
Chapter 1
Introduction

Abstract We introduce the core concepts and formalisms that are needed in our
search for a noncommutative geometric description of supersymmetric theories. We
start with a concise overview of supersymmetry and the minimal supersymmetric
extension of the Standard Model (MSSM). We then provide a bird’s eye view of
noncommutative geometry, geared towards its applications in high-energy physics.

1.1 Supersymmetry

The past decades have witnessed the birth of a plethora of ‘Beyond the Standard
Model’ theories, trying to remedy one ormore of its shortcomings such as the absence
of the gravitational force, the large quantum corrections to the Higgs mass and no
account of dark matter. Supersymmetry (SUSY) is a particular example of such a
theory. The purpose of this section is to very briefly discuss its basic notions, apply it
to the Standard Model (SM) and review some relevant properties of the result. Good
introductions to supersymmetry are [3, 19, 29, 30]. A more mathematical approach
can be found in [20].

In the 1960s the question was raised whether there might be extensions of the
Poincaré algebra, incorporating a symmetry that would prove to be valuable for
physics. Coleman and Mandula [11] proved that—given certain conditions—the
Poincaré algebra constitutes all the symmetries of the S-matrix.

Several years later however, Haag et al. [23] showed that extending the Poincaré
algebra can possibly lead to new physics, if one extends the notion of a Lie algebra
(as is the Poincaré algebra) to that of a graded Lie algebra. Elements of such an
algebra have a specific degree which determines whether they satisfy commutator or
anti-commutator relations. The Poincaré algebra (having only zero-degree elements)
is then extended with a set of variables Qi

a and their conjugates Q̄i
a (i = 1, . . . , N ,1

a = 1, 2) of degree 1 (i.e. they satisfy anti-commutation relations), transforming in
the ( 12 , 0) and (0, 1

2 ) representations of the Lorentz group respectively. This extended
algebra is called the supersymmetry algebra.

1The possible values for N , the number of supersymmetry generators, depend on the space-time
dimension. For example, for d = 4, N = 1, 2, 4 or 8.

©The Author(s) 2016
W. Beenakker et al., Supersymmetry and Noncommutative Geometry,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-3-319-24798-4_1

1



2 1 Introduction

Throughout this book we will be considering the case N = 1 only.
The nature of these ‘fermionic’ generators Q, Q̄ is then that they relate bosons

and fermions. Schematically:

Q|boson〉 = |fermion〉, Q|fermion〉 = |boson〉.

To be a bit more precise:

Definition 1.1 (Supersymmetry transformation) For a constant, infinitesimal two-
component spinor ε and its conjugate ε̄, we define (cf. [36, p. 21]) a supersymmetry
transformation on any representation ζ of the Poincaré algebra as

δεζ := [(εQ) + (ε̄Q̄)]ζ. (1.1)

Here εQ and ε̄Q̄ denote the usual Lorentz invariant products of two anti-commuting
two-component spinors and conjugate spinors respectively.

If we define such a δεζi(x) for each of the fields ζ1, . . . , ζn appearing in a theory,
we can talk about whether or not its action is invariant under supersymmetry. If

δS[ζ1, . . . , ζn] := d

dt
S[ζ1 + tδεζ1, . . . , ζn + tδεζn]

∣
∣
∣
t=0

(1.2)

equals 0, we call the system supersymmetric. A particularly simple example of a
supersymmetric system is the following.

Example 1.2 (Wess-Zumino [37]) The action of a system containing a free Weyl
fermion ξ and complex scalar field φ, is (in the notation of [19]) given by

S[φ, ξ, ξ̄ ] =
∫ (

|∂μφ|2 + iξσμ[∂μ]ξ̄
)

d4x, (1.3)

where σμ = (I2, σ a) with σ a, a = 1, 2, 3 the Pauli matrices, ξ̄ is the Hermitian
conjugate of ξ and X[∂μ]Y := 1

2X∂μY − 1
2 (∂μX)Y . This action is seen to be invariant

under the transformations

δεφ := √
2εξ, δε̄ξ := −√

2iσμε̄∂μφ, (1.4)

see [19, Sect. 4.2]. Fields such as φ and ξ are called each other’s superpartners.

Actually, (1.3) is only supersymmetric on shell, i.e. to prove supersymmetry one
has to invoke the equations of motion for ξ . This is caused by the fields having
the same number of degrees of freedom on shell, but not off shell. We can make
this work off shell as well by introducing a complex scalar (auxiliary) field F that
appears in the Lagrangian through LF = |F(x)|2. Modifying the transformations
(1.4) slightly to contain F, supersymmetry is seen to hold both on shell and off shell.
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The example above is a nice illustration of the necessary condition that the total
number of fermionic and bosonic degrees of freedom has to be the same in order for
a system to exhibit supersymmetry at all.

Example 1.3 (Wess-Zumino [37]) Another important example of a supersymmetric
model is the super Yang-Mills system, whose action is given by

∫

d4x

(

−1

4
FμνFμν + iλσμ[∂μ]λ̄ + 1

2
D2

)

. (1.5)

Here Fμν = ∂μAν − ∂νAμ is the field strength (curvature) of a u(1) gauge field Aμ,
λ a Weyl spinor and D is a real u(1) auxiliary field. The latter must again be added
to ensure an equal number of bosonic and fermionic degrees of freedom both on and
off shell. This action is seen to be invariant under the transformations

δAμ = εσμλ̄ + λσμε̄,

δλ = − i

4
σμσνFμνε + Dε,

δD = i∂μ(λσμε̄ + λ̄σ̄ με),

where σ̄ μ = (I2,−σ a) (see [19], Chaps. 4.1 and 4.4).

