viewed in
colour)
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3.4 Conclusions

Semi-supervised learning is a generalmethodology that can be applied to any classifi-
cation problem. Formultimodal biometric systems, however, the classical co-training
strategy would not have fully exploited the capability of the fusion system. For this
reason, it is worthy to investigate fusion-based co-training as an addition to the exist-
ing adaptive strategy. Recognizing that the classical co-training corresponds to the
OR rule fusion, we investigate a fusion-based co-training using a trainable fusion
scheme that is implemented using logistic regression. We compare this method with
two other strategies, namely (1) “cross-training” in order to understand the impact
of cross modality training without fusion, and (2) training with complete supervi-
sion in order to assess the most optimistic performance. The experiments reveal that
determining the effective threshold for adaptation remains a challenging problem.
For a weak system (with relatively low classification accuracy), using a more strin-
gent threshold appears to be better. On the other hand, for a strong classifier (with
relatively high accuracy), using a relaxed adaptation threshold appears to benefit the
system.
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Chapter 4
A Hybrid CRF/HMM for One-Shot
Gesture Learning

Selma Belgacem, Clement Chatelain and Thierry Paquet

Abstract This chapter deals with the characterization and the recognition of human
gestures in videos. We propose a global characterization of gestures that we call the
Gesture Signature. The gesture signature describes the location, velocity, and orien-
tation of the global motion of a gesture deduced from optical flows. The proposed
hybrid CRF/HMMmodel combines the modelling ability of hidden Markov models
and the discriminative ability of conditional random fields. We applied this hybrid
system to the recognition of gesture in videos in the context of one-shot learning,
where only one sample gesture per class is given to train the system. In this rather
extreme context, the proposed framework achieves very interesting performance
which suggests its application to other biometric recognition tasks.

4.1 Introduction

A gesture is a short human body motion, in the range of seconds, achieved pri-
marily with arms to generally perform an action. In some situations of disability or
constrained environment, the gesture is the only possible mean of communication
between humans or between the human being and the machine. In the latter case, the
machine identifies gestures using computer vision techniques.

Gesture analysis field includes several themes: characterization, tracking, recog-
nition, segmentation, spotting, etc. As part of our study, we focus on gesture charac-
terization and recognition. Gesture characterization involves extracting information
from the data in the aim to discriminate the classes of gestures. Gesture characteri-
zation is a necessary step for gestures recognition.

In the case of continuous sign language, recognition must integrate articulated
gestures, it must combine segmentation and classification as well. Segmentation
consists in determining the limits of gestures in the sequence of video frames. Clas-
sification consists in assigning a label belonging to a given vocabulary of gestures to
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each sequence of video frames that compose a specific gesture. As stated by Sayre
[30], segmentation and classification are two tasks that must be performed simulta-
neously. The classification task must also integrate knowledge a priori on data such
as the vocabulary of gestures, gesture duration, the recording environment, etc. The
segmentation step has to face the variability of the duration of gestures, while the
classification step has to face the variability of instances of a same gesture.

Agesture is a set ofmovements performedmainlywith hands. It canbe represented
in a simplified three-dimensional space consisting of its two-dimensional projection
and its variation through time. In addition, the recognition system must be robust to
recording environment variations. Indeed, the recording conditions are not usually
identical between two sequences representing the same gesture. We can observe
changes in brightness, backgrounds, colours, objects, etc. Note that the appearance
of the involved human may also change (clothes, skin colour, height, etc.).

Markovmodels are widely applied to the recognition and segmentation of sequen-
tial data. They model the temporal dependencies in sequences. They are based on the
Markovian assumption that account for the short-term dependencies only, omitting
the long-term dependencies in the model.

Although introducing some simplification in the model, generative MarkovMod-
els such as hidden Markov models (HMM)[27] allow to introduce a temporal struc-
ture between classes that account for high-level knowledge such as a languagemodel.
Some other Markov models such as conditional random fields (CRF) [17] are more
oriented toward the local discrimination of patterns. In this work, we propose to
combine the advantages of these two types of Markov models to provide a hybrid
system. We will show that this hybrid system allows the integration of knowledge
while being robust to different sources of variability.

Gestures are characterized using an original global description that account for
shapes and motions in the video frames. This method describes the location, the
velocity and the direction of the motion, based on the optical flow velocity informa-
tion.

This system was tested using the “Gesture Challenge 1–2” dataset proposed by
ChaLearn 2011–2012 [11]. The subject of this competition is one-shot gesture learn-
ing [11, 40]. We will show later that the lack of training data is another problem that
the Markov models are able to solve to a certain extent.

In Sect. 4.2 of this chapter, we present an overview of the gesture recognition
applications in the literature, especially the hybrid models combining HMM with
other classification methods. In Sect. 4.4, we show the principle of our hybrid model
CRF/HMM and explain its interest. Then, in Sect. 4.5, we describe our gesture char-
acterization model. In Sect. 4.4.2.1, we explain how we adapted our hybrid system to
the one-shot learning context, in order to cope with the lack of training data. Finally,
we will present in Sect. 4.6, the experimental protocol and the evaluation results of
our system and its properties.



4 A Hybrid CRF/HMM for One-Shot Gesture Learning 53

4.2 Related Works to Gesture Recognition

During the last decade, many studies have been devoted to gesture recognition, and
especially in order to design automatic systems that would recognize the sign lan-
guage. Such systems would allow deaf people to better communicate with machines
or with other humans. For example, Vogler and Metaxas [36], Agris et al. [37] and
Ong et al. [25] designed a parallel HMM model for signed sentences recognition.
They distinguished gesture descriptors such as position, orientation and distance to
facilitate the learning process of the HMM and optimize the use of these descriptors.
This decomposition is manifested by the generation of one HMM for each descriptor
and for each sub-unit of the model.

For gesture sequences recognition, the use of global parallel HMM models is
common in the literature [13, 16, 25, 36–38]. HMM models have also been used
with a very small number of training examples [13, 16, 38, 40]. This paper addresses
the lack of data problem, which is a major problem in the field of machine learning.
Konecny et al. [16], Jackson [13] and Weiss [38] proposed a global HMMmodel for
gesture sequences recognition using single-instance learning databases. The global
model is a set of left–right interconnectedHMM’smodelling each gesture. From each
state of each HMM, it is possible to remain in that state or to jump to a subsequent
internal or external state. In the model proposed by Jackson [13], each frame of the
gesture video is represented by a state. This model remains complex due to the large
number of states involved.

The idea of combining HMM with other classification scheme is not new. Such
hybrid framework is intended to introduce a better discrimination between classes,
than generative models can do. One of the first combination scheme was proposed in
the 1990s by the integration of neural networks to HMM’s [34]. Such combination is
prevalent in the literature in various fields. This type of hybrid models was applied
to speech recognition [14, 21, 24, 29, 32, 41], handwriting recognition [3, 9, 15,
19, 20, 22, 33] and gesture recognition [6]. HMM models have also been combined
with SVM models for handwriting recognition [8] and with dynamic programming
methods for gesture recognition [28]. We noticed that the application of these hybrid
models to gesture recognition is recent and not much studied in the literature.

To our knowledge, the only work addressing CRF and HMM combination is the
work of Soullard et al. [31], based on the work of Gunawardana et al. [10]. In this
work, the authors constrain the learning step of a hidden CRF by initialising it with
the parameters of a pretrained HMM. This method ensures the convergence of the
hidden CRF learning step and shows the difficulty of learning convergence of such
models. The idea of our approach is different and is inspired from neuro-Markovian
approaches. The principle of these approaches is to replace the HMM data model,
consisting of a mixture of Gaussians, by a discriminative model that classifies local
observations. This model is traditionally composed of a neural network which pro-
vides local a posteriori probabilities of each class associated to each local observation
in the sequence. In this work, we propose the use of a CRF in order to perform this
discriminative layer. The CRF layer will discriminate local observations and provide
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local class posteriors to the HMM layer. These local posteriors are then combined
during the HMM decoding stage that integrates more global information embedded
in the HMM transition model (known as the language model). According to the prin-
ciple of our hybrid model, the HMM learning step and the CRF learning step are
performed separately. Details of the new hybrid model we propose are presented in
Sect. 4.4.

4.3 Markovian Models

4.3.1 Hidden Markov Models (HMM)

The Hidden Markov Models (HMM) [2] are probabilistic generative statistical mod-
els used for sequence recognition. Their principle is to generate observations based
on some hidden states. The joint probability p(y1:T , x1:T ) (Eq. 4.1) for the observation
sequence x1:T and the hidden state sequence y1:T is derived from the particular gener-
ative graphical model depicted on Fig. 4.1. This simple graphical model is obtained at
the expense of two restrictive assumptions: each observation xt depends only on the
current hidden state YT (thus assuming observations to be conditionally independent
between each other) and each hidden state YT depends only on the previous state yt−1
(for an order 1 Markov model). Finally, these assumptions lead to the factorization
of Eq.4.1.

p(y1:T , x1:T ) = p(y1)p(x1|y1)
T∏

t=2

p(yt |yt−1)p(xt |yt) (4.1)

Through the inference phase, the most likely sequence of hidden states Y∗ that
describes the given sequence of observations X is determined. Viterbi algorithm [35]
is used to find this best sequence.

The graphical data modelling with a HMMmodel is very interesting. This model
is used to guide the decoding process by preserving the structural consistency over
time. This model makes it possible to integrate high-level a priori knowledge such
as syntactical information or duration. Another advantage of HMM’s is that they do
not require having labelled frames, as the EM-based training process is able to infer
local labels from global label given at gesture level.

Fig. 4.1 Graphical
representation of a HMM:
each observation xt depends
only on the hidden state yt
and each hidden state yt
depends only on the previous
state yt−1
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Generative models such as HMM use Gaussian mixtures to approximate the data
distribution.When training data are too few, modelling becomes poor and inadequate
which is a major drawback of HMM’s. However, discriminative models can remedy
this problem.We present in the next section a discriminant sequentialMarkovmodel:
CRF. This model was proposed by Lafferty et al. [17]. It has some advantages that
can address HMM problems.

4.3.2 Conditional Random Fields (CRF)

Conditional random fields (CRF) [17] are discriminative Markov models known for
their classification ability. They have been designed in order to model the decision
process of labelling a sequence. Therefore, they account for the a posteriori proba-
bility of a particular sequence of labels. As depicted in Fig. 4.2, at each time step,
a label depends on the previous label (Markov assumption) and may depend on the
whole observation sequence X. Making no requirement about the conditional inde-
pendence of the observation data. The graphical representation of a CRF model is a
linear undirected graph with a HMM similar structure. Weights associated to each
arc are no longer probabilities but potential functions reflecting the adequacy (or the
link) between the two nodes.

Theprobability of a state sequenceY = y1:T knowing the sequenceof observations
X = x1:T is computed by:

p(Y |X) = 1

Z(X)
exp

(
T∑

t=1

K∑

k=1

λkfk(yt−1, yt, X, t)

)
, (4.2)

where Z(X) is a normalization term.
fk , ∀k ∈ [1, K] are the feature functions. There are two types of feature func-

tions: feature functions of transitions between successive states representingMarkov
dependencies and observation feature functions. λk is the fk function weight. The
weights λk , ∀k ∈ [1, K] are the parameters to be optimized during the CRF training
procedure.

As opposed to HMM, CRF are not able to model high-level information such
as a language model or syntactical rules. They are local classifiers in a sequential
process. Thus, the high-level knowledge must be introduced in postprocessing as

Fig. 4.2 A representation of
the graphical structure of the
linear CRF
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an additional step of filtering in order to guaranty the structural labelling consis-
tency. The HMM’s generative framework has this ability of coping with high-level
structuring information.

Finally, if we compare the advantages and disadvantages of CRF and HMM, we
find a certain complementarity between the two models. Therefore, we propose to
combine these two models in a hybrid framework that we present in the next section.

4.4 Hybrid CRF/HMM Model

4.4.1 Overview of the CRF/HMM Model

In this section, we present our hybrid CRF/HMM system for gesture recognition. It
combines the discriminative ability ofCRFwith themodelling ability ofHMM.Com-
bining the two models is performed in an easy and straightforward way derived from
the literature. The discriminative CRF stage provides local class posterior probabili-
ties that are fed to the HMM stage that account for more global constraints regarding
the label sequence. Figure4.3 shows the proposed hybrid system.

Following this model, the HMM probability p(y1:T , x1:T ) (see Eq.4.3) depends
on the posteriors computed using the CRF.

p(y1:T , x1:T ) = p(x1|y1)p(y1)
T∏

t=2

p(xt |yt)p(yt |yt−1) (4.3)

However, p(xt |yt) is a likelihood,while theCRFoutputs posteriors p(yt |xt). There-
fore, p(xt |yt) is computed from p(yt |xt) using Bayes’ rule:

Fig. 4.3 The graphical model CRF/HMM
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p(xt |yt) = p(yt |xt)p(xt)

p(yt)
(4.4)

As every gesture class are considered to be equally likely, p(yt) is a constant
∀t ∈ N. The aim of the decoding process is to find the state sequence y1:T that
maximizes p(y1:T , x1:T ). As the observation probability p(xt) is time independent,
p(xt) is not involved in the maximization of p(xt |yt). Hence, the maximization of
p(xt |yt) turns toward the maximization of p(yt |xt).

Given that the CRF are able to take into account the whole observation sequence
to compute the posteriors of each class, one can state that p(yt |xt) = p(yt |x1:T ). Let
us recall that y1:T and x1:T are noted Y and X.

This is computed within the CRF using the forward-backward algorithm [1],
where the forward probability αt and the backward probability βt are computed
using the following recurrences:

αt(i) = p(x1x2 . . . xt, yt = si) =
Ns∑

j=1

αt−1(j)ψt(si, sj, ol), (4.5)

βt(i) = p(xt+1xt+2 . . . xT , yt = si) =
Ns∑

j=1

βt+1(j)ψt+1(si, sj, ol), (4.6)

where

ψt(si, sj, ol) = exp(
K∑

k=1

λkfk(yt = si, yt−1 = sj, xt = ol)) (4.7)

and si, sj are hidden state that belong to S , and ol is an observation that belong to
O . Finally, following the forward-backward procedure, we have:

p(X) =
Ns∑

j=1

αT (j) =
Ns∑

j=1

β1(j) =
Ns∑

j=1

αt(j)βt(j), (4.8)

p(yt = si|X) = p(yt = si, X)

p(X)
= αt(i)βt(i)

∑Ns
j=1 αt(j)βt(j)

= γt(i). (4.9)

4.4.2 Training the CRF/HMM Model

We chose to achieve a separated training of HMM and CRF. The HMM training
provides the transition matrix between gesture states. Transition models are learned
separately for each gesture class and gathered into a global model for decoding
gesture sequences. This model is described in Sect. 4.4.4.
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As CRF do not benefit from an embedded training stage like HMM, it is necessary
to build a frame-labelled learning dataset. This is achieved using the initial HMM
model of gesture trained on the dataset that are used in a forced alignment mode
that provides the desired frame labelling. Then, the CRF learns a single model for
every gestures, considering as many classes in the model as there are sub-gestures.
The number of sub-gestures is equal to the number of states in the HMM model
of gesture.

4.4.2.1 CRF/HMM Adaptation to One-Shot Learning

In this section, we focus on the learning of the recognition system using a unique
sample per class. These learning conditions are interesting since the annotation efforts
are extremely reduced in this case. Furthermore, using a single sample per class allows
to speed up the learning process.

The one-shot learning framework has been quite extensively used for gesture
analysis and recognition [13, 16, 38–40]. These system are generally made up of a
standard recognition method that has been adapted to the one-shot learning frame-
work. We now describe the adaptation of our models (HMM and CRF) to one-shot
learning.

To model the feature space, the HMM relies on Gaussian mixtures estimated
on the learning database. When considering a very reduced number of samples,
the Gaussian distribution parameters are very difficult to estimate, especially the
variance. Therefore, first we limited the mixture to one Gaussian per gesture class.
Second, the variance is computed on every gesture class in order to increase the
amount of data and improve the estimation. Doing that, each gesture class has the
same variance. Although these two tricks are a limitation of the initial method, the
experiments showed the interest of such an adaptation.

In its initial form, the CRF method is mathematically able to deal with either dis-
crete or continuous features; however, since the CRF classification stage is derived
from a logistic regression, it is more adapted to discrete features than continuous.
This is even more true when the number of samples is small. Therefore, we turned
toward the use of a feature quantization procedure. It allows to efficiently tune the
parameters linked to each discrete feature value. Notice that some recent develop-
ments have introduced hidden CRFmodels in order to cope with continuous features
[26]. But such a framework would require more data than possible in the one-shot
learning context.

