
Proposals for Modular Asynchronous Web
Programming: Issues and Challenges

Hiroaki Fukuda1(B) and Paul Leger2

1 Information Science and Engineering, Shibaura Institute of Technology,
Tokyo, Japan

hiroaki@shibaura-it.ac.jp
2 Escuela de Ciencias Empresariales, Universidad Católica Del Norte,

Región de Antofagasta, Chile

Abstract. Because of the success in the Internet technologies, tradi-
tional applications such as drawing and spreadsheet software are now
provided as web applications. These modern web applications adopt
asynchronous programming that provides high responsive user interac-
tions even if an application works without multi-threading. At the same
time, as the scale of these applications becomes large, modular program-
ming becomes important because it allows developers to separate con-
cerns, meaning that the evolution of one module does not affect other
modules. However, applying asynchronous and modular programming
is difficult because asynchronous programming requires uncoupling of a
module into two sub-modules, which are non-intuitively connected by a
callback method. The separation of the module spurs the birth of other
two issues: callback spaghetti and callback hell. Some proposals have been
proposed without the lack of issues about modular programming. In this
paper, we compare and evaluate these proposals applying them to a
non-trivial open source application development. We then present a dis-
cussion on our experience in implementing the application using these
proposals. Finally, we point out challenges that this kind of proposal
should overcome toward a modular programming.

Keywords: Virtual block · Asynchronous programming ·
Aspect-oriented programming

1 Introduction

With the growth of high speed network and the variety kinds of computers that
possess high computation capabilities, traditional standalone applications such as
drawingand spreadsheet software arenowprovidedusingweb technologies, namely
web applications. Compared to traditional web applications, such modern appli-
cations adopt asynchronous behavior such as ajax that provides high responsive
user interaction even if an application works without multi-threading. At the same
time, the scale of such applications becomes large where modular programming
becomes important because it allows separating concerns to be localized, mean-
ing that the modification of one concern does not affect other concerns (e.g., other
modules). The basic idea of asynchronous programming is to decompose a blocking
c© Springer International Publishing Switzerland 2015
F. Daniel and O. Diaz (Eds.): ICWE 2015 Workshops, LNCS 9396, pp. 91–102, 2015.
DOI: 10.1007/978-3-319-24800-4 8

92 H. Fukuda and P. Leger

operation that waits for its completion into a non-blocking operation that imme-
diately returns control. Whenever the non-blocking operation execution ends, a
piece of code known as callback method, is invoked. Therefore, the use of callbacks
in asynchronous programming comes with issues that affect the modular develop-
ment of software. The most notable two issues are callback spaghetti [7] and callback
hell [8]. Callback spaghetti refers to the concern implementation that has a com-
plex and tangled control structure because of continuations over callback meth-
ods. Callback hell refers to deeply-nested callbacks that have dependencies on data
returned from previous asynchronous invocations. Some proposals have used to
address these issues such as async/await from C# [1], Promise pattern [3] from
JavaScript and SyncAS [4] from ActionScript. This paper compares and evaluates
these proposals applying them to a non-trivial open source application develop-
ment, called FlickrSphere [10] that is originally implemented by ActionScript3 and
uses nested iterative callbacks, leading complicated control flows. The paper then
presents a discussion on our experiences in its implementation.
Paper Roadmap. Section 2 gives an introduction to asynchronous program-
ming and its problems. Section 3 briefly describes about FlickrSphere. In
Section 4, we apply each one of three proposals to FlickrSphere to address asyn-
chronous issues, we then present our experiences. Section 5 presents conclusions
and future work.

2 Asynchronous Programming Problems

Asynchronous programming is now widely-adopted between mainstream pro-
grammers [1]. This section briefly describes asynchronous programming com-
paring to synchronous programming.

2.1 Synchronous Programming

Synchronous programming is the standard style used by programmers
to write pieces of code. Listing 1.1 shows two classes: ImageViewer and
Request. The ImageViewer class contains two methods: showFromURL and
checkAndConvertToImage. The first method downloads data from a url and uses the
second method to convert this data to an image if it passes an integrity check. The
Request class has the send method that actually downloads some data by using the
download method of the Downloader class. For this example, we assume download is
a blocking operation, which takes a significant period of time. Because of several
advantages such as reusability, maintainability and adaptability, dividing a system
into a composition of modules is natural [9]. Therefore, in Listing 1.1, Request
encapsulates how to get data from sources. As shown in Listing 1.1, in synchronous
programming, we can obtain the result of a method invocation directly, then pass
it to the next invocation as an argument, making the control flow clear.

