LNCS 9375

Konrad Jackowski - Robert Burduk
Krzysztof Walkowiak - Michal Wozniak
Hujun Yin (Eds.)

Intelligent

Data Engineering and
Automated Learning -
IDEAL 2015

16th International Conference
Wroclaw, Poland, October 14-16, 2015
Proceedings

@ Springer




Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Ziirich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

9375



More information about this series at http://www.springer.com/series/7409


http://www.springer.com/series/7409

Konrad Jackowski - Robert Burduk
Krzysztof Walkowiak - Michat Wozniak
Hujun Yin (Eds.)

Intelligent
Data Engineering and

Automated Learning —
EAL 2015

16th International Conference
Wroclaw, Poland, October 14-16, 2015
Proceedings

@ Springer



Editors
Konrad Jackowski

Wroclaw University of Technology
Wroclaw

Michat WoZniak
Wroclaw University of Technology
Wroclaw

Poland Poland

Robert Burduk Hujun Yin

Wroclaw University of Technology School of Electrical and Electronic

Wroclaw Engineering

Poland University of Manchester
Manchest:

Krzysztof Walkowiak UIz;nc estet

Wroclaw University of Technology

Wroclaw

Poland

ISSN 0302-9743

Lecture Notes in Computer Science
ISBN 978-3-319-24833-2

DOI 10.1007/978-3-319-24834-9

ISSN 1611-3349 (electronic)

ISBN 978-3-319-24834-9  (eBook)

Library of Congress Control Number: 2015950023
LNCS Sublibrary: SL3 — Information Systems and Applications, incl. Internet/Web, and HCI

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(Www.springer.com)



Preface

We are living in a digital world surrounded by various data from numerous sources.
Each enterprise collects huge amounts of data; however, manual analysis of these data
is virtually impossible. Therefore, one of the timely topics of contemporary computer
science is the analytics of big data described by the so-called 4Vs (volume, velocity,
variety, and veracity). Nevertheless, we should also think about the fifth and most
important V (value), because having access to big data is important, but unless we can
turn it into value, it is useless.

The IDEAL conference attracts international experts, researchers, leading aca-
demics, practitioners and industrialists from the fields of machine learning, computa-
tional intelligence, data mining, knowledge management, biology, neuroscience,
bio-inspired systems and agents, and distributed systems. It has enjoyed a vibrant and
successful history in the last 17 years and over 12 locations in eight different countries.
It continues to evolve to embrace emerging topics and exciting trends, especially in this
big data era.

This year IDEAL took place in the vibrant city of Wroclaw, Poland. There were
about 127 submissions, which were rigorously peer-reviewed by the Program Com-
mittee members. Only the papers judged to be of the highest quality were accepted and
included in these proceedings.

This volume contains over 60 papers accepted and presented at the 16th Interna-
tional Conference on Intelligent Data Engineering and Automated Learning (IDEAL
2015), held during October 14-16, 2015, in Wroclaw, Poland. These papers provide a
valuable collection of the latest research outcomes in data engineering and automated
learning, from methodologies, frameworks and techniques to applications. In addition
to various topics such as evolutionary algorithms, neural networks, probabilistic
modeling, swarm intelligent, multi-objective optimization, and practical applications in
regression, classification, clustering, biological data processing, text processing, and
video analysis, IDEAL 2015 also featured a number of special sessions on several
emerging topics such as computational intelligence for optimization of communication
networks, discovering knowledge from data, simulation-driven DES-like modeling and
performance evaluation, and intelligent applications in real-world problems.

IDEAL 2015 enjoyed outstanding keynote speeches by distinguished guest speak-
ers: Prof. Manuel Grana of the University of the Basque Country (Spain), Prof. Leszek
Rutkowski of Czestochowa University of Technology (Poland), Prof. Vaclav Snasel of
VSB-Technical University of Ostrava (Czech Republic), Prof. Jerzy Stefanowski of
Poznan University of Technology (Poland), and Prof. Xin Yao of the University of
Birmingham (UK).

We would like to thank all the people who devoted so much time and effort to the
successful running of the conference, in particular the members of the Program
Committee and reviewers, as well as the authors who contributed to the conference. We
are also very grateful to the hard work by the local organizing team at the Department



VI Preface

of Systems and Computer Networks, Faculty of Electronics, Wroclaw University of
Technology, especially Dr. Konrad Jackowski and Dr. Robert Burduk, for local
arrangements, as well as the help of the University of Manchester in various stages. The
continued support and collaboration from Springer, in particular from Alfred Hoffman
and Anna Kramer, are also greatly appreciated.

July 2015 Konrad Jackowski
Robert Burduk

Krzysztof Walkowiak

Michatl Wozniak

Hujun Yin
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Data Streams Fusion by Frequent Correlations
Mining
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Abstract. Applications acquiring data from multiple sensors have to
properly refer data to observables. On-line classification and clustering as
basic tools for performing information fusion are computationally viable.
However, they poorly exploit temporal relationships in data as patterns
mining methods can do. Hence, this paper introduces a new algorithm
for the correlations mining in the proposed graph-stream data structure.
It can iteratively find relationships in complex data, even if they are
partially unsynchronized or disturbed. Retrieved patterns (traces) can
be used directly to fuse multi-perspective observations. The algorithm’s
evaluation was conducted during experiments on artificial data sets while
its computational efficiency and results quality were measured.

Keywords: Information fusion - Correlations mining - Complex data

1 Introduction

Once used in big industry and military, multi-sensors installations are basic tools
for providing necessary data for automated recognition and control software. Low
prices and simplified connectivity caused that they become deployed in many
commodities used today by society. Recent explosion of smart devices inevitably
changed our landscape to this degree that people begun talking about Internet
of Things to describe it. This environment produces huge amount of data that
cannot be stored due to their sizes and volatility since observed processes are
usually traced by many sensors at once. However, they are providing multi-angle
perspective and heterogeneous information required for current software systems
effectiveness.

Bad synchronization of information acquired from sensors may hinder the
processing quality. Even, if clock of each sensor is synchronized perfectly, var-
ious other factors may contribute to distortions. Some sensors are constructed
physically in a way that they can detect an event only after some delay e.g., some
digital thermometers. In practice, everything that has some inertia inside may
contribute to delay. Synchronization can be also violated by various intermediate
buffers and transmission technologies rescheduling data e.g., IP network. Lack of
synchronization may lead to situation where a new pattern and its support are
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similar but not literally the same. Hence, a detection of clear causal relationship
in data become difficult.

A method introduced in this paper refers to above concerns. It contributes
to the state of art in following areas:

— It proposes a new data structure encapsulating information acquired by many
sensors from various angles or a single sensor observing complex process.

— It provides a heuristic algorithm for the mining frequent correlations in data
addressing problems with synchronization. Found patterns can be applied to
fuse or compress multiple data streams. The proposed data structure and
algorithm are new according to author’s knowledge.

— This algorithm has “forgetting” capability and can be used in the on-line
processing. However, greater performance is usually achievable at cost of lower
results quality.

This paper runs as follows. Following section describes the related state of art.
Then, the graph-stream data structure and the problem of fusion are introduced.
Afterwards, the algorithm for finding bindings between streams is described and
evaluated with conclusions at the end.

2 Related Works

A lot of effort is currently put to use on-line classification and clustering methods
in the data fusion e.g., [2,6]. Classifiers give a possibility to recognize parts of
streams that are related. However, they rely on learned knowledge during the
processing. On the other hand, clustering algorithms poorly recognize inter-
temporal dependencies and expect well synchronized data.

Fortunately, there are algorithms related to the sequential patterns mining
that can mine temporal dependencies e.g., [1,8,9]. However, algorithms from
this group are often vulnerable on synchronization errors. Their sensitivity on
the data order comes from the fact that they find patters by elicitation of sup-
ported combinations of observations. Therefore, even a simple swap of data in
the sequence order causes that new subsequence appears and the support for
existing patterns drops.

It is particular important in the multi-sensor environment. There, a collapse
of multiple data streams into a single one may lead to unpredictable order of
elements. A simple way to resolve the issue relies on converting sequences within
the processing window to sets [7].

The concept of processing introduced in this paper extends above approach.
Instead of using the set perspective within the processing window, this approach
introduces a graph-streams data structure as the representation. It allows for
causal binding and separation of information acquired from observations of many
interplaying subprocesses. The proposed algorithm can mine hidden correlations
conveyed by the structure profiting from the better context representation.

Proposed approach also takes some inspirations from research on time series
processing [4], approximate string matching [5] and multiple strings alignment [3].
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3 Problem Definition

Let’s define A as set of heterogeneous attributes. Then, node ny,, . i(Pts, Ai) €
N, where A; C A describes an event acquired at time-stamp p;s. Directed edge
ei,j(ni,mj) € E connects n;,n; € N and represents causality relation.

The graph-stream uses distinct types of nodes to describe static and dynamic
properties of observed objects:

— Interaction node ng;(pis, Ai) € N describes incident where subprocesses
mutually interact (exchanging information). It has only the time-stamp.

— State node ng;(ps, A;) € N represents a boundary state of the episode just
after its creation or deletion. It may occur before or after interaction.

— Transformation node nr;(ps, Ai) € N denotes indigenous alteration of the
subprocess (in absence of external influences).

Attributes can be freely distributed between state and transformation nodes.
However, nodes must be non-empty.

Nodes order is restricted by constraints. An episode s € S is a sequence
of transformation nodes beginning and ending with state nodes (creation and
deletion nodes). These nodes are connected by single edges to form a list of sub-
sequent events. Episode represents a performance of a subprocess in some period.
Further, interaction nodes join input to output episodes by edges according to
relation 1..N-1..N. The relation 1-1 may represent a suspension of subprocess.

Considering above, the graph-stream Ggr (N, E) is directed acyclic graph
that can be defined as a set of episodes S connected by interaction nodes accord-
ing to above constrains imposed on edges (Fig. 1).

Let’s now define the problem of the graph-streams fusion for the set
of graph-streams. It is assumed that all graph-streams nodes are ordered
chronologically according to their time-stamps. Attribute address is a tuple of
properties (gidx, sidx, nidz, aidz, pis), where fields identifies appropriately the
graph-stream, episode, node, attribute and time-stamp. A binding pair con-
nects two attributes a1, as € A for which ay.gidx # as.gidx U ay.sidx # ag.sidx
by undirected edge. Creation of binding pairs for graph-streams undergo some
limitations. Primarily, the binding pair is redundant if it connects nodes that are
connected by a directed sequence of edges (are causally dependent). Therefore,
the pair cannot be created inside the same episode or between causally depen-
dent episodes. Further, two binding pairs are adjacent if at least one attribute
address in both pairs is the same. Thereafter, two pairs a,b € A that are binding
the same pair of episodes (the same pairs if gide and sidz) are causally excluding
if the following statement is not true (sgn(ai.pts —b1.pes) = sgn(as.prs — ba.pis))
U (sgn(ay.pes —ba.pts) = sgn(az.pes —b1.pes)). It means that two following events
observed by two different sensors must be registered in the same order. Then,
trace R; € R is a set of non-adjacent, non-redundant and non-causally exclud-
ing binding pairs. Finally, a pair of traces overlaps if their common subset of
pairs is non-empty.

A binding pair b supports another one a if they bind different episodes’
pairs ({a1.gidx,ay.sidx, as.gidx, ag.sidx) # (bi.gidz, by .sidz, be.gidz, by.sidr)),
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Fig. 1. Graph-stream data structure (top) and example binding pairs joining episodes
(bottom)

have the same pairs of attributes ({a;.aidx, as.aidx) # by. (by.aidz,be.aidx)) and
similarity between values is below thresholds related to attributes (o(al.value,
bl.value) < O 41 U o(a2.value, b2.value) < O 42). A trace supports (a supporter)
another one if all binding pairs of the supporter support in the same order binding
pairs of supported trace. The order preservation is crucial because supporter
must be causally equivalent to supported trace. Moreover, there is unambiguous
(1:1) mapping of supporter episodes to supported trace episodes. A proper
support of the trace is a maximum number of non-overlapping supporters.
Score of the trace scorer(R;, t1,t2) is its size | R| multiplied by its proper support
supp(R) and standard deviation from time-stamp differences between nodes of
binding pairs within given time frame [t1, ¢o].

Hence, the problem of the graph-streams fusion can be defined as
finding a set of non-overlapping traces maximizing the scoreg. The maximization
should be considered globally. However, for all practical purposes it is feasible
only locally within specified processing window due to costs. In some sense, this
problem is similar to the data compression. The difference lies in the fact, that
traces with the maximum score are used only once to bind graph-streams while
the compression requires repetitions providing the greatest reduction of size.

So defined exploration problem has gigantic search space. Let’s consider a
simple case with ¢ parallel episodes containing j nodes each and each node has
k different attributes. A number of connections between episodes is equal to the
number of edges in the complete graph m = ((i * (¢ — 1))/2). Then bindings
pairs are [ = (j * k)2 * m, what leads to the number of possible traces in order
of 2'. Hence, like for the problem of multiple strings alignment the complexity
grows exponentially to the parallel episodes count and lengths. Fortunately, the
decomposition, proper data filtering and support constraint can reduce it to



Data Streams Fusion by Frequent Correlations Mining 5

more realistic sizes facilitating the mining. Nevertheless, this analysis suggests
that any extensive breadth-first search strategies applied without pruning are
deemed to failure.

4 Fusion Algorithm

Main loop of the fusion algorithm’s is presented on Algorithm 1. The algorithm
iteratively mines new traces from acquired episodes moved to S. Found non-
overlapping traces are added to winners list. It becomes integrated with the
archive, if some remembered traces left beyond the scope of the processing win-
dow W (shifted to process new episodes).

Algorithm 1. The graph—streams fusion algorithm cycle

Data: Set of graph—streams G S, processing window W, set of episodes S,
processing parameters P
Result: Updated set of traces TR for fusion
if S.newEpisodesArrived() then
EP = S.getNewFEpisodes
W.shiftWindow(EP)
T = GS.findTraces(T, W, P)
T R.update(T, W)
return

The findTraces procedure is the most important for the processing because it
mines traces. It begins from analysis of attributes values to determine similarity
thresholds required for the support counting. Then, it does the enumeration of
binding pairs for episodes in the considered processing window and counts sup-
port for them. In this phase, it finds the pairs within specified matching window
relevant for each GS node alone. This matching window’s size depends on differ-
ence of nodes time-stamps and sequential distance. Such step filters out binding
pairs whose constituents are chronologically or sequentially distant. For each new
pair, the algorithm finds supporting binding pairs for episodes available in the
history. Pairs without support are removed because represented relationship is
not acknowledged in the history. A limited subset of the top supported binding
pairs between each pair of episodes is selected as seeds (initial traces’ projec-
tions) for the mining process. Each projection contains set of binding pairs and
their supporting traces.

During the mining, the algorithm extends projections. It maintains popula-
tion of projections ordered according to their sizes (number of supported binding
pairs). A projection is extended always by a single binding pair per iteration.
However, it can produce many children with different extending pairs (what
implements the breadth-first search tuned by parameter). Produced children are
larger thus they are stored in higher layer of child population. In the following
processing cycle they will be further extended if it would be feasible. After each
cycle, the old population of projections is replaced by the child one.
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Fig. 2. Duration of mining phases (top) and obtained results (bottom)

If the first layer of the population become empty (it contains projections of
the size one), then new projection are created from seeds. Seeds are converted to
projections in round robin manner giving an equal chance for all pairs of episodes
to develop related traces. If the set of seeds become empty then algorithm again
finds new seeds for pairs of recently added episodes (if such have been already
added).

Next cycle begin when all projections from population have been processed
creating a subsequent one. Cycles end when population and seeds set become
empty (no extensions possible and no new episodes available).

If the projection cannot be extended (no available extension or the processing
window was moved forward), then it is put to the winner list of non-overlapping
traces. Overlapping traces with lower scores are swapped out from the winner
list after this operation.

The projection is extended together with supporting traces. Binding pairs
that are merged to supporters can significantly enlarge a set of supporters for
derived larger projection. This impact can be reduced by pruning of extended
supporters. Therefore, the current algorithm implements a strategy of merging
a supporting binding pair that is matching and chronologically the closest. After
supporters extension, the proper support of child is the same or less than those
of the parent (it obeys Apriori Rule).

Proposed algorithm generates projections independently on input availability.
If new episodes are not delivered, then it develops older projections making them
larger.

5 Experimental Evaluation

Experiments have been conducted on synthetic data obtained from the gener-
ator. Generator simulated three separated subprocesses interacting mutually in
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periodic manner. Thus, they generated episodes containing distinct values and
an interaction event for every fixed period. Each episode had 5 nodes, where

each node had 4 attributes.

Table 1. Evaluation of clustering results and the processing times (include evaluations)

Result Experiments

Generator per event pause [ms]|500 500 500 100 500 1000
Traces extended per cycle 500 500 100 500 500 500
Pop. layer maximum size 5 10 5 5 5 5
Breadth-first fork per iter 2 1 1 1 1 1

Tot. attributes phase cost [ms] |323.27 332.21 361.20 259.66 317.10 319.40
Tot. pairs creation cost [ms] 76895.99 67291.65 |66938.89 |70245.87 |75606.26 |68590.09
Tot. traces extension cost [ms] [432913.98|402524.93267797.83/209174.12|363112.27|531615.41

Traces winner set size 12 36 49 11 18 18
Total support 149 435 850 86 157 159
Total score 4823.02 |4795.29 |17950.20 |9976.01 15834 14524
Alg. Cycles 15 35 95 13 21 30
Projections generated 3266 16500 9096 5148 8538 12636
Pairs generated 74976 74976 74688 62688 71904 70368

Performance experiments were conducted on data stream delivering 2400
events. Results are shown on Fig.2. Horizontal axis counts processing cycles.
During each cycle the algorithm extended 50 traces’ projections. Upper plot
indicates that the processing costs depend mainly on the traces’ extension phase.
The mining process receives new episodes until its 280 cycle. It can be observed
in a sudden drop in binding pairs creation cost (and also suspension of their
production on a plot below). After that, it used following cycles for extend-
ing remaining population of projections what raised the traces’ extension time.
Finally, the seeds set and the population become empty. That has flattened all
processing costs, signaling the idle state. On the bottom of Fig.2, it can be
observed that total score grows only to some degree. It indicates the longest and
the best supported traces possible to find by the proposed algorithm. A bottom
right plot illustrates how found traces were moved from the winning set to the
archive (traces history) as the processing window was shifting. The archive con-
tains complete history of non-overlapping and supported traces ready for the
fusion.

Experiments measuring quality were conducted on streams containing 800
events (147 complete episodes, 49 hidden traces). Obtained results delivers
Table 1 indicating that the breadth-first search during traces’ extension phase
significantly impaired results. Then, the algorithm wasted iterations on ”shal-
low” searching of the solutions space providing short traces. Results suggest also
that the algorithm can be sensitive on the parametrization and the input data
rate. Optimal results were obtained at experiment described in the third column
(all hidden traces were correctly discovered).
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6 Conclusions

The proposed data structure can contain representation of information about
the complex process that does not disturb the causal context of events. It can be
very helpful when observations from multiple sensors could be distorted leading
to synchronization errors. The proposed algorithm is a heuristic that can be used
to find frequent correlations (traces) in so represented data. Experiments shown
that it is capable to successfully find all hidden traces for example artificial
data set. However, the proposed algorithmic solution appears to be sensitive on
some mining parameters and the data input rate. Hence, an improvement of its
robustness is still a matter of the following research.

This paper is a result of the project financed by National Science Centre in
Poland grant no. DEC-2011/03/D/ST6/01621.
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Abstract. The increase of the number of web pages prompts for
improvement of the search engines. One such improvement can be by
specifying the desired web genre of the result web pages. This opens
the need for web genre prediction based on the information on the web
page. Typically, this task is addressed as multi-class classification, with
some recent studies advocating the use of multi-label classification. In
this paper, we propose to exploit the web genres labels by construct-
ing a hierarchy of web genres and then use methods for hierarchical
multi-label classification to boost the predictive performance. We use
two methods for hierarchy construction: expert-based and data-driven.
The evaluation on a benchmark dataset (20-Genre collection corpus)
reveals that using a hierarchy of web genres significantly improves the
predictive performance of the classifiers and that the data-driven hierar-
chy yields similar performance as the expert-driven with the added value
that it was obtained automatically and fast.

Keywords: Web genre classification - Hierarchy construction
Hierarchical multi-label classification

1 Introduction

There is an increasing need for new ways of searching for desired web pages
on the Internet (in April 2015 there were 9.4-10% websites — http://www.
internetlivestats.com). Typically, searching is performed by typing keywords in
a search engine that returns web pages of a topic defined by those keywords.
The user can, however, obtain more precise results if web page genre is specified
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in addition to the keywords. Web genre represents form and function of a web
page thus enabling a user to find a “Scientific” paper about the topic of text
mining.

A web page is a complex document that can share conventions of several
genres or contain parts from different genres. While this is recognized in the web
genre classification community, state-of-the-art genre classifier implementations
still attribute a single genre to a web page from a set of predefined genre labels
(i.e., address the task as multi-class classification). However, a line of research
[1-3] advocates that multi-label classification (MLC) scheme is more suitable for
capturing the web page complexity. The rationale is that since several genres are
easily combined in a single web page, such hybrid forms thus require attribution
of multiple genre labels. For example, a story for children will belong to both
“Childrens” and “Prose fiction” genres. Furthermore, web genres naturally form
a hierarchy of genres. For example, “Prose fiction” is a type of “Fiction”. Afore-
mentioned properties of the web genre classification can be easily mapped to the
machine learning task of hierarchical multi-label classification (HMC). HMC is
a variant of classification, where a single example may belong to multiple classes
at the same time and the classes are organized in the form of a hierarchy. An
example that belongs to some class ¢ automatically belongs to all super-classes
of ¢. This is called the hierarchical constraint.