The quantification is achieved using a uniform scalar quantifier that maps each
continuous feature into Nq discrete features, according to the following equation:

Q : [−Vmax,Vmax] −→ [−Nq,Nq]
x �−→ x×Nq

Vmax
.

(4.10)

We empirically tuned the value Nq in order to reach the best recognition perfor-
mance using a validation procedure. We found that Nq = 16 was the best value.
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4.4.3 Structure and Parametrization of the CRF/HMM Model

As for a standard HMM, the HMM of our hybrid structure is made of states describ-
ing each gesture. Although the gesture duration can be modelled through the state
autotransitions, it is known that a better modelization can be achieved by setting a
variable number of states per gesture. We experimentally checked that this strategy
outperforms the performance of the same system with a fixed number of states per
gesture. The number of states of each gesture i is determined automatically depend-
ing on its frame length fg(i). The theoretical number of frames per state, denoted
fs, is one hyperparameter of the system.We denote the number of states of a gesture
model i; Nei = fg(i)/fs. As we already mentioned, we limit the data model to have
only one Gaussian per state.

The CRF part of our hybrid model has a standard linear structure, as shown in
Fig. 4.3. The CRF training leads to a single model that discriminates all the gestures
of the dataset. As explained in the previous section, the CRF formulation allows to
consider an observation window, including the current observation and a neighbour-
ing context to be determined. To adapt the system to the gesture duration variability,
we chose a variable size fw of the observation window CRFwind. fw is statically
estimated on the learning databases. In order to avoid overfitting the CRF, a regular-
ization term has been empirically tuned to a value of 1.5.

4.4.4 Decoding Using the CRF/HMM Model

The gesture sequence to recognize may contain an arbitrary number of gestures, in
an arbitrary order. Therefore, the model should evenly switch between the gesture
models. This can be modelled by gathering all the gesture model within a global
sequence model, as shown in Fig. 4.4. In this model, each line represents an isolated
gesture, with a variable number of state. This global model allows to describe any
arbitrary gesture sequence with equiprobable gesture transition probabilities.

Fig. 4.4 The recognition
model of gesture sequences
using HMM. egi

j represents
the state j of the gesture i
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4.5 Global Gestures Characterization

Gestures characterization requires velocity descriptors and shape descriptors as well.
Considering that signers can wear clothes in different colours and have different skin
colours; colour descriptors are not included in our characterization model.

In this section, we present a set of motion descriptors deduced from optical flows
velocities. We call this set of descriptors Gesture Signature (GS). We also propose
to include shape descriptors extracted with histogram of oriented gradients (HOG).
Such descriptors will account for shape descriptors.

4.5.1 Characterization with Optical Flows: Gesture Signature

Optical flows describe local velocities at the pixel level. They are known for their
robustness to brightness changes [4]. They are invariant to colours and object distor-
tion. Optical flows are able to describe simultaneously all movements in the scene
without any segmentation. Therefore, this method seems adequate to simultaneously
extract a maximum of information on body motion, while being robust to variability
of colour, shape and brightness. In what follows, we propose a feature vector whose
components are combinations of velocity values computed with optical flows.

Hand movements are usually located on the left and the right part of the image,
so it is advantageous to divide the image into two vertical sections as shown in
Fig. 4.5. Thus, the description of the movement is better localized and motions are
characterized in these two distinct regions.

Each part of the image is described by a gesture signature which consists of nine
descriptors derived frompositive andnegative horizontal componentsV+

X andV−
X , and

nine descriptors derived from vertical components V+
Y and V−

Y . These components

Fig. 4.5 The directions of
the optical flow components
(image from a
ChaLearn database video)
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are derived from optical flows at each pixel of the image at position p (Fig. 4.5).
Obviously, for each pixel p, two of these four values are null; one pixel can have only
one direction according to the x-axis and one direction according to the y-axis.

For a given direction, these nine descriptors consist of four movement loca-
tion descriptors, two movement velocity descriptors and three movement orienta-
tion descriptors. Although these features are simple, they are complementary and
describe precisely the gesture changes since location, velocity and orientation are
the main components of a gesture.

Table4.1 shows the 18 features set.
The eight horizontal and vertical location features are related to inertia centre

coordinates. They represent the vertical and horizontal positions of velocity centres
with respect to the global movement of the considered portion of the image.

There are four features of movement velocity and strength. The first descriptor
gives an energy information of the movement. It is inversely proportional to the
quadratic mean of the moving pixels velocities. For normalization reasons, we use
the inverse of this quadratic mean. The second descriptor gives information about
the motion amplitude. It is the median of the moving pixels velocities. The median
integrates information about the linear momentum, where the mass is replaced in our
case by the number of moving pixels. The median also reduces the noise effect. V∗

X
and V∗

Y components are the medians of a threshold velocity vector which is computed
with optical flows. Values of the threshold are given below.

SVX =
∑Ns

px
p=1 |VX(p)|
Ns
px

SVY =
∑Ns

px
p=1 |VY(p)|
Ns
px

The six movement orientation features are statistics on pixels moving in the same
direction, positive or negative. The first two descriptors characterize the amount of
pixels moving in the same direction. The third descriptor characterizes the dominant
direction of themovement. Those three descriptors characterize the relationship or the
symmetry between the two main movement groups whose orientations are opposite.
Figure4.6 shows the interest of these descriptors and illustrates the symmetry infor-
mation. Thus, by analysing the variation of these three descriptors, we can deduce
the type of associated movement. Hence the importance and the complementarity of
these three orientation descriptors.

4.5.2 Characterization with HOG

For a complete gesture characterization, we add global contour features extracted
with a classic shape descriptor; histograms of oriented gradients (HOG). To apply
this descriptor, we resumed the implementation of Dalal et al. [7]. nine directions are
used to quantify gradients inclination angles calculated on the image. According to
the work of Dalal et al. [7], detecting people with these nine orientations is efficient.
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Table 4.1 The eight movement location features, the four motion velocity features and the six
movement orientation features

Descriptor Horizontally Vertically

Location Average Abscissa of
pixels moving in the
positive direction
(AAP)

1
Iw

×
∑N+

px
p=1 |V+

X (p)|xp

∑N+
px

p=1 |V+
X (p)|

1
Iw

×
∑N+

px
p=1 |V+

Y (p)|xp

∑N+
px

p=1 |V+
Y (p)|

Average ordinate of
pixels moving in the
Positive direction
(AOP)

1
Ih

×
∑N+

px
p=1 |V+

X (p)|yp

∑N+
px

p=1 |V+
X (p)|

1
Ih

×
∑N+

px
p=1 |V+

Y (p)|yp

∑N+
px

p=1 |V+
Y (p)|

Average Abscissa of
pixels moving in the
negative direction
(AAN)

1
Iw

×
∑N−

px
p=1 |V−

X (p)|xp

∑N−
px

p=1 |V−
X (p)|

1
Iw

×
∑N−

px
p=1 |V−

Y (p)|xp

∑N−
px

p=1 |V−
Y (p)|

Average ordinate of
pixels moving in the
negative direction
(AON)

1
Ih

×
∑N−

px
p=1 |V−

X (p)|yp

∑N−
px

p=1 |V−
X (p)|

1
Ih

×
∑N−

px
p=1 |V−

Y (p)|yp

∑N−
px

p=1 |V−
Y (p)|

Velocity Global velocity
inverse (GVI)

√
Npx∑Npx

p=1 (VX(p))2

√
Npx∑Npx

p=1 (VY(p))2

Maximum velocities
median (MVM)

1
SVX

× |V∗
X| 1

SVY
× |V∗

Y|

Orientation Proportion of the
pixels moving in the
positive direction
(PPP)

PPPX = N
V+
X

px
Npx

PPPY = N
V+
Y

px
Npx

Proportion of the
pixels moving in the
negative direction
(PPN)

PPNX = N
V−
X

px
Npx

PPNY = N
V−
Y
px
Npx

Dominant orientation
(DO)

DOX = N
V+
X

px −NV
−
X

px
Npx

DOY = N
V+
Y

px −NV
−
Y
px

Npx

In HOG, these nine directions are weighted by the corresponding gradients norms
in the image computing cells. It applies sliding window self-superposition, generat-
ing redundant histograms and a very large HOG feature vector (with size equal to
3780). To alleviate this vector, we used the average operator on two levels. The first
simplification level is based on the HOG visualization algorithm proposed by Jurgen
Brauer.1 The idea of this algorithm is to average the redundant histograms on image

1http://www.juergenwiki.de/work/wiki/doku.php?id=public%3ahog_descriptor_computation_
and_visualization.

http://www.juergenwiki.de/work/wiki/doku.php?id=public%3ahog_descriptor_computation_and_visualization
http://www.juergenwiki.de/work/wiki/doku.php?id=public%3ahog_descriptor_computation_and_visualization
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Fig. 4.6 Evolution of the descriptors PPPX and PPNX in a video from SignStream database [23].
Two curves superimposed with a presence of a peak correspond to an opposite movement of the
two hands. A strong difference between the two curves corresponds to a parallel movement of both
hands in the dominant direction. A stagnation of the two curves corresponds to fixed hands (frame
70)

cells keeping nine gradient directions in each cell. The second level of the HOG
descriptor simplification, applied in our case, is to average the gradient amplitudes
on larger image blocks that we call meta-blocks. We partitioned the image blocks
to meta-blocks. For each meta-block and for each orientation, we compute mean
amplitude in all meta-block cells. Tests were carried out using 4 and 16 meta-blocks.
We obtain then nine amplitude averages per meta-block which leads to a descriptor
of size 9×4 = 36 or 9×16 = 144. In our case, HOG are computed on the difference
of two successive images in order to characterize only moving patterns.

4.6 Experimental Protocol

In this section, we explain the experimental protocol: databases, evaluation methods,
feature vector variants and implementation tools.

4.6.1 Databases

Our recognition system has been evaluated on public databases designed for the
ChaLearn 2011–2012 competition [11]. We did not participate to this competition
but we were able to compare our system to those of the participants thanks to the
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evaluation platform proposed by the competition organizers.2 We detail the results
of this evaluation in Sect. 4.7.

ChaLearn databases aremade of three types of resources: 480 systemdevelopment
sub-databases named devel, 20 system validation sub-databases named valid and 40
systemfinal evaluation sub-databases named final. The 1–20 final sub-databaseswere
tested in the first round of the competition and 21–40 final sub-databases were tested
in the second round of the competition. This final evaluation classifies participants
in the ChaLearn competition.

Each of these sub-databases contains 47 pairs of videos. Each video pair presents
the same scene in two formats: RGB colour format and depth format. These videos
are recorded using a Kinect (TM) camera at a frequency of 10 frames per second,
with a resolution of 240 × 320 pixels. Videos of the same sub-database share the
same scenic features: same actor, same background, same recording conditions, same
theme and same gesture vocabulary. However, these scenic characteristics vary from
sub-database to another. 20 players participated in the making of these databases,
one actor per sub-database. These databases present 30 vocabularies composed of
8–15 gestures belonging to various themes such as video games, distance education,
robot control, sign language, etc.

Each sub-database includes two sets of video: a training setG and a test set S. The
training setG consists of 10 videos. Each video contains a single and isolated instance
of a gesture: one-shot learning databases. The test set S consists of 40 videos. Each
video includes a sequence of 1–5 successive gestures separated by a common break
point. Gestures organization in each test sequences is random, there is no specific
gestures grammar.

We summarize in the following subsection the various feature vectors used for
the tests.

4.6.2 Feature Vector Variants

Table4.2 presents the different variants of the feature vector c we used in our exper-
iments. We index each variant by its size l(c). l(v(GS)) is the number of gesture
signature features. l(v(HOG)) is the number of HOG features. Some variants of the
feature vector c are applied to two data formats (RGB image and depth image).

4.6.3 Evaluation Metric

The organizers of the ChaLearn competition defined a global evaluation metric on
all test sequences based on the Levenshtein distance, also called edit distance [18].
This form of global error is denoted by Lch and given by Eq.4.11.

2https://www.kaggle.com/c/GestureChallenge2.

https://www.kaggle.com/c/GestureChallenge2
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Table 4.2 Feature vector variants adopted in the experiments

Total size l(c) Descriptor

Gesture signature GS HOG

l(c(GS)) Description l(c(HOG)) Description

54 18 No image
division

36 4 meta-blocks

52 16 No median, no
image division

36 4 meta-blocks

180 36 Image division
into 2 parts

144 16 meta-blocks

360 72 Image division
into 2 parts, 2
data formats

288 16 meta-blocks, 2
data formats

72 72 Image division
into 2 parts, 2
data formats

0 HOG not applied

Lch : D −→ R

S �−→
∑

s∈S L(R(s),T (s))∑
s∈S l(T (s)) ,

(4.11)

where D is the set of test databases, S is the set of test sequences, s is the sequence
of gestures, R(s) is the system recognition result of sequence s, T is a function
giving the ground truth sequence s, L(., .) is the Levenshtein distance and l(v) gives
the size of a vector v.

We use the ChaLearn form of the error Lch to compare our recognition system
to ChaLearn participants recognition systems. However, let us emphasize that Lch

is slightly different from the classical Levenshtein distance (see Eq.4.12), which is
bounded and seems more generic. Thus, to present the main results of our various
tests, we use the classic error form.

L : D −→ [0, 1]
S �−→ 1

|S|
∑

s∈S
L(R(s),T (s))

l(R(s))+l(T (s))

(4.12)

4.6.4 Implementation Tools

We used the OpenCV library [5] to develop image and video processing methods.
HMM gesture recognition methods have been implemented thanks to Torch library,3

while CRF gesture recognition methods rely on the CRF++ library.4

3http://torch.ch/torch3/.
4http://crfpp.googlecode.com/svn/trunk/doc/index.html.

http://torch.ch/torch3/
http://crfpp.googlecode.com/svn/trunk/doc/index.html
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4.7 Gesture Recognition Results

In this section, we present the results of our system, using different variants. We first
evaluate the effect of the quantification of continuous features for a discrete CRF in
Sect. 7.1. Then, we demonstrate the robustness of the hybrid model CRF/HMMwith
respect to the number of states and to the various feature vectors in Sect. 7.2. Finally,
we compare the recognition results of the hybrid system CRF/HMM to the classic
and adapted versions of HMM and CRF in Sect. 7.3. We conclude this section by
presenting our rank compared to participants at the ChaLearn competition.

All recognition performance results of the hybrid system CRF/HMM presented
in this section are obtained with tests performed with an adapted CRF/HMM as
explained in Sect. 4.4.2.1 unless otherwise stated. Adapted HMM and adapted CRF
recognition systems cited in this section are also adapted as explained in Sect. 4.4.2.1.

4.7.1 Evaluation of the Features Quantization for CRF

Although CRF are able to cope with continuous features, it has been shown that dis-
cretizing the feature set could increase its performance, especially when the number
of training examples is small [12].

Indeed, continuous CRF put a single weight for all values of a descriptor.Whereas
a reduced value of this descriptor does not necessarily mean that it has no importance
and a high value of this descriptor does not mean that it is really important. This way
of managing weights can be suitable to weight a score function whose values have
a monotonous importance. However, for a descriptor, distinctive ranges of values
can change from one descriptor to another. Thus, discrete CRF, which give a distinct
weight for each discrete feature value, provide more specification to features, which
subsequently increases the discrimination of classes. Therefore, discrete CRF seems
an adequate model for one-shot learning case, as we noted in the Sect. 4.4.2.1.

Figure4.7 (left) presents the CRF/HMM recognition performance in both con-
tinuous and discrete characteristics cases by varying the number of frames per state
for the HMM component. Discrete system performances clearly outperform contin-
uous system performances, which demonstrate the interest of quantification. Let us
also mention that the learning time of continuous CRF (estimated in hours) largely
exceeds the learning time of discrete CRF (estimated in minutes). This is another
advantage of discrete CRF.

4.7.2 Robustness of the CRF/HMM Approach

In this section, we analyse the influence of several parameters on our CRF/HMM
approach results: number of frames per states, gesture duration and feature vector.

http://dx.doi.org/10.1007/978-3-319-24865-3_7
http://dx.doi.org/10.1007/978-3-319-24865-3_7
http://dx.doi.org/10.1007/978-3-319-24865-3_7
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Fig. 4.7 Left CRF/HMM gesture recognition results with continuous and discrete component.
Right CRF/HMM and adapted HMM systems robustness to the variation of the number of frames
per state

4.7.2.1 Robustness to Changes in the Number of Frames per State

Figure4.7 (right) shows the recognition error L of adapted HMM and CRF/HMM
systems with respect to the number of frame per state fs. For each value of fs,
the recognition system is re-learned. One can observe that the CRF/HMM system
outperformsHMM,and that theCRF/HMMsystemprovides extremely stable results,
while the system performance of HMM is strongly variable. This is an interesting
feature since it does not require a fine hyperparameter tuning for reaching good
results.