2.2 Asynchronous Programming

Asynchronous programmign style makes it complicated to understand the
control flow from pieces of code. Listing 1.2 shows the rewritten program of

Proposals for Modular Asynchronous Web Programming 93

Listing 1.1 replacing a blocking operation (download) with an non-blocking oper-
ation (downloadAsync). Three major changes are found in Listing 1.2. First,
invoking checkAndConvertToImage is removed from showFromURL because send,
that invokes downloadAsync, returns immediately without any data. Instead, the
reference of the showFromURL is passed as a callback by using next, which is
defined in Request. Second, a variable checksum must be defined in ImageViewer
to keep the argument checksum in showFromURL because checkAndConvertToImage
only accepts one parameter. Third, the show function call must be moved to
checkAndConvertToImage because showFromURL does not contain the image. As
described previously in this section, a module that uses a non-blocking operation
requires representing the continuation as a callback. As a consequence, if the loca-
tion of the continuation is far from the call-site, understanding control flow is diffi-
cult, leading to callback spaghetti. Moreover, a change of implementation inside
of one module (e.g., Request) may require call-site modifications in other mod-
ules (e.g., ImageViewer), breaking modular principles. Besides, understanding con-
trol flow becomes difficult at a glance.
class ImageViewer {

function showFromURL(ur l :URL,checksum:Function) : void {
var e :Event = new Request () . send(ur l) ;
var img: Image = checkAndConvertToImage(e ,checksum);
show(img);

}
function checkAndConvertToImage(e :Event ,checksum:Function) {

i f (checksum(e . data))
return convertToImage(e . data) ;

else //throw an exception
} }
class Request {

function send(ur l :URL):Event {
return new Downloader() .download(ur l) ;

} }
Listing 1.1. A synchronous version of a remote image viewer.

Fig. 1. A screenshot of FlickrSphere.

94 H. Fukuda and P. Leger

class ImageViewer {
var checksum:Function ;

function showFromURL(ur l :URL, checksum:Function) : void {
this .checksum = checksum;
var request = new Request () . next(checkAndConvertToImage) ;
request . send(ur l) ;

}
function checkAndconvertToImage(e :Event) : Image {

i f (this .checksum(e . data)) {
var img: Image = convertToImage(e . data) ;
show(img);

}
else //throw an exception

} }

class Request {
var nextF : Function ;
function next(f : Function) : void {

nextF = f ;
}
function send(ur l :URL): void {

var dl = new Downloader() ;
dl . addEventListener(Downloader .Complete , callback) ;
dl .downloadAsync(ur l) ;

}
function callback (e :Event) : void {

nextF(e) ;
} }

Listing 1.2. An asynchronous version of a remote image viewer.

3 Nested and Iterative Asynchronous Executions

FlickrSphere is an open source Web application implemented in ActionScript3.
Since ActionScript3 runtime does not provide threads for concurrent executions,
programmers need to use asynchronous programming if needed. This section
briefly describes the behavior of FlickrSphere that uses nested and iterative
asynchronous executions, then explains its original implementation.

3.1 FlickrSphere in a NutShell

FlickrSphere accepts keywords from users, and accesses to the flickr web ser-
vice [2] to get all URLs matched by the keywords. Then FlickrSphere downloads
all images according to these URLs. Everytime a image is completly downloaded,
FlickrSphere displays the image on a circle that spins in the center of the screen.
If a user searches during downloading images, FlickrSphere cancels current down-
loads, then starts a new search after the completion of the cancel operation.
In addition to these main behaviors, FlickrSphere provides Demo Mode that
plays a search with a certain keyword automatically to show the behavior of
FlickrSphere.

Proposals for Modular Asynchronous Web Programming 95

FlickrPhoto

FlickrSphere

Platform

Searcher

search(key)
loadComplete(e)
displayPhoto

URLLoader

load(url)

Queue
push(obj)
shift()

LoadImages

load(list)
loadComplete(e)
close()

Loader

load(url)

close()

DisplayPhoto
execute()
display()

Fig. 2. A class diagram of the original implementation in FlickrSphere.

