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Abstract. Multi-agent Reinforcement Learning (MARL) methods offer
a promising alternative to traditional analytical approaches for the design
of control systems. We review the most important MARL algorithms
from a control perspective focusing on on-line and model-free meth-
ods. We review some of sophisticated developments in the state-of-the-
art of single-agent Reinforcement Learning which may be transferred to
MARL, listing the most important remaining challenges. We also pro-
pose some ideas for future research aiming to overcome some of these
challenges.

1 Introduction

Reinforcement Learning (RL) [37] methods gaining popularity in the area of con-
trol because they allow to build control systems without detailed modeling of
the underlying dynamics, because they learn how to maximize the control objec-
tive by means of interacting with the environment. This is quite an advantage
over compared with traditional analytical control techniques requiring a deatiled
formal model, which may be difficult to construct for complex non-linear sys-
tems. The quality of these approaches rely on the quality of the model itself
and thus, require a good understanding of the problem at hand. In the RL app-
roach, parameter tuning is substituted by iterative adaptation to an stochastic
environment. Some systems (i.e., Multi-component Robotic Systems [13]) are
best approached from a multi-agent perspective in order to better exploit the
computation capabilities and robustness of distributed control systems. Multi-
Agent Reinforcement Learning (MARL) is the extension of single-agent RL to
multi-agent scenarios. MARL methods have already been successfully applied to
several multi-agent control scenarios [17,36,41,43].

2 Reinforcement Learning

2.1 Single-agent Reinforcement Learning

Markov Decision Process. Single-agent RL methods use Markov Decision Proces-
ses (MDPs) to model the interaction between the agent and the environment. An
c© Springer International Publishing Switzerland 2015
K. Jackowski et al. (Eds.): IDEAL 2015, LNCS 9375, pp. 18–25, 2015.
DOI: 10.1007/978-3-319-24834-9 3



Multi-agent Reinforcement Learning for Control Systems 19

MDP < S,A, P,R > is defined by the set of states (S), the set of actions from
which the agent can choose (A), a transition function (P ) that determines state
transitions produced by actions, and a reward function (R) that gives a numerical
value assessing how good a state transition was. S can be a finite set of states (i.e.,
a cell number in a grid-world) or a vector of real values (i.e., the x and y coordi-
nates read from a GPS receiver). The goal of the agent is to learn a policy π that
maximizes the expected return R by means of interacting with the environment.
The state-action value function Qπ (s, a) is the value of taking action a in state s.

Policy learning methods. There are basically three classes of RL methods [7]:
value iteration, policy iteration and policy search methods. Value iteration meth-
ods (such as Q-Learning) generally learn the optimal state-action value-function
Q∗ and then derive the optimal policy. Policy iteration methods usually follow
some policy, evaluate its value by learning V π, and then, aim to improve π. Actor-
critic methods belong to this class: an actor implements a parametrized policy,
a critic learns its value function (i.e., Least-Squares Temporal Difference [6,42]).
Value updates are then fed back to the actor, which can us it to improve its
policy (i.e., Natural Policy Gradient [5]). Finally, policy search methods directly
search on the policy space for the optimal policy that maximizes the expected
return for any possible initial state.

2.2 Multi-agent Reinforcement Learning

Stochastic Games. The interaction model in Multi-agent Reinforcement Learn-
ing (MARL) is the Stochastic Game (SG), that is defined by the number of
agents (n) and the tuple 〈S,A1, . . . An, P,R1, . . . , Rn〉. Each i-th agent chooses
actions from its own local action space Ai and receives its own reward Ri. Multi-
agent systems can be competitive, cooperative or mixed. In fully cooperative
systems, all the agents share the same goals and so, the same reward signals
R1 = R2 = . . . = Rn. MARL algorithms can also be classified depending on
whether they use models of the other agents or not. In this paper, we will focus on
model-free methods because we expect them to scale better to multi-dimensional
control problems.

