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    Chapter 20   
 The Vacuolar Proton ATPase (V-ATPase): 
Regulation and Therapeutic Targeting                     

       Norbert     Kartner     and     Morris     F.     Manolson    

    Abstract     V-ATPases are highly conserved proton pumps that are found in all 
eukaryotic cells. They play vital housekeeping roles in cell physiological processes 
by performing their classical functions in acidifying luminal compartments of a 
variety of endomembrane organelles. Recently, it has become evident that 
V-ATPases also have nonclassical roles that require their direct interaction, apart 
from their proton translocating function. Moreover, V-ATPases can have special-
ized tissue- specifi c functions in organisms, where V-ATPase mutations or inappro-
priate expression can result in pathological conditions. Because of their multi-subunit 
structure and numerous subunit variants, V-ATPase expression and function may be 
uniquely fi ne-tuned for specifi c, biologically signifi cant roles. From an interven-
tionist point of view, these same traits potentially make V-ATPases uniquely selec-
tively targetable, both within an organism and among different species. Recent 
examples, that have at least provided proof of principle for this notion, span fi elds 
ranging from medicine to agriculture. The study of V-ATPases in the last three 
decades has produced thousands of publications and many dozens of review arti-
cles. The present work seeks to provide a concise overview of the more recent 
works on structure and function of V-ATPases, their occurrence and importance, 
how they are regulated, and how they might be targeted. We focus on recent primary 
literature, but historical papers of interest and important reviews are also cited. In 
the areas of targeted pharmaceutical and pesticidal intervention we present 
published strategies for drug discovery and also provide relevant proofs of concept 
for targeting V-ATPases to the benefi t human health and prosperity.  
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1         Introduction 

1.1       Classical V-ATPase Function 

 V-ATPases are  highly   conserved, multi-subunit molecular motors that hydrolyze 
ATP to pump protons across biological membranes against a pH gradient [ 1 ]. 
V-ATPases are found in all eukaryotes and manifestations of their activity that 
involve pH regulation or proton gradient formation are thought of as their “classi-
cal” functions as proton pumps. These functions can be subcategorized as “house-
keeping” or “specialized.” Without intracellular housekeeping functions of the 
V-ATPases, eukaryotic cells and organisms cannot survive in a native environment 
[ 2 ,  3 ]. Housekeeping functions include energizing membrane compartments to 
drive proton gradient (ΔH + )-coupled transporters, and maintaining the acidic lumi-
nal pH required for the functions of the Golgi, lysosomes, and endomembrane 
organelles involved in vesicular traffi cking, endocytosis, and secretion [ 3 – 5 ]. 
V-ATPases also contribute to intracellular pH homeostasis [ 6 – 8 ]. 

 Specialized functions are not required for cell survival, but are crucial to the 
development and ongoing health of organisms. Apart from their ubiquitous house-
keeping functions, intracellular V-ATPases perform tissue-specifi c functions, such 
as driving ΔH + -coupled neurotransmitter loading of synaptic vesicles [ 9 ]. When 
they are localized to the plasma membrane, V-ATPases are involved in numerous 
tissue-specifi c functions involving acidifi cation of extracellular compartments. 
Examples include osteoclast resorption lacunae involved in bone resorption [ 10 , 
 11 ], luminal spaces of epididymal tubules involved in sperm maturation [ 10 ,  11 ], 
kidney tubules, where V-ATPases plays a role in systemic acid-base balance through 
proton secretion into the urine [ 12 – 15 ], and the coronary arterial endothelium, 
where V-ATPases maintain an acidic extracellular environment that enables lipid 
raft formation required for regulatory redox signaling crucial to endothelial function 
in the coronary circulation [ 16 ].   

1.2      Nonclassical V-ATPase Function 

 V-ATPases are now recognized as having “nonclassical”  functions   that involve 
more than proton pumping activity. For example, V-ATPases are involved in regula-
tion of vesicular traffi cking and membrane fusion, which necessitates generation of 
vesicular pH gradients, but also requires the direct participation of some V-ATPase 
subunits [ 17 – 22 ]. V-ATPases have been shown to recruit cytohesin-2 in a luminal 
pH-sensitive manner, implying that they can act as pH sensors [ 22 ,  23 ]. V-ATPase- 
bound cytohesin-2 recruits ARF6 to the early endosomes and plasma membrane 
[ 24 ], where the complex may regulate endocytic vesicular traffi cking, cytoskeletal 
organization, and cell adhesion [ 22 ]. Endosome recycling is dependent on the latter 
process, and it is thought that the V-ATPase undergoes conformational changes in 
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response to luminal pH to facilitate cytohesin-2 docking [ 25 ,  26 ]. V-ATPase 
apparently can also sense the pH of secretory vesicles that it acidifi es, allowing 
discrimination of fully loaded and partially loaded vesicles [ 27 ]; however, whether 
the pH gradient, or direct involvement of V-ATPase components, is the primary 
factor governing subsequent membrane fusion, remains controversial [ 17 ,  28 ]. In 
receptor- mediated signaling, V-ATPase is required for acidifi cation of early endo-
somes for ligand dissociation and receptor recycling, or lysosomal acidifi cation for 
protein degradation. For Wnt signaling, however, a direct interaction of LRP6 co-
receptor with V-ATPase is also required for signal transmission, and for Notch 
signaling V-ATPase assembly factors play an important role [ 29 ,  30 ]. 

 V-ATPase appears also to be involved in regulation of autophagy and cell growth, 
by engaging in amino acid- and “ragulator complex”-dependent, recruitment of 
the mammalian target of rapamycin cytoplasmic 1 complex, mTORC1 [ 31 ]. The 
 mTORC1   complex essentially ensures that an adequate supply of resources is avail-
able before the cell commits to proliferation. It senses cellular energy and redox 
status, and amino acid supply in late endosomal/lysosomal compartments, and inhib-
its growth and promotes autophagy if any one of these prerequisites is inadequate, 
operating essentially as an anabolic/catabolic switch that is also infl uenced by insu-
lin and growth hormones [ 32 – 35 ]. Abnormal function has been implicated in pathol-
ogies including neurodegenerative diseases, diabetes, and cancer. V-ATPase plays an 
important role in sensing free amino acid status, and conveys this information by 
recruiting mTORC1 to the lysosomal membrane through its interaction with the 
multicomponent ragulator complex [ 36 ,  37 ]. Recent evidence suggests that amino 
acid sensing likely also requires the involvement of lysosomal amino acid transport-
ers [ 38 ,  39 ]. Interestingly,  mTORC1   coordinately regulates the activity of TFEB, a 
transcription factor that is a master regulator of lysosome biogenesis, thereby regu-
lating expression of a host of mTORC1-responsive genes, including V-ATPase sub-
unit genes [ 32 ]. All of this may be independent of the classical function of V-ATPase 
as a proton pump [ 36 ], although this notion remains controversial [ 40 ].   

1.3     Overview of  V-ATPase Structure   

 The default discussion in this review concerns human V-ATPases or, more gener-
ally, mammalian V-ATPases, and often examples will be taken from the fi eld of 
bone research, especially osteoclasts, as this is the authors’ area of expertise. Much 
of our understanding of V-ATPases, however, comes from work done in yeast 
(esp.  Saccharomyces cerevisiae ), insect (esp.  Manduca sexta ), and other nonmam-
malian systems; this will be noted where observations may not be generalized to 
mammalian V-ATPases. 

