
Chapter 4
The Noncommutative Supersymmetric
Standard Model

Abstract We apply our formalism for supersymmetric theories in the context of
noncommutative geometry to explore the existence of a noncommutative version of
the minimal supersymmetric Standard Model (MSSM). We obtain the exact particle
content of the MSSM and identify (in form) its interactions, but conclude that their
coefficients are such that the standard action functional used in noncommutative
geometry is in fact not supersymmetric.

4.1 Obstructions for a Supersymmetric Theory

The results of Chap.2 allow us to determine amodel in a constructiveway by defining
the building blocks that it consists of. This does not imply automatically that the
corresponding action is also supersymmetric: we have come across a number of
possible obstacles for a supersymmetric action. These are the following:

• the three obstructions from Remarks2.4, 2.13 and Proposition2.19 of Chap.2
concerning the set up of the almost-commutative geometry. The first excludes
a finite algebra that is equal to C with the corresponding building block B1,
since it lacks gauge interactions and thus cannot be supersymmetric. The second
excludes a finite algebra consisting of two summands that are both matrix algebras
over C in the presence of only building blocks of the second type whose off-
diagonal representations in the Hilbert space have R-parity equal to −1. The
third obstruction says that for an algebra consisting of three or more summands
MNi, j,k (C) we cannot have two building blocks Bi j and Bik of the second type
that share one of their indices. To avoid this obstruction, we can maximally have
two components of the algebra that are a matrix algebra over C.

• to obtain the fermion–sfermion–gaugino interactions needed for a supersymmetric
action, the parameters Cii j and Ci j j of the finite Dirac operator associated to a
building block Bi j of the second type—that read ˜Ci, j and ˜C j,i after normalizing
the kinetic terms of the sfermions—should satisfy
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˜Ci, j = εi, j

√
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g j idM . (4.1)

Here εi, j and ε j,i are signs that we are free to choose. The Ki, j are the pre-
factors of the kinetic terms of the gauge bosons that correspond to the building
blocks Bi, j of the first type and should be set to 1 to give normalized kinetic
terms (the consequences of this will be reviewed at the end of Sect. 4.3). The gi, j

are coupling constants. Furthermore, these variables should act trivially on family
space (consisting of M generations), indicated by the identity idM on family space.
Similarly, when a building block Bi jk of the third type is present, its fermionic

interactions can only be part of a supersymmetric action if the parameters Υ
j

i ,
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j of the finite Dirac operator satisfy
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(4.2)

For any building block of the third type it is necessary that either one or all three
representations Ni ⊗ No

j , Ni ⊗ No
k and N j ⊗ No

k in the Hilbert space have R-parity
−1. The above relation assumes Ni ⊗ No

j to have R = −1, but the identities for
the other cases are very similar (Sect. 2.2.3).

• for the four-scalar interactions to have an off shell counterpart that satisfies the
constraints supersymmetry puts on them, the coefficients of the interactions with
the auxiliary fields Gi , H and Fi j should satisfy the demands listed in Sect. 2.3.

For each almost-commutative geometry that one defines in terms of the building
blocks, we should explicitly check that the obstructions are avoided and the appro-
priate demands are satisfied.

In the next section we will list the basic properties of the almost-commutative
geometry that is to give the MSSM, including the building blocks it consists of and
show that this set up avoids the three possible obstructions from the first item in the
list above. To confirm that we are on the right track we identify all MSSM particles
and examine their properties in Sect. 4.3. Finally, in Sect. 4.4 we will confront our
model with the demands from the last item in the list above. Throughout, we will a
priori allow for a number of generations other than 3.

4.2 The Building Blocks of the MSSM

We start by listing the properties of the finite spectral triple that, when part of an
almost-commutative geometry, should correspond to the MSSM.

1. The gauge group of theMSSM is (up to a finite group) the same as that of the SM.
In noncommutative geometry there is a strong connection between the algebraA
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of the almost-commutative geometry and the gauge group G of the corresponding
theory. There is more than one algebra that may yield the correct gauge group
(Lemma 1 of [1]) but any supersymmetric extension of the SM also contains the
SM particles, which requires an algebra that has the right representations (see
just below the aforementioned Lemma). This motivates us to take the Standard
Model algebra:

AF ≡ ASM = C ⊕ H ⊕ M3(C). (4.3)

Note that with this choice we already avoid the third obstruction for a supersym-
metric theory from the first item in the list above, since only two of the summands
of this algebra are defined over C.
In the derivation [4] of the SM from noncommutative geometry the authors first
start with the ‘proto-algebra’

AL ,R = C ⊕ HL ⊕ HR ⊕ M3(C) (4.4)

(cf. [4, Sect. 2.1]) that breaks into the algebra above after allowing for a Majorana
mass for the right-handed neutrino [4, Sect. 2.4]. Although we do not follow this
approach here, we do mention that this algebra avoids the same obstruction too.

