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    Abstract     The eukaryotic vacuolar-type ATPase (V-ATPase) is a multi-subunit 
membrane protein complex, which is evolutionarily conserved from yeast to human. 
It is also functionally conserved and operates as a rotary proton pumping nano- 
motor. In the fi rst part of this chapter we discuss the structure and function of the 
yeast V-ATPase (V 1 V O ) holoenzyme, We focus on the structural features of its sub-
units forming both catalytic V 1  and proton conducting V O  sectors. Particularly, the 
recently solved structure of DF-subunit complex is discussed in relation to the 
energy coupling and regulation of yeast V-ATPase. It is noteworthy that the struc-
ture could contribute to understanding the function and regulation of V-ATPases of 
eukaryotes including human, leading to the rational design of specifi c inhibitors for 
medical applications. In addition to the well characterized role as proton pump, 
V-ATPases have acquired alternative cellular functions during evolution. In the sec-
ond part we analyze novel roles of V-ATPase in function, signaling, and vesicular 
traffi cking of cellular receptors. Our recent studies have uncovered that V-ATPase 
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itself functions as an evolutionarily conserved pH-sensing and signaling receptor, 
which forms super-complex with aldolase/cytohesin-2/Arf1,6 small GTPases in 
early endosomes. On the other hand, V-ATPase forms a super-complex with 
mTORC1/Ragulator/Rag/Rheb small GTPases in late endosome/lysosomes and is 
involved in amino-acids sensing and monitoring nutritional state of cells. Finally, 
we discuss the role of V-ATPase in the development and progression of various 
diseases including cancer, diabetes, and osteopetrosis among others. We also pres-
ent emerging approaches and future perspectives for specifi c drug targeting to 
V-ATPase and its super-complexes.  

  Keywords     Eukaryotic V-ATPase   •   Holoenzyme   •   Acidifi cation   •   pH-sensing 
 -   Receptor signaling   •   Super-complex   •   Vesicular traffi cking   •   Human diseases 
 -   Drug targeting  

  Abbreviations 

   a2N    N- terminal cytosolic tail of a2-subunit V-ATPase   
  Arf1    ADP-ribosylation factor 1   
  Arf6    ADP-ribosylation factor 6   
   BafA1      bafi lomycin A1    
  c/c″-ring    Ring composed by the c- and c″-subunits   
   ConA      concanamycin A    
  CRP    Calorie restriction pathway   
  cryo-EM    Cryo-Electron microscopy   
  CTH2    Cytohesin-2   
  dErbB    Dimeric EGFR/ErbB-receptor   
  EGF    Epidermal growth factor   
  EmGFP    Emerald green fl uorescent protein   
  FKPB12    FK506/rapamycin binding protein   
  FRET    Fluorescence resonance energy transfer   
  Fz    Frizzled   
  GH    Growth hormone   
  HRG-1    Heme-responsive gene 1 protein   
  IGF-1R    Insulin-like growth factor-1 receptor   
  IR    Insulin receptor   
  LRP6    Low-density receptor-related protein   
   M. sexta      Manduca sexta    
  mErbB    Monomeric EGFR/ErbB-receptor   
  mTORC1    Mammalian target of rapamycin complex 1   
  mTORC2    Mammalian target of rapamycin complex 2   
  NMR    Nuclear magnetic resonance   
  NOE    Nuclear Overhauser effect   
    PAT1       Proton coupled amino acid transporter 1   
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  PI3K    Phosphatidylinositol 3-kinase pathway   
  PKA    Protein kinase A   
  PPI    Protein–protein interaction interface inhibitors   
  RagA/C    Rag A/C GTPases   
  Ragulator    Ragulator complex   
  Ras    Rat sarcoma small GTPase   
  RAVE    Regulator of ATPase of vacuoles and endosomes   
  Rbcn-3    Rabconnectin-3A/B   
  Rheb GTPase    Ras homolog enriched in brain   
   S. cerevisiae      Saccharomyces cerevisiae    
  SAXS    Small-angle X-ray scattering   
   Sc DF1 and  Sc DF2    Two conformations of subunit DF complex   
  TFEB     Transcription factor EB   
  TSC complex    Tuberous sclerosis complex   
  V-ATPase    V-type ATPase   
  ΔpH    Proton gradient   
  ΔΨ    Membrane potential   

1           Introduction 

 Eukaryotic vacuolar-type ATPases (V-ATPases) are  ATP-dependent proton pumps  , 
which are localized in plasma membrane and the organelle membranes, and involved 
in various cellular processes [ 1 – 12 ]. This enzyme consists of a  cytosolic V 1    and a 
 membrane embedded V O    sectors. The subunit stoichiometry of the V 1  and V O  sec-
tors are proposed to be A 3 :B 3 :C 1 :D 1 :E 3 :F 1 :G 3 :H 1  and a 1 :d 1 :c x :c′ y :c″ z , respectively 
[ 1 – 5 ]. Although yeast enzyme has only two  isoforms   (Vph1p and Stv1p) for a sub-
unit, human and mice have multiple subunit isoforms including: (1) two for the B, 
E, H and d-subunits; (2) three for the C and G-subunits; and (3) four for a-subunit 
(a1, a2, a3, and a4). The expression and targeting of V-ATPase with these isoforms 
are specifi c for cells and organelles [ 1 – 5 ]. 

 The hydrolysis of ATP  into   ADP and phosphate (Pi) in the A 3 B 3  catalytic 
 hexamer   of V 1  sector drives the proton translocation by a ring of c, c′, and c″ sub-
units of V O  sector. The coupling of both events is mediated through the rotation of a 
complex of DFdcc′c″. The reversible assembly/disassembly of the V 1  and V O  is a 
crucial mechanism for the regulation of V-ATPase [ 13 – 16 ]. Originally, this mecha-
nism was discovered in  Manduca sexta  ( M. sexta ) and  Saccharomyces cerevisiae  
( S. cerevisiae ) in response to ceased feeding [ 17 ,  18 ] and glucose depletion [ 13 ,  19 ], 
respectively. However, similar mechanism should be essential for mammalian 
V-ATPase [ 20 – 24 ]. 

 V-ATPases play a central role in the maintenance of  pH-homeostasis   at the 
cellular and organism level in mammals [ 1 – 5 ]. This enzyme is also involved in the 
endosomal pH-sensing [ 1 ,  2 ,  25 – 30 ] and has most recently been uncovered as a 
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signaling receptor that modulates the activity of  cytohesin-2 (CTH2)   and  Arf small 
GTPases   [ 31 ]. In addition, V-ATPase is involved in sensing of amino acids and 
monitoring nutritional status of cells via its interaction with mTORC1/Ragulator/
Rag and Rheb small GTPases [ 32 – 35 ]. An alternative direct role of eukaryotic 
ATPases in membrane fusion has been previously proposed [ 36 – 39 ] and the V O  has 
been implicated in this process during exocytosis and insulin secretion in mamma-
lian pancreatic β-cells [ 2 ,  8 ]. Moreover, V-ATPase with a3 and d2  isoforms   is 
assembled in the osteoclast plasma membrane, and a direct role of the d2 isoform in 
the fusion of osteoclast progenitors has been described [ 2 ,  40 – 43 ]. Here, we discuss 
the current understanding of the structure of eukaryotic V-ATPase, focusing on the 
recently determined crystal structure of   S. cerevisiae       DF-subunit complex [ 44 ]. The 
fi nding of their interaction interface could reveal functional insights into coupling 
and regulation of all eukaryotic V-ATPases. In addition, we describe the emerging 
novel roles of V-ATPases in acidifi cation of compartments, modulation of the func-
tion of critical cellular receptors as well as pH and nutrient sensing and signaling via 
its super-complexes. 

 In recent years, the V-ATPase has been implicated in the pathophysiology of a 
variety of  human diseases   including primary distal renal tubular acidosis accompa-
nied by sensorial deafness [ 45 ], autosomal recessive osteopetrosis [ 41 ,  46 ], and 
autosomal recessive cutis laxa [ 47 – 49 ]. In addition, a role of the V-ATPase in cancer 
has recently emerged, since its increased expression at the plasma membrane cor-
relates with the invasive characteristics of various malignant cells [ 50 – 53 ]. Based 
on these fi ndings, perspectives and strategies in drug targeting to V-ATPase in 
human disease is discussed.  

2     Structure of the Multi-subunit Eukaryotic V-ATPase 

2.1     The  Two Sector Composition   of V-ATPase 

 Eukaryotic V-ATPases are multi-protein complexes composed by 14 different 
subunits A 3 B 3 CDE 3 FG 3 Hac X c′ Y c″ Z de. V-ATPase holoenzyme have a bipartite struc-
ture formed by a cytoplasmic V 1  (A 3 B 3 CDE 3 FG 3 H) and a membrane-embedded V O  
(ac x c′ y c′′ z de) sectors (Figs.  16.1  and  16.2 ). The stoichiometry of three V O  subunits 
(c X c′ Y c″ Z ) is unknown, although they are multiple. Both sectors are linked by con-
necting regions that are important for coupling between ATP hydrolysis in V 1  and 
proton translocation in V O . These connecting regions consist of a central (D,F,d) and 
three peripheral (E,G) stalks, which are also important for reversible disassembly/
assembly of V-ATPase (Fig.  16.1a ). Within two V 1 V O  sectors, however, there are 
functionally identifi able “stator” (A 3 B 3 EGCHae) and “rotor” (DFdc X c′ Y c″ Z ) sub-
complexes responsible for implementation of rotary mechanism of V-ATPase nano-
motor [ 1 – 5 ,  12 ].
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2.2          Catalysis and Energy Coupling in V 1  Sector   