Although it can be easily conceived that the task of web genre classification
can be mapped to HMC, the hierarchical and multi-label structure of web gen-
res has not yet been explored. There are two major obstacles for this: lack of
a comprehensive genre taxonomy with a controlled vocabulary and meaningful
relations between genres and web-page-based corpora labelled with such a tax-
onomy [4]. In addition to these, from a machine learning point of view, methods
that are able to fully exploit the complexity of such data started appearing only
recently and have not yet gained much visibility (see [5,6]).

In this work, we aim to address these obstacles. First of all, we propose a
hierarchy of web genres that is constructed by an expert and propose to use
methods for generating hierarchies using the available data. The use of data-
driven methods would bypass the complex process of hierarchy construction by
experts: it is difficult (if at all possible) to construct a single hierarchy that
would be acceptable for all of the experts. Second, we take a benchmark dataset
for genre classification (from [1]) and convert it into a HMC dataset. Finally,
we investigate the influence of the hierarchy of web genres on the predictive
performance of the predictive models.

For accurately measuring the contribution of the hierarchy and reducing the
model bias, we need to consider a predictive modelling method that is able to
construct models for both MLC (predicting multiple web genres simultaneously
without using a hierarchy of genres) and HMC(predicting multiple web gen-
res simultaneously and expoliting a hierarchy of genres). Such methodology is
offered with the predictive clustering trees (PCTs) [6]. PCTs can be seen as a
generalization of decision trees towards the task of predicting structured outputs,
including the tasks of MLC and HMC.
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2 Hierarchical Web Genres Data

State-of-the-art web genre classification approaches mostly deal with feature
construction and use benchmark 7-Web and KI-04 multi-class corpora to test
the feature sets. The two corpora focus on a set of web genres that are at
the same level of hierarchy [3] — experiments in [2] indicated that a mix of
genres from different levels may significantly deteriorate multi-class classifier’s
predictive performance. In a MLC setting, typically used corpus is the 20-Genre
Collection benchmark corpus from our previous work [1]. A hierarchical (non
multi-label) corpus is presented in [7]: An expert constructed a two-level tree-
graph hierarchy composed of 7 top-level and 32 leaf nodes.

In this work, we use the dataset from [1]. It is constructed from 20-Genre Col-
lection corpus and is composed of 2,491 features and 1,539 instances/web pages
in English. The features are tailored to cover the different web genre aspects: con-
tent (e.g., function words), linguistic form (e.g., part-of-speech trigrams), visual
form (e.g., HTML tags) and the context of a web page (e.g., hyperlinks to the
same domain). All features, except those pertaining to URL (e.g., appearance
of the word blog in a web page URL), are expressed as ratios to eliminate the
influence of the page length. The average number of genre labels per page is 1.34.
We then converted this dataset to a HMC dataset by expert- and data- driven
hierarchy construction methods. We would like to note that the constructed
hierarchies are tree-shaped.

Expert-driven hierarchy construction. Expert-based hierarchy was con-
structed (Fig.1) by grouping web genres. To this end, we consulted the Web
Genre Wiki (http://www.webgenrewiki.org) — it contains results of experts’
efforts to construct an unified web genre hierarchy.

Data-driven hierarchy construction. When we build the hierarchy over the
label space, there is only one constraint that we should take care of: the original
MLC task should be defined by the leaves of the label hierarchy. In particular, the
labels from the original MLC problem represent the leaves of the tree hierarchy,
while the labels that represent the internal nodes of the tree hierarchy are so-
called meta-labels (that model the correlation among the original labels).

In [8], we investigated the use of label hierarchies in multi-label classification,
constructed in a data-driven manner. We consider flat label-sets and construct
label hierarchies from the label sets that appear in the annotations of the training

ot information > Csdentic > |

Fig. 1. Web genre hierarchy constructed by an expert.
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data by using clustering approaches based on balanced k-means clustering [9],
agglomerative clustering with single and complete linkage [10], and clustering
performed with PCTs. Multi-branch hierarchy (defined by balanced k-means
clustering) appears much more suitable for the global HMC approach (PCTs for
HMC) as compared to the binary hierarchies defined by agglomerative cluster-
ing with single and complete linkage and PCTs. In this work, for deriving the
hierarchy of the (original) MLC problem, we employ balanced k-means.

3 Predictive Modelling for Genre Classification

We present the methodology used to construct predictive models for the task of
genre classification using PCTs. We first present general algorithm for construct-
ing PCTs. Next, we otuline the specific PCTs able to predict all of the genres
simultaneously but ignore the hierarchical information (i.e., address the task of
genre prediction as a multi-label classification task). Furthermore, we give the
PCTs able to predict all of the genres simultaneously and exploit the hierarchy
information (i.e., address the task of genre prediction as a HMC task).

General algorithm for PCTs. The Predictive Clustering Trees (PCTs) frame-
work views a decision tree as a hierarchy of clusters: the top-node corresponds
to one cluster containing all data, which is recursively partitioned into smaller
clusters while moving down the tree. The PCT framework is implemented in the
CLUS system [6] — available for download at http://clus.sourceforge.net.

PCTs are induced with a standard top-down induction of decision trees
(TDIDT) algorithm. It takes as input a set of examples and outputs a tree.
The heuristic that is used for selecting the tests is the reduction in variance
caused by the partitioning of the instances corresponding to the tests. By max-
imizing the variance reduction, the cluster homogeneity is maximized and the
predictive performance is improved. The main difference between the algorithm
for learning PCTs and a standard decision tree learner is that the former con-
siders the variance function and the prototype function (that computes a label
for each leaf) as parameters that can be instantiated for a given learning task.
PCTs have been instantiated for both MLC [6,11] and HMC [12]. A detailed
computational complexity analysis of PCTs is presented in [6].

PCTs for MLC. These can be considered as PCTs that are able to predict
multiple binary (and thus discrete) targets simultaneously. Therefore, the vari-
ance function for the PCTs for MLC is computed as the sum of the Gini indices
of the target variables, i.e., Var(E) = ZiT:1 Gini(E, Y;). The prototype func-
tion returns a vector of probabilities that an instance belongs to a given class for
each target variable. The most probable (majority) class value for each target
can then be calculated by applying a threshold on these probabilities.

PCTs for HMC. The variance and prototype for PCTs for the HMC are
defined as follows. First, the set of labels of each example is represented as a
vector with binary components; the ¢’th component of the vector is 1 if the
example belongs to class ¢; and 0 otherwise. The variance of a set of examples F
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is defined as the average squared distance between each example’s class vector
(L;) and the set’s mean class vector (L): Var(E) = \%I DR d(L;,L)2.

In the HMC context, the similarity at higher levels of the hierarchy is more
important than the similarity at lower levels. This is reflected in the distance
measure used in the above formula, which is a weighted Euclidean distance:

d(Ly, Ly) = \/Zz qw(e) - (L1 — L ;)?, where L, is the I*h component of the
class vector L; of an instance E;, |L| is the size of the class vector, and the class
weights w(c) decrease with the depth of the class in the hierarchy. More precisely,
w(c) = wp - w(p(c)), where p(c) denotes the parent of class ¢ and 0 < wy < 1).
In the case of HMC, the mean L of the class vectors of the examples in the leaf
is stored as a prediction. Note that the value for the i** component of L can be
interpreted as the probability that an example arriving at the given leaf belongs
to class ¢;. The prediction for an example that arrives at the leaf can be obtained
by applying a user defined threshold 7 to the probability. Moreover, when a PCT
makes a prediction, it preserves the hierarchy constraint (the predictions comply
with the parent-child relationships from the hierarchy).

4 Experimental Design

The comparison of the methods was performed using the CLUS system for pre-
dictive clustering implemented in Java. We constructed predictive models cor-
responding to the two types of modelling tasks, as described in the previous
section: multi-label classification (MLC-one model for all of the leaf labels, with-
out using the hierarchy) and hierarchical multi-label classification (HMC-one
model for all of the labels by using the hierarchy). For each modeling task, we
constructed single tree models.

We used F'-test pruning to ensure that the produced models are not overfitted
to the training data and have better predictive performance [12]. The exact
Fisher test is used to check whether a given split/test in an internal node of the
tree results in a statistically significant reduction in variance. If there is no such
split/test, the node is converted to a leaf. A significance level is selected from the
values 0.125, 0.1, 0.05, 0.01, 0.005 and 0.001 to optimize predictive performance
by using internal 3-fold cross validation.

The balanced k-means clustering method that is used for deriving the label
hierarchies, requires to be configured the number of clusters k. For this parame-
ter, three different values (2, 3 and 4) were considered [8].

The performance of the predictive models was evaluated using 3-fold cross-
validation (as in the study that published the data [1]). We evaluate the predic-
tive performance of the models on the leaf labels in the target hierarchy. In this
way, we measure more precisely the influence of the inclusion of the hierarchies
in the learning process on the predictive performance of the models.

We used 16 evaluation measures described in detail in [11]. We used six
example-based evaluation measures (Hamming loss, accuracy, precision, recall,
Fy score and subset accuracy) and six label-based evaluation measures (micro
precision, micro recall, micro Fy, macro precision, macro recall and macro



14 G. Madjarov et al.

F1). These evaluation measures require predictions stating that a given label
is present or not (binary 1/0 predictions). However, most predictive models
predict a numerical value for each label and the label is predicted as present
if that numerical value exceeds some pre-defined threshold 7. To this end, we
applied a threshold calibration method by choosing the threshold that minimizes
the difference in label cardinality between the training data and the predictions
for the test data. In particular, values from 0 to 1 with step 0.05 for 7 were
considered.

5 Results and Discussion

In this section, we present the results from the experimental evaluation. The
evaluation aims to answer three questions: (1) Which data-driven hierarchy con-
struction method yields hierarchy of genres with best performance? (2) Does
constructing a hierarchy improves the predictive performance? and (3) Does
constructing a data-driven hierarchy yields satisfactory results when compared
with expert-constructed hierarchy?

For answering question (1), we compare the performance of three different
hierarchies obtained with varying the value of k£ in the balanced k-means algo-
rithm. For question (2), we compare the performance of the models that exploit
the hierarchy information (HMC) with the performance of the flat classification
models (MLC). Finally, for addressing question (3), we compare the performance
obtained with the expert hierarchy and the data-driven hierarchy.

Table 1 shows the predictive performance of the compared methods. To begin
with, the results for the three hierarchies constructed data-driven methods show
that the best hierarchy is the one obtained with k set to 4. This reveals that
multi-branch hierarchy is more suitable for this domain. Hence, we select this
hierarchy for further comparison. Next, we compare the performance of the hier-
archical model with the one of the flat classification model. The results clearly
show that using a hierarchy of genre labels significantly improve the performance
over using the flat genre labels. Moreover, the improvement in performance is
across all of the evaluation measures.

Furthermore, we compare the performance of the models obtained with the
expert hierarchy and the data-driven hierarchy. We can see that these models

Table 1. The performance of the different approaches in terms of the label, example
and ranking based evaluation measures.

HammingLoss
Accuracy
Precision
Recall
Fmeasure
SubsetAccuracy
MicroPrecision
MicroRecall
MicroF1
MacroPrecision
MacroRecall
MacroF1
OneError
Coverage
RankingLoss
AvgPrecision

HMC - manual hiear. 0.094 0.276 0.327 0.341 0.334 0.172 0.31

e
w
[

0.32 0.424 0.296 0.297 0.643 5.561 0.238 0.47

HMC - BkM (k=4) 0.081 0.261 0.31 0.3 0.305 0.177 0.368 0.291 0.325 0.368 0.262 0.284 0.635 5.435 0.232 0.475
HMC - BkM (k=3) 0.09 0.223 0.273 0.272 0.273 0.131 0.301 0.263 0.281 0.328 0.212 0.211 0.677 5.878 0.254 0.44
HMC - BkM (k=2) 0.084 0.206 0.247 0.247 0.247 0.127 0.328 0.24 0.277 0.361 0.205 0.227 0.682 5.956 0.259 0.433

MLC 0.111 0.136 0.172 0.165 0.168 0.073 0.165 0.163 0.164 0.063 0.1 0.065 0.83 7.955 0.36 0.317
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Fig. 2. Web genre hierarchy constructed by balanced k-means algorithm (for k=4).

have relatively similar predictive performance — each of the models is better than
the other according to 8 evaluation measures. It is worth mentioning that the
data-driven hierarchy is better on the ranking-based evaluation measures (the
last four columns in Table 1). This means that by improving the threshold selec-
tion procedure the other evaluation measures will further improve. Neverthe-
less, even with the results as they are, they convey an important message: The
tedious, laborious and expensive method of hierarchy construction by experts
can be replaced with a cheap, automatic, fast, data-driven hierarchy construc-
tion method without any loss in terms of predictive performance.

The data-driven hierarchy obtained with balanced k-means (and & set to 4) is
depicted in Fig.2. An inspection of the two hierarchies (the first constructed by
an expert, Fig. 1, and the second constructed using only data) reveals that these
two hierarchies differ to each other completely. Namely, there is no grouping of
genres in the expert hierarchy that can be noted in the data-driven hierarchy.
This means that there exist a semantic gap between the meaning of the genres
and how these meaning are well represented in the data.

Considering that the PCTs are interpretable models, we briefly comment on
the attributes selected on the top levels of the trees constructed with the different
scenarios: MLC, HM C-manual and HMC-BkM. The MLC and HMC-BkM tree
selected first information on the appearance of the word FAQ in the url of the
web page and then focus on content related attributes. The HMC-BkM tree also
uses the part-of-speech trigrams. Conversely, the HMC-manual tree used mainly
content related features on the top levels of the tree-model accompanied with
HTML tags information on the lower levels. All in all, the different scenarios
exploit different attributes from the dataset.

6 Conclusions

In this paper, we advocated a new approach for resolving the task of web genres
classification. Traditionally, this task is treated as a multi-class problem, while
there are some recent studies that advise to treat it as a MLC problem. We
propose to further exploit the information that is present in the web genres
labels by constructing a hierarchy of web genres and then use methods for HMC
to boost the predictive performance. Considering that hierarchical benchmark
datasets for web genre classification do not exist, we propose to use data-driven
methods for hierarchy construction based on balanced k-means. To investigate
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whether there is a potential in this, we compare the obtained the data-driven
hierarchy with a hierarchy based on expert knowledge.

In the evaluation, we consider a benchmark dataset with 1539 web pages
with 20 web genres. The results reveal that using a hierarchy of web genres
significantly improves the predictive performance of the classifiers. Furthermore,
the data-driven hierarchy yields similar performance as the expert-driven with
the difference that it was obtained automatically and fast. This means for even
larger domains (both in terms of number of examples and number of web genre
labels) it would be much simpler and cheaper to use data-driven hierarchies.

We plan to extend this work in two major directions. First, we plan to use
more advanced predictive models such as ensembles for predicting structured
outputs to see whether the improvement carries over in the ensemble setting.
Second, we plan to develop hierarchies of web genres structured as directed
acyclic graphs, which seems more natural in modelling relations between genres.
It could also be useful to adapt the hierarchy construction algorithm to break
down existing genres into sub-genres.

Acknowledgments. We acknowledge the financial support of the European Commis-
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Abstract. Multi-agent Reinforcement Learning (MARL) methods offer
a promising alternative to traditional analytical approaches for the design
of control systems. We review the most important MARL algorithms
from a control perspective focusing on on-line and model-free meth-
ods. We review some of sophisticated developments in the state-of-the-
art of single-agent Reinforcement Learning which may be transferred to
MARL, listing the most important remaining challenges. We also pro-
pose some ideas for future research aiming to overcome some of these
challenges.

1 Introduction

Reinforcement Learning (RL) [37] methods gaining popularity in the area of con-
trol because they allow to build control systems without detailed modeling of
the underlying dynamics, because they learn how to maximize the control objec-
tive by means of interacting with the environment. This is quite an advantage
over compared with traditional analytical control techniques requiring a deatiled
formal model, which may be difficult to construct for complex non-linear sys-
tems. The quality of these approaches rely on the quality of the model itself
and thus, require a good understanding of the problem at hand. In the RL app-
roach, parameter tuning is substituted by iterative adaptation to an stochastic
environment. Some systems (i.e., Multi-component Robotic Systems [13]) are
best approached from a multi-agent perspective in order to better exploit the
computation capabilities and robustness of distributed control systems. Multi-
Agent Reinforcement Learning (MARL) is the extension of single-agent RL to
multi-agent scenarios. MARL methods have already been successfully applied to
several multi-agent control scenarios [17,36,41,43].

2 Reinforcement Learning

2.1 Single-agent Reinforcement Learning

Markov Decision Process. Single-agent RL methods use Markov Decision Proces-
ses (MDPs) to model the interaction between the agent and the environment. An
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MDP < S, A, P,R > is defined by the set of states (.5), the set of actions from
which the agent can choose (A), a transition function (P) that determines state
transitions produced by actions, and a reward function (R) that gives a numerical
value assessing how good a state transition was. S can be a finite set of states (i.e.,
a cell number in a grid-world) or a vector of real values (i.e., the z and y coordi-
nates read from a GPS receiver). The goal of the agent is to learn a policy 7 that
maximizes the expected return R by means of interacting with the environment.
The state-action value function Q7 (s, a) is the value of taking action a in state s.

Policy learning methods. There are basically three classes of RL methods [7]:
value iteration, policy iteration and policy search methods. Value iteration meth-
ods (such as Q-Learning) generally learn the optimal state-action value-function
@* and then derive the optimal policy. Policy iteration methods usually follow
some policy, evaluate its value by learning V™, and then, aim to improve 7. Actor-
critic methods belong to this class: an actor implements a parametrized policy,
a critic learns its value function (i.e., Least-Squares Temporal Difference [6,42]).
Value updates are then fed back to the actor, which can us it to improve its
policy (i.e., Natural Policy Gradient [5]). Finally, policy search methods directly
search on the policy space for the optimal policy that maximizes the expected
return for any possible initial state.

2.2 Multi-agent Reinforcement Learning

Stochastic Games. The interaction model in Multi-agent Reinforcement Learn-
ing (MARL) is the Stochastic Game (SG), that is defined by the number of
agents (n) and the tuple (S, A4;,... A, P,Ry,..., R,). Each i-th agent chooses
actions from its own local action space A; and receives its own reward R;. Multi-
agent systems can be competitive, cooperative or mixed. In fully cooperative
systems, all the agents share the same goals and so, the same reward signals
Ry = Ry = ... = R,. MARL algorithms can also be classified depending on
whether they use models of the other agents or not. In this paper, we will focus on
model-free methods because we expect them to scale better to multi-dimensional
control problems.

Distributed Q-Learning (D-QL) [26] is an example of independent learning.
Each agent assumes that the remaining agents will behave optimally thus pro-
jecting the virtual centralized state-action values @ (s,a) (a € A) to its own local
action space Q; (s,a), a € A;. An instance of the MARL algorithms in which
agents are aware of other agents’ choices, is the Team Q-Learning [28], where
(Team-QL) agents learn the joint state-action @ (s,a). The algorithm uses the
Q-Learning update rule, but using the joint-actions a and a’ instead of a and a’.
This algorithm converges to optimal values under an additional assumption: a
unique optimal action exists in each state. This implicit coordination mechanism
ensures that agents will exploit the Q-function in a coordinated manner. Some
other implicit coordination mechanisms based on heuristics [8,23] or models of
the other agents [30,40] can be found in the literature. MARL methods aware
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of the other agents’ actions eliminates the non-stationarity due to other agents’
policy changes, but then it becomes a more complex problem.

In order to reduce this complexity, it can be assumed that agents need not
coordinate in every state with every other agent, but only with some of them.
Under this assumption, the agents first learn when and which agents to coor-
dinate with, and then use an explicit coordination mechanism [20,24] to select
a joint-action that maximizes the expected return. Coordinated Reinforcement
Learning (Coordinated-RL) [20] builds a Coordination Graph (CG) for each
state that defines with whom agents do need to coordinate. An agent’s local
state-action values thus only depend on its own local action and those taken
by the agents connected to it through the CG. Agents can maximize the global
value using a message-based coordination mechanism. An improved version of
this algorithm based on an edge-based decomposition of the CG instead of an
agent-based decomposition was proposed in [24]. This method scales linearly on
the number of agents. The downside of these methods is having to learn and
store the CG and the additional processing time introduced by the coordination
mechanism. Hierarchical Reinforcement Learning (HRL) is another interesting
approach to reduce the complexity of a task by decomposing it as a hierarchical
structure of subtasks. Single-agent MAXQ [11] allows agents to learn concur-
rently low-level subtasks and higher-level tasks based on these subtasks. This
idea is extended to multi-agent problems in [19]: Cooperative HRL assumes cost-
less communication, and COM-Cooperative HRL considers communication as
part of the problem. A communication level is added to the subtask hierarchy,
so that the agent can learn when to communicate. Decomposing the task into
a hierarchy of subtasks is not always trivial, and the decomposition of the task
itself determines how good the system will approach the optimal solution. This
has led research towards automated decomposition of task, both in single-agent
[22,29] and multi-agent environments [10].

3 Control Applications of MARL

Last years have seen a number of novel MARL applications: traffic light con-
trol [1,4,25,35], robotic hose maneuvering [17], micro-grid control [27], structure
prediction of proteins [9], route-choosing [2], supply chains [43], or management
of the cognitive radio spectrum [41].