2. As is the case in the NCSM, we allow four inequivalent representations of the
components of (4.3): 1, 1, 2 and 3. Here 1 denotes the real-linear representation
π(λ)v = λ̄v, for v ∈ 1.1 This results in only three independent forces—with
coupling constants g1, g2 and g3—since the inner fluctuations of the canonical
Dirac operator acting on the representations 1 and 1 of C are seen to generate
only a single u(1) gauge field [4, Sect. 3.5.2] (see also Sect. 4.3.2).

3. If wewant a theory that contains the superpartners of the gauge bosons, we need to
define the appropriate building blocks of the first type (cf. Sect. 2.2.1). In addition,
we need these building blocks to define the superpartners of the various Standard
Model particles. We introduce

B1, B1R , B1̄R
, B2L , B3, (4.5)

whose representations in HF all have R = −1 to ensure that the gauginos and
gauge bosons are of opposite R-parity. TheKrajewski diagram that corresponds to
these building blocks is given in Fig. 4.1a. For reasons that will become clear later
on, we have two building blocks featuring the representation 1, and one featuring
1. We distinguish the first two by giving one a subscript R. This notation is not
related to R-parity but instead is inspired by the derivation of the Standard Model
where, in terms of the proto-algebra (4.4), the component C is embedded in the
componentHR via λ → diag(λ, λ̄). The initially two-dimensional representation
2R of this component (making the right-handed leptons and quarks doublets) thus

1Keep in mind that we ensure the Hilbert space being complex by defining it as a bimodule of the
complexification A C of A , rather than of A itself [3].

http://dx.doi.org/10.1007/978-3-319-24798-4_2
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(a) (b)

(c) (d)

Fig. 4.1 All building blocks that together represent the particle content and interactions of the
MSSM. a Blocks of the first type. b Blocks of the second type. Each white off-diagonal node
corresponds to a SM (anti)particle. c Blocks of the third type, parametrized by the Yukawa matrices
Υν,e,u,d . d The block of the fourth type, representing aMajorana mass for the right-handed neutrino

breaks up into two one-dimensional representations 1R and 1̄R (corresponding to
right-handed singlets).
At this point we thus have too many fermionic degrees of freedom, but these will
be naturally identified to each other in Sect. 4.3.

4. For each of the Standard Model fermions2 we define the corresponding building
block of the second type:

B−
1R1

: (νR, ν̃R), B−
1̄R1

: (eR, ẽR), B+
2L1

: (lL ,˜lL), (4.6a)

2In the strict sense the Standard Model does not feature a right handed neutrino (nor does the
MSSM), but allows for extensions that do. On the other hand the more recent derivations of the SM
from noncommutative geometry naturally come with a right-handed neutrino. We will incorporate
it from the outset, always having the possibility to discard it should we need to.
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B−
1R3

: (u R, ũ R), B−
1̄R3

: (dR, ˜dR), B+
2L3

: (qL , q̃L). (4.6b)

Of each of the representations in the finite Hilbert space we will take M copies
representing the M generations of particles, also leading to M copies of the
sfermions. We can always take M = 3 in particular. Each of these fermions has
R = +1. We do the same for representations in which the SM Higgs resides:

B1R2L : (hu,˜hu), B1̄R2L
: (hd ,˜hd), (4.6c)

save that their representations in theHilbert space have R = −1 and consequently
we take only one copy of both. For the two Higgs/higgsino building blocks we
can choose the grading still. We will set them both to be left-handed and justify
that choice later.
The Krajewski diagram that corresponds to these building blocks is given by
Fig. 4.1b.
The fact that there is at least one building block B1 j , j = 1̄R, 2L , 3, avoids the
first of the three obstructions for a supersymmetric theory mentioned in the first
item of the list above.
The building blocks introduced above fully determine the finite Hilbert space.
For concreteness, it is given by

HF = HF,R=+ ⊕ HF,R=−, (4.7)

withHF,R=± = 1
2 (1 ± R)HF (cf. Sect. 2.1) reading

HF,R=+ = (

E ⊕ E o)⊕M
, E = (2L ⊕ 1R ⊕ 1R) ⊗ (1 ⊕ 3)o,

HF,R=− = F ⊕ F o, F = (1 ⊗ 1o)⊕2 ⊕ 1 ⊗ 1
o ⊕ 2 ⊗ 2o

⊕ 3 ⊗ 3o ⊕ (1R ⊕ 1R) ⊗ 2o
L .

Here E contains the finite part of the left- and right-handed leptons and quarks.
The first four terms ofF represent the u(1), su(2) and su(3) gauginos and the last
term the higgsinos. For the (MS)SM the number of generations M is equal to 3.