 V-ATPases exist in a dynamic equilibrium between fully assembled holoenzyme 
and reversibly disassembled V 1  and V O  [ 13 – 19 ]. Depending on the energy state of 
the cell, this equilibrium can be rapidly shifted [ 16 ,  54 ]. Recently,   S. cerevisiae    and 
M. sexta  V-ATPase holoenzymes have been isolated and its three-dimensional (3D) 
structure was shown using high resolution cryo-electron microscopy (cryo-EM) 
analysis [ 55 – 57 ]. The structure reveals that three A and B subunits form a hexagon 
with the nonhomologous regions at the top of subunit A [ 7 ,  55 ,  56 ,  58 ,  59 ]. The two 
nucleotide-binding subunits A and B alternate around a central cavity, which nar-
rows toward its center and opens at both ends. Subunit D inside the cavity forms 
different interaction with domains of the three subunits A and B [ 12 ,  55 ,  56 ,  58 ]. 
The crystallographic structure of two conformations of subunit DF complex ( Sc DF1 
and  Sc DF2) forming the central stalk of  S. cerevisiae  V-ATPase has been solved 
recently [ 44 ]. Subunit D in the complex consists of a long pair of α-helices, con-
nected by a short helix ( 79 IGYQVQE 85 ) and a β-hairpin region, which is fl anked by 
two fl exible loops (Fig.  16.1b ). The long pair of helices is composed of the N- and 
the C-terminal helix, respectively, and show structural alterations in the  Sc DF1 and 
 Sc DF2 structures. The subunit F consists of an N-terminal domain of four β-strands 
(β1-β4) connected by four α-helices (α1-α4). α1 and β2 are linked via the loop 
 26 GQITPETQEK 35 , which is unique in eukaryotic V-ATPases (Fig.  16.1a ). Adjacent 

  Fig. 16.1    Arrangement of the existing individual atomic subunit structures in the cryo-EM-map 
of the  S. cerevisiae  V-ATPase. ( a ) Subunits C (1U7L;  salmon ), H (1HO8,  brown ), and the D 
(4RND,  red ) and F assembly (4RND;  blue ) from  S. cerevisiae  were fi tted into the cryo-EM map. 
The two conformations of EG subunits, the straight (4DL0;  green  and  cyan ) and more bent (4EFA; 
 lemo n and  pale cyan ) are fi tted to the three peripheral stalks. The crystallographic structure of two 
conformations of subunit D in ensemble with the stalk subunit F of  S. cerevisiae  ( Sc DF1 and 
 Sc DF2) V-ATPase are shown. ( Insert ) Region of the EM-map showing the interaction of modeled 
subunit H (S381) ( yellow ) through the sulfhydryl cross-linker 4-( N -maleimido)benzophenone 
(MBP) (stick;  green ) to the  S. cerevisiae  subunit F1-94 (E31) [ 44 ]. Cartoon representation of the 
structures of the individual  S. cerevisiae  subunits C (1U7L;  salmon ), F1-94 (4IX9,  blue ), H (1HO8, 
 brown ) and EG in two conformations, straight (4DL0;  green  and  cyan ) and bent (4EFA;  lemo n and 
 pale cyan ). ( b ) Intermolecular interactions of the subunit DF-assembly. Superimposition of the 
 Sc DF1 ( pink  and  blue ) with  Sc DF2 molecule ( orange  and  grey )       
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to the N-terminal domain is a fl exible loop (P95-D106), followed by a C-terminal 
α5-helix. A perpendicular and extended conformation of the α5-helix was observed 
in the two crystal structures and in solution X-ray scattering experiments, respec-
tively (Fig.  16.1a , left) [ 44 ]. The concerted interaction of the DF complex, including 
the P95-D106-loop with helix α5 of subunit F and bended C-terminal helix of sub-
unit D, may activate ATP hydrolysis in the catalytic A 3 B 3  hexamer [ 44 ,  60 ]. 

 The  26 GQITPETQEK 35 -loop of the subunit F is facing to the C-terminal serine 
(S 381 ) of subunit H, revealed to be involved in cross-linking subunit F of the V 1  
(Fig.  16.1a , right) [ 60 ,  61 ]. The unique stalk of subunit H is characterized by a 
large, primarily α-helical N-terminal domain, which is forming a shallow groove 
connected by a four-residue loop to the C-terminal domain [ 62 ]. This arrange-
ment led to the proposal, that in the process of V 1  and V O  dissociation the flex-
ible C-terminal domain of subunit H moves slightly closer to the exposed 
 26 GQITPETQEK 35 -loop of subunit F, where it causes conformational changes, 
leading to an inhibitory effect of ATPase activity in the V 1  [ 44 ,  60 ].  15 N-[ 1 H] 

  Fig. 16.2    Structure and composition of a novel V-ATPase/cytohesin-2/Arf1,6/aldolase signaling 
super-complex. The diagram shows the structure of the novel V-ATPase/cytohesin-2/aldolase/
Arf1,6 super-complex localized on early endosomal (EE) membrane (see Fig.  16.3 ,  Complex 1 ). 
It illustrates the binding site of cytohesin-2 (CTH2, in  yellow ) with an N-terminal tail of a2-subunit 
(a2N, in  green ) of V-ATPases [ 25 ,  29 ]. On the  left  is shown the CTH2 molecule interacting with 
a2N thorough Sec7-domain and with aldolase through PH-domain.  Roman numbers  indicate inter-
faces and affi nities of interaction: ( I ) CTH2 with  a 2N(1–402) and ( II ) Sec7 domain with 
 a 2N(1–17) and  III ,  IV ) CTH2 with aldolase [ 28 ,  167 ]. On the  right  is shown the aldolase molecule 
interacting with a2N of V-ATPase       
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heteronuclear NOE studies on the subunit F revealed a rigid core formed by 
β-strands, β1–β4, and α2–α4. In comparison, the N- and C-terminal helices α1 and 
α5 with their adjacent loops  26 GQITPETQEK 35  and  94 IPSKDHPYD 102 , respec-
tively, are more fl exible in solution [ 60 ]. The N-terminal helix α1 of subunit F and 
the bottom segment of subunit D are in proximity to subunit  d , forming the tip of 
the central stalk and being in direct neighborhood of the proton translocating ring 
of c-, c′-, c″-subunits of V O  [ 60 ]. This area might be modifi ed during the process of 
reversible assembly/disassembly of the V 1  and V O , as shown previously. The higher 
fl exibility of α1 in subunit F would allow to transmit the conformational change of 
subunit  d  during dissociation from the DF-heterodimer and also the movement of 
subunit H closer to F, through the neighboring  26 GQITPETQEK 35 -loop [ 44 ,  60 ]. 

 In addition to the central stalk, the catalytic A 3 B 3  hexamer is connected to V O  by 
three peripheral stalks with a different degree of twisting in the C-terminal and/or 
middle part (Fig.  16.1a , left) [ 1 ]. The subunit E and G, forming the peripheral stalk, 
are arranged in a ~150 Å long complex. The peripheral stalk is connected to the 
A 3 B 3  through the globular C-terminus of subunit E, formed by α-helices and 
β-sheets, arranged as β1:α1:β2:β3:β4:α2 [ 63 ,  64 ]. This C-terminus is connected by 
a fl exible loop region with N-termini of both subunit E and G, which are folded in 
a noncanonical, right-handed coiled coil. The coiled coil is disrupted by a bulge of 
partially unfolded secondary structure in subunit G, which provides the necessary 
fl exibility of the peripheral stalk during detachment and assembly of the V 1  from the 
V O  (Fig.  16.1a , left) [ 63 ]. 

 The reversible disassembly of the V 1  and V O  is initiated by the dissociation of 
subunit C [ 65 ]. As shown for its hydrated [ 66 ] and crystallized form [ 67 ] subunit C 
is a boot-shaped protein with an upper head domain formed from α-helices and 
β-strands (residues 167–262) and a globular foot domain (residues 1–55 and 320–
392). Both domains are connected by an elongated helical neck domain (Fig.  16.1a , 
left) [ 67 ]. Location and orientation of subunit C in the enzyme enables its binding 
to actin [ 67 ], ADP/ATP nucleotides [ 68 ], and WNT-kinase [ 69 ]. These interactions 
are taking place through the foot domain allocated in proximity to the N-termini of 
an EG-heterodimer, as well as in neighborhood to the N-terminal region of subunit 
 a  (Fig.  16.1a , left). It was suggested that binding of ATP/ADP [ 68 ] or WNT-kinase 
dependent phosphorylation [ 69 ] of subunit C could alter the stability of an subunit 
EGC assembly by affecting its binding properties with either EG-heterodimer or 
with actin.   

2.3      Structure of the V O  Enabling Proton Conduction 

 The  proton conducting V O  sector   of V-ATPase may be formed by fi ve or six subunits 
and two accessory proteins. Indeed,  S. cerevisiae  V O  consists of six different sub-
units (a, c, c′, c′′, d, and e). However, the c′ subunit gene was not found in mam-
malian genome, and thus, the mouse and human V O  are formed only by fi ve subunits: 
a (a1, a2, a3, or a4), c, c′′, d (d1 or d2), and e (e1 or e2). In turn, the mammalian V O  
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also contains the two additional accessory subunits Ac45 and M8-9 [ 1 ,  5 ,  70 ]. 
Structurally, the V O  is composed of a ring of  c - and  c ″-subunits (c/c″ ring) and the 
adjacent single copies of the  a ,  e , Ac45, and M8-9 subunits. As suggested by the 3D 
map of the V O  from bovine clathrin-coated vesicles V-ATPase, the accessory sub-
unit Ac45 interacts with the c/c″ ring from the luminal side [ 71 ]. 