3.2 FlickrSphere Implementations

FlickrSphere is an open source application that shows images downloaded from
Flickr [2]. Figure 1 and Figure 2 show a screenshot and a simplified class diagram
of the original FlickrSphere1 respectively. The main behavior of FlickrSphere is
provided by two phases: downloading a list of URLs matched by a given keyword,
and displaying each image after the download is completed. The main behavior
carries out nested and iterative asynchronous executions. Listing 1.3 shows the
piece of code that executes these two phases. For the first phase, Searcher directly
uses URLLoader that is provided by the Flash runtime and uses a non-blocking
operation (i.e., load in Line 5), meaning that a callback (i.e., loadComplete in
Line 7) is required. The loadComplete method receives a list that contains all
URLs of images. For the second phase, LoadImages uses a non-blocking operation
like load), then pushes the downloaded images into a Queue. LoadImages also
removes the URL of the image from a list (passed in Line 21), then the same
process is repeated until the URL list becomes empty. At the same time, the
display is invoked with a delay using a timer (lines 20 and 22). The display
method gets the downloaded image from Queue, then renders it on the circle.
The rendering images repeats until the the Queue becomes empty. As shown
in Figure 1, LoadImages and DisplayPhoto share a queue to pass/receive images.
Therefore, at a glance, it is not easy to understand the connection between
downloading and rendering of images because execute does not directly invoke
display using downloaded data.

Moreover, display is implicitly invoked by a timer because the rendering of
images is faster than that of downloading. If this delay is not used, the repeat of
1 We only show the classes required by the main behavior of FlickrSphere (e.g., down-

load and display images).

96 H. Fukuda and P. Leger

display unnecessarily consumes CPU resources. Although this delay is necessary,
these pieces of code are difficult to understand at a glance. These pieces of code
can be removed if the reference of display is passed to LoadImages then invoked
inside a callback method (i.e., loadComplete), making callback spaghetti.
1 class Searcher {
2 function search(key : String) : void {
3 var loader :URLLoader = new URLLoader() ;
4 loader . addEventListener(Event .Complete , loadComplete) ;
5 loader . load(createURL(key)) ;
6 }
7 function loadComplete(e :Event) : void {
8 var l i s t : Array = createList (e . data) ;
9 new DisplayPhoto () . execute(l i s t) ;

10 }
11 }
12

13 class DisplayPhoto {
14 private queue :Queue = new Queue() ;
15 private timer :Timer ;
16 private loaded :Boolean = false ;
17 function execute(l i s t :Array) {
18 var loadImages = new LoadImages(queue) ;
19 timer = new Timer(2);
20 timer . addEventListener(TimerEvent .Timer , display) ;
21 imageLoader . load(l i s t) ;
22 timer . start () ;
23 }
24 function display () {
25 i f (queue . length == 0 && loaded) {
26 timer . stop () ;
27 timer . removeEventListener(TimerEvent .Timer , display) ;
28 return ;
29 }
30 i f (queue . length == 0) return ;
31 var img: FlickrPhoto = queue . sh i f t () ;
32 showImage(img);
33 }
34 }

Listing 1.3. A simplified implementations of FlickrSphere.

4 Applying Existing Proposals to FlickrSphere

This section presents different FlickrSphere implementations using existing pro-
posals like async/await, Promise pattern, and SyncAS. While we present each
implementation, we briefly explain each proposal.

4.1 The async/await Constructs

The async/await constructs is a proposal that supplies writing programs with
non-blocking operations in a synchronous fashion for C# 5.0 [1]. A method invo-
cation attached to await in order to keep the following executions as continuations
that are restarted when the method execution is completed. The method usually
contains an operation that takes a certain period of time (e.g., LoadImages.load).
Meanwhile, a method definition with async modifier lets the compiler know what
the method contains a method invocation that uses non-blocking operations.

Proposals for Modular Asynchronous Web Programming 97

1 class Searcher {
2 void async search(String key) {
3 ListLoader loader = new ListLoader () ;
4 l i s t = await loader . load(key) ;
5 new DisplayPhoto () . execute(l i s t) ;
6 }
7 }
8 class DisplayPhoto() {
9 LoadImages loader ;

10 void execute(Array l i s t) {
11 i f (l i s t) {
12 loader = new LoadImages() ;
13 display (l i s t) ;
14 }
15 }
16 void async display (Array l i s t) {
17 for (int i = 0; i < l i s t . length ; ++i) {
18 Image img = await loader . load(l i s t . get(i)) ;
19 i f (img) showImage(img);
20 else i−−;
21 } } }

Listing 1.4. Simplified main behavior of FlickrSphere with async/await.