 The functional V-ATPase complex, the holoenzyme, comprises two subcomplexes: 
a peripherally bound cytoplasmic sector, V 1  (subunits A–H, empirically organized as 
(AB) 3 DF(EG) 3 CH), and an integral membrane sector, V 0  (subunits  a ,  c ,  c″ ,  d , and  e  
(and accessory proteins  Ac45  and  M8-9  in vertebrates; yeast have an additional 
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 subunit,  c′ ), empirically organized as  aed(c   5   c″)(Ac45 ,  M8-9) ;  aed(c   4   c′c″)  in yeast) [ 3 , 
 41 ,  42 ]. The mammalian V-ATPase is depicted diagrammatically in Fig.  20.1  with 27 
subunits, derived from at least 15 different genes. Many of the mammalian V-ATPase 
subunits have multiple isoforms encoded by paralogous genes [ 3 ,  43 ], and their post-
transcriptional variants [ 44 ,  45 ]. These are listed in Table  20.1 . Thus, many different 
combinations of subunit isoforms can potentially be found within a given holoen-
zyme, allowing the assembly and expression of many different isoenzymes, or “iso-
complexes,” of V-ATPase, which may have subtle infl uences on cellular 
organelle-specifi c, or tissue-specifi c, function or localization [ 3 ,  45 – 49 ].

  Fig. 20.1    Structure and function of V-ATPase. ( a ) Diagrammatic representation of the organiza-
tion of a generic mammalian V-ATPase complex. The cytoplasmic V 1  sector consists of a catalytic 
headpiece (three each of alternating A and B subunit pairs forming a toroidal “barrel”) that hydro-
lyzes ATP to drive a central rotor shaft (D and F subunits). The headpiece is held immobile against 
the torque that it generates by a stator complex (three pairs of E and G heterodimers attached to the 
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1.4           Health Impact of  V-ATPases: Disease-Causing 
Mutations of Subunits 

 Why V-ATPases are of interest as therapeutic targets becomes clear when one real-
izes the astonishing range of important functions that they perform, many of which 
came to light when disease causing mutations were mapped to V-ATPase subunit 
genes. The fi rst such report was for B1, by Karet et al. [ 50 ]. B1 is highly expressed 
in the kidney, where it is involved in systemic pH homeostasis, and the inner ear, 
where it maintains the pH of the fl uid environment of sensory hair cells. Thus, the 
consequences of mutations are typically  distal renal tubular acidosis (dRTA)   with 
sensorineural deafness. Recently, loss of B1 function in a mouse model has also 
been shown to result in impaired olfactory function [ 51 ]. The majority of disease- 
causing mutations of V-ATPases, however, involve the  a  subunit. Knockout of  a1 , 
which plays a role in neural transmission, appears to be embryonic lethal [ 18 ], but 
loss of function of  a2  results in cutis laxa, characterized by aberrant Golgi function 
leading to glycosylation defects and abnormal elastin processing that affects the 
skin and other organs [ 52 ,  53 ]. Loss of function of  a3  in osteoclasts results in auto-
somal malignant osteopetrosis, characterized by dense, brittle bone due to dimin-
ished bone resorption [ 54 ]. Loss of  a4  function results in dRTA with occasional 
hearing loss [ 55 ,  56 ]. Loss of  d2  function in mice results in ineffective osteoclast 

Fig. 20.1 (continued) catalytic headpiece, supported by a “collar” consisting of the C and H sub-
units and the N-terminal domain,  NTa , of the  a  subunit) that is anchored to the membrane via 
continuity with the cytoplasmic domain,  CTa , of the  a  subunit of the V 0  sector. The bifurcation of 
 NTa , as shown here, is speculative [ 189 ]. The V 0  sector is largely inserted into the membrane 
bilayer, consisting of the rotor (a heterohexameric ring of 5  c  subunits and a  c″  subunit; one of the 
 c  subunits is replaced with a  c′  subunit in yeast) and a  d  subunit, which couples the  c -ring rotor to 
the ATP-driven DF central rotor shaft of the V 1  sector. The  a  subunit provides both a stator func-
tion, by interacting with the V 1  sector and anchoring it to the membrane, and a proton channel 
function. There are some additional subunits associated with the  a  subunit, whose locations and 
functions are as yet poorly understood, viz. the  e  subunit, and the accessory proteins  Ac45  ( AP1 ) 
and  M8-9  ( AP2 ) that are found in some specialized tissues. ( b ) One mechanism for control of 
V-ATPase activity is reversible disassembly, which at the least involves dissociation of the C sub-
unit from the V 1 V 0  complex and possibly also conformational changes in the  NTa  domain that 
destabilize the complex (depiction here is speculative) [ 136 ]. ( c ) Many published works have 
shown that regulatory reversible disassembly results in further dissociation of V 1  from V 0  [ 130 ]; 
however, this may be an in vitro experimental artifact, though overall conclusions regarding 
V-ATPase regulation likely remain reliable [ 136 ]. ( d ) The theory of V-ATPase transmembrane 
proton translocation suggests that protons diffuse into a cytoplasmic hemichannel formed by the 
 CTa  domain of the  a  subunit to protonate a glutamate residue (blue dot with proton, “H”) on a 
subunit of the  c -ring rotor. This is carried by ATP-driven rotation nearly 360° (clockwise as viewed 
from the cytoplasm, as indicated), until a luminal hemichannel is encountered where the proton 
can dissociate into the lumen [ 3 ]. A charged residue barrier within  CTa  (green sphere, “+”) is 
thought to prevent carryover of the proton back into the cytoplasmic hemichannel. This latter event 
can, however, occur under some circumstances and is referred to a “slip” [ 172 ]. The orange subunit 
represents the single  c″  subunit of the mammalian  c -ring. Modifi ed from Ref. [ 189 ] with permis-
sion of ©The American Society for Biochemistry and Molecular Biology       
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precursor fusion, resulting in mild osteopetrosis [ 57 ], but no equivalent mutations 
in human  d2  have been characterized. In rare cases of  X-linked Parkinsonism with 
spasticity (XPDS)   Korvatska et al. [ 58 ] reported the causative role of a variant tran-
script of the  M8-9  accessory protein. It displayed a high incidence of exon 4 skip-
ping, yielding a protein with a 32 amino acid deletion and a consequent reduction in 
crucial V-ATPase function in autophagy in brain cells. A mutation with similar 
splicing consequences has also been reported that results in impaired ERK1/2 acti-
vation and resultant X-linked mental retardation with epilepsy [ 59 ].    

2     Broader Disease-Related Implications 

 V-ATPases are even more generally implicated as potential targets in a wide variety 
of disease processes. Targeting the ruffl ed border V-ATPase in osteoclasts, for 
example, has been investigated as a means of controlling bone loss diseases, like 
 osteoporosis   [ 60 – 62 ]. Furthermore, the potential for intervention in rare cases of 
osteopetrosis, by targeting a protein-folding mutant  a3  subunit, has also been identi-
fi ed [ 63 ].   Gharanei et al. [ 64 ] have shown that the  Wolfram syndrome 1 protein 
(WFS1     ), characteristic of that neurodegenerative disorder, binds the A subunit and 
destabilizes it, with consequences for granular acidifi cation. This likely is a contrib-
uting factor for Wolfram syndrome, but whether targeting this association might 
alleviate symptoms is presently unknown. Inappropriate expression of plasma 
membrane V-ATPases containing  a3  or  a4  subunits in  tumor   cells may lead to tumor 
progression, metastasis and chemotherapy resistance [ 15 ,  34 ,  65 – 69 ], but their cell 
surface expression makes them potential therapeutic targets, as is discussed else-
where within this volume.   

