
Chapter 3
Supersymmetry Breaking

Abstract With the previously obtained classification of potentially supersymmetric
models in noncommutative geometry we now address the question on how to natu-
rally break supersymmetry. In this chapter we will shortly review soft supersymme-
try breaking and analyze the question which soft supersymmetry breaking terms are
present in the spectral action. We find that all possible soft supersymmetry breaking
terms can be generated by simply taking into account additional contributions to the
action that arise from introducing gaugino masses. In addition there can be contribu-
tions from the second Seeley-DeWitt coefficient that is already part of the spectral
action.

3.1 Soft Supersymmetry Breaking

Already shortly after the advent of supersymmetry (e.g. [20]) it was realized [19]
that if it is a real symmetry of nature, then the superpartners should be of equal
mass. This, however, is very much not the case. If it were, we should have seen all
the sfermions and gauginos that feature in the Minimal Supersymmetric Standard
Model (MSSM, e.g. [7]) in particle accelerators by now. In the context of the MSSM
weneed [14] a supersymmetry breakingHiggs potential to get electroweak symmetry
breaking and give mass to the SM particles. Somehow there should be a mechanism
at play that breaks supersymmetry. Over the years many mechanisms have been
suggested that break supersymmetry and explain why the masses of superpartners
should be different at low scales. Ideally this should be mediated by a spontaneous
symmetry breaking mechanism, such as D-term [17] or F-term [9] supersymmetry
breaking. But phenomenologically such schemes are disfavoured, for they require
that ‘in each family at least one slepton/squark is lighter than the corresponding
fermion’ [7, Sect. 9.1]. Alternatively, supersymmetry can be broken explicitly by
means of a supersymmetry breaking Lagrangian. In order for the solution to the
hierarchy problem that supersymmetry provides to remain useful, the terms in this
supersymmetry breaking Lagrangian should be soft [10]. This means that such terms
have couplings of positive mass dimension, not yield quadratically divergent loop
corrections that would spoil the solution to the hierarchy problem (the enormous
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108 3 Supersymmetry Breaking

sensitivity of the Higgs boson mass to perturbative corrections) that supersymmetry
provides.

More precisely, consider a simple gauge group G, a set of scalar fields {˜ψα, α =
1, . . . , N }, all in a representation of G, and gauginos λ = λaT a , with T a the gener-
ators of G. Then the most general renormalizable Lagrangian that breaks supersym-
metry softly is given [12] by

Lsoft = −˜ψ∗
α(m2)αβ

˜ψβ +
(

1

3! Aαβγ
˜ψα

˜ψβ
˜ψγ − 1

2
Bαβ

˜ψα
˜ψβ + Cα

˜ψα + h.c.

)

− 1

2
(Mλaλa + h.c.), (3.1)

where the combinations of fields should be such that each term is gauge invariant.
This expression contains the following terms:

• mass terms for the scalar bosons ˜ψα . For the action to be real, the matrixm2 should
be self-adjoint;

• trilinear couplings, proportional to a symmetric tensor Aαβγ of mass dimen-
sion one;

• bilinear scalar interactions via a matrix Bαβ of mass dimension two;
• for gauge singlets there can be linear couplings, with Cα ∈ C having mass dimen-
sion three;

• gaugino mass terms, with M ∈ C.

It is important to note that the Lagrangian (3.1) corresponds to a theory that is
defined on a Minkowskian background. Performing a Wick transformation t → iτ
for the time variable to translate it to a theory on a Euclidean background, changes
all the signs in (3.1):

L E
soft = ˜ψ∗

α(m2)αβ
˜ψβ −

(

1

3! Aαβγ
˜ψα

˜ψβ
˜ψγ − 1

2
Bαβ

˜ψα
˜ψβ + Cα

˜ψα + h.c.

)

+ 1

2
(Mλaλa + h.c.). (3.2)

This expression can easily be extended to the case of a direct product of simple
groups, but its main purpose is to give an idea of what soft supersymmetry breaking
terms typically look like.