 On the other hand, the N-terminal cytosolic tail of subunit  a  (aN) is oriented 
parallel to the cytoplasmic surface of the membrane in the close proximity to the 
N-terminus of subunit H (Fig.  16.2 ) [ 1 ,  55 ]. Recent small-angle X-ray scattering 
studies of the N-terminal tail  a  104-363 , suggested the connection between the 
cytoplasmic N-terminal (aN) and the transmembrane C-terminal (aC) domains of 
subunit  a  (Fig.  16.2 ) [ 72 ]. This arrangement makes the aN of V-ATPase accessible 
for cytohesin-2 (CTH2) and Arf1, Arf6 small GTPases (Fig.  16.2 ), which is essen-
tial for signaling and traffi cking of various receptors, including EGFR/ErbB recep-
tors (Fig.  16.3 ) [ 1 ,  31 ,  72 ]. Although the structure and orientation of the aN is 
available, the transmembrane topology of its aC remains controversial (Fig.  16.2 ) 
[ 1 ,  26 ]. In yeast a six [ 73 ,  74 ], eight [ 75 ,  76 ], and nine [ 77 ,  78 ] transmembrane helix 
models have been proposed. According to the model with eight helices, both N- and 
the C-termini of the a subunit (Vph1p) are located in the cytosol, which is supported 
by the results showing interaction of phosphofructokinase-1 with the C-terminal tail 
of the human a4- and a1-isoforms [ 79 ]. The moving membrane part of the yeast 
V-ATPase “rotor” is a ring composed by the c-, c′-, and c″-subunits. The c- and 
c′-subunits are 16 kDa proteins, proposed to contain four transmembrane helices 
with two loops exposed to the cytosol, while the c′′-subunit is a 23 kDa polypeptide 
with fi ve putative transmembrane helices, two loops and a C-terminal tail exposed 
to the cytosol [ 80 ,  81 ]. Recently, cryo-EM observation of rotational states in  S. 
cerevisiae  V-ATPase has revealed the involvement of ten c-, c′-, and c″-subunits in 
the ring formation [ 56 ]. Each of these subunits is contributing two transmembrane 
helices to the inner ring and two helices to the outer ring. In addition, this study sup-
ported the eight transmembrane helices model of a-subunit [ 75 ,  76 ]. Remarkably, it 
was found that two of the helices are highly tilted and span the membrane where the 
a-subunit is in contact with the ring of ten c-, c′-, and c″-subunits, providing the new 
insights on the proton conducting mechanist of V O  sector [ 56 ]. The subunit compo-
sition and number of transmembrane helices in the c/c″-rings of mammalian 
V-ATPases are open questions. Recently, the fi rst evidence for the position of sub-
unit e within V O  has been provided [ 82 ].

   The cryo-EM map of yeast V-ATPase revealed that a proton conducting channel 
is formed by the interface between transmembrane helixes of a-subunit and the ring 
of c-, c′-, c″-subunits. This channel is very narrow and occurs near the middle of the 
membrane region [ 12 ,  83 ]. It is important to note that the potent V-ATPase inhibi-
tors  bafi lomycin A1  ( BafA1 ) and  concanamycin A  ( ConA ) bind to the interface 
between a-subunit and the ring of c-, c′-, c″-subunits inhibiting both rotary and 
proton-pumping mechanisms of yeast V-ATPase [ 84 – 86 ]. Although these com-
pounds are very useful to analyze the role of V-ATPases in inside-acidic organelles 
of cultured mammalian cells [ 87 ,  88 ], they are unable to distinguish between 
V-ATPases with different isoforms, which are targeted to specifi c compartments. 
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Therefore, there is an urgent need for the development of a new generation of 
inhibitors capable of selective inhibition of the subset of V-ATPases located at the 
specifi c compartments, such as Golgi, endosomes and lysosomes among others. 
Thus, an accumulating knowledge of high resolution structures of individual 
V-ATPase subunits as well as their interaction interfaces will be important for future 
developments of new generation of: (1) isoform and (2) organelle and/or (3) cell 
specifi c V-ATPase inhibitors (Figs.  16.1  and  16.2 ).    

  Fig. 16.3    Signaling and traffi cking of EGFR/ErbB-receptors in endosomal/lysosomal pathway. 
Scheme shows signaling of epidermal growth factor (EGF) and traffi cking of EGFR/ErbB- 
receptors in clathrin-dependent endocytosis and endosomal/lysosomal protein degradative path-
way. The compartments are shown in yellow/red as follows:  CCV  clathrin-coated vesicles,  EE  
early endosomes,  MVB  multi-vesicular bodies,  LE  late endosomes,  RE  recycling endosomes,  LS  
lysosomes,  AP  autophagosomes,  ER  endoplasmic reticulum. Vesicular traffi cking steps for the 
degradation branch are indicated with  black arrows  and for recycling branch with  blue arrows . 
( EE and super-complex-1 ) Structure and composition of V-ATPase/CTH2/aldolase/Arf1,6 super- 
complex located in early endosomes. V-ATPase in this super-complex functions as pH-sensing and 
cytohesin-2/Arf1,6 signaling receptor which may regulate the traffi cking and signaling EGFR/
ErbB-receptors. ( LE/LS and super-complex-2 ) Structure and composition of a novel V-ATPase/
Ragulator/RagA/C/mTORC1/Rheb super-complex located in late endosomes and lysosomes. This 
complex is involved in sensing levels of amino acids and modulation of mTORC1-dependent 
downstream cellular programs and cell growth. Moreover, reversible association/dissociation of 
V 1 V O  sectors of lysosomal V-ATPase is regulated by signaling of EGFR/ErbB-receptors through 
Akt/Erk pathway ( dashed red arrows )       
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3     The Role of V-ATPases and Their Super-complexes 
in Acidifi cation, Signaling, and Sensing 

 V-ATPase generates an electrochemical proton gradient, forming acidic intracellu-
lar compartments [ 1 – 5 ]. This enzyme is also targeted to the plasma membrane and 
is involved in  extracellular acidifi cation   of specialized cells in kidney [ 89 – 91 ], epi-
didymis [ 90 ,  92 ,  93 ], and bone [ 40 ,  74 ,  94 – 97 ]. It also acidifi es extracellular envi-
ronment in metastatic cancer cells [ 50 – 53 ]. The regulation of V-ATPase is achieved 
by the following three major processes: (1) modulation of acidifi cation by the 
chemiosmotic mechanism; (2) targeting to specifi c organelles; and (3) regulation of 
the enzyme activity through reversible assembly/disassembly V 1  and V O . 

3.1     Chemiosmotic  Process   

 The electrochemical proton gradient generated by V-ATPase consists of a proton 
gradient (ΔpH) and membrane potential (ΔΨ). Using a  FRET approach  , the values 
ΔpH = 2.2 units and ΔΨ = 27 mV were experimentally determined in intracellular 
organelles [ 98 ]. Acidifi cation is predominant function of V-ATPase, which depends 
on its coupled function with Cl − /H + - and Na + /H + -exchangers as an important chemi-
osmotic mechanism regulating acidifi cation of intracellular organelles [ 99 – 102 ].  

3.2      Process of  Subunit-Specifi c Targeting   of V-ATPase 

 The  S. cerevisiae  V-ATPase is targeted by the two  a -subunit isoforms Vph1p and 
Stv1p to the vacuole and Golgi/endosomes, respectively [ 103 ,  104 ]. Studies with 
chimeric proteins revealed that the targeting information is located in the cytosolic 
N-terminal domain of the a-subunit [ 104 ]. Similarly, in mammalian cells, localiza-
tion of V-ATPase in endocytic and exocytic compartments and targeting to the 
plasma membrane depend on  a -subunit isoforms (Figs.  16.2  and  16.3 ) [ 1 – 4 ,  94 ]. Of 
four subunit  a  isoforms ( a 1,  a 2,  a 3 and  a 4) [ 1 – 4 ], V-ATPase with a1 isoform is 
specifi cally targeted to presynaptic membranes and exocytic synaptic vesicles in 
mammalian neurons [ 105 ,  106 ]. Studies with neurosecretory PC12 cells revealed 
that both  a 1 and  a 2 regulate the acidifi cation and neurotransmitter uptake and 
release by exocytic vesicles [ 107 ]. In contrast, V-ATPase with  a 1 is targeted to the 
endocytic pathway in brain microglial cells, and plays role in the fusion between 
phagosomes and lysosomes during phagocytosis, a process of microglial-mediated 
neuronal degeneration [ 108 ]. 

 The  a 2 isoform targets V-ATPases to early endosomes of the endocytic pathway 
of kidney proximal tubule epithelial cells [ 25 ,  26 ,  30 ,  109 ,  110 ]. In these cells, the 
overexpressed recombinant  a 2-isoform ( a 2-EGFP) is also targeted V-ATPase to 
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endosomal compartments [ 31 ]. However, in cultured osteoclast cells and B16 cells, 
both endogenous  a 2 and a1 are targeted to secretory vesicles of Golgi complex in 
the exocytic pathway [ 94 ,  107 ]. Similarly, over-expression of recombinant  a 2 iso-
form ( a 2-EmGFP) in neuroendocrine PC12 cells targets V-ATPase to the Golgi 
apparatus [ 94 ,  107 ]. 

 The V-ATPase with  a 3 is a lysosome specifi c enzyme of osteoclast progenitor. 
During differentiation, the V-ATPase with  a 3 is targeted and localized to the plasma 
membrane of osteoclasts. The osteoclast V-ATPase is involved in bone reabsorption 
and its defect caused infantile malignant osteopetrosis in humans [ 40 ,  74 ,  94 – 97 ]. 
V-ATPase with  a 3 is also targeted to the plasma membrane of breast cancer cells 
and plays an important role in metastatic processes [ 50 – 53 ]. Phagosomes in macro-
phage also acquire the same enzyme from lysosomes [ 111 ], whereas it is specifi -
cally targeted to insulin secretory granules of pancreatic β-cells [ 2 ,  94 ]. 