Advantages. MARL-based approaches to control systems offer some inherent
advantages over traditional control methods. For example, MARL algorithms
can adapt to changes in the environment thanks to their learning nature. Another
big advantage over analytical approaches is that model-free algorithms do not
require the dynamics of the environment to be fully understood, thus enabling
the control of more complex systems. There is still quite a gap between single-
agent RL and MARL techniques, but we expect more works currently restricted
to the single-agent case to be extended to the multi-agent case in the near future.
An example of this is Multi-objective Reinforcement Learning [12], which aims
to maximize different possibly conflicting objectives at the same time.
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Challenges. We have not found in the literature MARL algorithms able to deal
with continuous state-action spaces [21]. Continuous controllers have been shown
to outperform algorithms with discretized state and actions in general feed-
back control tasks [15]. Several methods have been developed in single-agent RL
paradigm to deal control tasks involving continuous action spaces: actor-critic
learning architectures [5,18,21,32], policy search methods [3] or parametrized
controllers [34]. A lot of effort has been devoted in recent years towards obtaining
efficient policy gradients [5] and data-efficient value estimation methods [6,31].
For a complete review of the state-of-the-art on single-agent RL using VFA, we
refer the reader to [42]. On the other hand, MARL algorithms are mostly based
on Q-Learning, hence they estimate the state-action value. General Value Func-
tion Approximation (VFA) methods can been used to approximate the state-
action value function. This allows continuous states [7], but greedy selection
of the action with the highest value will correspond to the center value of one
feature. This limits the ability of Q-Learning to output continuous action spaces.

Most of the MARL applications to realistic control problems so far found in
the literature are either uncoupled systems of agents operating with no influ-
ence on each other [2,41], or loosely coupled tasks, such as traffic light control
[1,4]. Some loosely coupled problems may be better approached using systems of
unaware agents. Regarding fully-coupled systems in which agents’ actions have
an effect on other agents’ decisions, only a few instances can be found [16,17,25].
This kind of systems require either full observation and learning on the joint
state-action space, which does not scale well to real-world environments. Between
unaware multi-agent systems and learning on the full joint state-action space,
there are alternative approaches, such as exploiting the coordination require-
ments of the task using CG(i.e., Coordinated-RL), or decomposing tasks into
a structure of hierarchical subtasks. Both CGs and task hierarchies can be
designed by hand in small-scale or clearly structured tasks [25], but manual
design is not feasible in more complex or unstructured problems. Some advances
have been done towards automatic learning of Coordination Graphs [10] and
hierarchies of tasks [27], but none is applicable to continuous state or action
spaces. It is not clear either how good these methods will scale to more complex
MARL problems. CG-based algorithms require communication each time step.
A variable-elimination procedure was proposed in [20] to give an exact solu-
tion to the joint-action value maximization process. The number of messages
exchanged at each decision step depends on the topology of the specific CG. In
order to alleviate this problem, two anytime algorithms were proposed in [39]
to approximate the optimal joint-action in a predetermined time: Coordinated
Ascent and Mazx-Plus. Whether these methods provide an acceptable solution
in complex real-time control scenarios within an acceptable time-frame remains
an open question.

Another important uncontested challenge is learning an initial policy from
scratch in large real-world applications, where it is unaffordable to allow agents
thousands of trials before they can start completing the task (i.e., robotic maneu-
vering tasks [16]). There are several approaches to this problem, all based on
some form of Learning Transfer [38]: agents can be first trained in a simulated
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environment and then allowed to face the real task [14], they can be initialized
resembling some initial policy (i.e., a PID controller) available to the system
designer [18], or agents may be trained to imitate some expert performing the
task [32].

Proposals for Future Research. MARL methods are mostly based on general
heterogeneous Stochastic Games and, thus, they work under very broad assump-
tions. From a control perspective though, one can further assume fully cooper-
ative tasks and homogeneous learning agents. This kind of systems might be
better approached from a distributed point of view. Consider a multiple output
continuous actor-critic architecture: an approximated value function estimated
by the critic and an actor with several VFAs, each representing a different output
of the actor. When an improvement in the value function is detected, the actors
update its policies towards the last action explored. This same idea can be trans-
lated to a multi-agent system in which each agent keeps an instance of the critic
learning the value function and an actor with a subset of the system’s output.
Agents would only require to coordinate exploration and exploitation, which
could be achieved by using consensus [33] to share and update the exploration
parameters using some preset schedules. This learning structure would allow to
use the state-of-the-art in single-agent model-free environments. Full observa-
tion of the state could also be alleviated by deferred updates of the critic/actor:
agents can follow their policies tracking their local actions and yet incomplete
states, and defer the update of the actor and policy until all the state variables
have been received.

4 Conclusions

In this paper, we have reviewed the basics of MARL and some recent works
in the literature of this field applied to control systems. MARL offers some
advantages over traditional analytical control techniques. The most important
is that the system designer needs not fully understand or have an accurate
model of the system. MARL-based methods also pose some interesting challenges
when applied to real-world control problems. Most of the algorithms have been
developed with small environments in mind. In this respect, we point out that
the main gap between single-agent and MARL algorithms to date is the ability
to deal with continuous state and action spaces.
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Abstract. The application of a (smoothing) filter is common practice in
applications where time series are involved. The literature on time series
similarity measures, however, seems to completely ignore the possibility
of applying a filter first. In this paper, we investigate to what extent the
benefit obtained by more complex distance measures may be achieved by
simply applying a filter to the original series (while sticking to Euclidean
distance). We propose two ways of deriving an optimized filter from clas-
sified time series to adopt the similarity measure to a given application.
The empirical evaluation shows not only that in many cases a substantial
fraction of the performance improvement can also be achieved by filter-
ing, but also that for certain types of time series this simple approach
outperforms more complex measures.

1 Motivation

Time series comparison became almost a standard operation just like comparing
ordinal or numerical values with tabular data. A broad range of different sim-
ilarity measures has been proposed in the literature, ranging from simple and
straightforward measures such as Euclidean distance (ED) to more complex mea-
sures that deal with temporal dilation and translation effects such as dynamic
time warping (DTW [1]). Extensive comparative studies have been carried out
to compare these measures over a variety of datasets [8,9].

While some scenarios may call for a highly flexible measure, such a measure
may perform worse where the flexibility is not needed to solve the task. Just like
with classifiers it may misuse its parameters to overfit, which is unlikely to hap-
pen with simpler measures. Thus, if a comparable performance can be achieved,
we should go with the simpler measure (Occam’s Razor). The investigation of
the literature on time series similarity measures reveals a surprising fact: in this
context, smoothing of time series is almost completely ignored. The application
of a smoothing filter can be considered as a pre-processing step and is applied in
many machine learning and data mining applications, but neither plays a role in
the comprehensive experimental comparison of time series similarity measures
[8,9], nor in a survey on clustering time series data [7] (with distances at the
core of any clustering algorithm). This is not to say that the time series in the
comparative studies are not pre-processed, in fact they are usually standardized
before presented to the similarity measures, or various time series representations
© Springer International Publishing Switzerland 2015
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are considered, which implicitly perform smoothing (e.g., piecewise approxima-
tions) or simplify noise removal (Fourier or Wavelet transform), but filters are
not explored in general. This is surprising because noise and outliers are very
well perceived as problematic aspects in similarity search. The contribution of
this work is to bring filtering techniques back to the conscience of the time series
similarity measure community, the proposal of two approaches to derive an opti-
mized filter for measuring time series similarity and an experimental evaluation
demonstrating its high potential.

2 Definitions and Discussion

A time series x of length n is a series (2;)1<i<n 0f n measurements. The simi-
larity of two series x and y is usually measured by means of some distance (or
dissimilarity) measure d(x,y) > 0 where a small distance indicates high simi-
larity. Some distance measures assume that both series x and y have the same
length, but in case this is not given one of the series may be stretched to the
length of the other and such measures remain applicable.

Similarity. There are two major groups of similarity measures. Lock-step mea-
sures directly compare corresponding values of two time series, that is, the **
value of x with the i*" value of y, as in the Euclidean distance. Simple distortions
such as an offset in the recording time make two observations of the same process
dissimilar under Euclidean distance. Elastic measures identify a warping path,
a monotone transformation of time, such that series x corresponds best to the
warped series y (e.g. dynamic time warping and variations thereof [1-3]). One
can also find various modifications of these measures, e.g., the authors of [5] try
to “prevent minimum distance distortion by outliers” by giving different weights
to |x,;) — ys| depending on the temporal offsets |p(i) — i|. But it has also been
pointed out in recent publications that simpler concepts may be hard to beat
[9] or even outperform complex approaches [4]. Some applications seek similar
subsequences of time series only, but this is accomplished by applying the same
range of similarity measures to data from a sliding window, so the fundamental
problem remains the same (only the arguments of the measure change).

Filtering. Filters have a long tradition in signal processing to reduce or enhance
certain aspects of the signal. In data analysis, filters are often applied to smooth
the original series to remove noise or impute missing observations. Here, we
consider (discrete time) linear time-invariant (LTI) filters only. Such a filter may
be described by a vector of coefficients o = (@—pm, ¥—mt1y.- s Um—1,0m) €
R?m+1 and the application of the (discrete) filter o to a (discrete) time series
x is defined as the convolution (x * a); = Y70 | aj - x;1;. The convolution
x * o can be considered as a smoothed version of x, but for x * a to have the
same length as x we need to clarify what x;4; may refer to when i +j < 1
or i + j > n. Circular discrete convolution is frequently applied (index modulo
time series length), but there is no justification why the last few values of x
should influence the first few values of a smoothed x. So instead of a circular
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convolution we define for an arbitrary series x of length n: x; := z; if i <1 and
T; = Xy, if i > n.

Benefit of Filtering. We argue that the application of filters has not tapped
its full potential in the area of time series similarity measures. Such measures
are used to compare series against each other with the goal of distinguishing
two (or more) types of situations. Any labeled time series dataset may thus be
considered as an application domain that defines (by examples) which series
should be similar (same class) and which should not (different class). A filter
may be tailored to a specific application by focusing on different aspects of time
series, which may prove filters to be useful in a broad range of applications.

One important aspect in time series similarity is temporal locality.
Figure. 1(a) shows a simple, artificial set of time series with data from two classes
having a positive peak and a negative peak, resp. The exact position of the peak,
however, varies. If the peak positions do not match, we obtain the same distance
between examples from the same and different classes with Euclidean distance
— it is thus not helpful for discriminating series from different classes. An elas-
tic measure, such as DTW, however, should have no problems with a correct
alignment. In yet another applications the peak position may be important. In
Fig. 1(b) both classes have a positive peak, but this time the exact position is
relevant. This is a simple task for Euclidean distance but nearly unsolvable for
DTW, which does not care about the exact temporal location. If we choose our
filter wisely, the combination of a filter with Euclidean distance (smearing out
the singleton peak in the first and leaving the data untouched in the second case)
may solve both problems. Secondly, noise may easily distort a time series sim-
ilarity measure, because time series are high dimensional data and suffer from
the curse of dimensionality. The right amount of smoothing may help to identify
the relevant trends in the series and reduce the impact of incidental differences.
Thirdly, a filter is a versatile preprocessor, it can be used to approximate the
slope or curvature (first or second derivative of the original signal). To distin-
guish classified time series it may be advantageous to inspect these transformed
rather than the original series. If we manage to identify the filter that best dis-
criminates series from different classes we increase the versatility of the measure
as it can adopt automatically to a broad range of situations.

3 Optimized Filter for Time Series Similarity

The simple application of the right filter may solve a variety of problems for
similarity measures. Although it seems like a somewhat obvious idea to apply
a filter separately (before applying a distance measure), the potential impact of
filtering on the discrimination of time series has not been explored before. In
this section we propose ways to automatically find the filter that is best suited
to distinguish time series from one another, that is, a filter that emphasizes the
important differences (between series from different classes) and ignore or atten-
uate the less important ones (between series from the same class). Apparently
we assume that some supervision is available by class labels. We consider two
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alternative approaches in the following subsections and in both cases we assume
that N series x;, 1 < i < N, of length n are given with labels I; € L, |L| being
the number of classes. By X; we denote the filtered version of x; (after applying
afilter & = (a_p, ..., Q0,..., ) of size 2m + 1, that is, X = x* ). By z; ; we
denote the jth value of series x;. For the sake of a convenient notation, with z;
we refer to x; 1 for all j <1 and z;,, for all j > n.

3.1 A Filter Derived from Pairwise Comparison

As a first proposal consider the following objective function

min. f(a ﬁZIIxz—xjH2 Sl -%l2 st Y a=1 (1)

li;él]‘ k=—m

where Zlizlj is an abbreviation for Zlgi,jgN,i;éj,h:lj (same for the second sum
with # rather than =). The filter coeflicients « are hidden in the smoothed
series x; on the right hand side of f. Distances between filtered series from
the same class should be small (first summation), whereas distances between
filtered series from different classes should be large (second summation). Since
the second sum is subtracted, the function has to be minimized overall. The
coefficient 3 € R is a necessary scaling factor for the first sum, chosen to ensure
that f is a convex function (f — oo as ||a|| — oo) that actually has a (global)
minimum. (Without the scaling factor the second sum may dominate, turning f
into a concave function and the minimum is obtained for ||| — 0.)

Without any constraint on « there is an obvious minimum « = 0, but this is
apparently an undesired solution because all series would look identical. Here,
we require the sum of all filter coefficients to be 1. This constraint ensures that
the filtered series stay within the same range as the original series.

Proposition 1. The optimal filter o = (_pp,...,Q0,- .., Q) € RZHL min-
imizing (1) is obtained from a linear equation system Ao’ = b with A €
RZmA22m+2 1 — (0,...,0,1) € R?™2 o/ = (a_pm, ..., 0Qm, \) where
M1
A= < k 0) @
_2252]Zm x; — x;)m(x; — x;)7 € RFmHlx2m+l (3)
(2,5)
71(2) = (Zi—ms - -+ s 214m) € RZ™TL (4)

with s; ; = B forl; =1; and s, ; = —1 for l; # ;. (The notation Z(i,j) is an
abbreviation for lei,jSN,i;éj .)

Finally, we have to choose (8 such that f is guaranteed to be convex. This is
accomplished by setting

M7,
B=15- max {_’ where M= = > My, o0, M7 = Y My, x,
—m<k<m | M, = iz,
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where My y = > /., m(x —y)m(x —y)". [Proofs are omitted due to lack of
space.] The factor of 1.5 ensures that the coefficients of the quadratic terms are
strictly positive, other choices are possible as long as the factor is larger than one
(but the larger the factor, the more the first sum of (1) dominates). We obtained
satisfactory results with a factor of 1.5 and stick to it throughout the paper.

If we scale the resulting filter a by some scalar, the (squared) Euclidean
distances scale by the same factor. While the minimization of (1) yields a unique
filter, to discriminate series from different classes we will subsequently order time
series by distance (to find the closest match) and this order is not affected by a
factor. Therefore we divide « by its norm and arrive at a filter with |a|| = 1.

3.2 A Filter Derived from Groupwise Comparisons

If we assume that all time series from the same class label are similar, we may
consider the groupwise (or classwise) means as prototypical time series for their
respective class. We define the mean smoothed series Z; for a class label [ as:

3 Zlgign,li:l X
| = ==emh= T
Zlgign,li:l 1

The rationale for finding a filter is then that the distance of any series x with
label I to the mean series X; of its own class should be small, but distances to
the mean series X}, of other classes, k # [, should be large. This time we enforce
a unit length constraint on the filter to allow for filter types whose coefficients
sum up to zero.

 ikes f - %

; ZlgigN ||5<2 - ):(li

max. f(«) st el =1 (5)

2

This objective function has to be maximized (subject to the unit length con-
straint): The nominator has to be maximized (distances between class means),
the denominator has to be minimized (distance of individual series to its own
class mean).

Proposition 2. The optimal filter & = (_pn, ..., Q0. .., ) € RZH magi-
mizing (5) is the eigenvector with the largest eigenvalue of the matriz QP €
R2m+1><2m+17 ’U)h@T‘@

n

P=> Myg, Q=Y Mqx,. Mey=Y mx—y)mx-y)"

l,keL 1<i<n =1
and 7(z) = (Zi—m, - - -, 21em) € RFMHL

[Again, the proof is omitted due to lack of space.]
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3.3 Computational Complexity

Lock-step measures such as Euclidean distance are computationally inexpensive
(O(n) for the comparison of two series of length n). The nature of most elastic
measures, such as dynamic time warping, calls for a quadratic complexity O(n?).
The advantage of the filter approaches is that we can spend some computational
effort beforehand to determine the optimal filter and then stick to a lock-step
measure, taking advantage of the low linear complexity O(n) when comparing
time series. The computation of the optimal filter involves the pairwise combina-
tion of time series in both corollaries. While Proposition 1 requires to combine all
series with the same or different label (O(N?)), with Proposition 2 we combine
only mean series for each class label which drastically reduces the computational
effort (O(|L|?) with |L| being much smaller than N).

4 Experimental Evaluation

Time series similarity measures are typically evaluated against each other by
examining their performance in a one-nearest-neighbor (1-NN) classification task
(cf. [8,9]). A dataset is subdivided into train and test data and for each series
from the test dataset, the closest series from the training set is sought. The class
label from the closest match is then used for class prediction. The accuracy (or
error rate) reports the number of correct (or incorrect) predictions. We report
cross-validated results in Table 1 and (in contrast to the typical cross-validation
for classifiers) use only one fold for training and k& — 1 for testing. As ED and
DTW are the most prominent representatives of lock-step and elastic measures
we compare them to three types of filters: (a) filter constraint “sum=1" (ED-
FS) as defined by Proposition 1, (b) filter constraint “norm=1" (ED-FN) as
defined by Proposition 2, and (¢) a standard Gaussian filter (ED-FG). The filter
is always determined using the training data only, then the filter is applied to
the test and training data and the 1-NN classifier is carried out with Euclidean
distance.

Filter Width. Both proposals for determining an optimized smoothing filter
require the filter size m to be given a priori. We ran experiments with varying
the filter size to observe the effect on the classification rate. There are differences
in the performance, but the variation is quite limited. For all experiments in this
paper, however, we have consistently chosen 2m to be 10% of the time series
length but not larger than m = 7.

4.1 Artificial Data

As a sanity check, we revisit the two datasets from Sect. 2 that are particularly
difficult for either DTW or ED: In Fig. 1(a) the series from two groups differ
in the orientation of a single peak (up vs down), but the exact location of the
peak varies. A small amount of warping compensates for the offset in the peak
position, but for ED two series from the same group are (most of the time)
almost as similar as two series from different groups. Smoothing the series blurs
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Fig. 1. Some data sets used. Top row from left to right (a)—(c), bottom row (d)—(f).
All datasets consist of 100 time series. Class information is color-coded (green/black)
(Color figure online).

the local peak, which makes it easier to detect the similarity between peaks of
the same direction even if no warping is possible. As we can see from Table 1 the
filter approaches perform (equally) well (about 94 % accuracy).

The second example is shown in Fig. 1(b): the peak orientation is always
identical (up), but the exact location of the peak makes the difference between
both classes. As expected DTW is not able to perceive a difference between both
classes, but for ED this is a very simple task (100 % accuracy). The proposed
approaches manage to adopt automatically to this situation, FS and FN perform
very well (close to 100 %, cf. Table 1), but apparently the standard Gaussian filter
cannot help here, its performance is close to the poor DTW performance.

Response to Noise. A second set of examples is shown in Fig. 1(c and d),
where the dataset (c) consists of sinusoidal curves plus Gaussian noise and a
few outliers. One example from each class (without noise and outliers) is shown
near the bottom (being not part of the dataset). As we can see from Tablel,
DTW performance drops below 60 %; ED performs much better, but all the
smoothing approaches outperform ED. The second example (Fig. 1(d)) consists
of noisy series, which do not contain any outliers. Again, one example from each
class without any noise is shown at the bottom. No warping is necessary, but
the noise seems to prevent DTW from performing as well as ED. The most
prominent differences of the two classes are the rounded versus angular minima.
When applying a smoothing filter we risk to smear out the angular edge and to
loose an important feature for class discrimination. But actually the FN and FS
filter manage to keep an accuracy close to 100 %. The chosen filter does not only
denoise but delivers series where the peak positions are displaced for series from
different classes (examples of smoothed series shown in blue and pink).

4.2 Results for Data from the UCR Time Series Repository

We also report results on datasets from the UCR time series repository [6] in
Table 1. All datasets were used as they were provided, no changes were made
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Table 1. Mean accuracy and standard deviation of cross-validated 1-NN-classifier (no.
of folds in column #, for UCR data the same number of folds was used as in [9]). Euclid-
ean distance (ED) with: Gaussian filter (ED-FG), filter obtained from sum constraint
(ED-FS), filter obtained from norm constraint (ED-FN).