Distributed Q-Learning (D-QL) [26] is an example of independent learning.
Each agent assumes that the remaining agents will behave optimally thus pro-
jecting the virtual centralized state-action values Q (s,a) (a ∈ A) to its own local
action space Qi (s, a), a ∈ Ai. An instance of the MARL algorithms in which
agents are aware of other agents’ choices, is the Team Q-Learning [28], where
(Team-QL) agents learn the joint state-action Q (s,a). The algorithm uses the
Q-Learning update rule, but using the joint-actions a and a′ instead of a and a′.
This algorithm converges to optimal values under an additional assumption: a
unique optimal action exists in each state. This implicit coordination mechanism
ensures that agents will exploit the Q-function in a coordinated manner. Some
other implicit coordination mechanisms based on heuristics [8,23] or models of
the other agents [30,40] can be found in the literature. MARL methods aware
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of the other agents’ actions eliminates the non-stationarity due to other agents’
policy changes, but then it becomes a more complex problem.

In order to reduce this complexity, it can be assumed that agents need not
coordinate in every state with every other agent, but only with some of them.
Under this assumption, the agents first learn when and which agents to coor-
dinate with, and then use an explicit coordination mechanism [20,24] to select
a joint-action that maximizes the expected return. Coordinated Reinforcement
Learning (Coordinated-RL) [20] builds a Coordination Graph (CG) for each
state that defines with whom agents do need to coordinate. An agent’s local
state-action values thus only depend on its own local action and those taken
by the agents connected to it through the CG. Agents can maximize the global
value using a message-based coordination mechanism. An improved version of
this algorithm based on an edge-based decomposition of the CG instead of an
agent-based decomposition was proposed in [24]. This method scales linearly on
the number of agents. The downside of these methods is having to learn and
store the CG and the additional processing time introduced by the coordination
mechanism. Hierarchical Reinforcement Learning (HRL) is another interesting
approach to reduce the complexity of a task by decomposing it as a hierarchical
structure of subtasks. Single-agent MAXQ [11] allows agents to learn concur-
rently low-level subtasks and higher-level tasks based on these subtasks. This
idea is extended to multi-agent problems in [19]: Cooperative HRL assumes cost-
less communication, and COM-Cooperative HRL considers communication as
part of the problem. A communication level is added to the subtask hierarchy,
so that the agent can learn when to communicate. Decomposing the task into
a hierarchy of subtasks is not always trivial, and the decomposition of the task
itself determines how good the system will approach the optimal solution. This
has led research towards automated decomposition of task, both in single-agent
[22,29] and multi-agent environments [10].

3 Control Applications of MARL

Last years have seen a number of novel MARL applications: traffic light con-
trol [1,4,25,35], robotic hose maneuvering [17], micro-grid control [27], structure
prediction of proteins [9], route-choosing [2], supply chains [43], or management
of the cognitive radio spectrum [41].

Advantages. MARL-based approaches to control systems offer some inherent
advantages over traditional control methods. For example, MARL algorithms
can adapt to changes in the environment thanks to their learning nature. Another
big advantage over analytical approaches is that model-free algorithms do not
require the dynamics of the environment to be fully understood, thus enabling
the control of more complex systems. There is still quite a gap between single-
agent RL and MARL techniques, but we expect more works currently restricted
to the single-agent case to be extended to the multi-agent case in the near future.
An example of this is Multi-objective Reinforcement Learning [12], which aims
to maximize different possibly conflicting objectives at the same time.
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Challenges. We have not found in the literature MARL algorithms able to deal
with continuous state-action spaces [21]. Continuous controllers have been shown
to outperform algorithms with discretized state and actions in general feed-
back control tasks [15]. Several methods have been developed in single-agent RL
paradigm to deal control tasks involving continuous action spaces: actor-critic
learning architectures [5,18,21,32], policy search methods [3] or parametrized
controllers [34]. A lot of effort has been devoted in recent years towards obtaining
efficient policy gradients [5] and data-efficient value estimation methods [6,31].
For a complete review of the state-of-the-art on single-agent RL using VFA, we
refer the reader to [42]. On the other hand, MARL algorithms are mostly based
on Q-Learning, hence they estimate the state-action value. General Value Func-
tion Approximation (VFA) methods can been used to approximate the state-
action value function. This allows continuous states [7], but greedy selection
of the action with the highest value will correspond to the center value of one
feature. This limits the ability of Q-Learning to output continuous action spaces.