 The V-ATPase with  a 4 is highly abundant in epididymis and kidney, where they are 
specifi cally targeted to the apical plasma membrane of epididymal clear cells and kid-
ney collecting duct intercalated cells [ 89 – 93 ], indicting that this V-ATPase is involved 
in sperm-maturation [ 92 ,  93 ] and maintenance of acid-balance [ 90 ,  91 ], respectively. 
These results indicate that the  a -subunit isoforms differentially target V-ATPase to the 
plasma membrane or intracellular compartments of the endocytic/exocytic pathways. 
In turn, the specifi c targeting and assembly of the enzyme may modulate acidifi cation 
of extracellular milieu and intracellular organelles [ 1 – 4 ,  93 ,  112 ].   

3.3      Reversible Assembly/ Disassembly   of V-ATPase 

 The regulation of V-ATPases by assembly/disassembly of the V 1 V O  sectors was fi rst 
described in response to ceased feeding in  M. sexta  [ 17 ,  18 ] and in response to glu-
cose depletion in  S. cerevisiae  [ 13 ,  14 ,  19 ]. In  S. cerevisiae , assembly/disassembly 
of the V 1 V O  may be regulated by both  a -isoform (Vph1 or Stv1) and E subunit. 
Evidence for the role of the E subunit in assembly was fi rst obtained from yeast/
mouse hybrid V-ATPase [ 113 ,  114 ]. A null mutant of yeast subunit E expressing the 
mouse (E1 or E2) is functional, indicating that this hybrid V-ATPase with E1 or E2 
is functional as proton pump. However, assembly of the hybrid with E1 became less 
dependent on glucose [ 114 ]. Furthermore, a domain between residues K33 and K83 
of  S. cerevisiae  subunit E could be replaced by the corresponding region of mouse 
E1 [ 114 ,  115 ]. Alanine scanning mutations revealed that the residue E44 of yeast 
subunit E is a key amino acid in regulation of subunit assembly and thus enzyme 
activity [ 115 ]. 

 In  S. cerevisiae , the reversible assembly and disassembly of V 1 V O  sectors is con-
trolled by two distinct mechanisms. While the assembly requires the cytosolic 
RAVE/Rab-Connectins complex (Rav-1, Rav-2, and Skp1), the disassembly pro-
cess involves the cytosolic microtubular network [ 1 ,  2 ,  4 ,  5 ,  15 ,  116 ]. Recent study 
revealed, that RAVE/Rab-Connectins in yeast is an  a -isoform specifi c complex, 
which is necessary for assembly of V-ATPase with Vph1p but not with Stv1p [ 117 ]. 
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Moreover, the reversible assembly/disassembly of the yeast V 1  and V O  is also 
controlled by the direct interaction of V-ATPase with cytosolic aldolase, a central 
enzyme of the glycolysis (Fig.  16.2 ). The assembly/disassembly and interaction 
with aldolase is modulated by the Ras/cAMP/PKA pathway [ 118 ], suggesting that 
V-ATPases may act as a cytosolic glucose-sensor (Fig.  16.2 ) [ 119 – 121 ]. However, 
in mammalian kidney proximal tubule cells, glucose regulation on V-ATPase is 
modulated by the phosphatidylinositol 3-kinase (PI3K) pathway [ 21 ]. In dendritic 
cells, the assembly of V 1 V O  is also regulated through the PI3K/mTOR-dependent 
pathway and is critical for lysosomal acidifi cation, protein degradation, and antigen 
presentation (Fig.  16.3 ) [ 20 ,  24 ]. Thus, it is generally accepted that various regula-
tory pathways are involved in controlling assembly/disassembly of V-ATPase in 
eukaryotic cells and, therefore, in modulation of its function as well as acidifi cation 
of intracellular organelles and extracellular milieu [ 22 ].   

3.4     Novel Role of V-ATPases in Regulation of  Signaling   
and Traffi cking of Cellular  Receptors   

 A novel role of V-ATPases in regulation of signaling, traffi cking, and degradation of 
various cellular receptors has emerged recently. Endocytosis is an essential cellular 
process that is used by eukaryotic cells for the internalization of various receptors 
localized in the plasma membrane. As shown previously, the clathrin-dependent 
endocytosis pathway mediates internalization of Fz/LRP6, PRR, Notch, transferrin, 
megalin/cubilin, and EGFR/ErbB receptors among others (Fig.  16.3 ) [ 1 ,  31 ,  122 ]. 
Mounting evidence indicates that the V-ATPase is not only establishing the acidic 
pH in endocytic organelles but is also functioning as a cytohesin-2/Arf1,6 small 
GTPases signaling receptor (Fig.  16.2 ). Moreover, the V-ATPase is involved in 
direct interactions with critical cellular receptors, and thus, could modulate their 
signaling, traffi c, and degradation along the endocytic pathway (Fig.  16.3 ). These 
emerging roles of V-ATPase will be discussed below.  

3.5       V-ATPase and Epidermal Growth Factor Receptors 
(EGFR/ErbB’s) 

 The  epidermal growth factor receptor (EGFR     ) was among the fi rst discovered 
growth receptors that regulate crucial cell biological processes including cell prolif-
eration [ 123 ,  124 ]. The EGFR/ErbB-receptors (EGFR/ErbB’s) family comprises 
four members (EGFR/ErbB1, ErbB-2, ErbB-3, and ErbB-4) and are involved in the 
development of a variety of cancers [ 124 – 127 ]. Activation of EGFR/ErbB-receptors 
by extracellular EGF ligand promotes their hetero-dimerization with subsequent 
activation of TK-domains and tyrosine trans-phosphorylation of the cytoplasmic tail. 
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However, the cytoplasmic proteins that could modulate EGF-induced activation 
and signaling of EGFR/ErbB-receptors were largely unknown. 

 Cytohesin-2 (CTH2) has been identifi ed recently as a cytoplasmic activator of 
EGFR/ErbB-receptors (Fig.  16.3 ) [ 128 ,  129 ]. CTH2 enhances trans-dimerization 
and activation of EGFR/ErbB’s by direct binding with TK-domains of dimerized 
receptors and by facilitating conformational changes and trans-phosphorylation of 
these domains. Figure  16.3  illustrates the signaling of the epidermal growth factor 
(EGF) through EGFR/ErbB’s localized in the plasma membrane and early endo-
somes. The crucial role of CTH2 in hetero-dimerization of these receptors is also 
indicated. The fi gure also shows the V-ATPase dependent traffi cking and signaling 
of EGFR/ErbB-receptors through the clathrin-dependent endocytosis endosomal/
lysosomal protein degradation pathway. In particular, a novel important role of the 
assembly/disassembly of V 1 V O  and V-ATPase-dependent late endosomal/lysosomal 
acidifi cation in EGFR/ErbB-receptors function has been recently revealed [ 23 ]. It 
was demonstrated that EGF/EGFR-dependent signaling promotes the rapid recruit-
ing of cytosolic V 1  sectors of the V-ATPase and increases its assembly with V O  on 
late endosomal/lysosomal compartments. This assembly in turn increases V-ATPase 
driven lysosomal acidifi cation, protein degradation, and release of amino acids 
needed for Rheb(GTP) and mTORC1 activation (Fig.  16.3 ). V-ATPase is playing an 
indirect role in EGF-dependent activation of mTORC1 signaling pathway by modu-
lating the assembly/disassembly of V 1  and V O  [ 32 ]. This is the fi rst evidence show-
ing the functional assembly of V-ATPase in response to the signaling of EGFR/
ErbB-receptors. In this way, V-ATPase regulates mTORC1 signaling and traffi cking 
EGFR/ErbB-receptors within the endosomal/lysosomal protein degradation path-
way (Fig.  16.3 ) [ 23 ,  32 ]. Thus, V-ATPase-dependent acidifi cation and cytohesin-2/
Arf1,6 small GTPases signaling (Fig.  16.2 ) may play a key role in the modulation 
of EGFR/ErbB-receptors function, and is pivotal for the sustained signaling, recy-
cling, or degradation (Fig.  16.3 ).    

3.6     V-ATPase,  Insulin-Like Growth Factor-1 Receptor 
(IGF-1R)  , and  Heme-Responsive Gene 1 (HRG-1) Protein   

 Both the  growth hormone (GH)   and insulin-like growth factor 1 (IGF-1) exert pow-
erful control over lipid, protein and glucose metabolism. The function of GH/IGF-I 
signaling pathway is associated with longevity, and thus, aging related morbidities 
including diabetes and cancer [ 130 ,  131 ]. This pathway also plays roles in mainte-
nance and repair of muscles [ 132 ]. Signaling by insulin-like growth factor receptor 
(IGF-1R) controls expression of heme-responsive gene 1 (HRG-1) that encodes a 
16 kDa transmembrane protein. A recent study revealed specifi c targeting of this 
protein to early endosomes and its direct interaction with V-ATPase  c -subunit [ 133 ]. 
Increased expression of HGR-1 enhances V-ATPase activity in the plasma mem-
brane, lowers the extracellular pH and activates pH-dependent matrix metallopro-
teinases. HRG-1 also increases endosomal V-ATPase activity, which promotes 
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traffi cking of the IGF-1R, β1-integrin and glucose transporter-1 (GLUT-1) with 
concomitant increase of glucose uptake, cancer cell growth, migration and invasion. 
Thus, HRG-1 may represent a novel target for selectively disrupting V-ATPase 
activity and the metastatic potential of cancer cells [ 133 ,  134 ].  