 There are also numerous correlations that require further investigation: 
V-ATPases containing  a3  isoform subunits are present in insulin-secretory granules 
of pancreatic β cells and appear to play a regulatory role in  insulin secretion   [ 21 ]. It 
has also been found that downregulation of H subunit expression correlates strongly 
with type 2 diabetes, though in what capacity remains to be determined [ 70 ,  71 ]. 
Loss of V-ATPase function in the autophagy-lysosome pathway has been implicated 
in aberrant metabolism of proteins that accumulate in  neurodegenerative diseases  , 
like Alzheimer’s dementia and Parkinson’s disease [ 72 ]. Loss of function of the 
VMA21 chaperone  protein   that is required for V-ATPase assembly, though it is not 
a part of the mature complex, also disrupts lysosomal acidifi cation, leading to 
 X-linked myopathy with excessive autophagy (XMEA)   [ 73 ]. V-ATPase may also 
play a role in  cardiovascular disease  , possibly as an indirect consequence of exces-
sive V-ATPase activity in osteoclasts, leading to calcifi cation of arteries [ 74 ]. It is 
thought also that impaired endothelial cell plasma membrane V-ATPase function in 
 diabetes   may play a role in defective angiogenesis [ 75 ,  76 ]. 

 V-ATPases of pathogenic organisms can also be of clinical importance.  Parasitic 
nematodes  , for example, place a signifi cant burden on both human health and agri-
culture. It has been argued that V-ATPase, which performs many crucial functions 
within the   Caenorhabditis elegans  model   parasitic organism, might serve as a  useful 
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target for controlling them [ 77 ]. Similarly, the fungal V-ATPase appears to be 
 essential for virulence and it has been suggested that it may be an appropriate target 
for controlling   Candida albicans    and other fungal pathogens [ 78 ].  Dengue fever   is 
transmitted by mosquitoes and 100 million people are infected annually, with half 
the world population at risk. A mosquito V-ATPase has been identifi ed as a required 
host factor in   Aedes aegypti   ; its targeted inhibition could effectively control dengue 
virus transmission [ 79 ]. 

 V-ATPases also play a role  in viral infection  . The H subunit binds the adaptor- 
related protein complex 2 (AP-2) μ2 chain (AP2M2) of coated endocytic vesicles 
and also the HIV Nef protein. Thus, the H subunit acts as a connector between  HIV   
and the traffi cking mechanism that carries endosomes to lysosomes, thereby con-
tributing to HIV infectivity [ 80 ]. More generally, because of its involvement in viral 
processing, it has been suggested that targeting V-ATPase might provide an alterna-
tive means of preventing the spread of pandemic avian infl uenza, and a treatment 
modality that avoids selection for resistant strains [ 81 ]. 

2.1     Other Impacts 

 Agriculture has always been plagued by insect pests [ 82 ] and we consider in a follow-
ing section ways that insect V-ATPases might be targeted to provide  novel insecti-
cides   with high specifi city for target species and the potential to signifi cantly improve 
global agricultural yields. It is worth noting also that, globally, a considerable fraction 
of potentially arable land is inaccessible to high-yield agriculture due to excessive 
soil salt concentrations [ 83 ], and plant salt tolerance depends in part on V-ATPase 
expression [ 84 ]. Further understanding of this process, and engineering ways of 
exploiting the V-ATPase-dependent ion and osmotic stress response could improve 
agricultural yields, a growing concern as human population continues to expand.   

3     Factors Affecting V-ATPase Activity 

  Expression   is normally thought of as being under the control of promoters and tran-
scription factors, which account for differential tissue distribution and assembly of 
V-ATPase isocomplexes with “customized” subunit isoform composition. However, 
 differential sorting   and  traffi cking  , which determine subcellular localization, are 
also crucial to expression, as the V-ATPases have a uniquely diverse range of func-
tions in various organelles. Additionally, modulation of function is an important 
acute form of regulation of in situ V-ATPase activity, in immediate response to vari-
ous stimuli. Understanding V-ATPase regulation is a prerequisite for fi nding thera-
peutic solutions to diseases that involve a particular V-ATPase  isocomplex  , which 
will invariably be found in a background of vital housekeeping isocomplexes. 
The following is a brief survey of V-ATPase regulation, and there are many recent 
reviews of broader scope [ 3 ,  26 ,  45 ,  46 ,  85 ,  86 ]. 
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3.1      Regulation of  Transcription   

 Differential expression of V-ATPase isocomplexes is driven by the regulation of 
transcription of subunit isoform genes. Some V-ATPase isoforms, however, are 
ubiquitously expressed. For example, though the B2 subunit is one of the subunit 
isoforms characteristic of the osteoclast ruffl ed-border V-ATPase, it is widely 
expressed and its promoter contains a TATA-less, GC-rich regulatory region con-
taining “CpG islands,” with multiple Sp1 and AP-2-like binding sites [ 87 ,  88 ]. 
Similar promoter regions are seen for the C1,  c″ , and  c  subunits, where also Oct1 
motifs are present [ 89 ,  90 ]. CpG islands are common in promoter regions of ubiq-
uitously expressed genes, and genes expressed in early embryogenesis, though 
otherwise they are infrequent [ 91 – 93 ]. Thus, expression of ubiquitous V-ATPase 
subunits is regulated largely through such promoter regions [ 45 ,  94 ], and cyto-
sine methylation in CpG islands may allow further epigenetic fi ne-tuning of 
expression [ 95 ]. 

 There are examples also of regulation of tissue-restricted, specialized V-ATPase 
expression. In renal intercalated cells, the plasma membrane V-ATPase requires 
the B1 subunit isoform, whereas in osteoclasts it is the B2 isoform of the V 1  B 
subunit; these are paired with  a4 , or  a3 , respectively, of the V 0   a  subunit. B1 
expression is largely restricted to a family of  forkhead-related epithelial (FORE) 
cells   that occur in the kidney, epididymis and inner ear, where not only B1, but 
also E2 and  a4  subunits are under control of the forkhead box (FOX) transcription 
activator FOXI1, which acts as a master regulator of specialized plasma mem-
brane V-ATPase expression in FORE cells [ 95 – 97 ]. It has been noted that some 
existing drugs may modulate expression of other FOX proteins [ 98 ]; whether 
FORE cell V-ATPase expression might be amenable to similar therapeutic manip-
ulation is as yet unclear. 

 In osteoclasts,  a3  expression is under control of an NF-κB-induced transcription 
factor complex containing NFATC1, the master regulator of osteoclast differentia-
tion [ 99 ,  100 ]. The  a3  subunit gene bears a RANKL-responsive NFATC1 promoter 
1.6 kb upstream of the start codon. Basal transcription is downregulated by 
poly(ADP-ribose) polymerase-1 (PARP-1) binding to the promoter. RANKL stimu-
lation results in PARP-1 degradation, causing upregulation of  a3  transcription 
[ 101 ]. A second PARP-1 site is a few hundred bases downstream, adjacent to an 
AP-1 site [ 102 ]. 