3.2 Soft Supersymmetry Breaking Terms
from the Spectral Action

As was mentioned at the end of Sect. 1.2.2, we have to settle with the terms in
the action that the spectral action principle provides us. The question at hand is
thus whether noncommutative geometry can give us terms needed to break the

http://dx.doi.org/10.1007/978-3-319-24798-4_1


3.2 Soft Supersymmetry Breaking Terms from the Spectral Action 109

Fig. 3.1 A building block of
the second type that defines a
fermion—sfermion pair
(ψi j , ˜ψi j ). Contributions to
the mass term of the
sfermion correspond to paths
going back and forth on an
edge, as is depicted on the
top edge

Cii j

Ci j j

Ni Nj

No
i

No
j

supersymmetry. In Chap.2 we have disregarded the second to last term (∝ Λ2) in
the expansion (1.24) of the spectral action. Here we will take this term into account.

In the following sections we will check for each of the terms in (3.2) if it can
also occur in the spectral action (1.21) (with (1.24) for the expansion of its second
term) in the context of the building blocks. We will denote scalar fields generically
by ˜ψi j ∈ C∞(M, Ni ⊗ No

j ), fermions by ψi j ∈ L2(M, S ⊗ Ni ⊗ No
j ) and gauginos

by λi ∈ L2(M, S ⊗ MNi (C)), with MNi (C) → su(Ni ) after reducing the gaugino
degrees of freedom, Sect. 2.2.1.1.

3.2.1 Scalar Masses (E.g. Higgs Masses)

Terms that describe the masses of the scalar particles such as the first term of (3.2)
are known [15, Sect. 5.4] to originate from the square of the finite Dirac operator
(c.f. (1.24)). In terms of Krajewski diagrams these contributions are given by paths
such as depicted in Fig. 3.1.

Then the contribution to the action from a building block of the second type is:

− 1

2π2Λ2 f2 trF Φ2 = − 1

2π2Λ2 f2
(

4Ni |Cii j ˜ψi j |2 + 4N j |Ci j j ˜ψi j |2
)

(3.3)

where Ni, j are the dimensions of the representations Ni,j and ˜ψi j is the field that is
generated by the components of DF parametrized by Cii j and Ci j j . Their expression
depends on which building blocks are present in the spectral triple.

In the case that there is a building block Bi jk of the third type present (para-

metrized by—say—ϒ
j

i , ϒ k
i and ϒ

k
j acting on family-space), we can both get the

correct fermion–sfermion–gaugino interaction and a normalized kinetic term for the
sfermion ˜ψi j by on the one hand setting

Cii j = εi, j

√

ri

ωi j
(Nkϒ

j
i

∗ϒ j
i )1/2, Ci j j = si j

√

r j

ri
Cii j , si j = εi, jε j,i (3.4)

http://dx.doi.org/10.1007/978-3-319-24798-4_2
http://dx.doi.org/10.1007/978-3-319-24798-4_1
http://dx.doi.org/10.1007/978-3-319-24798-4_1
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where εi, j , ε j,i , si j ∈ {±1}, ri := qi ni with qi := f (0)g2
i /π2, ni the normalization

constant for the generators T a
i of su(Ni ) in the fundamental representation and

ωi j := 1 − ri Ni − r j N j . On the other hand we scale the sfermion according to

˜ψi j → N −1
i j

˜ψi j , with N −1
i j =

√

2π2ωi j

f (0)
(Nkϒ

j
i

∗ϒ j
i )−1/2. (3.5)

There is an extra contribution from trF Φ2 to |˜ψi j |2 compared to that of the building
block of the second type. This contribution corresponds to paths going back and forth
over the rightmost and bottommost edges in Fig. 2.6. In the parametrizations (3.4)
and upon scaling according to (3.5) these together yield

− 1

2π2 Λ2 f2
(

4Ni |Cii j ˜ψi j |2 + 4N j |Ci j j ˜ψi j |2 + 4Nk |ϒ j
i

˜ψi j |2
)

→ −4Λ2 f2
f (0)

|˜ψi j |2,
(3.6)

and similar expressions for |˜ψik |2 and |˜ψ jk |2. Interestingly, the pre-factor for this
contribution is universal, i.e. it is completely independent from the representation
Ni ⊗ No

j the scalar resides in.
Note that, for Λ ∈ R and f (x) a positive function (as is required for the spectral

action) in both cases the scalar mass contributions are of the wrong sign, i.e. they
have the same sign as a Higgs-type scalar potential would have. The result would
be a theory whose gauge group is broken maximally. We will see that, perhaps
counterintuitively, we can escape this by adding gaugino-masses.