Most of the MARL applications to realistic control problems so far found in
the literature are either uncoupled systems of agents operating with no influ-
ence on each other [2,41], or loosely coupled tasks, such as traffic light control
[1,4]. Some loosely coupled problems may be better approached using systems of
unaware agents. Regarding fully-coupled systems in which agents’ actions have
an effect on other agents’ decisions, only a few instances can be found [16,17,25].
This kind of systems require either full observation and learning on the joint
state-action space, which does not scale well to real-world environments. Between
unaware multi-agent systems and learning on the full joint state-action space,
there are alternative approaches, such as exploiting the coordination require-
ments of the task using CG(i.e., Coordinated-RL), or decomposing tasks into
a structure of hierarchical subtasks. Both CGs and task hierarchies can be
designed by hand in small-scale or clearly structured tasks [25], but manual
design is not feasible in more complex or unstructured problems. Some advances
have been done towards automatic learning of Coordination Graphs [10] and
hierarchies of tasks [27], but none is applicable to continuous state or action
spaces. It is not clear either how good these methods will scale to more complex
MARL problems. CG-based algorithms require communication each time step.
A variable-elimination procedure was proposed in [20] to give an exact solu-
tion to the joint-action value maximization process. The number of messages
exchanged at each decision step depends on the topology of the specific CG. In
order to alleviate this problem, two anytime algorithms were proposed in [39]
to approximate the optimal joint-action in a predetermined time: Coordinated
Ascent and Max-Plus. Whether these methods provide an acceptable solution
in complex real-time control scenarios within an acceptable time-frame remains
an open question.

Another important uncontested challenge is learning an initial policy from
scratch in large real-world applications, where it is unaffordable to allow agents
thousands of trials before they can start completing the task (i.e., robotic maneu-
vering tasks [16]). There are several approaches to this problem, all based on
some form of Learning Transfer [38]: agents can be first trained in a simulated
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environment and then allowed to face the real task [14], they can be initialized
resembling some initial policy (i.e., a PID controller) available to the system
designer [18], or agents may be trained to imitate some expert performing the
task [32].

Proposals for Future Research. MARL methods are mostly based on general
heterogeneous Stochastic Games and, thus, they work under very broad assump-
tions. From a control perspective though, one can further assume fully cooper-
ative tasks and homogeneous learning agents. This kind of systems might be
better approached from a distributed point of view. Consider a multiple output
continuous actor-critic architecture: an approximated value function estimated
by the critic and an actor with several VFAs, each representing a different output
of the actor. When an improvement in the value function is detected, the actors
update its policies towards the last action explored. This same idea can be trans-
lated to a multi-agent system in which each agent keeps an instance of the critic
learning the value function and an actor with a subset of the system’s output.
Agents would only require to coordinate exploration and exploitation, which
could be achieved by using consensus [33] to share and update the exploration
parameters using some preset schedules. This learning structure would allow to
use the state-of-the-art in single-agent model-free environments. Full observa-
tion of the state could also be alleviated by deferred updates of the critic/actor:
agents can follow their policies tracking their local actions and yet incomplete
states, and defer the update of the actor and policy until all the state variables
have been received.

4 Conclusions

In this paper, we have reviewed the basics of MARL and some recent works
in the literature of this field applied to control systems. MARL offers some
advantages over traditional analytical control techniques. The most important
is that the system designer needs not fully understand or have an accurate
model of the system. MARL-based methods also pose some interesting challenges
when applied to real-world control problems. Most of the algorithms have been
developed with small environments in mind. In this respect, we point out that
the main gap between single-agent and MARL algorithms to date is the ability
to deal with continuous state and action spaces.
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