 The  d2  isoform, which is part of the osteoclast ruffl ed border V-ATPase is also 
upregulated in osteoclasts, through the  NFATC1 promoter   [ 103 ] and co-activation 
by  myocyte enhancer factor 2 (MEF2)   and  microphthalmia-associated transcription 
factor (MITF)   [ 104 ]. RANKL-induced osteoclast differentiation, through NFATC1, 
turns on not just specifi c V-ATPase subunit isoform genes, but also a host of ancil-
lary genes required for bone resorption, to express proteins like CLC7, the chloride 
counterion shunt without which V-ATPase could not effectively pump protons, and 
proteases like MMP9 and cathepsin K, required for degradation of the organic com-
ponent of bone [ 100 ].   
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3.2       Messenger RNA Stability   

 Lee et al. [ 87 ] observed that in human macrophage/monocyte differentiation, where 
V-ATPase expression is upregulated, only B2 transcription is elevated. It was sug-
gested that other subunits must be upregulated by post-transcriptional mechanisms. 
Furthermore, in kidney, transcript ratios do not equal their corresponding protein 
ratios for V-ATPase subunits [ 105 ], yet in osteoclasts the ratios are equal [ 106 ], sug-
gesting that regulation in kidney must also involve mRNA stability, translation 
rates, or protein turnover rates. In a similar vein, Wang et al. [ 89 ] showed that pro-
moter activity was similar for  c  subunit mRNA transcription in murine macrophage 
and fi broblast cell lines, despite a six- to eightfold difference in expression. In the 
high-expression macrophages, stability of mRNA was shown to be higher for B2, 
E1, F,  a1 , and  c  transcripts. Jeyaraj et al. [ 107 ] later showed that stability was deter-
mined by an AU-rich element (ARE), a common regulator of mammalian mRNA 
stability, near the 3′-UTR polyadenylation site [ 108 ]. AREs tend to be destabilizing, 
by involvement of microRNA binding; in contrast, HuR binding promotes transcript 
stability and translation effi ciency [ 109 ,  110 ]. HuR has been shown, along with a 
second regulatory protein, hnRNP, to bind E1, G1,  c , and  c″  mRNA [ 107 ,  111 ,  112 ]. 
Though regulation of mRNA stability may play an important role in V-ATPase iso-
complex expression and subunit selection, a more complete understanding will 
require further investigation.   

3.3      MicroRNA Regulation   

 MicroRNAs are conserved, short-hairpin RNAs that can bind mRNA targets and 
repress their expression, either by directly causing their cleavage, destabilizing 
them by shortening their polyA tail, or interfering with translation [ 113 ,  114 ]. It has 
been shown by Stark et al. [ 115 ] that the muscle microRNA, miR-1, binds human 
A, B2, C1,  a1 , and  c  subunit transcripts, and also  D. melanogaster  and  C. elegans  
homologues of E, G, and  d , possibly regulating the coordinated expression of ubiq-
uitous subunits. In a specifi c example of relevance to human health, O’Connor et al. 
[ 116 ] showed that catestatin processing from the prohormone chromogranin A was 
variable, depending on a sequence polymorphism, T+3246C, residing in the 3′-UTR 
of the  a1  transcript. This C variant resulted in lowered plasma catestatin levels, 
leading to lower blood pressure and a reduced risk of hypertensive disease. This was 
later found to be due to regulation by the miR-637 microRNA, which preferentially 
binds the C variant  a1  mRNA, inhibiting its translation [ 117 ]. This causes a reduc-
tion in vacuolar V-ATPase activity, an increase in luminal pH, and a consequent 
decrease in chromogranin A processing to catestatin [ 116 ]. Although there is a great 
deal more to be learned about V-ATPase regulation by microRNAs, it seems evident 
that engineered microRNAs may have a future in therapeutic targeting of specifi c 
V-ATPase isocomplexes.  
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3.4       Splice Variants   

 The majority of V-ATPase subunit splice variant transcripts inferred in Table  20.1  
remain uncharacterized, but their potential importance is highlighted by some 
examples: Poëa-Guyon et al. [ 118 ] characterized rat brain expression of subunit  a2  
and four splice variants of subunit  a1 ,  a1-I  (C variant),  a1-II  (N variant),  a1-III  
(canonical), and  a1-IV  (N+C variant). The mRNA splice variants result in a seven 
amino acid insertion, peptide N, between the translated exons 4 and 5 (in the cyto-
plasmic  NTa  domain shown in Fig.  20.1a ) and/or a six amino acid insertion, peptide 
C, between exons 17 and 18 (in the cytoplasmic loop between transmembrane heli-
ces 6 and 7 in the integral membrane domain,  CTa , shown in Fig.  20.1a ). Subunits 
 a2 ,  a1-I  and  a1-II  were found to be endogenously co-expressed in rat hippocampal 
neurons. The peptide C-containing  a1  variants appeared to be specifi c to neuronal 
expression and were upregulated during neuronal synaptogenic differentiation. The 
three neuronal  a  subunit variants, epitope tagged and recombinantly expressed in 
cultured neuronal cells, were found to sort to different subcellular compartments; 
the ubiquitous  a2  to the soma, likely the Golgi, as is typical for  a2 , the  a1-I  variant 
to nerve terminals, and the  a1-IV  variant to dendritic processes. It appears that the 
peptide C insert determines sorting specifi c to neurotransmitter storage, and this 
may be modifi ed by the addition of peptide N to target the plasma membrane. 
Peptide C also introduces a PEST motif that likely reduces the biological half-life 
of the  a1-I  and  a1-IV  subunit variants, but the signifi cance of this remains unclear. 

 It has been shown that mouse and human  a4  have alternate fi rst exons [ 119 ,  120 ]. 
In mouse, this results in differential embryonic and adult expression, though this has 
not been shown for human  a4 . The C2 subunit has an alternate exon [ 121 ,  122 ] 
resulting in lack of a 46 amino acid insert; C2+ (C2a) is expressed in lung, whereas 
C2− (C2b) is expressed in kidney. Additionally, there is an example of alternate start 
codon usage that results in non-V-ATPase expression of the  a3  subunit. The TIRC7 
membrane protein involved in T cell activation is derived from an  a3  transcript uti-
lizing a start codon within exon 5 of  ATP6V0A3  (historically,  TCIRG1 ,  ATP6I ) 
[ 123 ]. TIRC7 is expressed on the surface of lymphocytes, whereas  a3  is highly 
expressed on the ruffl ed border of osteoclasts; alternate promoter usage must 
account for this differential expression. Thus, splice variants may account for dif-
ferential tissue expression, sorting to various subcellular compartments, and pro-
teins of alternate function.   

3.5       Assembly and Reversible Disassembly   

 In yeast, the V 1  sector of V-ATPase appears to self-assemble in the cytoplasm [ 124 ]. 
For V 0  there are at least three ER chaperones, Vma12p, Vma21p, and Vma22p that 
are essential for assembly [ 124 ,  125 ]; there is also an ER-resident accessory chap-
erone, Pkr1p, that enhances V 0  assembly effi ciency [ 126 ]. Vma21p additionally 
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escorts the V 0  sector to the Golgi, but is then recycled to the ER; none of the afore-
mentioned proteins are retained as part of the functional V-ATPase complexes at 
their fi nal destinations. In higher plants, the ER quality control chaperones, calnexin 
and BiP, have been coimmunoprecipitated with the full V-ATPase holoenzyme, sug-
gesting that they too are involved as chaperones and in quality control of V-ATPase 
assembly and, moreover, that the entire V 1 V 0  holoenzyme is assembled at the ER 
[ 127 ]. In humans the process of V 0  assembly appears to be conserved, but the chap-
erones have diverged considerably, although a putative ortholog of Vma21p has 
been identifi ed [ 73 ]. 