In Table1.1 the role of the auxiliary fields is explicated for the Wess-Zumino and
the super Yang-Mills models. For both the bosonic degrees of freedom are seen to
be equal to the fermionic ones.

In many of the more advanced treatments of supersymmetry (e.g. [36]), ordinary
space is extended to a superspace (xμ, θ, θ) (where θ and θ are two-component
Grassmann variables). The particle content of a certain model is then described in
terms of superfields (fields depending on all coordinates of superspace and containing
the particles that are each other’s superpartners). Two key examples are the chiral
superfield Φ, with the particle content of Example1.2, and the vector superfield V ,
whose particle content is that of Example1.3. The action is recovered by integrating
certain combinations of the superfields Φ and V over superspace by means of a
Berezin integral. In this way the actions (1.3) for the chiral superfield and (1.5) for
the vector superfield can be recovered.

Table 1.1 The number of real degrees of freedom both on and off shell for the Wess-Zumino and
Super Yang-Mills models

Wess-Zumino: φ F ξ Super Yang-Mills: Aμ D λ

Off shell: 2 2 4 Off shell: 3 1 4

On shell: 2 0 2 On shell: 2 0 2

In all cases the bosonic and fermionic number of degrees of freedom coincide
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Table 1.2 The particle content of the νMSSM, the minimal supersymmetric extension of the
standard model featuring a right-handed neutrino

Superfield Spin Representation

0 1
2 1

Left-handed (s)quark QL q̃L qL – (1/6, 2, 3)

Up-type (s)quark UR ũR uR – (2/3, 1, 3)

Down-type (s)quark DR d̃R dR – (−1/3, 1, 3)

Left-handed (s)lepton LL l̃L lL – (−1/2, 2, 1)

Up-type (s)lepton NR ν̃R νR – (0, 1, 1)

Down-type (s)lepton ER ẽR eR – (−1, 1, 1)

Gluon, gluino V – g gμ (0, 1, 8)

SU(2) gauge bosons, gauginos W – λ Wμ (0, 3, 1)

B-boson, bino B – λ0 Bμ (0, 1, 1)

Up-type Higgs(ino) Hu hu h̃u – (1/2, 2, 1)

Down-type Higgs(ino) Hd hd h̃d – (−1/2, 2, 1)

Each line represents one superfield, with particle content as indicated. All superpartners are in the
same representation of the gauge group. The last column gives the representation of the gauge
group that the particles are in. The first number in that column denotes the hypercharge of the
U(1)-representation. The second number denotes the dimension of the SU(2)-representation: 1 for
trivial/singlet, 2 for fundamental/defining and 3 for adjoint. The third number is the dimension of
the SU(3)-representation: 1,3 or 8

1.1.1 The Supersymmetric Version of the Standard Model

When considering gauge theories, superpartners need to be in the same representation
of the gauge group. It is clear that the StandardModel by itself is not supersymmetric.
We have to introduce its superpartners to make it supersymmetric however:

Example 1.4 (MSSM) The Minimally Supersymmetric Standard Model (MSSM) is
the supersymmetric theory that is obtained by adding to the particle content a super-
partner2 for each type of SM particles. In addition an extra Higgs doublet and its
superpartner are introduced with hypercharge opposite to that of the other pair. One
of the two pairs will give mass to the up-type particles, the other to the down-type
ones. The adjective ’minimally’ is justified by the fact that the MSSM is the small-
est (i.e. with the least number of additional superpartners) viable supersymmetric
extension of the SM. See Table1.2 and e.g. [10, 19] for details.

The following nomenclature is used. The name of superpartners of the fermions get
a prefix ‘s’ (i.e. selectron, stop, etc.). The superpartners of the bosons get the suffix
‘ino’ (i.e. gluino, higgsino, etc.).

2This makes it an example of N = 1 supersymmetry.



1.1 Supersymmetry 5

Having two higgsino doublets with opposite hypercharge is necessary because
adding only one higgsino doublet to the fermionic content of the SM will gener-
ate a chiral anomaly. The second higgsino is needed to cancel this anomaly again
[19, Sect. 8.2].

The various superpartners are not only distinguished by their spin, but also by their
R-parity. This is a Z2-grading (or ‘discrete gauge symmetry’) that for the MSSM is
equal to

Rp = (−1)2S+3B+L, (1.6)

where S is the spin of the particle, B is its baryon number and L its lepton number. It
follows that all SM particles (including the extra Higgses) haveR-parity+1, whereas
all superpartners have R-parity −1.

The list of the MSSM’s merits is quite impressive. See [10, ch. 1] for a short
overview. Here we will pick out three:

1. The MSSM makes the Higgs mass more stable. Roughly speaking, for each of
the loop-interactions contributing to the mass of the Higgs there is a second such
interaction that features a superpartner. This second contribution compensates
for the first one.

2. If R-parity is conserved in the MSSM, the lightest particle that has Rp = −1
cannot decay and thus provides a cold Dark Matter candidate.

3. The additional particle content of the MSSMmakes it possible for the three cou-
pling constants g1, g2 and g3 to evolve via the Renormalization Group Equations
in such a way that they exactly meet at one energy scale. This hints at the exis-
tence of a Grand Unified Theory, that is hoped for by many theorists. See also
Sect. 1.2.3.

Despite the theoretical arguments in favour of the MSSM, so far no experimental
hints for its existence have been detected [4].

1.2 Noncommutative Geometry

Although noncommutative geometry (NCG, [13]) is a branch of mathematics, there
is a number of applications in physics. The aimof this section is to provide a bird’s eye
view of NCG in relation with its foremost such application. This is the interpretation
of the Standard Model as a geometrical theory, a line of thought that started with
the Connes-Lott model [16] and culminated in [5] with the full SM, including a
prediction of the Higgs boson mass. As much as possible we will focus on ideas
and concepts and avoid the use of rigorous but technical statements, referring to the
literature instead. Good general introductions to the field are e.g. [22, 27, 35] and
[33] focusing on the applications to particle physics.
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1.2.1 Spectral Triples

The basic device in noncommutative geometry is a spectral triple, thought of describ-
ing a noncommutative manifold.

