
Two-Factor Authentication
for the Bitcoin Protocol

Christopher Mann and Daniel Loebenberger(B)

B-IT, University of Bonn, Bonn, Germany
daniel@bit.uni-bonn.de

Abstract. We show how to realize two-factor authentication for a Bit-
coin wallet. To do so, we explain how to employ an ECDSA adaption of
the two-party signature protocol by MacKenzie and Reiter (2004) in the
context of Bitcoin and present a prototypic implementation of a Bitcoin
wallet that offers both: two-factor authentication and verification over a
separate channel. Since we use a smart phone as the second authentica-
tion factor, our solution can be used with hardware already available to
most users and the user experience is quite similar to the existing online
banking authentication methods.

1 Introduction

Bitcoin (BTC) is a cryptographic currency proposed by Satoshi Nakamoto (2008)
in the legendary email to the Cryptography Mailing list at metzdowd.com. One
of the most important features of Bitcoin is that it is completely peer-to-peer,
i.e. it does not rely on a trusted authority (the bank) which ensures that the two
central requirements of any electronic cash system are met: Only the owner can
spend money and it is impossible to spend money twice. In Bitcoin, these two
features are realized with a common transaction history, the Bitcoin block-chain,
known to all users. Each of the transactions in the chain contains the address
to which some Bitcoins should be payed, the address from which the Bitcoins
should be withdrawn and the amount. Both addresses are directly derived from
the public key of the corresponding ECDSA key pairs of the recipient and the
sender, respectively. The whole transaction is then signed using the ECDSA
private key of the sender. We describe the details in Sect. 2. Since any user might
have multiple addresses, its wallet consists of several key-pairs and is typically
stored on the owner’s device or within some online service.

Thus, from a thieves’ perspective, the only thing one has to do in order to
steal some Bitcoins, is to get hands on the corresponding wallet, just like in real
life. Indeed, Lipovsky (2013) describe an online banking trojan that also steals
Bitcoin wallets.

A common approach to complicate this is the use of two-factor authentica-
tion. This means that the wallet stored on a device does not contain the private
keys but just shares of them. The other shares are stored on an independent
device (such as a smart phone). Now, any transaction can only be signed with

c© Springer International Publishing Switzerland 2015
S. Foresti (Ed.): STM 2015, LNCS 9331, pp. 155–171, 2015.
DOI: 10.1007/978-3-319-24858-5 10

www.metzdowd.com


156 C. Mann and D. Loebenberger

the help of both shares of the private key. During the signing process, it has to
be ensured that at no point in time the full private key is present on either of
the devices.

There was already considerable effort to realize two-factor authentication for
Bitcoin wallets. First of all, it is in principle possible to use Bitcoin’s build-in
functionality for threshold signatures. This has, however, three major disad-
vantages: First of all, it would be visible in the block-chain that multi-factor
authentication is used. Second, the size of the transaction increases, which leads
to higher transaction fees. Last but not least, there are Bitcoin clients around
which do not work properly with the threshold-signature extension.

Goldfeder et al. (2014) tried to employ threshold signatures proposed by
Ibrahim et al. (2003). However, as the authors pointed out there, it is quite
difficult to use these kind of signatures for two-factor authentication, since the
restrictions on the threshold are quite delicate to handle. In their blog post,
they compare different threshold signatures with respect to their applicability
to Bitcoin wallets. However, their reasoning remains quite high-level.

In this article, we show how to actually realize two-factor authentication for a
Bitcoin wallet employing the two-party ECDSA signature protocol adapted from
MacKenzie and Reiter (2004). We also present a prototypic implementation of a
Bitcoin wallet that offers both: two-factor authentication and verification over a
separate channel. Since we use a smart phone as the second authentication factor,
our solution can be used with hardware already available to most users and the
user experience is quite similar to the existing online banking authentication
methods. Our source code is liberally licensed and can be found on GitHub,
see Mann (2014). We also got in contact with the developers of the Java Bitcoin
library. Indeed, there was lively discussion on the Bitcoin mailing list, when they
got aware of our prototype. For details, see Hearn (2014).

Very recently, we got aware of the work of Goldfeder et al. (2015), where the
authors present an extended version of the MacKenzie and Reiter scheme which
allows t-party threshold signatures. This is a very nice idea in the context of
Bitcoin and it would be very interesting to see their extended scheme running.
Unfortunately, their prototype currently only implements the plain MacKenzie
and Reiter scheme. Furthermore, we observed that in contrast to our implemen-
tation their desktop wallet serves as a trusted dealer during initialization. On a
compromised computer this is a clear security problem. We addressed this issue
here. For details, see Mann (2015).

2 Bitcoin Protocol

We will now describe some of the technical details of the Bitcoin protocol as
described by Nakamoto (2008). In difference to other e-cash schemes such as the
one proposed by Chaum et al. (1990) and many others, Bitcoin was designed
to be completely decentralized. The Bitcoin network consists of a large number
of independent nodes which verify incoming transactions independently of each
other. These nodes use a synchronization protocol which is based on a proof-of-
work similar to the hashcash system described in Back (2002). With the help



Two-Factor Authentication for the Bitcoin Protocol 157

of this protocol, the nodes agree on a common transaction history, which is called
the Bitcoin block chain, see Fig. 1. A Bitcoin transaction contains the address
to which the Bitcoins should be payed, the address from which the Bitcoins
should be withdrawn and the amount. Furthermore, the transaction contains a
digital signature, which authorizes the transaction, and the public key needed to
verify the signature. Bitcoin uses the ECDSA signature scheme, specified by the
Accredited Standards Committee X9 (2005) on the elliptic curve secp256k1 as
defined by Certicom Research (2000). All Bitcoin transactions must be correctly
signed by the spender. In order to bind Bitcoin addresses and the public keys,
the Bitcoin address of a user is directly derived from the user’s public key by
applying a cryptographic hash function to it.