5. In terms of the ‘proto-algebra’ (4.4) the operator

R = −(+,−,−,+) ⊗ (+,−,−,+)o

gives the right values for R-parity to all the fermions: R = +1 for all the SM-
fermions, R = −1 for the higgsino-representations that are in 2R ⊗ 2o

L before
breaking to (1R ⊕ 1R) ⊗ 2o

L .
Since there is at least one building block of the second type whose representa-
tion in the finite Hilbert space has R = +1, also the second obstruction for a
supersymmetric theory mentioned above is avoided.

http://dx.doi.org/10.1007/978-3-319-24798-4_2
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6. The MSSM features additional interactions, such as the Yukawa couplings of
fermions with the Higgs. In the superfield formalism, these are determined by a
superpotential. Its counterpart in the language of noncommutative geometry is
given by the building blocksBi jk of the third type. These should at least contain
the Higgs-interactions of the Standard Model (but with the distinction between
up- and down-type Higgses). The values of the grading on the representations in
the finite Hilbert space are such that they allow us to extend the Higgs-interactions
to the following building blocks:

B11R2L , B11̄R2L
, B1R2L3, B1̄R2L3

. (4.8)

The four building blocksBi jk , are depicted in Fig. 4.1c. (For conciseness we have
omitted here the building blocks of the first type and the components of DF from
the building blocks of the second type.)
Note that all components of D−, the part of DF that anticommutes with R, that
are allowed by the principles of NCG are in fact also non-zero now. This is in
contrast with those of D+, on which the (ad hoc) requirement [4, Sect. 2.6] to
commute with

CF := {(λ, diag(λ, λ̄), 0), λ ∈ C} ⊂ ASM

is imposed. The reason for this is to keep the photon massless and to get the
interactions of the SM. Requiring the same for the entire finite Dirac operator
would forbid the majority of the components that determine the sfermions, not
requiring it at all would lead to extra, non-supersymmetric interactions such as
1̄ ⊗ 1o → 3 ⊗ 1o. Thus, we slightly change the demand, reading

[D+,CF ] = 0. (4.9)

Relaxing this demand does not lead to a photon mass since it only affects the
sfermions that have R = −1 whereas any photon mass would arise from the
kinetic term of the Higgses, having R = +1.
At this point we can justify the choice for the grading of the up- and down-type
higgsinos. If the grading of any of the two would have been of opposite sign,
none of the building blocks of the third type that feature that particular higgsino
could have been defined. The interactions that are still possible then cannot be
combined into building blocks of the third type, which is an undesirable property.
It corresponds to a superpotential that is not holomorphic (see Sect. 2.2.3).

7. Having a right-handed neutrino in 1R ⊗ 1o, that is a singlet of the gauge group,
we are allowed to add a Majorana mass for it via

Bmaj (4.10)

such as in 2.2.5.1. This is represented by the dotted diagonal line in Fig. 4.1d. The
building block is parametrized by a symmetric M×M–matrix ΥR .

http://dx.doi.org/10.1007/978-3-319-24798-4_2
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Summarizing things, the finite spectral triple of the almost-commutative geometry
that should yield the MSSM then reads

B1 ⊕ B1R ⊕ B1̄R
⊕ B2 ⊕ B3 ⊕ B+

1R2L
⊕ B+

1̄R2L

⊕ B−
1R1

⊕ B−
1̄R1

⊕ B+
2L1

⊕ B−
1R3

⊕ B−
1̄R3

⊕ B+
2L3

⊕ B11R2L ⊕ B11̄R2L
⊕ B1R2L3 ⊕ B1̄R2L3 ⊕ Bmaj. (4.11)

One of its properties is that all components that are not forbidden by the principles
of NCG and the additional demand (4.9) are in fact also non-zero, save for the
supersymmetry-breaking gaugino masses (Chap. 3) that we will not cover here.

Remark 4.1 Running ahead of things a bit already we note that there is an important
difference with the MSSM. In the superfield-formalism there is an interaction that
reads

μHd · Hu, (4.12)

where Hu,d represent the up-/down-type Higgs/higgsino superfields [9, Sect. 8.3].
Suppose thatB+

1R2L
andB+

1̄R2L
indeed describe the up- and down-type Higgses and

higgsinos. Because their vertices are on different places in the Krajewski diagram
and in addition they have the same value for the grading, there is no building block
of the fifth type possible that would be the equivalent of (4.12). Moreover, in the
MSSM there is a soft supersymmetry-breaking interaction

Bμhd · hu + h.c.

In this framework also such an interaction can only be generated via a building block
of the fifth type (in combination with gaugino masses, see Sect. 3.2.4). Not having
these interactions would at least leave several of the tree-level mass-eigenstates that
involve theHiggsesmassless [9, Sect. 10.3].We can overcome this problemby adding
two more building blocksB1R2L andB1̄R2L

of the second type whose values of the
grading are opposite to the ones previously defined. With these values no additional
components for the finite Dirac operator are possible, except for two building blocks
of the fifth type that run between the representations ofB±

1R2L
and between those of

B±
1̄R2L

. If we then identify the degrees of freedom of B+
1R2L

to those of B−
1̄R2L

and

those ofB+
1̄R2L

to those ofB−
1R2L

, this would give us the interactions that correspond
to the term (4.12). The additions to the finite spectral triple (4.11) that correspond to
these steps are given by

B−
1R2L

⊕ B−
1̄R2L

⊕ Bmass,1R2L ⊕ Bmass,1̄R2L
. (4.13)

This situation is depicted in Fig. 4.2.

http://dx.doi.org/10.1007/978-3-319-24798-4_3
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Fig. 4.2 The extra building
blocks of the second type
featuring a
Higgs/higgsino-pair and the
building blocks of the fifth
type that are consequently
possible

We proceed by ensuring that we are indeed talking about the noncommutative
counterpart of the MSSM by identifying the MSSM particles and checking that the
number of fermionic and bosonic degrees of freedom are the same.