Definition 1.5 ([13]) A spectral triple is a triple (A ,H , D), where A is a unital,
involutive algebra that is represented as bounded operators on a Hilbert space H
on which also a Dirac operator D acts. The latter is an (unbounded) self-adjoint
operator that has compact resolvent and in addition [D, a] is bounded for all a ∈ A .

We will write 〈., .〉 : H × H → C for the inner product inH .
This is a rather abstract object. To make it a bit more tangible, we turn to the case

of a compact Hausdorff space M. To make it more interesting for us, we require this
space to be enriched with extra structures. We will restrict ourselves to Riemannian
spin manifolds, spaces that locally look like the Euclidean space Rn (for some n) on
which a Riemannian metric g (locally: gμν) exists and that admit spinors.3

• The algebra C∞(M,C) is the subalgebra of C(M,C) containing only smooth
(i.e. infinitely differentiable) functions. It can be made involutive (just as C(M)

itself) by defining f ∗ : M → C through (f ∗)(x) := f (x) ∈ C for all x ∈ M.
• The Hilbert space that is compatible with this algebra is L2(M, S)—or L2(S) for
short. It consists of square-integrable , spinor-valued functions ψ (i.e. for each
x ∈ M, ψ(x) ∈ Sx is a spinor). The number of components of that spinor depends
on the dimension m of the manifold M: dim Sx = 2n, with m = 2n or m = 2n +1,
according to whether m is even or odd.

• The Levi-Civita connection—the unique connection on M that is compatible with
the metric g—can be lifted to act on spinor-valued functions. This leads to the
operator

∂/M := iγ μ(∂μ + ωμ), (1.7)

where the term

ωμ = −1

4
Γ̃ b

μaγ
aγb

accounts for the manifold M being curved [22, Sect. 9.3]. Here the latin indices
a, b indicate the use of a frame field h, diagonalising the metric gμν = hμ

a hν
bδ

ab

and γ -matrices

{γ a, γ b} = 2δab, γ μ = hμ
a γ a, (1.8)

3One should keep inmind though thatMinkowski space is not an example of aRiemannianmanifold.
Rather it is pseudo-Riemannian since its metric is diagonal with negative entries.
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and Γ̃ b
μa := Γ λ

μνhν
ahb

λ, with Γ λ
μν the Christoffel symbols of the Levi-Civita con-

nection. From the metric g thus a Dirac operator is derived and conversely [12]
the metric is completely determined by the Dirac operator.

Together these three objects form the canonical spectral triple:

Example 1.6 (Canonical spectral triple [13] Chap.6.1)] The triple

(A ,H , D) = (C∞(M), L2(M, S), ∂/M = iγ μ(∂μ + ωμ))

is called the canonical spectral triple. HereM is a compact Riemannian spin-manifold
and L2(M, S) denotes the square-integrable section of the corresponding spinor bun-
dle. The Dirac operator ∂/M is associated to the unique spin connection, which in turn
is derived from the Levi-Civita connection on M.

The canonical spectral triple may be said to have served as the motivating example
of the field; NCG is more or less modelled to be a generalization of it.

In the physics parlance the canonical spectral triple roughly speaking determines a
physical system: the algebra encodes space(-time), the Hilbert space contains spinors
‘living’ on that space(-time) and ∂/M determines how these spinors propagate.

A second important example is that of a finite spectral triple:

Example 1.7 (Finite spectral triple) For a finite-dimensional algebra AF , a finite-
dimensional left module HF of AF and a Hermitian matrix DF : HF → HF , we
call (AF,HF , DF) a finite spectral triple.

We will go into (much) more detail on finite spectral triples in Sect. 1.2.4.
Given a spectral triple one can enrich it with two operators. The first of these,

indicated by J, has a role similar to that of charge conjugation, whereas the other,
indicated by γ , allows one to make a distinction between positive (‘left-handed’) and
negative (‘right-handed’) chirality elements of a (reducible) Hilbert space:

• Wecall a spectral triple even if there exists a gradingγ : H → H , with [γ, a] = 0
for all a ∈ A such that

γ D = −Dγ. (1.9)

• We call a spectral triple real if there exists an antiunitary operator (real structure)
J : H → H , satisfying

J2 = ε idH , JD = ε′DJ, ε, ε′ ∈ {±}. (1.10)

The real structure implements a right action ao of a ∈ A onH , via ao := Ja∗J∗
that is required to be compatible with the left action:

[a, Jb∗J∗] = 0 , (1.11)

i.e. (aψ)b = a(ψb) for all a, b ∈ A , ψ ∈ H . The Dirac operator and real
structure are required to be compatible via the first-order condition:
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[[D, a], Jb∗J∗] = 0 ∀ a, b ∈ A . (1.12)

• If a spectral triple is both real and even there is the additional compatibility relation

Jγ = ε′′γ J, ε′′ ∈ {±}. (1.13)

We denote such an enriched spectral triple by (A ,H , D; J, γ ) and call it a real,
even spectral triple [14]. The eight different combinations for the three signs above
determine the KO-dimension of the spectral triple, cf. Table1.3. For more details we
refer to [14, 17, 22] (Fig. 1.1).