Fig. 1. Simplified view of the Bitcoin blockchain.

Any Bitcoin transaction actually consists of one or more inputs and out-
puts. Each output specifies a target address and an amount of Bitcoins to be
transferred to this target address. Every input contains the hash of a preced-
ing transaction and an index. Both values together unambiguously identify an
output of a preceding transaction. All the Bitcoins from this referenced output
are spent by the current transaction. Consequently, every transaction output is
only used a single time as an input and is completely spent at this time. This
increases the efficiency of the network nodes as these only need to keep track of
the unspent outputs instead of all transactions having an impact on the balance
of the user’s address. Furthermore, any input contains a signature and a public
key which must fit the address given in the output referenced by this input. In
consequence, if multiple inputs are used, multiple signatures of the transaction
must be created, one for each input.

Clearly, the sum of the Bitcoins from all inputs must be greater or equal
than the sum of the Bitcoins spent by the outputs. If the sum of the inputs is
greater, this is not a problem. Any unused Bitcoins are transferred as a fee to the
miner of the block containing this transaction and increase the miner’s revenue.



158 C. Mann and D. Loebenberger

Therefore, this will increase the priority of the transaction as the miners will
have an incentive to include it into a block.

For ease of exposition, we omitted the fact that Bitcoin uses a scripting
language for transactions: In reality, a transaction does not really include a
target address or a signature and a public key, but scripts which contains these
as constants. Currently, only a very limited subset of the scripting functionality is
actively used in the Bitcoin network and there are plans to restrict the scripting
functionality even further to solve the problem of transaction malleability, see
Wuille (2014). Bitcoin transactions are currently malleable, which means that
certain bytes in a transaction can be changed without invalidating the ECDSA
signatures.

3 Threshold Signatures

For a polynomial p, a p(t)-out-of-u threshold signature scheme allows p(t) mem-
bers out of a group of u to cooperate in creating a signature for a certain message.
At the same time, the scheme is secure against an eavesdropping attacker who
compromises less than t parties. A 2-out-of-2 threshold signature scheme is also
called a two-party signature scheme. In a two-party signature scheme, two par-
ties must work together to create a signature and the scheme is secure against
attacks by one of the parties.

For our two-factor Bitcoin wallet, we are interested in a two-party signature
scheme which creates signatures that are compatible with ECDSA. The signature
algorithm of ECDSA is quite similar to the one of DSA, standardized by NIST
(2013). Thus, a DSA-compatible threshold scheme can be ported to ECDSA by
replacing the modular operations in DSA by corresponding operations on elliptic
curves. Of course, while doing so, the operations in the exponent groups have to
be replaced accordingly.

We have searched for threshold signature schemes for both DSA and ECDSA.
Several secure and efficient threshold signature schemes exist for modified ver-
sions of the ElGamal signature scheme, see for example Harn (1994). Compatibil-
ity with DSA or ECDSA on the other hand is harder to achieve, as the signature
algorithm requires the inversion of a secret value and the multiplication of two
secret values.

Most threshold signature schemes use polynomial shares similar to Shamir
(1979) secret sharing, but the multiplication of polynomial shares does not work
well as the multiplication of two polynomials increases the degree of the result-
ing polynomial. There are several threshold schemes for DSA available, see for
example Langford (1995), Gennaro et al. (1996), Wang and Hwang (1997). For
ECDSA, Ibrahim et al. (2003) presents a (2t − 1)-out-of-u threshold signature
scheme. In Goldfeder et al. (2014), this scheme is applied to secure Bitcoin wal-
lets. However, as the authors point out, it is difficult to respect the restrictions
on the threshold value in the scheme, rendering it somewhat unsuitable for two-
factor authentication. More precisely, it was erroneously assumed that one could
further improve the protocol to (t+1)-out-of-u by applying the degree reduction



Two-Factor Authentication for the Bitcoin Protocol 159

protocol from Ben-Or et al. (1988) to circumvent the degree doubling caused
by the multiplication of two secret sharing polynomials. Unfortunately, the pro-
tocol requires 2t + 1 ≥ 3 cooperating parties with secret shares to reduce the
polynomial.

In MacKenzie and Reiter (2004), a two-party signature scheme for DSA with
a different approach is presented. Instead of working with polynomial shares,
the authors use a homomorphic cipher such as the Paillier (1999) cryptosystem.
This allows one party to operate with cipher texts of another party’s secrets
without ever learning about these secrets. In difference to the other threshold
signature schemes, this one works for only two parties. As we need a two-party
signature scheme for ECDSA to implement our two-factor wallet, we decided to
port their scheme to ECDSA. Also Goldfeder et al. (2014) came to the same
conclusion: In the blog post related to their article they note that the scheme
by MacKenzie and Reiter seems to be “close to ideal”. They later describe in
Goldfeder et al. (2015) a t-out-of-n extension for the MacKenzie and Reiter
scheme which uses a threshold version of the Paillier crypto system.