# ED DTW  ED-FG ED-FN |ED-FS
Figurel(a) | 11 0.68]0.06 | 1.00/0.00 |0.930.04 | 0.94]0.03  0.94]0.03
Figure 1(b) | 11| 1.00/0.00|0.50/0.05 0.56]0.04 | 0.99]0.01 | 0.99]0.01
Figure1(c) | 11/0.72|0.15]0.58/0.07 0.84]0.08  0.84]0.04 0.81|0.08
Figure1(d) | 11 0.90/0.06 | 0.84]0.08 0.96]0.02 | 0.98]0.02  0.98|0.02
Figurel(e) | 110.780.09  0.62/0.09  0.78]0.08 | 0.98]0.05 | 0.95(0.08
Figure 1(f) | 110.78/0.08  0.61]0.07 | 0.78]0.08  0.97]0.04 | 0.97]0.04

ECG200 510.85]0.03 | 0.77|0.03 | 0.83]0.03 | 0.83]0.03 | 0.82|0.04
ECGFiveDays | 32 | 0.86/0.04 | 0.80]0.04 | 0.92]0.03 | 0.90|0.06 | 0.90|0.04

FISH 510.730.03 | 0.69]0.03 | 0.72(0.03 | 0.72|0.04 | 0.68]0.04
GunPoint 5/0.87/0.03 0.85]0.03  0.86]0.03 | 0.87]0.04 | 0.88]0.04
OliveOil 210.86/0.05 0.86]0.04 | 0.85]0.05 | 0.86]0.05 | 0.84]0.05
Beef 2 0.460.07 | 0.46]0.07  0.45/0.07 | 0.44]0.07 | 0.45]0.07
Adiac 510.54/0.02 0.54]0.02 | 0.60/0.02 | 0.42(0.16 | 0.52]0.02
Coffee 210.82/0.07  0.84]0.08 | 0.80/0.07 | 0.97/0.03 | 0.86]0.09
50words 510.59|0.02  0.62]0.02  0.60/0.02 | 0.42(0.16 | 0.53]0.02
SwedishLeaf | 50.70/0.02|0.75/0.01  0.72(0.02 | 0.70]0.01 | 0.69|0.02

CBF 121 0.94/0.02 | 0.99|0.00 | 0.98]0.01 | 0.99]0.01 | 0.99(0.01

OSULeaf 510.52/0.03 | 0.58|0.04 | 0.53]0.02 | 0.48]0.05 | 0.51]0.03
FaceFour 510.80/0.05 | 0.87/0.04 | 0.81]0.05 | 0.82|0.05 | 0.82(0.05
Lighting7 210.61]0.05 | 0.71]0.04 | 0.65/0.04 | 0.68|0.04 | 0.68|0.05
Lighting?2 510.67]0.05 | 0.78]0.06 | 0.72/0.05 | 0.68]0.08 | 0.72(0.05
Synth. control | 5 0.86]0.02|0.99]0.00 | 0.99]0.00 | 0.96|0.01 | 0.96/0.00
Trace 510.64]0.03 | 0.98]0.02 | 0.59(0.04 | 0.63]0.04 | 0.63]0.04

to them. We are interested in how much of the performance increase of elastic
measures can be achieved by filtering (when sticking to a lock-step measure). By
scanning through the Table we can see that quite often a substantial fraction
of the performance increase obtained by switching from ED to DTW is also
obtained when switching to a filter approach — in various cases the achieved
accuracy is identical. To our surprise, we can also identify cases where filtering
actually outperforms DTW (e.g. Coffee and Adiac), which is a remarkable result.

4.3 Accumulated Signals

Finally, we consider a situation where the FS/FN filter approaches perform
particularly well. Many real series record a physical property reacting to some
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external input, for example, the temperature during a heating period, the rise
and fall of the water level as inlets or outlets are opened, the distance covered
when driving a car, etc. What is actually changing is some input variable (power
of heating element, valve position, throttle control), but instead of capturing
this parameter directly, some other accumulated physical property is measured
(temperature, water level, covered distance).

The following examples are artificially generated but were created to repro-
duce a real case.! In the dataset of Fig. 1(e) all the series appear very similar and
a discrimination between the classes seems close to impossible. The series cor-
respond to an accumulation of some physical property, whose derivative is very
similar for all examples, but differs in the temporal location of a steep increase
near t = 60 (two examples from each class in red /blue). As the integrated values
are actually measured, this difference is hardly recognized in the original series.
But both filters, FS and FN, manage to transform the raw data such that the
accuracy increases dramatically (cf. Table 1).

For the second example in Fig. 1(f) we have a similar situation, the time series
look very similar across the two classes. One may think of a gas pedal position as
the actually controlled input (two examples from each class in red/blue), which
influences speed, but only the mileage is measured. Again, both filters manage
to identify filters that separate both classes very well. In both cases, a Gaussian
filter does not help (data is not noisy) and the elastic DTW performs worst.

5 Conclusions

When seeking for the best similarity measure for a specific application, among
equally well performing solutions we should prefer the simplest approach
(Occam’s Razor). Filtering time series and measuring their Euclidean distance
is one of the most simple things one can possibly think of, however, this option
has not received much attention in the literature. Two approaches have been
proposed to derive such a filter from training data and the experimental results
have shown that they turn Euclidean distance into a much more versatile tool,
as it can adapt to specific properties of the time series. For various datasets a
substantial increase in the performance has been observed and for a specific class
of problems (discrimination of series that represent accumulating physical prop-
erties) this approach outperforms elastic measures. Together with the simplicity
of the Euclidean measure, which has a computational advantage over complex
elastic measures, this approach is a worthwhile alternative to existing measures.
How to identify an optimal filter in combination with elastic measures remains
an open question for future work.

! Only the artificial data can be shared: public.ostfalia.de/~hoeppnef/tsfilter.html.
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Abstract. In classification tasks with imbalanced datasets the distri-
bution of examples between the classes is uneven. However, it is not
the imbalance itself which hinders the performance, but there are other
related intrinsic data characteristics which have a significance in the final
accuracy. Among all, the overlapping between the classes is possibly the
most significant one for a correct discrimination between the classes.

In this contribution we develop a novel proposal to deal with the for-
mer problem developing a multi-objective evolutionary algorithm that
optimizes both the number of variables and instances of the problem.
Feature selection will allow to simplify the overlapping areas easing the
generation of rules to distinguish between the classes, whereas instance
selection of samples from both classes will address the imbalance itself
by finding the most appropriate class distribution for the learning task,
as well as removing noise and difficult borderline examples.

Our experimental results, carried out using C4.5 decision tree as base-
line classifier, show that this approach is very promising. Our proposal
outperforms, with statistical differences, the results obtained with the
SMOTE + ENN oversampling technique, which was shown to be a base-
line methodology for classification with imbalanced datasets.

Keywords: Imbalanced classification + Overlapping - Feature selection *
Instance selection + Multiobjective evolutionary algorithms

1 Introduction

The imbalanced class problem is one of the new challenges that arose when
Machine Learning reached its maturity [6], being widely present in the fields of
businesses, industry and scientific research. This issue grew up in importance at
the same time that researchers realize that the datasets they analyzed hold more
instances or examples from one class than that of the remaining ones, and they
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standard classification algorithms achieved a model below a desired accuracy
threshold for the underrepresented class.

One of the main drawbacks for the correct identification of the minority or
positive class of the problem, is related to overlapping between classes [8]. Rules
with a low confidence and/or coverage, because they are associated with an
overlapped boundary area, will be discarded.

The former fact is related with the attributes that represent the problem. It
is well known that a large number of features can degrade the discovery of the
borderline areas of the problem, either because some of these variables might be
redundant or because they do not show a good synergy among them. Therefore,
the use of feature selection can ease to diminish the effect of overlapping [4].

However, the imbalance class problem cannot be addressed by itself just by
carrying out a feature selection. For this reason, it is also mandatory to perform a
preprocessing of instances by resampling the training data distribution, avoiding
a bias of the learning algorithm does towards the majority class.

In accordance with the above, in this work contribution we aim at improving
current classification models in the framework of imbalanced datasets by devel-
oping both a feature and instance selection. This process will be carried out
means of a multi-objective evolutionary algorithm (MOEA) optimization proce-
dure. The multi-objective methodology will allow us to perform an exhaustive
search by means of the optimization of several measures which, on a whole, are
expected to be capable of giving a quality answer to the learnt system. In this
sense, this wrapper approach will be designed to take advantage of the explo-
ration of the full search space, as well as providing a set of different solutions for
selecting the best suited for the final user/task.

Specifically, we will make use of the well known NSGA2 approach [3] as the
optimization procedure, and the C4.5 decision tree [10] as baseline classifier.
We must stress that, although the C4.5 algorithm carries out itself an inner
feature selection process, our aim is to ‘ease‘ the classifier by carrying out a
pre-selection of the variables with respect to the intrinsic characteristics of the
problem, mainly referring the overlapping between the classes.

This contribution is arranged as follows. Section2 introduces the problem
of classification with imbalanced datasets and overlapping. Section 3 describes
our MOEA approach for addressing this problem. Next, Sect.4 contains the
experimental results and the analysis. Finally, Sect.5 will conclude the paper.

2 Imbalanced Datasets in Classification

In this section, we will first introduce the problem of imbalanced datasets. Then,
we will focus on the presence of overlapping between the classes.

2.1 Basic Concepts

Most of the standard learning algorithms consider a balanced training set for
the learning stage. Therefore, addressing problems with imbalanced data may
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cause obtaining of suboptimal classification models, i.e. a good coverage of the
majority examples whereas the minority ones are misclassified frequently [8].
There are several reasons behind this behaviour which are enumerated below:

— The use of global performance measures for guiding the search process, such
as standard accuracy rate, may benefit the covering of the majority examples.

— Classification rules that predict the positive class are often highly specialized,
and they are discarded in favour of more general rules.

— Very small clusters of minority class examples can be identified as noise, and
therefore they could be wrongly discarded by the classifier.

In order to overcome the class imbalance problem, we may find a large number
of proposed approaches, which can be categorized in three groups [8]:

1. Data level solutions: the objective consists of rebalancing the class distribu-
tion via preprocessing of instances [2].

2. Algorithmic level solutions: these solutions try to adapt several classification
algorithms to reinforce the learning towards the positive class [1].

3. Cost-sensitive solutions: they consider higher costs for the misclassification of
examples of the positive class with respect to the negative class [5].

2.2 Overlapping or Class Separability

The problem of overlapping between classes appears when a region of the data
space contains a similar quantity of training data from each class, imposing a
hard restriction to finding discrimination functions.

In previous studies on the topic [9], authors depicted the performance of
the different datasets ordered according to different data complexity measures
(including IR) in order to search for some regions of interesting good or bad
behaviour. They could not characterize any interesting behaviour according IR,
but they do for example according the so called metric F'1 or mazimum Fisher’s
discriminant ratio [7], which measures the overlap of individual feature values.

— (lfvl—l»@)z
o’erag

Uz, 02, 03 are the means and variances of the two classes respectively, in that
feature dimension. We compute f for each feature and take the maximum as
measure F1. For a multidimensional problem, not all features have to contribute
to class discrimination. Therefore, we can just take the maximum f over all
feature dimensions when discussing class separability. Datasets with a small
value for the F1 metric will have a high degree of overlapping.

Finally, a closely related issue is the impact of noisy and borderline examples
on the classifier performance in imbalanced classification [11]. Regarding this
fact, a preprocessing cleaning procedure can help the learning algorithm to better
discriminate the classes, especially in the overlapped areas.

This metric for one feature dimension is defined as: f where 1,
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3 Addressing Overlapping in Imbalanced Domains
by a Multi-objective Feature and Instance Selection

In this work, our contribution is to introduce a new methodology that makes
use of a MOEA to determine the best subset of attributes and instances in
imbalanced classification. Instance selection aims at both balancing the data
distribution between the positive and negative classes, and removing noisy and
borderline examples that hinder the classification ability of the learning algo-
rithm. Feature selection will simplify the boundaries of the problem by limiting
the influence of those features create difficulties for the discrimination process.

However, the estimation of the best suited subset of instances and features
is not trivial. In accordance with the former, an optimization search procedure
must be carried out in order to determine the former values. Among the different
techniques that can be used for this task, genetic algorithms excel due to their
ability to perform a good exploration and exploitation of the solution space.
Our ultimate goal is to build the simplest classifier with the highest accuracy in
the context of imbalanced classification. Regarding this issue, the first objective
can be overcome by mazximizing the reduction of instances, whereas the second
one is achieved by maximizing the recognition of both the positive and negative
classes. In accordance with the former, we propose the use of the “Area Under
the ROC Curve” (AUC), as it provides a good trade-off between the individual
performance for each individual class (Eq. 1).

1 + TPrate - FPrate (1)
2

Taking into account the objectives previously outlined, we propose the design
of a work methodology using as basis a MOEA. This way, we can take advan-
tage of both the exploration capabilities of this type of technique, as well as
allowing the selection among a set of different solutions, depending on the user’s
requirements. We will name this approach as IS + FS-MOFA.

Specifically, we will make use of the NSGA-II algorithm [3] for implementing
our model, as it is widely known for being a high-performance MOEA. Its two
main features are first the fitness evaluation of each solution based on both the
Pareto ranking and a crowding measure, and the other is an elitist generation
update procedure.

In order to codify the solutions, we will make use of a chromosome with
two well differentiate parts: one (F'S) for the feature selection and another one
(IS) for the instance selection. Both parts will have a binary codification, in
such a way that a 0 means that the variable (or instance) will not take part for
generating the classification model, whereas a 1 value stands for the opposite
case. Chromosomes will be evaluated jointly with aims at obtaining the best
synergy between both characteristics, instead of optimizing them separately.
This issue is based on the fact that it is not clearly defined which the best order
for carrying our both processes is. An initial chromosome will be built with all
genes equal to ‘1’ in order to implement the standard case study, i.e. the full
training set, whereas the remaining individuals will be generated at random.

AUC =
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As Dbaseline classifier, we will make use of the C4.5 decision tree [10] for
several reasons. The first one is its wide use in classification with imbalanced
data, so that we may carry out a fair comparative versus the state-of-the-art.
The second one is its efficiency; since we need to perform a large number of
evaluations throughout the search process, it is important the base model to be
particularly quick for not biasing the global complexity of the methodology.

We must stress that, the C4.5 algorithm carries out itself an inner feature
selection process. However, our aim to “ease” the classifier by carrying out a
pre-selection of the variables with respect to the intrinsic characteristics of the
problem, mainly referring the overlapping between the classes, so that we can
improve the classification of both classes together.

For the evaluation of the chromosomes, we carry out the preprocessing of the
training set codified in the phenotype, and then the C4.5 classifier is executed
with the modified dataset. Then, the objective functions to be maximized are
computed as stated in Eq.2, being N the number of initial training instances,
and 1.5; the value of the chromosome for the instance selection part.

OBJ, : AUC @
OBJy: RED =N — N1 1S;;

4 Experimental Study

This section includes the experimental analysis of the proposed approach. With
this aim, we first present the experimental framework including the datasets
selected for the study, as well as the parameters of the algorithms, and the use
of statistical test. Then, we show the complete results and the comparison with
the state-of-the-art to determine the goodness of our proposal.

4.1 Experimental Framework

Table 1 shows the benchmark problems selected for our study, in which the name,
number of examples, number of attributes, and IR (ratio between the major-
ity and minority class instances) are shown. Datasets are ordered with respect
to their degree of overlapping. A wider description for these problems can be
found at http://www.keel.es/datasets.php. The estimates of AUC measure are
obtained by means of a 5 fold Cross-Validation, aiming to include enough posi-
tive class instances in the different folds.

The parameters of the NSGA-IT MOEA have been set up as follows: 60 indi-
viduals as population size, with 100 generations. The crossover and the mutation
(per gen) probabilities are 0.8 and 0.025 respectively. For the C4.5 decision tree
we use a confidence level at 0.25, with 2 as the minimum number of item-sets
per leaf, and the application of pruning will be used to obtain the final tree. As
state-of-the-art approach for the sake of a fair comparison we have selected the
SMOTE + ENN preprocessing technique [2], which has shown a good synergy
with the C4.5 algorithm [8]. This approach creates synthetic examples of the
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Table 1. Summary of imbalanced datasets used

Name #Ex.|#Atts.|IR  |F1 Name #Ex.|#Atts. | IR F1

glass4 214 9 15.47/1.4690 | pimalmb 768 | 8 1.90/0.5760
ecoli0lvsh 240 6 11.00/1.3900 |abalonel9 4174 | 8 128.87/0.5295
clevelandOvs4 177 {113 12.62|1.3500 |ecoli0147vs2356| 336 | 7 10.59/0.5275
ecoli0146vs5 280 6 13.00/1.3400 | pageblocks0 5472 |10 8.77/0.5087
yeast2vs8 482 8 23.10/1.1420 |glass2 214 | 9 10.39/0.3952
ecoli0347vs56 257 7 9.28/1.1300|vehicle2 846 |18 2.52/0.3805
vehicleO 846 | 18 3.23]1.1240 |yeast1289vs7 947 | 8 30.56|0.3660
ecoli01vs235 244 7 9.17/1.1030|yeast1vs7 459 | 8 13.87/0.3534
yeast05679vsd 528 8 9.35/1.0510|glass0146vs2 205 | 9 11.06/0.3487
glass06vs5H 108 9 11.00/1.0490 | yeast0359vs78 506 | 8 9.12/0.3113
glassb 214 9 22.81/1.0190 |glass016vs2 192 | 9 10.29/0.2692
ecoli067vs35 222 7 9.09/0.9205 | yeast1 1484 | 8 2.46/0.2422
ecoli0267vs35 244 7 9.18/0.9129 |glass1 214 |1 9 1.82/0.1897
ecoli0147vs56 332 6 12.28/0.9124|vehicle3 846 |18 2.52/0.1855
yeast4 1484 8 28.41/0.7412 ' habermanImb 306 | 3 2.68/0.1850
yeast0256vs3789|1004 8 9.14/0.6939 | yeast1458vs7 693 | 8 22.10/0.1757
glass0 214 9 2.06/0.6492 |vehiclel 846 |18 2.52/0.1691
abalone918 731 8 16.68/0.6320 | glass015vs2 172 | 9 9.12/0.1375

minority class by means of interpolation to balance the data distribution, and
then it removes noise by means of the ENN cleaning procedure. Its configuration
will be the standard with a 50 % class distribution, 5 neighbors for generating
the synthetic samples and 3 for the ENN cleaning procedure, and Euclidean
Metric for computing the distance among the examples.

Finally, we will make use of Wilcoxon signed-rank test [12] to find out whether
significant differences exist between a pair of algorithms, thus providing statis-
tical support for the analysis of the results.

4.2 Analysis of the Results

In this case study, the final aim is to obtain the highest precision for both classes
of the problem in the test set. In this way, we will always select the one solution
of the Pareto with the best performance with respect to the AUC metric. In
this case, a comparison with the optimal Pareto front is not possible since for
classification functions this is often unavailable.

Average values for the experimental results are shown in Table2, where
datasets are ordered from low to high overlapping. From these results we may
highlight the goodness of our approach, as it achieves the highest average value
among all problems. Additionally, we must stress that in the case study of
the higher overlapped problems, i.e. from “ecoli0147vs2356”, that our proposed
approach outperforms the baseline SMOTE + ENN technique in 12 out of 16
datasets. Finally, it is worth to point out that our IS + FS-MOEA does not show
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Table 2. Experimental results for C4.5 with SMOTE + ENN (C4.5 + S_ENN) and our
C4.5 with IS+ FS-MOEA approach (C4.5+MOEA) in training and test with AUC
metric.

Dataset IR F1 |C4.5+S ENN|C4.5+MOEA |Dataset IR Fl |C4.5+S ENN|C4.5+MOEA
glassd 15.47 1.4690|.9813 .8292 |.9838 .8225 |pima 1.90 0.5760[.7976 .7311 |.8293 .7084
ecoli0lvsh 11.00 1.3900|.9676 .8477 |.9795 .8455 |abalonel9 128.87 0.5295/.9009 .5185 |.5000 .5000
clevelandOvsd 12,62 1.3500|.9922 .7179 |.9828 .8582 |ecoli0147vs2356 10.59 0.5275/.9561 .8529 |.9571 .8755
ecoli0146vs5  13.00 1.3400[.9861 .8923 |.9856 .8981 |page-blocks) — 8.77 0.5087|.9792 .9437 |.9798 .9442
yeast2vs8 23.10 1.1420|.9115 .8012 |.8359 .7664 |glass2 10.39 0.3952|.9402 .6819 |.9364 .7797
ecoli0347vs56  9.28 1.1300/.9540 .8502 |.9718 .8541 |vehicle2 2.52 0.3805|.9846 .9396 |.9842 .9512
vehicle0 3.23 1.1240|.9716 .9160 |.9761 .9448 |yeast1289vs7  30.56 0.3660|.9359 .6397 |.7931 .6733
ecoli0lvs235  9.17 1.1030|.9720 .8218 |.9527 .8873 |yeastlvs7 13.87 0.3534/.9107 .6968 |.8890 .7759
yeast05679vsd  9.35 1.0510.9276 .7725 |.9207 .7674 |glassO146vs2  11.06 0.3487|.9157 .7344 |.9553 .7274
glass06vs5 11.00 1.0490[.9912 .9647 |.9975 .9350 |yeast0359vs78  9.12 0.3113].9214 .7078 |.8628 .6978
glassh 22.81 1.0190|.9480 .8232 |.9988 .9951 |glass016vs2 10.29 0.2692|.9237 6667 |.9947 .9572
ecoli067vs35  9.09 0.9205.9700 .7875 |.9632 .8450 |yeastl 2.46 0.2422|.7781 .6957 |.7857 .6677
ecoli0267vs35  9.18 0.9129|.9851 .7854 |.9642 .7827 |glass] 1.82 0.1897|.8601 .6668 |.8912 .7420
ecoli0147vs56  12.28 0.9124].9598 8457 |.9738 .8538 |vehicle3 2.52 0.1855|.8892 .7675 |.8894 .7206
yeast4 28.41 0.7412.9113 .7157 |.8648 .7089 |haberman 2.68 0.1850|.7428 .6076 |.7326 .6178
yeast0256vs3789 9.14 0.6939].9121 .7649 |.8140 .7581 |yeast1458vs7 ~ 22.10 0.1757|.8719 .5192 |.7996 .5745
glass0 2.06 0.6492(.8862 .7748 |.8917 .8103 |vehiclel 2.52 0.1691|.8881 .7170 |.8960 .7340
abalone9-18  16.68 0.6320|.9302 .7332 |.8425 .7122 |glass015vs2 9.12 0.1375|.9342 .7226 |.9429 .7433
| C45-SMOTE+ENN | \ C4.5-MOEA
Average | 9247 7626 | Average | 9033 7899

Table 3. Wilcoxon test for the comparison between C4.5+MOEA [R*] and
C4.5+S_ENN [R7].