Example 1.8 The canonical spectral triple (Example1.5) can be extended by a real
structure JM (‘charge conjugation’). When dim M is even it can also be extended
by a grading γM := (−i)dim M/2γ 1 . . . γ M (‘chirality’, often denoted as γ dim M+1).
The KO-dimension of a canonical spectral triple always equals the dimension of the
manifold M [14] (see also [22, Sect. 9.5]).

For dim M = 4, the case we will be focussing on, we have

γ 5 := −γ 1γ 2γ 3γ 4,

which, using that {γ i, γ j} = 2δij (cf. (1.8)), indeed satisfies (γ 5)2 = idL2(S) and
(γ 5)∗ = γ 5. This enables us to reduce the space L2(M, S) into eigenspaces of γ 5:

Table 1.3 The various possible KO-dimensions and the corresponding values for the signs J2 =
ε idH , JD = ε′DJ and Jγ = ε′′γ J

KO-dimension: 0 1 2 3 4 5 6 7

J2 = ε idH + + − − − − + +
JD = ε′DJ + − + + + − + +
Jγ = ε′′γ J + − + −

D

Jγ

: →

D∗ = D, comp. res.

JD= ε ′DJ

[γ , ] = 0

Jγ = ε ′′γ J

J2 = ε id

ao = Ja∗J∗, [a,bo] = 0

γ ∗ = γ ,γ 2 = id

γD= −Dγ

[a,D] ∈ ( )
1 2

3

4

5 10 9

8
7

6

1

2

3

4

5

6

7

8

9

10

Fig. 1.1 A pictorial overview of the various relations that hold between the constituents of a real
and even spectral triple. Not depicted here is the first order condition (1.12)
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L2(S) = L2(S)+ ⊕ L2(S)−, L2(S)± = {ψ ∈ L2(S), γ 5ψ = ±ψ}.

Also, γ 5 is seen to anticommute with ∂/M . As for the real structure J , it is given (cf.
[27, Sect. 5.7]) pointwise as (Jψ)(x) := C(x)ψ̄(x) with C(x) a charge conjugation
matrix and the bar denotes complex conjugation. One obtains [22, Sect. 9.4] a charge
conjugation operator that satisfies

C2 = −1, C∂/M = ∂/MC, γ 5C = Cγ 5.

Table1.3 shows that the KO-dimension indeed equals dim M.

Example 1.9 As in the general case a finite spectral triple (Example1.7) is called
real if there exists a JF (implementing a bimodule structure of HF) and even when
there exists a grading γF on HF .

Given any two spectral triples (A1,2,H1,2, D1,2; J1,2, γ1,2) their tensor product

(A1 ⊗ A2,H1 ⊗ H2, D1 ⊗ 1 + γ1 ⊗ D2, J⊗, γ1 ⊗ γ2),

is again a spectral triple. Here generally J⊗ = J1 ⊗ J2, but with the following
exceptions: J⊗ = J1γ1 ⊗ J2 when the sum of the respective KO-dimensions is 1 or 5
and J⊗ = J1 ⊗ J2γ2 when the KO-dimension of the first spectral triple is 2 or 6 and
that of the other one is even [18, 34]. The form of the Dirac operator of the tensor
product is necessary to ensure that it anti-commuteswith γ1⊗γ2 and that the resolvent
remains compact. It follows that the KO-dimension of this tensor product is the sum
of the KO-dimensions of the separate spectral triples. In the canonical spectral triple
the algebra encodes space(-time), in a finite spectral triple it will seen to be intimately
connected to the gauge group (see (1.37) ahead). In describing particle models we
need both. We therefore take the tensor product of a canonical and a finite spectral
triple. In the case that dim M = 4 this reads

(C∞(M,AF), L2(M, S ⊗ HF), ∂/M ⊗ 1 + γ 5 ⊗ DF , JM ⊗ JF , γ 5 ⊗ γF),

(1.14)

withC∞(M)⊗AF 
 C∞(M,AF). Spectral triples of this formare generally referred
to as almost-commutative geometries [24]. Noncommutative geometry can thus be
said to put the external and internal degrees of freedomof particles on similar footing.
To obtain one’s favourite particle physics model (in four dimensions) the key is to
construct the right finite spectral triple that accounts for the gauge group and all
internal degrees of freedom and interactions.
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1.2.2 Gauge Fields and the Action Functional

Two more concepts need to be introduced, both arising from the question “what is
the natural notion of equivalence for spectral triples and what is an invariant for this
equivalence?”. To this end we start by defining the notion of unitarily equivalent
spectral triples:

Definition 1.10 (Unitarily equivalent spin geometries) Two (real and even) spectral
triples (A ,H , D; J, γ ) and (A ,H , D′; J ′, γ ′) are said to be unitarily equivalent,
if there exists a unitary operator U on H such that

• UaU∗ = σ(a) ∀ a ∈ A ,
• D′ = UDU∗,
• J ′ = UJU∗,
• γ ′ = Uγ U∗.

Here σ denotes an automorphism of the algebra A .

Given an algebra A we can form the group of unitary elements of A :

U(A ) := {u ∈ A , uu∗ = u∗u = 1}

and construct unitary operators U := uJuJ∗:

U : H → H , ψ → uψu∗. (1.15)

Using this groupwe can construct a particular kind of unitary equivalence for spectral
triples, where the automorphism σ is seen to be an inner automorphism, i.e. UaU∗ =
uau∗, where we have used (1.11) and that J2 = ε id. This leads to the following result
[14].

Lemma 1.11 For U = uJuJ∗ with u ∈ U(A ), the real and even spectral triples
(A ,H , D; γ, J) and

(A ,H , D + A + ε′JAJ∗; J, γ ) with A = u[D, u∗], u ∈ U(A ), (1.16)

are unitarily equivalent.