3.2.2 Gaugino Masses

Having a building block of the first type, that consists of two copies of MN (C)

for a particular value of N , allows us to define a finite Dirac operator whose two
components map between these copies, since both are of opposite grading. On the
basisHF = MN (C)L ⊕ MN (C)R this is written as

DF =
(

0 G
G∗ 0

)

, G : MN (C)R → MN (C)L ,

since it needs to be self-adjoint. This form for DF automatically satisfies the order one
condition (1.12) and the demand J D = D J (see (1.10)) translates into G = J G∗ J ∗.
If we want this to be a genuine mass term it should not generate any scalar field via
its inner fluctuations. For this G must be a multiple of the identity and consequently
we write G = M idN , M ∈ C. This particular pre-factor is dictated by how the term
appears in (3.2).

http://dx.doi.org/10.1007/978-3-319-24798-4_2
http://dx.doi.org/10.1007/978-3-319-24798-4_1
http://dx.doi.org/10.1007/978-3-319-24798-4_1
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Fig. 3.2 A building block of
the second type that defines a
fermion—sfermion pair
(ψi j , ˜ψi j ), dressed with mass
terms for the corresponding
gauginos (dashed edges,
labeled by Mi, j )

Ni Nj

No
i

No
j

Mi

Mj

For the fermionic action we then have

1

2
〈J (λL , λR), γ 5DF (λL , λR)〉 = 1

2
M〈JMλR, γ 5λR〉 + 1

2
M〈JMλL , γ 5λL〉,

(3.7)

where (λL , λR) ∈ H + = L2(S+ ⊗ MN (C)L) ⊕ L2(S− ⊗ MN (C)R), with S± the
space of left- resp. right-handed spinors. This indeed describes a gaugino mass term
for a theory on a Euclidean background (cf. [2], Eq. 4.52).

A gaugino mass term in combination with building blocks of the second type
(for which two gaugino pairs are required), gives extra contributions to the spectral
action. From the set up as is depicted in Fig. 3.2, one can see that tr D4

F receives extra
contributions coming from paths that traverse two edges representing a gauginomass
and two representing the scalar ˜ψi j . In detail, the extra contributions are given by:

f (0)

8π2 trF Φ4 = f (0)

π2

(

Ni |Mi |2|Cii j ˜ψi j |2 + N j |M j |2|Ci j j ˜ψi j |2
)

→ 2
(

ri Ni |Mi |2 + r j N j |M j |2
)

|˜ψi j |2, (3.8)

upon scaling the fields.
This means that there is an extra contribution to the scalar mass terms, that is of

opposite sign (i.e. positive) as compared to the one from the previous section. When

2ri Ni |Mi |2 + 2r j N j |M j |2 > 4
f2

f (0)
Λ2,

then the mass terms of the sfermions have the correct sign, averting the problem of
a maximally broken gauge group that was mentioned in the previous section. Com-
paring this with the expression for the Higgs mass(es) raises interesting questions
about the physical interpretation of this result. In particular, if we would require the
mass terms of the sfermions and Higgs boson(s) to have the correct sign already at
the scale Λ on which we perform the expansion of the spectral action, this seems to
suggest that at least some gaugino masses must be very large.
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Note that a gauge singlet ψsin ∈ L2(M, S ⊗ 1 ⊗ 1′o) (such as the right-handed
neutrino) can be dressed with a Majorana mass matrix ϒm in family space (see [2,
Sect. 2.6] and Fig. 3.3). This yields extra supersymmetry breaking contributions:

f (0)

8π2 tr
[

4(C111′ ˜ψsin)ϒm(C111′ ˜ψsin)M + 4(C11′1′ ˜ψsin)ϒm(C11′1′ ˜ψsin)M ′
]

+ h.c.