 Considerably more needs to be understood about assembly of mammalian 
V-ATPases before therapeutic intervention can be considered; however, their regu-
lated disassembly may be more tractable. It has long been proposed that under cer-
tain types of stress, particularly cellular glucose deprivation, the V 1  sector of 
V-ATPase dissociates from the V 0  sector (Fig.  20.1c ), resulting in V-ATPase inacti-
vation (reviewed in Refs. [ 4 ,  128 – 130 ]). This process also results in the reversible 
loss of the C subunit from the V 1  sector (Fig.  20.1b, c ). Regulation by reversible 
disassembly has been described most thoroughly in the yeast ( S. cerevisiae ) and in 
the insect ( M. sexta ) systems [ 85 ,  130 – 132 ]. Its evolutionary rationale may be to 
spare ATP for more immediately essential cellular processes, under starvation con-
ditions. V-ATPase is known to associate with aldolase, by direct interaction with 
subunits B, E and  a , which contributes to V-ATPase stability [ 23 ,  133 – 135 ] and is 
part of a glycolytic metabolon that dissociates on glucose starvation [ 136 ]. As part 
of this metabolon, V-ATPase also interacts with phosphofructokinase-1, which may 
also stabilize the complex [ 137 ]. This glycolytic metabolon senses and responds to 
metabolic status, making ATP and protons from glycolysis proximally available to 
the proton pump, but it also shuts down V-ATPase activity to regulate intracellular 
pH, or to respond to restricted cellular energy status. 

 V-ATPase disassembly in this process requires the involvement of microtubules, 
and it has been suggested that ATP/ADP binding and phosphorylation of the C sub-
unit may destabilize V-ATPase structure in a regulatory manner by altering its affi n-
ity for actin, or components of the V-ATPase stator [ 26 ,  138 ,  139 ]. The  NTa  domain 
of the  a  subunit recruits cytohesin-2 in a pH-dependent manner, which in turn 
recruits ARF6. It has been speculated that the activity of this cytohesin guanine 
nucleotide exchange factor (GEF) signaling complex, which may be further modu-
lated by aldolase binding, affects the interaction of  NTa  with stator EG heterodi-
mers, resulting in instability leading to the regulatory disassembly of the C subunit 
and of V 1 –V 0  [ 26 ]. 

 For V-ATPase reassembly, Chan and Parra [ 140 ] have shown in  S. cerevisiae  that 
reassociation of the C subunit is dependent on the Pfk2p subunit of the glycolytic 
enzyme, phosphofructokinase-1. V 1 V 0  reassembly is modulated by glucose- sensitive 
association of V-ATPase with aldolase [ 134 ,  141 ], and with the yeast “regulator of 
H + -ATPase of vacuolar and endosomal membranes” (RAVE; or equivalent rabcon-
nectins in mammalian cells), a complex that interacts with EG heterodimers and the C 
subunit. RAVE-dependent assembly in yeast may be specifi c to the  a  subunit isoform, 
required for V-ATPases containing Vph1p and not for those containing Stv1p [ 142 ]. 
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Similarly, Tuttle et al. [ 143 ] have suggested that different rabconnectins may pair with 
specifi c  a  subunit isoforms to infl uence cell type-specifi c traffi cking and signal pro-
cessing in vertebrates. Signaling pathways dependent on cytosolic pH, as determined 
by glycolytic activity [ 144 ], and involving phosphatidylinositol 3-kinase (PKI3) [ 145 ] 
and protein kinase A (PKA) [ 146 ], have been shown to be involved in recruitment and 
assembly of V-ATPases. Reassembly or stability also seem to be promoted by high 
extracellular pH [ 147 ]. Both disassembly and reassembly are rapidly reversible, and 
the catalytic ATPase and proton translocation activities of the isolated V 1  and V 0  sec-
tors, respectively, are inhibited [ 132 ,  148 ,  149 ]. The H subunit inhibits the ATPase 
activity of the V 1  sector, likely by interaction with the F subunit of the DF “crank-
shaft,” which protrudes from the catalytic headpiece of dissociated V 1  [ 148 ,  150 ,  151 ]. 
Interestingly, in  S. cerevisiae  it has been shown that the V 0   a  subunit lysosomal iso-
form, Vph1p, is more responsive for reversible disassembly than the Golgi-localized 
Stv1p, with both V-ATPase subunit composition and local membrane environment 
contributing to the difference [ 152 ,  153 ]. 

 The fi rst mammalian report of V 1 V 0  disassembly was for dendritic cells respond-
ing to maturation signals [ 154 ]. In immature dendritic cells, lysosomal acidifi cation 
is depressed by V-ATPase dissociation to preserve antigen integrity. On maturation, 
V-ATPase reassembles, the lysosome is acidifi ed, and antigen is processed. Recent 
evidence suggests that this reassembly is controlled by the PI3K/mTOR signaling 
pathway [ 155 ]. Type II alveolar cells stimulated with surfactant secretagogues also 
disassemble  a1 /B2-containing lamellar body V-ATPase [ 156 ]. These examples are 
not the result of glucose deprivation, and their mechanisms are poorly understood. 
The fi rst evidence of mammalian glucose-dependent reassembly was found in cul-
tured kidney cells [ 145 ,  157 ]. Glucose treatment promotes both reassembly of V 1 V 0  
after starvation and translocation of V-ATPase to the apical plasma membrane from 
a cytoplasmic vesicle pool, and both of these processes are dependent on PI3K 
activity. Reversible disassembly also appears to be regulated by extracellular pH 
[ 144 ,  147 ], by salt stress in plants [ 158 ] and, in insect cells, transient phosphoryla-
tion of the C subunit might mediate reassociation of the C subunit with V 1  and 
consequent reassembly of V 1 V 0  [ 159 ]. 

 Tabke et al. [ 136 ] have suggested recently that in vivo disassembly of V 1 V 0  into 
independent sectors does not occur, but rather only the C subunit dissociates from 
the complex, rendering it reversibly inactive. Their in vivo FRET analyses, using 
fl uorescent protein-tagged V-ATPase subunit expression in  S. cerevisiae  show that 
yeast V 1  and V 0  sectors remain in close proximity to the vacuolar membrane upon 
cellular glucose starvation. Instead of V 1  dissociation, dissociation of the C subunit 
alone is observed, and this appears to depend on direct interaction of microtubules 
with the C subunit, though reassembly is microtubule-independent. Tabke et al. 
[ 136 ] further argue that when the C subunit dissociates, the V 1 V 0  holoenzyme is 
destabilized to the extent that further in vitro histo/cytochemical or biochemical 
manipulation results in artifactual V 1 V 0  dissociation, in proportion to the prior loss 
of C subunit. These FRET analyses also reveal a change in distance between the B 
and  a  subunits during glucose starvation, in a manner that suggests conformational 
changes in the V-ATPase that could plausibly account for its apparent concurrent 
instability upon C subunit loss. One might perhaps think of in vitro V 1 –V 0   dissociation 
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as an assay for in vivo C subunit dissociation, with few conclusions in the published 
literature being substantially affected by the distinction. Regardless of the precise 
in vivo mechanism of “reversible disassembly,” it results in regulatory inactivation/
reactivation of V-ATPase as an ATP hydrolytic enzyme and as a proton pump. 
Tapping into this regulatory mechanism by way of therapeutic intervention will, 
however, require a more detailed understanding relevant to human tissues.   