3.7       V-ATPase and Frizzled (Fz) and  Low-Density Receptor-
Related Protein (LRP6     ) Receptors 

 The Wnt/β-catenin, Wnt/PCP(planar cell polarity) and Wnt/Ca 2+  signaling path-
way s  are essential mechanisms that control embryonic tissue development, homeo-
stasis, cell proliferation, polarity, and apoptosis [ 135 ,  136 ]. They are strongly linked 
to the development of a variety of human diseases including metastatic cancers 
[ 135 ,  136 ]. The direct role of V-ATPase in regulation of Wnt/β-catenin and Wnt/
PCP signaling pathways has been uncovered recently [ 137 ,  138 ]. It was shown that 
signal transmission after association of Wnt ligands with Fz/LRP6 co-receptors 
requires direct interaction of LRP6 with an accessory M8-9 subunit of V-ATPase, 
also called V-ATPase lysosomal accessory protein-2 (ATP6AP2). This interaction 
takes place in early endosomes and the ATP6AP2 subunit acts as an adaptor that 
brings together V-ATPase and the Wnt/Fz/LRP6 receptor complex. Thus, both 
direct and electrochemical regulation by V-ATPases are involved in signaling of 
Wnt/Fz/LRP6 in endosomes involved in the protein degradation pathway.    

3.8     V-ATPase and  (Pro)renin Receptor (PRR     ) 

 The  (pro)renin receptor (PRR)  , a single transmembrane cell surface receptor, plays 
a central role in activating the local renin-angiotensin system. Binding of prorenin 
to PRR induces its conformational change, allowing conversion of angiotensino-
gen to angiotensin-I, which is subsequently converted to angiotensin-II by an 
angiotensin-converting enzyme [ 139 ,  140 ]. However, an angiotensin-independent 
function of PRR has also been recently reported, which was identifi ed as an acces-
sory ATP6AP2 subunit of V-ATPase [ 137 ,  138 ,  140 ,  141 ]. Tissue-specifi c condi-
tional knockout experiments confi rmed a role of PRR/ATP6AP2 in assembly of 
V-ATPase in murine cardiomyocytes [ 142 ]. Importantly, the level of prorenin is 
elevated during diabetes and over-activation of PRR is associated with develop-
ment of hypertension and diabetic kidney disease [ 122 ,  143 ]. The role of PRR in 
kidney function and its association with diabetes and hypertension has been 
recently reviewed [ 122 ,  140 ,  141 ,  143 ]. Thus, future studies in this area could lead 
to the novel therapeutic approaches for the treatment of hypertension, diabetes, and 
their complications [ 122 ].  
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3.9      V-ATPase and  Notch Receptor   

 The cell-to-cell signaling by the Notch receptor pathway is critical during develop-
ment and tissue regeneration for controlling the balance between cell proliferation 
and apoptosis. Pathological loss of regulation of Notch receptor signaling is also a 
hallmark of different cancers [ 144 ,  145 ]. Activation of the Notch receptor by ligands 
gives rise to its cleavage by  γ -secretase-mediated intra-membrane proteolysis fol-
lowed by activation of specifi c target genes. Surprisingly, recent studies revealed 
that V-ATPase driven acidifi cation may control two opposite processes in the Notch 
signaling in  Drosophila : (1) lysosomal degradation and loss of regulation of Notch 
receptors; and (2)  γ -secretase-mediated Notch receptor activation in early endo-
somes [ 146 ]. Moreover, Notch receptor signaling is also controlled by Rabconnectin-
3A/B (Rbcn-3) through regulating V-ATPase both in  Drosophila  and mammalian 
cells [ 147 ,  148 ]. It is noteworthy that mammalian Rbcn-3 protein is a homolog of 
yeast Rav-1, which forms a part of the RAVE (Rav-1, Rav-2, and Skp1) complex. 
Interaction of Rav-1 with V-ATPase is essential for reversible assembly/disassem-
bly of the yeast V 1  and V O  [ 15 ,  116 ,  149 ]. Similar to Wnt-signaling, these studies 
also revealed two mechanisms of Notch-signaling modulation by V-ATPase in 
mammalian cells: (1) through subsequent Rbcn-3/V-ATPase interaction and (2) 
V-ATPase-driven acidifi cation leading to activation of γ-secretase [ 138 ,  146 – 148 ].   

3.10      V-ATPase as  pH-Sensor and Cytohesin-2/Arf Small 
GTPases   Signaling Receptor 

 The Arf-family small GTPases belong to the Ras-superfamily that are involved in 
regulation of a great variety of cellular pathways [ 150 ]. These GTPases function as 
“molecular switches” and the transition between “on” and “off” is mediated by a 
GDP/GTP cycle. In particular, activation of Arf small GTPases is accomplished by 
the cytohesin-family of  guanine nucleotide exchange factors (GEFs)  . Cytohesin-
family GEFs include cytohesin-1, cytohesin-2 (CTH2) (also known as ARNO), cyto-
hesin-3 (also known as GRP1), and cytohesin-4. The generally accepted functions of 
cytohesin/Arf small GTPases are regulation of organelle biogenesis, modulation of 
vesicular traffi cking, and actin cytoskeleton remodeling [ 151 – 153 ]. However, cyto-
hesins have also emerged recently as central modulators of signaling and traffi cking 
of plasma membrane receptors including: (1) EGFR/ErbB [ 128 ,  129 ], (2) insulin-
receptor (IR) and insulin-like growth factor-1 receptor (IGF-1R) [ 154 – 158 ], (3) 
VEGF-2R [ 159 ], and (4) integrins [ 160 ,  161 ]. In particular, cytohesin-1 and -2 have 
been identifi ed as activators of EGFR/ErbB’s that are involved in regulation of cell 
proliferation and oncogenesis [ 128 ,  129 ]. Cytohesins are also crucial downstream 
effectors for the IR and IGF-1R signaling cascade involved in regulation of calorie 
restriction pathway, longevity, and aging process [ 154 – 158 ,  162 – 164 ]. 
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 Previously, our laboratory focused on studies of the functional interplay between 
V-ATPase and cytohesin-2/Arf1,6 small GTPases in endosomal/lysosomal protein 
degradation pathway [ 30 ,  109 ,  165 ,  166 ]. The cytohesin-2 and Arf1, Arf6 are specifi -
cally targeted to early endosomes of this pathway and co-localized with V-ATPase in 
kidney proximal tubule cells (Figs.  16.2  and  16.3 ) [ 30 ,  109 ]. Moreover, subsequent 
work from our laboratory revealed that V-ATPase itself functions as a novel long-
sought pH-sensor or pH-sensing receptor. In particular, V-ATPase containing a2 iso-
form is specifi cally targeted to early endosomes and directly interacts with cytohesin-2 
(CTH2) in acidifi cation-dependent manner, suggesting that the a2 is a putative pH-
sensing receptor (Fig.  16.2 ) [ 25 ,  26 ]. According to this concept, V-ATPase is not only 
responsible for proton pumping and the generation of a pH gradient but also involved 
in sensing the levels of acidifi cation and transmitting this information through mem-
brane. Moreover, other isoforms (a1, a3, and a4) were also found to interact with 
CTH2 [ 167 ]. Taken together, these results suggest that pH-sensing by V-ATPases and 
interaction with cytohesin-2/Arf1,6 small GTPase is a general phenomenon, which 
may take place in other acidic organelles of both the exocytotic and the endocytic 
pathways. We have uncovered the molecular details of unexpected function of 
V-ATPases, as an evolutionarily conserved pH-sensing and cytohesin-2/Arf1,6 small 
GTPases signaling receptor (Fig.  16.2 ) [ 1 ,  2 ,  25 – 27 ,  31 ,  167 ].    

4     Functions of V-ATPase in Normal and Disease States 

 In this section, we discuss roles of V-ATPases in regulating vesicular traffi cking and 
the development of various disease states. First, our focus is the role of V-ATPases 
in cancer development and metastasis process. Second, we analyze its role in modu-
lation of exocytic/secretory pathway during pathogenesis of diabetes and bone dis-
eases. Third, we discuss the roles of V-ATPases in regulating two novel 
super-complexes localized in endocytic or endosomal/lysosomal protein degrada-
tion pathway (Fig.  16.3 ). We also discuss their roles in cancer as well as aging and 
age-related diseases. 

4.1     V-ATPase in Cancer Development and Metastasis 

 Human and mouse a1 and a2 are expressed ubiquitously under physiological condi-
tions, whereas a3 and a4 are specifi cally expressed and targeted to the plasma mem-
branes of bone osteoclast and kidney intercalated cells, respectively [ 73 ,  92 ,  93 , 
 168 ,  169 ]. Previous studies suggested that the a subunit targets V-ATPase to differ-
ent compartments and plasma membranes as well as senses the  pH-gradien  t formed 
during acidifi cation (Fig.  16.2 ) [ 1 ,  2 ]. V-ATPases with specifi c a-isoforms have 
been detected at the plasma membrane of the breast, ovarian, and prostate cancer 
cells. The role of V-ATPase dependent extracellular acidifi cation was studied exten-
sively in development and invasive phenotype of these metastatic tumors. 
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4.1.1       Breast Cancer   

 Early studies have demonstrated that V-ATPases are expressed in the plasma 
membrane of invasive cancer cells [ 170 ]. V-ATPase was found to be more promi-
nently expressed in the highly metastatic MDA-MB231 breast cancer cells, which 
are more invasive and migratory than the less metastatic MCF-7 breast cancer cells. 
Moreover, inhibition of V-ATPase by  BafA1  signifi cantly reduces the in vitro inva-
sion of MDA-MB231 but not MCF7 cells [ 50 ]. These results indicate that targeting 
of V-ATPase to the plasma membrane is correlated with metastatic phenotype of the 
breast cancer cells. However, the mechanism of V-ATPase function and the subunits 
involved in its targeting to the plasma membrane remain obscure. Further studies 
have focused on the role of the a-subunit isoforms in cancer. Although all four iso-
forms are found in MDA-MB231 but not MCF7 cell lines, the expression levels of 
a3 and a4 are signifi cantly higher in metastatic MDA-MB231 than in non-metastatic 
MCF-7 cells. In addition, siRNA knockdown experiments further demonstrated the 
role of a3 and a4 isoforms in targeting V-ATPase to the plasma membrane and inva-
sive phenotype of MDA-MB231 cells [ 51 ]. Similar role of a3 was found in inva-
siveness of MCF10CA1 but not MCF10a breast cancer cells [ 52 ]. Finally, the recent 
studies demonstrated that invasiveness of breast cancer cells could be modulated by 
cell-impermeable molecules targeting extracellular parts of V-ATPase: (1) a biotin-
conjugated  BafA1  or (2) the monoclonal antibody directed against the V5 epitope 
constructed on the extracellular loop of V O  c-subunit [ 53 ]. 