→ r1(M + M ′) trϒm˜ψ2
sin + h.c. (3.9)

where M and M ′ denote the gaugino masses of the two one-dimensional building
blocks B1, B1′ of the first type respectively and the trace is over family space.
This expression is independent of whether there are building bocks of the third type
present.

Note furthermore that the gaugino masses do not give rise to mass terms for the
gauge bosons. In the spectral action such terms could come from an expression fea-
turing both DA = iγ μDμ and DF twice. We do have such a term in (1.24) but
since it appears with a commutator between the two and since we demanded the
gaugino masses to be a multiple of the identity in MN (C), such terms vanish auto-
matically. (In contrast, the Higgs boson does generate mass terms for the W ±- and
Z -bosons, partly since the Higgs is not in the adjoint representation.)

3.2.3 Linear Couplings

The fourth term of (3.2) can only occur for a gauge singlet, i.e. the representation
1⊗1o (or, quite similarly, the representation 1⊗1

o
). The only situation in which such

a term can arise is with a building block of the second type—defining a fermion–
sfermion pair (ψsin, ˜ψsin) and their antiparticles (see Fig. 3.3). Moreover in this case
a Majorana mass ϒm is possible, that does not generate a new field.

Any such term in the spectral action must originate from a path in this Krajewski
diagram consisting of either two or four steps (corresponding to the second and fourth

Fig. 3.3 A building block of
the second type that defines a
gauge singlet
fermion–sfermion pair
(ψsin, ˜ψsin). Moreover, a
Majorana mass term ϒm is
possible

http://dx.doi.org/10.1007/978-3-319-24798-4_1
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(a) (b)

Fig. 3.4 Two building blocks of the second type defining two fermion–sfermion pairs (ψi j , ˜ψi j )

and (ψ ′
i j ,

˜ψ ′
i j ) in the same representation. a When the gradings of the representations are equal.

b When the gradings of the representations differ

power of the Dirac operator), ending at the same vertex at which it started (if it is to
contribute to the trace) and traversing an edge labeled by ˜ψsin only once. From the
diagram one readily checks that such a contribution cannot exist.

3.2.4 Bilinear Couplings

If a bilinear coupling (such as the third term in (3.2)) is to be a gauge singlet,
the two fields ˜ψi j and ˜ψ ′

i j appearing in the expression should have opposite finite

representations, e.g. ˜ψi j ∈ C∞(M, Ni ⊗ No
j ), ˜ψ ′

i j ∈ C∞(M, N j ⊗ No
i ). We will

rename ˜ψ ′
i j → ˜ψ

′
i j for consistency with Sect. 2.2.5.2. The building blocks of the

second type by which they are defined are depicted in Fig. 3.4.
The gradings of both representations are either the same (left image of Fig. 3.4),

or they are of opposite eigenvalue (the right image). A contribution to the action that
resembles the third term in (3.2) needs to come from paths in the Krajewski diagram
of Fig. 3.4 consisting of either two or four steps, ending in the same point as where
they started and traversing an edge labeled by ˜ψi j and ˜ψ ′

i j only once.
One can easily check that in the left image of Fig. 3.4 no such paths exist. In

the second case (right image of Fig. 3.4), however, there arises the possibility of a
component μ of the finite Dirac operator that maps between the vertices labeled by
ψi j and ψ ′

i j (and consequently also between ψ i j and ψ
′
i j ). This corresponds to a

building block of the fifth type (Sect. 2.2.5.2). There is a contribution to the action
(via tr D4

F ) that comes from loops traversing both an edge representing a gaugino
mass and one representing μ. If the component μ is parameterized by a complex
number, then the contribution is

http://dx.doi.org/10.1007/978-3-319-24798-4_2
http://dx.doi.org/10.1007/978-3-319-24798-4_2
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f (0)

8π2

(

8Ni tr Mi ˜ψ i j C
∗
i i jμC ′

i i j
˜ψ ′

i j + 8N j tr M j ˜ψ i j C
∗
i j jμC ′

i j j
˜ψ ′

i j

)

+ h.c.

→ 2
(

ri Ni Mi + r j N j M j
)

μ tr ˜ψ i j
˜ψ ′

i j + h.c., (3.10)

where the traces are overN⊕M
j , with M the number of copies ofNi ⊗No

j . This indeed
yields a bilinear term such as the third one of (3.2).