3.1 Two-Party ECDSA

We now give a short overview of two-party signatures as described by MacKenzie
and Reiter (2004) in the context of ECDSA. For more details, see Mann (2015).
For the setup, one fixes a cryptographic hash function h (in our case we use SHA-
256, see NIST (2012) and a particular set of elliptic curve domain parameters:
A prime power q ∈ N≥2 denoting the size of the base field, the elliptic curve
parameters a, b ∈ Fq defining the elliptic curve E : y2 = x3+ax+b, a (finite) base-
point G ∈ E of prime order n ∈ N, and a cofactor h = #E/n ∈ N. An ECDSA
key-pair is a pair (d,Q) ∈ Z

×
n × E, where d was pseudorandomly generated and

Q = dG on the elliptic curve E. In the case of Bitcoin, q is a large prime, a = 0,
b = 7 and the cofactor is h = 1, see Certicom Research (2000). In order to sign a
message m ∈ {0, 1}∗ in ECDSA, Alice selects pseudorandomly a non-zero integer
k ∈ Z

×
n and computes kG. The process is repeated as long as the x-coordinate

r = coordx(kG) mod n = 0. Now, Alice computes s = k−1(h(m)+ rd). If s = 0,
the process is repeated using a new ephemeral key k ∈ Z

×
n .

The two-party signature scheme by MacKenzie and Reiter (2004) consists of
three different phases for jointly signing a message m ∈ {0, 1}∗.

Initialization. In this phase, Alice and Bob agree on a common ECDSA public
key Q which is used to verify the cooperatively created signatures. There-
fore, Alice and Bob choose private key shares dA, dB ∈ Z

×
n pseudorandomly.

Afterwards, they exchange the corresponding public keys QA = dAG and
QB = dBG. Both sides now compute the common public key as Q = dAQB =
dAdBG and Q = dBQA = dBdAG respectively. As the scalar multiplication
on elliptic curves is commutative, both sides now hold the same common
public key Q. Essentially, they perform a Diffie-Hellman key exchange. We
can define the fictive private key d = dAdB which is the private key corre-
sponding to the public key Q. Note that none of the two parties ever hold



160 C. Mann and D. Loebenberger

the full private key d nor are they able to compute it. Finally, Alice and Bob
generate key pairs (skA,pkA) and (skB ,pkB) respectively, for a homomorphic
public key encryption scheme, such as the Paillier (1999) cryptosystem, and
distribute the public key to the other party.

Constructing an Ephemeral Key. In the second phase, a shared ephemeral
secret k = kAkB ∈ Z

×
n is generated together with the corresponding public

key R = kG ∈ E. Alice and Bob also compute the public keys corresponding
to their shares of the ephemeral secret as RA = kAG and RB = kBG ∈ E.
Furthermore, Alice commits to the two values k−1

A and k−1
A dA in Z

×
n by

sending the corresponding encryptions under pkA to Bob.
Form the Signature. In the final phase, Bob uses the two commitments

together with the homomorphic property of the encryption scheme to finally
compute the second part of the ECDSA signature s.

In Fig. 2, the full two-party ECDSA signature protocol is given. For details on
the analysis and the security of this protocol see MacKenzie and Reiter (2004).

For the protocol to be secure, it is necessary to prove to the other side several
facts using non-interactive zero-knowledge proofs, see Blum et al. (1988), which

Alice (dA,QA, skA) Bob (dB,QB, skB)

kA
R←− ×

n

zA ←− k−1
A

αA ←− EncpkA (zA)

β ←− EncpkA (dAzA)
m,αA,β−−−−−→ check αA, β ∈ CpkA

kB
R←− ×

n

check RB G
RB←−−−−− RB ←− kBG

R ←− kARB

πA ←− zkpA(RB , R, αA, β)
R, πA−−−−−→ check R G , πA

r ←− coordx(R) mod n

zB ←− k−1
B

c
R←− n5

σ ←− ((αA ×pkA h (m)) ×pkA zB)

+pkA ((β ×pkA r) ×pkA dBzB)

+pkA EncpkA (c · n)

αB ←− EncpkB (zB)

check σ ∈ CpkA , check αB ∈ CpkB , πB
σ,αB,πB←−−−−−− πB ←− zkpB(m,r, RB , αA, αB, β, σ)

s ←− DecskA (σ) mod n

r ←− coordx(R) mod n
publish (r, s)

Fig. 2. Generating a two-party ECDSA signature using the modified MacKenzie and
Reiter (2004) protocol.



Two-Factor Authentication for the Bitcoin Protocol 161

we will denote by zkp. Also, there is frequent use of the (additively) homomorphic
property of the underlying cipher. For any key pair (sk, pk), let Mpk ⊂ Z be
the message space and Cpk be the ciphertext space. The homomorphic property
of the cipher gives raise to an operation

+pk : Cpk × Cpk −→ Cpk,
(Encpk(m1), Encpk(m2)) �−→ Encpk(m1 + m2)

.

We stress that the encryption function Encpk is randomized such that in the
above expression Encpk(m1 + m2) denotes one valid encryption of the addition
of the messages m1 and m2. Applying the function +pk repeatedly defines the
function

×pk : Cpk × N −→ Cpk,
(Encpk(m1), m2) �−→ Encpk(m1 · m2)

.

The protocol uses two zero-knowledge proofs to ensure correct execution of
the protocol. The first proof πA, constructed by Alice, proves to Bob the existence
of values x, y ∈ [−n3, n3

]
, such that xR = RB, (y/x) G = QA and

DecskA
(αA) ≡n x,

DecskA
(β) ≡n y.