 Other roles of V-ATPase in breast cancer development and metastasis have been 
revealed recently. First, V-ATPase is required for traffi cking of Rab27B small 
GTPase dependent pro-invasive secretory vesicles which promote an invasive 
growth and metastasis in estrogen receptor (ER) alpha-positive breast cancer 
patients. Therefore, a role of V-ATPase in invasive growth and metastasis of 
ER-alpha-positive breast cancer has been suggested [ 171 ]. This study demonstrated 
that inhibiting V-ATPase by  BafA1  or silencing of a1 or d subunits might be an 
effective strategy for blocking Rab27B-dependent pro-invasive secretory vesicles 
which are involved in secretion of pro-invasive growth regulators. Second, 
V-ATPase driven acidosis of tumors may also control the pro-apoptotic protein 
Bnip3 death pathway [ 172 ]. Accordingly, it was reported that pharmacologic inhibi-
tion of V-ATPase with  BafA1  could effectively activate Bnip3 pathway, promote 
death of breast cancer cells and signifi cantly reduced tumor growth in MCF7 and 
MDA-MB-231 mouse xenografts in vivo. Importantly, the combined treatment of 
mice bearing the breast MDA-MB-231 xenografts with  BafA1  and ERK1/2 inhibi-
tor  sorafenib  has potentiated action of two inhibitors for tumor regression. These 
results present a novel mechanism to kill cancer cells and reverse resistance of 
breast hypoxic tumors. Third, breast cancer invasive cells are resistant to anoikis, a 
specifi c type of apoptosis promoted by loss of cell–matrix contact. A recent study 
demonstrated, that triggering of anoikis by V-ATPase inhibitor  archazolid  is prom-
ising therapeutic approach to reduce metastasis of breast cancer cells in mouse 
model in vivo [ 173 ]. Forth, very recent study has identifi ed a novel tumor-metastasis 
related gene 1 (TMSG1) as a regulator of activity of V-ATPase and secreted metal-
loproteinase-2 in breast cancer cells [ 174 ]. 
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 All together, these studies suggest that V-ATPase could modulate invasiveness 
and breast tumor metastasis due to acidifi cation of extracellular milieu and subse-
quent activation of metalloproteases. On the other hand, V-ATPase also controls 
apoptotic cell death and regulates vesicular traffi cking and secretion of pro-invasive 
growth factors. Importantly, in breast cancer cells both invasiveness and metastasis 
could be controlled by targeting extracellular part of plasma membrane V-ATPase 
[ 175 – 177 ].   

4.1.2       Ovarian Cancer   

 The role of V-ATPase in invasiveness and metastasis has also been recently 
addressed in ovarian carcinoma. Particularly, the expression, targeting, and function 
of a-subunit isoforms were studied in ovarian cancer tissues as well as in ovarian 
cancer A2780, SKOV-3, TOV-112D cell lines [ 178 ]. The a2-isoform is predomi-
nantly expressed in these cells and targeted V-ATPase to the plasma membrane. 
Under physiological conditions, a2-isoform is predominantly located in early endo-
somal compartment or Golgi and, thus, it relocates to the plasma membrane during 
tumorigenesis and metastasis. This study also reveals co-association of a2-isoform 
with cortactin, a protein involved in invasion of tumor cells. Targeting of a2 with 
monoclonal antibody reduces the activity of matrix MMP-2 and MMP-9 metallo-
proteinases and invasiveness of these ovarian cancer cells. These fi ndings suggest 
that a2-isoform could be promising target for developing novel therapeutic anti-V-
ATPase antibodies against ovarian carcinoma [ 178 ]. Finally, an important role of 
the a2-isoform derived secretory peptide in infl ammation, angiogenesis, and tumor-
igenesis was also proposed [ 179 – 182 ].   

4.1.3       Prostate Cancer and Tumor Angiogenesis   

 Angiogenesis is recognized as one of the hallmarks of cancer which enable tumor 
growth and metastatic dissemination [ 127 ]. Moreover, tumors are currently recog-
nized as abnormal organs consisted of a complex mixture of the cells interacting 
and signaling with each other and required stable supply of nutrients and oxygen for 
their needs [ 183 ]. The cancer-induced neovascularization is triggered by pro-angio-
genic signaling and cell-to-cell cross talk. In particular, plasma membrane V-ATPase 
was implicated in regulation of intracellular pH and migration of microvascular 
endothelial cells [ 184 ,  185 ]. Moreover, V-ATPase is taking part in cross talk and 
regulation of communication between microvascular endothelial and metastatic 
cells promoting acidifi cation of extracellular space and favors protease activity 
[ 186 ]. A different mechanism of cross talk in metastatic prostate cancer cells 
involves regulation of V-ATPase by  pigment epithelium-derived factor (PEDF)  , a 
potent endogenous inhibitor of angiogenesis. Thus, PEDF was identifi ed as novel 
regulator of V-ATPase and suggested the mechanism of its inhibition of prostate 
tumor growth. 
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 In summary, during last decade V-ATPase emerged as a crucial enzyme for 
tumorigenesis and metastatic phenotype of breast, ovarian, and prostate cancers. 
However, during last years the pathophysiological role of V-ATPase in the develop-
ment of other tumors including: melanoma [ 187 ], hepatocellular carcinoma [ 188 ], 
oral squamous carcinoma [ 189 ], esophageal squamous carcinoma [ 190 ], non-small-
cell lung cancer [ 191 ], gastric cancer [ 192 ], colon cancer [ 193 ], and pancreatic can-
cer [ 194 ] were also studied.    

4.2     V-ATPase  in Insulin Secretion and Diabetes Mellitus   

 V-ATPases play also essential roles in specifi c organelles of differentiated cells, 
especially those involved in exocytosis. The secretory granules have acidic luminal 
pH (5.0–5.5), important for condensation and maturation of their content. It has 
been suggested that the inside acidic pH or proton gradient across organelle mem-
branes is involved in fusion of the vesicles to target membranes. Interesting ques-
tion is which a-subunit isoform is expressed in secretory vesicles of mammalian 
cells. We have focused on the role of a-isoforms in insulin secretion, since previous 
studies suggested that V-ATPases may be pertinent for the insulin secretion [ 8 ,  195 ]. 
Of four isoforms, the a3 was detected in almost all cells in pancreatic Langerhans 
islet, and localized to the membranes of insulin containing granules in β-cells. 
Consistent with this fi nding, oc/oc mutant mice, homozygous 1.6 kb deletion of the 
a3-locus, exhibited reduced insulin secretion into blood upon glucose administra-
tion. However, the mutant β-cell contained essentially the same amount of mature 
insulin as the wild-type cell. Thus, the secretion of insulin was impaired in mutant 
β-cells. These results suggest that the a3-isoform has a direct function in exocytosis, 
possibly for fusion of the secretory vesicles to plasma membranes. The human 
ATP6i gene encoding the a3-isoform was mapped to a chromosome 11q13, and is 
located about 200 kb apart from LRP5 locus, which shows strong linkage to the 
disease. It is highly likely that alteration of ATP6i could also contribute to Type 1 
diabetes [ 196 ]. We have identifi ed that V-ATPase with a3 is highly expressed in 
endocrine tissues such as adrenal, parathyroid, thyroid and pituitary gland. Thus, a3 
may be commonly involved in exocytosis of endocrine tissue and play an important 
role in the pathogenesis of endocrine and metabolic diseases including diabetes 
mellitus [ 8 ].  

4.3      V-ATPase  in Bone Homeostasis and Diseases   

 Bone homeostasis is maintained through the equilibrium between bone genesis and 
resorption by osteoblast and osteoclast, respectively. Defects of these cells are 
related to bone diseases such as osteopetrosis and osteoporosis. Osteoclast gener-
ates proton fl ux into bone resorption lacuna to mobilize bone calcium. This 
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acidifi cation is carried out by V-ATPases, which are localized in the osteoclast 
plasma membrane. We have shown that a3 and d2 subunits are components of the 
osteoclast enzyme [ 40 ,  75 ]. Mammalian subunit d has two isoforms: ubiquitous d1 
isoform and osteoclast/kidney/epididymis specifi c d2 isoform [ 40 ]. In contrast to 
the plasma membrane localization in osteoclast, the a3 isoform was found in late 
endosome/lysosome in NIH3T3 or RAW264.7 cells. 

 Murine macrophage line RAW264.7 can differentiate to multinuclear osteoclast-
like cells. Upon stimulation with RANKL (Receptor Accepter Nuclear κB Ligand) 
from osteoblast, RAW264.7 cell differentiate into multinuclear osteoclast. During 
the differentiation, V-ATPase containing a3 isoform was transported to the cell 
periphery together with lysosome marker proteins, and fi nally assembled to the 
plasma membrane. The d2 isoform was also induced and assembled to the plasma 
membrane V-ATPase. Thus, secretory lysosomes should be involved in the forma-
tion of osteoclast plasma membranes. The splenic macrophage (from a3 knockout 
mice) lacking the a3-isoform could differentiate to multinuclear cells, which express 
osteoclast marker enzymes and V-ATPase with d2 and a1 or a2 isoforms [ 40 ,  197 ]. 
However, the multinuclear cell could not adsorb calcium phosphate, indicating that 
V-ATPase with d2/a2- or d2/a1-subunit isoforms could not perform the function of 
that with d2/a3-subunit isoforms containing V-ATPase. 