3.2.5 Trilinear Couplings

Trilinear terms such as the second term of (3.2) might appear in the spectral action.
For that we need three fields ˜ψi j ∈ C∞(M, Ni ⊗ No

j ), ˜ψ jk ∈ C∞(M, N j ⊗ No
k) and

˜ψik ∈ C∞(M, Ni ⊗ No
k), generated by the finite Dirac operator. Such a term can

only arise from the fourth power of the finite Dirac operator1 which is visualized by
paths in the Krajewski diagram consisting of four steps, three of which correspond to
a component that generates a scalar field, the other one must be a term that does not
generate inner fluctuations, e.g. a mass term. Non-gaugino fermion mass terms were
already covered in Chap. 2 and were seen to generate potentially supersymmetric
trilinear interactions, so the mass term must be a gaugino mass.

If the component of the finite Dirac operator that does not generate a field is a
gaugino mass term (mapping between—say—MNi (C)R and MNi (C)L ), then two of
the three components that do generate a field must come from building blocks of the
second type, since they are the only ones connecting to the adjoint representations.
If we denote the non-adjoint representations from these building blocks by Ni ⊗ No

j

and Ni ⊗ No
k then we can only get a contribution to tr D4

F if there is a component
of DF connecting these two representations. If Nj = Nk, such a component could
yield a mass term for the fermion in the representation Ni ⊗ No

j , and we revert to the
previous section. If Nj �= Nk then the remaining component of DF must be part of a
building block of the third type, namelyBi jk . This situation is depicted in Fig. 3.5. It
gives rise to three different trilinear interactions corresponding to the paths labeled by
arrows in the figure. Each of these three paths actually represents four contributions:
one can traverse each path in the opposite direction, and for each path one can reflect
it around the diagonal, giving another path with the same contribution to the action.

Calculating the spectral action we get for each building block Bi jk of the third
type the contributions

f (0)

π2

(

Ni Mi trϒ
k

j
˜ψ jk ˜ψ ikC∗

i ikCii j ˜ψi j + N j M j tr C j jk ˜ψ jk ˜ψ ikϒ
k

i Ci j j ˜ψi j

+ Nk Mk tr C jkk ˜ψ jk ˜ψ ikC∗
ikkϒ

j
i

˜ψi j

)

+ h.c. (3.11)

1Here we assume that each component of the finite Dirac operator generates only a single field,
instead of—say—two composite ones.

http://dx.doi.org/10.1007/978-3-319-24798-4_2
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Fig. 3.5 A situation in
which there are three
building blocks Bi, j,k of the
first type (black vertices),
three building blocks
Bi j, jk,ik of the second type
and a building block Bi jk of
the third type. Adding
gaugino masses (dashed
edges) gives rise to trilinear
interactions, corresponding
to the paths in the diagram
marked by arrows

where all traces are over N⊕M
j . A careful analysis of the demand for supersymmetry

in this context (see Sect. 2.2.3) requires the parametersϒ
j

i ,ϒ k
i andϒ

k
j to be related

via

C∗
ikkϒ

k
j = −ϒ k

i C jkk, ϒ k
i Cii j = −C∗

i ikϒ
j

i , ϒ
j

i C j jk = −ϒ
k

j Ci j j (3.12)

where Cii j and Ci j j act trivially on family space if ˜ψi j is assumed to have R = 1.
From this relation we can deduce that si j siks jk = −1 for the product of the three
signs defined in (3.4). If we replace Ciik → Cikk , Cii j → Ci j j , C j jk → C jkk and
Ci j j → Cii j in the first two terms of (3.11) using (3.4), employ (2.55), then (3.11)
can be written as

f (0)

π2

(

Ni Mi
ri

rk
+ N j M j

r j

rk
+ Nk Mk

)

tr C jkk ˜ψ jk ˜ψ ikC∗
ikkϒ

j
i

˜ψi j + h.c.