4.3 Identification of Particles and Sparticles

4.3.1 The Gauge Group and Hypercharges

To justify the nomenclature we have been using in the previous section we need to
test the properties of the new particles by examining how they transform under the
gauge group (e.g. [16, Sect. 7.1]). We do this by transforming elements of the finite
Hilbert space and finite Dirac operator under the gauge group according to

HF 	 ψ → Uψ, DF → U DFU∗,

with U = u Ju J ∗, u ∈ SU (A ), but with a definition of the gauge group featuring
the R-parity operator:

SU (A ) := {u ∈ A | uu∗ = u∗u = 1, detHF,R=+(u) = 1}.

(See the discussion in Sect. 2.1.) Since we have HF,R=+ = HF,SM , the space that
describes the SM fermions, this determinant gives

SU (ASM ) = {(λ, q, m) ∈ U (1) × SU (2) × U (3), [λ det(m)]4M = 1}. (4.14)

The factor M again represents the number of particle generations and stems from
the fact that the algebra acts trivially on family-space. Unitary quaternions q auto-
matically have determinant 1 and consequently all contributions to the determinant
come from

http://dx.doi.org/10.1007/978-3-319-24798-4_2
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E o = (1 ⊕ 3) ⊗ (2L ⊕ 1R ⊕ 1R)o

defined above, instead of from E . The power 4 = 2 + 1 + 1 above comes from the
second part of the tensor product on which the unitary elements U (A ) act trivially.
From (4.14) we infer that the U (1)-part of SU(ASM ) (the part that commutes with
all other elements) is given by

{(λ, 1, λ−1/313), λ ∈ U (1)} ⊂ SU (ASM ). (4.15)

This part determines the hypercharges of the particles; these are given by the power
with which λ acts on the corresponding representations. This result makes the iden-
tification of the fermions that have R = +1 exactly the same as in the case of the
SM ([4, Sect. 2.5]). Applying it to the gaugino and higgsino sectors of the Hilbert
space, we find that:

• there are the gauginos g̃ ∈ 3 ⊗ 3o whose traceless part transforms as g̃ → v̄g̃vt ,
with v̄ ∈ SU (3) (i.e. it is in the adjoint representation of SU(3)) and whose trace
part transforms trivially;

• there are the gauginos ˜W ∈ 2 ⊗ 2o whose traceless part transforms according to
˜W → q ˜Wq∗ with q ∈ SU (2) (i.e. the adjoint representation of SU(2)) and whose
trace part transforms trivially;

• the higgsinos in 1R ⊗ 2L
o and 1̄R ⊗ 2o

L transform in the representation 2 of SU(2)
and have hypercharge +1 and −1 respectively;

• the gauginos in 1 ⊗ 1o, 2 ⊗ 2o and 3 ⊗ 3o all have zero hypercharge.

The new scalars, parametrized by the finite Dirac operator, generically transform as
Φ → UΦU∗. In particular, we separately consider the elements U = u Ju J ∗ with
u = (λ, 1, λ−1/313), (1, q, 1) and (1, 1, v̄). This gives the following:

• with u = (λ, 1, λ−1/313) we find for the hypercharges of the various sfermions:

q̃L : 1
3 , ũ R : 4

3 ,
˜dR : − 2

3 ,

˜lL : −1, ν̃R : 0, ẽR : −2.

The conjugates are found to carry the opposite charge.
• with u = (1, q, 1) we find the following sfermions that transform non-trivially:

q̃L and˜lL , each coming in M generations.
• with u = (1, 1, v) we find the following sfermions that transform in the funda-
mental representation of SU(3): q̃L , ũ R and ˜dR , each coming in M generations.

This completes the identification of the new elements in the theory with the gaug-
inos, higgsinos and sfermions of the MSSM.
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4.3.2 Unimodularity in the MSSM

Having identified the particles there is one other thing to check; that the number of
bosonic and fermionic degrees of freedom are indeed the same. We can quite easily
see that at least initially this is not the case for the following reason. In order to
be able to define the building blocks B−

1R1
, B−

1R3
and B+

1R2L
of the second type

(describing the right-handed (s)electron and (s)quark and down-type Higgs/higgsino
respectively), we defined the building blocks B1 and B1R of the first type. Each
provides extra u(1) fermionic degrees of freedom, but no bosonic ones (see below).
In addition, the gaugino ˜W contains a trace part, whereas the corresponding gauge
boson does not.

We will employ the unimodularity condition

trHF,R=+ Aμ = 0 (4.16)

to reduce the bosonic degrees of freedom on the one hand and see what its conse-
quences are, using the supersymmetry transformations.