This result implies that the class of unitarily equivalent spectral triples for U =
uJuJ∗, u ∈ U(A ) differ only by the inner fluctuations of the Dirac operator. A more
general—but also a somewhat more involved—way to look at this is by using the
notion ofMorita equivalence of spectral triples [15]. In thisway the inner fluctuations
A of

D → DA := D + A + ε′JAJ∗ (1.17)
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are seen to be the self-adjoint elements of

Ω1
D(A ) :=

{
∑

n

an[D, bn], an, bn ∈ A

}

. (1.18)

The action of U (Lemma1.11) on DA (i.e. DA �→ UDAU∗) induces one on the inner
fluctuations:

A �→ Au := uAu∗ + u[D, u∗], (1.19)

an expression that is reminiscent of the way gauge fields transform in quantum
field theory. Note that the inner fluctuations that arise using the argument of unitary
equivalence in fact only correspond to pure gauges.

In the case of a canonical spectral triple—for which the left and right actions
coincide—that has JD = DJ , the inner fluctuations vanish [27, Sect. 8.3]. In the
case of an almost-commutative geometry both components ∂/M and DF of the Dirac
operator generate inner fluctuations. For these we will write

DA := ∂/A + γM ⊗ Φ, (1.20)

where ∂/A = iγ μ(∂μ + ωμ ⊗ idHF +Aμ), with

Aμ =
∑

n

(

an[∂μ, bn] − ε′Jan[∂μ, bn]J∗), an, bn ∈ C∞(M,AF), (1.21)

skew-Hermitian and

Φ = DF +
∑

n

(

an[DF, bn] + ε′Jan[DF , bn]J∗), an, bn ∈ C∞(M,AF).

The relative minus sign between the two terms in Aμ comes from the identity
JMγ μJ∗

M = −γ μ for even-dimensional dim M. The terms will later be seen to
contain all gauge fields of the theory [14]. The inner fluctuations of the finite Dirac
operator DF (see also (1.35)) are seen to parametrize all scalar fields, such as the
Higgs field. Interestingly, this view places gauge and scalar fields on the same foot-
ing, something that is not the case in QFT. See Table1.4 for an overview of the origin
of the various fields.

The second and last ingredient that we will need here is a natural, gauge invariant,
action functional. For that we want something which only depends on the data that
are present in the spectral triple. The most natural choice [7] for that turns out to be

S[ζ, A] := 1

2
〈Jζ, DAζ 〉 + tr f (DA/Λ), ζ ∈ 1

2
(1 + γM ⊗ γF)H ≡ H +,

(1.22)
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Table 1.4 The various possible fields that are ingredients of physical theories and the NCG-objects
they originate from in the case of an almost-commutative geometry

Type of field NCG-object

Fermions L2(M, S) ⊗ HF

Scalar bosons Ω1
DF

(A )

Gauge bosons Ω1
∂/M

(A )

consisting of the fermionic action and the spectral action respectively. Here f is a
positive, even function, Lambda is a (unknown) mass scale4 and the trace of the
second term is over the entire Hilbert space.

Using that J2 = ε, DJ = ε′JD the fermionic action is seen to satisfy

〈Jξ, DAζ 〉 = εε′〈Jζ, DAξ 〉 ∀ ξ, ζ ∈ H , (1.23)

i.e. it is either symmetric or antisymmetric. In its original [2, 16] form, the expression
for the fermionic action did not feature the real structure (nor the factor 1

2 ) and did not
have elements of onlyH + as input. It was shown [8] that for a suitable choice of a
spectral triple it does yield the full fermionic part of the Standard Model Lagrangian
(see Sect. 1.2.3), including the Yukawa interactions, but suffered from the fact that
the fermionic degrees of freedom were twice what they should be, as pointed out in
[28]. Furthermore it does not allow a theory with massive right-handed neutrinos.
Adding J to the expression for the fermionic action and requiring {J, γ } = 0 allows
restricting its input to H + without vanishing altogether. This expression is seen to
solve both problems at the same time [5] (see also [17]). We will not further go into
details but refer to the mentioned literature instead.

Despite its deceivingly simple form, the second term of (1.22) is a rather com-
plicated object and in practice one has to resort to approximations for calculating
it explicitly. Most often this is done [8] via a heat kernel expansion [21]. In four
dimensions and for a suitable Dirac operator this reads:

tr f (DA/Λ) ∼ 2Λ4f4a0(D
2
A) + 2Λ2f2a2(D

2
A) + f (0)a4(D

2
A) + O(Λ−2), (1.24)

where f2, f4 are the second and fourth moments of f and the (Seeley-DeWitt) coef-
ficients a0,2,4(D2

A) only depend on the square of the Dirac operator. For a general
almost-commutative geometry on a flat 4-dimensional Riemannian spin-manifold
without boundary this reads:

4The parameter Λ more or less serves as a cut-off, and will in the derivation of the SM (Sect. 1.2.3
ahead) be interpreted as the GUT-scale.
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tr f

(
DA

Λ

)

∼
∫

M

[
f (0)

8π2

(

−1

3
trF FμνF

μν + trF Φ4 + trF[Dμ,Φ]2
)

− Λ2

2π2 f2 trF Φ2 + Λ4

2π2 f4N (F)

]

+ O(Λ−2), (1.25)

where trF denotes the trace over the finite Hilbert space, N (F) = dim(HF) and
Fμν is the (skew-Hermitian) curvature (or field strength) of Aμ, i.e.

Fμν = [∂μ + Aμ, ∂ν + Aν]. (1.26)

Note that—in contrast to ‘normal’ high energy physics—there is no question of
adding some terms to the action by hand in order to make something work. The
action (1.22) is simply fixed by the spectral triple.