 In summary, we have studied the targeting and function of a3-isoform both in 
endocrine tissues and in bone osteoclasts. Remarkably, while in pancreatic β-cells 
a3 is targeting the V-ATPase to the membranes of insulin containing secretory gran-
ules of exocytic pathway, in bone osteoclast the V-ATPase with a3-isoform is 
expressed in plasma membrane and late endosomes/lysosomes of endocytic path-
way. However, our results strongly suggest that V-ATPase a3 is localized into spe-
cialized secretory lysosomes in osteoclasts. These specialized lysosomes are not 
functioning as common endocytic lysosomes, but instead are transported to cell 
periphery and fused with plasma membrane, using the mechanism similar to exocy-
tosis. In accordance with the pivotal role of V-ATPase in bone homeostasis, multiple 
mutations of the a3-isoform give rise to diseases of bone resorption and are associ-
ated with osteopetrosis in both mice models and humans [ 41 ,  46 ,  95 ,  198 ,  199 ].   

4.4       V-ATPase and  mTORC1     /Ragulator/Rag/Rheb Small 
GTPases Super-complex in Cancer, Diabetes, and Age-
Related Diseases 

 The mammalian target of rapamycin (mTOR) is a large cytosolic serine-threonine 
kinase that controls cellular growth and metabolism. Under physiological condi-
tions both mTORC1 and mTORC2 are involved in neonatal autophagy and sur-
vival as well as development of obesity and aging processes in adulthood. 
Abnormal function of mTORC1 and mTORC2 are implicated in the pathogenesis 
of many diseases including cancer, diabetes, age-related diseases, aging, and 
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longevity [ 34 ,  35 ,  163 ,  200 – 204 ]. The mTOR belongs to the superfamily of 
phosphatidylinositol-3 kinase related-kinases (PI3KK) that forms the core of two 
functionally distinct complexes: mTORC1 and mTORC2. As mTORC1 primarily 
responds to the levels of amino acids, oxygen, energy and cellular stress stimuli, 
mTORC2 plays a central role in the growth factor and insulin signaling cascades 
(Fig.  16.3 ) [ 33 – 35 ]. mTORC2 also regulates cytoskeleton function, metabolism, 
and cell survival [ 35 ,  205 ]. V-ATPase has been identifi ed recently as an important 
component of the mTORC1 regulatory super-complex and signaling pathway 
[ 32 ]. This super-complex, formed by V-ATPase, Ragulator, Rag, mTORC1, and 
Rheb, is associated with late endosomes and lysosomes of the protein degradation 
endocytic pathway (Fig.  16.3 ) [ 32 ,  206 ,  207 ]. Localization of mTORC1 on the 
late endosoaml/lysosomes membrane is also critical for its activation as a multi-
functional serine–threonine kinase and is regulated by two types of small GTPases: 
(1) Rheb GTPase (Ras homolog enriched in brain); and (2) Rag GTPases. It is 
well recognized, that Rheb is a potent activator of mTORC1, which transmit signals 
of growth factors, oxygen, energy supply, and stress via the  tuberous sclerosis com-
plex (TSC)  , acting as a  GTPase activating protein (GAP)   for Rheb small GTPase. 

 Although amino acids are known to modulate cell growth and homeostasis, the 
molecular aspects of their regulation of mTORC1 function remained elusive. 
However, Sabatini and coworkers have shown recently that V-ATPase is a major 
player in the amino acids dependent recruitment, activation and signaling of mTORC1 
[ 32 ]. V-ATPase is involved in sensing the levels of intra-lysosomal amino acids 
through the direct interaction with the Ragulator complex, that acts as a GTPase 
GTP/GDP-exchange factor for Rag small GTPases [ 33 ,  208 ]. They have proposed 
that the primary function of amino acid-dependent V-ATPase/Ragulator/Rag-
signaling complex is to promote recruiting mTORC1 to lysosomal membrane, and 
thus trigger the TSC/Rheb-driven “ignition key” for the activation of the kinase activ-
ity of lysosomal mTORC1 complex. In their scenario, V-ATPase plays a direct role 
in intra-lysosomal sensing of amino acids and trans-membrane signaling to mTORC1. 

 Recent studies demonstrated, that mTORC1 is also activated by EGF via EGFR-
receptor signaling pathway (Fig.  16.3 ). Then, the activation of mTORC1 involves 
in the Akt/Erk activation, TSC complex inhibition, and Rheb(GTP) formation. In 
contrast to amino acid-induction studies [ 32 ], EGF signaling pathway does not 
accompany mTORC1 recruitment from the cytosol and its translocation to the lyso-
somal membrane [ 23 ,  32 ]. Instead, the EGF signaling promoted the rapid recruit-
ment of V 1  sectors and increased assembly of ATPase in late endosomal/lysosomal 
compartments. Thus, the novel role of V-ATPase in regulation of mTORC1 signal-
ing and traffi cking EGFR/ErbB-receptors within the endosomal/lysosomal protein 
degradation pathway is a crucial mechanism controlled by the assembly/disassem-
bly of the V 1  and V O  (Fig.  16.3 ) [ 23 ,  32 ]. 

 In summary, lysosomes and related organelles play a regulatory role in cellular 
protein degradation and energy production using V-ATPase/mTORC1 “sensing 
machinery” to monitor both lysosomal and cytosolic amino acid content as indi-
cator of nutritional status of the cell. This physiological information is further 

16 V-ATPase and its Super Complexes



322

communicated to the nucleus to activate the gene expression programs allowing 
lysosomes to regulate their own function [ 209 ]. This quality control process is 
declining over life span, contributing to cancer and aging associated diseases, and 
thus, V-ATPase/mTORC1/Ragulator/Rag/Rheb small GTPases super-complex is 
considered as an important drug target.    

4.5      V-ATPase and Cytohesin-2/aldolase/Arf1,6 Small GTPases 
Super-complex in Cancer, Diabetes, and Age-Related 
Diseases 

 Our recent studies uncovered, that in addition to its primary role as a proton-pump, 
V-ATPase also functions as a pH-sensing and cytohesin-2/Arf1,6 small GTPases 
signaling receptor (Fig.  16.2 ) [ 1 ,  2 ,  25 ,  27 ,  31 ]. However, the molecular mechanism 
of interaction between these proteins as well as functional signifi cance of the signal-
ing remain unclear. Thus, we also focused on the mechanism of interaction between 
N-terminal cytosolic tail of a2-subunit ( a 2N) of V-ATPase and  cytohesin-2 (CTH2)   
[ 28 ]. The interaction sites between these two proteins were mapped using the com-
bination of recombinant proteins/synthetic peptides pull-down and surface plasmon 
resonance (SPR) experiments. Two structural elements involved in specifi c and 
high affi nity association of the a2 isoform with CTH2 were identifi ed: (1) an 
N-terminal binding motif formed by the fi rst 17 amino acids of the  a 2N ( a 2N1–17 
peptide) and (2) the catalytic Sec7 domain of CTH2 [ 28 ,  31 ]. The SPR experiments 
further confi rmed that these structural elements are major binding sites between 
 a 2N of V-ATPase and CTH2. Furthermore, this analysis revealed a strong binding 
affi nity between this  a 2N1-17 peptide and the Sec7-domain of CTH2, with a dis-
sociation constant of  K   D   = 3.44 × 10 −7  M, similar to the binding affi nity  K   D   = 3.13 × 10 −7  
M between full-length  a 2N and CTH2 proteins (Fig.  16.2 , interfaces I and II). 
Analysis of enzyme activity confi rmed that  a 2N1-17 peptide is crucial for V-ATPase/
CTH2 signaling and regulate the cytohesin-2 enzymatic Arf-GEF activity. Indeed, 
these studies revealed that  a 2N1-17 peptide is a potent inhibitor of the GDP/GTP-
exchange activity of CTH2, that is acting through its direct interaction with the cata-
lytic Sec7 domain. The α-helical structure of  a 2N1-17 and its residues F5, M10, 
Q14 binding with the Sec7 domain were also identifi ed by NMR spectroscopy anal-
ysis (Fig.  16.4a, b ). In silico docking studies have shown that  a 2N1-17 epitope of 
V-ATPase competes with the switch-2 region of Arf1,6 for binding to the Sec7 
domain of CTH2 (Fig.  16.4c, d ). Together, these experiments revealed the structural 
basis and molecular details of mechanism of signaling between V-ATPase and 
CTH2/Arf1,6 small GTPases (Fig.  16.4 ).

   Although our previous work uncovered a functional cross talk between V-ATPase, 
cytohesin-2, and Arf1,6 small GTPases, other downstream effectors and related cell 
biological events have not been unraveled. However, since V-ATPase interacts with 
both cytohesin-2 and aldolase, we suggested that these proteins could in turn inter-
act with each other, forming V-ATPase/cytohesin-2/Arf1,6/aldolase super-complex. 
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The super-complex coordinates endocytic vesicle traffi cking and downstream 
signaling of receptors (Fig.  16.3 ). The direct interaction of aldolase with cytohe-
sin-2 through its PH-domain was shown by the pull-down and SPR experiments 
(Fig.  16.2 ). This approach revealed a two-step interaction between these two pro-
teins with  K  D1  = 1.1 × 10 −4  M and  K  D2  = 2.7 × 10 −6  M, clearly indicating a potential 
regulatory mechanism of this interaction (Fig.  16.2 , interfaces III and IV). Moreover, 
using a cell fractionation approach, we demonstrated the association of aldolase 
with early endosomes and formation of V-ATPase/cytohesin-2/Arf1,6/aldolase 
super-complex (Figs.  16.2  and  16.3 ). The aldolase knockdown experiments further 
uncovered the functional signifi cance of interactions within V-ATPase/cytohesin-2/
Arf1,6/aldolase super-complex. It was shown that the direct interaction between 
aldolase and cytohesin-2 are important in: (1) gelsolin gene expression, (2) actin 
cytoskeletal rearrangement, and (3) redistribution of endosomal vesicles within 
endocytic protein-degradation pathway [ 167 ]. 