First of all, we note that the inner fluctuations on the 1 and 1 give rise to only one
u(1) gauge field (cf. [4, Sect. 15.4]). Initially there are

Λ = iγ μ
∑

j

λ j∂μλ′
j , and Λ′ = iγ μ

∑

j

λ̄ j∂μλ̄′
j ,

but since Λ must be self-adjoint (as ∂/M is), Λμ = i
∑

j λ j∂μλ′
j is real-valued.

ConsequentlyΛ′
μ(x) = −Λμ(x) and they indeed generate the same gauge field. But

via the supersymmetry transformations this also means that

δΛ ∝ δΛ′,

i.e. the corresponding gauginos whose finite parts are in 1 ⊗ 1o and 1 ⊗ 1
o
should

be associated to each other.
Second, the inner fluctuations of the quaternionsHgenerate an su(2)-valued gauge

field. This can be seen as follows. The quaternions form a real algebra, spanned by
{12, iσ a}, with σ a the Pauli matrices. Since ∂/M commutes with the basis elements,
the inner fluctuations

∑

j

q j [∂/M , q ′
j ], q j , q ′

j ∈ C∞(M,H)

can again be written as a quaternion-valued function, i.e. of the form

∑

j

f j0[∂/M f ′
j0] + f ja[∂/M , i f ′

jaσ a]
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for certain f j0, f ′
j0, f ja, f ′

ja ∈ C∞(M,R). Using that [∂/M , x]∗ = −[∂/M , x∗], only
the second term above, which we will denote with Q, is seen to satisfy the demand
of self-adjointness for the Dirac operator. Since the Pauli matrices are traceless, the
self-adjoint inner fluctuations of H are automatically traceless as well.

Using the supersymmetry transformations on the gauge field Q, we demand that
tr δQ = 0, which sets the trace of the corresponding gaugino and auxiliary field
equal to zero.

Third, the inner fluctuations of the component M3(C) of the algebra generate a
gauge field

V ′ =
∑

j

m j [∂, m′
j ], m j , m′

j ∈ M3(C).

Because DA is self-adjoint V ′ must be too and hence V ′(x) ∈ u(3). We can employ
the unimodularity condition (4.16), which forHF given by (4.7) reads

4M(Λ + tr V ′) = 0.

The contributions to this expression again only come from E o and the factor 4 =
2+ 1+ 1 arises from the gauge fields acting trivially on the second part of its tensor
product. The inner fluctuations of the quaternions do not appear in this expression,
since they are traceless. A solution to the demand above is

V ′ = −V − 1

3
Λ id3, (4.17)

with V (x) ∈ su(3). The sign of V is chosen such that the interactions match those
of the Standard Model [4, Sect. 3.5].

In order to introduce coupling constants into the theory, we have to redefine the
fields at hand:

Λμ ≡ g1Bμ, Qμ ≡ g2Wμ, Vμ ≡ g3gμ.

Note that we parametrize the gauge fields differently than in [4]. Then looking at the
supersymmetry transformation of V ′, we infer that its superpartner, the u(3) ‘gluino’
g′

L ,R and corresponding auxiliary field G ′
3 can also be separated into a trace part and

a traceless part. We parametrize them similarly as

g′
L ,R = gL ,R − 1

3
λ0L ,R id3, G ′

3 = G3 − 1

3
G1 id3, (4.18)

with λ0L ,R the superpartner of Bμ and G1 the associated auxiliary field.
The unimodularity condition reduced a bosonic degree of freedom. Employing

it in combination with the supersymmetry transformations allowed us to reduce
fermionic and auxiliary degrees of freedom as well. A similar result comes from 1
and 1 generating the same gauge field. All in all we are left with three gauge fields,
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gauginos and corresponding auxiliary fields:

Bμ ∈ C∞(M, u(1)), λ0L ,R ∈ L2(M, S ⊗ u(1)), G1 ∈ C∞(M, u(1)),

Wμ ∈ C∞(M, su(2)), λL ,R ∈ L2(M, S ⊗ su(2)), G2 ∈ C∞(M, su(2)),

gμ ∈ C∞(M, su(3)), gL ,R ∈ L2(M, S ⊗ su(3)), G3 ∈ C∞(M, su(3)),

exactly as in the MSSM.
With the finite Hilbert space being determined by the building blocks of the first

and second type, we can also obtain the relation between the coupling constants
g1, g2 and g3 that results from normalizing the kinetic terms of the gauge bosons,
appearing in Eq.1.24. The latter are of the form

1

4
K j

∫

M
F j a

μν F j a μν, K j = f (0)

3π2 g2
j n j

(

2N j +
∑

k

M jk Nk

)

≡ r j

3

(

2N j +
∑

k

M jk Nk

)

, (4.19)

where the label j denotes the type (i.e. u(1), su(2) or su(3)) of gauge field and the
index a runs over the generators of the corresponding gauge group. The expressions
for K j include a factor 2 that comes from summing over both particles and anti-
particles. Its first term stems from a building blockB j of the first type and the other
terms come from the building blocks B jk of the second type, having multiplicity
M jk . The symbol n j comes from the normalization

tr T a
j T b

j = n jδ
ab

of the gauge group generators T a
j . For su(2) and su(3) these have the value n2,3 = 1

2 ,
for u(1)we have n1 = 1. In addition, each contribution to the kinetic term of the u(1)
gauge boson must be multiplied with the square of the hypercharge of the building
block the contribution comes from. The contributions (see [1, Sect. 4.3]) from each
representation to each kinetic term appearing in the MSSM are given in Table4.1.