4.7.2.2 Robustness to Changes in the Gesture Duration

The change in the number of frames per state has a direct impact on the CRF/HMM
robustness to the gesture duration variation. With a large number of frames per state,
CRF/HMM system is able to handle the temporal elasticity of a gesture. In other
words, when a gesture expands or narrows through the number of frames in the test
data, CRF/HMM system is able to align the gesture model on the data and decode
them. In addition, CRF component are able to implicitly manage narrowing and
expansion of data through their local decision which is independent from the data
global model, unlike HMMwhich are dependent on a graph-oriented model without
jumps. Thus, to manage the temporal elasticity of gestures, a simple structure of
the hybrid model with a reduced number of states can replace a complex HMM
system with jumps between states and a complete connection as adopted by some
participants of the ChaLearn competition [13, 16, 38].
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Fig. 4.8 Adapted HMM (left) and CRF/HMM (right) robustness to the variation of the feature
vector

4.7.2.3 Robustness to Changes in the Feature Vector

Figure4.8 present the variation of the errorL in terms of the number of frames per
state fs for two HMM systems (left) and for two CRF/HMM systems (right). Each
pair of systems is evaluatedwith twodifferent feature vectors.When the feature vector
size decreases, CRF/HMM keep almost the same performance. In other words, a
minimum of features is sufficient for CRFHMM,whereas for classic HMM, features
addition increases greatly the recognition performance. This recognition ability with
a reduced number of features makes features extraction task easier and faster.

These three CRF/HMM robustness property prove that with a simple system, it
is possible to reach high recognition performance thanks to CRF and HMM advan-
tages combination and disadvantages compensation. We can see the simplicity of
the CRF/HMM system at three levels: (a) a simple model structure with a reduced
number of state without jumps nor complete connection; (b) a reduced number of
features; and (c) a training dataset reduced to an example by class.

4.7.3 Evaluation of the CRF/HMM Using the
ChaLearn Platform

We present in this subsection the recognition results of our best hybrid sys-
tem CRF/HMM on the valid and final databases, as well as our ranking in the
ChaLearn competition.

We first present a comparison of the performance of the main recognition systems
that we studied (Table4.3) on the devel databases. The 52 feature vector has been
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Table 4.3 The recognition results of various recognition systems based on HMM and CRF and
tested on 20 devel databases

System l(c) fs Error: L

classic HMM 52 6 0.36

adapted HMM 52 3 0.23

classic CRF
(continuous)

52 fg(g) 0.29

adapted CRF
(discrete)

52 fg(g) 0.28

CRF/HMM (adapted) 52 5 0.22

Table 4.4 The recognition results of our best hybrid system CRF/HMM on 20 valid databases, 20
final 1–20 databases and 20 final 21–40 databases (each database category contains about 750 total
sequences test in the order of 200 frames each)

Database category Error Ranking

L Lch

Valid 0.177193 0.348812 –

Final 1–20 (1st round) 0.147924 0.296440 7th

Final 21–40 (2nd
round)

0.122398 0.252357 7th

chosen since it provides good results while keeping a compact representation (see
Table4.2). It is identical for all the systems. The number of frames per state fs has
been optimized for each system. fg(g) represents the size of the learned gesture,
which means that every gesture is represented by a single class, subclasses that
correspond to states in the case of HMM do not exist in the case of CRF. On the
other hand, a postprocessing step is applied to the classic and adapted CRF in order
to filter their recognition results. Without this step recognition error exceeds 0.5.
Table4.3 shows that the performance of the proposed hybrid system CRF/HMM
clearly outperforms the recognition performances of other systems.

In order to rank our system in the ChaLearn 2011–2012 competition, we tested the
hybrid systemon valid and final databases provided during the competition. Table4.4
shows the hybrid system CRF/HMM recognition error values computed with both
evaluation methodsL andLch on valid and final databases. Table4.4 presents the
CRF/HMM system rank on both database categories using theLch error. It appears
that we ranked at the 7th position among 559 systems from 48 participants for both
first and second rounds. The complete list with their score (theLch error) is available
on the Kaggle website for the first5 and the second round.6 We achieved this rank
using only RGB format data.

5https://www.kaggle.com/c/GestureChallenge/leaderboard.
6https://www.kaggle.com/c/GestureChallenge2/leaderboard.

https://www.kaggle.com/c/GestureChallenge/leaderboard
https://www.kaggle.com/c/GestureChallenge2/leaderboard
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Beside the competition, for a data size equal to 750, we demonstrated with the
statistical unilateral student test that our hybrid model CRF/HMM significantly out-
performs classic models HMM and CRF. CRF/HMM also outperforms the adapted
HMM7 with a confidence level of 99% and the adapted CRF (see footnote 7) with a
confidence level of 99.5%.

These results and this study show that the CRF/HMM hybrid system is a system
that has better performance than other classic systems (HMM and CRF), is robust to
different variations, and is interesting and practical in the real-world problem such
as one-shot learning.

4.8 Conclusion

In this chapter, we proposed a new hybrid system for gesture recognition CRFHMM.
We demonstrated that this combination of Markov models benefits from each model
advantages without undergoing its drawbacks. These Markovian models have been
adapted to one-shot learning context in order to improve their recognition ability.
We also proposed a new gesture characterization model which is a gesture Signature
based on optical flows.

We demonstrated that these gesture characterization and recognition models con-
stitute a robust recognition hybrid system that opens up new perspectives for sequen-
tial Markov models. An interesting perspective of our gesture recognition work con-
cerns the gesture detection task, called the gesture spotting. Gesture spotting consists
on locating and labelling specific gestures in videos. It can be applied in video doc-
uments management contexts such as video retrieval, categorization and indexing.
Our recognition model could be adapted to the spotting task by representing false
examples through an additional class to the gestures vocabulary.

Finally, we demonstrated in this chapter Markov systems ability to model and
manage spatio-temporal variations of sequential data, including gestures. The mod-
elling evolution of the human activity contributes to the evolution of computer vision
techniques and subsequently contributes to the evolution of human–machine inter-
action systems.
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Chapter 5
An Online Learning-Based Adaptive
Biometric System

A. Das, R. Kunwar, U. Pal, M.A. Ferrer and M. Blumenstein

Abstract In the last decade, adaptive biometrics has become an emerging field of
research. Considering the fact that limited work has been undertaken on adaptive
biometrics using machine learning techniques, in this chapter we list and discuss a
few out of many potential learning techniques that can be applied to build an adaptive
biometric system. In order to illustrate the efficacy of one of the incremental learning
techniques from the literature, we built an adaptive biometric system. For experimen-
tation, we have usedmulti-modal ocular (sclera and iris) data. The preliminary results
have been reported in the results section, which are very promising.

5.1 Introduction

Since the last few decades, intensive research work has been performed in the bio-
metrics arena. Although various accurate systems have been proposed, surprisingly
the adaptiveness of such systems to environmental changing conditions or change
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in biometric traits is low. Change in biometric traits or variation in the traits is a big
challenge for the biometrics domain as it can lead to misidentification. The main
reasons for misidentification or rejection of the correct individual by biometric sys-
tems are scarcity of training samples, the presence of substantial intra-class variation
during testing and lack of standardization of the data acquisition environment. Bio-
metric characteristics can change either temporarily or permanently, perhaps due to
ageing, diseases or treatment to diseases. In order to handle these issues, it would be
preferable to have a biometric system which adapts well to the changing problem.
These drawbacks of the present biometric systems have stimulated the interest of
researchers in this domain. Recent developments in the adaptive system research
area have opened up a new research field and that is “Adaptive Biometrics”.

The ideal case of an adaptive biometric system is expected to handle the intra-class
variations which changes with time (in many cases). These changes can happen for
various reasons like ageing, variations in pose and lack of standardization of data
acquisition rules. The advantages of such a system are: learner need not get trained
from scratch every time new data is available (as the learning happens continuously
with time) and no need to store old data. This aspect of learning will significantly
reduce the maintenance cost of biometric system. These are the characteristics which
makes this research area so attractive and suitable for real-time scenario.

The existing-automated adaptive biometric systemshave adopted semi-supervised
learning to create an adaptive system. A semi-supervised learning or online learning
semi-supervised learning is a machine learning scheme which uses both labelled and
unlabelled data. In such a machine learning systems, the input samples are assigned
labels using existing references and the positively classified samples are incorpo-
rated into existing references improve the adaptability of the system. The commonly
adopted adaptation procedure is to augment the reference set with the newly clas-
sified input samples. The efficacy of such systems can be estimated by comparing
the obtained performance gain with traditional biometric schemes which do not have
any adaptation mechanism. The performance gain of such systems depends on the
accurate labelling of the input samples. This is because misclassifications will intro-
duce impostor samples into the updated reference set; the result of which can be
counterproductive and the inter-class gap may get affected dramatically.

An adaptive biometric system can also operate in supervised or offline mode, in
which biometric samples are manually labelled and updated. The supervised method
represents the best-case performance as all the available positive (genuine) samples
are used for adaptation. However, manual intervention makes this process time-
consuming and expensive. Therefore, it is generally infeasible to manually update
references regularly. Despite of these above highlighted advantages, a large amount
of limitations are also associatedwith the existing offline adaptive biometric systems.
First of all capturing substantial amount of samples for such systems is quite time-
consuming. Commonly adopted self-updating system captures only limited amount
of available samples during enrollment. As a result, a large number of input sam-
ples with informative and significant variations remain unenrolled and consequently
results in limited performance gain over the baseline system. Second present adaptive
biometric systems are vulnerable to impostor attacks or spoofing. As a consequence,
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such system bears the risk of getting adopted by imposter samples. Such consequence
can affect the performance of the system dramatically. Even distinguishing between
informative, redundant and noisy input samples are not possible in such system, not
even in instances of supervised system. Hence as a result, these occurrences can
not only affect the performance of the system but also affect the inter-class variance
space of the system.

In this chapter, we discuss several existing online/adaptive learning techniques
which can be applied in the biometric domain to build an adaptive biometric system
which will overcome above discussed drawbacks. And this will bridge the existing
gap in the literature. In order to justify the applicability of the discussed existing
online theories theory, multi-modal ocular (sclera and iris) biometric trait was used
for experimentation with one of the existing techniques.

Ocular biometrics has gained popularity due to the significant progress made in
iris recognition. Various reasons advocate this trend: these patterns possess a high
degree of randomness, which are never same for any two individuals, not even for
identical twins, and this makes it ideal for personal identification. Further the patterns
remain stable throughout a person’s lifetime; these patterns even differ for the right
and the left eye of the same individual. Therefore, it comes to no surprise that iris
has been so popular among the commercially available biometric systems. However,
unfortunately iris recognition is unfavorably influenced by the frontal gaze direction
of the eye with respect to the acquisition device. In such scenario, additional eye
trait can be used to mitigate the motion bottleneck of iris biometrics. Among the
various other ocular traits available (retinal scan, peri-ocular and sclera), the sclera
(the white of the eye) is believed to be the most promising one, and it may be
of great significance in improving biometric applicability of iris recognition. Iris
patterns are better discerned in the near infrared spectrum (NIR), while vasculature
patterns are better discerned in the visible spectrum (RGB). So, the multi-modal
ocular biometric using iris and sclera is proposed in visible spectrum. An additional
advantage of this multi-modal biometric is that the sensor can sense the biometric
trait from a distance hence such systems are hygienic as well. Although this proposed
multi-modal biometric has achieved a high-recognition accuracy but their adaption
with the environmental condition is an open research issue. Additionally, adaption
with respect to occlusion and various gaze and angle of eye is another challenge
faced by this biometrics.

Hence, in this chapter, we discuss many existing online/adaptive learning tech-
niques which can be useful to underpin an adaptive biometric system. In particular,
it can come to a great rescue for the biometric problem like ocular biometric which
is extremely sensitive to various changes as discussed above. Therefore, we applied
one of the existing techniques to illustrate its effectiveness in the ocular biometric
domain. The organization of the chapter is as follows: Sect. 5.2 highlights the exist-
ing works in the literature of adaptive biometrics and followed by few advance work
on ocular biometrics. In Sect. 5.3, we discuss various incremental/adaptive learning
techniques available in literature including some experimental results, and Sect. 5.4
draws the overall conclusion and future scope of the theory proposed.



76 A. Das et al.

5.2 Adaptive Biometrics Literature

In the last decade, adaptive biometric systems have been adequately investigated.Var-
ious research approaches have been explored by different researchers. To the best of
our knowledge, the first adaptive biometric approachwas introduced in [1]. The exist-
ing literature of adaptive biometric systems can be categorized by the key attributes
of machine intelligence methods proposed or used. Supervised [2–6] against semi-
supervised training [3, 7, 8], self-train [8–10] or co-train [3, 11], and online [8, 9]
and offline [3, 12, 13].

A general study has been done in regard to adaptive biometric in [14] to address
the intuitive questions like:

1. Whether supervised adaptation better than semi-supervised?
2. Whether co-training can outperform self-training?
3. Whether offline adaptation is better than online?

Interesting analysis was performed further to validate the hypothesis [14].
In [2], a two-stage classifier selection technique was proposed for automatically

updating the biometric templates. In this approach, a labelling scheme based on
probabilistic semi-supervised learning was employed. Soft probabilistic labels were
assigned to each batch of input samples by calculating the minimum energy function
on the graphical representation. The harmonic function used was unique and ensured
that labels were assigned to input sample using both the enrolled and nearby input
data. Then the genuinely classified samples undergo the selection process based on
risk minimization. The experiment was validated on a DIEE finger print dataset, an
appreciable result was achieved.

In [3], effect of different threshold settings were employed for template update
and novel solutions was proposed for by passing the threshold selection step. This
work analysed and inferred that template update method is better for group specific
updating due to presence of different type of population. Efforts have been made in
the work to give a preliminary guideline on the type of update procedures that could
be followed for a specific group of population. A protocol for simulating real-world
situation has also been proposed for the unbiased evaluations of update methods.

Most of the adaptive biometric work in literature deals with finger prints, voice or
facial traits. Ocular biometric is one themost accurate and reliable biometric; it offers
various biometric traits. Adaptiveness of ocular biometrics is yet to be addressed in
the literature. Among biometric traits face [15], vain pattern [16], ocular biometrics
like iris [17, 18] is the most promising one. Apart from iris, the human eye has
an ocular white surface known as the sclera which contains a texture pattern due
to the presence of blood vessels on its surface. The sclera patterns can be acquired
easily alongwith iris in single camera shot and it is visible, even in off-angle eye shot.
Therefore, by utilizing the texture pattern of sclera in addition to iris, the performance
of an iris recognition system can be significantly improved even with a non-ideal or
an off-angle eye data sample.

The first recognized work on sclera biometrics is recorded in [19]. In this paper,
the authors discuss methods for conjunctival image preprocessing by computing a
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Gaussian filters and Hessian matrix. In order to derive a suitable vascular template
for biometric authentication, feature extraction and classification are performed by
a minutia based template matching. Here a dataset was built to establish the experi-
ment. In [20], the first automatic sclera detection technique was proposed by a time
adaptive active contour-based method. First, automatic segmentation processes for
sclera biometric was proposed in [21], Otsu’s algorithm was used to segment the
sclera from a grey image. Sclera segmentation based on colour image was first pro-
posed in [22], HSV model was used to segment sclera from a colour eye image, and
a bank of Gabor filter was used to enhance the sclera. Many features like LBP [7,
23], and GMCL [24] are used in the literature for sclera feature representation. First
multi-angled sclera recognition was proposed in [25], further in [26] multi-angled
sclera recognition was proposed using multispectral imagery. Few advance work on
sclera is found using features like in SIFT [27], OLBP [28], and Dense-SIFT [29]. In
[29], K-means followed by Spatial Pyramid matching [30] was used to enhance the
feature set. In [31], a feature-based adaptive sclera biometric is proposed. In [32], a
liveness-based sclera biometric is proposed.

First, multi-modal eye recognition techniques using sclera and iris was proposed
in [33]. Here a score fusion-based technique was adopted to combine the sclera and
the iris feature. Further in [22], a quality fusion technique was used to combine sclera
and iris feature, and in [34], feature level combination was used to establish sclera
and iris based multi-modal biometrics. A survey on sclera recognition is recorded
in [35].