Comparison RT™ |R™ |p-value |W/T/L
C4.54+MOEA vs C4.54+ S_ENN | 460.0 | 206.0 | 0.044745 | 21/0/15

the curse of over-fitting, as the training performance is even lower than that of
the standard preprocessing approach.

In order to determine statistically the best suited metric, we carry out a
Wilcoxon pairwise test in Table 3. Results of this test agree with our previous
remarks, since significant differences are found in favour of our IS + FS-MOEA
approach with a confidence degree above the 95 %.

Finally, we must remark that the IS-FS-MOEA approach has a greater com-
putational cost in terms of both memory and CPU time than the C4.5 +S_ENN
algorithm, as it carries out an evolutionary process. However, its advantage over
the former is twofold: (1) it has been shown to clearly outperform the former in
terms of precision; and (2) it allows the final user to apply several solutions in
order to select the one that better suites to the problem that is being addressed.

5 Concluding Remarks

In this work we have proposed a novel MOEA in the framework of classifica-
tion with imbalanced datasets. This approach has been designed under a double
perspective: (1) to carry out an instance selection for compensating the exam-
ple distribution between the classes, as well as removing those examples which
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include noise, or which difficult the discrimination of the classes; and (2) to per-
form a feature selection to remove those attributes that may imply a high degree
of overlapping in the borderline areas.

The goodness in the use of the MOEA is related to its high exploration abil-
ities, the capability of using several metrics to guide the search, and the avail-
ability of several solutions so that they any of them can be selected depending
on the problem requirements.

Our experimental results have shown the robustness of our novel proposal in
contrast with the state-of-the-art, and confirms the significance of this topic for
future research. Among others, we plan to study the use of different objectives to
guide the search, the use of the solutions of the MOEA as an ensemble approach,
or even to develop a heuristic rule to select the best suited solution overall.
Finally, we will test the behaviour of our model with problems with a higher
complexity, including both a wider number of instances and/or features.

Acknowledgments. This work was supported by the Spanish Ministry of Science and
Technology under projects TIN-2011-28488, TIN-2012-33856; the Andalusian Research
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Abstract. Pattern classification algorithms usually assume, that the
distribution of examples in classes is roughly balanced. However, in many
cases one of the classes is dominant in comparison with others. Here, the
classifier will become biased towards the majority class. This scenario is
known as imbalanced classification. As the minority class is usually the
one more valuable, we need to counter the imbalance effect by using one
of several dedicated techniques. Cost-sensitive methods assume a penalty
factor for misclassifying the minority objects. This way, by assuming a
higher cost to minority objects we boost their importance for the clas-
sification process. In this paper, we propose a model of cost-sensitive
neural network with moving threshold. It relies on scaling the output of
the classifier with a given cost function. This way, we adjust our sup-
port functions towards the minority class. We propose a novel method
for automatically determining the cost, based on the Receiver Operat-
ing Characteristic (ROC) curve analysis. It allows us to select the most
efficient cost factor for a given dataset. Experimental comparison with
state-of-the-art methods for imbalanced classification and backed-up by
a statistical analysis prove the effectiveness of our proposal.

Keywords: Machine learning - Neural networks - Imbalanced classifi-
cation - Cost-sensitive + Moving threshold

1 Introduction

Machine learning algorithms have been effectively used for classification purposes
in last decades. However, new problems continuously emerge that pose challenge
to pattern classifiers. Often these difficulties are embedded in the nature of the
data. They may be connected with the volume, non-stationary nature, some
specific characteristics, or differing quality of examples. One of such problems is
the imbalance between the class representatives.

Standard classifiers assume, that the distribution of objects between classes is
roughly equal. When this assumption is violated, they tend to get biased towards
the class with higher quantity of examples. This deteriorates the performance
over the minority class. Therefore, in order to get a well-balanced classifier that
is competent over all of classes, we need to counter the imbalanced distribution.

© Springer International Publishing Switzerland 2015
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There is a plethora of methods proposed, usually focusing on some data
pre-processing methods or guiding the training process towards the minority
examples. Former group concentrates on operations on the dataset in order to
re-balance it, and then uses standard classifiers. Latter group works on the orig-
inal dataset, but changes the training procedure of the classifier. Both of these
approaches are considered as an effective aid in the imbalanced classification
domain.

Between these two groups of methods lies the cost-sensitive solution. Usually
during the design of the classifier one assumes that all classes are identically
important and calculate the training error on the basis of quantity of misclassified
examples (e.g., as in 0-1 loss function). However, in imbalanced domain usually
the minority class is the more interesting one. Therefore, one may associate a
higher misclassification cost with the minority class examples in order to boost
their recognition rate. This will penalize the training process for errors on the
minority objects and counter the problem of uneven class representations. Cost-
sensitive paradigm has been successfully introduced to some types of classifiers,
like decision trees or neural networks.

In this paper, we concentrate on the design of cost-sensitive neural networks.
We propose to work with the neural classifiers that use the moving threshold
approach for incorporating the classification cost. Here instead of re-balancing
the training set or modifying the learning procedure, we scale the continuous
output of a neural network. Therefore, we modify the classification phase instead
of the training phase. Such a scaling forces the classification boundary to be
moved towards the objects with higher cost, thus alleviating the bias towards
the majority class.

However, the cost factor has a crucial influence on the performance of such
a neural classifier and the problem lies in establishing its value. Some problems
have the cost supplied by an expert (like in medical domains), but mainly we
have no prior information on how to set it. We propose a fully automatic method,
based on Receiver Operating Characteristic (ROC) curve [4] analysis. We use it to
select the best cost factor for a given dataset, that returns balanced performance
on both classes.

Our ROC-based cost-sensitive neural network is compared with a set of refer-
ence approaches for handling the class imbalance problem. Experimental analysis
carried over a set of datasets with varying imbalance ratio proves the usefulness
of our approach.

2 Imbalanced Classification

The performance and quality of machine learning algorithms is conventionally
evaluated using predictive accuracy. However, this is not appropriate when the
data under consideration is strongly imbalanced, since the decision boundary
may be strongly biased towards the majority class, leading to poor recognition
of the minority class. Disproportion in the number of class examples makes the
learning task more complex [12], but is not the sole source of difficulties for
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machine learning algorithms. It is usually accompanied by difficulties embedded
in the structure of data such as small sample size (very limited availability of
minority examples), small disjuncts (minority class can consist of several sub-
concepts) or class overlapping.

Over the last decade there was developed a number of dedicated techniques
for handling such difficulties [1]. They can be divided into two major categories.
First one consist of data-level approaches that in the pre-processing stage aim
at re-balancing the original distribution [3]. Classifier-level approaches try to
adapt existing algorithms to the problem of imbalanced datasets and alleviate
bias towards the majority class. Third group relies on cost-sensitive classification
and assign higher misclassification cost for minority class, while classification is
performed so as to reduce the overall learning cost.

Ensemble systems have also been successfully applied to this domain, and
mainly combine a committee learning algorithm (such as Bagging or Boosting)
with one of the above mentioned methods [5]. One may also propose a hybrid train-
ing procedure for such a combined classifier that will apply cost-sensitive learning
locally (for each base classifier) and globally (in the ensemble pruning step) [7].

3 Proposed Cost-Sensitive Neural Network

In this paper, we propose to investigate the cost-sensitive neural network model,
based on moving threshold [13].This algorithm concentrates on modifying the
output of a classifier, instead of changing the structure of the training data or
the training algorithm. The cost-sensitive modification is introduced during the
classification step - this the model is being trained in a traditional manner.

Let us assume, that we have a binary imbalanced problem with majority and
minority classes. Then the continuous output of two neurons in the final layer
of a neural network for object « can be denoted as Opq;(x) and Opin(x), where
Oma;j () + Omin(x) = 1 and both outputs are bounded within [0, 1]. In canonical
neural network models, the final class is selected according to winner-takes-all
(WTA) procedure: ¥(z) = arg maX, e {maj,min} Om ().

However, in moving-threshold model we modify the outputs of the neural net-
work, thus denoting them as Oy, () and O}, ;,, (). In cost-sensitive threshold-
moving model, we compute the output as follows:

*
maj

() = NO0mq;Cost[maj, min], (1)

and
rin () = NOmin Cost[min, maj], (2)
where Cost[m, n] is the misclassification cost between m-th and n-th class, and 7
is a normalization parameter such that Oy}, (z)+0O;,,, (z) = 1 and both outputs
are bounded within [0,1].
One should note, that threshold-moving approaches for neural networks have
been overlooked for a long time and is not even close in popularity to sampling-
based methods for class imbalance [5]. However, some studies report its high

usefulness for dealing with datasets with skewed distributions [9]. Other works
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Algorithm 1. Cost-sensitive neural network with moving threshold.
Require: training set 7S,

validation set VS,

neural network training procedure ()

cost matrix

1: Training phase:
: Train a neural network on 7S using supplied classifier training procedure
: Optimize cost parameters using ROC curve analysis on the basis of VS

W N

: Classification phase:

obtain continuous outputs Oma;(z) and Omin (z)
Ornoj(x) «— modify Oma;(x) according to Eq. (1)
O}in(x) — modify Omin(z) according to Eq. (2)

: Apply the WTA procedure on cost-sensitive outputs

SN IR S

report, that simply changing the data distribution without considering the imbal-
ance effect on the classification threshold (and thus adjusting it properly) may
be misleading [10].

As we can see, the proper settings of cost values has a crucial effect on the
performance of this algorithm. Too low cost would lead to insignificant improve-
ments over the standard methods, while too high cost would degrade the per-
formance over the majority class. One must remember, that we cannot sacrifice
the majority class, as our ultimate goal is to obtain a classifier with good per-
formance on both classes. In optimal scenario the cost would be supplied by
a domain expert according to his/her knowledge. However, in most of real-life
imbalanced applications we do not have an access to a pre-defined cost and thus
must set it manually. This procedure can be time-consuming, difficult and may
lead to an increased classification error when conducted erroneously. So far only
simple heuristics were used to calculate the cost, like setting it equal to class
imbalance ratio [8].

In this paper, we propose a new method for cost-sensitive neural network
training based on ROC curve analysis [7]. Here, we use different values of cost
parameter as cut-off points for plotting a ROC curve. Then, we select such a
setting of neural classifier that offers the best ratio between the True Positive
rate and False Positive rate (in practice - point located closest to the top left
corner of the ROC plot). This allows us for an automatic cost selection that offers
a balanced performance on both classes. User only needs to supply a search range
and the tuning procedure is conducted in a fully automatic manner.

The detailed steps of the cost-sensitive moving-threshold classifier are pre-
sented in a form of pseudo-code in Algorithm 1.

4 Experimental Study

The aims of the experiments were to establish the usefulness of the cost-sensitive
moving-threshold neural network, compare it with-state-of-the-art methods for
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imbalanced classification, and asses the quality of ROC-based cost parameter
selection.

In the experiments we have used 10 binary imbalanced datasets from the
KEEL repository'. Their details are given in Table 1.

Table 1. Details of datasets used in the experimental investigations, with the respect
to no. of objects, no. of features, no. of classes, and imbalance ratio (IR).

No | Name Objects | Features | Classes | IR

1 | Haberman 306 3 2 2.78
2 | Segment0 2308 19 2 6.02
3 | Page-blocks0 5472 10 2 8.79
4 | Vowel0 988 13 2 9.98
5 | Glass4 214 2 15.47
6 | Abalone9-18 731 2 16.40
7 | Yeast6 1484 2 41.40
8 | Ecoli-0-1-3-7_vs_2-6 281 7 2 39.14
9 | Poker-8_vs_6 1477 10 2 85.88
10 | Kddcup-rootkit-imap_vs_back | 2225 41 2 100.14

As a base classifier we use a single-layer neural network trained with resilient
backpropagation algorithm [11]. The number of input neurons is equal to the
number of features, output neurons to the number of classes, and the number
of neurons in the hidden layer is equal to “C4r " SinputtnCUTONSouiput Fach peyral
network is trained for 1000 iterations.

As reference methods for dealing with class imbalance, we combine neural
networks with Random Oversampling (NN + OS), Random Undersampling
(NN + US), Synthetic minority over-sampling technique (NN + SMOTE) [3], and
cost-sensitive moving threshold method with Cost[minority, majority] = IR [8]
(NN +MV(IR)).

The proposed method with ROC-based cost optimization (NN +MV(ROC))
uses [5, 200] as a possible range of possible cost parameter values.

We use 5 x 2 CV F-test for training / testing and pairwise statistical analysis,
while Friedman ranking test and Shaffer post-hoc tests are applied for statistical
comparison over multiple datasets [6].

The results are given in Table2. The output of Shaffer post-hoc test is
reported in Table 3.

From the obtained results one may see, that the proposed ROC-based cost-
sensitive neural network outperforms all other methods in 6 out of 10 cases. What
is highly interesting it always delivers superior performance in comparison with
the cost selected on the basis of the imbalance ratio. This shows, how important
is the proper selection of the cost parameter and that imbalance ratio is not

! http://sci2s.ugr.es/keel /imbalanced.php.
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Table 2. Results according to G-mean [%)] for each examined methods over 10 datasets.
Small numbers under proposed method stands for the indexes of reference classifiers
that were statistically inferior in the pairwise 5 x 2 CV F-test. Last row represents the
ranks after Friedman test.

Data |NN +0S' NN +US? NN + SMOTE? NN + MT(IR)* NN + MT(ROC)®
1 61.18 61.76 62.27 60.46 62.02
1,2,4
2 98.87 98.36 99.18 97.00 97.97
3 92.73 94.11 93.88 93.64 94.82
1,3,4
4 93.18 94.36 94.84 93.88 95.80
ALL
5 81.18 82.74 83.98 81.06 82.39
1,4
6 57.44 58.92 57.87 58.14 60.31
ALL
7 82.44 81.89 83.59 83.20 85.07
ALL
8 74.18 76.39 77.99 76.82 78.38
1,2,4
9 83.17 85.66  85.13 82.78 84.19
1,4
10 |71.87 73.22 74.04 73.86 76.08
ALL
Rank 4.25 3.50 2.15 3.80 1.40

the best indicator of the proper misclassification cost. This can be explained by
the fact, that IR is not the sole reason behind the imbalanced difficulty. There
are other factors, embedded in the nature of data [2]. Therefore, one can easily
imagine two hypothetical datasets with identical IR, but completely different
classification difficulty. In such situations misclassification cost based purely on
IR will definitely fail. This is further confirmed by Shaffer post-hoc test.

When comparing the proposed ROC-based neural network to other solu-
tions, we can clearly see that it easily outperforms Random Oversampling. This
is because our cost parameter was optimized to balance the performance on both
classes, while RO multiplies the minority class without considering the impor-
tance of objects.

On some datasets, the proposed method was inferior to Random Undersam-
pling and SMOTE. This can be explained by the lack of selectiveness of our
procedure - it modifies the output for all of examples. Thus it may happen that
a correctly recognized examples is weighted towards the incorrect class, which
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Table 3. Shaffer test for comparison between the proposed ROC-based cost-sensitive
neural network and reference methods over multiple datasets. Symbol ‘+’ stands for a
situation in which the proposed method is superior, ‘—’ for vice versa, and ‘=" represents
a lack of statistically significant differences.

Hypothesis p-value

NN+ MT(ROC) vs NN+ OS + (0.0196)
NN+ MT(ROC) vs NN+ US + (0.0348)
NN+ MT(ROC) vs NN+ SMOTE | + (0.0402)
NN+ MT(ROC) vs NN+ MT(IR) | + ( )

P Nl Nl Nl

may result in an increased rate of false positives (majority examples misclassi-
fied as minority ones). To counter this problem, one would need to introduce
a sample selection mechanism, that would apply the cost modification only on
examples that are potentially uncertain.

5 Conclusions and Future Works

In this paper we have presented a modification of cost-sensitive neural network
classifier based on moving threshold for imbalanced learning domain. We pro-
posed to augment this model with automatic procedure for parameter selection.
We applied a ROC-based parameter selection to chose an optimal cut-off point
that determined the selected value of misclassification penalty. This allowed for
selecting such a parameter, that would offer a balanced performance on both
classes.

Experimental evaluation carried out on a number of datasets with varying
imbalance ratio confirmed the usefulness of the proposed approach. Our method
was always better than the normally used approach for cost parameter esti-
mation. Additionally, in 6 out of 10 cases it was able to outperform the ref-
erence methods based on data sampling. This was further backed-up with a
thorough statistical analysis. However, the experiments revealed the weak side
of our method, that is lack of selectiveness when modifying the output of the
classifier.

In future works we plan to develop an active learning solution for selecting
important samples to modify the threshold, and propose a dynamic ensemble
system based on this classifier.

Acknowledgments. This work was supported by the Polish National Science Center
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Abstract. In ordinal monotonic classification problems, the class vari-
able should increase according to a subset of explanatory variables.
Standard classifiers do not guarantee to produce model that satisfy the
monotonicity constraints. Some algorithms have been developed to man-
age this issue, such as decision trees which have modified the growing
and pruning mechanisms. In this contribution we study the suitability
of using these mechanisms in the generation of Random Forests. We
introduce a simple ensemble pruning mechanism based on the degree of
monotonicity. After an exhaustive experimental analysis, we deduce that
a Random Forest applied over these problems is able to achieve a slightly
better predictive performance than standard algorithms.

Keywords: Monotonic classification - Decision tree induction - Random
forest - Ensemble pruning

1 Introduction

The classification of examples in ordered categories is a popular problem which
has drawn attention in data mining practitioners over the last years. This prob-
lem has been given with different names, such as ordinal classification, ordinal
regression or ranking labelling, but all they share a common property in the
data: the output attribute or class is ordinal. Classification with monotonicity
constraints, also known as monotonic classification [1], is an ordinal classification
problem where monotonic restriction is clear: a higher value of an attribute in
an example, fixing other values, should not decrease its class assignment [2].

Decision trees [3] and rule induction [4] constitute two of the most promis-
ing techniques to tackle monotonic classification. Any approach for classification
can be integrated into an ensemble-type classifier, thus empowering the achieved
performance [5]. However, a classifier selection is needed to enhance its perfor-
mance, and it is known as ensemble pruning [6]. Random Forests (RFs) is a
well-known form of ensembles of decision trees based on bagging.

The general goals pursued in this contribution are to promote the appli-
cation of the RF approach in monotonic classification tasks and to introduce
a monotonicity ordering-based pruning mechanism for RFs based on the non-
monotonicity index.
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This contribution is organized as follows. In Sect.2 we present the ordinal
classification with monotonic constraints. Section3 is devoted to describing
our proposal of RF and its adaptation to satisfy the monotonicity con-
straints. Section4 describes the experimental framework and examines the
results obtained in the empirical study, presenting a discussion and analysis.
Finally, Sect. 5 concludes the contribution.

2 Monotonic Classification

Ordinal classification problems are those in which the class is neither numeric
nor nominal. Instead, the class values are ordered. For instance, a worker can
be described as “excellent”, “good” or “bad”, and a bond can be evaluated as
“AAA”, “AA”, “A” ) “A-7 | etc. Similar to a numeric scale, an ordinal scale has an
order, but it does not posses a precise notion of distance. Ordinal classification
problems are important, since they are fairly common in our daily life.

A monotonic classifier is one that will not violate monotonicity constraints.
Informally, the monotonic classification implies that the assigned class values
are monotonically nondecreasing (in ordinal order) with the attribute values.
More formally, let {x;, class(x;)} denote a set of examples with attribute vector
x; = (Xi1,-..,X;,m) and a class, class(x;), being n the number of instances
and m the number of attributes. Let x; = xj if Vj—1, . m,X;; > Xp,;. A data
set {x;,class(x;)} is monotonic if and only if all the pairs of examples i, h are
monotonic with respect to each other [7].

3 Monotonic Random Forest

In this section, we explain our proposal to tackle monotonic classification. The
modifications introduced to the standard RF are mainly focused on the way the
splitting is made for every tree, the promotion of the diversity by a new random
factor and the aggregation of the results with the pruning mechanism proposed,
maintaining the bootstrap sample method untouched.