Summing all contributions, we find

K1 = f (0)

3π2 n1g2
1(4 + 120M/9) ≡ r1

3
(4 + 120M/9),

K2 = f (0)

3π2 n2g2
2(6 + 4M) ≡ r2

3
(6 + 4M),

K3 = f (0)

3π2 n3g2
3(6 + 4M) ≡ r3

3
(6 + 4M),

for the coefficients of the gauge bosons’ kinetic terms. We have to insert an extra
factor 1

4 intoK1, since we must divide the hypercharges by two to compare with [4],
that has a different parametrization of the gauge fields. Normalizing these kinetic

http://dx.doi.org/10.1007/978-3-319-24798-4_1
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Table 4.1 The contributions to the pre-factors (4.19) of the gauge bosons’ kinetic terms for all of
the representations of the MSSM

Particle Representation K1 K2 K3

λ0L ,R 1 ⊗ 1o 0 0 0

λL ,R 2 ⊗ 2o 0 4 0

gL ,R 3 ⊗ 3o 0 0 6

νR 1 ⊗ 1o 0 0 0

eR 1 ⊗ 1̄o 4M 0 0

lL 1 ⊗ 2o 2M M 0

dR 1̄ ⊗ 3o 3(−1 + 1
3 )2M 0 M

u R 1 ⊗ 3o 3(1 + 1
3 )2M 0 M

qL 2 ⊗ 3o 6( 13 )2M 3M 2M

hd 1̄ ⊗ 2o 2 1 0

hu 1 ⊗ 2o 2 1 0

Total 4 + 120M/9 6 + 4M 6 + 4M

The number of generations is denoted by M

term by settingK1,2,3 = 1, we obtain for the ri (defined in (4.19)):

r3 = r2 = 3

6 + 4M
, r1 = 9

3 + 10M
. (4.20)

Consequently, we find for the coefficients

ωi j := 1 − ri Ni − r j N j (4.21)

the following values:

ω11 = 10M − 15

10M + 3
, ω12 = 20M2 − 12M − 27

20M2 + 36M + 9
,

ω13 = 40M2 − 54M − 63

40M2 + 72M + 18
, ω23 = 4M − 9

4M + 6
.

From (4.20) it is immediate that, upon taking M = 3 and inserting the values of
n1,2,3, the three coupling constants are related by

g2
3 = g2

2 = 11

9
g2
1 . (4.22)

This is different than for the SM [4, Sect. 4.2], where it is the well-known g2
2 = g2

3 =
5
3g2

1. For this value of M , the ωi j have the following values:
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ω11 = 5

11
, ω12 = 13

33
, ω13 = 5

22
, ω23 = 1

6
. (4.23)

Remark 4.2 In Remark 4.1 we have suggested to add one extra copy of the two
building blocks that describe the Higgses and higgsinos, to match the interactions of
the MSSM. Such an extension gives extra contributions to the kinetic terms of the
su(2) and u(1) gauge bosons, leading to

r3 = 3

6 + 4M
, r2 = 3

8 + 4M
, r1 = 9

6 + 10M
. (4.24)

Consequently,

ω11 = 5M − 6

5M + 3
, ω12 = 10M2 + 2M − 15

2(2 + M)(3 + 5M)
,

ω13 = 20M2 − 21M − 36

2(3 + 2M)(3 + 5M)
, ω23 = 4M2 − M − 15

2(2 + M)(3 + 2M)

for the parameters ωi j . From the ratios of the r1, r2 and r3 we derive for the coupling
constants when M = 3:

g2
3 = 10

9
g2
2 = 4

3
g2
1 .

The ωi j then read

ω11 = 1

2
, ω12 = 9

20
, ω13 = 1

4
, ω23 = 1

5
.

4.4 Supersymmetry of the Action

Even though the three obstructions mentioned at the beginning of Sect. 4.1 are
avoided and the particle content of this theory coincides with that of the MSSM,
we do not know if the action associated to it is in fact supersymmetric. In this section
we check this by examining (some of) the requirements from the list in Sect. 2.3.

Before we get to that, we note that each of the fields ˜ψi j appears at least once
in one of the building blocks of the third type. This can easily be seen by taking
all combinations (i, j), (i, k) and ( j, k) of the indices i, j, k of each of the building
blocks of the third type that we have. Put differently, there is at least one horizontal
line between each two ‘columns’ in the Krajewski diagram of Fig. 4.1c. This means
that for each sfermion field ˜ψi j of the MSSM that is defined via the building block
Bi j , we canmeet the demand (2.33) on the parametersCii j ,Ci j j that supersymmetry
sets on them. We do this by setting them to be of the form

http://dx.doi.org/10.1007/978-3-319-24798-4_2
http://dx.doi.org/10.1007/978-3-319-24798-4_2
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Cii j = εi, j

√

ri

ωi j
(NkΥ

j
i

∗Υ j
i )1/2 (4.25)

where ri and ωi j were introduced in (4.19) and (4.21) respectively, and Υ
j

i is the
parameter of the building blockBi jk that generates ˜ψi j (cf. Sect. 2.3). With the right
choice of the signs εi, j , ε j,i for these parameters, the fermion–sfermion–gaugino
interactions that come from the building blocks of the second type coincide with
those of the MSSM.