To this date, adaptive biometric is relatively less studied and little is known regard-
ing its usefulness. So, the state of the art related to it is not matured yet. Therefore,
in the next section, we discuss various generic adaptive learning methods that can be
used in adaptive biometrics domain. We also implement one of the adaptive/online
learning methods to demonstrate the efficacy of the used online learning method in
multi-modal ocular (sclera and iris) biometric domain.

5.3 Generic Adaptive Learning Methods

In this chapter, we address the potential incremental learning techniqueswhich can be
applied in the biometric domain to create an adaptive learning system. Themotivation
to create an adaptive learning system for biometrics is explained below.

In real-world scenarios, where we use machine learning algorithms, we often
have to deal with cases where the input data changes its nature with time. In order
to maintain the accuracy of the learning algorithm, we frequently have to retrain
our learning system, thereby making the system inconvenient and unreliable. This
problem can be solved using learning algorithms which can learn continuously with
time (incremental/online learning). In contrast, offline learning works fine in an ideal
scenario where there is no change in the underlying distribution of the input with
time. However, for various reasons this does not often hold in real-time problems
that we intend to address (i.e. of robust biometric system) using machine learning.
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In contrast to offline learning, ideally, incremental/online learning can be simul-
taneously trained and tested. Precisely, it needs not stop performing its task (i.e. pre-
diction or classification) if the learner has to update its learning parameters. Learning
parameters can be updated as soon as the new training data is available. This leads
to the creation of a never ending learning process which can adjust itself even if the
environment changes and can perform learning while performing task.

The critical assumption on which most of the incremental learning algorithms are
based upon is that previous data is completely or partially accessible. Based on this
assumption, to handle streaming data they apply the time windowing technique of
either fixedor variable size [36–38].Others have handled streamingdata byweighting
models in the ensemble [39–41] or by weighting the data [42] or by retaining only
the relevant subset of previous data [43, 44]. We assume for our experimentation that
we have no access to the previous data, thus making the algorithm capable to handle
the scenario where old data is inaccessible.

In the next section, we shall discuss some potential methods which can be used
to make an adaptive biometric system along with some preliminary results that was
produced using one of the biometric problems.

5.3.1 Ensemble of Classifiers

Since the inception of ensemble-based classification, it has been one of themost stud-
ied classification methods [45, 46]. Ensemble-based classifiers have often been used
in past for performing incremental/online learning [39–41, 47, 48]. The principle
behind the ensemble decision is that the individual predictions combined appropri-
ately should have better overall accuracy, on average, than any individual ensemble
member [48]. There are various reasons why an ensemble-based classification is
chosen over a single classifier, a few are listed below.

1. No free lunch theorem states that in the absence of prior knowledge about a
problem, no one classifier is universally better than any other classifier [49], this
also includes random guessing.

2. In case of extremely high-dimensional data, a single classifier’s complexity may
scale with the dimensionality of the data thus making the generation of a reli-
able single-classifier infeasible. Instead of a single classifier, generate multiple
classifiers on different subsets of features thus reducing the complexity of each
classifier trained on the subset.

3. Single classifiers may not work well with data that are too little or too large in
size. To work around this problem, ensembles can generate classifiers on multiple
bootstrap datasets.

4. Reduces bias towards majority class (class that is well represented by training
samples). And generating single strong classifier may be infeasible due to com-
putational costs.
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The success of ensemble learning algorithms is believed to depend both on the
accuracy and on the diversity among the base learners [50] and some empirical studies
revealed that there is a positive correlation between accuracy of the ensemble and
diversity among its members [51, 52]. Breiman [53] also shows that random forests
with lower generalization error have lower correlation amongbase learners andhigher
base learners’ strength. Besides, he derives an upper bound for the generalization
error of random forests, which depends on both correlation and strength of the base
learners.

Literature suggests that there is a tradeoff between base learner’s accuracy and
diversity, meaning that lower accuracymay indicate higher diversity. However, study
in [54] shows that relationship between accuracy, and diversity is not straightforward
[55] and lower accuracy may not essentially mean higher diversity. A recent study
in [56, 57] discuss that when, how and why ensembles of learning machines can
help to handle concept drift in online learning, through a diversity study in the
presence of concept drift. This paper presents an analysis of low and high-diversity
ensembles combined with different strategies to deal with concept drift and proposes
a new approach “Diversity for Dealing with Drifts” (DDD) to handle drifts. DDD
maintains [58] ensembles with different diversity levels, exploiting the advantages
of diversity to handle drifts and using information from the old concept to aid the
learning of the new concept. The authors claim that DDD is accurate both in the
presence and in the absence of drifts.

In a recent study, in [59] has reiterated the efficacy of ensemble-based learning
to create an adaptive/online learning system for handwritten character recognition.
We have used that method to make an adaptive biometric system which learns using
one sample at a time. The system as presented in [59] is briefly described below.

The block diagram shown in Fig. 5.1 shows the overall picture of the online learn-
ing method proposed in [59]. The method proposed in the paper is to conduct both
online supervised as well as online semi-supervised learning. In general, to conduct
semi-supervised learning, abundant unlabelled data is required but unfortunately,
we have very limited number of samples/class in our biometric learning problem.
Therefore, we only conduct online supervised learning but with availability of more
data in future, we intend to apply semi-supervised online learning as well. Technical
details are given below.

Let us introduce some notation to describe the data. Training dataset χ =
(X1, Y 1)(Y N , Y N ), where Xi = xi

1xi
D , Xi ∈ RD are the samples in a D dimensional

feature space, and Y ∈ 1, K are the corresponding labels for a K-class classification
problem.

Using Bayes rule and conditional independence among the feature given the class
label (assumption used to formulate Naive Bayes classifier), we can write the poste-
rior probability as:

P(Y = yk |x1xD) = P(Y = yk)
∏

i P(xi |Y = yk)∑
j P(Y = y j )P(x1....xD|Y = y j )

. (5.1)
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Fig. 5.1 Block diagram representing the batch learning (MLE) ofAugmentedNaiveBayes network

So to train our classifier we fit a Gaussian N (xi ; μ̂ik, σ̂
2
ik) to each P(xi |Y = yk),

and we estimate mean and variance for the same using the training data. We perform
maximum-likelihood estimation (MLE) to find the mean μ̂ik and variance σ̂ 2

ik of
P(xi |Y = yk) for each feature xi , which is just equal to sample mean and sample
variance respectively. The classification rule for a newsample Xnew = 〈x1..........xD〉
can be written as

Y new = argmaxyk P(Y = yk)
∏

i

P(xi |Y = yk), (5.2)

Y new = argmaxyk πk

∏

i

N (xnew
i ; μ̂ik, σ̂

2
ik). (5.3)

In order to make an ensemble of B classifiers, we repeat the following steps B
times: randomly select F features from the pool of D features. Estimate the learning
parameters for the classifier.

A test sample will be classified by each classifier in the ensemble, and the class
which gets the majority vote by the ensemble will get assigned to the test sample.
In the above explained way, we train an ensemble of B classifiers as an initialization
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step, by just 1 samples/class. Beyond this with time, as we get more samples of a
class, we can update its respective learning parameter as shown below in an online
(on the fly) manner using 1 sample at a time. This enables the system to adapt to
the changes in underlying distribution of input samples. Initialization (by just one
labelled training sample):

μ̂ik = x1ik; σ̂ 2
ik = σ0;πk = 1

(no. of classes)
; ck = 1;α = α0, (5.4)

where ck = no. of samples used so far for training,
α = decides the length of memory of the classifier (α < 1)
Repeat steps below for all the incoming labelled training samples for any class k:

ck = ck + 1; ηk = (1 − α)

ck
+ α, (5.5)

where ηk is learning rate for class k

μik(t) = (1 − ηk)μik(t − 1) + ηk x j
i δ(Y j = yk) (5.6)

σ 2
ik(t) = (1 − ηk)σ

2
ik(t − 1) + ηk(x j

i − μik(t))
2δ(Y j = yk). (5.7)

In the same paper [59], another method has been suggested to conduct online
learning in semi-supervised manner. The only difference between supervised online
learning and semi-supervised online learning lies in the definition of learning rate.
Learning rate definition for semi-supervised learning is:

ηk = qk(
(1 − α)

ck
+ α)λ; (α < 1), (5.8)

where λ = weight factor applied to moderate the contribution of unlabelled data in
the parameter estimation step.

If an incoming new sample is unlabelled, then the trained classifier is used to
produce the posterior qk = P(Y j = yk |X) corresponding to all k (class). This
posterior will be used to calculate the learning rate corresponding to all the classes,
and subsequently this learning rate will be used to update learning parameters of all
the classes as is done in case of supervised online learning.

In [59], the authors have upgraded the Naive Bayes network structure and have
suggested method to conduct an online learning for that upgraded network. The
network structure was upgraded to get rid of the Naive Bayes unrealistic assumption
of conditional independence between different features given the class label. The
structure was upgraded with a restriction that all the features will have at most two
parents (earlier each had just one) Fig. 5.1. The improved structure was proved to
be working much better in the concerned application. The technical detail is briefly
explained below (Fig. 5.2).
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Fig. 5.2 Left Bayes net for Naive Bayes. Right Bayes net for Augmented Naive Bayes

P(Xi |Xi−1, Y ) can be parameterized by the following Gaussian distribution:
P(Xi |Xi−1, Y ) = N (β0 + β1Xi−1, σ

2).
The author in [59] performs MLE estimation to evaluate the learning parameters

β0, β1 and σ 2 for supervised learning.

β1 = ED[Xi Xi−1] − ED[Xi ]ED[Xi−1]
ED[Xi−1Xi−1] − (ED[Xi−1])2 = 
−1

Xi−1Xi−1

Xi Xi−1 , (5.9)

β0 = μXi − 
−1
Xi−1Xi−1


Xi Xi−1μXi−1 , (5.10)

σ 2 = 
Xi Xi − 
Xi Xi−1

−1
Xi−1Xi−1


Xi Xi−1 . (5.11)

The authors further propose to update ED[Xi ], ED[Xi−1], ED[Xi−1Xi−1],
ED[Xi Xi−1] in an online manner in order to update β0, β1 and σ 2 because they

are the building block which is obvious from their definition. Hence, it can be written
as:

ED[Xi ](t) = (1 − ηk)ED[Xi ](t − 1) + ηk Xi , (5.12)

ED[Xi−1](t) = (1 − ηk)ED[Xi−1](t − 1) + ηk Xi−1, (5.13)

σ 2
Xi−1

(t) = (1 − ηk)σ
2
Xi−1

(t − 1) + ηk(Xi−1 − ED[Xi−1](t))2. (5.14)

Covariance between two RVs, A and B is given by:

σ(A,B) = E[AB] − E[A]E[B]. (5.15)

Therefore: ED[Xi−1Xi−1](t) = σ 2
Xi−1

(t) + ED[Xi−1](t)2
Similarly:

σXi Xi−1(t) = (1− ηk)σXi Xi−1(t − 1)+ ηk(Xi − ED[Xi ](t))(Xi−1 − ED[Xi−1](t)).
(5.16)

Using the above equations:

ED[Xi Xi−1](t) = σXi Xi−1(t) + ED[Xi ](t)ED[Xi−1](t). (5.17)
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In the equations above, ηk refers to learning rate and its definition is same as
in case of Naive Bayes online learning case. And along similar lines, online semi-
supervised learning was proposed with a changed definition of learning rate. It has
been shown that the upgraded network performs much more accurately as it captures
the relationship between different features and accordingly learns. Details can be
found in [60].

5.3.2 Incremental/Adaptive Support Vector Machines (SVMs)

SVM is based on a kernel method; however, unlike suboptimal kernel methods,
as in the case of a kernel method based on clustering, kernel methods for SVMs
are optimal, with the optimality being rooted in convex optimization. Realizing the
theoretical strength of SVMs, researchers have developed incremental versions of
them. And considering the fact that incremental SVMs have never been explored in
the biometric domain, it becomes imperative to discuss SVMs and their incremental
versions in the context of adaptive biometrics.

Classification and regression methods based on SVMs [61, 62] are very powerful,
which generalize well even in case of very sparse and high-dimensional data. SVM
is based on Vapnik’s structural risk minimization induction principle which carries
out searching over hypothesis classes of varying capacity with best generalization
performance.

A two-class classifier based on SVM can be represented as: f (X) = w.ψ(X)+b
are learned from the data χ = {(X1, Y 1)...(Y N , Y N )}, where Xi = xi

1...x
i
D, Xi ∈

RD and Y i ∈ {−1, 1} by minimizing

min
w,b,ξ

1

2
||w||2 + C

N∑

i=1

ξ
p

i . (5.18)

For p ∈ 1, 2 subject to the constraints (soft margin)

Y i (w.ψ(Xi ) + b) ≥ 1 − ξ
p

i , ξ
p

i > 0∀i ∈ (1, ..., N ). (5.19)

A set of slack variables are introduced for the system to allow few samples to
be on the wrong side of the margin (to handle overlapping class distributions) but
impose penalty of ξ

p
i = |Y i − f (Xi )|p over the objective cost for the samples to be

on the wrong side of the margin boundary. Value of ξ
p

i = 0 for being on the correct
side of the margin boundary. p = 1 is what generally preferred in practice because
of the robustness to outliers that hinge loss offers as compared to the quadratic
loss which corresponds to p = 2. The goal is to minimize above the objective
function while softly penalizing the points that lie on the wrong side of the margin
boundary. Parameter C > 0 controls the tradeoff between the slack variable penalty
and the margin. Above minimization can be done using quadratic programming but
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to simplify and take advantage of the kernel trick the above minimization problem
is expressed in its dual form

min
0≤αi ≤C

W = 1

2

N∑

i, j=1

αi Qi jα j −
N∑

i=1

αi + b
N∑

i=1

Y iαi . (5.20)

With the Lagrange multiplier (and offset) b and Qi j = Y i Y jψ(Xi ).ψ(X j ).
The above dual form of the original minimization problem must satisfy the famous
Karush-Kuhn-Tucker (KKT) condition. The KKT conditions generally involves the
primal constrains, dual constrains, and complementary slackness. Therefore, the
above dual form along with the KKT condition gives rise to a linearly constrained
quadratic programming problem, and there are standard solvers available to solve
them. The resulting dual form of the SVM is then f (X) = ∑N

i=1 yiαiψ(Xi )ψ(X)+
b. Point to be noted here is that the transformed sample now only appear in dot
product. Therefore, one can employ a positive definite kernel function to implicitly
project the input samples into some high-dimensional (which can be infinite) space
and calculate the dot product to perform classification or regression in that space.

In the mid-90’s, support vector machines (SVMs) emerged and subsequently
researcher’s interest in its online version arose. Early work on this subject by [63]
suggests that for each new batch of data, a support vector machine is trained on the
newdata and the support vectors from the previous learning step.And the logic behind
this approach is that the decision function of an SVM depends only on its support
vectors, i.e. training an SVMon the support vectors alone results in the same decision
function as training on the whole dataset. Because of this, one can expect to get an
incremental result that is equal to the non-incremental result, if the last training set
contains all examples that are support vectors in the non-incremental case. However,
the shortcoming of this approach is that as there are typically only very few support
vectors, their influence on the decision function in the next incremental learning step
may be very small if the new data is distributed differently.
Note: support vectors are a sufficient description of the decision boundary between
the examples, but not of the examples themselves.

The above problem was addressed in [64] by making a clever change in the
objective function to be optimized, and i.e. bymaking the error on old support vectors
(which represent the old learning set) more costly than an error on a new example.
Details can be found on the concerned paper. At the same time, [53] exploits the
locality of theRBFkernel to build onlineSVM.The authors do not use all the previous
support vectors (as done in [63, 64]), instead it only uses the support candidates in the
neighbourhood of the new incoming sample. Although deciding the neighbourhood
is critical, the method would be fast. However, above three approaches and methods
proposed by [65]; provide only approximate solution and may require many passes
through the dataset to reach a reasonable level of convergence.

An exact solution to the problem of online SVM learning has been found by [66].
Their incremental algorithm updates an optimal solution of an SVM training problem
after one training example is added (or removed). In this, the authors construct the
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solution recursively one point at a time such that the KKT condition is satisfied over
all the data already seen as well as the new incoming samples.