3.6      Regulation by  Localization  : Recruitment 
and Redistribution 

 V-ATPases depend on vesicular traffi cking to arrive at the various destination mem-
brane compartments where they perform their functions. Failure to target correctly, 
whether in a regulatory manner, as a result of pathology, or due to therapeutic inter-
vention, negates the intended V-ATPase function. How normal targeting is regu-
lated remains obscure, but in at least some cases it is likely that the V-ATPase 
subunit composition encodes signals that predetermine its localization. In yeast, for 
example, the two  a  subunit isoforms Vph1p and Stv1p are localized to the vacuole 
and the Golgi apparatus, respectively, by virtue of polypeptide targeting signals 
within their  NTa  domains [ 47 – 49 ,  160 ]. 

 A tissue-specifi c example of targeting is seen in the mammalian intestine, where 
luminal Cl - /HCO3 -  equilibrium requires proton secretion mediated by V-ATPase. 
Here it is the cystic fi brosis transmembrane-conductance regulator, CFTR, that reg-
ulates V-ATPase activity by providing a variable chloride counterion shunt. CFTR 
itself is regulated by the cAMP-dependent protein kinase, PKA, not just in its chlo-
ride channel activity, but also in its recruitment to the enterocyte brush border mem-
brane. This recruitment appears to apply to V-ATPase as well, by direct interaction 
with CFTR, resulting in translocation of the former from the basolateral membrane 
to the apical brush border [ 161 ]. In other examples, it has been shown that cAMP/
PKA and Rab11b regulate traffi cking of V-ATPase into apical membranes of epithe-
lial cells in the kidney, salivary glands and epididymis by recruitment from subapi-
cal endosomal compartments [ 146 ,  162 ,  163 ]. In mouse cortical collecting duct, 
angiotensin II initiates a similar redistribution of V-ATPase to apical plasma 
 membranes from subapical vesicles [ 164 ]. The A subunit appears to play a direct 
role in regulation of V-ATPase redistribution, as it has been noted that it can be 
transiently phosphorylated by PKA at serine 175, resulting in upregulated activity in 
kidney and epididymal epithelia [ 165 – 168 ]. The A subunit can also be phosphory-
lated by the 5′-AMP-activated protein kinase, AMPK, at serine 384 [ 166 ,  168 ], 
although this appears to be inhibitory for plasma membrane V-ATPase activity in 
kidney. In osteoclasts, V-ATPase is translocated to the ruffl ed border upon osteoclast 
activation, from a pool of intracellular lysosomal vesicles. This requires interaction 
with actin microfi laments that bind the N-terminal domain of V-ATPase B subunits 
[ 169 ,  170 ]. Therapeutically targeting the interaction of F-actin and V-ATPase B sub-
units and other specifi c protein-protein interactions within the osteoclast V-ATPase, 
to inhibit osteoclastic bone resorption, is discussed further, below.   
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3.7       Coupling Effi ciency   

 Kawasaki-Nishi et al. [ 153 ] showed that yeast V-ATPases with the  a  subunits Stv1p or 
Vph1p have similar enzyme kinetic properties, yet Stv1p realizes a four- to fi vefold 
lower coupling effi ciency of protons transported per ATP molecule hydrolyzed than 
Vph1p. It has been suggested that this difference in coupling effi ciency accounts for the 
higher pH observed in the Golgi, compared to the vacuole, and that differences in sub-
unit isoform composition of mammalian V-ATPase isocomplexes may regulate differ-
ences in steady state pH within the organelles to which they are targeted. 
Electrophysiological studies of active transporters have revealed a common “lack of 
precision” in predicted solute output per molecule of ATP hydrolyzed [ 171 ]. For 
V-ATPases, one possibility for this lack of precision is referred to as “slip,” which may 
be due to the inability of protons to dissociate into the lumen against a large ∆H + , 
resulting in carryover, past what is usually an effective charge barrier between the lumi-
nal and cytoplasmic proton hemichannels (Fig.  20.1d ), and release back into the cyto-
plasm instead [ 172 ]. Slippage, or more generally, proton “shunting,” depends on the 
current–voltage properties of the proton pump, the transmembrane electrical charge 
and pH gradient. Shunting alone may account for all of the variable coupling effi cien-
cies that have been observed for V-ATPases and may represent transient thermody-
namic behavior of the V-ATPase as an open proton channel [ 173 ]. Whether slippage, or 
shunting, is completely intrinsic to V-ATPase structure, or is infl uenced by other regu-
latory elements, or can be pharmaceutically manipulated, is presently not known.   

3.8       Lipid Microenvironment   

 It has recently been shown that the signaling lipid, phosphatidylinositol 
3,5- bisphosphate, PI(3,5)P 2 , directly interacts with the V-ATPase V 0  sector and pro-
motes assembly and stability of V-ATPase, possibly by altering the conformation of 
the N-terminal domain of the  a  subunit, Vph1p, in yeast [ 174 ]. C26 acyl sphingolip-
ids also affect yeast V-ATPase activity, but surprisingly it is the cytosolic V 1  sector 
that is inactive without them. It has been suggested that these lipids support V 1  
activity indirectly, by affecting the RAVE complex that is required for V 1  assembly 
[ 175 ]. In mammalian cells the simple sphingolipid, glucosylceramide, appears to be 
required to support high levels of V-ATPase activity in melanocyte endomembranes, 
a necessity for protein sorting and melanosome biogenesis [ 176 ]. In plants, tono-
plast V-ATPase activity is enhanced in vitro by tonoplast phospholipids, but 
depressed by tonoplast glycolipids [ 177 ]. Yoshida et al. [ 178 ] have shown further 
that in  Arabidopsis thaliana  vacuoles the organellar membrane consists of microdo-
mains that are characterized by either detergent sensitivity or detergent resistance. 
V-ATPase was found to associate with detergent resistant microdomains, which 
have elevated proportions of saturated fatty acids in their phosphatidyl choline and 
phosphatidyl ethanolamine phospholipids, compared with total vacuolar phospho-
lipids. The authors speculate that since plasma membrane microdomains play a role 
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in signal transduction, vacuolar microdomains may be involved in regulation of 
membrane transport and signal processing at the vacuolar level; however, direct 
evidence of this remains lacking. 

 Although the concept has been largely unexplored in mammalian systems, there 
is some indication that manipulation of the membrane lipid microenvironment in 
which V-ATPases fi nd themselves might have therapeutic value. In yeast, mem-
brane ergosterol (which is not found in animal cells) is required for V-ATPase func-
tion. V-ATPase is crucial to virulence of pathogenic fungi, and the azole class of 
antifungal drugs exploits this by inhibiting ergosterol biosynthesis [ 179 ].   

3.9       Ancillary Enzymes   

 V-ATPases cannot function without a number of supporting enzymes and transport 
proteins, often also having tissue-specifi c expression. Intracellular  carbonic anhy-
drase II (CA II)   is expressed to rapidly equilibrate the reaction of CO 2  and water to 
produce protons and bicarbonate ions. Though widely distributed, CA II is espe-
cially important in highly active acid-secreting cells, like osteoclasts and special-
ized kidney ductal epithelial cells, to provide a readily accessible pool of protons to 
the V-ATPase. It also provides bicarbonate ions to power cellular chloride uptake 
via Cl - /HCO 3  -  exchange. In osteoclasts, the latter role is performed specifi cally by 
the anion exchange protein 2 (AE2) with which CA II directly interacts [ 180 ]. 
Electrogenic proton pumping by V-ATPase would come to a quick halt if the charge 
gradient were not neutralized by a counterion shunt [ 181 – 183 ]; in the osteoclast this 
is provided by the chloride channel 7 (CLC7), an electrogenic H + /2Cl -  exchanger, 
which utilizes the chloride ions provided by AE2. Depending on the tissue and sub-
cellular compartment, other isozymes and H + /ion exchangers can take on the roles 
of those specifi cally highlighted here. 