1.2.3 The Noncommutative Standard Model (NCSM)

We now have all the essential ingredients to obtain the Standard Model [5]. We
take a compact, 4-dimensional Riemannian spin manifold M without boundary and
the corresponding canonical spectral triple. We take the tensor product with a finite
spectral triple whose algebra is

AF = C ⊕ H ⊕ M3(C),

where with H we mean the quaternions and M3(C) the complex 3×3-matrices.
Note that it is this finite algebra that makes the resulting spectral triple actually
noncommutative. We denote the irreducible representations of its components with
1, 2 and 3 respectively. In addition, we will need the anti-linear representation 1, on
which λ ∈ C acts as λ̄. With 1o, 2o, etc. we denote the contragredient module. A
natural bimodule of this algebra5 (i.e. the finite Hilbert space),

(2 ⊗ 1o) ⊕ (1 ⊗ 1o) ⊕ (1̄ ⊗ 1o) ⊕ (2 ⊗ 3o) ⊕ (1 ⊗ 3o) ⊕ (1̄ ⊗ 3o), (1.27)

turns out to exactly describe the particle content of the StandardModel; lL , νR, eR,
qL , uR and dR respectively. From the noncommutative point of view having a right-
handed neutrino is a desirable feature [5]. If we want to introduce a real structure JF

we also need 1 ⊗ 2o, etc. (describing the antiparticles). We can construct a grading
γF that distinguishes left- from right-handed particles and that anticommutes with
the real structure. This makes the KO-dimension of the finite spectral triple equal to
6 and consequently that of the almost-commutative geometry equal to 2. This makes
it possible to reduce the fermionic degrees of freedom [5, Sect. 4.4.1]. This Hilbert
space describes only one generation of particles so we need to take three copies (or
generations) of it.

5To be explicit, the element (λ, q, m) ∈ AF acts on—say—2⊗3o � v⊗ w̄ as qv⊗ w̄m = qv⊗m∗w.



14 1 Introduction

We can check that not only SU(AF) (from (1.37)) equals the gauge group of
the Standard Model SU(3) × SU(2) × U(1) (modulo a finite group) but also that
the resulting hypercharges of the representations match those of the particles of the
Standard Model.

Then there is the Dirac operator DF for the finite spectral triple. It is given by a
hermitian matrix whose non-zero components are determined [5, Sect. 2.6] by 3×3-
matrices ϒν,ϒe, ϒu, ϒd and a symmetric 3×3-matrix ϒR, that mix generations.
The ϒν,e,u,d map between the representations in HF that describe the left- and
right-handed (anti)leptons and (anti)quarks and are interpreted as the fermion mass
mixing matrices. The componentϒR maps between the representations that describe
the right-handed neutrinos and their antiparticles and serves as a Majorana mass
matrix.

A second step is to calculate the inner fluctuations of both Dirac operators. For
∂/M , the inner fluctuations acting on 1 and 1 are both seen to describe the same U(1)
gauge field. To also let the quarks interact with this field in the way they do in the
SM, an additional constraint is imposed. This constraint asserts that the total inner
fluctuations be traceless:

trHF Aμ = 0. (1.28)

This is called the unimodularity condition [2, 13]. In addition it reduces the degrees
of freedom of the gauge bosons to the right number. After applying this condition,
the inner fluctuations of ∂/M turn out to exactly describe the gauge bosons of the
Standard Model; the hypercharge field Bμ, the weak-force bosons Wμ and gluons
gμ. The inner fluctuations of DF on the other hand are seen to describe a scalar field
that—via the action—interacts with a left-handed and a right-handed lepton or quark:
it is the famous Higgs field [5, Sect. 3.5]. Since the finite part of the right-handed
neutrinos is in 1 ⊗ 1o 
 C, the component ϒR that describes their Majorana masses
does not generate a field via the inner fluctuations (1.18).

If we calculate the spectral action for this spectral triple [5, Sect. 3.7], not only do
we get the action of the full Standard Model but again the Einstein-Hilbert action of
General Relativity too. Various coefficients of terms in the action are determined by
variables that are characteristic for NCG (e.g. the moments fn, Λ, etc.). This gives
rise to relations between SM-parameters that are not present in the Standard Model.
For example, if we normalize the kinetic terms of the gauge bosons we automatically
find the relation

g23 = g22 = 5

3
g21 (1.29)

between the coupling constants of the strong, weak and hypercharge forces respec-
tively [5, Sect. 4.2]. This relation suggests that the interpretation of the so far unknown
value of Lambda is that of the energy scale at which our theory ‘lives’ and at which
the three forces (hypercharge, weak and strong) are of the same strength. Looking at
Fig. 1.2, this corresponds to the order of 1013 −1017 GeV. There is also an additional
relation
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Fig. 1.2 The three (inverse)
‘coupling constants’
α1 = 5

3g21/4π , α2 = g22/4π
and α3 = g23/4π as a
function of the energy. At
high energy they are seen to
nearly meet in one point. The
figure is taken from [25]

λ = 4g22
b

a2
, b = tr[(ϒν

∗ϒν )2 + (ϒe
∗ϒe )2 + 3(ϒu

∗ϒu )2 + 3(ϒd
∗ϒd )2],

a = tr(ϒν
∗ϒ +

ν ϒe
∗ϒe + 3ϒu

∗ϒu + 3ϒd
∗ϒd )

for the coefficient of the Higgs boson self-coupling. Using the value we find for
g22 from Fig. 1.2 and approximating the coefficients a, b we can infer [5, Sect. 5.2]
that λ(Λ) ≈ 0.356. Inserting this boundary condition into the renormalization group
equation for λ we obtain a value for the Higgs boson mass at the electroweak scale
in the order of 170 GeV (see [31] for a detailed analysis).

In addition, this scheme allows a retrodiction of the top quark mass. It is found to
be � 180 GeV [5, Sect. 5.4].