The first-order condition on W reduces to KKT condition:

gi = ∂W

∂αi
=

N∑

j=1

Qi jα j + Y i b − 1 = Y i f (Xi ) − 1 (5.21)

gi =
⎧
⎨

⎩

≥ 0 αi = 0
= 0 0 < αi < C
≤ 0 αi = C

] (5.22)

∂W

∂b
=

N∑

j=1

y jα j = 0. (5.23)

This partitions the data into three categories:

(A) xi ∈ S ⊂ χ where S is a set of margin support vectors, strictly on the margin
(i.e. Y i f (Xi ) = 1).

(B) xi ∈ O ⊂ χ , where O is the set of other vectors for which Y i f (Xi ) > 1 i.e. the
sample is on the correct side of the margin boundary (correctly classified).

(C) xi ∈ E ⊂ χ where E is a set of error vectors Y i f (Xi ) < 1, sample is on the
wrong side of the margin boundary but not necessarily mis-classified.

The set R = {O ∪ E} is a set of reserve vectors. Lower case letters s, e, o and r
will be used to refer to such kind of partitions.

By writing the KKT conditions before and after an update Δα, we obtain the
following conditions that must be satisfied after an update [66]:

⎡

⎢⎢⎣

Δgc

Δgs

Δgr

0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

Y c Qcs

Y s Qss

Y r Qrs

0 Y sT

⎤

⎥⎥⎦

[
Δb
Δαs

]
+ Δαc

⎡

⎢⎢⎣

QcsT

QssT

QrsT

Y c

⎤

⎥⎥⎦ (5.24)

It is easy to see thatΔαc is in equilibrium withΔαs andΔb in order for the above
condition to hold. Considering the fact that Δgs = 0, from line 2 and 4 of the above
equation we can write:

[
0
0

]
=

[
0 Y sT

Y s Y ss

]
Δs +

[
Y c

QcsT

]
; where Δs =

[
Δb
Δαs

]
(5.25)

Above linear equation can be solved for Δs

Δs = βΔαc (5.26)
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where

β = −
[
0 Y sT

0 Qss

]−1 [
Y c

QcsT

]
(5.27)

is the gradient of the manifold of optimal solutions parameterized by αc Similarly
from line 1 and 3 [

Δgc

Δgr

]
= γΔαc (5.28)

where

γ =
[
γ c Qcs

γ c Qrs

]
β +

[
QccT

QcsT

]
(5.29)

is the gradient of the manifold of gradient gr at an optimal solution parameterized
by αc. These refined set of equations shows that update process is controlled by very
simple sensitivity relation: Δs = βΔαc and [ΔgcΔgr ]T = γΔαc, where β is the
sensitivity of Δs with respect to Δαc and γ is the sensitivity of Δgc and Δgr with
respect to Δαc.

At this stage to carry out the parameter update process, the key is to find out the
largest possible increment of Δαc and subsequently Δs and Δg is updated. Authors
of [66] have very exhaustively addressed all the cases by which one can determine
the largest value of Δαc. And once the step is determined, one can follow the steps
of algorithm 1 given in [67] to carry out online learning.

Finding an absence of a well-accepted implementation of the work by [66, 67]
proposed a new design of storage and numerical operation which speeds up the
incremental SVM training by a factor of 5–20. On the similar line, [68] have applied
the accumulated knowledge of optimization to the computational problem presented
by the SVM to propose a very efficient way of training SVM in incremental fashion.

5.3.3 Incremental/Adaptive Neural Network

Neural networks being one of the oldest methods of machine learning, it is very
obvious that umpteen amount of work have been done on that domain and many of
them deals with incremental and adaptive learning. Here we list few briefly which
can be useful to create an adaptive biometric system.

Fuzzy ARTMAP: This is a neural network-based structure, and it is one of the
earliest methods used in incremental learning. The fuzzy ARTMAP has two fuzzy
ART modules that are linked via an inter-art module known as “map field” The
map field is used to form predictive categories for learning class association. Fuzzy
ARTMAP will generate new decision clusters in response to new input patterns that
are sufficiently different from previously seen instances. The’sufficiently different’
patterns are controlled using a free parameter of ARTMAP known as the vigilance
parameter.ARTMAP is sensitive to the vigilance parameter especially in the presence
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of significant noise in the training data. Using stability and match tracking, fuzzy
ARTMAP automatically constructs as many categories as are needed to learn any
static training set to 100%. Thus, fuzzy ARTMAP may over-fit, leading to poor
generalization.

Learn++: This is one of the most notable families of incremental learning algo-
rithm, which was first introduced by Polikar et al. [69] and later upgraded by few
other authors for e.g. [39]. It creates multiple classifiers to each data chunk presented
to the system. Inspired by AdaBoost [57, 70] for each chunk, the training set for
each base learner is created by sampling examples according to a distribution of
probability. Like AdaBoost, Learn++ maintains a distribution of instance weights;
however, Learn++ does not update the weights in the same manner as performed
with AdaBoost. In AdaBoost, the distribution of probability is built to give higher
priority to instances mis-classified by the last previously created classifier, whereas
Learn++ uses the ensemble decision, rather than the decision of the latest classifier.
When a new dataset arrives, the distribution is re-initialized by evaluating the entire
ensemble and initializing the distribution. Pros: Learn++ does not have to access the
previous data chunks, and it demonstrates considerable improvement at generaliza-
tion when compared with fuzzy ARTMAP on common databases. Cons: problem is
that a new set of classifiers is created for each new data chunk. So, the ensemble size
can become extremely large considering lifelong learning.

Self-Organized Incremental Neural Network (SOINN): This is an unsuper-
vised incremental learning method which was proposed in [68] for topology learning
and classification to handle noisy unlabelled data. This method is essentially a com-
bination of self-organizing map [71] and competitive Hebbian learning [72] which
can be used to learn the topology of the input data stream. The proposed algorithm
makes a two-layered neural network Fig. 5.3. The first layer which represents a rea-
sonable topological structure of unlabelled data gives a reasonable number of clusters
and gives a typical prototype pattern of every cluster. Prior knowledge regarding the
number of classes or codebook is not required.

The first layer learns the density distribution of the input pattern. Subsequently,
output of the first layer serves as the input of the second layer, where the differ-
ent clusters are separated by detecting the low-density overlap area. The method
uses similarity threshold and a locally accumulated error-based insertion criterion to
grow the system incrementally and accommodate the input patterns of online non-
stationary data distribution. It also uses and online criterion to delete nodes from
the low-probability regions, and this enables the system to separate the cluster and
simultaneously eliminate the noise noisy samples from the input data. Authors use
“error radius” as the utility parameters to control the growth of number of nodes
in the network and check successful node insertion. Although the method has been
successfully applied on some real-time problems, it has several limitations for e.g. (a)
in case of high-density overlap, it is difficult for the method to separate the clusters,
and (b) several important parameters value need to be decided by the users which
increase the chances that the system getting used sub-optimally. On the similar lines
authors have further modified the SOINN to make a semi-supervised incremental
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Fig. 5.3 Flowchart of SOINN, shows the basic overflow of the proposed algorithm

active learning system [73] which is very promising and claims have been made that
this method can be very useful to create a never ending learning system.

5.4 Experimental Details and Results

In order to evaluate the effectiveness of the discussed incremental learning
algorithms, we have used one of the discussed methods to develop an adaptive sclera
biometric system. Fuzzy C-means clustering was used to segment the sclera [74–76].
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Since the vessel patterns in the sclera are not prominent, the imagewas enhanced to
make it visible.Anewpreprocessing approach for vein highlighting is proposed using
adaptive histogram equalization [77]. And histogram equalization was performed
with a window size of 42× 42 (the window value was selected by analysis, window
value that produces the best result was used for experimentation). Since the sclera
vessel patterns aremost prominent in the green channel, it was used for preprocessing
to make the vessel structure more prominent

Furthermore, a bank of filter based on Discrete Meyer wavelet [78] was used to
enhance the vessel patterns. Low-pass reconstruction of the above-mentioned filter
was used to enhance the image.

We use sclera feature extraction based on the dense local directional pattern (D-
LDP) [79] which is an extended version of LDP proposed in [80]. For extracting the
patch/dense descriptors, each image was divided into a regular dense grid of three
different special pyramidal planes. A higher-order LDP with 4 orientations was used
here for the feature extraction.

A histogram of bin size 512, for of each of these patches are calculated in multi-
scales of 1, 2 and 3. Finally the histogram of each patch and each scale are calculated
and concatenated column wise to get the final descriptor.

The irises were segmented along the radius by calculating the centre and the
radius by the integro-differential [81] operator and further enhanced using an adaptive
histogram equalization technique. The red channel of the colour image was used for
iris image enhancement. Image level fusion was performed using iris and sclera, and
subsequently, the patterns were classified using the developed features.

In order to perform the experiment, UBIRIS version 1 [82] dataset was used in
the experiment. This database consists of 1877 RGB images taken in two different
sessions (1205 images in session 1 and 672 images in session 2), from 241 identities
and images are represented in RGB colour space. The database contains blurred
images and images with blinking eyes. Both high-resolution images (800× 600) and
low-resolution images (200× 150) are present in the database. For each individual,
10 eye images were present. All the images are in JPEG format.

The dataset consists of different quality of images with respect to sclera region
visibility. Some of the images are not occluded and have sclera regions visible which
are of good quality; some of them are of medium quality and the third type was of
poor quality with respect to sclera region visibility as shown in Fig. 5.4.

First session images have minimum noise in the form of reflections, luminosity
and contrast, as it uses a standard image capturing framework inside a closed room
with controlled artificial lights. In the second session, pictures were captured in
more natural conditions, for example, it uses both natural and artificial light, there
by bringing in the changing image capturing settings into play. This difference in the
capturing environment produces heterogeneous images with respect to reflections,
contrast, luminosity and focus. Images collected at second sessionwere captured by a
vision system with or without minimal active participation from the subjects, adding
several noise problems. There was a gap of two weeks between the two session.
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Fig. 5.4 Different quality of eye images used in experiment (a) is the type of best quality images
of Session 1, b is the type of medium quality of Session 1 (c) is the type of Poor quality of Session
1, d is the type of below average quality image of Session 2, section is the type of average quality
of Session 2 (f) is the type of best quality image in Session 2

These changes in environmental condition in the form of different gaze angle of
the eye, data accruing techniques and time-span gap were utilized to investigate the
adaptability of the sclera texture for biometric identification.

It was observed that the number of participants in the two sessions were not the
same which produced a very uneven number of samples corresponding to different
individuals. Even the number of the population was different for the two sessions.
The first session consisted of 241 users and in the second session there were 135
users.

We have used 50 out of 241 total classes present because many classes did not
have data from both sessions which makes the number of samples too few to apply
the learning algorithm over them. We did not use a few classes because the iris and
sclera region of the participants were too occluded to be used for learning. Few
examples of such images are given below in Fig. 5.5.

For our experiment as a learner, we used incremental Naive Bayes classifier as
proposed in [59]. The number of features used for each class was 30480. The total
number of classes used was 50. For each feature, we fitted a single Gaussian of the
form P(xi |Y = yk) corresponding to each class. Where i and k refers to ith feature
and kth class, respectively. The classifier is initially trained offline with few num-
bers of samples using maximum-likelihood estimation. Subsequently, we updated
the learning parameters of each Gaussian corresponding to each class in the online
fashion as discussed in Sect. 5.3.1 and [59]. The value of constant α was empirically
decided to be 0.55 for the experiments. We did not create ensemble of classifiers and
semi-supervised learning as we did not have enough data per class to create different
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Fig. 5.5 Example of closed and blurred eyes. a–c are of session 1 and d–f are of session 2

classifiers. But creating an ensemble using a randomization technique is a powerful
technique to create a boost in accuracy of the classifier. We shall try this once we
have more data.

Few parameters used in the learning method employed are as follows:

(a) ck which keeps track of the number of samples that have been used for each class
for online training.

(b) α it is a constant which decides the length of the memory of the classifier, it
influences the value of ηk which decides how much weight must be given (in
general and when the convergence (when ck → ∞) is achieved) to the new
incoming samples in the learning parameter estimation step.

(c) ηk is the learning rate parameter whose value depends on the value of count of
samples and the value of α and the value of ck . The detailed discussion over the
role of these parameters in learning process is given in [59].

The results table shows the accuracy of the applied method under different set-
tings of the experiments. Considering the fact that Naive Bayes is a classifier which
is based upon a very strong assumption of conditional independence among the fea-
tures given the class, it is performing reasonably well. Therefore, it can be assumed
that the stronger version of incremental learning algorithms could perform even bet-
ter. This experimental process shows that larger accuracies can be achieved using
incremental learning in the biometric domain by more experimentation with other
adaptive learning techniques available in the machine learning literature (Table 5.1).
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Table 5.1 Results show that adaptive/online Naive Bayes classifier is more accurate

Classifier name Training/Testing Accuracy (%)

Naive Bayes (NB) 7 offline/3 60

Online/adaptive NB 5 offline + 2 online/3 72

Online/adaptive NB 5 offline + 3 online/2 86

Online/adaptive NB 5 offline + 4 online/1 88

Adaptive classifiers are initially trained with a few samples in batch/offline mode and later learn
in an online/adaptive manner i.e. using one sample at a time. For example: row 2:- classifier was
initially trainedwith 5 samples per class, and sub-sequently, it was adaptively trainedwith 2 samples
per class and later tested with 3 samples per class

5.5 Conclusions

In this chapter, we discussed many potential existing adaptive learning methods,
which can be applied in the biometric domain to create a robust adaptive biometric
system. To demonstrate this, we applied one existing learning method to create
an adaptive multi-modal ocular approach using iris and sclera. It is evident from
the experiments that the adaptive/incremental system applied outperforms the base
classifier performance. It is also evident from the results that when the numbers of
samples are increased, the adaptability also improves. Due to lack of availability of
large number of samples, other theories like online semi-supervised learningmethods
were not tested. In future, we plan to explore all the promising adaptive techniques in
the biometric domain and build a reliable never ending learning biometric system. In
that regard, we are in the process of collecting more data so that more sophisticated
learning methods based on incremental semi-supervised learning can be applied to
gain the leverage from the availability of large data.
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Chapter 6
Adaptive Facial Recognition Under
Ageing Effect
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Abstract Being biological tissue in nature, facial biometric trait undergoes ageing.
Previous studies indicate that ageing has profound effects on face biometrics as it
causes change in shape and texture. Despite the rising attention to facial ageing, lon-
gitudinal study of face recognition remains an under-studied problem in comparison
to facial variations due to pose, illumination and expression changes. A commonly
adopted solution in the state-of-the-art is the virtual template synthesis for ageing and
de-ageing transformations involving complex 3D modelling techniques. However,
these schemes are prone to estimation errors in the synthesis. Another promising
solution is to continuously adapt the enrolled templates to the temporal variation
(ageing) of the input samples based on some learning methodology. Although effi-
cacy of template update procedures has been proven for expression, lightning and
pose variations, the use of template update for facial ageing has been mainly over-
looked till date. To this aim, the contributions of this chapter are (a) evaluation of
six baseline facial representations, based on local features, under the ageing effect,
(b) analysis of the compound effect of ageing with other variates, i.e. race, gender,
glasses, facial hair etc., (c) introducing template ageing as a concept drift problem,
and (d) investigating the use of template update procedures for temporal variance
due to the facial ageing process.

Z. Akhtar (B) · G.L. Foresti
University of Udine, Udine, Italy
e-mail: zahid.akhtar@uniud.it

G.L. Foresti
e-mail: gianluca.foresti@uniud.it

A. Ahmed
University of Lincoln, Lincoln, UK
e-mail: aahmed@lincoln.ac.uk

C.E. Erdem
Bahcesehir University, Istanbul, Turkey
e-mail: cigdem.eroglu@eng.bahcesehir.edu.tr

© Springer International Publishing Switzerland 2015
A. Rattani et al. (eds.), Adaptive Biometric Systems,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-3-319-24865-3_6

97



98 Z. Akhtar et al.

6.1 Introduction

Face plays a vital role in our social interaction, bearing a person’s identity. Face
recognition (FR) for biometric use has received significant attention in the past sev-
eral years due to many appealing qualities such as universality, acceptability, easy
collectability and wide variety of applications in both law enforcement and non-law
enforcement. Face recognition is a non-intrusive technique and can be used with
existing image capture devices (web-cams, security cameras, etc.), thus enabling FR
to have a covert or surveillance (CCTV) capability. Nowadays, use of the human face
as a key to security has been consolidated in various biometric identity management
programs, such as USVISIT, UIDAI, National ID cards, consumer ID, etc. Never-
theless, with the rapid gain in the use and popularity of facial biometrics, there also
exist a need of more robust, reliable and accurate face recognition system [1–5].