In other words, Alice proves to Bob that she has properly executed the previous
steps in the protocol. The second zero-knowledge proof πB is used on the other
side by Bob to prove to Alice that he has also executed the necessary steps in
the protocol and that the operations he performed fit to the operations Alice
performed. Specifically, he proves that there are values x, y ∈ [−n3, n3

]
, z ∈[−n7, n7

]
, such that xRB = G, (y/x) G = QB and

DecskB (αB) ≡n x,

DecskA (σ) = DecskA

(
((αA ×pkA h (m)) ×pkA x) +pkA ((β ×pkA r) ×pkA y)

)
+ zn.

It seems counterintuitive, that Bob can argue about decryptions of cipher texts
which were encrypted with Alice’s public key pkA. One would expect that this
requires knowledge of Alice’s secret key skA. But Bob is arguing about homo-
morphic operations with the cipher texts, which are deterministic for him, as
he also knows the randomization term zn. In the zero knowledge proof, he can
encode the equality of the two decryptions as equality of two related cipher texts,
which Bob can prove without any problems.

We finish with an illustration of the correctness of the modified two-party
signature scheme:

s =DecskA (σ)

=DecskA

(
((αA ×pkA h (m)) ×pkA zB)

+pkA ((β ×pkA r) ×pkA dBzB) +pkA EncpkA (c · n)
)

=DecskA

(
((EncpkA (zA) ×pkA h (m)) ×pkA zB)



162 C. Mann and D. Loebenberger

+pkA ((EncpkA (dAzA) ×pkA r) ×pkA dBzB) +pkA EncpkA (c · n)
)

=zAh (m) zB + dAzArdBzB + c · n = k−1
A k−1

B (h (m) + rd)

=k−1 (h (m) + rd)

Thus, the modified two-party MacKenzie and Reiter signature is indeed a
valid ECDSA signature under the private key d = dAdB ∈ Z

×
n and the shared

ephemeral secret k = kAkB ∈ Z
×
n .

Parameter Choices for Bitcoin. In Fig. 3, the parameters sizes required
for the two-factor Bitcoin wallet are given. The parameter sizes were chosen
based on the established recommendations for key sizes. ECDSA with the curve
secp256k1, as used in the Bitcoin protocol, uses 256 bit keys. This corresponds to
128 bits of security. To achieve 128 bits of security with RSA, a 2048 bit modulus
is required according to ANSSI (2014). Note that others are more pessimistic:
NIST (Barker et al. 2012) recommends at least 3072 bit moduli. On the other
hand, there is also an implicit lower bound for the moduli sizes by the protocol
itself, since some of the above mentioned arguments only work when the used
parameter sizes are large enough. We decided to use 2560 bit RSA moduli for the
Paillier crypto system (the smallest multiple of 256 above 2304) which is a good
compromise between the different recommendations and also offers acceptable
performance on the smart phone.

n NA NB

required by ANSSI (2014) 256 2048 2048

required for MacKenzie & Reiter (2004) 256 > 2304 > 1536

Fig. 3. Required parameter sizes for ECDSA as used in Bitcoin parameter sizes chosen
for the prototype: 2560 bit for NA and NB .

It should be stressed, that we are only talking about short term security. The
Paillier crypto system is only used to encrypt private keys and ephemeral secrets
for the ECDSA signature scheme, which uses 256 bit keys. The security can be
easily increased later to the level provided by 256 bit ECDSA by increasing the
RSA modulo size beyond 3072 bit and transferring all Bitcoins to new addresses
with new ECDSA key pairs, which were not yet used in the two-party ECDSA
signature protocol. Increasing the level of security any further is not possible as
the used elliptic curve secp256k1 is fixed in the Bitcoin protocol.

3.2 Threshold Signature Support in Bitcoin

As part of the scripting functionality, Bitcoin supports t-out-of-u threshold sig-
natures. Instead of only a single signature, a user must provide t signatures to
spend a transaction output. Each of the t signatures must verify under one of



Two-Factor Authentication for the Bitcoin Protocol 163

the u public keys. Bitcoin’s threshold signature support has been used by Bitpay
Inc. (2014) to implement a web application that offers shared control of Bitcoin
addresses.

In the standard single signature case, Bitcoins are sent to a Bitcoin address
which is directly derived from a public key. The payee can spend the received
Bitcoins by providing a transaction with a signature that verifies under the public
key. In the threshold signature case, the payer must specify a list of u public keys
instead of a single one. The payee can spend the received Bitcoins by providing
a transaction with t signatures where each of the signatures verifies under one
of the u public keys.

As a list of public keys is now used to identify the payee instead of a single
one, no Bitcoin address can be derived any more. Thus, the payer must not
only know a short Bitcoin address but the whole list of u public keys to send
Bitcoins to the payee. This is very inconvenient for the payer. A further Bitcoin
feature called Pay-to-script-hash (P2SH) solves this problem by adding another
indirection: Instead of specifying the whole list of public keys, the payer only
specifies the hash value of a Bitcoin script, which contains the list of public
keys. The script is hashed with the same function that is used to hash the public
keys. Therefore, it is possible to derive a Bitcoin address from the script. When
spending the Bitcoins, the payee must not only provide the t signatures, but also
a Bitcoin script that fits the hash value specified by the payer. The signatures in
the spending transaction are then verified against the public keys in the script.