First of all, we define the Non Monotonic Index (NMI) as the rate of number
of violations of monotonicity divided by the total number of examples in a data
set. Previously, we have introduced the MID based algorithms in the process
of building the trees. With this change, we accomplish the initial objective of
adapting the well-known ensemble to monotonic classification. We choose MID-
C4.5 to build every random tree of the forest. This method selects the best
attribute to perform the split using the total-ambiguity-score as a criterion.
This measurement was defined by Ben-David in [7] as the sum of the E-score of
the ID3 algorithm and the order-ambiguity-score weighted by the parameter R.
The order —ambiguity — score is computed, as shown in Eq. 1, using the concept
of the non-monotonicity index, which is the ratio between the actual number of
non-monotonic branch pairs and the maximum number of pairs that could have
been non-monotonic. In the MID-C4.5, the entropy of the ID3 is substituted by
the gain information of the C4.5 decision tree.
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Algorithm 1. Monotonic RF algorithm.

function MONRF(D - dataset, nTrees - number of random trees built, Riim:t -
importance factor for monotonic constrains, T' - Threshold used in the pruning
procedure, S - the predicted version of D)
initialize: S = {}, Trees[l..nTrees], Dyootstraps|[1l..nTrees|, NMIs[l..nTrees]
for iin [1,nTrees] do
Diootstraps[t]| = Bootstrap_Sampler(nTrees, D)
rand = Random(1, Riimit)
Trees[i] = Build_Tree(Dyootstraps|i], rand)
NMIs[i] = Compute_NMI(Trees[i])
end for
Trees = Sort(Trees, NMIs)
for i in [1,[nTrees « T] do
Trees «— Trees|i|

end for
for d in D do
S «— Predict_Majority_Voting(Trees, d)
end for
return S

end function

Lo it NMI=0 0
T | —(logy NMI)~1  otherwise

The factor R was first introduced by Ben-David [7] as an importance factor
of the order-ambiguity-score in the decision of the splitting with the calculation
of the total-ambiguity-score. As higher as R was set, more relevant were the
monotonicity constraints considered. We use this parameter as a way to further
randomise and diversify the different trees built in the RF and at the same
time, we force the tree building procedure to be dominated by the monotonicity
considerations. In order to fulfill this, each tree is built from the beginning with
a different factor R, picked as a random number from 1 to Rjjmi, set as a
parameter shown in Algorithm 1.

Furthermore, we did not consider for our proposal the maximum depth
imposed to all the random trees of the standard RF. We have decided this,
due to the fact that monotonic decision tree classifiers already highly reduce the
complexity of the built tree compared with the traditional ones.

Finally, we design a pruning threshold mechanism in the final combination
of the different results to predict the class of each example. Instead of using
all the decision trees built, to form the class through the majority vote of the
predictions, we choose the best trees in term of monotonicity constraints within
a certain threshold, latest lines of the Algorithm 1. With this objective, our
Monotonic RF sorts the different trees built by the Non-Monotonic-Index in
increasing order and the pruning method selects the first n trees, where n is the
number of trees computed by product of the total number of trees built and the
threshold T within the range (0,1]. We recommend to set it at 0.50, due to the
results obtained in the next section.
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Experimental Framework, Results and Analysis

this section, we present the experimental framework followed to compare and

analyze the application of RFs to monotonic classification.
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Fig. 1. Effect of the pruning rate in the random forest

4.1 Experimental Methodology

The experimental methodology is described next by specifying some basic ele-
ments:

Data Sets: 50 monotonic data sets are used in this study. Most of the
monotonic data sets are standard data sets used in the classification scope
and extracted from KEEL repository [8] which have been relabeled following
the procedure used in the experimental design of [9].

Algorithms to compare: We will compare RFs with three decision trees: MID-
C4.5 [7], MID-CART ([3] and MID-RankTree [10]; and two classical algorithms
in this field: OLM [11] and OSDL [12].

Evaluation metrics: Several measures will be used in order to estimate the
performance of the algorithms compared: Accuracy (Acc); Mean Absolute
Error (MAE) [13]; Non Monotonic Index (NMI); Number of Leaves (NL).
Parameters configuration: The parameters of the baseline algorithms are the
standard in KEEL software [8]. The maximum depth for CART and Rank-
Tree is 90. The value of R for MID is 1. RF also uses the standard parame-
ters, but for monotonic classifications it requires to set the Ry;m:: = 100 and
Threshold = 0.5. The number of trees built is 100 in all cases.

4.2 Results

This section is dedicated to present the results gathered from the runs of the
algorithms using the configuration described in the previous subsection.
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Table 1. Accuracy and MAE results reported.
Accuracy Mean Absolute Error
MID MID MID MID MID MID MID MID

RF C4.5 CART RankTree OLM OSDL| RF C4.5 CART RankTree OLM OSDL

appendicitis 0.8667 0.8964 0.8364 0.9064 0.8109 0.6418| 0.1333 0.1036 0.1136 0.0936 0.1891 0.3582
australian 0.8261 0.8029 0.8319 0.8362 0.7232 0.8319| 0.1739 0.1971 0.1681 0.1638 0.2768 0.1681
auto-mpg 0.6529 0.6247 0.4489  0.6223 0.6812 0.3854| 0.4630 0.4851 1.0335  0.5001 0.3879 0.8291
automobile 0.8039 0.8250 0.7304  0.7429 0.2333 0.3758| 0.3069 0.2688 0.4696  0.4263 2.1046 0.8958
balance 0.9830 0.9777 0.9777 0.9856 0.9776 0.9777| 0.0186 0.0239 0.0271 0.0176 0.0272 0.0271
bostonhousing  [0.6483 0.5674 0.4982  0.5237 0.3003 0.2569|0.4958 0.6102 0.7504  0.6856 1.3045 1.0099
breast 0.7597 0.7337 0.6933  0.7440 0.8409 0.8015| 0.2403 0.2663 0.3067  0.2560 0.1591 0.1985
bupa 0.7981 0.7508 0.7534  0.7879 0.8375 0.7625| 0.2019 0.2492 0.2466  0.2121 0.1625 0.2375
car 0.8731 0.9433 0.8183  0.9386 0.9705 0.9705| 0.1609 0.0666 0.2396  0.0735 0.0324 0.0324
cleveland 0.5644 0.4909 0.5284  0.5253 0.5793 0.5421|0.6893 0.8332 0.8014  0.8586 0.8311 0.7848
contraceptive | 0.8185 0.7991 0.5601  0.7719 0.8799 0.8398| 0.2351 0.2552 0.6449  0.2844 0.1534 0.1602
erx 0.8290 0.7903 0.7933  0.7839 0.6110 0.7058/0.1710 0.2097 0.2067  0.2161 0.3890 0.2942
dermatology ~ [0.8633 0.8437 0.8408  0.7512 0.4499 0.1593]0.2810 0.3325 0.3465  0.5339 1.3821 1.6421
ecoli 0.6441 0.6074 0.5750  0.5779 0.6368 0.0652| 1.0802 1.0549 1.5201  1.1250 0.9467 2.1998
ERA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000|0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ESL 0.9043 0.9159 0.6162  0.9344 0.9179 0.9364| 0.1107 0.1026 0.5788  0.0738 0.0923 0.0656
flare 0.9025 0.9165 0.6380  0.9456 0.9738 0.9606| 0.1256 0.1191 0.6479  0.0826 0.0318 0.0572
glass 0.7464 0.6773 0.6258  0.6883 0.3175 0.3223]0.4934 0.6929 0.7747  0.6747 1.7994 1.8000
haberman 0.9291 0.9177 0.9312  0.9537 0.9310 0.9606| 0.0709 0.0823 0.0688  0.0463 0.0690 0.0394
hayes-roth 0.9042 0.9438 0.7688  0.8500 0.9500 0.9438| 0.1104 0.0563 0.2500  0.1688 0.0750 0.0563
heart 0.8235 0.7926 0.7593  0.8111 0.6704 0.6259|0.1765 0.2074 0.2407  0.1889 0.3296 0.3741
hepatitis 0.8917 0.7750 0.8375 0.9000 0.2375 0.8000| 0.1083 0.2250 0.1625 0.1000 0.7625 0.2000
housevotes 0.9528 0.9741 0.8750  0.9266 0.9047 0.9096| 0.0472 0.0259 0.1250  0.0734 0.0953 0.0904
ionosphere 0.8832 0.8348 0.7863  0.7810 0.6580 0.7237|0.1168 0.1652 0.2137  0.2190 0.3420 0.2763
iris 0.9711 0.9667 0.9733 0.9867 0.9000 0.3733| 0.0289 0.0333 0.0267 0.0133 0.1000 0.9067
led7digit 0.8600 0.9520 0.7880  0.9660 0.9820 0.9740| 0.3800 0.1140 0.6780  0.0700 0.0340 0.0340
LEV 0.9993 1.0000 0.6990  1.0000 1.0000 1.0000| 0.0007 0.0000 0.4450 0.0000 0.0000 0.0000
lymphography [0.7819 0.7705 0.6767  0.6900 0.7100 0.7029|0.2314 0.2567 0.3633  0.3714 0.3571 0.2971
machinecpu  0.6520 0.5638 0.4398  0.6369 0.6267 0.6362| 0.4741 0.6086 0.7564  0.4726 0.5031 0.4067
mammographic | 0.9763 0.9831 0.9735 0.9904 0.9892 0.9831| 0.0237 0.0169 0.0265 0.0096 0.0108 0.0169
monk-2 0.9807 0.9746 0.9792  0.9769 0.9721 0.9908| 0.0193 0.0254 0.0208  0.0232 0.0279 0.0092
movement libras|0.6796 0.5194 0.5583  0.5333 0.3139 0.1194|1.1602 2.0306 1.7861  1.8528 4.3472 5.7000
newthyroid 0.8621 0.8279 0.8511  0.8329 0.6223 0.1818]0.1905 0.2186 0.1909  0.2139 0.5504 0.8413
pima 0.8702 0.8242 0.7837  0.8007 0.8151 0.62240.1298 0.1758 0.2163  0.1993 0.1849 0.3776
post-operative | 0.6968 0.6333 0.4403  0.7403 0.8292 0.7569| 0.3773 0.4806 0.7292  0.3153 0.2042 0.2431
saheart 0.7302 0.6627 0.6645  0.6624 0.6862 0.6839|0.2698 0.3373 0.3355  0.3376 0.3138 0.3161
segment 0.9759 0.9649 0.9632  0.9602 0.3061 0.1684|0.0447 0.0610 0.0671  0.0723 2.4022 2.8597
sonar 0.8042 0.7681 0.7250  0.7648 0.4662 0.5724|0.1958 0.2319 0.2750  0.2352 0.5338 0.4276
specttheart 0.8028 0.7379 0.7412  0.7339 0.2095 0.8016]0.1972 0.2621 0.2588  0.2661 0.7905 0.1984
SWD 0.9993 1.0000 0.3820 1.0000 1.0000 1.0000| 0.0007 0.0000 1.0240 0.0000 0.0000 0.0000
tae 0.8278 0.8483 0.5904  0.8417 0.8546 0.8946| 0.1921 0.1650 0.5283  0.1913 0.1850 0.1054
titanic 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000|0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
vehicle 0.7409 0.6904 0.6384  0.6644 0.2530 0.2588|0.4929 0.5661 0.6475  0.6334 1.4917 0.9717
vowel 0.9525 0.7758 0.2182  0.7778 0.0909 0.0859|0.1010 0.6242 2.9313  0.5232 5.0000 4.8273
wdbe 0.7183 0.6768 0.6749  0.6713 0.6451 0.5607|0.2817 0.3232 0.3251  0.3287 0.3549 0.4393
windsorhousing | 0.8932 0.8939 0.8738  0.8664 0.9174 0.8847| 0.1068 0.1061 0.1262  0.1336 0.0826 0.1153
wine 0.7926 0.6794 0.7297  0.7578 0.3484 0.3314|0.2882 0.4219 0.3719  0.3154 0.9660 0.9667
wisconsin 0.9747 0.9591 0.9693  0.9591 0.8815 0.9547|0.0253 0.0409 0.0307  0.0409 0.1185 0.0453
yeast 0.4095 0.3659 0.2811  0.3639 0.4596 0.0836| 1.7143 1.8605 3.1107  1.8111 1.6300 3.0862
200 0.7427 0.8127 0.4564  0.8127 0.8409 0.7727| 0.7000 0.4727 1.8073  0.4336 0.3682 0.3745

First of all, we present the study that allows us to determine the best choice
of the monotonicity pruning parameter value for the RF proposal. The trees
built from the ensemble are sorted by their NMI in increasing order. The prun-
ing mechanism selects the trees using a threshold coming from 0.05 to 1. This
represents the rate of trees that will belong to the ensemble. In this way, if the
rate is 1 all the trees will belong to the ensemble and if the rate is 0.3, only 30 %
of the most monotonic trees will form the ensemble.
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Table 2. Summary table for statistical inference outcome: ranks and APVs

Acc MAE NL NMI
Ranks | APVs | Ranks | APVs | Ranks | APVs | Ranks | APVs
MID-RF 2.480 | — 2.540 | — 1.469 | - 2.300 |0.423
MID-C4.5 3.360 |0.037 |3.310 | 0.079 |2.041 |0.028 |2.000 |—
MID-CART 4.310 |0.000 |4.320 | 0.000 |2.345 |0.000 |4.130 |0.000
MID-RankTree | 3.200 |0.054 |3.230 |0.079 |3.255 |0.000 |5.600 | 0.000
OLM 3.650 |0.005 | 3.800 |0.003 |- — 3.780 | 0.000
OSDL 4.000 |0.000 |3.800 |0.003 |- — 3.190 |0.001
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Fig. 2. Number of leaves and non monotonic index results reported.

Figure 1 shows the effect of the pruning rate explained above in RF. The
values represented for both graphics are associated with the average values of
Acc and NMI of the 50 data sets. Observing Fig. 1a, we can see that there is a
turning point in the growth curve surrounding the rate value of 0.5. Simultane-
ously, in Fig. 1b there is a limit in which the improvement registered in accuracy
stops decreasing and this limit matches with the same turning point indicated
previously: the rate of 0.5. Hence, it seems logical that this rate could be an
interesting value to be adopted as the monotonicity pruning rate used for RFs.
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Henceforth, we will consider 0.5 as the pruning rate used in RFs. Under our
recommended configuration of pruning and random choice of R parameter, we
compare RF with the other contestant methods. Table 1 and Fig. 2 exhibit the
results obtained for the algorithms over monotonic data sets, in terms of average
values of the three runs of 10-fcv.

In order to support the results, we include a statistical analysis based on
non parametric tests. The results obtained by the application of the Friedman
test and the Holm post-hoc procedure are depicted in Table 2. Furthermore, the
Adjusted P-Value (APV) [14] computed by the Holm procedure is reported in
the algorithms whose ranking is not the best in each group.

4.3 Analysis
From this study, we may stress the following conclusions:

— In terms of accuracy, the goodness of the Monotonic RF the with pruning
threshold mechanism is clear. In all cases, the RF outperforms the other 5
algorithms by a significant difference, a fact that can be noticed in Tables 1
and 2, where the p-value is smaller than 0.10.

— With the same results, the superiority of RF in relation to the MAE over the
other algorithms is overwhelming. This outcome was expected, when such a
difference in terms of accuracy was obtained.

— Furthermore, RF succeeds to obtain less complex trees, as can be seen with
a smaller number of leaves, in Fig. 2. A remarkable fact keeping in mind that
the maximum depth of the standard RF was not used. This is all due to the
variability caused by the pruning procedure, which allows the most monotonic
and simple trees to be selected.

— Finally, referring to the NMI, Fig. 2 and Table 2 reflect better results for MID-
C4.5. However, the difference between MID-RF and MID-C4.5 is not pointed
out as significant.

5 Concluding Remarks

The purpose of this contribution is to present and to analyse a Random forest
proposal for classification with monotonicity constraints. In order to be adapted
to this problem, it includes the rate of monotonicity as a parameter to be ran-
domised during the growth of the trees. After building of all the decision trees,
an ensemble pruning mechanism based on the monotonicity index of each tree
is used to select the subset of the most monotonic decision trees to consti-
tute the forest. The results show that Random Forests are promising models
to address this problem obtaining very accurate results involving trees with a
low non monotonic index.
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Abstract. The paper describes the dynamic ensemble selection. The
proposed algorithm uses values of the discriminant functions and it is
dedicated to the binary classification task. The proposed algorithm of
the ensemble selection uses decision profiles and the normalization of
the discrimination functions is carried out. Additionally, the difference
of the discriminant functions is used as one condition of selection. The
reported results based on the ten data sets from the UCI repository show
that the proposed dynamic ensemble selection is a promising method for
the development of multiple classifiers systems.

Keywords: Ensemble selection - Multiple classifier system - Binary
classification task

1 Introduction

Supervised learning is one of the types of machine learning [1]. Generally, the
recognition algorithm maps the feature space to the set of class labels. The
output of an individual (base) classifier can be divided into three types [19].

— The abstract level — classifier ¢ assigns the unique label j to a given input
x [20,26].

— The rank level — in this case for each input z, each classifier produces an
integer rank array. Each element within this array corresponds to one of the
defined class labels [14]. The array is usually sorted and the label at the top
is the first choice.

— The measurement level — the output of a classifier is represented by a discrim-
inant function value that addresses the degree of assigning the class label to
the given output z [17,18]. An example of such a representation of the output
is a posteriori probability returned by Bayes classifier.

For several years, in the field of supervised learning a number of base classifiers
have been used in order to solve one classification task. The use of multiple base
classifier for a decision problem is known as an ensemble of classifiers (EoC) or
as multiple classifiers systems (MCSs) [5,11,28]. The building of MCSs consists
of three phases: generation, selection and integration [3]. For example, in the
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third phase and for abstract the level of classifier outputs the simple majority
voting scheme [24] is most popular. Generally, the final decision which is made
in the third phase uses the prediction of the base classifiers and it is the popular
for their ability to fuse together multiple classification outputs for the better
accuracy of classification. If the outputs of all base classifiers are used in the
third phase then this method is called classifier fusion. Formally, then there is
no second phase in building MCSs.

The second phase of building MCSs is one of the important problems in
the creation of these recognition systems [15,25]. This phase is related to the
choice of a set of classifiers from the whole available pool of classifiers. For-
mally, if we choose one classifier then it is called the classifier selection. But
if we choose a subset of classifiers from the pool then is called the ensemble
selection or ensemble pruning. Here you can distinguish between the static or
dynamic selection [13,22,27]. In the static classifier selection one set of classifiers
is selected to create EoC. This EoC is used in the classification of all the objects
from the testing set. The main problem in this case is to find a pertinent objec-
tive function for selecting the classifiers. In the dynamic classifier selection, also
called instance-based, for each unknown sample a specific subset of classifiers is
selected [2]. It means that we are selecting different EoCs for different objects
from the testing set. In this type of the classifier selection, the classifier is chosen
and assigned to the sample based on different features [29] or different decision
regions [7,16]. Therefore, the rationale of using the dynamic classifier selection
approach is that different base classifiers have different areas of expertise in the
instance space.

In this work we will consider the dynamic ensemble selection. In detail we
propose the new selection method based on the analysis of the discriminant func-
tions in the contents of the binary classification task. The proposed algorithm
of the ensemble selection uses the decision profiles and the difference of the dis-
criminant functions is used as a condition of selection. In the proposed algorithm
the normalization of the discrimination functions is carried out.

The text is organized as follows: after the Introduction, in Sect. 2 the concept
of the ensemble of classifiers is presented. Section 3 contains the new method for
the dynamic ensemble selection. Section4 includes the description of research
experiments comparing the proposed algorithm with base classifiers. Finally, the
discussion and conclusions from the experiments are presented.

2 Ensemble of Classifiers

Let us consider the binary classification task. It means that we have two class
labels M = {1,2}. Each pattern is characterized by a feature vector X. The
recognition algorithm maps the feature space X to the set of class labels M
according to the general formula:

WX — M. (1)

Let us assume that K different classifiers ¥y, Ws, ..., ¥ are available to solve
the classification task. In MCSs these classifiers are called base classifiers. In the
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binary classification task K is assumed to be an odd number. As a result, of all
the classifiers’ actions, their K responses are obtained. The output information
from all K component classifiers is applied to make the ultimate decision of
MCSs. This decision is made based on the predictions of all the base classifiers.

One of the possible methods for integrating the output of the base classifier
is the sum rule. In this method the score of MCSs is based on the application of
the following sums:

K
si(x) = Zﬁk(z|x), i€ M, (2)
k=1

where pg(i|z) is an estimate of the discrimination functions for class label 4
returned by classifier k.
The final decision of MCSs is made following the maximum rule:

Us(x) = arg max si(z). (3)

In the presented method (3) the discrimination functions obtained from the
individual classifiers take an equal part in building MCSs. This is the simplest
situation in which we do not need additional information on the testing process
of the base classifiers except for the models of these classifiers. One of the possible
methods in which weights of the base classifier are used is presented in [4].

2.1 Ensemble Selection Algorithm

The proposed algorithm of ensemble selection uses the decision profiles [19]. The
decision profile is a matrix containing DF's for each base classifier. In the binary
classification task it is as follows:

pr(lle) pu(2la)
DP(@)=| N (4)
prc (L) pr (2)

In the first step of the algorithm the normalization of DFs is carried out. The
normalization is performed for each label class ¢ according to the rule:

Pr(i|x) — min(py (i|x), ..., pr(i|x))
max (p1 (i|2), ..., pr(i]x)) — min(p1 (i[z), ..., pr(i]2))

P (i) = ke K. (5)

Then, the decision scheme DS is calculated according to the formula:
dsi1 dsiz
Ds=| |, (6)
dsg1 dsa
where R
Zn:l I(g/k(xn) = wn) p/k(wn|xn)

ok = T () = wn) @)
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The DS is calculated with the use of a test set. For the new object being recog-
nized, the outputs of the base classifiers create the decision profile. In receipt
of the decision profile from the outputs of the base classifiers the normalization
is carried out similarly to the formula (5). After the normalization the selection
DFs process is performed, which consists of two stages. During the first phase
the following formula is used:

if [p/).(1|z) — P/ (2|2)| < a then /) (w|z) = null,k =1, ..., K, w=1,2. (8)

The parameter a determines the size of the difference of DFs. The values are
derived from the interval o € [0,1). In the second phase the decision scheme is
used according to the formula:

if ﬁk(wm) < sy, then pr(wlz) = nullk=1,.. K, w=1,2. (9)

The obtained decision profile using the formulas (8) and (9) is applied to make
the final decision of the classifiers ensemble. The algorithm using this method is
denoted as ¥g . Since the conditions from the Egs. (8) and (9) can be satisfied
we can talk about the selection of DF's process. In experimental studies we use
the sum method (3) to make the final decision of the selected classifiers ensemble.