 Mutations in the above ancillary enzymes illustrate their importance to V-ATPase 
activity. Mutations in  CA2 , the gene coding for CA II, which is highly expressed in 
both osteoclasts and kidney, cause combined osteopetrosis and dRTA, similar to 
what is seen separately for mutations in the V-ATPase subunits  a3  and  a4 , which are 
also highly expressed in the respective tissues [ 56 ,  184 ]. Mutations in  SLC4A2 , 
which codes for AE2 have not been described in humans, but a deletion mutation in 
bovine  SLC4A2  results in osteopetrosis in cattle [ 185 ]. Interestingly, mutations in 
the anion exchange protein 1 (AE1), which is a kidney-specifi c form, cause a domi-
nant variation of dRTA that is otherwise similar to what is seen for mutations in the 
kidney-specifi c V-ATPase B1 and  a4  subunit isoforms. Mutations in  CLCN7 , which 
codes for the chloride channel CLC7, also cause osteopetrosis, much like mutations 
in the V-ATPase  a3  subunit [ 186 ], and a specifi c inhibitor of CLC7 has been shown 
to prevent bone loss in ovariectomized rats [ 187 ]. Apart from mutations, there is 
also the observation, as was noted above, that V-ATPase proton extrusion into the 
gut lumen depends on a specialized, tissue-specifi c association with CFTR [ 161 ]. 
These examples illustrate the potential for indirect manipulation of V-ATPases by 
targeting the ancillary proteins upon which their activity depends.    
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4     Targeting Inhibition of V-ATPase 

 It is tempting to think that manipulating specifi c endogenous regulatory mecha-
nisms for V-ATPase expression and function, including those described above, 
might achieve precise therapeutic targeting. While this may 1 day be the case in 
some applications, a great deal more needs to be understood regarding these regula-
tory mechanisms before such an approach can be realized. Furthermore, many of 
the regulatory molecules described are widely distributed throughout the organism, 
making a “magic bullet” solution unlikely. Historically, numerous small molecule 
inhibitors, mostly natural products, have been used to experimentally inhibit 
V-ATPases, the plecomacrolides bafi lomycin A1 and concanamycin A being the 
most commonly used [ 188 ]. These generally are not selective among V-ATPase 
isocomplexes. Some inhibitors have been described that may be selective for osteo-
clast V-ATPases, but clinical utility has proved elusive. We briefl y review here illus-
trative examples of strategies used towards trying to achieve specifi c V-ATPase 
targeting, with applications ranging from pharmaceutical to agrochemical. 

4.1     Novel V-ATPase Inhibitors: Discovery Strategies 
and Applications 

 The ultimate goal in targeting V-ATPases clearly is to be able to manage a “surgical 
strike” against a specifi c isocomplex without affecting V-ATPases of alternative subunit 
isoform composition. Recently, strategies have been designed to discover inhibitors of 
protein interactions that are required for the functions of specifi c V-ATPase isocom-
plexes, and RNAi methods to knock down expression of specifi c subunit isoforms. 

4.1.1      Small Molecule Inhibitors of V-ATPase  Quaternary Subunit 
Interaction   

 Kartner et al. [ 189 ] characterized interactions between mouse V-ATPase  a  and B 
subunits, using yeast two hybrid screening and pulldown assays of recombinant 
fusion proteins. They further characterized the interactions between all of the mouse 
 a  and B subunit isoform pairs using an ELISA system to generate relative binding 
curves. This assay lent itself to modifi cation to achieve high-throughput screening for 
small molecule inhibitors of the  a3 –B2 interaction, an interaction that has some spec-
ifi city for osteoclast ruffl ed-border V-ATPase [ 190 ,  191 ]. Screening of small syn-
thetic compound and natural product libraries led to the discovery of a small synthetic 
molecule, 3,4-dihydroxy- N ′-(2-hydroxybenzylidene)benzohydrazide, that was able 
to inhibit in vitro osteoclastic bone resorption with an IC 50  of 1.2 μM [ 189 ]. 

 Crasto et al. [ 192 ] used a similar strategy to discover the natural product small 
molecule inhibitor, luteolin, a plant fl avonoid that inhibits the  a3–d2  interaction that 
also occurs in osteoclast ruffl ed-border V-ATPases. Luteolin inhibited in vitro  osteoclast 
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bone resorption with an IC 50  of 2.5 μM. Shin et al. [ 193 ] have independently shown 
in vivo that luteolin inhibits prosthetic wear particle osteolysis in mice. 

 For either of the above compounds, the precise mechanisms of action remain spec-
ulative, and metabolic lability and intellectual property issues have impacted on their 
further development [ 61 ,  62 ]. Nevertheless, these proof-of-concept examples suggest 
that targeting sites of subunit interaction within the V-ATPase complex may be a 
viable means of obtaining inhibitors of specifi c isocomplexes, in these cases those of 
the osteoclast ruffl ed border for the purpose of limiting bone-loss diseases like osteo-
porosis. They also highlight a novel and simple ELISA-based approach to high-
throughput random drug screening that can be generalized to potentially identify 
highly targeted inhibitors of important tertiary, quaternary, or quinary protein struc-
ture interactions that can be modeled in vitro. Furthermore, so long as the interacting 
pair of proteins or appropriate polypeptide segments can be produced or isolated in 
suffi cient quantity, such a screening method can be performed even in the absence of 
structural information or a precise knowledge of the protein interaction sites.   

4.1.2      Small Molecule Inhibitors of V-ATPase  Quinary Protein Interaction   

 In a different screening strategy, Toro et al. [ 194 ] exploited the knowledge that 
V-ATPases bind actin fi laments in osteoclasts via an interaction between F-actin and 
the B2 subunit [ 195 ]. This interaction is crucial for cycling of ruffl ed border V-ATPase 
between bone resorptive activity at the ruffl ed-border plasma membrane and “storage” 
in cytoplasmic vesicles. Using computer modeling of the docking sites for this interac-
tion, Ostrov et al. [ 196 ] were able to perform virtual screening for small molecule 
inhibitors, the most promising hit being enoxacin, a fl uoroquinolone antibiotic. 
Enoxacin appears to inhibit the vesicular traffi cking of the osteoclast ruffl ed-border 
V-ATPase, which is dependent on its interaction with the actin cytoskeleton, thus mak-
ing it a promising candidate for osteoporosis treatment [ 197 ]. A bone-targeted enoxa-
cin–bisphosphonate conjugate has been shown to inhibit in vivo orthodontic tooth 
movement in rats [ 198 ]. What separates this work to identify inhibitors of protein inter-
action from the previous examples is the use of virtual screening, where both the site of 
protein interaction and the library of compounds screened are computer models. Such 
methods clearly are highly cost effective, and this proof-of-concept example highlights 
their potential. With regard specifi cally to therapeutic V-ATPase targeting, a broader 
application of virtual drug screening must await broader databases of high-resolution 
3D subunit structures and their interactions, both intra-V-ATPase isocomplex interac-
tions and their, as yet poorly defi ned, extra-complex quinary interactomes.   