This would be a perfect end to the story, if it was not for two things. First of all,
the observed Higgs mass (125.09± 0.24 GeV/c2 [1]) is distinctly different from the
above mass range. Second, though we pretended that the three forces are of equal
strength at one specific energy-scale Λ, we know from experiment that—at least
for the SM—they are in fact not completely, see Fig. 1.2. Nonetheless, the fact that
NCG allows one to come up with a robust prediction of the Higgs mass in the first
place (and that this prediction depends on the particle content, as illustrated by [9])
is a promising sign of NCG saying something about reality. Moreover, there is now
evidence [6] that grand unification holds in the Pati-Salam models that have been
derived previously from NCG.

1.2.4 Finite Spectral Triples and Krajewski Diagrams

Sincewewill be using real finite spectral triples (cf. Examples1.7 and1.9) extensively
later on, we cover them in more detail. They are characterized by the following
properties:
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• The finite-dimensional algebra is (by Wedderburn’s Theorem) a direct sum of
matrix algebras:

AF =
K

⊕

i

MNi(Fi) Fi = R,C,H. (1.30)

• The finite Hilbert space is an A C
F -bimodule, where A C

F is the complexification
of AF . More specifically, it is a direct sum of tensor products of irreducible rep-
resentations: Ni ≡ C

Ni of MNi(Fi) for Fi = C,R and Ni ≡ C
2Ni of MNi(Fi) for

Fi = H, with the contragredient representation No
j . The latter can be identified

with the dual of Nj. Thus HF is generically of the form

HF =
⊕

i≤j≤K

(

Ni ⊗ No
j

)⊕MNiNj ⊕ (

Nj ⊗ No
i

)⊕MNjNi . (1.31)

The non-negative integers MNi Nj denote the multiplicity of the representation Ni ⊗
No

j . When various multiplicities all have one particular value M, we speak of (M)
generations that are part of a family.
In the rest of this book we will not consider representations such as the last part of
(1.31), since these are incompatible with JFγF = −γFJF , necessary for avoiding
the fermion doubling problem.

• The right AF-module structure is implemented by a real structure

JF : Ni ⊗ No
j → Nj ⊗ No

i (1.32)

that takes the adjoint: JF(η ⊗ ζ̄ ) = ζ ⊗ η̄, for η ∈ Ni and ζ ∈ Nj. To be explicit:
let a := (a1, . . . , aK ) ∈ AF and η ⊗ ζ̄ ∈ Ni ⊗ No

j , then

ao := JFa∗J∗
F(η ⊗ ζ̄ ) = JFa∗ζ ⊗ η̄ = JF(a∗

j ζ ⊗ η̄) = η ⊗ a∗
j ζ ≡ η ⊗ ζ̄aj.

(1.33)

From this it is clear that (1.11) entails the compatibility of the left and right
action. For the Hilbert space the existence of a real structure (1.32) implies that
MNiNj = MNjNi .

• For each component of the algebra for whichFi = Cwewill a priori allow both the
(complex) linear representation Ni and the anti-linear representation Ni, given by:

π(m)v := mv, m ∈ MNi(C), v ∈ C
Ni .

• The finite Dirac operator DF consists of components

Dkl
ij : Nk ⊗ No

l → Ni ⊗ No
j . (1.34)
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Fig. 1.3 An example of a
Krajewski diagram. Each
circle in the grid stands for a
representation inHF . A solid
line represents a component
of the Dirac operator. As can
be seen from the signs,
{JF , γF} = 0 here

Ni

No
i

Nk

No
k

Nj

No
j

← D ki
ji

D ik
i j

... ...

...
...

...

...

→

The first order condition (1.12) implies that any component is either left- or right-
linearwith respect to the algebra [26]. Thismeans that i = k or j = l.6 In both cases
it is parametrized by a matrix; in the first case it constitutes of right multiplication
with some ηlj ∈ Nl ⊗ No

j , in the second case of left multiplication with some
ηik ∈ Ni ⊗ No

k .

There exists a very useful graphical representation for finite spectral triples, called
Krajewski diagrams [26]. Such a diagram consists of a two-dimensional grid, labeled
by the various Ni and No

i , representing (the irreducible representations of) the alge-
bra. Any representation Ni ⊗ No

j that occurs in HF then can be represented as a
vertex on the point (i, j) in this grid. If the finite spectral triple is even, each such
representation has a value ± for the grading γF . We represent it by putting the sign
in the corresponding vertex. For real spectral triples, a diagram has to be symmetric
with respect to reflection across the diagonal from the upper left to the lower right
corner. This is due to the role of JF . The reflection of a particular vertex has the
same or an opposite value for the grading, depending on whether JF commutes or
anticommutes with γF .

We can represent the component Dkl
ij of the Dirac operator in a Krajewski diagram

by an edge from (k, l) to (i, j). Since the Dirac operator is self-adjoint, this means
that there is also an edge from (i, j) to (k, l) and since it (anti)commutes with JF ,
this means that there must also be an edge from (l, k) to (j, i). From the first order
condition it follows [26] that these lines can only be horizontal or vertical.We provide
a particularly simple example of a Krajewski diagram in Fig. 1.3, in which there are
two vertices (and their conjugates) between which there is an edge.