3 Experimental Studies

In the experiment 9 base classifiers were used. Three of them work according
to kK — NN rule where k parameter is equal to 3, 5 or 7. Three base classifiers
use Support Vector Machines models. One of them uses Least Squares SVM, the
second Decomposed Quadratic Programming and the third Quadratic Program-
ming modelling method. The other three base classifiers use the decision trees
algorithms, with the various number of branches and splitting rule.

In the experiential research 10 benchmark data sets were used. Eight of them
come from the UCI repository [9] and the other two were generated randomly -
they are the so called Banana and Higleyman sets. The description of data sets
used in the experiments is included in Table 1. The studies did not include the
impact of the feature selection process on the quality of classifications. Therefore,
the feature selection process [12,23] was not performed. The results are obtained
via 10-fold-cross-validation method.

Table 2 shows the results of the classification for the proposed ensemble selec-
tion with normalization of the posteriori probability functions. Additionally, the
mean ranks obtained by the Friedman test were presented. The values of the
mean ranks show that the best value of the parameter « is 0.4 for that ensemble
selection method.

Classifier W]%g with the selected value of parameter o was compared with the
base classifiers and the ensemble methods were based on the sum methods. The
results of the classification with the mean ranks obtained by the Friedman test
are presented in Table 3. To compare the results the post-hoc Nemenyi test was
used [25]. The critical difference for this test at p = 0.05 is equal to CD = 4.75.
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Table 1. Description of data sets selected for the experiments

Data set Example | Attribute | Ration (0/1)
Banana 400 2 1.0
Blood 748 5 3.2
Breast cancer wisconsin | 699 10 1.9
Haberman’s survival 306 3 0.4
Highleyman 400 2 1.0
Tonosphere 351 34 1.8
Indian liver patient 583 10 0.4
Mammographic mass 961 6 1.2
Parkinson 197 23 0.3
Pima indians diabetes | 768 8 1.9

Table 2. Classification error and mean rank positions for the proposed selection algo-
rithm produced by the Friedman test

Data set |W¥gg with a =

0 0.1 02 |03 |04 |05 |06
Banana 0.0300.032{0.032 | 0.032 | 0.032 | 0.032 | 0.032
Blood 0.175/0.184 |1 0.189{0.191 | 0.196 | 0.200 | 0.219
Cancer 0.0850.082|0.082 | 0.082 | 0.082 | 0.082 | 0.082
Haber. 0.260 | 0.264 | 0.260 | 0.260 | 0.273 | 0.290 | 0.316
Hig. 0.07210.070 | 0.072 | 0.067 | 0.057 | 0.050 | 0.047
Ton. 0.085|0.082 | 0.082|0.073 | 0.073 | 0.073 | 0.082
Liver 0.0850.082{0.082 | 0.073 | 0.073 | 0.073 | 0.082
Mam. 0.139/0.138 | 0.143 | 0.149 | 0.152 | 0.160 | 0.172
Park. 0.104 | 0.097 | 0.092 | 0.082 | 0.082 | 0.071 | 0.066
Pima 0.1990.200 | 0.203 | 0.212 | 0.199 | 0.200 | 0.200
Mean rank | 3.6 3.2 2.8 3.5 3.7 3.4 2.7

Since the difference between the best algorithm ¥%$ and the worst algorithm

Vs is greater than C'D. We can conclude that the post-hoc Nemenyi test detects
significant differences between mean ranks. Additionally, the same situation is
for W24 and W classifiers. The post-hoc Nemenyi test is not powerful enough
to detect any significant differences between the ensemble methods based on the
sum methods Wg and other tested classifiers. For comparison only ¥s and W%
classifiers a Wilcoxon signed-rank test was used. Since the signed-rank test has
p-value of 0.0391 we reject the null hypothesis. It means, that the distributions of
results of the investigated two classifiers differ only with respect to the median.
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Table 3. Classification error and mean rank positions for the base classifiers (¥1, ..., ¥y),
sum method algorithm Ws and proposed algorithm ¥%& produced by the Friedman test

Data set | ¥ Wy U3 v, s g 128 g Wy vy |l
Banana 0.015 | 0.012 | 0.020 | 0.132 | 0.172 | 0.092 | 0.042 | 0.037 | 0.027 | 0.027 | 0.032
Blood 0.2710.240 | 0.221 | 0.240 | 0.272 | 0.237 | 0.220 | 0.217 | 0.247 | 0.215 | 0.196
Cancer 0.038 | 0.040 | 0.038 | 0.042 | 0.037 | 0.041 | 0.071 | 0.078 | 0.062 | 0.070 | 0.082
Haber. 0.274 | 0.264 | 0.251 | 0.267 | 0.271 | 0.264 | 0.284 | 0.277 | 0.323 | 0.261 | 0.273
Hig. 0.075 | 0.080 | 0.072 | 0.172 | 0.182 | 0.185 | 0.087 | 0.092 | 0.087 | 0.067 | 0.057
Ton. 0.128 | 0.150 | 0.147 | 0.113 | 0.212 | 0.261 | 0.116 | 0.119 | 0.133 | 0.135 | 0.073
Liver 0.128 | 0.150 | 0.147 | 0.113 | 0.212 | 0.261 | 0.116 | 0.119 | 0.133 | 0.135 | 0.073
Mam. 0.217 | 0.196 | 0.193 | 0.200 | 0.211 | 0.196 | 0.182 | 0.178 | 0.197 | 0.184 | 0.152
Park. 0.1230.133/0.122 | 0.112 | 0.114 | 0.218 | 0.108 | 0.138 | 0.138 | 0.132 | 0.082
Pima 0.282 | 0.272 | 0.270 | 0.232 | 0.286 | 0.248 | 0.261 | 0.256 | 0.275 | 0.235 | 0.199
Mean rank | 5.6 5.7 7.2 6.4 3.6 4.1 6.5 5.8 4.2 7.3 8.9

4 Conclusion

This paper discusses the dynamic classifier selection based on the discriminant
functions. The dynamic ensemble selection algorithm is dedicated to the binary
classification task. The proposed algorithm of the ensemble selection uses the
decision profiles and the normalization of the discrimination functions is carried
out. The presented algorithm uses a single parameter, which quantifies the mag-
nitude in the difference of the discriminant functions. This difference is used as
one of the conditions of the selection.

In the paper several experiments on data sets from UCI repository were
carried out. The aim of the experiments was to compare the proposed selection
algorithm with the nine base classifiers and ensemble classifiers based on the
sum methods. For the proposed selection method with experimentally selected
value of the parameter a;, we obtained improvement of the classification quality
measured by average values from the Friedman test. Additionally, the proposed
selection algorithm with the a = 0.4 obtains better results than classifier ¥g
which uses the sum methods. The basis for this statement is carried out using
the Wilcoxon signed-rank test.

The paper presents the dynamic classifier selection which can be applied in
various practical tasks involving multiple elementary classification tasks [6,8,10].
Additionally, the advantage of the proposed algorithm is to work in the parallel
and distributed environment. The classification systems with multiple classifiers
are used in this type of environment [21]. The parallel processing provides a
possibility to speed up the selection of the posteriori probability functions which
results are needed to make the decision by the classifier ensemble.
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Abstract. In this paper we addressed the issue of applying a stochas-
tic classifier and a local, fuzzy confusion matrix under the framework of
multi-label classification. We proposed a novel solution to the problem of
correcting Binary Relevance ensembles. The main step of the correction
procedure is to compute label-wise competence and cross-competence
measures, which model error pattern of the underlying classifier. The
method was evaluated using 20 benchmark datasets. In order to assess
the efficiency of the introduced model, it was compared against 3 state-
of-the-art approaches. The comparison was performed using 4 different
evaluation measures. Although the introduced algorithm, as its base algo-
rithm — Binary Relevance, is insensitive to dependencies between labels,
the conducted experimental study reveals that the proposed algorithm
outperform other methods in terms of Hamming-loss and False Discovery
Rate.

Keywords: Multi-label classification - Binary relevance - Confusion
matrix

1 Introduction

In many real-world recognition task, there emerges a situation when an object
is simultaneously assigned to multiple categories. For example an image may be
described using such tags as sea, beach and sunset. This is an example of so called
multi-label data [1]. Unfortunately, traditional single-label classification methods
cannot directly be employed to solve this problem. A solution to this issue is
a generalization of classical classification task called multi-label classification
which assumes that object is described by a set of tags. Multi-label learning was
employed in a wide range of practical applications including text classification [2],
multimedia classification [3] and bioinformatics [4].

Our study explores the application of Random Reference Classifier and local
fuzzy confusion matrix to improve the classification quality of the Binary Rele-
vance ensembles. The procedure computes label specific competence and cross-
competence measures which are used to correct predictions of the classifiers
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constituting the BR ensemble. The outcome of each member of the BR is individ-
ually modified according to the confusion pattern obtained during the validation
stage.

This paper is organized as follows. The next section (Sect. 2) shows the work
related to the issue which is considered throughout this paper. The subsequent
section (Sect.3) provide a formal notation used throughout this article, and
introduces the proposed algorithm. Section4 contains a description of experi-
mental setup. In Sect.5 the experimental results are presented and discussed.
Finally, Sect. 6 concludes the paper.

2 Related Work

Multi-label classification algorithms can be broadly divided into two main groups:
set transformation and algorithm adaptation approaches [1]. Algorithm adapta-
tion methods are based upon existing multi-class methods which are tailored to
solve multi-label classification problem directly. A great example of such meth-
ods is Multi-label back propagation method for artificial neuron networks [2]. On
the other hand, methods from the former group transform original multi-label
problem into a set of single-label classification problems and then combine their
output into multi-label prediction [1]. The simplest method from this group is
the Binary Relevance approach that decomposes multi-label classification into a
set of binary classification problems. The method assigns an one-vs-rest classifier
to each label. The second technique of decomposition of multi-label classification
task into a set of binary classifiers is the label-pairwise scheme. The approach
assigns a classifier for each pair of labels. Another approach is label power set
method that encodes each combination of labels into a separate meta-class.

In this paper we concentrated the Binary Relevance (BR) approach. The con-
ditional independence of labels, which lies at the heart of this method, results
in a decomposition of multi-label classification problem into a set of L (where
L is the number of labels) independent single-label binary classification tasks.
This approach can be proven to be optimal in terms of the Hamming loss opti-
mization [5]. Notwithstanding the underlying assumption, which do not hold in
most of real-life recognition problems, the BR framework and its modifications
are one of the most widespread multi-label classification methods [1]. This is due
to their excellent scalability and acceptable classification quality. What is more
this approach still offers a room for improvement. Nowadays, most efforts are
focused on incorporating model of inter-label dependence into the BR framework
without affecting its scalability. The focal point of another branch of research is
to fit the method to achieve an optimal solution in terms of loss functions other
than the Hamming loss [6].

Under the BR framework, inter-label dependencies can be modelled in various
ways. Let us begin with a stacking-based two-level architecture proposed in [7].
The first-level classifier is an BR ensemble learned with the original input space,
whereas the input space of the second one is extended with using the label-set.
The second-level BR classifier implicitly extracts between-label relations using
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predictions of first-level classifiers. However,it is also possible to model these
relations explicitly.

Read et al. [8] provided us with an another solution to this issue. They devel-
oped the Classifier Chain model (CC) which establish a linked chain of binary
classifiers in which each classifier is responsible for learning and predicting one
label. For a given label sequence, the feature space of each classifier along the
chain is extended with a set of binary variables corresponding to the labels that
precedes the given one. This model implies that during the training phase, input
space of given classifier is extended using the ground-truth labels, although dur-
ing the inference step, due to lack of the ground-truth labels, we have to employ
binary labels predicted by preceding classifiers. The described method passes
label information along the chain, allowing CC to take into account label cor-
relations. Nevertheless, it also allow the errors to propagate along the chain [8].
Moreover, the experimental study revealed that the performance of a chain clas-
sifier strongly depends on chain configuration. To overcome these effects, the
authors suggested to generate an ensemble of chain classifiers. The ensemble
consists of classifiers trained using different label sequences. An alternative solu-
tion to this issue is to find a chain structure that allows the model to improve
the classification quality [9].

3 Proposed Methods

Under the ML formalism a d — dimenstional object © = [z1,22,...,24] € X
is assigned to a set of labels indicated by a binary vector of length L: y =
[Y1,92,...,yz] €Y = {0,1}¥. Each element of the vector is related to a single
label and y; = 1 denotes that i — th label is relevant for the object x. Further, it
is assumed that there exist a relationship f : X — ) which maps each element
of the input space X to a corresponding element in the output space ) and
a classifier 1 is an approximation of the mapping. Throughout this paper we
follow the statistical classification framework, so vectors  and y are treated

as realisations of random vectors X = [X7, Xo,..., Xy] and Y = [Y7,Y5,...,Y]]
respectively.
Now, we introduce a correction scheme for a single member ¢; (i € 1,2,...,L)

of the BR system, which is a common binary classifier. The proposed method
consists of two main steps. The first is a binary classification, and the other is
a correcting procedure that improve the outcome of the classifier. During the
learning phase, the transformed learning set is split into two equal parts. One
is used to build the base classifier, the other is saved for the further use during
the inference phase. At the recognition phase the outcome of the classifier is
corrected using the statistical model of competence and cross-competence.

The proposed algorithm performs the inference process using the probabilistic
framework which is described in previous subsection. In addition to formerly
made assumptions, the procedure requires the outcome of classifier ©;(x) to
be a realization of a random variable ¥;(x). As a consequence, the classifier
is considered to be a stochastic one which randomly assigns given instance x
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for class ‘0’ or ‘1’ according to the probability distribution P(¢;(x) = h) =
Pi(h|z),h € {0,1}. The presence of the additional random variable allows us to
define the posteriori probability P(Y; = y|x) = P;(y|x) of the label ¢ as:

1
Pylz) = > Py, hlz) = ZP (hlz)Pi(y|h, =) (1)
h=0

where P(h;|x) is interpreted as a support that the classifier gives to the hypothe-
sis that @ belongs to class h. Additionally, P;(y|h, ) denotes the probability that
the true assignment of object @ to i — th label is y given that the stochastic clas-
sifier ¥; has predicted it as h. Aforesaid probability can be interpreted as point-
wise indicator of competence and cross-competence of the stochastic classifier.
The competence index is proportional to the probability of correct classification,
whereas the cross-competence follows the probability of miss-classification.

Unfortunately, at the core of the proposed method, we put rather an imprac-
tical assumption that the classifier assigns a label in a stochastic manner. We
dealt with this issue by harnessing deterministic binary classifiers whose statis-
tical properties were modelled using the RRC procedure [10]. The RRC model
calculates the probability that the underlying classifier assigns an instance to
class h; Pi(hlz) ~ PR (b)),

The probability P (y|h, x) was estimated using a lazy-learning procedure
based on local, fuzzy confusion matrix. The rows of the matrix corresponds to
the ground-truth classes, whereas the columns match the outcome of a classifier.
Each entry of the matrix is an estimation of the probability 5;’ nRPlyi=y,h =
h|z). The fuzzy nature of the confusion matrix arises directly from the fact that
a stochastic model has been employed. In other words, decision regions of the
random classifier must be described using Fuzzy set formalism [11]. In order
to provide an accurate estimation, we have also defined our confusion matrix
as local what means that the matrix is build using neighbouring points of the
instance x. The neighbourhood is defined using the Gaussian potential function
to assign a membership coefficients:.

N(z) = {(eXp(—ﬂé(w(’“’, z)?),z®) : 2 € v} : (2)

where 3 € Rt and 6(z,x) is the Euclidean distance between z and x. During
the experimental study 3 was set to 1.
The matrix is estimated using a validation set:

V= {(w(l),y(l)),(x(Q),y(Q)),...,(a:(k),y(N))}; 2®ex, y®ey. (3

On the basis of this set we define the BR subset of validation set, fuzzy decision
regions of v; and set of neighbours of x:

Véz{( (k)—y xz®)) : x®) EV}7 (4)

D, = {(upy (@) = P (nla), 2) s &™) € v}, 5)
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These sets are employed to approximate entries of the local confusion matrix:

i v ND, NN (z)
€y’h(ﬂl‘) = |N($)‘ 9 (6)

where |.| is the cardinality of a fuzzy set.

4 Experimental Setup

During the experimental study, we compared the proposed method (FC) against
three state-of-the-art, Binary-Relevance-based procedures, namely Binary Rel-
evance classifier (BR), Classifier Chain [8] (CC) and Stacking [7] (ST). The
algorithms were implemented using the Naive Bayes classifier [12] as a base clas-
sifier (the experimental code was implemented using mulan [13] and meka [14]).
With a view to improving the robustness of the considered classifiers, we build
a multi-classifier (MC) systems based on the aforementioned algorithms. Each
homogeneous MC system consists of 30 base multi-label classifiers and their
training sets are constructed using bagging approach [15]. The label specific
results are combined on the support level using simple mean combiner [15].

The experiments were conducted using 20 multi-label benchmark sets. The
main characteristics of the datasets are summarized in Table1l. The first two
columns of the table contain the number of the set, set name and its source.
Next three columns are filled with the number of instances, dimensionality of
the input space and the number of labels respectively. Another column provide us
with measure of multi-label-specific characteristics of given set i.e. label density
(LD). [1]. The extraction of training and test datasets was performed using
10 — CV. Some of the employed sets needed preprocessing transformation. That
is, multi label regression sets (solar_flarel/2 and water-quality) were binarized
and multi-label multi-instance [3] sets were transformed using the procedure
described by Wu et al. [4].

The algorithms were compared in terms of 4 different quality criteria com-
ing from two groups: instance-based (Hamming loss) and micro-averaged (F-
measure, False Negative Rate (FNR) and False Discovery Rate (FDR)) [16].
Statistical evaluation of the results was performed using the Friedman test and
the Nemenyi post-hoc test [17]. Additionally, we applied the Wilcoxon signed-
rank test [17] and the family-wise error rates were controlled using the Holm’s
procedure [17]. For all statistical tests, the significance level was set to o = 0.05.

5 Results and Discussion

The summarised results of the experimental procedure are presented in Table 2.
Additionally, the table also show the outcome of the conducted statistical evalu-
ation. Excluding the table header, which contains names of the evaluation crite-
ria and algorithm names, the table is basically divided into three main sections.
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Table 1. Dataset summary.

No | Set name N d L LD | No | Set name N d L LD
1 birds [13] 645 | 279 | 19.053 | 11 | Solar_flare2 [13] 1066 30 31.070
2 | Caenorhab. [4] 3509 47| 27/.084 | 12 | Genbase [13] 662 | 1213 | 27 .046
3 | CAL500 [13] 502 | 242|174 .150 | 13 | Llog [14] 1460 | 1079 | 75| .016
4 Corell6k1 [13] 13766 | 653 | 153 | .019 | 14 | Mediamill [13] 43907 | 221|101 |.043
5 | Corell6k2 [13] | 13761 | 664 | 164 |.018 | 15 | Medical [13] 978 | 1494 | 45 .028
6 | Corell6k3 [13] | 13760 | 654|154 |.018 | 16 | MimlImg [3] 2000 | 140 5 .247
7 | Emotions [13] 593 78 6|.311 | 17 | Scene [13] 2407 | 300 6].179
8 Enron [13] 1702 | 1054 | 53| .064 | 18 | Slashdot [14] 3782|1101 | 22|.054
9 | Flags [13] 194 50 7|.485 |19 | Water-quality [13] | 1060 30| 14.362
10 | Solar_flarel [13] 323 28 31.077 |20 | Yeast [13] 2417 | 117 | 14.303

The first one consists of 20 rows and each of them shows set specific result aver-
aged over the CV folds. The best results for each set was highlighted in bold
type. Additionally, the section also contains outcome of the Wilcoxon test that
compares, for the given set, the proposed procedure against remaining meth-
ods. Statistical improvement, decrease was marked by T and | respectively. The
second part delivers average ranks obtained by the algorithms throughout the
benchmark sets (Rnk), and the outcome of the Nemenyi test. The outcome is
reduced to only two groups, namely a group of classifiers whose results do not
significantly differ from the results obtained by the best performing (BG) and
worst performing (WG) classifiers respectively. The third section of the results
table displays p-values (Wp) achieved during the pairwise application of the
Wilcoxon test which was used to provide a global comparison of the proposed
approach against the reference methods.

The presented results reveals that the proposed method turned out to be the
best performing algorithm under the Hamming-loss. This is a promising result
since the approach was designed to minimize that loss. What is more important,
FC outperformed not only BR algorithm but also CC and Stacking. On the other
hand, the results also showed that there is a major discrepancy between results
obtained by different criteria. Contrary to high performance under the Hamming-
loss, the efficiency described by the micro-averaged F-measure is rather poor.
This phenomenon can easily be explained by analysis of classification assessment
in terms of micro-averaged FNR and FDR. Namely, low sensitivity and high pre-
cision are characteristic of the FC classifier, consequently the system achieved
low performance under the F-loss. In other words, the coefficients suggest that
base classifiers of the FC system are biased toward the majority class ‘0’ (label
is irrelevant). The presence of the tendency to prefer majority class combined
with low label density of benchmark datasets may have led to an overoptimistic
performance assessment under the Hamming loss. To be more precise, when the
average cardinality of a set of relevant labels is low and a BR system, whose
base classifiers are biased to ‘0’, may achieve high Hamming score by setting
a majority of labels as irrelevant. This fact confirms the foregoing observations
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that FC manifest the bias towards the majority class. The cause of such behav-
iour is a tendency to underestimate the conditional probability P;(y|x) for rare
labels which results in increased performance on those labels and decreased per-
formance for frequent labels.