• For each of the four building blocks B11R2L , B1R2L3, B11̄R2L
and B1̄R2L3 of the

third type that we have, there is the necessary requirement (2.52) for supersym-
metry. In the parametrization (2.44) of the Cii j these relations read:

εi, j
√

ωi j ˜Υ
j

i = −εi,k
√

ωik ˜Υ k
i , ε j,i

√
ωi j ˜Υ

j
i = −ε j,k

√
ω jk ˜Υ

k
j ,

εk,i
√

ωik ˜Υ k
i = −εk, j

√
ω jk ˜Υ

k
j , (4.26)

where we have written

˜Υ
j

i := Υ
j

i (Nk tr Υ
j

i
∗Υ j

i )−1/2, ˜Υ k
i := (N jΥ

k
i Υ k

i
∗)−1/2Υ k

i ,

˜Υ
k

j := Υ
k

j (NiΥ
k

j
∗Υ k

j )−1/2

for the ‘scaled’ versions of the parameters Υ
j

i , Υ k
i and Υ

k
j of the building block

Bi jk . Here it is ˜ψi j that is assumed to have R = 1 and consequently no family
structure. (See Chap. 2, Remark2.23 for the case that it is ˜ψik or ˜ψ jk instead.) To
connect with the notation of the noncommutative Standard Model, we will write

Υν := Υ
2L

1R ,1 , Υu := Υ
2L

1R ,3

for the parameters of the building blocks B1R12L and B1R32L that generate the
up-type Higgs fields and

Υe := Υ
2L

1̄R ,1
, Υd := Υ

2L

1̄R ,3

for those of B1̄R12L
and B1̄R32L

that generate the down-type Higgs fields. Fur-
thermore, we write

au = trM
(

Υν
∗Υν + 3Υu

∗Υu

)

, ad = trM
(

Υe
∗Υe + 3Υd

∗Υd

)

for the expressions that we encounter in the kinetic terms of the Higgses:

N 2
1R2L

∫

M
|Dμhu |2, N 2

1R2L
= f (0)

2π2

1

ω12
au

http://dx.doi.org/10.1007/978-3-319-24798-4_2
http://dx.doi.org/10.1007/978-3-319-24798-4_2
http://dx.doi.org/10.1007/978-3-319-24798-4_2
http://dx.doi.org/10.1007/978-3-319-24798-4_2
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and

N 2
1̄R2L

∫

M
|Dμhd |2, N 2

1̄R2L
= f (0)

2π2

1

ω12
ad

respectively. (Here, the parametrization of Sect. 2.3 is used). The factors 3 above
come from the dimension of the representation 3 of M3(C). Inserting the expres-
sions for the ˜Υ

j
i the above identity reads for the building block B1R12L :

− √
ω12

(

Υ
1

2,1 Υ
1

2,1
∗ + Υ

1
2,1̄

Υ
1

2,1̄
∗)−1/2

Υ
1

2,1

= ε1,2L ε1,1R

√
ω11 Υ

1
1,2

(

2Υ 1
1,2

∗Υ 1
1,2

)−1/2 = ε2L ,1ε2L ,1R

√
ω12

Υν
t

√
au

.

For B1̄R12L
, B1R32L ,B1̄R32L

it reads

− √
ω12

(

Υ
1

2,1 Υ
1

2,1
∗ + Υ

1
2,1̄

Υ
1

2,1̄
∗)−1/2

Υ
1

2,1̄

= ε1,2L ε1,1̄R

√
ω11Υ

1
1̄,2

(

2Υ 1
1̄,2

∗Υ 1
1̄,2

)−1/2 = ε2L ,1ε2L ,1̄R

√
ω12

Υe
t

√
ad

,

− √
ω23 Υ

3
2,1

(

Υ
3

2,1
∗Υ 3

2,1 + Υ
3

2,1̄
∗Υ 3

2,1̄

)−1/2

= ε3,2L ε3,1R

√
ω13

(

2Υ 3
1,2 Υ

3
1,2

∗)−1/2
Υ

3
1,2 = ε2L ,3ε2L ,1R

√
ω12

Υu√
au

,

and

− √
ω23 Υ

3
2,1̄

(

Υ
3

2,1
∗Υ2,13 + Υ

3
2,1̄

∗Υ 3
2,1̄

)−1/2

= ε3,2L ε3,1̄R

√
ω13

(

2Υ 3
1̄,2

Υ
3

1̄,2
∗)−1/2

Υ
3

1̄,2
= ε2L ,3ε2L ,1̄R

√
ω12

Υd√
ad

respectively. We have suppressed the subscripts L and R here for notational
convenience and used Remark 28 for the identities associated to B11R2L and
B11̄R2L