Listing 1.4 shows the rewritten code using async/await. In Listing 1.4, we
introduce ListLoader because await can be attached only to a method invoca-
tion that uses non-blocking operations and we assume ListLoader uses URLLoader
inside the load. Using async/await enables writing pieces of code that contain
asynchronous executions as synchronous fashion, making them easy to under-
stand and intuitive.

4.2 Promise Pattern

One approach to deal with asynchronous issues adopted by JavaScript commu-
nities is the Promise pattern [3]: a proxy object that represents an unknown (or
future) result that is yet to be computed. The common term used for promise is
thenable, as a programmer uses a then method to attach callback methods to a
promise when it is fulfilled.

1 class Searcher () {
2 function search(var key) {
3 loadList (key) . then(new DisplayPhoto () . display , error) ; // use a promise using then

4 }
5 function loadList (var key) { // create a promise object

6 var p = new Promise () ;

7 var loader = new URLLoader() ;

8 loader . addEventListener(Event .Complete , function(e) {
9 (e . data) ? p. resolve (e . data) : p. re ject (”error”) ; // choose which methods a promise invokes (success or fail)

10 });

11 loader . load(key) ;

12 return p;

13 }
14 }
15

16 class DisplayPhoto() {
17 var loader = new Loader () ;

18 var l i s t ;

19 function execute(l i s t) {
20 this . l i s t = l i s t ;

21 display () ;

22 }
23 function display () {

98 H. Fukuda and P. Leger

24 load(l i s t . sh i f t ()) . then(show, retry) ;

25 }
26 function load(ur l) {
27 var p = new Promise () ;

28 loader . addEventListener(Complete , function(e) {
29 (e . data) ? p. resolve (e . data) : p. re ject (ur l) ;

30 });

31 loader . load(ur l) ;

32 return p;

33 }
34 function show(img) {
35 showImage(img) ;

36 i f (l i s t . length> 0) display () ;

37 }
38 function retry (ur l) {
39 l i s t . unshirt (ur l) ;

40 display () ;

41 }
42 }

Listing 1.5. Simplified main behavior of FlickrSphere with Promise.

Figure 1.5 shows the rewritten code with the Promise pattern. Promise
requires decomposing a set of operations into methods, then a method combines
them creating a promise object and using then. Thereby, we create loadList (Line
5) to have a promise object and use it inside of the Searcher.search method.
In the DisplayPhoto class, load is introduced, and display is rewritten to use the
promise pattern. As a consequence, pieces of code that represent iterative display
executions are non-intuitive because they use recursive invocations. Moreover,
these recursions consist of a set of methods (i.e., display, show, and retry), increas-
ing its complexity. Note that, using loop statements such as while in display is
impossible because it starts downloading and rendering all images at a time,
leading a different behavior from the original FlickrSphere implementation.

4.3 SyncAS

SyncAS is a proof-of-concept library to provide virtual block, which enables a
programmer to virtually block a method execution without blocking the exe-
cution of the program. A programmer specifies the points where a execution
should be stopped and restarted using an aspect-oriented approach [6]. As a
consequence, programmers can write programs as synchronous fashion even if
they use non-blocking operations similar to async/await.

1 class Searcher {
2 function search(key : String) : void {
3 var loader : ListLoader = new ListLoader () ;

4 var l i s t :Array = loader . load(key) ; // a method invocation containing non−blocking operations

5 new DisplayPhoto () . execute(l i s t) ; // virtually blocked by an aspect

6 }
7 }
8 class DisplayPhoto() {
9 private loader :LoadImages ;

10 function execute(l i s t :Array) {
11 i f (l i s t) {
12 loader = new LoadImages() ;

13 display () ;

14 }
15 }
16 function display (l i s t :Array) {
17 var ur l : String = l i s t . sh i f t () ;

18 i f (ur l) {

Proposals for Modular Asynchronous Web Programming 99

19 var img: FlickrPhoto = loader . load(ur l) ; // a method invocation containing non−blocking operations

20 (img) ? showImage(img) : l i s t . unshift (ur l) ; // virtually blocked by an aspect

21 display (l i s t) ; // self recursion

22 } } }

Listing 1.6. Simplified main behavior of FlickrSphere with SyncAS.