 In summary, a novel V-ATPase/cytohesin-2/Arf1,6/aldolase super-complex 
identifi ed on early endosomes may be involved in regulation of the signaling recep-
tors and function of the protein degradation pathway (Figs.  16.2  and  16.3 ). Moreover, 
these data indicate that pH-dependent binding and signaling between V-ATPase and 
cytohesin-2 may modulate the interaction of the a-subunit isoforms with aldolase 
and/or the GE-heterodimer forming peripheral stalks and consequently modulate 
the reversible association/dissociation of the V 1  and V O  of V-ATPase (Fig.  16.2 ) [ 1 , 
 2 ]. Thus, evolutionarily acquired pH-sensing and cytohesin-2/Arf1,6-signaling 
function of V-ATPase, and its interaction with aldolase, may be an integral part 
of the self-regulatory mechanism of the enzyme as a proton-pumping rotary 
nano-motor. 

 On the other hand, downstream effectors of V-ATPase/cytohesin-2/Arf1,6/aldol-
ase super-complex have also recently emerged. Cytohesin-1/2 family Arf-GEFs are 
shown to play role in regulation of signaling and traffi cking of EGFR/ErbB and IR/
IGF-1R receptors [ 128 ,  129 ,  154 ,  156 ,  157 ]. In particular, these studies demonstrated 

  Fig. 16.4    The molecular features of the protein–protein interaction interface and signaling 
between V-ATPase and cytohesin-2/Arf1,6 small GTPases. ( a ) NMR structure  a 2N(1–17) peptide 
derived from V-ATPase and mapping of its interaction protein–protein binding interface (formed 
by amino acids F5, M10, Q14, shown in  red square ) involved in binding with catalytic Sec7 
domain of cytohesin-2. ( b ) In silico docking experiments of the a2N(1–17) peptide at the interface 
between catalytic site of the Sec7-domain of cytohesin-2 and Arf1,6 small GTPases. ( c ) The bind-
ing of the  a 2N(1–17) peptide involves the αG, αH, and αI helixes of Sec7 and switch 2 of the 
Arf1,6 small GTPases       

 

16 V-ATPase and its Super Complexes



324

the direct interaction of cytohesin-2 with insulin receptor and regulation of the PI3K 
signaling pathway. Thus, both in mice and fl y cytohesin-2 is essential for signaling 
of IR/IGF-1R, cell growth, regulation of metabolism, and function of  calorie restric-
tion pathway (CRP)   during aging process [ 154 ,  156 ,  157 ,  162 ,  164 ,  202 ]. In cancer 
cells, cytohesin-2 serves as a cytoplasmic activator of EGFR/ErbB, that modulates 
phosphorylation-dependent dimerization, oncogenic signaling of these receptors, 
and development of cancer (Fig.  16.3 ) [ 128 ,  129 ]. In conclusion, cell biological 
insights of V-ATPase/cytohesin-2/Arf1,6/aldolase super-complex (Figs.  16.2  and 
 16.3 ) shed light on the regulation of endocytic protein degradation pathway, 
traffi cking and signaling EGFR/ErbB and IR/EGF-1R receptors under both physi-
ological (longevity and aging process) and pathological (cancer and diabetes) 
conditions.    

5     Conclusions 

5.1       Drug Design and Target  ing to Diverse V-ATPases 
and Their Super-complexes 

 As discussed above, extensive research in the last few years made an astounding 
breakthrough in understanding the structure and function of V-ATPase [ 1 – 5 ,  7 ,  9 –
 12 ]. The advances include following discoveries: (1) low resolution structure of 
V-ATPase using cryo-EM; (2) the crystal-structure of individual subunits and their 
protein–protein interfaces; (3) endosomal V-ATPase/cytohesin-2/Arf1,6/aldolase 
super-complex; (4) lysosomal V-ATPase/Ragulator/Rag/mTORC1/Rheb super-
complex, (5) novel roles of V-ATPase in traffi cking and signaling of receptors, and 
(6) critical role of V-ATPases in the development and pathogenesis of human dis-
eases. Thus, V-ATPase could be considered as a potential target providing powerful 
approaches for the development of therapeutic agents. The seven different 
approaches could be considered as discussed below. 

  First , targeting to V-ATPases in diverse compartments with a large spectrum of 
subunit isoforms could be productive for pharmaceutical research. The expressions 
of these isoforms are specifi c for tissues, cells, and compartments. Recent experi-
ments demonstrated that V-ATPases with unique combinations of subunit isoforms 
are localized in specifi c cell membranes which could dictate  t heir functions [ 1 – 5 , 
 8 ]. Thus, isoform-specifi c subunits of V-ATPase have been suggested as attractive 
targets for the treatment of human diseases. Targeting a-subunit and other isoforms 
by small molecule inhibitors is proposed in treating lytic bone disorders [ 210 – 212 ]. 
V-ATPase a-subunit isoforms are also potential targets for the treatment of meta-
static cancers. Thus, the small molecule V-ATPase inhibitors and siRNA have been 
studied extensively with their potential application in cancer treatment and preven-
tion of metastasis [ 213 – 217 ]. 

  Secondly , targeting the extracellular domains of a- and c-subunits with specifi c 
antibodies has been recently successfully applied for selective inhibition of plasma 
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membrane V-ATPase and reduction of metastatic phenotype of the cancer cells [ 53 , 
 178 ]. In addition, the fi rst V-ATPase inhibitory peptide was also identifi ed and its 
selectivity was demonstrated [ 82 ]. Thus, this approach should be considered for 
developing of novel anticancer pharmaceuticals including antibodies and peptides 
which have high specifi city and low toxicity. 

 Third, unique mechanism of regulating V-ATPase is reversible assembly/disas-
sembly, which could be a promising target in drug design. This approach would be 
even more fruitful if combined with targeting cell or tissue specifi c V-ATPase iso-
forms [ 13 – 15 ,  19 ]. 

  Forth , V-ATPases in regulation of signaling, traffi cking, and degradation of cel-
lular receptors could be a potential target. As discussed above, endocytosis, signal-
ing, and degradation of Fz/LRP6, PRR, and Notch receptors are regulated by the 
direct interaction with V-ATPase [ 1 ,  122 ]. Therefore, targeting to the interactions 
between V-ATPase and these receptors could provide a promising approach in treat-
ment of diseases related to cellular traffi cking such as cancer, diabetes, and neuro-
degenerative diseases. 

  Fifth , regulatory proteins interacting with V-ATPase could be a potential target. 
The V-ATPase dependent super-complexes in early endosomes (V-ATPase/cytohe-
sin-2/Arf1,6/aldolase) and late endosomes/lysosomes (V-ATPase/Ragulator/Rag/
mTORC1/Rheb) pathway have been discovered recently in our [ 1 ,  2 ,  25 ,  26 ,  28 ,  30 , 
 31 ,  109 ,  167 ] and Sabatini [ 32 – 34 ,  208 ] laboratories, respectively. The specifi c cas-
cade of different protein–protein interactions within these complexes could modu-
late pH and amino-acids sensing, targeting, assembly, and activity of V-ATPase, 
linked to the regulation of intravesicular acidifi cation and traffi cking. For example, 
mTOR-signaling pathway is critical for the pathogenesis of the cancer and age-
related diseases [ 34 ,  35 ,  163 ,  200 – 204 ]. It is noteworthy that extensive studies in 
animal models and clinical trials have uncovered the benefi cial action of  rapamycin , 
a potent mTOR inhibitor approved by FDA for treatment of variety age-associated 
diseases including cancers, neurodegenerative disorders, aging, and longevity. 
However, due to its side effects caused by the action of  rapamycin  on both mTORC1 
and mTORC2, there is growing necessity for pharmacological research producing 
more specifi c and effi cient drugs targeting of these pathways. Therefore, small mol-
ecules specifi cally targeting of protein–protein interactions in V-ATPase/Ragulator/
Rag/mTORC1/Rheb super-complex will provide an attractive therapeutic agents to 
control aberrant signaling of mTORC1 and mTORC2 complexes in cancer, diabe-
tes, age-related diseases, aging, and longevity [ 34 ,  35 ,  163 ,  200 – 204 ]. 

  Sixth , novel endosomal V-ATPase/cytohesin-2/Arf1,6/aldolase super-complex 
and especially its protein–protein interaction interfaces could be a potential thera-
peutic targets (Figs.  16.2 ,  16.3 , and  16.4 ) [ 1 ,  2 ,  25 ,  26 ,  28 ,  31 ,  167 ]. We propose that 
this approach will develop novel protein–protein interaction (PPI) inhibitors includ-
ing therapeutic peptides or small molecule drugs [ 218 – 220 ]. These compounds may 
be also used to regulate assembly/disassembly of V-ATPase and signaling of cyto-
hesin-2/Arf1,6 small GTPases. Modulation of the function of EGFR/ErbB or IR/
IGF-1R receptors by the similar approach may be useful for treating variety of 
cancers, age-related diseases, slowing aging process and extending human longev-
ity [ 154 – 158 ,  162 – 164 ]. 
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  Seventh , in our recent study the V-ATPase interactome was mapped for the fi rst 
time. This systematic approach, has revealed a novel interacting proteins involved 
in traffi cking, folding, assembly, and phosphorylation of V-ATPase [ 221 ]. These 
cell biological processes regulate V-ATPase-dependent acidifi cation, and thus, these 
pathways and proteins could serve as potential drug targets for the therapeutic regu-
lation V-ATPase function in health and disease states.       
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