A facial biometric verification system consists of two main processes; enrol-
ment and verification. In enrolment, individual’s face samples are captured and pre-
processed, and features are then extracted. These extracted features are labelled with
user’s ID called the “template”, representing his identity. Verification mode verifies
claimed identity by comparing input sample(s) to the enrolled template(s). The effi-
ciency of the facial biometric systems depends on the representative capability of the
enrolled templates. Performance of these systems can be measured in terms of false
acceptance rate (FAR) and false rejection rate (FRR).

The compound effect of the inherent scarcity of training samples during the enrol-
ment phase and the presence of substantial sample variations during the operational
phase is the major cause of errors in face recognition systems. According to the latest
report by Facial Recognition Vendor Test (FRVT) 2013 [6], there has been improve-
ment in the order ofmagnitude in controlled environment sinceFRVT2006.However,
FR systems still perform poor under uncontrolled environment, namely variations
caused in the input data by pose, illumination and expression, etc. It is worth not-
ing that large sample variation is caused by the vulnerable nature of data acquisition
process and the external changing acquisition conditions, change of sensor, etc. Apart
from the above factors, being biological tissues in nature, face biometric trait can be
altered either temporarily or permanently due to ageing, diseases, treatment to dis-
eases, injuries or plastic/cosmetic surgery. Among them face ageing is a progressive
accumulation of changes with time, and how fast we age varies from one individual
to another. Ageing effects both shape and texture, and is usually contributed by our
genes, environmental influences and life style. An important consequence of the age-
ing process is that enrolled templates become unrepresentative of the input (query)
data after a certain time lapse as a result of change in the data distribution of an
individual. This establishes its similarity with the concept drift theory [7, 8], dealing
with changing concept (models) over time and offering variant update procedures as
the solution. Existing studies [9–12] on different databases and for different algo-
rithms report evidences of the performance degradation of face recognition systems
as a result of time lapse between the pair of facial images. Nevertheless, facial ageing
has not received substantial attention in comparison to other facial variations.
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Existing standard age-invariant solution is the virtual biometric synthesis of ageing
and de-ageing transformation based on the simulation of the craniofacial morpho-
logical changes [13–16], including complex 3Dmodelling techniques. FGNET [17],
MORPH [18] andBROWNS [19] are commonly adopted databases for the evaluation
of these methods. However, performance gain obtained due to these methods may be
limited due to mainly two reasons. First, ageing is a complex process which differs
from person to person and occurs in different manifestation in different age groups.
Second, the simulation process is affected by other variations such as facial hairs,
glasses, pose, lightning and expression, as present in the databases. Therefore, these
factors might cause the age transformation procedure to be prone to estimation errors
(estimating growth parameters) in simulating the ageing effect, thus they partially
solve the problem of the templates “representativeness”. Moreover, on applying age
transformation on real face images, it was observed in [14] that the prediction is good
for small age transformations and poor for large age transformation.

Another quite feasible solution is to continuously adapt-enrolled face templates
to the variation of the input data available over time [20, 21]. Characteristics of face
adaptive biometric systems can be summarized as follows: (1) one no longer needs
to collect a large number of biometric samples during the enrolment process; (2) it is
no longer necessary to re-enrol or re-train the system (classifier) from the scratch in
order to cope upwith the changing environment. Recently, template update procedure
have received significant boost in biometric community and their efficiency has been
proved on evaluation of the resulting performance gain of the system [20, 21]. These
methods may be adopted for template improvement or to avoid template ageing.

• Template improvement: To increase the representational capability of the enrolled
templates by appending new features and samples available during the online
operation. Template improvement also includes adaptation to variations like illu-
mination, sensor and other environmental changes causing mismatch conditions
due to unrepresentative enrolled templates.

• Template ageing: To adapt the templates to the permanent changes of the input
data due to the ageing process over time.

Update procedures have been used in template improvement for adaptation to
facial variations like expression, lightning, changing sensors and acquisition envi-
ronment, etc. [22–26]. On the other hand, template update can offer an effective
solution to ageing problem as well, for many real-time applications like online bank-
ing, ATM, etc., where the interactive of the user is involved and expected after at
least certain maximum time period.

However, to the best of our knowledge, in contrast to template improvement,
template ageing have not received much attention from adaptation viewpoint. In
addition, there exists no study for the comparative performance evaluation of the
existing face recognition systems under the ageing effect (temporal variance). This
evaluation is important because it will allow to gauge the performance gain of the
face recognition systems on employing ageing invariant solutions and facilitate the
designer/researcher in choosing the most robust face recognizer to be integrated with
ageing invariant solutions for optimal performance. However, none of the available
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facial ageing databases are specialized only on ageing but other variants, such as
illumination, glasses, gender etc., known to influence the performance of the face
recognition systems are also present. As a consequence, sole impact of ageing to
the performance degradation of the face recognition systems cannot be evaluated.
Therefore, it becomes necessary to study the compound effect of ageing with other
variate present in the ageing database (covariate analysis). This covariate analysis
will allow to analyse the contribution of other variate in the performance degradation
of the facial system under the ageing effect. Thus, the four-fold contributions of this
chapter are as follows:

1. To evaluate and compare existing face recognition systems based on six different
facial representations under the ageing effect.

2. To evaluate the compound effect (covariate analysis) of ageing with other variates
such as gender, race, glasses and facial hairs.

3. To introduce template ageing as a concept drift problem.
4. To evaluate the effectiveness of update procedures on facial template ageing for

the real-time user interactive scenarios.

The rest of the chapter is organized as follows. Section6.2 discusses how face
goes under ageing. Section6.3 gives technical detail on template update in terms
of attributes, learning methodologies adopted and the similarity between template
ageing and concept drift. Section6.4 reports experimental evaluations and results.
Conclusions are finally drawn in Sect. 6.5.

6.2 Face Ageing Process

Face ageing in humans is the result of a multi-dimensional process of physical,
psychological, and social change, which affects considerably the appearance of a
human face. Both superficial textural wrinkling of the skin and changes in the 3-
dimensional (3-D) topography of the underlying structures contribute to ageing of the
human face.Ageing-related appearance variation due to bonegrowthnormally occurs
throughout childhood and puberty, whereas skin-related effects principally appear
in older subjects. From a computer vision perspective, the challenging problem of
facial ageing can be described as follows:

1. Diversity of Ageing Variation: The rate of ageing and type of age-related effects
vary from person to person. Moreover, during different age stages, the facial
ageing effects take different forms. Subjects of different ethnicity and genders
exhibit typically diverse ageing effects. Outer factors may also lead to diversities
in the ageing pattern adopted by different individuals. In addition, anti-ageing
products or cosmetic surgeries can also be used to deliberately intercede with
the ageing process. Therefore, common ageing patterns or models might not be
applied successfully to all subjects.
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2. Shape and Texture: Generally, facial ageing causes both change in shape and
texture of the human face. During formative years, facial shape variations are
predominantly manifested, while during later stages of adulthood textural varia-
tions in the form of wrinkles and other skin artifacts take precedence over shape
variations. Since facial ageing introduces progressive variations in facial appear-
ances, the characterizing models should account for the temporal nature of the
induced variations. Therefore, facial ageingmay bemodelled by attributing facial
shape and facial texture as functions of time.

3. Factors: Ideally, facial ageing effects are induced by multiple factors, namely
intrinsic and extrinsic factors. Biological elements causing ageing are known as
intrinsic factors, whereas environmental influences are called extrinsic factors.
Intrinsic factors causing facial ageing are mainly due to the natural changes such
as loss in elasticity of facial muscles, bone growth, facial fat tone and volume
along with individual’s gender, ethnicity, and idiosyncratic features (i.e. features
purely unique to the individual such as hyperdynamic facial expressions). Extrin-
sic factors that may also lead to facial ageing are dietary habits, drug use, lifestyle,
use of anti-ageing products/make-ups, cosmetic surgeries, health and psycholog-
ical and climatic conditions (e.g. skin ageing due to exposure to solar ultraviolet
rays known as photoageing.)

4. Controllability: Unlike other variates such as illumination, expression, pose and
glasses etc., under normal mode the effects of ageing can not be controlled and/or
reversed. Thus, it is not possible to rely on the cooperation of the person for
eliminating ageing variation during face image capture. In addition, the process
of collecting training data suitable for studying the effects of ageing requires
long-time intervals.

5. Feature Selection: One of the important step of modelling facial ageing or age-
invariant FRmethod is identifying the appropriate form of data that provides a fair
description of the process. The forms of the data that might assist characterizing
facial growth are fiducial features (2D or 3D) extracted from age-separated faces,
2D facial imagery or 3D facial scans extracted from individuals across different
ages, face anthropometric measurements extracted from a population etc. Also,
the data could be individual specific or population specific.

6.3 Face Ageing and Template Update

6.3.1 Face Template Update Methods

A typical face recognition system is trained with a limited training data and under
static environmental conditions. However, over the time enrolled templates become
unrepresentative or outdated to the changing environment and variations in the input
data, thus causing degradation in the system’s performance. Novel solution to this
issue is named ‘template update’ method, which is continuously adapting enrolled
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templates to the variation of the input data available during the real-time operation
of the system. The continuous template update can handle appropriately the perfor-
mance loss owing to outdated templates using various techniques to learn the input
data variations. The template update procedures can be distinguished on the basis of
the following attributes [20, 21]:

• Learning methodology adopted: The well-known template update methods are
self-training and co-training [21]. In Self-training, the classifier or the system
updates itself, whereas in co-training two complementary biometrics update each
other to the variation of the input data. Detailed information on different learning
methodologies can be found in [21].

• Online versus Offline: In online method, the system is updated as soon as the input
data is available, while in offline method, after a batch of data has been collected.
Online systems are order sensitive in which sequence of instances are observed,
one instance at a time, not necessarily in equally spaced time intervals.

• Supervised or unsupervised: For supervised methods, input data is labelled by the
human supervisor in an offline manner. For unsupervised methods, the input data
is labelled by the classifier itself. The positively labelled data, either in supervised
or unsupervised mode, is used for adapting the enrolled templates.

• Template management: The methods can also be differentiated on the basis of
memory buffer utilization, and how the updated template sets are maintained.

– Appending based: New features/samples are appended to the feature/template
set of the old template(s), keeping full memory intact.

– Replacement based: New template is replaced with the old template. They are
not a memory-based methods.

Algorithm 1 The Self-training algorithm
• For each user i:
• Given: enrolled template(s) X consisting of x1:ti samples.
• Train g1 (a face classifier) using X .
• Loop:
• On availability of the input sample xt+1

i .
• Let g1 to label xt+1

i .
• Use xt+1

i to update the template set if it is positively classified with high confidence. (both
appending where X = x1:t+1

i or replacement based X = xt+1
i management schemes can be used

in update).
• Re-train g1 using X .
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6.3.2 Commonly Adopted Learning Methodologies

The most commonly adopted learning methodology in the state-of-the-art literature
[21, 22, 27, 28] is self-training [20] based learning, where the classifier adapts itself
to the variation of the input data. Self-trainingmethods are consist of two stages. First,
label assignment to the input data. Second, adaptation. Generally, these methods are
continuous incremental learning techniques, in which the positively classified (with
high confidence) input samples are used to update the template gallery. Both the
appending or replacement-based template management strategies can be adopted
for update purpose. They are also unsupervised user-specific process, i.e. adopted
independently for each user [22, 27, 28].

Certain, supervised methods have also been introduced in the literature in which
the human supervisor labels the input data [25, 29], which is then used for update.
They are offline methods and the update process is carried after certain fixed-time
period. Further information about other learning techniques such as co-training or
graph-based methods can be found in [20, 21].

The detailed description of the self-training method is given in the Algorithm 1.
For supervised methods, the algorithm will be same except that instead of classifier
assigning label to the input data, a human supervisor would assign labels.

6.3.3 Face Template Update State-of-the-Art

According to the literature, updatemechanism has been customarily adopted for tem-
plate improvement. Moreover, it has been also reported that there is a significant per-
formance gain using different learning methodologies. For instance, reference [23]
evaluates the template update effect on GEFA (Gradual evolution of facial appear-
ance) but the database is acquired over a period of five months which fails to capture
ageingvariations. Table6.1 refers to the database characteristics of the state-of-the-art
update procedures for face recognition systems. The database characteristics contain
variations related to mismatch conditions such as change in illumination, sensor,
occlusion, pose, expression, etc. We can infer two main aspects from referred works
in Table6.1. First, significant performance gain is observed on the adoption of update
procedures. Second, the commonly adopted learning technique is self-training.

Table 6.1 Database characteristics of the state-of-the-art methods for update procedures

References Database Variations

[22] Homemade Expression, pose and illumination

[23] GEFA Expression, illumination, pose and uncontrolled background

[24] Equinox Illumination

[25] BANCA Expression, illumination and uncontrolled background

[26] Big brother Pose and illumination

[30] AR Expression, occlusion and illumination
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6.3.4 Template Ageing, Update and Concept Drift

In comparison to other facial variations (pose, illumination, etc.), adaptation to tem-
plate ageing deserves a dedicated treatment of its own, since ageing is a life long
process. Ageing also brings gradual changes in the data distribution over time, thus
causing performance loss as a result of template becoming outdated.Moreover, order-
sensitive adaptation is needed, namely template is adapted using the input samples
in the order of its availability.

These factors indicate that template ageing process is very similar to the concept
drift theory [7], based on the fact that real-world concepts change with time resulting
in underlying data distribution to change. The changes in the data distribution may
be incremental or decremental. In other words, these changes may show increasing
or decreasing trend. Therefore, causing the model learned on the old concept incon-
sistent with the new data. One of the efficient solutions as offered for the concept
drift problem is regular update.

6.4 Experimental Analysis

6.4.1 Performance Evaluation of Face Recognition
Systems Under Ageing Effects

Facial Representations: In this study, following six facial representations were
considered: Local Binary Pattern (LBP) [31], Multi-scale Local Binary Patterns
(MLBP) [32], LPQ (Local Phase Quantization) [33], LTP (Local Ternary Patterns)
[34], EBGM (Elastic Bunch Graph Matching) [35], SIFT (Scale Invariant Feature
Transform) [36] and SURF (Speeded Up Robust Features) [37].

Briefly, LBP operator forms labels for the image pixels by thresholding the neigh-
bourhood of each pixel with the centre value and considering the result as a binary
number [31]. MLBP is an extended version of LBP using multiple radii and offering
the advantage of scale invariance [32]. LPQ utilizes phase information computed
locally in a window. The phases of the four low-frequency coefficients are decorre-
lated and uniformly quantized [33]. In LTP [34], the binary code in LBP are replaced
by the ternary code using central pixel value. EBGM [35] localizes a set of landmark
features and extracts Gabor jets at landmark positions. SIFT features are efficiently
detected through a staged filtering approach and are highly distinctive [36]. SURF
relies on integral images for image convolutions (using a Hessian matrix-based mea-
sure for the detector and a distribution-based descriptor) [37].

Dataset: We used MORPH [38] dataset comprises of thousand of facial images
of individuals across time and collected in real-world conditions (not a controlled
collection). This dataset also include essential meta-data, such as age, sex, race,
glasses, facial hair, etc. A subset of 631 subjects from MORPH (1700 images) with
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Fig. 6.1 Sample images
from MORPH databases for
a user at 27, 31 and 36th year
of age

about 3 images per subject are used in this study. Age range of the subjects are
[15, 68]. The characteristics and image samples of MORPH dataset are shown in
Table6.5 and Fig. 6.1, respectively.

Protocol: First of all, facial features are extracted from all images in the database
using the considered facial representations. Then, the following steps are performed
for performance evaluation:

• Similarity (dissimilarity) matrix is computed using all-pair matching of facial
features. Matching scores are divided into an authentic (genuine) and an impostor
score distribution.

• The dataset (matching scores) is bootstrapped at the user level, i.e. subset of users
are selected with replacement for performance evaluation.

• Performance has been evaluated on calculating area under curve (AUC) statistic
on the bootstrapped dataset. AUC is computed as a function of true accept rate
(TAR) and false accept rate (FAR) as:

AUC =
∫ 1

0
TAR(FAR)dFAR (6.1)

The AUC value ranges from 0 to 1.
• Variation in AUC on the bootstrapped dataset is recorded as mean ± std.
• Finally, face recognition systems are ranked in the descending order on the basis
of their average AUC on the bootstrapped dataset.

Results: Table6.2 quotes the AUC values as mean ± std and percentile statistics on
the bootstrapped dataset for all the facial representations. These facial representations
are mentioned in the descending order on the basis of their AUC values.