Listing 1.6 shows the rewritten code with SyncAS. Similar to async/await,
SyncAS enables virtually blocking a method invocation that uses non-blocking
operations. With SyncAS, we can write search in a synchronous manner without
the need to add constructs like found in async/await. Instead, the ListLoader.load
method is a method that contains a non-blocking operation, thereby, we need
to deploy an aspect to virtually block the execution of Line 5 and restart them
when loadComplete is finished as follows.
SyncAS.addAsyncOperation(”ListLoader.load” ,”ListLoader.loadComplete”) ;

In addition, compared to loop constructs (e.g., for) used in async/await, self
recursive iterations are a bit non-intuitive, however, this recursion in SyncAS
is easier than iterations over multiple methods used in Promise because this
iteration can be naturally written using self recursion. To virtually block Line
19 in Listing 1.6, we need to deploy another aspect as follows.
SyncAS.addAsyncOperation(”Loader.load” ,”Loader.loadComplete”) ;

4.4 Discussion

Applying each proposal can remove a timer, which connects LoadImages and
Displayphoto as shown in Figure 1 and Listing 1.3, making pieces of code more
intuitive. In addition, as shown in Table 1, we evaluate these proposals from
three aspects: Modularity, Expressiveness, and Overload. Modularity refers to
how we can concentrate one concern on one place. Expressiveness refers to how
we can write programs naturally and intuitively. Finally, Overload refers to the
difficulty that introduces each proposal.

Table 1. Comparison of proposals in terms of Modularity, Expressiveness, Overload

async/await Promise SyncAS

Modularity Middle Middle High

Expressiveness High Low Middle

Overload Thread level Very low Additional closure
execution

The async/await proposal provides an appropriate solution that enables writ-
ing pieces of code as synchronous fashion. We can define a method that contains
non-blocking operations at one place and use these constructs inside loop exe-
cutions, thereby, its expressiveness is considered high. Since the base technique
of this proposal is Thread, the overload is equivalent to Thread. Meanwhile,

100 H. Fukuda and P. Leger

async/await does not hide asynchronous executions completely because program-
mers, who just use a method containing non-blocking operations, need to have
concerns about behaviors (i.e., synchronous/asynchronous) in addition to its
definition (e.g., interface). This is because these programmers explicitly need to
write async/await in order to control executions. As a consequence, the modular-
ity of this proposal is not considered high (i.e., Middle).

The Promise pattern enables writing nested non-blocking operations at
one place with a fluent interface using then. However, callback methods are
necessary to follow the promise style, bringing modularity issues like call-
back spaghetti (Low expressiveness and Middle modularity). Moreover, iter-
ative executions with non-blocking operations may bring complicated control
flow (e.g., recursive executions over methods) because understanding iterative
and recursive executions is difficult at a glance. The overload is really low because
this proposal is only a design pattern.

Although SyncAS has similar features to async/await, a SyncAS programmer,
who uses a method containing non-blocking operations, does not need to have
aware about behavior of methods. However, a programmer who provides asyn-
chronous methods also needs to provide aspects that control asynchronous execu-
tions. This fact means that SyncAS is more modular than async/await and enables
dividing programmers into two categories: non-asynchronous programmers who
just use a method containing non-blocking operation, and asynchronous pro-
grammers who know and control asynchronous executions, enhancing modular
development. Thereby, its modularity is the highest of these three proposals.
Meanwhile, the current SyncAS forces programmers to write iterative asyn-
chronous executions using self recursion instead of loop statements, leading to
non-intuitive programs. Therefore the expressiveness is lower than async/await
but higher than Promise (Middle expressiveness). As SyncAS requires the sup-
port of aspect-oriented programming that uses closure to weave an advice, its
overhead depends on the additional closure execution time. In Listing 1.6 imple-
mentation, the additional execution time was 10[ms] while the downloading one
image file took 500[ms], meaning that the effect of the additional time could be
limited becuase asynchronous programming is usually applied to the execution
that takes certain time.

Based on previous evaluations, a proposal that enables writing asynchronous
executions as synchronous fashion enhances modular asynchronous Web pro-
gramming. In this context, SyncAS is more modular than other two proposals,
however, its lack of expressiveness and execution overhead is worse than other
proposals. However its overhead is limited in practical usages because asyn-
chronous programming is used when an execution takes a certain period of time.
Introducing loop join point [5] and a sophisticated translator, which partially
encapsulates programs related to asynchronous executions, are next challenges
for current drawbacks.