We then scale the sfermions according to (3.5), again using (3.4) for C jkk and C∗
ikk

to obtain

2κk gl

√

2
ωi j

ql

(

ri Ni Mi + r j N j M j + rk Nk Mk

)

tr ˜ϒ ˜ψi j ˜ψ jk ˜ψ ik + h.c., (3.13)

where we have written

˜ϒ := ϒ
j

i (Nk trϒ
j

i
∗ϒ j

i )−1/2

for the scaled version of the parameter ϒ
j

i , κk := εk, jεk,i and the index l can take
any of the values that appear in the theory.

http://dx.doi.org/10.1007/978-3-319-24798-4_2
http://dx.doi.org/10.1007/978-3-319-24798-4_2
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3.3 Summary and Conclusions

We have now considered all terms featuring in (3.2). At the same time the reader can
convince himself that this exhausts all possible terms that appear via tr D4

F and feature
a gaugino mass. As for the fermionic action, a component of DF mapping between
two adjoint representations can give gaugino mass terms (3.7). As for the bosonic
action, any path of length two contributing to the trace and featuring a gaugino mass,
cannot feature other fields. In contrast, a path of length four in a Krajewski diagram
involving a gaugino mass can feature:

• only that mass, as a constant term (see the comment at the end of this section);
• two times the scalar from a building block of the second type, when going in one
direction (3.8);

• two times the scalar from a building block of the second type, when going in
two directions and when a Majorana mass is present (only possible for singlet
representations, (3.9));

• two scalars from two different building blocks of the second type having opposite
grading in combination with a building block of the fifth type (3.10).

• three scalars, partly originating from a building block of the second type and partly
from one of the third type (3.13).

Furthermore, via tr D2
F there are contributions to the scalar masses from building

blocks of the second and third type (3.3). We can combine the main results of the
previous sections into the following theorem.

Theorem 3.1 All possible terms that break supersymmetry softly and that can orig-
inate from the spectral action (1.24) of an almost-commutative geometry consisting
of building blocks are mass terms for scalar fields and gauginos and trilinear and
bilinear couplings. More precisely, the most general Lagrangian that softly breaks
supersymmetry and results from almost-commutative geometries is of the form

L NCG
soft = L (1) + L (2) + L (3) + L (4) + L (5), (3.14)

where

L (1) = 1

2
Mi 〈JMλi R, γ 5λi R〉 + 1

2
Mi 〈JMλi L , γ 5λi L〉 (3.15a)

for each building block Bi of the first type,

L (2) = 2
(

ri Ni |Mi |2 + r j N j |M j |2 − 2
f2

f (0)
Λ2

)

|˜ψi j |2, (3.15b)

for each building block Bi j of the second type for which there is at least one building
block Bi jk of the third type present (knowing that a single Bi j cannot be supersym-
metric by itself, Sect.2.2.2),

http://dx.doi.org/10.1007/978-3-319-24798-4_1
http://dx.doi.org/10.1007/978-3-319-24798-4_2
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L (3) = 2κk gl

√

2
ωi j

ql

(

ri Ni Mi + r j N j M j + rk Nk Mk

)

tr ˜ϒ ˜ψi j ˜ψ jk ˜ψ ik + h.c.,

(3.15c)
for each building block Bi jk of the third type,

L (4) = r1(M + M ′) trϒm˜ψ2
sin + h.c. (3.15d)

for each building block Bmaj of the fourth type (with the trace over a possible family
index), and

L (5) = 2(ri Ni Mi + r j N j M j )μ tr ˜ψ i j
˜ψ ′

i j + h.c. (3.15e)

for each building block Bmass of the fifth type.

It should be remarked that the building blocks of the fourth and fifth type typically
already provide soft breaking terms of their own (see Sects. 2.2.5.1 and 2.2.5.2).

Interestingly, all supersymmetry breaking interactions that occur are seen to be
generated by the gaugino masses (except the ones coming from the trace of the
square of the finite Dirac operator) and each of them can be associated to one of
the five supersymmetric building blocks. Note that the gaugino masses give rise to
extra contributions that are not listed in (3.14). For each gaugino mass Mi there is
an additional contribution

LMi = f (0)

4π2 |Mi |4 − f2
π2Λ2|Mi |2.

Since such contributions do not contain fields, they are not breaking supersym-
metry, but might nonetheless be interesting from a gravitational perspective.
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