The combination of both features provides a threshold signature support
that is as convenient for the payer as the single signature version of Bitcoin.
Nevertheless, this variant of threshold signatures for Bitcoin has several disad-
vantages that are also mentioned by Goldfeder et al. (2014): First, it is visible in
the public block chain that threshold signatures are used. Second, the spending
transaction becomes much larger as it contains the t signatures and the script
with the list of the u public keys. Signatures and public keys are responsible for
most of the data in a transaction. Consequently, having several of them increases
the size of the transaction significantly and can increase the transaction fees as
these depend on the size of the transaction. Last but not least, there are Bitcoin
clients around which do not work properly with the threshold-signature exten-
sion. The use of threshold signatures compatible with ECDSA as discussed in
the previous section circumvents these kinds of problems.

4 Two-Factor Bitcoin Wallets

As mentioned in Lipovsky (2013), a first Bitcoin stealing online banking trojan
has already been discovered in the wild. When Bitcoin is used by a wider public,
attackers might come up with more sophisticated attacks inspired by the attacks
on European online banking systems. Therefore, it makes sense to analyze such
attacks and to consider the existing counter measures when designing a Bitcoin
wallet.



164 C. Mann and D. Loebenberger

In Sancho et al. (2014), a common attack on online banking is described.
First, the user’s computer is compromised by a trojan, which modifies the vic-
tim’s DNS resolver and installs an additional attacker controlled certification
authority on the system. Consequently, the trojan can now become a Man-in-
the-middle between the user and the bank. After the user successfully logged
in, the attacker displays a warning to trick the user into installing a malicious
app on his phone, which finally allows the attacker to intercept incoming ses-
sion tokens and transaction numbers. It is important to note that the phone is
compromised by tricking the user into installing the spyware app and not by
exploiting vulnerabilities in the phone’s software.

To complicate such attacks as far as possible, state-of-the-art online bank-
ing systems offer both two-factor authentication and verification over a separate
channel. In the commonly used SMS TAN system, the user creates a bank trans-
action on his computer and then needs to enter a TAN to confirm the transac-
tion. The user receives this TAN via SMS from his bank. The SMS does not
only contain the TAN but also the transaction details again and the user can
verify them. A compromised computer cannot modify the information in the
SMS which allows the user to detect any modifications done to the transaction
by an online banking trojan.

With our Bitcoin wallet, we also provide both two-factor authentication and
verification over a separate channel to Bitcoin users. We thus offer users a similar
level of security for Bitcoin as they currently have in online banking.

As mentioned before, a Bitcoin address is directly derived from an ECDSA
public key and anyone having access to the corresponding private key can spend
all Bitcoins stored in this address. Therefore, the only secure way to implement
two-factor authentication is to share the private key and to create transaction
signatures with a two-party signature protocol. Any other solution would require
to store the private key at one place. This place then becomes a single point of
failure. Several Bitcoin service providers offer SMS TAN or one-time-password
two-factor authentication, but in these cases the service provider stores the pri-
vate key and becomes a single point of failure. Bitcoin service providers are
hardly regulated at the moment and the when considering the bankruptcy of
Mt. Gox, it is clear that leaving the security to the service provider is too risky.

For our Bitcoin wallet, we use the modified version of the two-party signature
protocol by MacKenzie and Reiter (2004) as described in Sect. 3.1. This allows
us to share the private key belonging to a Bitcoin address between two different
devices and transactions can be signed without ever recombining the private key.

4.1 Description of the Prototype

Our two-factor wallet consists of a desktop wallet in form of a Java graphical user
interface, and a phone counterpart that is realized as an Android application.
Only the desktop application is a full Bitcoin wallet, which stores and processes
all incoming transactions relevant to the user. Consequently, only the desktop
wallet can display the transaction history and the current balance. The phone
wallet is only required when signing a new transaction. It does not need to



Two-Factor Authentication for the Bitcoin Protocol 165

connect to the Bitcoin network at all, which makes the implementation much
more lightweight. For further details on the design and the structure of the
prototype as well as the full source code, see Mann (2014; 2015). Especially, we
describe there the pairing protocol used by the prototype to initialize a wallet
without using a trusted party.

In Fig. 4, the dataflow when signing a transaction is displayed. When a user
wants to send Bitcoins to another person, he starts by creating a Bitcoin trans-
action with the desktop wallet 1©. When the transaction is ready for signing, the
desktop wallet displays a QR-Code which contains the IP address of the desktop
wallet and the public key for a TLS connection. The desktop ad-hoc generates
the key pair and a corresponding server certificate for the TLS connection. We
did not use a pre-shared key, as this is not supported by most TLS stacks. Note
that the TLS connection has only been added as an additional line of defense
and for privacy reasons. The protocol by MacKenzie and Reiter is also secure
when the phone and the desktop communicate in clear text.

The user now opens the smart phone wallet and scans the QR Code with
the phone’s camera 2©. The smart phone wallet connects to the desktop wallet
via the IP address specified in the QR code. The phone wallet establishes a TLS
connection with the desktop wallet 3©. During the connection setup, the phone
wallet verifies that the public key from the desktop’s certificate matches the
public key in the QR code. This prevents any man-in-the-middle attacks.

Over the secured connection, the phone wallet requests the transaction to sign
from the desktop wallet 4© and after receiving it from the desktop 5© displays
it on the phone’s screen 6©. The user now has the possibility to review the
transaction again to make sure that is has not been modified by a compromised
desktop wallet.

Fig. 4. The desktop and the smart phone GUI after completing a transaction.



166 C. Mann and D. Loebenberger

When the user confirms the transaction on the phone, the phone wallet asks
the desktop wallet to start the two-party signature protocol 7©. The two wallets
then exchange the messages required for the two-party signature protocol over
the TLS connection 8©.