, giving rise to the transposes of the matrices Υν and Υe above. Not only
do these identities help to write some expressions appearing in the action more
compactly, it also gives rise to some additional relations between the parameters.
Taking the second equality of each of the four groups, multiplying each side with
its conjugate and taking the trace, this gives

M

2
ω11au = ω12 trM Υν

∗Υ ν,
M

2
ω11ad = ω12 trM Υe

∗Υe, (4.27a)

M

2
ω13au = ω12 trM Υu

∗Υu,
M

2
ω13ad = ω12 trM Υd

∗Υd , (4.27b)

http://dx.doi.org/10.1007/978-3-319-24798-4_2
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where on the LHS there is a factor M coming from the identity on family-space.
Summing the first and three times the third equality (or, equivalently, the second
and three times the fourth), we obtain

ω11 + 3ω13 = 2

M
ω12. (4.28)

Similarly, we can equate the first and last terms of each of the four groups of
equalities, multiply each side with its conjugate and subsequently sum the first
two (or last two) of the resulting equations. This gives

idM = Υν
t (Υν

∗)t

au
+ Υe

t (Υe
∗)t

ad
(4.29a)

and

ω23

ω12
idM = Υu

∗Υu

au
+ Υd

∗Υd

ad
(4.29b)

respectively. By adding the first relation to three times the second relation and
taking the trace on both sides, we get

ω12 = 3M

2 − M
ω23. (4.30)

We combine both results in the following way. We add the relations of (4.27a) and
insert (4.29a) to obtain

M

2
ω11 + M

2
ω11 = ω12

(

trM
Υν

∗Υν

au
+ trM

Υe
∗Υe

ad

)

= ω12M,

i.e.

ω11 = ω12. (4.31)

Similarly, we add the relations of (4.27b), insert (4.29b) and get

ω13M = ω12 trM

(

ω23

ω12
idM

)

, or ω13 = ω23. (4.32)

• We have four combinations of two building blocks Bi jk and Bi jl of the third
type that share two of their indices (Sect. 2.2.3.1). Together, these give two extra
conditions from the demand for supersymmetry, i.e. that ωi j (as defined in (4.21))
must equal 1

2 (cf. Sect. 2.3):

http://dx.doi.org/10.1007/978-3-319-24798-4_2
http://dx.doi.org/10.1007/978-3-319-24798-4_2
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B1R2L1 & B1R2L3 : ω12 = 1

2
, (4.33a)

B32L1R & B32L 1̄R
: ω23 = 1

2
. (4.33b)

The other two combinations,B1̄R2L1 &B1̄R2L3 andB12L1R &B12L 1̄R
, both give

the first condition again.

Combining the conditions (4.28), (4.30) and (4.33) we at least need that

ω11 = ω12 = ω13 = ω23 = 1

2

for supersymmetry. However, if we combine this result with (4.28) and (4.30) it
requires for the number M of generations:

2 − M = 3M and 4 = 2

M
=⇒ M = 1

2
. (4.34)

4.5 Summary and Conclusions

We have applied the general analysis of Chap. 2 of supersymmetric almost-
commutative geometries to the case of the minimally supersymmetric Standard
Model. We successfully obtained a noncommutative description of the particle con-
tent of the MSSM. However, supersymmetry of the spectral action turned out to
demand the number of generations to be a rational number. We summarize this in
the following theorem.

Theorem 4.1 There is no number of particle generations for which the action (1.21)
associated to the almost-commutative geometry determined by (4.11), which corre-
sponds to the particle-content and superpotential of the MSSM, is supersymmetric.

Since the extension (4.13) of the finite spectral triple with extra Higgs/higgsino
copies does not have an effect on which building blocks of the third type can be
defined, the calculations presented in this section and hence also the conclusion
above are unaffected by this.

Does this mean that all is lost? Suppose we focus on further extensions of the
MSSM, such as that of Theorem 10 of [1]. Since such extensions have extra rep-
resentations in HF , this also creates the possibility of additional components for
DF . Which components these are exactly, depends on the particular values of the
gradings γF and R on the representations. However, for the extension mentioned
above in particular, we can check that for all combinations of values, the permitted
components can never all be combined into building blocks of the third type, thus
obstructing supersymmetry.

http://dx.doi.org/10.1007/978-3-319-24798-4_2
http://dx.doi.org/10.1007/978-3-319-24798-4_1
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In general, any other extension might allow for extra building blocks of the third
type, making the results (4.28) and (4.30) subject to change. The demands (4.33) that
follow from adjacent building blocks of the third type remain, however. If we add a
building block of the fourth type for the right-handed neutrino, this requires r1 = 1

4
(see Proposition 2.27 in Chap.2). This can only hold simultaneously with (4.33) if

r1 = 1

4
, r2 = 1

8
, r3 = 1

12
.

Enticingly, for M ≤ 3 these required values are all smaller than or equal to the actual
ones of (4.20) and (4.24), implying that there might indeed be extensions ofHF for
which they coincide.
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