Proposals for Modular Asynchronous Web Programming 101

5 Conclusion

Based on the progress in the Internet technologies, traditional applications are
now provided as web applications. These modern web applications adopt asyn-
chronous programming for various reasons: hiding latency of the network and
improving the responsiveness in the user interface. Callback is a typical solution
that enables asynchronous programming. However, this solution has its draw-
backs such as callback spaghetti – the modern goto statement in asynchronous
programming. In addition, introducing asynchronous programming into module
based programming requires dividing a method into call-site and its continu-
ations, making complex control flows. In order to solve these drawbacks, some
proposals are available, however, issues related to modular programming, expres-
siveness, complexity are still present. In this paper, we evaluated and compared
three proposals: async/await, Promise pattern, and SyncAS, applying them to a
non-trivial open source application called FlickrSphere. From a modular pro-
gramming view point, SyncAS is better than other two proposals because can
encapsulate non-blocking operations in a module completely. From an expres-
siveness viewpoint, async/await is better due to supporting of loops (e.g., for).
Finally, the Promise pattern is only useful when developers need a lightweight
solution. However, as we can appreciate in Table 1, none of these proposals fully
support modular programming and expressiveness without adding a significant
complexity.

Acknowledgments. This work was partially supported by JSPS KAKENHI Grant
Number 26330089.

References

1. Bierman, G., Russo, C., Mainland, G., Meijer, E., Torgersen, M.: Pause ‘n’ play:
formalizing asynchronous C�. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313,
pp. 233–257. Springer, Heidelberg (2012).
http://dx.doi.org/10.1007/978-3-642-31057-7 12

2. flickr: http://www.flickr.com/
3. Friedman, D., Wise, D.: The Impact of Applicative Programming on Multiprocess-

ing. Technical report (Indiana University, Bloomington. Computer Science Dept.),
Indiana University, Computer Science Department (1976). http://books.google.co.
jp/books?id=ZIhtHQAACAAJ

4. Fukuda, H., Leger, P.: A library to modularly control asynchronous executions. In:
Proceedings of the 29th Annual ACM Symposium on Applied Computing (SAC
2015). ACM Press, Salamnca, April 2015 (to appear)

5. Harbulot, B., Gurd, J.R.: A join point for loops in aspectj. In: Proceedings of the
5th International Conference on Aspect-oriented Software Development, AOSD
2006, pp. 63–74. ACM, New York (2006). http://doi.acm.org/10.1145/1119655.
1119666

6. Kiczales, G., Irwin, J., Lamping, J., Loingtier, J., Lopes, C., Maeda, C., Mendhekar,
A.: Aspect oriented programming. In: Muehlhaeuser, M. (general ed.) et al. Special
Issues in Object-Oriented Programming (1996)

http://dx.doi.org/10.1007/978-3-642-31057-7_12
http://www.flickr.com/
http://books.google.co.jp/books?id=ZIhtHQAACAAJ
http://books.google.co.jp/books?id=ZIhtHQAACAAJ
http://doi.acm.org/10.1145/1119655.1119666
http://doi.acm.org/10.1145/1119655.1119666

102 H. Fukuda and P. Leger

7. Mikkonen, T., Taivalsaari, A.: Web applications - spaghetti code for the 21st
century. In: Proceedings of the 2008 Sixth International Conference on Software
Engineering Research, Management and Applications, SERA 2008, pp. 319–328.
IEEE Computer Society, Washington, DC (2008). http://dx.doi.org/10.1109/
SERA.2008.16

8. Ogden, M.: Callback hell. http://callbackhell.com/
9. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.

Commun. ACM 15(12), 1053–1058 (1972).
http://doi.acm.org/10.1145/361598.361623

10. Yossy:beinteractive: Flickrsphere. http://www.libspark.org/svn/as3/Thread/
tags/v1.0/samples/flickrsphere/fla/FlickrSphere.html

http://dx.doi.org/10.1109/SERA.2008.16
http://dx.doi.org/10.1109/SERA.2008.16
http://callbackhell.com/
http://doi.acm.org/10.1145/361598.361623
http://www.libspark.org/svn/as3/Thread/tags/v1.0/samples/flickrsphere/fla/FlickrSphere.html
http://www.libspark.org/svn/as3/Thread/tags/v1.0/samples/flickrsphere/fla/FlickrSphere.html

	Proposals for Modular Asynchronous Web Programming: Issues and Challenges
	1 Introduction
	2 Asynchronous Programming Problems
	2.1 Synchronous Programming
	2.2 Asynchronous Programming

	3 Nested and Iterative Asynchronous Executions
	3.1 FlickrSphere in a NutShell
	3.2 FlickrSphere Implementations

	4 Applying Existing Proposals to FlickrSphere
	4.1 The async/await Constructs
	4.2 Promise Pattern
	4.3 SyncAS
	4.4 Discussion

	5 Conclusion
	References