It can be seen that all the systems resulted in low performance on the MORPH
facial ageing database. MLBP-based facial representation outperformed other facial
representations under the ageing effect. These results indicate thatMLBP is able to, to
some extent, locate discriminative information even under the presence of profound
facial ageing between the pair of images. Nevertheless, it could be interesting to
integrate MLBP based facial recognition system with age-invariant solutions and
gauge the improvement over the baseline performance, as here evaluated to be 0.66
(recorded as AUC) in Table6.2.
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Table 6.2 AUC values obtained on the performance evaluation of six facial representations under
the ageing effect on the MORPH database

References Face representation Mean ± std Percentiles

[25%, 50%, 75%]

[32] MLBP 0.66 ± 0.02 [0.58, 0.60, 0.64]

[31] LBP 0.64 ± 0.08 [0.56, 0.59, 0.63]

[33] LPQ 0.62 ± 0.01 [0.59, 0.60, 0.61]

[35] EBGM 0.60 ± 0.02 [0.56, 0.57, 0.59]

[34] LTP 0.55 ± 0.00 [0.50, 0.51, 0.54]

[37] SURF 0.52 ± 0.01 [0.51, 0.52, 0.53]

[36] SIFT 0.51 ± 0.08 [0.50, 0.51, 0.51]

6.4.2 Covariate Analysis

The low performance of the considered face recognition systems in Sect. 6.4.1 can
not only be solely attributed to the ageing effect, but also to other variates present
in the database. Thus, we perform covariate analysis evaluating the contribution of
other variates (such as gender, race and glasses) to the performance degradation of
the face recognition system under the ageing effect.

Protocol: The aim of this study is to gauge the impact of these covariates under the
ageing affect. Therefore, the following covariates are extracted from the MORPH
meta-data file. These extracted covariates are explained as follows:

• Age {Young and Old}. Old age is assigned to subjects above 40 years.
• Race {White, Non-white}. Self-explanatory.
• Gender {Male, Female}. Self-explanatory.
• Glasses {Yes, No}. Self-explanatory.
• Facial Hair {Yes, No}. There were many subjects who had thin hairs, beards or
not clean shaven.

Using these extracted covariates, single and joint-factor analysis are performed. In
single-factor analysis, only one of the available covariates is kept constant and others
are allowed to vary. For joint-factor analysis, values of multiple covariates are kept
fixed, and the performance of the system is gauged under the ageing impact. These
analysis aimed at determining the favorable covariate values under the influence of
ageing. The database is broken down into different subsets as follows:

Age {Young (550 subjects) and Old (130 subjects)}
Race {White (171 subjects), Non-white (460 subjects)}
Gender {Male (515 subjects), Female (116 subjects)}
Glasses {Yes (36 subjects), No (612 subjects)}
Facial Hair {Yes (400 subjects), No (342 subjects)}
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For the joint-factor analysis, the database is broken down into subsets as men-
tioned below (compound effect of only those covariates could be analysed for which
sufficient number of subjects were obtained)

Non-white and Male (B+M) {373 subjects}
Non-white and Female (B+F) {87 subjects}
White and Male (W+M) {142 subjects}
White and Female (W+F) {29 subjects}
Facial Hair and Glasses (Fh+Gl) {23 subjects}
White and Male (W+M) {142 subjects}
Facial Hair and No Glasses (Fh+NGl){420 subjects}

The bootstrapped version (similar to performance evaluation) of each subset of
the database is evaluated using AUC for all the six facial representations.

Results: Results of the single-factor analysis are shown in Table6.3. It can be seen
from the Table6.3 that MLBP continues to outperform other face representations
even for the single-factor analysis.

Table6.4 shows the results of the joint-factor analysis for the top three good per-
forming facial representations. Most of the results are in accordance with the results
of single-factor analysis. For instance, non-white males are easier to recognize than
non-white females under the ageing affect (by 8% for MLBP). Similar observation
holds for white males and white females (by about 2% for MLBP). MLBP usually
performed better than other descriptors except for the case of facial hair and no
glasses, where LPQ performed better than MLBP by about 5%.

6.4.3 Template Ageing as a Concept Drift Problem

In this section, we carried out detailed analysis of template ageing as a problem of
concept drift.

Dataset: Besides MORPH database, we also used FGNET [17] ageing database
containing facial images of number of subjects at different ages. This database has
been generated as a part of the European Union project FGNET (Face and Gesture
Recognition Research Network).

The characteristics of MORPH and FGNET databases can be found in Table6.5.
Apart from ageing variations, these databases also offer changes in illumination,
poses, expression, beard and moustaches, spectacles, hats etc., thus offering a chal-
lenging situation. Figure6.2 shows image samples of an individual from FGNET
ageing database.

Protocol: Using FGNET dataset, on the basis of the age of the samples, we followed
the notation that each user i consisting of x1:Ti genuine samples in ascending order,
i.e. age of xt

i is lesser than all the other xt+1
i samples. We analysed the genuine

pdfs (probability distribution functions) of a randomly chosen user for the FGNET
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Table 6.4 AUC values for the Joint-factor analysis on the bootstrapped version of MORPH dataset

Multi-variates MLBP [32] LBP [31] LPQ [33]

B+M 0.65 ± 0.01 0.62 ± 0.03 0.62 ± 0.04

B+F 0.60 ± 0.05 0.60 ± 0.02 0.61 ± 0.02

W+M 0.65 ± 0.07 0.64 ± 0.08 0.63 ± 0.06

W+F 0.64 ± 0.03 0.63 ± 0.04 0.62 ± 0.06

Fh+Gl 0.65 ± 0.01 0.63± 0.02 0.62± 0.04

Fh+NGl 0.70 ± 0.06 0.65 ± 0.05 0.74 ± 0.05

Table 6.5 The characteristics of the FGNET and MORPH databases as used in the experiments

Characteristics FGNET MORPH

No. of subjects 82 631

Average no. of images per
subject

6–18 3

Age range 0–69 15–68

Other Intra-class variations

Illumination Yes Yes

Poses Yes Yes

Expression Yes Yes

Beards and moustaches Yes Yes

Spectacles Yes Yes

Hats Yes Yes

Fig. 6.2 Sample images from FGNET databases for a user at different years (3–41)

database by partitioning the samples into two age groups as shown in Fig. 6.3. The
pdf of the first group is obtained by computing the scores within the group, and the
pdf of the second group is obtained by computing matching scores via comparing
the samples of the first group to that of the second group.

Further, usingMORPH database, for each user i, the genuine scores are computed
by comparing each sample xj

i to all the other xk
i samples, such that age of xj

i is lesser
than all the other xk

i samples. This same process is repeated for all the N users in
the database. Then, all the obtained genuine scores are clustered on the basis of age
difference between the two samples used for score computation, irrespective of the
user. The clustered scores are then averaged (mean) and mean score versus the age
difference is plotted as shown in Fig. 6.4. The x axis in Fig. 6.4 shows the specific age
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Fig. 6.3 The probability
distribution functions (pdfs)
drawn by partitioning the
image samples into two age
groups and computing the
genuine score distribution of
first group individually. Pdf
for the second group is
computed by comparing the
samples of the first group to
the second group. This figure
shows the changing
distribution the input
samples shows ageing
variation and learned
templates become outdated
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difference and y axis shows the mean of all the genuine scores belonging to samples
with a specific age difference.

Results: Fig. 6.3 shows that the data distribution changes over time as a result of
ageing process. While Fig. 6.4 indicates that drift is decremental. The drift is called
decremental because the mean of the scores shows decreasing trend as the age dif-
ferences among the samples increases. Moreover, Fig. 6.4 points out that template
update can be an effective technique provided that the new sample is available within
certain gap otherwise the updated template will again be outdated to the new incom-
ing samples.
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Algorithm 2 Protocol adopted for Join test and adapt strategy

• Given: initial gallery set G=(
⋃

g1i=1:N ), consisting of first image for each person.
• Train face classifier using G
• Loop: For each user i
• Loop j=2:T-1

– On availability of probe sample xj
i .

– Evaluate the performance of the classifier using Rank-1 accuracy.
– Update the gallery set gi using the probe sample xj

i based on supervised and self-training
technique.

– Updated template sets are maintained using both the appending-based and replacement-based
update technique.

6.4.4 Evaluation of Template Update Procedures
on Facial Ageing

In this section, we perform experimental evaluation of template update for facial age-
ing. Our experiments used online self-training-based learning technique with super-
vised and unsupervised label assignment using both, the appending and replacement-
based template management strategies. In similar manner, other learning method-
ologies can be efficiently exploited as well.

Protocol: The effectiveness of the template update for the ageing process can be
evaluated using

• how much performance gain is expected?
• the maximum time limit before which the new sample is required for the update
procedure to be effective?

Online (incremental) learning updates the system as soon as the input sample
is available. For the evaluation of these systems Join test and adapt, strategy has
been commonly adopted in the literature [21], in which the available input sample
is first used to evaluate the performance of the updated system, followed by update
[22, 28, 30].We have also adopted join test and adapt-based update and performance
evaluation due to its efficiency in better utilizing the limited set of available samples.
The complete protocol for online learning together with performance evaluation is
given in Algorithm 2, where T is the maximum no. of instances available in the
database.

Commercial VeriLook software [39] face identification engine has been used for
experimental analysis which consists of two basic modules enrolment and identifi-
cation. Based on the face identification terminology, during enrolment face image is
captured, aligned, face detected and feature sets are extracted and template formed,
representing the gallery gi of a user i. The gallery set G consist of all the gallery
images ofN subjects in the database, i.e. G = ∪N

i=1gi. On identification, probe image
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Table 6.6 (%) Rank-1 accuracy and performance gain of the system that keeps updating in com-
parison to baseline classifier that does not update

Database Baseline Appending Replacement Appending

System (supervised) (supervised) (unsupervised)

(Rank-1 (%)

accuracy)

FGNET 12.79 70.09 68.68 29.70

MORPH 66.62 88.83 82.46 82.59

Both the supervised (for appending and replacement-based scheme for managing)and self-training
(with appending-based management) learning methodologies are evaluated

p presented to the system is matched with the gallery set G, and the identities are
retrieved on the basis of matching score above a set threshold. Performance evalua-
tion of the identification system is done using Rank-1 accuracy at 1% FAR operating
point, which means that % number of times correct identity is ranked first in the list
of retrieved identities.

Results: Table6.6 presents the baseline accuracy (when the first image is in the tem-
plate gallery for each user) and the averaged Rank-1 accuracy of the system that
continuously adapts itself. There is a remarkable increase in the performance of
supervised labelling-based self-training for both appending and replacement-based
template management schemes. However, for unsupervised label assignment (self-
training) using appending-based technique, FGNET does not show much improve-
ment due to the challenging nature of the dataset, thus resulting in very low-genuine
scores. It can also be seen that appending-based supervised labelling is better than
replacement-based update, i.e. retention of prior knowledge (or old templates) is
worthwhile and help to attain more performance gain. Hence, template update
schemes can result in substantial performance gain of the system under ageing.

Figures6.5 and 6.6 show the Rank-1 accuracy obtained on different probe sets
for the system that with online update and those obtained for base classifiers for
MORPH and FGNET databases, respectively. It can be seen that after every update
iteration, better performance is observed on the evaluation of the next probe set.

As mentioned before, another vital question is what is the maximum time limit
before which the new sample is required for the update procedure to be effective?.
Accordingly, the difference in the averaged Rank-1 accuracy of the update-based
system with those of the baseline for the users grouped on the basis of averaged age
difference among their samples is computed for MORPH database using appending-
based supervised labelling technique as given in Table6.7. The results obtained with
FGNET database were qualitatively very similar.

Although no specific trend can be noticed in the performance gain in respect to
averaged age difference among the samples. But, it can be seen that till the averaged
age difference of nine years, the gain due to update is in double figures then from 10
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Fig. 6.5 Rank 1-accuracy
obtained for different probe
sets for online
learning-based system in
comparison to those obtained
for baseline classifier for
MORPH database
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Fig. 6.6 Rank 1-accuracy
obtained for different probe
sets for online
learning-based system in
comparison to those obtained
for baseline classifier for
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to 14years, where gain degrades sharply. It can also be noticed that after 14 years,
there is no gain in the performance due to the update procedure. This observation
depicts that themaximum time gap in the availability of input sample for the effective
update procedure is 9years according to the Table6.7. This figure will change with
the database, acquisition set-up and the classifier used. Nevertheless, experimental
results prove the efficacy of the update procedures for the variations due to template
ageing.
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Table 6.7 Difference in the averaged Rank-1 accuracy of the update-based system with those of
the baseline for the users grouped on the basis of averaged age difference among their samples

Age difference # No. of Performance gain Performance gain

subjects (offline) supervised (online) unsupervised

(appending) (appending)

1 78 13.02 5.5

2 89 10 9.14

3 63 15.74 3.6

4 49 11.93 7.4

5 56 26 1.97

6 48 20 13.52

7 29 11.59 3.50

8 22 13.89 4.16

9 22 27.38 0

10 13 4.54 0

11 15 1.78 0

12 10 0 0

13 8 6.25 0

14 6 8.3 0

15 4 0 0

16 7 0 0

17 4 0 0

18 4 0 0

19 1 0 0

21 2 0 0

22 2 0 0

6.5 Conclusions

In the long term, the performance of a face recognition system is affected by the face
ageing, which causes significant alterations in the human faces. Therefore, in this
study, first six baseline facial representations based on local features were evaluated
under facial ageing impact, to show that how severely ageing degrades the perfor-
mances. Further, the compound effect of ageing with other variate (such as gender,
race, glasses and facial hair) are systematically analysed. The covariate analysis
results were mostly in accordance with the results of ageing factor analysis. Perfor-
mance loss due to facial ageing is the result of change in the data distribution causing
the templates to be outdated over time, making thus the process similar to the concept
drift theory. The solution to this problem is age transformation-based techniques for
ageing and de-ageing solutions using the models trained on age-separated images,
which is not quite feasible for real-time evaluation. In addition, these methods are
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prone to estimation errors in simulating the ageing effect. Recently update procedures
have been introduced offering effective and simple way for the template adaptation.
However, effectiveness of these methods for ageing variations have not been evalu-
ated till date. Experimental results, in this chapter, on commonly used facial ageing
databases (FGNET and MORPH) ensures that template update can effectively adapt
the system to temporal variance.

To conclude, it is worth mentioning that the field of facial template update has
yet not fully developed for the real-time implementation. This is due to the number
of open issues associated with this field [20]. One of the major problems is the
impostor intrusion into the updated template set due to successful zero and non-zero
effort impostor attacks.
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Chapter 7
An Adaptive Score Level Fusion Scheme
for Multimodal Biometric Systems

Kamlesh Tiwari and Phalguni Gupta

Abstract This chapter presents a score level fusion scheme for multimodal bio-
metric system. There multiple scores corresponding to the matchings of different
biometric samples are fused for taking decision on similarity. Proposed score nor-
malization is an threshold alignment and range compression scheme. It utilizes sta-
tistical properties of the score distribution. The proposed scheme has been tested over
a multimodal database which is constructed using three publicly available database.
Experimental results have shown the significant performance boost.

7.1 Introduction

Biometrics provides a very intuitive way to recognize human by his physiological
or behavioural characteristics. Various traits like face, palmprint, fingerprint, vein
pattern, iris, knuckle, voice, gait, etc., have been explored and found useful [6].
Although some of these traits are found to be fairly accurate, but it is hard to design
a system which provide 100% accuracy using only a single trait. This is because
of behaviour of user and quality of acquired sample. Accuracy and reliability of the
biometric system can be improved if one uses more than one trait. Such systems are
called as multimodal systems.

Sources of multiple biometric evidences can be classified in six categories as
proposed in [15], and these are multi-sensor, multi-algorithm, multi-instance, multi-
sample, multimodal, and hybrid systems. Multi-sensor system uses more than one
sensor to acquires the same biometric sample, while multi-algorithm system applies
more than one feature extraction and matching technique to obtain matching score
andmulti-instance system acquiremore than one available variation of same trait-like
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another finger or another iris. Multi-sample system uses more than one sample one
by one using same sensor. Multimodal system involves ore than one traits. Further,
a hybrid system uses combination of these five (Fig. 7.1).