4.1.3      RNAi   and Gene Therapy Approaches 

  In periodontal disease, infl ammation induces local osteoclastogenesis and conse-
quent bone loss [ 199 ,  200 ]. In activated osteoclasts, expression of V-ATPase con-
taining the  a3  subunit is upregulated. Additionally, the  a3  splice-variant, TIRC7, 
plays a role in T cell activation [ 123 ,  201 ]. Jiang et al. [ 202 ] proposed that regulating 
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 a3 /TIRC7 could be a means of stemming both bone loss and infl ammation in peri-
odontal disease, simultaneously. In a mouse  Porphyromonas gingivalis  maxillary 
infection model, they used local injection of adeno-associated virus (AAV) to 
deliver short hairpin RNA (shRNA) constructs designed for RNA interference 
(RNAi) targeting of both   Atp6i  and  Tirc7  transcripts  . Knockdown of  a3 /Tirc7 
expression caused reduced osteoclast formation and maturation, resulting in a 
reduction of maxillary bone loss by over 85 % relative to controls, and a similar 
reduction in gingival infl ammation in the infected mice. 

 In a similar approach, Feng et al. [ 203 ] demonstrated that the C1 subunit isoform 
predominates in the V-ATPase of the osteoclast ruffl ed border. As with the  a3  sub-
unit, C1 is highly upregulated during osteoclastogenesis and is required for 
 formation of the actin-ring sealing zone of activated osteoclasts, and for the subse-
quent lacunar acidifi cation required for bone resorption. Unlike the RNAi knock-
down of  a3  described above [ 202 ], knockdown of C1 expression using 
Lentivirus-mediated siRNA delivery in vitro did not affect osteoclast formation or 
maturation, although actin sealing-rings were also completely disrupted.  

  Gene therapy      is commonly regarded as a gain-of-function modality, and such 
approaches may, in the future, have utility for relatively rare diseases of V-ATPase 
subunit mutations [ 63 ]. As the above proofs of concept suggest,  gene-silencing   
approaches have broader clinical utility using, for example, localized periarticular 
or periodontal injections of viral RNAi vectors for treating  bone-loss disease  . For 
the present, however, safety and cost remain major issues, and systemic gene ther-
apy for bone loss treatment or prevention, such as for osteoporosis, will likely be a 
long time coming. More acutely life-threatening diseases, such as metastatic can-
cers, however, may see the fi rst applications of such V-ATPase targeting approaches.   

4.2     Novel V-ATPase Targeting Strategies in Agriculture 

 It is worth pointing out that the potential for V-ATPase targeting transcends human med-
icine, with wide applicability as well to veterinary medicine and agriculture, all of which 
ultimately impact human well-being. Examples of strategies and applications follow. 

4.2.1       RNAi by dsDNA  Dusting      

 Much early and ongoing work on V-ATPases has been accomplished in insect mod-
els. In insects, V-ATPases play a particularly important role in maintaining the pH 
gradient of the gut, which is vital for nutrient acquisition. Consequently, insect 
V-ATPases have long been recognized as targets for potentially highly specifi c 
RNAi-based insecticides [ 204 ]. The corn planthopper,   Peregrinus maidis   , is a major 
pest that feeds on maize crops, and is a mold and plant virus vector. Yao et al. [ 205 ] 
observed signifi cant knockdown of V-ATPase activity in   P. maidis    that were fed 
dsRNA to achieve RNAi for V-ATPase A and D subunits, with a resultant decrease 
in nymph survival and female fecundity.    
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4.2.2     RNAi by  Crop Transgenics      

 In a small-scale screen, Baum et al. [ 206 ] fed Western corn rootworm larvae 
( Diabrotica virgifera ) 290 different dsRNA constructs and found 14 causing signifi -
cant mortality at low doses. One, a dsRNA targeting the V-ATPase A subunit, was 
transformed into corn, which then showed signifi cant resistance to  D. virgifera  
feeding damage. In these examples, simple ingestion of dsRNA was likely success-
ful because the RNAi target is the V-ATPase of the gut epithelium. This strategy, 
using carefully selected and relatively short dsRNA sequences could be useful in 
producing transgenic crops with insecticidal qualities only against pest species, 
without collateral effects. Off-target effects of traditional insecticides are of grow-
ing public concern, but the utility of RNAi methods will depend on public accep-
tance of the transgenic crops, or enhanced methods of production of dsRNA for 
large-scale crop spraying, and will require the availability of complete genomic 
sequences for both pest target and benefi cial nontarget insect species.  

4.2.3     Peptide Inhibition of the V 0   Rotor   

 The small (37-mer) polypeptide, pea albumin 1b (PA1b), is a potent  M. sexta  
V-ATPase inhibitor that binds  c  subunits, possibly interfering with rotor movement, 
by jamming against the  e  subunit within the proton-translocating V 0  sector, or by 
binding a  c  and an  e  subunit simultaneously [ 207 ,  208 ]. The extracellular termini 
and loops available on the  c  subunit for PA1b binding are the least conserved 
regions of the otherwise highly conserved  c  subunit polypeptide. Consequently, 
though PA1b has potent insecticidal properties toward   M. sexta   , it has little effect 
on yeast or mammalian V-ATPases, or even some other insect species. These obser-
vations support the notion that species selectivity is possible in strategies aimed at 
eliminating pests and parasites by targeting the non-conserved sequences of the V 0  
rotor. Furthermore, it points to the possibility that peptides may offer exquisitely 
engineered selectivity, where small molecules fail.  

4.2.4     A Gain of Function V-ATPase Strategy: Genetic Engineering 
of  Salt Resistance   

 While inhibitory strategies are foremost in current agricultural research targeting 
V-ATPases, gain of function approaches have had some traction for crop improve-
ment. For example, it has been shown that salt stress causes upregulation of 
V-ATPase subunit expression in wheat, resulting in enhanced Na +  sequestration in 
the central vacuole. Furthermore, overexpression of wheat V-ATPase subunit genes 
in  A. thaliana  results in improved salt and osmotic stress tolerance [ 84 ,  209 ]. 
Genetic engineering of salt stress resistance in crop species has signifi cant potential 
for improving worldwide food production.    
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5     Conclusions 

5.1     V-ATPases Represent an Emerging Target of Broad 
Signifi cance 

 We have described here the wide variety of impacts that V-ATPases have on human 
health and welfare. This is unique among potential pharma/agro targets and has 
recently been a considerable source of motivation for drug discovery. It seems likely 
that this interest will drive research into V-ATPase structure and function at an 
accelerating pace into the foreseeable future. Furthermore, new knowledge acquired 
for any of the diverse areas of application that we have described will enhance the 
development of V-ATPase targeting as a whole. The most pressing issue for target-
ing of V-ATPases is the matter of specifi city: how to distinguish specialized 
V-ATPases whose inhibition would be of benefi t from those V-ATPases that are vital 
to survival. Presently, knowledge of the structure of any V-ATPase holoenzyme at 
atomic resolution is lacking, as is a detailed knowledge of its interactome. Advances 
in these areas have been slow due to the complexity of the V-ATPase holoenzyme, 
but it is not unreasonable to think that a complete V-ATPase structure and a list of 
many more fully characterized functional interactions might be at hand within a 
decade. Whether V-ATPase targeting breakthroughs come in the form of novel 
small molecule inhibitors, engineered peptides, RNAi methods, or gene therapy, the 
potential for health, welfare and economic impact is great.      
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