At the end, the desktop wallet holds the correct ECDSA signature for the
transaction. It can now embed the signature into the transaction 9©. Afterwards,
the desktop wallet publishes the now correctly signed transaction to the Bitcoin
network 10©. Figure 5 shows the desktop and the phone wallet after successfully
completing the two-party ECDSA protocol in 8©.

We currently assume that the desktop and the phone wallet are located in the
same, most likely wireless, local area network. Over the IP connection, the two
wallets then establish a TLS channel as described above. Afterwards, the wallets
exchange messages with the help of the Apache Avro serialization protocol over
the TLS channel. To further reduce the attack surface, the two wallets could be
connected via Bluetooth by using the Bluetooth network encapsulation protocol
(BNEP) which allows to establish IP connections over Bluetooth. This only
allows connections between previously paired devices. Therefore, attacks would
become much harder as an attacker could not directly connect to the desktop
wallet any more.

Fig. 5. The desktop GUI (left) and the smart phone GUI (right) after completing a
transaction.

5 Implementation Aspects

As explained in Sect. 2, the transaction fee (which is payed to the miner) is
the difference between the sum of Bitcoins in the transaction inputs and the
sum of Bitcoins in the transaction outputs. The inputs actually only reference



Two-Factor Authentication for the Bitcoin Protocol 167

the outputs of preceding transactions. Consequently, to correctly compute the
fee, one needs access to the preceding transactions. In our case, the phone must
compute the overpay, which is the fee, itself. Otherwise, the desktop can create a
transaction which only contains benign outputs, but spends far too large inputs.
The result would be a large fee for the miner and a financial damage for the
user.

Implementing full Bitcoin network access is possible as wallet software exists
for Android, but would make the phone wallet much more complex. Instead,
in our solution, the phone does not only request the transaction to sign from
the desktop, but also all transactions that are referenced in the inputs of the
transaction to sign. The phone verifies that the hash values of the provided
transactions fit the hash values in the transaction inputs. Now the phone can be
sure that it has the correct transactions and can use the information from these
to compute the overpay in the transaction to sign.

5.1 Runtime Analysis

In general, protocols that use zero-knowledge proofs tend to be quite slow. There-
fore, we have benchmarked two different prototypes: one prototype using the
two-party signature protocol from Sect. 3.1 and a second one using Bitcoin’s
built-in threshold signature support as described in Sect. 3.2. The benchmarks
were performed on a core-i5-2520M notebook running Ubuntu 14.04 with Open-
JDK, and a Nexus 4 smart phone running Android 4.4.4.

During the benchmark, the execution time of each prototype has been mea-
sured for transactions which have one, two or three inputs. The execution time
measured is the time taken by a complete protocol run between the computer
and the phone. The results in Fig. 6 show that the prototype using the two-party
signature protocol achieves acceptable runtime, even though Bitcoin’s built-in
functionality is considerably faster. On the other hand, when using online bank-
ing with SMS TAN the user has to wait at least several seconds for the SMS.
Our execution time is therefore well within the user’s expectations.

1 input 2 inputs 3 inputs

Section 3.1 3.8s 7.4s 11.1s

Section 3.2 0.22s 0.18s 0.25s

1 input 2 inputs 3 inputs

Section 3.1 257 bytes 438 bytes 619 bytes

Section 3.2 370 bytes 696 bytes 1022 bytes

Fig. 6. Left: Protocol runtime. Right: Final size of signed transaction.

As mentioned in Sect. 3.2, Bitcoin’s built-in threshold signature support has
the disadvantage of increasing the transaction size significantly. We have verified
this by recording the size of the resulting transaction during a benchmark. The
result in Fig. 6 shows that the transaction size increases by at least 40 % when
using Bitcoin’s threshold signatures.

It should be noted that a transaction with only three inputs is already larger
than 1000 bytes. Furthermore, larger transactions require a larger transaction



168 C. Mann and D. Loebenberger

fee and have a lower priority to be added to a new block. The priority can be
increased by adding an additional fee. Consequently, the solution using Bitcoin’s
built-in threshold signature support comes with financial costs for the user. In
contrast, our solution is transparent to the Bitcoin network and does not influ-
ence any fees.

6 Future Work

As our implementation is only a prototype, there is still some work to do. Besides
a thorough code review, we identified the following aspects for future work:

Execution Time. Our prototype already achieves an acceptable execution time
when signing a Bitcoin transaction, but there is still some place for improve-
ments. Analyzing the prototype carefully, we found that most of the execution
time is used by modular arithmetic on large integers. To reduce it, one could
employ more efficient methods for integer multiplication, see for example Karat-
suba and Ofman (1963) or Schönhage and Strassen (1971).

Random Numbers. Several versions of Android were shipped with a broken
default pseudorandom generator that has not been correctly seeded on start
up. This allowed an attacker to recover its state, see Kim et al. (2013), and lead
to Android Bitcoin wallets which generated predictable private keys as described
in Klyubin (2013). In a future version of our wallet this should be taken into
account.

Integer Commitment. The zero knowledge proofs make use of the integer com-
mitment scheme by Fujisaki and Okamoto (1997), which requires a RSA modulus
to consist of two safe primes. We have implemented the prime sieve idea from
Wiener (2003) and achieved a great speedup compared to our first trivial imple-
mentation, but on the phone the generation of a safe prime with 2048 bit still
takes several minutes. In Damgard and Fujisaki (2002), a generalization of the
commitment scheme is presented, where the requirement of safe primes has been
relaxed to strong primes, which can be generated more easily, see Gathen and
Shparlinski (2013). It would be nice to implement this.