Amultimodal systemmakes use ofmultiple biometric traits to obtain a fused score.
Fusion can be done at are (1) feature extraction level, (2) matching score level or (3)
decision level [14]. Out of them, matching score level fusion is the most promising
because it can give more freedom to consider the best-suited feature extraction and
matching techniques of individual trait. Score level fusion becomes tricky because
of the fact that the range of matching scores produced by matchers may be different,
and they may follow different distributions. Therefore, score normalization becomes
very important for fusion. There exist various score normalization techniques for
multimodal systems such as min–max, decimal-scaling, z-score, median and median
absolute deviation (MAD), double sigmoid, tanh and bi-weight localization etc. [7].
These normalization techniques are found to be sensitive to outliers and user-specific
weights assignment to normalized scores can perform better.

A framework is proposed in [9] for optimal combination of multimodal match
scores which is based on the likelihood ratio test. A dynamic reconciliation scheme
for score fusion is proposed in [18]. Normalization scheme proposed in [5] is derived
from min/max and using three biometric traits fingerprint, face and vein pattern
has shown that it could attain better performance than [9]. A fusion scheme for
complementary biometric modalities using face and palmprint which is proposed in
[13] uses Log-Gabor transformations and particle swarm optimization. Relevance

Fig. 7.1 Block diagram of the proposed scheme for score normalization and fusion
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Vector Machine is used in [8], and a ranking-based user-specific fusion strategy is
proposed in [12]. There is a need for a sophisticated fusion scheme which is adaptive
to the underline statistical properties of a biometric system such as error rate and
accuracy for their normalization and fusion.

This chapter describes an efficient score normalization scheme for a multimodal
biometric system. Relative fusion weights for individual traits are assigned by utiliz-
ing their individual performance parameters. A multimodal database involving 100
subjects from public databases viz. FVC2006-DB2-A, CASIS-V4-Lamp and PolyU
has been constructed, and experimental results are shown on them.Rest of the chapter
is organized as follows. Section7.2 describes the proposed normalization strategy.
Section7.3 elaborates the experimental setup, database used and results obtained.
Conclusions are presented in the last section.

7.2 Proposed Normalization Scheme

This section proposes a score level normalization and fusion scheme which applies
threshold alignment and range compression. This particular fusion scenario appears
when a person presents more than one biometric sample for verification (possibly
from different traits; say a fingerprint and a iris). It uses the person’s identification to
retrieve the stored template from the database and subsequently matches the respec-
tive biometric samples. Matching on any unimodal biometric system produces its
similarity/dissimilarity score. These scores are normalized to fuse and to produce a
final matching score.

The score level fusion is tricky as the range of matching score produced by the
two matchers may be different, and they may also follow different distributions.
Also there are situations when performance of the different matchers are priori
known, and different weights are required to be assigned to different matching. A
normalization scheme which preserves the relative monotonicity of original score
in corresponding normalized scheme is called as order preserving score normaliza-
tion scheme (OPSNS). Any OPSNS ensures that for two given matching scores v1
and v2 with v1 < v2, their normalization score also satisfies the same relationship
normalized(v1) < normalized(v2). It has also a very interesting property. When it is
uniformly applied on all the matching scores, they do not produce any effect to the
performance of biometric system. This is because of the fact that the performance of
the system is evaluated based on a particular threshold which decides the number of
false accept and false reject cases. Applying OPSNS can vary the decision threshold,
but it retains relative ordering of the scores. Therefore, it does not affect the num-
ber of false accept and false reject cases and as a result, performance of the system
remains unchanged. There exist several OPSNS such as min–max, z-score, etc.

Matching scores produced by a matcher are not randomly distributed in its range.
Also they do not follow normal distribution. But individually they are expected to
obey the normal distribution (Gaussian) [6]. Both genuine and imposter distributions
have different statistical properties. Ideally these two distributions need to be well
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separated but in practical, they have overlaps. A decision threshold is chosen such that
it separates the two distributions and achieves maximum possible accuracy. Weigh-
ing of the matching scores is necessary when the involved systems have different
recognition accuracies to restrict the adverse effect of low confidence system. The
normalization strategy discussed in this chapter applies threshold alignment followed
by weighting to obtain the final matching score.

7.2.1 Threshold Alignment

Let the decision thresholds used by n unimodal biometric systems S1, S2, . . ., Sn be
ThS1 , ThS2 , . . ., ThSn , respectively. The system designer arbitrarily chooses a single
and fixed pivot threshold Thp which is used for threshold alignment of all unimodal
biometric matching scores. Threshold aligned score v′

Si
for a min–max-normalized

matching score vSi of Si can be obtained using following formula.

v′
Si

= vSi + (Thp − ThSi) (7.1)

In our experiment, we have utilized three unimodal biometric systems say S1, S2
and S3. Let their decision thresholds be ThS1 , ThS2 and ThS3 , respectively. Threshold
aligned score v′

S1
for a min–max-normalized matching score vS1 of S1 is obtained by

v′
S1 = vS1 + (Thp − ThS1) (7.2)

Similarly, the threshold aligned scores v′
S2
and v′

S3
for vS2 and vS3 of S2 and S3 can

be obtained by
v′

S2 = vS2 + (Thp − ThS2) (7.3)

v′
S3 = vS3 + (Thp − ThS3) (7.4)

Purpose of the initial min–max normalization is to bring the scores of different
modalities in same range. This step helps to align appropriate thresholds.

7.2.2 Score Weighting

Relative multiplicative weights of the three systems are obtained with the help of
equal error rate (EER) of the unimodal biometric system. Since EER is inversely
related to the accuracy; a polynomial of the form c1× (EER)−2+c2× (EER)−1+c3
is used to obtain relative fusion weights where c1, c2, c3 are constants. The value of
constants are empirically determined using regression on small subset of the database.
Let EERSi be the equal error rate of an individual biometric sub-system Si then its
relative multiplicative weight wrsi is determined as below.
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wrsi = c1 × (EERSi)
−2 + c2 × (EERSi)

−1 + c3 (7.5)

Let three individual biometric systems S1, S2 and S3 have their equal error rates
as EERS1 , EERS2 and EERS3 , respectively. Then their relative multiplicative weights
wrs1 , wrs2 and wrs3 are determined as below.

wrs1 = c1 × (EERS1)
−2 + c2 × EER−1

S1
+ c3 (7.6)

wrs2 = c1 × (EERS2)
−2 + c2 × EER−1

S2
+ c3 (7.7)

wrs3 = c1 × (EERS3)
−2 + c2 × EER−1

S3
+ c3 (7.8)

Absolute weight wi of an individual biometric system Si is evaluated with the
help of relative multiplicative weights of all participating individual biometric sub-
systems w1, w2, . . ., wn by

wi = wrsi∑n
k=1 wrsk

(7.9)

The fused score vs1s2s3,...,sn for the scores of n biometric traits is obtained by
combining v′

S1
, v′

S2
, . . ., v′

Sn
and w1, w2, . . ., wn as below.

vs1s2s3,...,sn = w1 × v′
S1 + w2 × v′

S2 + · · · + wn × v′
Sn

(7.10)

7.3 Results

The proposed scheme has been tested on a multimodal database comprising of three
biometric traits viz.fingerprint, iris and palmprint. Biometric samples of each individ-
ual trait has been taken from publicly available database. Fingerprints are considered
fromFVC2006-DB2-A,while irises are fromCASIA-V4-Lamp and palmprints from
PolyU database. Since the number of subjects and number of biometric samples per
subject differ across the databases, we have selected 100 subjects and three samples
from each of the databases for the construction of multimodal database. Selection
is anticipated to contain difficult to recognize users of goat and lamb category [16].
One out of the three images per subject per trait is used for training and remaining
two are used for testing. Training and testing sets are mutually exclusive, and there
is no overlapping subject in training and testing set.

(a) FVC2006-DB2-A Database [2]. This database contains fingerprints of 140 sub-
jects. For every subject, there are 12 fingerprint images. In all, there are 1680 images
acquired through optical sensor of size 400× 560 and 569 dpi resolution. A sample
image of FVC2006-DB2-A is shown in Fig. 7.2a.
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Fig. 7.2 Example of typical biometric samples of fingerprint, iris and palmprint along with their
minutiae, normalization and ROI. a Fingerprint of FVC2006-DB2-A, b minutiae in a fingerprint
image, c iris of CASIA-V4-Lamp, d normalized iris image, e palmprint of PolyU and f extracted
palmprint ROI

(b)CASIA-V4-LampDatabase [3]. This database consists of 16,212 images collected
from 411 subjects having 819 distinct irises and 20 images per iris. Iris images
contain non-linear deformation due to variation of visible illumination. A sample
iris image from CASIA-V4-Lamp database and its corresponding normalized iris
strip are shown in Fig. 7.2c, d respectively. Normalized iris image is cartesian to
polar transformation of the iris portion of eye image.
(c) PolyU Database [17]. This database contains of 7,752 grayscale images from 193
users corresponding to 386 different palms. Around 17 images for each palm are
collected in two sessions. Images are acquired placing pegs and using CCD at spatial
resolution of 75 dpi and 256 gray levels. A sample hand images from PolyU database
and its corresponding extracted palmprint ROI are shown in Fig. 7.2e, f respectively.

Performance of a typical biometric system is analysedwith respect to its error rates
in rejecting a genuine or accepting an imposer based on the statistical properties of
the matching score distribution. Standard performance metrics are described below.

False Accept Rate (FAR) refers to the rate at which unauthorized individuals
(imposers) are accepted by the biometric system as a valid user. False acceptance is
an error which signifies the probability of an intrusion. Its value should be as low as
possible.
False Reject Rate (FRR) refers to the probability that a biometric system fails to
identify a genuine subject. False rejection is an error which signifies the denial of
access to an authentic user of the system. Its value should also be as low as possible.
Equal Error Rate (EER) is the rate at where FAR and FRR are equal. EER is a typical
choice of system operation because it balances the user inconvenience and security.
Lower the value of EER better is the system.
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Correct Recognition Rate (CRR) represents rank-1 accuracy and signifies the per-
centage of the best match which pertains to the same subject. It can be measured
as

CRR = (N1/N2) × 100

whereN1 is the number of correct (Non-False) recognition andN2 is the total number
of images in the testing set. Higher the CRR better is the system.
Decidability Index (DI) signifies howwell the genuine and imposter matching scores
are separated. DI is defined by

DI = |μg − μi|√
(σ 2

g − σ 2
i )/2

where μg and μi are the mean and σ 2
g and σ 2

i are the variances of genuine and
imposter distributions, respectively. Decidability index is found to be high for highly
accurate systems.

7.3.1 Experimental Results

Minutiae of fingerprints of FVC2006-DB2-A are extracted by mindtct and matching
is done using bozorth3 [11]. Figure7.2b shows typical fingerprint with minutiae
marked on it. The unimodal fingerprint system has achieved CRR of 96% and EER
of 4.1% on the subset of FVC2006-DB2-A database containing three fingerprints of
100 users. Histogram of normalized dissimilarity matching scores obtained through
bozorth3 is plotted in Fig. 7.3a.

Eye images of CASIA-V4-Lamp database are subjected to iris segmentation using
an improved circular hough transform and robust integro-differential operator [4] that
detects the inner and the outer iris boundary. The segmented iris is normalized to
polar coordinates to get an image like Fig. 7.2d. It is further preprocessed using
LGBP (Local Gradient Binary Pattern) and the corners features are extracted and
matched using dissimilarity measure CIOF (Corners having Inconsistent Optical
Flow) [10]. The iris-based unimodal biometric system has achieved an CRR of 92%
and EER of 11.52% on the selected subset of CASIA-V4-Lamp database. Histogram
of normalized dissimilarity matching scores through CIOF is plotted in Fig. 7.3b.

Palm images of PolyU database are segmented using themethod proposed in [1] to
extract a square region of interest (ROI) as shown in Fig. 7.2f. ROI is further enhanced
and its features are extracted. Matching technique [1] on the selected subset of PolyU
database has achieved the CRR of 90% and EER of 12.52%. Genuine and imposter
score histograms of normalized dissimilarity values are presented in Fig. 7.3c.
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Fig. 7.3 Fused genuine and imposter score histograms. a Histogram of normalized fingerprint
scores, b histogram of normalized iris scores, c histogram of normalized palmprint scores and d
histogram of proposed normalization scheme on multimodal database

Operating characteristics of the three individual biometrics systems providework-
ing threshold, which are used to align the scores. EER of the three unimodal bio-
metric systems have been used to determine the relative weights. The proposed
normalization-based multimodal system has achieved an CRR of 99% and EER
of 0.99% on the selected database. Histogram of the normalized score is plotted
in Fig. 7.3d. ROC curves of three individual unimodal biometric systems of finger-
print, iris and palm are plotted in Fig. 7.4. It can be seen that the performance of the
multimodal system is better than any unimodal biometric system.

A comparison with score normalization and fusion strategies like minimum, max-
imum, majority voting, median, summation, product, tanh normalization, median
and MAD, double Sigmoid and z-score has been presented in Table7.1. It has been
observed that CRR of the multimodal system is 94% and EER is 11.13% when
maximum score among the three matchers is considered as fused score. It has falsely
rejected 23 genuine out of 200 and falsely accepted 2130 imposters out of 19800.
Median has slightly better rank-1 accuracy and low error rate as compared to max-
imum. Performance of majority voting fusion strategy is found to be better than
maximum. Although it is evident from Table7.1 that summation and product fusion
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Fig. 7.4 Receiver operating characteristic curve for fingerprint, iris, palm and proposed scheme

strategies outperformsmajority voting in our experiment. Both strategies have rank-1
accuracy of 99% and EER of 2.00% but DI of product fusion strategy is better.

It can also be observed that non-linear fusion strategy like tanh has CRR of 99%
and EER of 1.99%. Another strategy, called Median andMAD, has been found to be
performing similar to tanh strategywith slight improvement in EER to 1.90%. Fusion
strategy of double sigmoid has further reduced the error rate to 1.50% but its DI is
found to be 0.71 which is low. It can be observed that DI of z-score normalization
is better than double sigmoid, minimum and tanh. Minimum EER value that has
been achieved across all other competing normalization strategies is 1.50%. The
proposed fusion strategy has achieved rank-1 accuracy (CRR) of 99% with a DI
of 1.81, and its equal error rate (EER) is found to be 0.99% which is a significant
improvement over other techniques. The proposed strategy has the lowest number of
false rejection (2 out of 200) and false acceptance (186 out of 19800). ROC curves of
score normalization and fusion strategies are plotted in Fig. 7.5a. It clearly indicates
the superiority of the proposed system.

Histogram of genuine and imposter score of the proposed fusion scheme is shown
inFig. 7.3d.Thebest genuine and the best imposter scores for a particular query image
can be determined by considering the lowest matching score among all genuine and
the highest matching score among all imposters. Figure7.5b shows the best genuine
and imposter scores for all the query image of the proposed normalization scheme.
It can be seen that there is a good separation between average genuine and imposter
matching scores.
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Table 7.1 Values of CRR, ERR and DI for different settings

CRR % EER % DI FR FA

System on individual trait

Fingerprint 96 4.10 1.60 9 492

Iris 92 11.50 0.80 23 2276

Palmprint 90 12.50 1.13 25 2474

Fusion strategy of multimodal system

Maximum 94 11.13 0.90 23 2130

Median 96 5.64 1.43 11 845

Majority
voting

98 2.50 1.30 5 494

Summation 99 2.00 1.76 4 395

Product 99 2.00 1.91 4 395

tanh and
summation

99 1.99 1.58 4 394

Median and
MAD and
summation

99 1.90 1.76 4 359

Double
sigmoid and
summation

99 1.50 0.71 3 294

Minimum 99 1.50 1.64 3 296

z-score and
summation

99 1.50 1.75 3 296

Proposed 99 0.99 1.81 2 186

Falsely reject (FR) and falsely accept (FA) are out of 200 genuine and 19800 imposer matchings,
respectively
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Fig. 7.5 ROC curves of various fusion schemes and best genuine and imposter score distribution.
a Receiver operating characteristic proposed and other fusion schemes. b Fused genuine and
imposter score histogram
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7.4 Conclusions

This chapter discusses an efficient score level fusion strategy. It is suitable for score
fusion of multimodal biometrics system. It performs range compression and thresh-
old alignment for score normalization which makes use of statistical properties of
biometric score distribution. The fusion scheme is tested on a multimodal biometric
database which is constructed with the help of publicly available biometric data-
base of fingerprint FVC2006, iris database CASIA-V4-Lamp and palmprint data-
base PoluU. Comparison of the proposed normalization scheme with other fusion
strategies like maximum, majority voting, median, product, tanh, median and MAD,
double Sigmoid and z-score etc. have been studied. Experimental results have shown
the superiority of the system which has achieved significant decrease in error rates.
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