Both as an example of the power of Krajewski diagrams and for future refer-
ence Fig. 1.4 shows the diagram that fully determines (the internal structure of) the
Standard Model (c.f. Sect. 1.2.3). On each point there are in fact three vertices, cor-
responding to the three generations of particles. The finite Dirac operator was seen to
be parametrized by the fermion mass mixing matrices ϒν,e,u,d ∈ M3(C). Their inner
fluctuations generate scalars that are interpreted as the Higgs boson doublet (solid
lines), connecting the left- and right-handed representations. Furthermore we have

6An exception to this rule is when one component of the algebra acts in the same way on more than
one different representations in HF .
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Fig. 1.4 The Krajewski
diagram representing the
Standard Model. The color
of the edges denotes its
parametrization

11 2 3

1
o

2o

1o

3o
dR qLuR

νR eR lL
(
0
e

)o

(
ν
0

)o

(
0
d

)o

(
u

0

)o

the possibility of adding a Majorana mass ϒR for the right handed neutrino (dotted
line).

The important result of [26] is that all properties of a finite spectral triple can
be read off from a Krajewski diagram. Although Krajewski diagrams were thus
developed as a tool to characterize or classify finite spectral triples (see also [33,
Ch.3]), they have turned out to have an applicability beyond that, e.g. [32]. Here,
we will use them also to determine the value of the trace of the second and fourth
powers of the finite Dirac operator DF (or Φ, including its fluctuations), appearing
in the action functional (1.25). We notice [26, Sect. 5.4] that

• all contributions to the trace of the nth power ofDF are given by continuous, closed
paths that are comprised of n edges in the Krajewski diagram.

• such paths can go back and forth along an edge.
• a step in the horizontal direction corresponds to a component Dkl

ij of DF acting on
the left of the bimodule HF , whereas a vertical step corresponds to a component
Dkl

ij acting on the right via J(Dkl
ij )

∗J∗. Due to the tensor product structure, the trace
that corresponds to a certain closed path is therefore the product of the horizontal
and vertical contributions.

• if a closed path extends in only one direction, this means that the operator acts
trivially on either the right or the left of the representationNi⊗No

j at which the path
started. The trace then yields an extra factor Ni or Nj, depending on the direction
of the path.

As an example we have depicted in Fig. 1.5 all possible contributions to the trace
of the fourth power of a DF . This is the highest power that we shall encounter, as
we are interested in the action (1.25). We introduce the notation |X|2 := trN X∗X,
for X∗X ∈ MN (C). As an illustration of the factors appearing; in the second case a
path can start at any of the three vertices, but when it starts in the middle one, it can
either go first to the left or to the right. In addition, for a real spectral triple, each
path appears in the same way in both directions, giving an extra factor 2. This last
argument does not hold for the last case when k = i and l = j, however.

A componentDkj
ij of the finite Dirac operator will develop inner fluctuations (1.18)

that are of the form
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Ni Nj Nk Nl

No
k

No
l

No
m

No
k

No
k

No
l

No
l

4Nl |D jl
il D kl

jl |2
2Nk|D ik

jk |4

4Nm trNi (D
jm

im D km
jm D lm

km D im
lm +h.c.)

4trNi⊗No
k
D jk

ik D jl
jk D jk

jl D ik
jk =

4|D jk
ik |2|D jl

jk |2

4 trNi⊗No
k
(D jk

ik D jl
jk D il

jl D ik
il +h.c.) =

4trNi (D
jk

ik D il
jl ) · trNk (D

jl
jk D ik

il )+h.c.

Fig. 1.5 All types of paths contributing to the fourth power of a finite Dirac operator. The last two
only occur when it is part of a real spectral triple

Dkj
ij → Dkj

ij +
∑

n

an[Dkj
ij , bn]

= Dkj
ij +

∑

n

(an)i(D
kj
ij (bn)k − (bn)iD

kj
ij ), an, bn ∈ A , (1.35)

where (an)i denotes the ith component of the algebra element an. It describes a
scalar Φik in the representation Ni ⊗ No

k . In the expansion (1.24) of the action for an
almost commutative geometry the kinetic terms for the components of Φ appear via

{∂/A, γ 5 ⊗ Φ} = iγ μγ 5[(∂A)μ, idL2(S) ⊗Φ].

We determine it for a component Dkj
ij of Φ in particular by applying it to an element

ζkj ∈ L2(M, S ⊗ Nk ⊗ No
j ) and find that

[(∂A)μ, Dkj
ij ]ζkj = (∂μ + ωμ)(Φikζkj) − igiAiμΦikζkj + igjΦikζkjAjμ

− Φik(∂μ + ωμ)(ζkj) + igkΦikAkμζkj − igjΦikζkjAjμ

= (

∂μ(Φik) − igiAiμΦik + igkΦikAkμ

)

ζkj

≡ Dμ(Φik)ζkj, (1.36)

where we have introduced the covariant derivative Dμ from which the operator ωμ

has dropped out completely. We have preliminarily introduced coupling constants
gi,k ∈ R and wrote Aμ = −igiAiμ + igkAo

kμ
(with Aiμ, Akμ Hermitian) to connect

with the physics notation.
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The gauge group that is associated to an algebra of the form (1.30) is given by

SU(AF) := {u ≡ (u1, . . . , uK ) ∈ U(AF), detHF (u) = 1}, (1.37)

where U(AF) was defined in (1.15) and with detHF (u) we mean the determinant
of the entire representation of u on HF . Applying U = uJuJ∗ to an element ψij ∈
Ni ⊗ No

j ⊂ HF and typical component Dkj
ij of the finite Dirac operator yields

ψij → uJuJ∗ψij = uiψiju
∗
j (1.38a)

cf. (1.15) and

Dkj
ij → uJuJ∗Dkj

ij u∗Ju∗J∗ = uiu
∗o
j Dkj

ij u∗
k uo

j = uiD
kj
ij u∗

k , (1.38b)

respectively.
We have now covered the most important ingredients for particle physics using

almost-commutative geometries. In the next Chapter, we proceed by motivating the
choice to search for supersymmetric theories that arise from noncommutative geom-
etry.
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