7 Conclusion

We have shown that one can use the two-party ECDSA signature protocol
adapted from MacKenzie and Reiter (2004) to realize two-factor authentica-
tion for a Bitcoin wallet. As far as we know, we were able to implement the first
fully functional prototype compatible with the Bitcoin production network.

Acknowledgements. We would like to thank Michael Nüsken for various useful com-
ments and Mike Hearn for greatly improving the performance of a first version of the
prototype by suggesting a bouncy castle version with optimized arithmetic on the
curve secp256k1. This work was funded by the B-IT foundation and the state of North
Rhine-Westphalia.



Two-Factor Authentication for the Bitcoin Protocol 169

References

Accredited Standards Committee X9: ANSI X9.62, public key cryptography for the
financial services industry: the elliptic curve digital signature standard (ECDSA).
Technical report, American National Standards Institute, American Bankers Asso-
ciation (2005)

ANSSI: Mécanismes cryptographiques - Règles et recommandations concernant le
choix et le dimensionnement des mécanismes cryptographiques, Rev. 2.03. Agence
nationale de la sécurité des systèmes dinformation (2014). http://www.ssi.gouv.fr/
uploads/2015/01/RGS v-2-0 B1.pdf

Back, A.: Hashcash - a denial of service counter-measure. Technical report (2002).
http://www.hashcash.org/papers/hashcash.pdf

Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: NIST Special Publication 800–
57 - Recommendation for Key Management - Part 1: General (Revision 3). National
Institute of Standards and Technology (2012). http://csrc.nist.gov/publications/
nistpubs/800-57/sp800-57 part1 rev3 general.pdf

Ben-Or, M., Goldwasser, S., Widgerson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC 1988: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM,
New York (1988). ISBN 0-89791-264-0, http://dx.doi.org/10.1145/62212.62213

Bitpay Inc.: Copay: A secure Bitcoin wallet for friends and companies (2014). www.
copay.io

Blum, M., Feldman, P., Micali, S.: Proving security against chosen cyphertext attacks.
In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 256–268. Springer,
Heidelberg (1990)

Certicom Research: SEC 2: recommended elliptic curve domain parameters. Technical
report, Certicom Corporation (2000)

Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990).
http://dx.doi.org/10.1007/0-387-34799-2 25

Damg̊ard, I.B., Fujisaki, E.: A statistically-hiding integer commitment
scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASI-
ACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002).
http://dx.doi.org/10.1007/3-540-36178-2 8

Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular poly-
nomial relations. In: Kaliski Jr, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
16–30. Springer, Heidelberg (1997). http://dx.doi.org/10.1007/BFb0052225

von zur Gathen, J., Shparlinski, I.: Generating safe primes. J. Math. Cryptol. 7(4),
333–365 (2013). ISSN 1862–2984 (Online) 1862–2976 (Print)), http://dx.doi.org/10.
1515/jmc-2013-5011

Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signatures.
In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371. Springer,
Heidelberg (1996). http://dx.doi.org/10.1007/3-540-68339-9 31

Goldfeder, S., Bonneau, J., Felten, E.W., Kroll, J.A., Narayanan, A.: Securing Bitcoin
wallets via threshold signatures (2014). http://www.cs.princeton.edu/∼stevenag/
bitcoin threshold signatures.pdf. Preprint

Goldfeder, S., Gennaro, R., Kalodner, H., Bonneau, J., Kroll, J.A., Felten, E.W.,
Narayanan, A.: Securing Bitcoin wallets via a new DSA/ECDSA threshold sig-
nature scheme (2015). http://www.cs.princeton.edu/∼stevenag/threshold sigs.pdf.
Preprint

http://www.ssi.gouv.fr/uploads/2015/01/RGS_v-2-0_B1.pdf
http://www.ssi.gouv.fr/uploads/2015/01/RGS_v-2-0_B1.pdf
http://www.hashcash.org/papers/hashcash.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://dx.doi.org/10.1145/62212.62213
www.copay.io
www.copay.io
http://dx.doi.org/10.1007/0-387-34799-2_25
http://dx.doi.org/10.1007/3-540-36178-2_8
http://dx.doi.org/10.1007/BFb0052225
http://dx.doi.org/10.1515/jmc-2013-5011
http://dx.doi.org/10.1515/jmc-2013-5011
http://dx.doi.org/10.1007/3-540-68339-9_31
http://www.cs.princeton.edu/~stevenag/bitcoin_threshold_signatures.pdf
http://www.cs.princeton.edu/~stevenag/bitcoin_threshold_signatures.pdf
http://www.cs.princeton.edu/~stevenag/threshold_sigs.pdf


170 C. Mann and D. Loebenberger

Harn, L.: Group-oriented (t, n) threshold digital signature scheme and digital multisig-
nature. IEE Proc. Comput. Digital Techniques 141(5), 307–313 (1994). http://dx.
doi.org/10.1049/ip-cdt:19941293

Hearn, M.: Update on mobile 2-factor wallets (2014). Bitcoin Mailing list at http://
sourceforge.net, http://sourceforge.net/p/bitcoin/mailman/message/33017648/

Ibrahim, M.H., Ali, I.A., Ibrahim, I.I., El-sawi, A.H.: A robust threshold elliptic curve
digital signature providing a new verifiable secret sharing scheme. In: MWCAS03,
vol. 1, pp. 276–280. IEEE Computer Society, Cairo (2003). ISBN 0-7803-8294-3,
ISSN 1548-3746, http://dx.doi.org/10.1109/MWSCAS.2003.1562272

Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata. Sov.
Phys. Doklady 7(7), 595–596 (1963). Translated from Doklady Akademii Nauk SSSR,
vol. 145, No. 2, pp. 293–294, July 1962

Kim, S.H., Han, D., Lee, D.H.: Predictability of android openSSL’s pseudo random
number generator. In: Proceedings of the 2013 ACM SIGSAC Conference on Com-
puter & Communications Security, pp. 659–668. ACM, New York (2013). ISBN:
978-1-4503-2477-9, http://dx.doi.org/10.1145/2508859.2516706

Klyubin, A.: Some SecureRandom Thoughts (2013). http://android-developers.
blogspot.de/2013/08/some-securerandom-thoughts.html

Langford, S.K.: Threshold DSS signatures without a trusted party. In: Coppersmith,
D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 397–409. Springer, Heidelberg (1995).
http://dx.doi.org/10.1007/3-540-44750-4 32

Lipovsky, R.: New Hesperbot targets: Germany and Australia (2013). http://www.
welivesecurity.com/2013/12/10/new-hesperbot-targets-germany-and-australia/

MacKenzie, P., Reiter, M.K.: Two-party generation of DSA signatures. Int. J. Inf.
Secur. 2(3–4), 218–239 (2004). http://dx.doi.org/10.1007/s10207-004-0041-0

Christopher Mann (2014). A prototypic implementation of a two-factor Bitcoin wallet:
Source code. GitHub. https://github.com/ChristopherMann/2FactorWallet

Mann, C.: Two-factor authentication for the Bitcoin protocol. Master thesis,
Mathematisch-Naturwissenschaftliche Fakultät der Rheinischen Friedrich-Wilhelms-
Universität Bonn (2015). https://github.com/ChristopherMann/2FactorWallet/
raw/master/BitcoinTwoFactorAuth.pdf

Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System. Cryptography Mailing
list at metzdowd.com, 9 pages (2008). https://bitcoin.org/bitcoin.pdf

NIST: Federal Information Processing Standards Publication 180–4 - Secure Hash Stan-
dard. National Institute of Standards and Technology (2012). http://csrc.nist.gov/
publications/fips/fips180-4/fips-180-4.pdf

NIST: FIPS 186-4: digital signature standard (DSS).Technical report, Information
Technology Laboratory, NationalInstitute of Standards and Technology (2013)

Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer,
Heidelberg (1999). http://dx.doi.org/10.1007/3-540-48910-X 16

Sancho, D., Hacquebord, F., Link, R.: Finding holes operation emmen-
tal. Technical report, Trend Micro Incorporated (2014). http://housecall.
trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/
wp-finding-holes-operation-emmental.pdf

Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7, 281–
292 (1971)

Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

http://dx.doi.org/10.1049/ip-cdt:19941293
http://dx.doi.org/10.1049/ip-cdt:19941293
http://sourceforge.net
http://sourceforge.net
http://sourceforge.net/p/bitcoin/mailman/message/33017648/
http://dx.doi.org/10.1109/MWSCAS.2003.1562272
http://dx.doi.org/10.1145/2508859.2516706
http://android-developers.blogspot.de/2013/08/some-securerandom-thoughts.html
http://android-developers.blogspot.de/2013/08/some-securerandom-thoughts.html
http://dx.doi.org/10.1007/3-540-44750-4_32
http://www.welivesecurity.com/2013/12/10/new-hesperbot-targets-germany-and-australia/
http://www.welivesecurity.com/2013/12/10/new-hesperbot-targets-germany-and-australia/
http://dx.doi.org/10.1007/s10207-004-0041-0
https://github.com/ChristopherMann/2FactorWallet
https://github.com/ChristopherMann/2FactorWallet/raw/master/BitcoinTwoFactorAuth.pdf
https://github.com/ChristopherMann/2FactorWallet/raw/master/BitcoinTwoFactorAuth.pdf
http://metzdowd.com
https://bitcoin.org/bitcoin.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://dx.doi.org/10.1007/3-540-48910-X_16
http://housecall.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-finding-holes-operation-emmental.pdf
http://housecall.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-finding-holes-operation-emmental.pdf
http://housecall.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-finding-holes-operation-emmental.pdf


Two-Factor Authentication for the Bitcoin Protocol 171

Wang, C.-H., Hwang, T.: (t+1, n) threshold and generalized DSS signatures without a
trusted party. In: Proceedings of the 13th Annual Computer Security Applications
Conference (ACSAC 1997), pp. 221–226. IEEE (1997). ISBN: 0-8186-8274-4, http://
dx.doi.org/10.1109/CSAC.1997.646193

Wiener, M.J.: Safe prime generation with a combined sieve. Cryptology ePrint Archive
2003/186 (2003). http://eprint.iacr.org/2003/186

Wuille, P.: Dealing with malleability. Technical report, Bitcoin Project (2014). https://
github.com/bitcoin/bips/blob/master/bip-0062.mediawiki

http://dx.doi.org/10.1109/CSAC.1997.646193
http://dx.doi.org/10.1109/CSAC.1997.646193
http://eprint.iacr.org/2003/186
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki

	Two-Factor Authentication for the Bitcoin Protocol
	1 Introduction
	2 Bitcoin Protocol
	3 Threshold Signatures
	3.1 Two-Party ECDSA
	3.2 Threshold Signature Support in Bitcoin

	4 Two-Factor Bitcoin Wallets
	4.1 Description of the Prototype

	5 Implementation Aspects
	5.1 Runtime Analysis

	6 Future Work
	7 Conclusion
	References