Table 2. Summarized results for micro-averaged FNR, FDR and F-measure.

FNR FDR F-loss Hamming

BR | CC ST |FC |BR |CC |ST |FC BR | CC |ST FC |BR |CC | ST |FC
1 441 | .43) | 547 | .89 |.91] | .91 | .90, |.28 |.85 |.85 |.83 |.81 |.34] | .35 | .25 |.05
2 731 | 767 | 75T | .92 | .47 | 40| | .46| | .07 | .64l | .66 | .667 |.86 | .11 | .11 |.11 |.11
3 497 | 507 | .521 | .83 | .76l | .76 | .76| | .37 |.e7T | .68 | .68 |.73 |.31 | .32, | .30, |.14
4 77 .76 .75 | .89 7 .78 .79 .67 STT | T 77 .84 .03 .03 .03 .02
5 .76 .76 .75 | .90 77 .78 .79 .66 .76 | .76 77 .84 .03 .03 .03 .02
6 .75 .75 .74 | .89 77 i .79 .66 .76 | .76 7T .84 .03 .03 .03 .02
7 .247 | .257 467 | .94 .44 .43 .43 .32 .367 | .357 | .457 .90 .26 .257 | .27 .30
8 .347 | 357 | .357 | .70 | .81 | .81 | .80, |.41 |.71] | .70, | .70, |.60 |.21 | .20 | .19, | .06
9 .33 .31 .31 .39 .34 | .33 .34] | .26 .34 .32 | .33 .35 .33 .31 .32 .30
10 .66] | .667 | .66] | .95 .78 .75 | .75 | .88 .75 74 | .74 .93 .14 | .13| | .13] | .08
11 491 | .491 | 567 | .93 | .73 | .73 | .74 |.51 |.66] |.66] | .68 |.88 |.13] |.13| | .13 | .07
12 | .71 | .71, | .71 | .49 |.oof | .00f | .00 | .39 |.56| | .55/ | .55 |.45 |.037 | .03 |.03] |.04
13 .27 | .267 | .267 | 1.00 | .94 .95 .95 .90 L9071 | .907 | .917 1.0 200 |.22] | .23] | .02
14 .29 .32 .33 .26 | .91 .93 .93 .92 .85 | .88 .88 .86 .34 | .43 .41 .38
15 .56 | .55 .54 | .56 | .45 | .45 | .45 |.19 | .51] |.51] | .50, | .43 |.03] |.03| |.03] |.02
16 |.361 | .37 |.407 | .94 |.55 | .55 | .52 | .18 |.47|.477 | .507 | .88 | .28 |.28] |.26] |.23
17 | .1e1 | .16 | .16 | .78 | .58 | .58, | .57 | .18 |.447 |.447 | .44 | .65 | .24] |.24] | .23 |.15
18 | .47 | .44 | .44 | .87 | .627 | .58 | .57 | .82 | .56] | .52 | .51 |.85 | .07 | .06T | .06] | .08
19 | .28 | .27 |.250|.77 | .56 | .56| | .57| | .43 |.46] | .46] | .45 | .68 |.44] | .44] | .45| | .34
20 | .407 | .411 |.417 |.61 | .49] |.49] | .48] |.24 |.45]|.45 | .45 | .49 | .30, | .30 |.29] | .22
Rnk | 2.10 | 1.98 | 2.23 | 3.70 | 2.90 | 2.85 | 2.75 | 1.50 | 2.25 | 2.25 | 2.20 | 3.30 | 3.00 | 2.80 | 2.70 | 1.55
BG | + + + + + + + + + + + + + + +
WG + + + + + + + + + + + + + +
Wp | .010 | .001 |.001 | — .025 | .026 | .026 | — .026 | .026 | .025 | — .010 | .007 | .006 | —

6 Conclusion

The problem addressed in the paper was solved with modest success. We obtained
promising experimental results which suggest that the proposed correction scheme
for the BR system (FC) achieved the best results in terms of the Hamming-loss and
FDR. The algorithm is a very conservative procedure that predicts as relevant only
labels which are strongly related to the recognised object. That property may be
desirable under certain practical circumstances. Additionally, it is safe to say that
the performance of FC does not decrease in terms of zero-one loss. However, the
proposed system suffer from a major drawback which is a bias towards majority
class. This bias effects in poor performance under F-loss and False Negative Rate.

Although the results do not lead to excessive optimism, we are willing to
continue our research because the proposed methodology is at an early stage
of development and it still offers a room for improvement. The further research
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is going to be focused on a procedure of bias reduction for the FC method. In
near future we are going to develop an alternative neighbourhood definition that
prevent the confusion matrix to be skewed towards the majority class.

Acknowledgements. Computational resources were provided by PL-Grid Infrastruc-
ture.
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Abstract. An ensemble consists of several neural networks whose out-
puts are fused to produce a single output, which usually will be better
than the individual results of each network. This work presents a method-
ology to aggregate the results of several Kohonen Self-Organizing Maps
in an ensemble. Computational simulations demonstrate an increase in
the accuracy classification and the proposed method effectiveness was
evidenced by the Wilcoxon Signed Rank Test.

Keywords: Ensemble - Self-Organizing Maps - Classification

1 Introduction

An ensemble is defined as a collection of individual classifiers which has differ-
ences between each other which is able to achieve higher generalization than
when working separately, as well as a decrease in variance model and higher
noise tolerance when compared to a single component. Each classifier operates
independently and generates a solution that is combined by the ensemble pro-
ducing a single output [1]. It is essential the errors introduced by each component
are uncorrelated for a successful outcome of the ensemble [2]. For Kohonen Self-
Organizing Maps, this task is simple because different networks can be trained
from the same set of feature vectors - varying some training parameters - or
different training sets, for example. The most difficult point is to find a way to
combine the maps and generate a single output. This can be done by merging
the neurons of the maps to be fused. These neurons must represent the same
region of the data input space, in other words, the weight vectors to be fused
should be quite similar. This work presents a methodology to fuse different size
Kohonen Self-Organizing Maps using two different equations in order to increase
the classification accuracy.

The paper is organized as follows: Sect. 2 presents basic concepts. Section 3
presents the proposed fusion algorithm. Section 4 shows and discuss the results.
Section 5 presents the conclusions and some proposals for future works.

© Springer International Publishing Switzerland 2015
K. Jackowski et al. (Eds.): IDEAL 2015, LNCS 9375, pp. 77-86, 2015.
DOI: 10.1007/978-3-319-24834-9_10
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2 Background

2.1 Self-Organizing Maps

Kohonen Self-Organizing Maps is known as a method for dimensionality reduc-
tion, data visualization and also for data classification. The Self-Organizing Maps
(SOM), developed by Kohonen [3] has became a popular neural network model. It
has competitive and unsupervised learning, performing a non-linear projection of
the input space RP, with p > 2, in a grid of neurons arranged in two-dimensional
array, having only two layers: an input and an output layer. The network inputs
z, correspond to the p-dimensional vector space. The neuron ¢ of the output
layer is connected to all the inputs of the network, being represented by a vec-
tor of synaptic weights, also in p-dimensional space, w; = [wiy, wig, ...,wip]T.
These neurons are connected to adjacent neurons by a neighbourhood relation
that describes the topological structure of the map. During the training phase,
following a random sequence, input patterns z are compared to the neurons of
the output layer. Through the Euclidean distance criterion a winning neuron,
called BMU (Best Match Unit), is chosen and will represent the weight vector
with the smallest distance to the input pattern, i.e. the BMU will be the most
similar to the input x.

Assigning the winner neuron index by ¢, The BMU can be formally defined
as the neuron according to the 1.

|z — wel| = argmin;||z — w;| (1)
The Eq.2 adjust the BMU weights and the neighbouring neurons.
wi(t +1) = wi(t) + hei(t)[x(t) — wi(t)] (2)

where t indicates the iteration of the training process, x(t) is the input pattern
and h.;(t) is the nucleus of neighbourhood around the winner neuron c.

2.2 Cluster Validity Indexes

To make sure that an algorithm found the groups that best fit to the data, a
very important task is to evaluate the clustering algorithm results using Cluster
Validation Indexes (CVI). The literature presents several CVI to evaluate clus-
ters results and most of them have high computational complexity, which can
be a complicating factor in applications involving large data volumes. A modi-
fication in the CVI calculations was proposed in [4] using a vector quantization
produced by Kohonen Map. The synaptic weight vectors (prototypes) are used
instead of the original data. Thus, it causes the decrease of the amount of data
and therefore the computational complexity for calculating the CVI decreases
too. Also to avoid possible differences between the values calculated with all
data and only the prototypes, the author proposed that hits should be used in
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conjunction with the prototypes. The following example illustrates the proposed
change in the calculation of the distance between two clusters, C; and Cj:

1
5i,j—m > d(xy) (3)

zeC;,yeC

In Eq.3, d(z,y) is a distance measure, and |C;| e |C;| refers to the clusters’
amount of points C; and C}, respectively. When the amount of those points is
high, the computational complexity is also high. Equation 4 shows the modifica-
tion proposed in [4]:

1
615:JOM: C.1C. Z h(wi)'h(wj)'d(wiij) (4)
GG v ew,

Where W; and W; are the SOM prototype sets that represent the clusters
C; e Cj, respectively; d(x,y) is the same distance measure type (Euclidian, for
example) of Eq. 3, h(w;) is the prototype’s hits w; belonging to W; and h (w;)
is the prototype’s hits w; belonging to W;.

The Eq. 4 presents a lower computational cost, since the quantities involved,
w; and w; are lower than C; and C;. The inclusion of the prototypes’ hits h (.)
leads to error minimization caused by the vector quantization that Kohonen
Map produces, since it introduces in the calculation the approach for the points
density in the input space, here represented by prototypes.

2.3 Related Work

Ensemble methods became popular and there are several approaches and appli-
cations in diverse knowledge areas. In [5] they compared merged maps with
the traditional SOM for document organization and retrieval. As a criterion for
combining maps, the Euclidean distance between neurons was used in order to
select the neurons were aligned (allowing the fusion), working with two maps
each time, until all maps are fused into one. The ensemble of SOM obtained
a better result than the traditional application. In Fusion-SOM [6] was based
on Voronoi polygons. The proposed method outperforms the performance of the
SOM in MSQE (Mean Squared Quantization Error) and topology preservation,
by effectively locating the prototypes and relating the neighbour nodes. In a
weighted voting process, called WeVoS-ViSOM [7], the purpose was the preser-
vation of the map topology, in order to obtain the most truthful visualization
of datasets. This algorithm was used in a hybrid system to predict business
failure [8]. This methodology succeeds in reducing the distortion error of single
models. SOM ensemble methods applications are found in diverse areas such as
image segmentation [9], robotic [10], identification and characterization of com-
puter attacks [11], unsupervised analysis of outliers on astronomical data [12]
and financial distress model [13], among others.
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Proposed Fusion Method

This work introduces a novel method to fuse Kohonen Self-organizing Maps. The
purpose is to improve the classification accuracy by fusing at most forty nine
different sized maps. The fusion process has seven steps: data split, initialization,
training, segmentation, performance, ranking and fusion. Each step is explained
in the following.

3.1 Fusion Algorithm

The fusion algorithm can be described as follows:

Step 1: Split the data in two: training set (80 %) and test set (20 %);

Step 2: Calculate the size of the Base Map (from now on abbreviated as
BM), i.e. the SOM which will be improved upon by consecutive fusions to
other maps of different sizes. The BM dimensions x and y are proportional
to the two largest covariance matrix eigenvalues of the data: A\; and As:

X /\1
— ~ - 5
Y V Az (5)

Step 3: From the BM there will be created another 48 maps, which differ in
a combination of three values up and down of x and y, as show in Fig. 1. As
some components (maps) are removed from the ensemble because it did not
contribute to the performance increasing [14], it was chosen the variation
of three units up and down to generate maps in sufficient number for the
ensemble. The variation of one or two units up and down could lead to a few
maps, that do not contribute to the increase of the ensemble performance;

Step 4: The SOM algorithm is then applied on the training set to create all
different size maps mentioned on Step 3;

Step 5: Segment all maps with k-means clustering, which is repeated 10
times and the result with smallest sum of squared errors is selected due to
the random initialization nature of k-means;

Step 6: Calculate map performances for each map. The performances include
MSQE and CVI, namely: Generalized Dunn, Davies-Bouldin, CDbw, PBM
and Calinski and Harabasz;

Step 7: All maps are sorted according to their calculated map performances,
from the best to worst, e.g. from lowest error (best) to highest error (worst);

Step 8: Each map is sequentially fused to the base map according to a fusion
formula and based on a criteria this fusion will or will not be discarded. This
step is explained thoroughly in the next subsection.
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Fig. 1. The maps created from the Base Map.

3.2 Maps Fusion

The inclusion of all candidates in the ensemble may degrade its performance [14],
because not all components will contribute to the overall ensemble performance.
So, it is necessary to identify and discard these components. The base map is
the first component of ensemble. The 48 remaining maps are candidates to be
ensemble components. These maps shall be tested according to their ranked
performances. The maps are fused in pairs and the fusion occurs between two
neurons that have the minimum Euclidean distance between them, indicating
that they represent the same region of the input space.

In this study two different equations for fusion were tested to find out each
neuron weight vector: fusion considering the hits of each neuron (Eq.6) and
fusion considering the hits of each neuron and the CVI for each considered map
(Eq. 7).

w; - hl + wj . hj
h; + hj

hi VI +h;-VI;
where: w, represents each neuron of fused map; w; and w; are the neurons to be
fused; h; and h; are the prototype’s hits and V'I; and V'I; are the CVI for each
SOM map to be fused.

The process begins with the base map being fused with the best performance
map, according with performance value (CVI or MSQE) considered in this work,
among the other 48 maps. If the performance criteria of the resulting fused map
has improved, this fusion is maintained. Otherwise, it is discarded and the next
map, with the second best performance, is fused to the base map. Each time the
fusion improves the considered performance, the next map (in descending order
of performance) is fused to the resulting fused map and so on, until all maps are
tested. Four different approaches were tested in this work to rank the maps and
to establish the fusion criterion. It is explained in Sect. 3.3.

(6)

We =

We =



82 L.A. Pasa et al.

3.3 Approaches

This research tested a combination between ranked maps and maps fusion cri-
teria, resulting in four approaches to maps fusion:

Approach 1: Maps ranked by CVI and fused by MSQE improvement criterion.
Approach 2: Maps ranked by MSQE and fused by CVI improvement criterion.
Approach 3: Maps ranked by CVI and fused by CVI improvement criterion.
Approach 4: Maps ranked by MSQE and fused by MSQE improvement crite-
rion.

The MSQE can be employed to evaluate the quality of adaptation to the
data [6] since it indicates how well the units of the map approximate the data
on the dataset [7]. The CVI evaluated was modified for use with SOM, proposed
by Gongalves [4]. His research presents the equations for the modified validity
indexes used in this work.

In the first approach the maps were ranked by five CVI, but the fusion
process maps was controlled by MSQE improvement of the fused map. In the
second approach the maps were ranked by MSQE and the fusion process was
validated by the CVI improvement. In third approach, maps were ranked by each
CVI and the fusion was controlled by these CVI increase. At last, in the fourth
approach the maps were ranked by MSQE and fused by MSQE improvement.

3.4 Maps Fusion Requirement

In this proposed method the hits and BMUs percentage was varied from 10 %
to 100 %, with a step of 10 % in order to better evaluate the influence of these
measures in fusion process. When a neuron is fused to another neuron (from
another map), it will take into the account the minimum hits percentage (how
many times that neuron was the winner - BMU) this neuron must have when
compared to the base map neuron. This percentage was varied from 10% to
100 %. The limitation of BMUs percentage is very important in this method.
When the base map has smaller dimensions than the map to be merged with it,
there will be more neurons in the second map than in the base map. Thus, this
procedure limit the neurons number to be fused at 100 % of the smallest map.

4 Experimental Results

4.1 Datasets

The proposed algorithm was tested with datasets from the UCI Repository [15]
and from Fundamental Clustering Problems Suite (FCPS) [16]. Their character-
istics are shown in Table 1. All missing values were removed from the datasets.

4.2 Results

Tables2 and 3 show the best experimental results for each dataset, i.e. which
approach and which CVI resulted in the best accuracy value for each dataset.
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Table 1. Dataset collection

Dataset Repository | Instances | Attributes | Classes
BC Wisconsin | UCI 699 10 2
Chainlink FCPS 1000 2
Column UCI 310 2
Engytime FCPS 4096 2
Heart UcCI 303 75 2
Hepatitis UcCl 155 19 2
Tonosphere UCI 351 34 2
Iris UcCI 150 4 3
Lsun FCPS 400 2 3
Pima Indians | UCI 768 8 2
Seeds UcCl 210 7 3
Tetra FCPS 400 3 4
Two Diamonds | FCPS 800 2 2
Wine UcCI 178 13 3
Wingnut FCPS 1070 2 2

The column Approach refers to the way the maps were ranked and fused, as
specified in Sect.3.3. As can be seen, approaches 1 and 2 produced the bests
results in this experiment.

The column Index shows which of the CVI was the best for each dataset (DB
means Davies-Bouldin index and CH means Calinski and Harabasz index). In
approach 1, the indexes were used for ranking and in approach 2, the indexes
were used as fusion criteria. The column Map Size refers to the map size defined
by the Eq.5. The Hits and BMUs percentage columns (explained in Sect. 3.4),
shows the value of these variables to achieve the maximum accuracy value.

The fusion accuracy results for each dataset was compared with the accuracy
results for a single Self-Organizing Map in the last two columns. As can be
observed, for all tested datasets the classification accuracy of the proposed model
was higher than or equal to the accuracy obtained by a single map. The non-
parametric Wilcoxon signed rank test [17] was employed in order to evaluate
the statistical significance of the fusion results, i.e. if the accuracies values was
statistically different from a single Kohonen map. The Hj hypothesis was that
there is no difference between the accuracies of a Single SOM and the Fused
Maps. The Wilcoxon test rejected the null hypothesis and the p-value were
0.00097656 for both fusion equations used in this work.

The Figs. 2 and 3 summarize the accuracy results for this proposed method,
for each Fusion Equation. The red line represents the single SOM accuracy, while
green line shows the accuracy results for fused maps.
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Table 2. Experimental results - Hits Fusion Equation (Eq. 6)
Dataset Approach | Index | Map Hits | BMUs | Fusion | Single SOM
Size (%) | (%) | accuracy | accuracy

BC Wisconsin | 1 CH 22x6 |10 60 0.9852 |0.9778
Chainlink 2 DB 14 x 11|10 90 0.7800 |0.7200
Column 1 CH 13x7 |30 10 0.7097 |0.6774
Engytime 1 CDbw | 20 x 16 | 60 30 0.9731 0.9731
Heart 1 CDbw |11 x8 |10 10 0.8305 |0.8136
Hepatitis 1 CDbw |8 x 5 10 10 0.9333 0.9333
Tonosphere 1 Dunn [13x7 |10 10 0.7429 |0.7286
Tris 1 CDbw |13 x5 |10 20 0.9667 | 0.9667
Lsun 2 Dunn [11x9 |20 90 0.9125 |0.7750
Pima Indians |1 CH 14 x 10 | 30 70 0.6209 |0.5948
Seeds 1 CDbw |14 x5 |10 10 0.9524 |0.9286
Tetra 1 CDbw |11 x9 |10 10 1 1

Two Diamonds | 1 Dunn |14 x 10|10 | 100 1 0.9938
Wine 2 CH 11x6 |30 20 0.9412 |0.8529
Wingnut 2 Dunn |16 x 10 | 20 90 0.8119 |0.7970

Table 3. Experimental results - Hits and Indexes Fusion Equation (Eq.7)

Dataset Approach | Index | Map Hits | BMUs | Fusion | Single SOM
Size (%) | (%) | accuracy | accuracy

BC Wisconsin |1 CH 22 x6 10 | 60 0.9852 |0.9778
Chainlink 2 DB 14x11, 70 | 90 0.7450 |0.7200
Column 2 DB 13x7 10 | 100 0.7419 |0.6774
Engytime 1 PBM |20x 16, 20 | 20 0.9743 |0.9731
Heart 1 Dunn |11 x8 10 | 40 0.8305 |0.8136
Hepatitis 1 CDbw |8 x5 10 | 10 0.9333 |0.9333
Tonosphere 1 Dunn |13 x 7 10 | 10 0.7429 |0.7286
Iris 1 CDbw |13 x5 10 | 10 0.9667 0.9667
Lsun 2 Dunn [11x9 |100 | 60 0.8625 |0.7750
Pima Indians |2 DB 14x10, 70 | 100 0.6209 |0.5948
Seeds 1 CDbw | 14 x 5 10 | 10 0.9524 |0.9286
Tetra 1 CDbw |11 x 9 10 | 10 1 1

Two Diamonds | 1 CDbw |14 x 10| 90 | 20 0.9938 | 0.9938
Win